ParseDecl.cpp revision 43f5103f8051bbac19022e6edaf7d9138b0f3c0f
1//===--- ParseDecl.cpp - Declaration Parsing ------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the Declaration portions of the Parser interfaces.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Parse/Parser.h"
15#include "clang/Parse/ParseDiagnostic.h"
16#include "clang/Basic/OpenCL.h"
17#include "clang/Sema/Scope.h"
18#include "clang/Sema/ParsedTemplate.h"
19#include "clang/Sema/PrettyDeclStackTrace.h"
20#include "RAIIObjectsForParser.h"
21#include "llvm/ADT/SmallSet.h"
22#include "llvm/ADT/StringSwitch.h"
23using namespace clang;
24
25//===----------------------------------------------------------------------===//
26// C99 6.7: Declarations.
27//===----------------------------------------------------------------------===//
28
29/// ParseTypeName
30///       type-name: [C99 6.7.6]
31///         specifier-qualifier-list abstract-declarator[opt]
32///
33/// Called type-id in C++.
34TypeResult Parser::ParseTypeName(SourceRange *Range,
35                                 Declarator::TheContext Context,
36                                 AccessSpecifier AS,
37                                 Decl **OwnedType) {
38  // Parse the common declaration-specifiers piece.
39  DeclSpec DS(AttrFactory);
40  ParseSpecifierQualifierList(DS, AS);
41  if (OwnedType)
42    *OwnedType = DS.isTypeSpecOwned() ? DS.getRepAsDecl() : 0;
43
44  // Parse the abstract-declarator, if present.
45  Declarator DeclaratorInfo(DS, Context);
46  ParseDeclarator(DeclaratorInfo);
47  if (Range)
48    *Range = DeclaratorInfo.getSourceRange();
49
50  if (DeclaratorInfo.isInvalidType())
51    return true;
52
53  return Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
54}
55
56
57/// isAttributeLateParsed - Return true if the attribute has arguments that
58/// require late parsing.
59static bool isAttributeLateParsed(const IdentifierInfo &II) {
60    return llvm::StringSwitch<bool>(II.getName())
61#include "clang/Parse/AttrLateParsed.inc"
62        .Default(false);
63}
64
65
66/// ParseGNUAttributes - Parse a non-empty attributes list.
67///
68/// [GNU] attributes:
69///         attribute
70///         attributes attribute
71///
72/// [GNU]  attribute:
73///          '__attribute__' '(' '(' attribute-list ')' ')'
74///
75/// [GNU]  attribute-list:
76///          attrib
77///          attribute_list ',' attrib
78///
79/// [GNU]  attrib:
80///          empty
81///          attrib-name
82///          attrib-name '(' identifier ')'
83///          attrib-name '(' identifier ',' nonempty-expr-list ')'
84///          attrib-name '(' argument-expression-list [C99 6.5.2] ')'
85///
86/// [GNU]  attrib-name:
87///          identifier
88///          typespec
89///          typequal
90///          storageclass
91///
92/// FIXME: The GCC grammar/code for this construct implies we need two
93/// token lookahead. Comment from gcc: "If they start with an identifier
94/// which is followed by a comma or close parenthesis, then the arguments
95/// start with that identifier; otherwise they are an expression list."
96///
97/// GCC does not require the ',' between attribs in an attribute-list.
98///
99/// At the moment, I am not doing 2 token lookahead. I am also unaware of
100/// any attributes that don't work (based on my limited testing). Most
101/// attributes are very simple in practice. Until we find a bug, I don't see
102/// a pressing need to implement the 2 token lookahead.
103
104void Parser::ParseGNUAttributes(ParsedAttributes &attrs,
105                                SourceLocation *endLoc,
106                                LateParsedAttrList *LateAttrs) {
107  assert(Tok.is(tok::kw___attribute) && "Not a GNU attribute list!");
108
109  while (Tok.is(tok::kw___attribute)) {
110    ConsumeToken();
111    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
112                         "attribute")) {
113      SkipUntil(tok::r_paren, true); // skip until ) or ;
114      return;
115    }
116    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "(")) {
117      SkipUntil(tok::r_paren, true); // skip until ) or ;
118      return;
119    }
120    // Parse the attribute-list. e.g. __attribute__(( weak, alias("__f") ))
121    while (Tok.is(tok::identifier) || isDeclarationSpecifier() ||
122           Tok.is(tok::comma)) {
123      if (Tok.is(tok::comma)) {
124        // allows for empty/non-empty attributes. ((__vector_size__(16),,,,))
125        ConsumeToken();
126        continue;
127      }
128      // we have an identifier or declaration specifier (const, int, etc.)
129      IdentifierInfo *AttrName = Tok.getIdentifierInfo();
130      SourceLocation AttrNameLoc = ConsumeToken();
131
132      if (Tok.is(tok::l_paren)) {
133        // handle "parameterized" attributes
134        if (LateAttrs && !ClassStack.empty() &&
135            isAttributeLateParsed(*AttrName)) {
136          // Delayed parsing is only available for attributes that occur
137          // in certain locations within a class scope.
138          LateParsedAttribute *LA =
139            new LateParsedAttribute(this, *AttrName, AttrNameLoc);
140          LateAttrs->push_back(LA);
141          getCurrentClass().LateParsedDeclarations.push_back(LA);
142
143          // consume everything up to and including the matching right parens
144          ConsumeAndStoreUntil(tok::r_paren, LA->Toks, true, false);
145
146          Token Eof;
147          Eof.startToken();
148          Eof.setLocation(Tok.getLocation());
149          LA->Toks.push_back(Eof);
150        } else {
151          ParseGNUAttributeArgs(AttrName, AttrNameLoc, attrs, endLoc);
152        }
153      } else {
154        attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc,
155                     0, SourceLocation(), 0, 0);
156      }
157    }
158    if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
159      SkipUntil(tok::r_paren, false);
160    SourceLocation Loc = Tok.getLocation();
161    if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen)) {
162      SkipUntil(tok::r_paren, false);
163    }
164    if (endLoc)
165      *endLoc = Loc;
166  }
167}
168
169
170/// Parse the arguments to a parameterized GNU attribute
171void Parser::ParseGNUAttributeArgs(IdentifierInfo *AttrName,
172                                   SourceLocation AttrNameLoc,
173                                   ParsedAttributes &Attrs,
174                                   SourceLocation *EndLoc) {
175
176  assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
177
178  // Availability attributes have their own grammar.
179  if (AttrName->isStr("availability")) {
180    ParseAvailabilityAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc);
181    return;
182  }
183  // Thread safety attributes fit into the FIXME case above, so we
184  // just parse the arguments as a list of expressions
185  if (IsThreadSafetyAttribute(AttrName->getName())) {
186    ParseThreadSafetyAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc);
187    return;
188  }
189
190  ConsumeParen(); // ignore the left paren loc for now
191
192  IdentifierInfo *ParmName = 0;
193  SourceLocation ParmLoc;
194  bool BuiltinType = false;
195
196  switch (Tok.getKind()) {
197  case tok::kw_char:
198  case tok::kw_wchar_t:
199  case tok::kw_char16_t:
200  case tok::kw_char32_t:
201  case tok::kw_bool:
202  case tok::kw_short:
203  case tok::kw_int:
204  case tok::kw_long:
205  case tok::kw___int64:
206  case tok::kw_signed:
207  case tok::kw_unsigned:
208  case tok::kw_float:
209  case tok::kw_double:
210  case tok::kw_void:
211  case tok::kw_typeof:
212    // __attribute__(( vec_type_hint(char) ))
213    // FIXME: Don't just discard the builtin type token.
214    ConsumeToken();
215    BuiltinType = true;
216    break;
217
218  case tok::identifier:
219    ParmName = Tok.getIdentifierInfo();
220    ParmLoc = ConsumeToken();
221    break;
222
223  default:
224    break;
225  }
226
227  ExprVector ArgExprs(Actions);
228
229  if (!BuiltinType &&
230      (ParmLoc.isValid() ? Tok.is(tok::comma) : Tok.isNot(tok::r_paren))) {
231    // Eat the comma.
232    if (ParmLoc.isValid())
233      ConsumeToken();
234
235    // Parse the non-empty comma-separated list of expressions.
236    while (1) {
237      ExprResult ArgExpr(ParseAssignmentExpression());
238      if (ArgExpr.isInvalid()) {
239        SkipUntil(tok::r_paren);
240        return;
241      }
242      ArgExprs.push_back(ArgExpr.release());
243      if (Tok.isNot(tok::comma))
244        break;
245      ConsumeToken(); // Eat the comma, move to the next argument
246    }
247  }
248  else if (Tok.is(tok::less) && AttrName->isStr("iboutletcollection")) {
249    if (!ExpectAndConsume(tok::less, diag::err_expected_less_after, "<",
250                          tok::greater)) {
251      while (Tok.is(tok::identifier)) {
252        ConsumeToken();
253        if (Tok.is(tok::greater))
254          break;
255        if (Tok.is(tok::comma)) {
256          ConsumeToken();
257          continue;
258        }
259      }
260      if (Tok.isNot(tok::greater))
261        Diag(Tok, diag::err_iboutletcollection_with_protocol);
262      SkipUntil(tok::r_paren, false, true); // skip until ')'
263    }
264  }
265
266  SourceLocation RParen = Tok.getLocation();
267  if (!ExpectAndConsume(tok::r_paren, diag::err_expected_rparen)) {
268    AttributeList *attr =
269      Attrs.addNew(AttrName, SourceRange(AttrNameLoc, RParen), 0, AttrNameLoc,
270                   ParmName, ParmLoc, ArgExprs.take(), ArgExprs.size());
271    if (BuiltinType && attr->getKind() == AttributeList::AT_IBOutletCollection)
272      Diag(Tok, diag::err_iboutletcollection_builtintype);
273  }
274}
275
276
277/// ParseMicrosoftDeclSpec - Parse an __declspec construct
278///
279/// [MS] decl-specifier:
280///             __declspec ( extended-decl-modifier-seq )
281///
282/// [MS] extended-decl-modifier-seq:
283///             extended-decl-modifier[opt]
284///             extended-decl-modifier extended-decl-modifier-seq
285
286void Parser::ParseMicrosoftDeclSpec(ParsedAttributes &attrs) {
287  assert(Tok.is(tok::kw___declspec) && "Not a declspec!");
288
289  ConsumeToken();
290  if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
291                       "declspec")) {
292    SkipUntil(tok::r_paren, true); // skip until ) or ;
293    return;
294  }
295
296  while (Tok.getIdentifierInfo()) {
297    IdentifierInfo *AttrName = Tok.getIdentifierInfo();
298    SourceLocation AttrNameLoc = ConsumeToken();
299
300    // FIXME: Remove this when we have proper __declspec(property()) support.
301    // Just skip everything inside property().
302    if (AttrName->getName() == "property") {
303      ConsumeParen();
304      SkipUntil(tok::r_paren);
305    }
306    if (Tok.is(tok::l_paren)) {
307      ConsumeParen();
308      // FIXME: This doesn't parse __declspec(property(get=get_func_name))
309      // correctly.
310      ExprResult ArgExpr(ParseAssignmentExpression());
311      if (!ArgExpr.isInvalid()) {
312        Expr *ExprList = ArgExpr.take();
313        attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc, 0,
314                     SourceLocation(), &ExprList, 1, true);
315      }
316      if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
317        SkipUntil(tok::r_paren, false);
318    } else {
319      attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc,
320                   0, SourceLocation(), 0, 0, true);
321    }
322  }
323  if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
324    SkipUntil(tok::r_paren, false);
325  return;
326}
327
328void Parser::ParseMicrosoftTypeAttributes(ParsedAttributes &attrs) {
329  // Treat these like attributes
330  // FIXME: Allow Sema to distinguish between these and real attributes!
331  while (Tok.is(tok::kw___fastcall) || Tok.is(tok::kw___stdcall) ||
332         Tok.is(tok::kw___thiscall) || Tok.is(tok::kw___cdecl)   ||
333         Tok.is(tok::kw___ptr64) || Tok.is(tok::kw___w64) ||
334         Tok.is(tok::kw___ptr32) ||
335         Tok.is(tok::kw___unaligned)) {
336    IdentifierInfo *AttrName = Tok.getIdentifierInfo();
337    SourceLocation AttrNameLoc = ConsumeToken();
338    if (Tok.is(tok::kw___ptr64) || Tok.is(tok::kw___w64) ||
339        Tok.is(tok::kw___ptr32))
340      // FIXME: Support these properly!
341      continue;
342    attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc, 0,
343                 SourceLocation(), 0, 0, true);
344  }
345}
346
347void Parser::ParseBorlandTypeAttributes(ParsedAttributes &attrs) {
348  // Treat these like attributes
349  while (Tok.is(tok::kw___pascal)) {
350    IdentifierInfo *AttrName = Tok.getIdentifierInfo();
351    SourceLocation AttrNameLoc = ConsumeToken();
352    attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc, 0,
353                 SourceLocation(), 0, 0, true);
354  }
355}
356
357void Parser::ParseOpenCLAttributes(ParsedAttributes &attrs) {
358  // Treat these like attributes
359  while (Tok.is(tok::kw___kernel)) {
360    SourceLocation AttrNameLoc = ConsumeToken();
361    attrs.addNew(PP.getIdentifierInfo("opencl_kernel_function"),
362                 AttrNameLoc, 0, AttrNameLoc, 0,
363                 SourceLocation(), 0, 0, false);
364  }
365}
366
367void Parser::ParseOpenCLQualifiers(DeclSpec &DS) {
368  SourceLocation Loc = Tok.getLocation();
369  switch(Tok.getKind()) {
370    // OpenCL qualifiers:
371    case tok::kw___private:
372    case tok::kw_private:
373      DS.getAttributes().addNewInteger(
374          Actions.getASTContext(),
375          PP.getIdentifierInfo("address_space"), Loc, 0);
376      break;
377
378    case tok::kw___global:
379      DS.getAttributes().addNewInteger(
380          Actions.getASTContext(),
381          PP.getIdentifierInfo("address_space"), Loc, LangAS::opencl_global);
382      break;
383
384    case tok::kw___local:
385      DS.getAttributes().addNewInteger(
386          Actions.getASTContext(),
387          PP.getIdentifierInfo("address_space"), Loc, LangAS::opencl_local);
388      break;
389
390    case tok::kw___constant:
391      DS.getAttributes().addNewInteger(
392          Actions.getASTContext(),
393          PP.getIdentifierInfo("address_space"), Loc, LangAS::opencl_constant);
394      break;
395
396    case tok::kw___read_only:
397      DS.getAttributes().addNewInteger(
398          Actions.getASTContext(),
399          PP.getIdentifierInfo("opencl_image_access"), Loc, CLIA_read_only);
400      break;
401
402    case tok::kw___write_only:
403      DS.getAttributes().addNewInteger(
404          Actions.getASTContext(),
405          PP.getIdentifierInfo("opencl_image_access"), Loc, CLIA_write_only);
406      break;
407
408    case tok::kw___read_write:
409      DS.getAttributes().addNewInteger(
410          Actions.getASTContext(),
411          PP.getIdentifierInfo("opencl_image_access"), Loc, CLIA_read_write);
412      break;
413    default: break;
414  }
415}
416
417/// \brief Parse a version number.
418///
419/// version:
420///   simple-integer
421///   simple-integer ',' simple-integer
422///   simple-integer ',' simple-integer ',' simple-integer
423VersionTuple Parser::ParseVersionTuple(SourceRange &Range) {
424  Range = Tok.getLocation();
425
426  if (!Tok.is(tok::numeric_constant)) {
427    Diag(Tok, diag::err_expected_version);
428    SkipUntil(tok::comma, tok::r_paren, true, true, true);
429    return VersionTuple();
430  }
431
432  // Parse the major (and possibly minor and subminor) versions, which
433  // are stored in the numeric constant. We utilize a quirk of the
434  // lexer, which is that it handles something like 1.2.3 as a single
435  // numeric constant, rather than two separate tokens.
436  llvm::SmallString<512> Buffer;
437  Buffer.resize(Tok.getLength()+1);
438  const char *ThisTokBegin = &Buffer[0];
439
440  // Get the spelling of the token, which eliminates trigraphs, etc.
441  bool Invalid = false;
442  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid);
443  if (Invalid)
444    return VersionTuple();
445
446  // Parse the major version.
447  unsigned AfterMajor = 0;
448  unsigned Major = 0;
449  while (AfterMajor < ActualLength && isdigit(ThisTokBegin[AfterMajor])) {
450    Major = Major * 10 + ThisTokBegin[AfterMajor] - '0';
451    ++AfterMajor;
452  }
453
454  if (AfterMajor == 0) {
455    Diag(Tok, diag::err_expected_version);
456    SkipUntil(tok::comma, tok::r_paren, true, true, true);
457    return VersionTuple();
458  }
459
460  if (AfterMajor == ActualLength) {
461    ConsumeToken();
462
463    // We only had a single version component.
464    if (Major == 0) {
465      Diag(Tok, diag::err_zero_version);
466      return VersionTuple();
467    }
468
469    return VersionTuple(Major);
470  }
471
472  if (ThisTokBegin[AfterMajor] != '.' || (AfterMajor + 1 == ActualLength)) {
473    Diag(Tok, diag::err_expected_version);
474    SkipUntil(tok::comma, tok::r_paren, true, true, true);
475    return VersionTuple();
476  }
477
478  // Parse the minor version.
479  unsigned AfterMinor = AfterMajor + 1;
480  unsigned Minor = 0;
481  while (AfterMinor < ActualLength && isdigit(ThisTokBegin[AfterMinor])) {
482    Minor = Minor * 10 + ThisTokBegin[AfterMinor] - '0';
483    ++AfterMinor;
484  }
485
486  if (AfterMinor == ActualLength) {
487    ConsumeToken();
488
489    // We had major.minor.
490    if (Major == 0 && Minor == 0) {
491      Diag(Tok, diag::err_zero_version);
492      return VersionTuple();
493    }
494
495    return VersionTuple(Major, Minor);
496  }
497
498  // If what follows is not a '.', we have a problem.
499  if (ThisTokBegin[AfterMinor] != '.') {
500    Diag(Tok, diag::err_expected_version);
501    SkipUntil(tok::comma, tok::r_paren, true, true, true);
502    return VersionTuple();
503  }
504
505  // Parse the subminor version.
506  unsigned AfterSubminor = AfterMinor + 1;
507  unsigned Subminor = 0;
508  while (AfterSubminor < ActualLength && isdigit(ThisTokBegin[AfterSubminor])) {
509    Subminor = Subminor * 10 + ThisTokBegin[AfterSubminor] - '0';
510    ++AfterSubminor;
511  }
512
513  if (AfterSubminor != ActualLength) {
514    Diag(Tok, diag::err_expected_version);
515    SkipUntil(tok::comma, tok::r_paren, true, true, true);
516    return VersionTuple();
517  }
518  ConsumeToken();
519  return VersionTuple(Major, Minor, Subminor);
520}
521
522/// \brief Parse the contents of the "availability" attribute.
523///
524/// availability-attribute:
525///   'availability' '(' platform ',' version-arg-list ')'
526///
527/// platform:
528///   identifier
529///
530/// version-arg-list:
531///   version-arg
532///   version-arg ',' version-arg-list
533///
534/// version-arg:
535///   'introduced' '=' version
536///   'deprecated' '=' version
537///   'removed' = version
538///   'unavailable'
539void Parser::ParseAvailabilityAttribute(IdentifierInfo &Availability,
540                                        SourceLocation AvailabilityLoc,
541                                        ParsedAttributes &attrs,
542                                        SourceLocation *endLoc) {
543  SourceLocation PlatformLoc;
544  IdentifierInfo *Platform = 0;
545
546  enum { Introduced, Deprecated, Obsoleted, Unknown };
547  AvailabilityChange Changes[Unknown];
548
549  // Opening '('.
550  BalancedDelimiterTracker T(*this, tok::l_paren);
551  if (T.consumeOpen()) {
552    Diag(Tok, diag::err_expected_lparen);
553    return;
554  }
555
556  // Parse the platform name,
557  if (Tok.isNot(tok::identifier)) {
558    Diag(Tok, diag::err_availability_expected_platform);
559    SkipUntil(tok::r_paren);
560    return;
561  }
562  Platform = Tok.getIdentifierInfo();
563  PlatformLoc = ConsumeToken();
564
565  // Parse the ',' following the platform name.
566  if (ExpectAndConsume(tok::comma, diag::err_expected_comma, "", tok::r_paren))
567    return;
568
569  // If we haven't grabbed the pointers for the identifiers
570  // "introduced", "deprecated", and "obsoleted", do so now.
571  if (!Ident_introduced) {
572    Ident_introduced = PP.getIdentifierInfo("introduced");
573    Ident_deprecated = PP.getIdentifierInfo("deprecated");
574    Ident_obsoleted = PP.getIdentifierInfo("obsoleted");
575    Ident_unavailable = PP.getIdentifierInfo("unavailable");
576  }
577
578  // Parse the set of introductions/deprecations/removals.
579  SourceLocation UnavailableLoc;
580  do {
581    if (Tok.isNot(tok::identifier)) {
582      Diag(Tok, diag::err_availability_expected_change);
583      SkipUntil(tok::r_paren);
584      return;
585    }
586    IdentifierInfo *Keyword = Tok.getIdentifierInfo();
587    SourceLocation KeywordLoc = ConsumeToken();
588
589    if (Keyword == Ident_unavailable) {
590      if (UnavailableLoc.isValid()) {
591        Diag(KeywordLoc, diag::err_availability_redundant)
592          << Keyword << SourceRange(UnavailableLoc);
593      }
594      UnavailableLoc = KeywordLoc;
595
596      if (Tok.isNot(tok::comma))
597        break;
598
599      ConsumeToken();
600      continue;
601    }
602
603    if (Tok.isNot(tok::equal)) {
604      Diag(Tok, diag::err_expected_equal_after)
605        << Keyword;
606      SkipUntil(tok::r_paren);
607      return;
608    }
609    ConsumeToken();
610
611    SourceRange VersionRange;
612    VersionTuple Version = ParseVersionTuple(VersionRange);
613
614    if (Version.empty()) {
615      SkipUntil(tok::r_paren);
616      return;
617    }
618
619    unsigned Index;
620    if (Keyword == Ident_introduced)
621      Index = Introduced;
622    else if (Keyword == Ident_deprecated)
623      Index = Deprecated;
624    else if (Keyword == Ident_obsoleted)
625      Index = Obsoleted;
626    else
627      Index = Unknown;
628
629    if (Index < Unknown) {
630      if (!Changes[Index].KeywordLoc.isInvalid()) {
631        Diag(KeywordLoc, diag::err_availability_redundant)
632          << Keyword
633          << SourceRange(Changes[Index].KeywordLoc,
634                         Changes[Index].VersionRange.getEnd());
635      }
636
637      Changes[Index].KeywordLoc = KeywordLoc;
638      Changes[Index].Version = Version;
639      Changes[Index].VersionRange = VersionRange;
640    } else {
641      Diag(KeywordLoc, diag::err_availability_unknown_change)
642        << Keyword << VersionRange;
643    }
644
645    if (Tok.isNot(tok::comma))
646      break;
647
648    ConsumeToken();
649  } while (true);
650
651  // Closing ')'.
652  if (T.consumeClose())
653    return;
654
655  if (endLoc)
656    *endLoc = T.getCloseLocation();
657
658  // The 'unavailable' availability cannot be combined with any other
659  // availability changes. Make sure that hasn't happened.
660  if (UnavailableLoc.isValid()) {
661    bool Complained = false;
662    for (unsigned Index = Introduced; Index != Unknown; ++Index) {
663      if (Changes[Index].KeywordLoc.isValid()) {
664        if (!Complained) {
665          Diag(UnavailableLoc, diag::warn_availability_and_unavailable)
666            << SourceRange(Changes[Index].KeywordLoc,
667                           Changes[Index].VersionRange.getEnd());
668          Complained = true;
669        }
670
671        // Clear out the availability.
672        Changes[Index] = AvailabilityChange();
673      }
674    }
675  }
676
677  // Record this attribute
678  attrs.addNew(&Availability,
679               SourceRange(AvailabilityLoc, T.getCloseLocation()),
680               0, SourceLocation(),
681               Platform, PlatformLoc,
682               Changes[Introduced],
683               Changes[Deprecated],
684               Changes[Obsoleted],
685               UnavailableLoc, false, false);
686}
687
688
689// Late Parsed Attributes:
690// See other examples of late parsing in lib/Parse/ParseCXXInlineMethods
691
692void Parser::LateParsedDeclaration::ParseLexedAttributes() {}
693
694void Parser::LateParsedClass::ParseLexedAttributes() {
695  Self->ParseLexedAttributes(*Class);
696}
697
698void Parser::LateParsedAttribute::ParseLexedAttributes() {
699  Self->ParseLexedAttribute(*this);
700}
701
702/// Wrapper class which calls ParseLexedAttribute, after setting up the
703/// scope appropriately.
704void Parser::ParseLexedAttributes(ParsingClass &Class) {
705  // Deal with templates
706  // FIXME: Test cases to make sure this does the right thing for templates.
707  bool HasTemplateScope = !Class.TopLevelClass && Class.TemplateScope;
708  ParseScope ClassTemplateScope(this, Scope::TemplateParamScope,
709                                HasTemplateScope);
710  if (HasTemplateScope)
711    Actions.ActOnReenterTemplateScope(getCurScope(), Class.TagOrTemplate);
712
713  // Set or update the scope flags to include Scope::ThisScope.
714  bool AlreadyHasClassScope = Class.TopLevelClass;
715  unsigned ScopeFlags = Scope::ClassScope|Scope::DeclScope|Scope::ThisScope;
716  ParseScope ClassScope(this, ScopeFlags, !AlreadyHasClassScope);
717  ParseScopeFlags ClassScopeFlags(this, ScopeFlags, AlreadyHasClassScope);
718
719  for (unsigned i = 0, ni = Class.LateParsedDeclarations.size(); i < ni; ++i) {
720    Class.LateParsedDeclarations[i]->ParseLexedAttributes();
721  }
722}
723
724/// \brief Finish parsing an attribute for which parsing was delayed.
725/// This will be called at the end of parsing a class declaration
726/// for each LateParsedAttribute. We consume the saved tokens and
727/// create an attribute with the arguments filled in. We add this
728/// to the Attribute list for the decl.
729void Parser::ParseLexedAttribute(LateParsedAttribute &LA) {
730  // Save the current token position.
731  SourceLocation OrigLoc = Tok.getLocation();
732
733  // Append the current token at the end of the new token stream so that it
734  // doesn't get lost.
735  LA.Toks.push_back(Tok);
736  PP.EnterTokenStream(LA.Toks.data(), LA.Toks.size(), true, false);
737  // Consume the previously pushed token.
738  ConsumeAnyToken();
739
740  ParsedAttributes Attrs(AttrFactory);
741  SourceLocation endLoc;
742
743  // If the Decl is templatized, add template parameters to scope.
744  bool HasTemplateScope = LA.D && LA.D->isTemplateDecl();
745  ParseScope TempScope(this, Scope::TemplateParamScope, HasTemplateScope);
746  if (HasTemplateScope)
747    Actions.ActOnReenterTemplateScope(Actions.CurScope, LA.D);
748
749  // If the Decl is on a function, add function parameters to the scope.
750  bool HasFunctionScope = LA.D && LA.D->isFunctionOrFunctionTemplate();
751  ParseScope FnScope(this, Scope::FnScope|Scope::DeclScope, HasFunctionScope);
752  if (HasFunctionScope)
753    Actions.ActOnReenterFunctionContext(Actions.CurScope, LA.D);
754
755  ParseGNUAttributeArgs(&LA.AttrName, LA.AttrNameLoc, Attrs, &endLoc);
756
757  if (HasFunctionScope) {
758    Actions.ActOnExitFunctionContext();
759    FnScope.Exit();  // Pop scope, and remove Decls from IdResolver
760  }
761  if (HasTemplateScope) {
762    TempScope.Exit();
763  }
764
765  // Late parsed attributes must be attached to Decls by hand.  If the
766  // LA.D is not set, then this was not done properly.
767  assert(LA.D && "No decl attached to late parsed attribute");
768  Actions.ActOnFinishDelayedAttribute(getCurScope(), LA.D, Attrs);
769
770  if (Tok.getLocation() != OrigLoc) {
771    // Due to a parsing error, we either went over the cached tokens or
772    // there are still cached tokens left, so we skip the leftover tokens.
773    // Since this is an uncommon situation that should be avoided, use the
774    // expensive isBeforeInTranslationUnit call.
775    if (PP.getSourceManager().isBeforeInTranslationUnit(Tok.getLocation(),
776                                                        OrigLoc))
777    while (Tok.getLocation() != OrigLoc && Tok.isNot(tok::eof))
778        ConsumeAnyToken();
779  }
780}
781
782/// \brief Wrapper around a case statement checking if AttrName is
783/// one of the thread safety attributes
784bool Parser::IsThreadSafetyAttribute(llvm::StringRef AttrName){
785  return llvm::StringSwitch<bool>(AttrName)
786      .Case("guarded_by", true)
787      .Case("guarded_var", true)
788      .Case("pt_guarded_by", true)
789      .Case("pt_guarded_var", true)
790      .Case("lockable", true)
791      .Case("scoped_lockable", true)
792      .Case("no_thread_safety_analysis", true)
793      .Case("acquired_after", true)
794      .Case("acquired_before", true)
795      .Case("exclusive_lock_function", true)
796      .Case("shared_lock_function", true)
797      .Case("exclusive_trylock_function", true)
798      .Case("shared_trylock_function", true)
799      .Case("unlock_function", true)
800      .Case("lock_returned", true)
801      .Case("locks_excluded", true)
802      .Case("exclusive_locks_required", true)
803      .Case("shared_locks_required", true)
804      .Default(false);
805}
806
807/// \brief Parse the contents of thread safety attributes. These
808/// should always be parsed as an expression list.
809///
810/// We need to special case the parsing due to the fact that if the first token
811/// of the first argument is an identifier, the main parse loop will store
812/// that token as a "parameter" and the rest of
813/// the arguments will be added to a list of "arguments". However,
814/// subsequent tokens in the first argument are lost. We instead parse each
815/// argument as an expression and add all arguments to the list of "arguments".
816/// In future, we will take advantage of this special case to also
817/// deal with some argument scoping issues here (for example, referring to a
818/// function parameter in the attribute on that function).
819void Parser::ParseThreadSafetyAttribute(IdentifierInfo &AttrName,
820                                        SourceLocation AttrNameLoc,
821                                        ParsedAttributes &Attrs,
822                                        SourceLocation *EndLoc) {
823  assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
824
825  BalancedDelimiterTracker T(*this, tok::l_paren);
826  T.consumeOpen();
827
828  ExprVector ArgExprs(Actions);
829  bool ArgExprsOk = true;
830
831  // now parse the list of expressions
832  while (1) {
833    ExprResult ArgExpr(ParseAssignmentExpression());
834    if (ArgExpr.isInvalid()) {
835      ArgExprsOk = false;
836      T.consumeClose();
837      break;
838    } else {
839      ArgExprs.push_back(ArgExpr.release());
840    }
841    if (Tok.isNot(tok::comma))
842      break;
843    ConsumeToken(); // Eat the comma, move to the next argument
844  }
845  // Match the ')'.
846  if (ArgExprsOk && !T.consumeClose()) {
847    Attrs.addNew(&AttrName, AttrNameLoc, 0, AttrNameLoc, 0, SourceLocation(),
848                 ArgExprs.take(), ArgExprs.size());
849  }
850  if (EndLoc)
851    *EndLoc = T.getCloseLocation();
852}
853
854void Parser::DiagnoseProhibitedAttributes(ParsedAttributesWithRange &attrs) {
855  Diag(attrs.Range.getBegin(), diag::err_attributes_not_allowed)
856    << attrs.Range;
857}
858
859/// ParseDeclaration - Parse a full 'declaration', which consists of
860/// declaration-specifiers, some number of declarators, and a semicolon.
861/// 'Context' should be a Declarator::TheContext value.  This returns the
862/// location of the semicolon in DeclEnd.
863///
864///       declaration: [C99 6.7]
865///         block-declaration ->
866///           simple-declaration
867///           others                   [FIXME]
868/// [C++]   template-declaration
869/// [C++]   namespace-definition
870/// [C++]   using-directive
871/// [C++]   using-declaration
872/// [C++0x/C1X] static_assert-declaration
873///         others... [FIXME]
874///
875Parser::DeclGroupPtrTy Parser::ParseDeclaration(StmtVector &Stmts,
876                                                unsigned Context,
877                                                SourceLocation &DeclEnd,
878                                          ParsedAttributesWithRange &attrs) {
879  ParenBraceBracketBalancer BalancerRAIIObj(*this);
880  // Must temporarily exit the objective-c container scope for
881  // parsing c none objective-c decls.
882  ObjCDeclContextSwitch ObjCDC(*this);
883
884  Decl *SingleDecl = 0;
885  Decl *OwnedType = 0;
886  switch (Tok.getKind()) {
887  case tok::kw_template:
888  case tok::kw_export:
889    ProhibitAttributes(attrs);
890    SingleDecl = ParseDeclarationStartingWithTemplate(Context, DeclEnd);
891    break;
892  case tok::kw_inline:
893    // Could be the start of an inline namespace. Allowed as an ext in C++03.
894    if (getLang().CPlusPlus && NextToken().is(tok::kw_namespace)) {
895      ProhibitAttributes(attrs);
896      SourceLocation InlineLoc = ConsumeToken();
897      SingleDecl = ParseNamespace(Context, DeclEnd, InlineLoc);
898      break;
899    }
900    return ParseSimpleDeclaration(Stmts, Context, DeclEnd, attrs,
901                                  true);
902  case tok::kw_namespace:
903    ProhibitAttributes(attrs);
904    SingleDecl = ParseNamespace(Context, DeclEnd);
905    break;
906  case tok::kw_using:
907    SingleDecl = ParseUsingDirectiveOrDeclaration(Context, ParsedTemplateInfo(),
908                                                  DeclEnd, attrs, &OwnedType);
909    break;
910  case tok::kw_static_assert:
911  case tok::kw__Static_assert:
912    ProhibitAttributes(attrs);
913    SingleDecl = ParseStaticAssertDeclaration(DeclEnd);
914    break;
915  default:
916    return ParseSimpleDeclaration(Stmts, Context, DeclEnd, attrs, true);
917  }
918
919  // This routine returns a DeclGroup, if the thing we parsed only contains a
920  // single decl, convert it now. Alias declarations can also declare a type;
921  // include that too if it is present.
922  return Actions.ConvertDeclToDeclGroup(SingleDecl, OwnedType);
923}
924
925///       simple-declaration: [C99 6.7: declaration] [C++ 7p1: dcl.dcl]
926///         declaration-specifiers init-declarator-list[opt] ';'
927///[C90/C++]init-declarator-list ';'                             [TODO]
928/// [OMP]   threadprivate-directive                              [TODO]
929///
930///       for-range-declaration: [C++0x 6.5p1: stmt.ranged]
931///         attribute-specifier-seq[opt] type-specifier-seq declarator
932///
933/// If RequireSemi is false, this does not check for a ';' at the end of the
934/// declaration.  If it is true, it checks for and eats it.
935///
936/// If FRI is non-null, we might be parsing a for-range-declaration instead
937/// of a simple-declaration. If we find that we are, we also parse the
938/// for-range-initializer, and place it here.
939Parser::DeclGroupPtrTy Parser::ParseSimpleDeclaration(StmtVector &Stmts,
940                                                      unsigned Context,
941                                                      SourceLocation &DeclEnd,
942                                                      ParsedAttributes &attrs,
943                                                      bool RequireSemi,
944                                                      ForRangeInit *FRI) {
945  // Parse the common declaration-specifiers piece.
946  ParsingDeclSpec DS(*this);
947  DS.takeAttributesFrom(attrs);
948
949  ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS_none,
950                             getDeclSpecContextFromDeclaratorContext(Context));
951  StmtResult R = Actions.ActOnVlaStmt(DS);
952  if (R.isUsable())
953    Stmts.push_back(R.release());
954
955  // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };"
956  // declaration-specifiers init-declarator-list[opt] ';'
957  if (Tok.is(tok::semi)) {
958    if (RequireSemi) ConsumeToken();
959    Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none,
960                                                       DS);
961    DS.complete(TheDecl);
962    return Actions.ConvertDeclToDeclGroup(TheDecl);
963  }
964
965  return ParseDeclGroup(DS, Context, /*FunctionDefs=*/ false, &DeclEnd, FRI);
966}
967
968/// ParseDeclGroup - Having concluded that this is either a function
969/// definition or a group of object declarations, actually parse the
970/// result.
971Parser::DeclGroupPtrTy Parser::ParseDeclGroup(ParsingDeclSpec &DS,
972                                              unsigned Context,
973                                              bool AllowFunctionDefinitions,
974                                              SourceLocation *DeclEnd,
975                                              ForRangeInit *FRI) {
976  // Parse the first declarator.
977  ParsingDeclarator D(*this, DS, static_cast<Declarator::TheContext>(Context));
978  ParseDeclarator(D);
979
980  // Bail out if the first declarator didn't seem well-formed.
981  if (!D.hasName() && !D.mayOmitIdentifier()) {
982    // Skip until ; or }.
983    SkipUntil(tok::r_brace, true, true);
984    if (Tok.is(tok::semi))
985      ConsumeToken();
986    return DeclGroupPtrTy();
987  }
988
989  // Check to see if we have a function *definition* which must have a body.
990  if (AllowFunctionDefinitions && D.isFunctionDeclarator() &&
991      // Look at the next token to make sure that this isn't a function
992      // declaration.  We have to check this because __attribute__ might be the
993      // start of a function definition in GCC-extended K&R C.
994      !isDeclarationAfterDeclarator()) {
995
996    if (isStartOfFunctionDefinition(D)) {
997      if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
998        Diag(Tok, diag::err_function_declared_typedef);
999
1000        // Recover by treating the 'typedef' as spurious.
1001        DS.ClearStorageClassSpecs();
1002      }
1003
1004      Decl *TheDecl = ParseFunctionDefinition(D);
1005      return Actions.ConvertDeclToDeclGroup(TheDecl);
1006    }
1007
1008    if (isDeclarationSpecifier()) {
1009      // If there is an invalid declaration specifier right after the function
1010      // prototype, then we must be in a missing semicolon case where this isn't
1011      // actually a body.  Just fall through into the code that handles it as a
1012      // prototype, and let the top-level code handle the erroneous declspec
1013      // where it would otherwise expect a comma or semicolon.
1014    } else {
1015      Diag(Tok, diag::err_expected_fn_body);
1016      SkipUntil(tok::semi);
1017      return DeclGroupPtrTy();
1018    }
1019  }
1020
1021  if (ParseAttributesAfterDeclarator(D))
1022    return DeclGroupPtrTy();
1023
1024  // C++0x [stmt.iter]p1: Check if we have a for-range-declarator. If so, we
1025  // must parse and analyze the for-range-initializer before the declaration is
1026  // analyzed.
1027  if (FRI && Tok.is(tok::colon)) {
1028    FRI->ColonLoc = ConsumeToken();
1029    if (Tok.is(tok::l_brace))
1030      FRI->RangeExpr = ParseBraceInitializer();
1031    else
1032      FRI->RangeExpr = ParseExpression();
1033    Decl *ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
1034    Actions.ActOnCXXForRangeDecl(ThisDecl);
1035    Actions.FinalizeDeclaration(ThisDecl);
1036    return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, &ThisDecl, 1);
1037  }
1038
1039  SmallVector<Decl *, 8> DeclsInGroup;
1040  Decl *FirstDecl = ParseDeclarationAfterDeclaratorAndAttributes(D);
1041  D.complete(FirstDecl);
1042  if (FirstDecl)
1043    DeclsInGroup.push_back(FirstDecl);
1044
1045  // If we don't have a comma, it is either the end of the list (a ';') or an
1046  // error, bail out.
1047  while (Tok.is(tok::comma)) {
1048    // Consume the comma.
1049    ConsumeToken();
1050
1051    // Parse the next declarator.
1052    D.clear();
1053
1054    // Accept attributes in an init-declarator.  In the first declarator in a
1055    // declaration, these would be part of the declspec.  In subsequent
1056    // declarators, they become part of the declarator itself, so that they
1057    // don't apply to declarators after *this* one.  Examples:
1058    //    short __attribute__((common)) var;    -> declspec
1059    //    short var __attribute__((common));    -> declarator
1060    //    short x, __attribute__((common)) var;    -> declarator
1061    MaybeParseGNUAttributes(D);
1062
1063    ParseDeclarator(D);
1064
1065    Decl *ThisDecl = ParseDeclarationAfterDeclarator(D);
1066    D.complete(ThisDecl);
1067    if (ThisDecl)
1068      DeclsInGroup.push_back(ThisDecl);
1069  }
1070
1071  if (DeclEnd)
1072    *DeclEnd = Tok.getLocation();
1073
1074  if (Context != Declarator::ForContext &&
1075      ExpectAndConsume(tok::semi,
1076                       Context == Declarator::FileContext
1077                         ? diag::err_invalid_token_after_toplevel_declarator
1078                         : diag::err_expected_semi_declaration)) {
1079    // Okay, there was no semicolon and one was expected.  If we see a
1080    // declaration specifier, just assume it was missing and continue parsing.
1081    // Otherwise things are very confused and we skip to recover.
1082    if (!isDeclarationSpecifier()) {
1083      SkipUntil(tok::r_brace, true, true);
1084      if (Tok.is(tok::semi))
1085        ConsumeToken();
1086    }
1087  }
1088
1089  return Actions.FinalizeDeclaratorGroup(getCurScope(), DS,
1090                                         DeclsInGroup.data(),
1091                                         DeclsInGroup.size());
1092}
1093
1094/// Parse an optional simple-asm-expr and attributes, and attach them to a
1095/// declarator. Returns true on an error.
1096bool Parser::ParseAttributesAfterDeclarator(Declarator &D) {
1097  // If a simple-asm-expr is present, parse it.
1098  if (Tok.is(tok::kw_asm)) {
1099    SourceLocation Loc;
1100    ExprResult AsmLabel(ParseSimpleAsm(&Loc));
1101    if (AsmLabel.isInvalid()) {
1102      SkipUntil(tok::semi, true, true);
1103      return true;
1104    }
1105
1106    D.setAsmLabel(AsmLabel.release());
1107    D.SetRangeEnd(Loc);
1108  }
1109
1110  MaybeParseGNUAttributes(D);
1111  return false;
1112}
1113
1114/// \brief Parse 'declaration' after parsing 'declaration-specifiers
1115/// declarator'. This method parses the remainder of the declaration
1116/// (including any attributes or initializer, among other things) and
1117/// finalizes the declaration.
1118///
1119///       init-declarator: [C99 6.7]
1120///         declarator
1121///         declarator '=' initializer
1122/// [GNU]   declarator simple-asm-expr[opt] attributes[opt]
1123/// [GNU]   declarator simple-asm-expr[opt] attributes[opt] '=' initializer
1124/// [C++]   declarator initializer[opt]
1125///
1126/// [C++] initializer:
1127/// [C++]   '=' initializer-clause
1128/// [C++]   '(' expression-list ')'
1129/// [C++0x] '=' 'default'                                                [TODO]
1130/// [C++0x] '=' 'delete'
1131/// [C++0x] braced-init-list
1132///
1133/// According to the standard grammar, =default and =delete are function
1134/// definitions, but that definitely doesn't fit with the parser here.
1135///
1136Decl *Parser::ParseDeclarationAfterDeclarator(Declarator &D,
1137                                     const ParsedTemplateInfo &TemplateInfo) {
1138  if (ParseAttributesAfterDeclarator(D))
1139    return 0;
1140
1141  return ParseDeclarationAfterDeclaratorAndAttributes(D, TemplateInfo);
1142}
1143
1144Decl *Parser::ParseDeclarationAfterDeclaratorAndAttributes(Declarator &D,
1145                                     const ParsedTemplateInfo &TemplateInfo) {
1146  // Inform the current actions module that we just parsed this declarator.
1147  Decl *ThisDecl = 0;
1148  switch (TemplateInfo.Kind) {
1149  case ParsedTemplateInfo::NonTemplate:
1150    ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
1151    break;
1152
1153  case ParsedTemplateInfo::Template:
1154  case ParsedTemplateInfo::ExplicitSpecialization:
1155    ThisDecl = Actions.ActOnTemplateDeclarator(getCurScope(),
1156                             MultiTemplateParamsArg(Actions,
1157                                          TemplateInfo.TemplateParams->data(),
1158                                          TemplateInfo.TemplateParams->size()),
1159                                               D);
1160    break;
1161
1162  case ParsedTemplateInfo::ExplicitInstantiation: {
1163    DeclResult ThisRes
1164      = Actions.ActOnExplicitInstantiation(getCurScope(),
1165                                           TemplateInfo.ExternLoc,
1166                                           TemplateInfo.TemplateLoc,
1167                                           D);
1168    if (ThisRes.isInvalid()) {
1169      SkipUntil(tok::semi, true, true);
1170      return 0;
1171    }
1172
1173    ThisDecl = ThisRes.get();
1174    break;
1175    }
1176  }
1177
1178  bool TypeContainsAuto =
1179    D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto;
1180
1181  // Parse declarator '=' initializer.
1182  if (isTokenEqualOrMistypedEqualEqual(
1183                               diag::err_invalid_equalequal_after_declarator)) {
1184    ConsumeToken();
1185    if (Tok.is(tok::kw_delete)) {
1186      if (D.isFunctionDeclarator())
1187        Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration)
1188          << 1 /* delete */;
1189      else
1190        Diag(ConsumeToken(), diag::err_deleted_non_function);
1191    } else if (Tok.is(tok::kw_default)) {
1192      if (D.isFunctionDeclarator())
1193        Diag(Tok, diag::err_default_delete_in_multiple_declaration)
1194          << 1 /* delete */;
1195      else
1196        Diag(ConsumeToken(), diag::err_default_special_members);
1197    } else {
1198      if (getLang().CPlusPlus && D.getCXXScopeSpec().isSet()) {
1199        EnterScope(0);
1200        Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
1201      }
1202
1203      if (Tok.is(tok::code_completion)) {
1204        Actions.CodeCompleteInitializer(getCurScope(), ThisDecl);
1205        cutOffParsing();
1206        return 0;
1207      }
1208
1209      ExprResult Init(ParseInitializer());
1210
1211      if (getLang().CPlusPlus && D.getCXXScopeSpec().isSet()) {
1212        Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
1213        ExitScope();
1214      }
1215
1216      if (Init.isInvalid()) {
1217        SkipUntil(tok::comma, true, true);
1218        Actions.ActOnInitializerError(ThisDecl);
1219      } else
1220        Actions.AddInitializerToDecl(ThisDecl, Init.take(),
1221                                     /*DirectInit=*/false, TypeContainsAuto);
1222    }
1223  } else if (Tok.is(tok::l_paren)) {
1224    // Parse C++ direct initializer: '(' expression-list ')'
1225    BalancedDelimiterTracker T(*this, tok::l_paren);
1226    T.consumeOpen();
1227
1228    ExprVector Exprs(Actions);
1229    CommaLocsTy CommaLocs;
1230
1231    if (getLang().CPlusPlus && D.getCXXScopeSpec().isSet()) {
1232      EnterScope(0);
1233      Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
1234    }
1235
1236    if (ParseExpressionList(Exprs, CommaLocs)) {
1237      SkipUntil(tok::r_paren);
1238
1239      if (getLang().CPlusPlus && D.getCXXScopeSpec().isSet()) {
1240        Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
1241        ExitScope();
1242      }
1243    } else {
1244      // Match the ')'.
1245      T.consumeClose();
1246
1247      assert(!Exprs.empty() && Exprs.size()-1 == CommaLocs.size() &&
1248             "Unexpected number of commas!");
1249
1250      if (getLang().CPlusPlus && D.getCXXScopeSpec().isSet()) {
1251        Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
1252        ExitScope();
1253      }
1254
1255      Actions.AddCXXDirectInitializerToDecl(ThisDecl, T.getOpenLocation(),
1256                                            move_arg(Exprs),
1257                                            T.getCloseLocation(),
1258                                            TypeContainsAuto);
1259    }
1260  } else if (getLang().CPlusPlus0x && Tok.is(tok::l_brace)) {
1261    // Parse C++0x braced-init-list.
1262    Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
1263
1264    if (D.getCXXScopeSpec().isSet()) {
1265      EnterScope(0);
1266      Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
1267    }
1268
1269    ExprResult Init(ParseBraceInitializer());
1270
1271    if (D.getCXXScopeSpec().isSet()) {
1272      Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
1273      ExitScope();
1274    }
1275
1276    if (Init.isInvalid()) {
1277      Actions.ActOnInitializerError(ThisDecl);
1278    } else
1279      Actions.AddInitializerToDecl(ThisDecl, Init.take(),
1280                                   /*DirectInit=*/true, TypeContainsAuto);
1281
1282  } else {
1283    Actions.ActOnUninitializedDecl(ThisDecl, TypeContainsAuto);
1284  }
1285
1286  Actions.FinalizeDeclaration(ThisDecl);
1287
1288  return ThisDecl;
1289}
1290
1291/// ParseSpecifierQualifierList
1292///        specifier-qualifier-list:
1293///          type-specifier specifier-qualifier-list[opt]
1294///          type-qualifier specifier-qualifier-list[opt]
1295/// [GNU]    attributes     specifier-qualifier-list[opt]
1296///
1297void Parser::ParseSpecifierQualifierList(DeclSpec &DS, AccessSpecifier AS) {
1298  /// specifier-qualifier-list is a subset of declaration-specifiers.  Just
1299  /// parse declaration-specifiers and complain about extra stuff.
1300  /// TODO: diagnose attribute-specifiers and alignment-specifiers.
1301  ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS);
1302
1303  // Validate declspec for type-name.
1304  unsigned Specs = DS.getParsedSpecifiers();
1305  if (Specs == DeclSpec::PQ_None && !DS.getNumProtocolQualifiers() &&
1306      !DS.hasAttributes())
1307    Diag(Tok, diag::err_typename_requires_specqual);
1308
1309  // Issue diagnostic and remove storage class if present.
1310  if (Specs & DeclSpec::PQ_StorageClassSpecifier) {
1311    if (DS.getStorageClassSpecLoc().isValid())
1312      Diag(DS.getStorageClassSpecLoc(),diag::err_typename_invalid_storageclass);
1313    else
1314      Diag(DS.getThreadSpecLoc(), diag::err_typename_invalid_storageclass);
1315    DS.ClearStorageClassSpecs();
1316  }
1317
1318  // Issue diagnostic and remove function specfier if present.
1319  if (Specs & DeclSpec::PQ_FunctionSpecifier) {
1320    if (DS.isInlineSpecified())
1321      Diag(DS.getInlineSpecLoc(), diag::err_typename_invalid_functionspec);
1322    if (DS.isVirtualSpecified())
1323      Diag(DS.getVirtualSpecLoc(), diag::err_typename_invalid_functionspec);
1324    if (DS.isExplicitSpecified())
1325      Diag(DS.getExplicitSpecLoc(), diag::err_typename_invalid_functionspec);
1326    DS.ClearFunctionSpecs();
1327  }
1328}
1329
1330/// isValidAfterIdentifierInDeclaratorAfterDeclSpec - Return true if the
1331/// specified token is valid after the identifier in a declarator which
1332/// immediately follows the declspec.  For example, these things are valid:
1333///
1334///      int x   [             4];         // direct-declarator
1335///      int x   (             int y);     // direct-declarator
1336///  int(int x   )                         // direct-declarator
1337///      int x   ;                         // simple-declaration
1338///      int x   =             17;         // init-declarator-list
1339///      int x   ,             y;          // init-declarator-list
1340///      int x   __asm__       ("foo");    // init-declarator-list
1341///      int x   :             4;          // struct-declarator
1342///      int x   {             5};         // C++'0x unified initializers
1343///
1344/// This is not, because 'x' does not immediately follow the declspec (though
1345/// ')' happens to be valid anyway).
1346///    int (x)
1347///
1348static bool isValidAfterIdentifierInDeclarator(const Token &T) {
1349  return T.is(tok::l_square) || T.is(tok::l_paren) || T.is(tok::r_paren) ||
1350         T.is(tok::semi) || T.is(tok::comma) || T.is(tok::equal) ||
1351         T.is(tok::kw_asm) || T.is(tok::l_brace) || T.is(tok::colon);
1352}
1353
1354
1355/// ParseImplicitInt - This method is called when we have an non-typename
1356/// identifier in a declspec (which normally terminates the decl spec) when
1357/// the declspec has no type specifier.  In this case, the declspec is either
1358/// malformed or is "implicit int" (in K&R and C89).
1359///
1360/// This method handles diagnosing this prettily and returns false if the
1361/// declspec is done being processed.  If it recovers and thinks there may be
1362/// other pieces of declspec after it, it returns true.
1363///
1364bool Parser::ParseImplicitInt(DeclSpec &DS, CXXScopeSpec *SS,
1365                              const ParsedTemplateInfo &TemplateInfo,
1366                              AccessSpecifier AS) {
1367  assert(Tok.is(tok::identifier) && "should have identifier");
1368
1369  SourceLocation Loc = Tok.getLocation();
1370  // If we see an identifier that is not a type name, we normally would
1371  // parse it as the identifer being declared.  However, when a typename
1372  // is typo'd or the definition is not included, this will incorrectly
1373  // parse the typename as the identifier name and fall over misparsing
1374  // later parts of the diagnostic.
1375  //
1376  // As such, we try to do some look-ahead in cases where this would
1377  // otherwise be an "implicit-int" case to see if this is invalid.  For
1378  // example: "static foo_t x = 4;"  In this case, if we parsed foo_t as
1379  // an identifier with implicit int, we'd get a parse error because the
1380  // next token is obviously invalid for a type.  Parse these as a case
1381  // with an invalid type specifier.
1382  assert(!DS.hasTypeSpecifier() && "Type specifier checked above");
1383
1384  // Since we know that this either implicit int (which is rare) or an
1385  // error, we'd do lookahead to try to do better recovery.
1386  if (isValidAfterIdentifierInDeclarator(NextToken())) {
1387    // If this token is valid for implicit int, e.g. "static x = 4", then
1388    // we just avoid eating the identifier, so it will be parsed as the
1389    // identifier in the declarator.
1390    return false;
1391  }
1392
1393  // Otherwise, if we don't consume this token, we are going to emit an
1394  // error anyway.  Try to recover from various common problems.  Check
1395  // to see if this was a reference to a tag name without a tag specified.
1396  // This is a common problem in C (saying 'foo' instead of 'struct foo').
1397  //
1398  // C++ doesn't need this, and isTagName doesn't take SS.
1399  if (SS == 0) {
1400    const char *TagName = 0, *FixitTagName = 0;
1401    tok::TokenKind TagKind = tok::unknown;
1402
1403    switch (Actions.isTagName(*Tok.getIdentifierInfo(), getCurScope())) {
1404      default: break;
1405      case DeclSpec::TST_enum:
1406        TagName="enum"  ; FixitTagName = "enum "  ; TagKind=tok::kw_enum ;break;
1407      case DeclSpec::TST_union:
1408        TagName="union" ; FixitTagName = "union " ;TagKind=tok::kw_union ;break;
1409      case DeclSpec::TST_struct:
1410        TagName="struct"; FixitTagName = "struct ";TagKind=tok::kw_struct;break;
1411      case DeclSpec::TST_class:
1412        TagName="class" ; FixitTagName = "class " ;TagKind=tok::kw_class ;break;
1413    }
1414
1415    if (TagName) {
1416      Diag(Loc, diag::err_use_of_tag_name_without_tag)
1417        << Tok.getIdentifierInfo() << TagName << getLang().CPlusPlus
1418        << FixItHint::CreateInsertion(Tok.getLocation(),FixitTagName);
1419
1420      // Parse this as a tag as if the missing tag were present.
1421      if (TagKind == tok::kw_enum)
1422        ParseEnumSpecifier(Loc, DS, TemplateInfo, AS);
1423      else
1424        ParseClassSpecifier(TagKind, Loc, DS, TemplateInfo, AS);
1425      return true;
1426    }
1427  }
1428
1429  // This is almost certainly an invalid type name. Let the action emit a
1430  // diagnostic and attempt to recover.
1431  ParsedType T;
1432  if (Actions.DiagnoseUnknownTypeName(*Tok.getIdentifierInfo(), Loc,
1433                                      getCurScope(), SS, T)) {
1434    // The action emitted a diagnostic, so we don't have to.
1435    if (T) {
1436      // The action has suggested that the type T could be used. Set that as
1437      // the type in the declaration specifiers, consume the would-be type
1438      // name token, and we're done.
1439      const char *PrevSpec;
1440      unsigned DiagID;
1441      DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, T);
1442      DS.SetRangeEnd(Tok.getLocation());
1443      ConsumeToken();
1444
1445      // There may be other declaration specifiers after this.
1446      return true;
1447    }
1448
1449    // Fall through; the action had no suggestion for us.
1450  } else {
1451    // The action did not emit a diagnostic, so emit one now.
1452    SourceRange R;
1453    if (SS) R = SS->getRange();
1454    Diag(Loc, diag::err_unknown_typename) << Tok.getIdentifierInfo() << R;
1455  }
1456
1457  // Mark this as an error.
1458  const char *PrevSpec;
1459  unsigned DiagID;
1460  DS.SetTypeSpecType(DeclSpec::TST_error, Loc, PrevSpec, DiagID);
1461  DS.SetRangeEnd(Tok.getLocation());
1462  ConsumeToken();
1463
1464  // TODO: Could inject an invalid typedef decl in an enclosing scope to
1465  // avoid rippling error messages on subsequent uses of the same type,
1466  // could be useful if #include was forgotten.
1467  return false;
1468}
1469
1470/// \brief Determine the declaration specifier context from the declarator
1471/// context.
1472///
1473/// \param Context the declarator context, which is one of the
1474/// Declarator::TheContext enumerator values.
1475Parser::DeclSpecContext
1476Parser::getDeclSpecContextFromDeclaratorContext(unsigned Context) {
1477  if (Context == Declarator::MemberContext)
1478    return DSC_class;
1479  if (Context == Declarator::FileContext)
1480    return DSC_top_level;
1481  return DSC_normal;
1482}
1483
1484/// ParseAlignArgument - Parse the argument to an alignment-specifier.
1485///
1486/// FIXME: Simply returns an alignof() expression if the argument is a
1487/// type. Ideally, the type should be propagated directly into Sema.
1488///
1489/// [C1X/C++0x] type-id
1490/// [C1X]       constant-expression
1491/// [C++0x]     assignment-expression
1492ExprResult Parser::ParseAlignArgument(SourceLocation Start) {
1493  if (isTypeIdInParens()) {
1494    EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated);
1495    SourceLocation TypeLoc = Tok.getLocation();
1496    ParsedType Ty = ParseTypeName().get();
1497    SourceRange TypeRange(Start, Tok.getLocation());
1498    return Actions.ActOnUnaryExprOrTypeTraitExpr(TypeLoc, UETT_AlignOf, true,
1499                                                Ty.getAsOpaquePtr(), TypeRange);
1500  } else
1501    return ParseConstantExpression();
1502}
1503
1504/// ParseAlignmentSpecifier - Parse an alignment-specifier, and add the
1505/// attribute to Attrs.
1506///
1507/// alignment-specifier:
1508/// [C1X]   '_Alignas' '(' type-id ')'
1509/// [C1X]   '_Alignas' '(' constant-expression ')'
1510/// [C++0x] 'alignas' '(' type-id ')'
1511/// [C++0x] 'alignas' '(' assignment-expression ')'
1512void Parser::ParseAlignmentSpecifier(ParsedAttributes &Attrs,
1513                                     SourceLocation *endLoc) {
1514  assert((Tok.is(tok::kw_alignas) || Tok.is(tok::kw__Alignas)) &&
1515         "Not an alignment-specifier!");
1516
1517  SourceLocation KWLoc = Tok.getLocation();
1518  ConsumeToken();
1519
1520  BalancedDelimiterTracker T(*this, tok::l_paren);
1521  if (T.expectAndConsume(diag::err_expected_lparen))
1522    return;
1523
1524  ExprResult ArgExpr = ParseAlignArgument(T.getOpenLocation());
1525  if (ArgExpr.isInvalid()) {
1526    SkipUntil(tok::r_paren);
1527    return;
1528  }
1529
1530  T.consumeClose();
1531  if (endLoc)
1532    *endLoc = T.getCloseLocation();
1533
1534  ExprVector ArgExprs(Actions);
1535  ArgExprs.push_back(ArgExpr.release());
1536  Attrs.addNew(PP.getIdentifierInfo("aligned"), KWLoc, 0, KWLoc,
1537               0, T.getOpenLocation(), ArgExprs.take(), 1, false, true);
1538}
1539
1540/// ParseDeclarationSpecifiers
1541///       declaration-specifiers: [C99 6.7]
1542///         storage-class-specifier declaration-specifiers[opt]
1543///         type-specifier declaration-specifiers[opt]
1544/// [C99]   function-specifier declaration-specifiers[opt]
1545/// [C1X]   alignment-specifier declaration-specifiers[opt]
1546/// [GNU]   attributes declaration-specifiers[opt]
1547/// [Clang] '__module_private__' declaration-specifiers[opt]
1548///
1549///       storage-class-specifier: [C99 6.7.1]
1550///         'typedef'
1551///         'extern'
1552///         'static'
1553///         'auto'
1554///         'register'
1555/// [C++]   'mutable'
1556/// [GNU]   '__thread'
1557///       function-specifier: [C99 6.7.4]
1558/// [C99]   'inline'
1559/// [C++]   'virtual'
1560/// [C++]   'explicit'
1561/// [OpenCL] '__kernel'
1562///       'friend': [C++ dcl.friend]
1563///       'constexpr': [C++0x dcl.constexpr]
1564
1565///
1566void Parser::ParseDeclarationSpecifiers(DeclSpec &DS,
1567                                        const ParsedTemplateInfo &TemplateInfo,
1568                                        AccessSpecifier AS,
1569                                        DeclSpecContext DSContext) {
1570  if (DS.getSourceRange().isInvalid()) {
1571    DS.SetRangeStart(Tok.getLocation());
1572    DS.SetRangeEnd(Tok.getLocation());
1573  }
1574
1575  while (1) {
1576    bool isInvalid = false;
1577    const char *PrevSpec = 0;
1578    unsigned DiagID = 0;
1579
1580    SourceLocation Loc = Tok.getLocation();
1581
1582    switch (Tok.getKind()) {
1583    default:
1584    DoneWithDeclSpec:
1585      // [C++0x] decl-specifier-seq: decl-specifier attribute-specifier-seq[opt]
1586      MaybeParseCXX0XAttributes(DS.getAttributes());
1587
1588      // If this is not a declaration specifier token, we're done reading decl
1589      // specifiers.  First verify that DeclSpec's are consistent.
1590      DS.Finish(Diags, PP);
1591      return;
1592
1593    case tok::code_completion: {
1594      Sema::ParserCompletionContext CCC = Sema::PCC_Namespace;
1595      if (DS.hasTypeSpecifier()) {
1596        bool AllowNonIdentifiers
1597          = (getCurScope()->getFlags() & (Scope::ControlScope |
1598                                          Scope::BlockScope |
1599                                          Scope::TemplateParamScope |
1600                                          Scope::FunctionPrototypeScope |
1601                                          Scope::AtCatchScope)) == 0;
1602        bool AllowNestedNameSpecifiers
1603          = DSContext == DSC_top_level ||
1604            (DSContext == DSC_class && DS.isFriendSpecified());
1605
1606        Actions.CodeCompleteDeclSpec(getCurScope(), DS,
1607                                     AllowNonIdentifiers,
1608                                     AllowNestedNameSpecifiers);
1609        return cutOffParsing();
1610      }
1611
1612      if (getCurScope()->getFnParent() || getCurScope()->getBlockParent())
1613        CCC = Sema::PCC_LocalDeclarationSpecifiers;
1614      else if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate)
1615        CCC = DSContext == DSC_class? Sema::PCC_MemberTemplate
1616                                    : Sema::PCC_Template;
1617      else if (DSContext == DSC_class)
1618        CCC = Sema::PCC_Class;
1619      else if (ObjCImpDecl)
1620        CCC = Sema::PCC_ObjCImplementation;
1621
1622      Actions.CodeCompleteOrdinaryName(getCurScope(), CCC);
1623      return cutOffParsing();
1624    }
1625
1626    case tok::coloncolon: // ::foo::bar
1627      // C++ scope specifier.  Annotate and loop, or bail out on error.
1628      if (TryAnnotateCXXScopeToken(true)) {
1629        if (!DS.hasTypeSpecifier())
1630          DS.SetTypeSpecError();
1631        goto DoneWithDeclSpec;
1632      }
1633      if (Tok.is(tok::coloncolon)) // ::new or ::delete
1634        goto DoneWithDeclSpec;
1635      continue;
1636
1637    case tok::annot_cxxscope: {
1638      if (DS.hasTypeSpecifier())
1639        goto DoneWithDeclSpec;
1640
1641      CXXScopeSpec SS;
1642      Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
1643                                                   Tok.getAnnotationRange(),
1644                                                   SS);
1645
1646      // We are looking for a qualified typename.
1647      Token Next = NextToken();
1648      if (Next.is(tok::annot_template_id) &&
1649          static_cast<TemplateIdAnnotation *>(Next.getAnnotationValue())
1650            ->Kind == TNK_Type_template) {
1651        // We have a qualified template-id, e.g., N::A<int>
1652
1653        // C++ [class.qual]p2:
1654        //   In a lookup in which the constructor is an acceptable lookup
1655        //   result and the nested-name-specifier nominates a class C:
1656        //
1657        //     - if the name specified after the
1658        //       nested-name-specifier, when looked up in C, is the
1659        //       injected-class-name of C (Clause 9), or
1660        //
1661        //     - if the name specified after the nested-name-specifier
1662        //       is the same as the identifier or the
1663        //       simple-template-id's template-name in the last
1664        //       component of the nested-name-specifier,
1665        //
1666        //   the name is instead considered to name the constructor of
1667        //   class C.
1668        //
1669        // Thus, if the template-name is actually the constructor
1670        // name, then the code is ill-formed; this interpretation is
1671        // reinforced by the NAD status of core issue 635.
1672        TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Next);
1673        if ((DSContext == DSC_top_level ||
1674             (DSContext == DSC_class && DS.isFriendSpecified())) &&
1675            TemplateId->Name &&
1676            Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS)) {
1677          if (isConstructorDeclarator()) {
1678            // The user meant this to be an out-of-line constructor
1679            // definition, but template arguments are not allowed
1680            // there.  Just allow this as a constructor; we'll
1681            // complain about it later.
1682            goto DoneWithDeclSpec;
1683          }
1684
1685          // The user meant this to name a type, but it actually names
1686          // a constructor with some extraneous template
1687          // arguments. Complain, then parse it as a type as the user
1688          // intended.
1689          Diag(TemplateId->TemplateNameLoc,
1690               diag::err_out_of_line_template_id_names_constructor)
1691            << TemplateId->Name;
1692        }
1693
1694        DS.getTypeSpecScope() = SS;
1695        ConsumeToken(); // The C++ scope.
1696        assert(Tok.is(tok::annot_template_id) &&
1697               "ParseOptionalCXXScopeSpecifier not working");
1698        AnnotateTemplateIdTokenAsType();
1699        continue;
1700      }
1701
1702      if (Next.is(tok::annot_typename)) {
1703        DS.getTypeSpecScope() = SS;
1704        ConsumeToken(); // The C++ scope.
1705        if (Tok.getAnnotationValue()) {
1706          ParsedType T = getTypeAnnotation(Tok);
1707          isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename,
1708                                         Tok.getAnnotationEndLoc(),
1709                                         PrevSpec, DiagID, T);
1710        }
1711        else
1712          DS.SetTypeSpecError();
1713        DS.SetRangeEnd(Tok.getAnnotationEndLoc());
1714        ConsumeToken(); // The typename
1715      }
1716
1717      if (Next.isNot(tok::identifier))
1718        goto DoneWithDeclSpec;
1719
1720      // If we're in a context where the identifier could be a class name,
1721      // check whether this is a constructor declaration.
1722      if ((DSContext == DSC_top_level ||
1723           (DSContext == DSC_class && DS.isFriendSpecified())) &&
1724          Actions.isCurrentClassName(*Next.getIdentifierInfo(), getCurScope(),
1725                                     &SS)) {
1726        if (isConstructorDeclarator())
1727          goto DoneWithDeclSpec;
1728
1729        // As noted in C++ [class.qual]p2 (cited above), when the name
1730        // of the class is qualified in a context where it could name
1731        // a constructor, its a constructor name. However, we've
1732        // looked at the declarator, and the user probably meant this
1733        // to be a type. Complain that it isn't supposed to be treated
1734        // as a type, then proceed to parse it as a type.
1735        Diag(Next.getLocation(), diag::err_out_of_line_type_names_constructor)
1736          << Next.getIdentifierInfo();
1737      }
1738
1739      ParsedType TypeRep = Actions.getTypeName(*Next.getIdentifierInfo(),
1740                                               Next.getLocation(),
1741                                               getCurScope(), &SS,
1742                                               false, false, ParsedType(),
1743                                               /*NonTrivialSourceInfo=*/true);
1744
1745      // If the referenced identifier is not a type, then this declspec is
1746      // erroneous: We already checked about that it has no type specifier, and
1747      // C++ doesn't have implicit int.  Diagnose it as a typo w.r.t. to the
1748      // typename.
1749      if (TypeRep == 0) {
1750        ConsumeToken();   // Eat the scope spec so the identifier is current.
1751        if (ParseImplicitInt(DS, &SS, TemplateInfo, AS)) continue;
1752        goto DoneWithDeclSpec;
1753      }
1754
1755      DS.getTypeSpecScope() = SS;
1756      ConsumeToken(); // The C++ scope.
1757
1758      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
1759                                     DiagID, TypeRep);
1760      if (isInvalid)
1761        break;
1762
1763      DS.SetRangeEnd(Tok.getLocation());
1764      ConsumeToken(); // The typename.
1765
1766      continue;
1767    }
1768
1769    case tok::annot_typename: {
1770      if (Tok.getAnnotationValue()) {
1771        ParsedType T = getTypeAnnotation(Tok);
1772        isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
1773                                       DiagID, T);
1774      } else
1775        DS.SetTypeSpecError();
1776
1777      if (isInvalid)
1778        break;
1779
1780      DS.SetRangeEnd(Tok.getAnnotationEndLoc());
1781      ConsumeToken(); // The typename
1782
1783      // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
1784      // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
1785      // Objective-C interface.
1786      if (Tok.is(tok::less) && getLang().ObjC1)
1787        ParseObjCProtocolQualifiers(DS);
1788
1789      continue;
1790    }
1791
1792    case tok::kw___is_signed:
1793      // GNU libstdc++ 4.4 uses __is_signed as an identifier, but Clang
1794      // typically treats it as a trait. If we see __is_signed as it appears
1795      // in libstdc++, e.g.,
1796      //
1797      //   static const bool __is_signed;
1798      //
1799      // then treat __is_signed as an identifier rather than as a keyword.
1800      if (DS.getTypeSpecType() == TST_bool &&
1801          DS.getTypeQualifiers() == DeclSpec::TQ_const &&
1802          DS.getStorageClassSpec() == DeclSpec::SCS_static) {
1803        Tok.getIdentifierInfo()->RevertTokenIDToIdentifier();
1804        Tok.setKind(tok::identifier);
1805      }
1806
1807      // We're done with the declaration-specifiers.
1808      goto DoneWithDeclSpec;
1809
1810      // typedef-name
1811    case tok::identifier: {
1812      // In C++, check to see if this is a scope specifier like foo::bar::, if
1813      // so handle it as such.  This is important for ctor parsing.
1814      if (getLang().CPlusPlus) {
1815        if (TryAnnotateCXXScopeToken(true)) {
1816          if (!DS.hasTypeSpecifier())
1817            DS.SetTypeSpecError();
1818          goto DoneWithDeclSpec;
1819        }
1820        if (!Tok.is(tok::identifier))
1821          continue;
1822      }
1823
1824      // This identifier can only be a typedef name if we haven't already seen
1825      // a type-specifier.  Without this check we misparse:
1826      //  typedef int X; struct Y { short X; };  as 'short int'.
1827      if (DS.hasTypeSpecifier())
1828        goto DoneWithDeclSpec;
1829
1830      // Check for need to substitute AltiVec keyword tokens.
1831      if (TryAltiVecToken(DS, Loc, PrevSpec, DiagID, isInvalid))
1832        break;
1833
1834      // It has to be available as a typedef too!
1835      ParsedType TypeRep =
1836        Actions.getTypeName(*Tok.getIdentifierInfo(),
1837                            Tok.getLocation(), getCurScope());
1838
1839      // If this is not a typedef name, don't parse it as part of the declspec,
1840      // it must be an implicit int or an error.
1841      if (!TypeRep) {
1842        if (ParseImplicitInt(DS, 0, TemplateInfo, AS)) continue;
1843        goto DoneWithDeclSpec;
1844      }
1845
1846      // If we're in a context where the identifier could be a class name,
1847      // check whether this is a constructor declaration.
1848      if (getLang().CPlusPlus && DSContext == DSC_class &&
1849          Actions.isCurrentClassName(*Tok.getIdentifierInfo(), getCurScope()) &&
1850          isConstructorDeclarator())
1851        goto DoneWithDeclSpec;
1852
1853      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
1854                                     DiagID, TypeRep);
1855      if (isInvalid)
1856        break;
1857
1858      DS.SetRangeEnd(Tok.getLocation());
1859      ConsumeToken(); // The identifier
1860
1861      // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
1862      // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
1863      // Objective-C interface.
1864      if (Tok.is(tok::less) && getLang().ObjC1)
1865        ParseObjCProtocolQualifiers(DS);
1866
1867      // Need to support trailing type qualifiers (e.g. "id<p> const").
1868      // If a type specifier follows, it will be diagnosed elsewhere.
1869      continue;
1870    }
1871
1872      // type-name
1873    case tok::annot_template_id: {
1874      TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
1875      if (TemplateId->Kind != TNK_Type_template) {
1876        // This template-id does not refer to a type name, so we're
1877        // done with the type-specifiers.
1878        goto DoneWithDeclSpec;
1879      }
1880
1881      // If we're in a context where the template-id could be a
1882      // constructor name or specialization, check whether this is a
1883      // constructor declaration.
1884      if (getLang().CPlusPlus && DSContext == DSC_class &&
1885          Actions.isCurrentClassName(*TemplateId->Name, getCurScope()) &&
1886          isConstructorDeclarator())
1887        goto DoneWithDeclSpec;
1888
1889      // Turn the template-id annotation token into a type annotation
1890      // token, then try again to parse it as a type-specifier.
1891      AnnotateTemplateIdTokenAsType();
1892      continue;
1893    }
1894
1895    // GNU attributes support.
1896    case tok::kw___attribute:
1897      ParseGNUAttributes(DS.getAttributes());
1898      continue;
1899
1900    // Microsoft declspec support.
1901    case tok::kw___declspec:
1902      ParseMicrosoftDeclSpec(DS.getAttributes());
1903      continue;
1904
1905    // Microsoft single token adornments.
1906    case tok::kw___forceinline:
1907      // FIXME: Add handling here!
1908      break;
1909
1910    case tok::kw___ptr64:
1911    case tok::kw___ptr32:
1912    case tok::kw___w64:
1913    case tok::kw___cdecl:
1914    case tok::kw___stdcall:
1915    case tok::kw___fastcall:
1916    case tok::kw___thiscall:
1917    case tok::kw___unaligned:
1918      ParseMicrosoftTypeAttributes(DS.getAttributes());
1919      continue;
1920
1921    // Borland single token adornments.
1922    case tok::kw___pascal:
1923      ParseBorlandTypeAttributes(DS.getAttributes());
1924      continue;
1925
1926    // OpenCL single token adornments.
1927    case tok::kw___kernel:
1928      ParseOpenCLAttributes(DS.getAttributes());
1929      continue;
1930
1931    // storage-class-specifier
1932    case tok::kw_typedef:
1933      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_typedef, Loc,
1934                                         PrevSpec, DiagID);
1935      break;
1936    case tok::kw_extern:
1937      if (DS.isThreadSpecified())
1938        Diag(Tok, diag::ext_thread_before) << "extern";
1939      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_extern, Loc,
1940                                         PrevSpec, DiagID);
1941      break;
1942    case tok::kw___private_extern__:
1943      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_private_extern,
1944                                         Loc, PrevSpec, DiagID);
1945      break;
1946    case tok::kw_static:
1947      if (DS.isThreadSpecified())
1948        Diag(Tok, diag::ext_thread_before) << "static";
1949      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_static, Loc,
1950                                         PrevSpec, DiagID);
1951      break;
1952    case tok::kw_auto:
1953      if (getLang().CPlusPlus0x) {
1954        if (isKnownToBeTypeSpecifier(GetLookAheadToken(1))) {
1955          isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc,
1956                                             PrevSpec, DiagID);
1957          if (!isInvalid)
1958            Diag(Tok, diag::ext_auto_storage_class)
1959              << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
1960        } else
1961          isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec,
1962                                         DiagID);
1963      } else
1964        isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc,
1965                                           PrevSpec, DiagID);
1966      break;
1967    case tok::kw_register:
1968      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_register, Loc,
1969                                         PrevSpec, DiagID);
1970      break;
1971    case tok::kw_mutable:
1972      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_mutable, Loc,
1973                                         PrevSpec, DiagID);
1974      break;
1975    case tok::kw___thread:
1976      isInvalid = DS.SetStorageClassSpecThread(Loc, PrevSpec, DiagID);
1977      break;
1978
1979    // function-specifier
1980    case tok::kw_inline:
1981      isInvalid = DS.SetFunctionSpecInline(Loc, PrevSpec, DiagID);
1982      break;
1983    case tok::kw_virtual:
1984      isInvalid = DS.SetFunctionSpecVirtual(Loc, PrevSpec, DiagID);
1985      break;
1986    case tok::kw_explicit:
1987      isInvalid = DS.SetFunctionSpecExplicit(Loc, PrevSpec, DiagID);
1988      break;
1989
1990    // alignment-specifier
1991    case tok::kw__Alignas:
1992      if (!getLang().C1X)
1993        Diag(Tok, diag::ext_c1x_alignas);
1994      ParseAlignmentSpecifier(DS.getAttributes());
1995      continue;
1996
1997    // friend
1998    case tok::kw_friend:
1999      if (DSContext == DSC_class)
2000        isInvalid = DS.SetFriendSpec(Loc, PrevSpec, DiagID);
2001      else {
2002        PrevSpec = ""; // not actually used by the diagnostic
2003        DiagID = diag::err_friend_invalid_in_context;
2004        isInvalid = true;
2005      }
2006      break;
2007
2008    // Modules
2009    case tok::kw___module_private__:
2010      isInvalid = DS.setModulePrivateSpec(Loc, PrevSpec, DiagID);
2011      break;
2012
2013    // constexpr
2014    case tok::kw_constexpr:
2015      isInvalid = DS.SetConstexprSpec(Loc, PrevSpec, DiagID);
2016      break;
2017
2018    // type-specifier
2019    case tok::kw_short:
2020      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec,
2021                                      DiagID);
2022      break;
2023    case tok::kw_long:
2024      if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
2025        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec,
2026                                        DiagID);
2027      else
2028        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
2029                                        DiagID);
2030      break;
2031    case tok::kw___int64:
2032        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
2033                                        DiagID);
2034      break;
2035    case tok::kw_signed:
2036      isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec,
2037                                     DiagID);
2038      break;
2039    case tok::kw_unsigned:
2040      isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec,
2041                                     DiagID);
2042      break;
2043    case tok::kw__Complex:
2044      isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec,
2045                                        DiagID);
2046      break;
2047    case tok::kw__Imaginary:
2048      isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec,
2049                                        DiagID);
2050      break;
2051    case tok::kw_void:
2052      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec,
2053                                     DiagID);
2054      break;
2055    case tok::kw_char:
2056      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec,
2057                                     DiagID);
2058      break;
2059    case tok::kw_int:
2060      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec,
2061                                     DiagID);
2062      break;
2063     case tok::kw_half:
2064       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec,
2065                                      DiagID);
2066       break;
2067    case tok::kw_float:
2068      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec,
2069                                     DiagID);
2070      break;
2071    case tok::kw_double:
2072      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec,
2073                                     DiagID);
2074      break;
2075    case tok::kw_wchar_t:
2076      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec,
2077                                     DiagID);
2078      break;
2079    case tok::kw_char16_t:
2080      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec,
2081                                     DiagID);
2082      break;
2083    case tok::kw_char32_t:
2084      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec,
2085                                     DiagID);
2086      break;
2087    case tok::kw_bool:
2088    case tok::kw__Bool:
2089      if (Tok.is(tok::kw_bool) &&
2090          DS.getTypeSpecType() != DeclSpec::TST_unspecified &&
2091          DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
2092        PrevSpec = ""; // Not used by the diagnostic.
2093        DiagID = diag::err_bool_redeclaration;
2094        // For better error recovery.
2095        Tok.setKind(tok::identifier);
2096        isInvalid = true;
2097      } else {
2098        isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec,
2099                                       DiagID);
2100      }
2101      break;
2102    case tok::kw__Decimal32:
2103      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec,
2104                                     DiagID);
2105      break;
2106    case tok::kw__Decimal64:
2107      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec,
2108                                     DiagID);
2109      break;
2110    case tok::kw__Decimal128:
2111      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec,
2112                                     DiagID);
2113      break;
2114    case tok::kw___vector:
2115      isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID);
2116      break;
2117    case tok::kw___pixel:
2118      isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID);
2119      break;
2120    case tok::kw___unknown_anytype:
2121      isInvalid = DS.SetTypeSpecType(TST_unknown_anytype, Loc,
2122                                     PrevSpec, DiagID);
2123      break;
2124
2125    // class-specifier:
2126    case tok::kw_class:
2127    case tok::kw_struct:
2128    case tok::kw_union: {
2129      tok::TokenKind Kind = Tok.getKind();
2130      ConsumeToken();
2131      ParseClassSpecifier(Kind, Loc, DS, TemplateInfo, AS);
2132      continue;
2133    }
2134
2135    // enum-specifier:
2136    case tok::kw_enum:
2137      ConsumeToken();
2138      ParseEnumSpecifier(Loc, DS, TemplateInfo, AS);
2139      continue;
2140
2141    // cv-qualifier:
2142    case tok::kw_const:
2143      isInvalid = DS.SetTypeQual(DeclSpec::TQ_const, Loc, PrevSpec, DiagID,
2144                                 getLang());
2145      break;
2146    case tok::kw_volatile:
2147      isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
2148                                 getLang());
2149      break;
2150    case tok::kw_restrict:
2151      isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
2152                                 getLang());
2153      break;
2154
2155    // C++ typename-specifier:
2156    case tok::kw_typename:
2157      if (TryAnnotateTypeOrScopeToken()) {
2158        DS.SetTypeSpecError();
2159        goto DoneWithDeclSpec;
2160      }
2161      if (!Tok.is(tok::kw_typename))
2162        continue;
2163      break;
2164
2165    // GNU typeof support.
2166    case tok::kw_typeof:
2167      ParseTypeofSpecifier(DS);
2168      continue;
2169
2170    case tok::kw_decltype:
2171      ParseDecltypeSpecifier(DS);
2172      continue;
2173
2174    case tok::kw___underlying_type:
2175      ParseUnderlyingTypeSpecifier(DS);
2176      continue;
2177
2178    case tok::kw__Atomic:
2179      ParseAtomicSpecifier(DS);
2180      continue;
2181
2182    // OpenCL qualifiers:
2183    case tok::kw_private:
2184      if (!getLang().OpenCL)
2185        goto DoneWithDeclSpec;
2186    case tok::kw___private:
2187    case tok::kw___global:
2188    case tok::kw___local:
2189    case tok::kw___constant:
2190    case tok::kw___read_only:
2191    case tok::kw___write_only:
2192    case tok::kw___read_write:
2193      ParseOpenCLQualifiers(DS);
2194      break;
2195
2196    case tok::less:
2197      // GCC ObjC supports types like "<SomeProtocol>" as a synonym for
2198      // "id<SomeProtocol>".  This is hopelessly old fashioned and dangerous,
2199      // but we support it.
2200      if (DS.hasTypeSpecifier() || !getLang().ObjC1)
2201        goto DoneWithDeclSpec;
2202
2203      if (!ParseObjCProtocolQualifiers(DS))
2204        Diag(Loc, diag::warn_objc_protocol_qualifier_missing_id)
2205          << FixItHint::CreateInsertion(Loc, "id")
2206          << SourceRange(Loc, DS.getSourceRange().getEnd());
2207
2208      // Need to support trailing type qualifiers (e.g. "id<p> const").
2209      // If a type specifier follows, it will be diagnosed elsewhere.
2210      continue;
2211    }
2212    // If the specifier wasn't legal, issue a diagnostic.
2213    if (isInvalid) {
2214      assert(PrevSpec && "Method did not return previous specifier!");
2215      assert(DiagID);
2216
2217      if (DiagID == diag::ext_duplicate_declspec)
2218        Diag(Tok, DiagID)
2219          << PrevSpec << FixItHint::CreateRemoval(Tok.getLocation());
2220      else
2221        Diag(Tok, DiagID) << PrevSpec;
2222    }
2223
2224    DS.SetRangeEnd(Tok.getLocation());
2225    if (DiagID != diag::err_bool_redeclaration)
2226      ConsumeToken();
2227  }
2228}
2229
2230/// ParseOptionalTypeSpecifier - Try to parse a single type-specifier. We
2231/// primarily follow the C++ grammar with additions for C99 and GNU,
2232/// which together subsume the C grammar. Note that the C++
2233/// type-specifier also includes the C type-qualifier (for const,
2234/// volatile, and C99 restrict). Returns true if a type-specifier was
2235/// found (and parsed), false otherwise.
2236///
2237///       type-specifier: [C++ 7.1.5]
2238///         simple-type-specifier
2239///         class-specifier
2240///         enum-specifier
2241///         elaborated-type-specifier  [TODO]
2242///         cv-qualifier
2243///
2244///       cv-qualifier: [C++ 7.1.5.1]
2245///         'const'
2246///         'volatile'
2247/// [C99]   'restrict'
2248///
2249///       simple-type-specifier: [ C++ 7.1.5.2]
2250///         '::'[opt] nested-name-specifier[opt] type-name [TODO]
2251///         '::'[opt] nested-name-specifier 'template' template-id [TODO]
2252///         'char'
2253///         'wchar_t'
2254///         'bool'
2255///         'short'
2256///         'int'
2257///         'long'
2258///         'signed'
2259///         'unsigned'
2260///         'float'
2261///         'double'
2262///         'void'
2263/// [C99]   '_Bool'
2264/// [C99]   '_Complex'
2265/// [C99]   '_Imaginary'  // Removed in TC2?
2266/// [GNU]   '_Decimal32'
2267/// [GNU]   '_Decimal64'
2268/// [GNU]   '_Decimal128'
2269/// [GNU]   typeof-specifier
2270/// [OBJC]  class-name objc-protocol-refs[opt]    [TODO]
2271/// [OBJC]  typedef-name objc-protocol-refs[opt]  [TODO]
2272/// [C++0x] 'decltype' ( expression )
2273/// [AltiVec] '__vector'
2274bool Parser::ParseOptionalTypeSpecifier(DeclSpec &DS, bool& isInvalid,
2275                                        const char *&PrevSpec,
2276                                        unsigned &DiagID,
2277                                        const ParsedTemplateInfo &TemplateInfo,
2278                                        bool SuppressDeclarations) {
2279  SourceLocation Loc = Tok.getLocation();
2280
2281  switch (Tok.getKind()) {
2282  case tok::identifier:   // foo::bar
2283    // If we already have a type specifier, this identifier is not a type.
2284    if (DS.getTypeSpecType() != DeclSpec::TST_unspecified ||
2285        DS.getTypeSpecWidth() != DeclSpec::TSW_unspecified ||
2286        DS.getTypeSpecSign() != DeclSpec::TSS_unspecified)
2287      return false;
2288    // Check for need to substitute AltiVec keyword tokens.
2289    if (TryAltiVecToken(DS, Loc, PrevSpec, DiagID, isInvalid))
2290      break;
2291    // Fall through.
2292  case tok::kw_typename:  // typename foo::bar
2293    // Annotate typenames and C++ scope specifiers.  If we get one, just
2294    // recurse to handle whatever we get.
2295    if (TryAnnotateTypeOrScopeToken(/*EnteringContext=*/false,
2296                                    /*NeedType=*/true))
2297      return true;
2298    if (Tok.is(tok::identifier))
2299      return false;
2300    return ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec, DiagID,
2301                                      TemplateInfo, SuppressDeclarations);
2302  case tok::coloncolon:   // ::foo::bar
2303    if (NextToken().is(tok::kw_new) ||    // ::new
2304        NextToken().is(tok::kw_delete))   // ::delete
2305      return false;
2306
2307    // Annotate typenames and C++ scope specifiers.  If we get one, just
2308    // recurse to handle whatever we get.
2309    if (TryAnnotateTypeOrScopeToken(/*EnteringContext=*/false,
2310                                    /*NeedType=*/true))
2311      return true;
2312    return ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec, DiagID,
2313                                      TemplateInfo, SuppressDeclarations);
2314
2315  // simple-type-specifier:
2316  case tok::annot_typename: {
2317    if (ParsedType T = getTypeAnnotation(Tok)) {
2318      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename,
2319                                     Tok.getAnnotationEndLoc(), PrevSpec,
2320                                     DiagID, T);
2321    } else
2322      DS.SetTypeSpecError();
2323    DS.SetRangeEnd(Tok.getAnnotationEndLoc());
2324    ConsumeToken(); // The typename
2325
2326    // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
2327    // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
2328    // Objective-C interface.  If we don't have Objective-C or a '<', this is
2329    // just a normal reference to a typedef name.
2330    if (Tok.is(tok::less) && getLang().ObjC1)
2331      ParseObjCProtocolQualifiers(DS);
2332
2333    return true;
2334  }
2335
2336  case tok::kw_short:
2337    isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec, DiagID);
2338    break;
2339  case tok::kw_long:
2340    if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
2341      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec,
2342                                      DiagID);
2343    else
2344      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
2345                                      DiagID);
2346    break;
2347  case tok::kw___int64:
2348      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
2349                                      DiagID);
2350    break;
2351  case tok::kw_signed:
2352    isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec, DiagID);
2353    break;
2354  case tok::kw_unsigned:
2355    isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec,
2356                                   DiagID);
2357    break;
2358  case tok::kw__Complex:
2359    isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec,
2360                                      DiagID);
2361    break;
2362  case tok::kw__Imaginary:
2363    isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec,
2364                                      DiagID);
2365    break;
2366  case tok::kw_void:
2367    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec, DiagID);
2368    break;
2369  case tok::kw_char:
2370    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec, DiagID);
2371    break;
2372  case tok::kw_int:
2373    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec, DiagID);
2374    break;
2375  case tok::kw_half:
2376    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec, DiagID);
2377    break;
2378  case tok::kw_float:
2379    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec, DiagID);
2380    break;
2381  case tok::kw_double:
2382    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec, DiagID);
2383    break;
2384  case tok::kw_wchar_t:
2385    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec, DiagID);
2386    break;
2387  case tok::kw_char16_t:
2388    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec, DiagID);
2389    break;
2390  case tok::kw_char32_t:
2391    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec, DiagID);
2392    break;
2393  case tok::kw_bool:
2394  case tok::kw__Bool:
2395    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec, DiagID);
2396    break;
2397  case tok::kw__Decimal32:
2398    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec,
2399                                   DiagID);
2400    break;
2401  case tok::kw__Decimal64:
2402    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec,
2403                                   DiagID);
2404    break;
2405  case tok::kw__Decimal128:
2406    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec,
2407                                   DiagID);
2408    break;
2409  case tok::kw___vector:
2410    isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID);
2411    break;
2412  case tok::kw___pixel:
2413    isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID);
2414    break;
2415
2416  // class-specifier:
2417  case tok::kw_class:
2418  case tok::kw_struct:
2419  case tok::kw_union: {
2420    tok::TokenKind Kind = Tok.getKind();
2421    ConsumeToken();
2422    ParseClassSpecifier(Kind, Loc, DS, TemplateInfo, AS_none,
2423                        SuppressDeclarations);
2424    return true;
2425  }
2426
2427  // enum-specifier:
2428  case tok::kw_enum:
2429    ConsumeToken();
2430    ParseEnumSpecifier(Loc, DS, TemplateInfo, AS_none);
2431    return true;
2432
2433  // cv-qualifier:
2434  case tok::kw_const:
2435    isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec,
2436                               DiagID, getLang());
2437    break;
2438  case tok::kw_volatile:
2439    isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec,
2440                               DiagID, getLang());
2441    break;
2442  case tok::kw_restrict:
2443    isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec,
2444                               DiagID, getLang());
2445    break;
2446
2447  // GNU typeof support.
2448  case tok::kw_typeof:
2449    ParseTypeofSpecifier(DS);
2450    return true;
2451
2452  // C++0x decltype support.
2453  case tok::kw_decltype:
2454    ParseDecltypeSpecifier(DS);
2455    return true;
2456
2457  // C++0x type traits support.
2458  case tok::kw___underlying_type:
2459    ParseUnderlyingTypeSpecifier(DS);
2460    return true;
2461
2462  case tok::kw__Atomic:
2463    ParseAtomicSpecifier(DS);
2464    return true;
2465
2466  // OpenCL qualifiers:
2467  case tok::kw_private:
2468    if (!getLang().OpenCL)
2469      return false;
2470  case tok::kw___private:
2471  case tok::kw___global:
2472  case tok::kw___local:
2473  case tok::kw___constant:
2474  case tok::kw___read_only:
2475  case tok::kw___write_only:
2476  case tok::kw___read_write:
2477    ParseOpenCLQualifiers(DS);
2478    break;
2479
2480  // C++0x auto support.
2481  case tok::kw_auto:
2482    // This is only called in situations where a storage-class specifier is
2483    // illegal, so we can assume an auto type specifier was intended even in
2484    // C++98. In C++98 mode, DeclSpec::Finish will produce an appropriate
2485    // extension diagnostic.
2486    if (!getLang().CPlusPlus)
2487      return false;
2488
2489    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec, DiagID);
2490    break;
2491
2492  case tok::kw___ptr64:
2493  case tok::kw___ptr32:
2494  case tok::kw___w64:
2495  case tok::kw___cdecl:
2496  case tok::kw___stdcall:
2497  case tok::kw___fastcall:
2498  case tok::kw___thiscall:
2499  case tok::kw___unaligned:
2500    ParseMicrosoftTypeAttributes(DS.getAttributes());
2501    return true;
2502
2503  case tok::kw___pascal:
2504    ParseBorlandTypeAttributes(DS.getAttributes());
2505    return true;
2506
2507  default:
2508    // Not a type-specifier; do nothing.
2509    return false;
2510  }
2511
2512  // If the specifier combination wasn't legal, issue a diagnostic.
2513  if (isInvalid) {
2514    assert(PrevSpec && "Method did not return previous specifier!");
2515    // Pick between error or extwarn.
2516    Diag(Tok, DiagID) << PrevSpec;
2517  }
2518  DS.SetRangeEnd(Tok.getLocation());
2519  ConsumeToken(); // whatever we parsed above.
2520  return true;
2521}
2522
2523/// ParseStructDeclaration - Parse a struct declaration without the terminating
2524/// semicolon.
2525///
2526///       struct-declaration:
2527///         specifier-qualifier-list struct-declarator-list
2528/// [GNU]   __extension__ struct-declaration
2529/// [GNU]   specifier-qualifier-list
2530///       struct-declarator-list:
2531///         struct-declarator
2532///         struct-declarator-list ',' struct-declarator
2533/// [GNU]   struct-declarator-list ',' attributes[opt] struct-declarator
2534///       struct-declarator:
2535///         declarator
2536/// [GNU]   declarator attributes[opt]
2537///         declarator[opt] ':' constant-expression
2538/// [GNU]   declarator[opt] ':' constant-expression attributes[opt]
2539///
2540void Parser::
2541ParseStructDeclaration(DeclSpec &DS, FieldCallback &Fields) {
2542
2543  if (Tok.is(tok::kw___extension__)) {
2544    // __extension__ silences extension warnings in the subexpression.
2545    ExtensionRAIIObject O(Diags);  // Use RAII to do this.
2546    ConsumeToken();
2547    return ParseStructDeclaration(DS, Fields);
2548  }
2549
2550  // Parse the common specifier-qualifiers-list piece.
2551  ParseSpecifierQualifierList(DS);
2552
2553  // If there are no declarators, this is a free-standing declaration
2554  // specifier. Let the actions module cope with it.
2555  if (Tok.is(tok::semi)) {
2556    Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none, DS);
2557    return;
2558  }
2559
2560  // Read struct-declarators until we find the semicolon.
2561  bool FirstDeclarator = true;
2562  while (1) {
2563    ParsingDeclRAIIObject PD(*this);
2564    FieldDeclarator DeclaratorInfo(DS);
2565
2566    // Attributes are only allowed here on successive declarators.
2567    if (!FirstDeclarator)
2568      MaybeParseGNUAttributes(DeclaratorInfo.D);
2569
2570    /// struct-declarator: declarator
2571    /// struct-declarator: declarator[opt] ':' constant-expression
2572    if (Tok.isNot(tok::colon)) {
2573      // Don't parse FOO:BAR as if it were a typo for FOO::BAR.
2574      ColonProtectionRAIIObject X(*this);
2575      ParseDeclarator(DeclaratorInfo.D);
2576    }
2577
2578    if (Tok.is(tok::colon)) {
2579      ConsumeToken();
2580      ExprResult Res(ParseConstantExpression());
2581      if (Res.isInvalid())
2582        SkipUntil(tok::semi, true, true);
2583      else
2584        DeclaratorInfo.BitfieldSize = Res.release();
2585    }
2586
2587    // If attributes exist after the declarator, parse them.
2588    MaybeParseGNUAttributes(DeclaratorInfo.D);
2589
2590    // We're done with this declarator;  invoke the callback.
2591    Decl *D = Fields.invoke(DeclaratorInfo);
2592    PD.complete(D);
2593
2594    // If we don't have a comma, it is either the end of the list (a ';')
2595    // or an error, bail out.
2596    if (Tok.isNot(tok::comma))
2597      return;
2598
2599    // Consume the comma.
2600    ConsumeToken();
2601
2602    FirstDeclarator = false;
2603  }
2604}
2605
2606/// ParseStructUnionBody
2607///       struct-contents:
2608///         struct-declaration-list
2609/// [EXT]   empty
2610/// [GNU]   "struct-declaration-list" without terminatoring ';'
2611///       struct-declaration-list:
2612///         struct-declaration
2613///         struct-declaration-list struct-declaration
2614/// [OBC]   '@' 'defs' '(' class-name ')'
2615///
2616void Parser::ParseStructUnionBody(SourceLocation RecordLoc,
2617                                  unsigned TagType, Decl *TagDecl) {
2618  PrettyDeclStackTraceEntry CrashInfo(Actions, TagDecl, RecordLoc,
2619                                      "parsing struct/union body");
2620
2621  BalancedDelimiterTracker T(*this, tok::l_brace);
2622  if (T.consumeOpen())
2623    return;
2624
2625  ParseScope StructScope(this, Scope::ClassScope|Scope::DeclScope);
2626  Actions.ActOnTagStartDefinition(getCurScope(), TagDecl);
2627
2628  // Empty structs are an extension in C (C99 6.7.2.1p7), but are allowed in
2629  // C++.
2630  if (Tok.is(tok::r_brace) && !getLang().CPlusPlus)
2631    Diag(Tok, diag::ext_empty_struct_union)
2632      << (TagType == TST_union);
2633
2634  SmallVector<Decl *, 32> FieldDecls;
2635
2636  // While we still have something to read, read the declarations in the struct.
2637  while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
2638    // Each iteration of this loop reads one struct-declaration.
2639
2640    // Check for extraneous top-level semicolon.
2641    if (Tok.is(tok::semi)) {
2642      Diag(Tok, diag::ext_extra_struct_semi)
2643        << DeclSpec::getSpecifierName((DeclSpec::TST)TagType)
2644        << FixItHint::CreateRemoval(Tok.getLocation());
2645      ConsumeToken();
2646      continue;
2647    }
2648
2649    // Parse all the comma separated declarators.
2650    DeclSpec DS(AttrFactory);
2651
2652    if (!Tok.is(tok::at)) {
2653      struct CFieldCallback : FieldCallback {
2654        Parser &P;
2655        Decl *TagDecl;
2656        SmallVectorImpl<Decl *> &FieldDecls;
2657
2658        CFieldCallback(Parser &P, Decl *TagDecl,
2659                       SmallVectorImpl<Decl *> &FieldDecls) :
2660          P(P), TagDecl(TagDecl), FieldDecls(FieldDecls) {}
2661
2662        virtual Decl *invoke(FieldDeclarator &FD) {
2663          // Install the declarator into the current TagDecl.
2664          Decl *Field = P.Actions.ActOnField(P.getCurScope(), TagDecl,
2665                              FD.D.getDeclSpec().getSourceRange().getBegin(),
2666                                                 FD.D, FD.BitfieldSize);
2667          FieldDecls.push_back(Field);
2668          return Field;
2669        }
2670      } Callback(*this, TagDecl, FieldDecls);
2671
2672      ParseStructDeclaration(DS, Callback);
2673    } else { // Handle @defs
2674      ConsumeToken();
2675      if (!Tok.isObjCAtKeyword(tok::objc_defs)) {
2676        Diag(Tok, diag::err_unexpected_at);
2677        SkipUntil(tok::semi, true);
2678        continue;
2679      }
2680      ConsumeToken();
2681      ExpectAndConsume(tok::l_paren, diag::err_expected_lparen);
2682      if (!Tok.is(tok::identifier)) {
2683        Diag(Tok, diag::err_expected_ident);
2684        SkipUntil(tok::semi, true);
2685        continue;
2686      }
2687      SmallVector<Decl *, 16> Fields;
2688      Actions.ActOnDefs(getCurScope(), TagDecl, Tok.getLocation(),
2689                        Tok.getIdentifierInfo(), Fields);
2690      FieldDecls.insert(FieldDecls.end(), Fields.begin(), Fields.end());
2691      ConsumeToken();
2692      ExpectAndConsume(tok::r_paren, diag::err_expected_rparen);
2693    }
2694
2695    if (Tok.is(tok::semi)) {
2696      ConsumeToken();
2697    } else if (Tok.is(tok::r_brace)) {
2698      ExpectAndConsume(tok::semi, diag::ext_expected_semi_decl_list);
2699      break;
2700    } else {
2701      ExpectAndConsume(tok::semi, diag::err_expected_semi_decl_list);
2702      // Skip to end of block or statement to avoid ext-warning on extra ';'.
2703      SkipUntil(tok::r_brace, true, true);
2704      // If we stopped at a ';', eat it.
2705      if (Tok.is(tok::semi)) ConsumeToken();
2706    }
2707  }
2708
2709  T.consumeClose();
2710
2711  ParsedAttributes attrs(AttrFactory);
2712  // If attributes exist after struct contents, parse them.
2713  MaybeParseGNUAttributes(attrs);
2714
2715  Actions.ActOnFields(getCurScope(),
2716                      RecordLoc, TagDecl, FieldDecls,
2717                      T.getOpenLocation(), T.getCloseLocation(),
2718                      attrs.getList());
2719  StructScope.Exit();
2720  Actions.ActOnTagFinishDefinition(getCurScope(), TagDecl,
2721                                   T.getCloseLocation());
2722}
2723
2724/// ParseEnumSpecifier
2725///       enum-specifier: [C99 6.7.2.2]
2726///         'enum' identifier[opt] '{' enumerator-list '}'
2727///[C99/C++]'enum' identifier[opt] '{' enumerator-list ',' '}'
2728/// [GNU]   'enum' attributes[opt] identifier[opt] '{' enumerator-list ',' [opt]
2729///                                                 '}' attributes[opt]
2730///         'enum' identifier
2731/// [GNU]   'enum' attributes[opt] identifier
2732///
2733/// [C++0x] enum-head '{' enumerator-list[opt] '}'
2734/// [C++0x] enum-head '{' enumerator-list ','  '}'
2735///
2736///       enum-head: [C++0x]
2737///         enum-key attributes[opt] identifier[opt] enum-base[opt]
2738///         enum-key attributes[opt] nested-name-specifier identifier enum-base[opt]
2739///
2740///       enum-key: [C++0x]
2741///         'enum'
2742///         'enum' 'class'
2743///         'enum' 'struct'
2744///
2745///       enum-base: [C++0x]
2746///         ':' type-specifier-seq
2747///
2748/// [C++] elaborated-type-specifier:
2749/// [C++]   'enum' '::'[opt] nested-name-specifier[opt] identifier
2750///
2751void Parser::ParseEnumSpecifier(SourceLocation StartLoc, DeclSpec &DS,
2752                                const ParsedTemplateInfo &TemplateInfo,
2753                                AccessSpecifier AS) {
2754  // Parse the tag portion of this.
2755  if (Tok.is(tok::code_completion)) {
2756    // Code completion for an enum name.
2757    Actions.CodeCompleteTag(getCurScope(), DeclSpec::TST_enum);
2758    return cutOffParsing();
2759  }
2760
2761  bool IsScopedEnum = false;
2762  bool IsScopedUsingClassTag = false;
2763
2764  if (getLang().CPlusPlus0x &&
2765      (Tok.is(tok::kw_class) || Tok.is(tok::kw_struct))) {
2766    Diag(Tok, diag::warn_cxx98_compat_scoped_enum);
2767    IsScopedEnum = true;
2768    IsScopedUsingClassTag = Tok.is(tok::kw_class);
2769    ConsumeToken();
2770  }
2771
2772  // If attributes exist after tag, parse them.
2773  ParsedAttributes attrs(AttrFactory);
2774  MaybeParseGNUAttributes(attrs);
2775
2776  bool AllowFixedUnderlyingType
2777    = getLang().CPlusPlus0x || getLang().MicrosoftExt || getLang().ObjC2;
2778
2779  CXXScopeSpec &SS = DS.getTypeSpecScope();
2780  if (getLang().CPlusPlus) {
2781    // "enum foo : bar;" is not a potential typo for "enum foo::bar;"
2782    // if a fixed underlying type is allowed.
2783    ColonProtectionRAIIObject X(*this, AllowFixedUnderlyingType);
2784
2785    if (ParseOptionalCXXScopeSpecifier(SS, ParsedType(), false))
2786      return;
2787
2788    if (SS.isSet() && Tok.isNot(tok::identifier)) {
2789      Diag(Tok, diag::err_expected_ident);
2790      if (Tok.isNot(tok::l_brace)) {
2791        // Has no name and is not a definition.
2792        // Skip the rest of this declarator, up until the comma or semicolon.
2793        SkipUntil(tok::comma, true);
2794        return;
2795      }
2796    }
2797  }
2798
2799  // Must have either 'enum name' or 'enum {...}'.
2800  if (Tok.isNot(tok::identifier) && Tok.isNot(tok::l_brace) &&
2801      (AllowFixedUnderlyingType && Tok.isNot(tok::colon))) {
2802    Diag(Tok, diag::err_expected_ident_lbrace);
2803
2804    // Skip the rest of this declarator, up until the comma or semicolon.
2805    SkipUntil(tok::comma, true);
2806    return;
2807  }
2808
2809  // If an identifier is present, consume and remember it.
2810  IdentifierInfo *Name = 0;
2811  SourceLocation NameLoc;
2812  if (Tok.is(tok::identifier)) {
2813    Name = Tok.getIdentifierInfo();
2814    NameLoc = ConsumeToken();
2815  }
2816
2817  if (!Name && IsScopedEnum) {
2818    // C++0x 7.2p2: The optional identifier shall not be omitted in the
2819    // declaration of a scoped enumeration.
2820    Diag(Tok, diag::err_scoped_enum_missing_identifier);
2821    IsScopedEnum = false;
2822    IsScopedUsingClassTag = false;
2823  }
2824
2825  TypeResult BaseType;
2826
2827  // Parse the fixed underlying type.
2828  if (AllowFixedUnderlyingType && Tok.is(tok::colon)) {
2829    bool PossibleBitfield = false;
2830    if (getCurScope()->getFlags() & Scope::ClassScope) {
2831      // If we're in class scope, this can either be an enum declaration with
2832      // an underlying type, or a declaration of a bitfield member. We try to
2833      // use a simple disambiguation scheme first to catch the common cases
2834      // (integer literal, sizeof); if it's still ambiguous, we then consider
2835      // anything that's a simple-type-specifier followed by '(' as an
2836      // expression. This suffices because function types are not valid
2837      // underlying types anyway.
2838      TPResult TPR = isExpressionOrTypeSpecifierSimple(NextToken().getKind());
2839      // If the next token starts an expression, we know we're parsing a
2840      // bit-field. This is the common case.
2841      if (TPR == TPResult::True())
2842        PossibleBitfield = true;
2843      // If the next token starts a type-specifier-seq, it may be either a
2844      // a fixed underlying type or the start of a function-style cast in C++;
2845      // lookahead one more token to see if it's obvious that we have a
2846      // fixed underlying type.
2847      else if (TPR == TPResult::False() &&
2848               GetLookAheadToken(2).getKind() == tok::semi) {
2849        // Consume the ':'.
2850        ConsumeToken();
2851      } else {
2852        // We have the start of a type-specifier-seq, so we have to perform
2853        // tentative parsing to determine whether we have an expression or a
2854        // type.
2855        TentativeParsingAction TPA(*this);
2856
2857        // Consume the ':'.
2858        ConsumeToken();
2859
2860        if ((getLang().CPlusPlus &&
2861             isCXXDeclarationSpecifier() != TPResult::True()) ||
2862            (!getLang().CPlusPlus && !isDeclarationSpecifier(true))) {
2863          // We'll parse this as a bitfield later.
2864          PossibleBitfield = true;
2865          TPA.Revert();
2866        } else {
2867          // We have a type-specifier-seq.
2868          TPA.Commit();
2869        }
2870      }
2871    } else {
2872      // Consume the ':'.
2873      ConsumeToken();
2874    }
2875
2876    if (!PossibleBitfield) {
2877      SourceRange Range;
2878      BaseType = ParseTypeName(&Range);
2879
2880      if (!getLang().CPlusPlus0x && !getLang().ObjC2)
2881        Diag(StartLoc, diag::ext_ms_enum_fixed_underlying_type)
2882          << Range;
2883      if (getLang().CPlusPlus0x)
2884        Diag(StartLoc, diag::warn_cxx98_compat_enum_fixed_underlying_type);
2885    }
2886  }
2887
2888  // There are three options here.  If we have 'enum foo;', then this is a
2889  // forward declaration.  If we have 'enum foo {...' then this is a
2890  // definition. Otherwise we have something like 'enum foo xyz', a reference.
2891  //
2892  // This is needed to handle stuff like this right (C99 6.7.2.3p11):
2893  // enum foo {..};  void bar() { enum foo; }    <- new foo in bar.
2894  // enum foo {..};  void bar() { enum foo x; }  <- use of old foo.
2895  //
2896  Sema::TagUseKind TUK;
2897  if (Tok.is(tok::l_brace))
2898    TUK = Sema::TUK_Definition;
2899  else if (Tok.is(tok::semi))
2900    TUK = Sema::TUK_Declaration;
2901  else
2902    TUK = Sema::TUK_Reference;
2903
2904  // enums cannot be templates, although they can be referenced from a
2905  // template.
2906  if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate &&
2907      TUK != Sema::TUK_Reference) {
2908    Diag(Tok, diag::err_enum_template);
2909
2910    // Skip the rest of this declarator, up until the comma or semicolon.
2911    SkipUntil(tok::comma, true);
2912    return;
2913  }
2914
2915  if (!Name && TUK != Sema::TUK_Definition) {
2916    Diag(Tok, diag::err_enumerator_unnamed_no_def);
2917
2918    // Skip the rest of this declarator, up until the comma or semicolon.
2919    SkipUntil(tok::comma, true);
2920    return;
2921  }
2922
2923  bool Owned = false;
2924  bool IsDependent = false;
2925  const char *PrevSpec = 0;
2926  unsigned DiagID;
2927  Decl *TagDecl = Actions.ActOnTag(getCurScope(), DeclSpec::TST_enum, TUK,
2928                                   StartLoc, SS, Name, NameLoc, attrs.getList(),
2929                                   AS, DS.getModulePrivateSpecLoc(),
2930                                   MultiTemplateParamsArg(Actions),
2931                                   Owned, IsDependent, IsScopedEnum,
2932                                   IsScopedUsingClassTag, BaseType);
2933
2934  if (IsDependent) {
2935    // This enum has a dependent nested-name-specifier. Handle it as a
2936    // dependent tag.
2937    if (!Name) {
2938      DS.SetTypeSpecError();
2939      Diag(Tok, diag::err_expected_type_name_after_typename);
2940      return;
2941    }
2942
2943    TypeResult Type = Actions.ActOnDependentTag(getCurScope(), DeclSpec::TST_enum,
2944                                                TUK, SS, Name, StartLoc,
2945                                                NameLoc);
2946    if (Type.isInvalid()) {
2947      DS.SetTypeSpecError();
2948      return;
2949    }
2950
2951    if (DS.SetTypeSpecType(DeclSpec::TST_typename, StartLoc,
2952                           NameLoc.isValid() ? NameLoc : StartLoc,
2953                           PrevSpec, DiagID, Type.get()))
2954      Diag(StartLoc, DiagID) << PrevSpec;
2955
2956    return;
2957  }
2958
2959  if (!TagDecl) {
2960    // The action failed to produce an enumeration tag. If this is a
2961    // definition, consume the entire definition.
2962    if (Tok.is(tok::l_brace)) {
2963      ConsumeBrace();
2964      SkipUntil(tok::r_brace);
2965    }
2966
2967    DS.SetTypeSpecError();
2968    return;
2969  }
2970
2971  if (Tok.is(tok::l_brace))
2972    ParseEnumBody(StartLoc, TagDecl);
2973
2974  if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc,
2975                         NameLoc.isValid() ? NameLoc : StartLoc,
2976                         PrevSpec, DiagID, TagDecl, Owned))
2977    Diag(StartLoc, DiagID) << PrevSpec;
2978}
2979
2980/// ParseEnumBody - Parse a {} enclosed enumerator-list.
2981///       enumerator-list:
2982///         enumerator
2983///         enumerator-list ',' enumerator
2984///       enumerator:
2985///         enumeration-constant
2986///         enumeration-constant '=' constant-expression
2987///       enumeration-constant:
2988///         identifier
2989///
2990void Parser::ParseEnumBody(SourceLocation StartLoc, Decl *EnumDecl) {
2991  // Enter the scope of the enum body and start the definition.
2992  ParseScope EnumScope(this, Scope::DeclScope);
2993  Actions.ActOnTagStartDefinition(getCurScope(), EnumDecl);
2994
2995  BalancedDelimiterTracker T(*this, tok::l_brace);
2996  T.consumeOpen();
2997
2998  // C does not allow an empty enumerator-list, C++ does [dcl.enum].
2999  if (Tok.is(tok::r_brace) && !getLang().CPlusPlus)
3000    Diag(Tok, diag::error_empty_enum);
3001
3002  SmallVector<Decl *, 32> EnumConstantDecls;
3003
3004  Decl *LastEnumConstDecl = 0;
3005
3006  // Parse the enumerator-list.
3007  while (Tok.is(tok::identifier)) {
3008    IdentifierInfo *Ident = Tok.getIdentifierInfo();
3009    SourceLocation IdentLoc = ConsumeToken();
3010
3011    // If attributes exist after the enumerator, parse them.
3012    ParsedAttributes attrs(AttrFactory);
3013    MaybeParseGNUAttributes(attrs);
3014
3015    SourceLocation EqualLoc;
3016    ExprResult AssignedVal;
3017    if (Tok.is(tok::equal)) {
3018      EqualLoc = ConsumeToken();
3019      AssignedVal = ParseConstantExpression();
3020      if (AssignedVal.isInvalid())
3021        SkipUntil(tok::comma, tok::r_brace, true, true);
3022    }
3023
3024    // Install the enumerator constant into EnumDecl.
3025    Decl *EnumConstDecl = Actions.ActOnEnumConstant(getCurScope(), EnumDecl,
3026                                                    LastEnumConstDecl,
3027                                                    IdentLoc, Ident,
3028                                                    attrs.getList(), EqualLoc,
3029                                                    AssignedVal.release());
3030    EnumConstantDecls.push_back(EnumConstDecl);
3031    LastEnumConstDecl = EnumConstDecl;
3032
3033    if (Tok.is(tok::identifier)) {
3034      // We're missing a comma between enumerators.
3035      SourceLocation Loc = PP.getLocForEndOfToken(PrevTokLocation);
3036      Diag(Loc, diag::err_enumerator_list_missing_comma)
3037        << FixItHint::CreateInsertion(Loc, ", ");
3038      continue;
3039    }
3040
3041    if (Tok.isNot(tok::comma))
3042      break;
3043    SourceLocation CommaLoc = ConsumeToken();
3044
3045    if (Tok.isNot(tok::identifier)) {
3046      if (!getLang().C99 && !getLang().CPlusPlus0x)
3047        Diag(CommaLoc, diag::ext_enumerator_list_comma)
3048          << getLang().CPlusPlus
3049          << FixItHint::CreateRemoval(CommaLoc);
3050      else if (getLang().CPlusPlus0x)
3051        Diag(CommaLoc, diag::warn_cxx98_compat_enumerator_list_comma)
3052          << FixItHint::CreateRemoval(CommaLoc);
3053    }
3054  }
3055
3056  // Eat the }.
3057  T.consumeClose();
3058
3059  // If attributes exist after the identifier list, parse them.
3060  ParsedAttributes attrs(AttrFactory);
3061  MaybeParseGNUAttributes(attrs);
3062
3063  Actions.ActOnEnumBody(StartLoc, T.getOpenLocation(), T.getCloseLocation(),
3064                        EnumDecl, EnumConstantDecls.data(),
3065                        EnumConstantDecls.size(), getCurScope(),
3066                        attrs.getList());
3067
3068  EnumScope.Exit();
3069  Actions.ActOnTagFinishDefinition(getCurScope(), EnumDecl,
3070                                   T.getCloseLocation());
3071}
3072
3073/// isTypeSpecifierQualifier - Return true if the current token could be the
3074/// start of a type-qualifier-list.
3075bool Parser::isTypeQualifier() const {
3076  switch (Tok.getKind()) {
3077  default: return false;
3078
3079    // type-qualifier only in OpenCL
3080  case tok::kw_private:
3081    return getLang().OpenCL;
3082
3083    // type-qualifier
3084  case tok::kw_const:
3085  case tok::kw_volatile:
3086  case tok::kw_restrict:
3087  case tok::kw___private:
3088  case tok::kw___local:
3089  case tok::kw___global:
3090  case tok::kw___constant:
3091  case tok::kw___read_only:
3092  case tok::kw___read_write:
3093  case tok::kw___write_only:
3094    return true;
3095  }
3096}
3097
3098/// isKnownToBeTypeSpecifier - Return true if we know that the specified token
3099/// is definitely a type-specifier.  Return false if it isn't part of a type
3100/// specifier or if we're not sure.
3101bool Parser::isKnownToBeTypeSpecifier(const Token &Tok) const {
3102  switch (Tok.getKind()) {
3103  default: return false;
3104    // type-specifiers
3105  case tok::kw_short:
3106  case tok::kw_long:
3107  case tok::kw___int64:
3108  case tok::kw_signed:
3109  case tok::kw_unsigned:
3110  case tok::kw__Complex:
3111  case tok::kw__Imaginary:
3112  case tok::kw_void:
3113  case tok::kw_char:
3114  case tok::kw_wchar_t:
3115  case tok::kw_char16_t:
3116  case tok::kw_char32_t:
3117  case tok::kw_int:
3118  case tok::kw_half:
3119  case tok::kw_float:
3120  case tok::kw_double:
3121  case tok::kw_bool:
3122  case tok::kw__Bool:
3123  case tok::kw__Decimal32:
3124  case tok::kw__Decimal64:
3125  case tok::kw__Decimal128:
3126  case tok::kw___vector:
3127
3128    // struct-or-union-specifier (C99) or class-specifier (C++)
3129  case tok::kw_class:
3130  case tok::kw_struct:
3131  case tok::kw_union:
3132    // enum-specifier
3133  case tok::kw_enum:
3134
3135    // typedef-name
3136  case tok::annot_typename:
3137    return true;
3138  }
3139}
3140
3141/// isTypeSpecifierQualifier - Return true if the current token could be the
3142/// start of a specifier-qualifier-list.
3143bool Parser::isTypeSpecifierQualifier() {
3144  switch (Tok.getKind()) {
3145  default: return false;
3146
3147  case tok::identifier:   // foo::bar
3148    if (TryAltiVecVectorToken())
3149      return true;
3150    // Fall through.
3151  case tok::kw_typename:  // typename T::type
3152    // Annotate typenames and C++ scope specifiers.  If we get one, just
3153    // recurse to handle whatever we get.
3154    if (TryAnnotateTypeOrScopeToken())
3155      return true;
3156    if (Tok.is(tok::identifier))
3157      return false;
3158    return isTypeSpecifierQualifier();
3159
3160  case tok::coloncolon:   // ::foo::bar
3161    if (NextToken().is(tok::kw_new) ||    // ::new
3162        NextToken().is(tok::kw_delete))   // ::delete
3163      return false;
3164
3165    if (TryAnnotateTypeOrScopeToken())
3166      return true;
3167    return isTypeSpecifierQualifier();
3168
3169    // GNU attributes support.
3170  case tok::kw___attribute:
3171    // GNU typeof support.
3172  case tok::kw_typeof:
3173
3174    // type-specifiers
3175  case tok::kw_short:
3176  case tok::kw_long:
3177  case tok::kw___int64:
3178  case tok::kw_signed:
3179  case tok::kw_unsigned:
3180  case tok::kw__Complex:
3181  case tok::kw__Imaginary:
3182  case tok::kw_void:
3183  case tok::kw_char:
3184  case tok::kw_wchar_t:
3185  case tok::kw_char16_t:
3186  case tok::kw_char32_t:
3187  case tok::kw_int:
3188  case tok::kw_half:
3189  case tok::kw_float:
3190  case tok::kw_double:
3191  case tok::kw_bool:
3192  case tok::kw__Bool:
3193  case tok::kw__Decimal32:
3194  case tok::kw__Decimal64:
3195  case tok::kw__Decimal128:
3196  case tok::kw___vector:
3197
3198    // struct-or-union-specifier (C99) or class-specifier (C++)
3199  case tok::kw_class:
3200  case tok::kw_struct:
3201  case tok::kw_union:
3202    // enum-specifier
3203  case tok::kw_enum:
3204
3205    // type-qualifier
3206  case tok::kw_const:
3207  case tok::kw_volatile:
3208  case tok::kw_restrict:
3209
3210    // typedef-name
3211  case tok::annot_typename:
3212    return true;
3213
3214    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
3215  case tok::less:
3216    return getLang().ObjC1;
3217
3218  case tok::kw___cdecl:
3219  case tok::kw___stdcall:
3220  case tok::kw___fastcall:
3221  case tok::kw___thiscall:
3222  case tok::kw___w64:
3223  case tok::kw___ptr64:
3224  case tok::kw___ptr32:
3225  case tok::kw___pascal:
3226  case tok::kw___unaligned:
3227
3228  case tok::kw___private:
3229  case tok::kw___local:
3230  case tok::kw___global:
3231  case tok::kw___constant:
3232  case tok::kw___read_only:
3233  case tok::kw___read_write:
3234  case tok::kw___write_only:
3235
3236    return true;
3237
3238  case tok::kw_private:
3239    return getLang().OpenCL;
3240
3241  // C1x _Atomic()
3242  case tok::kw__Atomic:
3243    return true;
3244  }
3245}
3246
3247/// isDeclarationSpecifier() - Return true if the current token is part of a
3248/// declaration specifier.
3249///
3250/// \param DisambiguatingWithExpression True to indicate that the purpose of
3251/// this check is to disambiguate between an expression and a declaration.
3252bool Parser::isDeclarationSpecifier(bool DisambiguatingWithExpression) {
3253  switch (Tok.getKind()) {
3254  default: return false;
3255
3256  case tok::kw_private:
3257    return getLang().OpenCL;
3258
3259  case tok::identifier:   // foo::bar
3260    // Unfortunate hack to support "Class.factoryMethod" notation.
3261    if (getLang().ObjC1 && NextToken().is(tok::period))
3262      return false;
3263    if (TryAltiVecVectorToken())
3264      return true;
3265    // Fall through.
3266  case tok::kw_typename: // typename T::type
3267    // Annotate typenames and C++ scope specifiers.  If we get one, just
3268    // recurse to handle whatever we get.
3269    if (TryAnnotateTypeOrScopeToken())
3270      return true;
3271    if (Tok.is(tok::identifier))
3272      return false;
3273
3274    // If we're in Objective-C and we have an Objective-C class type followed
3275    // by an identifier and then either ':' or ']', in a place where an
3276    // expression is permitted, then this is probably a class message send
3277    // missing the initial '['. In this case, we won't consider this to be
3278    // the start of a declaration.
3279    if (DisambiguatingWithExpression &&
3280        isStartOfObjCClassMessageMissingOpenBracket())
3281      return false;
3282
3283    return isDeclarationSpecifier();
3284
3285  case tok::coloncolon:   // ::foo::bar
3286    if (NextToken().is(tok::kw_new) ||    // ::new
3287        NextToken().is(tok::kw_delete))   // ::delete
3288      return false;
3289
3290    // Annotate typenames and C++ scope specifiers.  If we get one, just
3291    // recurse to handle whatever we get.
3292    if (TryAnnotateTypeOrScopeToken())
3293      return true;
3294    return isDeclarationSpecifier();
3295
3296    // storage-class-specifier
3297  case tok::kw_typedef:
3298  case tok::kw_extern:
3299  case tok::kw___private_extern__:
3300  case tok::kw_static:
3301  case tok::kw_auto:
3302  case tok::kw_register:
3303  case tok::kw___thread:
3304
3305    // Modules
3306  case tok::kw___module_private__:
3307
3308    // type-specifiers
3309  case tok::kw_short:
3310  case tok::kw_long:
3311  case tok::kw___int64:
3312  case tok::kw_signed:
3313  case tok::kw_unsigned:
3314  case tok::kw__Complex:
3315  case tok::kw__Imaginary:
3316  case tok::kw_void:
3317  case tok::kw_char:
3318  case tok::kw_wchar_t:
3319  case tok::kw_char16_t:
3320  case tok::kw_char32_t:
3321
3322  case tok::kw_int:
3323  case tok::kw_half:
3324  case tok::kw_float:
3325  case tok::kw_double:
3326  case tok::kw_bool:
3327  case tok::kw__Bool:
3328  case tok::kw__Decimal32:
3329  case tok::kw__Decimal64:
3330  case tok::kw__Decimal128:
3331  case tok::kw___vector:
3332
3333    // struct-or-union-specifier (C99) or class-specifier (C++)
3334  case tok::kw_class:
3335  case tok::kw_struct:
3336  case tok::kw_union:
3337    // enum-specifier
3338  case tok::kw_enum:
3339
3340    // type-qualifier
3341  case tok::kw_const:
3342  case tok::kw_volatile:
3343  case tok::kw_restrict:
3344
3345    // function-specifier
3346  case tok::kw_inline:
3347  case tok::kw_virtual:
3348  case tok::kw_explicit:
3349
3350    // static_assert-declaration
3351  case tok::kw__Static_assert:
3352
3353    // GNU typeof support.
3354  case tok::kw_typeof:
3355
3356    // GNU attributes.
3357  case tok::kw___attribute:
3358    return true;
3359
3360    // C++0x decltype.
3361  case tok::kw_decltype:
3362    return true;
3363
3364    // C1x _Atomic()
3365  case tok::kw__Atomic:
3366    return true;
3367
3368    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
3369  case tok::less:
3370    return getLang().ObjC1;
3371
3372    // typedef-name
3373  case tok::annot_typename:
3374    return !DisambiguatingWithExpression ||
3375           !isStartOfObjCClassMessageMissingOpenBracket();
3376
3377  case tok::kw___declspec:
3378  case tok::kw___cdecl:
3379  case tok::kw___stdcall:
3380  case tok::kw___fastcall:
3381  case tok::kw___thiscall:
3382  case tok::kw___w64:
3383  case tok::kw___ptr64:
3384  case tok::kw___ptr32:
3385  case tok::kw___forceinline:
3386  case tok::kw___pascal:
3387  case tok::kw___unaligned:
3388
3389  case tok::kw___private:
3390  case tok::kw___local:
3391  case tok::kw___global:
3392  case tok::kw___constant:
3393  case tok::kw___read_only:
3394  case tok::kw___read_write:
3395  case tok::kw___write_only:
3396
3397    return true;
3398  }
3399}
3400
3401bool Parser::isConstructorDeclarator() {
3402  TentativeParsingAction TPA(*this);
3403
3404  // Parse the C++ scope specifier.
3405  CXXScopeSpec SS;
3406  if (ParseOptionalCXXScopeSpecifier(SS, ParsedType(), true)) {
3407    TPA.Revert();
3408    return false;
3409  }
3410
3411  // Parse the constructor name.
3412  if (Tok.is(tok::identifier) || Tok.is(tok::annot_template_id)) {
3413    // We already know that we have a constructor name; just consume
3414    // the token.
3415    ConsumeToken();
3416  } else {
3417    TPA.Revert();
3418    return false;
3419  }
3420
3421  // Current class name must be followed by a left parentheses.
3422  if (Tok.isNot(tok::l_paren)) {
3423    TPA.Revert();
3424    return false;
3425  }
3426  ConsumeParen();
3427
3428  // A right parentheses or ellipsis signals that we have a constructor.
3429  if (Tok.is(tok::r_paren) || Tok.is(tok::ellipsis)) {
3430    TPA.Revert();
3431    return true;
3432  }
3433
3434  // If we need to, enter the specified scope.
3435  DeclaratorScopeObj DeclScopeObj(*this, SS);
3436  if (SS.isSet() && Actions.ShouldEnterDeclaratorScope(getCurScope(), SS))
3437    DeclScopeObj.EnterDeclaratorScope();
3438
3439  // Optionally skip Microsoft attributes.
3440  ParsedAttributes Attrs(AttrFactory);
3441  MaybeParseMicrosoftAttributes(Attrs);
3442
3443  // Check whether the next token(s) are part of a declaration
3444  // specifier, in which case we have the start of a parameter and,
3445  // therefore, we know that this is a constructor.
3446  bool IsConstructor = isDeclarationSpecifier();
3447  TPA.Revert();
3448  return IsConstructor;
3449}
3450
3451/// ParseTypeQualifierListOpt
3452///          type-qualifier-list: [C99 6.7.5]
3453///            type-qualifier
3454/// [vendor]   attributes
3455///              [ only if VendorAttributesAllowed=true ]
3456///            type-qualifier-list type-qualifier
3457/// [vendor]   type-qualifier-list attributes
3458///              [ only if VendorAttributesAllowed=true ]
3459/// [C++0x]    attribute-specifier[opt] is allowed before cv-qualifier-seq
3460///              [ only if CXX0XAttributesAllowed=true ]
3461/// Note: vendor can be GNU, MS, etc.
3462///
3463void Parser::ParseTypeQualifierListOpt(DeclSpec &DS,
3464                                       bool VendorAttributesAllowed,
3465                                       bool CXX0XAttributesAllowed) {
3466  if (getLang().CPlusPlus0x && isCXX0XAttributeSpecifier()) {
3467    SourceLocation Loc = Tok.getLocation();
3468    ParsedAttributesWithRange attrs(AttrFactory);
3469    ParseCXX0XAttributes(attrs);
3470    if (CXX0XAttributesAllowed)
3471      DS.takeAttributesFrom(attrs);
3472    else
3473      Diag(Loc, diag::err_attributes_not_allowed);
3474  }
3475
3476  SourceLocation EndLoc;
3477
3478  while (1) {
3479    bool isInvalid = false;
3480    const char *PrevSpec = 0;
3481    unsigned DiagID = 0;
3482    SourceLocation Loc = Tok.getLocation();
3483
3484    switch (Tok.getKind()) {
3485    case tok::code_completion:
3486      Actions.CodeCompleteTypeQualifiers(DS);
3487      return cutOffParsing();
3488
3489    case tok::kw_const:
3490      isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec, DiagID,
3491                                 getLang());
3492      break;
3493    case tok::kw_volatile:
3494      isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
3495                                 getLang());
3496      break;
3497    case tok::kw_restrict:
3498      isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
3499                                 getLang());
3500      break;
3501
3502    // OpenCL qualifiers:
3503    case tok::kw_private:
3504      if (!getLang().OpenCL)
3505        goto DoneWithTypeQuals;
3506    case tok::kw___private:
3507    case tok::kw___global:
3508    case tok::kw___local:
3509    case tok::kw___constant:
3510    case tok::kw___read_only:
3511    case tok::kw___write_only:
3512    case tok::kw___read_write:
3513      ParseOpenCLQualifiers(DS);
3514      break;
3515
3516    case tok::kw___w64:
3517    case tok::kw___ptr64:
3518    case tok::kw___ptr32:
3519    case tok::kw___cdecl:
3520    case tok::kw___stdcall:
3521    case tok::kw___fastcall:
3522    case tok::kw___thiscall:
3523    case tok::kw___unaligned:
3524      if (VendorAttributesAllowed) {
3525        ParseMicrosoftTypeAttributes(DS.getAttributes());
3526        continue;
3527      }
3528      goto DoneWithTypeQuals;
3529    case tok::kw___pascal:
3530      if (VendorAttributesAllowed) {
3531        ParseBorlandTypeAttributes(DS.getAttributes());
3532        continue;
3533      }
3534      goto DoneWithTypeQuals;
3535    case tok::kw___attribute:
3536      if (VendorAttributesAllowed) {
3537        ParseGNUAttributes(DS.getAttributes());
3538        continue; // do *not* consume the next token!
3539      }
3540      // otherwise, FALL THROUGH!
3541    default:
3542      DoneWithTypeQuals:
3543      // If this is not a type-qualifier token, we're done reading type
3544      // qualifiers.  First verify that DeclSpec's are consistent.
3545      DS.Finish(Diags, PP);
3546      if (EndLoc.isValid())
3547        DS.SetRangeEnd(EndLoc);
3548      return;
3549    }
3550
3551    // If the specifier combination wasn't legal, issue a diagnostic.
3552    if (isInvalid) {
3553      assert(PrevSpec && "Method did not return previous specifier!");
3554      Diag(Tok, DiagID) << PrevSpec;
3555    }
3556    EndLoc = ConsumeToken();
3557  }
3558}
3559
3560
3561/// ParseDeclarator - Parse and verify a newly-initialized declarator.
3562///
3563void Parser::ParseDeclarator(Declarator &D) {
3564  /// This implements the 'declarator' production in the C grammar, then checks
3565  /// for well-formedness and issues diagnostics.
3566  ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
3567}
3568
3569/// ParseDeclaratorInternal - Parse a C or C++ declarator. The direct-declarator
3570/// is parsed by the function passed to it. Pass null, and the direct-declarator
3571/// isn't parsed at all, making this function effectively parse the C++
3572/// ptr-operator production.
3573///
3574///       declarator: [C99 6.7.5] [C++ 8p4, dcl.decl]
3575/// [C]     pointer[opt] direct-declarator
3576/// [C++]   direct-declarator
3577/// [C++]   ptr-operator declarator
3578///
3579///       pointer: [C99 6.7.5]
3580///         '*' type-qualifier-list[opt]
3581///         '*' type-qualifier-list[opt] pointer
3582///
3583///       ptr-operator:
3584///         '*' cv-qualifier-seq[opt]
3585///         '&'
3586/// [C++0x] '&&'
3587/// [GNU]   '&' restrict[opt] attributes[opt]
3588/// [GNU?]  '&&' restrict[opt] attributes[opt]
3589///         '::'[opt] nested-name-specifier '*' cv-qualifier-seq[opt]
3590void Parser::ParseDeclaratorInternal(Declarator &D,
3591                                     DirectDeclParseFunction DirectDeclParser) {
3592  if (Diags.hasAllExtensionsSilenced())
3593    D.setExtension();
3594
3595  // C++ member pointers start with a '::' or a nested-name.
3596  // Member pointers get special handling, since there's no place for the
3597  // scope spec in the generic path below.
3598  if (getLang().CPlusPlus &&
3599      (Tok.is(tok::coloncolon) || Tok.is(tok::identifier) ||
3600       Tok.is(tok::annot_cxxscope))) {
3601    CXXScopeSpec SS;
3602    ParseOptionalCXXScopeSpecifier(SS, ParsedType(), true); // ignore fail
3603
3604    if (SS.isNotEmpty()) {
3605      if (Tok.isNot(tok::star)) {
3606        // The scope spec really belongs to the direct-declarator.
3607        D.getCXXScopeSpec() = SS;
3608        if (DirectDeclParser)
3609          (this->*DirectDeclParser)(D);
3610        return;
3611      }
3612
3613      SourceLocation Loc = ConsumeToken();
3614      D.SetRangeEnd(Loc);
3615      DeclSpec DS(AttrFactory);
3616      ParseTypeQualifierListOpt(DS);
3617      D.ExtendWithDeclSpec(DS);
3618
3619      // Recurse to parse whatever is left.
3620      ParseDeclaratorInternal(D, DirectDeclParser);
3621
3622      // Sema will have to catch (syntactically invalid) pointers into global
3623      // scope. It has to catch pointers into namespace scope anyway.
3624      D.AddTypeInfo(DeclaratorChunk::getMemberPointer(SS,DS.getTypeQualifiers(),
3625                                                      Loc),
3626                    DS.getAttributes(),
3627                    /* Don't replace range end. */SourceLocation());
3628      return;
3629    }
3630  }
3631
3632  tok::TokenKind Kind = Tok.getKind();
3633  // Not a pointer, C++ reference, or block.
3634  if (Kind != tok::star && Kind != tok::caret &&
3635      (Kind != tok::amp || !getLang().CPlusPlus) &&
3636      // We parse rvalue refs in C++03, because otherwise the errors are scary.
3637      (Kind != tok::ampamp || !getLang().CPlusPlus)) {
3638    if (DirectDeclParser)
3639      (this->*DirectDeclParser)(D);
3640    return;
3641  }
3642
3643  // Otherwise, '*' -> pointer, '^' -> block, '&' -> lvalue reference,
3644  // '&&' -> rvalue reference
3645  SourceLocation Loc = ConsumeToken();  // Eat the *, ^, & or &&.
3646  D.SetRangeEnd(Loc);
3647
3648  if (Kind == tok::star || Kind == tok::caret) {
3649    // Is a pointer.
3650    DeclSpec DS(AttrFactory);
3651
3652    ParseTypeQualifierListOpt(DS);
3653    D.ExtendWithDeclSpec(DS);
3654
3655    // Recursively parse the declarator.
3656    ParseDeclaratorInternal(D, DirectDeclParser);
3657    if (Kind == tok::star)
3658      // Remember that we parsed a pointer type, and remember the type-quals.
3659      D.AddTypeInfo(DeclaratorChunk::getPointer(DS.getTypeQualifiers(), Loc,
3660                                                DS.getConstSpecLoc(),
3661                                                DS.getVolatileSpecLoc(),
3662                                                DS.getRestrictSpecLoc()),
3663                    DS.getAttributes(),
3664                    SourceLocation());
3665    else
3666      // Remember that we parsed a Block type, and remember the type-quals.
3667      D.AddTypeInfo(DeclaratorChunk::getBlockPointer(DS.getTypeQualifiers(),
3668                                                     Loc),
3669                    DS.getAttributes(),
3670                    SourceLocation());
3671  } else {
3672    // Is a reference
3673    DeclSpec DS(AttrFactory);
3674
3675    // Complain about rvalue references in C++03, but then go on and build
3676    // the declarator.
3677    if (Kind == tok::ampamp)
3678      Diag(Loc, getLang().CPlusPlus0x ?
3679           diag::warn_cxx98_compat_rvalue_reference :
3680           diag::ext_rvalue_reference);
3681
3682    // C++ 8.3.2p1: cv-qualified references are ill-formed except when the
3683    // cv-qualifiers are introduced through the use of a typedef or of a
3684    // template type argument, in which case the cv-qualifiers are ignored.
3685    //
3686    // [GNU] Retricted references are allowed.
3687    // [GNU] Attributes on references are allowed.
3688    // [C++0x] Attributes on references are not allowed.
3689    ParseTypeQualifierListOpt(DS, true, false);
3690    D.ExtendWithDeclSpec(DS);
3691
3692    if (DS.getTypeQualifiers() != DeclSpec::TQ_unspecified) {
3693      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3694        Diag(DS.getConstSpecLoc(),
3695             diag::err_invalid_reference_qualifier_application) << "const";
3696      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3697        Diag(DS.getVolatileSpecLoc(),
3698             diag::err_invalid_reference_qualifier_application) << "volatile";
3699    }
3700
3701    // Recursively parse the declarator.
3702    ParseDeclaratorInternal(D, DirectDeclParser);
3703
3704    if (D.getNumTypeObjects() > 0) {
3705      // C++ [dcl.ref]p4: There shall be no references to references.
3706      DeclaratorChunk& InnerChunk = D.getTypeObject(D.getNumTypeObjects() - 1);
3707      if (InnerChunk.Kind == DeclaratorChunk::Reference) {
3708        if (const IdentifierInfo *II = D.getIdentifier())
3709          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
3710           << II;
3711        else
3712          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
3713            << "type name";
3714
3715        // Once we've complained about the reference-to-reference, we
3716        // can go ahead and build the (technically ill-formed)
3717        // declarator: reference collapsing will take care of it.
3718      }
3719    }
3720
3721    // Remember that we parsed a reference type. It doesn't have type-quals.
3722    D.AddTypeInfo(DeclaratorChunk::getReference(DS.getTypeQualifiers(), Loc,
3723                                                Kind == tok::amp),
3724                  DS.getAttributes(),
3725                  SourceLocation());
3726  }
3727}
3728
3729/// ParseDirectDeclarator
3730///       direct-declarator: [C99 6.7.5]
3731/// [C99]   identifier
3732///         '(' declarator ')'
3733/// [GNU]   '(' attributes declarator ')'
3734/// [C90]   direct-declarator '[' constant-expression[opt] ']'
3735/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
3736/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
3737/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
3738/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
3739///         direct-declarator '(' parameter-type-list ')'
3740///         direct-declarator '(' identifier-list[opt] ')'
3741/// [GNU]   direct-declarator '(' parameter-forward-declarations
3742///                    parameter-type-list[opt] ')'
3743/// [C++]   direct-declarator '(' parameter-declaration-clause ')'
3744///                    cv-qualifier-seq[opt] exception-specification[opt]
3745/// [C++]   declarator-id
3746///
3747///       declarator-id: [C++ 8]
3748///         '...'[opt] id-expression
3749///         '::'[opt] nested-name-specifier[opt] type-name
3750///
3751///       id-expression: [C++ 5.1]
3752///         unqualified-id
3753///         qualified-id
3754///
3755///       unqualified-id: [C++ 5.1]
3756///         identifier
3757///         operator-function-id
3758///         conversion-function-id
3759///          '~' class-name
3760///         template-id
3761///
3762void Parser::ParseDirectDeclarator(Declarator &D) {
3763  DeclaratorScopeObj DeclScopeObj(*this, D.getCXXScopeSpec());
3764
3765  if (getLang().CPlusPlus && D.mayHaveIdentifier()) {
3766    // ParseDeclaratorInternal might already have parsed the scope.
3767    if (D.getCXXScopeSpec().isEmpty()) {
3768      ParseOptionalCXXScopeSpecifier(D.getCXXScopeSpec(), ParsedType(), true);
3769    }
3770
3771    if (D.getCXXScopeSpec().isValid()) {
3772      if (Actions.ShouldEnterDeclaratorScope(getCurScope(), D.getCXXScopeSpec()))
3773        // Change the declaration context for name lookup, until this function
3774        // is exited (and the declarator has been parsed).
3775        DeclScopeObj.EnterDeclaratorScope();
3776    }
3777
3778    // C++0x [dcl.fct]p14:
3779    //   There is a syntactic ambiguity when an ellipsis occurs at the end
3780    //   of a parameter-declaration-clause without a preceding comma. In
3781    //   this case, the ellipsis is parsed as part of the
3782    //   abstract-declarator if the type of the parameter names a template
3783    //   parameter pack that has not been expanded; otherwise, it is parsed
3784    //   as part of the parameter-declaration-clause.
3785    if (Tok.is(tok::ellipsis) &&
3786        !((D.getContext() == Declarator::PrototypeContext ||
3787           D.getContext() == Declarator::BlockLiteralContext) &&
3788          NextToken().is(tok::r_paren) &&
3789          !Actions.containsUnexpandedParameterPacks(D)))
3790      D.setEllipsisLoc(ConsumeToken());
3791
3792    if (Tok.is(tok::identifier) || Tok.is(tok::kw_operator) ||
3793        Tok.is(tok::annot_template_id) || Tok.is(tok::tilde)) {
3794      // We found something that indicates the start of an unqualified-id.
3795      // Parse that unqualified-id.
3796      bool AllowConstructorName;
3797      if (D.getDeclSpec().hasTypeSpecifier())
3798        AllowConstructorName = false;
3799      else if (D.getCXXScopeSpec().isSet())
3800        AllowConstructorName =
3801          (D.getContext() == Declarator::FileContext ||
3802           (D.getContext() == Declarator::MemberContext &&
3803            D.getDeclSpec().isFriendSpecified()));
3804      else
3805        AllowConstructorName = (D.getContext() == Declarator::MemberContext);
3806
3807      if (ParseUnqualifiedId(D.getCXXScopeSpec(),
3808                             /*EnteringContext=*/true,
3809                             /*AllowDestructorName=*/true,
3810                             AllowConstructorName,
3811                             ParsedType(),
3812                             D.getName()) ||
3813          // Once we're past the identifier, if the scope was bad, mark the
3814          // whole declarator bad.
3815          D.getCXXScopeSpec().isInvalid()) {
3816        D.SetIdentifier(0, Tok.getLocation());
3817        D.setInvalidType(true);
3818      } else {
3819        // Parsed the unqualified-id; update range information and move along.
3820        if (D.getSourceRange().getBegin().isInvalid())
3821          D.SetRangeBegin(D.getName().getSourceRange().getBegin());
3822        D.SetRangeEnd(D.getName().getSourceRange().getEnd());
3823      }
3824      goto PastIdentifier;
3825    }
3826  } else if (Tok.is(tok::identifier) && D.mayHaveIdentifier()) {
3827    assert(!getLang().CPlusPlus &&
3828           "There's a C++-specific check for tok::identifier above");
3829    assert(Tok.getIdentifierInfo() && "Not an identifier?");
3830    D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
3831    ConsumeToken();
3832    goto PastIdentifier;
3833  }
3834
3835  if (Tok.is(tok::l_paren)) {
3836    // direct-declarator: '(' declarator ')'
3837    // direct-declarator: '(' attributes declarator ')'
3838    // Example: 'char (*X)'   or 'int (*XX)(void)'
3839    ParseParenDeclarator(D);
3840
3841    // If the declarator was parenthesized, we entered the declarator
3842    // scope when parsing the parenthesized declarator, then exited
3843    // the scope already. Re-enter the scope, if we need to.
3844    if (D.getCXXScopeSpec().isSet()) {
3845      // If there was an error parsing parenthesized declarator, declarator
3846      // scope may have been enterred before. Don't do it again.
3847      if (!D.isInvalidType() &&
3848          Actions.ShouldEnterDeclaratorScope(getCurScope(), D.getCXXScopeSpec()))
3849        // Change the declaration context for name lookup, until this function
3850        // is exited (and the declarator has been parsed).
3851        DeclScopeObj.EnterDeclaratorScope();
3852    }
3853  } else if (D.mayOmitIdentifier()) {
3854    // This could be something simple like "int" (in which case the declarator
3855    // portion is empty), if an abstract-declarator is allowed.
3856    D.SetIdentifier(0, Tok.getLocation());
3857  } else {
3858    if (D.getContext() == Declarator::MemberContext)
3859      Diag(Tok, diag::err_expected_member_name_or_semi)
3860        << D.getDeclSpec().getSourceRange();
3861    else if (getLang().CPlusPlus)
3862      Diag(Tok, diag::err_expected_unqualified_id) << getLang().CPlusPlus;
3863    else
3864      Diag(Tok, diag::err_expected_ident_lparen);
3865    D.SetIdentifier(0, Tok.getLocation());
3866    D.setInvalidType(true);
3867  }
3868
3869 PastIdentifier:
3870  assert(D.isPastIdentifier() &&
3871         "Haven't past the location of the identifier yet?");
3872
3873  // Don't parse attributes unless we have an identifier.
3874  if (D.getIdentifier())
3875    MaybeParseCXX0XAttributes(D);
3876
3877  while (1) {
3878    if (Tok.is(tok::l_paren)) {
3879      // The paren may be part of a C++ direct initializer, eg. "int x(1);".
3880      // In such a case, check if we actually have a function declarator; if it
3881      // is not, the declarator has been fully parsed.
3882      if (getLang().CPlusPlus && D.mayBeFollowedByCXXDirectInit()) {
3883        // When not in file scope, warn for ambiguous function declarators, just
3884        // in case the author intended it as a variable definition.
3885        bool warnIfAmbiguous = D.getContext() != Declarator::FileContext;
3886        if (!isCXXFunctionDeclarator(warnIfAmbiguous))
3887          break;
3888      }
3889      ParsedAttributes attrs(AttrFactory);
3890      BalancedDelimiterTracker T(*this, tok::l_paren);
3891      T.consumeOpen();
3892      ParseFunctionDeclarator(D, attrs, T);
3893    } else if (Tok.is(tok::l_square)) {
3894      ParseBracketDeclarator(D);
3895    } else {
3896      break;
3897    }
3898  }
3899}
3900
3901/// ParseParenDeclarator - We parsed the declarator D up to a paren.  This is
3902/// only called before the identifier, so these are most likely just grouping
3903/// parens for precedence.  If we find that these are actually function
3904/// parameter parens in an abstract-declarator, we call ParseFunctionDeclarator.
3905///
3906///       direct-declarator:
3907///         '(' declarator ')'
3908/// [GNU]   '(' attributes declarator ')'
3909///         direct-declarator '(' parameter-type-list ')'
3910///         direct-declarator '(' identifier-list[opt] ')'
3911/// [GNU]   direct-declarator '(' parameter-forward-declarations
3912///                    parameter-type-list[opt] ')'
3913///
3914void Parser::ParseParenDeclarator(Declarator &D) {
3915  BalancedDelimiterTracker T(*this, tok::l_paren);
3916  T.consumeOpen();
3917
3918  assert(!D.isPastIdentifier() && "Should be called before passing identifier");
3919
3920  // Eat any attributes before we look at whether this is a grouping or function
3921  // declarator paren.  If this is a grouping paren, the attribute applies to
3922  // the type being built up, for example:
3923  //     int (__attribute__(()) *x)(long y)
3924  // If this ends up not being a grouping paren, the attribute applies to the
3925  // first argument, for example:
3926  //     int (__attribute__(()) int x)
3927  // In either case, we need to eat any attributes to be able to determine what
3928  // sort of paren this is.
3929  //
3930  ParsedAttributes attrs(AttrFactory);
3931  bool RequiresArg = false;
3932  if (Tok.is(tok::kw___attribute)) {
3933    ParseGNUAttributes(attrs);
3934
3935    // We require that the argument list (if this is a non-grouping paren) be
3936    // present even if the attribute list was empty.
3937    RequiresArg = true;
3938  }
3939  // Eat any Microsoft extensions.
3940  if  (Tok.is(tok::kw___cdecl) || Tok.is(tok::kw___stdcall) ||
3941       Tok.is(tok::kw___thiscall) || Tok.is(tok::kw___fastcall) ||
3942       Tok.is(tok::kw___w64) || Tok.is(tok::kw___ptr64) ||
3943       Tok.is(tok::kw___ptr32) || Tok.is(tok::kw___unaligned)) {
3944    ParseMicrosoftTypeAttributes(attrs);
3945  }
3946  // Eat any Borland extensions.
3947  if  (Tok.is(tok::kw___pascal))
3948    ParseBorlandTypeAttributes(attrs);
3949
3950  // If we haven't past the identifier yet (or where the identifier would be
3951  // stored, if this is an abstract declarator), then this is probably just
3952  // grouping parens. However, if this could be an abstract-declarator, then
3953  // this could also be the start of function arguments (consider 'void()').
3954  bool isGrouping;
3955
3956  if (!D.mayOmitIdentifier()) {
3957    // If this can't be an abstract-declarator, this *must* be a grouping
3958    // paren, because we haven't seen the identifier yet.
3959    isGrouping = true;
3960  } else if (Tok.is(tok::r_paren) ||           // 'int()' is a function.
3961             (getLang().CPlusPlus && Tok.is(tok::ellipsis)) || // C++ int(...)
3962             isDeclarationSpecifier()) {       // 'int(int)' is a function.
3963    // This handles C99 6.7.5.3p11: in "typedef int X; void foo(X)", X is
3964    // considered to be a type, not a K&R identifier-list.
3965    isGrouping = false;
3966  } else {
3967    // Otherwise, this is a grouping paren, e.g. 'int (*X)' or 'int(X)'.
3968    isGrouping = true;
3969  }
3970
3971  // If this is a grouping paren, handle:
3972  // direct-declarator: '(' declarator ')'
3973  // direct-declarator: '(' attributes declarator ')'
3974  if (isGrouping) {
3975    bool hadGroupingParens = D.hasGroupingParens();
3976    D.setGroupingParens(true);
3977
3978    ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
3979    // Match the ')'.
3980    T.consumeClose();
3981    D.AddTypeInfo(DeclaratorChunk::getParen(T.getOpenLocation(),
3982                                            T.getCloseLocation()),
3983                  attrs, T.getCloseLocation());
3984
3985    D.setGroupingParens(hadGroupingParens);
3986    return;
3987  }
3988
3989  // Okay, if this wasn't a grouping paren, it must be the start of a function
3990  // argument list.  Recognize that this declarator will never have an
3991  // identifier (and remember where it would have been), then call into
3992  // ParseFunctionDeclarator to handle of argument list.
3993  D.SetIdentifier(0, Tok.getLocation());
3994
3995  ParseFunctionDeclarator(D, attrs, T, RequiresArg);
3996}
3997
3998/// ParseFunctionDeclarator - We are after the identifier and have parsed the
3999/// declarator D up to a paren, which indicates that we are parsing function
4000/// arguments.
4001///
4002/// If attrs is non-null, then the caller parsed those arguments immediately
4003/// after the open paren - they should be considered to be the first argument of
4004/// a parameter.  If RequiresArg is true, then the first argument of the
4005/// function is required to be present and required to not be an identifier
4006/// list.
4007///
4008/// For C++, after the parameter-list, it also parses cv-qualifier-seq[opt],
4009/// (C++0x) ref-qualifier[opt], exception-specification[opt], and
4010/// (C++0x) trailing-return-type[opt].
4011///
4012/// [C++0x] exception-specification:
4013///           dynamic-exception-specification
4014///           noexcept-specification
4015///
4016void Parser::ParseFunctionDeclarator(Declarator &D,
4017                                     ParsedAttributes &attrs,
4018                                     BalancedDelimiterTracker &Tracker,
4019                                     bool RequiresArg) {
4020  // lparen is already consumed!
4021  assert(D.isPastIdentifier() && "Should not call before identifier!");
4022
4023  // This should be true when the function has typed arguments.
4024  // Otherwise, it is treated as a K&R-style function.
4025  bool HasProto = false;
4026  // Build up an array of information about the parsed arguments.
4027  SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
4028  // Remember where we see an ellipsis, if any.
4029  SourceLocation EllipsisLoc;
4030
4031  DeclSpec DS(AttrFactory);
4032  bool RefQualifierIsLValueRef = true;
4033  SourceLocation RefQualifierLoc;
4034  SourceLocation ConstQualifierLoc;
4035  SourceLocation VolatileQualifierLoc;
4036  ExceptionSpecificationType ESpecType = EST_None;
4037  SourceRange ESpecRange;
4038  SmallVector<ParsedType, 2> DynamicExceptions;
4039  SmallVector<SourceRange, 2> DynamicExceptionRanges;
4040  ExprResult NoexceptExpr;
4041  ParsedType TrailingReturnType;
4042
4043  SourceLocation EndLoc;
4044  if (isFunctionDeclaratorIdentifierList()) {
4045    if (RequiresArg)
4046      Diag(Tok, diag::err_argument_required_after_attribute);
4047
4048    ParseFunctionDeclaratorIdentifierList(D, ParamInfo);
4049
4050    Tracker.consumeClose();
4051    EndLoc = Tracker.getCloseLocation();
4052  } else {
4053    // Enter function-declaration scope, limiting any declarators to the
4054    // function prototype scope, including parameter declarators.
4055    ParseScope PrototypeScope(this,
4056                              Scope::FunctionPrototypeScope|Scope::DeclScope);
4057
4058    if (Tok.isNot(tok::r_paren))
4059      ParseParameterDeclarationClause(D, attrs, ParamInfo, EllipsisLoc);
4060    else if (RequiresArg)
4061      Diag(Tok, diag::err_argument_required_after_attribute);
4062
4063    HasProto = ParamInfo.size() || getLang().CPlusPlus;
4064
4065    // If we have the closing ')', eat it.
4066    Tracker.consumeClose();
4067    EndLoc = Tracker.getCloseLocation();
4068
4069    if (getLang().CPlusPlus) {
4070      MaybeParseCXX0XAttributes(attrs);
4071
4072      // Parse cv-qualifier-seq[opt].
4073      ParseTypeQualifierListOpt(DS, false /*no attributes*/);
4074        if (!DS.getSourceRange().getEnd().isInvalid()) {
4075          EndLoc = DS.getSourceRange().getEnd();
4076          ConstQualifierLoc = DS.getConstSpecLoc();
4077          VolatileQualifierLoc = DS.getVolatileSpecLoc();
4078        }
4079
4080      // Parse ref-qualifier[opt].
4081      if (Tok.is(tok::amp) || Tok.is(tok::ampamp)) {
4082        Diag(Tok, getLang().CPlusPlus0x ?
4083             diag::warn_cxx98_compat_ref_qualifier :
4084             diag::ext_ref_qualifier);
4085
4086        RefQualifierIsLValueRef = Tok.is(tok::amp);
4087        RefQualifierLoc = ConsumeToken();
4088        EndLoc = RefQualifierLoc;
4089      }
4090
4091      // Parse exception-specification[opt].
4092      ESpecType = MaybeParseExceptionSpecification(ESpecRange,
4093                                                   DynamicExceptions,
4094                                                   DynamicExceptionRanges,
4095                                                   NoexceptExpr);
4096      if (ESpecType != EST_None)
4097        EndLoc = ESpecRange.getEnd();
4098
4099      // Parse trailing-return-type[opt].
4100      if (getLang().CPlusPlus0x && Tok.is(tok::arrow)) {
4101        Diag(Tok, diag::warn_cxx98_compat_trailing_return_type);
4102        SourceRange Range;
4103        TrailingReturnType = ParseTrailingReturnType(Range).get();
4104        if (Range.getEnd().isValid())
4105          EndLoc = Range.getEnd();
4106      }
4107    }
4108
4109    // Leave prototype scope.
4110    PrototypeScope.Exit();
4111  }
4112
4113  // Remember that we parsed a function type, and remember the attributes.
4114  D.AddTypeInfo(DeclaratorChunk::getFunction(HasProto,
4115                                             /*isVariadic=*/EllipsisLoc.isValid(),
4116                                             EllipsisLoc,
4117                                             ParamInfo.data(), ParamInfo.size(),
4118                                             DS.getTypeQualifiers(),
4119                                             RefQualifierIsLValueRef,
4120                                             RefQualifierLoc, ConstQualifierLoc,
4121                                             VolatileQualifierLoc,
4122                                             /*MutableLoc=*/SourceLocation(),
4123                                             ESpecType, ESpecRange.getBegin(),
4124                                             DynamicExceptions.data(),
4125                                             DynamicExceptionRanges.data(),
4126                                             DynamicExceptions.size(),
4127                                             NoexceptExpr.isUsable() ?
4128                                               NoexceptExpr.get() : 0,
4129                                             Tracker.getOpenLocation(),
4130                                             EndLoc, D,
4131                                             TrailingReturnType),
4132                attrs, EndLoc);
4133}
4134
4135/// isFunctionDeclaratorIdentifierList - This parameter list may have an
4136/// identifier list form for a K&R-style function:  void foo(a,b,c)
4137///
4138/// Note that identifier-lists are only allowed for normal declarators, not for
4139/// abstract-declarators.
4140bool Parser::isFunctionDeclaratorIdentifierList() {
4141  return !getLang().CPlusPlus
4142         && Tok.is(tok::identifier)
4143         && !TryAltiVecVectorToken()
4144         // K&R identifier lists can't have typedefs as identifiers, per C99
4145         // 6.7.5.3p11.
4146         && (TryAnnotateTypeOrScopeToken() || !Tok.is(tok::annot_typename))
4147         // Identifier lists follow a really simple grammar: the identifiers can
4148         // be followed *only* by a ", identifier" or ")".  However, K&R
4149         // identifier lists are really rare in the brave new modern world, and
4150         // it is very common for someone to typo a type in a non-K&R style
4151         // list.  If we are presented with something like: "void foo(intptr x,
4152         // float y)", we don't want to start parsing the function declarator as
4153         // though it is a K&R style declarator just because intptr is an
4154         // invalid type.
4155         //
4156         // To handle this, we check to see if the token after the first
4157         // identifier is a "," or ")".  Only then do we parse it as an
4158         // identifier list.
4159         && (NextToken().is(tok::comma) || NextToken().is(tok::r_paren));
4160}
4161
4162/// ParseFunctionDeclaratorIdentifierList - While parsing a function declarator
4163/// we found a K&R-style identifier list instead of a typed parameter list.
4164///
4165/// After returning, ParamInfo will hold the parsed parameters.
4166///
4167///       identifier-list: [C99 6.7.5]
4168///         identifier
4169///         identifier-list ',' identifier
4170///
4171void Parser::ParseFunctionDeclaratorIdentifierList(
4172       Declarator &D,
4173       SmallVector<DeclaratorChunk::ParamInfo, 16> &ParamInfo) {
4174  // If there was no identifier specified for the declarator, either we are in
4175  // an abstract-declarator, or we are in a parameter declarator which was found
4176  // to be abstract.  In abstract-declarators, identifier lists are not valid:
4177  // diagnose this.
4178  if (!D.getIdentifier())
4179    Diag(Tok, diag::ext_ident_list_in_param);
4180
4181  // Maintain an efficient lookup of params we have seen so far.
4182  llvm::SmallSet<const IdentifierInfo*, 16> ParamsSoFar;
4183
4184  while (1) {
4185    // If this isn't an identifier, report the error and skip until ')'.
4186    if (Tok.isNot(tok::identifier)) {
4187      Diag(Tok, diag::err_expected_ident);
4188      SkipUntil(tok::r_paren, /*StopAtSemi=*/true, /*DontConsume=*/true);
4189      // Forget we parsed anything.
4190      ParamInfo.clear();
4191      return;
4192    }
4193
4194    IdentifierInfo *ParmII = Tok.getIdentifierInfo();
4195
4196    // Reject 'typedef int y; int test(x, y)', but continue parsing.
4197    if (Actions.getTypeName(*ParmII, Tok.getLocation(), getCurScope()))
4198      Diag(Tok, diag::err_unexpected_typedef_ident) << ParmII;
4199
4200    // Verify that the argument identifier has not already been mentioned.
4201    if (!ParamsSoFar.insert(ParmII)) {
4202      Diag(Tok, diag::err_param_redefinition) << ParmII;
4203    } else {
4204      // Remember this identifier in ParamInfo.
4205      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
4206                                                     Tok.getLocation(),
4207                                                     0));
4208    }
4209
4210    // Eat the identifier.
4211    ConsumeToken();
4212
4213    // The list continues if we see a comma.
4214    if (Tok.isNot(tok::comma))
4215      break;
4216    ConsumeToken();
4217  }
4218}
4219
4220/// ParseParameterDeclarationClause - Parse a (possibly empty) parameter-list
4221/// after the opening parenthesis. This function will not parse a K&R-style
4222/// identifier list.
4223///
4224/// D is the declarator being parsed.  If attrs is non-null, then the caller
4225/// parsed those arguments immediately after the open paren - they should be
4226/// considered to be the first argument of a parameter.
4227///
4228/// After returning, ParamInfo will hold the parsed parameters. EllipsisLoc will
4229/// be the location of the ellipsis, if any was parsed.
4230///
4231///       parameter-type-list: [C99 6.7.5]
4232///         parameter-list
4233///         parameter-list ',' '...'
4234/// [C++]   parameter-list '...'
4235///
4236///       parameter-list: [C99 6.7.5]
4237///         parameter-declaration
4238///         parameter-list ',' parameter-declaration
4239///
4240///       parameter-declaration: [C99 6.7.5]
4241///         declaration-specifiers declarator
4242/// [C++]   declaration-specifiers declarator '=' assignment-expression
4243/// [GNU]   declaration-specifiers declarator attributes
4244///         declaration-specifiers abstract-declarator[opt]
4245/// [C++]   declaration-specifiers abstract-declarator[opt]
4246///           '=' assignment-expression
4247/// [GNU]   declaration-specifiers abstract-declarator[opt] attributes
4248///
4249void Parser::ParseParameterDeclarationClause(
4250       Declarator &D,
4251       ParsedAttributes &attrs,
4252       SmallVector<DeclaratorChunk::ParamInfo, 16> &ParamInfo,
4253       SourceLocation &EllipsisLoc) {
4254
4255  while (1) {
4256    if (Tok.is(tok::ellipsis)) {
4257      EllipsisLoc = ConsumeToken();     // Consume the ellipsis.
4258      break;
4259    }
4260
4261    // Parse the declaration-specifiers.
4262    // Just use the ParsingDeclaration "scope" of the declarator.
4263    DeclSpec DS(AttrFactory);
4264
4265    // Skip any Microsoft attributes before a param.
4266    if (getLang().MicrosoftExt && Tok.is(tok::l_square))
4267      ParseMicrosoftAttributes(DS.getAttributes());
4268
4269    SourceLocation DSStart = Tok.getLocation();
4270
4271    // If the caller parsed attributes for the first argument, add them now.
4272    // Take them so that we only apply the attributes to the first parameter.
4273    // FIXME: If we saw an ellipsis first, this code is not reached. Are the
4274    // attributes lost? Should they even be allowed?
4275    // FIXME: If we can leave the attributes in the token stream somehow, we can
4276    // get rid of a parameter (attrs) and this statement. It might be too much
4277    // hassle.
4278    DS.takeAttributesFrom(attrs);
4279
4280    ParseDeclarationSpecifiers(DS);
4281
4282    // Parse the declarator.  This is "PrototypeContext", because we must
4283    // accept either 'declarator' or 'abstract-declarator' here.
4284    Declarator ParmDecl(DS, Declarator::PrototypeContext);
4285    ParseDeclarator(ParmDecl);
4286
4287    // Parse GNU attributes, if present.
4288    MaybeParseGNUAttributes(ParmDecl);
4289
4290    // Remember this parsed parameter in ParamInfo.
4291    IdentifierInfo *ParmII = ParmDecl.getIdentifier();
4292
4293    // DefArgToks is used when the parsing of default arguments needs
4294    // to be delayed.
4295    CachedTokens *DefArgToks = 0;
4296
4297    // If no parameter was specified, verify that *something* was specified,
4298    // otherwise we have a missing type and identifier.
4299    if (DS.isEmpty() && ParmDecl.getIdentifier() == 0 &&
4300        ParmDecl.getNumTypeObjects() == 0) {
4301      // Completely missing, emit error.
4302      Diag(DSStart, diag::err_missing_param);
4303    } else {
4304      // Otherwise, we have something.  Add it and let semantic analysis try
4305      // to grok it and add the result to the ParamInfo we are building.
4306
4307      // Inform the actions module about the parameter declarator, so it gets
4308      // added to the current scope.
4309      Decl *Param = Actions.ActOnParamDeclarator(getCurScope(), ParmDecl);
4310
4311      // Parse the default argument, if any. We parse the default
4312      // arguments in all dialects; the semantic analysis in
4313      // ActOnParamDefaultArgument will reject the default argument in
4314      // C.
4315      if (Tok.is(tok::equal)) {
4316        SourceLocation EqualLoc = Tok.getLocation();
4317
4318        // Parse the default argument
4319        if (D.getContext() == Declarator::MemberContext) {
4320          // If we're inside a class definition, cache the tokens
4321          // corresponding to the default argument. We'll actually parse
4322          // them when we see the end of the class definition.
4323          // FIXME: Templates will require something similar.
4324          // FIXME: Can we use a smart pointer for Toks?
4325          DefArgToks = new CachedTokens;
4326
4327          if (!ConsumeAndStoreUntil(tok::comma, tok::r_paren, *DefArgToks,
4328                                    /*StopAtSemi=*/true,
4329                                    /*ConsumeFinalToken=*/false)) {
4330            delete DefArgToks;
4331            DefArgToks = 0;
4332            Actions.ActOnParamDefaultArgumentError(Param);
4333          } else {
4334            // Mark the end of the default argument so that we know when to
4335            // stop when we parse it later on.
4336            Token DefArgEnd;
4337            DefArgEnd.startToken();
4338            DefArgEnd.setKind(tok::cxx_defaultarg_end);
4339            DefArgEnd.setLocation(Tok.getLocation());
4340            DefArgToks->push_back(DefArgEnd);
4341            Actions.ActOnParamUnparsedDefaultArgument(Param, EqualLoc,
4342                                                (*DefArgToks)[1].getLocation());
4343          }
4344        } else {
4345          // Consume the '='.
4346          ConsumeToken();
4347
4348          // The argument isn't actually potentially evaluated unless it is
4349          // used.
4350          EnterExpressionEvaluationContext Eval(Actions,
4351                                              Sema::PotentiallyEvaluatedIfUsed);
4352
4353          ExprResult DefArgResult(ParseAssignmentExpression());
4354          if (DefArgResult.isInvalid()) {
4355            Actions.ActOnParamDefaultArgumentError(Param);
4356            SkipUntil(tok::comma, tok::r_paren, true, true);
4357          } else {
4358            // Inform the actions module about the default argument
4359            Actions.ActOnParamDefaultArgument(Param, EqualLoc,
4360                                              DefArgResult.take());
4361          }
4362        }
4363      }
4364
4365      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
4366                                          ParmDecl.getIdentifierLoc(), Param,
4367                                          DefArgToks));
4368    }
4369
4370    // If the next token is a comma, consume it and keep reading arguments.
4371    if (Tok.isNot(tok::comma)) {
4372      if (Tok.is(tok::ellipsis)) {
4373        EllipsisLoc = ConsumeToken();     // Consume the ellipsis.
4374
4375        if (!getLang().CPlusPlus) {
4376          // We have ellipsis without a preceding ',', which is ill-formed
4377          // in C. Complain and provide the fix.
4378          Diag(EllipsisLoc, diag::err_missing_comma_before_ellipsis)
4379            << FixItHint::CreateInsertion(EllipsisLoc, ", ");
4380        }
4381      }
4382
4383      break;
4384    }
4385
4386    // Consume the comma.
4387    ConsumeToken();
4388  }
4389
4390}
4391
4392/// [C90]   direct-declarator '[' constant-expression[opt] ']'
4393/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
4394/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
4395/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
4396/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
4397void Parser::ParseBracketDeclarator(Declarator &D) {
4398  BalancedDelimiterTracker T(*this, tok::l_square);
4399  T.consumeOpen();
4400
4401  // C array syntax has many features, but by-far the most common is [] and [4].
4402  // This code does a fast path to handle some of the most obvious cases.
4403  if (Tok.getKind() == tok::r_square) {
4404    T.consumeClose();
4405    ParsedAttributes attrs(AttrFactory);
4406    MaybeParseCXX0XAttributes(attrs);
4407
4408    // Remember that we parsed the empty array type.
4409    ExprResult NumElements;
4410    D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, 0,
4411                                            T.getOpenLocation(),
4412                                            T.getCloseLocation()),
4413                  attrs, T.getCloseLocation());
4414    return;
4415  } else if (Tok.getKind() == tok::numeric_constant &&
4416             GetLookAheadToken(1).is(tok::r_square)) {
4417    // [4] is very common.  Parse the numeric constant expression.
4418    ExprResult ExprRes(Actions.ActOnNumericConstant(Tok));
4419    ConsumeToken();
4420
4421    T.consumeClose();
4422    ParsedAttributes attrs(AttrFactory);
4423    MaybeParseCXX0XAttributes(attrs);
4424
4425    // Remember that we parsed a array type, and remember its features.
4426    D.AddTypeInfo(DeclaratorChunk::getArray(0, false, 0,
4427                                            ExprRes.release(),
4428                                            T.getOpenLocation(),
4429                                            T.getCloseLocation()),
4430                  attrs, T.getCloseLocation());
4431    return;
4432  }
4433
4434  // If valid, this location is the position where we read the 'static' keyword.
4435  SourceLocation StaticLoc;
4436  if (Tok.is(tok::kw_static))
4437    StaticLoc = ConsumeToken();
4438
4439  // If there is a type-qualifier-list, read it now.
4440  // Type qualifiers in an array subscript are a C99 feature.
4441  DeclSpec DS(AttrFactory);
4442  ParseTypeQualifierListOpt(DS, false /*no attributes*/);
4443
4444  // If we haven't already read 'static', check to see if there is one after the
4445  // type-qualifier-list.
4446  if (!StaticLoc.isValid() && Tok.is(tok::kw_static))
4447    StaticLoc = ConsumeToken();
4448
4449  // Handle "direct-declarator [ type-qual-list[opt] * ]".
4450  bool isStar = false;
4451  ExprResult NumElements;
4452
4453  // Handle the case where we have '[*]' as the array size.  However, a leading
4454  // star could be the start of an expression, for example 'X[*p + 4]'.  Verify
4455  // the the token after the star is a ']'.  Since stars in arrays are
4456  // infrequent, use of lookahead is not costly here.
4457  if (Tok.is(tok::star) && GetLookAheadToken(1).is(tok::r_square)) {
4458    ConsumeToken();  // Eat the '*'.
4459
4460    if (StaticLoc.isValid()) {
4461      Diag(StaticLoc, diag::err_unspecified_vla_size_with_static);
4462      StaticLoc = SourceLocation();  // Drop the static.
4463    }
4464    isStar = true;
4465  } else if (Tok.isNot(tok::r_square)) {
4466    // Note, in C89, this production uses the constant-expr production instead
4467    // of assignment-expr.  The only difference is that assignment-expr allows
4468    // things like '=' and '*='.  Sema rejects these in C89 mode because they
4469    // are not i-c-e's, so we don't need to distinguish between the two here.
4470
4471    // Parse the constant-expression or assignment-expression now (depending
4472    // on dialect).
4473    if (getLang().CPlusPlus)
4474      NumElements = ParseConstantExpression();
4475    else
4476      NumElements = ParseAssignmentExpression();
4477  }
4478
4479  // If there was an error parsing the assignment-expression, recover.
4480  if (NumElements.isInvalid()) {
4481    D.setInvalidType(true);
4482    // If the expression was invalid, skip it.
4483    SkipUntil(tok::r_square);
4484    return;
4485  }
4486
4487  T.consumeClose();
4488
4489  ParsedAttributes attrs(AttrFactory);
4490  MaybeParseCXX0XAttributes(attrs);
4491
4492  // Remember that we parsed a array type, and remember its features.
4493  D.AddTypeInfo(DeclaratorChunk::getArray(DS.getTypeQualifiers(),
4494                                          StaticLoc.isValid(), isStar,
4495                                          NumElements.release(),
4496                                          T.getOpenLocation(),
4497                                          T.getCloseLocation()),
4498                attrs, T.getCloseLocation());
4499}
4500
4501/// [GNU]   typeof-specifier:
4502///           typeof ( expressions )
4503///           typeof ( type-name )
4504/// [GNU/C++] typeof unary-expression
4505///
4506void Parser::ParseTypeofSpecifier(DeclSpec &DS) {
4507  assert(Tok.is(tok::kw_typeof) && "Not a typeof specifier");
4508  Token OpTok = Tok;
4509  SourceLocation StartLoc = ConsumeToken();
4510
4511  const bool hasParens = Tok.is(tok::l_paren);
4512
4513  bool isCastExpr;
4514  ParsedType CastTy;
4515  SourceRange CastRange;
4516  ExprResult Operand = ParseExprAfterUnaryExprOrTypeTrait(OpTok, isCastExpr,
4517                                                          CastTy, CastRange);
4518  if (hasParens)
4519    DS.setTypeofParensRange(CastRange);
4520
4521  if (CastRange.getEnd().isInvalid())
4522    // FIXME: Not accurate, the range gets one token more than it should.
4523    DS.SetRangeEnd(Tok.getLocation());
4524  else
4525    DS.SetRangeEnd(CastRange.getEnd());
4526
4527  if (isCastExpr) {
4528    if (!CastTy) {
4529      DS.SetTypeSpecError();
4530      return;
4531    }
4532
4533    const char *PrevSpec = 0;
4534    unsigned DiagID;
4535    // Check for duplicate type specifiers (e.g. "int typeof(int)").
4536    if (DS.SetTypeSpecType(DeclSpec::TST_typeofType, StartLoc, PrevSpec,
4537                           DiagID, CastTy))
4538      Diag(StartLoc, DiagID) << PrevSpec;
4539    return;
4540  }
4541
4542  // If we get here, the operand to the typeof was an expresion.
4543  if (Operand.isInvalid()) {
4544    DS.SetTypeSpecError();
4545    return;
4546  }
4547
4548  const char *PrevSpec = 0;
4549  unsigned DiagID;
4550  // Check for duplicate type specifiers (e.g. "int typeof(int)").
4551  if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec,
4552                         DiagID, Operand.get()))
4553    Diag(StartLoc, DiagID) << PrevSpec;
4554}
4555
4556/// [C1X]   atomic-specifier:
4557///           _Atomic ( type-name )
4558///
4559void Parser::ParseAtomicSpecifier(DeclSpec &DS) {
4560  assert(Tok.is(tok::kw__Atomic) && "Not an atomic specifier");
4561
4562  SourceLocation StartLoc = ConsumeToken();
4563  BalancedDelimiterTracker T(*this, tok::l_paren);
4564  if (T.expectAndConsume(diag::err_expected_lparen_after, "_Atomic")) {
4565    SkipUntil(tok::r_paren);
4566    return;
4567  }
4568
4569  TypeResult Result = ParseTypeName();
4570  if (Result.isInvalid()) {
4571    SkipUntil(tok::r_paren);
4572    return;
4573  }
4574
4575  // Match the ')'
4576  T.consumeClose();
4577
4578  if (T.getCloseLocation().isInvalid())
4579    return;
4580
4581  DS.setTypeofParensRange(T.getRange());
4582  DS.SetRangeEnd(T.getCloseLocation());
4583
4584  const char *PrevSpec = 0;
4585  unsigned DiagID;
4586  if (DS.SetTypeSpecType(DeclSpec::TST_atomic, StartLoc, PrevSpec,
4587                         DiagID, Result.release()))
4588    Diag(StartLoc, DiagID) << PrevSpec;
4589}
4590
4591
4592/// TryAltiVecVectorTokenOutOfLine - Out of line body that should only be called
4593/// from TryAltiVecVectorToken.
4594bool Parser::TryAltiVecVectorTokenOutOfLine() {
4595  Token Next = NextToken();
4596  switch (Next.getKind()) {
4597  default: return false;
4598  case tok::kw_short:
4599  case tok::kw_long:
4600  case tok::kw_signed:
4601  case tok::kw_unsigned:
4602  case tok::kw_void:
4603  case tok::kw_char:
4604  case tok::kw_int:
4605  case tok::kw_float:
4606  case tok::kw_double:
4607  case tok::kw_bool:
4608  case tok::kw___pixel:
4609    Tok.setKind(tok::kw___vector);
4610    return true;
4611  case tok::identifier:
4612    if (Next.getIdentifierInfo() == Ident_pixel) {
4613      Tok.setKind(tok::kw___vector);
4614      return true;
4615    }
4616    return false;
4617  }
4618}
4619
4620bool Parser::TryAltiVecTokenOutOfLine(DeclSpec &DS, SourceLocation Loc,
4621                                      const char *&PrevSpec, unsigned &DiagID,
4622                                      bool &isInvalid) {
4623  if (Tok.getIdentifierInfo() == Ident_vector) {
4624    Token Next = NextToken();
4625    switch (Next.getKind()) {
4626    case tok::kw_short:
4627    case tok::kw_long:
4628    case tok::kw_signed:
4629    case tok::kw_unsigned:
4630    case tok::kw_void:
4631    case tok::kw_char:
4632    case tok::kw_int:
4633    case tok::kw_float:
4634    case tok::kw_double:
4635    case tok::kw_bool:
4636    case tok::kw___pixel:
4637      isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID);
4638      return true;
4639    case tok::identifier:
4640      if (Next.getIdentifierInfo() == Ident_pixel) {
4641        isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID);
4642        return true;
4643      }
4644      break;
4645    default:
4646      break;
4647    }
4648  } else if ((Tok.getIdentifierInfo() == Ident_pixel) &&
4649             DS.isTypeAltiVecVector()) {
4650    isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID);
4651    return true;
4652  }
4653  return false;
4654}
4655