TargetInfo.cpp revision fc8f0e14ad142ed811e90fbd9a30e419e301c717
1//===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// These classes wrap the information about a call or function
11// definition used to handle ABI compliancy.
12//
13//===----------------------------------------------------------------------===//
14
15#include "TargetInfo.h"
16#include "ABIInfo.h"
17#include "CodeGenFunction.h"
18#include "clang/AST/RecordLayout.h"
19#include "clang/Frontend/CodeGenOptions.h"
20#include "llvm/Type.h"
21#include "llvm/Target/TargetData.h"
22#include "llvm/ADT/Triple.h"
23#include "llvm/Support/raw_ostream.h"
24using namespace clang;
25using namespace CodeGen;
26
27static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
28                               llvm::Value *Array,
29                               llvm::Value *Value,
30                               unsigned FirstIndex,
31                               unsigned LastIndex) {
32  // Alternatively, we could emit this as a loop in the source.
33  for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
34    llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I);
35    Builder.CreateStore(Value, Cell);
36  }
37}
38
39static bool isAggregateTypeForABI(QualType T) {
40  return CodeGenFunction::hasAggregateLLVMType(T) ||
41         T->isMemberFunctionPointerType();
42}
43
44ABIInfo::~ABIInfo() {}
45
46ASTContext &ABIInfo::getContext() const {
47  return CGT.getContext();
48}
49
50llvm::LLVMContext &ABIInfo::getVMContext() const {
51  return CGT.getLLVMContext();
52}
53
54const llvm::TargetData &ABIInfo::getTargetData() const {
55  return CGT.getTargetData();
56}
57
58
59void ABIArgInfo::dump() const {
60  llvm::raw_ostream &OS = llvm::errs();
61  OS << "(ABIArgInfo Kind=";
62  switch (TheKind) {
63  case Direct:
64    OS << "Direct Type=";
65    if (const llvm::Type *Ty = getCoerceToType())
66      Ty->print(OS);
67    else
68      OS << "null";
69    break;
70  case Extend:
71    OS << "Extend";
72    break;
73  case Ignore:
74    OS << "Ignore";
75    break;
76  case Indirect:
77    OS << "Indirect Align=" << getIndirectAlign()
78       << " Byal=" << getIndirectByVal()
79       << " Realign=" << getIndirectRealign();
80    break;
81  case Expand:
82    OS << "Expand";
83    break;
84  }
85  OS << ")\n";
86}
87
88TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
89
90static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
91
92/// isEmptyField - Return true iff a the field is "empty", that is it
93/// is an unnamed bit-field or an (array of) empty record(s).
94static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
95                         bool AllowArrays) {
96  if (FD->isUnnamedBitfield())
97    return true;
98
99  QualType FT = FD->getType();
100
101    // Constant arrays of empty records count as empty, strip them off.
102  if (AllowArrays)
103    while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT))
104      FT = AT->getElementType();
105
106  const RecordType *RT = FT->getAs<RecordType>();
107  if (!RT)
108    return false;
109
110  // C++ record fields are never empty, at least in the Itanium ABI.
111  //
112  // FIXME: We should use a predicate for whether this behavior is true in the
113  // current ABI.
114  if (isa<CXXRecordDecl>(RT->getDecl()))
115    return false;
116
117  return isEmptyRecord(Context, FT, AllowArrays);
118}
119
120/// isEmptyRecord - Return true iff a structure contains only empty
121/// fields. Note that a structure with a flexible array member is not
122/// considered empty.
123static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
124  const RecordType *RT = T->getAs<RecordType>();
125  if (!RT)
126    return 0;
127  const RecordDecl *RD = RT->getDecl();
128  if (RD->hasFlexibleArrayMember())
129    return false;
130
131  // If this is a C++ record, check the bases first.
132  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
133    for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
134           e = CXXRD->bases_end(); i != e; ++i)
135      if (!isEmptyRecord(Context, i->getType(), true))
136        return false;
137
138  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
139         i != e; ++i)
140    if (!isEmptyField(Context, *i, AllowArrays))
141      return false;
142  return true;
143}
144
145/// hasNonTrivialDestructorOrCopyConstructor - Determine if a type has either
146/// a non-trivial destructor or a non-trivial copy constructor.
147static bool hasNonTrivialDestructorOrCopyConstructor(const RecordType *RT) {
148  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
149  if (!RD)
150    return false;
151
152  return !RD->hasTrivialDestructor() || !RD->hasTrivialCopyConstructor();
153}
154
155/// isRecordWithNonTrivialDestructorOrCopyConstructor - Determine if a type is
156/// a record type with either a non-trivial destructor or a non-trivial copy
157/// constructor.
158static bool isRecordWithNonTrivialDestructorOrCopyConstructor(QualType T) {
159  const RecordType *RT = T->getAs<RecordType>();
160  if (!RT)
161    return false;
162
163  return hasNonTrivialDestructorOrCopyConstructor(RT);
164}
165
166/// isSingleElementStruct - Determine if a structure is a "single
167/// element struct", i.e. it has exactly one non-empty field or
168/// exactly one field which is itself a single element
169/// struct. Structures with flexible array members are never
170/// considered single element structs.
171///
172/// \return The field declaration for the single non-empty field, if
173/// it exists.
174static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
175  const RecordType *RT = T->getAsStructureType();
176  if (!RT)
177    return 0;
178
179  const RecordDecl *RD = RT->getDecl();
180  if (RD->hasFlexibleArrayMember())
181    return 0;
182
183  const Type *Found = 0;
184
185  // If this is a C++ record, check the bases first.
186  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
187    for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
188           e = CXXRD->bases_end(); i != e; ++i) {
189      // Ignore empty records.
190      if (isEmptyRecord(Context, i->getType(), true))
191        continue;
192
193      // If we already found an element then this isn't a single-element struct.
194      if (Found)
195        return 0;
196
197      // If this is non-empty and not a single element struct, the composite
198      // cannot be a single element struct.
199      Found = isSingleElementStruct(i->getType(), Context);
200      if (!Found)
201        return 0;
202    }
203  }
204
205  // Check for single element.
206  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
207         i != e; ++i) {
208    const FieldDecl *FD = *i;
209    QualType FT = FD->getType();
210
211    // Ignore empty fields.
212    if (isEmptyField(Context, FD, true))
213      continue;
214
215    // If we already found an element then this isn't a single-element
216    // struct.
217    if (Found)
218      return 0;
219
220    // Treat single element arrays as the element.
221    while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
222      if (AT->getSize().getZExtValue() != 1)
223        break;
224      FT = AT->getElementType();
225    }
226
227    if (!isAggregateTypeForABI(FT)) {
228      Found = FT.getTypePtr();
229    } else {
230      Found = isSingleElementStruct(FT, Context);
231      if (!Found)
232        return 0;
233    }
234  }
235
236  return Found;
237}
238
239static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
240  if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
241      !Ty->isAnyComplexType() && !Ty->isEnumeralType() &&
242      !Ty->isBlockPointerType())
243    return false;
244
245  uint64_t Size = Context.getTypeSize(Ty);
246  return Size == 32 || Size == 64;
247}
248
249/// canExpandIndirectArgument - Test whether an argument type which is to be
250/// passed indirectly (on the stack) would have the equivalent layout if it was
251/// expanded into separate arguments. If so, we prefer to do the latter to avoid
252/// inhibiting optimizations.
253///
254// FIXME: This predicate is missing many cases, currently it just follows
255// llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
256// should probably make this smarter, or better yet make the LLVM backend
257// capable of handling it.
258static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
259  // We can only expand structure types.
260  const RecordType *RT = Ty->getAs<RecordType>();
261  if (!RT)
262    return false;
263
264  // We can only expand (C) structures.
265  //
266  // FIXME: This needs to be generalized to handle classes as well.
267  const RecordDecl *RD = RT->getDecl();
268  if (!RD->isStruct() || isa<CXXRecordDecl>(RD))
269    return false;
270
271  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
272         i != e; ++i) {
273    const FieldDecl *FD = *i;
274
275    if (!is32Or64BitBasicType(FD->getType(), Context))
276      return false;
277
278    // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
279    // how to expand them yet, and the predicate for telling if a bitfield still
280    // counts as "basic" is more complicated than what we were doing previously.
281    if (FD->isBitField())
282      return false;
283  }
284
285  return true;
286}
287
288namespace {
289/// DefaultABIInfo - The default implementation for ABI specific
290/// details. This implementation provides information which results in
291/// self-consistent and sensible LLVM IR generation, but does not
292/// conform to any particular ABI.
293class DefaultABIInfo : public ABIInfo {
294public:
295  DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
296
297  ABIArgInfo classifyReturnType(QualType RetTy) const;
298  ABIArgInfo classifyArgumentType(QualType RetTy) const;
299
300  virtual void computeInfo(CGFunctionInfo &FI) const {
301    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
302    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
303         it != ie; ++it)
304      it->info = classifyArgumentType(it->type);
305  }
306
307  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
308                                 CodeGenFunction &CGF) const;
309};
310
311class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
312public:
313  DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
314    : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
315};
316
317llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
318                                       CodeGenFunction &CGF) const {
319  return 0;
320}
321
322ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
323  if (isAggregateTypeForABI(Ty))
324    return ABIArgInfo::getIndirect(0);
325
326  // Treat an enum type as its underlying type.
327  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
328    Ty = EnumTy->getDecl()->getIntegerType();
329
330  return (Ty->isPromotableIntegerType() ?
331          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
332}
333
334ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
335  if (RetTy->isVoidType())
336    return ABIArgInfo::getIgnore();
337
338  if (isAggregateTypeForABI(RetTy))
339    return ABIArgInfo::getIndirect(0);
340
341  // Treat an enum type as its underlying type.
342  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
343    RetTy = EnumTy->getDecl()->getIntegerType();
344
345  return (RetTy->isPromotableIntegerType() ?
346          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
347}
348
349/// UseX86_MMXType - Return true if this is an MMX type that should use the special
350/// x86_mmx type.
351bool UseX86_MMXType(const llvm::Type *IRType) {
352  // If the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>, use the
353  // special x86_mmx type.
354  return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
355    cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
356    IRType->getScalarSizeInBits() != 64;
357}
358
359static const llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
360                                                llvm::StringRef Constraint,
361                                                const llvm::Type* Ty) {
362  if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy())
363    return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
364  return Ty;
365}
366
367//===----------------------------------------------------------------------===//
368// X86-32 ABI Implementation
369//===----------------------------------------------------------------------===//
370
371/// X86_32ABIInfo - The X86-32 ABI information.
372class X86_32ABIInfo : public ABIInfo {
373  static const unsigned MinABIStackAlignInBytes = 4;
374
375  bool IsDarwinVectorABI;
376  bool IsSmallStructInRegABI;
377
378  static bool isRegisterSize(unsigned Size) {
379    return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
380  }
381
382  static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context);
383
384  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
385  /// such that the argument will be passed in memory.
386  ABIArgInfo getIndirectResult(QualType Ty, bool ByVal = true) const;
387
388  /// \brief Return the alignment to use for the given type on the stack.
389  unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
390
391public:
392
393  ABIArgInfo classifyReturnType(QualType RetTy) const;
394  ABIArgInfo classifyArgumentType(QualType RetTy) const;
395
396  virtual void computeInfo(CGFunctionInfo &FI) const {
397    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
398    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
399         it != ie; ++it)
400      it->info = classifyArgumentType(it->type);
401  }
402
403  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
404                                 CodeGenFunction &CGF) const;
405
406  X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p)
407    : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p) {}
408};
409
410class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
411public:
412  X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p)
413    :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p)) {}
414
415  void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
416                           CodeGen::CodeGenModule &CGM) const;
417
418  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
419    // Darwin uses different dwarf register numbers for EH.
420    if (CGM.isTargetDarwin()) return 5;
421
422    return 4;
423  }
424
425  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
426                               llvm::Value *Address) const;
427
428  const llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
429                                        llvm::StringRef Constraint,
430                                        const llvm::Type* Ty) const {
431    return X86AdjustInlineAsmType(CGF, Constraint, Ty);
432  }
433
434};
435
436}
437
438/// shouldReturnTypeInRegister - Determine if the given type should be
439/// passed in a register (for the Darwin ABI).
440bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
441                                               ASTContext &Context) {
442  uint64_t Size = Context.getTypeSize(Ty);
443
444  // Type must be register sized.
445  if (!isRegisterSize(Size))
446    return false;
447
448  if (Ty->isVectorType()) {
449    // 64- and 128- bit vectors inside structures are not returned in
450    // registers.
451    if (Size == 64 || Size == 128)
452      return false;
453
454    return true;
455  }
456
457  // If this is a builtin, pointer, enum, complex type, member pointer, or
458  // member function pointer it is ok.
459  if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
460      Ty->isAnyComplexType() || Ty->isEnumeralType() ||
461      Ty->isBlockPointerType() || Ty->isMemberPointerType())
462    return true;
463
464  // Arrays are treated like records.
465  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
466    return shouldReturnTypeInRegister(AT->getElementType(), Context);
467
468  // Otherwise, it must be a record type.
469  const RecordType *RT = Ty->getAs<RecordType>();
470  if (!RT) return false;
471
472  // FIXME: Traverse bases here too.
473
474  // Structure types are passed in register if all fields would be
475  // passed in a register.
476  for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(),
477         e = RT->getDecl()->field_end(); i != e; ++i) {
478    const FieldDecl *FD = *i;
479
480    // Empty fields are ignored.
481    if (isEmptyField(Context, FD, true))
482      continue;
483
484    // Check fields recursively.
485    if (!shouldReturnTypeInRegister(FD->getType(), Context))
486      return false;
487  }
488
489  return true;
490}
491
492ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy) const {
493  if (RetTy->isVoidType())
494    return ABIArgInfo::getIgnore();
495
496  if (const VectorType *VT = RetTy->getAs<VectorType>()) {
497    // On Darwin, some vectors are returned in registers.
498    if (IsDarwinVectorABI) {
499      uint64_t Size = getContext().getTypeSize(RetTy);
500
501      // 128-bit vectors are a special case; they are returned in
502      // registers and we need to make sure to pick a type the LLVM
503      // backend will like.
504      if (Size == 128)
505        return ABIArgInfo::getDirect(llvm::VectorType::get(
506                  llvm::Type::getInt64Ty(getVMContext()), 2));
507
508      // Always return in register if it fits in a general purpose
509      // register, or if it is 64 bits and has a single element.
510      if ((Size == 8 || Size == 16 || Size == 32) ||
511          (Size == 64 && VT->getNumElements() == 1))
512        return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
513                                                            Size));
514
515      return ABIArgInfo::getIndirect(0);
516    }
517
518    return ABIArgInfo::getDirect();
519  }
520
521  if (isAggregateTypeForABI(RetTy)) {
522    if (const RecordType *RT = RetTy->getAs<RecordType>()) {
523      // Structures with either a non-trivial destructor or a non-trivial
524      // copy constructor are always indirect.
525      if (hasNonTrivialDestructorOrCopyConstructor(RT))
526        return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
527
528      // Structures with flexible arrays are always indirect.
529      if (RT->getDecl()->hasFlexibleArrayMember())
530        return ABIArgInfo::getIndirect(0);
531    }
532
533    // If specified, structs and unions are always indirect.
534    if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
535      return ABIArgInfo::getIndirect(0);
536
537    // Classify "single element" structs as their element type.
538    if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) {
539      if (const BuiltinType *BT = SeltTy->getAs<BuiltinType>()) {
540        if (BT->isIntegerType()) {
541          // We need to use the size of the structure, padding
542          // bit-fields can adjust that to be larger than the single
543          // element type.
544          uint64_t Size = getContext().getTypeSize(RetTy);
545          return ABIArgInfo::getDirect(
546            llvm::IntegerType::get(getVMContext(), (unsigned)Size));
547        }
548
549        if (BT->getKind() == BuiltinType::Float) {
550          assert(getContext().getTypeSize(RetTy) ==
551                 getContext().getTypeSize(SeltTy) &&
552                 "Unexpect single element structure size!");
553          return ABIArgInfo::getDirect(llvm::Type::getFloatTy(getVMContext()));
554        }
555
556        if (BT->getKind() == BuiltinType::Double) {
557          assert(getContext().getTypeSize(RetTy) ==
558                 getContext().getTypeSize(SeltTy) &&
559                 "Unexpect single element structure size!");
560          return ABIArgInfo::getDirect(llvm::Type::getDoubleTy(getVMContext()));
561        }
562      } else if (SeltTy->isPointerType()) {
563        // FIXME: It would be really nice if this could come out as the proper
564        // pointer type.
565        const llvm::Type *PtrTy = llvm::Type::getInt8PtrTy(getVMContext());
566        return ABIArgInfo::getDirect(PtrTy);
567      } else if (SeltTy->isVectorType()) {
568        // 64- and 128-bit vectors are never returned in a
569        // register when inside a structure.
570        uint64_t Size = getContext().getTypeSize(RetTy);
571        if (Size == 64 || Size == 128)
572          return ABIArgInfo::getIndirect(0);
573
574        return classifyReturnType(QualType(SeltTy, 0));
575      }
576    }
577
578    // Small structures which are register sized are generally returned
579    // in a register.
580    if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, getContext())) {
581      uint64_t Size = getContext().getTypeSize(RetTy);
582      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
583    }
584
585    return ABIArgInfo::getIndirect(0);
586  }
587
588  // Treat an enum type as its underlying type.
589  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
590    RetTy = EnumTy->getDecl()->getIntegerType();
591
592  return (RetTy->isPromotableIntegerType() ?
593          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
594}
595
596static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
597  const RecordType *RT = Ty->getAs<RecordType>();
598  if (!RT)
599    return 0;
600  const RecordDecl *RD = RT->getDecl();
601
602  // If this is a C++ record, check the bases first.
603  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
604    for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
605           e = CXXRD->bases_end(); i != e; ++i)
606      if (!isRecordWithSSEVectorType(Context, i->getType()))
607        return false;
608
609  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
610       i != e; ++i) {
611    QualType FT = i->getType();
612
613    if (FT->getAs<VectorType>() && Context.getTypeSize(Ty) == 128)
614      return true;
615
616    if (isRecordWithSSEVectorType(Context, FT))
617      return true;
618  }
619
620  return false;
621}
622
623unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
624                                                 unsigned Align) const {
625  // Otherwise, if the alignment is less than or equal to the minimum ABI
626  // alignment, just use the default; the backend will handle this.
627  if (Align <= MinABIStackAlignInBytes)
628    return 0; // Use default alignment.
629
630  // On non-Darwin, the stack type alignment is always 4.
631  if (!IsDarwinVectorABI) {
632    // Set explicit alignment, since we may need to realign the top.
633    return MinABIStackAlignInBytes;
634  }
635
636  // Otherwise, if the type contains an SSE vector type, the alignment is 16.
637  if (isRecordWithSSEVectorType(getContext(), Ty))
638    return 16;
639
640  return MinABIStackAlignInBytes;
641}
642
643ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal) const {
644  if (!ByVal)
645    return ABIArgInfo::getIndirect(0, false);
646
647  // Compute the byval alignment.
648  unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
649  unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
650  if (StackAlign == 0)
651    return ABIArgInfo::getIndirect(0);
652
653  // If the stack alignment is less than the type alignment, realign the
654  // argument.
655  if (StackAlign < TypeAlign)
656    return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true,
657                                   /*Realign=*/true);
658
659  return ABIArgInfo::getIndirect(StackAlign);
660}
661
662ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty) const {
663  // FIXME: Set alignment on indirect arguments.
664  if (isAggregateTypeForABI(Ty)) {
665    // Structures with flexible arrays are always indirect.
666    if (const RecordType *RT = Ty->getAs<RecordType>()) {
667      // Structures with either a non-trivial destructor or a non-trivial
668      // copy constructor are always indirect.
669      if (hasNonTrivialDestructorOrCopyConstructor(RT))
670        return getIndirectResult(Ty, /*ByVal=*/false);
671
672      if (RT->getDecl()->hasFlexibleArrayMember())
673        return getIndirectResult(Ty);
674    }
675
676    // Ignore empty structs.
677    if (Ty->isStructureType() && getContext().getTypeSize(Ty) == 0)
678      return ABIArgInfo::getIgnore();
679
680    // Expand small (<= 128-bit) record types when we know that the stack layout
681    // of those arguments will match the struct. This is important because the
682    // LLVM backend isn't smart enough to remove byval, which inhibits many
683    // optimizations.
684    if (getContext().getTypeSize(Ty) <= 4*32 &&
685        canExpandIndirectArgument(Ty, getContext()))
686      return ABIArgInfo::getExpand();
687
688    return getIndirectResult(Ty);
689  }
690
691  if (const VectorType *VT = Ty->getAs<VectorType>()) {
692    // On Darwin, some vectors are passed in memory, we handle this by passing
693    // it as an i8/i16/i32/i64.
694    if (IsDarwinVectorABI) {
695      uint64_t Size = getContext().getTypeSize(Ty);
696      if ((Size == 8 || Size == 16 || Size == 32) ||
697          (Size == 64 && VT->getNumElements() == 1))
698        return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
699                                                            Size));
700    }
701
702    const llvm::Type *IRType = CGT.ConvertTypeRecursive(Ty);
703    if (UseX86_MMXType(IRType)) {
704      ABIArgInfo AAI = ABIArgInfo::getDirect(IRType);
705      AAI.setCoerceToType(llvm::Type::getX86_MMXTy(getVMContext()));
706      return AAI;
707    }
708
709    return ABIArgInfo::getDirect();
710  }
711
712
713  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
714    Ty = EnumTy->getDecl()->getIntegerType();
715
716  return (Ty->isPromotableIntegerType() ?
717          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
718}
719
720llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
721                                      CodeGenFunction &CGF) const {
722  const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
723  const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
724
725  CGBuilderTy &Builder = CGF.Builder;
726  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
727                                                       "ap");
728  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
729  llvm::Type *PTy =
730    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
731  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
732
733  uint64_t Offset =
734    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
735  llvm::Value *NextAddr =
736    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
737                      "ap.next");
738  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
739
740  return AddrTyped;
741}
742
743void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
744                                                  llvm::GlobalValue *GV,
745                                            CodeGen::CodeGenModule &CGM) const {
746  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
747    if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
748      // Get the LLVM function.
749      llvm::Function *Fn = cast<llvm::Function>(GV);
750
751      // Now add the 'alignstack' attribute with a value of 16.
752      Fn->addFnAttr(llvm::Attribute::constructStackAlignmentFromInt(16));
753    }
754  }
755}
756
757bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
758                                               CodeGen::CodeGenFunction &CGF,
759                                               llvm::Value *Address) const {
760  CodeGen::CGBuilderTy &Builder = CGF.Builder;
761  llvm::LLVMContext &Context = CGF.getLLVMContext();
762
763  const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
764  llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
765
766  // 0-7 are the eight integer registers;  the order is different
767  //   on Darwin (for EH), but the range is the same.
768  // 8 is %eip.
769  AssignToArrayRange(Builder, Address, Four8, 0, 8);
770
771  if (CGF.CGM.isTargetDarwin()) {
772    // 12-16 are st(0..4).  Not sure why we stop at 4.
773    // These have size 16, which is sizeof(long double) on
774    // platforms with 8-byte alignment for that type.
775    llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
776    AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
777
778  } else {
779    // 9 is %eflags, which doesn't get a size on Darwin for some
780    // reason.
781    Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9));
782
783    // 11-16 are st(0..5).  Not sure why we stop at 5.
784    // These have size 12, which is sizeof(long double) on
785    // platforms with 4-byte alignment for that type.
786    llvm::Value *Twelve8 = llvm::ConstantInt::get(i8, 12);
787    AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
788  }
789
790  return false;
791}
792
793//===----------------------------------------------------------------------===//
794// X86-64 ABI Implementation
795//===----------------------------------------------------------------------===//
796
797
798namespace {
799/// X86_64ABIInfo - The X86_64 ABI information.
800class X86_64ABIInfo : public ABIInfo {
801  enum Class {
802    Integer = 0,
803    SSE,
804    SSEUp,
805    X87,
806    X87Up,
807    ComplexX87,
808    NoClass,
809    Memory
810  };
811
812  /// merge - Implement the X86_64 ABI merging algorithm.
813  ///
814  /// Merge an accumulating classification \arg Accum with a field
815  /// classification \arg Field.
816  ///
817  /// \param Accum - The accumulating classification. This should
818  /// always be either NoClass or the result of a previous merge
819  /// call. In addition, this should never be Memory (the caller
820  /// should just return Memory for the aggregate).
821  static Class merge(Class Accum, Class Field);
822
823  /// classify - Determine the x86_64 register classes in which the
824  /// given type T should be passed.
825  ///
826  /// \param Lo - The classification for the parts of the type
827  /// residing in the low word of the containing object.
828  ///
829  /// \param Hi - The classification for the parts of the type
830  /// residing in the high word of the containing object.
831  ///
832  /// \param OffsetBase - The bit offset of this type in the
833  /// containing object.  Some parameters are classified different
834  /// depending on whether they straddle an eightbyte boundary.
835  ///
836  /// If a word is unused its result will be NoClass; if a type should
837  /// be passed in Memory then at least the classification of \arg Lo
838  /// will be Memory.
839  ///
840  /// The \arg Lo class will be NoClass iff the argument is ignored.
841  ///
842  /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
843  /// also be ComplexX87.
844  void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi) const;
845
846  const llvm::Type *Get16ByteVectorType(QualType Ty) const;
847  const llvm::Type *GetSSETypeAtOffset(const llvm::Type *IRType,
848                                       unsigned IROffset, QualType SourceTy,
849                                       unsigned SourceOffset) const;
850  const llvm::Type *GetINTEGERTypeAtOffset(const llvm::Type *IRType,
851                                           unsigned IROffset, QualType SourceTy,
852                                           unsigned SourceOffset) const;
853
854  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
855  /// such that the argument will be returned in memory.
856  ABIArgInfo getIndirectReturnResult(QualType Ty) const;
857
858  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
859  /// such that the argument will be passed in memory.
860  ABIArgInfo getIndirectResult(QualType Ty) const;
861
862  ABIArgInfo classifyReturnType(QualType RetTy) const;
863
864  ABIArgInfo classifyArgumentType(QualType Ty,
865                                  unsigned &neededInt,
866                                  unsigned &neededSSE) const;
867
868public:
869  X86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
870
871  virtual void computeInfo(CGFunctionInfo &FI) const;
872
873  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
874                                 CodeGenFunction &CGF) const;
875};
876
877/// WinX86_64ABIInfo - The Windows X86_64 ABI information.
878class WinX86_64ABIInfo : public ABIInfo {
879
880  ABIArgInfo classify(QualType Ty) const;
881
882public:
883  WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
884
885  virtual void computeInfo(CGFunctionInfo &FI) const;
886
887  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
888                                 CodeGenFunction &CGF) const;
889};
890
891class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
892public:
893  X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
894    : TargetCodeGenInfo(new X86_64ABIInfo(CGT)) {}
895
896  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
897    return 7;
898  }
899
900  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
901                               llvm::Value *Address) const {
902    CodeGen::CGBuilderTy &Builder = CGF.Builder;
903    llvm::LLVMContext &Context = CGF.getLLVMContext();
904
905    const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
906    llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
907
908    // 0-15 are the 16 integer registers.
909    // 16 is %rip.
910    AssignToArrayRange(Builder, Address, Eight8, 0, 16);
911
912    return false;
913  }
914
915  const llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
916                                        llvm::StringRef Constraint,
917                                        const llvm::Type* Ty) const {
918    return X86AdjustInlineAsmType(CGF, Constraint, Ty);
919  }
920
921};
922
923class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
924public:
925  WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
926    : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
927
928  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
929    return 7;
930  }
931
932  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
933                               llvm::Value *Address) const {
934    CodeGen::CGBuilderTy &Builder = CGF.Builder;
935    llvm::LLVMContext &Context = CGF.getLLVMContext();
936
937    const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
938    llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
939
940    // 0-15 are the 16 integer registers.
941    // 16 is %rip.
942    AssignToArrayRange(Builder, Address, Eight8, 0, 16);
943
944    return false;
945  }
946};
947
948}
949
950X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
951  // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
952  // classified recursively so that always two fields are
953  // considered. The resulting class is calculated according to
954  // the classes of the fields in the eightbyte:
955  //
956  // (a) If both classes are equal, this is the resulting class.
957  //
958  // (b) If one of the classes is NO_CLASS, the resulting class is
959  // the other class.
960  //
961  // (c) If one of the classes is MEMORY, the result is the MEMORY
962  // class.
963  //
964  // (d) If one of the classes is INTEGER, the result is the
965  // INTEGER.
966  //
967  // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
968  // MEMORY is used as class.
969  //
970  // (f) Otherwise class SSE is used.
971
972  // Accum should never be memory (we should have returned) or
973  // ComplexX87 (because this cannot be passed in a structure).
974  assert((Accum != Memory && Accum != ComplexX87) &&
975         "Invalid accumulated classification during merge.");
976  if (Accum == Field || Field == NoClass)
977    return Accum;
978  if (Field == Memory)
979    return Memory;
980  if (Accum == NoClass)
981    return Field;
982  if (Accum == Integer || Field == Integer)
983    return Integer;
984  if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
985      Accum == X87 || Accum == X87Up)
986    return Memory;
987  return SSE;
988}
989
990void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
991                             Class &Lo, Class &Hi) const {
992  // FIXME: This code can be simplified by introducing a simple value class for
993  // Class pairs with appropriate constructor methods for the various
994  // situations.
995
996  // FIXME: Some of the split computations are wrong; unaligned vectors
997  // shouldn't be passed in registers for example, so there is no chance they
998  // can straddle an eightbyte. Verify & simplify.
999
1000  Lo = Hi = NoClass;
1001
1002  Class &Current = OffsetBase < 64 ? Lo : Hi;
1003  Current = Memory;
1004
1005  if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
1006    BuiltinType::Kind k = BT->getKind();
1007
1008    if (k == BuiltinType::Void) {
1009      Current = NoClass;
1010    } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
1011      Lo = Integer;
1012      Hi = Integer;
1013    } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
1014      Current = Integer;
1015    } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
1016      Current = SSE;
1017    } else if (k == BuiltinType::LongDouble) {
1018      Lo = X87;
1019      Hi = X87Up;
1020    }
1021    // FIXME: _Decimal32 and _Decimal64 are SSE.
1022    // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
1023    return;
1024  }
1025
1026  if (const EnumType *ET = Ty->getAs<EnumType>()) {
1027    // Classify the underlying integer type.
1028    classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi);
1029    return;
1030  }
1031
1032  if (Ty->hasPointerRepresentation()) {
1033    Current = Integer;
1034    return;
1035  }
1036
1037  if (Ty->isMemberPointerType()) {
1038    if (Ty->isMemberFunctionPointerType())
1039      Lo = Hi = Integer;
1040    else
1041      Current = Integer;
1042    return;
1043  }
1044
1045  if (const VectorType *VT = Ty->getAs<VectorType>()) {
1046    uint64_t Size = getContext().getTypeSize(VT);
1047    if (Size == 32) {
1048      // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
1049      // float> as integer.
1050      Current = Integer;
1051
1052      // If this type crosses an eightbyte boundary, it should be
1053      // split.
1054      uint64_t EB_Real = (OffsetBase) / 64;
1055      uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
1056      if (EB_Real != EB_Imag)
1057        Hi = Lo;
1058    } else if (Size == 64) {
1059      // gcc passes <1 x double> in memory. :(
1060      if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
1061        return;
1062
1063      // gcc passes <1 x long long> as INTEGER.
1064      if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) ||
1065          VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) ||
1066          VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) ||
1067          VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong))
1068        Current = Integer;
1069      else
1070        Current = SSE;
1071
1072      // If this type crosses an eightbyte boundary, it should be
1073      // split.
1074      if (OffsetBase && OffsetBase != 64)
1075        Hi = Lo;
1076    } else if (Size == 128) {
1077      Lo = SSE;
1078      Hi = SSEUp;
1079    }
1080    return;
1081  }
1082
1083  if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
1084    QualType ET = getContext().getCanonicalType(CT->getElementType());
1085
1086    uint64_t Size = getContext().getTypeSize(Ty);
1087    if (ET->isIntegralOrEnumerationType()) {
1088      if (Size <= 64)
1089        Current = Integer;
1090      else if (Size <= 128)
1091        Lo = Hi = Integer;
1092    } else if (ET == getContext().FloatTy)
1093      Current = SSE;
1094    else if (ET == getContext().DoubleTy)
1095      Lo = Hi = SSE;
1096    else if (ET == getContext().LongDoubleTy)
1097      Current = ComplexX87;
1098
1099    // If this complex type crosses an eightbyte boundary then it
1100    // should be split.
1101    uint64_t EB_Real = (OffsetBase) / 64;
1102    uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
1103    if (Hi == NoClass && EB_Real != EB_Imag)
1104      Hi = Lo;
1105
1106    return;
1107  }
1108
1109  if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
1110    // Arrays are treated like structures.
1111
1112    uint64_t Size = getContext().getTypeSize(Ty);
1113
1114    // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1115    // than two eightbytes, ..., it has class MEMORY.
1116    if (Size > 128)
1117      return;
1118
1119    // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
1120    // fields, it has class MEMORY.
1121    //
1122    // Only need to check alignment of array base.
1123    if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
1124      return;
1125
1126    // Otherwise implement simplified merge. We could be smarter about
1127    // this, but it isn't worth it and would be harder to verify.
1128    Current = NoClass;
1129    uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
1130    uint64_t ArraySize = AT->getSize().getZExtValue();
1131    for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
1132      Class FieldLo, FieldHi;
1133      classify(AT->getElementType(), Offset, FieldLo, FieldHi);
1134      Lo = merge(Lo, FieldLo);
1135      Hi = merge(Hi, FieldHi);
1136      if (Lo == Memory || Hi == Memory)
1137        break;
1138    }
1139
1140    // Do post merger cleanup (see below). Only case we worry about is Memory.
1141    if (Hi == Memory)
1142      Lo = Memory;
1143    assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
1144    return;
1145  }
1146
1147  if (const RecordType *RT = Ty->getAs<RecordType>()) {
1148    uint64_t Size = getContext().getTypeSize(Ty);
1149
1150    // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1151    // than two eightbytes, ..., it has class MEMORY.
1152    if (Size > 128)
1153      return;
1154
1155    // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
1156    // copy constructor or a non-trivial destructor, it is passed by invisible
1157    // reference.
1158    if (hasNonTrivialDestructorOrCopyConstructor(RT))
1159      return;
1160
1161    const RecordDecl *RD = RT->getDecl();
1162
1163    // Assume variable sized types are passed in memory.
1164    if (RD->hasFlexibleArrayMember())
1165      return;
1166
1167    const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1168
1169    // Reset Lo class, this will be recomputed.
1170    Current = NoClass;
1171
1172    // If this is a C++ record, classify the bases first.
1173    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1174      for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1175             e = CXXRD->bases_end(); i != e; ++i) {
1176        assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1177               "Unexpected base class!");
1178        const CXXRecordDecl *Base =
1179          cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1180
1181        // Classify this field.
1182        //
1183        // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
1184        // single eightbyte, each is classified separately. Each eightbyte gets
1185        // initialized to class NO_CLASS.
1186        Class FieldLo, FieldHi;
1187        uint64_t Offset = OffsetBase + Layout.getBaseClassOffsetInBits(Base);
1188        classify(i->getType(), Offset, FieldLo, FieldHi);
1189        Lo = merge(Lo, FieldLo);
1190        Hi = merge(Hi, FieldHi);
1191        if (Lo == Memory || Hi == Memory)
1192          break;
1193      }
1194    }
1195
1196    // Classify the fields one at a time, merging the results.
1197    unsigned idx = 0;
1198    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1199           i != e; ++i, ++idx) {
1200      uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1201      bool BitField = i->isBitField();
1202
1203      // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
1204      // fields, it has class MEMORY.
1205      //
1206      // Note, skip this test for bit-fields, see below.
1207      if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
1208        Lo = Memory;
1209        return;
1210      }
1211
1212      // Classify this field.
1213      //
1214      // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
1215      // exceeds a single eightbyte, each is classified
1216      // separately. Each eightbyte gets initialized to class
1217      // NO_CLASS.
1218      Class FieldLo, FieldHi;
1219
1220      // Bit-fields require special handling, they do not force the
1221      // structure to be passed in memory even if unaligned, and
1222      // therefore they can straddle an eightbyte.
1223      if (BitField) {
1224        // Ignore padding bit-fields.
1225        if (i->isUnnamedBitfield())
1226          continue;
1227
1228        uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1229        uint64_t Size =
1230          i->getBitWidth()->EvaluateAsInt(getContext()).getZExtValue();
1231
1232        uint64_t EB_Lo = Offset / 64;
1233        uint64_t EB_Hi = (Offset + Size - 1) / 64;
1234        FieldLo = FieldHi = NoClass;
1235        if (EB_Lo) {
1236          assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
1237          FieldLo = NoClass;
1238          FieldHi = Integer;
1239        } else {
1240          FieldLo = Integer;
1241          FieldHi = EB_Hi ? Integer : NoClass;
1242        }
1243      } else
1244        classify(i->getType(), Offset, FieldLo, FieldHi);
1245      Lo = merge(Lo, FieldLo);
1246      Hi = merge(Hi, FieldHi);
1247      if (Lo == Memory || Hi == Memory)
1248        break;
1249    }
1250
1251    // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
1252    //
1253    // (a) If one of the classes is MEMORY, the whole argument is
1254    // passed in memory.
1255    //
1256    // (b) If SSEUP is not preceded by SSE, it is converted to SSE.
1257
1258    // The first of these conditions is guaranteed by how we implement
1259    // the merge (just bail).
1260    //
1261    // The second condition occurs in the case of unions; for example
1262    // union { _Complex double; unsigned; }.
1263    if (Hi == Memory)
1264      Lo = Memory;
1265    if (Hi == SSEUp && Lo != SSE)
1266      Hi = SSE;
1267  }
1268}
1269
1270ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
1271  // If this is a scalar LLVM value then assume LLVM will pass it in the right
1272  // place naturally.
1273  if (!isAggregateTypeForABI(Ty)) {
1274    // Treat an enum type as its underlying type.
1275    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1276      Ty = EnumTy->getDecl()->getIntegerType();
1277
1278    return (Ty->isPromotableIntegerType() ?
1279            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1280  }
1281
1282  return ABIArgInfo::getIndirect(0);
1283}
1284
1285ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty) const {
1286  // If this is a scalar LLVM value then assume LLVM will pass it in the right
1287  // place naturally.
1288  if (!isAggregateTypeForABI(Ty)) {
1289    // Treat an enum type as its underlying type.
1290    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1291      Ty = EnumTy->getDecl()->getIntegerType();
1292
1293    return (Ty->isPromotableIntegerType() ?
1294            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1295  }
1296
1297  if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
1298    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
1299
1300  // Compute the byval alignment. We trust the back-end to honor the
1301  // minimum ABI alignment for byval, to make cleaner IR.
1302  const unsigned MinABIAlign = 8;
1303  unsigned Align = getContext().getTypeAlign(Ty) / 8;
1304  if (Align > MinABIAlign)
1305    return ABIArgInfo::getIndirect(Align);
1306  return ABIArgInfo::getIndirect(0);
1307}
1308
1309/// Get16ByteVectorType - The ABI specifies that a value should be passed in an
1310/// full vector XMM register.  Pick an LLVM IR type that will be passed as a
1311/// vector register.
1312const llvm::Type *X86_64ABIInfo::Get16ByteVectorType(QualType Ty) const {
1313  const llvm::Type *IRType = CGT.ConvertTypeRecursive(Ty);
1314
1315  // Wrapper structs that just contain vectors are passed just like vectors,
1316  // strip them off if present.
1317  const llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType);
1318  while (STy && STy->getNumElements() == 1) {
1319    IRType = STy->getElementType(0);
1320    STy = dyn_cast<llvm::StructType>(IRType);
1321  }
1322
1323  // If the preferred type is a 16-byte vector, prefer to pass it.
1324  if (const llvm::VectorType *VT = dyn_cast<llvm::VectorType>(IRType)){
1325    const llvm::Type *EltTy = VT->getElementType();
1326    if (VT->getBitWidth() == 128 &&
1327        (EltTy->isFloatTy() || EltTy->isDoubleTy() ||
1328         EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) ||
1329         EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) ||
1330         EltTy->isIntegerTy(128)))
1331      return VT;
1332  }
1333
1334  return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2);
1335}
1336
1337/// BitsContainNoUserData - Return true if the specified [start,end) bit range
1338/// is known to either be off the end of the specified type or being in
1339/// alignment padding.  The user type specified is known to be at most 128 bits
1340/// in size, and have passed through X86_64ABIInfo::classify with a successful
1341/// classification that put one of the two halves in the INTEGER class.
1342///
1343/// It is conservatively correct to return false.
1344static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
1345                                  unsigned EndBit, ASTContext &Context) {
1346  // If the bytes being queried are off the end of the type, there is no user
1347  // data hiding here.  This handles analysis of builtins, vectors and other
1348  // types that don't contain interesting padding.
1349  unsigned TySize = (unsigned)Context.getTypeSize(Ty);
1350  if (TySize <= StartBit)
1351    return true;
1352
1353  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
1354    unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
1355    unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
1356
1357    // Check each element to see if the element overlaps with the queried range.
1358    for (unsigned i = 0; i != NumElts; ++i) {
1359      // If the element is after the span we care about, then we're done..
1360      unsigned EltOffset = i*EltSize;
1361      if (EltOffset >= EndBit) break;
1362
1363      unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
1364      if (!BitsContainNoUserData(AT->getElementType(), EltStart,
1365                                 EndBit-EltOffset, Context))
1366        return false;
1367    }
1368    // If it overlaps no elements, then it is safe to process as padding.
1369    return true;
1370  }
1371
1372  if (const RecordType *RT = Ty->getAs<RecordType>()) {
1373    const RecordDecl *RD = RT->getDecl();
1374    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1375
1376    // If this is a C++ record, check the bases first.
1377    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1378      for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1379           e = CXXRD->bases_end(); i != e; ++i) {
1380        assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1381               "Unexpected base class!");
1382        const CXXRecordDecl *Base =
1383          cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1384
1385        // If the base is after the span we care about, ignore it.
1386        unsigned BaseOffset = (unsigned)Layout.getBaseClassOffsetInBits(Base);
1387        if (BaseOffset >= EndBit) continue;
1388
1389        unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
1390        if (!BitsContainNoUserData(i->getType(), BaseStart,
1391                                   EndBit-BaseOffset, Context))
1392          return false;
1393      }
1394    }
1395
1396    // Verify that no field has data that overlaps the region of interest.  Yes
1397    // this could be sped up a lot by being smarter about queried fields,
1398    // however we're only looking at structs up to 16 bytes, so we don't care
1399    // much.
1400    unsigned idx = 0;
1401    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1402         i != e; ++i, ++idx) {
1403      unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
1404
1405      // If we found a field after the region we care about, then we're done.
1406      if (FieldOffset >= EndBit) break;
1407
1408      unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
1409      if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
1410                                 Context))
1411        return false;
1412    }
1413
1414    // If nothing in this record overlapped the area of interest, then we're
1415    // clean.
1416    return true;
1417  }
1418
1419  return false;
1420}
1421
1422/// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
1423/// float member at the specified offset.  For example, {int,{float}} has a
1424/// float at offset 4.  It is conservatively correct for this routine to return
1425/// false.
1426static bool ContainsFloatAtOffset(const llvm::Type *IRType, unsigned IROffset,
1427                                  const llvm::TargetData &TD) {
1428  // Base case if we find a float.
1429  if (IROffset == 0 && IRType->isFloatTy())
1430    return true;
1431
1432  // If this is a struct, recurse into the field at the specified offset.
1433  if (const llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
1434    const llvm::StructLayout *SL = TD.getStructLayout(STy);
1435    unsigned Elt = SL->getElementContainingOffset(IROffset);
1436    IROffset -= SL->getElementOffset(Elt);
1437    return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
1438  }
1439
1440  // If this is an array, recurse into the field at the specified offset.
1441  if (const llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
1442    const llvm::Type *EltTy = ATy->getElementType();
1443    unsigned EltSize = TD.getTypeAllocSize(EltTy);
1444    IROffset -= IROffset/EltSize*EltSize;
1445    return ContainsFloatAtOffset(EltTy, IROffset, TD);
1446  }
1447
1448  return false;
1449}
1450
1451
1452/// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
1453/// low 8 bytes of an XMM register, corresponding to the SSE class.
1454const llvm::Type *X86_64ABIInfo::
1455GetSSETypeAtOffset(const llvm::Type *IRType, unsigned IROffset,
1456                   QualType SourceTy, unsigned SourceOffset) const {
1457  // The only three choices we have are either double, <2 x float>, or float. We
1458  // pass as float if the last 4 bytes is just padding.  This happens for
1459  // structs that contain 3 floats.
1460  if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
1461                            SourceOffset*8+64, getContext()))
1462    return llvm::Type::getFloatTy(getVMContext());
1463
1464  // We want to pass as <2 x float> if the LLVM IR type contains a float at
1465  // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
1466  // case.
1467  if (ContainsFloatAtOffset(IRType, IROffset, getTargetData()) &&
1468      ContainsFloatAtOffset(IRType, IROffset+4, getTargetData()))
1469    return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
1470
1471  return llvm::Type::getDoubleTy(getVMContext());
1472}
1473
1474
1475/// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
1476/// an 8-byte GPR.  This means that we either have a scalar or we are talking
1477/// about the high or low part of an up-to-16-byte struct.  This routine picks
1478/// the best LLVM IR type to represent this, which may be i64 or may be anything
1479/// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
1480/// etc).
1481///
1482/// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
1483/// the source type.  IROffset is an offset in bytes into the LLVM IR type that
1484/// the 8-byte value references.  PrefType may be null.
1485///
1486/// SourceTy is the source level type for the entire argument.  SourceOffset is
1487/// an offset into this that we're processing (which is always either 0 or 8).
1488///
1489const llvm::Type *X86_64ABIInfo::
1490GetINTEGERTypeAtOffset(const llvm::Type *IRType, unsigned IROffset,
1491                       QualType SourceTy, unsigned SourceOffset) const {
1492  // If we're dealing with an un-offset LLVM IR type, then it means that we're
1493  // returning an 8-byte unit starting with it.  See if we can safely use it.
1494  if (IROffset == 0) {
1495    // Pointers and int64's always fill the 8-byte unit.
1496    if (isa<llvm::PointerType>(IRType) || IRType->isIntegerTy(64))
1497      return IRType;
1498
1499    // If we have a 1/2/4-byte integer, we can use it only if the rest of the
1500    // goodness in the source type is just tail padding.  This is allowed to
1501    // kick in for struct {double,int} on the int, but not on
1502    // struct{double,int,int} because we wouldn't return the second int.  We
1503    // have to do this analysis on the source type because we can't depend on
1504    // unions being lowered a specific way etc.
1505    if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
1506        IRType->isIntegerTy(32)) {
1507      unsigned BitWidth = cast<llvm::IntegerType>(IRType)->getBitWidth();
1508
1509      if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
1510                                SourceOffset*8+64, getContext()))
1511        return IRType;
1512    }
1513  }
1514
1515  if (const llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
1516    // If this is a struct, recurse into the field at the specified offset.
1517    const llvm::StructLayout *SL = getTargetData().getStructLayout(STy);
1518    if (IROffset < SL->getSizeInBytes()) {
1519      unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
1520      IROffset -= SL->getElementOffset(FieldIdx);
1521
1522      return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
1523                                    SourceTy, SourceOffset);
1524    }
1525  }
1526
1527  if (const llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
1528    const llvm::Type *EltTy = ATy->getElementType();
1529    unsigned EltSize = getTargetData().getTypeAllocSize(EltTy);
1530    unsigned EltOffset = IROffset/EltSize*EltSize;
1531    return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
1532                                  SourceOffset);
1533  }
1534
1535  // Okay, we don't have any better idea of what to pass, so we pass this in an
1536  // integer register that isn't too big to fit the rest of the struct.
1537  unsigned TySizeInBytes =
1538    (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
1539
1540  assert(TySizeInBytes != SourceOffset && "Empty field?");
1541
1542  // It is always safe to classify this as an integer type up to i64 that
1543  // isn't larger than the structure.
1544  return llvm::IntegerType::get(getVMContext(),
1545                                std::min(TySizeInBytes-SourceOffset, 8U)*8);
1546}
1547
1548
1549/// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
1550/// be used as elements of a two register pair to pass or return, return a
1551/// first class aggregate to represent them.  For example, if the low part of
1552/// a by-value argument should be passed as i32* and the high part as float,
1553/// return {i32*, float}.
1554static const llvm::Type *
1555GetX86_64ByValArgumentPair(const llvm::Type *Lo, const llvm::Type *Hi,
1556                           const llvm::TargetData &TD) {
1557  // In order to correctly satisfy the ABI, we need to the high part to start
1558  // at offset 8.  If the high and low parts we inferred are both 4-byte types
1559  // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
1560  // the second element at offset 8.  Check for this:
1561  unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
1562  unsigned HiAlign = TD.getABITypeAlignment(Hi);
1563  unsigned HiStart = llvm::TargetData::RoundUpAlignment(LoSize, HiAlign);
1564  assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
1565
1566  // To handle this, we have to increase the size of the low part so that the
1567  // second element will start at an 8 byte offset.  We can't increase the size
1568  // of the second element because it might make us access off the end of the
1569  // struct.
1570  if (HiStart != 8) {
1571    // There are only two sorts of types the ABI generation code can produce for
1572    // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32.
1573    // Promote these to a larger type.
1574    if (Lo->isFloatTy())
1575      Lo = llvm::Type::getDoubleTy(Lo->getContext());
1576    else {
1577      assert(Lo->isIntegerTy() && "Invalid/unknown lo type");
1578      Lo = llvm::Type::getInt64Ty(Lo->getContext());
1579    }
1580  }
1581
1582  const llvm::StructType *Result =
1583    llvm::StructType::get(Lo->getContext(), Lo, Hi, NULL);
1584
1585
1586  // Verify that the second element is at an 8-byte offset.
1587  assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
1588         "Invalid x86-64 argument pair!");
1589  return Result;
1590}
1591
1592ABIArgInfo X86_64ABIInfo::
1593classifyReturnType(QualType RetTy) const {
1594  // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
1595  // classification algorithm.
1596  X86_64ABIInfo::Class Lo, Hi;
1597  classify(RetTy, 0, Lo, Hi);
1598
1599  // Check some invariants.
1600  assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
1601  assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
1602
1603  const llvm::Type *ResType = 0;
1604  switch (Lo) {
1605  case NoClass:
1606    if (Hi == NoClass)
1607      return ABIArgInfo::getIgnore();
1608    // If the low part is just padding, it takes no register, leave ResType
1609    // null.
1610    assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
1611           "Unknown missing lo part");
1612    break;
1613
1614  case SSEUp:
1615  case X87Up:
1616    assert(0 && "Invalid classification for lo word.");
1617
1618    // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
1619    // hidden argument.
1620  case Memory:
1621    return getIndirectReturnResult(RetTy);
1622
1623    // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
1624    // available register of the sequence %rax, %rdx is used.
1625  case Integer:
1626    ResType = GetINTEGERTypeAtOffset(CGT.ConvertTypeRecursive(RetTy), 0,
1627                                     RetTy, 0);
1628
1629    // If we have a sign or zero extended integer, make sure to return Extend
1630    // so that the parameter gets the right LLVM IR attributes.
1631    if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
1632      // Treat an enum type as its underlying type.
1633      if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1634        RetTy = EnumTy->getDecl()->getIntegerType();
1635
1636      if (RetTy->isIntegralOrEnumerationType() &&
1637          RetTy->isPromotableIntegerType())
1638        return ABIArgInfo::getExtend();
1639    }
1640    break;
1641
1642    // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
1643    // available SSE register of the sequence %xmm0, %xmm1 is used.
1644  case SSE:
1645    ResType = GetSSETypeAtOffset(CGT.ConvertTypeRecursive(RetTy), 0, RetTy, 0);
1646    break;
1647
1648    // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
1649    // returned on the X87 stack in %st0 as 80-bit x87 number.
1650  case X87:
1651    ResType = llvm::Type::getX86_FP80Ty(getVMContext());
1652    break;
1653
1654    // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
1655    // part of the value is returned in %st0 and the imaginary part in
1656    // %st1.
1657  case ComplexX87:
1658    assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
1659    ResType = llvm::StructType::get(getVMContext(),
1660                                    llvm::Type::getX86_FP80Ty(getVMContext()),
1661                                    llvm::Type::getX86_FP80Ty(getVMContext()),
1662                                    NULL);
1663    break;
1664  }
1665
1666  const llvm::Type *HighPart = 0;
1667  switch (Hi) {
1668    // Memory was handled previously and X87 should
1669    // never occur as a hi class.
1670  case Memory:
1671  case X87:
1672    assert(0 && "Invalid classification for hi word.");
1673
1674  case ComplexX87: // Previously handled.
1675  case NoClass:
1676    break;
1677
1678  case Integer:
1679    HighPart = GetINTEGERTypeAtOffset(CGT.ConvertTypeRecursive(RetTy),
1680                                      8, RetTy, 8);
1681    if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
1682      return ABIArgInfo::getDirect(HighPart, 8);
1683    break;
1684  case SSE:
1685    HighPart = GetSSETypeAtOffset(CGT.ConvertTypeRecursive(RetTy), 8, RetTy, 8);
1686    if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
1687      return ABIArgInfo::getDirect(HighPart, 8);
1688    break;
1689
1690    // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
1691    // is passed in the upper half of the last used SSE register.
1692    //
1693    // SSEUP should always be preceded by SSE, just widen.
1694  case SSEUp:
1695    assert(Lo == SSE && "Unexpected SSEUp classification.");
1696    ResType = Get16ByteVectorType(RetTy);
1697    break;
1698
1699    // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
1700    // returned together with the previous X87 value in %st0.
1701  case X87Up:
1702    // If X87Up is preceded by X87, we don't need to do
1703    // anything. However, in some cases with unions it may not be
1704    // preceded by X87. In such situations we follow gcc and pass the
1705    // extra bits in an SSE reg.
1706    if (Lo != X87) {
1707      HighPart = GetSSETypeAtOffset(CGT.ConvertTypeRecursive(RetTy),
1708                                    8, RetTy, 8);
1709      if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
1710        return ABIArgInfo::getDirect(HighPart, 8);
1711    }
1712    break;
1713  }
1714
1715  // If a high part was specified, merge it together with the low part.  It is
1716  // known to pass in the high eightbyte of the result.  We do this by forming a
1717  // first class struct aggregate with the high and low part: {low, high}
1718  if (HighPart)
1719    ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getTargetData());
1720
1721  return ABIArgInfo::getDirect(ResType);
1722}
1723
1724ABIArgInfo X86_64ABIInfo::classifyArgumentType(QualType Ty, unsigned &neededInt,
1725                                               unsigned &neededSSE) const {
1726  X86_64ABIInfo::Class Lo, Hi;
1727  classify(Ty, 0, Lo, Hi);
1728
1729  // Check some invariants.
1730  // FIXME: Enforce these by construction.
1731  assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
1732  assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
1733
1734  neededInt = 0;
1735  neededSSE = 0;
1736  const llvm::Type *ResType = 0;
1737  switch (Lo) {
1738  case NoClass:
1739    if (Hi == NoClass)
1740      return ABIArgInfo::getIgnore();
1741    // If the low part is just padding, it takes no register, leave ResType
1742    // null.
1743    assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
1744           "Unknown missing lo part");
1745    break;
1746
1747    // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
1748    // on the stack.
1749  case Memory:
1750
1751    // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
1752    // COMPLEX_X87, it is passed in memory.
1753  case X87:
1754  case ComplexX87:
1755    return getIndirectResult(Ty);
1756
1757  case SSEUp:
1758  case X87Up:
1759    assert(0 && "Invalid classification for lo word.");
1760
1761    // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
1762    // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
1763    // and %r9 is used.
1764  case Integer:
1765    ++neededInt;
1766
1767    // Pick an 8-byte type based on the preferred type.
1768    ResType = GetINTEGERTypeAtOffset(CGT.ConvertTypeRecursive(Ty), 0, Ty, 0);
1769
1770    // If we have a sign or zero extended integer, make sure to return Extend
1771    // so that the parameter gets the right LLVM IR attributes.
1772    if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
1773      // Treat an enum type as its underlying type.
1774      if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1775        Ty = EnumTy->getDecl()->getIntegerType();
1776
1777      if (Ty->isIntegralOrEnumerationType() &&
1778          Ty->isPromotableIntegerType())
1779        return ABIArgInfo::getExtend();
1780    }
1781
1782    break;
1783
1784    // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
1785    // available SSE register is used, the registers are taken in the
1786    // order from %xmm0 to %xmm7.
1787  case SSE: {
1788    const llvm::Type *IRType = CGT.ConvertTypeRecursive(Ty);
1789    if (Hi != NoClass || !UseX86_MMXType(IRType))
1790      ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
1791    else
1792      // This is an MMX type. Treat it as such.
1793      ResType = llvm::Type::getX86_MMXTy(getVMContext());
1794
1795    ++neededSSE;
1796    break;
1797  }
1798  }
1799
1800  const llvm::Type *HighPart = 0;
1801  switch (Hi) {
1802    // Memory was handled previously, ComplexX87 and X87 should
1803    // never occur as hi classes, and X87Up must be preceded by X87,
1804    // which is passed in memory.
1805  case Memory:
1806  case X87:
1807  case ComplexX87:
1808    assert(0 && "Invalid classification for hi word.");
1809    break;
1810
1811  case NoClass: break;
1812
1813  case Integer:
1814    ++neededInt;
1815    // Pick an 8-byte type based on the preferred type.
1816    HighPart = GetINTEGERTypeAtOffset(CGT.ConvertTypeRecursive(Ty), 8, Ty, 8);
1817
1818    if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
1819      return ABIArgInfo::getDirect(HighPart, 8);
1820    break;
1821
1822    // X87Up generally doesn't occur here (long double is passed in
1823    // memory), except in situations involving unions.
1824  case X87Up:
1825  case SSE:
1826    HighPart = GetSSETypeAtOffset(CGT.ConvertTypeRecursive(Ty), 8, Ty, 8);
1827
1828    if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
1829      return ABIArgInfo::getDirect(HighPart, 8);
1830
1831    ++neededSSE;
1832    break;
1833
1834    // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
1835    // eightbyte is passed in the upper half of the last used SSE
1836    // register.  This only happens when 128-bit vectors are passed.
1837  case SSEUp:
1838    assert(Lo == SSE && "Unexpected SSEUp classification");
1839    ResType = Get16ByteVectorType(Ty);
1840    break;
1841  }
1842
1843  // If a high part was specified, merge it together with the low part.  It is
1844  // known to pass in the high eightbyte of the result.  We do this by forming a
1845  // first class struct aggregate with the high and low part: {low, high}
1846  if (HighPart)
1847    ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getTargetData());
1848
1849  return ABIArgInfo::getDirect(ResType);
1850}
1851
1852void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1853
1854  FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
1855
1856  // Keep track of the number of assigned registers.
1857  unsigned freeIntRegs = 6, freeSSERegs = 8;
1858
1859  // If the return value is indirect, then the hidden argument is consuming one
1860  // integer register.
1861  if (FI.getReturnInfo().isIndirect())
1862    --freeIntRegs;
1863
1864  // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
1865  // get assigned (in left-to-right order) for passing as follows...
1866  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
1867       it != ie; ++it) {
1868    unsigned neededInt, neededSSE;
1869    it->info = classifyArgumentType(it->type, neededInt, neededSSE);
1870
1871    // AMD64-ABI 3.2.3p3: If there are no registers available for any
1872    // eightbyte of an argument, the whole argument is passed on the
1873    // stack. If registers have already been assigned for some
1874    // eightbytes of such an argument, the assignments get reverted.
1875    if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
1876      freeIntRegs -= neededInt;
1877      freeSSERegs -= neededSSE;
1878    } else {
1879      it->info = getIndirectResult(it->type);
1880    }
1881  }
1882}
1883
1884static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
1885                                        QualType Ty,
1886                                        CodeGenFunction &CGF) {
1887  llvm::Value *overflow_arg_area_p =
1888    CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
1889  llvm::Value *overflow_arg_area =
1890    CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
1891
1892  // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
1893  // byte boundary if alignment needed by type exceeds 8 byte boundary.
1894  uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
1895  if (Align > 8) {
1896    // Note that we follow the ABI & gcc here, even though the type
1897    // could in theory have an alignment greater than 16. This case
1898    // shouldn't ever matter in practice.
1899
1900    // overflow_arg_area = (overflow_arg_area + 15) & ~15;
1901    llvm::Value *Offset =
1902      llvm::ConstantInt::get(CGF.Int32Ty, 15);
1903    overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
1904    llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
1905                                                    CGF.Int64Ty);
1906    llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, ~15LL);
1907    overflow_arg_area =
1908      CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
1909                                 overflow_arg_area->getType(),
1910                                 "overflow_arg_area.align");
1911  }
1912
1913  // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
1914  const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
1915  llvm::Value *Res =
1916    CGF.Builder.CreateBitCast(overflow_arg_area,
1917                              llvm::PointerType::getUnqual(LTy));
1918
1919  // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
1920  // l->overflow_arg_area + sizeof(type).
1921  // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
1922  // an 8 byte boundary.
1923
1924  uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
1925  llvm::Value *Offset =
1926      llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
1927  overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
1928                                            "overflow_arg_area.next");
1929  CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
1930
1931  // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
1932  return Res;
1933}
1934
1935llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1936                                      CodeGenFunction &CGF) const {
1937  llvm::LLVMContext &VMContext = CGF.getLLVMContext();
1938
1939  // Assume that va_list type is correct; should be pointer to LLVM type:
1940  // struct {
1941  //   i32 gp_offset;
1942  //   i32 fp_offset;
1943  //   i8* overflow_arg_area;
1944  //   i8* reg_save_area;
1945  // };
1946  unsigned neededInt, neededSSE;
1947
1948  Ty = CGF.getContext().getCanonicalType(Ty);
1949  ABIArgInfo AI = classifyArgumentType(Ty, neededInt, neededSSE);
1950
1951  // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
1952  // in the registers. If not go to step 7.
1953  if (!neededInt && !neededSSE)
1954    return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
1955
1956  // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
1957  // general purpose registers needed to pass type and num_fp to hold
1958  // the number of floating point registers needed.
1959
1960  // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
1961  // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
1962  // l->fp_offset > 304 - num_fp * 16 go to step 7.
1963  //
1964  // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
1965  // register save space).
1966
1967  llvm::Value *InRegs = 0;
1968  llvm::Value *gp_offset_p = 0, *gp_offset = 0;
1969  llvm::Value *fp_offset_p = 0, *fp_offset = 0;
1970  if (neededInt) {
1971    gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
1972    gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
1973    InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
1974    InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
1975  }
1976
1977  if (neededSSE) {
1978    fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
1979    fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
1980    llvm::Value *FitsInFP =
1981      llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
1982    FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
1983    InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
1984  }
1985
1986  llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
1987  llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
1988  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
1989  CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
1990
1991  // Emit code to load the value if it was passed in registers.
1992
1993  CGF.EmitBlock(InRegBlock);
1994
1995  // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
1996  // an offset of l->gp_offset and/or l->fp_offset. This may require
1997  // copying to a temporary location in case the parameter is passed
1998  // in different register classes or requires an alignment greater
1999  // than 8 for general purpose registers and 16 for XMM registers.
2000  //
2001  // FIXME: This really results in shameful code when we end up needing to
2002  // collect arguments from different places; often what should result in a
2003  // simple assembling of a structure from scattered addresses has many more
2004  // loads than necessary. Can we clean this up?
2005  const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2006  llvm::Value *RegAddr =
2007    CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
2008                           "reg_save_area");
2009  if (neededInt && neededSSE) {
2010    // FIXME: Cleanup.
2011    assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
2012    const llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
2013    llvm::Value *Tmp = CGF.CreateTempAlloca(ST);
2014    assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
2015    const llvm::Type *TyLo = ST->getElementType(0);
2016    const llvm::Type *TyHi = ST->getElementType(1);
2017    assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
2018           "Unexpected ABI info for mixed regs");
2019    const llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
2020    const llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
2021    llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2022    llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2023    llvm::Value *RegLoAddr = TyLo->isFloatingPointTy() ? FPAddr : GPAddr;
2024    llvm::Value *RegHiAddr = TyLo->isFloatingPointTy() ? GPAddr : FPAddr;
2025    llvm::Value *V =
2026      CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
2027    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2028    V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
2029    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2030
2031    RegAddr = CGF.Builder.CreateBitCast(Tmp,
2032                                        llvm::PointerType::getUnqual(LTy));
2033  } else if (neededInt) {
2034    RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2035    RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2036                                        llvm::PointerType::getUnqual(LTy));
2037  } else if (neededSSE == 1) {
2038    RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2039    RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2040                                        llvm::PointerType::getUnqual(LTy));
2041  } else {
2042    assert(neededSSE == 2 && "Invalid number of needed registers!");
2043    // SSE registers are spaced 16 bytes apart in the register save
2044    // area, we need to collect the two eightbytes together.
2045    llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2046    llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16);
2047    const llvm::Type *DoubleTy = llvm::Type::getDoubleTy(VMContext);
2048    const llvm::Type *DblPtrTy =
2049      llvm::PointerType::getUnqual(DoubleTy);
2050    const llvm::StructType *ST = llvm::StructType::get(VMContext, DoubleTy,
2051                                                       DoubleTy, NULL);
2052    llvm::Value *V, *Tmp = CGF.CreateTempAlloca(ST);
2053    V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
2054                                                         DblPtrTy));
2055    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2056    V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
2057                                                         DblPtrTy));
2058    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2059    RegAddr = CGF.Builder.CreateBitCast(Tmp,
2060                                        llvm::PointerType::getUnqual(LTy));
2061  }
2062
2063  // AMD64-ABI 3.5.7p5: Step 5. Set:
2064  // l->gp_offset = l->gp_offset + num_gp * 8
2065  // l->fp_offset = l->fp_offset + num_fp * 16.
2066  if (neededInt) {
2067    llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
2068    CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
2069                            gp_offset_p);
2070  }
2071  if (neededSSE) {
2072    llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
2073    CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
2074                            fp_offset_p);
2075  }
2076  CGF.EmitBranch(ContBlock);
2077
2078  // Emit code to load the value if it was passed in memory.
2079
2080  CGF.EmitBlock(InMemBlock);
2081  llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2082
2083  // Return the appropriate result.
2084
2085  CGF.EmitBlock(ContBlock);
2086  llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2,
2087                                                 "vaarg.addr");
2088  ResAddr->addIncoming(RegAddr, InRegBlock);
2089  ResAddr->addIncoming(MemAddr, InMemBlock);
2090  return ResAddr;
2091}
2092
2093ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty) const {
2094
2095  if (Ty->isVoidType())
2096    return ABIArgInfo::getIgnore();
2097
2098  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2099    Ty = EnumTy->getDecl()->getIntegerType();
2100
2101  uint64_t Size = getContext().getTypeSize(Ty);
2102
2103  if (const RecordType *RT = Ty->getAs<RecordType>()) {
2104    if (hasNonTrivialDestructorOrCopyConstructor(RT) ||
2105        RT->getDecl()->hasFlexibleArrayMember())
2106      return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2107
2108    // FIXME: mingw-w64-gcc emits 128-bit struct as i128
2109    if (Size == 128 &&
2110        getContext().Target.getTriple().getOS() == llvm::Triple::MinGW32)
2111      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2112                                                          Size));
2113
2114    // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
2115    // not 1, 2, 4, or 8 bytes, must be passed by reference."
2116    if (Size <= 64 &&
2117        (Size & (Size - 1)) == 0)
2118      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2119                                                          Size));
2120
2121    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2122  }
2123
2124  if (Ty->isPromotableIntegerType())
2125    return ABIArgInfo::getExtend();
2126
2127  return ABIArgInfo::getDirect();
2128}
2129
2130void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2131
2132  QualType RetTy = FI.getReturnType();
2133  FI.getReturnInfo() = classify(RetTy);
2134
2135  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2136       it != ie; ++it)
2137    it->info = classify(it->type);
2138}
2139
2140llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2141                                      CodeGenFunction &CGF) const {
2142  const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
2143  const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
2144
2145  CGBuilderTy &Builder = CGF.Builder;
2146  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
2147                                                       "ap");
2148  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2149  llvm::Type *PTy =
2150    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2151  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
2152
2153  uint64_t Offset =
2154    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8);
2155  llvm::Value *NextAddr =
2156    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
2157                      "ap.next");
2158  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2159
2160  return AddrTyped;
2161}
2162
2163// PowerPC-32
2164
2165namespace {
2166class PPC32TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
2167public:
2168  PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
2169
2170  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2171    // This is recovered from gcc output.
2172    return 1; // r1 is the dedicated stack pointer
2173  }
2174
2175  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2176                               llvm::Value *Address) const;
2177};
2178
2179}
2180
2181bool
2182PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2183                                                llvm::Value *Address) const {
2184  // This is calculated from the LLVM and GCC tables and verified
2185  // against gcc output.  AFAIK all ABIs use the same encoding.
2186
2187  CodeGen::CGBuilderTy &Builder = CGF.Builder;
2188  llvm::LLVMContext &Context = CGF.getLLVMContext();
2189
2190  const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
2191  llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2192  llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
2193  llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
2194
2195  // 0-31: r0-31, the 4-byte general-purpose registers
2196  AssignToArrayRange(Builder, Address, Four8, 0, 31);
2197
2198  // 32-63: fp0-31, the 8-byte floating-point registers
2199  AssignToArrayRange(Builder, Address, Eight8, 32, 63);
2200
2201  // 64-76 are various 4-byte special-purpose registers:
2202  // 64: mq
2203  // 65: lr
2204  // 66: ctr
2205  // 67: ap
2206  // 68-75 cr0-7
2207  // 76: xer
2208  AssignToArrayRange(Builder, Address, Four8, 64, 76);
2209
2210  // 77-108: v0-31, the 16-byte vector registers
2211  AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
2212
2213  // 109: vrsave
2214  // 110: vscr
2215  // 111: spe_acc
2216  // 112: spefscr
2217  // 113: sfp
2218  AssignToArrayRange(Builder, Address, Four8, 109, 113);
2219
2220  return false;
2221}
2222
2223
2224//===----------------------------------------------------------------------===//
2225// ARM ABI Implementation
2226//===----------------------------------------------------------------------===//
2227
2228namespace {
2229
2230class ARMABIInfo : public ABIInfo {
2231public:
2232  enum ABIKind {
2233    APCS = 0,
2234    AAPCS = 1,
2235    AAPCS_VFP
2236  };
2237
2238private:
2239  ABIKind Kind;
2240
2241public:
2242  ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) {}
2243
2244private:
2245  ABIKind getABIKind() const { return Kind; }
2246
2247  ABIArgInfo classifyReturnType(QualType RetTy) const;
2248  ABIArgInfo classifyArgumentType(QualType RetTy) const;
2249
2250  virtual void computeInfo(CGFunctionInfo &FI) const;
2251
2252  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2253                                 CodeGenFunction &CGF) const;
2254};
2255
2256class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
2257public:
2258  ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
2259    :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
2260
2261  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2262    return 13;
2263  }
2264};
2265
2266}
2267
2268void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
2269  FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2270  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2271       it != ie; ++it)
2272    it->info = classifyArgumentType(it->type);
2273
2274  // Always honor user-specified calling convention.
2275  if (FI.getCallingConvention() != llvm::CallingConv::C)
2276    return;
2277
2278  // Calling convention as default by an ABI.
2279  llvm::CallingConv::ID DefaultCC;
2280  llvm::StringRef Env = getContext().Target.getTriple().getEnvironmentName();
2281  if (Env == "gnueabi" || Env == "eabi")
2282    DefaultCC = llvm::CallingConv::ARM_AAPCS;
2283  else
2284    DefaultCC = llvm::CallingConv::ARM_APCS;
2285
2286  // If user did not ask for specific calling convention explicitly (e.g. via
2287  // pcs attribute), set effective calling convention if it's different than ABI
2288  // default.
2289  switch (getABIKind()) {
2290  case APCS:
2291    if (DefaultCC != llvm::CallingConv::ARM_APCS)
2292      FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_APCS);
2293    break;
2294  case AAPCS:
2295    if (DefaultCC != llvm::CallingConv::ARM_AAPCS)
2296      FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS);
2297    break;
2298  case AAPCS_VFP:
2299    if (DefaultCC != llvm::CallingConv::ARM_AAPCS_VFP)
2300      FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS_VFP);
2301    break;
2302  }
2303}
2304
2305ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty) const {
2306  if (!isAggregateTypeForABI(Ty)) {
2307    // Treat an enum type as its underlying type.
2308    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2309      Ty = EnumTy->getDecl()->getIntegerType();
2310
2311    return (Ty->isPromotableIntegerType() ?
2312            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2313  }
2314
2315  // Ignore empty records.
2316  if (isEmptyRecord(getContext(), Ty, true))
2317    return ABIArgInfo::getIgnore();
2318
2319  // Structures with either a non-trivial destructor or a non-trivial
2320  // copy constructor are always indirect.
2321  if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
2322    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2323
2324  // Otherwise, pass by coercing to a structure of the appropriate size.
2325  //
2326  // FIXME: This is kind of nasty... but there isn't much choice because the ARM
2327  // backend doesn't support byval.
2328  // FIXME: This doesn't handle alignment > 64 bits.
2329  const llvm::Type* ElemTy;
2330  unsigned SizeRegs;
2331  if (getContext().getTypeAlign(Ty) > 32) {
2332    ElemTy = llvm::Type::getInt64Ty(getVMContext());
2333    SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
2334  } else {
2335    ElemTy = llvm::Type::getInt32Ty(getVMContext());
2336    SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
2337  }
2338  std::vector<const llvm::Type*> LLVMFields;
2339  LLVMFields.push_back(llvm::ArrayType::get(ElemTy, SizeRegs));
2340  const llvm::Type* STy = llvm::StructType::get(getVMContext(), LLVMFields,
2341                                                true);
2342  return ABIArgInfo::getDirect(STy);
2343}
2344
2345static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
2346                              llvm::LLVMContext &VMContext) {
2347  // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
2348  // is called integer-like if its size is less than or equal to one word, and
2349  // the offset of each of its addressable sub-fields is zero.
2350
2351  uint64_t Size = Context.getTypeSize(Ty);
2352
2353  // Check that the type fits in a word.
2354  if (Size > 32)
2355    return false;
2356
2357  // FIXME: Handle vector types!
2358  if (Ty->isVectorType())
2359    return false;
2360
2361  // Float types are never treated as "integer like".
2362  if (Ty->isRealFloatingType())
2363    return false;
2364
2365  // If this is a builtin or pointer type then it is ok.
2366  if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
2367    return true;
2368
2369  // Small complex integer types are "integer like".
2370  if (const ComplexType *CT = Ty->getAs<ComplexType>())
2371    return isIntegerLikeType(CT->getElementType(), Context, VMContext);
2372
2373  // Single element and zero sized arrays should be allowed, by the definition
2374  // above, but they are not.
2375
2376  // Otherwise, it must be a record type.
2377  const RecordType *RT = Ty->getAs<RecordType>();
2378  if (!RT) return false;
2379
2380  // Ignore records with flexible arrays.
2381  const RecordDecl *RD = RT->getDecl();
2382  if (RD->hasFlexibleArrayMember())
2383    return false;
2384
2385  // Check that all sub-fields are at offset 0, and are themselves "integer
2386  // like".
2387  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
2388
2389  bool HadField = false;
2390  unsigned idx = 0;
2391  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2392       i != e; ++i, ++idx) {
2393    const FieldDecl *FD = *i;
2394
2395    // Bit-fields are not addressable, we only need to verify they are "integer
2396    // like". We still have to disallow a subsequent non-bitfield, for example:
2397    //   struct { int : 0; int x }
2398    // is non-integer like according to gcc.
2399    if (FD->isBitField()) {
2400      if (!RD->isUnion())
2401        HadField = true;
2402
2403      if (!isIntegerLikeType(FD->getType(), Context, VMContext))
2404        return false;
2405
2406      continue;
2407    }
2408
2409    // Check if this field is at offset 0.
2410    if (Layout.getFieldOffset(idx) != 0)
2411      return false;
2412
2413    if (!isIntegerLikeType(FD->getType(), Context, VMContext))
2414      return false;
2415
2416    // Only allow at most one field in a structure. This doesn't match the
2417    // wording above, but follows gcc in situations with a field following an
2418    // empty structure.
2419    if (!RD->isUnion()) {
2420      if (HadField)
2421        return false;
2422
2423      HadField = true;
2424    }
2425  }
2426
2427  return true;
2428}
2429
2430ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy) const {
2431  if (RetTy->isVoidType())
2432    return ABIArgInfo::getIgnore();
2433
2434  // Large vector types should be returned via memory.
2435  if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
2436    return ABIArgInfo::getIndirect(0);
2437
2438  if (!isAggregateTypeForABI(RetTy)) {
2439    // Treat an enum type as its underlying type.
2440    if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2441      RetTy = EnumTy->getDecl()->getIntegerType();
2442
2443    return (RetTy->isPromotableIntegerType() ?
2444            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2445  }
2446
2447  // Structures with either a non-trivial destructor or a non-trivial
2448  // copy constructor are always indirect.
2449  if (isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy))
2450    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2451
2452  // Are we following APCS?
2453  if (getABIKind() == APCS) {
2454    if (isEmptyRecord(getContext(), RetTy, false))
2455      return ABIArgInfo::getIgnore();
2456
2457    // Complex types are all returned as packed integers.
2458    //
2459    // FIXME: Consider using 2 x vector types if the back end handles them
2460    // correctly.
2461    if (RetTy->isAnyComplexType())
2462      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2463                                              getContext().getTypeSize(RetTy)));
2464
2465    // Integer like structures are returned in r0.
2466    if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
2467      // Return in the smallest viable integer type.
2468      uint64_t Size = getContext().getTypeSize(RetTy);
2469      if (Size <= 8)
2470        return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
2471      if (Size <= 16)
2472        return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
2473      return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
2474    }
2475
2476    // Otherwise return in memory.
2477    return ABIArgInfo::getIndirect(0);
2478  }
2479
2480  // Otherwise this is an AAPCS variant.
2481
2482  if (isEmptyRecord(getContext(), RetTy, true))
2483    return ABIArgInfo::getIgnore();
2484
2485  // Aggregates <= 4 bytes are returned in r0; other aggregates
2486  // are returned indirectly.
2487  uint64_t Size = getContext().getTypeSize(RetTy);
2488  if (Size <= 32) {
2489    // Return in the smallest viable integer type.
2490    if (Size <= 8)
2491      return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
2492    if (Size <= 16)
2493      return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
2494    return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
2495  }
2496
2497  return ABIArgInfo::getIndirect(0);
2498}
2499
2500llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2501                                   CodeGenFunction &CGF) const {
2502  // FIXME: Need to handle alignment
2503  const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
2504  const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
2505
2506  CGBuilderTy &Builder = CGF.Builder;
2507  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
2508                                                       "ap");
2509  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2510  llvm::Type *PTy =
2511    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2512  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
2513
2514  uint64_t Offset =
2515    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
2516  llvm::Value *NextAddr =
2517    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
2518                      "ap.next");
2519  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2520
2521  return AddrTyped;
2522}
2523
2524//===----------------------------------------------------------------------===//
2525// SystemZ ABI Implementation
2526//===----------------------------------------------------------------------===//
2527
2528namespace {
2529
2530class SystemZABIInfo : public ABIInfo {
2531public:
2532  SystemZABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
2533
2534  bool isPromotableIntegerType(QualType Ty) const;
2535
2536  ABIArgInfo classifyReturnType(QualType RetTy) const;
2537  ABIArgInfo classifyArgumentType(QualType RetTy) const;
2538
2539  virtual void computeInfo(CGFunctionInfo &FI) const {
2540    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2541    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2542         it != ie; ++it)
2543      it->info = classifyArgumentType(it->type);
2544  }
2545
2546  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2547                                 CodeGenFunction &CGF) const;
2548};
2549
2550class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
2551public:
2552  SystemZTargetCodeGenInfo(CodeGenTypes &CGT)
2553    : TargetCodeGenInfo(new SystemZABIInfo(CGT)) {}
2554};
2555
2556}
2557
2558bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
2559  // SystemZ ABI requires all 8, 16 and 32 bit quantities to be extended.
2560  if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
2561    switch (BT->getKind()) {
2562    case BuiltinType::Bool:
2563    case BuiltinType::Char_S:
2564    case BuiltinType::Char_U:
2565    case BuiltinType::SChar:
2566    case BuiltinType::UChar:
2567    case BuiltinType::Short:
2568    case BuiltinType::UShort:
2569    case BuiltinType::Int:
2570    case BuiltinType::UInt:
2571      return true;
2572    default:
2573      return false;
2574    }
2575  return false;
2576}
2577
2578llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2579                                       CodeGenFunction &CGF) const {
2580  // FIXME: Implement
2581  return 0;
2582}
2583
2584
2585ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
2586  if (RetTy->isVoidType())
2587    return ABIArgInfo::getIgnore();
2588  if (isAggregateTypeForABI(RetTy))
2589    return ABIArgInfo::getIndirect(0);
2590
2591  return (isPromotableIntegerType(RetTy) ?
2592          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2593}
2594
2595ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
2596  if (isAggregateTypeForABI(Ty))
2597    return ABIArgInfo::getIndirect(0);
2598
2599  return (isPromotableIntegerType(Ty) ?
2600          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2601}
2602
2603//===----------------------------------------------------------------------===//
2604// MBlaze ABI Implementation
2605//===----------------------------------------------------------------------===//
2606
2607namespace {
2608
2609class MBlazeABIInfo : public ABIInfo {
2610public:
2611  MBlazeABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
2612
2613  bool isPromotableIntegerType(QualType Ty) const;
2614
2615  ABIArgInfo classifyReturnType(QualType RetTy) const;
2616  ABIArgInfo classifyArgumentType(QualType RetTy) const;
2617
2618  virtual void computeInfo(CGFunctionInfo &FI) const {
2619    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2620    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2621         it != ie; ++it)
2622      it->info = classifyArgumentType(it->type);
2623  }
2624
2625  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2626                                 CodeGenFunction &CGF) const;
2627};
2628
2629class MBlazeTargetCodeGenInfo : public TargetCodeGenInfo {
2630public:
2631  MBlazeTargetCodeGenInfo(CodeGenTypes &CGT)
2632    : TargetCodeGenInfo(new MBlazeABIInfo(CGT)) {}
2633  void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2634                           CodeGen::CodeGenModule &M) const;
2635};
2636
2637}
2638
2639bool MBlazeABIInfo::isPromotableIntegerType(QualType Ty) const {
2640  // MBlaze ABI requires all 8 and 16 bit quantities to be extended.
2641  if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
2642    switch (BT->getKind()) {
2643    case BuiltinType::Bool:
2644    case BuiltinType::Char_S:
2645    case BuiltinType::Char_U:
2646    case BuiltinType::SChar:
2647    case BuiltinType::UChar:
2648    case BuiltinType::Short:
2649    case BuiltinType::UShort:
2650      return true;
2651    default:
2652      return false;
2653    }
2654  return false;
2655}
2656
2657llvm::Value *MBlazeABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2658                                      CodeGenFunction &CGF) const {
2659  // FIXME: Implement
2660  return 0;
2661}
2662
2663
2664ABIArgInfo MBlazeABIInfo::classifyReturnType(QualType RetTy) const {
2665  if (RetTy->isVoidType())
2666    return ABIArgInfo::getIgnore();
2667  if (isAggregateTypeForABI(RetTy))
2668    return ABIArgInfo::getIndirect(0);
2669
2670  return (isPromotableIntegerType(RetTy) ?
2671          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2672}
2673
2674ABIArgInfo MBlazeABIInfo::classifyArgumentType(QualType Ty) const {
2675  if (isAggregateTypeForABI(Ty))
2676    return ABIArgInfo::getIndirect(0);
2677
2678  return (isPromotableIntegerType(Ty) ?
2679          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2680}
2681
2682void MBlazeTargetCodeGenInfo::SetTargetAttributes(const Decl *D,
2683                                                  llvm::GlobalValue *GV,
2684                                                  CodeGen::CodeGenModule &M)
2685                                                  const {
2686  const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
2687  if (!FD) return;
2688
2689  llvm::CallingConv::ID CC = llvm::CallingConv::C;
2690  if (FD->hasAttr<MBlazeInterruptHandlerAttr>())
2691    CC = llvm::CallingConv::MBLAZE_INTR;
2692  else if (FD->hasAttr<MBlazeSaveVolatilesAttr>())
2693    CC = llvm::CallingConv::MBLAZE_SVOL;
2694
2695  if (CC != llvm::CallingConv::C) {
2696      // Handle 'interrupt_handler' attribute:
2697      llvm::Function *F = cast<llvm::Function>(GV);
2698
2699      // Step 1: Set ISR calling convention.
2700      F->setCallingConv(CC);
2701
2702      // Step 2: Add attributes goodness.
2703      F->addFnAttr(llvm::Attribute::NoInline);
2704  }
2705
2706  // Step 3: Emit _interrupt_handler alias.
2707  if (CC == llvm::CallingConv::MBLAZE_INTR)
2708    new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
2709                          "_interrupt_handler", GV, &M.getModule());
2710}
2711
2712
2713//===----------------------------------------------------------------------===//
2714// MSP430 ABI Implementation
2715//===----------------------------------------------------------------------===//
2716
2717namespace {
2718
2719class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
2720public:
2721  MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
2722    : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
2723  void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2724                           CodeGen::CodeGenModule &M) const;
2725};
2726
2727}
2728
2729void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
2730                                                  llvm::GlobalValue *GV,
2731                                             CodeGen::CodeGenModule &M) const {
2732  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2733    if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
2734      // Handle 'interrupt' attribute:
2735      llvm::Function *F = cast<llvm::Function>(GV);
2736
2737      // Step 1: Set ISR calling convention.
2738      F->setCallingConv(llvm::CallingConv::MSP430_INTR);
2739
2740      // Step 2: Add attributes goodness.
2741      F->addFnAttr(llvm::Attribute::NoInline);
2742
2743      // Step 3: Emit ISR vector alias.
2744      unsigned Num = attr->getNumber() + 0xffe0;
2745      new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
2746                            "vector_" + llvm::Twine::utohexstr(Num),
2747                            GV, &M.getModule());
2748    }
2749  }
2750}
2751
2752//===----------------------------------------------------------------------===//
2753// MIPS ABI Implementation.  This works for both little-endian and
2754// big-endian variants.
2755//===----------------------------------------------------------------------===//
2756
2757namespace {
2758class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
2759public:
2760  MIPSTargetCodeGenInfo(CodeGenTypes &CGT)
2761    : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
2762
2763  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
2764    return 29;
2765  }
2766
2767  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2768                               llvm::Value *Address) const;
2769};
2770}
2771
2772bool
2773MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2774                                               llvm::Value *Address) const {
2775  // This information comes from gcc's implementation, which seems to
2776  // as canonical as it gets.
2777
2778  CodeGen::CGBuilderTy &Builder = CGF.Builder;
2779  llvm::LLVMContext &Context = CGF.getLLVMContext();
2780
2781  // Everything on MIPS is 4 bytes.  Double-precision FP registers
2782  // are aliased to pairs of single-precision FP registers.
2783  const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
2784  llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2785
2786  // 0-31 are the general purpose registers, $0 - $31.
2787  // 32-63 are the floating-point registers, $f0 - $f31.
2788  // 64 and 65 are the multiply/divide registers, $hi and $lo.
2789  // 66 is the (notional, I think) register for signal-handler return.
2790  AssignToArrayRange(Builder, Address, Four8, 0, 65);
2791
2792  // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
2793  // They are one bit wide and ignored here.
2794
2795  // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
2796  // (coprocessor 1 is the FP unit)
2797  // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
2798  // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
2799  // 176-181 are the DSP accumulator registers.
2800  AssignToArrayRange(Builder, Address, Four8, 80, 181);
2801
2802  return false;
2803}
2804
2805
2806const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
2807  if (TheTargetCodeGenInfo)
2808    return *TheTargetCodeGenInfo;
2809
2810  // For now we just cache the TargetCodeGenInfo in CodeGenModule and don't
2811  // free it.
2812
2813  const llvm::Triple &Triple = getContext().Target.getTriple();
2814  switch (Triple.getArch()) {
2815  default:
2816    return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types));
2817
2818  case llvm::Triple::mips:
2819  case llvm::Triple::mipsel:
2820    return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types));
2821
2822  case llvm::Triple::arm:
2823  case llvm::Triple::thumb:
2824    {
2825      ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
2826
2827      if (strcmp(getContext().Target.getABI(), "apcs-gnu") == 0)
2828        Kind = ARMABIInfo::APCS;
2829      else if (CodeGenOpts.FloatABI == "hard")
2830        Kind = ARMABIInfo::AAPCS_VFP;
2831
2832      return *(TheTargetCodeGenInfo = new ARMTargetCodeGenInfo(Types, Kind));
2833    }
2834
2835  case llvm::Triple::ppc:
2836    return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types));
2837
2838  case llvm::Triple::systemz:
2839    return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types));
2840
2841  case llvm::Triple::mblaze:
2842    return *(TheTargetCodeGenInfo = new MBlazeTargetCodeGenInfo(Types));
2843
2844  case llvm::Triple::msp430:
2845    return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types));
2846
2847  case llvm::Triple::x86:
2848    switch (Triple.getOS()) {
2849    case llvm::Triple::Darwin:
2850      return *(TheTargetCodeGenInfo =
2851               new X86_32TargetCodeGenInfo(Types, true, true));
2852    case llvm::Triple::Cygwin:
2853    case llvm::Triple::MinGW32:
2854    case llvm::Triple::AuroraUX:
2855    case llvm::Triple::DragonFly:
2856    case llvm::Triple::FreeBSD:
2857    case llvm::Triple::OpenBSD:
2858    case llvm::Triple::NetBSD:
2859      return *(TheTargetCodeGenInfo =
2860               new X86_32TargetCodeGenInfo(Types, false, true));
2861
2862    default:
2863      return *(TheTargetCodeGenInfo =
2864               new X86_32TargetCodeGenInfo(Types, false, false));
2865    }
2866
2867  case llvm::Triple::x86_64:
2868    switch (Triple.getOS()) {
2869    case llvm::Triple::Win32:
2870    case llvm::Triple::MinGW32:
2871    case llvm::Triple::Cygwin:
2872      return *(TheTargetCodeGenInfo = new WinX86_64TargetCodeGenInfo(Types));
2873    default:
2874      return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo(Types));
2875    }
2876  }
2877}
2878