ParseDecl.cpp revision cfb708c354e2f30ccc5cba9d644650f408a1ec3e
1//===--- ParseDecl.cpp - Declaration Parsing ------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the Declaration portions of the Parser interfaces.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Parse/Parser.h"
15#include "clang/Parse/ParseDiagnostic.h"
16#include "clang/Parse/Scope.h"
17#include "clang/Parse/Template.h"
18#include "RAIIObjectsForParser.h"
19#include "llvm/ADT/SmallSet.h"
20using namespace clang;
21
22//===----------------------------------------------------------------------===//
23// C99 6.7: Declarations.
24//===----------------------------------------------------------------------===//
25
26/// ParseTypeName
27///       type-name: [C99 6.7.6]
28///         specifier-qualifier-list abstract-declarator[opt]
29///
30/// Called type-id in C++.
31Action::TypeResult Parser::ParseTypeName(SourceRange *Range) {
32  // Parse the common declaration-specifiers piece.
33  DeclSpec DS;
34  ParseSpecifierQualifierList(DS);
35
36  // Parse the abstract-declarator, if present.
37  Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
38  ParseDeclarator(DeclaratorInfo);
39  if (Range)
40    *Range = DeclaratorInfo.getSourceRange();
41
42  if (DeclaratorInfo.isInvalidType())
43    return true;
44
45  return Actions.ActOnTypeName(CurScope, DeclaratorInfo);
46}
47
48/// ParseGNUAttributes - Parse a non-empty attributes list.
49///
50/// [GNU] attributes:
51///         attribute
52///         attributes attribute
53///
54/// [GNU]  attribute:
55///          '__attribute__' '(' '(' attribute-list ')' ')'
56///
57/// [GNU]  attribute-list:
58///          attrib
59///          attribute_list ',' attrib
60///
61/// [GNU]  attrib:
62///          empty
63///          attrib-name
64///          attrib-name '(' identifier ')'
65///          attrib-name '(' identifier ',' nonempty-expr-list ')'
66///          attrib-name '(' argument-expression-list [C99 6.5.2] ')'
67///
68/// [GNU]  attrib-name:
69///          identifier
70///          typespec
71///          typequal
72///          storageclass
73///
74/// FIXME: The GCC grammar/code for this construct implies we need two
75/// token lookahead. Comment from gcc: "If they start with an identifier
76/// which is followed by a comma or close parenthesis, then the arguments
77/// start with that identifier; otherwise they are an expression list."
78///
79/// At the moment, I am not doing 2 token lookahead. I am also unaware of
80/// any attributes that don't work (based on my limited testing). Most
81/// attributes are very simple in practice. Until we find a bug, I don't see
82/// a pressing need to implement the 2 token lookahead.
83
84AttributeList *Parser::ParseGNUAttributes(SourceLocation *EndLoc) {
85  assert(Tok.is(tok::kw___attribute) && "Not a GNU attribute list!");
86
87  AttributeList *CurrAttr = 0;
88
89  while (Tok.is(tok::kw___attribute)) {
90    ConsumeToken();
91    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
92                         "attribute")) {
93      SkipUntil(tok::r_paren, true); // skip until ) or ;
94      return CurrAttr;
95    }
96    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "(")) {
97      SkipUntil(tok::r_paren, true); // skip until ) or ;
98      return CurrAttr;
99    }
100    // Parse the attribute-list. e.g. __attribute__(( weak, alias("__f") ))
101    while (Tok.is(tok::identifier) || isDeclarationSpecifier() ||
102           Tok.is(tok::comma)) {
103
104      if (Tok.is(tok::comma)) {
105        // allows for empty/non-empty attributes. ((__vector_size__(16),,,,))
106        ConsumeToken();
107        continue;
108      }
109      // we have an identifier or declaration specifier (const, int, etc.)
110      IdentifierInfo *AttrName = Tok.getIdentifierInfo();
111      SourceLocation AttrNameLoc = ConsumeToken();
112
113      // check if we have a "paramterized" attribute
114      if (Tok.is(tok::l_paren)) {
115        ConsumeParen(); // ignore the left paren loc for now
116
117        if (Tok.is(tok::identifier)) {
118          IdentifierInfo *ParmName = Tok.getIdentifierInfo();
119          SourceLocation ParmLoc = ConsumeToken();
120
121          if (Tok.is(tok::r_paren)) {
122            // __attribute__(( mode(byte) ))
123            ConsumeParen(); // ignore the right paren loc for now
124            CurrAttr = new AttributeList(AttrName, AttrNameLoc, 0, AttrNameLoc,
125                                         ParmName, ParmLoc, 0, 0, CurrAttr);
126          } else if (Tok.is(tok::comma)) {
127            ConsumeToken();
128            // __attribute__(( format(printf, 1, 2) ))
129            ExprVector ArgExprs(Actions);
130            bool ArgExprsOk = true;
131
132            // now parse the non-empty comma separated list of expressions
133            while (1) {
134              OwningExprResult ArgExpr(ParseAssignmentExpression());
135              if (ArgExpr.isInvalid()) {
136                ArgExprsOk = false;
137                SkipUntil(tok::r_paren);
138                break;
139              } else {
140                ArgExprs.push_back(ArgExpr.release());
141              }
142              if (Tok.isNot(tok::comma))
143                break;
144              ConsumeToken(); // Eat the comma, move to the next argument
145            }
146            if (ArgExprsOk && Tok.is(tok::r_paren)) {
147              ConsumeParen(); // ignore the right paren loc for now
148              CurrAttr = new AttributeList(AttrName, AttrNameLoc, 0,
149                                           AttrNameLoc, ParmName, ParmLoc,
150                                           ArgExprs.take(), ArgExprs.size(),
151                                           CurrAttr);
152            }
153          }
154        } else { // not an identifier
155          switch (Tok.getKind()) {
156          case tok::r_paren:
157          // parse a possibly empty comma separated list of expressions
158            // __attribute__(( nonnull() ))
159            ConsumeParen(); // ignore the right paren loc for now
160            CurrAttr = new AttributeList(AttrName, AttrNameLoc, 0, AttrNameLoc,
161                                         0, SourceLocation(), 0, 0, CurrAttr);
162            break;
163          case tok::kw_char:
164          case tok::kw_wchar_t:
165          case tok::kw_char16_t:
166          case tok::kw_char32_t:
167          case tok::kw_bool:
168          case tok::kw_short:
169          case tok::kw_int:
170          case tok::kw_long:
171          case tok::kw_signed:
172          case tok::kw_unsigned:
173          case tok::kw_float:
174          case tok::kw_double:
175          case tok::kw_void:
176          case tok::kw_typeof:
177            // If it's a builtin type name, eat it and expect a rparen
178            // __attribute__(( vec_type_hint(char) ))
179            ConsumeToken();
180            CurrAttr = new AttributeList(AttrName, AttrNameLoc, 0, AttrNameLoc,
181                                         0, SourceLocation(), 0, 0, CurrAttr);
182            if (Tok.is(tok::r_paren))
183              ConsumeParen();
184            break;
185          default:
186            // __attribute__(( aligned(16) ))
187            ExprVector ArgExprs(Actions);
188            bool ArgExprsOk = true;
189
190            // now parse the list of expressions
191            while (1) {
192              OwningExprResult ArgExpr(ParseAssignmentExpression());
193              if (ArgExpr.isInvalid()) {
194                ArgExprsOk = false;
195                SkipUntil(tok::r_paren);
196                break;
197              } else {
198                ArgExprs.push_back(ArgExpr.release());
199              }
200              if (Tok.isNot(tok::comma))
201                break;
202              ConsumeToken(); // Eat the comma, move to the next argument
203            }
204            // Match the ')'.
205            if (ArgExprsOk && Tok.is(tok::r_paren)) {
206              ConsumeParen(); // ignore the right paren loc for now
207              CurrAttr = new AttributeList(AttrName, AttrNameLoc, 0,
208                           AttrNameLoc, 0, SourceLocation(), ArgExprs.take(),
209                           ArgExprs.size(),
210                           CurrAttr);
211            }
212            break;
213          }
214        }
215      } else {
216        CurrAttr = new AttributeList(AttrName, AttrNameLoc, 0, AttrNameLoc,
217                                     0, SourceLocation(), 0, 0, CurrAttr);
218      }
219    }
220    if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
221      SkipUntil(tok::r_paren, false);
222    SourceLocation Loc = Tok.getLocation();
223    if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen)) {
224      SkipUntil(tok::r_paren, false);
225    }
226    if (EndLoc)
227      *EndLoc = Loc;
228  }
229  return CurrAttr;
230}
231
232/// ParseMicrosoftDeclSpec - Parse an __declspec construct
233///
234/// [MS] decl-specifier:
235///             __declspec ( extended-decl-modifier-seq )
236///
237/// [MS] extended-decl-modifier-seq:
238///             extended-decl-modifier[opt]
239///             extended-decl-modifier extended-decl-modifier-seq
240
241AttributeList* Parser::ParseMicrosoftDeclSpec(AttributeList *CurrAttr) {
242  assert(Tok.is(tok::kw___declspec) && "Not a declspec!");
243
244  ConsumeToken();
245  if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
246                       "declspec")) {
247    SkipUntil(tok::r_paren, true); // skip until ) or ;
248    return CurrAttr;
249  }
250  while (Tok.getIdentifierInfo()) {
251    IdentifierInfo *AttrName = Tok.getIdentifierInfo();
252    SourceLocation AttrNameLoc = ConsumeToken();
253    if (Tok.is(tok::l_paren)) {
254      ConsumeParen();
255      // FIXME: This doesn't parse __declspec(property(get=get_func_name))
256      // correctly.
257      OwningExprResult ArgExpr(ParseAssignmentExpression());
258      if (!ArgExpr.isInvalid()) {
259        ExprTy* ExprList = ArgExpr.take();
260        CurrAttr = new AttributeList(AttrName, AttrNameLoc, 0, AttrNameLoc, 0,
261                                     SourceLocation(), &ExprList, 1,
262                                     CurrAttr, true);
263      }
264      if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
265        SkipUntil(tok::r_paren, false);
266    } else {
267      CurrAttr = new AttributeList(AttrName, AttrNameLoc, 0, AttrNameLoc,
268                                   0, SourceLocation(), 0, 0, CurrAttr, true);
269    }
270  }
271  if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
272    SkipUntil(tok::r_paren, false);
273  return CurrAttr;
274}
275
276AttributeList* Parser::ParseMicrosoftTypeAttributes(AttributeList *CurrAttr) {
277  // Treat these like attributes
278  // FIXME: Allow Sema to distinguish between these and real attributes!
279  while (Tok.is(tok::kw___fastcall) || Tok.is(tok::kw___stdcall) ||
280         Tok.is(tok::kw___cdecl)    || Tok.is(tok::kw___ptr64) ||
281         Tok.is(tok::kw___w64)) {
282    IdentifierInfo *AttrName = Tok.getIdentifierInfo();
283    SourceLocation AttrNameLoc = ConsumeToken();
284    if (Tok.is(tok::kw___ptr64) || Tok.is(tok::kw___w64))
285      // FIXME: Support these properly!
286      continue;
287    CurrAttr = new AttributeList(AttrName, AttrNameLoc, 0, AttrNameLoc, 0,
288                                 SourceLocation(), 0, 0, CurrAttr, true);
289  }
290  return CurrAttr;
291}
292
293/// ParseDeclaration - Parse a full 'declaration', which consists of
294/// declaration-specifiers, some number of declarators, and a semicolon.
295/// 'Context' should be a Declarator::TheContext value.  This returns the
296/// location of the semicolon in DeclEnd.
297///
298///       declaration: [C99 6.7]
299///         block-declaration ->
300///           simple-declaration
301///           others                   [FIXME]
302/// [C++]   template-declaration
303/// [C++]   namespace-definition
304/// [C++]   using-directive
305/// [C++]   using-declaration
306/// [C++0x] static_assert-declaration
307///         others... [FIXME]
308///
309Parser::DeclGroupPtrTy Parser::ParseDeclaration(unsigned Context,
310                                                SourceLocation &DeclEnd,
311                                                CXX0XAttributeList Attr) {
312  DeclPtrTy SingleDecl;
313  switch (Tok.getKind()) {
314  case tok::kw_template:
315  case tok::kw_export:
316    if (Attr.HasAttr)
317      Diag(Attr.Range.getBegin(), diag::err_attributes_not_allowed)
318        << Attr.Range;
319    SingleDecl = ParseDeclarationStartingWithTemplate(Context, DeclEnd);
320    break;
321  case tok::kw_namespace:
322    if (Attr.HasAttr)
323      Diag(Attr.Range.getBegin(), diag::err_attributes_not_allowed)
324        << Attr.Range;
325    SingleDecl = ParseNamespace(Context, DeclEnd);
326    break;
327  case tok::kw_using:
328    SingleDecl = ParseUsingDirectiveOrDeclaration(Context, DeclEnd, Attr);
329    break;
330  case tok::kw_static_assert:
331    if (Attr.HasAttr)
332      Diag(Attr.Range.getBegin(), diag::err_attributes_not_allowed)
333        << Attr.Range;
334    SingleDecl = ParseStaticAssertDeclaration(DeclEnd);
335    break;
336  default:
337    return ParseSimpleDeclaration(Context, DeclEnd, Attr.AttrList);
338  }
339
340  // This routine returns a DeclGroup, if the thing we parsed only contains a
341  // single decl, convert it now.
342  return Actions.ConvertDeclToDeclGroup(SingleDecl);
343}
344
345///       simple-declaration: [C99 6.7: declaration] [C++ 7p1: dcl.dcl]
346///         declaration-specifiers init-declarator-list[opt] ';'
347///[C90/C++]init-declarator-list ';'                             [TODO]
348/// [OMP]   threadprivate-directive                              [TODO]
349///
350/// If RequireSemi is false, this does not check for a ';' at the end of the
351/// declaration.
352Parser::DeclGroupPtrTy Parser::ParseSimpleDeclaration(unsigned Context,
353                                                      SourceLocation &DeclEnd,
354                                                      AttributeList *Attr) {
355  // Parse the common declaration-specifiers piece.
356  ParsingDeclSpec DS(*this);
357  if (Attr)
358    DS.AddAttributes(Attr);
359  ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS_none,
360                            getDeclSpecContextFromDeclaratorContext(Context));
361
362  // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };"
363  // declaration-specifiers init-declarator-list[opt] ';'
364  if (Tok.is(tok::semi)) {
365    ConsumeToken();
366    DeclPtrTy TheDecl = Actions.ParsedFreeStandingDeclSpec(CurScope, DS);
367    DS.complete(TheDecl);
368    return Actions.ConvertDeclToDeclGroup(TheDecl);
369  }
370
371  DeclGroupPtrTy DG = ParseDeclGroup(DS, Context, /*FunctionDefs=*/ false,
372                                     &DeclEnd);
373  return DG;
374}
375
376/// ParseDeclGroup - Having concluded that this is either a function
377/// definition or a group of object declarations, actually parse the
378/// result.
379Parser::DeclGroupPtrTy Parser::ParseDeclGroup(ParsingDeclSpec &DS,
380                                              unsigned Context,
381                                              bool AllowFunctionDefinitions,
382                                              SourceLocation *DeclEnd) {
383  // Parse the first declarator.
384  ParsingDeclarator D(*this, DS, static_cast<Declarator::TheContext>(Context));
385  ParseDeclarator(D);
386
387  // Bail out if the first declarator didn't seem well-formed.
388  if (!D.hasName() && !D.mayOmitIdentifier()) {
389    // Skip until ; or }.
390    SkipUntil(tok::r_brace, true, true);
391    if (Tok.is(tok::semi))
392      ConsumeToken();
393    return DeclGroupPtrTy();
394  }
395
396  if (AllowFunctionDefinitions && D.isFunctionDeclarator()) {
397    if (isDeclarationAfterDeclarator()) {
398      // Fall though.  We have to check this first, though, because
399      // __attribute__ might be the start of a function definition in
400      // (extended) K&R C.
401    } else if (isStartOfFunctionDefinition()) {
402      if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
403        Diag(Tok, diag::err_function_declared_typedef);
404
405        // Recover by treating the 'typedef' as spurious.
406        DS.ClearStorageClassSpecs();
407      }
408
409      DeclPtrTy TheDecl = ParseFunctionDefinition(D);
410      return Actions.ConvertDeclToDeclGroup(TheDecl);
411    } else {
412      Diag(Tok, diag::err_expected_fn_body);
413      SkipUntil(tok::semi);
414      return DeclGroupPtrTy();
415    }
416  }
417
418  llvm::SmallVector<DeclPtrTy, 8> DeclsInGroup;
419  DeclPtrTy FirstDecl = ParseDeclarationAfterDeclarator(D);
420  D.complete(FirstDecl);
421  if (FirstDecl.get())
422    DeclsInGroup.push_back(FirstDecl);
423
424  // If we don't have a comma, it is either the end of the list (a ';') or an
425  // error, bail out.
426  while (Tok.is(tok::comma)) {
427    // Consume the comma.
428    ConsumeToken();
429
430    // Parse the next declarator.
431    D.clear();
432
433    // Accept attributes in an init-declarator.  In the first declarator in a
434    // declaration, these would be part of the declspec.  In subsequent
435    // declarators, they become part of the declarator itself, so that they
436    // don't apply to declarators after *this* one.  Examples:
437    //    short __attribute__((common)) var;    -> declspec
438    //    short var __attribute__((common));    -> declarator
439    //    short x, __attribute__((common)) var;    -> declarator
440    if (Tok.is(tok::kw___attribute)) {
441      SourceLocation Loc;
442      AttributeList *AttrList = ParseGNUAttributes(&Loc);
443      D.AddAttributes(AttrList, Loc);
444    }
445
446    ParseDeclarator(D);
447
448    DeclPtrTy ThisDecl = ParseDeclarationAfterDeclarator(D);
449    D.complete(ThisDecl);
450    if (ThisDecl.get())
451      DeclsInGroup.push_back(ThisDecl);
452  }
453
454  if (DeclEnd)
455    *DeclEnd = Tok.getLocation();
456
457  if (Context != Declarator::ForContext &&
458      ExpectAndConsume(tok::semi,
459                       Context == Declarator::FileContext
460                         ? diag::err_invalid_token_after_toplevel_declarator
461                         : diag::err_expected_semi_declaration)) {
462    SkipUntil(tok::r_brace, true, true);
463    if (Tok.is(tok::semi))
464      ConsumeToken();
465  }
466
467  return Actions.FinalizeDeclaratorGroup(CurScope, DS,
468                                         DeclsInGroup.data(),
469                                         DeclsInGroup.size());
470}
471
472/// \brief Parse 'declaration' after parsing 'declaration-specifiers
473/// declarator'. This method parses the remainder of the declaration
474/// (including any attributes or initializer, among other things) and
475/// finalizes the declaration.
476///
477///       init-declarator: [C99 6.7]
478///         declarator
479///         declarator '=' initializer
480/// [GNU]   declarator simple-asm-expr[opt] attributes[opt]
481/// [GNU]   declarator simple-asm-expr[opt] attributes[opt] '=' initializer
482/// [C++]   declarator initializer[opt]
483///
484/// [C++] initializer:
485/// [C++]   '=' initializer-clause
486/// [C++]   '(' expression-list ')'
487/// [C++0x] '=' 'default'                                                [TODO]
488/// [C++0x] '=' 'delete'
489///
490/// According to the standard grammar, =default and =delete are function
491/// definitions, but that definitely doesn't fit with the parser here.
492///
493Parser::DeclPtrTy Parser::ParseDeclarationAfterDeclarator(Declarator &D,
494                                     const ParsedTemplateInfo &TemplateInfo) {
495  // If a simple-asm-expr is present, parse it.
496  if (Tok.is(tok::kw_asm)) {
497    SourceLocation Loc;
498    OwningExprResult AsmLabel(ParseSimpleAsm(&Loc));
499    if (AsmLabel.isInvalid()) {
500      SkipUntil(tok::semi, true, true);
501      return DeclPtrTy();
502    }
503
504    D.setAsmLabel(AsmLabel.release());
505    D.SetRangeEnd(Loc);
506  }
507
508  // If attributes are present, parse them.
509  if (Tok.is(tok::kw___attribute)) {
510    SourceLocation Loc;
511    AttributeList *AttrList = ParseGNUAttributes(&Loc);
512    D.AddAttributes(AttrList, Loc);
513  }
514
515  // Inform the current actions module that we just parsed this declarator.
516  DeclPtrTy ThisDecl;
517  switch (TemplateInfo.Kind) {
518  case ParsedTemplateInfo::NonTemplate:
519    ThisDecl = Actions.ActOnDeclarator(CurScope, D);
520    break;
521
522  case ParsedTemplateInfo::Template:
523  case ParsedTemplateInfo::ExplicitSpecialization:
524    ThisDecl = Actions.ActOnTemplateDeclarator(CurScope,
525                             Action::MultiTemplateParamsArg(Actions,
526                                          TemplateInfo.TemplateParams->data(),
527                                          TemplateInfo.TemplateParams->size()),
528                                               D);
529    break;
530
531  case ParsedTemplateInfo::ExplicitInstantiation: {
532    Action::DeclResult ThisRes
533      = Actions.ActOnExplicitInstantiation(CurScope,
534                                           TemplateInfo.ExternLoc,
535                                           TemplateInfo.TemplateLoc,
536                                           D);
537    if (ThisRes.isInvalid()) {
538      SkipUntil(tok::semi, true, true);
539      return DeclPtrTy();
540    }
541
542    ThisDecl = ThisRes.get();
543    break;
544    }
545  }
546
547  // Parse declarator '=' initializer.
548  if (Tok.is(tok::equal)) {
549    ConsumeToken();
550    if (getLang().CPlusPlus0x && Tok.is(tok::kw_delete)) {
551      SourceLocation DelLoc = ConsumeToken();
552      Actions.SetDeclDeleted(ThisDecl, DelLoc);
553    } else {
554      if (getLang().CPlusPlus && D.getCXXScopeSpec().isSet()) {
555        EnterScope(0);
556        Actions.ActOnCXXEnterDeclInitializer(CurScope, ThisDecl);
557      }
558
559      OwningExprResult Init(ParseInitializer());
560
561      if (getLang().CPlusPlus && D.getCXXScopeSpec().isSet()) {
562        Actions.ActOnCXXExitDeclInitializer(CurScope, ThisDecl);
563        ExitScope();
564      }
565
566      if (Init.isInvalid()) {
567        SkipUntil(tok::semi, true, true);
568        return DeclPtrTy();
569      }
570      Actions.AddInitializerToDecl(ThisDecl, move(Init));
571    }
572  } else if (Tok.is(tok::l_paren)) {
573    // Parse C++ direct initializer: '(' expression-list ')'
574    SourceLocation LParenLoc = ConsumeParen();
575    ExprVector Exprs(Actions);
576    CommaLocsTy CommaLocs;
577
578    if (getLang().CPlusPlus && D.getCXXScopeSpec().isSet()) {
579      EnterScope(0);
580      Actions.ActOnCXXEnterDeclInitializer(CurScope, ThisDecl);
581    }
582
583    if (ParseExpressionList(Exprs, CommaLocs)) {
584      SkipUntil(tok::r_paren);
585
586      if (getLang().CPlusPlus && D.getCXXScopeSpec().isSet()) {
587        Actions.ActOnCXXExitDeclInitializer(CurScope, ThisDecl);
588        ExitScope();
589      }
590    } else {
591      // Match the ')'.
592      SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
593
594      assert(!Exprs.empty() && Exprs.size()-1 == CommaLocs.size() &&
595             "Unexpected number of commas!");
596
597      if (getLang().CPlusPlus && D.getCXXScopeSpec().isSet()) {
598        Actions.ActOnCXXExitDeclInitializer(CurScope, ThisDecl);
599        ExitScope();
600      }
601
602      Actions.AddCXXDirectInitializerToDecl(ThisDecl, LParenLoc,
603                                            move_arg(Exprs),
604                                            CommaLocs.data(), RParenLoc);
605    }
606  } else {
607    bool TypeContainsUndeducedAuto =
608      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto;
609    Actions.ActOnUninitializedDecl(ThisDecl, TypeContainsUndeducedAuto);
610  }
611
612  return ThisDecl;
613}
614
615/// ParseSpecifierQualifierList
616///        specifier-qualifier-list:
617///          type-specifier specifier-qualifier-list[opt]
618///          type-qualifier specifier-qualifier-list[opt]
619/// [GNU]    attributes     specifier-qualifier-list[opt]
620///
621void Parser::ParseSpecifierQualifierList(DeclSpec &DS) {
622  /// specifier-qualifier-list is a subset of declaration-specifiers.  Just
623  /// parse declaration-specifiers and complain about extra stuff.
624  ParseDeclarationSpecifiers(DS);
625
626  // Validate declspec for type-name.
627  unsigned Specs = DS.getParsedSpecifiers();
628  if (Specs == DeclSpec::PQ_None && !DS.getNumProtocolQualifiers() &&
629      !DS.getAttributes())
630    Diag(Tok, diag::err_typename_requires_specqual);
631
632  // Issue diagnostic and remove storage class if present.
633  if (Specs & DeclSpec::PQ_StorageClassSpecifier) {
634    if (DS.getStorageClassSpecLoc().isValid())
635      Diag(DS.getStorageClassSpecLoc(),diag::err_typename_invalid_storageclass);
636    else
637      Diag(DS.getThreadSpecLoc(), diag::err_typename_invalid_storageclass);
638    DS.ClearStorageClassSpecs();
639  }
640
641  // Issue diagnostic and remove function specfier if present.
642  if (Specs & DeclSpec::PQ_FunctionSpecifier) {
643    if (DS.isInlineSpecified())
644      Diag(DS.getInlineSpecLoc(), diag::err_typename_invalid_functionspec);
645    if (DS.isVirtualSpecified())
646      Diag(DS.getVirtualSpecLoc(), diag::err_typename_invalid_functionspec);
647    if (DS.isExplicitSpecified())
648      Diag(DS.getExplicitSpecLoc(), diag::err_typename_invalid_functionspec);
649    DS.ClearFunctionSpecs();
650  }
651}
652
653/// isValidAfterIdentifierInDeclaratorAfterDeclSpec - Return true if the
654/// specified token is valid after the identifier in a declarator which
655/// immediately follows the declspec.  For example, these things are valid:
656///
657///      int x   [             4];         // direct-declarator
658///      int x   (             int y);     // direct-declarator
659///  int(int x   )                         // direct-declarator
660///      int x   ;                         // simple-declaration
661///      int x   =             17;         // init-declarator-list
662///      int x   ,             y;          // init-declarator-list
663///      int x   __asm__       ("foo");    // init-declarator-list
664///      int x   :             4;          // struct-declarator
665///      int x   {             5};         // C++'0x unified initializers
666///
667/// This is not, because 'x' does not immediately follow the declspec (though
668/// ')' happens to be valid anyway).
669///    int (x)
670///
671static bool isValidAfterIdentifierInDeclarator(const Token &T) {
672  return T.is(tok::l_square) || T.is(tok::l_paren) || T.is(tok::r_paren) ||
673         T.is(tok::semi) || T.is(tok::comma) || T.is(tok::equal) ||
674         T.is(tok::kw_asm) || T.is(tok::l_brace) || T.is(tok::colon);
675}
676
677
678/// ParseImplicitInt - This method is called when we have an non-typename
679/// identifier in a declspec (which normally terminates the decl spec) when
680/// the declspec has no type specifier.  In this case, the declspec is either
681/// malformed or is "implicit int" (in K&R and C89).
682///
683/// This method handles diagnosing this prettily and returns false if the
684/// declspec is done being processed.  If it recovers and thinks there may be
685/// other pieces of declspec after it, it returns true.
686///
687bool Parser::ParseImplicitInt(DeclSpec &DS, CXXScopeSpec *SS,
688                              const ParsedTemplateInfo &TemplateInfo,
689                              AccessSpecifier AS) {
690  assert(Tok.is(tok::identifier) && "should have identifier");
691
692  SourceLocation Loc = Tok.getLocation();
693  // If we see an identifier that is not a type name, we normally would
694  // parse it as the identifer being declared.  However, when a typename
695  // is typo'd or the definition is not included, this will incorrectly
696  // parse the typename as the identifier name and fall over misparsing
697  // later parts of the diagnostic.
698  //
699  // As such, we try to do some look-ahead in cases where this would
700  // otherwise be an "implicit-int" case to see if this is invalid.  For
701  // example: "static foo_t x = 4;"  In this case, if we parsed foo_t as
702  // an identifier with implicit int, we'd get a parse error because the
703  // next token is obviously invalid for a type.  Parse these as a case
704  // with an invalid type specifier.
705  assert(!DS.hasTypeSpecifier() && "Type specifier checked above");
706
707  // Since we know that this either implicit int (which is rare) or an
708  // error, we'd do lookahead to try to do better recovery.
709  if (isValidAfterIdentifierInDeclarator(NextToken())) {
710    // If this token is valid for implicit int, e.g. "static x = 4", then
711    // we just avoid eating the identifier, so it will be parsed as the
712    // identifier in the declarator.
713    return false;
714  }
715
716  // Otherwise, if we don't consume this token, we are going to emit an
717  // error anyway.  Try to recover from various common problems.  Check
718  // to see if this was a reference to a tag name without a tag specified.
719  // This is a common problem in C (saying 'foo' instead of 'struct foo').
720  //
721  // C++ doesn't need this, and isTagName doesn't take SS.
722  if (SS == 0) {
723    const char *TagName = 0;
724    tok::TokenKind TagKind = tok::unknown;
725
726    switch (Actions.isTagName(*Tok.getIdentifierInfo(), CurScope)) {
727      default: break;
728      case DeclSpec::TST_enum:  TagName="enum"  ;TagKind=tok::kw_enum  ;break;
729      case DeclSpec::TST_union: TagName="union" ;TagKind=tok::kw_union ;break;
730      case DeclSpec::TST_struct:TagName="struct";TagKind=tok::kw_struct;break;
731      case DeclSpec::TST_class: TagName="class" ;TagKind=tok::kw_class ;break;
732    }
733
734    if (TagName) {
735      Diag(Loc, diag::err_use_of_tag_name_without_tag)
736        << Tok.getIdentifierInfo() << TagName
737        << CodeModificationHint::CreateInsertion(Tok.getLocation(),TagName);
738
739      // Parse this as a tag as if the missing tag were present.
740      if (TagKind == tok::kw_enum)
741        ParseEnumSpecifier(Loc, DS, AS);
742      else
743        ParseClassSpecifier(TagKind, Loc, DS, TemplateInfo, AS);
744      return true;
745    }
746  }
747
748  // This is almost certainly an invalid type name. Let the action emit a
749  // diagnostic and attempt to recover.
750  Action::TypeTy *T = 0;
751  if (Actions.DiagnoseUnknownTypeName(*Tok.getIdentifierInfo(), Loc,
752                                      CurScope, SS, T)) {
753    // The action emitted a diagnostic, so we don't have to.
754    if (T) {
755      // The action has suggested that the type T could be used. Set that as
756      // the type in the declaration specifiers, consume the would-be type
757      // name token, and we're done.
758      const char *PrevSpec;
759      unsigned DiagID;
760      DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, T,
761                         false);
762      DS.SetRangeEnd(Tok.getLocation());
763      ConsumeToken();
764
765      // There may be other declaration specifiers after this.
766      return true;
767    }
768
769    // Fall through; the action had no suggestion for us.
770  } else {
771    // The action did not emit a diagnostic, so emit one now.
772    SourceRange R;
773    if (SS) R = SS->getRange();
774    Diag(Loc, diag::err_unknown_typename) << Tok.getIdentifierInfo() << R;
775  }
776
777  // Mark this as an error.
778  const char *PrevSpec;
779  unsigned DiagID;
780  DS.SetTypeSpecType(DeclSpec::TST_error, Loc, PrevSpec, DiagID);
781  DS.SetRangeEnd(Tok.getLocation());
782  ConsumeToken();
783
784  // TODO: Could inject an invalid typedef decl in an enclosing scope to
785  // avoid rippling error messages on subsequent uses of the same type,
786  // could be useful if #include was forgotten.
787  return false;
788}
789
790/// \brief Determine the declaration specifier context from the declarator
791/// context.
792///
793/// \param Context the declarator context, which is one of the
794/// Declarator::TheContext enumerator values.
795Parser::DeclSpecContext
796Parser::getDeclSpecContextFromDeclaratorContext(unsigned Context) {
797  if (Context == Declarator::MemberContext)
798    return DSC_class;
799  if (Context == Declarator::FileContext)
800    return DSC_top_level;
801  return DSC_normal;
802}
803
804/// ParseDeclarationSpecifiers
805///       declaration-specifiers: [C99 6.7]
806///         storage-class-specifier declaration-specifiers[opt]
807///         type-specifier declaration-specifiers[opt]
808/// [C99]   function-specifier declaration-specifiers[opt]
809/// [GNU]   attributes declaration-specifiers[opt]
810///
811///       storage-class-specifier: [C99 6.7.1]
812///         'typedef'
813///         'extern'
814///         'static'
815///         'auto'
816///         'register'
817/// [C++]   'mutable'
818/// [GNU]   '__thread'
819///       function-specifier: [C99 6.7.4]
820/// [C99]   'inline'
821/// [C++]   'virtual'
822/// [C++]   'explicit'
823///       'friend': [C++ dcl.friend]
824///       'constexpr': [C++0x dcl.constexpr]
825
826///
827void Parser::ParseDeclarationSpecifiers(DeclSpec &DS,
828                                        const ParsedTemplateInfo &TemplateInfo,
829                                        AccessSpecifier AS,
830                                        DeclSpecContext DSContext) {
831  if (Tok.is(tok::code_completion)) {
832    Action::CodeCompletionContext CCC = Action::CCC_Namespace;
833    if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate)
834      CCC = DSContext == DSC_class? Action::CCC_MemberTemplate
835                                  : Action::CCC_Template;
836    else if (DSContext == DSC_class)
837      CCC = Action::CCC_Class;
838
839    Actions.CodeCompleteOrdinaryName(CurScope, CCC);
840    ConsumeToken();
841  }
842
843  DS.SetRangeStart(Tok.getLocation());
844  while (1) {
845    bool isInvalid = false;
846    const char *PrevSpec = 0;
847    unsigned DiagID = 0;
848
849    SourceLocation Loc = Tok.getLocation();
850
851    switch (Tok.getKind()) {
852    default:
853    DoneWithDeclSpec:
854      // If this is not a declaration specifier token, we're done reading decl
855      // specifiers.  First verify that DeclSpec's are consistent.
856      DS.Finish(Diags, PP);
857      return;
858
859    case tok::coloncolon: // ::foo::bar
860      // Annotate C++ scope specifiers.  If we get one, loop.
861      if (TryAnnotateCXXScopeToken(true))
862        continue;
863      goto DoneWithDeclSpec;
864
865    case tok::annot_cxxscope: {
866      if (DS.hasTypeSpecifier())
867        goto DoneWithDeclSpec;
868
869      CXXScopeSpec SS;
870      SS.setScopeRep(Tok.getAnnotationValue());
871      SS.setRange(Tok.getAnnotationRange());
872
873      // We are looking for a qualified typename.
874      Token Next = NextToken();
875      if (Next.is(tok::annot_template_id) &&
876          static_cast<TemplateIdAnnotation *>(Next.getAnnotationValue())
877            ->Kind == TNK_Type_template) {
878        // We have a qualified template-id, e.g., N::A<int>
879
880        // C++ [class.qual]p2:
881        //   In a lookup in which the constructor is an acceptable lookup
882        //   result and the nested-name-specifier nominates a class C:
883        //
884        //     - if the name specified after the
885        //       nested-name-specifier, when looked up in C, is the
886        //       injected-class-name of C (Clause 9), or
887        //
888        //     - if the name specified after the nested-name-specifier
889        //       is the same as the identifier or the
890        //       simple-template-id's template-name in the last
891        //       component of the nested-name-specifier,
892        //
893        //   the name is instead considered to name the constructor of
894        //   class C.
895        //
896        // Thus, if the template-name is actually the constructor
897        // name, then the code is ill-formed; this interpretation is
898        // reinforced by the NAD status of core issue 635.
899        TemplateIdAnnotation *TemplateId
900          = static_cast<TemplateIdAnnotation *>(Next.getAnnotationValue());
901        if (DSContext == DSC_top_level && TemplateId->Name &&
902            Actions.isCurrentClassName(*TemplateId->Name, CurScope, &SS)) {
903          if (isConstructorDeclarator()) {
904            // The user meant this to be an out-of-line constructor
905            // definition, but template arguments are not allowed
906            // there.  Just allow this as a constructor; we'll
907            // complain about it later.
908            goto DoneWithDeclSpec;
909          }
910
911          // The user meant this to name a type, but it actually names
912          // a constructor with some extraneous template
913          // arguments. Complain, then parse it as a type as the user
914          // intended.
915          Diag(TemplateId->TemplateNameLoc,
916               diag::err_out_of_line_template_id_names_constructor)
917            << TemplateId->Name;
918        }
919
920        DS.getTypeSpecScope() = SS;
921        ConsumeToken(); // The C++ scope.
922        assert(Tok.is(tok::annot_template_id) &&
923               "ParseOptionalCXXScopeSpecifier not working");
924        AnnotateTemplateIdTokenAsType(&SS);
925        continue;
926      }
927
928      if (Next.is(tok::annot_typename)) {
929        DS.getTypeSpecScope() = SS;
930        ConsumeToken(); // The C++ scope.
931        if (Tok.getAnnotationValue())
932          isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc,
933                                         PrevSpec, DiagID,
934                                         Tok.getAnnotationValue());
935        else
936          DS.SetTypeSpecError();
937        DS.SetRangeEnd(Tok.getAnnotationEndLoc());
938        ConsumeToken(); // The typename
939      }
940
941      if (Next.isNot(tok::identifier))
942        goto DoneWithDeclSpec;
943
944      // If we're in a context where the identifier could be a class name,
945      // check whether this is a constructor declaration.
946      if (DSContext == DSC_top_level &&
947          Actions.isCurrentClassName(*Next.getIdentifierInfo(), CurScope,
948                                     &SS)) {
949        if (isConstructorDeclarator())
950          goto DoneWithDeclSpec;
951
952        // As noted in C++ [class.qual]p2 (cited above), when the name
953        // of the class is qualified in a context where it could name
954        // a constructor, its a constructor name. However, we've
955        // looked at the declarator, and the user probably meant this
956        // to be a type. Complain that it isn't supposed to be treated
957        // as a type, then proceed to parse it as a type.
958        Diag(Next.getLocation(), diag::err_out_of_line_type_names_constructor)
959          << Next.getIdentifierInfo();
960      }
961
962      TypeTy *TypeRep = Actions.getTypeName(*Next.getIdentifierInfo(),
963                                            Next.getLocation(), CurScope, &SS);
964
965      // If the referenced identifier is not a type, then this declspec is
966      // erroneous: We already checked about that it has no type specifier, and
967      // C++ doesn't have implicit int.  Diagnose it as a typo w.r.t. to the
968      // typename.
969      if (TypeRep == 0) {
970        ConsumeToken();   // Eat the scope spec so the identifier is current.
971        if (ParseImplicitInt(DS, &SS, TemplateInfo, AS)) continue;
972        goto DoneWithDeclSpec;
973      }
974
975      DS.getTypeSpecScope() = SS;
976      ConsumeToken(); // The C++ scope.
977
978      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
979                                     DiagID, TypeRep);
980      if (isInvalid)
981        break;
982
983      DS.SetRangeEnd(Tok.getLocation());
984      ConsumeToken(); // The typename.
985
986      continue;
987    }
988
989    case tok::annot_typename: {
990      if (Tok.getAnnotationValue())
991        isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
992                                       DiagID, Tok.getAnnotationValue());
993      else
994        DS.SetTypeSpecError();
995      DS.SetRangeEnd(Tok.getAnnotationEndLoc());
996      ConsumeToken(); // The typename
997
998      // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
999      // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
1000      // Objective-C interface.  If we don't have Objective-C or a '<', this is
1001      // just a normal reference to a typedef name.
1002      if (!Tok.is(tok::less) || !getLang().ObjC1)
1003        continue;
1004
1005      SourceLocation LAngleLoc, EndProtoLoc;
1006      llvm::SmallVector<DeclPtrTy, 8> ProtocolDecl;
1007      llvm::SmallVector<SourceLocation, 8> ProtocolLocs;
1008      ParseObjCProtocolReferences(ProtocolDecl, ProtocolLocs, false,
1009                                  LAngleLoc, EndProtoLoc);
1010      DS.setProtocolQualifiers(ProtocolDecl.data(), ProtocolDecl.size(),
1011                               ProtocolLocs.data(), LAngleLoc);
1012
1013      DS.SetRangeEnd(EndProtoLoc);
1014      continue;
1015    }
1016
1017      // typedef-name
1018    case tok::identifier: {
1019      // In C++, check to see if this is a scope specifier like foo::bar::, if
1020      // so handle it as such.  This is important for ctor parsing.
1021      if (getLang().CPlusPlus && TryAnnotateCXXScopeToken(true))
1022        continue;
1023
1024      // This identifier can only be a typedef name if we haven't already seen
1025      // a type-specifier.  Without this check we misparse:
1026      //  typedef int X; struct Y { short X; };  as 'short int'.
1027      if (DS.hasTypeSpecifier())
1028        goto DoneWithDeclSpec;
1029
1030      // It has to be available as a typedef too!
1031      TypeTy *TypeRep = Actions.getTypeName(*Tok.getIdentifierInfo(),
1032                                            Tok.getLocation(), CurScope);
1033
1034      // If this is not a typedef name, don't parse it as part of the declspec,
1035      // it must be an implicit int or an error.
1036      if (TypeRep == 0) {
1037        if (ParseImplicitInt(DS, 0, TemplateInfo, AS)) continue;
1038        goto DoneWithDeclSpec;
1039      }
1040
1041      // If we're in a context where the identifier could be a class name,
1042      // check whether this is a constructor declaration.
1043      if (getLang().CPlusPlus && DSContext == DSC_class &&
1044          Actions.isCurrentClassName(*Tok.getIdentifierInfo(), CurScope) &&
1045          isConstructorDeclarator())
1046        goto DoneWithDeclSpec;
1047
1048      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
1049                                     DiagID, TypeRep);
1050      if (isInvalid)
1051        break;
1052
1053      DS.SetRangeEnd(Tok.getLocation());
1054      ConsumeToken(); // The identifier
1055
1056      // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
1057      // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
1058      // Objective-C interface.  If we don't have Objective-C or a '<', this is
1059      // just a normal reference to a typedef name.
1060      if (!Tok.is(tok::less) || !getLang().ObjC1)
1061        continue;
1062
1063      SourceLocation LAngleLoc, EndProtoLoc;
1064      llvm::SmallVector<DeclPtrTy, 8> ProtocolDecl;
1065      llvm::SmallVector<SourceLocation, 8> ProtocolLocs;
1066      ParseObjCProtocolReferences(ProtocolDecl, ProtocolLocs, false,
1067                                  LAngleLoc, EndProtoLoc);
1068      DS.setProtocolQualifiers(ProtocolDecl.data(), ProtocolDecl.size(),
1069                               ProtocolLocs.data(), LAngleLoc);
1070
1071      DS.SetRangeEnd(EndProtoLoc);
1072
1073      // Need to support trailing type qualifiers (e.g. "id<p> const").
1074      // If a type specifier follows, it will be diagnosed elsewhere.
1075      continue;
1076    }
1077
1078      // type-name
1079    case tok::annot_template_id: {
1080      TemplateIdAnnotation *TemplateId
1081        = static_cast<TemplateIdAnnotation *>(Tok.getAnnotationValue());
1082      if (TemplateId->Kind != TNK_Type_template) {
1083        // This template-id does not refer to a type name, so we're
1084        // done with the type-specifiers.
1085        goto DoneWithDeclSpec;
1086      }
1087
1088      // If we're in a context where the template-id could be a
1089      // constructor name or specialization, check whether this is a
1090      // constructor declaration.
1091      if (getLang().CPlusPlus && DSContext == DSC_class &&
1092          Actions.isCurrentClassName(*TemplateId->Name, CurScope) &&
1093          isConstructorDeclarator())
1094        goto DoneWithDeclSpec;
1095
1096      // Turn the template-id annotation token into a type annotation
1097      // token, then try again to parse it as a type-specifier.
1098      AnnotateTemplateIdTokenAsType();
1099      continue;
1100    }
1101
1102    // GNU attributes support.
1103    case tok::kw___attribute:
1104      DS.AddAttributes(ParseGNUAttributes());
1105      continue;
1106
1107    // Microsoft declspec support.
1108    case tok::kw___declspec:
1109      DS.AddAttributes(ParseMicrosoftDeclSpec());
1110      continue;
1111
1112    // Microsoft single token adornments.
1113    case tok::kw___forceinline:
1114      // FIXME: Add handling here!
1115      break;
1116
1117    case tok::kw___ptr64:
1118    case tok::kw___w64:
1119    case tok::kw___cdecl:
1120    case tok::kw___stdcall:
1121    case tok::kw___fastcall:
1122      DS.AddAttributes(ParseMicrosoftTypeAttributes());
1123      continue;
1124
1125    // storage-class-specifier
1126    case tok::kw_typedef:
1127      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_typedef, Loc, PrevSpec,
1128                                         DiagID);
1129      break;
1130    case tok::kw_extern:
1131      if (DS.isThreadSpecified())
1132        Diag(Tok, diag::ext_thread_before) << "extern";
1133      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_extern, Loc, PrevSpec,
1134                                         DiagID);
1135      break;
1136    case tok::kw___private_extern__:
1137      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_private_extern, Loc,
1138                                         PrevSpec, DiagID);
1139      break;
1140    case tok::kw_static:
1141      if (DS.isThreadSpecified())
1142        Diag(Tok, diag::ext_thread_before) << "static";
1143      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_static, Loc, PrevSpec,
1144                                         DiagID);
1145      break;
1146    case tok::kw_auto:
1147      if (getLang().CPlusPlus0x)
1148        isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec,
1149                                       DiagID);
1150      else
1151        isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_auto, Loc, PrevSpec,
1152                                           DiagID);
1153      break;
1154    case tok::kw_register:
1155      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_register, Loc, PrevSpec,
1156                                         DiagID);
1157      break;
1158    case tok::kw_mutable:
1159      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_mutable, Loc, PrevSpec,
1160                                         DiagID);
1161      break;
1162    case tok::kw___thread:
1163      isInvalid = DS.SetStorageClassSpecThread(Loc, PrevSpec, DiagID);
1164      break;
1165
1166    // function-specifier
1167    case tok::kw_inline:
1168      isInvalid = DS.SetFunctionSpecInline(Loc, PrevSpec, DiagID);
1169      break;
1170    case tok::kw_virtual:
1171      isInvalid = DS.SetFunctionSpecVirtual(Loc, PrevSpec, DiagID);
1172      break;
1173    case tok::kw_explicit:
1174      isInvalid = DS.SetFunctionSpecExplicit(Loc, PrevSpec, DiagID);
1175      break;
1176
1177    // friend
1178    case tok::kw_friend:
1179      if (DSContext == DSC_class)
1180        isInvalid = DS.SetFriendSpec(Loc, PrevSpec, DiagID);
1181      else {
1182        PrevSpec = ""; // not actually used by the diagnostic
1183        DiagID = diag::err_friend_invalid_in_context;
1184        isInvalid = true;
1185      }
1186      break;
1187
1188    // constexpr
1189    case tok::kw_constexpr:
1190      isInvalid = DS.SetConstexprSpec(Loc, PrevSpec, DiagID);
1191      break;
1192
1193    // type-specifier
1194    case tok::kw_short:
1195      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec,
1196                                      DiagID);
1197      break;
1198    case tok::kw_long:
1199      if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
1200        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec,
1201                                        DiagID);
1202      else
1203        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
1204                                        DiagID);
1205      break;
1206    case tok::kw_signed:
1207      isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec,
1208                                     DiagID);
1209      break;
1210    case tok::kw_unsigned:
1211      isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec,
1212                                     DiagID);
1213      break;
1214    case tok::kw__Complex:
1215      isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec,
1216                                        DiagID);
1217      break;
1218    case tok::kw__Imaginary:
1219      isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec,
1220                                        DiagID);
1221      break;
1222    case tok::kw_void:
1223      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec,
1224                                     DiagID);
1225      break;
1226    case tok::kw_char:
1227      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec,
1228                                     DiagID);
1229      break;
1230    case tok::kw_int:
1231      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec,
1232                                     DiagID);
1233      break;
1234    case tok::kw_float:
1235      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec,
1236                                     DiagID);
1237      break;
1238    case tok::kw_double:
1239      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec,
1240                                     DiagID);
1241      break;
1242    case tok::kw_wchar_t:
1243      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec,
1244                                     DiagID);
1245      break;
1246    case tok::kw_char16_t:
1247      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec,
1248                                     DiagID);
1249      break;
1250    case tok::kw_char32_t:
1251      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec,
1252                                     DiagID);
1253      break;
1254    case tok::kw_bool:
1255    case tok::kw__Bool:
1256      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec,
1257                                     DiagID);
1258      break;
1259    case tok::kw__Decimal32:
1260      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec,
1261                                     DiagID);
1262      break;
1263    case tok::kw__Decimal64:
1264      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec,
1265                                     DiagID);
1266      break;
1267    case tok::kw__Decimal128:
1268      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec,
1269                                     DiagID);
1270      break;
1271
1272    // class-specifier:
1273    case tok::kw_class:
1274    case tok::kw_struct:
1275    case tok::kw_union: {
1276      tok::TokenKind Kind = Tok.getKind();
1277      ConsumeToken();
1278      ParseClassSpecifier(Kind, Loc, DS, TemplateInfo, AS);
1279      continue;
1280    }
1281
1282    // enum-specifier:
1283    case tok::kw_enum:
1284      ConsumeToken();
1285      ParseEnumSpecifier(Loc, DS, AS);
1286      continue;
1287
1288    // cv-qualifier:
1289    case tok::kw_const:
1290      isInvalid = DS.SetTypeQual(DeclSpec::TQ_const, Loc, PrevSpec, DiagID,
1291                                 getLang());
1292      break;
1293    case tok::kw_volatile:
1294      isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
1295                                 getLang());
1296      break;
1297    case tok::kw_restrict:
1298      isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
1299                                 getLang());
1300      break;
1301
1302    // C++ typename-specifier:
1303    case tok::kw_typename:
1304      if (TryAnnotateTypeOrScopeToken())
1305        continue;
1306      break;
1307
1308    // GNU typeof support.
1309    case tok::kw_typeof:
1310      ParseTypeofSpecifier(DS);
1311      continue;
1312
1313    case tok::kw_decltype:
1314      ParseDecltypeSpecifier(DS);
1315      continue;
1316
1317    case tok::less:
1318      // GCC ObjC supports types like "<SomeProtocol>" as a synonym for
1319      // "id<SomeProtocol>".  This is hopelessly old fashioned and dangerous,
1320      // but we support it.
1321      if (DS.hasTypeSpecifier() || !getLang().ObjC1)
1322        goto DoneWithDeclSpec;
1323
1324      {
1325        SourceLocation LAngleLoc, EndProtoLoc;
1326        llvm::SmallVector<DeclPtrTy, 8> ProtocolDecl;
1327        llvm::SmallVector<SourceLocation, 8> ProtocolLocs;
1328        ParseObjCProtocolReferences(ProtocolDecl, ProtocolLocs, false,
1329                                    LAngleLoc, EndProtoLoc);
1330        DS.setProtocolQualifiers(ProtocolDecl.data(), ProtocolDecl.size(),
1331                                 ProtocolLocs.data(), LAngleLoc);
1332        DS.SetRangeEnd(EndProtoLoc);
1333
1334        Diag(Loc, diag::warn_objc_protocol_qualifier_missing_id)
1335          << CodeModificationHint::CreateInsertion(Loc, "id")
1336          << SourceRange(Loc, EndProtoLoc);
1337        // Need to support trailing type qualifiers (e.g. "id<p> const").
1338        // If a type specifier follows, it will be diagnosed elsewhere.
1339        continue;
1340      }
1341    }
1342    // If the specifier wasn't legal, issue a diagnostic.
1343    if (isInvalid) {
1344      assert(PrevSpec && "Method did not return previous specifier!");
1345      assert(DiagID);
1346      Diag(Tok, DiagID) << PrevSpec;
1347    }
1348    DS.SetRangeEnd(Tok.getLocation());
1349    ConsumeToken();
1350  }
1351}
1352
1353/// ParseOptionalTypeSpecifier - Try to parse a single type-specifier. We
1354/// primarily follow the C++ grammar with additions for C99 and GNU,
1355/// which together subsume the C grammar. Note that the C++
1356/// type-specifier also includes the C type-qualifier (for const,
1357/// volatile, and C99 restrict). Returns true if a type-specifier was
1358/// found (and parsed), false otherwise.
1359///
1360///       type-specifier: [C++ 7.1.5]
1361///         simple-type-specifier
1362///         class-specifier
1363///         enum-specifier
1364///         elaborated-type-specifier  [TODO]
1365///         cv-qualifier
1366///
1367///       cv-qualifier: [C++ 7.1.5.1]
1368///         'const'
1369///         'volatile'
1370/// [C99]   'restrict'
1371///
1372///       simple-type-specifier: [ C++ 7.1.5.2]
1373///         '::'[opt] nested-name-specifier[opt] type-name [TODO]
1374///         '::'[opt] nested-name-specifier 'template' template-id [TODO]
1375///         'char'
1376///         'wchar_t'
1377///         'bool'
1378///         'short'
1379///         'int'
1380///         'long'
1381///         'signed'
1382///         'unsigned'
1383///         'float'
1384///         'double'
1385///         'void'
1386/// [C99]   '_Bool'
1387/// [C99]   '_Complex'
1388/// [C99]   '_Imaginary'  // Removed in TC2?
1389/// [GNU]   '_Decimal32'
1390/// [GNU]   '_Decimal64'
1391/// [GNU]   '_Decimal128'
1392/// [GNU]   typeof-specifier
1393/// [OBJC]  class-name objc-protocol-refs[opt]    [TODO]
1394/// [OBJC]  typedef-name objc-protocol-refs[opt]  [TODO]
1395/// [C++0x] 'decltype' ( expression )
1396bool Parser::ParseOptionalTypeSpecifier(DeclSpec &DS, bool& isInvalid,
1397                                        const char *&PrevSpec,
1398                                        unsigned &DiagID,
1399                                      const ParsedTemplateInfo &TemplateInfo) {
1400  SourceLocation Loc = Tok.getLocation();
1401
1402  switch (Tok.getKind()) {
1403  case tok::identifier:   // foo::bar
1404  case tok::kw_typename:  // typename foo::bar
1405    // Annotate typenames and C++ scope specifiers.  If we get one, just
1406    // recurse to handle whatever we get.
1407    if (TryAnnotateTypeOrScopeToken())
1408      return ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec, DiagID,
1409                                        TemplateInfo);
1410    // Otherwise, not a type specifier.
1411    return false;
1412  case tok::coloncolon:   // ::foo::bar
1413    if (NextToken().is(tok::kw_new) ||    // ::new
1414        NextToken().is(tok::kw_delete))   // ::delete
1415      return false;
1416
1417    // Annotate typenames and C++ scope specifiers.  If we get one, just
1418    // recurse to handle whatever we get.
1419    if (TryAnnotateTypeOrScopeToken())
1420      return ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec, DiagID,
1421                                        TemplateInfo);
1422    // Otherwise, not a type specifier.
1423    return false;
1424
1425  // simple-type-specifier:
1426  case tok::annot_typename: {
1427    if (Tok.getAnnotationValue())
1428      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
1429                                     DiagID, Tok.getAnnotationValue());
1430    else
1431      DS.SetTypeSpecError();
1432    DS.SetRangeEnd(Tok.getAnnotationEndLoc());
1433    ConsumeToken(); // The typename
1434
1435    // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
1436    // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
1437    // Objective-C interface.  If we don't have Objective-C or a '<', this is
1438    // just a normal reference to a typedef name.
1439    if (!Tok.is(tok::less) || !getLang().ObjC1)
1440      return true;
1441
1442    SourceLocation LAngleLoc, EndProtoLoc;
1443    llvm::SmallVector<DeclPtrTy, 8> ProtocolDecl;
1444    llvm::SmallVector<SourceLocation, 8> ProtocolLocs;
1445    ParseObjCProtocolReferences(ProtocolDecl, ProtocolLocs, false,
1446                                LAngleLoc, EndProtoLoc);
1447    DS.setProtocolQualifiers(ProtocolDecl.data(), ProtocolDecl.size(),
1448                             ProtocolLocs.data(), LAngleLoc);
1449
1450    DS.SetRangeEnd(EndProtoLoc);
1451    return true;
1452  }
1453
1454  case tok::kw_short:
1455    isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec, DiagID);
1456    break;
1457  case tok::kw_long:
1458    if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
1459      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec,
1460                                      DiagID);
1461    else
1462      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
1463                                      DiagID);
1464    break;
1465  case tok::kw_signed:
1466    isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec, DiagID);
1467    break;
1468  case tok::kw_unsigned:
1469    isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec,
1470                                   DiagID);
1471    break;
1472  case tok::kw__Complex:
1473    isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec,
1474                                      DiagID);
1475    break;
1476  case tok::kw__Imaginary:
1477    isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec,
1478                                      DiagID);
1479    break;
1480  case tok::kw_void:
1481    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec, DiagID);
1482    break;
1483  case tok::kw_char:
1484    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec, DiagID);
1485    break;
1486  case tok::kw_int:
1487    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec, DiagID);
1488    break;
1489  case tok::kw_float:
1490    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec, DiagID);
1491    break;
1492  case tok::kw_double:
1493    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec, DiagID);
1494    break;
1495  case tok::kw_wchar_t:
1496    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec, DiagID);
1497    break;
1498  case tok::kw_char16_t:
1499    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec, DiagID);
1500    break;
1501  case tok::kw_char32_t:
1502    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec, DiagID);
1503    break;
1504  case tok::kw_bool:
1505  case tok::kw__Bool:
1506    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec, DiagID);
1507    break;
1508  case tok::kw__Decimal32:
1509    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec,
1510                                   DiagID);
1511    break;
1512  case tok::kw__Decimal64:
1513    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec,
1514                                   DiagID);
1515    break;
1516  case tok::kw__Decimal128:
1517    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec,
1518                                   DiagID);
1519    break;
1520
1521  // class-specifier:
1522  case tok::kw_class:
1523  case tok::kw_struct:
1524  case tok::kw_union: {
1525    tok::TokenKind Kind = Tok.getKind();
1526    ConsumeToken();
1527    ParseClassSpecifier(Kind, Loc, DS, TemplateInfo);
1528    return true;
1529  }
1530
1531  // enum-specifier:
1532  case tok::kw_enum:
1533    ConsumeToken();
1534    ParseEnumSpecifier(Loc, DS);
1535    return true;
1536
1537  // cv-qualifier:
1538  case tok::kw_const:
1539    isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec,
1540                               DiagID, getLang());
1541    break;
1542  case tok::kw_volatile:
1543    isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec,
1544                               DiagID, getLang());
1545    break;
1546  case tok::kw_restrict:
1547    isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec,
1548                               DiagID, getLang());
1549    break;
1550
1551  // GNU typeof support.
1552  case tok::kw_typeof:
1553    ParseTypeofSpecifier(DS);
1554    return true;
1555
1556  // C++0x decltype support.
1557  case tok::kw_decltype:
1558    ParseDecltypeSpecifier(DS);
1559    return true;
1560
1561  // C++0x auto support.
1562  case tok::kw_auto:
1563    if (!getLang().CPlusPlus0x)
1564      return false;
1565
1566    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec, DiagID);
1567    break;
1568  case tok::kw___ptr64:
1569  case tok::kw___w64:
1570  case tok::kw___cdecl:
1571  case tok::kw___stdcall:
1572  case tok::kw___fastcall:
1573    DS.AddAttributes(ParseMicrosoftTypeAttributes());
1574    return true;
1575
1576  default:
1577    // Not a type-specifier; do nothing.
1578    return false;
1579  }
1580
1581  // If the specifier combination wasn't legal, issue a diagnostic.
1582  if (isInvalid) {
1583    assert(PrevSpec && "Method did not return previous specifier!");
1584    // Pick between error or extwarn.
1585    Diag(Tok, DiagID) << PrevSpec;
1586  }
1587  DS.SetRangeEnd(Tok.getLocation());
1588  ConsumeToken(); // whatever we parsed above.
1589  return true;
1590}
1591
1592/// ParseStructDeclaration - Parse a struct declaration without the terminating
1593/// semicolon.
1594///
1595///       struct-declaration:
1596///         specifier-qualifier-list struct-declarator-list
1597/// [GNU]   __extension__ struct-declaration
1598/// [GNU]   specifier-qualifier-list
1599///       struct-declarator-list:
1600///         struct-declarator
1601///         struct-declarator-list ',' struct-declarator
1602/// [GNU]   struct-declarator-list ',' attributes[opt] struct-declarator
1603///       struct-declarator:
1604///         declarator
1605/// [GNU]   declarator attributes[opt]
1606///         declarator[opt] ':' constant-expression
1607/// [GNU]   declarator[opt] ':' constant-expression attributes[opt]
1608///
1609void Parser::
1610ParseStructDeclaration(DeclSpec &DS, FieldCallback &Fields) {
1611  if (Tok.is(tok::kw___extension__)) {
1612    // __extension__ silences extension warnings in the subexpression.
1613    ExtensionRAIIObject O(Diags);  // Use RAII to do this.
1614    ConsumeToken();
1615    return ParseStructDeclaration(DS, Fields);
1616  }
1617
1618  // Parse the common specifier-qualifiers-list piece.
1619  SourceLocation DSStart = Tok.getLocation();
1620  ParseSpecifierQualifierList(DS);
1621
1622  // If there are no declarators, this is a free-standing declaration
1623  // specifier. Let the actions module cope with it.
1624  if (Tok.is(tok::semi)) {
1625    Actions.ParsedFreeStandingDeclSpec(CurScope, DS);
1626    return;
1627  }
1628
1629  // Read struct-declarators until we find the semicolon.
1630  bool FirstDeclarator = true;
1631  while (1) {
1632    ParsingDeclRAIIObject PD(*this);
1633    FieldDeclarator DeclaratorInfo(DS);
1634
1635    // Attributes are only allowed here on successive declarators.
1636    if (!FirstDeclarator && Tok.is(tok::kw___attribute)) {
1637      SourceLocation Loc;
1638      AttributeList *AttrList = ParseGNUAttributes(&Loc);
1639      DeclaratorInfo.D.AddAttributes(AttrList, Loc);
1640    }
1641
1642    /// struct-declarator: declarator
1643    /// struct-declarator: declarator[opt] ':' constant-expression
1644    if (Tok.isNot(tok::colon)) {
1645      // Don't parse FOO:BAR as if it were a typo for FOO::BAR.
1646      ColonProtectionRAIIObject X(*this);
1647      ParseDeclarator(DeclaratorInfo.D);
1648    }
1649
1650    if (Tok.is(tok::colon)) {
1651      ConsumeToken();
1652      OwningExprResult Res(ParseConstantExpression());
1653      if (Res.isInvalid())
1654        SkipUntil(tok::semi, true, true);
1655      else
1656        DeclaratorInfo.BitfieldSize = Res.release();
1657    }
1658
1659    // If attributes exist after the declarator, parse them.
1660    if (Tok.is(tok::kw___attribute)) {
1661      SourceLocation Loc;
1662      AttributeList *AttrList = ParseGNUAttributes(&Loc);
1663      DeclaratorInfo.D.AddAttributes(AttrList, Loc);
1664    }
1665
1666    // We're done with this declarator;  invoke the callback.
1667    DeclPtrTy D = Fields.invoke(DeclaratorInfo);
1668    PD.complete(D);
1669
1670    // If we don't have a comma, it is either the end of the list (a ';')
1671    // or an error, bail out.
1672    if (Tok.isNot(tok::comma))
1673      return;
1674
1675    // Consume the comma.
1676    ConsumeToken();
1677
1678    FirstDeclarator = false;
1679  }
1680}
1681
1682/// ParseStructUnionBody
1683///       struct-contents:
1684///         struct-declaration-list
1685/// [EXT]   empty
1686/// [GNU]   "struct-declaration-list" without terminatoring ';'
1687///       struct-declaration-list:
1688///         struct-declaration
1689///         struct-declaration-list struct-declaration
1690/// [OBC]   '@' 'defs' '(' class-name ')'
1691///
1692void Parser::ParseStructUnionBody(SourceLocation RecordLoc,
1693                                  unsigned TagType, DeclPtrTy TagDecl) {
1694  PrettyStackTraceActionsDecl CrashInfo(TagDecl, RecordLoc, Actions,
1695                                        PP.getSourceManager(),
1696                                        "parsing struct/union body");
1697
1698  SourceLocation LBraceLoc = ConsumeBrace();
1699
1700  ParseScope StructScope(this, Scope::ClassScope|Scope::DeclScope);
1701  Actions.ActOnTagStartDefinition(CurScope, TagDecl);
1702
1703  // Empty structs are an extension in C (C99 6.7.2.1p7), but are allowed in
1704  // C++.
1705  if (Tok.is(tok::r_brace) && !getLang().CPlusPlus)
1706    Diag(Tok, diag::ext_empty_struct_union_enum)
1707      << DeclSpec::getSpecifierName((DeclSpec::TST)TagType);
1708
1709  llvm::SmallVector<DeclPtrTy, 32> FieldDecls;
1710
1711  // While we still have something to read, read the declarations in the struct.
1712  while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
1713    // Each iteration of this loop reads one struct-declaration.
1714
1715    // Check for extraneous top-level semicolon.
1716    if (Tok.is(tok::semi)) {
1717      Diag(Tok, diag::ext_extra_struct_semi)
1718        << CodeModificationHint::CreateRemoval(Tok.getLocation());
1719      ConsumeToken();
1720      continue;
1721    }
1722
1723    // Parse all the comma separated declarators.
1724    DeclSpec DS;
1725
1726    if (!Tok.is(tok::at)) {
1727      struct CFieldCallback : FieldCallback {
1728        Parser &P;
1729        DeclPtrTy TagDecl;
1730        llvm::SmallVectorImpl<DeclPtrTy> &FieldDecls;
1731
1732        CFieldCallback(Parser &P, DeclPtrTy TagDecl,
1733                       llvm::SmallVectorImpl<DeclPtrTy> &FieldDecls) :
1734          P(P), TagDecl(TagDecl), FieldDecls(FieldDecls) {}
1735
1736        virtual DeclPtrTy invoke(FieldDeclarator &FD) {
1737          // Install the declarator into the current TagDecl.
1738          DeclPtrTy Field = P.Actions.ActOnField(P.CurScope, TagDecl,
1739                              FD.D.getDeclSpec().getSourceRange().getBegin(),
1740                                                 FD.D, FD.BitfieldSize);
1741          FieldDecls.push_back(Field);
1742          return Field;
1743        }
1744      } Callback(*this, TagDecl, FieldDecls);
1745
1746      ParseStructDeclaration(DS, Callback);
1747    } else { // Handle @defs
1748      ConsumeToken();
1749      if (!Tok.isObjCAtKeyword(tok::objc_defs)) {
1750        Diag(Tok, diag::err_unexpected_at);
1751        SkipUntil(tok::semi, true, true);
1752        continue;
1753      }
1754      ConsumeToken();
1755      ExpectAndConsume(tok::l_paren, diag::err_expected_lparen);
1756      if (!Tok.is(tok::identifier)) {
1757        Diag(Tok, diag::err_expected_ident);
1758        SkipUntil(tok::semi, true, true);
1759        continue;
1760      }
1761      llvm::SmallVector<DeclPtrTy, 16> Fields;
1762      Actions.ActOnDefs(CurScope, TagDecl, Tok.getLocation(),
1763                        Tok.getIdentifierInfo(), Fields);
1764      FieldDecls.insert(FieldDecls.end(), Fields.begin(), Fields.end());
1765      ConsumeToken();
1766      ExpectAndConsume(tok::r_paren, diag::err_expected_rparen);
1767    }
1768
1769    if (Tok.is(tok::semi)) {
1770      ConsumeToken();
1771    } else if (Tok.is(tok::r_brace)) {
1772      Diag(Tok, diag::ext_expected_semi_decl_list);
1773      break;
1774    } else {
1775      Diag(Tok, diag::err_expected_semi_decl_list);
1776      // Skip to end of block or statement
1777      SkipUntil(tok::r_brace, true, true);
1778    }
1779  }
1780
1781  SourceLocation RBraceLoc = MatchRHSPunctuation(tok::r_brace, LBraceLoc);
1782
1783  AttributeList *AttrList = 0;
1784  // If attributes exist after struct contents, parse them.
1785  if (Tok.is(tok::kw___attribute))
1786    AttrList = ParseGNUAttributes();
1787
1788  Actions.ActOnFields(CurScope,
1789                      RecordLoc, TagDecl, FieldDecls.data(), FieldDecls.size(),
1790                      LBraceLoc, RBraceLoc,
1791                      AttrList);
1792  StructScope.Exit();
1793  Actions.ActOnTagFinishDefinition(CurScope, TagDecl, RBraceLoc);
1794}
1795
1796
1797/// ParseEnumSpecifier
1798///       enum-specifier: [C99 6.7.2.2]
1799///         'enum' identifier[opt] '{' enumerator-list '}'
1800///[C99/C++]'enum' identifier[opt] '{' enumerator-list ',' '}'
1801/// [GNU]   'enum' attributes[opt] identifier[opt] '{' enumerator-list ',' [opt]
1802///                                                 '}' attributes[opt]
1803///         'enum' identifier
1804/// [GNU]   'enum' attributes[opt] identifier
1805///
1806/// [C++] elaborated-type-specifier:
1807/// [C++]   'enum' '::'[opt] nested-name-specifier[opt] identifier
1808///
1809void Parser::ParseEnumSpecifier(SourceLocation StartLoc, DeclSpec &DS,
1810                                AccessSpecifier AS) {
1811  // Parse the tag portion of this.
1812  if (Tok.is(tok::code_completion)) {
1813    // Code completion for an enum name.
1814    Actions.CodeCompleteTag(CurScope, DeclSpec::TST_enum);
1815    ConsumeToken();
1816  }
1817
1818  AttributeList *Attr = 0;
1819  // If attributes exist after tag, parse them.
1820  if (Tok.is(tok::kw___attribute))
1821    Attr = ParseGNUAttributes();
1822
1823  CXXScopeSpec SS;
1824  if (getLang().CPlusPlus && ParseOptionalCXXScopeSpecifier(SS, 0, false)) {
1825    if (Tok.isNot(tok::identifier)) {
1826      Diag(Tok, diag::err_expected_ident);
1827      if (Tok.isNot(tok::l_brace)) {
1828        // Has no name and is not a definition.
1829        // Skip the rest of this declarator, up until the comma or semicolon.
1830        SkipUntil(tok::comma, true);
1831        return;
1832      }
1833    }
1834  }
1835
1836  // Must have either 'enum name' or 'enum {...}'.
1837  if (Tok.isNot(tok::identifier) && Tok.isNot(tok::l_brace)) {
1838    Diag(Tok, diag::err_expected_ident_lbrace);
1839
1840    // Skip the rest of this declarator, up until the comma or semicolon.
1841    SkipUntil(tok::comma, true);
1842    return;
1843  }
1844
1845  // If an identifier is present, consume and remember it.
1846  IdentifierInfo *Name = 0;
1847  SourceLocation NameLoc;
1848  if (Tok.is(tok::identifier)) {
1849    Name = Tok.getIdentifierInfo();
1850    NameLoc = ConsumeToken();
1851  }
1852
1853  // There are three options here.  If we have 'enum foo;', then this is a
1854  // forward declaration.  If we have 'enum foo {...' then this is a
1855  // definition. Otherwise we have something like 'enum foo xyz', a reference.
1856  //
1857  // This is needed to handle stuff like this right (C99 6.7.2.3p11):
1858  // enum foo {..};  void bar() { enum foo; }    <- new foo in bar.
1859  // enum foo {..};  void bar() { enum foo x; }  <- use of old foo.
1860  //
1861  Action::TagUseKind TUK;
1862  if (Tok.is(tok::l_brace))
1863    TUK = Action::TUK_Definition;
1864  else if (Tok.is(tok::semi))
1865    TUK = Action::TUK_Declaration;
1866  else
1867    TUK = Action::TUK_Reference;
1868  bool Owned = false;
1869  bool IsDependent = false;
1870  DeclPtrTy TagDecl = Actions.ActOnTag(CurScope, DeclSpec::TST_enum, TUK,
1871                                       StartLoc, SS, Name, NameLoc, Attr, AS,
1872                                       Action::MultiTemplateParamsArg(Actions),
1873                                       Owned, IsDependent);
1874  assert(!IsDependent && "didn't expect dependent enum");
1875
1876  if (Tok.is(tok::l_brace))
1877    ParseEnumBody(StartLoc, TagDecl);
1878
1879  // TODO: semantic analysis on the declspec for enums.
1880  const char *PrevSpec = 0;
1881  unsigned DiagID;
1882  if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc, PrevSpec, DiagID,
1883                         TagDecl.getAs<void>(), Owned))
1884    Diag(StartLoc, DiagID) << PrevSpec;
1885}
1886
1887/// ParseEnumBody - Parse a {} enclosed enumerator-list.
1888///       enumerator-list:
1889///         enumerator
1890///         enumerator-list ',' enumerator
1891///       enumerator:
1892///         enumeration-constant
1893///         enumeration-constant '=' constant-expression
1894///       enumeration-constant:
1895///         identifier
1896///
1897void Parser::ParseEnumBody(SourceLocation StartLoc, DeclPtrTy EnumDecl) {
1898  // Enter the scope of the enum body and start the definition.
1899  ParseScope EnumScope(this, Scope::DeclScope);
1900  Actions.ActOnTagStartDefinition(CurScope, EnumDecl);
1901
1902  SourceLocation LBraceLoc = ConsumeBrace();
1903
1904  // C does not allow an empty enumerator-list, C++ does [dcl.enum].
1905  if (Tok.is(tok::r_brace) && !getLang().CPlusPlus)
1906    Diag(Tok, diag::ext_empty_struct_union_enum) << "enum";
1907
1908  llvm::SmallVector<DeclPtrTy, 32> EnumConstantDecls;
1909
1910  DeclPtrTy LastEnumConstDecl;
1911
1912  // Parse the enumerator-list.
1913  while (Tok.is(tok::identifier)) {
1914    IdentifierInfo *Ident = Tok.getIdentifierInfo();
1915    SourceLocation IdentLoc = ConsumeToken();
1916
1917    SourceLocation EqualLoc;
1918    OwningExprResult AssignedVal(Actions);
1919    if (Tok.is(tok::equal)) {
1920      EqualLoc = ConsumeToken();
1921      AssignedVal = ParseConstantExpression();
1922      if (AssignedVal.isInvalid())
1923        SkipUntil(tok::comma, tok::r_brace, true, true);
1924    }
1925
1926    // Install the enumerator constant into EnumDecl.
1927    DeclPtrTy EnumConstDecl = Actions.ActOnEnumConstant(CurScope, EnumDecl,
1928                                                        LastEnumConstDecl,
1929                                                        IdentLoc, Ident,
1930                                                        EqualLoc,
1931                                                        AssignedVal.release());
1932    EnumConstantDecls.push_back(EnumConstDecl);
1933    LastEnumConstDecl = EnumConstDecl;
1934
1935    if (Tok.isNot(tok::comma))
1936      break;
1937    SourceLocation CommaLoc = ConsumeToken();
1938
1939    if (Tok.isNot(tok::identifier) &&
1940        !(getLang().C99 || getLang().CPlusPlus0x))
1941      Diag(CommaLoc, diag::ext_enumerator_list_comma)
1942        << getLang().CPlusPlus
1943        << CodeModificationHint::CreateRemoval(CommaLoc);
1944  }
1945
1946  // Eat the }.
1947  SourceLocation RBraceLoc = MatchRHSPunctuation(tok::r_brace, LBraceLoc);
1948
1949  AttributeList *Attr = 0;
1950  // If attributes exist after the identifier list, parse them.
1951  if (Tok.is(tok::kw___attribute))
1952    Attr = ParseGNUAttributes(); // FIXME: where do they do?
1953
1954  Actions.ActOnEnumBody(StartLoc, LBraceLoc, RBraceLoc, EnumDecl,
1955                        EnumConstantDecls.data(), EnumConstantDecls.size(),
1956                        CurScope, Attr);
1957
1958  EnumScope.Exit();
1959  Actions.ActOnTagFinishDefinition(CurScope, EnumDecl, RBraceLoc);
1960}
1961
1962/// isTypeSpecifierQualifier - Return true if the current token could be the
1963/// start of a type-qualifier-list.
1964bool Parser::isTypeQualifier() const {
1965  switch (Tok.getKind()) {
1966  default: return false;
1967    // type-qualifier
1968  case tok::kw_const:
1969  case tok::kw_volatile:
1970  case tok::kw_restrict:
1971    return true;
1972  }
1973}
1974
1975/// isTypeSpecifierQualifier - Return true if the current token could be the
1976/// start of a specifier-qualifier-list.
1977bool Parser::isTypeSpecifierQualifier() {
1978  switch (Tok.getKind()) {
1979  default: return false;
1980
1981  case tok::identifier:   // foo::bar
1982  case tok::kw_typename:  // typename T::type
1983    // Annotate typenames and C++ scope specifiers.  If we get one, just
1984    // recurse to handle whatever we get.
1985    if (TryAnnotateTypeOrScopeToken())
1986      return isTypeSpecifierQualifier();
1987    // Otherwise, not a type specifier.
1988    return false;
1989
1990  case tok::coloncolon:   // ::foo::bar
1991    if (NextToken().is(tok::kw_new) ||    // ::new
1992        NextToken().is(tok::kw_delete))   // ::delete
1993      return false;
1994
1995    // Annotate typenames and C++ scope specifiers.  If we get one, just
1996    // recurse to handle whatever we get.
1997    if (TryAnnotateTypeOrScopeToken())
1998      return isTypeSpecifierQualifier();
1999    // Otherwise, not a type specifier.
2000    return false;
2001
2002    // GNU attributes support.
2003  case tok::kw___attribute:
2004    // GNU typeof support.
2005  case tok::kw_typeof:
2006
2007    // type-specifiers
2008  case tok::kw_short:
2009  case tok::kw_long:
2010  case tok::kw_signed:
2011  case tok::kw_unsigned:
2012  case tok::kw__Complex:
2013  case tok::kw__Imaginary:
2014  case tok::kw_void:
2015  case tok::kw_char:
2016  case tok::kw_wchar_t:
2017  case tok::kw_char16_t:
2018  case tok::kw_char32_t:
2019  case tok::kw_int:
2020  case tok::kw_float:
2021  case tok::kw_double:
2022  case tok::kw_bool:
2023  case tok::kw__Bool:
2024  case tok::kw__Decimal32:
2025  case tok::kw__Decimal64:
2026  case tok::kw__Decimal128:
2027
2028    // struct-or-union-specifier (C99) or class-specifier (C++)
2029  case tok::kw_class:
2030  case tok::kw_struct:
2031  case tok::kw_union:
2032    // enum-specifier
2033  case tok::kw_enum:
2034
2035    // type-qualifier
2036  case tok::kw_const:
2037  case tok::kw_volatile:
2038  case tok::kw_restrict:
2039
2040    // typedef-name
2041  case tok::annot_typename:
2042    return true;
2043
2044    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
2045  case tok::less:
2046    return getLang().ObjC1;
2047
2048  case tok::kw___cdecl:
2049  case tok::kw___stdcall:
2050  case tok::kw___fastcall:
2051  case tok::kw___w64:
2052  case tok::kw___ptr64:
2053    return true;
2054  }
2055}
2056
2057/// isDeclarationSpecifier() - Return true if the current token is part of a
2058/// declaration specifier.
2059bool Parser::isDeclarationSpecifier() {
2060  switch (Tok.getKind()) {
2061  default: return false;
2062
2063  case tok::identifier:   // foo::bar
2064    // Unfortunate hack to support "Class.factoryMethod" notation.
2065    if (getLang().ObjC1 && NextToken().is(tok::period))
2066      return false;
2067    // Fall through
2068
2069  case tok::kw_typename: // typename T::type
2070    // Annotate typenames and C++ scope specifiers.  If we get one, just
2071    // recurse to handle whatever we get.
2072    if (TryAnnotateTypeOrScopeToken())
2073      return isDeclarationSpecifier();
2074    // Otherwise, not a declaration specifier.
2075    return false;
2076  case tok::coloncolon:   // ::foo::bar
2077    if (NextToken().is(tok::kw_new) ||    // ::new
2078        NextToken().is(tok::kw_delete))   // ::delete
2079      return false;
2080
2081    // Annotate typenames and C++ scope specifiers.  If we get one, just
2082    // recurse to handle whatever we get.
2083    if (TryAnnotateTypeOrScopeToken())
2084      return isDeclarationSpecifier();
2085    // Otherwise, not a declaration specifier.
2086    return false;
2087
2088    // storage-class-specifier
2089  case tok::kw_typedef:
2090  case tok::kw_extern:
2091  case tok::kw___private_extern__:
2092  case tok::kw_static:
2093  case tok::kw_auto:
2094  case tok::kw_register:
2095  case tok::kw___thread:
2096
2097    // type-specifiers
2098  case tok::kw_short:
2099  case tok::kw_long:
2100  case tok::kw_signed:
2101  case tok::kw_unsigned:
2102  case tok::kw__Complex:
2103  case tok::kw__Imaginary:
2104  case tok::kw_void:
2105  case tok::kw_char:
2106  case tok::kw_wchar_t:
2107  case tok::kw_char16_t:
2108  case tok::kw_char32_t:
2109
2110  case tok::kw_int:
2111  case tok::kw_float:
2112  case tok::kw_double:
2113  case tok::kw_bool:
2114  case tok::kw__Bool:
2115  case tok::kw__Decimal32:
2116  case tok::kw__Decimal64:
2117  case tok::kw__Decimal128:
2118
2119    // struct-or-union-specifier (C99) or class-specifier (C++)
2120  case tok::kw_class:
2121  case tok::kw_struct:
2122  case tok::kw_union:
2123    // enum-specifier
2124  case tok::kw_enum:
2125
2126    // type-qualifier
2127  case tok::kw_const:
2128  case tok::kw_volatile:
2129  case tok::kw_restrict:
2130
2131    // function-specifier
2132  case tok::kw_inline:
2133  case tok::kw_virtual:
2134  case tok::kw_explicit:
2135
2136    // typedef-name
2137  case tok::annot_typename:
2138
2139    // GNU typeof support.
2140  case tok::kw_typeof:
2141
2142    // GNU attributes.
2143  case tok::kw___attribute:
2144    return true;
2145
2146    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
2147  case tok::less:
2148    return getLang().ObjC1;
2149
2150  case tok::kw___declspec:
2151  case tok::kw___cdecl:
2152  case tok::kw___stdcall:
2153  case tok::kw___fastcall:
2154  case tok::kw___w64:
2155  case tok::kw___ptr64:
2156  case tok::kw___forceinline:
2157    return true;
2158  }
2159}
2160
2161bool Parser::isConstructorDeclarator() {
2162  TentativeParsingAction TPA(*this);
2163
2164  // Parse the C++ scope specifier.
2165  CXXScopeSpec SS;
2166  ParseOptionalCXXScopeSpecifier(SS, 0, true);
2167
2168  // Parse the constructor name.
2169  if (Tok.is(tok::identifier) || Tok.is(tok::annot_template_id)) {
2170    // We already know that we have a constructor name; just consume
2171    // the token.
2172    ConsumeToken();
2173  } else {
2174    TPA.Revert();
2175    return false;
2176  }
2177
2178  // Current class name must be followed by a left parentheses.
2179  if (Tok.isNot(tok::l_paren)) {
2180    TPA.Revert();
2181    return false;
2182  }
2183  ConsumeParen();
2184
2185  // A right parentheses or ellipsis signals that we have a constructor.
2186  if (Tok.is(tok::r_paren) || Tok.is(tok::ellipsis)) {
2187    TPA.Revert();
2188    return true;
2189  }
2190
2191  // If we need to, enter the specified scope.
2192  DeclaratorScopeObj DeclScopeObj(*this, SS);
2193  if (SS.isSet() && Actions.ShouldEnterDeclaratorScope(CurScope, SS))
2194    DeclScopeObj.EnterDeclaratorScope();
2195
2196  // Check whether the next token(s) are part of a declaration
2197  // specifier, in which case we have the start of a parameter and,
2198  // therefore, we know that this is a constructor.
2199  bool IsConstructor = isDeclarationSpecifier();
2200  TPA.Revert();
2201  return IsConstructor;
2202}
2203
2204/// ParseTypeQualifierListOpt
2205///       type-qualifier-list: [C99 6.7.5]
2206///         type-qualifier
2207/// [GNU]   attributes                        [ only if AttributesAllowed=true ]
2208///         type-qualifier-list type-qualifier
2209/// [GNU]   type-qualifier-list attributes    [ only if AttributesAllowed=true ]
2210/// [C++0x] attribute-specifier[opt] is allowed before cv-qualifier-seq
2211///           if CXX0XAttributesAllowed = true
2212///
2213void Parser::ParseTypeQualifierListOpt(DeclSpec &DS, bool GNUAttributesAllowed,
2214                                       bool CXX0XAttributesAllowed) {
2215  if (getLang().CPlusPlus0x && isCXX0XAttributeSpecifier()) {
2216    SourceLocation Loc = Tok.getLocation();
2217    CXX0XAttributeList Attr = ParseCXX0XAttributes();
2218    if (CXX0XAttributesAllowed)
2219      DS.AddAttributes(Attr.AttrList);
2220    else
2221      Diag(Loc, diag::err_attributes_not_allowed);
2222  }
2223
2224  while (1) {
2225    bool isInvalid = false;
2226    const char *PrevSpec = 0;
2227    unsigned DiagID = 0;
2228    SourceLocation Loc = Tok.getLocation();
2229
2230    switch (Tok.getKind()) {
2231    case tok::kw_const:
2232      isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec, DiagID,
2233                                 getLang());
2234      break;
2235    case tok::kw_volatile:
2236      isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
2237                                 getLang());
2238      break;
2239    case tok::kw_restrict:
2240      isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
2241                                 getLang());
2242      break;
2243    case tok::kw___w64:
2244    case tok::kw___ptr64:
2245    case tok::kw___cdecl:
2246    case tok::kw___stdcall:
2247    case tok::kw___fastcall:
2248      if (GNUAttributesAllowed) {
2249        DS.AddAttributes(ParseMicrosoftTypeAttributes());
2250        continue;
2251      }
2252      goto DoneWithTypeQuals;
2253    case tok::kw___attribute:
2254      if (GNUAttributesAllowed) {
2255        DS.AddAttributes(ParseGNUAttributes());
2256        continue; // do *not* consume the next token!
2257      }
2258      // otherwise, FALL THROUGH!
2259    default:
2260      DoneWithTypeQuals:
2261      // If this is not a type-qualifier token, we're done reading type
2262      // qualifiers.  First verify that DeclSpec's are consistent.
2263      DS.Finish(Diags, PP);
2264      return;
2265    }
2266
2267    // If the specifier combination wasn't legal, issue a diagnostic.
2268    if (isInvalid) {
2269      assert(PrevSpec && "Method did not return previous specifier!");
2270      Diag(Tok, DiagID) << PrevSpec;
2271    }
2272    ConsumeToken();
2273  }
2274}
2275
2276
2277/// ParseDeclarator - Parse and verify a newly-initialized declarator.
2278///
2279void Parser::ParseDeclarator(Declarator &D) {
2280  /// This implements the 'declarator' production in the C grammar, then checks
2281  /// for well-formedness and issues diagnostics.
2282  ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
2283}
2284
2285/// ParseDeclaratorInternal - Parse a C or C++ declarator. The direct-declarator
2286/// is parsed by the function passed to it. Pass null, and the direct-declarator
2287/// isn't parsed at all, making this function effectively parse the C++
2288/// ptr-operator production.
2289///
2290///       declarator: [C99 6.7.5] [C++ 8p4, dcl.decl]
2291/// [C]     pointer[opt] direct-declarator
2292/// [C++]   direct-declarator
2293/// [C++]   ptr-operator declarator
2294///
2295///       pointer: [C99 6.7.5]
2296///         '*' type-qualifier-list[opt]
2297///         '*' type-qualifier-list[opt] pointer
2298///
2299///       ptr-operator:
2300///         '*' cv-qualifier-seq[opt]
2301///         '&'
2302/// [C++0x] '&&'
2303/// [GNU]   '&' restrict[opt] attributes[opt]
2304/// [GNU?]  '&&' restrict[opt] attributes[opt]
2305///         '::'[opt] nested-name-specifier '*' cv-qualifier-seq[opt]
2306void Parser::ParseDeclaratorInternal(Declarator &D,
2307                                     DirectDeclParseFunction DirectDeclParser) {
2308  if (Diags.hasAllExtensionsSilenced())
2309    D.setExtension();
2310  // C++ member pointers start with a '::' or a nested-name.
2311  // Member pointers get special handling, since there's no place for the
2312  // scope spec in the generic path below.
2313  if (getLang().CPlusPlus &&
2314      (Tok.is(tok::coloncolon) || Tok.is(tok::identifier) ||
2315       Tok.is(tok::annot_cxxscope))) {
2316    CXXScopeSpec SS;
2317    if (ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/0, true)) {
2318      if (Tok.isNot(tok::star)) {
2319        // The scope spec really belongs to the direct-declarator.
2320        D.getCXXScopeSpec() = SS;
2321        if (DirectDeclParser)
2322          (this->*DirectDeclParser)(D);
2323        return;
2324      }
2325
2326      SourceLocation Loc = ConsumeToken();
2327      D.SetRangeEnd(Loc);
2328      DeclSpec DS;
2329      ParseTypeQualifierListOpt(DS);
2330      D.ExtendWithDeclSpec(DS);
2331
2332      // Recurse to parse whatever is left.
2333      ParseDeclaratorInternal(D, DirectDeclParser);
2334
2335      // Sema will have to catch (syntactically invalid) pointers into global
2336      // scope. It has to catch pointers into namespace scope anyway.
2337      D.AddTypeInfo(DeclaratorChunk::getMemberPointer(SS,DS.getTypeQualifiers(),
2338                                                      Loc, DS.TakeAttributes()),
2339                    /* Don't replace range end. */SourceLocation());
2340      return;
2341    }
2342  }
2343
2344  tok::TokenKind Kind = Tok.getKind();
2345  // Not a pointer, C++ reference, or block.
2346  if (Kind != tok::star && Kind != tok::caret &&
2347      (Kind != tok::amp || !getLang().CPlusPlus) &&
2348      // We parse rvalue refs in C++03, because otherwise the errors are scary.
2349      (Kind != tok::ampamp || !getLang().CPlusPlus)) {
2350    if (DirectDeclParser)
2351      (this->*DirectDeclParser)(D);
2352    return;
2353  }
2354
2355  // Otherwise, '*' -> pointer, '^' -> block, '&' -> lvalue reference,
2356  // '&&' -> rvalue reference
2357  SourceLocation Loc = ConsumeToken();  // Eat the *, ^, & or &&.
2358  D.SetRangeEnd(Loc);
2359
2360  if (Kind == tok::star || Kind == tok::caret) {
2361    // Is a pointer.
2362    DeclSpec DS;
2363
2364    ParseTypeQualifierListOpt(DS);
2365    D.ExtendWithDeclSpec(DS);
2366
2367    // Recursively parse the declarator.
2368    ParseDeclaratorInternal(D, DirectDeclParser);
2369    if (Kind == tok::star)
2370      // Remember that we parsed a pointer type, and remember the type-quals.
2371      D.AddTypeInfo(DeclaratorChunk::getPointer(DS.getTypeQualifiers(), Loc,
2372                                                DS.TakeAttributes()),
2373                    SourceLocation());
2374    else
2375      // Remember that we parsed a Block type, and remember the type-quals.
2376      D.AddTypeInfo(DeclaratorChunk::getBlockPointer(DS.getTypeQualifiers(),
2377                                                     Loc, DS.TakeAttributes()),
2378                    SourceLocation());
2379  } else {
2380    // Is a reference
2381    DeclSpec DS;
2382
2383    // Complain about rvalue references in C++03, but then go on and build
2384    // the declarator.
2385    if (Kind == tok::ampamp && !getLang().CPlusPlus0x)
2386      Diag(Loc, diag::err_rvalue_reference);
2387
2388    // C++ 8.3.2p1: cv-qualified references are ill-formed except when the
2389    // cv-qualifiers are introduced through the use of a typedef or of a
2390    // template type argument, in which case the cv-qualifiers are ignored.
2391    //
2392    // [GNU] Retricted references are allowed.
2393    // [GNU] Attributes on references are allowed.
2394    // [C++0x] Attributes on references are not allowed.
2395    ParseTypeQualifierListOpt(DS, true, false);
2396    D.ExtendWithDeclSpec(DS);
2397
2398    if (DS.getTypeQualifiers() != DeclSpec::TQ_unspecified) {
2399      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2400        Diag(DS.getConstSpecLoc(),
2401             diag::err_invalid_reference_qualifier_application) << "const";
2402      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2403        Diag(DS.getVolatileSpecLoc(),
2404             diag::err_invalid_reference_qualifier_application) << "volatile";
2405    }
2406
2407    // Recursively parse the declarator.
2408    ParseDeclaratorInternal(D, DirectDeclParser);
2409
2410    if (D.getNumTypeObjects() > 0) {
2411      // C++ [dcl.ref]p4: There shall be no references to references.
2412      DeclaratorChunk& InnerChunk = D.getTypeObject(D.getNumTypeObjects() - 1);
2413      if (InnerChunk.Kind == DeclaratorChunk::Reference) {
2414        if (const IdentifierInfo *II = D.getIdentifier())
2415          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
2416           << II;
2417        else
2418          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
2419            << "type name";
2420
2421        // Once we've complained about the reference-to-reference, we
2422        // can go ahead and build the (technically ill-formed)
2423        // declarator: reference collapsing will take care of it.
2424      }
2425    }
2426
2427    // Remember that we parsed a reference type. It doesn't have type-quals.
2428    D.AddTypeInfo(DeclaratorChunk::getReference(DS.getTypeQualifiers(), Loc,
2429                                                DS.TakeAttributes(),
2430                                                Kind == tok::amp),
2431                  SourceLocation());
2432  }
2433}
2434
2435/// ParseDirectDeclarator
2436///       direct-declarator: [C99 6.7.5]
2437/// [C99]   identifier
2438///         '(' declarator ')'
2439/// [GNU]   '(' attributes declarator ')'
2440/// [C90]   direct-declarator '[' constant-expression[opt] ']'
2441/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
2442/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
2443/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
2444/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
2445///         direct-declarator '(' parameter-type-list ')'
2446///         direct-declarator '(' identifier-list[opt] ')'
2447/// [GNU]   direct-declarator '(' parameter-forward-declarations
2448///                    parameter-type-list[opt] ')'
2449/// [C++]   direct-declarator '(' parameter-declaration-clause ')'
2450///                    cv-qualifier-seq[opt] exception-specification[opt]
2451/// [C++]   declarator-id
2452///
2453///       declarator-id: [C++ 8]
2454///         id-expression
2455///         '::'[opt] nested-name-specifier[opt] type-name
2456///
2457///       id-expression: [C++ 5.1]
2458///         unqualified-id
2459///         qualified-id
2460///
2461///       unqualified-id: [C++ 5.1]
2462///         identifier
2463///         operator-function-id
2464///         conversion-function-id
2465///          '~' class-name
2466///         template-id
2467///
2468void Parser::ParseDirectDeclarator(Declarator &D) {
2469  DeclaratorScopeObj DeclScopeObj(*this, D.getCXXScopeSpec());
2470
2471  if (getLang().CPlusPlus && D.mayHaveIdentifier()) {
2472    // ParseDeclaratorInternal might already have parsed the scope.
2473    bool afterCXXScope = D.getCXXScopeSpec().isSet() ||
2474      ParseOptionalCXXScopeSpecifier(D.getCXXScopeSpec(), /*ObjectType=*/0,
2475                                     true);
2476    if (afterCXXScope) {
2477      if (Actions.ShouldEnterDeclaratorScope(CurScope, D.getCXXScopeSpec()))
2478        // Change the declaration context for name lookup, until this function
2479        // is exited (and the declarator has been parsed).
2480        DeclScopeObj.EnterDeclaratorScope();
2481    }
2482
2483    if (Tok.is(tok::identifier) || Tok.is(tok::kw_operator) ||
2484        Tok.is(tok::annot_template_id) || Tok.is(tok::tilde)) {
2485      // We found something that indicates the start of an unqualified-id.
2486      // Parse that unqualified-id.
2487      bool AllowConstructorName
2488        = ((D.getCXXScopeSpec().isSet() &&
2489            D.getContext() == Declarator::FileContext) ||
2490           (!D.getCXXScopeSpec().isSet() &&
2491            D.getContext() == Declarator::MemberContext)) &&
2492        !D.getDeclSpec().hasTypeSpecifier();
2493      if (ParseUnqualifiedId(D.getCXXScopeSpec(),
2494                             /*EnteringContext=*/true,
2495                             /*AllowDestructorName=*/true,
2496                             AllowConstructorName,
2497                             /*ObjectType=*/0,
2498                             D.getName())) {
2499        D.SetIdentifier(0, Tok.getLocation());
2500        D.setInvalidType(true);
2501      } else {
2502        // Parsed the unqualified-id; update range information and move along.
2503        if (D.getSourceRange().getBegin().isInvalid())
2504          D.SetRangeBegin(D.getName().getSourceRange().getBegin());
2505        D.SetRangeEnd(D.getName().getSourceRange().getEnd());
2506      }
2507      goto PastIdentifier;
2508    }
2509  } else if (Tok.is(tok::identifier) && D.mayHaveIdentifier()) {
2510    assert(!getLang().CPlusPlus &&
2511           "There's a C++-specific check for tok::identifier above");
2512    assert(Tok.getIdentifierInfo() && "Not an identifier?");
2513    D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
2514    ConsumeToken();
2515    goto PastIdentifier;
2516  }
2517
2518  if (Tok.is(tok::l_paren)) {
2519    // direct-declarator: '(' declarator ')'
2520    // direct-declarator: '(' attributes declarator ')'
2521    // Example: 'char (*X)'   or 'int (*XX)(void)'
2522    ParseParenDeclarator(D);
2523
2524    // If the declarator was parenthesized, we entered the declarator
2525    // scope when parsing the parenthesized declarator, then exited
2526    // the scope already. Re-enter the scope, if we need to.
2527    if (D.getCXXScopeSpec().isSet()) {
2528      if (Actions.ShouldEnterDeclaratorScope(CurScope, D.getCXXScopeSpec()))
2529        // Change the declaration context for name lookup, until this function
2530        // is exited (and the declarator has been parsed).
2531        DeclScopeObj.EnterDeclaratorScope();
2532    }
2533  } else if (D.mayOmitIdentifier()) {
2534    // This could be something simple like "int" (in which case the declarator
2535    // portion is empty), if an abstract-declarator is allowed.
2536    D.SetIdentifier(0, Tok.getLocation());
2537  } else {
2538    if (D.getContext() == Declarator::MemberContext)
2539      Diag(Tok, diag::err_expected_member_name_or_semi)
2540        << D.getDeclSpec().getSourceRange();
2541    else if (getLang().CPlusPlus)
2542      Diag(Tok, diag::err_expected_unqualified_id) << getLang().CPlusPlus;
2543    else
2544      Diag(Tok, diag::err_expected_ident_lparen);
2545    D.SetIdentifier(0, Tok.getLocation());
2546    D.setInvalidType(true);
2547  }
2548
2549 PastIdentifier:
2550  assert(D.isPastIdentifier() &&
2551         "Haven't past the location of the identifier yet?");
2552
2553  // Don't parse attributes unless we have an identifier.
2554  if (D.getIdentifier() && getLang().CPlusPlus
2555   && isCXX0XAttributeSpecifier(true)) {
2556    SourceLocation AttrEndLoc;
2557    CXX0XAttributeList Attr = ParseCXX0XAttributes();
2558    D.AddAttributes(Attr.AttrList, AttrEndLoc);
2559  }
2560
2561  while (1) {
2562    if (Tok.is(tok::l_paren)) {
2563      // The paren may be part of a C++ direct initializer, eg. "int x(1);".
2564      // In such a case, check if we actually have a function declarator; if it
2565      // is not, the declarator has been fully parsed.
2566      if (getLang().CPlusPlus && D.mayBeFollowedByCXXDirectInit()) {
2567        // When not in file scope, warn for ambiguous function declarators, just
2568        // in case the author intended it as a variable definition.
2569        bool warnIfAmbiguous = D.getContext() != Declarator::FileContext;
2570        if (!isCXXFunctionDeclarator(warnIfAmbiguous))
2571          break;
2572      }
2573      ParseFunctionDeclarator(ConsumeParen(), D);
2574    } else if (Tok.is(tok::l_square)) {
2575      ParseBracketDeclarator(D);
2576    } else {
2577      break;
2578    }
2579  }
2580}
2581
2582/// ParseParenDeclarator - We parsed the declarator D up to a paren.  This is
2583/// only called before the identifier, so these are most likely just grouping
2584/// parens for precedence.  If we find that these are actually function
2585/// parameter parens in an abstract-declarator, we call ParseFunctionDeclarator.
2586///
2587///       direct-declarator:
2588///         '(' declarator ')'
2589/// [GNU]   '(' attributes declarator ')'
2590///         direct-declarator '(' parameter-type-list ')'
2591///         direct-declarator '(' identifier-list[opt] ')'
2592/// [GNU]   direct-declarator '(' parameter-forward-declarations
2593///                    parameter-type-list[opt] ')'
2594///
2595void Parser::ParseParenDeclarator(Declarator &D) {
2596  SourceLocation StartLoc = ConsumeParen();
2597  assert(!D.isPastIdentifier() && "Should be called before passing identifier");
2598
2599  // Eat any attributes before we look at whether this is a grouping or function
2600  // declarator paren.  If this is a grouping paren, the attribute applies to
2601  // the type being built up, for example:
2602  //     int (__attribute__(()) *x)(long y)
2603  // If this ends up not being a grouping paren, the attribute applies to the
2604  // first argument, for example:
2605  //     int (__attribute__(()) int x)
2606  // In either case, we need to eat any attributes to be able to determine what
2607  // sort of paren this is.
2608  //
2609  AttributeList *AttrList = 0;
2610  bool RequiresArg = false;
2611  if (Tok.is(tok::kw___attribute)) {
2612    AttrList = ParseGNUAttributes();
2613
2614    // We require that the argument list (if this is a non-grouping paren) be
2615    // present even if the attribute list was empty.
2616    RequiresArg = true;
2617  }
2618  // Eat any Microsoft extensions.
2619  if  (Tok.is(tok::kw___cdecl) || Tok.is(tok::kw___stdcall) ||
2620       Tok.is(tok::kw___fastcall) || Tok.is(tok::kw___w64) ||
2621       Tok.is(tok::kw___ptr64)) {
2622    AttrList = ParseMicrosoftTypeAttributes(AttrList);
2623  }
2624
2625  // If we haven't past the identifier yet (or where the identifier would be
2626  // stored, if this is an abstract declarator), then this is probably just
2627  // grouping parens. However, if this could be an abstract-declarator, then
2628  // this could also be the start of function arguments (consider 'void()').
2629  bool isGrouping;
2630
2631  if (!D.mayOmitIdentifier()) {
2632    // If this can't be an abstract-declarator, this *must* be a grouping
2633    // paren, because we haven't seen the identifier yet.
2634    isGrouping = true;
2635  } else if (Tok.is(tok::r_paren) ||           // 'int()' is a function.
2636             (getLang().CPlusPlus && Tok.is(tok::ellipsis)) || // C++ int(...)
2637             isDeclarationSpecifier()) {       // 'int(int)' is a function.
2638    // This handles C99 6.7.5.3p11: in "typedef int X; void foo(X)", X is
2639    // considered to be a type, not a K&R identifier-list.
2640    isGrouping = false;
2641  } else {
2642    // Otherwise, this is a grouping paren, e.g. 'int (*X)' or 'int(X)'.
2643    isGrouping = true;
2644  }
2645
2646  // If this is a grouping paren, handle:
2647  // direct-declarator: '(' declarator ')'
2648  // direct-declarator: '(' attributes declarator ')'
2649  if (isGrouping) {
2650    bool hadGroupingParens = D.hasGroupingParens();
2651    D.setGroupingParens(true);
2652    if (AttrList)
2653      D.AddAttributes(AttrList, SourceLocation());
2654
2655    ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
2656    // Match the ')'.
2657    SourceLocation Loc = MatchRHSPunctuation(tok::r_paren, StartLoc);
2658
2659    D.setGroupingParens(hadGroupingParens);
2660    D.SetRangeEnd(Loc);
2661    return;
2662  }
2663
2664  // Okay, if this wasn't a grouping paren, it must be the start of a function
2665  // argument list.  Recognize that this declarator will never have an
2666  // identifier (and remember where it would have been), then call into
2667  // ParseFunctionDeclarator to handle of argument list.
2668  D.SetIdentifier(0, Tok.getLocation());
2669
2670  ParseFunctionDeclarator(StartLoc, D, AttrList, RequiresArg);
2671}
2672
2673/// ParseFunctionDeclarator - We are after the identifier and have parsed the
2674/// declarator D up to a paren, which indicates that we are parsing function
2675/// arguments.
2676///
2677/// If AttrList is non-null, then the caller parsed those arguments immediately
2678/// after the open paren - they should be considered to be the first argument of
2679/// a parameter.  If RequiresArg is true, then the first argument of the
2680/// function is required to be present and required to not be an identifier
2681/// list.
2682///
2683/// This method also handles this portion of the grammar:
2684///       parameter-type-list: [C99 6.7.5]
2685///         parameter-list
2686///         parameter-list ',' '...'
2687/// [C++]   parameter-list '...'
2688///
2689///       parameter-list: [C99 6.7.5]
2690///         parameter-declaration
2691///         parameter-list ',' parameter-declaration
2692///
2693///       parameter-declaration: [C99 6.7.5]
2694///         declaration-specifiers declarator
2695/// [C++]   declaration-specifiers declarator '=' assignment-expression
2696/// [GNU]   declaration-specifiers declarator attributes
2697///         declaration-specifiers abstract-declarator[opt]
2698/// [C++]   declaration-specifiers abstract-declarator[opt]
2699///           '=' assignment-expression
2700/// [GNU]   declaration-specifiers abstract-declarator[opt] attributes
2701///
2702/// For C++, after the parameter-list, it also parses "cv-qualifier-seq[opt]"
2703/// and "exception-specification[opt]".
2704///
2705void Parser::ParseFunctionDeclarator(SourceLocation LParenLoc, Declarator &D,
2706                                     AttributeList *AttrList,
2707                                     bool RequiresArg) {
2708  // lparen is already consumed!
2709  assert(D.isPastIdentifier() && "Should not call before identifier!");
2710
2711  // This parameter list may be empty.
2712  if (Tok.is(tok::r_paren)) {
2713    if (RequiresArg) {
2714      Diag(Tok, diag::err_argument_required_after_attribute);
2715      delete AttrList;
2716    }
2717
2718    SourceLocation RParenLoc = ConsumeParen();  // Eat the closing ')'.
2719    SourceLocation EndLoc = RParenLoc;
2720
2721    // cv-qualifier-seq[opt].
2722    DeclSpec DS;
2723    bool hasExceptionSpec = false;
2724    SourceLocation ThrowLoc;
2725    bool hasAnyExceptionSpec = false;
2726    llvm::SmallVector<TypeTy*, 2> Exceptions;
2727    llvm::SmallVector<SourceRange, 2> ExceptionRanges;
2728    if (getLang().CPlusPlus) {
2729      ParseTypeQualifierListOpt(DS, false /*no attributes*/);
2730      if (!DS.getSourceRange().getEnd().isInvalid())
2731        EndLoc = DS.getSourceRange().getEnd();
2732
2733      // Parse exception-specification[opt].
2734      if (Tok.is(tok::kw_throw)) {
2735        hasExceptionSpec = true;
2736        ThrowLoc = Tok.getLocation();
2737        ParseExceptionSpecification(EndLoc, Exceptions, ExceptionRanges,
2738                                    hasAnyExceptionSpec);
2739        assert(Exceptions.size() == ExceptionRanges.size() &&
2740               "Produced different number of exception types and ranges.");
2741      }
2742    }
2743
2744    // Remember that we parsed a function type, and remember the attributes.
2745    // int() -> no prototype, no '...'.
2746    D.AddTypeInfo(DeclaratorChunk::getFunction(/*prototype*/getLang().CPlusPlus,
2747                                               /*variadic*/ false,
2748                                               SourceLocation(),
2749                                               /*arglist*/ 0, 0,
2750                                               DS.getTypeQualifiers(),
2751                                               hasExceptionSpec, ThrowLoc,
2752                                               hasAnyExceptionSpec,
2753                                               Exceptions.data(),
2754                                               ExceptionRanges.data(),
2755                                               Exceptions.size(),
2756                                               LParenLoc, RParenLoc, D),
2757                  EndLoc);
2758    return;
2759  }
2760
2761  // Alternatively, this parameter list may be an identifier list form for a
2762  // K&R-style function:  void foo(a,b,c)
2763  if (!getLang().CPlusPlus && Tok.is(tok::identifier)) {
2764    if (!TryAnnotateTypeOrScopeToken()) {
2765      // K&R identifier lists can't have typedefs as identifiers, per
2766      // C99 6.7.5.3p11.
2767      if (RequiresArg) {
2768        Diag(Tok, diag::err_argument_required_after_attribute);
2769        delete AttrList;
2770      }
2771      // Identifier list.  Note that '(' identifier-list ')' is only allowed for
2772      // normal declarators, not for abstract-declarators.
2773      return ParseFunctionDeclaratorIdentifierList(LParenLoc, D);
2774    }
2775  }
2776
2777  // Finally, a normal, non-empty parameter type list.
2778
2779  // Build up an array of information about the parsed arguments.
2780  llvm::SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
2781
2782  // Enter function-declaration scope, limiting any declarators to the
2783  // function prototype scope, including parameter declarators.
2784  ParseScope PrototypeScope(this,
2785                            Scope::FunctionPrototypeScope|Scope::DeclScope);
2786
2787  bool IsVariadic = false;
2788  SourceLocation EllipsisLoc;
2789  while (1) {
2790    if (Tok.is(tok::ellipsis)) {
2791      IsVariadic = true;
2792      EllipsisLoc = ConsumeToken();     // Consume the ellipsis.
2793      break;
2794    }
2795
2796    SourceLocation DSStart = Tok.getLocation();
2797
2798    // Parse the declaration-specifiers.
2799    // Just use the ParsingDeclaration "scope" of the declarator.
2800    DeclSpec DS;
2801
2802    // If the caller parsed attributes for the first argument, add them now.
2803    if (AttrList) {
2804      DS.AddAttributes(AttrList);
2805      AttrList = 0;  // Only apply the attributes to the first parameter.
2806    }
2807    ParseDeclarationSpecifiers(DS);
2808
2809    // Parse the declarator.  This is "PrototypeContext", because we must
2810    // accept either 'declarator' or 'abstract-declarator' here.
2811    Declarator ParmDecl(DS, Declarator::PrototypeContext);
2812    ParseDeclarator(ParmDecl);
2813
2814    // Parse GNU attributes, if present.
2815    if (Tok.is(tok::kw___attribute)) {
2816      SourceLocation Loc;
2817      AttributeList *AttrList = ParseGNUAttributes(&Loc);
2818      ParmDecl.AddAttributes(AttrList, Loc);
2819    }
2820
2821    // Remember this parsed parameter in ParamInfo.
2822    IdentifierInfo *ParmII = ParmDecl.getIdentifier();
2823
2824    // DefArgToks is used when the parsing of default arguments needs
2825    // to be delayed.
2826    CachedTokens *DefArgToks = 0;
2827
2828    // If no parameter was specified, verify that *something* was specified,
2829    // otherwise we have a missing type and identifier.
2830    if (DS.isEmpty() && ParmDecl.getIdentifier() == 0 &&
2831        ParmDecl.getNumTypeObjects() == 0) {
2832      // Completely missing, emit error.
2833      Diag(DSStart, diag::err_missing_param);
2834    } else {
2835      // Otherwise, we have something.  Add it and let semantic analysis try
2836      // to grok it and add the result to the ParamInfo we are building.
2837
2838      // Inform the actions module about the parameter declarator, so it gets
2839      // added to the current scope.
2840      DeclPtrTy Param = Actions.ActOnParamDeclarator(CurScope, ParmDecl);
2841
2842      // Parse the default argument, if any. We parse the default
2843      // arguments in all dialects; the semantic analysis in
2844      // ActOnParamDefaultArgument will reject the default argument in
2845      // C.
2846      if (Tok.is(tok::equal)) {
2847        SourceLocation EqualLoc = Tok.getLocation();
2848
2849        // Parse the default argument
2850        if (D.getContext() == Declarator::MemberContext) {
2851          // If we're inside a class definition, cache the tokens
2852          // corresponding to the default argument. We'll actually parse
2853          // them when we see the end of the class definition.
2854          // FIXME: Templates will require something similar.
2855          // FIXME: Can we use a smart pointer for Toks?
2856          DefArgToks = new CachedTokens;
2857
2858          if (!ConsumeAndStoreUntil(tok::comma, tok::r_paren, *DefArgToks,
2859                                    tok::semi, false)) {
2860            delete DefArgToks;
2861            DefArgToks = 0;
2862            Actions.ActOnParamDefaultArgumentError(Param);
2863          } else
2864            Actions.ActOnParamUnparsedDefaultArgument(Param, EqualLoc,
2865                                                (*DefArgToks)[1].getLocation());
2866        } else {
2867          // Consume the '='.
2868          ConsumeToken();
2869
2870          OwningExprResult DefArgResult(ParseAssignmentExpression());
2871          if (DefArgResult.isInvalid()) {
2872            Actions.ActOnParamDefaultArgumentError(Param);
2873            SkipUntil(tok::comma, tok::r_paren, true, true);
2874          } else {
2875            // Inform the actions module about the default argument
2876            Actions.ActOnParamDefaultArgument(Param, EqualLoc,
2877                                              move(DefArgResult));
2878          }
2879        }
2880      }
2881
2882      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
2883                                          ParmDecl.getIdentifierLoc(), Param,
2884                                          DefArgToks));
2885    }
2886
2887    // If the next token is a comma, consume it and keep reading arguments.
2888    if (Tok.isNot(tok::comma)) {
2889      if (Tok.is(tok::ellipsis)) {
2890        IsVariadic = true;
2891        EllipsisLoc = ConsumeToken();     // Consume the ellipsis.
2892
2893        if (!getLang().CPlusPlus) {
2894          // We have ellipsis without a preceding ',', which is ill-formed
2895          // in C. Complain and provide the fix.
2896          Diag(EllipsisLoc, diag::err_missing_comma_before_ellipsis)
2897            << CodeModificationHint::CreateInsertion(EllipsisLoc, ", ");
2898        }
2899      }
2900
2901      break;
2902    }
2903
2904    // Consume the comma.
2905    ConsumeToken();
2906  }
2907
2908  // Leave prototype scope.
2909  PrototypeScope.Exit();
2910
2911  // If we have the closing ')', eat it.
2912  SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
2913  SourceLocation EndLoc = RParenLoc;
2914
2915  DeclSpec DS;
2916  bool hasExceptionSpec = false;
2917  SourceLocation ThrowLoc;
2918  bool hasAnyExceptionSpec = false;
2919  llvm::SmallVector<TypeTy*, 2> Exceptions;
2920  llvm::SmallVector<SourceRange, 2> ExceptionRanges;
2921
2922  if (getLang().CPlusPlus) {
2923    // Parse cv-qualifier-seq[opt].
2924    ParseTypeQualifierListOpt(DS, false /*no attributes*/);
2925      if (!DS.getSourceRange().getEnd().isInvalid())
2926        EndLoc = DS.getSourceRange().getEnd();
2927
2928    // Parse exception-specification[opt].
2929    if (Tok.is(tok::kw_throw)) {
2930      hasExceptionSpec = true;
2931      ThrowLoc = Tok.getLocation();
2932      ParseExceptionSpecification(EndLoc, Exceptions, ExceptionRanges,
2933                                  hasAnyExceptionSpec);
2934      assert(Exceptions.size() == ExceptionRanges.size() &&
2935             "Produced different number of exception types and ranges.");
2936    }
2937  }
2938
2939  // Remember that we parsed a function type, and remember the attributes.
2940  D.AddTypeInfo(DeclaratorChunk::getFunction(/*proto*/true, IsVariadic,
2941                                             EllipsisLoc,
2942                                             ParamInfo.data(), ParamInfo.size(),
2943                                             DS.getTypeQualifiers(),
2944                                             hasExceptionSpec, ThrowLoc,
2945                                             hasAnyExceptionSpec,
2946                                             Exceptions.data(),
2947                                             ExceptionRanges.data(),
2948                                             Exceptions.size(),
2949                                             LParenLoc, RParenLoc, D),
2950                EndLoc);
2951}
2952
2953/// ParseFunctionDeclaratorIdentifierList - While parsing a function declarator
2954/// we found a K&R-style identifier list instead of a type argument list.  The
2955/// current token is known to be the first identifier in the list.
2956///
2957///       identifier-list: [C99 6.7.5]
2958///         identifier
2959///         identifier-list ',' identifier
2960///
2961void Parser::ParseFunctionDeclaratorIdentifierList(SourceLocation LParenLoc,
2962                                                   Declarator &D) {
2963  // Build up an array of information about the parsed arguments.
2964  llvm::SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
2965  llvm::SmallSet<const IdentifierInfo*, 16> ParamsSoFar;
2966
2967  // If there was no identifier specified for the declarator, either we are in
2968  // an abstract-declarator, or we are in a parameter declarator which was found
2969  // to be abstract.  In abstract-declarators, identifier lists are not valid:
2970  // diagnose this.
2971  if (!D.getIdentifier())
2972    Diag(Tok, diag::ext_ident_list_in_param);
2973
2974  // Tok is known to be the first identifier in the list.  Remember this
2975  // identifier in ParamInfo.
2976  ParamsSoFar.insert(Tok.getIdentifierInfo());
2977  ParamInfo.push_back(DeclaratorChunk::ParamInfo(Tok.getIdentifierInfo(),
2978                                                 Tok.getLocation(),
2979                                                 DeclPtrTy()));
2980
2981  ConsumeToken();  // eat the first identifier.
2982
2983  while (Tok.is(tok::comma)) {
2984    // Eat the comma.
2985    ConsumeToken();
2986
2987    // If this isn't an identifier, report the error and skip until ')'.
2988    if (Tok.isNot(tok::identifier)) {
2989      Diag(Tok, diag::err_expected_ident);
2990      SkipUntil(tok::r_paren);
2991      return;
2992    }
2993
2994    IdentifierInfo *ParmII = Tok.getIdentifierInfo();
2995
2996    // Reject 'typedef int y; int test(x, y)', but continue parsing.
2997    if (Actions.getTypeName(*ParmII, Tok.getLocation(), CurScope))
2998      Diag(Tok, diag::err_unexpected_typedef_ident) << ParmII;
2999
3000    // Verify that the argument identifier has not already been mentioned.
3001    if (!ParamsSoFar.insert(ParmII)) {
3002      Diag(Tok, diag::err_param_redefinition) << ParmII;
3003    } else {
3004      // Remember this identifier in ParamInfo.
3005      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
3006                                                     Tok.getLocation(),
3007                                                     DeclPtrTy()));
3008    }
3009
3010    // Eat the identifier.
3011    ConsumeToken();
3012  }
3013
3014  // If we have the closing ')', eat it and we're done.
3015  SourceLocation RLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
3016
3017  // Remember that we parsed a function type, and remember the attributes.  This
3018  // function type is always a K&R style function type, which is not varargs and
3019  // has no prototype.
3020  D.AddTypeInfo(DeclaratorChunk::getFunction(/*proto*/false, /*varargs*/false,
3021                                             SourceLocation(),
3022                                             &ParamInfo[0], ParamInfo.size(),
3023                                             /*TypeQuals*/0,
3024                                             /*exception*/false,
3025                                             SourceLocation(), false, 0, 0, 0,
3026                                             LParenLoc, RLoc, D),
3027                RLoc);
3028}
3029
3030/// [C90]   direct-declarator '[' constant-expression[opt] ']'
3031/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
3032/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
3033/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
3034/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
3035void Parser::ParseBracketDeclarator(Declarator &D) {
3036  SourceLocation StartLoc = ConsumeBracket();
3037
3038  // C array syntax has many features, but by-far the most common is [] and [4].
3039  // This code does a fast path to handle some of the most obvious cases.
3040  if (Tok.getKind() == tok::r_square) {
3041    SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
3042    //FIXME: Use these
3043    CXX0XAttributeList Attr;
3044    if (getLang().CPlusPlus0x && isCXX0XAttributeSpecifier(true)) {
3045      Attr = ParseCXX0XAttributes();
3046    }
3047
3048    // Remember that we parsed the empty array type.
3049    OwningExprResult NumElements(Actions);
3050    D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, 0,
3051                                            StartLoc, EndLoc),
3052                  EndLoc);
3053    return;
3054  } else if (Tok.getKind() == tok::numeric_constant &&
3055             GetLookAheadToken(1).is(tok::r_square)) {
3056    // [4] is very common.  Parse the numeric constant expression.
3057    OwningExprResult ExprRes(Actions.ActOnNumericConstant(Tok));
3058    ConsumeToken();
3059
3060    SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
3061    //FIXME: Use these
3062    CXX0XAttributeList Attr;
3063    if (getLang().CPlusPlus0x && isCXX0XAttributeSpecifier()) {
3064      Attr = ParseCXX0XAttributes();
3065    }
3066
3067    // If there was an error parsing the assignment-expression, recover.
3068    if (ExprRes.isInvalid())
3069      ExprRes.release();  // Deallocate expr, just use [].
3070
3071    // Remember that we parsed a array type, and remember its features.
3072    D.AddTypeInfo(DeclaratorChunk::getArray(0, false, 0, ExprRes.release(),
3073                                            StartLoc, EndLoc),
3074                  EndLoc);
3075    return;
3076  }
3077
3078  // If valid, this location is the position where we read the 'static' keyword.
3079  SourceLocation StaticLoc;
3080  if (Tok.is(tok::kw_static))
3081    StaticLoc = ConsumeToken();
3082
3083  // If there is a type-qualifier-list, read it now.
3084  // Type qualifiers in an array subscript are a C99 feature.
3085  DeclSpec DS;
3086  ParseTypeQualifierListOpt(DS, false /*no attributes*/);
3087
3088  // If we haven't already read 'static', check to see if there is one after the
3089  // type-qualifier-list.
3090  if (!StaticLoc.isValid() && Tok.is(tok::kw_static))
3091    StaticLoc = ConsumeToken();
3092
3093  // Handle "direct-declarator [ type-qual-list[opt] * ]".
3094  bool isStar = false;
3095  OwningExprResult NumElements(Actions);
3096
3097  // Handle the case where we have '[*]' as the array size.  However, a leading
3098  // star could be the start of an expression, for example 'X[*p + 4]'.  Verify
3099  // the the token after the star is a ']'.  Since stars in arrays are
3100  // infrequent, use of lookahead is not costly here.
3101  if (Tok.is(tok::star) && GetLookAheadToken(1).is(tok::r_square)) {
3102    ConsumeToken();  // Eat the '*'.
3103
3104    if (StaticLoc.isValid()) {
3105      Diag(StaticLoc, diag::err_unspecified_vla_size_with_static);
3106      StaticLoc = SourceLocation();  // Drop the static.
3107    }
3108    isStar = true;
3109  } else if (Tok.isNot(tok::r_square)) {
3110    // Note, in C89, this production uses the constant-expr production instead
3111    // of assignment-expr.  The only difference is that assignment-expr allows
3112    // things like '=' and '*='.  Sema rejects these in C89 mode because they
3113    // are not i-c-e's, so we don't need to distinguish between the two here.
3114
3115    // Parse the constant-expression or assignment-expression now (depending
3116    // on dialect).
3117    if (getLang().CPlusPlus)
3118      NumElements = ParseConstantExpression();
3119    else
3120      NumElements = ParseAssignmentExpression();
3121  }
3122
3123  // If there was an error parsing the assignment-expression, recover.
3124  if (NumElements.isInvalid()) {
3125    D.setInvalidType(true);
3126    // If the expression was invalid, skip it.
3127    SkipUntil(tok::r_square);
3128    return;
3129  }
3130
3131  SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
3132
3133  //FIXME: Use these
3134  CXX0XAttributeList Attr;
3135  if (getLang().CPlusPlus0x && isCXX0XAttributeSpecifier()) {
3136    Attr = ParseCXX0XAttributes();
3137  }
3138
3139  // Remember that we parsed a array type, and remember its features.
3140  D.AddTypeInfo(DeclaratorChunk::getArray(DS.getTypeQualifiers(),
3141                                          StaticLoc.isValid(), isStar,
3142                                          NumElements.release(),
3143                                          StartLoc, EndLoc),
3144                EndLoc);
3145}
3146
3147/// [GNU]   typeof-specifier:
3148///           typeof ( expressions )
3149///           typeof ( type-name )
3150/// [GNU/C++] typeof unary-expression
3151///
3152void Parser::ParseTypeofSpecifier(DeclSpec &DS) {
3153  assert(Tok.is(tok::kw_typeof) && "Not a typeof specifier");
3154  Token OpTok = Tok;
3155  SourceLocation StartLoc = ConsumeToken();
3156
3157  const bool hasParens = Tok.is(tok::l_paren);
3158
3159  bool isCastExpr;
3160  TypeTy *CastTy;
3161  SourceRange CastRange;
3162  OwningExprResult Operand = ParseExprAfterTypeofSizeofAlignof(OpTok,
3163                                                               isCastExpr,
3164                                                               CastTy,
3165                                                               CastRange);
3166  if (hasParens)
3167    DS.setTypeofParensRange(CastRange);
3168
3169  if (CastRange.getEnd().isInvalid())
3170    // FIXME: Not accurate, the range gets one token more than it should.
3171    DS.SetRangeEnd(Tok.getLocation());
3172  else
3173    DS.SetRangeEnd(CastRange.getEnd());
3174
3175  if (isCastExpr) {
3176    if (!CastTy) {
3177      DS.SetTypeSpecError();
3178      return;
3179    }
3180
3181    const char *PrevSpec = 0;
3182    unsigned DiagID;
3183    // Check for duplicate type specifiers (e.g. "int typeof(int)").
3184    if (DS.SetTypeSpecType(DeclSpec::TST_typeofType, StartLoc, PrevSpec,
3185                           DiagID, CastTy))
3186      Diag(StartLoc, DiagID) << PrevSpec;
3187    return;
3188  }
3189
3190  // If we get here, the operand to the typeof was an expresion.
3191  if (Operand.isInvalid()) {
3192    DS.SetTypeSpecError();
3193    return;
3194  }
3195
3196  const char *PrevSpec = 0;
3197  unsigned DiagID;
3198  // Check for duplicate type specifiers (e.g. "int typeof(int)").
3199  if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec,
3200                         DiagID, Operand.release()))
3201    Diag(StartLoc, DiagID) << PrevSpec;
3202}
3203