TargetInfo.cpp revision 49e34be6ae0c25b9843610cdd2fd6fea9cd8b870
1//===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// These classes wrap the information about a call or function
11// definition used to handle ABI compliancy.
12//
13//===----------------------------------------------------------------------===//
14
15#include "TargetInfo.h"
16#include "ABIInfo.h"
17#include "CodeGenFunction.h"
18#include "clang/AST/RecordLayout.h"
19#include "clang/Frontend/CodeGenOptions.h"
20#include "llvm/Type.h"
21#include "llvm/Target/TargetData.h"
22#include "llvm/ADT/Triple.h"
23#include "llvm/Support/raw_ostream.h"
24using namespace clang;
25using namespace CodeGen;
26
27static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
28                               llvm::Value *Array,
29                               llvm::Value *Value,
30                               unsigned FirstIndex,
31                               unsigned LastIndex) {
32  // Alternatively, we could emit this as a loop in the source.
33  for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
34    llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I);
35    Builder.CreateStore(Value, Cell);
36  }
37}
38
39static bool isAggregateTypeForABI(QualType T) {
40  return CodeGenFunction::hasAggregateLLVMType(T) ||
41         T->isMemberFunctionPointerType();
42}
43
44ABIInfo::~ABIInfo() {}
45
46ASTContext &ABIInfo::getContext() const {
47  return CGT.getContext();
48}
49
50llvm::LLVMContext &ABIInfo::getVMContext() const {
51  return CGT.getLLVMContext();
52}
53
54const llvm::TargetData &ABIInfo::getTargetData() const {
55  return CGT.getTargetData();
56}
57
58
59void ABIArgInfo::dump() const {
60  raw_ostream &OS = llvm::errs();
61  OS << "(ABIArgInfo Kind=";
62  switch (TheKind) {
63  case Direct:
64    OS << "Direct Type=";
65    if (llvm::Type *Ty = getCoerceToType())
66      Ty->print(OS);
67    else
68      OS << "null";
69    break;
70  case Extend:
71    OS << "Extend";
72    break;
73  case Ignore:
74    OS << "Ignore";
75    break;
76  case Indirect:
77    OS << "Indirect Align=" << getIndirectAlign()
78       << " ByVal=" << getIndirectByVal()
79       << " Realign=" << getIndirectRealign();
80    break;
81  case Expand:
82    OS << "Expand";
83    break;
84  }
85  OS << ")\n";
86}
87
88TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
89
90// If someone can figure out a general rule for this, that would be great.
91// It's probably just doomed to be platform-dependent, though.
92unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
93  // Verified for:
94  //   x86-64     FreeBSD, Linux, Darwin
95  //   x86-32     FreeBSD, Linux, Darwin
96  //   PowerPC    Linux, Darwin
97  //   ARM        Darwin (*not* EABI)
98  return 32;
99}
100
101static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
102
103/// isEmptyField - Return true iff a the field is "empty", that is it
104/// is an unnamed bit-field or an (array of) empty record(s).
105static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
106                         bool AllowArrays) {
107  if (FD->isUnnamedBitfield())
108    return true;
109
110  QualType FT = FD->getType();
111
112    // Constant arrays of empty records count as empty, strip them off.
113  if (AllowArrays)
114    while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT))
115      FT = AT->getElementType();
116
117  const RecordType *RT = FT->getAs<RecordType>();
118  if (!RT)
119    return false;
120
121  // C++ record fields are never empty, at least in the Itanium ABI.
122  //
123  // FIXME: We should use a predicate for whether this behavior is true in the
124  // current ABI.
125  if (isa<CXXRecordDecl>(RT->getDecl()))
126    return false;
127
128  return isEmptyRecord(Context, FT, AllowArrays);
129}
130
131/// isEmptyRecord - Return true iff a structure contains only empty
132/// fields. Note that a structure with a flexible array member is not
133/// considered empty.
134static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
135  const RecordType *RT = T->getAs<RecordType>();
136  if (!RT)
137    return 0;
138  const RecordDecl *RD = RT->getDecl();
139  if (RD->hasFlexibleArrayMember())
140    return false;
141
142  // If this is a C++ record, check the bases first.
143  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
144    for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
145           e = CXXRD->bases_end(); i != e; ++i)
146      if (!isEmptyRecord(Context, i->getType(), true))
147        return false;
148
149  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
150         i != e; ++i)
151    if (!isEmptyField(Context, *i, AllowArrays))
152      return false;
153  return true;
154}
155
156/// hasNonTrivialDestructorOrCopyConstructor - Determine if a type has either
157/// a non-trivial destructor or a non-trivial copy constructor.
158static bool hasNonTrivialDestructorOrCopyConstructor(const RecordType *RT) {
159  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
160  if (!RD)
161    return false;
162
163  return !RD->hasTrivialDestructor() || !RD->hasTrivialCopyConstructor();
164}
165
166/// isRecordWithNonTrivialDestructorOrCopyConstructor - Determine if a type is
167/// a record type with either a non-trivial destructor or a non-trivial copy
168/// constructor.
169static bool isRecordWithNonTrivialDestructorOrCopyConstructor(QualType T) {
170  const RecordType *RT = T->getAs<RecordType>();
171  if (!RT)
172    return false;
173
174  return hasNonTrivialDestructorOrCopyConstructor(RT);
175}
176
177/// isSingleElementStruct - Determine if a structure is a "single
178/// element struct", i.e. it has exactly one non-empty field or
179/// exactly one field which is itself a single element
180/// struct. Structures with flexible array members are never
181/// considered single element structs.
182///
183/// \return The field declaration for the single non-empty field, if
184/// it exists.
185static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
186  const RecordType *RT = T->getAsStructureType();
187  if (!RT)
188    return 0;
189
190  const RecordDecl *RD = RT->getDecl();
191  if (RD->hasFlexibleArrayMember())
192    return 0;
193
194  const Type *Found = 0;
195
196  // If this is a C++ record, check the bases first.
197  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
198    for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
199           e = CXXRD->bases_end(); i != e; ++i) {
200      // Ignore empty records.
201      if (isEmptyRecord(Context, i->getType(), true))
202        continue;
203
204      // If we already found an element then this isn't a single-element struct.
205      if (Found)
206        return 0;
207
208      // If this is non-empty and not a single element struct, the composite
209      // cannot be a single element struct.
210      Found = isSingleElementStruct(i->getType(), Context);
211      if (!Found)
212        return 0;
213    }
214  }
215
216  // Check for single element.
217  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
218         i != e; ++i) {
219    const FieldDecl *FD = *i;
220    QualType FT = FD->getType();
221
222    // Ignore empty fields.
223    if (isEmptyField(Context, FD, true))
224      continue;
225
226    // If we already found an element then this isn't a single-element
227    // struct.
228    if (Found)
229      return 0;
230
231    // Treat single element arrays as the element.
232    while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
233      if (AT->getSize().getZExtValue() != 1)
234        break;
235      FT = AT->getElementType();
236    }
237
238    if (!isAggregateTypeForABI(FT)) {
239      Found = FT.getTypePtr();
240    } else {
241      Found = isSingleElementStruct(FT, Context);
242      if (!Found)
243        return 0;
244    }
245  }
246
247  return Found;
248}
249
250static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
251  if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
252      !Ty->isAnyComplexType() && !Ty->isEnumeralType() &&
253      !Ty->isBlockPointerType())
254    return false;
255
256  uint64_t Size = Context.getTypeSize(Ty);
257  return Size == 32 || Size == 64;
258}
259
260/// canExpandIndirectArgument - Test whether an argument type which is to be
261/// passed indirectly (on the stack) would have the equivalent layout if it was
262/// expanded into separate arguments. If so, we prefer to do the latter to avoid
263/// inhibiting optimizations.
264///
265// FIXME: This predicate is missing many cases, currently it just follows
266// llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
267// should probably make this smarter, or better yet make the LLVM backend
268// capable of handling it.
269static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
270  // We can only expand structure types.
271  const RecordType *RT = Ty->getAs<RecordType>();
272  if (!RT)
273    return false;
274
275  // We can only expand (C) structures.
276  //
277  // FIXME: This needs to be generalized to handle classes as well.
278  const RecordDecl *RD = RT->getDecl();
279  if (!RD->isStruct() || isa<CXXRecordDecl>(RD))
280    return false;
281
282  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
283         i != e; ++i) {
284    const FieldDecl *FD = *i;
285
286    if (!is32Or64BitBasicType(FD->getType(), Context))
287      return false;
288
289    // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
290    // how to expand them yet, and the predicate for telling if a bitfield still
291    // counts as "basic" is more complicated than what we were doing previously.
292    if (FD->isBitField())
293      return false;
294  }
295
296  return true;
297}
298
299namespace {
300/// DefaultABIInfo - The default implementation for ABI specific
301/// details. This implementation provides information which results in
302/// self-consistent and sensible LLVM IR generation, but does not
303/// conform to any particular ABI.
304class DefaultABIInfo : public ABIInfo {
305public:
306  DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
307
308  ABIArgInfo classifyReturnType(QualType RetTy) const;
309  ABIArgInfo classifyArgumentType(QualType RetTy) const;
310
311  virtual void computeInfo(CGFunctionInfo &FI) const {
312    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
313    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
314         it != ie; ++it)
315      it->info = classifyArgumentType(it->type);
316  }
317
318  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
319                                 CodeGenFunction &CGF) const;
320};
321
322class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
323public:
324  DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
325    : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
326};
327
328llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
329                                       CodeGenFunction &CGF) const {
330  return 0;
331}
332
333ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
334  if (isAggregateTypeForABI(Ty))
335    return ABIArgInfo::getIndirect(0);
336
337  // Treat an enum type as its underlying type.
338  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
339    Ty = EnumTy->getDecl()->getIntegerType();
340
341  return (Ty->isPromotableIntegerType() ?
342          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
343}
344
345ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
346  if (RetTy->isVoidType())
347    return ABIArgInfo::getIgnore();
348
349  if (isAggregateTypeForABI(RetTy))
350    return ABIArgInfo::getIndirect(0);
351
352  // Treat an enum type as its underlying type.
353  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
354    RetTy = EnumTy->getDecl()->getIntegerType();
355
356  return (RetTy->isPromotableIntegerType() ?
357          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
358}
359
360/// UseX86_MMXType - Return true if this is an MMX type that should use the special
361/// x86_mmx type.
362bool UseX86_MMXType(llvm::Type *IRType) {
363  // If the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>, use the
364  // special x86_mmx type.
365  return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
366    cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
367    IRType->getScalarSizeInBits() != 64;
368}
369
370static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
371                                          StringRef Constraint,
372                                          llvm::Type* Ty) {
373  if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy())
374    return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
375  return Ty;
376}
377
378//===----------------------------------------------------------------------===//
379// X86-32 ABI Implementation
380//===----------------------------------------------------------------------===//
381
382/// X86_32ABIInfo - The X86-32 ABI information.
383class X86_32ABIInfo : public ABIInfo {
384  static const unsigned MinABIStackAlignInBytes = 4;
385
386  bool IsDarwinVectorABI;
387  bool IsSmallStructInRegABI;
388  bool IsMMXDisabled;
389
390  static bool isRegisterSize(unsigned Size) {
391    return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
392  }
393
394  static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context);
395
396  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
397  /// such that the argument will be passed in memory.
398  ABIArgInfo getIndirectResult(QualType Ty, bool ByVal = true) const;
399
400  /// \brief Return the alignment to use for the given type on the stack.
401  unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
402
403public:
404
405  ABIArgInfo classifyReturnType(QualType RetTy) const;
406  ABIArgInfo classifyArgumentType(QualType RetTy) const;
407
408  virtual void computeInfo(CGFunctionInfo &FI) const {
409    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
410    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
411         it != ie; ++it)
412      it->info = classifyArgumentType(it->type);
413  }
414
415  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
416                                 CodeGenFunction &CGF) const;
417
418  X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool m)
419    : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p),
420      IsMMXDisabled(m) {}
421};
422
423class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
424public:
425  X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool m)
426    :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, m)) {}
427
428  void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
429                           CodeGen::CodeGenModule &CGM) const;
430
431  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
432    // Darwin uses different dwarf register numbers for EH.
433    if (CGM.isTargetDarwin()) return 5;
434
435    return 4;
436  }
437
438  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
439                               llvm::Value *Address) const;
440
441  llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
442                                  StringRef Constraint,
443                                  llvm::Type* Ty) const {
444    return X86AdjustInlineAsmType(CGF, Constraint, Ty);
445  }
446
447};
448
449}
450
451/// shouldReturnTypeInRegister - Determine if the given type should be
452/// passed in a register (for the Darwin ABI).
453bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
454                                               ASTContext &Context) {
455  uint64_t Size = Context.getTypeSize(Ty);
456
457  // Type must be register sized.
458  if (!isRegisterSize(Size))
459    return false;
460
461  if (Ty->isVectorType()) {
462    // 64- and 128- bit vectors inside structures are not returned in
463    // registers.
464    if (Size == 64 || Size == 128)
465      return false;
466
467    return true;
468  }
469
470  // If this is a builtin, pointer, enum, complex type, member pointer, or
471  // member function pointer it is ok.
472  if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
473      Ty->isAnyComplexType() || Ty->isEnumeralType() ||
474      Ty->isBlockPointerType() || Ty->isMemberPointerType())
475    return true;
476
477  // Arrays are treated like records.
478  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
479    return shouldReturnTypeInRegister(AT->getElementType(), Context);
480
481  // Otherwise, it must be a record type.
482  const RecordType *RT = Ty->getAs<RecordType>();
483  if (!RT) return false;
484
485  // FIXME: Traverse bases here too.
486
487  // Structure types are passed in register if all fields would be
488  // passed in a register.
489  for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(),
490         e = RT->getDecl()->field_end(); i != e; ++i) {
491    const FieldDecl *FD = *i;
492
493    // Empty fields are ignored.
494    if (isEmptyField(Context, FD, true))
495      continue;
496
497    // Check fields recursively.
498    if (!shouldReturnTypeInRegister(FD->getType(), Context))
499      return false;
500  }
501
502  return true;
503}
504
505ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy) const {
506  if (RetTy->isVoidType())
507    return ABIArgInfo::getIgnore();
508
509  if (const VectorType *VT = RetTy->getAs<VectorType>()) {
510    // On Darwin, some vectors are returned in registers.
511    if (IsDarwinVectorABI) {
512      uint64_t Size = getContext().getTypeSize(RetTy);
513
514      // 128-bit vectors are a special case; they are returned in
515      // registers and we need to make sure to pick a type the LLVM
516      // backend will like.
517      if (Size == 128)
518        return ABIArgInfo::getDirect(llvm::VectorType::get(
519                  llvm::Type::getInt64Ty(getVMContext()), 2));
520
521      // Always return in register if it fits in a general purpose
522      // register, or if it is 64 bits and has a single element.
523      if ((Size == 8 || Size == 16 || Size == 32) ||
524          (Size == 64 && VT->getNumElements() == 1))
525        return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
526                                                            Size));
527
528      return ABIArgInfo::getIndirect(0);
529    }
530
531    return ABIArgInfo::getDirect();
532  }
533
534  if (isAggregateTypeForABI(RetTy)) {
535    if (const RecordType *RT = RetTy->getAs<RecordType>()) {
536      // Structures with either a non-trivial destructor or a non-trivial
537      // copy constructor are always indirect.
538      if (hasNonTrivialDestructorOrCopyConstructor(RT))
539        return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
540
541      // Structures with flexible arrays are always indirect.
542      if (RT->getDecl()->hasFlexibleArrayMember())
543        return ABIArgInfo::getIndirect(0);
544    }
545
546    // If specified, structs and unions are always indirect.
547    if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
548      return ABIArgInfo::getIndirect(0);
549
550    // Classify "single element" structs as their element type.
551    if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) {
552      if (const BuiltinType *BT = SeltTy->getAs<BuiltinType>()) {
553        if (BT->isIntegerType()) {
554          // We need to use the size of the structure, padding
555          // bit-fields can adjust that to be larger than the single
556          // element type.
557          uint64_t Size = getContext().getTypeSize(RetTy);
558          return ABIArgInfo::getDirect(
559            llvm::IntegerType::get(getVMContext(), (unsigned)Size));
560        }
561
562        if (BT->getKind() == BuiltinType::Float) {
563          assert(getContext().getTypeSize(RetTy) ==
564                 getContext().getTypeSize(SeltTy) &&
565                 "Unexpect single element structure size!");
566          return ABIArgInfo::getDirect(llvm::Type::getFloatTy(getVMContext()));
567        }
568
569        if (BT->getKind() == BuiltinType::Double) {
570          assert(getContext().getTypeSize(RetTy) ==
571                 getContext().getTypeSize(SeltTy) &&
572                 "Unexpect single element structure size!");
573          return ABIArgInfo::getDirect(llvm::Type::getDoubleTy(getVMContext()));
574        }
575      } else if (SeltTy->isPointerType()) {
576        // FIXME: It would be really nice if this could come out as the proper
577        // pointer type.
578        llvm::Type *PtrTy = llvm::Type::getInt8PtrTy(getVMContext());
579        return ABIArgInfo::getDirect(PtrTy);
580      } else if (SeltTy->isVectorType()) {
581        // 64- and 128-bit vectors are never returned in a
582        // register when inside a structure.
583        uint64_t Size = getContext().getTypeSize(RetTy);
584        if (Size == 64 || Size == 128)
585          return ABIArgInfo::getIndirect(0);
586
587        return classifyReturnType(QualType(SeltTy, 0));
588      }
589    }
590
591    // Small structures which are register sized are generally returned
592    // in a register.
593    if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, getContext())) {
594      uint64_t Size = getContext().getTypeSize(RetTy);
595      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
596    }
597
598    return ABIArgInfo::getIndirect(0);
599  }
600
601  // Treat an enum type as its underlying type.
602  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
603    RetTy = EnumTy->getDecl()->getIntegerType();
604
605  return (RetTy->isPromotableIntegerType() ?
606          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
607}
608
609static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
610  const RecordType *RT = Ty->getAs<RecordType>();
611  if (!RT)
612    return 0;
613  const RecordDecl *RD = RT->getDecl();
614
615  // If this is a C++ record, check the bases first.
616  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
617    for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
618           e = CXXRD->bases_end(); i != e; ++i)
619      if (!isRecordWithSSEVectorType(Context, i->getType()))
620        return false;
621
622  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
623       i != e; ++i) {
624    QualType FT = i->getType();
625
626    if (FT->getAs<VectorType>() && Context.getTypeSize(Ty) == 128)
627      return true;
628
629    if (isRecordWithSSEVectorType(Context, FT))
630      return true;
631  }
632
633  return false;
634}
635
636unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
637                                                 unsigned Align) const {
638  // Otherwise, if the alignment is less than or equal to the minimum ABI
639  // alignment, just use the default; the backend will handle this.
640  if (Align <= MinABIStackAlignInBytes)
641    return 0; // Use default alignment.
642
643  // On non-Darwin, the stack type alignment is always 4.
644  if (!IsDarwinVectorABI) {
645    // Set explicit alignment, since we may need to realign the top.
646    return MinABIStackAlignInBytes;
647  }
648
649  // Otherwise, if the type contains an SSE vector type, the alignment is 16.
650  if (isRecordWithSSEVectorType(getContext(), Ty))
651    return 16;
652
653  return MinABIStackAlignInBytes;
654}
655
656ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal) const {
657  if (!ByVal)
658    return ABIArgInfo::getIndirect(0, false);
659
660  // Compute the byval alignment.
661  unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
662  unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
663  if (StackAlign == 0)
664    return ABIArgInfo::getIndirect(4);
665
666  // If the stack alignment is less than the type alignment, realign the
667  // argument.
668  if (StackAlign < TypeAlign)
669    return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true,
670                                   /*Realign=*/true);
671
672  return ABIArgInfo::getIndirect(StackAlign);
673}
674
675ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty) const {
676  // FIXME: Set alignment on indirect arguments.
677  if (isAggregateTypeForABI(Ty)) {
678    // Structures with flexible arrays are always indirect.
679    if (const RecordType *RT = Ty->getAs<RecordType>()) {
680      // Structures with either a non-trivial destructor or a non-trivial
681      // copy constructor are always indirect.
682      if (hasNonTrivialDestructorOrCopyConstructor(RT))
683        return getIndirectResult(Ty, /*ByVal=*/false);
684
685      if (RT->getDecl()->hasFlexibleArrayMember())
686        return getIndirectResult(Ty);
687    }
688
689    // Ignore empty structs.
690    if (Ty->isStructureType() && getContext().getTypeSize(Ty) == 0)
691      return ABIArgInfo::getIgnore();
692
693    // Expand small (<= 128-bit) record types when we know that the stack layout
694    // of those arguments will match the struct. This is important because the
695    // LLVM backend isn't smart enough to remove byval, which inhibits many
696    // optimizations.
697    if (getContext().getTypeSize(Ty) <= 4*32 &&
698        canExpandIndirectArgument(Ty, getContext()))
699      return ABIArgInfo::getExpand();
700
701    return getIndirectResult(Ty);
702  }
703
704  if (const VectorType *VT = Ty->getAs<VectorType>()) {
705    // On Darwin, some vectors are passed in memory, we handle this by passing
706    // it as an i8/i16/i32/i64.
707    if (IsDarwinVectorABI) {
708      uint64_t Size = getContext().getTypeSize(Ty);
709      if ((Size == 8 || Size == 16 || Size == 32) ||
710          (Size == 64 && VT->getNumElements() == 1))
711        return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
712                                                            Size));
713    }
714
715    llvm::Type *IRType = CGT.ConvertType(Ty);
716    if (UseX86_MMXType(IRType)) {
717      if (IsMMXDisabled)
718        return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
719                                                            64));
720      ABIArgInfo AAI = ABIArgInfo::getDirect(IRType);
721      AAI.setCoerceToType(llvm::Type::getX86_MMXTy(getVMContext()));
722      return AAI;
723    }
724
725    return ABIArgInfo::getDirect();
726  }
727
728
729  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
730    Ty = EnumTy->getDecl()->getIntegerType();
731
732  return (Ty->isPromotableIntegerType() ?
733          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
734}
735
736llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
737                                      CodeGenFunction &CGF) const {
738  llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
739  llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
740
741  CGBuilderTy &Builder = CGF.Builder;
742  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
743                                                       "ap");
744  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
745  llvm::Type *PTy =
746    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
747  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
748
749  uint64_t Offset =
750    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
751  llvm::Value *NextAddr =
752    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
753                      "ap.next");
754  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
755
756  return AddrTyped;
757}
758
759void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
760                                                  llvm::GlobalValue *GV,
761                                            CodeGen::CodeGenModule &CGM) const {
762  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
763    if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
764      // Get the LLVM function.
765      llvm::Function *Fn = cast<llvm::Function>(GV);
766
767      // Now add the 'alignstack' attribute with a value of 16.
768      Fn->addFnAttr(llvm::Attribute::constructStackAlignmentFromInt(16));
769    }
770  }
771}
772
773bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
774                                               CodeGen::CodeGenFunction &CGF,
775                                               llvm::Value *Address) const {
776  CodeGen::CGBuilderTy &Builder = CGF.Builder;
777  llvm::LLVMContext &Context = CGF.getLLVMContext();
778
779  llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
780  llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
781
782  // 0-7 are the eight integer registers;  the order is different
783  //   on Darwin (for EH), but the range is the same.
784  // 8 is %eip.
785  AssignToArrayRange(Builder, Address, Four8, 0, 8);
786
787  if (CGF.CGM.isTargetDarwin()) {
788    // 12-16 are st(0..4).  Not sure why we stop at 4.
789    // These have size 16, which is sizeof(long double) on
790    // platforms with 8-byte alignment for that type.
791    llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
792    AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
793
794  } else {
795    // 9 is %eflags, which doesn't get a size on Darwin for some
796    // reason.
797    Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9));
798
799    // 11-16 are st(0..5).  Not sure why we stop at 5.
800    // These have size 12, which is sizeof(long double) on
801    // platforms with 4-byte alignment for that type.
802    llvm::Value *Twelve8 = llvm::ConstantInt::get(i8, 12);
803    AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
804  }
805
806  return false;
807}
808
809//===----------------------------------------------------------------------===//
810// X86-64 ABI Implementation
811//===----------------------------------------------------------------------===//
812
813
814namespace {
815/// X86_64ABIInfo - The X86_64 ABI information.
816class X86_64ABIInfo : public ABIInfo {
817  enum Class {
818    Integer = 0,
819    SSE,
820    SSEUp,
821    X87,
822    X87Up,
823    ComplexX87,
824    NoClass,
825    Memory
826  };
827
828  /// merge - Implement the X86_64 ABI merging algorithm.
829  ///
830  /// Merge an accumulating classification \arg Accum with a field
831  /// classification \arg Field.
832  ///
833  /// \param Accum - The accumulating classification. This should
834  /// always be either NoClass or the result of a previous merge
835  /// call. In addition, this should never be Memory (the caller
836  /// should just return Memory for the aggregate).
837  static Class merge(Class Accum, Class Field);
838
839  /// postMerge - Implement the X86_64 ABI post merging algorithm.
840  ///
841  /// Post merger cleanup, reduces a malformed Hi and Lo pair to
842  /// final MEMORY or SSE classes when necessary.
843  ///
844  /// \param AggregateSize - The size of the current aggregate in
845  /// the classification process.
846  ///
847  /// \param Lo - The classification for the parts of the type
848  /// residing in the low word of the containing object.
849  ///
850  /// \param Hi - The classification for the parts of the type
851  /// residing in the higher words of the containing object.
852  ///
853  void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
854
855  /// classify - Determine the x86_64 register classes in which the
856  /// given type T should be passed.
857  ///
858  /// \param Lo - The classification for the parts of the type
859  /// residing in the low word of the containing object.
860  ///
861  /// \param Hi - The classification for the parts of the type
862  /// residing in the high word of the containing object.
863  ///
864  /// \param OffsetBase - The bit offset of this type in the
865  /// containing object.  Some parameters are classified different
866  /// depending on whether they straddle an eightbyte boundary.
867  ///
868  /// If a word is unused its result will be NoClass; if a type should
869  /// be passed in Memory then at least the classification of \arg Lo
870  /// will be Memory.
871  ///
872  /// The \arg Lo class will be NoClass iff the argument is ignored.
873  ///
874  /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
875  /// also be ComplexX87.
876  void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi) const;
877
878  llvm::Type *GetByteVectorType(QualType Ty) const;
879  llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
880                                 unsigned IROffset, QualType SourceTy,
881                                 unsigned SourceOffset) const;
882  llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
883                                     unsigned IROffset, QualType SourceTy,
884                                     unsigned SourceOffset) const;
885
886  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
887  /// such that the argument will be returned in memory.
888  ABIArgInfo getIndirectReturnResult(QualType Ty) const;
889
890  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
891  /// such that the argument will be passed in memory.
892  ABIArgInfo getIndirectResult(QualType Ty) const;
893
894  ABIArgInfo classifyReturnType(QualType RetTy) const;
895
896  ABIArgInfo classifyArgumentType(QualType Ty,
897                                  unsigned &neededInt,
898                                  unsigned &neededSSE) const;
899
900  /// The 0.98 ABI revision clarified a lot of ambiguities,
901  /// unfortunately in ways that were not always consistent with
902  /// certain previous compilers.  In particular, platforms which
903  /// required strict binary compatibility with older versions of GCC
904  /// may need to exempt themselves.
905  bool honorsRevision0_98() const {
906    return !getContext().Target.getTriple().isOSDarwin();
907  }
908
909public:
910  X86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
911
912  virtual void computeInfo(CGFunctionInfo &FI) const;
913
914  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
915                                 CodeGenFunction &CGF) const;
916};
917
918/// WinX86_64ABIInfo - The Windows X86_64 ABI information.
919class WinX86_64ABIInfo : public ABIInfo {
920
921  ABIArgInfo classify(QualType Ty) const;
922
923public:
924  WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
925
926  virtual void computeInfo(CGFunctionInfo &FI) const;
927
928  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
929                                 CodeGenFunction &CGF) const;
930};
931
932class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
933public:
934  X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
935    : TargetCodeGenInfo(new X86_64ABIInfo(CGT)) {}
936
937  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
938    return 7;
939  }
940
941  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
942                               llvm::Value *Address) const {
943    CodeGen::CGBuilderTy &Builder = CGF.Builder;
944    llvm::LLVMContext &Context = CGF.getLLVMContext();
945
946    llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
947    llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
948
949    // 0-15 are the 16 integer registers.
950    // 16 is %rip.
951    AssignToArrayRange(Builder, Address, Eight8, 0, 16);
952
953    return false;
954  }
955
956  llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
957                                  StringRef Constraint,
958                                  llvm::Type* Ty) const {
959    return X86AdjustInlineAsmType(CGF, Constraint, Ty);
960  }
961
962};
963
964class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
965public:
966  WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
967    : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
968
969  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
970    return 7;
971  }
972
973  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
974                               llvm::Value *Address) const {
975    CodeGen::CGBuilderTy &Builder = CGF.Builder;
976    llvm::LLVMContext &Context = CGF.getLLVMContext();
977
978    llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
979    llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
980
981    // 0-15 are the 16 integer registers.
982    // 16 is %rip.
983    AssignToArrayRange(Builder, Address, Eight8, 0, 16);
984
985    return false;
986  }
987};
988
989}
990
991void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
992                              Class &Hi) const {
993  // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
994  //
995  // (a) If one of the classes is Memory, the whole argument is passed in
996  //     memory.
997  //
998  // (b) If X87UP is not preceded by X87, the whole argument is passed in
999  //     memory.
1000  //
1001  // (c) If the size of the aggregate exceeds two eightbytes and the first
1002  //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
1003  //     argument is passed in memory. NOTE: This is necessary to keep the
1004  //     ABI working for processors that don't support the __m256 type.
1005  //
1006  // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
1007  //
1008  // Some of these are enforced by the merging logic.  Others can arise
1009  // only with unions; for example:
1010  //   union { _Complex double; unsigned; }
1011  //
1012  // Note that clauses (b) and (c) were added in 0.98.
1013  //
1014  if (Hi == Memory)
1015    Lo = Memory;
1016  if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
1017    Lo = Memory;
1018  if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
1019    Lo = Memory;
1020  if (Hi == SSEUp && Lo != SSE)
1021    Hi = SSE;
1022}
1023
1024X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
1025  // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
1026  // classified recursively so that always two fields are
1027  // considered. The resulting class is calculated according to
1028  // the classes of the fields in the eightbyte:
1029  //
1030  // (a) If both classes are equal, this is the resulting class.
1031  //
1032  // (b) If one of the classes is NO_CLASS, the resulting class is
1033  // the other class.
1034  //
1035  // (c) If one of the classes is MEMORY, the result is the MEMORY
1036  // class.
1037  //
1038  // (d) If one of the classes is INTEGER, the result is the
1039  // INTEGER.
1040  //
1041  // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
1042  // MEMORY is used as class.
1043  //
1044  // (f) Otherwise class SSE is used.
1045
1046  // Accum should never be memory (we should have returned) or
1047  // ComplexX87 (because this cannot be passed in a structure).
1048  assert((Accum != Memory && Accum != ComplexX87) &&
1049         "Invalid accumulated classification during merge.");
1050  if (Accum == Field || Field == NoClass)
1051    return Accum;
1052  if (Field == Memory)
1053    return Memory;
1054  if (Accum == NoClass)
1055    return Field;
1056  if (Accum == Integer || Field == Integer)
1057    return Integer;
1058  if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
1059      Accum == X87 || Accum == X87Up)
1060    return Memory;
1061  return SSE;
1062}
1063
1064void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
1065                             Class &Lo, Class &Hi) const {
1066  // FIXME: This code can be simplified by introducing a simple value class for
1067  // Class pairs with appropriate constructor methods for the various
1068  // situations.
1069
1070  // FIXME: Some of the split computations are wrong; unaligned vectors
1071  // shouldn't be passed in registers for example, so there is no chance they
1072  // can straddle an eightbyte. Verify & simplify.
1073
1074  Lo = Hi = NoClass;
1075
1076  Class &Current = OffsetBase < 64 ? Lo : Hi;
1077  Current = Memory;
1078
1079  if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
1080    BuiltinType::Kind k = BT->getKind();
1081
1082    if (k == BuiltinType::Void) {
1083      Current = NoClass;
1084    } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
1085      Lo = Integer;
1086      Hi = Integer;
1087    } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
1088      Current = Integer;
1089    } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
1090      Current = SSE;
1091    } else if (k == BuiltinType::LongDouble) {
1092      Lo = X87;
1093      Hi = X87Up;
1094    }
1095    // FIXME: _Decimal32 and _Decimal64 are SSE.
1096    // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
1097    return;
1098  }
1099
1100  if (const EnumType *ET = Ty->getAs<EnumType>()) {
1101    // Classify the underlying integer type.
1102    classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi);
1103    return;
1104  }
1105
1106  if (Ty->hasPointerRepresentation()) {
1107    Current = Integer;
1108    return;
1109  }
1110
1111  if (Ty->isMemberPointerType()) {
1112    if (Ty->isMemberFunctionPointerType())
1113      Lo = Hi = Integer;
1114    else
1115      Current = Integer;
1116    return;
1117  }
1118
1119  if (const VectorType *VT = Ty->getAs<VectorType>()) {
1120    uint64_t Size = getContext().getTypeSize(VT);
1121    if (Size == 32) {
1122      // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
1123      // float> as integer.
1124      Current = Integer;
1125
1126      // If this type crosses an eightbyte boundary, it should be
1127      // split.
1128      uint64_t EB_Real = (OffsetBase) / 64;
1129      uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
1130      if (EB_Real != EB_Imag)
1131        Hi = Lo;
1132    } else if (Size == 64) {
1133      // gcc passes <1 x double> in memory. :(
1134      if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
1135        return;
1136
1137      // gcc passes <1 x long long> as INTEGER.
1138      if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) ||
1139          VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) ||
1140          VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) ||
1141          VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong))
1142        Current = Integer;
1143      else
1144        Current = SSE;
1145
1146      // If this type crosses an eightbyte boundary, it should be
1147      // split.
1148      if (OffsetBase && OffsetBase != 64)
1149        Hi = Lo;
1150    } else if (Size == 128 || Size == 256) {
1151      // Arguments of 256-bits are split into four eightbyte chunks. The
1152      // least significant one belongs to class SSE and all the others to class
1153      // SSEUP. The original Lo and Hi design considers that types can't be
1154      // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
1155      // This design isn't correct for 256-bits, but since there're no cases
1156      // where the upper parts would need to be inspected, avoid adding
1157      // complexity and just consider Hi to match the 64-256 part.
1158      Lo = SSE;
1159      Hi = SSEUp;
1160    }
1161    return;
1162  }
1163
1164  if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
1165    QualType ET = getContext().getCanonicalType(CT->getElementType());
1166
1167    uint64_t Size = getContext().getTypeSize(Ty);
1168    if (ET->isIntegralOrEnumerationType()) {
1169      if (Size <= 64)
1170        Current = Integer;
1171      else if (Size <= 128)
1172        Lo = Hi = Integer;
1173    } else if (ET == getContext().FloatTy)
1174      Current = SSE;
1175    else if (ET == getContext().DoubleTy)
1176      Lo = Hi = SSE;
1177    else if (ET == getContext().LongDoubleTy)
1178      Current = ComplexX87;
1179
1180    // If this complex type crosses an eightbyte boundary then it
1181    // should be split.
1182    uint64_t EB_Real = (OffsetBase) / 64;
1183    uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
1184    if (Hi == NoClass && EB_Real != EB_Imag)
1185      Hi = Lo;
1186
1187    return;
1188  }
1189
1190  if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
1191    // Arrays are treated like structures.
1192
1193    uint64_t Size = getContext().getTypeSize(Ty);
1194
1195    // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1196    // than four eightbytes, ..., it has class MEMORY.
1197    if (Size > 256)
1198      return;
1199
1200    // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
1201    // fields, it has class MEMORY.
1202    //
1203    // Only need to check alignment of array base.
1204    if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
1205      return;
1206
1207    // Otherwise implement simplified merge. We could be smarter about
1208    // this, but it isn't worth it and would be harder to verify.
1209    Current = NoClass;
1210    uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
1211    uint64_t ArraySize = AT->getSize().getZExtValue();
1212
1213    // The only case a 256-bit wide vector could be used is when the array
1214    // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1215    // to work for sizes wider than 128, early check and fallback to memory.
1216    if (Size > 128 && EltSize != 256)
1217      return;
1218
1219    for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
1220      Class FieldLo, FieldHi;
1221      classify(AT->getElementType(), Offset, FieldLo, FieldHi);
1222      Lo = merge(Lo, FieldLo);
1223      Hi = merge(Hi, FieldHi);
1224      if (Lo == Memory || Hi == Memory)
1225        break;
1226    }
1227
1228    postMerge(Size, Lo, Hi);
1229    assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
1230    return;
1231  }
1232
1233  if (const RecordType *RT = Ty->getAs<RecordType>()) {
1234    uint64_t Size = getContext().getTypeSize(Ty);
1235
1236    // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1237    // than four eightbytes, ..., it has class MEMORY.
1238    if (Size > 256)
1239      return;
1240
1241    // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
1242    // copy constructor or a non-trivial destructor, it is passed by invisible
1243    // reference.
1244    if (hasNonTrivialDestructorOrCopyConstructor(RT))
1245      return;
1246
1247    const RecordDecl *RD = RT->getDecl();
1248
1249    // Assume variable sized types are passed in memory.
1250    if (RD->hasFlexibleArrayMember())
1251      return;
1252
1253    const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1254
1255    // Reset Lo class, this will be recomputed.
1256    Current = NoClass;
1257
1258    // If this is a C++ record, classify the bases first.
1259    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1260      for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1261             e = CXXRD->bases_end(); i != e; ++i) {
1262        assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1263               "Unexpected base class!");
1264        const CXXRecordDecl *Base =
1265          cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1266
1267        // Classify this field.
1268        //
1269        // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
1270        // single eightbyte, each is classified separately. Each eightbyte gets
1271        // initialized to class NO_CLASS.
1272        Class FieldLo, FieldHi;
1273        uint64_t Offset = OffsetBase + Layout.getBaseClassOffsetInBits(Base);
1274        classify(i->getType(), Offset, FieldLo, FieldHi);
1275        Lo = merge(Lo, FieldLo);
1276        Hi = merge(Hi, FieldHi);
1277        if (Lo == Memory || Hi == Memory)
1278          break;
1279      }
1280    }
1281
1282    // Classify the fields one at a time, merging the results.
1283    unsigned idx = 0;
1284    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1285           i != e; ++i, ++idx) {
1286      uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1287      bool BitField = i->isBitField();
1288
1289      // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
1290      // four eightbytes, or it contains unaligned fields, it has class MEMORY.
1291      //
1292      // The only case a 256-bit wide vector could be used is when the struct
1293      // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1294      // to work for sizes wider than 128, early check and fallback to memory.
1295      //
1296      if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) {
1297        Lo = Memory;
1298        return;
1299      }
1300      // Note, skip this test for bit-fields, see below.
1301      if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
1302        Lo = Memory;
1303        return;
1304      }
1305
1306      // Classify this field.
1307      //
1308      // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
1309      // exceeds a single eightbyte, each is classified
1310      // separately. Each eightbyte gets initialized to class
1311      // NO_CLASS.
1312      Class FieldLo, FieldHi;
1313
1314      // Bit-fields require special handling, they do not force the
1315      // structure to be passed in memory even if unaligned, and
1316      // therefore they can straddle an eightbyte.
1317      if (BitField) {
1318        // Ignore padding bit-fields.
1319        if (i->isUnnamedBitfield())
1320          continue;
1321
1322        uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1323        uint64_t Size =
1324          i->getBitWidth()->EvaluateAsInt(getContext()).getZExtValue();
1325
1326        uint64_t EB_Lo = Offset / 64;
1327        uint64_t EB_Hi = (Offset + Size - 1) / 64;
1328        FieldLo = FieldHi = NoClass;
1329        if (EB_Lo) {
1330          assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
1331          FieldLo = NoClass;
1332          FieldHi = Integer;
1333        } else {
1334          FieldLo = Integer;
1335          FieldHi = EB_Hi ? Integer : NoClass;
1336        }
1337      } else
1338        classify(i->getType(), Offset, FieldLo, FieldHi);
1339      Lo = merge(Lo, FieldLo);
1340      Hi = merge(Hi, FieldHi);
1341      if (Lo == Memory || Hi == Memory)
1342        break;
1343    }
1344
1345    postMerge(Size, Lo, Hi);
1346  }
1347}
1348
1349ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
1350  // If this is a scalar LLVM value then assume LLVM will pass it in the right
1351  // place naturally.
1352  if (!isAggregateTypeForABI(Ty)) {
1353    // Treat an enum type as its underlying type.
1354    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1355      Ty = EnumTy->getDecl()->getIntegerType();
1356
1357    return (Ty->isPromotableIntegerType() ?
1358            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1359  }
1360
1361  return ABIArgInfo::getIndirect(0);
1362}
1363
1364ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty) const {
1365  // If this is a scalar LLVM value then assume LLVM will pass it in the right
1366  // place naturally.
1367  if (!isAggregateTypeForABI(Ty)) {
1368    // Treat an enum type as its underlying type.
1369    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1370      Ty = EnumTy->getDecl()->getIntegerType();
1371
1372    return (Ty->isPromotableIntegerType() ?
1373            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1374  }
1375
1376  if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
1377    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
1378
1379  // Compute the byval alignment. We specify the alignment of the byval in all
1380  // cases so that the mid-level optimizer knows the alignment of the byval.
1381  unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
1382  return ABIArgInfo::getIndirect(Align);
1383}
1384
1385/// GetByteVectorType - The ABI specifies that a value should be passed in an
1386/// full vector XMM/YMM register.  Pick an LLVM IR type that will be passed as a
1387/// vector register.
1388llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
1389  llvm::Type *IRType = CGT.ConvertType(Ty);
1390
1391  // Wrapper structs that just contain vectors are passed just like vectors,
1392  // strip them off if present.
1393  llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType);
1394  while (STy && STy->getNumElements() == 1) {
1395    IRType = STy->getElementType(0);
1396    STy = dyn_cast<llvm::StructType>(IRType);
1397  }
1398
1399  // If the preferred type is a 16-byte vector, prefer to pass it.
1400  if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(IRType)){
1401    llvm::Type *EltTy = VT->getElementType();
1402    unsigned BitWidth = VT->getBitWidth();
1403    if ((BitWidth == 128 || BitWidth == 256) &&
1404        (EltTy->isFloatTy() || EltTy->isDoubleTy() ||
1405         EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) ||
1406         EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) ||
1407         EltTy->isIntegerTy(128)))
1408      return VT;
1409  }
1410
1411  return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2);
1412}
1413
1414/// BitsContainNoUserData - Return true if the specified [start,end) bit range
1415/// is known to either be off the end of the specified type or being in
1416/// alignment padding.  The user type specified is known to be at most 128 bits
1417/// in size, and have passed through X86_64ABIInfo::classify with a successful
1418/// classification that put one of the two halves in the INTEGER class.
1419///
1420/// It is conservatively correct to return false.
1421static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
1422                                  unsigned EndBit, ASTContext &Context) {
1423  // If the bytes being queried are off the end of the type, there is no user
1424  // data hiding here.  This handles analysis of builtins, vectors and other
1425  // types that don't contain interesting padding.
1426  unsigned TySize = (unsigned)Context.getTypeSize(Ty);
1427  if (TySize <= StartBit)
1428    return true;
1429
1430  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
1431    unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
1432    unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
1433
1434    // Check each element to see if the element overlaps with the queried range.
1435    for (unsigned i = 0; i != NumElts; ++i) {
1436      // If the element is after the span we care about, then we're done..
1437      unsigned EltOffset = i*EltSize;
1438      if (EltOffset >= EndBit) break;
1439
1440      unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
1441      if (!BitsContainNoUserData(AT->getElementType(), EltStart,
1442                                 EndBit-EltOffset, Context))
1443        return false;
1444    }
1445    // If it overlaps no elements, then it is safe to process as padding.
1446    return true;
1447  }
1448
1449  if (const RecordType *RT = Ty->getAs<RecordType>()) {
1450    const RecordDecl *RD = RT->getDecl();
1451    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1452
1453    // If this is a C++ record, check the bases first.
1454    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1455      for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1456           e = CXXRD->bases_end(); i != e; ++i) {
1457        assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1458               "Unexpected base class!");
1459        const CXXRecordDecl *Base =
1460          cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1461
1462        // If the base is after the span we care about, ignore it.
1463        unsigned BaseOffset = (unsigned)Layout.getBaseClassOffsetInBits(Base);
1464        if (BaseOffset >= EndBit) continue;
1465
1466        unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
1467        if (!BitsContainNoUserData(i->getType(), BaseStart,
1468                                   EndBit-BaseOffset, Context))
1469          return false;
1470      }
1471    }
1472
1473    // Verify that no field has data that overlaps the region of interest.  Yes
1474    // this could be sped up a lot by being smarter about queried fields,
1475    // however we're only looking at structs up to 16 bytes, so we don't care
1476    // much.
1477    unsigned idx = 0;
1478    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1479         i != e; ++i, ++idx) {
1480      unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
1481
1482      // If we found a field after the region we care about, then we're done.
1483      if (FieldOffset >= EndBit) break;
1484
1485      unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
1486      if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
1487                                 Context))
1488        return false;
1489    }
1490
1491    // If nothing in this record overlapped the area of interest, then we're
1492    // clean.
1493    return true;
1494  }
1495
1496  return false;
1497}
1498
1499/// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
1500/// float member at the specified offset.  For example, {int,{float}} has a
1501/// float at offset 4.  It is conservatively correct for this routine to return
1502/// false.
1503static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
1504                                  const llvm::TargetData &TD) {
1505  // Base case if we find a float.
1506  if (IROffset == 0 && IRType->isFloatTy())
1507    return true;
1508
1509  // If this is a struct, recurse into the field at the specified offset.
1510  if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
1511    const llvm::StructLayout *SL = TD.getStructLayout(STy);
1512    unsigned Elt = SL->getElementContainingOffset(IROffset);
1513    IROffset -= SL->getElementOffset(Elt);
1514    return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
1515  }
1516
1517  // If this is an array, recurse into the field at the specified offset.
1518  if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
1519    llvm::Type *EltTy = ATy->getElementType();
1520    unsigned EltSize = TD.getTypeAllocSize(EltTy);
1521    IROffset -= IROffset/EltSize*EltSize;
1522    return ContainsFloatAtOffset(EltTy, IROffset, TD);
1523  }
1524
1525  return false;
1526}
1527
1528
1529/// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
1530/// low 8 bytes of an XMM register, corresponding to the SSE class.
1531llvm::Type *X86_64ABIInfo::
1532GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
1533                   QualType SourceTy, unsigned SourceOffset) const {
1534  // The only three choices we have are either double, <2 x float>, or float. We
1535  // pass as float if the last 4 bytes is just padding.  This happens for
1536  // structs that contain 3 floats.
1537  if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
1538                            SourceOffset*8+64, getContext()))
1539    return llvm::Type::getFloatTy(getVMContext());
1540
1541  // We want to pass as <2 x float> if the LLVM IR type contains a float at
1542  // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
1543  // case.
1544  if (ContainsFloatAtOffset(IRType, IROffset, getTargetData()) &&
1545      ContainsFloatAtOffset(IRType, IROffset+4, getTargetData()))
1546    return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
1547
1548  return llvm::Type::getDoubleTy(getVMContext());
1549}
1550
1551
1552/// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
1553/// an 8-byte GPR.  This means that we either have a scalar or we are talking
1554/// about the high or low part of an up-to-16-byte struct.  This routine picks
1555/// the best LLVM IR type to represent this, which may be i64 or may be anything
1556/// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
1557/// etc).
1558///
1559/// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
1560/// the source type.  IROffset is an offset in bytes into the LLVM IR type that
1561/// the 8-byte value references.  PrefType may be null.
1562///
1563/// SourceTy is the source level type for the entire argument.  SourceOffset is
1564/// an offset into this that we're processing (which is always either 0 or 8).
1565///
1566llvm::Type *X86_64ABIInfo::
1567GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
1568                       QualType SourceTy, unsigned SourceOffset) const {
1569  // If we're dealing with an un-offset LLVM IR type, then it means that we're
1570  // returning an 8-byte unit starting with it.  See if we can safely use it.
1571  if (IROffset == 0) {
1572    // Pointers and int64's always fill the 8-byte unit.
1573    if (isa<llvm::PointerType>(IRType) || IRType->isIntegerTy(64))
1574      return IRType;
1575
1576    // If we have a 1/2/4-byte integer, we can use it only if the rest of the
1577    // goodness in the source type is just tail padding.  This is allowed to
1578    // kick in for struct {double,int} on the int, but not on
1579    // struct{double,int,int} because we wouldn't return the second int.  We
1580    // have to do this analysis on the source type because we can't depend on
1581    // unions being lowered a specific way etc.
1582    if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
1583        IRType->isIntegerTy(32)) {
1584      unsigned BitWidth = cast<llvm::IntegerType>(IRType)->getBitWidth();
1585
1586      if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
1587                                SourceOffset*8+64, getContext()))
1588        return IRType;
1589    }
1590  }
1591
1592  if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
1593    // If this is a struct, recurse into the field at the specified offset.
1594    const llvm::StructLayout *SL = getTargetData().getStructLayout(STy);
1595    if (IROffset < SL->getSizeInBytes()) {
1596      unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
1597      IROffset -= SL->getElementOffset(FieldIdx);
1598
1599      return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
1600                                    SourceTy, SourceOffset);
1601    }
1602  }
1603
1604  if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
1605    llvm::Type *EltTy = ATy->getElementType();
1606    unsigned EltSize = getTargetData().getTypeAllocSize(EltTy);
1607    unsigned EltOffset = IROffset/EltSize*EltSize;
1608    return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
1609                                  SourceOffset);
1610  }
1611
1612  // Okay, we don't have any better idea of what to pass, so we pass this in an
1613  // integer register that isn't too big to fit the rest of the struct.
1614  unsigned TySizeInBytes =
1615    (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
1616
1617  assert(TySizeInBytes != SourceOffset && "Empty field?");
1618
1619  // It is always safe to classify this as an integer type up to i64 that
1620  // isn't larger than the structure.
1621  return llvm::IntegerType::get(getVMContext(),
1622                                std::min(TySizeInBytes-SourceOffset, 8U)*8);
1623}
1624
1625
1626/// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
1627/// be used as elements of a two register pair to pass or return, return a
1628/// first class aggregate to represent them.  For example, if the low part of
1629/// a by-value argument should be passed as i32* and the high part as float,
1630/// return {i32*, float}.
1631static llvm::Type *
1632GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
1633                           const llvm::TargetData &TD) {
1634  // In order to correctly satisfy the ABI, we need to the high part to start
1635  // at offset 8.  If the high and low parts we inferred are both 4-byte types
1636  // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
1637  // the second element at offset 8.  Check for this:
1638  unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
1639  unsigned HiAlign = TD.getABITypeAlignment(Hi);
1640  unsigned HiStart = llvm::TargetData::RoundUpAlignment(LoSize, HiAlign);
1641  assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
1642
1643  // To handle this, we have to increase the size of the low part so that the
1644  // second element will start at an 8 byte offset.  We can't increase the size
1645  // of the second element because it might make us access off the end of the
1646  // struct.
1647  if (HiStart != 8) {
1648    // There are only two sorts of types the ABI generation code can produce for
1649    // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32.
1650    // Promote these to a larger type.
1651    if (Lo->isFloatTy())
1652      Lo = llvm::Type::getDoubleTy(Lo->getContext());
1653    else {
1654      assert(Lo->isIntegerTy() && "Invalid/unknown lo type");
1655      Lo = llvm::Type::getInt64Ty(Lo->getContext());
1656    }
1657  }
1658
1659  llvm::StructType *Result = llvm::StructType::get(Lo, Hi, NULL);
1660
1661
1662  // Verify that the second element is at an 8-byte offset.
1663  assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
1664         "Invalid x86-64 argument pair!");
1665  return Result;
1666}
1667
1668ABIArgInfo X86_64ABIInfo::
1669classifyReturnType(QualType RetTy) const {
1670  // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
1671  // classification algorithm.
1672  X86_64ABIInfo::Class Lo, Hi;
1673  classify(RetTy, 0, Lo, Hi);
1674
1675  // Check some invariants.
1676  assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
1677  assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
1678
1679  llvm::Type *ResType = 0;
1680  switch (Lo) {
1681  case NoClass:
1682    if (Hi == NoClass)
1683      return ABIArgInfo::getIgnore();
1684    // If the low part is just padding, it takes no register, leave ResType
1685    // null.
1686    assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
1687           "Unknown missing lo part");
1688    break;
1689
1690  case SSEUp:
1691  case X87Up:
1692    assert(0 && "Invalid classification for lo word.");
1693
1694    // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
1695    // hidden argument.
1696  case Memory:
1697    return getIndirectReturnResult(RetTy);
1698
1699    // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
1700    // available register of the sequence %rax, %rdx is used.
1701  case Integer:
1702    ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
1703
1704    // If we have a sign or zero extended integer, make sure to return Extend
1705    // so that the parameter gets the right LLVM IR attributes.
1706    if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
1707      // Treat an enum type as its underlying type.
1708      if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1709        RetTy = EnumTy->getDecl()->getIntegerType();
1710
1711      if (RetTy->isIntegralOrEnumerationType() &&
1712          RetTy->isPromotableIntegerType())
1713        return ABIArgInfo::getExtend();
1714    }
1715    break;
1716
1717    // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
1718    // available SSE register of the sequence %xmm0, %xmm1 is used.
1719  case SSE:
1720    ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
1721    break;
1722
1723    // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
1724    // returned on the X87 stack in %st0 as 80-bit x87 number.
1725  case X87:
1726    ResType = llvm::Type::getX86_FP80Ty(getVMContext());
1727    break;
1728
1729    // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
1730    // part of the value is returned in %st0 and the imaginary part in
1731    // %st1.
1732  case ComplexX87:
1733    assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
1734    ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
1735                                    llvm::Type::getX86_FP80Ty(getVMContext()),
1736                                    NULL);
1737    break;
1738  }
1739
1740  llvm::Type *HighPart = 0;
1741  switch (Hi) {
1742    // Memory was handled previously and X87 should
1743    // never occur as a hi class.
1744  case Memory:
1745  case X87:
1746    assert(0 && "Invalid classification for hi word.");
1747
1748  case ComplexX87: // Previously handled.
1749  case NoClass:
1750    break;
1751
1752  case Integer:
1753    HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
1754    if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
1755      return ABIArgInfo::getDirect(HighPart, 8);
1756    break;
1757  case SSE:
1758    HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
1759    if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
1760      return ABIArgInfo::getDirect(HighPart, 8);
1761    break;
1762
1763    // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
1764    // is passed in the next available eightbyte chunk if the last used
1765    // vector register.
1766    //
1767    // SSEUP should always be preceded by SSE, just widen.
1768  case SSEUp:
1769    assert(Lo == SSE && "Unexpected SSEUp classification.");
1770    ResType = GetByteVectorType(RetTy);
1771    break;
1772
1773    // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
1774    // returned together with the previous X87 value in %st0.
1775  case X87Up:
1776    // If X87Up is preceded by X87, we don't need to do
1777    // anything. However, in some cases with unions it may not be
1778    // preceded by X87. In such situations we follow gcc and pass the
1779    // extra bits in an SSE reg.
1780    if (Lo != X87) {
1781      HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
1782      if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
1783        return ABIArgInfo::getDirect(HighPart, 8);
1784    }
1785    break;
1786  }
1787
1788  // If a high part was specified, merge it together with the low part.  It is
1789  // known to pass in the high eightbyte of the result.  We do this by forming a
1790  // first class struct aggregate with the high and low part: {low, high}
1791  if (HighPart)
1792    ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getTargetData());
1793
1794  return ABIArgInfo::getDirect(ResType);
1795}
1796
1797ABIArgInfo X86_64ABIInfo::classifyArgumentType(QualType Ty, unsigned &neededInt,
1798                                               unsigned &neededSSE) const {
1799  X86_64ABIInfo::Class Lo, Hi;
1800  classify(Ty, 0, Lo, Hi);
1801
1802  // Check some invariants.
1803  // FIXME: Enforce these by construction.
1804  assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
1805  assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
1806
1807  neededInt = 0;
1808  neededSSE = 0;
1809  llvm::Type *ResType = 0;
1810  switch (Lo) {
1811  case NoClass:
1812    if (Hi == NoClass)
1813      return ABIArgInfo::getIgnore();
1814    // If the low part is just padding, it takes no register, leave ResType
1815    // null.
1816    assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
1817           "Unknown missing lo part");
1818    break;
1819
1820    // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
1821    // on the stack.
1822  case Memory:
1823
1824    // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
1825    // COMPLEX_X87, it is passed in memory.
1826  case X87:
1827  case ComplexX87:
1828    if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
1829      ++neededInt;
1830    return getIndirectResult(Ty);
1831
1832  case SSEUp:
1833  case X87Up:
1834    assert(0 && "Invalid classification for lo word.");
1835
1836    // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
1837    // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
1838    // and %r9 is used.
1839  case Integer:
1840    ++neededInt;
1841
1842    // Pick an 8-byte type based on the preferred type.
1843    ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
1844
1845    // If we have a sign or zero extended integer, make sure to return Extend
1846    // so that the parameter gets the right LLVM IR attributes.
1847    if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
1848      // Treat an enum type as its underlying type.
1849      if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1850        Ty = EnumTy->getDecl()->getIntegerType();
1851
1852      if (Ty->isIntegralOrEnumerationType() &&
1853          Ty->isPromotableIntegerType())
1854        return ABIArgInfo::getExtend();
1855    }
1856
1857    break;
1858
1859    // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
1860    // available SSE register is used, the registers are taken in the
1861    // order from %xmm0 to %xmm7.
1862  case SSE: {
1863    llvm::Type *IRType = CGT.ConvertType(Ty);
1864    ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
1865    ++neededSSE;
1866    break;
1867  }
1868  }
1869
1870  llvm::Type *HighPart = 0;
1871  switch (Hi) {
1872    // Memory was handled previously, ComplexX87 and X87 should
1873    // never occur as hi classes, and X87Up must be preceded by X87,
1874    // which is passed in memory.
1875  case Memory:
1876  case X87:
1877  case ComplexX87:
1878    assert(0 && "Invalid classification for hi word.");
1879    break;
1880
1881  case NoClass: break;
1882
1883  case Integer:
1884    ++neededInt;
1885    // Pick an 8-byte type based on the preferred type.
1886    HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
1887
1888    if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
1889      return ABIArgInfo::getDirect(HighPart, 8);
1890    break;
1891
1892    // X87Up generally doesn't occur here (long double is passed in
1893    // memory), except in situations involving unions.
1894  case X87Up:
1895  case SSE:
1896    HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
1897
1898    if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
1899      return ABIArgInfo::getDirect(HighPart, 8);
1900
1901    ++neededSSE;
1902    break;
1903
1904    // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
1905    // eightbyte is passed in the upper half of the last used SSE
1906    // register.  This only happens when 128-bit vectors are passed.
1907  case SSEUp:
1908    assert(Lo == SSE && "Unexpected SSEUp classification");
1909    ResType = GetByteVectorType(Ty);
1910    break;
1911  }
1912
1913  // If a high part was specified, merge it together with the low part.  It is
1914  // known to pass in the high eightbyte of the result.  We do this by forming a
1915  // first class struct aggregate with the high and low part: {low, high}
1916  if (HighPart)
1917    ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getTargetData());
1918
1919  return ABIArgInfo::getDirect(ResType);
1920}
1921
1922void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1923
1924  FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
1925
1926  // Keep track of the number of assigned registers.
1927  unsigned freeIntRegs = 6, freeSSERegs = 8;
1928
1929  // If the return value is indirect, then the hidden argument is consuming one
1930  // integer register.
1931  if (FI.getReturnInfo().isIndirect())
1932    --freeIntRegs;
1933
1934  // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
1935  // get assigned (in left-to-right order) for passing as follows...
1936  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
1937       it != ie; ++it) {
1938    unsigned neededInt, neededSSE;
1939    it->info = classifyArgumentType(it->type, neededInt, neededSSE);
1940
1941    // AMD64-ABI 3.2.3p3: If there are no registers available for any
1942    // eightbyte of an argument, the whole argument is passed on the
1943    // stack. If registers have already been assigned for some
1944    // eightbytes of such an argument, the assignments get reverted.
1945    if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
1946      freeIntRegs -= neededInt;
1947      freeSSERegs -= neededSSE;
1948    } else {
1949      it->info = getIndirectResult(it->type);
1950    }
1951  }
1952}
1953
1954static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
1955                                        QualType Ty,
1956                                        CodeGenFunction &CGF) {
1957  llvm::Value *overflow_arg_area_p =
1958    CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
1959  llvm::Value *overflow_arg_area =
1960    CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
1961
1962  // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
1963  // byte boundary if alignment needed by type exceeds 8 byte boundary.
1964  uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
1965  if (Align > 8) {
1966    // Note that we follow the ABI & gcc here, even though the type
1967    // could in theory have an alignment greater than 16. This case
1968    // shouldn't ever matter in practice.
1969
1970    // overflow_arg_area = (overflow_arg_area + 15) & ~15;
1971    llvm::Value *Offset =
1972      llvm::ConstantInt::get(CGF.Int32Ty, 15);
1973    overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
1974    llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
1975                                                    CGF.Int64Ty);
1976    llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, ~15LL);
1977    overflow_arg_area =
1978      CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
1979                                 overflow_arg_area->getType(),
1980                                 "overflow_arg_area.align");
1981  }
1982
1983  // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
1984  llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
1985  llvm::Value *Res =
1986    CGF.Builder.CreateBitCast(overflow_arg_area,
1987                              llvm::PointerType::getUnqual(LTy));
1988
1989  // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
1990  // l->overflow_arg_area + sizeof(type).
1991  // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
1992  // an 8 byte boundary.
1993
1994  uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
1995  llvm::Value *Offset =
1996      llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
1997  overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
1998                                            "overflow_arg_area.next");
1999  CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
2000
2001  // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
2002  return Res;
2003}
2004
2005llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2006                                      CodeGenFunction &CGF) const {
2007  llvm::LLVMContext &VMContext = CGF.getLLVMContext();
2008
2009  // Assume that va_list type is correct; should be pointer to LLVM type:
2010  // struct {
2011  //   i32 gp_offset;
2012  //   i32 fp_offset;
2013  //   i8* overflow_arg_area;
2014  //   i8* reg_save_area;
2015  // };
2016  unsigned neededInt, neededSSE;
2017
2018  Ty = CGF.getContext().getCanonicalType(Ty);
2019  ABIArgInfo AI = classifyArgumentType(Ty, neededInt, neededSSE);
2020
2021  // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
2022  // in the registers. If not go to step 7.
2023  if (!neededInt && !neededSSE)
2024    return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2025
2026  // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
2027  // general purpose registers needed to pass type and num_fp to hold
2028  // the number of floating point registers needed.
2029
2030  // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
2031  // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
2032  // l->fp_offset > 304 - num_fp * 16 go to step 7.
2033  //
2034  // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
2035  // register save space).
2036
2037  llvm::Value *InRegs = 0;
2038  llvm::Value *gp_offset_p = 0, *gp_offset = 0;
2039  llvm::Value *fp_offset_p = 0, *fp_offset = 0;
2040  if (neededInt) {
2041    gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
2042    gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
2043    InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
2044    InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
2045  }
2046
2047  if (neededSSE) {
2048    fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
2049    fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
2050    llvm::Value *FitsInFP =
2051      llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
2052    FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
2053    InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
2054  }
2055
2056  llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
2057  llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
2058  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
2059  CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
2060
2061  // Emit code to load the value if it was passed in registers.
2062
2063  CGF.EmitBlock(InRegBlock);
2064
2065  // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
2066  // an offset of l->gp_offset and/or l->fp_offset. This may require
2067  // copying to a temporary location in case the parameter is passed
2068  // in different register classes or requires an alignment greater
2069  // than 8 for general purpose registers and 16 for XMM registers.
2070  //
2071  // FIXME: This really results in shameful code when we end up needing to
2072  // collect arguments from different places; often what should result in a
2073  // simple assembling of a structure from scattered addresses has many more
2074  // loads than necessary. Can we clean this up?
2075  llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2076  llvm::Value *RegAddr =
2077    CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
2078                           "reg_save_area");
2079  if (neededInt && neededSSE) {
2080    // FIXME: Cleanup.
2081    assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
2082    llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
2083    llvm::Value *Tmp = CGF.CreateTempAlloca(ST);
2084    assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
2085    llvm::Type *TyLo = ST->getElementType(0);
2086    llvm::Type *TyHi = ST->getElementType(1);
2087    assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
2088           "Unexpected ABI info for mixed regs");
2089    llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
2090    llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
2091    llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2092    llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2093    llvm::Value *RegLoAddr = TyLo->isFloatingPointTy() ? FPAddr : GPAddr;
2094    llvm::Value *RegHiAddr = TyLo->isFloatingPointTy() ? GPAddr : FPAddr;
2095    llvm::Value *V =
2096      CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
2097    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2098    V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
2099    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2100
2101    RegAddr = CGF.Builder.CreateBitCast(Tmp,
2102                                        llvm::PointerType::getUnqual(LTy));
2103  } else if (neededInt) {
2104    RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2105    RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2106                                        llvm::PointerType::getUnqual(LTy));
2107  } else if (neededSSE == 1) {
2108    RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2109    RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2110                                        llvm::PointerType::getUnqual(LTy));
2111  } else {
2112    assert(neededSSE == 2 && "Invalid number of needed registers!");
2113    // SSE registers are spaced 16 bytes apart in the register save
2114    // area, we need to collect the two eightbytes together.
2115    llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2116    llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16);
2117    llvm::Type *DoubleTy = llvm::Type::getDoubleTy(VMContext);
2118    llvm::Type *DblPtrTy =
2119      llvm::PointerType::getUnqual(DoubleTy);
2120    llvm::StructType *ST = llvm::StructType::get(DoubleTy,
2121                                                       DoubleTy, NULL);
2122    llvm::Value *V, *Tmp = CGF.CreateTempAlloca(ST);
2123    V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
2124                                                         DblPtrTy));
2125    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2126    V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
2127                                                         DblPtrTy));
2128    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2129    RegAddr = CGF.Builder.CreateBitCast(Tmp,
2130                                        llvm::PointerType::getUnqual(LTy));
2131  }
2132
2133  // AMD64-ABI 3.5.7p5: Step 5. Set:
2134  // l->gp_offset = l->gp_offset + num_gp * 8
2135  // l->fp_offset = l->fp_offset + num_fp * 16.
2136  if (neededInt) {
2137    llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
2138    CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
2139                            gp_offset_p);
2140  }
2141  if (neededSSE) {
2142    llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
2143    CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
2144                            fp_offset_p);
2145  }
2146  CGF.EmitBranch(ContBlock);
2147
2148  // Emit code to load the value if it was passed in memory.
2149
2150  CGF.EmitBlock(InMemBlock);
2151  llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2152
2153  // Return the appropriate result.
2154
2155  CGF.EmitBlock(ContBlock);
2156  llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2,
2157                                                 "vaarg.addr");
2158  ResAddr->addIncoming(RegAddr, InRegBlock);
2159  ResAddr->addIncoming(MemAddr, InMemBlock);
2160  return ResAddr;
2161}
2162
2163ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty) const {
2164
2165  if (Ty->isVoidType())
2166    return ABIArgInfo::getIgnore();
2167
2168  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2169    Ty = EnumTy->getDecl()->getIntegerType();
2170
2171  uint64_t Size = getContext().getTypeSize(Ty);
2172
2173  if (const RecordType *RT = Ty->getAs<RecordType>()) {
2174    if (hasNonTrivialDestructorOrCopyConstructor(RT) ||
2175        RT->getDecl()->hasFlexibleArrayMember())
2176      return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2177
2178    // FIXME: mingw-w64-gcc emits 128-bit struct as i128
2179    if (Size == 128 &&
2180        getContext().Target.getTriple().getOS() == llvm::Triple::MinGW32)
2181      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2182                                                          Size));
2183
2184    // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
2185    // not 1, 2, 4, or 8 bytes, must be passed by reference."
2186    if (Size <= 64 &&
2187        (Size & (Size - 1)) == 0)
2188      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2189                                                          Size));
2190
2191    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2192  }
2193
2194  if (Ty->isPromotableIntegerType())
2195    return ABIArgInfo::getExtend();
2196
2197  return ABIArgInfo::getDirect();
2198}
2199
2200void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2201
2202  QualType RetTy = FI.getReturnType();
2203  FI.getReturnInfo() = classify(RetTy);
2204
2205  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2206       it != ie; ++it)
2207    it->info = classify(it->type);
2208}
2209
2210llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2211                                      CodeGenFunction &CGF) const {
2212  llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
2213  llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
2214
2215  CGBuilderTy &Builder = CGF.Builder;
2216  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
2217                                                       "ap");
2218  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2219  llvm::Type *PTy =
2220    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2221  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
2222
2223  uint64_t Offset =
2224    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8);
2225  llvm::Value *NextAddr =
2226    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
2227                      "ap.next");
2228  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2229
2230  return AddrTyped;
2231}
2232
2233// PowerPC-32
2234
2235namespace {
2236class PPC32TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
2237public:
2238  PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
2239
2240  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2241    // This is recovered from gcc output.
2242    return 1; // r1 is the dedicated stack pointer
2243  }
2244
2245  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2246                               llvm::Value *Address) const;
2247};
2248
2249}
2250
2251bool
2252PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2253                                                llvm::Value *Address) const {
2254  // This is calculated from the LLVM and GCC tables and verified
2255  // against gcc output.  AFAIK all ABIs use the same encoding.
2256
2257  CodeGen::CGBuilderTy &Builder = CGF.Builder;
2258  llvm::LLVMContext &Context = CGF.getLLVMContext();
2259
2260  llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
2261  llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2262  llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
2263  llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
2264
2265  // 0-31: r0-31, the 4-byte general-purpose registers
2266  AssignToArrayRange(Builder, Address, Four8, 0, 31);
2267
2268  // 32-63: fp0-31, the 8-byte floating-point registers
2269  AssignToArrayRange(Builder, Address, Eight8, 32, 63);
2270
2271  // 64-76 are various 4-byte special-purpose registers:
2272  // 64: mq
2273  // 65: lr
2274  // 66: ctr
2275  // 67: ap
2276  // 68-75 cr0-7
2277  // 76: xer
2278  AssignToArrayRange(Builder, Address, Four8, 64, 76);
2279
2280  // 77-108: v0-31, the 16-byte vector registers
2281  AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
2282
2283  // 109: vrsave
2284  // 110: vscr
2285  // 111: spe_acc
2286  // 112: spefscr
2287  // 113: sfp
2288  AssignToArrayRange(Builder, Address, Four8, 109, 113);
2289
2290  return false;
2291}
2292
2293
2294//===----------------------------------------------------------------------===//
2295// ARM ABI Implementation
2296//===----------------------------------------------------------------------===//
2297
2298namespace {
2299
2300class ARMABIInfo : public ABIInfo {
2301public:
2302  enum ABIKind {
2303    APCS = 0,
2304    AAPCS = 1,
2305    AAPCS_VFP
2306  };
2307
2308private:
2309  ABIKind Kind;
2310
2311public:
2312  ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) {}
2313
2314  bool isEABI() const {
2315    StringRef Env = getContext().Target.getTriple().getEnvironmentName();
2316    return (Env == "gnueabi" || Env == "eabi");
2317  }
2318
2319private:
2320  ABIKind getABIKind() const { return Kind; }
2321
2322  ABIArgInfo classifyReturnType(QualType RetTy) const;
2323  ABIArgInfo classifyArgumentType(QualType RetTy) const;
2324
2325  virtual void computeInfo(CGFunctionInfo &FI) const;
2326
2327  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2328                                 CodeGenFunction &CGF) const;
2329};
2330
2331class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
2332public:
2333  ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
2334    :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
2335
2336  const ARMABIInfo &getABIInfo() const {
2337    return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
2338  }
2339
2340  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2341    return 13;
2342  }
2343
2344  StringRef getARCRetainAutoreleasedReturnValueMarker() const {
2345    return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue";
2346  }
2347
2348  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2349                               llvm::Value *Address) const {
2350    CodeGen::CGBuilderTy &Builder = CGF.Builder;
2351    llvm::LLVMContext &Context = CGF.getLLVMContext();
2352
2353    llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
2354    llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2355
2356    // 0-15 are the 16 integer registers.
2357    AssignToArrayRange(Builder, Address, Four8, 0, 15);
2358
2359    return false;
2360  }
2361
2362  unsigned getSizeOfUnwindException() const {
2363    if (getABIInfo().isEABI()) return 88;
2364    return TargetCodeGenInfo::getSizeOfUnwindException();
2365  }
2366};
2367
2368}
2369
2370void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
2371  FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2372  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2373       it != ie; ++it)
2374    it->info = classifyArgumentType(it->type);
2375
2376  // Always honor user-specified calling convention.
2377  if (FI.getCallingConvention() != llvm::CallingConv::C)
2378    return;
2379
2380  // Calling convention as default by an ABI.
2381  llvm::CallingConv::ID DefaultCC;
2382  if (isEABI())
2383    DefaultCC = llvm::CallingConv::ARM_AAPCS;
2384  else
2385    DefaultCC = llvm::CallingConv::ARM_APCS;
2386
2387  // If user did not ask for specific calling convention explicitly (e.g. via
2388  // pcs attribute), set effective calling convention if it's different than ABI
2389  // default.
2390  switch (getABIKind()) {
2391  case APCS:
2392    if (DefaultCC != llvm::CallingConv::ARM_APCS)
2393      FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_APCS);
2394    break;
2395  case AAPCS:
2396    if (DefaultCC != llvm::CallingConv::ARM_AAPCS)
2397      FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS);
2398    break;
2399  case AAPCS_VFP:
2400    if (DefaultCC != llvm::CallingConv::ARM_AAPCS_VFP)
2401      FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS_VFP);
2402    break;
2403  }
2404}
2405
2406/// isHomogeneousAggregate - Return true if a type is an AAPCS-VFP homogeneous
2407/// aggregate.  If HAMembers is non-null, the number of base elements
2408/// contained in the type is returned through it; this is used for the
2409/// recursive calls that check aggregate component types.
2410static bool isHomogeneousAggregate(QualType Ty, const Type *&Base,
2411                                   ASTContext &Context,
2412                                   uint64_t *HAMembers = 0) {
2413  uint64_t Members;
2414  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
2415    if (!isHomogeneousAggregate(AT->getElementType(), Base, Context, &Members))
2416      return false;
2417    Members *= AT->getSize().getZExtValue();
2418  } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
2419    const RecordDecl *RD = RT->getDecl();
2420    if (RD->isUnion() || RD->hasFlexibleArrayMember())
2421      return false;
2422    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2423      if (!CXXRD->isAggregate())
2424        return false;
2425    }
2426    Members = 0;
2427    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2428         i != e; ++i) {
2429      const FieldDecl *FD = *i;
2430      uint64_t FldMembers;
2431      if (!isHomogeneousAggregate(FD->getType(), Base, Context, &FldMembers))
2432        return false;
2433      Members += FldMembers;
2434    }
2435  } else {
2436    Members = 1;
2437    if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
2438      Members = 2;
2439      Ty = CT->getElementType();
2440    }
2441
2442    // Homogeneous aggregates for AAPCS-VFP must have base types of float,
2443    // double, or 64-bit or 128-bit vectors.
2444    if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
2445      if (BT->getKind() != BuiltinType::Float &&
2446          BT->getKind() != BuiltinType::Double)
2447        return false;
2448    } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
2449      unsigned VecSize = Context.getTypeSize(VT);
2450      if (VecSize != 64 && VecSize != 128)
2451        return false;
2452    } else {
2453      return false;
2454    }
2455
2456    // The base type must be the same for all members.  Vector types of the
2457    // same total size are treated as being equivalent here.
2458    const Type *TyPtr = Ty.getTypePtr();
2459    if (!Base)
2460      Base = TyPtr;
2461    if (Base != TyPtr &&
2462        (!Base->isVectorType() || !TyPtr->isVectorType() ||
2463         Context.getTypeSize(Base) != Context.getTypeSize(TyPtr)))
2464      return false;
2465  }
2466
2467  // Homogeneous Aggregates can have at most 4 members of the base type.
2468  if (HAMembers)
2469    *HAMembers = Members;
2470  return (Members <= 4);
2471}
2472
2473ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty) const {
2474  if (!isAggregateTypeForABI(Ty)) {
2475    // Treat an enum type as its underlying type.
2476    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2477      Ty = EnumTy->getDecl()->getIntegerType();
2478
2479    return (Ty->isPromotableIntegerType() ?
2480            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2481  }
2482
2483  // Ignore empty records.
2484  if (isEmptyRecord(getContext(), Ty, true))
2485    return ABIArgInfo::getIgnore();
2486
2487  // Structures with either a non-trivial destructor or a non-trivial
2488  // copy constructor are always indirect.
2489  if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
2490    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2491
2492  if (getABIKind() == ARMABIInfo::AAPCS_VFP) {
2493    // Homogeneous Aggregates need to be expanded.
2494    const Type *Base = 0;
2495    if (isHomogeneousAggregate(Ty, Base, getContext()))
2496      return ABIArgInfo::getExpand();
2497  }
2498
2499  // Otherwise, pass by coercing to a structure of the appropriate size.
2500  //
2501  // FIXME: This is kind of nasty... but there isn't much choice because the ARM
2502  // backend doesn't support byval.
2503  // FIXME: This doesn't handle alignment > 64 bits.
2504  llvm::Type* ElemTy;
2505  unsigned SizeRegs;
2506  if (getContext().getTypeAlign(Ty) > 32) {
2507    ElemTy = llvm::Type::getInt64Ty(getVMContext());
2508    SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
2509  } else {
2510    ElemTy = llvm::Type::getInt32Ty(getVMContext());
2511    SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
2512  }
2513
2514  llvm::Type *STy =
2515    llvm::StructType::get(llvm::ArrayType::get(ElemTy, SizeRegs), NULL);
2516  return ABIArgInfo::getDirect(STy);
2517}
2518
2519static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
2520                              llvm::LLVMContext &VMContext) {
2521  // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
2522  // is called integer-like if its size is less than or equal to one word, and
2523  // the offset of each of its addressable sub-fields is zero.
2524
2525  uint64_t Size = Context.getTypeSize(Ty);
2526
2527  // Check that the type fits in a word.
2528  if (Size > 32)
2529    return false;
2530
2531  // FIXME: Handle vector types!
2532  if (Ty->isVectorType())
2533    return false;
2534
2535  // Float types are never treated as "integer like".
2536  if (Ty->isRealFloatingType())
2537    return false;
2538
2539  // If this is a builtin or pointer type then it is ok.
2540  if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
2541    return true;
2542
2543  // Small complex integer types are "integer like".
2544  if (const ComplexType *CT = Ty->getAs<ComplexType>())
2545    return isIntegerLikeType(CT->getElementType(), Context, VMContext);
2546
2547  // Single element and zero sized arrays should be allowed, by the definition
2548  // above, but they are not.
2549
2550  // Otherwise, it must be a record type.
2551  const RecordType *RT = Ty->getAs<RecordType>();
2552  if (!RT) return false;
2553
2554  // Ignore records with flexible arrays.
2555  const RecordDecl *RD = RT->getDecl();
2556  if (RD->hasFlexibleArrayMember())
2557    return false;
2558
2559  // Check that all sub-fields are at offset 0, and are themselves "integer
2560  // like".
2561  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
2562
2563  bool HadField = false;
2564  unsigned idx = 0;
2565  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2566       i != e; ++i, ++idx) {
2567    const FieldDecl *FD = *i;
2568
2569    // Bit-fields are not addressable, we only need to verify they are "integer
2570    // like". We still have to disallow a subsequent non-bitfield, for example:
2571    //   struct { int : 0; int x }
2572    // is non-integer like according to gcc.
2573    if (FD->isBitField()) {
2574      if (!RD->isUnion())
2575        HadField = true;
2576
2577      if (!isIntegerLikeType(FD->getType(), Context, VMContext))
2578        return false;
2579
2580      continue;
2581    }
2582
2583    // Check if this field is at offset 0.
2584    if (Layout.getFieldOffset(idx) != 0)
2585      return false;
2586
2587    if (!isIntegerLikeType(FD->getType(), Context, VMContext))
2588      return false;
2589
2590    // Only allow at most one field in a structure. This doesn't match the
2591    // wording above, but follows gcc in situations with a field following an
2592    // empty structure.
2593    if (!RD->isUnion()) {
2594      if (HadField)
2595        return false;
2596
2597      HadField = true;
2598    }
2599  }
2600
2601  return true;
2602}
2603
2604ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy) const {
2605  if (RetTy->isVoidType())
2606    return ABIArgInfo::getIgnore();
2607
2608  // Large vector types should be returned via memory.
2609  if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
2610    return ABIArgInfo::getIndirect(0);
2611
2612  if (!isAggregateTypeForABI(RetTy)) {
2613    // Treat an enum type as its underlying type.
2614    if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2615      RetTy = EnumTy->getDecl()->getIntegerType();
2616
2617    return (RetTy->isPromotableIntegerType() ?
2618            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2619  }
2620
2621  // Structures with either a non-trivial destructor or a non-trivial
2622  // copy constructor are always indirect.
2623  if (isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy))
2624    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2625
2626  // Are we following APCS?
2627  if (getABIKind() == APCS) {
2628    if (isEmptyRecord(getContext(), RetTy, false))
2629      return ABIArgInfo::getIgnore();
2630
2631    // Complex types are all returned as packed integers.
2632    //
2633    // FIXME: Consider using 2 x vector types if the back end handles them
2634    // correctly.
2635    if (RetTy->isAnyComplexType())
2636      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2637                                              getContext().getTypeSize(RetTy)));
2638
2639    // Integer like structures are returned in r0.
2640    if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
2641      // Return in the smallest viable integer type.
2642      uint64_t Size = getContext().getTypeSize(RetTy);
2643      if (Size <= 8)
2644        return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
2645      if (Size <= 16)
2646        return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
2647      return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
2648    }
2649
2650    // Otherwise return in memory.
2651    return ABIArgInfo::getIndirect(0);
2652  }
2653
2654  // Otherwise this is an AAPCS variant.
2655
2656  if (isEmptyRecord(getContext(), RetTy, true))
2657    return ABIArgInfo::getIgnore();
2658
2659  // Aggregates <= 4 bytes are returned in r0; other aggregates
2660  // are returned indirectly.
2661  uint64_t Size = getContext().getTypeSize(RetTy);
2662  if (Size <= 32) {
2663    // Return in the smallest viable integer type.
2664    if (Size <= 8)
2665      return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
2666    if (Size <= 16)
2667      return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
2668    return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
2669  }
2670
2671  return ABIArgInfo::getIndirect(0);
2672}
2673
2674llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2675                                   CodeGenFunction &CGF) const {
2676  llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
2677  llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
2678
2679  CGBuilderTy &Builder = CGF.Builder;
2680  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
2681                                                       "ap");
2682  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2683  // Handle address alignment for type alignment > 32 bits
2684  uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
2685  if (TyAlign > 4) {
2686    assert((TyAlign & (TyAlign - 1)) == 0 &&
2687           "Alignment is not power of 2!");
2688    llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
2689    AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1));
2690    AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1)));
2691    Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
2692  }
2693  llvm::Type *PTy =
2694    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2695  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
2696
2697  uint64_t Offset =
2698    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
2699  llvm::Value *NextAddr =
2700    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
2701                      "ap.next");
2702  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2703
2704  return AddrTyped;
2705}
2706
2707//===----------------------------------------------------------------------===//
2708// PTX ABI Implementation
2709//===----------------------------------------------------------------------===//
2710
2711namespace {
2712
2713class PTXABIInfo : public ABIInfo {
2714public:
2715  PTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
2716
2717  ABIArgInfo classifyReturnType(QualType RetTy) const;
2718  ABIArgInfo classifyArgumentType(QualType Ty) const;
2719
2720  virtual void computeInfo(CGFunctionInfo &FI) const;
2721  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2722                                 CodeGenFunction &CFG) const;
2723};
2724
2725class PTXTargetCodeGenInfo : public TargetCodeGenInfo {
2726public:
2727  PTXTargetCodeGenInfo(CodeGenTypes &CGT)
2728    : TargetCodeGenInfo(new PTXABIInfo(CGT)) {}
2729};
2730
2731ABIArgInfo PTXABIInfo::classifyReturnType(QualType RetTy) const {
2732  if (RetTy->isVoidType())
2733    return ABIArgInfo::getIgnore();
2734  if (isAggregateTypeForABI(RetTy))
2735    return ABIArgInfo::getIndirect(0);
2736  return ABIArgInfo::getDirect();
2737}
2738
2739ABIArgInfo PTXABIInfo::classifyArgumentType(QualType Ty) const {
2740  if (isAggregateTypeForABI(Ty))
2741    return ABIArgInfo::getIndirect(0);
2742
2743  return ABIArgInfo::getDirect();
2744}
2745
2746void PTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
2747  FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2748  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2749       it != ie; ++it)
2750    it->info = classifyArgumentType(it->type);
2751
2752  // Always honor user-specified calling convention.
2753  if (FI.getCallingConvention() != llvm::CallingConv::C)
2754    return;
2755
2756  // Calling convention as default by an ABI.
2757  llvm::CallingConv::ID DefaultCC;
2758  StringRef Env = getContext().Target.getTriple().getEnvironmentName();
2759  if (Env == "device")
2760    DefaultCC = llvm::CallingConv::PTX_Device;
2761  else
2762    DefaultCC = llvm::CallingConv::PTX_Kernel;
2763
2764  FI.setEffectiveCallingConvention(DefaultCC);
2765}
2766
2767llvm::Value *PTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2768                                   CodeGenFunction &CFG) const {
2769  llvm_unreachable("PTX does not support varargs");
2770  return 0;
2771}
2772
2773}
2774
2775//===----------------------------------------------------------------------===//
2776// SystemZ ABI Implementation
2777//===----------------------------------------------------------------------===//
2778
2779namespace {
2780
2781class SystemZABIInfo : public ABIInfo {
2782public:
2783  SystemZABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
2784
2785  bool isPromotableIntegerType(QualType Ty) const;
2786
2787  ABIArgInfo classifyReturnType(QualType RetTy) const;
2788  ABIArgInfo classifyArgumentType(QualType RetTy) const;
2789
2790  virtual void computeInfo(CGFunctionInfo &FI) const {
2791    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2792    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2793         it != ie; ++it)
2794      it->info = classifyArgumentType(it->type);
2795  }
2796
2797  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2798                                 CodeGenFunction &CGF) const;
2799};
2800
2801class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
2802public:
2803  SystemZTargetCodeGenInfo(CodeGenTypes &CGT)
2804    : TargetCodeGenInfo(new SystemZABIInfo(CGT)) {}
2805};
2806
2807}
2808
2809bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
2810  // SystemZ ABI requires all 8, 16 and 32 bit quantities to be extended.
2811  if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
2812    switch (BT->getKind()) {
2813    case BuiltinType::Bool:
2814    case BuiltinType::Char_S:
2815    case BuiltinType::Char_U:
2816    case BuiltinType::SChar:
2817    case BuiltinType::UChar:
2818    case BuiltinType::Short:
2819    case BuiltinType::UShort:
2820    case BuiltinType::Int:
2821    case BuiltinType::UInt:
2822      return true;
2823    default:
2824      return false;
2825    }
2826  return false;
2827}
2828
2829llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2830                                       CodeGenFunction &CGF) const {
2831  // FIXME: Implement
2832  return 0;
2833}
2834
2835
2836ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
2837  if (RetTy->isVoidType())
2838    return ABIArgInfo::getIgnore();
2839  if (isAggregateTypeForABI(RetTy))
2840    return ABIArgInfo::getIndirect(0);
2841
2842  return (isPromotableIntegerType(RetTy) ?
2843          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2844}
2845
2846ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
2847  if (isAggregateTypeForABI(Ty))
2848    return ABIArgInfo::getIndirect(0);
2849
2850  return (isPromotableIntegerType(Ty) ?
2851          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2852}
2853
2854//===----------------------------------------------------------------------===//
2855// MBlaze ABI Implementation
2856//===----------------------------------------------------------------------===//
2857
2858namespace {
2859
2860class MBlazeABIInfo : public ABIInfo {
2861public:
2862  MBlazeABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
2863
2864  bool isPromotableIntegerType(QualType Ty) const;
2865
2866  ABIArgInfo classifyReturnType(QualType RetTy) const;
2867  ABIArgInfo classifyArgumentType(QualType RetTy) const;
2868
2869  virtual void computeInfo(CGFunctionInfo &FI) const {
2870    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2871    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2872         it != ie; ++it)
2873      it->info = classifyArgumentType(it->type);
2874  }
2875
2876  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2877                                 CodeGenFunction &CGF) const;
2878};
2879
2880class MBlazeTargetCodeGenInfo : public TargetCodeGenInfo {
2881public:
2882  MBlazeTargetCodeGenInfo(CodeGenTypes &CGT)
2883    : TargetCodeGenInfo(new MBlazeABIInfo(CGT)) {}
2884  void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2885                           CodeGen::CodeGenModule &M) const;
2886};
2887
2888}
2889
2890bool MBlazeABIInfo::isPromotableIntegerType(QualType Ty) const {
2891  // MBlaze ABI requires all 8 and 16 bit quantities to be extended.
2892  if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
2893    switch (BT->getKind()) {
2894    case BuiltinType::Bool:
2895    case BuiltinType::Char_S:
2896    case BuiltinType::Char_U:
2897    case BuiltinType::SChar:
2898    case BuiltinType::UChar:
2899    case BuiltinType::Short:
2900    case BuiltinType::UShort:
2901      return true;
2902    default:
2903      return false;
2904    }
2905  return false;
2906}
2907
2908llvm::Value *MBlazeABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2909                                      CodeGenFunction &CGF) const {
2910  // FIXME: Implement
2911  return 0;
2912}
2913
2914
2915ABIArgInfo MBlazeABIInfo::classifyReturnType(QualType RetTy) const {
2916  if (RetTy->isVoidType())
2917    return ABIArgInfo::getIgnore();
2918  if (isAggregateTypeForABI(RetTy))
2919    return ABIArgInfo::getIndirect(0);
2920
2921  return (isPromotableIntegerType(RetTy) ?
2922          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2923}
2924
2925ABIArgInfo MBlazeABIInfo::classifyArgumentType(QualType Ty) const {
2926  if (isAggregateTypeForABI(Ty))
2927    return ABIArgInfo::getIndirect(0);
2928
2929  return (isPromotableIntegerType(Ty) ?
2930          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2931}
2932
2933void MBlazeTargetCodeGenInfo::SetTargetAttributes(const Decl *D,
2934                                                  llvm::GlobalValue *GV,
2935                                                  CodeGen::CodeGenModule &M)
2936                                                  const {
2937  const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
2938  if (!FD) return;
2939
2940  llvm::CallingConv::ID CC = llvm::CallingConv::C;
2941  if (FD->hasAttr<MBlazeInterruptHandlerAttr>())
2942    CC = llvm::CallingConv::MBLAZE_INTR;
2943  else if (FD->hasAttr<MBlazeSaveVolatilesAttr>())
2944    CC = llvm::CallingConv::MBLAZE_SVOL;
2945
2946  if (CC != llvm::CallingConv::C) {
2947      // Handle 'interrupt_handler' attribute:
2948      llvm::Function *F = cast<llvm::Function>(GV);
2949
2950      // Step 1: Set ISR calling convention.
2951      F->setCallingConv(CC);
2952
2953      // Step 2: Add attributes goodness.
2954      F->addFnAttr(llvm::Attribute::NoInline);
2955  }
2956
2957  // Step 3: Emit _interrupt_handler alias.
2958  if (CC == llvm::CallingConv::MBLAZE_INTR)
2959    new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
2960                          "_interrupt_handler", GV, &M.getModule());
2961}
2962
2963
2964//===----------------------------------------------------------------------===//
2965// MSP430 ABI Implementation
2966//===----------------------------------------------------------------------===//
2967
2968namespace {
2969
2970class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
2971public:
2972  MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
2973    : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
2974  void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2975                           CodeGen::CodeGenModule &M) const;
2976};
2977
2978}
2979
2980void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
2981                                                  llvm::GlobalValue *GV,
2982                                             CodeGen::CodeGenModule &M) const {
2983  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2984    if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
2985      // Handle 'interrupt' attribute:
2986      llvm::Function *F = cast<llvm::Function>(GV);
2987
2988      // Step 1: Set ISR calling convention.
2989      F->setCallingConv(llvm::CallingConv::MSP430_INTR);
2990
2991      // Step 2: Add attributes goodness.
2992      F->addFnAttr(llvm::Attribute::NoInline);
2993
2994      // Step 3: Emit ISR vector alias.
2995      unsigned Num = attr->getNumber() + 0xffe0;
2996      new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
2997                            "vector_" + Twine::utohexstr(Num),
2998                            GV, &M.getModule());
2999    }
3000  }
3001}
3002
3003//===----------------------------------------------------------------------===//
3004// MIPS ABI Implementation.  This works for both little-endian and
3005// big-endian variants.
3006//===----------------------------------------------------------------------===//
3007
3008namespace {
3009class MipsABIInfo : public ABIInfo {
3010  static const unsigned MinABIStackAlignInBytes = 4;
3011public:
3012  MipsABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
3013
3014  ABIArgInfo classifyReturnType(QualType RetTy) const;
3015  ABIArgInfo classifyArgumentType(QualType RetTy) const;
3016  virtual void computeInfo(CGFunctionInfo &FI) const;
3017  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3018                                 CodeGenFunction &CGF) const;
3019};
3020
3021const unsigned MipsABIInfo::MinABIStackAlignInBytes;
3022
3023class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
3024public:
3025  MIPSTargetCodeGenInfo(CodeGenTypes &CGT)
3026    : TargetCodeGenInfo(new MipsABIInfo(CGT)) {}
3027
3028  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
3029    return 29;
3030  }
3031
3032  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3033                               llvm::Value *Address) const;
3034
3035  unsigned getSizeOfUnwindException() const {
3036    return 24;
3037  }
3038};
3039}
3040
3041ABIArgInfo MipsABIInfo::classifyArgumentType(QualType Ty) const {
3042  if (isAggregateTypeForABI(Ty)) {
3043    // Ignore empty aggregates.
3044    if (getContext().getTypeSize(Ty) == 0)
3045      return ABIArgInfo::getIgnore();
3046
3047    // Records with non trivial destructors/constructors should not be passed
3048    // by value.
3049    if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
3050      return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3051
3052    return ABIArgInfo::getIndirect(0);
3053  }
3054
3055  // Treat an enum type as its underlying type.
3056  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3057    Ty = EnumTy->getDecl()->getIntegerType();
3058
3059  return (Ty->isPromotableIntegerType() ?
3060          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3061}
3062
3063ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
3064  if (RetTy->isVoidType())
3065    return ABIArgInfo::getIgnore();
3066
3067  if (isAggregateTypeForABI(RetTy)) {
3068    if (RetTy->isAnyComplexType())
3069      return ABIArgInfo::getDirect();
3070
3071    return ABIArgInfo::getIndirect(0);
3072  }
3073
3074  // Treat an enum type as its underlying type.
3075  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3076    RetTy = EnumTy->getDecl()->getIntegerType();
3077
3078  return (RetTy->isPromotableIntegerType() ?
3079          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3080}
3081
3082void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
3083  FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3084  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3085       it != ie; ++it)
3086    it->info = classifyArgumentType(it->type);
3087}
3088
3089llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3090                                    CodeGenFunction &CGF) const {
3091  llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
3092  llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
3093
3094  CGBuilderTy &Builder = CGF.Builder;
3095  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
3096  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
3097  unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
3098  llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3099  llvm::Value *AddrTyped;
3100
3101  if (TypeAlign > MinABIStackAlignInBytes) {
3102    llvm::Value *AddrAsInt32 = CGF.Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
3103    llvm::Value *Inc = llvm::ConstantInt::get(CGF.Int32Ty, TypeAlign - 1);
3104    llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -TypeAlign);
3105    llvm::Value *Add = CGF.Builder.CreateAdd(AddrAsInt32, Inc);
3106    llvm::Value *And = CGF.Builder.CreateAnd(Add, Mask);
3107    AddrTyped = CGF.Builder.CreateIntToPtr(And, PTy);
3108  }
3109  else
3110    AddrTyped = Builder.CreateBitCast(Addr, PTy);
3111
3112  llvm::Value *AlignedAddr = Builder.CreateBitCast(AddrTyped, BP);
3113  TypeAlign = std::max(TypeAlign, MinABIStackAlignInBytes);
3114  uint64_t Offset =
3115    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, TypeAlign);
3116  llvm::Value *NextAddr =
3117    Builder.CreateGEP(AlignedAddr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
3118                      "ap.next");
3119  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
3120
3121  return AddrTyped;
3122}
3123
3124bool
3125MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3126                                               llvm::Value *Address) const {
3127  // This information comes from gcc's implementation, which seems to
3128  // as canonical as it gets.
3129
3130  CodeGen::CGBuilderTy &Builder = CGF.Builder;
3131  llvm::LLVMContext &Context = CGF.getLLVMContext();
3132
3133  // Everything on MIPS is 4 bytes.  Double-precision FP registers
3134  // are aliased to pairs of single-precision FP registers.
3135  llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
3136  llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
3137
3138  // 0-31 are the general purpose registers, $0 - $31.
3139  // 32-63 are the floating-point registers, $f0 - $f31.
3140  // 64 and 65 are the multiply/divide registers, $hi and $lo.
3141  // 66 is the (notional, I think) register for signal-handler return.
3142  AssignToArrayRange(Builder, Address, Four8, 0, 65);
3143
3144  // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
3145  // They are one bit wide and ignored here.
3146
3147  // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
3148  // (coprocessor 1 is the FP unit)
3149  // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
3150  // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
3151  // 176-181 are the DSP accumulator registers.
3152  AssignToArrayRange(Builder, Address, Four8, 80, 181);
3153
3154  return false;
3155}
3156
3157
3158const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
3159  if (TheTargetCodeGenInfo)
3160    return *TheTargetCodeGenInfo;
3161
3162  // For now we just cache the TargetCodeGenInfo in CodeGenModule and don't
3163  // free it.
3164
3165  const llvm::Triple &Triple = getContext().Target.getTriple();
3166  switch (Triple.getArch()) {
3167  default:
3168    return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types));
3169
3170  case llvm::Triple::mips:
3171  case llvm::Triple::mipsel:
3172    return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types));
3173
3174  case llvm::Triple::arm:
3175  case llvm::Triple::thumb:
3176    {
3177      ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
3178
3179      if (strcmp(getContext().Target.getABI(), "apcs-gnu") == 0)
3180        Kind = ARMABIInfo::APCS;
3181      else if (CodeGenOpts.FloatABI == "hard")
3182        Kind = ARMABIInfo::AAPCS_VFP;
3183
3184      return *(TheTargetCodeGenInfo = new ARMTargetCodeGenInfo(Types, Kind));
3185    }
3186
3187  case llvm::Triple::ppc:
3188    return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types));
3189
3190  case llvm::Triple::ptx32:
3191  case llvm::Triple::ptx64:
3192    return *(TheTargetCodeGenInfo = new PTXTargetCodeGenInfo(Types));
3193
3194  case llvm::Triple::systemz:
3195    return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types));
3196
3197  case llvm::Triple::mblaze:
3198    return *(TheTargetCodeGenInfo = new MBlazeTargetCodeGenInfo(Types));
3199
3200  case llvm::Triple::msp430:
3201    return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types));
3202
3203  case llvm::Triple::x86: {
3204    bool DisableMMX = strcmp(getContext().Target.getABI(), "no-mmx") == 0;
3205
3206    if (Triple.isOSDarwin())
3207      return *(TheTargetCodeGenInfo =
3208               new X86_32TargetCodeGenInfo(Types, true, true, DisableMMX));
3209
3210    switch (Triple.getOS()) {
3211    case llvm::Triple::Cygwin:
3212    case llvm::Triple::MinGW32:
3213    case llvm::Triple::AuroraUX:
3214    case llvm::Triple::DragonFly:
3215    case llvm::Triple::FreeBSD:
3216    case llvm::Triple::OpenBSD:
3217    case llvm::Triple::NetBSD:
3218      return *(TheTargetCodeGenInfo =
3219               new X86_32TargetCodeGenInfo(Types, false, true, DisableMMX));
3220
3221    default:
3222      return *(TheTargetCodeGenInfo =
3223               new X86_32TargetCodeGenInfo(Types, false, false, DisableMMX));
3224    }
3225  }
3226
3227  case llvm::Triple::x86_64:
3228    switch (Triple.getOS()) {
3229    case llvm::Triple::Win32:
3230    case llvm::Triple::MinGW32:
3231    case llvm::Triple::Cygwin:
3232      return *(TheTargetCodeGenInfo = new WinX86_64TargetCodeGenInfo(Types));
3233    default:
3234      return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo(Types));
3235    }
3236  }
3237}
3238