ParseDecl.cpp revision c4b4e7b8f6ca9b036824e048af49cd2a52b57cdf
1//===--- ParseDecl.cpp - Declaration Parsing ------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the Declaration portions of the Parser interfaces.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Parse/Parser.h"
15#include "clang/Basic/Diagnostic.h"
16#include "clang/Parse/Scope.h"
17#include "ExtensionRAIIObject.h"
18#include "AstGuard.h"
19#include "llvm/ADT/SmallSet.h"
20using namespace clang;
21
22//===----------------------------------------------------------------------===//
23// C99 6.7: Declarations.
24//===----------------------------------------------------------------------===//
25
26/// ParseTypeName
27///       type-name: [C99 6.7.6]
28///         specifier-qualifier-list abstract-declarator[opt]
29///
30/// Called type-id in C++.
31Parser::TypeTy *Parser::ParseTypeName() {
32  // Parse the common declaration-specifiers piece.
33  DeclSpec DS;
34  ParseSpecifierQualifierList(DS);
35
36  // Parse the abstract-declarator, if present.
37  Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
38  ParseDeclarator(DeclaratorInfo);
39
40  return Actions.ActOnTypeName(CurScope, DeclaratorInfo).Val;
41}
42
43/// ParseAttributes - Parse a non-empty attributes list.
44///
45/// [GNU] attributes:
46///         attribute
47///         attributes attribute
48///
49/// [GNU]  attribute:
50///          '__attribute__' '(' '(' attribute-list ')' ')'
51///
52/// [GNU]  attribute-list:
53///          attrib
54///          attribute_list ',' attrib
55///
56/// [GNU]  attrib:
57///          empty
58///          attrib-name
59///          attrib-name '(' identifier ')'
60///          attrib-name '(' identifier ',' nonempty-expr-list ')'
61///          attrib-name '(' argument-expression-list [C99 6.5.2] ')'
62///
63/// [GNU]  attrib-name:
64///          identifier
65///          typespec
66///          typequal
67///          storageclass
68///
69/// FIXME: The GCC grammar/code for this construct implies we need two
70/// token lookahead. Comment from gcc: "If they start with an identifier
71/// which is followed by a comma or close parenthesis, then the arguments
72/// start with that identifier; otherwise they are an expression list."
73///
74/// At the moment, I am not doing 2 token lookahead. I am also unaware of
75/// any attributes that don't work (based on my limited testing). Most
76/// attributes are very simple in practice. Until we find a bug, I don't see
77/// a pressing need to implement the 2 token lookahead.
78
79AttributeList *Parser::ParseAttributes() {
80  assert(Tok.is(tok::kw___attribute) && "Not an attribute list!");
81
82  AttributeList *CurrAttr = 0;
83
84  while (Tok.is(tok::kw___attribute)) {
85    ConsumeToken();
86    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
87                         "attribute")) {
88      SkipUntil(tok::r_paren, true); // skip until ) or ;
89      return CurrAttr;
90    }
91    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "(")) {
92      SkipUntil(tok::r_paren, true); // skip until ) or ;
93      return CurrAttr;
94    }
95    // Parse the attribute-list. e.g. __attribute__(( weak, alias("__f") ))
96    while (Tok.is(tok::identifier) || isDeclarationSpecifier() ||
97           Tok.is(tok::comma)) {
98
99      if (Tok.is(tok::comma)) {
100        // allows for empty/non-empty attributes. ((__vector_size__(16),,,,))
101        ConsumeToken();
102        continue;
103      }
104      // we have an identifier or declaration specifier (const, int, etc.)
105      IdentifierInfo *AttrName = Tok.getIdentifierInfo();
106      SourceLocation AttrNameLoc = ConsumeToken();
107
108      // check if we have a "paramterized" attribute
109      if (Tok.is(tok::l_paren)) {
110        ConsumeParen(); // ignore the left paren loc for now
111
112        if (Tok.is(tok::identifier)) {
113          IdentifierInfo *ParmName = Tok.getIdentifierInfo();
114          SourceLocation ParmLoc = ConsumeToken();
115
116          if (Tok.is(tok::r_paren)) {
117            // __attribute__(( mode(byte) ))
118            ConsumeParen(); // ignore the right paren loc for now
119            CurrAttr = new AttributeList(AttrName, AttrNameLoc,
120                                         ParmName, ParmLoc, 0, 0, CurrAttr);
121          } else if (Tok.is(tok::comma)) {
122            ConsumeToken();
123            // __attribute__(( format(printf, 1, 2) ))
124            ExprVector ArgExprs(Actions);
125            bool ArgExprsOk = true;
126
127            // now parse the non-empty comma separated list of expressions
128            while (1) {
129              OwningExprResult ArgExpr(ParseAssignmentExpression());
130              if (ArgExpr.isInvalid()) {
131                ArgExprsOk = false;
132                SkipUntil(tok::r_paren);
133                break;
134              } else {
135                ArgExprs.push_back(ArgExpr.release());
136              }
137              if (Tok.isNot(tok::comma))
138                break;
139              ConsumeToken(); // Eat the comma, move to the next argument
140            }
141            if (ArgExprsOk && Tok.is(tok::r_paren)) {
142              ConsumeParen(); // ignore the right paren loc for now
143              CurrAttr = new AttributeList(AttrName, AttrNameLoc, ParmName,
144                           ParmLoc, ArgExprs.take(), ArgExprs.size(), CurrAttr);
145            }
146          }
147        } else { // not an identifier
148          // parse a possibly empty comma separated list of expressions
149          if (Tok.is(tok::r_paren)) {
150            // __attribute__(( nonnull() ))
151            ConsumeParen(); // ignore the right paren loc for now
152            CurrAttr = new AttributeList(AttrName, AttrNameLoc,
153                                         0, SourceLocation(), 0, 0, CurrAttr);
154          } else {
155            // __attribute__(( aligned(16) ))
156            ExprVector ArgExprs(Actions);
157            bool ArgExprsOk = true;
158
159            // now parse the list of expressions
160            while (1) {
161              OwningExprResult ArgExpr(ParseAssignmentExpression());
162              if (ArgExpr.isInvalid()) {
163                ArgExprsOk = false;
164                SkipUntil(tok::r_paren);
165                break;
166              } else {
167                ArgExprs.push_back(ArgExpr.release());
168              }
169              if (Tok.isNot(tok::comma))
170                break;
171              ConsumeToken(); // Eat the comma, move to the next argument
172            }
173            // Match the ')'.
174            if (ArgExprsOk && Tok.is(tok::r_paren)) {
175              ConsumeParen(); // ignore the right paren loc for now
176              CurrAttr = new AttributeList(AttrName, AttrNameLoc, 0,
177                           SourceLocation(), ArgExprs.take(), ArgExprs.size(),
178                           CurrAttr);
179            }
180          }
181        }
182      } else {
183        CurrAttr = new AttributeList(AttrName, AttrNameLoc,
184                                     0, SourceLocation(), 0, 0, CurrAttr);
185      }
186    }
187    if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
188      SkipUntil(tok::r_paren, false);
189    if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
190      SkipUntil(tok::r_paren, false);
191  }
192  return CurrAttr;
193}
194
195/// ParseDeclaration - Parse a full 'declaration', which consists of
196/// declaration-specifiers, some number of declarators, and a semicolon.
197/// 'Context' should be a Declarator::TheContext value.
198///
199///       declaration: [C99 6.7]
200///         block-declaration ->
201///           simple-declaration
202///           others                   [FIXME]
203/// [C++]   template-declaration
204/// [C++]   namespace-definition
205///         others... [FIXME]
206///
207Parser::DeclTy *Parser::ParseDeclaration(unsigned Context) {
208  switch (Tok.getKind()) {
209  case tok::kw_export:
210  case tok::kw_template:
211    return ParseTemplateDeclaration(Context);
212  case tok::kw_namespace:
213    return ParseNamespace(Context);
214  default:
215    return ParseSimpleDeclaration(Context);
216  }
217}
218
219///       simple-declaration: [C99 6.7: declaration] [C++ 7p1: dcl.dcl]
220///         declaration-specifiers init-declarator-list[opt] ';'
221///[C90/C++]init-declarator-list ';'                             [TODO]
222/// [OMP]   threadprivate-directive                              [TODO]
223Parser::DeclTy *Parser::ParseSimpleDeclaration(unsigned Context) {
224  // Parse the common declaration-specifiers piece.
225  DeclSpec DS;
226  ParseDeclarationSpecifiers(DS);
227
228  // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };"
229  // declaration-specifiers init-declarator-list[opt] ';'
230  if (Tok.is(tok::semi)) {
231    ConsumeToken();
232    return Actions.ParsedFreeStandingDeclSpec(CurScope, DS);
233  }
234
235  Declarator DeclaratorInfo(DS, (Declarator::TheContext)Context);
236  ParseDeclarator(DeclaratorInfo);
237
238  return ParseInitDeclaratorListAfterFirstDeclarator(DeclaratorInfo);
239}
240
241
242/// ParseInitDeclaratorListAfterFirstDeclarator - Parse 'declaration' after
243/// parsing 'declaration-specifiers declarator'.  This method is split out this
244/// way to handle the ambiguity between top-level function-definitions and
245/// declarations.
246///
247///       init-declarator-list: [C99 6.7]
248///         init-declarator
249///         init-declarator-list ',' init-declarator
250///       init-declarator: [C99 6.7]
251///         declarator
252///         declarator '=' initializer
253/// [GNU]   declarator simple-asm-expr[opt] attributes[opt]
254/// [GNU]   declarator simple-asm-expr[opt] attributes[opt] '=' initializer
255/// [C++]   declarator initializer[opt]
256///
257/// [C++] initializer:
258/// [C++]   '=' initializer-clause
259/// [C++]   '(' expression-list ')'
260///
261Parser::DeclTy *Parser::
262ParseInitDeclaratorListAfterFirstDeclarator(Declarator &D) {
263
264  // Declarators may be grouped together ("int X, *Y, Z();").  Provide info so
265  // that they can be chained properly if the actions want this.
266  Parser::DeclTy *LastDeclInGroup = 0;
267
268  // At this point, we know that it is not a function definition.  Parse the
269  // rest of the init-declarator-list.
270  while (1) {
271    // If a simple-asm-expr is present, parse it.
272    if (Tok.is(tok::kw_asm)) {
273      OwningExprResult AsmLabel(ParseSimpleAsm());
274      if (AsmLabel.isInvalid()) {
275        SkipUntil(tok::semi);
276        return 0;
277      }
278
279      D.setAsmLabel(AsmLabel.release());
280    }
281
282    // If attributes are present, parse them.
283    if (Tok.is(tok::kw___attribute))
284      D.AddAttributes(ParseAttributes());
285
286    // Inform the current actions module that we just parsed this declarator.
287    LastDeclInGroup = Actions.ActOnDeclarator(CurScope, D, LastDeclInGroup);
288
289    // Parse declarator '=' initializer.
290    if (Tok.is(tok::equal)) {
291      ConsumeToken();
292      OwningExprResult Init(ParseInitializer());
293      if (Init.isInvalid()) {
294        SkipUntil(tok::semi);
295        return 0;
296      }
297      Actions.AddInitializerToDecl(LastDeclInGroup, move_convert(Init));
298    } else if (Tok.is(tok::l_paren)) {
299      // Parse C++ direct initializer: '(' expression-list ')'
300      SourceLocation LParenLoc = ConsumeParen();
301      ExprVector Exprs(Actions);
302      CommaLocsTy CommaLocs;
303
304      bool InvalidExpr = false;
305      if (ParseExpressionList(Exprs, CommaLocs)) {
306        SkipUntil(tok::r_paren);
307        InvalidExpr = true;
308      }
309      // Match the ')'.
310      SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
311
312      if (!InvalidExpr) {
313        assert(!Exprs.empty() && Exprs.size()-1 == CommaLocs.size() &&
314               "Unexpected number of commas!");
315        Actions.AddCXXDirectInitializerToDecl(LastDeclInGroup, LParenLoc,
316                                              Exprs.take(), Exprs.size(),
317                                              &CommaLocs[0], RParenLoc);
318      }
319    } else {
320      Actions.ActOnUninitializedDecl(LastDeclInGroup);
321    }
322
323    // If we don't have a comma, it is either the end of the list (a ';') or an
324    // error, bail out.
325    if (Tok.isNot(tok::comma))
326      break;
327
328    // Consume the comma.
329    ConsumeToken();
330
331    // Parse the next declarator.
332    D.clear();
333
334    // Accept attributes in an init-declarator.  In the first declarator in a
335    // declaration, these would be part of the declspec.  In subsequent
336    // declarators, they become part of the declarator itself, so that they
337    // don't apply to declarators after *this* one.  Examples:
338    //    short __attribute__((common)) var;    -> declspec
339    //    short var __attribute__((common));    -> declarator
340    //    short x, __attribute__((common)) var;    -> declarator
341    if (Tok.is(tok::kw___attribute))
342      D.AddAttributes(ParseAttributes());
343
344    ParseDeclarator(D);
345  }
346
347  if (Tok.is(tok::semi)) {
348    ConsumeToken();
349    return Actions.FinalizeDeclaratorGroup(CurScope, LastDeclInGroup);
350  }
351  // If this is an ObjC2 for-each loop, this is a successful declarator
352  // parse.  The syntax for these looks like:
353  // 'for' '(' declaration 'in' expr ')' statement
354  if (D.getContext()  == Declarator::ForContext && isTokIdentifier_in()) {
355    return Actions.FinalizeDeclaratorGroup(CurScope, LastDeclInGroup);
356  }
357  Diag(Tok, diag::err_parse_error);
358  // Skip to end of block or statement
359  SkipUntil(tok::r_brace, true, true);
360  if (Tok.is(tok::semi))
361    ConsumeToken();
362  return 0;
363}
364
365/// ParseSpecifierQualifierList
366///        specifier-qualifier-list:
367///          type-specifier specifier-qualifier-list[opt]
368///          type-qualifier specifier-qualifier-list[opt]
369/// [GNU]    attributes     specifier-qualifier-list[opt]
370///
371void Parser::ParseSpecifierQualifierList(DeclSpec &DS) {
372  /// specifier-qualifier-list is a subset of declaration-specifiers.  Just
373  /// parse declaration-specifiers and complain about extra stuff.
374  ParseDeclarationSpecifiers(DS);
375
376  // Validate declspec for type-name.
377  unsigned Specs = DS.getParsedSpecifiers();
378  if (Specs == DeclSpec::PQ_None && !DS.getNumProtocolQualifiers())
379    Diag(Tok, diag::err_typename_requires_specqual);
380
381  // Issue diagnostic and remove storage class if present.
382  if (Specs & DeclSpec::PQ_StorageClassSpecifier) {
383    if (DS.getStorageClassSpecLoc().isValid())
384      Diag(DS.getStorageClassSpecLoc(),diag::err_typename_invalid_storageclass);
385    else
386      Diag(DS.getThreadSpecLoc(), diag::err_typename_invalid_storageclass);
387    DS.ClearStorageClassSpecs();
388  }
389
390  // Issue diagnostic and remove function specfier if present.
391  if (Specs & DeclSpec::PQ_FunctionSpecifier) {
392    if (DS.isInlineSpecified())
393      Diag(DS.getInlineSpecLoc(), diag::err_typename_invalid_functionspec);
394    if (DS.isVirtualSpecified())
395      Diag(DS.getVirtualSpecLoc(), diag::err_typename_invalid_functionspec);
396    if (DS.isExplicitSpecified())
397      Diag(DS.getExplicitSpecLoc(), diag::err_typename_invalid_functionspec);
398    DS.ClearFunctionSpecs();
399  }
400}
401
402/// ParseDeclarationSpecifiers
403///       declaration-specifiers: [C99 6.7]
404///         storage-class-specifier declaration-specifiers[opt]
405///         type-specifier declaration-specifiers[opt]
406/// [C99]   function-specifier declaration-specifiers[opt]
407/// [GNU]   attributes declaration-specifiers[opt]
408///
409///       storage-class-specifier: [C99 6.7.1]
410///         'typedef'
411///         'extern'
412///         'static'
413///         'auto'
414///         'register'
415/// [C++]   'mutable'
416/// [GNU]   '__thread'
417///       function-specifier: [C99 6.7.4]
418/// [C99]   'inline'
419/// [C++]   'virtual'
420/// [C++]   'explicit'
421///
422void Parser::ParseDeclarationSpecifiers(DeclSpec &DS,
423                                        TemplateParameterLists *TemplateParams)
424{
425  DS.SetRangeStart(Tok.getLocation());
426  while (1) {
427    int isInvalid = false;
428    const char *PrevSpec = 0;
429    SourceLocation Loc = Tok.getLocation();
430
431    // Only annotate C++ scope. Allow class-name as an identifier in case
432    // it's a constructor.
433    if (getLang().CPlusPlus)
434      TryAnnotateCXXScopeToken();
435
436    switch (Tok.getKind()) {
437    default:
438      // Try to parse a type-specifier; if we found one, continue. If it's not
439      // a type, this falls through.
440      if (MaybeParseTypeSpecifier(DS, isInvalid, PrevSpec, TemplateParams)) {
441        continue;
442      }
443
444    DoneWithDeclSpec:
445      // If this is not a declaration specifier token, we're done reading decl
446      // specifiers.  First verify that DeclSpec's are consistent.
447      DS.Finish(Diags, PP.getSourceManager(), getLang());
448      return;
449
450    case tok::annot_cxxscope: {
451      if (DS.hasTypeSpecifier())
452        goto DoneWithDeclSpec;
453
454      // We are looking for a qualified typename.
455      if (NextToken().isNot(tok::identifier))
456        goto DoneWithDeclSpec;
457
458      CXXScopeSpec SS;
459      SS.setScopeRep(Tok.getAnnotationValue());
460      SS.setRange(Tok.getAnnotationRange());
461
462      // If the next token is the name of the class type that the C++ scope
463      // denotes, followed by a '(', then this is a constructor declaration.
464      // We're done with the decl-specifiers.
465      if (Actions.isCurrentClassName(*NextToken().getIdentifierInfo(),
466                                     CurScope, &SS) &&
467          GetLookAheadToken(2).is(tok::l_paren))
468        goto DoneWithDeclSpec;
469
470      TypeTy *TypeRep = Actions.isTypeName(*NextToken().getIdentifierInfo(),
471                                           CurScope, &SS);
472      if (TypeRep == 0)
473        goto DoneWithDeclSpec;
474
475      ConsumeToken(); // The C++ scope.
476
477      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typedef, Loc, PrevSpec,
478                                     TypeRep);
479      if (isInvalid)
480        break;
481
482      DS.SetRangeEnd(Tok.getLocation());
483      ConsumeToken(); // The typename.
484
485      continue;
486    }
487
488      // typedef-name
489    case tok::identifier: {
490      // This identifier can only be a typedef name if we haven't already seen
491      // a type-specifier.  Without this check we misparse:
492      //  typedef int X; struct Y { short X; };  as 'short int'.
493      if (DS.hasTypeSpecifier())
494        goto DoneWithDeclSpec;
495
496      // It has to be available as a typedef too!
497      TypeTy *TypeRep = Actions.isTypeName(*Tok.getIdentifierInfo(), CurScope);
498      if (TypeRep == 0)
499        goto DoneWithDeclSpec;
500
501      // C++: If the identifier is actually the name of the class type
502      // being defined and the next token is a '(', then this is a
503      // constructor declaration. We're done with the decl-specifiers
504      // and will treat this token as an identifier.
505      if (getLang().CPlusPlus &&
506          CurScope->isCXXClassScope() &&
507          Actions.isCurrentClassName(*Tok.getIdentifierInfo(), CurScope) &&
508          NextToken().getKind() == tok::l_paren)
509        goto DoneWithDeclSpec;
510
511      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typedef, Loc, PrevSpec,
512                                     TypeRep);
513      if (isInvalid)
514        break;
515
516      DS.SetRangeEnd(Tok.getLocation());
517      ConsumeToken(); // The identifier
518
519      // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
520      // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
521      // Objective-C interface.  If we don't have Objective-C or a '<', this is
522      // just a normal reference to a typedef name.
523      if (!Tok.is(tok::less) || !getLang().ObjC1)
524        continue;
525
526      SourceLocation EndProtoLoc;
527      llvm::SmallVector<DeclTy *, 8> ProtocolDecl;
528      ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
529      DS.setProtocolQualifiers(&ProtocolDecl[0], ProtocolDecl.size());
530
531      DS.SetRangeEnd(EndProtoLoc);
532
533      // Need to support trailing type qualifiers (e.g. "id<p> const").
534      // If a type specifier follows, it will be diagnosed elsewhere.
535      continue;
536    }
537    // GNU attributes support.
538    case tok::kw___attribute:
539      DS.AddAttributes(ParseAttributes());
540      continue;
541
542    // storage-class-specifier
543    case tok::kw_typedef:
544      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_typedef, Loc, PrevSpec);
545      break;
546    case tok::kw_extern:
547      if (DS.isThreadSpecified())
548        Diag(Tok, diag::ext_thread_before) << "extern";
549      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_extern, Loc, PrevSpec);
550      break;
551    case tok::kw___private_extern__:
552      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_private_extern, Loc,
553                                         PrevSpec);
554      break;
555    case tok::kw_static:
556      if (DS.isThreadSpecified())
557        Diag(Tok, diag::ext_thread_before) << "static";
558      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_static, Loc, PrevSpec);
559      break;
560    case tok::kw_auto:
561      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_auto, Loc, PrevSpec);
562      break;
563    case tok::kw_register:
564      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_register, Loc, PrevSpec);
565      break;
566    case tok::kw_mutable:
567      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_mutable, Loc, PrevSpec);
568      break;
569    case tok::kw___thread:
570      isInvalid = DS.SetStorageClassSpecThread(Loc, PrevSpec)*2;
571      break;
572
573      continue;
574
575    // function-specifier
576    case tok::kw_inline:
577      isInvalid = DS.SetFunctionSpecInline(Loc, PrevSpec);
578      break;
579
580    case tok::kw_virtual:
581      isInvalid = DS.SetFunctionSpecVirtual(Loc, PrevSpec);
582      break;
583
584    case tok::kw_explicit:
585      isInvalid = DS.SetFunctionSpecExplicit(Loc, PrevSpec);
586      break;
587
588    case tok::less:
589      // GCC ObjC supports types like "<SomeProtocol>" as a synonym for
590      // "id<SomeProtocol>".  This is hopelessly old fashioned and dangerous,
591      // but we support it.
592      if (DS.hasTypeSpecifier() || !getLang().ObjC1)
593        goto DoneWithDeclSpec;
594
595      {
596        SourceLocation EndProtoLoc;
597        llvm::SmallVector<DeclTy *, 8> ProtocolDecl;
598        ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
599        DS.setProtocolQualifiers(&ProtocolDecl[0], ProtocolDecl.size());
600        DS.SetRangeEnd(EndProtoLoc);
601
602        Diag(Loc, diag::warn_objc_protocol_qualifier_missing_id)
603          << SourceRange(Loc, EndProtoLoc);
604        // Need to support trailing type qualifiers (e.g. "id<p> const").
605        // If a type specifier follows, it will be diagnosed elsewhere.
606        continue;
607      }
608    }
609    // If the specifier combination wasn't legal, issue a diagnostic.
610    if (isInvalid) {
611      assert(PrevSpec && "Method did not return previous specifier!");
612      // Pick between error or extwarn.
613      unsigned DiagID = isInvalid == 1 ? diag::err_invalid_decl_spec_combination
614                                       : diag::ext_duplicate_declspec;
615      Diag(Tok, DiagID) << PrevSpec;
616    }
617    DS.SetRangeEnd(Tok.getLocation());
618    ConsumeToken();
619  }
620}
621
622/// MaybeParseTypeSpecifier - Try to parse a single type-specifier. We
623/// primarily follow the C++ grammar with additions for C99 and GNU,
624/// which together subsume the C grammar. Note that the C++
625/// type-specifier also includes the C type-qualifier (for const,
626/// volatile, and C99 restrict). Returns true if a type-specifier was
627/// found (and parsed), false otherwise.
628///
629///       type-specifier: [C++ 7.1.5]
630///         simple-type-specifier
631///         class-specifier
632///         enum-specifier
633///         elaborated-type-specifier  [TODO]
634///         cv-qualifier
635///
636///       cv-qualifier: [C++ 7.1.5.1]
637///         'const'
638///         'volatile'
639/// [C99]   'restrict'
640///
641///       simple-type-specifier: [ C++ 7.1.5.2]
642///         '::'[opt] nested-name-specifier[opt] type-name [TODO]
643///         '::'[opt] nested-name-specifier 'template' template-id [TODO]
644///         'char'
645///         'wchar_t'
646///         'bool'
647///         'short'
648///         'int'
649///         'long'
650///         'signed'
651///         'unsigned'
652///         'float'
653///         'double'
654///         'void'
655/// [C99]   '_Bool'
656/// [C99]   '_Complex'
657/// [C99]   '_Imaginary'  // Removed in TC2?
658/// [GNU]   '_Decimal32'
659/// [GNU]   '_Decimal64'
660/// [GNU]   '_Decimal128'
661/// [GNU]   typeof-specifier
662/// [OBJC]  class-name objc-protocol-refs[opt]    [TODO]
663/// [OBJC]  typedef-name objc-protocol-refs[opt]  [TODO]
664bool Parser::MaybeParseTypeSpecifier(DeclSpec &DS, int& isInvalid,
665                                     const char *&PrevSpec,
666                                     TemplateParameterLists *TemplateParams) {
667  // Annotate typenames and C++ scope specifiers.
668  TryAnnotateTypeOrScopeToken();
669
670  SourceLocation Loc = Tok.getLocation();
671
672  switch (Tok.getKind()) {
673  // simple-type-specifier:
674  case tok::annot_qualtypename: {
675    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typedef, Loc, PrevSpec,
676                                   Tok.getAnnotationValue());
677    DS.SetRangeEnd(Tok.getAnnotationEndLoc());
678    ConsumeToken(); // The typename
679
680    // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
681    // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
682    // Objective-C interface.  If we don't have Objective-C or a '<', this is
683    // just a normal reference to a typedef name.
684    if (!Tok.is(tok::less) || !getLang().ObjC1)
685      return true;
686
687    SourceLocation EndProtoLoc;
688    llvm::SmallVector<DeclTy *, 8> ProtocolDecl;
689    ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
690    DS.setProtocolQualifiers(&ProtocolDecl[0], ProtocolDecl.size());
691
692    DS.SetRangeEnd(EndProtoLoc);
693    return true;
694  }
695
696  case tok::kw_short:
697    isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec);
698    break;
699  case tok::kw_long:
700    if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
701      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec);
702    else
703      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec);
704    break;
705  case tok::kw_signed:
706    isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec);
707    break;
708  case tok::kw_unsigned:
709    isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec);
710    break;
711  case tok::kw__Complex:
712    isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec);
713    break;
714  case tok::kw__Imaginary:
715    isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec);
716    break;
717  case tok::kw_void:
718    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec);
719    break;
720  case tok::kw_char:
721    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec);
722    break;
723  case tok::kw_int:
724    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec);
725    break;
726  case tok::kw_float:
727    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec);
728    break;
729  case tok::kw_double:
730    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec);
731    break;
732  case tok::kw_wchar_t:
733    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec);
734    break;
735  case tok::kw_bool:
736  case tok::kw__Bool:
737    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec);
738    break;
739  case tok::kw__Decimal32:
740    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec);
741    break;
742  case tok::kw__Decimal64:
743    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec);
744    break;
745  case tok::kw__Decimal128:
746    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec);
747    break;
748
749  // class-specifier:
750  case tok::kw_class:
751  case tok::kw_struct:
752  case tok::kw_union:
753    ParseClassSpecifier(DS, TemplateParams);
754    return true;
755
756  // enum-specifier:
757  case tok::kw_enum:
758    ParseEnumSpecifier(DS);
759    return true;
760
761  // cv-qualifier:
762  case tok::kw_const:
763    isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec,
764                               getLang())*2;
765    break;
766  case tok::kw_volatile:
767    isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec,
768                               getLang())*2;
769    break;
770  case tok::kw_restrict:
771    isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec,
772                               getLang())*2;
773    break;
774
775  // GNU typeof support.
776  case tok::kw_typeof:
777    ParseTypeofSpecifier(DS);
778    return true;
779
780  default:
781    // Not a type-specifier; do nothing.
782    return false;
783  }
784
785  // If the specifier combination wasn't legal, issue a diagnostic.
786  if (isInvalid) {
787    assert(PrevSpec && "Method did not return previous specifier!");
788    // Pick between error or extwarn.
789    unsigned DiagID = isInvalid == 1 ? diag::err_invalid_decl_spec_combination
790                                     : diag::ext_duplicate_declspec;
791    Diag(Tok, DiagID) << PrevSpec;
792  }
793  DS.SetRangeEnd(Tok.getLocation());
794  ConsumeToken(); // whatever we parsed above.
795  return true;
796}
797
798/// ParseStructDeclaration - Parse a struct declaration without the terminating
799/// semicolon.
800///
801///       struct-declaration:
802///         specifier-qualifier-list struct-declarator-list
803/// [GNU]   __extension__ struct-declaration
804/// [GNU]   specifier-qualifier-list
805///       struct-declarator-list:
806///         struct-declarator
807///         struct-declarator-list ',' struct-declarator
808/// [GNU]   struct-declarator-list ',' attributes[opt] struct-declarator
809///       struct-declarator:
810///         declarator
811/// [GNU]   declarator attributes[opt]
812///         declarator[opt] ':' constant-expression
813/// [GNU]   declarator[opt] ':' constant-expression attributes[opt]
814///
815void Parser::
816ParseStructDeclaration(DeclSpec &DS,
817                       llvm::SmallVectorImpl<FieldDeclarator> &Fields) {
818  if (Tok.is(tok::kw___extension__)) {
819    // __extension__ silences extension warnings in the subexpression.
820    ExtensionRAIIObject O(Diags);  // Use RAII to do this.
821    ConsumeToken();
822    return ParseStructDeclaration(DS, Fields);
823  }
824
825  // Parse the common specifier-qualifiers-list piece.
826  SourceLocation DSStart = Tok.getLocation();
827  ParseSpecifierQualifierList(DS);
828
829  // If there are no declarators, issue a warning.
830  if (Tok.is(tok::semi)) {
831    Diag(DSStart, diag::w_no_declarators);
832    return;
833  }
834
835  // Read struct-declarators until we find the semicolon.
836  Fields.push_back(FieldDeclarator(DS));
837  while (1) {
838    FieldDeclarator &DeclaratorInfo = Fields.back();
839
840    /// struct-declarator: declarator
841    /// struct-declarator: declarator[opt] ':' constant-expression
842    if (Tok.isNot(tok::colon))
843      ParseDeclarator(DeclaratorInfo.D);
844
845    if (Tok.is(tok::colon)) {
846      ConsumeToken();
847      OwningExprResult Res(ParseConstantExpression());
848      if (Res.isInvalid())
849        SkipUntil(tok::semi, true, true);
850      else
851        DeclaratorInfo.BitfieldSize = Res.release();
852    }
853
854    // If attributes exist after the declarator, parse them.
855    if (Tok.is(tok::kw___attribute))
856      DeclaratorInfo.D.AddAttributes(ParseAttributes());
857
858    // If we don't have a comma, it is either the end of the list (a ';')
859    // or an error, bail out.
860    if (Tok.isNot(tok::comma))
861      return;
862
863    // Consume the comma.
864    ConsumeToken();
865
866    // Parse the next declarator.
867    Fields.push_back(FieldDeclarator(DS));
868
869    // Attributes are only allowed on the second declarator.
870    if (Tok.is(tok::kw___attribute))
871      Fields.back().D.AddAttributes(ParseAttributes());
872  }
873}
874
875/// ParseStructUnionBody
876///       struct-contents:
877///         struct-declaration-list
878/// [EXT]   empty
879/// [GNU]   "struct-declaration-list" without terminatoring ';'
880///       struct-declaration-list:
881///         struct-declaration
882///         struct-declaration-list struct-declaration
883/// [OBC]   '@' 'defs' '(' class-name ')'
884///
885void Parser::ParseStructUnionBody(SourceLocation RecordLoc,
886                                  unsigned TagType, DeclTy *TagDecl) {
887  SourceLocation LBraceLoc = ConsumeBrace();
888
889  // Empty structs are an extension in C (C99 6.7.2.1p7), but are allowed in
890  // C++.
891  if (Tok.is(tok::r_brace) && !getLang().CPlusPlus)
892    Diag(Tok, diag::ext_empty_struct_union_enum)
893      << DeclSpec::getSpecifierName((DeclSpec::TST)TagType);
894
895  llvm::SmallVector<DeclTy*, 32> FieldDecls;
896  llvm::SmallVector<FieldDeclarator, 8> FieldDeclarators;
897
898  // While we still have something to read, read the declarations in the struct.
899  while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
900    // Each iteration of this loop reads one struct-declaration.
901
902    // Check for extraneous top-level semicolon.
903    if (Tok.is(tok::semi)) {
904      Diag(Tok, diag::ext_extra_struct_semi);
905      ConsumeToken();
906      continue;
907    }
908
909    // Parse all the comma separated declarators.
910    DeclSpec DS;
911    FieldDeclarators.clear();
912    if (!Tok.is(tok::at)) {
913      ParseStructDeclaration(DS, FieldDeclarators);
914
915      // Convert them all to fields.
916      for (unsigned i = 0, e = FieldDeclarators.size(); i != e; ++i) {
917        FieldDeclarator &FD = FieldDeclarators[i];
918        // Install the declarator into the current TagDecl.
919        DeclTy *Field = Actions.ActOnField(CurScope, TagDecl,
920                                           DS.getSourceRange().getBegin(),
921                                           FD.D, FD.BitfieldSize);
922        FieldDecls.push_back(Field);
923      }
924    } else { // Handle @defs
925      ConsumeToken();
926      if (!Tok.isObjCAtKeyword(tok::objc_defs)) {
927        Diag(Tok, diag::err_unexpected_at);
928        SkipUntil(tok::semi, true, true);
929        continue;
930      }
931      ConsumeToken();
932      ExpectAndConsume(tok::l_paren, diag::err_expected_lparen);
933      if (!Tok.is(tok::identifier)) {
934        Diag(Tok, diag::err_expected_ident);
935        SkipUntil(tok::semi, true, true);
936        continue;
937      }
938      llvm::SmallVector<DeclTy*, 16> Fields;
939      Actions.ActOnDefs(CurScope, TagDecl, Tok.getLocation(),
940                        Tok.getIdentifierInfo(), Fields);
941      FieldDecls.insert(FieldDecls.end(), Fields.begin(), Fields.end());
942      ConsumeToken();
943      ExpectAndConsume(tok::r_paren, diag::err_expected_rparen);
944    }
945
946    if (Tok.is(tok::semi)) {
947      ConsumeToken();
948    } else if (Tok.is(tok::r_brace)) {
949      Diag(Tok, diag::ext_expected_semi_decl_list);
950      break;
951    } else {
952      Diag(Tok, diag::err_expected_semi_decl_list);
953      // Skip to end of block or statement
954      SkipUntil(tok::r_brace, true, true);
955    }
956  }
957
958  SourceLocation RBraceLoc = MatchRHSPunctuation(tok::r_brace, LBraceLoc);
959
960  AttributeList *AttrList = 0;
961  // If attributes exist after struct contents, parse them.
962  if (Tok.is(tok::kw___attribute))
963    AttrList = ParseAttributes();
964
965  Actions.ActOnFields(CurScope,
966                      RecordLoc,TagDecl,&FieldDecls[0],FieldDecls.size(),
967                      LBraceLoc, RBraceLoc,
968                      AttrList);
969}
970
971
972/// ParseEnumSpecifier
973///       enum-specifier: [C99 6.7.2.2]
974///         'enum' identifier[opt] '{' enumerator-list '}'
975///[C99/C++]'enum' identifier[opt] '{' enumerator-list ',' '}'
976/// [GNU]   'enum' attributes[opt] identifier[opt] '{' enumerator-list ',' [opt]
977///                                                 '}' attributes[opt]
978///         'enum' identifier
979/// [GNU]   'enum' attributes[opt] identifier
980///
981/// [C++] elaborated-type-specifier:
982/// [C++]   'enum' '::'[opt] nested-name-specifier[opt] identifier
983///
984void Parser::ParseEnumSpecifier(DeclSpec &DS) {
985  assert(Tok.is(tok::kw_enum) && "Not an enum specifier");
986  SourceLocation StartLoc = ConsumeToken();
987
988  // Parse the tag portion of this.
989
990  AttributeList *Attr = 0;
991  // If attributes exist after tag, parse them.
992  if (Tok.is(tok::kw___attribute))
993    Attr = ParseAttributes();
994
995  CXXScopeSpec SS;
996  if (getLang().CPlusPlus && MaybeParseCXXScopeSpecifier(SS)) {
997    if (Tok.isNot(tok::identifier)) {
998      Diag(Tok, diag::err_expected_ident);
999      if (Tok.isNot(tok::l_brace)) {
1000        // Has no name and is not a definition.
1001        // Skip the rest of this declarator, up until the comma or semicolon.
1002        SkipUntil(tok::comma, true);
1003        return;
1004      }
1005    }
1006  }
1007
1008  // Must have either 'enum name' or 'enum {...}'.
1009  if (Tok.isNot(tok::identifier) && Tok.isNot(tok::l_brace)) {
1010    Diag(Tok, diag::err_expected_ident_lbrace);
1011
1012    // Skip the rest of this declarator, up until the comma or semicolon.
1013    SkipUntil(tok::comma, true);
1014    return;
1015  }
1016
1017  // If an identifier is present, consume and remember it.
1018  IdentifierInfo *Name = 0;
1019  SourceLocation NameLoc;
1020  if (Tok.is(tok::identifier)) {
1021    Name = Tok.getIdentifierInfo();
1022    NameLoc = ConsumeToken();
1023  }
1024
1025  // There are three options here.  If we have 'enum foo;', then this is a
1026  // forward declaration.  If we have 'enum foo {...' then this is a
1027  // definition. Otherwise we have something like 'enum foo xyz', a reference.
1028  //
1029  // This is needed to handle stuff like this right (C99 6.7.2.3p11):
1030  // enum foo {..};  void bar() { enum foo; }    <- new foo in bar.
1031  // enum foo {..};  void bar() { enum foo x; }  <- use of old foo.
1032  //
1033  Action::TagKind TK;
1034  if (Tok.is(tok::l_brace))
1035    TK = Action::TK_Definition;
1036  else if (Tok.is(tok::semi))
1037    TK = Action::TK_Declaration;
1038  else
1039    TK = Action::TK_Reference;
1040  DeclTy *TagDecl = Actions.ActOnTag(CurScope, DeclSpec::TST_enum, TK, StartLoc,
1041                                     SS, Name, NameLoc, Attr,
1042                                     Action::MultiTemplateParamsArg(Actions));
1043
1044  if (Tok.is(tok::l_brace))
1045    ParseEnumBody(StartLoc, TagDecl);
1046
1047  // TODO: semantic analysis on the declspec for enums.
1048  const char *PrevSpec = 0;
1049  if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc, PrevSpec, TagDecl))
1050    Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
1051}
1052
1053/// ParseEnumBody - Parse a {} enclosed enumerator-list.
1054///       enumerator-list:
1055///         enumerator
1056///         enumerator-list ',' enumerator
1057///       enumerator:
1058///         enumeration-constant
1059///         enumeration-constant '=' constant-expression
1060///       enumeration-constant:
1061///         identifier
1062///
1063void Parser::ParseEnumBody(SourceLocation StartLoc, DeclTy *EnumDecl) {
1064  SourceLocation LBraceLoc = ConsumeBrace();
1065
1066  // C does not allow an empty enumerator-list, C++ does [dcl.enum].
1067  if (Tok.is(tok::r_brace) && !getLang().CPlusPlus)
1068    Diag(Tok, diag::ext_empty_struct_union_enum) << "enum";
1069
1070  llvm::SmallVector<DeclTy*, 32> EnumConstantDecls;
1071
1072  DeclTy *LastEnumConstDecl = 0;
1073
1074  // Parse the enumerator-list.
1075  while (Tok.is(tok::identifier)) {
1076    IdentifierInfo *Ident = Tok.getIdentifierInfo();
1077    SourceLocation IdentLoc = ConsumeToken();
1078
1079    SourceLocation EqualLoc;
1080    OwningExprResult AssignedVal(Actions);
1081    if (Tok.is(tok::equal)) {
1082      EqualLoc = ConsumeToken();
1083      AssignedVal = ParseConstantExpression();
1084      if (AssignedVal.isInvalid())
1085        SkipUntil(tok::comma, tok::r_brace, true, true);
1086    }
1087
1088    // Install the enumerator constant into EnumDecl.
1089    DeclTy *EnumConstDecl = Actions.ActOnEnumConstant(CurScope, EnumDecl,
1090                                                      LastEnumConstDecl,
1091                                                      IdentLoc, Ident,
1092                                                      EqualLoc,
1093                                                      AssignedVal.release());
1094    EnumConstantDecls.push_back(EnumConstDecl);
1095    LastEnumConstDecl = EnumConstDecl;
1096
1097    if (Tok.isNot(tok::comma))
1098      break;
1099    SourceLocation CommaLoc = ConsumeToken();
1100
1101    if (Tok.isNot(tok::identifier) && !getLang().C99)
1102      Diag(CommaLoc, diag::ext_c99_enumerator_list_comma);
1103  }
1104
1105  // Eat the }.
1106  MatchRHSPunctuation(tok::r_brace, LBraceLoc);
1107
1108  Actions.ActOnEnumBody(StartLoc, EnumDecl, &EnumConstantDecls[0],
1109                        EnumConstantDecls.size());
1110
1111  DeclTy *AttrList = 0;
1112  // If attributes exist after the identifier list, parse them.
1113  if (Tok.is(tok::kw___attribute))
1114    AttrList = ParseAttributes(); // FIXME: where do they do?
1115}
1116
1117/// isTypeSpecifierQualifier - Return true if the current token could be the
1118/// start of a type-qualifier-list.
1119bool Parser::isTypeQualifier() const {
1120  switch (Tok.getKind()) {
1121  default: return false;
1122    // type-qualifier
1123  case tok::kw_const:
1124  case tok::kw_volatile:
1125  case tok::kw_restrict:
1126    return true;
1127  }
1128}
1129
1130/// isTypeSpecifierQualifier - Return true if the current token could be the
1131/// start of a specifier-qualifier-list.
1132bool Parser::isTypeSpecifierQualifier() {
1133  // Annotate typenames and C++ scope specifiers.
1134  TryAnnotateTypeOrScopeToken();
1135
1136  switch (Tok.getKind()) {
1137  default: return false;
1138    // GNU attributes support.
1139  case tok::kw___attribute:
1140    // GNU typeof support.
1141  case tok::kw_typeof:
1142
1143    // type-specifiers
1144  case tok::kw_short:
1145  case tok::kw_long:
1146  case tok::kw_signed:
1147  case tok::kw_unsigned:
1148  case tok::kw__Complex:
1149  case tok::kw__Imaginary:
1150  case tok::kw_void:
1151  case tok::kw_char:
1152  case tok::kw_wchar_t:
1153  case tok::kw_int:
1154  case tok::kw_float:
1155  case tok::kw_double:
1156  case tok::kw_bool:
1157  case tok::kw__Bool:
1158  case tok::kw__Decimal32:
1159  case tok::kw__Decimal64:
1160  case tok::kw__Decimal128:
1161
1162    // struct-or-union-specifier (C99) or class-specifier (C++)
1163  case tok::kw_class:
1164  case tok::kw_struct:
1165  case tok::kw_union:
1166    // enum-specifier
1167  case tok::kw_enum:
1168
1169    // type-qualifier
1170  case tok::kw_const:
1171  case tok::kw_volatile:
1172  case tok::kw_restrict:
1173
1174    // typedef-name
1175  case tok::annot_qualtypename:
1176    return true;
1177
1178    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
1179  case tok::less:
1180    return getLang().ObjC1;
1181  }
1182}
1183
1184/// isDeclarationSpecifier() - Return true if the current token is part of a
1185/// declaration specifier.
1186bool Parser::isDeclarationSpecifier() {
1187  // Annotate typenames and C++ scope specifiers.
1188  TryAnnotateTypeOrScopeToken();
1189
1190  switch (Tok.getKind()) {
1191  default: return false;
1192    // storage-class-specifier
1193  case tok::kw_typedef:
1194  case tok::kw_extern:
1195  case tok::kw___private_extern__:
1196  case tok::kw_static:
1197  case tok::kw_auto:
1198  case tok::kw_register:
1199  case tok::kw___thread:
1200
1201    // type-specifiers
1202  case tok::kw_short:
1203  case tok::kw_long:
1204  case tok::kw_signed:
1205  case tok::kw_unsigned:
1206  case tok::kw__Complex:
1207  case tok::kw__Imaginary:
1208  case tok::kw_void:
1209  case tok::kw_char:
1210  case tok::kw_wchar_t:
1211  case tok::kw_int:
1212  case tok::kw_float:
1213  case tok::kw_double:
1214  case tok::kw_bool:
1215  case tok::kw__Bool:
1216  case tok::kw__Decimal32:
1217  case tok::kw__Decimal64:
1218  case tok::kw__Decimal128:
1219
1220    // struct-or-union-specifier (C99) or class-specifier (C++)
1221  case tok::kw_class:
1222  case tok::kw_struct:
1223  case tok::kw_union:
1224    // enum-specifier
1225  case tok::kw_enum:
1226
1227    // type-qualifier
1228  case tok::kw_const:
1229  case tok::kw_volatile:
1230  case tok::kw_restrict:
1231
1232    // function-specifier
1233  case tok::kw_inline:
1234  case tok::kw_virtual:
1235  case tok::kw_explicit:
1236
1237    // typedef-name
1238  case tok::annot_qualtypename:
1239
1240    // GNU typeof support.
1241  case tok::kw_typeof:
1242
1243    // GNU attributes.
1244  case tok::kw___attribute:
1245    return true;
1246
1247    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
1248  case tok::less:
1249    return getLang().ObjC1;
1250  }
1251}
1252
1253
1254/// ParseTypeQualifierListOpt
1255///       type-qualifier-list: [C99 6.7.5]
1256///         type-qualifier
1257/// [GNU]   attributes                        [ only if AttributesAllowed=true ]
1258///         type-qualifier-list type-qualifier
1259/// [GNU]   type-qualifier-list attributes    [ only if AttributesAllowed=true ]
1260///
1261void Parser::ParseTypeQualifierListOpt(DeclSpec &DS, bool AttributesAllowed) {
1262  while (1) {
1263    int isInvalid = false;
1264    const char *PrevSpec = 0;
1265    SourceLocation Loc = Tok.getLocation();
1266
1267    switch (Tok.getKind()) {
1268    case tok::kw_const:
1269      isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec,
1270                                 getLang())*2;
1271      break;
1272    case tok::kw_volatile:
1273      isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec,
1274                                 getLang())*2;
1275      break;
1276    case tok::kw_restrict:
1277      isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec,
1278                                 getLang())*2;
1279      break;
1280    case tok::kw___attribute:
1281      if (AttributesAllowed) {
1282        DS.AddAttributes(ParseAttributes());
1283        continue; // do *not* consume the next token!
1284      }
1285      // otherwise, FALL THROUGH!
1286    default:
1287      // If this is not a type-qualifier token, we're done reading type
1288      // qualifiers.  First verify that DeclSpec's are consistent.
1289      DS.Finish(Diags, PP.getSourceManager(), getLang());
1290      return;
1291    }
1292
1293    // If the specifier combination wasn't legal, issue a diagnostic.
1294    if (isInvalid) {
1295      assert(PrevSpec && "Method did not return previous specifier!");
1296      // Pick between error or extwarn.
1297      unsigned DiagID = isInvalid == 1 ? diag::err_invalid_decl_spec_combination
1298                                      : diag::ext_duplicate_declspec;
1299      Diag(Tok, DiagID) << PrevSpec;
1300    }
1301    ConsumeToken();
1302  }
1303}
1304
1305
1306/// ParseDeclarator - Parse and verify a newly-initialized declarator.
1307///
1308void Parser::ParseDeclarator(Declarator &D) {
1309  /// This implements the 'declarator' production in the C grammar, then checks
1310  /// for well-formedness and issues diagnostics.
1311  ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
1312}
1313
1314/// ParseDeclaratorInternal - Parse a C or C++ declarator. The direct-declarator
1315/// is parsed by the function passed to it. Pass null, and the direct-declarator
1316/// isn't parsed at all, making this function effectively parse the C++
1317/// ptr-operator production.
1318///
1319///       declarator: [C99 6.7.5]
1320///         pointer[opt] direct-declarator
1321/// [C++]   '&' declarator [C++ 8p4, dcl.decl]
1322/// [GNU]   '&' restrict[opt] attributes[opt] declarator
1323///
1324///       pointer: [C99 6.7.5]
1325///         '*' type-qualifier-list[opt]
1326///         '*' type-qualifier-list[opt] pointer
1327///
1328///       ptr-operator:
1329///         '*' cv-qualifier-seq[opt]
1330///         '&'
1331/// [GNU]   '&' restrict[opt] attributes[opt]
1332///         '::'[opt] nested-name-specifier '*' cv-qualifier-seq[opt] [TODO]
1333void Parser::ParseDeclaratorInternal(Declarator &D,
1334                                     DirectDeclParseFunction DirectDeclParser) {
1335  tok::TokenKind Kind = Tok.getKind();
1336
1337  // Not a pointer, C++ reference, or block.
1338  if (Kind != tok::star && (Kind != tok::amp || !getLang().CPlusPlus) &&
1339      (Kind != tok::caret || !getLang().Blocks)) {
1340    if (DirectDeclParser)
1341      (this->*DirectDeclParser)(D);
1342    return;
1343  }
1344
1345  // Otherwise, '*' -> pointer, '^' -> block, '&' -> reference.
1346  SourceLocation Loc = ConsumeToken();  // Eat the * or &.
1347
1348  if (Kind == tok::star || (Kind == tok::caret && getLang().Blocks)) {
1349    // Is a pointer.
1350    DeclSpec DS;
1351
1352    ParseTypeQualifierListOpt(DS);
1353
1354    // Recursively parse the declarator.
1355    ParseDeclaratorInternal(D, DirectDeclParser);
1356    if (Kind == tok::star)
1357      // Remember that we parsed a pointer type, and remember the type-quals.
1358      D.AddTypeInfo(DeclaratorChunk::getPointer(DS.getTypeQualifiers(), Loc,
1359                                                DS.TakeAttributes()));
1360    else
1361      // Remember that we parsed a Block type, and remember the type-quals.
1362      D.AddTypeInfo(DeclaratorChunk::getBlockPointer(DS.getTypeQualifiers(),
1363                                                     Loc));
1364  } else {
1365    // Is a reference
1366    DeclSpec DS;
1367
1368    // C++ 8.3.2p1: cv-qualified references are ill-formed except when the
1369    // cv-qualifiers are introduced through the use of a typedef or of a
1370    // template type argument, in which case the cv-qualifiers are ignored.
1371    //
1372    // [GNU] Retricted references are allowed.
1373    // [GNU] Attributes on references are allowed.
1374    ParseTypeQualifierListOpt(DS);
1375
1376    if (DS.getTypeQualifiers() != DeclSpec::TQ_unspecified) {
1377      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
1378        Diag(DS.getConstSpecLoc(),
1379             diag::err_invalid_reference_qualifier_application) << "const";
1380      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
1381        Diag(DS.getVolatileSpecLoc(),
1382             diag::err_invalid_reference_qualifier_application) << "volatile";
1383    }
1384
1385    // Recursively parse the declarator.
1386    ParseDeclaratorInternal(D, DirectDeclParser);
1387
1388    if (D.getNumTypeObjects() > 0) {
1389      // C++ [dcl.ref]p4: There shall be no references to references.
1390      DeclaratorChunk& InnerChunk = D.getTypeObject(D.getNumTypeObjects() - 1);
1391      if (InnerChunk.Kind == DeclaratorChunk::Reference) {
1392        if (const IdentifierInfo *II = D.getIdentifier())
1393          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
1394           << II;
1395        else
1396          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
1397            << "type name";
1398
1399        // Once we've complained about the reference-to-reference, we
1400        // can go ahead and build the (technically ill-formed)
1401        // declarator: reference collapsing will take care of it.
1402      }
1403    }
1404
1405    // Remember that we parsed a reference type. It doesn't have type-quals.
1406    D.AddTypeInfo(DeclaratorChunk::getReference(DS.getTypeQualifiers(), Loc,
1407                                                DS.TakeAttributes()));
1408  }
1409}
1410
1411/// ParseDirectDeclarator
1412///       direct-declarator: [C99 6.7.5]
1413/// [C99]   identifier
1414///         '(' declarator ')'
1415/// [GNU]   '(' attributes declarator ')'
1416/// [C90]   direct-declarator '[' constant-expression[opt] ']'
1417/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
1418/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
1419/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
1420/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
1421///         direct-declarator '(' parameter-type-list ')'
1422///         direct-declarator '(' identifier-list[opt] ')'
1423/// [GNU]   direct-declarator '(' parameter-forward-declarations
1424///                    parameter-type-list[opt] ')'
1425/// [C++]   direct-declarator '(' parameter-declaration-clause ')'
1426///                    cv-qualifier-seq[opt] exception-specification[opt]
1427/// [C++]   declarator-id
1428///
1429///       declarator-id: [C++ 8]
1430///         id-expression
1431///         '::'[opt] nested-name-specifier[opt] type-name
1432///
1433///       id-expression: [C++ 5.1]
1434///         unqualified-id
1435///         qualified-id            [TODO]
1436///
1437///       unqualified-id: [C++ 5.1]
1438///         identifier
1439///         operator-function-id
1440///         conversion-function-id  [TODO]
1441///          '~' class-name
1442///         template-id             [TODO]
1443///
1444void Parser::ParseDirectDeclarator(Declarator &D) {
1445  DeclaratorScopeObj DeclScopeObj(*this, D.getCXXScopeSpec());
1446
1447  if (getLang().CPlusPlus) {
1448    if (D.mayHaveIdentifier()) {
1449      bool afterCXXScope = MaybeParseCXXScopeSpecifier(D.getCXXScopeSpec());
1450      if (afterCXXScope) {
1451        // Change the declaration context for name lookup, until this function
1452        // is exited (and the declarator has been parsed).
1453        DeclScopeObj.EnterDeclaratorScope();
1454      }
1455
1456      if (Tok.is(tok::identifier)) {
1457        assert(Tok.getIdentifierInfo() && "Not an identifier?");
1458
1459        // If this identifier is followed by a '<', we may have a template-id.
1460        DeclTy *Template;
1461        if (getLang().CPlusPlus && NextToken().is(tok::less) &&
1462            (Template = Actions.isTemplateName(*Tok.getIdentifierInfo(),
1463                                               CurScope))) {
1464          IdentifierInfo *II = Tok.getIdentifierInfo();
1465          AnnotateTemplateIdToken(Template, 0);
1466          // FIXME: Set the declarator to a template-id. How? I don't
1467          // know... for now, just use the identifier.
1468          D.SetIdentifier(II, Tok.getLocation());
1469        }
1470        // If this identifier is the name of the current class, it's a
1471        // constructor name.
1472        else if (getLang().CPlusPlus &&
1473                 Actions.isCurrentClassName(*Tok.getIdentifierInfo(), CurScope))
1474          D.setConstructor(Actions.isTypeName(*Tok.getIdentifierInfo(),
1475                                              CurScope),
1476                           Tok.getLocation());
1477        // This is a normal identifier.
1478        else
1479          D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
1480        ConsumeToken();
1481        goto PastIdentifier;
1482      }
1483
1484      if (Tok.is(tok::tilde)) {
1485        // This should be a C++ destructor.
1486        SourceLocation TildeLoc = ConsumeToken();
1487        if (Tok.is(tok::identifier)) {
1488          if (TypeTy *Type = ParseClassName())
1489            D.setDestructor(Type, TildeLoc);
1490          else
1491            D.SetIdentifier(0, TildeLoc);
1492        } else {
1493          Diag(Tok, diag::err_expected_class_name);
1494          D.SetIdentifier(0, TildeLoc);
1495        }
1496        goto PastIdentifier;
1497      }
1498
1499      // If we reached this point, token is not identifier and not '~'.
1500
1501      if (afterCXXScope) {
1502        Diag(Tok, diag::err_expected_unqualified_id);
1503        D.SetIdentifier(0, Tok.getLocation());
1504        D.setInvalidType(true);
1505        goto PastIdentifier;
1506      }
1507    }
1508
1509    if (Tok.is(tok::kw_operator)) {
1510      SourceLocation OperatorLoc = Tok.getLocation();
1511
1512      // First try the name of an overloaded operator
1513      if (OverloadedOperatorKind Op = TryParseOperatorFunctionId()) {
1514        D.setOverloadedOperator(Op, OperatorLoc);
1515      } else {
1516        // This must be a conversion function (C++ [class.conv.fct]).
1517        if (TypeTy *ConvType = ParseConversionFunctionId())
1518          D.setConversionFunction(ConvType, OperatorLoc);
1519        else
1520          D.SetIdentifier(0, Tok.getLocation());
1521      }
1522      goto PastIdentifier;
1523    }
1524  }
1525
1526  // If we reached this point, we are either in C/ObjC or the token didn't
1527  // satisfy any of the C++-specific checks.
1528
1529  if (Tok.is(tok::identifier) && D.mayHaveIdentifier()) {
1530    assert(!getLang().CPlusPlus &&
1531           "There's a C++-specific check for tok::identifier above");
1532    assert(Tok.getIdentifierInfo() && "Not an identifier?");
1533    D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
1534    ConsumeToken();
1535  } else if (Tok.is(tok::l_paren)) {
1536    // direct-declarator: '(' declarator ')'
1537    // direct-declarator: '(' attributes declarator ')'
1538    // Example: 'char (*X)'   or 'int (*XX)(void)'
1539    ParseParenDeclarator(D);
1540  } else if (D.mayOmitIdentifier()) {
1541    // This could be something simple like "int" (in which case the declarator
1542    // portion is empty), if an abstract-declarator is allowed.
1543    D.SetIdentifier(0, Tok.getLocation());
1544  } else {
1545    if (getLang().CPlusPlus)
1546      Diag(Tok, diag::err_expected_unqualified_id);
1547    else
1548      Diag(Tok, diag::err_expected_ident_lparen);
1549    D.SetIdentifier(0, Tok.getLocation());
1550    D.setInvalidType(true);
1551  }
1552
1553 PastIdentifier:
1554  assert(D.isPastIdentifier() &&
1555         "Haven't past the location of the identifier yet?");
1556
1557  while (1) {
1558    if (Tok.is(tok::l_paren)) {
1559      // The paren may be part of a C++ direct initializer, eg. "int x(1);".
1560      // In such a case, check if we actually have a function declarator; if it
1561      // is not, the declarator has been fully parsed.
1562      if (getLang().CPlusPlus && D.mayBeFollowedByCXXDirectInit()) {
1563        // When not in file scope, warn for ambiguous function declarators, just
1564        // in case the author intended it as a variable definition.
1565        bool warnIfAmbiguous = D.getContext() != Declarator::FileContext;
1566        if (!isCXXFunctionDeclarator(warnIfAmbiguous))
1567          break;
1568      }
1569      ParseFunctionDeclarator(ConsumeParen(), D);
1570    } else if (Tok.is(tok::l_square)) {
1571      ParseBracketDeclarator(D);
1572    } else {
1573      break;
1574    }
1575  }
1576}
1577
1578/// ParseParenDeclarator - We parsed the declarator D up to a paren.  This is
1579/// only called before the identifier, so these are most likely just grouping
1580/// parens for precedence.  If we find that these are actually function
1581/// parameter parens in an abstract-declarator, we call ParseFunctionDeclarator.
1582///
1583///       direct-declarator:
1584///         '(' declarator ')'
1585/// [GNU]   '(' attributes declarator ')'
1586///         direct-declarator '(' parameter-type-list ')'
1587///         direct-declarator '(' identifier-list[opt] ')'
1588/// [GNU]   direct-declarator '(' parameter-forward-declarations
1589///                    parameter-type-list[opt] ')'
1590///
1591void Parser::ParseParenDeclarator(Declarator &D) {
1592  SourceLocation StartLoc = ConsumeParen();
1593  assert(!D.isPastIdentifier() && "Should be called before passing identifier");
1594
1595  // Eat any attributes before we look at whether this is a grouping or function
1596  // declarator paren.  If this is a grouping paren, the attribute applies to
1597  // the type being built up, for example:
1598  //     int (__attribute__(()) *x)(long y)
1599  // If this ends up not being a grouping paren, the attribute applies to the
1600  // first argument, for example:
1601  //     int (__attribute__(()) int x)
1602  // In either case, we need to eat any attributes to be able to determine what
1603  // sort of paren this is.
1604  //
1605  AttributeList *AttrList = 0;
1606  bool RequiresArg = false;
1607  if (Tok.is(tok::kw___attribute)) {
1608    AttrList = ParseAttributes();
1609
1610    // We require that the argument list (if this is a non-grouping paren) be
1611    // present even if the attribute list was empty.
1612    RequiresArg = true;
1613  }
1614
1615  // If we haven't past the identifier yet (or where the identifier would be
1616  // stored, if this is an abstract declarator), then this is probably just
1617  // grouping parens. However, if this could be an abstract-declarator, then
1618  // this could also be the start of function arguments (consider 'void()').
1619  bool isGrouping;
1620
1621  if (!D.mayOmitIdentifier()) {
1622    // If this can't be an abstract-declarator, this *must* be a grouping
1623    // paren, because we haven't seen the identifier yet.
1624    isGrouping = true;
1625  } else if (Tok.is(tok::r_paren) ||           // 'int()' is a function.
1626             (getLang().CPlusPlus && Tok.is(tok::ellipsis)) || // C++ int(...)
1627             isDeclarationSpecifier()) {       // 'int(int)' is a function.
1628    // This handles C99 6.7.5.3p11: in "typedef int X; void foo(X)", X is
1629    // considered to be a type, not a K&R identifier-list.
1630    isGrouping = false;
1631  } else {
1632    // Otherwise, this is a grouping paren, e.g. 'int (*X)' or 'int(X)'.
1633    isGrouping = true;
1634  }
1635
1636  // If this is a grouping paren, handle:
1637  // direct-declarator: '(' declarator ')'
1638  // direct-declarator: '(' attributes declarator ')'
1639  if (isGrouping) {
1640    bool hadGroupingParens = D.hasGroupingParens();
1641    D.setGroupingParens(true);
1642    if (AttrList)
1643      D.AddAttributes(AttrList);
1644
1645    ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
1646    // Match the ')'.
1647    MatchRHSPunctuation(tok::r_paren, StartLoc);
1648
1649    D.setGroupingParens(hadGroupingParens);
1650    return;
1651  }
1652
1653  // Okay, if this wasn't a grouping paren, it must be the start of a function
1654  // argument list.  Recognize that this declarator will never have an
1655  // identifier (and remember where it would have been), then call into
1656  // ParseFunctionDeclarator to handle of argument list.
1657  D.SetIdentifier(0, Tok.getLocation());
1658
1659  ParseFunctionDeclarator(StartLoc, D, AttrList, RequiresArg);
1660}
1661
1662/// ParseFunctionDeclarator - We are after the identifier and have parsed the
1663/// declarator D up to a paren, which indicates that we are parsing function
1664/// arguments.
1665///
1666/// If AttrList is non-null, then the caller parsed those arguments immediately
1667/// after the open paren - they should be considered to be the first argument of
1668/// a parameter.  If RequiresArg is true, then the first argument of the
1669/// function is required to be present and required to not be an identifier
1670/// list.
1671///
1672/// This method also handles this portion of the grammar:
1673///       parameter-type-list: [C99 6.7.5]
1674///         parameter-list
1675///         parameter-list ',' '...'
1676///
1677///       parameter-list: [C99 6.7.5]
1678///         parameter-declaration
1679///         parameter-list ',' parameter-declaration
1680///
1681///       parameter-declaration: [C99 6.7.5]
1682///         declaration-specifiers declarator
1683/// [C++]   declaration-specifiers declarator '=' assignment-expression
1684/// [GNU]   declaration-specifiers declarator attributes
1685///         declaration-specifiers abstract-declarator[opt]
1686/// [C++]   declaration-specifiers abstract-declarator[opt]
1687///           '=' assignment-expression
1688/// [GNU]   declaration-specifiers abstract-declarator[opt] attributes
1689///
1690/// For C++, after the parameter-list, it also parses "cv-qualifier-seq[opt]"
1691/// and "exception-specification[opt]"(TODO).
1692///
1693void Parser::ParseFunctionDeclarator(SourceLocation LParenLoc, Declarator &D,
1694                                     AttributeList *AttrList,
1695                                     bool RequiresArg) {
1696  // lparen is already consumed!
1697  assert(D.isPastIdentifier() && "Should not call before identifier!");
1698
1699  // This parameter list may be empty.
1700  if (Tok.is(tok::r_paren)) {
1701    if (RequiresArg) {
1702      Diag(Tok, diag::err_argument_required_after_attribute);
1703      delete AttrList;
1704    }
1705
1706    ConsumeParen();  // Eat the closing ')'.
1707
1708    // cv-qualifier-seq[opt].
1709    DeclSpec DS;
1710    if (getLang().CPlusPlus) {
1711      ParseTypeQualifierListOpt(DS, false /*no attributes*/);
1712
1713      // Parse exception-specification[opt].
1714      if (Tok.is(tok::kw_throw))
1715        ParseExceptionSpecification();
1716    }
1717
1718    // Remember that we parsed a function type, and remember the attributes.
1719    // int() -> no prototype, no '...'.
1720    D.AddTypeInfo(DeclaratorChunk::getFunction(/*prototype*/getLang().CPlusPlus,
1721                                               /*variadic*/ false,
1722                                               /*arglist*/ 0, 0,
1723                                               DS.getTypeQualifiers(),
1724                                               LParenLoc));
1725    return;
1726  }
1727
1728  // Alternatively, this parameter list may be an identifier list form for a
1729  // K&R-style function:  void foo(a,b,c)
1730  if (!getLang().CPlusPlus && Tok.is(tok::identifier) &&
1731      // K&R identifier lists can't have typedefs as identifiers, per
1732      // C99 6.7.5.3p11.
1733      !Actions.isTypeName(*Tok.getIdentifierInfo(), CurScope)) {
1734    if (RequiresArg) {
1735      Diag(Tok, diag::err_argument_required_after_attribute);
1736      delete AttrList;
1737    }
1738
1739    // Identifier list.  Note that '(' identifier-list ')' is only allowed for
1740    // normal declarators, not for abstract-declarators.
1741    return ParseFunctionDeclaratorIdentifierList(LParenLoc, D);
1742  }
1743
1744  // Finally, a normal, non-empty parameter type list.
1745
1746  // Build up an array of information about the parsed arguments.
1747  llvm::SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
1748
1749  // Enter function-declaration scope, limiting any declarators to the
1750  // function prototype scope, including parameter declarators.
1751  ParseScope PrototypeScope(this, Scope::FnScope|Scope::DeclScope);
1752
1753  bool IsVariadic = false;
1754  while (1) {
1755    if (Tok.is(tok::ellipsis)) {
1756      IsVariadic = true;
1757
1758      // Check to see if this is "void(...)" which is not allowed.
1759      if (!getLang().CPlusPlus && ParamInfo.empty()) {
1760        // Otherwise, parse parameter type list.  If it starts with an
1761        // ellipsis,  diagnose the malformed function.
1762        Diag(Tok, diag::err_ellipsis_first_arg);
1763        IsVariadic = false;       // Treat this like 'void()'.
1764      }
1765
1766      ConsumeToken();     // Consume the ellipsis.
1767      break;
1768    }
1769
1770    SourceLocation DSStart = Tok.getLocation();
1771
1772    // Parse the declaration-specifiers.
1773    DeclSpec DS;
1774
1775    // If the caller parsed attributes for the first argument, add them now.
1776    if (AttrList) {
1777      DS.AddAttributes(AttrList);
1778      AttrList = 0;  // Only apply the attributes to the first parameter.
1779    }
1780    ParseDeclarationSpecifiers(DS);
1781
1782    // Parse the declarator.  This is "PrototypeContext", because we must
1783    // accept either 'declarator' or 'abstract-declarator' here.
1784    Declarator ParmDecl(DS, Declarator::PrototypeContext);
1785    ParseDeclarator(ParmDecl);
1786
1787    // Parse GNU attributes, if present.
1788    if (Tok.is(tok::kw___attribute))
1789      ParmDecl.AddAttributes(ParseAttributes());
1790
1791    // Remember this parsed parameter in ParamInfo.
1792    IdentifierInfo *ParmII = ParmDecl.getIdentifier();
1793
1794    // DefArgToks is used when the parsing of default arguments needs
1795    // to be delayed.
1796    CachedTokens *DefArgToks = 0;
1797
1798    // If no parameter was specified, verify that *something* was specified,
1799    // otherwise we have a missing type and identifier.
1800    if (DS.getParsedSpecifiers() == DeclSpec::PQ_None &&
1801        ParmDecl.getIdentifier() == 0 && ParmDecl.getNumTypeObjects() == 0) {
1802      // Completely missing, emit error.
1803      Diag(DSStart, diag::err_missing_param);
1804    } else {
1805      // Otherwise, we have something.  Add it and let semantic analysis try
1806      // to grok it and add the result to the ParamInfo we are building.
1807
1808      // Inform the actions module about the parameter declarator, so it gets
1809      // added to the current scope.
1810      DeclTy *Param = Actions.ActOnParamDeclarator(CurScope, ParmDecl);
1811
1812      // Parse the default argument, if any. We parse the default
1813      // arguments in all dialects; the semantic analysis in
1814      // ActOnParamDefaultArgument will reject the default argument in
1815      // C.
1816      if (Tok.is(tok::equal)) {
1817        SourceLocation EqualLoc = Tok.getLocation();
1818
1819        // Parse the default argument
1820        if (D.getContext() == Declarator::MemberContext) {
1821          // If we're inside a class definition, cache the tokens
1822          // corresponding to the default argument. We'll actually parse
1823          // them when we see the end of the class definition.
1824          // FIXME: Templates will require something similar.
1825          // FIXME: Can we use a smart pointer for Toks?
1826          DefArgToks = new CachedTokens;
1827
1828          if (!ConsumeAndStoreUntil(tok::comma, tok::r_paren, *DefArgToks,
1829                                    tok::semi, false)) {
1830            delete DefArgToks;
1831            DefArgToks = 0;
1832            Actions.ActOnParamDefaultArgumentError(Param);
1833          } else
1834            Actions.ActOnParamUnparsedDefaultArgument(Param, EqualLoc);
1835        } else {
1836          // Consume the '='.
1837          ConsumeToken();
1838
1839          OwningExprResult DefArgResult(ParseAssignmentExpression());
1840          if (DefArgResult.isInvalid()) {
1841            Actions.ActOnParamDefaultArgumentError(Param);
1842            SkipUntil(tok::comma, tok::r_paren, true, true);
1843          } else {
1844            // Inform the actions module about the default argument
1845            Actions.ActOnParamDefaultArgument(Param, EqualLoc,
1846                                              DefArgResult.release());
1847          }
1848        }
1849      }
1850
1851      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
1852                                          ParmDecl.getIdentifierLoc(), Param,
1853                                          DefArgToks));
1854    }
1855
1856    // If the next token is a comma, consume it and keep reading arguments.
1857    if (Tok.isNot(tok::comma)) break;
1858
1859    // Consume the comma.
1860    ConsumeToken();
1861  }
1862
1863  // Leave prototype scope.
1864  PrototypeScope.Exit();
1865
1866  // If we have the closing ')', eat it.
1867  MatchRHSPunctuation(tok::r_paren, LParenLoc);
1868
1869  DeclSpec DS;
1870  if (getLang().CPlusPlus) {
1871    // Parse cv-qualifier-seq[opt].
1872    ParseTypeQualifierListOpt(DS, false /*no attributes*/);
1873
1874    // Parse exception-specification[opt].
1875    if (Tok.is(tok::kw_throw))
1876      ParseExceptionSpecification();
1877  }
1878
1879  // Remember that we parsed a function type, and remember the attributes.
1880  D.AddTypeInfo(DeclaratorChunk::getFunction(/*proto*/true, IsVariadic,
1881                                             &ParamInfo[0], ParamInfo.size(),
1882                                             DS.getTypeQualifiers(),
1883                                             LParenLoc));
1884}
1885
1886/// ParseFunctionDeclaratorIdentifierList - While parsing a function declarator
1887/// we found a K&R-style identifier list instead of a type argument list.  The
1888/// current token is known to be the first identifier in the list.
1889///
1890///       identifier-list: [C99 6.7.5]
1891///         identifier
1892///         identifier-list ',' identifier
1893///
1894void Parser::ParseFunctionDeclaratorIdentifierList(SourceLocation LParenLoc,
1895                                                   Declarator &D) {
1896  // Build up an array of information about the parsed arguments.
1897  llvm::SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
1898  llvm::SmallSet<const IdentifierInfo*, 16> ParamsSoFar;
1899
1900  // If there was no identifier specified for the declarator, either we are in
1901  // an abstract-declarator, or we are in a parameter declarator which was found
1902  // to be abstract.  In abstract-declarators, identifier lists are not valid:
1903  // diagnose this.
1904  if (!D.getIdentifier())
1905    Diag(Tok, diag::ext_ident_list_in_param);
1906
1907  // Tok is known to be the first identifier in the list.  Remember this
1908  // identifier in ParamInfo.
1909  ParamsSoFar.insert(Tok.getIdentifierInfo());
1910  ParamInfo.push_back(DeclaratorChunk::ParamInfo(Tok.getIdentifierInfo(),
1911                                                 Tok.getLocation(), 0));
1912
1913  ConsumeToken();  // eat the first identifier.
1914
1915  while (Tok.is(tok::comma)) {
1916    // Eat the comma.
1917    ConsumeToken();
1918
1919    // If this isn't an identifier, report the error and skip until ')'.
1920    if (Tok.isNot(tok::identifier)) {
1921      Diag(Tok, diag::err_expected_ident);
1922      SkipUntil(tok::r_paren);
1923      return;
1924    }
1925
1926    IdentifierInfo *ParmII = Tok.getIdentifierInfo();
1927
1928    // Reject 'typedef int y; int test(x, y)', but continue parsing.
1929    if (Actions.isTypeName(*ParmII, CurScope))
1930      Diag(Tok, diag::err_unexpected_typedef_ident) << ParmII;
1931
1932    // Verify that the argument identifier has not already been mentioned.
1933    if (!ParamsSoFar.insert(ParmII)) {
1934      Diag(Tok, diag::err_param_redefinition) << ParmII;
1935    } else {
1936      // Remember this identifier in ParamInfo.
1937      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
1938                                                     Tok.getLocation(), 0));
1939    }
1940
1941    // Eat the identifier.
1942    ConsumeToken();
1943  }
1944
1945  // Remember that we parsed a function type, and remember the attributes.  This
1946  // function type is always a K&R style function type, which is not varargs and
1947  // has no prototype.
1948  D.AddTypeInfo(DeclaratorChunk::getFunction(/*proto*/false, /*varargs*/false,
1949                                             &ParamInfo[0], ParamInfo.size(),
1950                                             /*TypeQuals*/0, LParenLoc));
1951
1952  // If we have the closing ')', eat it and we're done.
1953  MatchRHSPunctuation(tok::r_paren, LParenLoc);
1954}
1955
1956/// [C90]   direct-declarator '[' constant-expression[opt] ']'
1957/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
1958/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
1959/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
1960/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
1961void Parser::ParseBracketDeclarator(Declarator &D) {
1962  SourceLocation StartLoc = ConsumeBracket();
1963
1964  // C array syntax has many features, but by-far the most common is [] and [4].
1965  // This code does a fast path to handle some of the most obvious cases.
1966  if (Tok.getKind() == tok::r_square) {
1967    MatchRHSPunctuation(tok::r_square, StartLoc);
1968    // Remember that we parsed the empty array type.
1969    OwningExprResult NumElements(Actions);
1970    D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, 0, StartLoc));
1971    return;
1972  } else if (Tok.getKind() == tok::numeric_constant &&
1973             GetLookAheadToken(1).is(tok::r_square)) {
1974    // [4] is very common.  Parse the numeric constant expression.
1975    OwningExprResult ExprRes(Actions, Actions.ActOnNumericConstant(Tok));
1976    ConsumeToken();
1977
1978    MatchRHSPunctuation(tok::r_square, StartLoc);
1979
1980    // If there was an error parsing the assignment-expression, recover.
1981    if (ExprRes.isInvalid())
1982      ExprRes.release();  // Deallocate expr, just use [].
1983
1984    // Remember that we parsed a array type, and remember its features.
1985    D.AddTypeInfo(DeclaratorChunk::getArray(0, false, 0,
1986                                            ExprRes.release(), StartLoc));
1987    return;
1988  }
1989
1990  // If valid, this location is the position where we read the 'static' keyword.
1991  SourceLocation StaticLoc;
1992  if (Tok.is(tok::kw_static))
1993    StaticLoc = ConsumeToken();
1994
1995  // If there is a type-qualifier-list, read it now.
1996  // Type qualifiers in an array subscript are a C99 feature.
1997  DeclSpec DS;
1998  ParseTypeQualifierListOpt(DS, false /*no attributes*/);
1999
2000  // If we haven't already read 'static', check to see if there is one after the
2001  // type-qualifier-list.
2002  if (!StaticLoc.isValid() && Tok.is(tok::kw_static))
2003    StaticLoc = ConsumeToken();
2004
2005  // Handle "direct-declarator [ type-qual-list[opt] * ]".
2006  bool isStar = false;
2007  OwningExprResult NumElements(Actions);
2008
2009  // Handle the case where we have '[*]' as the array size.  However, a leading
2010  // star could be the start of an expression, for example 'X[*p + 4]'.  Verify
2011  // the the token after the star is a ']'.  Since stars in arrays are
2012  // infrequent, use of lookahead is not costly here.
2013  if (Tok.is(tok::star) && GetLookAheadToken(1).is(tok::r_square)) {
2014    ConsumeToken();  // Eat the '*'.
2015
2016    if (StaticLoc.isValid()) {
2017      Diag(StaticLoc, diag::err_unspecified_vla_size_with_static);
2018      StaticLoc = SourceLocation();  // Drop the static.
2019    }
2020    isStar = true;
2021  } else if (Tok.isNot(tok::r_square)) {
2022    // Note, in C89, this production uses the constant-expr production instead
2023    // of assignment-expr.  The only difference is that assignment-expr allows
2024    // things like '=' and '*='.  Sema rejects these in C89 mode because they
2025    // are not i-c-e's, so we don't need to distinguish between the two here.
2026
2027    // Parse the assignment-expression now.
2028    NumElements = ParseAssignmentExpression();
2029  }
2030
2031  // If there was an error parsing the assignment-expression, recover.
2032  if (NumElements.isInvalid()) {
2033    // If the expression was invalid, skip it.
2034    SkipUntil(tok::r_square);
2035    return;
2036  }
2037
2038  MatchRHSPunctuation(tok::r_square, StartLoc);
2039
2040  // Remember that we parsed a array type, and remember its features.
2041  D.AddTypeInfo(DeclaratorChunk::getArray(DS.getTypeQualifiers(),
2042                                          StaticLoc.isValid(), isStar,
2043                                          NumElements.release(), StartLoc));
2044}
2045
2046/// [GNU]   typeof-specifier:
2047///           typeof ( expressions )
2048///           typeof ( type-name )
2049/// [GNU/C++] typeof unary-expression
2050///
2051void Parser::ParseTypeofSpecifier(DeclSpec &DS) {
2052  assert(Tok.is(tok::kw_typeof) && "Not a typeof specifier");
2053  const IdentifierInfo *BuiltinII = Tok.getIdentifierInfo();
2054  SourceLocation StartLoc = ConsumeToken();
2055
2056  if (Tok.isNot(tok::l_paren)) {
2057    if (!getLang().CPlusPlus) {
2058      Diag(Tok, diag::err_expected_lparen_after_id) << BuiltinII;
2059      return;
2060    }
2061
2062    OwningExprResult Result(ParseCastExpression(true/*isUnaryExpression*/));
2063    if (Result.isInvalid())
2064      return;
2065
2066    const char *PrevSpec = 0;
2067    // Check for duplicate type specifiers.
2068    if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec,
2069                           Result.release()))
2070      Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
2071
2072    // FIXME: Not accurate, the range gets one token more than it should.
2073    DS.SetRangeEnd(Tok.getLocation());
2074    return;
2075  }
2076
2077  SourceLocation LParenLoc = ConsumeParen(), RParenLoc;
2078
2079  if (isTypeIdInParens()) {
2080    TypeTy *Ty = ParseTypeName();
2081
2082    assert(Ty && "Parser::ParseTypeofSpecifier(): missing type");
2083
2084    if (Tok.isNot(tok::r_paren)) {
2085      MatchRHSPunctuation(tok::r_paren, LParenLoc);
2086      return;
2087    }
2088    RParenLoc = ConsumeParen();
2089    const char *PrevSpec = 0;
2090    // Check for duplicate type specifiers (e.g. "int typeof(int)").
2091    if (DS.SetTypeSpecType(DeclSpec::TST_typeofType, StartLoc, PrevSpec, Ty))
2092      Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
2093  } else { // we have an expression.
2094    OwningExprResult Result(ParseExpression());
2095
2096    if (Result.isInvalid() || Tok.isNot(tok::r_paren)) {
2097      MatchRHSPunctuation(tok::r_paren, LParenLoc);
2098      return;
2099    }
2100    RParenLoc = ConsumeParen();
2101    const char *PrevSpec = 0;
2102    // Check for duplicate type specifiers (e.g. "int typeof(int)").
2103    if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec,
2104                           Result.release()))
2105      Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
2106  }
2107  DS.SetRangeEnd(RParenLoc);
2108}
2109
2110
2111