ParseDecl.cpp revision 338d7f7362d18fa9c39c6bb5282b4e20574a9309
1//===--- ParseDecl.cpp - Declaration Parsing ------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the Declaration portions of the Parser interfaces.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Parse/Parser.h"
15#include "clang/Parse/ParseDiagnostic.h"
16#include "clang/Basic/OpenCL.h"
17#include "clang/Sema/Scope.h"
18#include "clang/Sema/ParsedTemplate.h"
19#include "clang/Sema/PrettyDeclStackTrace.h"
20#include "RAIIObjectsForParser.h"
21#include "llvm/ADT/SmallSet.h"
22using namespace clang;
23
24//===----------------------------------------------------------------------===//
25// C99 6.7: Declarations.
26//===----------------------------------------------------------------------===//
27
28/// ParseTypeName
29///       type-name: [C99 6.7.6]
30///         specifier-qualifier-list abstract-declarator[opt]
31///
32/// Called type-id in C++.
33TypeResult Parser::ParseTypeName(SourceRange *Range,
34                                 Declarator::TheContext Context) {
35  // Parse the common declaration-specifiers piece.
36  DeclSpec DS(AttrFactory);
37  ParseSpecifierQualifierList(DS);
38
39  // Parse the abstract-declarator, if present.
40  Declarator DeclaratorInfo(DS, Context);
41  ParseDeclarator(DeclaratorInfo);
42  if (Range)
43    *Range = DeclaratorInfo.getSourceRange();
44
45  if (DeclaratorInfo.isInvalidType())
46    return true;
47
48  return Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
49}
50
51/// ParseGNUAttributes - Parse a non-empty attributes list.
52///
53/// [GNU] attributes:
54///         attribute
55///         attributes attribute
56///
57/// [GNU]  attribute:
58///          '__attribute__' '(' '(' attribute-list ')' ')'
59///
60/// [GNU]  attribute-list:
61///          attrib
62///          attribute_list ',' attrib
63///
64/// [GNU]  attrib:
65///          empty
66///          attrib-name
67///          attrib-name '(' identifier ')'
68///          attrib-name '(' identifier ',' nonempty-expr-list ')'
69///          attrib-name '(' argument-expression-list [C99 6.5.2] ')'
70///
71/// [GNU]  attrib-name:
72///          identifier
73///          typespec
74///          typequal
75///          storageclass
76///
77/// FIXME: The GCC grammar/code for this construct implies we need two
78/// token lookahead. Comment from gcc: "If they start with an identifier
79/// which is followed by a comma or close parenthesis, then the arguments
80/// start with that identifier; otherwise they are an expression list."
81///
82/// At the moment, I am not doing 2 token lookahead. I am also unaware of
83/// any attributes that don't work (based on my limited testing). Most
84/// attributes are very simple in practice. Until we find a bug, I don't see
85/// a pressing need to implement the 2 token lookahead.
86
87void Parser::ParseGNUAttributes(ParsedAttributes &attrs,
88                                SourceLocation *endLoc) {
89  assert(Tok.is(tok::kw___attribute) && "Not a GNU attribute list!");
90
91  while (Tok.is(tok::kw___attribute)) {
92    ConsumeToken();
93    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
94                         "attribute")) {
95      SkipUntil(tok::r_paren, true); // skip until ) or ;
96      return;
97    }
98    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "(")) {
99      SkipUntil(tok::r_paren, true); // skip until ) or ;
100      return;
101    }
102    // Parse the attribute-list. e.g. __attribute__(( weak, alias("__f") ))
103    while (Tok.is(tok::identifier) || isDeclarationSpecifier() ||
104           Tok.is(tok::comma)) {
105
106      if (Tok.is(tok::comma)) {
107        // allows for empty/non-empty attributes. ((__vector_size__(16),,,,))
108        ConsumeToken();
109        continue;
110      }
111      // we have an identifier or declaration specifier (const, int, etc.)
112      IdentifierInfo *AttrName = Tok.getIdentifierInfo();
113      SourceLocation AttrNameLoc = ConsumeToken();
114
115      // Availability attributes have their own grammar.
116      if (AttrName->isStr("availability"))
117        ParseAvailabilityAttribute(*AttrName, AttrNameLoc, attrs, endLoc);
118      // check if we have a "parameterized" attribute
119      else if (Tok.is(tok::l_paren)) {
120        ConsumeParen(); // ignore the left paren loc for now
121
122        if (Tok.is(tok::identifier)) {
123          IdentifierInfo *ParmName = Tok.getIdentifierInfo();
124          SourceLocation ParmLoc = ConsumeToken();
125
126          if (Tok.is(tok::r_paren)) {
127            // __attribute__(( mode(byte) ))
128            ConsumeParen(); // ignore the right paren loc for now
129            attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc,
130                         ParmName, ParmLoc, 0, 0);
131          } else if (Tok.is(tok::comma)) {
132            ConsumeToken();
133            // __attribute__(( format(printf, 1, 2) ))
134            ExprVector ArgExprs(Actions);
135            bool ArgExprsOk = true;
136
137            // now parse the non-empty comma separated list of expressions
138            while (1) {
139              ExprResult ArgExpr(ParseAssignmentExpression());
140              if (ArgExpr.isInvalid()) {
141                ArgExprsOk = false;
142                SkipUntil(tok::r_paren);
143                break;
144              } else {
145                ArgExprs.push_back(ArgExpr.release());
146              }
147              if (Tok.isNot(tok::comma))
148                break;
149              ConsumeToken(); // Eat the comma, move to the next argument
150            }
151            if (ArgExprsOk && Tok.is(tok::r_paren)) {
152              ConsumeParen(); // ignore the right paren loc for now
153              attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc,
154                           ParmName, ParmLoc, ArgExprs.take(), ArgExprs.size());
155            }
156          }
157        } else { // not an identifier
158          switch (Tok.getKind()) {
159          case tok::r_paren:
160          // parse a possibly empty comma separated list of expressions
161            // __attribute__(( nonnull() ))
162            ConsumeParen(); // ignore the right paren loc for now
163            attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc,
164                         0, SourceLocation(), 0, 0);
165            break;
166          case tok::kw_char:
167          case tok::kw_wchar_t:
168          case tok::kw_char16_t:
169          case tok::kw_char32_t:
170          case tok::kw_bool:
171          case tok::kw_short:
172          case tok::kw_int:
173          case tok::kw_long:
174          case tok::kw___int64:
175          case tok::kw_signed:
176          case tok::kw_unsigned:
177          case tok::kw_float:
178          case tok::kw_double:
179          case tok::kw_void:
180          case tok::kw_typeof: {
181            AttributeList *attr
182              = attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc,
183                             0, SourceLocation(), 0, 0);
184            if (attr->getKind() == AttributeList::AT_IBOutletCollection)
185              Diag(Tok, diag::err_iboutletcollection_builtintype);
186            // If it's a builtin type name, eat it and expect a rparen
187            // __attribute__(( vec_type_hint(char) ))
188            ConsumeToken();
189            if (Tok.is(tok::r_paren))
190              ConsumeParen();
191            break;
192          }
193          default:
194            // __attribute__(( aligned(16) ))
195            ExprVector ArgExprs(Actions);
196            bool ArgExprsOk = true;
197
198            // now parse the list of expressions
199            while (1) {
200              ExprResult ArgExpr(ParseAssignmentExpression());
201              if (ArgExpr.isInvalid()) {
202                ArgExprsOk = false;
203                SkipUntil(tok::r_paren);
204                break;
205              } else {
206                ArgExprs.push_back(ArgExpr.release());
207              }
208              if (Tok.isNot(tok::comma))
209                break;
210              ConsumeToken(); // Eat the comma, move to the next argument
211            }
212            // Match the ')'.
213            if (ArgExprsOk && Tok.is(tok::r_paren)) {
214              ConsumeParen(); // ignore the right paren loc for now
215              attrs.addNew(AttrName, AttrNameLoc, 0,
216                           AttrNameLoc, 0, SourceLocation(),
217                           ArgExprs.take(), ArgExprs.size());
218            }
219            break;
220          }
221        }
222      } else {
223        attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc,
224                     0, SourceLocation(), 0, 0);
225      }
226    }
227    if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
228      SkipUntil(tok::r_paren, false);
229    SourceLocation Loc = Tok.getLocation();
230    if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen)) {
231      SkipUntil(tok::r_paren, false);
232    }
233    if (endLoc)
234      *endLoc = Loc;
235  }
236}
237
238/// ParseMicrosoftDeclSpec - Parse an __declspec construct
239///
240/// [MS] decl-specifier:
241///             __declspec ( extended-decl-modifier-seq )
242///
243/// [MS] extended-decl-modifier-seq:
244///             extended-decl-modifier[opt]
245///             extended-decl-modifier extended-decl-modifier-seq
246
247void Parser::ParseMicrosoftDeclSpec(ParsedAttributes &attrs) {
248  assert(Tok.is(tok::kw___declspec) && "Not a declspec!");
249
250  ConsumeToken();
251  if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
252                       "declspec")) {
253    SkipUntil(tok::r_paren, true); // skip until ) or ;
254    return;
255  }
256  while (Tok.getIdentifierInfo()) {
257    IdentifierInfo *AttrName = Tok.getIdentifierInfo();
258    SourceLocation AttrNameLoc = ConsumeToken();
259    if (Tok.is(tok::l_paren)) {
260      ConsumeParen();
261      // FIXME: This doesn't parse __declspec(property(get=get_func_name))
262      // correctly.
263      ExprResult ArgExpr(ParseAssignmentExpression());
264      if (!ArgExpr.isInvalid()) {
265        Expr *ExprList = ArgExpr.take();
266        attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc, 0,
267                     SourceLocation(), &ExprList, 1, true);
268      }
269      if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
270        SkipUntil(tok::r_paren, false);
271    } else {
272      attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc,
273                   0, SourceLocation(), 0, 0, true);
274    }
275  }
276  if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
277    SkipUntil(tok::r_paren, false);
278  return;
279}
280
281void Parser::ParseMicrosoftTypeAttributes(ParsedAttributes &attrs) {
282  // Treat these like attributes
283  // FIXME: Allow Sema to distinguish between these and real attributes!
284  while (Tok.is(tok::kw___fastcall) || Tok.is(tok::kw___stdcall) ||
285         Tok.is(tok::kw___thiscall) || Tok.is(tok::kw___cdecl)   ||
286         Tok.is(tok::kw___ptr64) || Tok.is(tok::kw___w64)) {
287    IdentifierInfo *AttrName = Tok.getIdentifierInfo();
288    SourceLocation AttrNameLoc = ConsumeToken();
289    if (Tok.is(tok::kw___ptr64) || Tok.is(tok::kw___w64))
290      // FIXME: Support these properly!
291      continue;
292    attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc, 0,
293                 SourceLocation(), 0, 0, true);
294  }
295}
296
297void Parser::ParseBorlandTypeAttributes(ParsedAttributes &attrs) {
298  // Treat these like attributes
299  while (Tok.is(tok::kw___pascal)) {
300    IdentifierInfo *AttrName = Tok.getIdentifierInfo();
301    SourceLocation AttrNameLoc = ConsumeToken();
302    attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc, 0,
303                 SourceLocation(), 0, 0, true);
304  }
305}
306
307void Parser::ParseOpenCLAttributes(ParsedAttributes &attrs) {
308  // Treat these like attributes
309  while (Tok.is(tok::kw___kernel)) {
310    SourceLocation AttrNameLoc = ConsumeToken();
311    attrs.addNew(PP.getIdentifierInfo("opencl_kernel_function"),
312                 AttrNameLoc, 0, AttrNameLoc, 0,
313                 SourceLocation(), 0, 0, false);
314  }
315}
316
317void Parser::ParseOpenCLQualifiers(DeclSpec &DS) {
318  SourceLocation Loc = Tok.getLocation();
319  switch(Tok.getKind()) {
320    // OpenCL qualifiers:
321    case tok::kw___private:
322    case tok::kw_private:
323      DS.getAttributes().addNewInteger(
324          Actions.getASTContext(),
325          PP.getIdentifierInfo("address_space"), Loc, 0);
326      break;
327
328    case tok::kw___global:
329      DS.getAttributes().addNewInteger(
330          Actions.getASTContext(),
331          PP.getIdentifierInfo("address_space"), Loc, LangAS::opencl_global);
332      break;
333
334    case tok::kw___local:
335      DS.getAttributes().addNewInteger(
336          Actions.getASTContext(),
337          PP.getIdentifierInfo("address_space"), Loc, LangAS::opencl_local);
338      break;
339
340    case tok::kw___constant:
341      DS.getAttributes().addNewInteger(
342          Actions.getASTContext(),
343          PP.getIdentifierInfo("address_space"), Loc, LangAS::opencl_constant);
344      break;
345
346    case tok::kw___read_only:
347      DS.getAttributes().addNewInteger(
348          Actions.getASTContext(),
349          PP.getIdentifierInfo("opencl_image_access"), Loc, CLIA_read_only);
350      break;
351
352    case tok::kw___write_only:
353      DS.getAttributes().addNewInteger(
354          Actions.getASTContext(),
355          PP.getIdentifierInfo("opencl_image_access"), Loc, CLIA_write_only);
356      break;
357
358    case tok::kw___read_write:
359      DS.getAttributes().addNewInteger(
360          Actions.getASTContext(),
361          PP.getIdentifierInfo("opencl_image_access"), Loc, CLIA_read_write);
362      break;
363    default: break;
364  }
365}
366
367/// \brief Parse a version number.
368///
369/// version:
370///   simple-integer
371///   simple-integer ',' simple-integer
372///   simple-integer ',' simple-integer ',' simple-integer
373VersionTuple Parser::ParseVersionTuple(SourceRange &Range) {
374  Range = Tok.getLocation();
375
376  if (!Tok.is(tok::numeric_constant)) {
377    Diag(Tok, diag::err_expected_version);
378    SkipUntil(tok::comma, tok::r_paren, true, true, true);
379    return VersionTuple();
380  }
381
382  // Parse the major (and possibly minor and subminor) versions, which
383  // are stored in the numeric constant. We utilize a quirk of the
384  // lexer, which is that it handles something like 1.2.3 as a single
385  // numeric constant, rather than two separate tokens.
386  llvm::SmallString<512> Buffer;
387  Buffer.resize(Tok.getLength()+1);
388  const char *ThisTokBegin = &Buffer[0];
389
390  // Get the spelling of the token, which eliminates trigraphs, etc.
391  bool Invalid = false;
392  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid);
393  if (Invalid)
394    return VersionTuple();
395
396  // Parse the major version.
397  unsigned AfterMajor = 0;
398  unsigned Major = 0;
399  while (AfterMajor < ActualLength && isdigit(ThisTokBegin[AfterMajor])) {
400    Major = Major * 10 + ThisTokBegin[AfterMajor] - '0';
401    ++AfterMajor;
402  }
403
404  if (AfterMajor == 0) {
405    Diag(Tok, diag::err_expected_version);
406    SkipUntil(tok::comma, tok::r_paren, true, true, true);
407    return VersionTuple();
408  }
409
410  if (AfterMajor == ActualLength) {
411    ConsumeToken();
412
413    // We only had a single version component.
414    if (Major == 0) {
415      Diag(Tok, diag::err_zero_version);
416      return VersionTuple();
417    }
418
419    return VersionTuple(Major);
420  }
421
422  if (ThisTokBegin[AfterMajor] != '.' || (AfterMajor + 1 == ActualLength)) {
423    Diag(Tok, diag::err_expected_version);
424    SkipUntil(tok::comma, tok::r_paren, true, true, true);
425    return VersionTuple();
426  }
427
428  // Parse the minor version.
429  unsigned AfterMinor = AfterMajor + 1;
430  unsigned Minor = 0;
431  while (AfterMinor < ActualLength && isdigit(ThisTokBegin[AfterMinor])) {
432    Minor = Minor * 10 + ThisTokBegin[AfterMinor] - '0';
433    ++AfterMinor;
434  }
435
436  if (AfterMinor == ActualLength) {
437    ConsumeToken();
438
439    // We had major.minor.
440    if (Major == 0 && Minor == 0) {
441      Diag(Tok, diag::err_zero_version);
442      return VersionTuple();
443    }
444
445    return VersionTuple(Major, Minor);
446  }
447
448  // If what follows is not a '.', we have a problem.
449  if (ThisTokBegin[AfterMinor] != '.') {
450    Diag(Tok, diag::err_expected_version);
451    SkipUntil(tok::comma, tok::r_paren, true, true, true);
452    return VersionTuple();
453  }
454
455  // Parse the subminor version.
456  unsigned AfterSubminor = AfterMinor + 1;
457  unsigned Subminor = 0;
458  while (AfterSubminor < ActualLength && isdigit(ThisTokBegin[AfterSubminor])) {
459    Subminor = Subminor * 10 + ThisTokBegin[AfterSubminor] - '0';
460    ++AfterSubminor;
461  }
462
463  if (AfterSubminor != ActualLength) {
464    Diag(Tok, diag::err_expected_version);
465    SkipUntil(tok::comma, tok::r_paren, true, true, true);
466    return VersionTuple();
467  }
468  ConsumeToken();
469  return VersionTuple(Major, Minor, Subminor);
470}
471
472/// \brief Parse the contents of the "availability" attribute.
473///
474/// availability-attribute:
475///   'availability' '(' platform ',' version-arg-list ')'
476///
477/// platform:
478///   identifier
479///
480/// version-arg-list:
481///   version-arg
482///   version-arg ',' version-arg-list
483///
484/// version-arg:
485///   'introduced' '=' version
486///   'deprecated' '=' version
487///   'removed' = version
488///   'unavailable'
489void Parser::ParseAvailabilityAttribute(IdentifierInfo &Availability,
490                                        SourceLocation AvailabilityLoc,
491                                        ParsedAttributes &attrs,
492                                        SourceLocation *endLoc) {
493  SourceLocation PlatformLoc;
494  IdentifierInfo *Platform = 0;
495
496  enum { Introduced, Deprecated, Obsoleted, Unknown };
497  AvailabilityChange Changes[Unknown];
498
499  // Opening '('.
500  SourceLocation LParenLoc;
501  if (!Tok.is(tok::l_paren)) {
502    Diag(Tok, diag::err_expected_lparen);
503    return;
504  }
505  LParenLoc = ConsumeParen();
506
507  // Parse the platform name,
508  if (Tok.isNot(tok::identifier)) {
509    Diag(Tok, diag::err_availability_expected_platform);
510    SkipUntil(tok::r_paren);
511    return;
512  }
513  Platform = Tok.getIdentifierInfo();
514  PlatformLoc = ConsumeToken();
515
516  // Parse the ',' following the platform name.
517  if (ExpectAndConsume(tok::comma, diag::err_expected_comma, "", tok::r_paren))
518    return;
519
520  // If we haven't grabbed the pointers for the identifiers
521  // "introduced", "deprecated", and "obsoleted", do so now.
522  if (!Ident_introduced) {
523    Ident_introduced = PP.getIdentifierInfo("introduced");
524    Ident_deprecated = PP.getIdentifierInfo("deprecated");
525    Ident_obsoleted = PP.getIdentifierInfo("obsoleted");
526    Ident_unavailable = PP.getIdentifierInfo("unavailable");
527  }
528
529  // Parse the set of introductions/deprecations/removals.
530  SourceLocation UnavailableLoc;
531  do {
532    if (Tok.isNot(tok::identifier)) {
533      Diag(Tok, diag::err_availability_expected_change);
534      SkipUntil(tok::r_paren);
535      return;
536    }
537    IdentifierInfo *Keyword = Tok.getIdentifierInfo();
538    SourceLocation KeywordLoc = ConsumeToken();
539
540    if (Keyword == Ident_unavailable) {
541      if (UnavailableLoc.isValid()) {
542        Diag(KeywordLoc, diag::err_availability_redundant)
543          << Keyword << SourceRange(UnavailableLoc);
544      }
545      UnavailableLoc = KeywordLoc;
546
547      if (Tok.isNot(tok::comma))
548        break;
549
550      ConsumeToken();
551      continue;
552    }
553
554    if (Tok.isNot(tok::equal)) {
555      Diag(Tok, diag::err_expected_equal_after)
556        << Keyword;
557      SkipUntil(tok::r_paren);
558      return;
559    }
560    ConsumeToken();
561
562    SourceRange VersionRange;
563    VersionTuple Version = ParseVersionTuple(VersionRange);
564
565    if (Version.empty()) {
566      SkipUntil(tok::r_paren);
567      return;
568    }
569
570    unsigned Index;
571    if (Keyword == Ident_introduced)
572      Index = Introduced;
573    else if (Keyword == Ident_deprecated)
574      Index = Deprecated;
575    else if (Keyword == Ident_obsoleted)
576      Index = Obsoleted;
577    else
578      Index = Unknown;
579
580    if (Index < Unknown) {
581      if (!Changes[Index].KeywordLoc.isInvalid()) {
582        Diag(KeywordLoc, diag::err_availability_redundant)
583          << Keyword
584          << SourceRange(Changes[Index].KeywordLoc,
585                         Changes[Index].VersionRange.getEnd());
586      }
587
588      Changes[Index].KeywordLoc = KeywordLoc;
589      Changes[Index].Version = Version;
590      Changes[Index].VersionRange = VersionRange;
591    } else {
592      Diag(KeywordLoc, diag::err_availability_unknown_change)
593        << Keyword << VersionRange;
594    }
595
596    if (Tok.isNot(tok::comma))
597      break;
598
599    ConsumeToken();
600  } while (true);
601
602  // Closing ')'.
603  SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
604  if (RParenLoc.isInvalid())
605    return;
606
607  if (endLoc)
608    *endLoc = RParenLoc;
609
610  // The 'unavailable' availability cannot be combined with any other
611  // availability changes. Make sure that hasn't happened.
612  if (UnavailableLoc.isValid()) {
613    bool Complained = false;
614    for (unsigned Index = Introduced; Index != Unknown; ++Index) {
615      if (Changes[Index].KeywordLoc.isValid()) {
616        if (!Complained) {
617          Diag(UnavailableLoc, diag::warn_availability_and_unavailable)
618            << SourceRange(Changes[Index].KeywordLoc,
619                           Changes[Index].VersionRange.getEnd());
620          Complained = true;
621        }
622
623        // Clear out the availability.
624        Changes[Index] = AvailabilityChange();
625      }
626    }
627  }
628
629  // Record this attribute
630  attrs.addNew(&Availability, AvailabilityLoc,
631               0, SourceLocation(),
632               Platform, PlatformLoc,
633               Changes[Introduced],
634               Changes[Deprecated],
635               Changes[Obsoleted],
636               UnavailableLoc, false, false);
637}
638
639void Parser::DiagnoseProhibitedAttributes(ParsedAttributesWithRange &attrs) {
640  Diag(attrs.Range.getBegin(), diag::err_attributes_not_allowed)
641    << attrs.Range;
642}
643
644/// ParseDeclaration - Parse a full 'declaration', which consists of
645/// declaration-specifiers, some number of declarators, and a semicolon.
646/// 'Context' should be a Declarator::TheContext value.  This returns the
647/// location of the semicolon in DeclEnd.
648///
649///       declaration: [C99 6.7]
650///         block-declaration ->
651///           simple-declaration
652///           others                   [FIXME]
653/// [C++]   template-declaration
654/// [C++]   namespace-definition
655/// [C++]   using-directive
656/// [C++]   using-declaration
657/// [C++0x/C1X] static_assert-declaration
658///         others... [FIXME]
659///
660Parser::DeclGroupPtrTy Parser::ParseDeclaration(StmtVector &Stmts,
661                                                unsigned Context,
662                                                SourceLocation &DeclEnd,
663                                          ParsedAttributesWithRange &attrs) {
664  ParenBraceBracketBalancer BalancerRAIIObj(*this);
665
666  Decl *SingleDecl = 0;
667  switch (Tok.getKind()) {
668  case tok::kw_template:
669  case tok::kw_export:
670    ProhibitAttributes(attrs);
671    SingleDecl = ParseDeclarationStartingWithTemplate(Context, DeclEnd);
672    break;
673  case tok::kw_inline:
674    // Could be the start of an inline namespace. Allowed as an ext in C++03.
675    if (getLang().CPlusPlus && NextToken().is(tok::kw_namespace)) {
676      ProhibitAttributes(attrs);
677      SourceLocation InlineLoc = ConsumeToken();
678      SingleDecl = ParseNamespace(Context, DeclEnd, InlineLoc);
679      break;
680    }
681    return ParseSimpleDeclaration(Stmts, Context, DeclEnd, attrs,
682                                  true);
683  case tok::kw_namespace:
684    ProhibitAttributes(attrs);
685    SingleDecl = ParseNamespace(Context, DeclEnd);
686    break;
687  case tok::kw_using:
688    SingleDecl = ParseUsingDirectiveOrDeclaration(Context, ParsedTemplateInfo(),
689                                                  DeclEnd, attrs);
690    break;
691  case tok::kw_static_assert:
692  case tok::kw__Static_assert:
693    ProhibitAttributes(attrs);
694    SingleDecl = ParseStaticAssertDeclaration(DeclEnd);
695    break;
696  default:
697    return ParseSimpleDeclaration(Stmts, Context, DeclEnd, attrs, true);
698  }
699
700  // This routine returns a DeclGroup, if the thing we parsed only contains a
701  // single decl, convert it now.
702  return Actions.ConvertDeclToDeclGroup(SingleDecl);
703}
704
705///       simple-declaration: [C99 6.7: declaration] [C++ 7p1: dcl.dcl]
706///         declaration-specifiers init-declarator-list[opt] ';'
707///[C90/C++]init-declarator-list ';'                             [TODO]
708/// [OMP]   threadprivate-directive                              [TODO]
709///
710///       for-range-declaration: [C++0x 6.5p1: stmt.ranged]
711///         attribute-specifier-seq[opt] type-specifier-seq declarator
712///
713/// If RequireSemi is false, this does not check for a ';' at the end of the
714/// declaration.  If it is true, it checks for and eats it.
715///
716/// If FRI is non-null, we might be parsing a for-range-declaration instead
717/// of a simple-declaration. If we find that we are, we also parse the
718/// for-range-initializer, and place it here.
719Parser::DeclGroupPtrTy Parser::ParseSimpleDeclaration(StmtVector &Stmts,
720                                                      unsigned Context,
721                                                      SourceLocation &DeclEnd,
722                                                      ParsedAttributes &attrs,
723                                                      bool RequireSemi,
724                                                      ForRangeInit *FRI) {
725  // Parse the common declaration-specifiers piece.
726  ParsingDeclSpec DS(*this);
727  DS.takeAttributesFrom(attrs);
728
729  ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS_none,
730                             getDeclSpecContextFromDeclaratorContext(Context));
731  StmtResult R = Actions.ActOnVlaStmt(DS);
732  if (R.isUsable())
733    Stmts.push_back(R.release());
734
735  // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };"
736  // declaration-specifiers init-declarator-list[opt] ';'
737  if (Tok.is(tok::semi)) {
738    if (RequireSemi) ConsumeToken();
739    Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none,
740                                                       DS);
741    DS.complete(TheDecl);
742    return Actions.ConvertDeclToDeclGroup(TheDecl);
743  }
744
745  return ParseDeclGroup(DS, Context, /*FunctionDefs=*/ false, &DeclEnd, FRI);
746}
747
748/// ParseDeclGroup - Having concluded that this is either a function
749/// definition or a group of object declarations, actually parse the
750/// result.
751Parser::DeclGroupPtrTy Parser::ParseDeclGroup(ParsingDeclSpec &DS,
752                                              unsigned Context,
753                                              bool AllowFunctionDefinitions,
754                                              SourceLocation *DeclEnd,
755                                              ForRangeInit *FRI) {
756  // Parse the first declarator.
757  ParsingDeclarator D(*this, DS, static_cast<Declarator::TheContext>(Context));
758  ParseDeclarator(D);
759
760  // Bail out if the first declarator didn't seem well-formed.
761  if (!D.hasName() && !D.mayOmitIdentifier()) {
762    // Skip until ; or }.
763    SkipUntil(tok::r_brace, true, true);
764    if (Tok.is(tok::semi))
765      ConsumeToken();
766    return DeclGroupPtrTy();
767  }
768
769  // Check to see if we have a function *definition* which must have a body.
770  if (AllowFunctionDefinitions && D.isFunctionDeclarator() &&
771      // Look at the next token to make sure that this isn't a function
772      // declaration.  We have to check this because __attribute__ might be the
773      // start of a function definition in GCC-extended K&R C.
774      !isDeclarationAfterDeclarator()) {
775
776    if (isStartOfFunctionDefinition(D)) {
777      if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
778        Diag(Tok, diag::err_function_declared_typedef);
779
780        // Recover by treating the 'typedef' as spurious.
781        DS.ClearStorageClassSpecs();
782      }
783
784      Decl *TheDecl = ParseFunctionDefinition(D);
785      return Actions.ConvertDeclToDeclGroup(TheDecl);
786    }
787
788    if (isDeclarationSpecifier()) {
789      // If there is an invalid declaration specifier right after the function
790      // prototype, then we must be in a missing semicolon case where this isn't
791      // actually a body.  Just fall through into the code that handles it as a
792      // prototype, and let the top-level code handle the erroneous declspec
793      // where it would otherwise expect a comma or semicolon.
794    } else {
795      Diag(Tok, diag::err_expected_fn_body);
796      SkipUntil(tok::semi);
797      return DeclGroupPtrTy();
798    }
799  }
800
801  if (ParseAttributesAfterDeclarator(D))
802    return DeclGroupPtrTy();
803
804  // C++0x [stmt.iter]p1: Check if we have a for-range-declarator. If so, we
805  // must parse and analyze the for-range-initializer before the declaration is
806  // analyzed.
807  if (FRI && Tok.is(tok::colon)) {
808    FRI->ColonLoc = ConsumeToken();
809    // FIXME: handle braced-init-list here.
810    FRI->RangeExpr = ParseExpression();
811    Decl *ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
812    Actions.ActOnCXXForRangeDecl(ThisDecl);
813    Actions.FinalizeDeclaration(ThisDecl);
814    return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, &ThisDecl, 1);
815  }
816
817  llvm::SmallVector<Decl *, 8> DeclsInGroup;
818  Decl *FirstDecl = ParseDeclarationAfterDeclaratorAndAttributes(D);
819  D.complete(FirstDecl);
820  if (FirstDecl)
821    DeclsInGroup.push_back(FirstDecl);
822
823  // If we don't have a comma, it is either the end of the list (a ';') or an
824  // error, bail out.
825  while (Tok.is(tok::comma)) {
826    // Consume the comma.
827    ConsumeToken();
828
829    // Parse the next declarator.
830    D.clear();
831
832    // Accept attributes in an init-declarator.  In the first declarator in a
833    // declaration, these would be part of the declspec.  In subsequent
834    // declarators, they become part of the declarator itself, so that they
835    // don't apply to declarators after *this* one.  Examples:
836    //    short __attribute__((common)) var;    -> declspec
837    //    short var __attribute__((common));    -> declarator
838    //    short x, __attribute__((common)) var;    -> declarator
839    MaybeParseGNUAttributes(D);
840
841    ParseDeclarator(D);
842
843    Decl *ThisDecl = ParseDeclarationAfterDeclarator(D);
844    D.complete(ThisDecl);
845    if (ThisDecl)
846      DeclsInGroup.push_back(ThisDecl);
847  }
848
849  if (DeclEnd)
850    *DeclEnd = Tok.getLocation();
851
852  if (Context != Declarator::ForContext &&
853      ExpectAndConsume(tok::semi,
854                       Context == Declarator::FileContext
855                         ? diag::err_invalid_token_after_toplevel_declarator
856                         : diag::err_expected_semi_declaration)) {
857    // Okay, there was no semicolon and one was expected.  If we see a
858    // declaration specifier, just assume it was missing and continue parsing.
859    // Otherwise things are very confused and we skip to recover.
860    if (!isDeclarationSpecifier()) {
861      SkipUntil(tok::r_brace, true, true);
862      if (Tok.is(tok::semi))
863        ConsumeToken();
864    }
865  }
866
867  return Actions.FinalizeDeclaratorGroup(getCurScope(), DS,
868                                         DeclsInGroup.data(),
869                                         DeclsInGroup.size());
870}
871
872/// Parse an optional simple-asm-expr and attributes, and attach them to a
873/// declarator. Returns true on an error.
874bool Parser::ParseAttributesAfterDeclarator(Declarator &D) {
875  // If a simple-asm-expr is present, parse it.
876  if (Tok.is(tok::kw_asm)) {
877    SourceLocation Loc;
878    ExprResult AsmLabel(ParseSimpleAsm(&Loc));
879    if (AsmLabel.isInvalid()) {
880      SkipUntil(tok::semi, true, true);
881      return true;
882    }
883
884    D.setAsmLabel(AsmLabel.release());
885    D.SetRangeEnd(Loc);
886  }
887
888  MaybeParseGNUAttributes(D);
889  return false;
890}
891
892/// \brief Parse 'declaration' after parsing 'declaration-specifiers
893/// declarator'. This method parses the remainder of the declaration
894/// (including any attributes or initializer, among other things) and
895/// finalizes the declaration.
896///
897///       init-declarator: [C99 6.7]
898///         declarator
899///         declarator '=' initializer
900/// [GNU]   declarator simple-asm-expr[opt] attributes[opt]
901/// [GNU]   declarator simple-asm-expr[opt] attributes[opt] '=' initializer
902/// [C++]   declarator initializer[opt]
903///
904/// [C++] initializer:
905/// [C++]   '=' initializer-clause
906/// [C++]   '(' expression-list ')'
907/// [C++0x] '=' 'default'                                                [TODO]
908/// [C++0x] '=' 'delete'
909///
910/// According to the standard grammar, =default and =delete are function
911/// definitions, but that definitely doesn't fit with the parser here.
912///
913Decl *Parser::ParseDeclarationAfterDeclarator(Declarator &D,
914                                     const ParsedTemplateInfo &TemplateInfo) {
915  if (ParseAttributesAfterDeclarator(D))
916    return 0;
917
918  return ParseDeclarationAfterDeclaratorAndAttributes(D, TemplateInfo);
919}
920
921Decl *Parser::ParseDeclarationAfterDeclaratorAndAttributes(Declarator &D,
922                                     const ParsedTemplateInfo &TemplateInfo) {
923  // Inform the current actions module that we just parsed this declarator.
924  Decl *ThisDecl = 0;
925  switch (TemplateInfo.Kind) {
926  case ParsedTemplateInfo::NonTemplate:
927    ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
928    break;
929
930  case ParsedTemplateInfo::Template:
931  case ParsedTemplateInfo::ExplicitSpecialization:
932    ThisDecl = Actions.ActOnTemplateDeclarator(getCurScope(),
933                             MultiTemplateParamsArg(Actions,
934                                          TemplateInfo.TemplateParams->data(),
935                                          TemplateInfo.TemplateParams->size()),
936                                               D);
937    break;
938
939  case ParsedTemplateInfo::ExplicitInstantiation: {
940    DeclResult ThisRes
941      = Actions.ActOnExplicitInstantiation(getCurScope(),
942                                           TemplateInfo.ExternLoc,
943                                           TemplateInfo.TemplateLoc,
944                                           D);
945    if (ThisRes.isInvalid()) {
946      SkipUntil(tok::semi, true, true);
947      return 0;
948    }
949
950    ThisDecl = ThisRes.get();
951    break;
952    }
953  }
954
955  bool TypeContainsAuto =
956    D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto;
957
958  // Parse declarator '=' initializer.
959  if (isTokenEqualOrMistypedEqualEqual(
960                               diag::err_invalid_equalequal_after_declarator)) {
961    ConsumeToken();
962    if (Tok.is(tok::kw_delete)) {
963      SourceLocation DelLoc = ConsumeToken();
964
965      if (!getLang().CPlusPlus0x)
966        Diag(DelLoc, diag::warn_deleted_function_accepted_as_extension);
967
968      Actions.SetDeclDeleted(ThisDecl, DelLoc);
969    } else {
970      if (getLang().CPlusPlus && D.getCXXScopeSpec().isSet()) {
971        EnterScope(0);
972        Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
973      }
974
975      if (Tok.is(tok::code_completion)) {
976        Actions.CodeCompleteInitializer(getCurScope(), ThisDecl);
977        ConsumeCodeCompletionToken();
978        SkipUntil(tok::comma, true, true);
979        return ThisDecl;
980      }
981
982      ExprResult Init(ParseInitializer());
983
984      if (getLang().CPlusPlus && D.getCXXScopeSpec().isSet()) {
985        Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
986        ExitScope();
987      }
988
989      if (Init.isInvalid()) {
990        SkipUntil(tok::comma, true, true);
991        Actions.ActOnInitializerError(ThisDecl);
992      } else
993        Actions.AddInitializerToDecl(ThisDecl, Init.take(),
994                                     /*DirectInit=*/false, TypeContainsAuto);
995    }
996  } else if (Tok.is(tok::l_paren)) {
997    // Parse C++ direct initializer: '(' expression-list ')'
998    SourceLocation LParenLoc = ConsumeParen();
999    ExprVector Exprs(Actions);
1000    CommaLocsTy CommaLocs;
1001
1002    if (getLang().CPlusPlus && D.getCXXScopeSpec().isSet()) {
1003      EnterScope(0);
1004      Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
1005    }
1006
1007    if (ParseExpressionList(Exprs, CommaLocs)) {
1008      SkipUntil(tok::r_paren);
1009
1010      if (getLang().CPlusPlus && D.getCXXScopeSpec().isSet()) {
1011        Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
1012        ExitScope();
1013      }
1014    } else {
1015      // Match the ')'.
1016      SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
1017
1018      assert(!Exprs.empty() && Exprs.size()-1 == CommaLocs.size() &&
1019             "Unexpected number of commas!");
1020
1021      if (getLang().CPlusPlus && D.getCXXScopeSpec().isSet()) {
1022        Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
1023        ExitScope();
1024      }
1025
1026      Actions.AddCXXDirectInitializerToDecl(ThisDecl, LParenLoc,
1027                                            move_arg(Exprs),
1028                                            RParenLoc,
1029                                            TypeContainsAuto);
1030    }
1031  } else {
1032    Actions.ActOnUninitializedDecl(ThisDecl, TypeContainsAuto);
1033  }
1034
1035  Actions.FinalizeDeclaration(ThisDecl);
1036
1037  return ThisDecl;
1038}
1039
1040/// ParseSpecifierQualifierList
1041///        specifier-qualifier-list:
1042///          type-specifier specifier-qualifier-list[opt]
1043///          type-qualifier specifier-qualifier-list[opt]
1044/// [GNU]    attributes     specifier-qualifier-list[opt]
1045///
1046void Parser::ParseSpecifierQualifierList(DeclSpec &DS) {
1047  /// specifier-qualifier-list is a subset of declaration-specifiers.  Just
1048  /// parse declaration-specifiers and complain about extra stuff.
1049  ParseDeclarationSpecifiers(DS);
1050
1051  // Validate declspec for type-name.
1052  unsigned Specs = DS.getParsedSpecifiers();
1053  if (Specs == DeclSpec::PQ_None && !DS.getNumProtocolQualifiers() &&
1054      !DS.hasAttributes())
1055    Diag(Tok, diag::err_typename_requires_specqual);
1056
1057  // Issue diagnostic and remove storage class if present.
1058  if (Specs & DeclSpec::PQ_StorageClassSpecifier) {
1059    if (DS.getStorageClassSpecLoc().isValid())
1060      Diag(DS.getStorageClassSpecLoc(),diag::err_typename_invalid_storageclass);
1061    else
1062      Diag(DS.getThreadSpecLoc(), diag::err_typename_invalid_storageclass);
1063    DS.ClearStorageClassSpecs();
1064  }
1065
1066  // Issue diagnostic and remove function specfier if present.
1067  if (Specs & DeclSpec::PQ_FunctionSpecifier) {
1068    if (DS.isInlineSpecified())
1069      Diag(DS.getInlineSpecLoc(), diag::err_typename_invalid_functionspec);
1070    if (DS.isVirtualSpecified())
1071      Diag(DS.getVirtualSpecLoc(), diag::err_typename_invalid_functionspec);
1072    if (DS.isExplicitSpecified())
1073      Diag(DS.getExplicitSpecLoc(), diag::err_typename_invalid_functionspec);
1074    DS.ClearFunctionSpecs();
1075  }
1076}
1077
1078/// isValidAfterIdentifierInDeclaratorAfterDeclSpec - Return true if the
1079/// specified token is valid after the identifier in a declarator which
1080/// immediately follows the declspec.  For example, these things are valid:
1081///
1082///      int x   [             4];         // direct-declarator
1083///      int x   (             int y);     // direct-declarator
1084///  int(int x   )                         // direct-declarator
1085///      int x   ;                         // simple-declaration
1086///      int x   =             17;         // init-declarator-list
1087///      int x   ,             y;          // init-declarator-list
1088///      int x   __asm__       ("foo");    // init-declarator-list
1089///      int x   :             4;          // struct-declarator
1090///      int x   {             5};         // C++'0x unified initializers
1091///
1092/// This is not, because 'x' does not immediately follow the declspec (though
1093/// ')' happens to be valid anyway).
1094///    int (x)
1095///
1096static bool isValidAfterIdentifierInDeclarator(const Token &T) {
1097  return T.is(tok::l_square) || T.is(tok::l_paren) || T.is(tok::r_paren) ||
1098         T.is(tok::semi) || T.is(tok::comma) || T.is(tok::equal) ||
1099         T.is(tok::kw_asm) || T.is(tok::l_brace) || T.is(tok::colon);
1100}
1101
1102
1103/// ParseImplicitInt - This method is called when we have an non-typename
1104/// identifier in a declspec (which normally terminates the decl spec) when
1105/// the declspec has no type specifier.  In this case, the declspec is either
1106/// malformed or is "implicit int" (in K&R and C89).
1107///
1108/// This method handles diagnosing this prettily and returns false if the
1109/// declspec is done being processed.  If it recovers and thinks there may be
1110/// other pieces of declspec after it, it returns true.
1111///
1112bool Parser::ParseImplicitInt(DeclSpec &DS, CXXScopeSpec *SS,
1113                              const ParsedTemplateInfo &TemplateInfo,
1114                              AccessSpecifier AS) {
1115  assert(Tok.is(tok::identifier) && "should have identifier");
1116
1117  SourceLocation Loc = Tok.getLocation();
1118  // If we see an identifier that is not a type name, we normally would
1119  // parse it as the identifer being declared.  However, when a typename
1120  // is typo'd or the definition is not included, this will incorrectly
1121  // parse the typename as the identifier name and fall over misparsing
1122  // later parts of the diagnostic.
1123  //
1124  // As such, we try to do some look-ahead in cases where this would
1125  // otherwise be an "implicit-int" case to see if this is invalid.  For
1126  // example: "static foo_t x = 4;"  In this case, if we parsed foo_t as
1127  // an identifier with implicit int, we'd get a parse error because the
1128  // next token is obviously invalid for a type.  Parse these as a case
1129  // with an invalid type specifier.
1130  assert(!DS.hasTypeSpecifier() && "Type specifier checked above");
1131
1132  // Since we know that this either implicit int (which is rare) or an
1133  // error, we'd do lookahead to try to do better recovery.
1134  if (isValidAfterIdentifierInDeclarator(NextToken())) {
1135    // If this token is valid for implicit int, e.g. "static x = 4", then
1136    // we just avoid eating the identifier, so it will be parsed as the
1137    // identifier in the declarator.
1138    return false;
1139  }
1140
1141  // Otherwise, if we don't consume this token, we are going to emit an
1142  // error anyway.  Try to recover from various common problems.  Check
1143  // to see if this was a reference to a tag name without a tag specified.
1144  // This is a common problem in C (saying 'foo' instead of 'struct foo').
1145  //
1146  // C++ doesn't need this, and isTagName doesn't take SS.
1147  if (SS == 0) {
1148    const char *TagName = 0, *FixitTagName = 0;
1149    tok::TokenKind TagKind = tok::unknown;
1150
1151    switch (Actions.isTagName(*Tok.getIdentifierInfo(), getCurScope())) {
1152      default: break;
1153      case DeclSpec::TST_enum:
1154        TagName="enum"  ; FixitTagName = "enum "  ; TagKind=tok::kw_enum ;break;
1155      case DeclSpec::TST_union:
1156        TagName="union" ; FixitTagName = "union " ;TagKind=tok::kw_union ;break;
1157      case DeclSpec::TST_struct:
1158        TagName="struct"; FixitTagName = "struct ";TagKind=tok::kw_struct;break;
1159      case DeclSpec::TST_class:
1160        TagName="class" ; FixitTagName = "class " ;TagKind=tok::kw_class ;break;
1161    }
1162
1163    if (TagName) {
1164      Diag(Loc, diag::err_use_of_tag_name_without_tag)
1165        << Tok.getIdentifierInfo() << TagName << getLang().CPlusPlus
1166        << FixItHint::CreateInsertion(Tok.getLocation(),FixitTagName);
1167
1168      // Parse this as a tag as if the missing tag were present.
1169      if (TagKind == tok::kw_enum)
1170        ParseEnumSpecifier(Loc, DS, TemplateInfo, AS);
1171      else
1172        ParseClassSpecifier(TagKind, Loc, DS, TemplateInfo, AS);
1173      return true;
1174    }
1175  }
1176
1177  // This is almost certainly an invalid type name. Let the action emit a
1178  // diagnostic and attempt to recover.
1179  ParsedType T;
1180  if (Actions.DiagnoseUnknownTypeName(*Tok.getIdentifierInfo(), Loc,
1181                                      getCurScope(), SS, T)) {
1182    // The action emitted a diagnostic, so we don't have to.
1183    if (T) {
1184      // The action has suggested that the type T could be used. Set that as
1185      // the type in the declaration specifiers, consume the would-be type
1186      // name token, and we're done.
1187      const char *PrevSpec;
1188      unsigned DiagID;
1189      DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, T);
1190      DS.SetRangeEnd(Tok.getLocation());
1191      ConsumeToken();
1192
1193      // There may be other declaration specifiers after this.
1194      return true;
1195    }
1196
1197    // Fall through; the action had no suggestion for us.
1198  } else {
1199    // The action did not emit a diagnostic, so emit one now.
1200    SourceRange R;
1201    if (SS) R = SS->getRange();
1202    Diag(Loc, diag::err_unknown_typename) << Tok.getIdentifierInfo() << R;
1203  }
1204
1205  // Mark this as an error.
1206  const char *PrevSpec;
1207  unsigned DiagID;
1208  DS.SetTypeSpecType(DeclSpec::TST_error, Loc, PrevSpec, DiagID);
1209  DS.SetRangeEnd(Tok.getLocation());
1210  ConsumeToken();
1211
1212  // TODO: Could inject an invalid typedef decl in an enclosing scope to
1213  // avoid rippling error messages on subsequent uses of the same type,
1214  // could be useful if #include was forgotten.
1215  return false;
1216}
1217
1218/// \brief Determine the declaration specifier context from the declarator
1219/// context.
1220///
1221/// \param Context the declarator context, which is one of the
1222/// Declarator::TheContext enumerator values.
1223Parser::DeclSpecContext
1224Parser::getDeclSpecContextFromDeclaratorContext(unsigned Context) {
1225  if (Context == Declarator::MemberContext)
1226    return DSC_class;
1227  if (Context == Declarator::FileContext)
1228    return DSC_top_level;
1229  return DSC_normal;
1230}
1231
1232/// ParseDeclarationSpecifiers
1233///       declaration-specifiers: [C99 6.7]
1234///         storage-class-specifier declaration-specifiers[opt]
1235///         type-specifier declaration-specifiers[opt]
1236/// [C99]   function-specifier declaration-specifiers[opt]
1237/// [GNU]   attributes declaration-specifiers[opt]
1238///
1239///       storage-class-specifier: [C99 6.7.1]
1240///         'typedef'
1241///         'extern'
1242///         'static'
1243///         'auto'
1244///         'register'
1245/// [C++]   'mutable'
1246/// [GNU]   '__thread'
1247///       function-specifier: [C99 6.7.4]
1248/// [C99]   'inline'
1249/// [C++]   'virtual'
1250/// [C++]   'explicit'
1251/// [OpenCL] '__kernel'
1252///       'friend': [C++ dcl.friend]
1253///       'constexpr': [C++0x dcl.constexpr]
1254
1255///
1256void Parser::ParseDeclarationSpecifiers(DeclSpec &DS,
1257                                        const ParsedTemplateInfo &TemplateInfo,
1258                                        AccessSpecifier AS,
1259                                        DeclSpecContext DSContext) {
1260  if (DS.getSourceRange().isInvalid()) {
1261    DS.SetRangeStart(Tok.getLocation());
1262    DS.SetRangeEnd(Tok.getLocation());
1263  }
1264
1265  while (1) {
1266    bool isInvalid = false;
1267    const char *PrevSpec = 0;
1268    unsigned DiagID = 0;
1269
1270    SourceLocation Loc = Tok.getLocation();
1271
1272    switch (Tok.getKind()) {
1273    default:
1274    DoneWithDeclSpec:
1275      // If this is not a declaration specifier token, we're done reading decl
1276      // specifiers.  First verify that DeclSpec's are consistent.
1277      DS.Finish(Diags, PP);
1278      return;
1279
1280    case tok::code_completion: {
1281      Sema::ParserCompletionContext CCC = Sema::PCC_Namespace;
1282      if (DS.hasTypeSpecifier()) {
1283        bool AllowNonIdentifiers
1284          = (getCurScope()->getFlags() & (Scope::ControlScope |
1285                                          Scope::BlockScope |
1286                                          Scope::TemplateParamScope |
1287                                          Scope::FunctionPrototypeScope |
1288                                          Scope::AtCatchScope)) == 0;
1289        bool AllowNestedNameSpecifiers
1290          = DSContext == DSC_top_level ||
1291            (DSContext == DSC_class && DS.isFriendSpecified());
1292
1293        Actions.CodeCompleteDeclSpec(getCurScope(), DS,
1294                                     AllowNonIdentifiers,
1295                                     AllowNestedNameSpecifiers);
1296        ConsumeCodeCompletionToken();
1297        return;
1298      }
1299
1300      if (getCurScope()->getFnParent() || getCurScope()->getBlockParent())
1301        CCC = Sema::PCC_LocalDeclarationSpecifiers;
1302      else if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate)
1303        CCC = DSContext == DSC_class? Sema::PCC_MemberTemplate
1304                                    : Sema::PCC_Template;
1305      else if (DSContext == DSC_class)
1306        CCC = Sema::PCC_Class;
1307      else if (ObjCImpDecl)
1308        CCC = Sema::PCC_ObjCImplementation;
1309
1310      Actions.CodeCompleteOrdinaryName(getCurScope(), CCC);
1311      ConsumeCodeCompletionToken();
1312      return;
1313    }
1314
1315    case tok::coloncolon: // ::foo::bar
1316      // C++ scope specifier.  Annotate and loop, or bail out on error.
1317      if (TryAnnotateCXXScopeToken(true)) {
1318        if (!DS.hasTypeSpecifier())
1319          DS.SetTypeSpecError();
1320        goto DoneWithDeclSpec;
1321      }
1322      if (Tok.is(tok::coloncolon)) // ::new or ::delete
1323        goto DoneWithDeclSpec;
1324      continue;
1325
1326    case tok::annot_cxxscope: {
1327      if (DS.hasTypeSpecifier())
1328        goto DoneWithDeclSpec;
1329
1330      CXXScopeSpec SS;
1331      Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
1332                                                   Tok.getAnnotationRange(),
1333                                                   SS);
1334
1335      // We are looking for a qualified typename.
1336      Token Next = NextToken();
1337      if (Next.is(tok::annot_template_id) &&
1338          static_cast<TemplateIdAnnotation *>(Next.getAnnotationValue())
1339            ->Kind == TNK_Type_template) {
1340        // We have a qualified template-id, e.g., N::A<int>
1341
1342        // C++ [class.qual]p2:
1343        //   In a lookup in which the constructor is an acceptable lookup
1344        //   result and the nested-name-specifier nominates a class C:
1345        //
1346        //     - if the name specified after the
1347        //       nested-name-specifier, when looked up in C, is the
1348        //       injected-class-name of C (Clause 9), or
1349        //
1350        //     - if the name specified after the nested-name-specifier
1351        //       is the same as the identifier or the
1352        //       simple-template-id's template-name in the last
1353        //       component of the nested-name-specifier,
1354        //
1355        //   the name is instead considered to name the constructor of
1356        //   class C.
1357        //
1358        // Thus, if the template-name is actually the constructor
1359        // name, then the code is ill-formed; this interpretation is
1360        // reinforced by the NAD status of core issue 635.
1361        TemplateIdAnnotation *TemplateId
1362          = static_cast<TemplateIdAnnotation *>(Next.getAnnotationValue());
1363        if ((DSContext == DSC_top_level ||
1364             (DSContext == DSC_class && DS.isFriendSpecified())) &&
1365            TemplateId->Name &&
1366            Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS)) {
1367          if (isConstructorDeclarator()) {
1368            // The user meant this to be an out-of-line constructor
1369            // definition, but template arguments are not allowed
1370            // there.  Just allow this as a constructor; we'll
1371            // complain about it later.
1372            goto DoneWithDeclSpec;
1373          }
1374
1375          // The user meant this to name a type, but it actually names
1376          // a constructor with some extraneous template
1377          // arguments. Complain, then parse it as a type as the user
1378          // intended.
1379          Diag(TemplateId->TemplateNameLoc,
1380               diag::err_out_of_line_template_id_names_constructor)
1381            << TemplateId->Name;
1382        }
1383
1384        DS.getTypeSpecScope() = SS;
1385        ConsumeToken(); // The C++ scope.
1386        assert(Tok.is(tok::annot_template_id) &&
1387               "ParseOptionalCXXScopeSpecifier not working");
1388        AnnotateTemplateIdTokenAsType();
1389        continue;
1390      }
1391
1392      if (Next.is(tok::annot_typename)) {
1393        DS.getTypeSpecScope() = SS;
1394        ConsumeToken(); // The C++ scope.
1395        if (Tok.getAnnotationValue()) {
1396          ParsedType T = getTypeAnnotation(Tok);
1397          isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename,
1398                                         Tok.getAnnotationEndLoc(),
1399                                         PrevSpec, DiagID, T);
1400        }
1401        else
1402          DS.SetTypeSpecError();
1403        DS.SetRangeEnd(Tok.getAnnotationEndLoc());
1404        ConsumeToken(); // The typename
1405      }
1406
1407      if (Next.isNot(tok::identifier))
1408        goto DoneWithDeclSpec;
1409
1410      // If we're in a context where the identifier could be a class name,
1411      // check whether this is a constructor declaration.
1412      if ((DSContext == DSC_top_level ||
1413           (DSContext == DSC_class && DS.isFriendSpecified())) &&
1414          Actions.isCurrentClassName(*Next.getIdentifierInfo(), getCurScope(),
1415                                     &SS)) {
1416        if (isConstructorDeclarator())
1417          goto DoneWithDeclSpec;
1418
1419        // As noted in C++ [class.qual]p2 (cited above), when the name
1420        // of the class is qualified in a context where it could name
1421        // a constructor, its a constructor name. However, we've
1422        // looked at the declarator, and the user probably meant this
1423        // to be a type. Complain that it isn't supposed to be treated
1424        // as a type, then proceed to parse it as a type.
1425        Diag(Next.getLocation(), diag::err_out_of_line_type_names_constructor)
1426          << Next.getIdentifierInfo();
1427      }
1428
1429      ParsedType TypeRep = Actions.getTypeName(*Next.getIdentifierInfo(),
1430                                               Next.getLocation(),
1431                                               getCurScope(), &SS,
1432                                               false, false, ParsedType(),
1433                                               /*NonTrivialSourceInfo=*/true);
1434
1435      // If the referenced identifier is not a type, then this declspec is
1436      // erroneous: We already checked about that it has no type specifier, and
1437      // C++ doesn't have implicit int.  Diagnose it as a typo w.r.t. to the
1438      // typename.
1439      if (TypeRep == 0) {
1440        ConsumeToken();   // Eat the scope spec so the identifier is current.
1441        if (ParseImplicitInt(DS, &SS, TemplateInfo, AS)) continue;
1442        goto DoneWithDeclSpec;
1443      }
1444
1445      DS.getTypeSpecScope() = SS;
1446      ConsumeToken(); // The C++ scope.
1447
1448      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
1449                                     DiagID, TypeRep);
1450      if (isInvalid)
1451        break;
1452
1453      DS.SetRangeEnd(Tok.getLocation());
1454      ConsumeToken(); // The typename.
1455
1456      continue;
1457    }
1458
1459    case tok::annot_typename: {
1460      if (Tok.getAnnotationValue()) {
1461        ParsedType T = getTypeAnnotation(Tok);
1462        isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
1463                                       DiagID, T);
1464      } else
1465        DS.SetTypeSpecError();
1466
1467      if (isInvalid)
1468        break;
1469
1470      DS.SetRangeEnd(Tok.getAnnotationEndLoc());
1471      ConsumeToken(); // The typename
1472
1473      // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
1474      // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
1475      // Objective-C interface.
1476      if (Tok.is(tok::less) && getLang().ObjC1)
1477        ParseObjCProtocolQualifiers(DS);
1478
1479      continue;
1480    }
1481
1482      // typedef-name
1483    case tok::identifier: {
1484      // In C++, check to see if this is a scope specifier like foo::bar::, if
1485      // so handle it as such.  This is important for ctor parsing.
1486      if (getLang().CPlusPlus) {
1487        if (TryAnnotateCXXScopeToken(true)) {
1488          if (!DS.hasTypeSpecifier())
1489            DS.SetTypeSpecError();
1490          goto DoneWithDeclSpec;
1491        }
1492        if (!Tok.is(tok::identifier))
1493          continue;
1494      }
1495
1496      // This identifier can only be a typedef name if we haven't already seen
1497      // a type-specifier.  Without this check we misparse:
1498      //  typedef int X; struct Y { short X; };  as 'short int'.
1499      if (DS.hasTypeSpecifier())
1500        goto DoneWithDeclSpec;
1501
1502      // Check for need to substitute AltiVec keyword tokens.
1503      if (TryAltiVecToken(DS, Loc, PrevSpec, DiagID, isInvalid))
1504        break;
1505
1506      // It has to be available as a typedef too!
1507      ParsedType TypeRep =
1508        Actions.getTypeName(*Tok.getIdentifierInfo(),
1509                            Tok.getLocation(), getCurScope());
1510
1511      // If this is not a typedef name, don't parse it as part of the declspec,
1512      // it must be an implicit int or an error.
1513      if (!TypeRep) {
1514        if (ParseImplicitInt(DS, 0, TemplateInfo, AS)) continue;
1515        goto DoneWithDeclSpec;
1516      }
1517
1518      // If we're in a context where the identifier could be a class name,
1519      // check whether this is a constructor declaration.
1520      if (getLang().CPlusPlus && DSContext == DSC_class &&
1521          Actions.isCurrentClassName(*Tok.getIdentifierInfo(), getCurScope()) &&
1522          isConstructorDeclarator())
1523        goto DoneWithDeclSpec;
1524
1525      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
1526                                     DiagID, TypeRep);
1527      if (isInvalid)
1528        break;
1529
1530      DS.SetRangeEnd(Tok.getLocation());
1531      ConsumeToken(); // The identifier
1532
1533      // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
1534      // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
1535      // Objective-C interface.
1536      if (Tok.is(tok::less) && getLang().ObjC1)
1537        ParseObjCProtocolQualifiers(DS);
1538
1539      // Need to support trailing type qualifiers (e.g. "id<p> const").
1540      // If a type specifier follows, it will be diagnosed elsewhere.
1541      continue;
1542    }
1543
1544      // type-name
1545    case tok::annot_template_id: {
1546      TemplateIdAnnotation *TemplateId
1547        = static_cast<TemplateIdAnnotation *>(Tok.getAnnotationValue());
1548      if (TemplateId->Kind != TNK_Type_template) {
1549        // This template-id does not refer to a type name, so we're
1550        // done with the type-specifiers.
1551        goto DoneWithDeclSpec;
1552      }
1553
1554      // If we're in a context where the template-id could be a
1555      // constructor name or specialization, check whether this is a
1556      // constructor declaration.
1557      if (getLang().CPlusPlus && DSContext == DSC_class &&
1558          Actions.isCurrentClassName(*TemplateId->Name, getCurScope()) &&
1559          isConstructorDeclarator())
1560        goto DoneWithDeclSpec;
1561
1562      // Turn the template-id annotation token into a type annotation
1563      // token, then try again to parse it as a type-specifier.
1564      AnnotateTemplateIdTokenAsType();
1565      continue;
1566    }
1567
1568    // GNU attributes support.
1569    case tok::kw___attribute:
1570      ParseGNUAttributes(DS.getAttributes());
1571      continue;
1572
1573    // Microsoft declspec support.
1574    case tok::kw___declspec:
1575      ParseMicrosoftDeclSpec(DS.getAttributes());
1576      continue;
1577
1578    // Microsoft single token adornments.
1579    case tok::kw___forceinline:
1580      // FIXME: Add handling here!
1581      break;
1582
1583    case tok::kw___ptr64:
1584    case tok::kw___w64:
1585    case tok::kw___cdecl:
1586    case tok::kw___stdcall:
1587    case tok::kw___fastcall:
1588    case tok::kw___thiscall:
1589      ParseMicrosoftTypeAttributes(DS.getAttributes());
1590      continue;
1591
1592    // Borland single token adornments.
1593    case tok::kw___pascal:
1594      ParseBorlandTypeAttributes(DS.getAttributes());
1595      continue;
1596
1597    // OpenCL single token adornments.
1598    case tok::kw___kernel:
1599      ParseOpenCLAttributes(DS.getAttributes());
1600      continue;
1601
1602    // storage-class-specifier
1603    case tok::kw_typedef:
1604      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_typedef, Loc, PrevSpec,
1605                                         DiagID, getLang());
1606      break;
1607    case tok::kw_extern:
1608      if (DS.isThreadSpecified())
1609        Diag(Tok, diag::ext_thread_before) << "extern";
1610      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_extern, Loc, PrevSpec,
1611                                         DiagID, getLang());
1612      break;
1613    case tok::kw___private_extern__:
1614      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_private_extern, Loc,
1615                                         PrevSpec, DiagID, getLang());
1616      break;
1617    case tok::kw_static:
1618      if (DS.isThreadSpecified())
1619        Diag(Tok, diag::ext_thread_before) << "static";
1620      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_static, Loc, PrevSpec,
1621                                         DiagID, getLang());
1622      break;
1623    case tok::kw_auto:
1624      if (getLang().CPlusPlus0x) {
1625        if (isKnownToBeTypeSpecifier(GetLookAheadToken(1))) {
1626          isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_auto, Loc, PrevSpec,
1627                                           DiagID, getLang());
1628          if (!isInvalid)
1629            Diag(Tok, diag::auto_storage_class)
1630              << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
1631        }
1632        else
1633          isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec,
1634                                         DiagID);
1635      }
1636      else
1637        isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_auto, Loc, PrevSpec,
1638                                           DiagID, getLang());
1639      break;
1640    case tok::kw_register:
1641      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_register, Loc, PrevSpec,
1642                                         DiagID, getLang());
1643      break;
1644    case tok::kw_mutable:
1645      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_mutable, Loc, PrevSpec,
1646                                         DiagID, getLang());
1647      break;
1648    case tok::kw___thread:
1649      isInvalid = DS.SetStorageClassSpecThread(Loc, PrevSpec, DiagID);
1650      break;
1651
1652    // function-specifier
1653    case tok::kw_inline:
1654      isInvalid = DS.SetFunctionSpecInline(Loc, PrevSpec, DiagID);
1655      break;
1656    case tok::kw_virtual:
1657      isInvalid = DS.SetFunctionSpecVirtual(Loc, PrevSpec, DiagID);
1658      break;
1659    case tok::kw_explicit:
1660      isInvalid = DS.SetFunctionSpecExplicit(Loc, PrevSpec, DiagID);
1661      break;
1662
1663    // friend
1664    case tok::kw_friend:
1665      if (DSContext == DSC_class)
1666        isInvalid = DS.SetFriendSpec(Loc, PrevSpec, DiagID);
1667      else {
1668        PrevSpec = ""; // not actually used by the diagnostic
1669        DiagID = diag::err_friend_invalid_in_context;
1670        isInvalid = true;
1671      }
1672      break;
1673
1674    // constexpr
1675    case tok::kw_constexpr:
1676      isInvalid = DS.SetConstexprSpec(Loc, PrevSpec, DiagID);
1677      break;
1678
1679    // type-specifier
1680    case tok::kw_short:
1681      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec,
1682                                      DiagID);
1683      break;
1684    case tok::kw_long:
1685      if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
1686        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec,
1687                                        DiagID);
1688      else
1689        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
1690                                        DiagID);
1691      break;
1692    case tok::kw___int64:
1693        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
1694                                        DiagID);
1695      break;
1696    case tok::kw_signed:
1697      isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec,
1698                                     DiagID);
1699      break;
1700    case tok::kw_unsigned:
1701      isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec,
1702                                     DiagID);
1703      break;
1704    case tok::kw__Complex:
1705      isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec,
1706                                        DiagID);
1707      break;
1708    case tok::kw__Imaginary:
1709      isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec,
1710                                        DiagID);
1711      break;
1712    case tok::kw_void:
1713      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec,
1714                                     DiagID);
1715      break;
1716    case tok::kw_char:
1717      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec,
1718                                     DiagID);
1719      break;
1720    case tok::kw_int:
1721      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec,
1722                                     DiagID);
1723      break;
1724    case tok::kw_float:
1725      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec,
1726                                     DiagID);
1727      break;
1728    case tok::kw_double:
1729      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec,
1730                                     DiagID);
1731      break;
1732    case tok::kw_wchar_t:
1733      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec,
1734                                     DiagID);
1735      break;
1736    case tok::kw_char16_t:
1737      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec,
1738                                     DiagID);
1739      break;
1740    case tok::kw_char32_t:
1741      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec,
1742                                     DiagID);
1743      break;
1744    case tok::kw_bool:
1745    case tok::kw__Bool:
1746      if (Tok.is(tok::kw_bool) &&
1747          DS.getTypeSpecType() != DeclSpec::TST_unspecified &&
1748          DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
1749        PrevSpec = ""; // Not used by the diagnostic.
1750        DiagID = diag::err_bool_redeclaration;
1751        // For better error recovery.
1752        Tok.setKind(tok::identifier);
1753        isInvalid = true;
1754      } else {
1755        isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec,
1756                                       DiagID);
1757      }
1758      break;
1759    case tok::kw__Decimal32:
1760      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec,
1761                                     DiagID);
1762      break;
1763    case tok::kw__Decimal64:
1764      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec,
1765                                     DiagID);
1766      break;
1767    case tok::kw__Decimal128:
1768      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec,
1769                                     DiagID);
1770      break;
1771    case tok::kw___vector:
1772      isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID);
1773      break;
1774    case tok::kw___pixel:
1775      isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID);
1776      break;
1777    case tok::kw___unknown_anytype:
1778      isInvalid = DS.SetTypeSpecType(TST_unknown_anytype, Loc,
1779                                     PrevSpec, DiagID);
1780      break;
1781
1782    // class-specifier:
1783    case tok::kw_class:
1784    case tok::kw_struct:
1785    case tok::kw_union: {
1786      tok::TokenKind Kind = Tok.getKind();
1787      ConsumeToken();
1788      ParseClassSpecifier(Kind, Loc, DS, TemplateInfo, AS);
1789      continue;
1790    }
1791
1792    // enum-specifier:
1793    case tok::kw_enum:
1794      ConsumeToken();
1795      ParseEnumSpecifier(Loc, DS, TemplateInfo, AS);
1796      continue;
1797
1798    // cv-qualifier:
1799    case tok::kw_const:
1800      isInvalid = DS.SetTypeQual(DeclSpec::TQ_const, Loc, PrevSpec, DiagID,
1801                                 getLang());
1802      break;
1803    case tok::kw_volatile:
1804      isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
1805                                 getLang());
1806      break;
1807    case tok::kw_restrict:
1808      isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
1809                                 getLang());
1810      break;
1811
1812    // C++ typename-specifier:
1813    case tok::kw_typename:
1814      if (TryAnnotateTypeOrScopeToken()) {
1815        DS.SetTypeSpecError();
1816        goto DoneWithDeclSpec;
1817      }
1818      if (!Tok.is(tok::kw_typename))
1819        continue;
1820      break;
1821
1822    // GNU typeof support.
1823    case tok::kw_typeof:
1824      ParseTypeofSpecifier(DS);
1825      continue;
1826
1827    case tok::kw_decltype:
1828      ParseDecltypeSpecifier(DS);
1829      continue;
1830
1831    // OpenCL qualifiers:
1832    case tok::kw_private:
1833      if (!getLang().OpenCL)
1834        goto DoneWithDeclSpec;
1835    case tok::kw___private:
1836    case tok::kw___global:
1837    case tok::kw___local:
1838    case tok::kw___constant:
1839    case tok::kw___read_only:
1840    case tok::kw___write_only:
1841    case tok::kw___read_write:
1842      ParseOpenCLQualifiers(DS);
1843      break;
1844
1845    case tok::less:
1846      // GCC ObjC supports types like "<SomeProtocol>" as a synonym for
1847      // "id<SomeProtocol>".  This is hopelessly old fashioned and dangerous,
1848      // but we support it.
1849      if (DS.hasTypeSpecifier() || !getLang().ObjC1)
1850        goto DoneWithDeclSpec;
1851
1852      if (!ParseObjCProtocolQualifiers(DS))
1853        Diag(Loc, diag::warn_objc_protocol_qualifier_missing_id)
1854          << FixItHint::CreateInsertion(Loc, "id")
1855          << SourceRange(Loc, DS.getSourceRange().getEnd());
1856
1857      // Need to support trailing type qualifiers (e.g. "id<p> const").
1858      // If a type specifier follows, it will be diagnosed elsewhere.
1859      continue;
1860    }
1861    // If the specifier wasn't legal, issue a diagnostic.
1862    if (isInvalid) {
1863      assert(PrevSpec && "Method did not return previous specifier!");
1864      assert(DiagID);
1865
1866      if (DiagID == diag::ext_duplicate_declspec)
1867        Diag(Tok, DiagID)
1868          << PrevSpec << FixItHint::CreateRemoval(Tok.getLocation());
1869      else
1870        Diag(Tok, DiagID) << PrevSpec;
1871    }
1872
1873    DS.SetRangeEnd(Tok.getLocation());
1874    if (DiagID != diag::err_bool_redeclaration)
1875      ConsumeToken();
1876  }
1877}
1878
1879/// ParseOptionalTypeSpecifier - Try to parse a single type-specifier. We
1880/// primarily follow the C++ grammar with additions for C99 and GNU,
1881/// which together subsume the C grammar. Note that the C++
1882/// type-specifier also includes the C type-qualifier (for const,
1883/// volatile, and C99 restrict). Returns true if a type-specifier was
1884/// found (and parsed), false otherwise.
1885///
1886///       type-specifier: [C++ 7.1.5]
1887///         simple-type-specifier
1888///         class-specifier
1889///         enum-specifier
1890///         elaborated-type-specifier  [TODO]
1891///         cv-qualifier
1892///
1893///       cv-qualifier: [C++ 7.1.5.1]
1894///         'const'
1895///         'volatile'
1896/// [C99]   'restrict'
1897///
1898///       simple-type-specifier: [ C++ 7.1.5.2]
1899///         '::'[opt] nested-name-specifier[opt] type-name [TODO]
1900///         '::'[opt] nested-name-specifier 'template' template-id [TODO]
1901///         'char'
1902///         'wchar_t'
1903///         'bool'
1904///         'short'
1905///         'int'
1906///         'long'
1907///         'signed'
1908///         'unsigned'
1909///         'float'
1910///         'double'
1911///         'void'
1912/// [C99]   '_Bool'
1913/// [C99]   '_Complex'
1914/// [C99]   '_Imaginary'  // Removed in TC2?
1915/// [GNU]   '_Decimal32'
1916/// [GNU]   '_Decimal64'
1917/// [GNU]   '_Decimal128'
1918/// [GNU]   typeof-specifier
1919/// [OBJC]  class-name objc-protocol-refs[opt]    [TODO]
1920/// [OBJC]  typedef-name objc-protocol-refs[opt]  [TODO]
1921/// [C++0x] 'decltype' ( expression )
1922/// [AltiVec] '__vector'
1923bool Parser::ParseOptionalTypeSpecifier(DeclSpec &DS, bool& isInvalid,
1924                                        const char *&PrevSpec,
1925                                        unsigned &DiagID,
1926                                        const ParsedTemplateInfo &TemplateInfo,
1927                                        bool SuppressDeclarations) {
1928  SourceLocation Loc = Tok.getLocation();
1929
1930  switch (Tok.getKind()) {
1931  case tok::identifier:   // foo::bar
1932    // If we already have a type specifier, this identifier is not a type.
1933    if (DS.getTypeSpecType() != DeclSpec::TST_unspecified ||
1934        DS.getTypeSpecWidth() != DeclSpec::TSW_unspecified ||
1935        DS.getTypeSpecSign() != DeclSpec::TSS_unspecified)
1936      return false;
1937    // Check for need to substitute AltiVec keyword tokens.
1938    if (TryAltiVecToken(DS, Loc, PrevSpec, DiagID, isInvalid))
1939      break;
1940    // Fall through.
1941  case tok::kw_typename:  // typename foo::bar
1942    // Annotate typenames and C++ scope specifiers.  If we get one, just
1943    // recurse to handle whatever we get.
1944    if (TryAnnotateTypeOrScopeToken())
1945      return true;
1946    if (Tok.is(tok::identifier))
1947      return false;
1948    return ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec, DiagID,
1949                                      TemplateInfo, SuppressDeclarations);
1950  case tok::coloncolon:   // ::foo::bar
1951    if (NextToken().is(tok::kw_new) ||    // ::new
1952        NextToken().is(tok::kw_delete))   // ::delete
1953      return false;
1954
1955    // Annotate typenames and C++ scope specifiers.  If we get one, just
1956    // recurse to handle whatever we get.
1957    if (TryAnnotateTypeOrScopeToken())
1958      return true;
1959    return ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec, DiagID,
1960                                      TemplateInfo, SuppressDeclarations);
1961
1962  // simple-type-specifier:
1963  case tok::annot_typename: {
1964    if (ParsedType T = getTypeAnnotation(Tok)) {
1965      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename,
1966                                     Tok.getAnnotationEndLoc(), PrevSpec,
1967                                     DiagID, T);
1968    } else
1969      DS.SetTypeSpecError();
1970    DS.SetRangeEnd(Tok.getAnnotationEndLoc());
1971    ConsumeToken(); // The typename
1972
1973    // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
1974    // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
1975    // Objective-C interface.  If we don't have Objective-C or a '<', this is
1976    // just a normal reference to a typedef name.
1977    if (Tok.is(tok::less) && getLang().ObjC1)
1978      ParseObjCProtocolQualifiers(DS);
1979
1980    return true;
1981  }
1982
1983  case tok::kw_short:
1984    isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec, DiagID);
1985    break;
1986  case tok::kw_long:
1987    if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
1988      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec,
1989                                      DiagID);
1990    else
1991      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
1992                                      DiagID);
1993    break;
1994  case tok::kw___int64:
1995      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
1996                                      DiagID);
1997    break;
1998  case tok::kw_signed:
1999    isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec, DiagID);
2000    break;
2001  case tok::kw_unsigned:
2002    isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec,
2003                                   DiagID);
2004    break;
2005  case tok::kw__Complex:
2006    isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec,
2007                                      DiagID);
2008    break;
2009  case tok::kw__Imaginary:
2010    isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec,
2011                                      DiagID);
2012    break;
2013  case tok::kw_void:
2014    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec, DiagID);
2015    break;
2016  case tok::kw_char:
2017    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec, DiagID);
2018    break;
2019  case tok::kw_int:
2020    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec, DiagID);
2021    break;
2022  case tok::kw_float:
2023    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec, DiagID);
2024    break;
2025  case tok::kw_double:
2026    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec, DiagID);
2027    break;
2028  case tok::kw_wchar_t:
2029    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec, DiagID);
2030    break;
2031  case tok::kw_char16_t:
2032    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec, DiagID);
2033    break;
2034  case tok::kw_char32_t:
2035    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec, DiagID);
2036    break;
2037  case tok::kw_bool:
2038  case tok::kw__Bool:
2039    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec, DiagID);
2040    break;
2041  case tok::kw__Decimal32:
2042    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec,
2043                                   DiagID);
2044    break;
2045  case tok::kw__Decimal64:
2046    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec,
2047                                   DiagID);
2048    break;
2049  case tok::kw__Decimal128:
2050    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec,
2051                                   DiagID);
2052    break;
2053  case tok::kw___vector:
2054    isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID);
2055    break;
2056  case tok::kw___pixel:
2057    isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID);
2058    break;
2059
2060  // class-specifier:
2061  case tok::kw_class:
2062  case tok::kw_struct:
2063  case tok::kw_union: {
2064    tok::TokenKind Kind = Tok.getKind();
2065    ConsumeToken();
2066    ParseClassSpecifier(Kind, Loc, DS, TemplateInfo, AS_none,
2067                        SuppressDeclarations);
2068    return true;
2069  }
2070
2071  // enum-specifier:
2072  case tok::kw_enum:
2073    ConsumeToken();
2074    ParseEnumSpecifier(Loc, DS, TemplateInfo, AS_none);
2075    return true;
2076
2077  // cv-qualifier:
2078  case tok::kw_const:
2079    isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec,
2080                               DiagID, getLang());
2081    break;
2082  case tok::kw_volatile:
2083    isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec,
2084                               DiagID, getLang());
2085    break;
2086  case tok::kw_restrict:
2087    isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec,
2088                               DiagID, getLang());
2089    break;
2090
2091  // GNU typeof support.
2092  case tok::kw_typeof:
2093    ParseTypeofSpecifier(DS);
2094    return true;
2095
2096  // C++0x decltype support.
2097  case tok::kw_decltype:
2098    ParseDecltypeSpecifier(DS);
2099    return true;
2100
2101  // OpenCL qualifiers:
2102  case tok::kw_private:
2103    if (!getLang().OpenCL)
2104      return false;
2105  case tok::kw___private:
2106  case tok::kw___global:
2107  case tok::kw___local:
2108  case tok::kw___constant:
2109  case tok::kw___read_only:
2110  case tok::kw___write_only:
2111  case tok::kw___read_write:
2112    ParseOpenCLQualifiers(DS);
2113    break;
2114
2115  // C++0x auto support.
2116  case tok::kw_auto:
2117    if (!getLang().CPlusPlus0x)
2118      return false;
2119
2120    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec, DiagID);
2121    break;
2122
2123  case tok::kw___ptr64:
2124  case tok::kw___w64:
2125  case tok::kw___cdecl:
2126  case tok::kw___stdcall:
2127  case tok::kw___fastcall:
2128  case tok::kw___thiscall:
2129    ParseMicrosoftTypeAttributes(DS.getAttributes());
2130    return true;
2131
2132  case tok::kw___pascal:
2133    ParseBorlandTypeAttributes(DS.getAttributes());
2134    return true;
2135
2136  default:
2137    // Not a type-specifier; do nothing.
2138    return false;
2139  }
2140
2141  // If the specifier combination wasn't legal, issue a diagnostic.
2142  if (isInvalid) {
2143    assert(PrevSpec && "Method did not return previous specifier!");
2144    // Pick between error or extwarn.
2145    Diag(Tok, DiagID) << PrevSpec;
2146  }
2147  DS.SetRangeEnd(Tok.getLocation());
2148  ConsumeToken(); // whatever we parsed above.
2149  return true;
2150}
2151
2152/// ParseStructDeclaration - Parse a struct declaration without the terminating
2153/// semicolon.
2154///
2155///       struct-declaration:
2156///         specifier-qualifier-list struct-declarator-list
2157/// [GNU]   __extension__ struct-declaration
2158/// [GNU]   specifier-qualifier-list
2159///       struct-declarator-list:
2160///         struct-declarator
2161///         struct-declarator-list ',' struct-declarator
2162/// [GNU]   struct-declarator-list ',' attributes[opt] struct-declarator
2163///       struct-declarator:
2164///         declarator
2165/// [GNU]   declarator attributes[opt]
2166///         declarator[opt] ':' constant-expression
2167/// [GNU]   declarator[opt] ':' constant-expression attributes[opt]
2168///
2169void Parser::
2170ParseStructDeclaration(DeclSpec &DS, FieldCallback &Fields) {
2171  if (Tok.is(tok::kw___extension__)) {
2172    // __extension__ silences extension warnings in the subexpression.
2173    ExtensionRAIIObject O(Diags);  // Use RAII to do this.
2174    ConsumeToken();
2175    return ParseStructDeclaration(DS, Fields);
2176  }
2177
2178  // Parse the common specifier-qualifiers-list piece.
2179  ParseSpecifierQualifierList(DS);
2180
2181  // If there are no declarators, this is a free-standing declaration
2182  // specifier. Let the actions module cope with it.
2183  if (Tok.is(tok::semi)) {
2184    Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none, DS);
2185    return;
2186  }
2187
2188  // Read struct-declarators until we find the semicolon.
2189  bool FirstDeclarator = true;
2190  while (1) {
2191    ParsingDeclRAIIObject PD(*this);
2192    FieldDeclarator DeclaratorInfo(DS);
2193
2194    // Attributes are only allowed here on successive declarators.
2195    if (!FirstDeclarator)
2196      MaybeParseGNUAttributes(DeclaratorInfo.D);
2197
2198    /// struct-declarator: declarator
2199    /// struct-declarator: declarator[opt] ':' constant-expression
2200    if (Tok.isNot(tok::colon)) {
2201      // Don't parse FOO:BAR as if it were a typo for FOO::BAR.
2202      ColonProtectionRAIIObject X(*this);
2203      ParseDeclarator(DeclaratorInfo.D);
2204    }
2205
2206    if (Tok.is(tok::colon)) {
2207      ConsumeToken();
2208      ExprResult Res(ParseConstantExpression());
2209      if (Res.isInvalid())
2210        SkipUntil(tok::semi, true, true);
2211      else
2212        DeclaratorInfo.BitfieldSize = Res.release();
2213    }
2214
2215    // If attributes exist after the declarator, parse them.
2216    MaybeParseGNUAttributes(DeclaratorInfo.D);
2217
2218    // We're done with this declarator;  invoke the callback.
2219    Decl *D = Fields.invoke(DeclaratorInfo);
2220    PD.complete(D);
2221
2222    // If we don't have a comma, it is either the end of the list (a ';')
2223    // or an error, bail out.
2224    if (Tok.isNot(tok::comma))
2225      return;
2226
2227    // Consume the comma.
2228    ConsumeToken();
2229
2230    FirstDeclarator = false;
2231  }
2232}
2233
2234/// ParseStructUnionBody
2235///       struct-contents:
2236///         struct-declaration-list
2237/// [EXT]   empty
2238/// [GNU]   "struct-declaration-list" without terminatoring ';'
2239///       struct-declaration-list:
2240///         struct-declaration
2241///         struct-declaration-list struct-declaration
2242/// [OBC]   '@' 'defs' '(' class-name ')'
2243///
2244void Parser::ParseStructUnionBody(SourceLocation RecordLoc,
2245                                  unsigned TagType, Decl *TagDecl) {
2246  PrettyDeclStackTraceEntry CrashInfo(Actions, TagDecl, RecordLoc,
2247                                      "parsing struct/union body");
2248
2249  SourceLocation LBraceLoc = ConsumeBrace();
2250
2251  ParseScope StructScope(this, Scope::ClassScope|Scope::DeclScope);
2252  Actions.ActOnTagStartDefinition(getCurScope(), TagDecl);
2253
2254  // Empty structs are an extension in C (C99 6.7.2.1p7), but are allowed in
2255  // C++.
2256  if (Tok.is(tok::r_brace) && !getLang().CPlusPlus)
2257    Diag(Tok, diag::ext_empty_struct_union)
2258      << (TagType == TST_union);
2259
2260  llvm::SmallVector<Decl *, 32> FieldDecls;
2261
2262  // While we still have something to read, read the declarations in the struct.
2263  while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
2264    // Each iteration of this loop reads one struct-declaration.
2265
2266    // Check for extraneous top-level semicolon.
2267    if (Tok.is(tok::semi)) {
2268      Diag(Tok, diag::ext_extra_struct_semi)
2269        << DeclSpec::getSpecifierName((DeclSpec::TST)TagType)
2270        << FixItHint::CreateRemoval(Tok.getLocation());
2271      ConsumeToken();
2272      continue;
2273    }
2274
2275    // Parse all the comma separated declarators.
2276    DeclSpec DS(AttrFactory);
2277
2278    if (!Tok.is(tok::at)) {
2279      struct CFieldCallback : FieldCallback {
2280        Parser &P;
2281        Decl *TagDecl;
2282        llvm::SmallVectorImpl<Decl *> &FieldDecls;
2283
2284        CFieldCallback(Parser &P, Decl *TagDecl,
2285                       llvm::SmallVectorImpl<Decl *> &FieldDecls) :
2286          P(P), TagDecl(TagDecl), FieldDecls(FieldDecls) {}
2287
2288        virtual Decl *invoke(FieldDeclarator &FD) {
2289          // Install the declarator into the current TagDecl.
2290          Decl *Field = P.Actions.ActOnField(P.getCurScope(), TagDecl,
2291                              FD.D.getDeclSpec().getSourceRange().getBegin(),
2292                                                 FD.D, FD.BitfieldSize);
2293          FieldDecls.push_back(Field);
2294          return Field;
2295        }
2296      } Callback(*this, TagDecl, FieldDecls);
2297
2298      ParseStructDeclaration(DS, Callback);
2299    } else { // Handle @defs
2300      ConsumeToken();
2301      if (!Tok.isObjCAtKeyword(tok::objc_defs)) {
2302        Diag(Tok, diag::err_unexpected_at);
2303        SkipUntil(tok::semi, true);
2304        continue;
2305      }
2306      ConsumeToken();
2307      ExpectAndConsume(tok::l_paren, diag::err_expected_lparen);
2308      if (!Tok.is(tok::identifier)) {
2309        Diag(Tok, diag::err_expected_ident);
2310        SkipUntil(tok::semi, true);
2311        continue;
2312      }
2313      llvm::SmallVector<Decl *, 16> Fields;
2314      Actions.ActOnDefs(getCurScope(), TagDecl, Tok.getLocation(),
2315                        Tok.getIdentifierInfo(), Fields);
2316      FieldDecls.insert(FieldDecls.end(), Fields.begin(), Fields.end());
2317      ConsumeToken();
2318      ExpectAndConsume(tok::r_paren, diag::err_expected_rparen);
2319    }
2320
2321    if (Tok.is(tok::semi)) {
2322      ConsumeToken();
2323    } else if (Tok.is(tok::r_brace)) {
2324      ExpectAndConsume(tok::semi, diag::ext_expected_semi_decl_list);
2325      break;
2326    } else {
2327      ExpectAndConsume(tok::semi, diag::err_expected_semi_decl_list);
2328      // Skip to end of block or statement to avoid ext-warning on extra ';'.
2329      SkipUntil(tok::r_brace, true, true);
2330      // If we stopped at a ';', eat it.
2331      if (Tok.is(tok::semi)) ConsumeToken();
2332    }
2333  }
2334
2335  SourceLocation RBraceLoc = MatchRHSPunctuation(tok::r_brace, LBraceLoc);
2336
2337  ParsedAttributes attrs(AttrFactory);
2338  // If attributes exist after struct contents, parse them.
2339  MaybeParseGNUAttributes(attrs);
2340
2341  Actions.ActOnFields(getCurScope(),
2342                      RecordLoc, TagDecl, FieldDecls.data(), FieldDecls.size(),
2343                      LBraceLoc, RBraceLoc,
2344                      attrs.getList());
2345  StructScope.Exit();
2346  Actions.ActOnTagFinishDefinition(getCurScope(), TagDecl, RBraceLoc);
2347}
2348
2349/// ParseEnumSpecifier
2350///       enum-specifier: [C99 6.7.2.2]
2351///         'enum' identifier[opt] '{' enumerator-list '}'
2352///[C99/C++]'enum' identifier[opt] '{' enumerator-list ',' '}'
2353/// [GNU]   'enum' attributes[opt] identifier[opt] '{' enumerator-list ',' [opt]
2354///                                                 '}' attributes[opt]
2355///         'enum' identifier
2356/// [GNU]   'enum' attributes[opt] identifier
2357///
2358/// [C++0x] enum-head '{' enumerator-list[opt] '}'
2359/// [C++0x] enum-head '{' enumerator-list ','  '}'
2360///
2361///       enum-head: [C++0x]
2362///         enum-key attributes[opt] identifier[opt] enum-base[opt]
2363///         enum-key attributes[opt] nested-name-specifier identifier enum-base[opt]
2364///
2365///       enum-key: [C++0x]
2366///         'enum'
2367///         'enum' 'class'
2368///         'enum' 'struct'
2369///
2370///       enum-base: [C++0x]
2371///         ':' type-specifier-seq
2372///
2373/// [C++] elaborated-type-specifier:
2374/// [C++]   'enum' '::'[opt] nested-name-specifier[opt] identifier
2375///
2376void Parser::ParseEnumSpecifier(SourceLocation StartLoc, DeclSpec &DS,
2377                                const ParsedTemplateInfo &TemplateInfo,
2378                                AccessSpecifier AS) {
2379  // Parse the tag portion of this.
2380  if (Tok.is(tok::code_completion)) {
2381    // Code completion for an enum name.
2382    Actions.CodeCompleteTag(getCurScope(), DeclSpec::TST_enum);
2383    ConsumeCodeCompletionToken();
2384  }
2385
2386  // If attributes exist after tag, parse them.
2387  ParsedAttributes attrs(AttrFactory);
2388  MaybeParseGNUAttributes(attrs);
2389
2390  CXXScopeSpec &SS = DS.getTypeSpecScope();
2391  if (getLang().CPlusPlus) {
2392    if (ParseOptionalCXXScopeSpecifier(SS, ParsedType(), false))
2393      return;
2394
2395    if (SS.isSet() && Tok.isNot(tok::identifier)) {
2396      Diag(Tok, diag::err_expected_ident);
2397      if (Tok.isNot(tok::l_brace)) {
2398        // Has no name and is not a definition.
2399        // Skip the rest of this declarator, up until the comma or semicolon.
2400        SkipUntil(tok::comma, true);
2401        return;
2402      }
2403    }
2404  }
2405
2406  bool AllowFixedUnderlyingType = getLang().CPlusPlus0x || getLang().Microsoft;
2407  bool IsScopedEnum = false;
2408  bool IsScopedUsingClassTag = false;
2409
2410  if (getLang().CPlusPlus0x &&
2411      (Tok.is(tok::kw_class) || Tok.is(tok::kw_struct))) {
2412    IsScopedEnum = true;
2413    IsScopedUsingClassTag = Tok.is(tok::kw_class);
2414    ConsumeToken();
2415  }
2416
2417  // Must have either 'enum name' or 'enum {...}'.
2418  if (Tok.isNot(tok::identifier) && Tok.isNot(tok::l_brace) &&
2419      (AllowFixedUnderlyingType && Tok.isNot(tok::colon))) {
2420    Diag(Tok, diag::err_expected_ident_lbrace);
2421
2422    // Skip the rest of this declarator, up until the comma or semicolon.
2423    SkipUntil(tok::comma, true);
2424    return;
2425  }
2426
2427  // If an identifier is present, consume and remember it.
2428  IdentifierInfo *Name = 0;
2429  SourceLocation NameLoc;
2430  if (Tok.is(tok::identifier)) {
2431    Name = Tok.getIdentifierInfo();
2432    NameLoc = ConsumeToken();
2433  }
2434
2435  if (!Name && IsScopedEnum) {
2436    // C++0x 7.2p2: The optional identifier shall not be omitted in the
2437    // declaration of a scoped enumeration.
2438    Diag(Tok, diag::err_scoped_enum_missing_identifier);
2439    IsScopedEnum = false;
2440    IsScopedUsingClassTag = false;
2441  }
2442
2443  TypeResult BaseType;
2444
2445  // Parse the fixed underlying type.
2446  if (AllowFixedUnderlyingType && Tok.is(tok::colon)) {
2447    bool PossibleBitfield = false;
2448    if (getCurScope()->getFlags() & Scope::ClassScope) {
2449      // If we're in class scope, this can either be an enum declaration with
2450      // an underlying type, or a declaration of a bitfield member. We try to
2451      // use a simple disambiguation scheme first to catch the common cases
2452      // (integer literal, sizeof); if it's still ambiguous, we then consider
2453      // anything that's a simple-type-specifier followed by '(' as an
2454      // expression. This suffices because function types are not valid
2455      // underlying types anyway.
2456      TPResult TPR = isExpressionOrTypeSpecifierSimple(NextToken().getKind());
2457      // If the next token starts an expression, we know we're parsing a
2458      // bit-field. This is the common case.
2459      if (TPR == TPResult::True())
2460        PossibleBitfield = true;
2461      // If the next token starts a type-specifier-seq, it may be either a
2462      // a fixed underlying type or the start of a function-style cast in C++;
2463      // lookahead one more token to see if it's obvious that we have a
2464      // fixed underlying type.
2465      else if (TPR == TPResult::False() &&
2466               GetLookAheadToken(2).getKind() == tok::semi) {
2467        // Consume the ':'.
2468        ConsumeToken();
2469      } else {
2470        // We have the start of a type-specifier-seq, so we have to perform
2471        // tentative parsing to determine whether we have an expression or a
2472        // type.
2473        TentativeParsingAction TPA(*this);
2474
2475        // Consume the ':'.
2476        ConsumeToken();
2477
2478        if ((getLang().CPlusPlus &&
2479             isCXXDeclarationSpecifier() != TPResult::True()) ||
2480            (!getLang().CPlusPlus && !isDeclarationSpecifier(true))) {
2481          // We'll parse this as a bitfield later.
2482          PossibleBitfield = true;
2483          TPA.Revert();
2484        } else {
2485          // We have a type-specifier-seq.
2486          TPA.Commit();
2487        }
2488      }
2489    } else {
2490      // Consume the ':'.
2491      ConsumeToken();
2492    }
2493
2494    if (!PossibleBitfield) {
2495      SourceRange Range;
2496      BaseType = ParseTypeName(&Range);
2497
2498      if (!getLang().CPlusPlus0x)
2499        Diag(StartLoc, diag::ext_ms_enum_fixed_underlying_type)
2500          << Range;
2501    }
2502  }
2503
2504  // There are three options here.  If we have 'enum foo;', then this is a
2505  // forward declaration.  If we have 'enum foo {...' then this is a
2506  // definition. Otherwise we have something like 'enum foo xyz', a reference.
2507  //
2508  // This is needed to handle stuff like this right (C99 6.7.2.3p11):
2509  // enum foo {..};  void bar() { enum foo; }    <- new foo in bar.
2510  // enum foo {..};  void bar() { enum foo x; }  <- use of old foo.
2511  //
2512  Sema::TagUseKind TUK;
2513  if (Tok.is(tok::l_brace))
2514    TUK = Sema::TUK_Definition;
2515  else if (Tok.is(tok::semi))
2516    TUK = Sema::TUK_Declaration;
2517  else
2518    TUK = Sema::TUK_Reference;
2519
2520  // enums cannot be templates, although they can be referenced from a
2521  // template.
2522  if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate &&
2523      TUK != Sema::TUK_Reference) {
2524    Diag(Tok, diag::err_enum_template);
2525
2526    // Skip the rest of this declarator, up until the comma or semicolon.
2527    SkipUntil(tok::comma, true);
2528    return;
2529  }
2530
2531  if (!Name && TUK != Sema::TUK_Definition) {
2532    Diag(Tok, diag::err_enumerator_unnamed_no_def);
2533
2534    // Skip the rest of this declarator, up until the comma or semicolon.
2535    SkipUntil(tok::comma, true);
2536    return;
2537  }
2538
2539  bool Owned = false;
2540  bool IsDependent = false;
2541  const char *PrevSpec = 0;
2542  unsigned DiagID;
2543  Decl *TagDecl = Actions.ActOnTag(getCurScope(), DeclSpec::TST_enum, TUK,
2544                                   StartLoc, SS, Name, NameLoc, attrs.getList(),
2545                                   AS,
2546                                   MultiTemplateParamsArg(Actions),
2547                                   Owned, IsDependent, IsScopedEnum,
2548                                   IsScopedUsingClassTag, BaseType);
2549
2550  if (IsDependent) {
2551    // This enum has a dependent nested-name-specifier. Handle it as a
2552    // dependent tag.
2553    if (!Name) {
2554      DS.SetTypeSpecError();
2555      Diag(Tok, diag::err_expected_type_name_after_typename);
2556      return;
2557    }
2558
2559    TypeResult Type = Actions.ActOnDependentTag(getCurScope(), DeclSpec::TST_enum,
2560                                                TUK, SS, Name, StartLoc,
2561                                                NameLoc);
2562    if (Type.isInvalid()) {
2563      DS.SetTypeSpecError();
2564      return;
2565    }
2566
2567    if (DS.SetTypeSpecType(DeclSpec::TST_typename, StartLoc,
2568                           NameLoc.isValid() ? NameLoc : StartLoc,
2569                           PrevSpec, DiagID, Type.get()))
2570      Diag(StartLoc, DiagID) << PrevSpec;
2571
2572    return;
2573  }
2574
2575  if (!TagDecl) {
2576    // The action failed to produce an enumeration tag. If this is a
2577    // definition, consume the entire definition.
2578    if (Tok.is(tok::l_brace)) {
2579      ConsumeBrace();
2580      SkipUntil(tok::r_brace);
2581    }
2582
2583    DS.SetTypeSpecError();
2584    return;
2585  }
2586
2587  if (Tok.is(tok::l_brace))
2588    ParseEnumBody(StartLoc, TagDecl);
2589
2590  if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc,
2591                         NameLoc.isValid() ? NameLoc : StartLoc,
2592                         PrevSpec, DiagID, TagDecl, Owned))
2593    Diag(StartLoc, DiagID) << PrevSpec;
2594}
2595
2596/// ParseEnumBody - Parse a {} enclosed enumerator-list.
2597///       enumerator-list:
2598///         enumerator
2599///         enumerator-list ',' enumerator
2600///       enumerator:
2601///         enumeration-constant
2602///         enumeration-constant '=' constant-expression
2603///       enumeration-constant:
2604///         identifier
2605///
2606void Parser::ParseEnumBody(SourceLocation StartLoc, Decl *EnumDecl) {
2607  // Enter the scope of the enum body and start the definition.
2608  ParseScope EnumScope(this, Scope::DeclScope);
2609  Actions.ActOnTagStartDefinition(getCurScope(), EnumDecl);
2610
2611  SourceLocation LBraceLoc = ConsumeBrace();
2612
2613  // C does not allow an empty enumerator-list, C++ does [dcl.enum].
2614  if (Tok.is(tok::r_brace) && !getLang().CPlusPlus)
2615    Diag(Tok, diag::error_empty_enum);
2616
2617  llvm::SmallVector<Decl *, 32> EnumConstantDecls;
2618
2619  Decl *LastEnumConstDecl = 0;
2620
2621  // Parse the enumerator-list.
2622  while (Tok.is(tok::identifier)) {
2623    IdentifierInfo *Ident = Tok.getIdentifierInfo();
2624    SourceLocation IdentLoc = ConsumeToken();
2625
2626    // If attributes exist after the enumerator, parse them.
2627    ParsedAttributes attrs(AttrFactory);
2628    MaybeParseGNUAttributes(attrs);
2629
2630    SourceLocation EqualLoc;
2631    ExprResult AssignedVal;
2632    if (Tok.is(tok::equal)) {
2633      EqualLoc = ConsumeToken();
2634      AssignedVal = ParseConstantExpression();
2635      if (AssignedVal.isInvalid())
2636        SkipUntil(tok::comma, tok::r_brace, true, true);
2637    }
2638
2639    // Install the enumerator constant into EnumDecl.
2640    Decl *EnumConstDecl = Actions.ActOnEnumConstant(getCurScope(), EnumDecl,
2641                                                    LastEnumConstDecl,
2642                                                    IdentLoc, Ident,
2643                                                    attrs.getList(), EqualLoc,
2644                                                    AssignedVal.release());
2645    EnumConstantDecls.push_back(EnumConstDecl);
2646    LastEnumConstDecl = EnumConstDecl;
2647
2648    if (Tok.is(tok::identifier)) {
2649      // We're missing a comma between enumerators.
2650      SourceLocation Loc = PP.getLocForEndOfToken(PrevTokLocation);
2651      Diag(Loc, diag::err_enumerator_list_missing_comma)
2652        << FixItHint::CreateInsertion(Loc, ", ");
2653      continue;
2654    }
2655
2656    if (Tok.isNot(tok::comma))
2657      break;
2658    SourceLocation CommaLoc = ConsumeToken();
2659
2660    if (Tok.isNot(tok::identifier) &&
2661        !(getLang().C99 || getLang().CPlusPlus0x))
2662      Diag(CommaLoc, diag::ext_enumerator_list_comma)
2663        << getLang().CPlusPlus
2664        << FixItHint::CreateRemoval(CommaLoc);
2665  }
2666
2667  // Eat the }.
2668  SourceLocation RBraceLoc = MatchRHSPunctuation(tok::r_brace, LBraceLoc);
2669
2670  // If attributes exist after the identifier list, parse them.
2671  ParsedAttributes attrs(AttrFactory);
2672  MaybeParseGNUAttributes(attrs);
2673
2674  Actions.ActOnEnumBody(StartLoc, LBraceLoc, RBraceLoc, EnumDecl,
2675                        EnumConstantDecls.data(), EnumConstantDecls.size(),
2676                        getCurScope(), attrs.getList());
2677
2678  EnumScope.Exit();
2679  Actions.ActOnTagFinishDefinition(getCurScope(), EnumDecl, RBraceLoc);
2680}
2681
2682/// isTypeSpecifierQualifier - Return true if the current token could be the
2683/// start of a type-qualifier-list.
2684bool Parser::isTypeQualifier() const {
2685  switch (Tok.getKind()) {
2686  default: return false;
2687
2688    // type-qualifier only in OpenCL
2689  case tok::kw_private:
2690    return getLang().OpenCL;
2691
2692    // type-qualifier
2693  case tok::kw_const:
2694  case tok::kw_volatile:
2695  case tok::kw_restrict:
2696  case tok::kw___private:
2697  case tok::kw___local:
2698  case tok::kw___global:
2699  case tok::kw___constant:
2700  case tok::kw___read_only:
2701  case tok::kw___read_write:
2702  case tok::kw___write_only:
2703    return true;
2704  }
2705}
2706
2707/// isKnownToBeTypeSpecifier - Return true if we know that the specified token
2708/// is definitely a type-specifier.  Return false if it isn't part of a type
2709/// specifier or if we're not sure.
2710bool Parser::isKnownToBeTypeSpecifier(const Token &Tok) const {
2711  switch (Tok.getKind()) {
2712  default: return false;
2713    // type-specifiers
2714  case tok::kw_short:
2715  case tok::kw_long:
2716  case tok::kw___int64:
2717  case tok::kw_signed:
2718  case tok::kw_unsigned:
2719  case tok::kw__Complex:
2720  case tok::kw__Imaginary:
2721  case tok::kw_void:
2722  case tok::kw_char:
2723  case tok::kw_wchar_t:
2724  case tok::kw_char16_t:
2725  case tok::kw_char32_t:
2726  case tok::kw_int:
2727  case tok::kw_float:
2728  case tok::kw_double:
2729  case tok::kw_bool:
2730  case tok::kw__Bool:
2731  case tok::kw__Decimal32:
2732  case tok::kw__Decimal64:
2733  case tok::kw__Decimal128:
2734  case tok::kw___vector:
2735
2736    // struct-or-union-specifier (C99) or class-specifier (C++)
2737  case tok::kw_class:
2738  case tok::kw_struct:
2739  case tok::kw_union:
2740    // enum-specifier
2741  case tok::kw_enum:
2742
2743    // typedef-name
2744  case tok::annot_typename:
2745    return true;
2746  }
2747}
2748
2749/// isTypeSpecifierQualifier - Return true if the current token could be the
2750/// start of a specifier-qualifier-list.
2751bool Parser::isTypeSpecifierQualifier() {
2752  switch (Tok.getKind()) {
2753  default: return false;
2754
2755  case tok::identifier:   // foo::bar
2756    if (TryAltiVecVectorToken())
2757      return true;
2758    // Fall through.
2759  case tok::kw_typename:  // typename T::type
2760    // Annotate typenames and C++ scope specifiers.  If we get one, just
2761    // recurse to handle whatever we get.
2762    if (TryAnnotateTypeOrScopeToken())
2763      return true;
2764    if (Tok.is(tok::identifier))
2765      return false;
2766    return isTypeSpecifierQualifier();
2767
2768  case tok::coloncolon:   // ::foo::bar
2769    if (NextToken().is(tok::kw_new) ||    // ::new
2770        NextToken().is(tok::kw_delete))   // ::delete
2771      return false;
2772
2773    if (TryAnnotateTypeOrScopeToken())
2774      return true;
2775    return isTypeSpecifierQualifier();
2776
2777    // GNU attributes support.
2778  case tok::kw___attribute:
2779    // GNU typeof support.
2780  case tok::kw_typeof:
2781
2782    // type-specifiers
2783  case tok::kw_short:
2784  case tok::kw_long:
2785  case tok::kw___int64:
2786  case tok::kw_signed:
2787  case tok::kw_unsigned:
2788  case tok::kw__Complex:
2789  case tok::kw__Imaginary:
2790  case tok::kw_void:
2791  case tok::kw_char:
2792  case tok::kw_wchar_t:
2793  case tok::kw_char16_t:
2794  case tok::kw_char32_t:
2795  case tok::kw_int:
2796  case tok::kw_float:
2797  case tok::kw_double:
2798  case tok::kw_bool:
2799  case tok::kw__Bool:
2800  case tok::kw__Decimal32:
2801  case tok::kw__Decimal64:
2802  case tok::kw__Decimal128:
2803  case tok::kw___vector:
2804
2805    // struct-or-union-specifier (C99) or class-specifier (C++)
2806  case tok::kw_class:
2807  case tok::kw_struct:
2808  case tok::kw_union:
2809    // enum-specifier
2810  case tok::kw_enum:
2811
2812    // type-qualifier
2813  case tok::kw_const:
2814  case tok::kw_volatile:
2815  case tok::kw_restrict:
2816
2817    // typedef-name
2818  case tok::annot_typename:
2819    return true;
2820
2821    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
2822  case tok::less:
2823    return getLang().ObjC1;
2824
2825  case tok::kw___cdecl:
2826  case tok::kw___stdcall:
2827  case tok::kw___fastcall:
2828  case tok::kw___thiscall:
2829  case tok::kw___w64:
2830  case tok::kw___ptr64:
2831  case tok::kw___pascal:
2832
2833  case tok::kw___private:
2834  case tok::kw___local:
2835  case tok::kw___global:
2836  case tok::kw___constant:
2837  case tok::kw___read_only:
2838  case tok::kw___read_write:
2839  case tok::kw___write_only:
2840
2841    return true;
2842
2843  case tok::kw_private:
2844    return getLang().OpenCL;
2845  }
2846}
2847
2848/// isDeclarationSpecifier() - Return true if the current token is part of a
2849/// declaration specifier.
2850///
2851/// \param DisambiguatingWithExpression True to indicate that the purpose of
2852/// this check is to disambiguate between an expression and a declaration.
2853bool Parser::isDeclarationSpecifier(bool DisambiguatingWithExpression) {
2854  switch (Tok.getKind()) {
2855  default: return false;
2856
2857  case tok::kw_private:
2858    return getLang().OpenCL;
2859
2860  case tok::identifier:   // foo::bar
2861    // Unfortunate hack to support "Class.factoryMethod" notation.
2862    if (getLang().ObjC1 && NextToken().is(tok::period))
2863      return false;
2864    if (TryAltiVecVectorToken())
2865      return true;
2866    // Fall through.
2867  case tok::kw_typename: // typename T::type
2868    // Annotate typenames and C++ scope specifiers.  If we get one, just
2869    // recurse to handle whatever we get.
2870    if (TryAnnotateTypeOrScopeToken())
2871      return true;
2872    if (Tok.is(tok::identifier))
2873      return false;
2874
2875    // If we're in Objective-C and we have an Objective-C class type followed
2876    // by an identifier and then either ':' or ']', in a place where an
2877    // expression is permitted, then this is probably a class message send
2878    // missing the initial '['. In this case, we won't consider this to be
2879    // the start of a declaration.
2880    if (DisambiguatingWithExpression &&
2881        isStartOfObjCClassMessageMissingOpenBracket())
2882      return false;
2883
2884    return isDeclarationSpecifier();
2885
2886  case tok::coloncolon:   // ::foo::bar
2887    if (NextToken().is(tok::kw_new) ||    // ::new
2888        NextToken().is(tok::kw_delete))   // ::delete
2889      return false;
2890
2891    // Annotate typenames and C++ scope specifiers.  If we get one, just
2892    // recurse to handle whatever we get.
2893    if (TryAnnotateTypeOrScopeToken())
2894      return true;
2895    return isDeclarationSpecifier();
2896
2897    // storage-class-specifier
2898  case tok::kw_typedef:
2899  case tok::kw_extern:
2900  case tok::kw___private_extern__:
2901  case tok::kw_static:
2902  case tok::kw_auto:
2903  case tok::kw_register:
2904  case tok::kw___thread:
2905
2906    // type-specifiers
2907  case tok::kw_short:
2908  case tok::kw_long:
2909  case tok::kw___int64:
2910  case tok::kw_signed:
2911  case tok::kw_unsigned:
2912  case tok::kw__Complex:
2913  case tok::kw__Imaginary:
2914  case tok::kw_void:
2915  case tok::kw_char:
2916  case tok::kw_wchar_t:
2917  case tok::kw_char16_t:
2918  case tok::kw_char32_t:
2919
2920  case tok::kw_int:
2921  case tok::kw_float:
2922  case tok::kw_double:
2923  case tok::kw_bool:
2924  case tok::kw__Bool:
2925  case tok::kw__Decimal32:
2926  case tok::kw__Decimal64:
2927  case tok::kw__Decimal128:
2928  case tok::kw___vector:
2929
2930    // struct-or-union-specifier (C99) or class-specifier (C++)
2931  case tok::kw_class:
2932  case tok::kw_struct:
2933  case tok::kw_union:
2934    // enum-specifier
2935  case tok::kw_enum:
2936
2937    // type-qualifier
2938  case tok::kw_const:
2939  case tok::kw_volatile:
2940  case tok::kw_restrict:
2941
2942    // function-specifier
2943  case tok::kw_inline:
2944  case tok::kw_virtual:
2945  case tok::kw_explicit:
2946
2947    // static_assert-declaration
2948  case tok::kw__Static_assert:
2949
2950    // GNU typeof support.
2951  case tok::kw_typeof:
2952
2953    // GNU attributes.
2954  case tok::kw___attribute:
2955    return true;
2956
2957    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
2958  case tok::less:
2959    return getLang().ObjC1;
2960
2961    // typedef-name
2962  case tok::annot_typename:
2963    return !DisambiguatingWithExpression ||
2964           !isStartOfObjCClassMessageMissingOpenBracket();
2965
2966  case tok::kw___declspec:
2967  case tok::kw___cdecl:
2968  case tok::kw___stdcall:
2969  case tok::kw___fastcall:
2970  case tok::kw___thiscall:
2971  case tok::kw___w64:
2972  case tok::kw___ptr64:
2973  case tok::kw___forceinline:
2974  case tok::kw___pascal:
2975
2976  case tok::kw___private:
2977  case tok::kw___local:
2978  case tok::kw___global:
2979  case tok::kw___constant:
2980  case tok::kw___read_only:
2981  case tok::kw___read_write:
2982  case tok::kw___write_only:
2983
2984    return true;
2985  }
2986}
2987
2988bool Parser::isConstructorDeclarator() {
2989  TentativeParsingAction TPA(*this);
2990
2991  // Parse the C++ scope specifier.
2992  CXXScopeSpec SS;
2993  if (ParseOptionalCXXScopeSpecifier(SS, ParsedType(), true)) {
2994    TPA.Revert();
2995    return false;
2996  }
2997
2998  // Parse the constructor name.
2999  if (Tok.is(tok::identifier) || Tok.is(tok::annot_template_id)) {
3000    // We already know that we have a constructor name; just consume
3001    // the token.
3002    ConsumeToken();
3003  } else {
3004    TPA.Revert();
3005    return false;
3006  }
3007
3008  // Current class name must be followed by a left parentheses.
3009  if (Tok.isNot(tok::l_paren)) {
3010    TPA.Revert();
3011    return false;
3012  }
3013  ConsumeParen();
3014
3015  // A right parentheses or ellipsis signals that we have a constructor.
3016  if (Tok.is(tok::r_paren) || Tok.is(tok::ellipsis)) {
3017    TPA.Revert();
3018    return true;
3019  }
3020
3021  // If we need to, enter the specified scope.
3022  DeclaratorScopeObj DeclScopeObj(*this, SS);
3023  if (SS.isSet() && Actions.ShouldEnterDeclaratorScope(getCurScope(), SS))
3024    DeclScopeObj.EnterDeclaratorScope();
3025
3026  // Optionally skip Microsoft attributes.
3027  ParsedAttributes Attrs(AttrFactory);
3028  MaybeParseMicrosoftAttributes(Attrs);
3029
3030  // Check whether the next token(s) are part of a declaration
3031  // specifier, in which case we have the start of a parameter and,
3032  // therefore, we know that this is a constructor.
3033  bool IsConstructor = isDeclarationSpecifier();
3034  TPA.Revert();
3035  return IsConstructor;
3036}
3037
3038/// ParseTypeQualifierListOpt
3039///          type-qualifier-list: [C99 6.7.5]
3040///            type-qualifier
3041/// [vendor]   attributes
3042///              [ only if VendorAttributesAllowed=true ]
3043///            type-qualifier-list type-qualifier
3044/// [vendor]   type-qualifier-list attributes
3045///              [ only if VendorAttributesAllowed=true ]
3046/// [C++0x]    attribute-specifier[opt] is allowed before cv-qualifier-seq
3047///              [ only if CXX0XAttributesAllowed=true ]
3048/// Note: vendor can be GNU, MS, etc.
3049///
3050void Parser::ParseTypeQualifierListOpt(DeclSpec &DS,
3051                                       bool VendorAttributesAllowed,
3052                                       bool CXX0XAttributesAllowed) {
3053  if (getLang().CPlusPlus0x && isCXX0XAttributeSpecifier()) {
3054    SourceLocation Loc = Tok.getLocation();
3055    ParsedAttributesWithRange attrs(AttrFactory);
3056    ParseCXX0XAttributes(attrs);
3057    if (CXX0XAttributesAllowed)
3058      DS.takeAttributesFrom(attrs);
3059    else
3060      Diag(Loc, diag::err_attributes_not_allowed);
3061  }
3062
3063  SourceLocation EndLoc;
3064
3065  while (1) {
3066    bool isInvalid = false;
3067    const char *PrevSpec = 0;
3068    unsigned DiagID = 0;
3069    SourceLocation Loc = Tok.getLocation();
3070
3071    switch (Tok.getKind()) {
3072    case tok::code_completion:
3073      Actions.CodeCompleteTypeQualifiers(DS);
3074      ConsumeCodeCompletionToken();
3075      break;
3076
3077    case tok::kw_const:
3078      isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec, DiagID,
3079                                 getLang());
3080      break;
3081    case tok::kw_volatile:
3082      isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
3083                                 getLang());
3084      break;
3085    case tok::kw_restrict:
3086      isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
3087                                 getLang());
3088      break;
3089
3090    // OpenCL qualifiers:
3091    case tok::kw_private:
3092      if (!getLang().OpenCL)
3093        goto DoneWithTypeQuals;
3094    case tok::kw___private:
3095    case tok::kw___global:
3096    case tok::kw___local:
3097    case tok::kw___constant:
3098    case tok::kw___read_only:
3099    case tok::kw___write_only:
3100    case tok::kw___read_write:
3101      ParseOpenCLQualifiers(DS);
3102      break;
3103
3104    case tok::kw___w64:
3105    case tok::kw___ptr64:
3106    case tok::kw___cdecl:
3107    case tok::kw___stdcall:
3108    case tok::kw___fastcall:
3109    case tok::kw___thiscall:
3110      if (VendorAttributesAllowed) {
3111        ParseMicrosoftTypeAttributes(DS.getAttributes());
3112        continue;
3113      }
3114      goto DoneWithTypeQuals;
3115    case tok::kw___pascal:
3116      if (VendorAttributesAllowed) {
3117        ParseBorlandTypeAttributes(DS.getAttributes());
3118        continue;
3119      }
3120      goto DoneWithTypeQuals;
3121    case tok::kw___attribute:
3122      if (VendorAttributesAllowed) {
3123        ParseGNUAttributes(DS.getAttributes());
3124        continue; // do *not* consume the next token!
3125      }
3126      // otherwise, FALL THROUGH!
3127    default:
3128      DoneWithTypeQuals:
3129      // If this is not a type-qualifier token, we're done reading type
3130      // qualifiers.  First verify that DeclSpec's are consistent.
3131      DS.Finish(Diags, PP);
3132      if (EndLoc.isValid())
3133        DS.SetRangeEnd(EndLoc);
3134      return;
3135    }
3136
3137    // If the specifier combination wasn't legal, issue a diagnostic.
3138    if (isInvalid) {
3139      assert(PrevSpec && "Method did not return previous specifier!");
3140      Diag(Tok, DiagID) << PrevSpec;
3141    }
3142    EndLoc = ConsumeToken();
3143  }
3144}
3145
3146
3147/// ParseDeclarator - Parse and verify a newly-initialized declarator.
3148///
3149void Parser::ParseDeclarator(Declarator &D) {
3150  /// This implements the 'declarator' production in the C grammar, then checks
3151  /// for well-formedness and issues diagnostics.
3152  ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
3153}
3154
3155/// ParseDeclaratorInternal - Parse a C or C++ declarator. The direct-declarator
3156/// is parsed by the function passed to it. Pass null, and the direct-declarator
3157/// isn't parsed at all, making this function effectively parse the C++
3158/// ptr-operator production.
3159///
3160///       declarator: [C99 6.7.5] [C++ 8p4, dcl.decl]
3161/// [C]     pointer[opt] direct-declarator
3162/// [C++]   direct-declarator
3163/// [C++]   ptr-operator declarator
3164///
3165///       pointer: [C99 6.7.5]
3166///         '*' type-qualifier-list[opt]
3167///         '*' type-qualifier-list[opt] pointer
3168///
3169///       ptr-operator:
3170///         '*' cv-qualifier-seq[opt]
3171///         '&'
3172/// [C++0x] '&&'
3173/// [GNU]   '&' restrict[opt] attributes[opt]
3174/// [GNU?]  '&&' restrict[opt] attributes[opt]
3175///         '::'[opt] nested-name-specifier '*' cv-qualifier-seq[opt]
3176void Parser::ParseDeclaratorInternal(Declarator &D,
3177                                     DirectDeclParseFunction DirectDeclParser) {
3178  if (Diags.hasAllExtensionsSilenced())
3179    D.setExtension();
3180
3181  // C++ member pointers start with a '::' or a nested-name.
3182  // Member pointers get special handling, since there's no place for the
3183  // scope spec in the generic path below.
3184  if (getLang().CPlusPlus &&
3185      (Tok.is(tok::coloncolon) || Tok.is(tok::identifier) ||
3186       Tok.is(tok::annot_cxxscope))) {
3187    CXXScopeSpec SS;
3188    ParseOptionalCXXScopeSpecifier(SS, ParsedType(), true); // ignore fail
3189
3190    if (SS.isNotEmpty()) {
3191      if (Tok.isNot(tok::star)) {
3192        // The scope spec really belongs to the direct-declarator.
3193        D.getCXXScopeSpec() = SS;
3194        if (DirectDeclParser)
3195          (this->*DirectDeclParser)(D);
3196        return;
3197      }
3198
3199      SourceLocation Loc = ConsumeToken();
3200      D.SetRangeEnd(Loc);
3201      DeclSpec DS(AttrFactory);
3202      ParseTypeQualifierListOpt(DS);
3203      D.ExtendWithDeclSpec(DS);
3204
3205      // Recurse to parse whatever is left.
3206      ParseDeclaratorInternal(D, DirectDeclParser);
3207
3208      // Sema will have to catch (syntactically invalid) pointers into global
3209      // scope. It has to catch pointers into namespace scope anyway.
3210      D.AddTypeInfo(DeclaratorChunk::getMemberPointer(SS,DS.getTypeQualifiers(),
3211                                                      Loc),
3212                    DS.getAttributes(),
3213                    /* Don't replace range end. */SourceLocation());
3214      return;
3215    }
3216  }
3217
3218  tok::TokenKind Kind = Tok.getKind();
3219  // Not a pointer, C++ reference, or block.
3220  if (Kind != tok::star && Kind != tok::caret &&
3221      (Kind != tok::amp || !getLang().CPlusPlus) &&
3222      // We parse rvalue refs in C++03, because otherwise the errors are scary.
3223      (Kind != tok::ampamp || !getLang().CPlusPlus)) {
3224    if (DirectDeclParser)
3225      (this->*DirectDeclParser)(D);
3226    return;
3227  }
3228
3229  // Otherwise, '*' -> pointer, '^' -> block, '&' -> lvalue reference,
3230  // '&&' -> rvalue reference
3231  SourceLocation Loc = ConsumeToken();  // Eat the *, ^, & or &&.
3232  D.SetRangeEnd(Loc);
3233
3234  if (Kind == tok::star || Kind == tok::caret) {
3235    // Is a pointer.
3236    DeclSpec DS(AttrFactory);
3237
3238    ParseTypeQualifierListOpt(DS);
3239    D.ExtendWithDeclSpec(DS);
3240
3241    // Recursively parse the declarator.
3242    ParseDeclaratorInternal(D, DirectDeclParser);
3243    if (Kind == tok::star)
3244      // Remember that we parsed a pointer type, and remember the type-quals.
3245      D.AddTypeInfo(DeclaratorChunk::getPointer(DS.getTypeQualifiers(), Loc,
3246                                                DS.getConstSpecLoc(),
3247                                                DS.getVolatileSpecLoc(),
3248                                                DS.getRestrictSpecLoc()),
3249                    DS.getAttributes(),
3250                    SourceLocation());
3251    else
3252      // Remember that we parsed a Block type, and remember the type-quals.
3253      D.AddTypeInfo(DeclaratorChunk::getBlockPointer(DS.getTypeQualifiers(),
3254                                                     Loc),
3255                    DS.getAttributes(),
3256                    SourceLocation());
3257  } else {
3258    // Is a reference
3259    DeclSpec DS(AttrFactory);
3260
3261    // Complain about rvalue references in C++03, but then go on and build
3262    // the declarator.
3263    if (Kind == tok::ampamp && !getLang().CPlusPlus0x)
3264      Diag(Loc, diag::ext_rvalue_reference);
3265
3266    // C++ 8.3.2p1: cv-qualified references are ill-formed except when the
3267    // cv-qualifiers are introduced through the use of a typedef or of a
3268    // template type argument, in which case the cv-qualifiers are ignored.
3269    //
3270    // [GNU] Retricted references are allowed.
3271    // [GNU] Attributes on references are allowed.
3272    // [C++0x] Attributes on references are not allowed.
3273    ParseTypeQualifierListOpt(DS, true, false);
3274    D.ExtendWithDeclSpec(DS);
3275
3276    if (DS.getTypeQualifiers() != DeclSpec::TQ_unspecified) {
3277      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3278        Diag(DS.getConstSpecLoc(),
3279             diag::err_invalid_reference_qualifier_application) << "const";
3280      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3281        Diag(DS.getVolatileSpecLoc(),
3282             diag::err_invalid_reference_qualifier_application) << "volatile";
3283    }
3284
3285    // Recursively parse the declarator.
3286    ParseDeclaratorInternal(D, DirectDeclParser);
3287
3288    if (D.getNumTypeObjects() > 0) {
3289      // C++ [dcl.ref]p4: There shall be no references to references.
3290      DeclaratorChunk& InnerChunk = D.getTypeObject(D.getNumTypeObjects() - 1);
3291      if (InnerChunk.Kind == DeclaratorChunk::Reference) {
3292        if (const IdentifierInfo *II = D.getIdentifier())
3293          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
3294           << II;
3295        else
3296          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
3297            << "type name";
3298
3299        // Once we've complained about the reference-to-reference, we
3300        // can go ahead and build the (technically ill-formed)
3301        // declarator: reference collapsing will take care of it.
3302      }
3303    }
3304
3305    // Remember that we parsed a reference type. It doesn't have type-quals.
3306    D.AddTypeInfo(DeclaratorChunk::getReference(DS.getTypeQualifiers(), Loc,
3307                                                Kind == tok::amp),
3308                  DS.getAttributes(),
3309                  SourceLocation());
3310  }
3311}
3312
3313/// ParseDirectDeclarator
3314///       direct-declarator: [C99 6.7.5]
3315/// [C99]   identifier
3316///         '(' declarator ')'
3317/// [GNU]   '(' attributes declarator ')'
3318/// [C90]   direct-declarator '[' constant-expression[opt] ']'
3319/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
3320/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
3321/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
3322/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
3323///         direct-declarator '(' parameter-type-list ')'
3324///         direct-declarator '(' identifier-list[opt] ')'
3325/// [GNU]   direct-declarator '(' parameter-forward-declarations
3326///                    parameter-type-list[opt] ')'
3327/// [C++]   direct-declarator '(' parameter-declaration-clause ')'
3328///                    cv-qualifier-seq[opt] exception-specification[opt]
3329/// [C++]   declarator-id
3330///
3331///       declarator-id: [C++ 8]
3332///         '...'[opt] id-expression
3333///         '::'[opt] nested-name-specifier[opt] type-name
3334///
3335///       id-expression: [C++ 5.1]
3336///         unqualified-id
3337///         qualified-id
3338///
3339///       unqualified-id: [C++ 5.1]
3340///         identifier
3341///         operator-function-id
3342///         conversion-function-id
3343///          '~' class-name
3344///         template-id
3345///
3346void Parser::ParseDirectDeclarator(Declarator &D) {
3347  DeclaratorScopeObj DeclScopeObj(*this, D.getCXXScopeSpec());
3348
3349  if (getLang().CPlusPlus && D.mayHaveIdentifier()) {
3350    // ParseDeclaratorInternal might already have parsed the scope.
3351    if (D.getCXXScopeSpec().isEmpty()) {
3352      ParseOptionalCXXScopeSpecifier(D.getCXXScopeSpec(), ParsedType(), true);
3353    }
3354
3355    if (D.getCXXScopeSpec().isValid()) {
3356      if (Actions.ShouldEnterDeclaratorScope(getCurScope(), D.getCXXScopeSpec()))
3357        // Change the declaration context for name lookup, until this function
3358        // is exited (and the declarator has been parsed).
3359        DeclScopeObj.EnterDeclaratorScope();
3360    }
3361
3362    // C++0x [dcl.fct]p14:
3363    //   There is a syntactic ambiguity when an ellipsis occurs at the end
3364    //   of a parameter-declaration-clause without a preceding comma. In
3365    //   this case, the ellipsis is parsed as part of the
3366    //   abstract-declarator if the type of the parameter names a template
3367    //   parameter pack that has not been expanded; otherwise, it is parsed
3368    //   as part of the parameter-declaration-clause.
3369    if (Tok.is(tok::ellipsis) &&
3370        !((D.getContext() == Declarator::PrototypeContext ||
3371           D.getContext() == Declarator::BlockLiteralContext) &&
3372          NextToken().is(tok::r_paren) &&
3373          !Actions.containsUnexpandedParameterPacks(D)))
3374      D.setEllipsisLoc(ConsumeToken());
3375
3376    if (Tok.is(tok::identifier) || Tok.is(tok::kw_operator) ||
3377        Tok.is(tok::annot_template_id) || Tok.is(tok::tilde)) {
3378      // We found something that indicates the start of an unqualified-id.
3379      // Parse that unqualified-id.
3380      bool AllowConstructorName;
3381      if (D.getDeclSpec().hasTypeSpecifier())
3382        AllowConstructorName = false;
3383      else if (D.getCXXScopeSpec().isSet())
3384        AllowConstructorName =
3385          (D.getContext() == Declarator::FileContext ||
3386           (D.getContext() == Declarator::MemberContext &&
3387            D.getDeclSpec().isFriendSpecified()));
3388      else
3389        AllowConstructorName = (D.getContext() == Declarator::MemberContext);
3390
3391      if (ParseUnqualifiedId(D.getCXXScopeSpec(),
3392                             /*EnteringContext=*/true,
3393                             /*AllowDestructorName=*/true,
3394                             AllowConstructorName,
3395                             ParsedType(),
3396                             D.getName()) ||
3397          // Once we're past the identifier, if the scope was bad, mark the
3398          // whole declarator bad.
3399          D.getCXXScopeSpec().isInvalid()) {
3400        D.SetIdentifier(0, Tok.getLocation());
3401        D.setInvalidType(true);
3402      } else {
3403        // Parsed the unqualified-id; update range information and move along.
3404        if (D.getSourceRange().getBegin().isInvalid())
3405          D.SetRangeBegin(D.getName().getSourceRange().getBegin());
3406        D.SetRangeEnd(D.getName().getSourceRange().getEnd());
3407      }
3408      goto PastIdentifier;
3409    }
3410  } else if (Tok.is(tok::identifier) && D.mayHaveIdentifier()) {
3411    assert(!getLang().CPlusPlus &&
3412           "There's a C++-specific check for tok::identifier above");
3413    assert(Tok.getIdentifierInfo() && "Not an identifier?");
3414    D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
3415    ConsumeToken();
3416    goto PastIdentifier;
3417  }
3418
3419  if (Tok.is(tok::l_paren)) {
3420    // direct-declarator: '(' declarator ')'
3421    // direct-declarator: '(' attributes declarator ')'
3422    // Example: 'char (*X)'   or 'int (*XX)(void)'
3423    ParseParenDeclarator(D);
3424
3425    // If the declarator was parenthesized, we entered the declarator
3426    // scope when parsing the parenthesized declarator, then exited
3427    // the scope already. Re-enter the scope, if we need to.
3428    if (D.getCXXScopeSpec().isSet()) {
3429      // If there was an error parsing parenthesized declarator, declarator
3430      // scope may have been enterred before. Don't do it again.
3431      if (!D.isInvalidType() &&
3432          Actions.ShouldEnterDeclaratorScope(getCurScope(), D.getCXXScopeSpec()))
3433        // Change the declaration context for name lookup, until this function
3434        // is exited (and the declarator has been parsed).
3435        DeclScopeObj.EnterDeclaratorScope();
3436    }
3437  } else if (D.mayOmitIdentifier()) {
3438    // This could be something simple like "int" (in which case the declarator
3439    // portion is empty), if an abstract-declarator is allowed.
3440    D.SetIdentifier(0, Tok.getLocation());
3441  } else {
3442    if (D.getContext() == Declarator::MemberContext)
3443      Diag(Tok, diag::err_expected_member_name_or_semi)
3444        << D.getDeclSpec().getSourceRange();
3445    else if (getLang().CPlusPlus)
3446      Diag(Tok, diag::err_expected_unqualified_id) << getLang().CPlusPlus;
3447    else
3448      Diag(Tok, diag::err_expected_ident_lparen);
3449    D.SetIdentifier(0, Tok.getLocation());
3450    D.setInvalidType(true);
3451  }
3452
3453 PastIdentifier:
3454  assert(D.isPastIdentifier() &&
3455         "Haven't past the location of the identifier yet?");
3456
3457  // Don't parse attributes unless we have an identifier.
3458  if (D.getIdentifier())
3459    MaybeParseCXX0XAttributes(D);
3460
3461  while (1) {
3462    if (Tok.is(tok::l_paren)) {
3463      // The paren may be part of a C++ direct initializer, eg. "int x(1);".
3464      // In such a case, check if we actually have a function declarator; if it
3465      // is not, the declarator has been fully parsed.
3466      if (getLang().CPlusPlus && D.mayBeFollowedByCXXDirectInit()) {
3467        // When not in file scope, warn for ambiguous function declarators, just
3468        // in case the author intended it as a variable definition.
3469        bool warnIfAmbiguous = D.getContext() != Declarator::FileContext;
3470        if (!isCXXFunctionDeclarator(warnIfAmbiguous))
3471          break;
3472      }
3473      ParsedAttributes attrs(AttrFactory);
3474      ParseFunctionDeclarator(ConsumeParen(), D, attrs);
3475    } else if (Tok.is(tok::l_square)) {
3476      ParseBracketDeclarator(D);
3477    } else {
3478      break;
3479    }
3480  }
3481}
3482
3483/// ParseParenDeclarator - We parsed the declarator D up to a paren.  This is
3484/// only called before the identifier, so these are most likely just grouping
3485/// parens for precedence.  If we find that these are actually function
3486/// parameter parens in an abstract-declarator, we call ParseFunctionDeclarator.
3487///
3488///       direct-declarator:
3489///         '(' declarator ')'
3490/// [GNU]   '(' attributes declarator ')'
3491///         direct-declarator '(' parameter-type-list ')'
3492///         direct-declarator '(' identifier-list[opt] ')'
3493/// [GNU]   direct-declarator '(' parameter-forward-declarations
3494///                    parameter-type-list[opt] ')'
3495///
3496void Parser::ParseParenDeclarator(Declarator &D) {
3497  SourceLocation StartLoc = ConsumeParen();
3498  assert(!D.isPastIdentifier() && "Should be called before passing identifier");
3499
3500  // Eat any attributes before we look at whether this is a grouping or function
3501  // declarator paren.  If this is a grouping paren, the attribute applies to
3502  // the type being built up, for example:
3503  //     int (__attribute__(()) *x)(long y)
3504  // If this ends up not being a grouping paren, the attribute applies to the
3505  // first argument, for example:
3506  //     int (__attribute__(()) int x)
3507  // In either case, we need to eat any attributes to be able to determine what
3508  // sort of paren this is.
3509  //
3510  ParsedAttributes attrs(AttrFactory);
3511  bool RequiresArg = false;
3512  if (Tok.is(tok::kw___attribute)) {
3513    ParseGNUAttributes(attrs);
3514
3515    // We require that the argument list (if this is a non-grouping paren) be
3516    // present even if the attribute list was empty.
3517    RequiresArg = true;
3518  }
3519  // Eat any Microsoft extensions.
3520  if  (Tok.is(tok::kw___cdecl) || Tok.is(tok::kw___stdcall) ||
3521       Tok.is(tok::kw___thiscall) || Tok.is(tok::kw___fastcall) ||
3522       Tok.is(tok::kw___w64) || Tok.is(tok::kw___ptr64)) {
3523    ParseMicrosoftTypeAttributes(attrs);
3524  }
3525  // Eat any Borland extensions.
3526  if  (Tok.is(tok::kw___pascal))
3527    ParseBorlandTypeAttributes(attrs);
3528
3529  // If we haven't past the identifier yet (or where the identifier would be
3530  // stored, if this is an abstract declarator), then this is probably just
3531  // grouping parens. However, if this could be an abstract-declarator, then
3532  // this could also be the start of function arguments (consider 'void()').
3533  bool isGrouping;
3534
3535  if (!D.mayOmitIdentifier()) {
3536    // If this can't be an abstract-declarator, this *must* be a grouping
3537    // paren, because we haven't seen the identifier yet.
3538    isGrouping = true;
3539  } else if (Tok.is(tok::r_paren) ||           // 'int()' is a function.
3540             (getLang().CPlusPlus && Tok.is(tok::ellipsis)) || // C++ int(...)
3541             isDeclarationSpecifier()) {       // 'int(int)' is a function.
3542    // This handles C99 6.7.5.3p11: in "typedef int X; void foo(X)", X is
3543    // considered to be a type, not a K&R identifier-list.
3544    isGrouping = false;
3545  } else {
3546    // Otherwise, this is a grouping paren, e.g. 'int (*X)' or 'int(X)'.
3547    isGrouping = true;
3548  }
3549
3550  // If this is a grouping paren, handle:
3551  // direct-declarator: '(' declarator ')'
3552  // direct-declarator: '(' attributes declarator ')'
3553  if (isGrouping) {
3554    bool hadGroupingParens = D.hasGroupingParens();
3555    D.setGroupingParens(true);
3556
3557    ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
3558    // Match the ')'.
3559    SourceLocation EndLoc = MatchRHSPunctuation(tok::r_paren, StartLoc);
3560    D.AddTypeInfo(DeclaratorChunk::getParen(StartLoc, EndLoc),
3561                  attrs, EndLoc);
3562
3563    D.setGroupingParens(hadGroupingParens);
3564    return;
3565  }
3566
3567  // Okay, if this wasn't a grouping paren, it must be the start of a function
3568  // argument list.  Recognize that this declarator will never have an
3569  // identifier (and remember where it would have been), then call into
3570  // ParseFunctionDeclarator to handle of argument list.
3571  D.SetIdentifier(0, Tok.getLocation());
3572
3573  ParseFunctionDeclarator(StartLoc, D, attrs, RequiresArg);
3574}
3575
3576/// ParseFunctionDeclarator - We are after the identifier and have parsed the
3577/// declarator D up to a paren, which indicates that we are parsing function
3578/// arguments.
3579///
3580/// If AttrList is non-null, then the caller parsed those arguments immediately
3581/// after the open paren - they should be considered to be the first argument of
3582/// a parameter.  If RequiresArg is true, then the first argument of the
3583/// function is required to be present and required to not be an identifier
3584/// list.
3585///
3586/// This method also handles this portion of the grammar:
3587///       parameter-type-list: [C99 6.7.5]
3588///         parameter-list
3589///         parameter-list ',' '...'
3590/// [C++]   parameter-list '...'
3591///
3592///       parameter-list: [C99 6.7.5]
3593///         parameter-declaration
3594///         parameter-list ',' parameter-declaration
3595///
3596///       parameter-declaration: [C99 6.7.5]
3597///         declaration-specifiers declarator
3598/// [C++]   declaration-specifiers declarator '=' assignment-expression
3599/// [GNU]   declaration-specifiers declarator attributes
3600///         declaration-specifiers abstract-declarator[opt]
3601/// [C++]   declaration-specifiers abstract-declarator[opt]
3602///           '=' assignment-expression
3603/// [GNU]   declaration-specifiers abstract-declarator[opt] attributes
3604///
3605/// For C++, after the parameter-list, it also parses "cv-qualifier-seq[opt]",
3606/// C++0x "ref-qualifier[opt]" and "exception-specification[opt]".
3607///
3608/// [C++0x] exception-specification:
3609///           dynamic-exception-specification
3610///           noexcept-specification
3611///
3612void Parser::ParseFunctionDeclarator(SourceLocation LParenLoc, Declarator &D,
3613                                     ParsedAttributes &attrs,
3614                                     bool RequiresArg) {
3615  // lparen is already consumed!
3616  assert(D.isPastIdentifier() && "Should not call before identifier!");
3617
3618  ParsedType TrailingReturnType;
3619
3620  // This parameter list may be empty.
3621  if (Tok.is(tok::r_paren)) {
3622    if (RequiresArg)
3623      Diag(Tok, diag::err_argument_required_after_attribute);
3624
3625    SourceLocation EndLoc = ConsumeParen();  // Eat the closing ')'.
3626
3627    // cv-qualifier-seq[opt].
3628    DeclSpec DS(AttrFactory);
3629    SourceLocation RefQualifierLoc;
3630    bool RefQualifierIsLValueRef = true;
3631    ExceptionSpecificationType ESpecType = EST_None;
3632    SourceRange ESpecRange;
3633    llvm::SmallVector<ParsedType, 2> DynamicExceptions;
3634    llvm::SmallVector<SourceRange, 2> DynamicExceptionRanges;
3635    ExprResult NoexceptExpr;
3636    if (getLang().CPlusPlus) {
3637      MaybeParseCXX0XAttributes(attrs);
3638
3639      ParseTypeQualifierListOpt(DS, false /*no attributes*/);
3640      if (!DS.getSourceRange().getEnd().isInvalid())
3641        EndLoc = DS.getSourceRange().getEnd();
3642
3643      // Parse ref-qualifier[opt]
3644      if (Tok.is(tok::amp) || Tok.is(tok::ampamp)) {
3645        if (!getLang().CPlusPlus0x)
3646          Diag(Tok, diag::ext_ref_qualifier);
3647
3648        RefQualifierIsLValueRef = Tok.is(tok::amp);
3649        RefQualifierLoc = ConsumeToken();
3650        EndLoc = RefQualifierLoc;
3651      }
3652
3653      // Parse exception-specification[opt].
3654      ESpecType = MaybeParseExceptionSpecification(ESpecRange,
3655                                                   DynamicExceptions,
3656                                                   DynamicExceptionRanges,
3657                                                   NoexceptExpr);
3658      if (ESpecType != EST_None)
3659        EndLoc = ESpecRange.getEnd();
3660
3661      // Parse trailing-return-type.
3662      if (getLang().CPlusPlus0x && Tok.is(tok::arrow)) {
3663        TrailingReturnType = ParseTrailingReturnType().get();
3664      }
3665    }
3666
3667    // Remember that we parsed a function type, and remember the attributes.
3668    // int() -> no prototype, no '...'.
3669    D.AddTypeInfo(DeclaratorChunk::getFunction(/*prototype*/getLang().CPlusPlus,
3670                                               /*variadic*/ false,
3671                                               SourceLocation(),
3672                                               /*arglist*/ 0, 0,
3673                                               DS.getTypeQualifiers(),
3674                                               RefQualifierIsLValueRef,
3675                                               RefQualifierLoc,
3676                                               ESpecType, ESpecRange.getBegin(),
3677                                               DynamicExceptions.data(),
3678                                               DynamicExceptionRanges.data(),
3679                                               DynamicExceptions.size(),
3680                                               NoexceptExpr.isUsable() ?
3681                                                 NoexceptExpr.get() : 0,
3682                                               LParenLoc, EndLoc, D,
3683                                               TrailingReturnType),
3684                  attrs, EndLoc);
3685    return;
3686  }
3687
3688  // Alternatively, this parameter list may be an identifier list form for a
3689  // K&R-style function:  void foo(a,b,c)
3690  if (!getLang().CPlusPlus && Tok.is(tok::identifier)
3691      && !TryAltiVecVectorToken()) {
3692    if (TryAnnotateTypeOrScopeToken() || !Tok.is(tok::annot_typename)) {
3693      // K&R identifier lists can't have typedefs as identifiers, per
3694      // C99 6.7.5.3p11.
3695      if (RequiresArg)
3696        Diag(Tok, diag::err_argument_required_after_attribute);
3697
3698      // Identifier list.  Note that '(' identifier-list ')' is only allowed for
3699      // normal declarators, not for abstract-declarators.  Get the first
3700      // identifier.
3701      Token FirstTok = Tok;
3702      ConsumeToken();  // eat the first identifier.
3703
3704      // Identifier lists follow a really simple grammar: the identifiers can
3705      // be followed *only* by a ", moreidentifiers" or ")".  However, K&R
3706      // identifier lists are really rare in the brave new modern world, and it
3707      // is very common for someone to typo a type in a non-k&r style list.  If
3708      // we are presented with something like: "void foo(intptr x, float y)",
3709      // we don't want to start parsing the function declarator as though it is
3710      // a K&R style declarator just because intptr is an invalid type.
3711      //
3712      // To handle this, we check to see if the token after the first identifier
3713      // is a "," or ")".  Only if so, do we parse it as an identifier list.
3714      if (Tok.is(tok::comma) || Tok.is(tok::r_paren))
3715        return ParseFunctionDeclaratorIdentifierList(LParenLoc,
3716                                                   FirstTok.getIdentifierInfo(),
3717                                                     FirstTok.getLocation(), D);
3718
3719      // If we get here, the code is invalid.  Push the first identifier back
3720      // into the token stream and parse the first argument as an (invalid)
3721      // normal argument declarator.
3722      PP.EnterToken(Tok);
3723      Tok = FirstTok;
3724    }
3725  }
3726
3727  // Finally, a normal, non-empty parameter type list.
3728
3729  // Build up an array of information about the parsed arguments.
3730  llvm::SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
3731
3732  // Enter function-declaration scope, limiting any declarators to the
3733  // function prototype scope, including parameter declarators.
3734  ParseScope PrototypeScope(this,
3735                            Scope::FunctionPrototypeScope|Scope::DeclScope);
3736
3737  bool IsVariadic = false;
3738  SourceLocation EllipsisLoc;
3739  while (1) {
3740    if (Tok.is(tok::ellipsis)) {
3741      IsVariadic = true;
3742      EllipsisLoc = ConsumeToken();     // Consume the ellipsis.
3743      break;
3744    }
3745
3746    // Parse the declaration-specifiers.
3747    // Just use the ParsingDeclaration "scope" of the declarator.
3748    DeclSpec DS(AttrFactory);
3749
3750    // Skip any Microsoft attributes before a param.
3751    if (getLang().Microsoft && Tok.is(tok::l_square))
3752      ParseMicrosoftAttributes(DS.getAttributes());
3753
3754    SourceLocation DSStart = Tok.getLocation();
3755
3756    // If the caller parsed attributes for the first argument, add them now.
3757    // Take them so that we only apply the attributes to the first parameter.
3758    DS.takeAttributesFrom(attrs);
3759
3760    ParseDeclarationSpecifiers(DS);
3761
3762    // Parse the declarator.  This is "PrototypeContext", because we must
3763    // accept either 'declarator' or 'abstract-declarator' here.
3764    Declarator ParmDecl(DS, Declarator::PrototypeContext);
3765    ParseDeclarator(ParmDecl);
3766
3767    // Parse GNU attributes, if present.
3768    MaybeParseGNUAttributes(ParmDecl);
3769
3770    // Remember this parsed parameter in ParamInfo.
3771    IdentifierInfo *ParmII = ParmDecl.getIdentifier();
3772
3773    // DefArgToks is used when the parsing of default arguments needs
3774    // to be delayed.
3775    CachedTokens *DefArgToks = 0;
3776
3777    // If no parameter was specified, verify that *something* was specified,
3778    // otherwise we have a missing type and identifier.
3779    if (DS.isEmpty() && ParmDecl.getIdentifier() == 0 &&
3780        ParmDecl.getNumTypeObjects() == 0) {
3781      // Completely missing, emit error.
3782      Diag(DSStart, diag::err_missing_param);
3783    } else {
3784      // Otherwise, we have something.  Add it and let semantic analysis try
3785      // to grok it and add the result to the ParamInfo we are building.
3786
3787      // Inform the actions module about the parameter declarator, so it gets
3788      // added to the current scope.
3789      Decl *Param = Actions.ActOnParamDeclarator(getCurScope(), ParmDecl);
3790
3791      // Parse the default argument, if any. We parse the default
3792      // arguments in all dialects; the semantic analysis in
3793      // ActOnParamDefaultArgument will reject the default argument in
3794      // C.
3795      if (Tok.is(tok::equal)) {
3796        SourceLocation EqualLoc = Tok.getLocation();
3797
3798        // Parse the default argument
3799        if (D.getContext() == Declarator::MemberContext) {
3800          // If we're inside a class definition, cache the tokens
3801          // corresponding to the default argument. We'll actually parse
3802          // them when we see the end of the class definition.
3803          // FIXME: Templates will require something similar.
3804          // FIXME: Can we use a smart pointer for Toks?
3805          DefArgToks = new CachedTokens;
3806
3807          if (!ConsumeAndStoreUntil(tok::comma, tok::r_paren, *DefArgToks,
3808                                    /*StopAtSemi=*/true,
3809                                    /*ConsumeFinalToken=*/false)) {
3810            delete DefArgToks;
3811            DefArgToks = 0;
3812            Actions.ActOnParamDefaultArgumentError(Param);
3813          } else {
3814            // Mark the end of the default argument so that we know when to
3815            // stop when we parse it later on.
3816            Token DefArgEnd;
3817            DefArgEnd.startToken();
3818            DefArgEnd.setKind(tok::cxx_defaultarg_end);
3819            DefArgEnd.setLocation(Tok.getLocation());
3820            DefArgToks->push_back(DefArgEnd);
3821            Actions.ActOnParamUnparsedDefaultArgument(Param, EqualLoc,
3822                                                (*DefArgToks)[1].getLocation());
3823          }
3824        } else {
3825          // Consume the '='.
3826          ConsumeToken();
3827
3828          // The argument isn't actually potentially evaluated unless it is
3829          // used.
3830          EnterExpressionEvaluationContext Eval(Actions,
3831                                              Sema::PotentiallyEvaluatedIfUsed);
3832
3833          ExprResult DefArgResult(ParseAssignmentExpression());
3834          if (DefArgResult.isInvalid()) {
3835            Actions.ActOnParamDefaultArgumentError(Param);
3836            SkipUntil(tok::comma, tok::r_paren, true, true);
3837          } else {
3838            // Inform the actions module about the default argument
3839            Actions.ActOnParamDefaultArgument(Param, EqualLoc,
3840                                              DefArgResult.take());
3841          }
3842        }
3843      }
3844
3845      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
3846                                          ParmDecl.getIdentifierLoc(), Param,
3847                                          DefArgToks));
3848    }
3849
3850    // If the next token is a comma, consume it and keep reading arguments.
3851    if (Tok.isNot(tok::comma)) {
3852      if (Tok.is(tok::ellipsis)) {
3853        IsVariadic = true;
3854        EllipsisLoc = ConsumeToken();     // Consume the ellipsis.
3855
3856        if (!getLang().CPlusPlus) {
3857          // We have ellipsis without a preceding ',', which is ill-formed
3858          // in C. Complain and provide the fix.
3859          Diag(EllipsisLoc, diag::err_missing_comma_before_ellipsis)
3860            << FixItHint::CreateInsertion(EllipsisLoc, ", ");
3861        }
3862      }
3863
3864      break;
3865    }
3866
3867    // Consume the comma.
3868    ConsumeToken();
3869  }
3870
3871  // If we have the closing ')', eat it.
3872  SourceLocation EndLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
3873
3874  DeclSpec DS(AttrFactory);
3875  SourceLocation RefQualifierLoc;
3876  bool RefQualifierIsLValueRef = true;
3877  ExceptionSpecificationType ESpecType = EST_None;
3878  SourceRange ESpecRange;
3879  llvm::SmallVector<ParsedType, 2> DynamicExceptions;
3880  llvm::SmallVector<SourceRange, 2> DynamicExceptionRanges;
3881  ExprResult NoexceptExpr;
3882
3883  if (getLang().CPlusPlus) {
3884    MaybeParseCXX0XAttributes(attrs);
3885
3886    // Parse cv-qualifier-seq[opt].
3887    ParseTypeQualifierListOpt(DS, false /*no attributes*/);
3888      if (!DS.getSourceRange().getEnd().isInvalid())
3889        EndLoc = DS.getSourceRange().getEnd();
3890
3891    // Parse ref-qualifier[opt]
3892    if (Tok.is(tok::amp) || Tok.is(tok::ampamp)) {
3893      if (!getLang().CPlusPlus0x)
3894        Diag(Tok, diag::ext_ref_qualifier);
3895
3896      RefQualifierIsLValueRef = Tok.is(tok::amp);
3897      RefQualifierLoc = ConsumeToken();
3898      EndLoc = RefQualifierLoc;
3899    }
3900
3901    // FIXME: We should leave the prototype scope before parsing the exception
3902    // specification, and then reenter it when parsing the trailing return type.
3903    // FIXMEFIXME: Why? That wouldn't be right for the noexcept clause.
3904
3905    // Parse exception-specification[opt].
3906    ESpecType = MaybeParseExceptionSpecification(ESpecRange,
3907                                                 DynamicExceptions,
3908                                                 DynamicExceptionRanges,
3909                                                 NoexceptExpr);
3910    if (ESpecType != EST_None)
3911      EndLoc = ESpecRange.getEnd();
3912
3913    // Parse trailing-return-type.
3914    if (getLang().CPlusPlus0x && Tok.is(tok::arrow)) {
3915      TrailingReturnType = ParseTrailingReturnType().get();
3916    }
3917  }
3918
3919  // Leave prototype scope.
3920  PrototypeScope.Exit();
3921
3922  // Remember that we parsed a function type, and remember the attributes.
3923  D.AddTypeInfo(DeclaratorChunk::getFunction(/*proto*/true, IsVariadic,
3924                                             EllipsisLoc,
3925                                             ParamInfo.data(), ParamInfo.size(),
3926                                             DS.getTypeQualifiers(),
3927                                             RefQualifierIsLValueRef,
3928                                             RefQualifierLoc,
3929                                             ESpecType, ESpecRange.getBegin(),
3930                                             DynamicExceptions.data(),
3931                                             DynamicExceptionRanges.data(),
3932                                             DynamicExceptions.size(),
3933                                             NoexceptExpr.isUsable() ?
3934                                               NoexceptExpr.get() : 0,
3935                                             LParenLoc, EndLoc, D,
3936                                             TrailingReturnType),
3937                attrs, EndLoc);
3938}
3939
3940/// ParseFunctionDeclaratorIdentifierList - While parsing a function declarator
3941/// we found a K&R-style identifier list instead of a type argument list.  The
3942/// first identifier has already been consumed, and the current token is the
3943/// token right after it.
3944///
3945///       identifier-list: [C99 6.7.5]
3946///         identifier
3947///         identifier-list ',' identifier
3948///
3949void Parser::ParseFunctionDeclaratorIdentifierList(SourceLocation LParenLoc,
3950                                                   IdentifierInfo *FirstIdent,
3951                                                   SourceLocation FirstIdentLoc,
3952                                                   Declarator &D) {
3953  // Build up an array of information about the parsed arguments.
3954  llvm::SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
3955  llvm::SmallSet<const IdentifierInfo*, 16> ParamsSoFar;
3956
3957  // If there was no identifier specified for the declarator, either we are in
3958  // an abstract-declarator, or we are in a parameter declarator which was found
3959  // to be abstract.  In abstract-declarators, identifier lists are not valid:
3960  // diagnose this.
3961  if (!D.getIdentifier())
3962    Diag(FirstIdentLoc, diag::ext_ident_list_in_param);
3963
3964  // The first identifier was already read, and is known to be the first
3965  // identifier in the list.  Remember this identifier in ParamInfo.
3966  ParamsSoFar.insert(FirstIdent);
3967  ParamInfo.push_back(DeclaratorChunk::ParamInfo(FirstIdent, FirstIdentLoc, 0));
3968
3969  while (Tok.is(tok::comma)) {
3970    // Eat the comma.
3971    ConsumeToken();
3972
3973    // If this isn't an identifier, report the error and skip until ')'.
3974    if (Tok.isNot(tok::identifier)) {
3975      Diag(Tok, diag::err_expected_ident);
3976      SkipUntil(tok::r_paren);
3977      return;
3978    }
3979
3980    IdentifierInfo *ParmII = Tok.getIdentifierInfo();
3981
3982    // Reject 'typedef int y; int test(x, y)', but continue parsing.
3983    if (Actions.getTypeName(*ParmII, Tok.getLocation(), getCurScope()))
3984      Diag(Tok, diag::err_unexpected_typedef_ident) << ParmII;
3985
3986    // Verify that the argument identifier has not already been mentioned.
3987    if (!ParamsSoFar.insert(ParmII)) {
3988      Diag(Tok, diag::err_param_redefinition) << ParmII;
3989    } else {
3990      // Remember this identifier in ParamInfo.
3991      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
3992                                                     Tok.getLocation(),
3993                                                     0));
3994    }
3995
3996    // Eat the identifier.
3997    ConsumeToken();
3998  }
3999
4000  // If we have the closing ')', eat it and we're done.
4001  SourceLocation RLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
4002
4003  // Remember that we parsed a function type, and remember the attributes.  This
4004  // function type is always a K&R style function type, which is not varargs and
4005  // has no prototype.
4006  ParsedAttributes attrs(AttrFactory);
4007  D.AddTypeInfo(DeclaratorChunk::getFunction(/*proto*/false, /*varargs*/false,
4008                                             SourceLocation(),
4009                                             &ParamInfo[0], ParamInfo.size(),
4010                                             /*TypeQuals*/0,
4011                                             true, SourceLocation(),
4012                                             EST_None, SourceLocation(), 0, 0,
4013                                             0, 0, LParenLoc, RLoc, D),
4014                attrs, RLoc);
4015}
4016
4017/// [C90]   direct-declarator '[' constant-expression[opt] ']'
4018/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
4019/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
4020/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
4021/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
4022void Parser::ParseBracketDeclarator(Declarator &D) {
4023  SourceLocation StartLoc = ConsumeBracket();
4024
4025  // C array syntax has many features, but by-far the most common is [] and [4].
4026  // This code does a fast path to handle some of the most obvious cases.
4027  if (Tok.getKind() == tok::r_square) {
4028    SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
4029    ParsedAttributes attrs(AttrFactory);
4030    MaybeParseCXX0XAttributes(attrs);
4031
4032    // Remember that we parsed the empty array type.
4033    ExprResult NumElements;
4034    D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, 0,
4035                                            StartLoc, EndLoc),
4036                  attrs, EndLoc);
4037    return;
4038  } else if (Tok.getKind() == tok::numeric_constant &&
4039             GetLookAheadToken(1).is(tok::r_square)) {
4040    // [4] is very common.  Parse the numeric constant expression.
4041    ExprResult ExprRes(Actions.ActOnNumericConstant(Tok));
4042    ConsumeToken();
4043
4044    SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
4045    ParsedAttributes attrs(AttrFactory);
4046    MaybeParseCXX0XAttributes(attrs);
4047
4048    // Remember that we parsed a array type, and remember its features.
4049    D.AddTypeInfo(DeclaratorChunk::getArray(0, false, 0,
4050                                            ExprRes.release(),
4051                                            StartLoc, EndLoc),
4052                  attrs, EndLoc);
4053    return;
4054  }
4055
4056  // If valid, this location is the position where we read the 'static' keyword.
4057  SourceLocation StaticLoc;
4058  if (Tok.is(tok::kw_static))
4059    StaticLoc = ConsumeToken();
4060
4061  // If there is a type-qualifier-list, read it now.
4062  // Type qualifiers in an array subscript are a C99 feature.
4063  DeclSpec DS(AttrFactory);
4064  ParseTypeQualifierListOpt(DS, false /*no attributes*/);
4065
4066  // If we haven't already read 'static', check to see if there is one after the
4067  // type-qualifier-list.
4068  if (!StaticLoc.isValid() && Tok.is(tok::kw_static))
4069    StaticLoc = ConsumeToken();
4070
4071  // Handle "direct-declarator [ type-qual-list[opt] * ]".
4072  bool isStar = false;
4073  ExprResult NumElements;
4074
4075  // Handle the case where we have '[*]' as the array size.  However, a leading
4076  // star could be the start of an expression, for example 'X[*p + 4]'.  Verify
4077  // the the token after the star is a ']'.  Since stars in arrays are
4078  // infrequent, use of lookahead is not costly here.
4079  if (Tok.is(tok::star) && GetLookAheadToken(1).is(tok::r_square)) {
4080    ConsumeToken();  // Eat the '*'.
4081
4082    if (StaticLoc.isValid()) {
4083      Diag(StaticLoc, diag::err_unspecified_vla_size_with_static);
4084      StaticLoc = SourceLocation();  // Drop the static.
4085    }
4086    isStar = true;
4087  } else if (Tok.isNot(tok::r_square)) {
4088    // Note, in C89, this production uses the constant-expr production instead
4089    // of assignment-expr.  The only difference is that assignment-expr allows
4090    // things like '=' and '*='.  Sema rejects these in C89 mode because they
4091    // are not i-c-e's, so we don't need to distinguish between the two here.
4092
4093    // Parse the constant-expression or assignment-expression now (depending
4094    // on dialect).
4095    if (getLang().CPlusPlus)
4096      NumElements = ParseConstantExpression();
4097    else
4098      NumElements = ParseAssignmentExpression();
4099  }
4100
4101  // If there was an error parsing the assignment-expression, recover.
4102  if (NumElements.isInvalid()) {
4103    D.setInvalidType(true);
4104    // If the expression was invalid, skip it.
4105    SkipUntil(tok::r_square);
4106    return;
4107  }
4108
4109  SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
4110
4111  ParsedAttributes attrs(AttrFactory);
4112  MaybeParseCXX0XAttributes(attrs);
4113
4114  // Remember that we parsed a array type, and remember its features.
4115  D.AddTypeInfo(DeclaratorChunk::getArray(DS.getTypeQualifiers(),
4116                                          StaticLoc.isValid(), isStar,
4117                                          NumElements.release(),
4118                                          StartLoc, EndLoc),
4119                attrs, EndLoc);
4120}
4121
4122/// [GNU]   typeof-specifier:
4123///           typeof ( expressions )
4124///           typeof ( type-name )
4125/// [GNU/C++] typeof unary-expression
4126///
4127void Parser::ParseTypeofSpecifier(DeclSpec &DS) {
4128  assert(Tok.is(tok::kw_typeof) && "Not a typeof specifier");
4129  Token OpTok = Tok;
4130  SourceLocation StartLoc = ConsumeToken();
4131
4132  const bool hasParens = Tok.is(tok::l_paren);
4133
4134  bool isCastExpr;
4135  ParsedType CastTy;
4136  SourceRange CastRange;
4137  ExprResult Operand = ParseExprAfterUnaryExprOrTypeTrait(OpTok, isCastExpr,
4138                                                          CastTy, CastRange);
4139  if (hasParens)
4140    DS.setTypeofParensRange(CastRange);
4141
4142  if (CastRange.getEnd().isInvalid())
4143    // FIXME: Not accurate, the range gets one token more than it should.
4144    DS.SetRangeEnd(Tok.getLocation());
4145  else
4146    DS.SetRangeEnd(CastRange.getEnd());
4147
4148  if (isCastExpr) {
4149    if (!CastTy) {
4150      DS.SetTypeSpecError();
4151      return;
4152    }
4153
4154    const char *PrevSpec = 0;
4155    unsigned DiagID;
4156    // Check for duplicate type specifiers (e.g. "int typeof(int)").
4157    if (DS.SetTypeSpecType(DeclSpec::TST_typeofType, StartLoc, PrevSpec,
4158                           DiagID, CastTy))
4159      Diag(StartLoc, DiagID) << PrevSpec;
4160    return;
4161  }
4162
4163  // If we get here, the operand to the typeof was an expresion.
4164  if (Operand.isInvalid()) {
4165    DS.SetTypeSpecError();
4166    return;
4167  }
4168
4169  const char *PrevSpec = 0;
4170  unsigned DiagID;
4171  // Check for duplicate type specifiers (e.g. "int typeof(int)").
4172  if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec,
4173                         DiagID, Operand.get()))
4174    Diag(StartLoc, DiagID) << PrevSpec;
4175}
4176
4177
4178/// TryAltiVecVectorTokenOutOfLine - Out of line body that should only be called
4179/// from TryAltiVecVectorToken.
4180bool Parser::TryAltiVecVectorTokenOutOfLine() {
4181  Token Next = NextToken();
4182  switch (Next.getKind()) {
4183  default: return false;
4184  case tok::kw_short:
4185  case tok::kw_long:
4186  case tok::kw_signed:
4187  case tok::kw_unsigned:
4188  case tok::kw_void:
4189  case tok::kw_char:
4190  case tok::kw_int:
4191  case tok::kw_float:
4192  case tok::kw_double:
4193  case tok::kw_bool:
4194  case tok::kw___pixel:
4195    Tok.setKind(tok::kw___vector);
4196    return true;
4197  case tok::identifier:
4198    if (Next.getIdentifierInfo() == Ident_pixel) {
4199      Tok.setKind(tok::kw___vector);
4200      return true;
4201    }
4202    return false;
4203  }
4204}
4205
4206bool Parser::TryAltiVecTokenOutOfLine(DeclSpec &DS, SourceLocation Loc,
4207                                      const char *&PrevSpec, unsigned &DiagID,
4208                                      bool &isInvalid) {
4209  if (Tok.getIdentifierInfo() == Ident_vector) {
4210    Token Next = NextToken();
4211    switch (Next.getKind()) {
4212    case tok::kw_short:
4213    case tok::kw_long:
4214    case tok::kw_signed:
4215    case tok::kw_unsigned:
4216    case tok::kw_void:
4217    case tok::kw_char:
4218    case tok::kw_int:
4219    case tok::kw_float:
4220    case tok::kw_double:
4221    case tok::kw_bool:
4222    case tok::kw___pixel:
4223      isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID);
4224      return true;
4225    case tok::identifier:
4226      if (Next.getIdentifierInfo() == Ident_pixel) {
4227        isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID);
4228        return true;
4229      }
4230      break;
4231    default:
4232      break;
4233    }
4234  } else if ((Tok.getIdentifierInfo() == Ident_pixel) &&
4235             DS.isTypeAltiVecVector()) {
4236    isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID);
4237    return true;
4238  }
4239  return false;
4240}
4241