SemaDecl.cpp revision 000835d0b04345c0014c603fe6339b3bc154050e
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/Sema.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/AST/APValue.h"
18#include "clang/AST/ASTConsumer.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/Sema/DeclSpec.h"
25#include "clang/Sema/ParsedTemplate.h"
26#include "clang/Parse/ParseDiagnostic.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
31#include "clang/Lex/Preprocessor.h"
32#include "clang/Lex/HeaderSearch.h"
33#include "llvm/ADT/Triple.h"
34#include <algorithm>
35#include <cstring>
36#include <functional>
37using namespace clang;
38
39/// getDeclName - Return a pretty name for the specified decl if possible, or
40/// an empty string if not.  This is used for pretty crash reporting.
41std::string Sema::getDeclName(Decl *D) {
42  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
43    return DN->getQualifiedNameAsString();
44  return "";
45}
46
47Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr) {
48  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
49}
50
51/// \brief If the identifier refers to a type name within this scope,
52/// return the declaration of that type.
53///
54/// This routine performs ordinary name lookup of the identifier II
55/// within the given scope, with optional C++ scope specifier SS, to
56/// determine whether the name refers to a type. If so, returns an
57/// opaque pointer (actually a QualType) corresponding to that
58/// type. Otherwise, returns NULL.
59///
60/// If name lookup results in an ambiguity, this routine will complain
61/// and then return NULL.
62Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
63                                Scope *S, CXXScopeSpec *SS,
64                                bool isClassName,
65                                TypeTy *ObjectTypePtr) {
66  // Determine where we will perform name lookup.
67  DeclContext *LookupCtx = 0;
68  if (ObjectTypePtr) {
69    QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
70    if (ObjectType->isRecordType())
71      LookupCtx = computeDeclContext(ObjectType);
72  } else if (SS && SS->isNotEmpty()) {
73    LookupCtx = computeDeclContext(*SS, false);
74
75    if (!LookupCtx) {
76      if (isDependentScopeSpecifier(*SS)) {
77        // C++ [temp.res]p3:
78        //   A qualified-id that refers to a type and in which the
79        //   nested-name-specifier depends on a template-parameter (14.6.2)
80        //   shall be prefixed by the keyword typename to indicate that the
81        //   qualified-id denotes a type, forming an
82        //   elaborated-type-specifier (7.1.5.3).
83        //
84        // We therefore do not perform any name lookup if the result would
85        // refer to a member of an unknown specialization.
86        if (!isClassName)
87          return 0;
88
89        // We know from the grammar that this name refers to a type,
90        // so build a dependent node to describe the type.
91        return CheckTypenameType(ETK_None,
92                                 (NestedNameSpecifier *)SS->getScopeRep(), II,
93                                 SourceLocation(), SS->getRange(), NameLoc
94                                 ).getAsOpaquePtr();
95      }
96
97      return 0;
98    }
99
100    if (!LookupCtx->isDependentContext() &&
101        RequireCompleteDeclContext(*SS, LookupCtx))
102      return 0;
103  }
104
105  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
106  // lookup for class-names.
107  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
108                                      LookupOrdinaryName;
109  LookupResult Result(*this, &II, NameLoc, Kind);
110  if (LookupCtx) {
111    // Perform "qualified" name lookup into the declaration context we
112    // computed, which is either the type of the base of a member access
113    // expression or the declaration context associated with a prior
114    // nested-name-specifier.
115    LookupQualifiedName(Result, LookupCtx);
116
117    if (ObjectTypePtr && Result.empty()) {
118      // C++ [basic.lookup.classref]p3:
119      //   If the unqualified-id is ~type-name, the type-name is looked up
120      //   in the context of the entire postfix-expression. If the type T of
121      //   the object expression is of a class type C, the type-name is also
122      //   looked up in the scope of class C. At least one of the lookups shall
123      //   find a name that refers to (possibly cv-qualified) T.
124      LookupName(Result, S);
125    }
126  } else {
127    // Perform unqualified name lookup.
128    LookupName(Result, S);
129  }
130
131  NamedDecl *IIDecl = 0;
132  switch (Result.getResultKind()) {
133  case LookupResult::NotFound:
134  case LookupResult::NotFoundInCurrentInstantiation:
135  case LookupResult::FoundOverloaded:
136  case LookupResult::FoundUnresolvedValue:
137    Result.suppressDiagnostics();
138    return 0;
139
140  case LookupResult::Ambiguous:
141    // Recover from type-hiding ambiguities by hiding the type.  We'll
142    // do the lookup again when looking for an object, and we can
143    // diagnose the error then.  If we don't do this, then the error
144    // about hiding the type will be immediately followed by an error
145    // that only makes sense if the identifier was treated like a type.
146    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
147      Result.suppressDiagnostics();
148      return 0;
149    }
150
151    // Look to see if we have a type anywhere in the list of results.
152    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
153         Res != ResEnd; ++Res) {
154      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
155        if (!IIDecl ||
156            (*Res)->getLocation().getRawEncoding() <
157              IIDecl->getLocation().getRawEncoding())
158          IIDecl = *Res;
159      }
160    }
161
162    if (!IIDecl) {
163      // None of the entities we found is a type, so there is no way
164      // to even assume that the result is a type. In this case, don't
165      // complain about the ambiguity. The parser will either try to
166      // perform this lookup again (e.g., as an object name), which
167      // will produce the ambiguity, or will complain that it expected
168      // a type name.
169      Result.suppressDiagnostics();
170      return 0;
171    }
172
173    // We found a type within the ambiguous lookup; diagnose the
174    // ambiguity and then return that type. This might be the right
175    // answer, or it might not be, but it suppresses any attempt to
176    // perform the name lookup again.
177    break;
178
179  case LookupResult::Found:
180    IIDecl = Result.getFoundDecl();
181    break;
182  }
183
184  assert(IIDecl && "Didn't find decl");
185
186  QualType T;
187  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
188    DiagnoseUseOfDecl(IIDecl, NameLoc);
189
190    if (T.isNull())
191      T = Context.getTypeDeclType(TD);
192
193    if (SS)
194      T = getElaboratedType(ETK_None, *SS, T);
195
196  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
197    T = Context.getObjCInterfaceType(IDecl);
198  } else {
199    // If it's not plausibly a type, suppress diagnostics.
200    Result.suppressDiagnostics();
201    return 0;
202  }
203
204  return T.getAsOpaquePtr();
205}
206
207/// isTagName() - This method is called *for error recovery purposes only*
208/// to determine if the specified name is a valid tag name ("struct foo").  If
209/// so, this returns the TST for the tag corresponding to it (TST_enum,
210/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
211/// where the user forgot to specify the tag.
212DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
213  // Do a tag name lookup in this scope.
214  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
215  LookupName(R, S, false);
216  R.suppressDiagnostics();
217  if (R.getResultKind() == LookupResult::Found)
218    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
219      switch (TD->getTagKind()) {
220      default:         return DeclSpec::TST_unspecified;
221      case TTK_Struct: return DeclSpec::TST_struct;
222      case TTK_Union:  return DeclSpec::TST_union;
223      case TTK_Class:  return DeclSpec::TST_class;
224      case TTK_Enum:   return DeclSpec::TST_enum;
225      }
226    }
227
228  return DeclSpec::TST_unspecified;
229}
230
231bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
232                                   SourceLocation IILoc,
233                                   Scope *S,
234                                   CXXScopeSpec *SS,
235                                   TypeTy *&SuggestedType) {
236  // We don't have anything to suggest (yet).
237  SuggestedType = 0;
238
239  // There may have been a typo in the name of the type. Look up typo
240  // results, in case we have something that we can suggest.
241  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
242                      NotForRedeclaration);
243
244  if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
245    if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
246      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
247          !Result->isInvalidDecl()) {
248        // We found a similarly-named type or interface; suggest that.
249        if (!SS || !SS->isSet())
250          Diag(IILoc, diag::err_unknown_typename_suggest)
251            << &II << Lookup.getLookupName()
252            << FixItHint::CreateReplacement(SourceRange(IILoc),
253                                            Result->getNameAsString());
254        else if (DeclContext *DC = computeDeclContext(*SS, false))
255          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
256            << &II << DC << Lookup.getLookupName() << SS->getRange()
257            << FixItHint::CreateReplacement(SourceRange(IILoc),
258                                            Result->getNameAsString());
259        else
260          llvm_unreachable("could not have corrected a typo here");
261
262        Diag(Result->getLocation(), diag::note_previous_decl)
263          << Result->getDeclName();
264
265        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS);
266        return true;
267      }
268    } else if (Lookup.empty()) {
269      // We corrected to a keyword.
270      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
271      Diag(IILoc, diag::err_unknown_typename_suggest)
272        << &II << Corrected;
273      return true;
274    }
275  }
276
277  if (getLangOptions().CPlusPlus) {
278    // See if II is a class template that the user forgot to pass arguments to.
279    UnqualifiedId Name;
280    Name.setIdentifier(&II, IILoc);
281    CXXScopeSpec EmptySS;
282    TemplateTy TemplateResult;
283    bool MemberOfUnknownSpecialization;
284    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
285                       Name, 0, true, TemplateResult,
286                       MemberOfUnknownSpecialization) == TNK_Type_template) {
287      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
288      Diag(IILoc, diag::err_template_missing_args) << TplName;
289      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
290        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
291          << TplDecl->getTemplateParameters()->getSourceRange();
292      }
293      return true;
294    }
295  }
296
297  // FIXME: Should we move the logic that tries to recover from a missing tag
298  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
299
300  if (!SS || (!SS->isSet() && !SS->isInvalid()))
301    Diag(IILoc, diag::err_unknown_typename) << &II;
302  else if (DeclContext *DC = computeDeclContext(*SS, false))
303    Diag(IILoc, diag::err_typename_nested_not_found)
304      << &II << DC << SS->getRange();
305  else if (isDependentScopeSpecifier(*SS)) {
306    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
307      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
308      << SourceRange(SS->getRange().getBegin(), IILoc)
309      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
310    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
311  } else {
312    assert(SS && SS->isInvalid() &&
313           "Invalid scope specifier has already been diagnosed");
314  }
315
316  return true;
317}
318
319// Determines the context to return to after temporarily entering a
320// context.  This depends in an unnecessarily complicated way on the
321// exact ordering of callbacks from the parser.
322DeclContext *Sema::getContainingDC(DeclContext *DC) {
323
324  // Functions defined inline within classes aren't parsed until we've
325  // finished parsing the top-level class, so the top-level class is
326  // the context we'll need to return to.
327  if (isa<FunctionDecl>(DC)) {
328    DC = DC->getLexicalParent();
329
330    // A function not defined within a class will always return to its
331    // lexical context.
332    if (!isa<CXXRecordDecl>(DC))
333      return DC;
334
335    // A C++ inline method/friend is parsed *after* the topmost class
336    // it was declared in is fully parsed ("complete");  the topmost
337    // class is the context we need to return to.
338    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
339      DC = RD;
340
341    // Return the declaration context of the topmost class the inline method is
342    // declared in.
343    return DC;
344  }
345
346  // ObjCMethodDecls are parsed (for some reason) outside the context
347  // of the class.
348  if (isa<ObjCMethodDecl>(DC))
349    return DC->getLexicalParent()->getLexicalParent();
350
351  return DC->getLexicalParent();
352}
353
354void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
355  assert(getContainingDC(DC) == CurContext &&
356      "The next DeclContext should be lexically contained in the current one.");
357  CurContext = DC;
358  S->setEntity(DC);
359}
360
361void Sema::PopDeclContext() {
362  assert(CurContext && "DeclContext imbalance!");
363
364  CurContext = getContainingDC(CurContext);
365  assert(CurContext && "Popped translation unit!");
366}
367
368/// EnterDeclaratorContext - Used when we must lookup names in the context
369/// of a declarator's nested name specifier.
370///
371void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
372  // C++0x [basic.lookup.unqual]p13:
373  //   A name used in the definition of a static data member of class
374  //   X (after the qualified-id of the static member) is looked up as
375  //   if the name was used in a member function of X.
376  // C++0x [basic.lookup.unqual]p14:
377  //   If a variable member of a namespace is defined outside of the
378  //   scope of its namespace then any name used in the definition of
379  //   the variable member (after the declarator-id) is looked up as
380  //   if the definition of the variable member occurred in its
381  //   namespace.
382  // Both of these imply that we should push a scope whose context
383  // is the semantic context of the declaration.  We can't use
384  // PushDeclContext here because that context is not necessarily
385  // lexically contained in the current context.  Fortunately,
386  // the containing scope should have the appropriate information.
387
388  assert(!S->getEntity() && "scope already has entity");
389
390#ifndef NDEBUG
391  Scope *Ancestor = S->getParent();
392  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
393  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
394#endif
395
396  CurContext = DC;
397  S->setEntity(DC);
398}
399
400void Sema::ExitDeclaratorContext(Scope *S) {
401  assert(S->getEntity() == CurContext && "Context imbalance!");
402
403  // Switch back to the lexical context.  The safety of this is
404  // enforced by an assert in EnterDeclaratorContext.
405  Scope *Ancestor = S->getParent();
406  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
407  CurContext = (DeclContext*) Ancestor->getEntity();
408
409  // We don't need to do anything with the scope, which is going to
410  // disappear.
411}
412
413/// \brief Determine whether we allow overloading of the function
414/// PrevDecl with another declaration.
415///
416/// This routine determines whether overloading is possible, not
417/// whether some new function is actually an overload. It will return
418/// true in C++ (where we can always provide overloads) or, as an
419/// extension, in C when the previous function is already an
420/// overloaded function declaration or has the "overloadable"
421/// attribute.
422static bool AllowOverloadingOfFunction(LookupResult &Previous,
423                                       ASTContext &Context) {
424  if (Context.getLangOptions().CPlusPlus)
425    return true;
426
427  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
428    return true;
429
430  return (Previous.getResultKind() == LookupResult::Found
431          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
432}
433
434/// Add this decl to the scope shadowed decl chains.
435void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
436  // Move up the scope chain until we find the nearest enclosing
437  // non-transparent context. The declaration will be introduced into this
438  // scope.
439  while (S->getEntity() &&
440         ((DeclContext *)S->getEntity())->isTransparentContext())
441    S = S->getParent();
442
443  // Add scoped declarations into their context, so that they can be
444  // found later. Declarations without a context won't be inserted
445  // into any context.
446  if (AddToContext)
447    CurContext->addDecl(D);
448
449  // Out-of-line definitions shouldn't be pushed into scope in C++.
450  // Out-of-line variable and function definitions shouldn't even in C.
451  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
452      D->isOutOfLine())
453    return;
454
455  // Template instantiations should also not be pushed into scope.
456  if (isa<FunctionDecl>(D) &&
457      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
458    return;
459
460  // If this replaces anything in the current scope,
461  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
462                               IEnd = IdResolver.end();
463  for (; I != IEnd; ++I) {
464    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
465      S->RemoveDecl(*I);
466      IdResolver.RemoveDecl(*I);
467
468      // Should only need to replace one decl.
469      break;
470    }
471  }
472
473  S->AddDecl(D);
474  IdResolver.AddDecl(D);
475}
476
477bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
478  return IdResolver.isDeclInScope(D, Ctx, Context, S);
479}
480
481static bool isOutOfScopePreviousDeclaration(NamedDecl *,
482                                            DeclContext*,
483                                            ASTContext&);
484
485/// Filters out lookup results that don't fall within the given scope
486/// as determined by isDeclInScope.
487static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
488                                 DeclContext *Ctx, Scope *S,
489                                 bool ConsiderLinkage) {
490  LookupResult::Filter F = R.makeFilter();
491  while (F.hasNext()) {
492    NamedDecl *D = F.next();
493
494    if (SemaRef.isDeclInScope(D, Ctx, S))
495      continue;
496
497    if (ConsiderLinkage &&
498        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
499      continue;
500
501    F.erase();
502  }
503
504  F.done();
505}
506
507static bool isUsingDecl(NamedDecl *D) {
508  return isa<UsingShadowDecl>(D) ||
509         isa<UnresolvedUsingTypenameDecl>(D) ||
510         isa<UnresolvedUsingValueDecl>(D);
511}
512
513/// Removes using shadow declarations from the lookup results.
514static void RemoveUsingDecls(LookupResult &R) {
515  LookupResult::Filter F = R.makeFilter();
516  while (F.hasNext())
517    if (isUsingDecl(F.next()))
518      F.erase();
519
520  F.done();
521}
522
523/// \brief Check for this common pattern:
524/// @code
525/// class S {
526///   S(const S&); // DO NOT IMPLEMENT
527///   void operator=(const S&); // DO NOT IMPLEMENT
528/// };
529/// @endcode
530static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
531  // FIXME: Should check for private access too but access is set after we get
532  // the decl here.
533  if (D->isThisDeclarationADefinition())
534    return false;
535
536  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
537    return CD->isCopyConstructor();
538  return D->isCopyAssignment();
539}
540
541bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
542  assert(D);
543
544  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
545    return false;
546
547  // Ignore class templates.
548  if (D->getDeclContext()->isDependentContext())
549    return false;
550
551  // We warn for unused decls internal to the translation unit.
552  if (D->getLinkage() == ExternalLinkage)
553    return false;
554
555  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
556    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
557      return false;
558
559    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
560      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
561        return false;
562    } else {
563      // 'static inline' functions are used in headers; don't warn.
564      if (FD->getStorageClass() == FunctionDecl::Static &&
565          FD->isInlineSpecified())
566        return false;
567    }
568
569    if (FD->isThisDeclarationADefinition())
570      return !Context.DeclMustBeEmitted(FD);
571    return true;
572  }
573
574  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
575    if (VD->isStaticDataMember() &&
576        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
577      return false;
578
579    if ( VD->isFileVarDecl() &&
580        !VD->getType().isConstant(Context))
581      return !Context.DeclMustBeEmitted(VD);
582  }
583
584   return false;
585 }
586
587 void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
588  if (!D)
589    return;
590
591  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
592    const FunctionDecl *First = FD->getFirstDeclaration();
593    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
594      return; // First should already be in the vector.
595  }
596
597  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
598    const VarDecl *First = VD->getFirstDeclaration();
599    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
600      return; // First should already be in the vector.
601  }
602
603   if (ShouldWarnIfUnusedFileScopedDecl(D))
604     UnusedFileScopedDecls.push_back(D);
605 }
606
607static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
608  if (D->isInvalidDecl())
609    return false;
610
611  if (D->isUsed() || D->hasAttr<UnusedAttr>())
612    return false;
613
614  // White-list anything that isn't a local variable.
615  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
616      !D->getDeclContext()->isFunctionOrMethod())
617    return false;
618
619  // Types of valid local variables should be complete, so this should succeed.
620  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
621
622    // White-list anything with an __attribute__((unused)) type.
623    QualType Ty = VD->getType();
624
625    // Only look at the outermost level of typedef.
626    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
627      if (TT->getDecl()->hasAttr<UnusedAttr>())
628        return false;
629    }
630
631    // If we failed to complete the type for some reason, or if the type is
632    // dependent, don't diagnose the variable.
633    if (Ty->isIncompleteType() || Ty->isDependentType())
634      return false;
635
636    if (const TagType *TT = Ty->getAs<TagType>()) {
637      const TagDecl *Tag = TT->getDecl();
638      if (Tag->hasAttr<UnusedAttr>())
639        return false;
640
641      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
642        // FIXME: Checking for the presence of a user-declared constructor
643        // isn't completely accurate; we'd prefer to check that the initializer
644        // has no side effects.
645        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
646          return false;
647      }
648    }
649
650    // TODO: __attribute__((unused)) templates?
651  }
652
653  return true;
654}
655
656void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
657  if (!ShouldDiagnoseUnusedDecl(D))
658    return;
659
660  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
661    Diag(D->getLocation(), diag::warn_unused_exception_param)
662    << D->getDeclName();
663  else
664    Diag(D->getLocation(), diag::warn_unused_variable)
665    << D->getDeclName();
666}
667
668void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
669  if (S->decl_empty()) return;
670  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
671         "Scope shouldn't contain decls!");
672
673  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
674       I != E; ++I) {
675    Decl *TmpD = (*I);
676    assert(TmpD && "This decl didn't get pushed??");
677
678    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
679    NamedDecl *D = cast<NamedDecl>(TmpD);
680
681    if (!D->getDeclName()) continue;
682
683    // Diagnose unused variables in this scope.
684    if (S->getNumErrorsAtStart() == getDiagnostics().getNumErrors())
685      DiagnoseUnusedDecl(D);
686
687    // Remove this name from our lexical scope.
688    IdResolver.RemoveDecl(D);
689  }
690}
691
692/// \brief Look for an Objective-C class in the translation unit.
693///
694/// \param Id The name of the Objective-C class we're looking for. If
695/// typo-correction fixes this name, the Id will be updated
696/// to the fixed name.
697///
698/// \param IdLoc The location of the name in the translation unit.
699///
700/// \param TypoCorrection If true, this routine will attempt typo correction
701/// if there is no class with the given name.
702///
703/// \returns The declaration of the named Objective-C class, or NULL if the
704/// class could not be found.
705ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
706                                              SourceLocation IdLoc,
707                                              bool TypoCorrection) {
708  // The third "scope" argument is 0 since we aren't enabling lazy built-in
709  // creation from this context.
710  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
711
712  if (!IDecl && TypoCorrection) {
713    // Perform typo correction at the given location, but only if we
714    // find an Objective-C class name.
715    LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
716    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
717        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
718      Diag(IdLoc, diag::err_undef_interface_suggest)
719        << Id << IDecl->getDeclName()
720        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
721      Diag(IDecl->getLocation(), diag::note_previous_decl)
722        << IDecl->getDeclName();
723
724      Id = IDecl->getIdentifier();
725    }
726  }
727
728  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
729}
730
731/// getNonFieldDeclScope - Retrieves the innermost scope, starting
732/// from S, where a non-field would be declared. This routine copes
733/// with the difference between C and C++ scoping rules in structs and
734/// unions. For example, the following code is well-formed in C but
735/// ill-formed in C++:
736/// @code
737/// struct S6 {
738///   enum { BAR } e;
739/// };
740///
741/// void test_S6() {
742///   struct S6 a;
743///   a.e = BAR;
744/// }
745/// @endcode
746/// For the declaration of BAR, this routine will return a different
747/// scope. The scope S will be the scope of the unnamed enumeration
748/// within S6. In C++, this routine will return the scope associated
749/// with S6, because the enumeration's scope is a transparent
750/// context but structures can contain non-field names. In C, this
751/// routine will return the translation unit scope, since the
752/// enumeration's scope is a transparent context and structures cannot
753/// contain non-field names.
754Scope *Sema::getNonFieldDeclScope(Scope *S) {
755  while (((S->getFlags() & Scope::DeclScope) == 0) ||
756         (S->getEntity() &&
757          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
758         (S->isClassScope() && !getLangOptions().CPlusPlus))
759    S = S->getParent();
760  return S;
761}
762
763void Sema::InitBuiltinVaListType() {
764  if (!Context.getBuiltinVaListType().isNull())
765    return;
766
767  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
768  NamedDecl *VaDecl = LookupSingleName(TUScope, VaIdent, SourceLocation(),
769                                       LookupOrdinaryName, ForRedeclaration);
770  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
771  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
772}
773
774/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
775/// file scope.  lazily create a decl for it. ForRedeclaration is true
776/// if we're creating this built-in in anticipation of redeclaring the
777/// built-in.
778NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
779                                     Scope *S, bool ForRedeclaration,
780                                     SourceLocation Loc) {
781  Builtin::ID BID = (Builtin::ID)bid;
782
783  if (Context.BuiltinInfo.hasVAListUse(BID))
784    InitBuiltinVaListType();
785
786  ASTContext::GetBuiltinTypeError Error;
787  QualType R = Context.GetBuiltinType(BID, Error);
788  switch (Error) {
789  case ASTContext::GE_None:
790    // Okay
791    break;
792
793  case ASTContext::GE_Missing_stdio:
794    if (ForRedeclaration)
795      Diag(Loc, diag::err_implicit_decl_requires_stdio)
796        << Context.BuiltinInfo.GetName(BID);
797    return 0;
798
799  case ASTContext::GE_Missing_setjmp:
800    if (ForRedeclaration)
801      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
802        << Context.BuiltinInfo.GetName(BID);
803    return 0;
804  }
805
806  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
807    Diag(Loc, diag::ext_implicit_lib_function_decl)
808      << Context.BuiltinInfo.GetName(BID)
809      << R;
810    if (Context.BuiltinInfo.getHeaderName(BID) &&
811        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
812          != Diagnostic::Ignored)
813      Diag(Loc, diag::note_please_include_header)
814        << Context.BuiltinInfo.getHeaderName(BID)
815        << Context.BuiltinInfo.GetName(BID);
816  }
817
818  FunctionDecl *New = FunctionDecl::Create(Context,
819                                           Context.getTranslationUnitDecl(),
820                                           Loc, II, R, /*TInfo=*/0,
821                                           FunctionDecl::Extern,
822                                           FunctionDecl::None, false,
823                                           /*hasPrototype=*/true);
824  New->setImplicit();
825
826  // Create Decl objects for each parameter, adding them to the
827  // FunctionDecl.
828  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
829    llvm::SmallVector<ParmVarDecl*, 16> Params;
830    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
831      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
832                                           FT->getArgType(i), /*TInfo=*/0,
833                                           VarDecl::None, VarDecl::None, 0));
834    New->setParams(Params.data(), Params.size());
835  }
836
837  AddKnownFunctionAttributes(New);
838
839  // TUScope is the translation-unit scope to insert this function into.
840  // FIXME: This is hideous. We need to teach PushOnScopeChains to
841  // relate Scopes to DeclContexts, and probably eliminate CurContext
842  // entirely, but we're not there yet.
843  DeclContext *SavedContext = CurContext;
844  CurContext = Context.getTranslationUnitDecl();
845  PushOnScopeChains(New, TUScope);
846  CurContext = SavedContext;
847  return New;
848}
849
850/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
851/// same name and scope as a previous declaration 'Old'.  Figure out
852/// how to resolve this situation, merging decls or emitting
853/// diagnostics as appropriate. If there was an error, set New to be invalid.
854///
855void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
856  // If the new decl is known invalid already, don't bother doing any
857  // merging checks.
858  if (New->isInvalidDecl()) return;
859
860  // Allow multiple definitions for ObjC built-in typedefs.
861  // FIXME: Verify the underlying types are equivalent!
862  if (getLangOptions().ObjC1) {
863    const IdentifierInfo *TypeID = New->getIdentifier();
864    switch (TypeID->getLength()) {
865    default: break;
866    case 2:
867      if (!TypeID->isStr("id"))
868        break;
869      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
870      // Install the built-in type for 'id', ignoring the current definition.
871      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
872      return;
873    case 5:
874      if (!TypeID->isStr("Class"))
875        break;
876      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
877      // Install the built-in type for 'Class', ignoring the current definition.
878      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
879      return;
880    case 3:
881      if (!TypeID->isStr("SEL"))
882        break;
883      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
884      // Install the built-in type for 'SEL', ignoring the current definition.
885      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
886      return;
887    case 8:
888      if (!TypeID->isStr("Protocol"))
889        break;
890      Context.setObjCProtoType(New->getUnderlyingType());
891      return;
892    }
893    // Fall through - the typedef name was not a builtin type.
894  }
895
896  // Verify the old decl was also a type.
897  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
898  if (!Old) {
899    Diag(New->getLocation(), diag::err_redefinition_different_kind)
900      << New->getDeclName();
901
902    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
903    if (OldD->getLocation().isValid())
904      Diag(OldD->getLocation(), diag::note_previous_definition);
905
906    return New->setInvalidDecl();
907  }
908
909  // If the old declaration is invalid, just give up here.
910  if (Old->isInvalidDecl())
911    return New->setInvalidDecl();
912
913  // Determine the "old" type we'll use for checking and diagnostics.
914  QualType OldType;
915  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
916    OldType = OldTypedef->getUnderlyingType();
917  else
918    OldType = Context.getTypeDeclType(Old);
919
920  // If the typedef types are not identical, reject them in all languages and
921  // with any extensions enabled.
922
923  if (OldType != New->getUnderlyingType() &&
924      Context.getCanonicalType(OldType) !=
925      Context.getCanonicalType(New->getUnderlyingType())) {
926    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
927      << New->getUnderlyingType() << OldType;
928    if (Old->getLocation().isValid())
929      Diag(Old->getLocation(), diag::note_previous_definition);
930    return New->setInvalidDecl();
931  }
932
933  // The types match.  Link up the redeclaration chain if the old
934  // declaration was a typedef.
935  // FIXME: this is a potential source of wierdness if the type
936  // spellings don't match exactly.
937  if (isa<TypedefDecl>(Old))
938    New->setPreviousDeclaration(cast<TypedefDecl>(Old));
939
940  if (getLangOptions().Microsoft)
941    return;
942
943  if (getLangOptions().CPlusPlus) {
944    // C++ [dcl.typedef]p2:
945    //   In a given non-class scope, a typedef specifier can be used to
946    //   redefine the name of any type declared in that scope to refer
947    //   to the type to which it already refers.
948    if (!isa<CXXRecordDecl>(CurContext))
949      return;
950
951    // C++0x [dcl.typedef]p4:
952    //   In a given class scope, a typedef specifier can be used to redefine
953    //   any class-name declared in that scope that is not also a typedef-name
954    //   to refer to the type to which it already refers.
955    //
956    // This wording came in via DR424, which was a correction to the
957    // wording in DR56, which accidentally banned code like:
958    //
959    //   struct S {
960    //     typedef struct A { } A;
961    //   };
962    //
963    // in the C++03 standard. We implement the C++0x semantics, which
964    // allow the above but disallow
965    //
966    //   struct S {
967    //     typedef int I;
968    //     typedef int I;
969    //   };
970    //
971    // since that was the intent of DR56.
972    if (!isa<TypedefDecl >(Old))
973      return;
974
975    Diag(New->getLocation(), diag::err_redefinition)
976      << New->getDeclName();
977    Diag(Old->getLocation(), diag::note_previous_definition);
978    return New->setInvalidDecl();
979  }
980
981  // If we have a redefinition of a typedef in C, emit a warning.  This warning
982  // is normally mapped to an error, but can be controlled with
983  // -Wtypedef-redefinition.  If either the original or the redefinition is
984  // in a system header, don't emit this for compatibility with GCC.
985  if (getDiagnostics().getSuppressSystemWarnings() &&
986      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
987       Context.getSourceManager().isInSystemHeader(New->getLocation())))
988    return;
989
990  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
991    << New->getDeclName();
992  Diag(Old->getLocation(), diag::note_previous_definition);
993  return;
994}
995
996/// DeclhasAttr - returns true if decl Declaration already has the target
997/// attribute.
998static bool
999DeclHasAttr(const Decl *D, const Attr *A) {
1000  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1001  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1002    if ((*i)->getKind() == A->getKind()) {
1003      // FIXME: Don't hardcode this check
1004      if (OA && isa<OwnershipAttr>(*i))
1005        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1006      return true;
1007    }
1008
1009  return false;
1010}
1011
1012/// MergeDeclAttributes - append attributes from the Old decl to the New one.
1013static void MergeDeclAttributes(Decl *New, Decl *Old, ASTContext &C) {
1014  if (!Old->hasAttrs())
1015    return;
1016  // Ensure that any moving of objects within the allocated map is done before
1017  // we process them.
1018  if (!New->hasAttrs())
1019    New->setAttrs(AttrVec());
1020  for (Decl::attr_iterator i = Old->attr_begin(), e = Old->attr_end(); i != e;
1021       ++i) {
1022    // FIXME: Make this more general than just checking for Overloadable.
1023    if (!DeclHasAttr(New, *i) && (*i)->getKind() != attr::Overloadable) {
1024      Attr *NewAttr = (*i)->clone(C);
1025      NewAttr->setInherited(true);
1026      New->addAttr(NewAttr);
1027    }
1028  }
1029}
1030
1031namespace {
1032
1033/// Used in MergeFunctionDecl to keep track of function parameters in
1034/// C.
1035struct GNUCompatibleParamWarning {
1036  ParmVarDecl *OldParm;
1037  ParmVarDecl *NewParm;
1038  QualType PromotedType;
1039};
1040
1041}
1042
1043/// getSpecialMember - get the special member enum for a method.
1044Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1045  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1046    if (Ctor->isCopyConstructor())
1047      return Sema::CXXCopyConstructor;
1048
1049    return Sema::CXXConstructor;
1050  }
1051
1052  if (isa<CXXDestructorDecl>(MD))
1053    return Sema::CXXDestructor;
1054
1055  assert(MD->isCopyAssignment() && "Must have copy assignment operator");
1056  return Sema::CXXCopyAssignment;
1057}
1058
1059/// canRedefineFunction - checks if a function can be redefined. Currently,
1060/// only extern inline functions can be redefined, and even then only in
1061/// GNU89 mode.
1062static bool canRedefineFunction(const FunctionDecl *FD,
1063                                const LangOptions& LangOpts) {
1064  return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
1065          FD->isInlineSpecified() &&
1066          FD->getStorageClass() == FunctionDecl::Extern);
1067}
1068
1069/// MergeFunctionDecl - We just parsed a function 'New' from
1070/// declarator D which has the same name and scope as a previous
1071/// declaration 'Old'.  Figure out how to resolve this situation,
1072/// merging decls or emitting diagnostics as appropriate.
1073///
1074/// In C++, New and Old must be declarations that are not
1075/// overloaded. Use IsOverload to determine whether New and Old are
1076/// overloaded, and to select the Old declaration that New should be
1077/// merged with.
1078///
1079/// Returns true if there was an error, false otherwise.
1080bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1081  // Verify the old decl was also a function.
1082  FunctionDecl *Old = 0;
1083  if (FunctionTemplateDecl *OldFunctionTemplate
1084        = dyn_cast<FunctionTemplateDecl>(OldD))
1085    Old = OldFunctionTemplate->getTemplatedDecl();
1086  else
1087    Old = dyn_cast<FunctionDecl>(OldD);
1088  if (!Old) {
1089    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1090      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1091      Diag(Shadow->getTargetDecl()->getLocation(),
1092           diag::note_using_decl_target);
1093      Diag(Shadow->getUsingDecl()->getLocation(),
1094           diag::note_using_decl) << 0;
1095      return true;
1096    }
1097
1098    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1099      << New->getDeclName();
1100    Diag(OldD->getLocation(), diag::note_previous_definition);
1101    return true;
1102  }
1103
1104  // Determine whether the previous declaration was a definition,
1105  // implicit declaration, or a declaration.
1106  diag::kind PrevDiag;
1107  if (Old->isThisDeclarationADefinition())
1108    PrevDiag = diag::note_previous_definition;
1109  else if (Old->isImplicit())
1110    PrevDiag = diag::note_previous_implicit_declaration;
1111  else
1112    PrevDiag = diag::note_previous_declaration;
1113
1114  QualType OldQType = Context.getCanonicalType(Old->getType());
1115  QualType NewQType = Context.getCanonicalType(New->getType());
1116
1117  // Don't complain about this if we're in GNU89 mode and the old function
1118  // is an extern inline function.
1119  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1120      New->getStorageClass() == FunctionDecl::Static &&
1121      Old->getStorageClass() != FunctionDecl::Static &&
1122      !canRedefineFunction(Old, getLangOptions())) {
1123    Diag(New->getLocation(), diag::err_static_non_static)
1124      << New;
1125    Diag(Old->getLocation(), PrevDiag);
1126    return true;
1127  }
1128
1129  // If a function is first declared with a calling convention, but is
1130  // later declared or defined without one, the second decl assumes the
1131  // calling convention of the first.
1132  //
1133  // For the new decl, we have to look at the NON-canonical type to tell the
1134  // difference between a function that really doesn't have a calling
1135  // convention and one that is declared cdecl. That's because in
1136  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1137  // because it is the default calling convention.
1138  //
1139  // Note also that we DO NOT return at this point, because we still have
1140  // other tests to run.
1141  const FunctionType *OldType = OldQType->getAs<FunctionType>();
1142  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1143  const FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1144  const FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1145  if (OldTypeInfo.getCC() != CC_Default &&
1146      NewTypeInfo.getCC() == CC_Default) {
1147    NewQType = Context.getCallConvType(NewQType, OldTypeInfo.getCC());
1148    New->setType(NewQType);
1149    NewQType = Context.getCanonicalType(NewQType);
1150  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1151                                     NewTypeInfo.getCC())) {
1152    // Calling conventions really aren't compatible, so complain.
1153    Diag(New->getLocation(), diag::err_cconv_change)
1154      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1155      << (OldTypeInfo.getCC() == CC_Default)
1156      << (OldTypeInfo.getCC() == CC_Default ? "" :
1157          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1158    Diag(Old->getLocation(), diag::note_previous_declaration);
1159    return true;
1160  }
1161
1162  // FIXME: diagnose the other way around?
1163  if (OldType->getNoReturnAttr() && !NewType->getNoReturnAttr()) {
1164    NewQType = Context.getNoReturnType(NewQType);
1165    New->setType(NewQType);
1166    assert(NewQType.isCanonical());
1167  }
1168
1169  // Merge regparm attribute.
1170  if (OldType->getRegParmType() != NewType->getRegParmType()) {
1171    if (NewType->getRegParmType()) {
1172      Diag(New->getLocation(), diag::err_regparm_mismatch)
1173        << NewType->getRegParmType()
1174        << OldType->getRegParmType();
1175      Diag(Old->getLocation(), diag::note_previous_declaration);
1176      return true;
1177    }
1178
1179    NewQType = Context.getRegParmType(NewQType, OldType->getRegParmType());
1180    New->setType(NewQType);
1181    assert(NewQType.isCanonical());
1182  }
1183
1184  if (getLangOptions().CPlusPlus) {
1185    // (C++98 13.1p2):
1186    //   Certain function declarations cannot be overloaded:
1187    //     -- Function declarations that differ only in the return type
1188    //        cannot be overloaded.
1189    QualType OldReturnType
1190      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
1191    QualType NewReturnType
1192      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
1193    QualType ResQT;
1194    if (OldReturnType != NewReturnType) {
1195      if (NewReturnType->isObjCObjectPointerType()
1196          && OldReturnType->isObjCObjectPointerType())
1197        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1198      if (ResQT.isNull()) {
1199        Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1200        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1201        return true;
1202      }
1203      else
1204        NewQType = ResQT;
1205    }
1206
1207    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1208    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1209    if (OldMethod && NewMethod) {
1210      // Preserve triviality.
1211      NewMethod->setTrivial(OldMethod->isTrivial());
1212
1213      bool isFriend = NewMethod->getFriendObjectKind();
1214
1215      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1216        //    -- Member function declarations with the same name and the
1217        //       same parameter types cannot be overloaded if any of them
1218        //       is a static member function declaration.
1219        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1220          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1221          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1222          return true;
1223        }
1224
1225        // C++ [class.mem]p1:
1226        //   [...] A member shall not be declared twice in the
1227        //   member-specification, except that a nested class or member
1228        //   class template can be declared and then later defined.
1229        unsigned NewDiag;
1230        if (isa<CXXConstructorDecl>(OldMethod))
1231          NewDiag = diag::err_constructor_redeclared;
1232        else if (isa<CXXDestructorDecl>(NewMethod))
1233          NewDiag = diag::err_destructor_redeclared;
1234        else if (isa<CXXConversionDecl>(NewMethod))
1235          NewDiag = diag::err_conv_function_redeclared;
1236        else
1237          NewDiag = diag::err_member_redeclared;
1238
1239        Diag(New->getLocation(), NewDiag);
1240        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1241
1242      // Complain if this is an explicit declaration of a special
1243      // member that was initially declared implicitly.
1244      //
1245      // As an exception, it's okay to befriend such methods in order
1246      // to permit the implicit constructor/destructor/operator calls.
1247      } else if (OldMethod->isImplicit()) {
1248        if (isFriend) {
1249          NewMethod->setImplicit();
1250        } else {
1251          Diag(NewMethod->getLocation(),
1252               diag::err_definition_of_implicitly_declared_member)
1253            << New << getSpecialMember(OldMethod);
1254          return true;
1255        }
1256      }
1257    }
1258
1259    // (C++98 8.3.5p3):
1260    //   All declarations for a function shall agree exactly in both the
1261    //   return type and the parameter-type-list.
1262    // attributes should be ignored when comparing.
1263    if (Context.getNoReturnType(OldQType, false) ==
1264        Context.getNoReturnType(NewQType, false))
1265      return MergeCompatibleFunctionDecls(New, Old);
1266
1267    // Fall through for conflicting redeclarations and redefinitions.
1268  }
1269
1270  // C: Function types need to be compatible, not identical. This handles
1271  // duplicate function decls like "void f(int); void f(enum X);" properly.
1272  if (!getLangOptions().CPlusPlus &&
1273      Context.typesAreCompatible(OldQType, NewQType)) {
1274    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1275    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1276    const FunctionProtoType *OldProto = 0;
1277    if (isa<FunctionNoProtoType>(NewFuncType) &&
1278        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1279      // The old declaration provided a function prototype, but the
1280      // new declaration does not. Merge in the prototype.
1281      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1282      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1283                                                 OldProto->arg_type_end());
1284      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1285                                         ParamTypes.data(), ParamTypes.size(),
1286                                         OldProto->isVariadic(),
1287                                         OldProto->getTypeQuals(),
1288                                         false, false, 0, 0,
1289                                         OldProto->getExtInfo());
1290      New->setType(NewQType);
1291      New->setHasInheritedPrototype();
1292
1293      // Synthesize a parameter for each argument type.
1294      llvm::SmallVector<ParmVarDecl*, 16> Params;
1295      for (FunctionProtoType::arg_type_iterator
1296             ParamType = OldProto->arg_type_begin(),
1297             ParamEnd = OldProto->arg_type_end();
1298           ParamType != ParamEnd; ++ParamType) {
1299        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1300                                                 SourceLocation(), 0,
1301                                                 *ParamType, /*TInfo=*/0,
1302                                                 VarDecl::None, VarDecl::None,
1303                                                 0);
1304        Param->setImplicit();
1305        Params.push_back(Param);
1306      }
1307
1308      New->setParams(Params.data(), Params.size());
1309    }
1310
1311    return MergeCompatibleFunctionDecls(New, Old);
1312  }
1313
1314  // GNU C permits a K&R definition to follow a prototype declaration
1315  // if the declared types of the parameters in the K&R definition
1316  // match the types in the prototype declaration, even when the
1317  // promoted types of the parameters from the K&R definition differ
1318  // from the types in the prototype. GCC then keeps the types from
1319  // the prototype.
1320  //
1321  // If a variadic prototype is followed by a non-variadic K&R definition,
1322  // the K&R definition becomes variadic.  This is sort of an edge case, but
1323  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1324  // C99 6.9.1p8.
1325  if (!getLangOptions().CPlusPlus &&
1326      Old->hasPrototype() && !New->hasPrototype() &&
1327      New->getType()->getAs<FunctionProtoType>() &&
1328      Old->getNumParams() == New->getNumParams()) {
1329    llvm::SmallVector<QualType, 16> ArgTypes;
1330    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1331    const FunctionProtoType *OldProto
1332      = Old->getType()->getAs<FunctionProtoType>();
1333    const FunctionProtoType *NewProto
1334      = New->getType()->getAs<FunctionProtoType>();
1335
1336    // Determine whether this is the GNU C extension.
1337    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1338                                               NewProto->getResultType());
1339    bool LooseCompatible = !MergedReturn.isNull();
1340    for (unsigned Idx = 0, End = Old->getNumParams();
1341         LooseCompatible && Idx != End; ++Idx) {
1342      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1343      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1344      if (Context.typesAreCompatible(OldParm->getType(),
1345                                     NewProto->getArgType(Idx))) {
1346        ArgTypes.push_back(NewParm->getType());
1347      } else if (Context.typesAreCompatible(OldParm->getType(),
1348                                            NewParm->getType(),
1349                                            /*CompareUnqualified=*/true)) {
1350        GNUCompatibleParamWarning Warn
1351          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1352        Warnings.push_back(Warn);
1353        ArgTypes.push_back(NewParm->getType());
1354      } else
1355        LooseCompatible = false;
1356    }
1357
1358    if (LooseCompatible) {
1359      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1360        Diag(Warnings[Warn].NewParm->getLocation(),
1361             diag::ext_param_promoted_not_compatible_with_prototype)
1362          << Warnings[Warn].PromotedType
1363          << Warnings[Warn].OldParm->getType();
1364        if (Warnings[Warn].OldParm->getLocation().isValid())
1365          Diag(Warnings[Warn].OldParm->getLocation(),
1366               diag::note_previous_declaration);
1367      }
1368
1369      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1370                                           ArgTypes.size(),
1371                                           OldProto->isVariadic(), 0,
1372                                           false, false, 0, 0,
1373                                           OldProto->getExtInfo()));
1374      return MergeCompatibleFunctionDecls(New, Old);
1375    }
1376
1377    // Fall through to diagnose conflicting types.
1378  }
1379
1380  // A function that has already been declared has been redeclared or defined
1381  // with a different type- show appropriate diagnostic
1382  if (unsigned BuiltinID = Old->getBuiltinID()) {
1383    // The user has declared a builtin function with an incompatible
1384    // signature.
1385    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1386      // The function the user is redeclaring is a library-defined
1387      // function like 'malloc' or 'printf'. Warn about the
1388      // redeclaration, then pretend that we don't know about this
1389      // library built-in.
1390      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1391      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1392        << Old << Old->getType();
1393      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1394      Old->setInvalidDecl();
1395      return false;
1396    }
1397
1398    PrevDiag = diag::note_previous_builtin_declaration;
1399  }
1400
1401  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1402  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1403  return true;
1404}
1405
1406/// \brief Completes the merge of two function declarations that are
1407/// known to be compatible.
1408///
1409/// This routine handles the merging of attributes and other
1410/// properties of function declarations form the old declaration to
1411/// the new declaration, once we know that New is in fact a
1412/// redeclaration of Old.
1413///
1414/// \returns false
1415bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1416  // Merge the attributes
1417  MergeDeclAttributes(New, Old, Context);
1418
1419  // Merge the storage class.
1420  if (Old->getStorageClass() != FunctionDecl::Extern &&
1421      Old->getStorageClass() != FunctionDecl::None)
1422    New->setStorageClass(Old->getStorageClass());
1423
1424  // Merge "pure" flag.
1425  if (Old->isPure())
1426    New->setPure();
1427
1428  // Merge the "deleted" flag.
1429  if (Old->isDeleted())
1430    New->setDeleted();
1431
1432  if (getLangOptions().CPlusPlus)
1433    return MergeCXXFunctionDecl(New, Old);
1434
1435  return false;
1436}
1437
1438/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1439/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1440/// situation, merging decls or emitting diagnostics as appropriate.
1441///
1442/// Tentative definition rules (C99 6.9.2p2) are checked by
1443/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1444/// definitions here, since the initializer hasn't been attached.
1445///
1446void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1447  // If the new decl is already invalid, don't do any other checking.
1448  if (New->isInvalidDecl())
1449    return;
1450
1451  // Verify the old decl was also a variable.
1452  VarDecl *Old = 0;
1453  if (!Previous.isSingleResult() ||
1454      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1455    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1456      << New->getDeclName();
1457    Diag(Previous.getRepresentativeDecl()->getLocation(),
1458         diag::note_previous_definition);
1459    return New->setInvalidDecl();
1460  }
1461
1462  MergeDeclAttributes(New, Old, Context);
1463
1464  // Merge the types
1465  QualType MergedT;
1466  if (getLangOptions().CPlusPlus) {
1467    if (Context.hasSameType(New->getType(), Old->getType()))
1468      MergedT = New->getType();
1469    // C++ [basic.link]p10:
1470    //   [...] the types specified by all declarations referring to a given
1471    //   object or function shall be identical, except that declarations for an
1472    //   array object can specify array types that differ by the presence or
1473    //   absence of a major array bound (8.3.4).
1474    else if (Old->getType()->isIncompleteArrayType() &&
1475             New->getType()->isArrayType()) {
1476      CanQual<ArrayType> OldArray
1477        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1478      CanQual<ArrayType> NewArray
1479        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1480      if (OldArray->getElementType() == NewArray->getElementType())
1481        MergedT = New->getType();
1482    } else if (Old->getType()->isArrayType() &&
1483             New->getType()->isIncompleteArrayType()) {
1484      CanQual<ArrayType> OldArray
1485        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1486      CanQual<ArrayType> NewArray
1487        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1488      if (OldArray->getElementType() == NewArray->getElementType())
1489        MergedT = Old->getType();
1490    } else if (New->getType()->isObjCObjectPointerType()
1491               && Old->getType()->isObjCObjectPointerType()) {
1492        MergedT = Context.mergeObjCGCQualifiers(New->getType(), Old->getType());
1493    }
1494  } else {
1495    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1496  }
1497  if (MergedT.isNull()) {
1498    Diag(New->getLocation(), diag::err_redefinition_different_type)
1499      << New->getDeclName();
1500    Diag(Old->getLocation(), diag::note_previous_definition);
1501    return New->setInvalidDecl();
1502  }
1503  New->setType(MergedT);
1504
1505  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1506  if (New->getStorageClass() == VarDecl::Static &&
1507      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
1508    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1509    Diag(Old->getLocation(), diag::note_previous_definition);
1510    return New->setInvalidDecl();
1511  }
1512  // C99 6.2.2p4:
1513  //   For an identifier declared with the storage-class specifier
1514  //   extern in a scope in which a prior declaration of that
1515  //   identifier is visible,23) if the prior declaration specifies
1516  //   internal or external linkage, the linkage of the identifier at
1517  //   the later declaration is the same as the linkage specified at
1518  //   the prior declaration. If no prior declaration is visible, or
1519  //   if the prior declaration specifies no linkage, then the
1520  //   identifier has external linkage.
1521  if (New->hasExternalStorage() && Old->hasLinkage())
1522    /* Okay */;
1523  else if (New->getStorageClass() != VarDecl::Static &&
1524           Old->getStorageClass() == VarDecl::Static) {
1525    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1526    Diag(Old->getLocation(), diag::note_previous_definition);
1527    return New->setInvalidDecl();
1528  }
1529
1530  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1531
1532  // FIXME: The test for external storage here seems wrong? We still
1533  // need to check for mismatches.
1534  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1535      // Don't complain about out-of-line definitions of static members.
1536      !(Old->getLexicalDeclContext()->isRecord() &&
1537        !New->getLexicalDeclContext()->isRecord())) {
1538    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1539    Diag(Old->getLocation(), diag::note_previous_definition);
1540    return New->setInvalidDecl();
1541  }
1542
1543  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1544    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1545    Diag(Old->getLocation(), diag::note_previous_definition);
1546  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1547    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1548    Diag(Old->getLocation(), diag::note_previous_definition);
1549  }
1550
1551  // C++ doesn't have tentative definitions, so go right ahead and check here.
1552  const VarDecl *Def;
1553  if (getLangOptions().CPlusPlus &&
1554      New->isThisDeclarationADefinition() == VarDecl::Definition &&
1555      (Def = Old->getDefinition())) {
1556    Diag(New->getLocation(), diag::err_redefinition)
1557      << New->getDeclName();
1558    Diag(Def->getLocation(), diag::note_previous_definition);
1559    New->setInvalidDecl();
1560    return;
1561  }
1562  // c99 6.2.2 P4.
1563  // For an identifier declared with the storage-class specifier extern in a
1564  // scope in which a prior declaration of that identifier is visible, if
1565  // the prior declaration specifies internal or external linkage, the linkage
1566  // of the identifier at the later declaration is the same as the linkage
1567  // specified at the prior declaration.
1568  // FIXME. revisit this code.
1569  if (New->hasExternalStorage() &&
1570      Old->getLinkage() == InternalLinkage &&
1571      New->getDeclContext() == Old->getDeclContext())
1572    New->setStorageClass(Old->getStorageClass());
1573
1574  // Keep a chain of previous declarations.
1575  New->setPreviousDeclaration(Old);
1576
1577  // Inherit access appropriately.
1578  New->setAccess(Old->getAccess());
1579}
1580
1581/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1582/// no declarator (e.g. "struct foo;") is parsed.
1583Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
1584                                            DeclSpec &DS) {
1585  // FIXME: Error on auto/register at file scope
1586  // FIXME: Error on inline/virtual/explicit
1587  // FIXME: Warn on useless __thread
1588  // FIXME: Warn on useless const/volatile
1589  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1590  // FIXME: Warn on useless attributes
1591  Decl *TagD = 0;
1592  TagDecl *Tag = 0;
1593  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1594      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1595      DS.getTypeSpecType() == DeclSpec::TST_union ||
1596      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1597    TagD = static_cast<Decl *>(DS.getTypeRep());
1598
1599    if (!TagD) // We probably had an error
1600      return 0;
1601
1602    // Note that the above type specs guarantee that the
1603    // type rep is a Decl, whereas in many of the others
1604    // it's a Type.
1605    Tag = dyn_cast<TagDecl>(TagD);
1606  }
1607
1608  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1609    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1610    // or incomplete types shall not be restrict-qualified."
1611    if (TypeQuals & DeclSpec::TQ_restrict)
1612      Diag(DS.getRestrictSpecLoc(),
1613           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1614           << DS.getSourceRange();
1615  }
1616
1617  if (DS.isFriendSpecified()) {
1618    // If we're dealing with a class template decl, assume that the
1619    // template routines are handling it.
1620    if (TagD && isa<ClassTemplateDecl>(TagD))
1621      return 0;
1622    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1623  }
1624
1625  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1626    ProcessDeclAttributeList(S, Record, DS.getAttributes());
1627
1628    if (!Record->getDeclName() && Record->isDefinition() &&
1629        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1630      if (getLangOptions().CPlusPlus ||
1631          Record->getDeclContext()->isRecord())
1632        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
1633
1634      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1635        << DS.getSourceRange();
1636    }
1637
1638    // Microsoft allows unnamed struct/union fields. Don't complain
1639    // about them.
1640    // FIXME: Should we support Microsoft's extensions in this area?
1641    if (Record->getDeclName() && getLangOptions().Microsoft)
1642      return Tag;
1643  }
1644
1645  if (getLangOptions().CPlusPlus &&
1646      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
1647    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
1648      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
1649          !Enum->getIdentifier() && !Enum->isInvalidDecl())
1650        Diag(Enum->getLocation(), diag::ext_no_declarators)
1651          << DS.getSourceRange();
1652
1653  if (!DS.isMissingDeclaratorOk() &&
1654      DS.getTypeSpecType() != DeclSpec::TST_error) {
1655    // Warn about typedefs of enums without names, since this is an
1656    // extension in both Microsoft and GNU.
1657    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1658        Tag && isa<EnumDecl>(Tag)) {
1659      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1660        << DS.getSourceRange();
1661      return Tag;
1662    }
1663
1664    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1665      << DS.getSourceRange();
1666  }
1667
1668  return TagD;
1669}
1670
1671/// We are trying to inject an anonymous member into the given scope;
1672/// check if there's an existing declaration that can't be overloaded.
1673///
1674/// \return true if this is a forbidden redeclaration
1675static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1676                                         Scope *S,
1677                                         DeclContext *Owner,
1678                                         DeclarationName Name,
1679                                         SourceLocation NameLoc,
1680                                         unsigned diagnostic) {
1681  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1682                 Sema::ForRedeclaration);
1683  if (!SemaRef.LookupName(R, S)) return false;
1684
1685  if (R.getAsSingle<TagDecl>())
1686    return false;
1687
1688  // Pick a representative declaration.
1689  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1690  if (PrevDecl && Owner->isRecord()) {
1691    RecordDecl *Record = cast<RecordDecl>(Owner);
1692    if (!SemaRef.isDeclInScope(PrevDecl, Record, S))
1693      return false;
1694  }
1695
1696  SemaRef.Diag(NameLoc, diagnostic) << Name;
1697  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1698
1699  return true;
1700}
1701
1702/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1703/// anonymous struct or union AnonRecord into the owning context Owner
1704/// and scope S. This routine will be invoked just after we realize
1705/// that an unnamed union or struct is actually an anonymous union or
1706/// struct, e.g.,
1707///
1708/// @code
1709/// union {
1710///   int i;
1711///   float f;
1712/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1713///    // f into the surrounding scope.x
1714/// @endcode
1715///
1716/// This routine is recursive, injecting the names of nested anonymous
1717/// structs/unions into the owning context and scope as well.
1718static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
1719                                                DeclContext *Owner,
1720                                                RecordDecl *AnonRecord,
1721                                                AccessSpecifier AS) {
1722  unsigned diagKind
1723    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1724                            : diag::err_anonymous_struct_member_redecl;
1725
1726  bool Invalid = false;
1727  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1728                               FEnd = AnonRecord->field_end();
1729       F != FEnd; ++F) {
1730    if ((*F)->getDeclName()) {
1731      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, (*F)->getDeclName(),
1732                                       (*F)->getLocation(), diagKind)) {
1733        // C++ [class.union]p2:
1734        //   The names of the members of an anonymous union shall be
1735        //   distinct from the names of any other entity in the
1736        //   scope in which the anonymous union is declared.
1737        Invalid = true;
1738      } else {
1739        // C++ [class.union]p2:
1740        //   For the purpose of name lookup, after the anonymous union
1741        //   definition, the members of the anonymous union are
1742        //   considered to have been defined in the scope in which the
1743        //   anonymous union is declared.
1744        Owner->makeDeclVisibleInContext(*F);
1745        S->AddDecl(*F);
1746        SemaRef.IdResolver.AddDecl(*F);
1747
1748        // That includes picking up the appropriate access specifier.
1749        if (AS != AS_none) (*F)->setAccess(AS);
1750      }
1751    } else if (const RecordType *InnerRecordType
1752                 = (*F)->getType()->getAs<RecordType>()) {
1753      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1754      if (InnerRecord->isAnonymousStructOrUnion())
1755        Invalid = Invalid ||
1756          InjectAnonymousStructOrUnionMembers(SemaRef, S, Owner,
1757                                              InnerRecord, AS);
1758    }
1759  }
1760
1761  return Invalid;
1762}
1763
1764/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
1765/// a VarDecl::StorageClass. Any error reporting is up to the caller:
1766/// illegal input values are mapped to VarDecl::None.
1767static VarDecl::StorageClass
1768StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1769  switch (StorageClassSpec) {
1770  case DeclSpec::SCS_unspecified:    return VarDecl::None;
1771  case DeclSpec::SCS_extern:         return VarDecl::Extern;
1772  case DeclSpec::SCS_static:         return VarDecl::Static;
1773  case DeclSpec::SCS_auto:           return VarDecl::Auto;
1774  case DeclSpec::SCS_register:       return VarDecl::Register;
1775  case DeclSpec::SCS_private_extern: return VarDecl::PrivateExtern;
1776    // Illegal SCSs map to None: error reporting is up to the caller.
1777  case DeclSpec::SCS_mutable:        // Fall through.
1778  case DeclSpec::SCS_typedef:        return VarDecl::None;
1779  }
1780  llvm_unreachable("unknown storage class specifier");
1781}
1782
1783/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
1784/// a FunctionDecl::StorageClass. Any error reporting is up to the caller:
1785/// illegal input values are mapped to FunctionDecl::None.
1786static FunctionDecl::StorageClass
1787StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1788  switch (StorageClassSpec) {
1789  case DeclSpec::SCS_unspecified:    return FunctionDecl::None;
1790  case DeclSpec::SCS_extern:         return FunctionDecl::Extern;
1791  case DeclSpec::SCS_static:         return FunctionDecl::Static;
1792  case DeclSpec::SCS_private_extern: return FunctionDecl::PrivateExtern;
1793    // Illegal SCSs map to None: error reporting is up to the caller.
1794  case DeclSpec::SCS_auto:           // Fall through.
1795  case DeclSpec::SCS_mutable:        // Fall through.
1796  case DeclSpec::SCS_register:       // Fall through.
1797  case DeclSpec::SCS_typedef:        return FunctionDecl::None;
1798  }
1799  llvm_unreachable("unknown storage class specifier");
1800}
1801
1802/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1803/// anonymous structure or union. Anonymous unions are a C++ feature
1804/// (C++ [class.union]) and a GNU C extension; anonymous structures
1805/// are a GNU C and GNU C++ extension.
1806Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1807                                             AccessSpecifier AS,
1808                                             RecordDecl *Record) {
1809  DeclContext *Owner = Record->getDeclContext();
1810
1811  // Diagnose whether this anonymous struct/union is an extension.
1812  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1813    Diag(Record->getLocation(), diag::ext_anonymous_union);
1814  else if (!Record->isUnion())
1815    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1816
1817  // C and C++ require different kinds of checks for anonymous
1818  // structs/unions.
1819  bool Invalid = false;
1820  if (getLangOptions().CPlusPlus) {
1821    const char* PrevSpec = 0;
1822    unsigned DiagID;
1823    // C++ [class.union]p3:
1824    //   Anonymous unions declared in a named namespace or in the
1825    //   global namespace shall be declared static.
1826    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1827        (isa<TranslationUnitDecl>(Owner) ||
1828         (isa<NamespaceDecl>(Owner) &&
1829          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1830      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1831      Invalid = true;
1832
1833      // Recover by adding 'static'.
1834      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1835                             PrevSpec, DiagID);
1836    }
1837    // C++ [class.union]p3:
1838    //   A storage class is not allowed in a declaration of an
1839    //   anonymous union in a class scope.
1840    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1841             isa<RecordDecl>(Owner)) {
1842      Diag(DS.getStorageClassSpecLoc(),
1843           diag::err_anonymous_union_with_storage_spec);
1844      Invalid = true;
1845
1846      // Recover by removing the storage specifier.
1847      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1848                             PrevSpec, DiagID);
1849    }
1850
1851    // C++ [class.union]p2:
1852    //   The member-specification of an anonymous union shall only
1853    //   define non-static data members. [Note: nested types and
1854    //   functions cannot be declared within an anonymous union. ]
1855    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1856                                 MemEnd = Record->decls_end();
1857         Mem != MemEnd; ++Mem) {
1858      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1859        // C++ [class.union]p3:
1860        //   An anonymous union shall not have private or protected
1861        //   members (clause 11).
1862        assert(FD->getAccess() != AS_none);
1863        if (FD->getAccess() != AS_public) {
1864          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1865            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1866          Invalid = true;
1867        }
1868
1869        if (CheckNontrivialField(FD))
1870          Invalid = true;
1871      } else if ((*Mem)->isImplicit()) {
1872        // Any implicit members are fine.
1873      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1874        // This is a type that showed up in an
1875        // elaborated-type-specifier inside the anonymous struct or
1876        // union, but which actually declares a type outside of the
1877        // anonymous struct or union. It's okay.
1878      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1879        if (!MemRecord->isAnonymousStructOrUnion() &&
1880            MemRecord->getDeclName()) {
1881          // This is a nested type declaration.
1882          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1883            << (int)Record->isUnion();
1884          Invalid = true;
1885        }
1886      } else if (isa<AccessSpecDecl>(*Mem)) {
1887        // Any access specifier is fine.
1888      } else {
1889        // We have something that isn't a non-static data
1890        // member. Complain about it.
1891        unsigned DK = diag::err_anonymous_record_bad_member;
1892        if (isa<TypeDecl>(*Mem))
1893          DK = diag::err_anonymous_record_with_type;
1894        else if (isa<FunctionDecl>(*Mem))
1895          DK = diag::err_anonymous_record_with_function;
1896        else if (isa<VarDecl>(*Mem))
1897          DK = diag::err_anonymous_record_with_static;
1898        Diag((*Mem)->getLocation(), DK)
1899            << (int)Record->isUnion();
1900          Invalid = true;
1901      }
1902    }
1903  }
1904
1905  if (!Record->isUnion() && !Owner->isRecord()) {
1906    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1907      << (int)getLangOptions().CPlusPlus;
1908    Invalid = true;
1909  }
1910
1911  // Mock up a declarator.
1912  Declarator Dc(DS, Declarator::TypeNameContext);
1913  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
1914  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
1915
1916  // Create a declaration for this anonymous struct/union.
1917  NamedDecl *Anon = 0;
1918  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1919    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1920                             /*IdentifierInfo=*/0,
1921                             Context.getTypeDeclType(Record),
1922                             TInfo,
1923                             /*BitWidth=*/0, /*Mutable=*/false);
1924    Anon->setAccess(AS);
1925    if (getLangOptions().CPlusPlus) {
1926      FieldCollector->Add(cast<FieldDecl>(Anon));
1927      if (!cast<CXXRecordDecl>(Record)->isEmpty())
1928        cast<CXXRecordDecl>(OwningClass)->setEmpty(false);
1929    }
1930  } else {
1931    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
1932    assert(SCSpec != DeclSpec::SCS_typedef &&
1933           "Parser allowed 'typedef' as storage class VarDecl.");
1934    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
1935    if (SCSpec == DeclSpec::SCS_mutable) {
1936      // mutable can only appear on non-static class members, so it's always
1937      // an error here
1938      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1939      Invalid = true;
1940      SC = VarDecl::None;
1941    }
1942    SCSpec = DS.getStorageClassSpecAsWritten();
1943    VarDecl::StorageClass SCAsWritten
1944      = StorageClassSpecToVarDeclStorageClass(SCSpec);
1945
1946    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1947                           /*IdentifierInfo=*/0,
1948                           Context.getTypeDeclType(Record),
1949                           TInfo, SC, SCAsWritten);
1950  }
1951  Anon->setImplicit();
1952
1953  // Add the anonymous struct/union object to the current
1954  // context. We'll be referencing this object when we refer to one of
1955  // its members.
1956  Owner->addDecl(Anon);
1957
1958  // Inject the members of the anonymous struct/union into the owning
1959  // context and into the identifier resolver chain for name lookup
1960  // purposes.
1961  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS))
1962    Invalid = true;
1963
1964  // Mark this as an anonymous struct/union type. Note that we do not
1965  // do this until after we have already checked and injected the
1966  // members of this anonymous struct/union type, because otherwise
1967  // the members could be injected twice: once by DeclContext when it
1968  // builds its lookup table, and once by
1969  // InjectAnonymousStructOrUnionMembers.
1970  Record->setAnonymousStructOrUnion(true);
1971
1972  if (Invalid)
1973    Anon->setInvalidDecl();
1974
1975  return Anon;
1976}
1977
1978
1979/// GetNameForDeclarator - Determine the full declaration name for the
1980/// given Declarator.
1981DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
1982  return GetNameFromUnqualifiedId(D.getName());
1983}
1984
1985/// \brief Retrieves the declaration name from a parsed unqualified-id.
1986DeclarationNameInfo
1987Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
1988  DeclarationNameInfo NameInfo;
1989  NameInfo.setLoc(Name.StartLocation);
1990
1991  switch (Name.getKind()) {
1992
1993  case UnqualifiedId::IK_Identifier:
1994    NameInfo.setName(Name.Identifier);
1995    NameInfo.setLoc(Name.StartLocation);
1996    return NameInfo;
1997
1998  case UnqualifiedId::IK_OperatorFunctionId:
1999    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2000                                           Name.OperatorFunctionId.Operator));
2001    NameInfo.setLoc(Name.StartLocation);
2002    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2003      = Name.OperatorFunctionId.SymbolLocations[0];
2004    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2005      = Name.EndLocation.getRawEncoding();
2006    return NameInfo;
2007
2008  case UnqualifiedId::IK_LiteralOperatorId:
2009    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2010                                                           Name.Identifier));
2011    NameInfo.setLoc(Name.StartLocation);
2012    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2013    return NameInfo;
2014
2015  case UnqualifiedId::IK_ConversionFunctionId: {
2016    TypeSourceInfo *TInfo;
2017    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2018    if (Ty.isNull())
2019      return DeclarationNameInfo();
2020    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2021                                               Context.getCanonicalType(Ty)));
2022    NameInfo.setLoc(Name.StartLocation);
2023    NameInfo.setNamedTypeInfo(TInfo);
2024    return NameInfo;
2025  }
2026
2027  case UnqualifiedId::IK_ConstructorName: {
2028    TypeSourceInfo *TInfo;
2029    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2030    if (Ty.isNull())
2031      return DeclarationNameInfo();
2032    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2033                                              Context.getCanonicalType(Ty)));
2034    NameInfo.setLoc(Name.StartLocation);
2035    NameInfo.setNamedTypeInfo(TInfo);
2036    return NameInfo;
2037  }
2038
2039  case UnqualifiedId::IK_ConstructorTemplateId: {
2040    // In well-formed code, we can only have a constructor
2041    // template-id that refers to the current context, so go there
2042    // to find the actual type being constructed.
2043    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2044    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2045      return DeclarationNameInfo();
2046
2047    // Determine the type of the class being constructed.
2048    QualType CurClassType = Context.getTypeDeclType(CurClass);
2049
2050    // FIXME: Check two things: that the template-id names the same type as
2051    // CurClassType, and that the template-id does not occur when the name
2052    // was qualified.
2053
2054    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2055                                    Context.getCanonicalType(CurClassType)));
2056    NameInfo.setLoc(Name.StartLocation);
2057    // FIXME: should we retrieve TypeSourceInfo?
2058    NameInfo.setNamedTypeInfo(0);
2059    return NameInfo;
2060  }
2061
2062  case UnqualifiedId::IK_DestructorName: {
2063    TypeSourceInfo *TInfo;
2064    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2065    if (Ty.isNull())
2066      return DeclarationNameInfo();
2067    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2068                                              Context.getCanonicalType(Ty)));
2069    NameInfo.setLoc(Name.StartLocation);
2070    NameInfo.setNamedTypeInfo(TInfo);
2071    return NameInfo;
2072  }
2073
2074  case UnqualifiedId::IK_TemplateId: {
2075    TemplateName TName = Name.TemplateId->Template.get();
2076    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
2077    return Context.getNameForTemplate(TName, TNameLoc);
2078  }
2079
2080  } // switch (Name.getKind())
2081
2082  assert(false && "Unknown name kind");
2083  return DeclarationNameInfo();
2084}
2085
2086/// isNearlyMatchingFunction - Determine whether the C++ functions
2087/// Declaration and Definition are "nearly" matching. This heuristic
2088/// is used to improve diagnostics in the case where an out-of-line
2089/// function definition doesn't match any declaration within
2090/// the class or namespace.
2091static bool isNearlyMatchingFunction(ASTContext &Context,
2092                                     FunctionDecl *Declaration,
2093                                     FunctionDecl *Definition) {
2094  if (Declaration->param_size() != Definition->param_size())
2095    return false;
2096  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2097    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2098    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2099
2100    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
2101                                        DefParamTy.getNonReferenceType()))
2102      return false;
2103  }
2104
2105  return true;
2106}
2107
2108/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
2109/// declarator needs to be rebuilt in the current instantiation.
2110/// Any bits of declarator which appear before the name are valid for
2111/// consideration here.  That's specifically the type in the decl spec
2112/// and the base type in any member-pointer chunks.
2113static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
2114                                                    DeclarationName Name) {
2115  // The types we specifically need to rebuild are:
2116  //   - typenames, typeofs, and decltypes
2117  //   - types which will become injected class names
2118  // Of course, we also need to rebuild any type referencing such a
2119  // type.  It's safest to just say "dependent", but we call out a
2120  // few cases here.
2121
2122  DeclSpec &DS = D.getMutableDeclSpec();
2123  switch (DS.getTypeSpecType()) {
2124  case DeclSpec::TST_typename:
2125  case DeclSpec::TST_typeofType:
2126  case DeclSpec::TST_typeofExpr:
2127  case DeclSpec::TST_decltype: {
2128    // Grab the type from the parser.
2129    TypeSourceInfo *TSI = 0;
2130    QualType T = S.GetTypeFromParser(DS.getTypeRep(), &TSI);
2131    if (T.isNull() || !T->isDependentType()) break;
2132
2133    // Make sure there's a type source info.  This isn't really much
2134    // of a waste; most dependent types should have type source info
2135    // attached already.
2136    if (!TSI)
2137      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
2138
2139    // Rebuild the type in the current instantiation.
2140    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
2141    if (!TSI) return true;
2142
2143    // Store the new type back in the decl spec.
2144    QualType LocType = S.CreateLocInfoType(TSI->getType(), TSI);
2145    DS.UpdateTypeRep(LocType.getAsOpaquePtr());
2146    break;
2147  }
2148
2149  default:
2150    // Nothing to do for these decl specs.
2151    break;
2152  }
2153
2154  // It doesn't matter what order we do this in.
2155  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2156    DeclaratorChunk &Chunk = D.getTypeObject(I);
2157
2158    // The only type information in the declarator which can come
2159    // before the declaration name is the base type of a member
2160    // pointer.
2161    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
2162      continue;
2163
2164    // Rebuild the scope specifier in-place.
2165    CXXScopeSpec &SS = Chunk.Mem.Scope();
2166    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2167      return true;
2168  }
2169
2170  return false;
2171}
2172
2173Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
2174                             MultiTemplateParamsArg TemplateParamLists,
2175                             bool IsFunctionDefinition) {
2176  // TODO: consider using NameInfo for diagnostic.
2177  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2178  DeclarationName Name = NameInfo.getName();
2179
2180  // All of these full declarators require an identifier.  If it doesn't have
2181  // one, the ParsedFreeStandingDeclSpec action should be used.
2182  if (!Name) {
2183    if (!D.isInvalidType())  // Reject this if we think it is valid.
2184      Diag(D.getDeclSpec().getSourceRange().getBegin(),
2185           diag::err_declarator_need_ident)
2186        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2187    return 0;
2188  }
2189
2190  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2191  // we find one that is.
2192  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2193         (S->getFlags() & Scope::TemplateParamScope) != 0)
2194    S = S->getParent();
2195
2196  DeclContext *DC = CurContext;
2197  if (D.getCXXScopeSpec().isInvalid())
2198    D.setInvalidType();
2199  else if (D.getCXXScopeSpec().isSet()) {
2200    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
2201    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
2202    if (!DC) {
2203      // If we could not compute the declaration context, it's because the
2204      // declaration context is dependent but does not refer to a class,
2205      // class template, or class template partial specialization. Complain
2206      // and return early, to avoid the coming semantic disaster.
2207      Diag(D.getIdentifierLoc(),
2208           diag::err_template_qualified_declarator_no_match)
2209        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2210        << D.getCXXScopeSpec().getRange();
2211      return 0;
2212    }
2213
2214    bool IsDependentContext = DC->isDependentContext();
2215
2216    if (!IsDependentContext &&
2217        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
2218      return 0;
2219
2220    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
2221      Diag(D.getIdentifierLoc(),
2222           diag::err_member_def_undefined_record)
2223        << Name << DC << D.getCXXScopeSpec().getRange();
2224      D.setInvalidType();
2225    }
2226
2227    // Check whether we need to rebuild the type of the given
2228    // declaration in the current instantiation.
2229    if (EnteringContext && IsDependentContext &&
2230        TemplateParamLists.size() != 0) {
2231      ContextRAII SavedContext(*this, DC);
2232      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
2233        D.setInvalidType();
2234    }
2235  }
2236
2237  NamedDecl *New;
2238
2239  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
2240  QualType R = TInfo->getType();
2241
2242  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
2243                        ForRedeclaration);
2244
2245  // See if this is a redefinition of a variable in the same scope.
2246  if (!D.getCXXScopeSpec().isSet()) {
2247    bool IsLinkageLookup = false;
2248
2249    // If the declaration we're planning to build will be a function
2250    // or object with linkage, then look for another declaration with
2251    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
2252    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2253      /* Do nothing*/;
2254    else if (R->isFunctionType()) {
2255      if (CurContext->isFunctionOrMethod() ||
2256          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2257        IsLinkageLookup = true;
2258    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
2259      IsLinkageLookup = true;
2260    else if (CurContext->getLookupContext()->isTranslationUnit() &&
2261             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2262      IsLinkageLookup = true;
2263
2264    if (IsLinkageLookup)
2265      Previous.clear(LookupRedeclarationWithLinkage);
2266
2267    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
2268  } else { // Something like "int foo::x;"
2269    LookupQualifiedName(Previous, DC);
2270
2271    // Don't consider using declarations as previous declarations for
2272    // out-of-line members.
2273    RemoveUsingDecls(Previous);
2274
2275    // C++ 7.3.1.2p2:
2276    // Members (including explicit specializations of templates) of a named
2277    // namespace can also be defined outside that namespace by explicit
2278    // qualification of the name being defined, provided that the entity being
2279    // defined was already declared in the namespace and the definition appears
2280    // after the point of declaration in a namespace that encloses the
2281    // declarations namespace.
2282    //
2283    // Note that we only check the context at this point. We don't yet
2284    // have enough information to make sure that PrevDecl is actually
2285    // the declaration we want to match. For example, given:
2286    //
2287    //   class X {
2288    //     void f();
2289    //     void f(float);
2290    //   };
2291    //
2292    //   void X::f(int) { } // ill-formed
2293    //
2294    // In this case, PrevDecl will point to the overload set
2295    // containing the two f's declared in X, but neither of them
2296    // matches.
2297
2298    // First check whether we named the global scope.
2299    if (isa<TranslationUnitDecl>(DC)) {
2300      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
2301        << Name << D.getCXXScopeSpec().getRange();
2302    } else {
2303      DeclContext *Cur = CurContext;
2304      while (isa<LinkageSpecDecl>(Cur))
2305        Cur = Cur->getParent();
2306      if (!Cur->Encloses(DC)) {
2307        // The qualifying scope doesn't enclose the original declaration.
2308        // Emit diagnostic based on current scope.
2309        SourceLocation L = D.getIdentifierLoc();
2310        SourceRange R = D.getCXXScopeSpec().getRange();
2311        if (isa<FunctionDecl>(Cur))
2312          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
2313        else
2314          Diag(L, diag::err_invalid_declarator_scope)
2315            << Name << cast<NamedDecl>(DC) << R;
2316        D.setInvalidType();
2317      }
2318    }
2319  }
2320
2321  if (Previous.isSingleResult() &&
2322      Previous.getFoundDecl()->isTemplateParameter()) {
2323    // Maybe we will complain about the shadowed template parameter.
2324    if (!D.isInvalidType())
2325      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
2326                                          Previous.getFoundDecl()))
2327        D.setInvalidType();
2328
2329    // Just pretend that we didn't see the previous declaration.
2330    Previous.clear();
2331  }
2332
2333  // In C++, the previous declaration we find might be a tag type
2334  // (class or enum). In this case, the new declaration will hide the
2335  // tag type. Note that this does does not apply if we're declaring a
2336  // typedef (C++ [dcl.typedef]p4).
2337  if (Previous.isSingleTagDecl() &&
2338      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2339    Previous.clear();
2340
2341  bool Redeclaration = false;
2342  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2343    if (TemplateParamLists.size()) {
2344      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2345      return 0;
2346    }
2347
2348    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2349  } else if (R->isFunctionType()) {
2350    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2351                                  move(TemplateParamLists),
2352                                  IsFunctionDefinition, Redeclaration);
2353  } else {
2354    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2355                                  move(TemplateParamLists),
2356                                  Redeclaration);
2357  }
2358
2359  if (New == 0)
2360    return 0;
2361
2362  // If this has an identifier and is not an invalid redeclaration or
2363  // function template specialization, add it to the scope stack.
2364  if (New->getDeclName() && !(Redeclaration && New->isInvalidDecl()))
2365    PushOnScopeChains(New, S);
2366
2367  return New;
2368}
2369
2370/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2371/// types into constant array types in certain situations which would otherwise
2372/// be errors (for GCC compatibility).
2373static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2374                                                    ASTContext &Context,
2375                                                    bool &SizeIsNegative,
2376                                                    llvm::APSInt &Oversized) {
2377  // This method tries to turn a variable array into a constant
2378  // array even when the size isn't an ICE.  This is necessary
2379  // for compatibility with code that depends on gcc's buggy
2380  // constant expression folding, like struct {char x[(int)(char*)2];}
2381  SizeIsNegative = false;
2382  Oversized = 0;
2383
2384  if (T->isDependentType())
2385    return QualType();
2386
2387  QualifierCollector Qs;
2388  const Type *Ty = Qs.strip(T);
2389
2390  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2391    QualType Pointee = PTy->getPointeeType();
2392    QualType FixedType =
2393        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
2394                                            Oversized);
2395    if (FixedType.isNull()) return FixedType;
2396    FixedType = Context.getPointerType(FixedType);
2397    return Qs.apply(FixedType);
2398  }
2399
2400  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2401  if (!VLATy)
2402    return QualType();
2403  // FIXME: We should probably handle this case
2404  if (VLATy->getElementType()->isVariablyModifiedType())
2405    return QualType();
2406
2407  Expr::EvalResult EvalResult;
2408  if (!VLATy->getSizeExpr() ||
2409      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2410      !EvalResult.Val.isInt())
2411    return QualType();
2412
2413  // Check whether the array size is negative.
2414  llvm::APSInt &Res = EvalResult.Val.getInt();
2415  if (Res.isSigned() && Res.isNegative()) {
2416    SizeIsNegative = true;
2417    return QualType();
2418  }
2419
2420  // Check whether the array is too large to be addressed.
2421  unsigned ActiveSizeBits
2422    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
2423                                              Res);
2424  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
2425    Oversized = Res;
2426    return QualType();
2427  }
2428
2429  return Context.getConstantArrayType(VLATy->getElementType(),
2430                                      Res, ArrayType::Normal, 0);
2431}
2432
2433/// \brief Register the given locally-scoped external C declaration so
2434/// that it can be found later for redeclarations
2435void
2436Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2437                                       const LookupResult &Previous,
2438                                       Scope *S) {
2439  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2440         "Decl is not a locally-scoped decl!");
2441  // Note that we have a locally-scoped external with this name.
2442  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2443
2444  if (!Previous.isSingleResult())
2445    return;
2446
2447  NamedDecl *PrevDecl = Previous.getFoundDecl();
2448
2449  // If there was a previous declaration of this variable, it may be
2450  // in our identifier chain. Update the identifier chain with the new
2451  // declaration.
2452  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2453    // The previous declaration was found on the identifer resolver
2454    // chain, so remove it from its scope.
2455    while (S && !S->isDeclScope(PrevDecl))
2456      S = S->getParent();
2457
2458    if (S)
2459      S->RemoveDecl(PrevDecl);
2460  }
2461}
2462
2463/// \brief Diagnose function specifiers on a declaration of an identifier that
2464/// does not identify a function.
2465void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2466  // FIXME: We should probably indicate the identifier in question to avoid
2467  // confusion for constructs like "inline int a(), b;"
2468  if (D.getDeclSpec().isInlineSpecified())
2469    Diag(D.getDeclSpec().getInlineSpecLoc(),
2470         diag::err_inline_non_function);
2471
2472  if (D.getDeclSpec().isVirtualSpecified())
2473    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2474         diag::err_virtual_non_function);
2475
2476  if (D.getDeclSpec().isExplicitSpecified())
2477    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2478         diag::err_explicit_non_function);
2479}
2480
2481NamedDecl*
2482Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2483                             QualType R,  TypeSourceInfo *TInfo,
2484                             LookupResult &Previous, bool &Redeclaration) {
2485  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2486  if (D.getCXXScopeSpec().isSet()) {
2487    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2488      << D.getCXXScopeSpec().getRange();
2489    D.setInvalidType();
2490    // Pretend we didn't see the scope specifier.
2491    DC = CurContext;
2492    Previous.clear();
2493  }
2494
2495  if (getLangOptions().CPlusPlus) {
2496    // Check that there are no default arguments (C++ only).
2497    CheckExtraCXXDefaultArguments(D);
2498  }
2499
2500  DiagnoseFunctionSpecifiers(D);
2501
2502  if (D.getDeclSpec().isThreadSpecified())
2503    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2504
2505  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
2506    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
2507      << D.getName().getSourceRange();
2508    return 0;
2509  }
2510
2511  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2512  if (!NewTD) return 0;
2513
2514  // Handle attributes prior to checking for duplicates in MergeVarDecl
2515  ProcessDeclAttributes(S, NewTD, D);
2516
2517  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2518  // then it shall have block scope.
2519  // Note that variably modified types must be fixed before merging the decl so
2520  // that redeclarations will match.
2521  QualType T = NewTD->getUnderlyingType();
2522  if (T->isVariablyModifiedType()) {
2523    setFunctionHasBranchProtectedScope();
2524
2525    if (S->getFnParent() == 0) {
2526      bool SizeIsNegative;
2527      llvm::APSInt Oversized;
2528      QualType FixedTy =
2529          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
2530                                              Oversized);
2531      if (!FixedTy.isNull()) {
2532        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2533        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2534      } else {
2535        if (SizeIsNegative)
2536          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2537        else if (T->isVariableArrayType())
2538          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2539        else if (Oversized.getBoolValue())
2540          Diag(D.getIdentifierLoc(), diag::err_array_too_large)
2541            << Oversized.toString(10);
2542        else
2543          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2544        NewTD->setInvalidDecl();
2545      }
2546    }
2547  }
2548
2549  // Merge the decl with the existing one if appropriate. If the decl is
2550  // in an outer scope, it isn't the same thing.
2551  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2552  if (!Previous.empty()) {
2553    Redeclaration = true;
2554    MergeTypeDefDecl(NewTD, Previous);
2555  }
2556
2557  // If this is the C FILE type, notify the AST context.
2558  if (IdentifierInfo *II = NewTD->getIdentifier())
2559    if (!NewTD->isInvalidDecl() &&
2560        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
2561      if (II->isStr("FILE"))
2562        Context.setFILEDecl(NewTD);
2563      else if (II->isStr("jmp_buf"))
2564        Context.setjmp_bufDecl(NewTD);
2565      else if (II->isStr("sigjmp_buf"))
2566        Context.setsigjmp_bufDecl(NewTD);
2567    }
2568
2569  return NewTD;
2570}
2571
2572/// \brief Determines whether the given declaration is an out-of-scope
2573/// previous declaration.
2574///
2575/// This routine should be invoked when name lookup has found a
2576/// previous declaration (PrevDecl) that is not in the scope where a
2577/// new declaration by the same name is being introduced. If the new
2578/// declaration occurs in a local scope, previous declarations with
2579/// linkage may still be considered previous declarations (C99
2580/// 6.2.2p4-5, C++ [basic.link]p6).
2581///
2582/// \param PrevDecl the previous declaration found by name
2583/// lookup
2584///
2585/// \param DC the context in which the new declaration is being
2586/// declared.
2587///
2588/// \returns true if PrevDecl is an out-of-scope previous declaration
2589/// for a new delcaration with the same name.
2590static bool
2591isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2592                                ASTContext &Context) {
2593  if (!PrevDecl)
2594    return 0;
2595
2596  if (!PrevDecl->hasLinkage())
2597    return false;
2598
2599  if (Context.getLangOptions().CPlusPlus) {
2600    // C++ [basic.link]p6:
2601    //   If there is a visible declaration of an entity with linkage
2602    //   having the same name and type, ignoring entities declared
2603    //   outside the innermost enclosing namespace scope, the block
2604    //   scope declaration declares that same entity and receives the
2605    //   linkage of the previous declaration.
2606    DeclContext *OuterContext = DC->getLookupContext();
2607    if (!OuterContext->isFunctionOrMethod())
2608      // This rule only applies to block-scope declarations.
2609      return false;
2610    else {
2611      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2612      if (PrevOuterContext->isRecord())
2613        // We found a member function: ignore it.
2614        return false;
2615      else {
2616        // Find the innermost enclosing namespace for the new and
2617        // previous declarations.
2618        while (!OuterContext->isFileContext())
2619          OuterContext = OuterContext->getParent();
2620        while (!PrevOuterContext->isFileContext())
2621          PrevOuterContext = PrevOuterContext->getParent();
2622
2623        // The previous declaration is in a different namespace, so it
2624        // isn't the same function.
2625        if (OuterContext->getPrimaryContext() !=
2626            PrevOuterContext->getPrimaryContext())
2627          return false;
2628      }
2629    }
2630  }
2631
2632  return true;
2633}
2634
2635static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
2636  CXXScopeSpec &SS = D.getCXXScopeSpec();
2637  if (!SS.isSet()) return;
2638  DD->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
2639                       SS.getRange());
2640}
2641
2642NamedDecl*
2643Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2644                              QualType R, TypeSourceInfo *TInfo,
2645                              LookupResult &Previous,
2646                              MultiTemplateParamsArg TemplateParamLists,
2647                              bool &Redeclaration) {
2648  DeclarationName Name = GetNameForDeclarator(D).getName();
2649
2650  // Check that there are no default arguments (C++ only).
2651  if (getLangOptions().CPlusPlus)
2652    CheckExtraCXXDefaultArguments(D);
2653
2654  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
2655  assert(SCSpec != DeclSpec::SCS_typedef &&
2656         "Parser allowed 'typedef' as storage class VarDecl.");
2657  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2658  if (SCSpec == DeclSpec::SCS_mutable) {
2659    // mutable can only appear on non-static class members, so it's always
2660    // an error here
2661    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2662    D.setInvalidType();
2663    SC = VarDecl::None;
2664  }
2665  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
2666  VarDecl::StorageClass SCAsWritten
2667    = StorageClassSpecToVarDeclStorageClass(SCSpec);
2668
2669  IdentifierInfo *II = Name.getAsIdentifierInfo();
2670  if (!II) {
2671    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2672      << Name.getAsString();
2673    return 0;
2674  }
2675
2676  DiagnoseFunctionSpecifiers(D);
2677
2678  if (!DC->isRecord() && S->getFnParent() == 0) {
2679    // C99 6.9p2: The storage-class specifiers auto and register shall not
2680    // appear in the declaration specifiers in an external declaration.
2681    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2682
2683      // If this is a register variable with an asm label specified, then this
2684      // is a GNU extension.
2685      if (SC == VarDecl::Register && D.getAsmLabel())
2686        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2687      else
2688        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2689      D.setInvalidType();
2690    }
2691  }
2692  if (DC->isRecord() && !CurContext->isRecord()) {
2693    // This is an out-of-line definition of a static data member.
2694    if (SC == VarDecl::Static) {
2695      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2696           diag::err_static_out_of_line)
2697        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
2698    } else if (SC == VarDecl::None)
2699      SC = VarDecl::Static;
2700  }
2701  if (SC == VarDecl::Static) {
2702    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2703      if (RD->isLocalClass())
2704        Diag(D.getIdentifierLoc(),
2705             diag::err_static_data_member_not_allowed_in_local_class)
2706          << Name << RD->getDeclName();
2707    }
2708  }
2709
2710  // Match up the template parameter lists with the scope specifier, then
2711  // determine whether we have a template or a template specialization.
2712  bool isExplicitSpecialization = false;
2713  unsigned NumMatchedTemplateParamLists = TemplateParamLists.size();
2714  bool Invalid = false;
2715  if (TemplateParameterList *TemplateParams
2716        = MatchTemplateParametersToScopeSpecifier(
2717                                  D.getDeclSpec().getSourceRange().getBegin(),
2718                                                  D.getCXXScopeSpec(),
2719                        (TemplateParameterList**)TemplateParamLists.get(),
2720                                                   TemplateParamLists.size(),
2721                                                  /*never a friend*/ false,
2722                                                  isExplicitSpecialization,
2723                                                  Invalid)) {
2724    // All but one template parameter lists have been matching.
2725    --NumMatchedTemplateParamLists;
2726
2727    if (TemplateParams->size() > 0) {
2728      // There is no such thing as a variable template.
2729      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2730        << II
2731        << SourceRange(TemplateParams->getTemplateLoc(),
2732                       TemplateParams->getRAngleLoc());
2733      return 0;
2734    } else {
2735      // There is an extraneous 'template<>' for this variable. Complain
2736      // about it, but allow the declaration of the variable.
2737      Diag(TemplateParams->getTemplateLoc(),
2738           diag::err_template_variable_noparams)
2739        << II
2740        << SourceRange(TemplateParams->getTemplateLoc(),
2741                       TemplateParams->getRAngleLoc());
2742
2743      isExplicitSpecialization = true;
2744    }
2745  }
2746
2747  VarDecl *NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2748                                   II, R, TInfo, SC, SCAsWritten);
2749
2750  if (D.isInvalidType() || Invalid)
2751    NewVD->setInvalidDecl();
2752
2753  SetNestedNameSpecifier(NewVD, D);
2754
2755  if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
2756    NewVD->setTemplateParameterListsInfo(Context,
2757                                         NumMatchedTemplateParamLists,
2758                        (TemplateParameterList**)TemplateParamLists.release());
2759  }
2760
2761  if (D.getDeclSpec().isThreadSpecified()) {
2762    if (NewVD->hasLocalStorage())
2763      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2764    else if (!Context.Target.isTLSSupported())
2765      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2766    else
2767      NewVD->setThreadSpecified(true);
2768  }
2769
2770  // Set the lexical context. If the declarator has a C++ scope specifier, the
2771  // lexical context will be different from the semantic context.
2772  NewVD->setLexicalDeclContext(CurContext);
2773
2774  // Handle attributes prior to checking for duplicates in MergeVarDecl
2775  ProcessDeclAttributes(S, NewVD, D);
2776
2777  // Handle GNU asm-label extension (encoded as an attribute).
2778  if (Expr *E = (Expr*) D.getAsmLabel()) {
2779    // The parser guarantees this is a string.
2780    StringLiteral *SE = cast<StringLiteral>(E);
2781    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
2782                                                Context, SE->getString()));
2783  }
2784
2785  // Diagnose shadowed variables before filtering for scope.
2786  if (!D.getCXXScopeSpec().isSet())
2787    CheckShadow(S, NewVD, Previous);
2788
2789  // Don't consider existing declarations that are in a different
2790  // scope and are out-of-semantic-context declarations (if the new
2791  // declaration has linkage).
2792  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
2793
2794  // Merge the decl with the existing one if appropriate.
2795  if (!Previous.empty()) {
2796    if (Previous.isSingleResult() &&
2797        isa<FieldDecl>(Previous.getFoundDecl()) &&
2798        D.getCXXScopeSpec().isSet()) {
2799      // The user tried to define a non-static data member
2800      // out-of-line (C++ [dcl.meaning]p1).
2801      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2802        << D.getCXXScopeSpec().getRange();
2803      Previous.clear();
2804      NewVD->setInvalidDecl();
2805    }
2806  } else if (D.getCXXScopeSpec().isSet()) {
2807    // No previous declaration in the qualifying scope.
2808    Diag(D.getIdentifierLoc(), diag::err_no_member)
2809      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2810      << D.getCXXScopeSpec().getRange();
2811    NewVD->setInvalidDecl();
2812  }
2813
2814  CheckVariableDeclaration(NewVD, Previous, Redeclaration);
2815
2816  // This is an explicit specialization of a static data member. Check it.
2817  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2818      CheckMemberSpecialization(NewVD, Previous))
2819    NewVD->setInvalidDecl();
2820
2821  // attributes declared post-definition are currently ignored
2822  // FIXME: This should be handled in attribute merging, not
2823  // here.
2824  if (Previous.isSingleResult()) {
2825    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
2826    if (Def && (Def = Def->getDefinition()) &&
2827        Def != NewVD && D.hasAttributes()) {
2828      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2829      Diag(Def->getLocation(), diag::note_previous_definition);
2830    }
2831  }
2832
2833  // If this is a locally-scoped extern C variable, update the map of
2834  // such variables.
2835  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2836      !NewVD->isInvalidDecl())
2837    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
2838
2839  // If there's a #pragma GCC visibility in scope, and this isn't a class
2840  // member, set the visibility of this variable.
2841  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
2842    AddPushedVisibilityAttribute(NewVD);
2843
2844  MarkUnusedFileScopedDecl(NewVD);
2845
2846  return NewVD;
2847}
2848
2849/// \brief Diagnose variable or built-in function shadowing.  Implements
2850/// -Wshadow.
2851///
2852/// This method is called whenever a VarDecl is added to a "useful"
2853/// scope.
2854///
2855/// \param S the scope in which the shadowing name is being declared
2856/// \param R the lookup of the name
2857///
2858void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
2859  // Return if warning is ignored.
2860  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow) == Diagnostic::Ignored)
2861    return;
2862
2863  // Don't diagnose declarations at file scope.  The scope might not
2864  // have a DeclContext if (e.g.) we're parsing a function prototype.
2865  DeclContext *NewDC = static_cast<DeclContext*>(S->getEntity());
2866  if (NewDC && NewDC->isFileContext())
2867    return;
2868
2869  // Only diagnose if we're shadowing an unambiguous field or variable.
2870  if (R.getResultKind() != LookupResult::Found)
2871    return;
2872
2873  NamedDecl* ShadowedDecl = R.getFoundDecl();
2874  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
2875    return;
2876
2877  DeclContext *OldDC = ShadowedDecl->getDeclContext();
2878
2879  // Only warn about certain kinds of shadowing for class members.
2880  if (NewDC && NewDC->isRecord()) {
2881    // In particular, don't warn about shadowing non-class members.
2882    if (!OldDC->isRecord())
2883      return;
2884
2885    // TODO: should we warn about static data members shadowing
2886    // static data members from base classes?
2887
2888    // TODO: don't diagnose for inaccessible shadowed members.
2889    // This is hard to do perfectly because we might friend the
2890    // shadowing context, but that's just a false negative.
2891  }
2892
2893  // Determine what kind of declaration we're shadowing.
2894  unsigned Kind;
2895  if (isa<RecordDecl>(OldDC)) {
2896    if (isa<FieldDecl>(ShadowedDecl))
2897      Kind = 3; // field
2898    else
2899      Kind = 2; // static data member
2900  } else if (OldDC->isFileContext())
2901    Kind = 1; // global
2902  else
2903    Kind = 0; // local
2904
2905  DeclarationName Name = R.getLookupName();
2906
2907  // Emit warning and note.
2908  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
2909  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
2910}
2911
2912/// \brief Check -Wshadow without the advantage of a previous lookup.
2913void Sema::CheckShadow(Scope *S, VarDecl *D) {
2914  LookupResult R(*this, D->getDeclName(), D->getLocation(),
2915                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
2916  LookupName(R, S);
2917  CheckShadow(S, D, R);
2918}
2919
2920/// \brief Perform semantic checking on a newly-created variable
2921/// declaration.
2922///
2923/// This routine performs all of the type-checking required for a
2924/// variable declaration once it has been built. It is used both to
2925/// check variables after they have been parsed and their declarators
2926/// have been translated into a declaration, and to check variables
2927/// that have been instantiated from a template.
2928///
2929/// Sets NewVD->isInvalidDecl() if an error was encountered.
2930void Sema::CheckVariableDeclaration(VarDecl *NewVD,
2931                                    LookupResult &Previous,
2932                                    bool &Redeclaration) {
2933  // If the decl is already known invalid, don't check it.
2934  if (NewVD->isInvalidDecl())
2935    return;
2936
2937  QualType T = NewVD->getType();
2938
2939  if (T->isObjCObjectType()) {
2940    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2941    return NewVD->setInvalidDecl();
2942  }
2943
2944  // Emit an error if an address space was applied to decl with local storage.
2945  // This includes arrays of objects with address space qualifiers, but not
2946  // automatic variables that point to other address spaces.
2947  // ISO/IEC TR 18037 S5.1.2
2948  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2949    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2950    return NewVD->setInvalidDecl();
2951  }
2952
2953  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2954      && !NewVD->hasAttr<BlocksAttr>())
2955    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2956
2957  bool isVM = T->isVariablyModifiedType();
2958  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2959      NewVD->hasAttr<BlocksAttr>())
2960    setFunctionHasBranchProtectedScope();
2961
2962  if ((isVM && NewVD->hasLinkage()) ||
2963      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2964    bool SizeIsNegative;
2965    llvm::APSInt Oversized;
2966    QualType FixedTy =
2967        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
2968                                            Oversized);
2969
2970    if (FixedTy.isNull() && T->isVariableArrayType()) {
2971      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2972      // FIXME: This won't give the correct result for
2973      // int a[10][n];
2974      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2975
2976      if (NewVD->isFileVarDecl())
2977        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2978        << SizeRange;
2979      else if (NewVD->getStorageClass() == VarDecl::Static)
2980        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2981        << SizeRange;
2982      else
2983        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2984        << SizeRange;
2985      return NewVD->setInvalidDecl();
2986    }
2987
2988    if (FixedTy.isNull()) {
2989      if (NewVD->isFileVarDecl())
2990        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2991      else
2992        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2993      return NewVD->setInvalidDecl();
2994    }
2995
2996    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2997    NewVD->setType(FixedTy);
2998  }
2999
3000  if (Previous.empty() && NewVD->isExternC()) {
3001    // Since we did not find anything by this name and we're declaring
3002    // an extern "C" variable, look for a non-visible extern "C"
3003    // declaration with the same name.
3004    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3005      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
3006    if (Pos != LocallyScopedExternalDecls.end())
3007      Previous.addDecl(Pos->second);
3008  }
3009
3010  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
3011    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
3012      << T;
3013    return NewVD->setInvalidDecl();
3014  }
3015
3016  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
3017    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
3018    return NewVD->setInvalidDecl();
3019  }
3020
3021  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
3022    Diag(NewVD->getLocation(), diag::err_block_on_vm);
3023    return NewVD->setInvalidDecl();
3024  }
3025
3026  // Function pointers and references cannot have qualified function type, only
3027  // function pointer-to-members can do that.
3028  QualType Pointee;
3029  unsigned PtrOrRef = 0;
3030  if (const PointerType *Ptr = T->getAs<PointerType>())
3031    Pointee = Ptr->getPointeeType();
3032  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
3033    Pointee = Ref->getPointeeType();
3034    PtrOrRef = 1;
3035  }
3036  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
3037      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
3038    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
3039        << PtrOrRef;
3040    return NewVD->setInvalidDecl();
3041  }
3042
3043  if (!Previous.empty()) {
3044    Redeclaration = true;
3045    MergeVarDecl(NewVD, Previous);
3046  }
3047}
3048
3049/// \brief Data used with FindOverriddenMethod
3050struct FindOverriddenMethodData {
3051  Sema *S;
3052  CXXMethodDecl *Method;
3053};
3054
3055/// \brief Member lookup function that determines whether a given C++
3056/// method overrides a method in a base class, to be used with
3057/// CXXRecordDecl::lookupInBases().
3058static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
3059                                 CXXBasePath &Path,
3060                                 void *UserData) {
3061  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
3062
3063  FindOverriddenMethodData *Data
3064    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
3065
3066  DeclarationName Name = Data->Method->getDeclName();
3067
3068  // FIXME: Do we care about other names here too?
3069  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3070    // We really want to find the base class destructor here.
3071    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
3072    CanQualType CT = Data->S->Context.getCanonicalType(T);
3073
3074    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
3075  }
3076
3077  for (Path.Decls = BaseRecord->lookup(Name);
3078       Path.Decls.first != Path.Decls.second;
3079       ++Path.Decls.first) {
3080    NamedDecl *D = *Path.Decls.first;
3081    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
3082      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
3083        return true;
3084    }
3085  }
3086
3087  return false;
3088}
3089
3090/// AddOverriddenMethods - See if a method overrides any in the base classes,
3091/// and if so, check that it's a valid override and remember it.
3092void Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
3093  // Look for virtual methods in base classes that this method might override.
3094  CXXBasePaths Paths;
3095  FindOverriddenMethodData Data;
3096  Data.Method = MD;
3097  Data.S = this;
3098  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
3099    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
3100         E = Paths.found_decls_end(); I != E; ++I) {
3101      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
3102        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
3103            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
3104            !CheckOverridingFunctionAttributes(MD, OldMD))
3105          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
3106      }
3107    }
3108  }
3109}
3110
3111NamedDecl*
3112Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3113                              QualType R, TypeSourceInfo *TInfo,
3114                              LookupResult &Previous,
3115                              MultiTemplateParamsArg TemplateParamLists,
3116                              bool IsFunctionDefinition, bool &Redeclaration) {
3117  assert(R.getTypePtr()->isFunctionType());
3118
3119  // TODO: consider using NameInfo for diagnostic.
3120  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3121  DeclarationName Name = NameInfo.getName();
3122  FunctionDecl::StorageClass SC = FunctionDecl::None;
3123  switch (D.getDeclSpec().getStorageClassSpec()) {
3124  default: assert(0 && "Unknown storage class!");
3125  case DeclSpec::SCS_auto:
3126  case DeclSpec::SCS_register:
3127  case DeclSpec::SCS_mutable:
3128    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3129         diag::err_typecheck_sclass_func);
3130    D.setInvalidType();
3131    break;
3132  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
3133  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
3134  case DeclSpec::SCS_static: {
3135    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
3136      // C99 6.7.1p5:
3137      //   The declaration of an identifier for a function that has
3138      //   block scope shall have no explicit storage-class specifier
3139      //   other than extern
3140      // See also (C++ [dcl.stc]p4).
3141      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3142           diag::err_static_block_func);
3143      SC = FunctionDecl::None;
3144    } else
3145      SC = FunctionDecl::Static;
3146    break;
3147  }
3148  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
3149  }
3150
3151  if (D.getDeclSpec().isThreadSpecified())
3152    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3153
3154  bool isFriend = D.getDeclSpec().isFriendSpecified();
3155  bool isInline = D.getDeclSpec().isInlineSpecified();
3156  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
3157  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
3158
3159  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3160  FunctionDecl::StorageClass SCAsWritten
3161    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
3162
3163  // Check that the return type is not an abstract class type.
3164  // For record types, this is done by the AbstractClassUsageDiagnoser once
3165  // the class has been completely parsed.
3166  if (!DC->isRecord() &&
3167      RequireNonAbstractType(D.getIdentifierLoc(),
3168                             R->getAs<FunctionType>()->getResultType(),
3169                             diag::err_abstract_type_in_decl,
3170                             AbstractReturnType))
3171    D.setInvalidType();
3172
3173  // Do not allow returning a objc interface by-value.
3174  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
3175    Diag(D.getIdentifierLoc(),
3176         diag::err_object_cannot_be_passed_returned_by_value) << 0
3177      << R->getAs<FunctionType>()->getResultType();
3178    D.setInvalidType();
3179  }
3180
3181  bool isVirtualOkay = false;
3182  FunctionDecl *NewFD;
3183
3184  if (isFriend) {
3185    // C++ [class.friend]p5
3186    //   A function can be defined in a friend declaration of a
3187    //   class . . . . Such a function is implicitly inline.
3188    isInline |= IsFunctionDefinition;
3189  }
3190
3191  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
3192    // This is a C++ constructor declaration.
3193    assert(DC->isRecord() &&
3194           "Constructors can only be declared in a member context");
3195
3196    R = CheckConstructorDeclarator(D, R, SC);
3197
3198    // Create the new declaration
3199    NewFD = CXXConstructorDecl::Create(Context,
3200                                       cast<CXXRecordDecl>(DC),
3201                                       NameInfo, R, TInfo,
3202                                       isExplicit, isInline,
3203                                       /*isImplicitlyDeclared=*/false);
3204  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3205    // This is a C++ destructor declaration.
3206    if (DC->isRecord()) {
3207      R = CheckDestructorDeclarator(D, R, SC);
3208
3209      NewFD = CXXDestructorDecl::Create(Context,
3210                                        cast<CXXRecordDecl>(DC),
3211                                        NameInfo, R,
3212                                        isInline,
3213                                        /*isImplicitlyDeclared=*/false);
3214      NewFD->setTypeSourceInfo(TInfo);
3215
3216      isVirtualOkay = true;
3217    } else {
3218      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
3219
3220      // Create a FunctionDecl to satisfy the function definition parsing
3221      // code path.
3222      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
3223                                   Name, R, TInfo, SC, SCAsWritten, isInline,
3224                                   /*hasPrototype=*/true);
3225      D.setInvalidType();
3226    }
3227  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
3228    if (!DC->isRecord()) {
3229      Diag(D.getIdentifierLoc(),
3230           diag::err_conv_function_not_member);
3231      return 0;
3232    }
3233
3234    CheckConversionDeclarator(D, R, SC);
3235    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
3236                                      NameInfo, R, TInfo,
3237                                      isInline, isExplicit);
3238
3239    isVirtualOkay = true;
3240  } else if (DC->isRecord()) {
3241    // If the of the function is the same as the name of the record, then this
3242    // must be an invalid constructor that has a return type.
3243    // (The parser checks for a return type and makes the declarator a
3244    // constructor if it has no return type).
3245    // must have an invalid constructor that has a return type
3246    if (Name.getAsIdentifierInfo() &&
3247        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
3248      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
3249        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3250        << SourceRange(D.getIdentifierLoc());
3251      return 0;
3252    }
3253
3254    bool isStatic = SC == FunctionDecl::Static;
3255
3256    // [class.free]p1:
3257    // Any allocation function for a class T is a static member
3258    // (even if not explicitly declared static).
3259    if (Name.getCXXOverloadedOperator() == OO_New ||
3260        Name.getCXXOverloadedOperator() == OO_Array_New)
3261      isStatic = true;
3262
3263    // [class.free]p6 Any deallocation function for a class X is a static member
3264    // (even if not explicitly declared static).
3265    if (Name.getCXXOverloadedOperator() == OO_Delete ||
3266        Name.getCXXOverloadedOperator() == OO_Array_Delete)
3267      isStatic = true;
3268
3269    // This is a C++ method declaration.
3270    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
3271                                  NameInfo, R, TInfo,
3272                                  isStatic, SCAsWritten, isInline);
3273
3274    isVirtualOkay = !isStatic;
3275  } else {
3276    // Determine whether the function was written with a
3277    // prototype. This true when:
3278    //   - we're in C++ (where every function has a prototype),
3279    //   - there is a prototype in the declarator, or
3280    //   - the type R of the function is some kind of typedef or other reference
3281    //     to a type name (which eventually refers to a function type).
3282    bool HasPrototype =
3283       getLangOptions().CPlusPlus ||
3284       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
3285       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
3286
3287    NewFD = FunctionDecl::Create(Context, DC,
3288                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
3289                                 HasPrototype);
3290  }
3291
3292  if (D.isInvalidType())
3293    NewFD->setInvalidDecl();
3294
3295  SetNestedNameSpecifier(NewFD, D);
3296
3297  // Set the lexical context. If the declarator has a C++
3298  // scope specifier, or is the object of a friend declaration, the
3299  // lexical context will be different from the semantic context.
3300  NewFD->setLexicalDeclContext(CurContext);
3301
3302  // Match up the template parameter lists with the scope specifier, then
3303  // determine whether we have a template or a template specialization.
3304  FunctionTemplateDecl *FunctionTemplate = 0;
3305  bool isExplicitSpecialization = false;
3306  bool isFunctionTemplateSpecialization = false;
3307  unsigned NumMatchedTemplateParamLists = TemplateParamLists.size();
3308  bool Invalid = false;
3309  if (TemplateParameterList *TemplateParams
3310        = MatchTemplateParametersToScopeSpecifier(
3311                                  D.getDeclSpec().getSourceRange().getBegin(),
3312                                  D.getCXXScopeSpec(),
3313                           (TemplateParameterList**)TemplateParamLists.get(),
3314                                                  TemplateParamLists.size(),
3315                                                  isFriend,
3316                                                  isExplicitSpecialization,
3317                                                  Invalid)) {
3318    // All but one template parameter lists have been matching.
3319    --NumMatchedTemplateParamLists;
3320
3321    if (TemplateParams->size() > 0) {
3322      // This is a function template
3323
3324      // Check that we can declare a template here.
3325      if (CheckTemplateDeclScope(S, TemplateParams))
3326        return 0;
3327
3328      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
3329                                                      NewFD->getLocation(),
3330                                                      Name, TemplateParams,
3331                                                      NewFD);
3332      FunctionTemplate->setLexicalDeclContext(CurContext);
3333      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
3334    } else {
3335      // This is a function template specialization.
3336      isFunctionTemplateSpecialization = true;
3337
3338      // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
3339      if (isFriend && isFunctionTemplateSpecialization) {
3340        // We want to remove the "template<>", found here.
3341        SourceRange RemoveRange = TemplateParams->getSourceRange();
3342
3343        // If we remove the template<> and the name is not a
3344        // template-id, we're actually silently creating a problem:
3345        // the friend declaration will refer to an untemplated decl,
3346        // and clearly the user wants a template specialization.  So
3347        // we need to insert '<>' after the name.
3348        SourceLocation InsertLoc;
3349        if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
3350          InsertLoc = D.getName().getSourceRange().getEnd();
3351          InsertLoc = PP.getLocForEndOfToken(InsertLoc);
3352        }
3353
3354        Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
3355          << Name << RemoveRange
3356          << FixItHint::CreateRemoval(RemoveRange)
3357          << FixItHint::CreateInsertion(InsertLoc, "<>");
3358      }
3359    }
3360  }
3361
3362  if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
3363    NewFD->setTemplateParameterListsInfo(Context,
3364                                         NumMatchedTemplateParamLists,
3365                        (TemplateParameterList**)TemplateParamLists.release());
3366  }
3367
3368  if (Invalid) {
3369    NewFD->setInvalidDecl();
3370    if (FunctionTemplate)
3371      FunctionTemplate->setInvalidDecl();
3372  }
3373
3374  // C++ [dcl.fct.spec]p5:
3375  //   The virtual specifier shall only be used in declarations of
3376  //   nonstatic class member functions that appear within a
3377  //   member-specification of a class declaration; see 10.3.
3378  //
3379  if (isVirtual && !NewFD->isInvalidDecl()) {
3380    if (!isVirtualOkay) {
3381       Diag(D.getDeclSpec().getVirtualSpecLoc(),
3382           diag::err_virtual_non_function);
3383    } else if (!CurContext->isRecord()) {
3384      // 'virtual' was specified outside of the class.
3385      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
3386        << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
3387    } else {
3388      // Okay: Add virtual to the method.
3389      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
3390      CurClass->setMethodAsVirtual(NewFD);
3391    }
3392  }
3393
3394  // C++ [dcl.fct.spec]p3:
3395  //  The inline specifier shall not appear on a block scope function declaration.
3396  if (isInline && !NewFD->isInvalidDecl() && getLangOptions().CPlusPlus) {
3397    if (CurContext->isFunctionOrMethod()) {
3398      // 'inline' is not allowed on block scope function declaration.
3399      Diag(D.getDeclSpec().getInlineSpecLoc(),
3400           diag::err_inline_declaration_block_scope) << Name
3401        << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
3402    }
3403  }
3404
3405  // C++ [dcl.fct.spec]p6:
3406  //  The explicit specifier shall be used only in the declaration of a
3407  //  constructor or conversion function within its class definition; see 12.3.1
3408  //  and 12.3.2.
3409  if (isExplicit && !NewFD->isInvalidDecl()) {
3410    if (!CurContext->isRecord()) {
3411      // 'explicit' was specified outside of the class.
3412      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3413           diag::err_explicit_out_of_class)
3414        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3415    } else if (!isa<CXXConstructorDecl>(NewFD) &&
3416               !isa<CXXConversionDecl>(NewFD)) {
3417      // 'explicit' was specified on a function that wasn't a constructor
3418      // or conversion function.
3419      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3420           diag::err_explicit_non_ctor_or_conv_function)
3421        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3422    }
3423  }
3424
3425  // Filter out previous declarations that don't match the scope.
3426  FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
3427
3428  if (isFriend) {
3429    // DC is the namespace in which the function is being declared.
3430    assert((DC->isFileContext() || !Previous.empty()) &&
3431           "previously-undeclared friend function being created "
3432           "in a non-namespace context");
3433
3434    // For now, claim that the objects have no previous declaration.
3435    if (FunctionTemplate) {
3436      FunctionTemplate->setObjectOfFriendDecl(false);
3437      FunctionTemplate->setAccess(AS_public);
3438    }
3439    NewFD->setObjectOfFriendDecl(false);
3440    NewFD->setAccess(AS_public);
3441  }
3442
3443  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
3444      !CurContext->isRecord()) {
3445    // C++ [class.static]p1:
3446    //   A data or function member of a class may be declared static
3447    //   in a class definition, in which case it is a static member of
3448    //   the class.
3449
3450    // Complain about the 'static' specifier if it's on an out-of-line
3451    // member function definition.
3452    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3453         diag::err_static_out_of_line)
3454      << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3455  }
3456
3457  // Handle GNU asm-label extension (encoded as an attribute).
3458  if (Expr *E = (Expr*) D.getAsmLabel()) {
3459    // The parser guarantees this is a string.
3460    StringLiteral *SE = cast<StringLiteral>(E);
3461    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
3462                                                SE->getString()));
3463  }
3464
3465  // Copy the parameter declarations from the declarator D to the function
3466  // declaration NewFD, if they are available.  First scavenge them into Params.
3467  llvm::SmallVector<ParmVarDecl*, 16> Params;
3468  if (D.getNumTypeObjects() > 0) {
3469    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3470
3471    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
3472    // function that takes no arguments, not a function that takes a
3473    // single void argument.
3474    // We let through "const void" here because Sema::GetTypeForDeclarator
3475    // already checks for that case.
3476    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3477        FTI.ArgInfo[0].Param &&
3478        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
3479      // Empty arg list, don't push any params.
3480      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
3481
3482      // In C++, the empty parameter-type-list must be spelled "void"; a
3483      // typedef of void is not permitted.
3484      if (getLangOptions().CPlusPlus &&
3485          Param->getType().getUnqualifiedType() != Context.VoidTy)
3486        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
3487      // FIXME: Leaks decl?
3488    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
3489      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
3490        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
3491        assert(Param->getDeclContext() != NewFD && "Was set before ?");
3492        Param->setDeclContext(NewFD);
3493        Params.push_back(Param);
3494
3495        if (Param->isInvalidDecl())
3496          NewFD->setInvalidDecl();
3497      }
3498    }
3499
3500  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
3501    // When we're declaring a function with a typedef, typeof, etc as in the
3502    // following example, we'll need to synthesize (unnamed)
3503    // parameters for use in the declaration.
3504    //
3505    // @code
3506    // typedef void fn(int);
3507    // fn f;
3508    // @endcode
3509
3510    // Synthesize a parameter for each argument type.
3511    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
3512         AE = FT->arg_type_end(); AI != AE; ++AI) {
3513      ParmVarDecl *Param =
3514        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
3515      Params.push_back(Param);
3516    }
3517  } else {
3518    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
3519           "Should not need args for typedef of non-prototype fn");
3520  }
3521  // Finally, we know we have the right number of parameters, install them.
3522  NewFD->setParams(Params.data(), Params.size());
3523
3524  // If the declarator is a template-id, translate the parser's template
3525  // argument list into our AST format.
3526  bool HasExplicitTemplateArgs = false;
3527  TemplateArgumentListInfo TemplateArgs;
3528  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
3529    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
3530    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
3531    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
3532    ASTTemplateArgsPtr TemplateArgsPtr(*this,
3533                                       TemplateId->getTemplateArgs(),
3534                                       TemplateId->NumArgs);
3535    translateTemplateArguments(TemplateArgsPtr,
3536                               TemplateArgs);
3537    TemplateArgsPtr.release();
3538
3539    HasExplicitTemplateArgs = true;
3540
3541    if (FunctionTemplate) {
3542      // FIXME: Diagnose function template with explicit template
3543      // arguments.
3544      HasExplicitTemplateArgs = false;
3545    } else if (!isFunctionTemplateSpecialization &&
3546               !D.getDeclSpec().isFriendSpecified()) {
3547      // We have encountered something that the user meant to be a
3548      // specialization (because it has explicitly-specified template
3549      // arguments) but that was not introduced with a "template<>" (or had
3550      // too few of them).
3551      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
3552        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
3553        << FixItHint::CreateInsertion(
3554                                   D.getDeclSpec().getSourceRange().getBegin(),
3555                                                 "template<> ");
3556      isFunctionTemplateSpecialization = true;
3557    } else {
3558      // "friend void foo<>(int);" is an implicit specialization decl.
3559      isFunctionTemplateSpecialization = true;
3560    }
3561  } else if (isFriend && isFunctionTemplateSpecialization) {
3562    // This combination is only possible in a recovery case;  the user
3563    // wrote something like:
3564    //   template <> friend void foo(int);
3565    // which we're recovering from as if the user had written:
3566    //   friend void foo<>(int);
3567    // Go ahead and fake up a template id.
3568    HasExplicitTemplateArgs = true;
3569    TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
3570    TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
3571  }
3572
3573  // If it's a friend (and only if it's a friend), it's possible
3574  // that either the specialized function type or the specialized
3575  // template is dependent, and therefore matching will fail.  In
3576  // this case, don't check the specialization yet.
3577  if (isFunctionTemplateSpecialization && isFriend &&
3578      (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
3579    assert(HasExplicitTemplateArgs &&
3580           "friend function specialization without template args");
3581    if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
3582                                                     Previous))
3583      NewFD->setInvalidDecl();
3584  } else if (isFunctionTemplateSpecialization) {
3585    if (CheckFunctionTemplateSpecialization(NewFD,
3586                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
3587                                            Previous))
3588      NewFD->setInvalidDecl();
3589  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
3590    if (CheckMemberSpecialization(NewFD, Previous))
3591      NewFD->setInvalidDecl();
3592  }
3593
3594  // Perform semantic checking on the function declaration.
3595  bool OverloadableAttrRequired = false; // FIXME: HACK!
3596  CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
3597                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
3598
3599  assert((NewFD->isInvalidDecl() || !Redeclaration ||
3600          Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3601         "previous declaration set still overloaded");
3602
3603  NamedDecl *PrincipalDecl = (FunctionTemplate
3604                              ? cast<NamedDecl>(FunctionTemplate)
3605                              : NewFD);
3606
3607  if (isFriend && Redeclaration) {
3608    AccessSpecifier Access = AS_public;
3609    if (!NewFD->isInvalidDecl())
3610      Access = NewFD->getPreviousDeclaration()->getAccess();
3611
3612    NewFD->setAccess(Access);
3613    if (FunctionTemplate) FunctionTemplate->setAccess(Access);
3614
3615    PrincipalDecl->setObjectOfFriendDecl(true);
3616  }
3617
3618  if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
3619      PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
3620    PrincipalDecl->setNonMemberOperator();
3621
3622  // If we have a function template, check the template parameter
3623  // list. This will check and merge default template arguments.
3624  if (FunctionTemplate) {
3625    FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
3626    CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
3627                      PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
3628             D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate
3629                                                : TPC_FunctionTemplate);
3630  }
3631
3632  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
3633    // Fake up an access specifier if it's supposed to be a class member.
3634    if (!Redeclaration && isa<CXXRecordDecl>(NewFD->getDeclContext()))
3635      NewFD->setAccess(AS_public);
3636
3637    // An out-of-line member function declaration must also be a
3638    // definition (C++ [dcl.meaning]p1).
3639    // Note that this is not the case for explicit specializations of
3640    // function templates or member functions of class templates, per
3641    // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
3642    // for compatibility with old SWIG code which likes to generate them.
3643    if (!IsFunctionDefinition && !isFriend &&
3644        !isFunctionTemplateSpecialization && !isExplicitSpecialization) {
3645      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
3646        << D.getCXXScopeSpec().getRange();
3647    }
3648    if (!Redeclaration && !(isFriend && CurContext->isDependentContext())) {
3649      // The user tried to provide an out-of-line definition for a
3650      // function that is a member of a class or namespace, but there
3651      // was no such member function declared (C++ [class.mfct]p2,
3652      // C++ [namespace.memdef]p2). For example:
3653      //
3654      // class X {
3655      //   void f() const;
3656      // };
3657      //
3658      // void X::f() { } // ill-formed
3659      //
3660      // Complain about this problem, and attempt to suggest close
3661      // matches (e.g., those that differ only in cv-qualifiers and
3662      // whether the parameter types are references).
3663      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
3664        << Name << DC << D.getCXXScopeSpec().getRange();
3665      NewFD->setInvalidDecl();
3666
3667      LookupResult Prev(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
3668                        ForRedeclaration);
3669      LookupQualifiedName(Prev, DC);
3670      assert(!Prev.isAmbiguous() &&
3671             "Cannot have an ambiguity in previous-declaration lookup");
3672      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3673           Func != FuncEnd; ++Func) {
3674        if (isa<FunctionDecl>(*Func) &&
3675            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
3676          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3677      }
3678    }
3679  }
3680
3681  // Handle attributes. We need to have merged decls when handling attributes
3682  // (for example to check for conflicts, etc).
3683  // FIXME: This needs to happen before we merge declarations. Then,
3684  // let attribute merging cope with attribute conflicts.
3685  ProcessDeclAttributes(S, NewFD, D);
3686
3687  // attributes declared post-definition are currently ignored
3688  // FIXME: This should happen during attribute merging
3689  if (Redeclaration && Previous.isSingleResult()) {
3690    const FunctionDecl *Def;
3691    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
3692    if (PrevFD && PrevFD->hasBody(Def) && D.hasAttributes()) {
3693      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
3694      Diag(Def->getLocation(), diag::note_previous_definition);
3695    }
3696  }
3697
3698  AddKnownFunctionAttributes(NewFD);
3699
3700  if (OverloadableAttrRequired && !NewFD->hasAttr<OverloadableAttr>()) {
3701    // If a function name is overloadable in C, then every function
3702    // with that name must be marked "overloadable".
3703    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
3704      << Redeclaration << NewFD;
3705    if (!Previous.empty())
3706      Diag(Previous.getRepresentativeDecl()->getLocation(),
3707           diag::note_attribute_overloadable_prev_overload);
3708    NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(), Context));
3709  }
3710
3711  if (NewFD->hasAttr<OverloadableAttr>() &&
3712      !NewFD->getType()->getAs<FunctionProtoType>()) {
3713    Diag(NewFD->getLocation(),
3714         diag::err_attribute_overloadable_no_prototype)
3715      << NewFD;
3716
3717    // Turn this into a variadic function with no parameters.
3718    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
3719    QualType R = Context.getFunctionType(FT->getResultType(),
3720                                         0, 0, true, 0, false, false, 0, 0,
3721                                         FT->getExtInfo());
3722    NewFD->setType(R);
3723  }
3724
3725  // If there's a #pragma GCC visibility in scope, and this isn't a class
3726  // member, set the visibility of this function.
3727  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
3728    AddPushedVisibilityAttribute(NewFD);
3729
3730  // If this is a locally-scoped extern C function, update the
3731  // map of such names.
3732  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
3733      && !NewFD->isInvalidDecl())
3734    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
3735
3736  // Set this FunctionDecl's range up to the right paren.
3737  NewFD->setLocEnd(D.getSourceRange().getEnd());
3738
3739  if (FunctionTemplate && NewFD->isInvalidDecl())
3740    FunctionTemplate->setInvalidDecl();
3741
3742  if (FunctionTemplate)
3743    return FunctionTemplate;
3744
3745  MarkUnusedFileScopedDecl(NewFD);
3746
3747  return NewFD;
3748}
3749
3750/// \brief Perform semantic checking of a new function declaration.
3751///
3752/// Performs semantic analysis of the new function declaration
3753/// NewFD. This routine performs all semantic checking that does not
3754/// require the actual declarator involved in the declaration, and is
3755/// used both for the declaration of functions as they are parsed
3756/// (called via ActOnDeclarator) and for the declaration of functions
3757/// that have been instantiated via C++ template instantiation (called
3758/// via InstantiateDecl).
3759///
3760/// \param IsExplicitSpecialiation whether this new function declaration is
3761/// an explicit specialization of the previous declaration.
3762///
3763/// This sets NewFD->isInvalidDecl() to true if there was an error.
3764void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
3765                                    LookupResult &Previous,
3766                                    bool IsExplicitSpecialization,
3767                                    bool &Redeclaration,
3768                                    bool &OverloadableAttrRequired) {
3769  // If NewFD is already known erroneous, don't do any of this checking.
3770  if (NewFD->isInvalidDecl()) {
3771    // If this is a class member, mark the class invalid immediately.
3772    // This avoids some consistency errors later.
3773    if (isa<CXXMethodDecl>(NewFD))
3774      cast<CXXMethodDecl>(NewFD)->getParent()->setInvalidDecl();
3775
3776    return;
3777  }
3778
3779  if (NewFD->getResultType()->isVariablyModifiedType()) {
3780    // Functions returning a variably modified type violate C99 6.7.5.2p2
3781    // because all functions have linkage.
3782    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
3783    return NewFD->setInvalidDecl();
3784  }
3785
3786  if (NewFD->isMain())
3787    CheckMain(NewFD);
3788
3789  // Check for a previous declaration of this name.
3790  if (Previous.empty() && NewFD->isExternC()) {
3791    // Since we did not find anything by this name and we're declaring
3792    // an extern "C" function, look for a non-visible extern "C"
3793    // declaration with the same name.
3794    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3795      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
3796    if (Pos != LocallyScopedExternalDecls.end())
3797      Previous.addDecl(Pos->second);
3798  }
3799
3800  // Merge or overload the declaration with an existing declaration of
3801  // the same name, if appropriate.
3802  if (!Previous.empty()) {
3803    // Determine whether NewFD is an overload of PrevDecl or
3804    // a declaration that requires merging. If it's an overload,
3805    // there's no more work to do here; we'll just add the new
3806    // function to the scope.
3807
3808    NamedDecl *OldDecl = 0;
3809    if (!AllowOverloadingOfFunction(Previous, Context)) {
3810      Redeclaration = true;
3811      OldDecl = Previous.getFoundDecl();
3812    } else {
3813      if (!getLangOptions().CPlusPlus)
3814        OverloadableAttrRequired = true;
3815
3816      switch (CheckOverload(S, NewFD, Previous, OldDecl,
3817                            /*NewIsUsingDecl*/ false)) {
3818      case Ovl_Match:
3819        Redeclaration = true;
3820        break;
3821
3822      case Ovl_NonFunction:
3823        Redeclaration = true;
3824        break;
3825
3826      case Ovl_Overload:
3827        Redeclaration = false;
3828        break;
3829      }
3830    }
3831
3832    if (Redeclaration) {
3833      // NewFD and OldDecl represent declarations that need to be
3834      // merged.
3835      if (MergeFunctionDecl(NewFD, OldDecl))
3836        return NewFD->setInvalidDecl();
3837
3838      Previous.clear();
3839      Previous.addDecl(OldDecl);
3840
3841      if (FunctionTemplateDecl *OldTemplateDecl
3842                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
3843        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3844        FunctionTemplateDecl *NewTemplateDecl
3845          = NewFD->getDescribedFunctionTemplate();
3846        assert(NewTemplateDecl && "Template/non-template mismatch");
3847        if (CXXMethodDecl *Method
3848              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
3849          Method->setAccess(OldTemplateDecl->getAccess());
3850          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
3851        }
3852
3853        // If this is an explicit specialization of a member that is a function
3854        // template, mark it as a member specialization.
3855        if (IsExplicitSpecialization &&
3856            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
3857          NewTemplateDecl->setMemberSpecialization();
3858          assert(OldTemplateDecl->isMemberSpecialization());
3859        }
3860      } else {
3861        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3862          NewFD->setAccess(OldDecl->getAccess());
3863        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3864      }
3865    }
3866  }
3867
3868  // Semantic checking for this function declaration (in isolation).
3869  if (getLangOptions().CPlusPlus) {
3870    // C++-specific checks.
3871    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3872      CheckConstructor(Constructor);
3873    } else if (CXXDestructorDecl *Destructor =
3874                dyn_cast<CXXDestructorDecl>(NewFD)) {
3875      CXXRecordDecl *Record = Destructor->getParent();
3876      QualType ClassType = Context.getTypeDeclType(Record);
3877
3878      // FIXME: Shouldn't we be able to perform this check even when the class
3879      // type is dependent? Both gcc and edg can handle that.
3880      if (!ClassType->isDependentType()) {
3881        DeclarationName Name
3882          = Context.DeclarationNames.getCXXDestructorName(
3883                                        Context.getCanonicalType(ClassType));
3884//         NewFD->getDeclName().dump();
3885//         Name.dump();
3886        if (NewFD->getDeclName() != Name) {
3887          Diag(NewFD->getLocation(), diag::err_destructor_name);
3888          return NewFD->setInvalidDecl();
3889        }
3890      }
3891
3892      Record->setUserDeclaredDestructor(true);
3893      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
3894      // user-defined destructor.
3895      Record->setPOD(false);
3896
3897      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
3898      // declared destructor.
3899      // FIXME: C++0x: don't do this for "= default" destructors
3900      Record->setHasTrivialDestructor(false);
3901    } else if (CXXConversionDecl *Conversion
3902               = dyn_cast<CXXConversionDecl>(NewFD)) {
3903      ActOnConversionDeclarator(Conversion);
3904    }
3905
3906    // Find any virtual functions that this function overrides.
3907    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
3908      if (!Method->isFunctionTemplateSpecialization() &&
3909          !Method->getDescribedFunctionTemplate())
3910        AddOverriddenMethods(Method->getParent(), Method);
3911    }
3912
3913    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3914    if (NewFD->isOverloadedOperator() &&
3915        CheckOverloadedOperatorDeclaration(NewFD))
3916      return NewFD->setInvalidDecl();
3917
3918    // Extra checking for C++0x literal operators (C++0x [over.literal]).
3919    if (NewFD->getLiteralIdentifier() &&
3920        CheckLiteralOperatorDeclaration(NewFD))
3921      return NewFD->setInvalidDecl();
3922
3923    // In C++, check default arguments now that we have merged decls. Unless
3924    // the lexical context is the class, because in this case this is done
3925    // during delayed parsing anyway.
3926    if (!CurContext->isRecord())
3927      CheckCXXDefaultArguments(NewFD);
3928  }
3929}
3930
3931void Sema::CheckMain(FunctionDecl* FD) {
3932  // C++ [basic.start.main]p3:  A program that declares main to be inline
3933  //   or static is ill-formed.
3934  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3935  //   shall not appear in a declaration of main.
3936  // static main is not an error under C99, but we should warn about it.
3937  bool isInline = FD->isInlineSpecified();
3938  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
3939  if (isInline || isStatic) {
3940    unsigned diagID = diag::warn_unusual_main_decl;
3941    if (isInline || getLangOptions().CPlusPlus)
3942      diagID = diag::err_unusual_main_decl;
3943
3944    int which = isStatic + (isInline << 1) - 1;
3945    Diag(FD->getLocation(), diagID) << which;
3946  }
3947
3948  QualType T = FD->getType();
3949  assert(T->isFunctionType() && "function decl is not of function type");
3950  const FunctionType* FT = T->getAs<FunctionType>();
3951
3952  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3953    // TODO: add a replacement fixit to turn the return type into 'int'.
3954    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
3955    FD->setInvalidDecl(true);
3956  }
3957
3958  // Treat protoless main() as nullary.
3959  if (isa<FunctionNoProtoType>(FT)) return;
3960
3961  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
3962  unsigned nparams = FTP->getNumArgs();
3963  assert(FD->getNumParams() == nparams);
3964
3965  bool HasExtraParameters = (nparams > 3);
3966
3967  // Darwin passes an undocumented fourth argument of type char**.  If
3968  // other platforms start sprouting these, the logic below will start
3969  // getting shifty.
3970  if (nparams == 4 &&
3971      Context.Target.getTriple().getOS() == llvm::Triple::Darwin)
3972    HasExtraParameters = false;
3973
3974  if (HasExtraParameters) {
3975    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
3976    FD->setInvalidDecl(true);
3977    nparams = 3;
3978  }
3979
3980  // FIXME: a lot of the following diagnostics would be improved
3981  // if we had some location information about types.
3982
3983  QualType CharPP =
3984    Context.getPointerType(Context.getPointerType(Context.CharTy));
3985  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
3986
3987  for (unsigned i = 0; i < nparams; ++i) {
3988    QualType AT = FTP->getArgType(i);
3989
3990    bool mismatch = true;
3991
3992    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
3993      mismatch = false;
3994    else if (Expected[i] == CharPP) {
3995      // As an extension, the following forms are okay:
3996      //   char const **
3997      //   char const * const *
3998      //   char * const *
3999
4000      QualifierCollector qs;
4001      const PointerType* PT;
4002      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
4003          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
4004          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
4005        qs.removeConst();
4006        mismatch = !qs.empty();
4007      }
4008    }
4009
4010    if (mismatch) {
4011      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
4012      // TODO: suggest replacing given type with expected type
4013      FD->setInvalidDecl(true);
4014    }
4015  }
4016
4017  if (nparams == 1 && !FD->isInvalidDecl()) {
4018    Diag(FD->getLocation(), diag::warn_main_one_arg);
4019  }
4020}
4021
4022bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
4023  // FIXME: Need strict checking.  In C89, we need to check for
4024  // any assignment, increment, decrement, function-calls, or
4025  // commas outside of a sizeof.  In C99, it's the same list,
4026  // except that the aforementioned are allowed in unevaluated
4027  // expressions.  Everything else falls under the
4028  // "may accept other forms of constant expressions" exception.
4029  // (We never end up here for C++, so the constant expression
4030  // rules there don't matter.)
4031  if (Init->isConstantInitializer(Context, false))
4032    return false;
4033  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
4034    << Init->getSourceRange();
4035  return true;
4036}
4037
4038void Sema::AddInitializerToDecl(Decl *dcl, ExprArg init) {
4039  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
4040}
4041
4042/// AddInitializerToDecl - Adds the initializer Init to the
4043/// declaration dcl. If DirectInit is true, this is C++ direct
4044/// initialization rather than copy initialization.
4045void Sema::AddInitializerToDecl(Decl *RealDecl, ExprArg init, bool DirectInit) {
4046  // If there is no declaration, there was an error parsing it.  Just ignore
4047  // the initializer.
4048  if (RealDecl == 0)
4049    return;
4050
4051  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
4052    // With declarators parsed the way they are, the parser cannot
4053    // distinguish between a normal initializer and a pure-specifier.
4054    // Thus this grotesque test.
4055    IntegerLiteral *IL;
4056    Expr *Init = static_cast<Expr *>(init.get());
4057    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
4058        Context.getCanonicalType(IL->getType()) == Context.IntTy)
4059      CheckPureMethod(Method, Init->getSourceRange());
4060    else {
4061      Diag(Method->getLocation(), diag::err_member_function_initialization)
4062        << Method->getDeclName() << Init->getSourceRange();
4063      Method->setInvalidDecl();
4064    }
4065    return;
4066  }
4067
4068  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
4069  if (!VDecl) {
4070    if (getLangOptions().CPlusPlus &&
4071        RealDecl->getLexicalDeclContext()->isRecord() &&
4072        isa<NamedDecl>(RealDecl))
4073      Diag(RealDecl->getLocation(), diag::err_member_initialization)
4074        << cast<NamedDecl>(RealDecl)->getDeclName();
4075    else
4076      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
4077    RealDecl->setInvalidDecl();
4078    return;
4079  }
4080
4081  // A definition must end up with a complete type, which means it must be
4082  // complete with the restriction that an array type might be completed by the
4083  // initializer; note that later code assumes this restriction.
4084  QualType BaseDeclType = VDecl->getType();
4085  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
4086    BaseDeclType = Array->getElementType();
4087  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
4088                          diag::err_typecheck_decl_incomplete_type)) {
4089    RealDecl->setInvalidDecl();
4090    return;
4091  }
4092
4093  // The variable can not have an abstract class type.
4094  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
4095                             diag::err_abstract_type_in_decl,
4096                             AbstractVariableType))
4097    VDecl->setInvalidDecl();
4098
4099  const VarDecl *Def;
4100  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
4101    Diag(VDecl->getLocation(), diag::err_redefinition)
4102      << VDecl->getDeclName();
4103    Diag(Def->getLocation(), diag::note_previous_definition);
4104    VDecl->setInvalidDecl();
4105    return;
4106  }
4107
4108  if (getLangOptions().CPlusPlus && VDecl->hasLocalStorage())
4109    setFunctionHasBranchProtectedScope();
4110
4111  // Take ownership of the expression, now that we're sure we have somewhere
4112  // to put it.
4113  Expr *Init = init.takeAs<Expr>();
4114  assert(Init && "missing initializer");
4115
4116  // Capture the variable that is being initialized and the style of
4117  // initialization.
4118  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
4119
4120  // FIXME: Poor source location information.
4121  InitializationKind Kind
4122    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
4123                                                   Init->getLocStart(),
4124                                                   Init->getLocEnd())
4125                : InitializationKind::CreateCopy(VDecl->getLocation(),
4126                                                 Init->getLocStart());
4127
4128  // Get the decls type and save a reference for later, since
4129  // CheckInitializerTypes may change it.
4130  QualType DclT = VDecl->getType(), SavT = DclT;
4131  if (VDecl->isBlockVarDecl()) {
4132    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
4133      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
4134      VDecl->setInvalidDecl();
4135    } else if (!VDecl->isInvalidDecl()) {
4136      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4137      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4138                                                MultiExprArg(*this, &Init, 1),
4139                                                &DclT);
4140      if (Result.isInvalid()) {
4141        VDecl->setInvalidDecl();
4142        return;
4143      }
4144
4145      Init = Result.takeAs<Expr>();
4146
4147      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4148      // Don't check invalid declarations to avoid emitting useless diagnostics.
4149      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4150        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
4151          CheckForConstantInitializer(Init, DclT);
4152      }
4153    }
4154  } else if (VDecl->isStaticDataMember() &&
4155             VDecl->getLexicalDeclContext()->isRecord()) {
4156    // This is an in-class initialization for a static data member, e.g.,
4157    //
4158    // struct S {
4159    //   static const int value = 17;
4160    // };
4161
4162    // Attach the initializer
4163    VDecl->setInit(Init);
4164
4165    // C++ [class.mem]p4:
4166    //   A member-declarator can contain a constant-initializer only
4167    //   if it declares a static member (9.4) of const integral or
4168    //   const enumeration type, see 9.4.2.
4169    QualType T = VDecl->getType();
4170    if (!T->isDependentType() &&
4171        (!Context.getCanonicalType(T).isConstQualified() ||
4172         !T->isIntegralOrEnumerationType())) {
4173      Diag(VDecl->getLocation(), diag::err_member_initialization)
4174        << VDecl->getDeclName() << Init->getSourceRange();
4175      VDecl->setInvalidDecl();
4176    } else {
4177      // C++ [class.static.data]p4:
4178      //   If a static data member is of const integral or const
4179      //   enumeration type, its declaration in the class definition
4180      //   can specify a constant-initializer which shall be an
4181      //   integral constant expression (5.19).
4182      if (!Init->isTypeDependent() &&
4183          !Init->getType()->isIntegralOrEnumerationType()) {
4184        // We have a non-dependent, non-integral or enumeration type.
4185        Diag(Init->getSourceRange().getBegin(),
4186             diag::err_in_class_initializer_non_integral_type)
4187          << Init->getType() << Init->getSourceRange();
4188        VDecl->setInvalidDecl();
4189      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
4190        // Check whether the expression is a constant expression.
4191        llvm::APSInt Value;
4192        SourceLocation Loc;
4193        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
4194          Diag(Loc, diag::err_in_class_initializer_non_constant)
4195            << Init->getSourceRange();
4196          VDecl->setInvalidDecl();
4197        } else if (!VDecl->getType()->isDependentType())
4198          ImpCastExprToType(Init, VDecl->getType(), CastExpr::CK_IntegralCast);
4199      }
4200    }
4201  } else if (VDecl->isFileVarDecl()) {
4202    if (VDecl->getStorageClass() == VarDecl::Extern &&
4203        (!getLangOptions().CPlusPlus ||
4204         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
4205      Diag(VDecl->getLocation(), diag::warn_extern_init);
4206    if (!VDecl->isInvalidDecl()) {
4207      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4208      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4209                                                MultiExprArg(*this, &Init, 1),
4210                                                &DclT);
4211      if (Result.isInvalid()) {
4212        VDecl->setInvalidDecl();
4213        return;
4214      }
4215
4216      Init = Result.takeAs<Expr>();
4217    }
4218
4219    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4220    // Don't check invalid declarations to avoid emitting useless diagnostics.
4221    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4222      // C99 6.7.8p4. All file scoped initializers need to be constant.
4223      CheckForConstantInitializer(Init, DclT);
4224    }
4225  }
4226  // If the type changed, it means we had an incomplete type that was
4227  // completed by the initializer. For example:
4228  //   int ary[] = { 1, 3, 5 };
4229  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
4230  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
4231    VDecl->setType(DclT);
4232    Init->setType(DclT);
4233  }
4234
4235  Init = MaybeCreateCXXExprWithTemporaries(Init);
4236  // Attach the initializer to the decl.
4237  VDecl->setInit(Init);
4238
4239  if (getLangOptions().CPlusPlus) {
4240    if (!VDecl->isInvalidDecl() &&
4241        !VDecl->getDeclContext()->isDependentContext() &&
4242        VDecl->hasGlobalStorage() &&
4243        !Init->isConstantInitializer(Context,
4244                                     VDecl->getType()->isReferenceType()))
4245      Diag(VDecl->getLocation(), diag::warn_global_constructor)
4246        << Init->getSourceRange();
4247
4248    // Make sure we mark the destructor as used if necessary.
4249    QualType InitType = VDecl->getType();
4250    while (const ArrayType *Array = Context.getAsArrayType(InitType))
4251      InitType = Context.getBaseElementType(Array);
4252    if (const RecordType *Record = InitType->getAs<RecordType>())
4253      FinalizeVarWithDestructor(VDecl, Record);
4254  }
4255
4256  return;
4257}
4258
4259/// ActOnInitializerError - Given that there was an error parsing an
4260/// initializer for the given declaration, try to return to some form
4261/// of sanity.
4262void Sema::ActOnInitializerError(Decl *D) {
4263  // Our main concern here is re-establishing invariants like "a
4264  // variable's type is either dependent or complete".
4265  if (!D || D->isInvalidDecl()) return;
4266
4267  VarDecl *VD = dyn_cast<VarDecl>(D);
4268  if (!VD) return;
4269
4270  QualType Ty = VD->getType();
4271  if (Ty->isDependentType()) return;
4272
4273  // Require a complete type.
4274  if (RequireCompleteType(VD->getLocation(),
4275                          Context.getBaseElementType(Ty),
4276                          diag::err_typecheck_decl_incomplete_type)) {
4277    VD->setInvalidDecl();
4278    return;
4279  }
4280
4281  // Require an abstract type.
4282  if (RequireNonAbstractType(VD->getLocation(), Ty,
4283                             diag::err_abstract_type_in_decl,
4284                             AbstractVariableType)) {
4285    VD->setInvalidDecl();
4286    return;
4287  }
4288
4289  // Don't bother complaining about constructors or destructors,
4290  // though.
4291}
4292
4293void Sema::ActOnUninitializedDecl(Decl *RealDecl,
4294                                  bool TypeContainsUndeducedAuto) {
4295  // If there is no declaration, there was an error parsing it. Just ignore it.
4296  if (RealDecl == 0)
4297    return;
4298
4299  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
4300    QualType Type = Var->getType();
4301
4302    // C++0x [dcl.spec.auto]p3
4303    if (TypeContainsUndeducedAuto) {
4304      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
4305        << Var->getDeclName() << Type;
4306      Var->setInvalidDecl();
4307      return;
4308    }
4309
4310    switch (Var->isThisDeclarationADefinition()) {
4311    case VarDecl::Definition:
4312      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
4313        break;
4314
4315      // We have an out-of-line definition of a static data member
4316      // that has an in-class initializer, so we type-check this like
4317      // a declaration.
4318      //
4319      // Fall through
4320
4321    case VarDecl::DeclarationOnly:
4322      // It's only a declaration.
4323
4324      // Block scope. C99 6.7p7: If an identifier for an object is
4325      // declared with no linkage (C99 6.2.2p6), the type for the
4326      // object shall be complete.
4327      if (!Type->isDependentType() && Var->isBlockVarDecl() &&
4328          !Var->getLinkage() && !Var->isInvalidDecl() &&
4329          RequireCompleteType(Var->getLocation(), Type,
4330                              diag::err_typecheck_decl_incomplete_type))
4331        Var->setInvalidDecl();
4332
4333      // Make sure that the type is not abstract.
4334      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
4335          RequireNonAbstractType(Var->getLocation(), Type,
4336                                 diag::err_abstract_type_in_decl,
4337                                 AbstractVariableType))
4338        Var->setInvalidDecl();
4339      return;
4340
4341    case VarDecl::TentativeDefinition:
4342      // File scope. C99 6.9.2p2: A declaration of an identifier for an
4343      // object that has file scope without an initializer, and without a
4344      // storage-class specifier or with the storage-class specifier "static",
4345      // constitutes a tentative definition. Note: A tentative definition with
4346      // external linkage is valid (C99 6.2.2p5).
4347      if (!Var->isInvalidDecl()) {
4348        if (const IncompleteArrayType *ArrayT
4349                                    = Context.getAsIncompleteArrayType(Type)) {
4350          if (RequireCompleteType(Var->getLocation(),
4351                                  ArrayT->getElementType(),
4352                                  diag::err_illegal_decl_array_incomplete_type))
4353            Var->setInvalidDecl();
4354        } else if (Var->getStorageClass() == VarDecl::Static) {
4355          // C99 6.9.2p3: If the declaration of an identifier for an object is
4356          // a tentative definition and has internal linkage (C99 6.2.2p3), the
4357          // declared type shall not be an incomplete type.
4358          // NOTE: code such as the following
4359          //     static struct s;
4360          //     struct s { int a; };
4361          // is accepted by gcc. Hence here we issue a warning instead of
4362          // an error and we do not invalidate the static declaration.
4363          // NOTE: to avoid multiple warnings, only check the first declaration.
4364          if (Var->getPreviousDeclaration() == 0)
4365            RequireCompleteType(Var->getLocation(), Type,
4366                                diag::ext_typecheck_decl_incomplete_type);
4367        }
4368      }
4369
4370      // Record the tentative definition; we're done.
4371      if (!Var->isInvalidDecl())
4372        TentativeDefinitions.push_back(Var);
4373      return;
4374    }
4375
4376    // Provide a specific diagnostic for uninitialized variable
4377    // definitions with incomplete array type.
4378    if (Type->isIncompleteArrayType()) {
4379      Diag(Var->getLocation(),
4380           diag::err_typecheck_incomplete_array_needs_initializer);
4381      Var->setInvalidDecl();
4382      return;
4383    }
4384
4385    // Provide a specific diagnostic for uninitialized variable
4386    // definitions with reference type.
4387    if (Type->isReferenceType()) {
4388      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
4389        << Var->getDeclName()
4390        << SourceRange(Var->getLocation(), Var->getLocation());
4391      Var->setInvalidDecl();
4392      return;
4393    }
4394
4395    // Do not attempt to type-check the default initializer for a
4396    // variable with dependent type.
4397    if (Type->isDependentType())
4398      return;
4399
4400    if (Var->isInvalidDecl())
4401      return;
4402
4403    if (RequireCompleteType(Var->getLocation(),
4404                            Context.getBaseElementType(Type),
4405                            diag::err_typecheck_decl_incomplete_type)) {
4406      Var->setInvalidDecl();
4407      return;
4408    }
4409
4410    // The variable can not have an abstract class type.
4411    if (RequireNonAbstractType(Var->getLocation(), Type,
4412                               diag::err_abstract_type_in_decl,
4413                               AbstractVariableType)) {
4414      Var->setInvalidDecl();
4415      return;
4416    }
4417
4418    const RecordType *Record
4419      = Context.getBaseElementType(Type)->getAs<RecordType>();
4420    if (Record && getLangOptions().CPlusPlus && !getLangOptions().CPlusPlus0x &&
4421        cast<CXXRecordDecl>(Record->getDecl())->isPOD()) {
4422      // C++03 [dcl.init]p9:
4423      //   If no initializer is specified for an object, and the
4424      //   object is of (possibly cv-qualified) non-POD class type (or
4425      //   array thereof), the object shall be default-initialized; if
4426      //   the object is of const-qualified type, the underlying class
4427      //   type shall have a user-declared default
4428      //   constructor. Otherwise, if no initializer is specified for
4429      //   a non- static object, the object and its subobjects, if
4430      //   any, have an indeterminate initial value); if the object
4431      //   or any of its subobjects are of const-qualified type, the
4432      //   program is ill-formed.
4433      // FIXME: DPG thinks it is very fishy that C++0x disables this.
4434    } else {
4435      // Check for jumps past the implicit initializer.  C++0x
4436      // clarifies that this applies to a "variable with automatic
4437      // storage duration", not a "local variable".
4438      if (getLangOptions().CPlusPlus && Var->hasLocalStorage())
4439        setFunctionHasBranchProtectedScope();
4440
4441      InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
4442      InitializationKind Kind
4443        = InitializationKind::CreateDefault(Var->getLocation());
4444
4445      InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
4446      OwningExprResult Init = InitSeq.Perform(*this, Entity, Kind,
4447                                              MultiExprArg(*this, 0, 0));
4448      if (Init.isInvalid())
4449        Var->setInvalidDecl();
4450      else if (Init.get()) {
4451        Var->setInit(MaybeCreateCXXExprWithTemporaries(Init.takeAs<Expr>()));
4452
4453        if (getLangOptions().CPlusPlus && !Var->isInvalidDecl() &&
4454            Var->hasGlobalStorage() &&
4455            !Var->getDeclContext()->isDependentContext() &&
4456            !Var->getInit()->isConstantInitializer(Context, false))
4457          Diag(Var->getLocation(), diag::warn_global_constructor);
4458      }
4459    }
4460
4461    if (!Var->isInvalidDecl() && getLangOptions().CPlusPlus && Record)
4462      FinalizeVarWithDestructor(Var, Record);
4463  }
4464}
4465
4466Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
4467                                                   Decl **Group,
4468                                                   unsigned NumDecls) {
4469  llvm::SmallVector<Decl*, 8> Decls;
4470
4471  if (DS.isTypeSpecOwned())
4472    Decls.push_back((Decl*)DS.getTypeRep());
4473
4474  for (unsigned i = 0; i != NumDecls; ++i)
4475    if (Decl *D = Group[i])
4476      Decls.push_back(D);
4477
4478  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
4479                                                   Decls.data(), Decls.size()));
4480}
4481
4482
4483/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
4484/// to introduce parameters into function prototype scope.
4485Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
4486  const DeclSpec &DS = D.getDeclSpec();
4487
4488  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
4489  VarDecl::StorageClass StorageClass = VarDecl::None;
4490  VarDecl::StorageClass StorageClassAsWritten = VarDecl::None;
4491  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
4492    StorageClass = VarDecl::Register;
4493    StorageClassAsWritten = VarDecl::Register;
4494  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
4495    Diag(DS.getStorageClassSpecLoc(),
4496         diag::err_invalid_storage_class_in_func_decl);
4497    D.getMutableDeclSpec().ClearStorageClassSpecs();
4498  }
4499
4500  if (D.getDeclSpec().isThreadSpecified())
4501    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4502
4503  DiagnoseFunctionSpecifiers(D);
4504
4505  // Check that there are no default arguments inside the type of this
4506  // parameter (C++ only).
4507  if (getLangOptions().CPlusPlus)
4508    CheckExtraCXXDefaultArguments(D);
4509
4510  TagDecl *OwnedDecl = 0;
4511  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
4512  QualType parmDeclType = TInfo->getType();
4513
4514  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
4515    // C++ [dcl.fct]p6:
4516    //   Types shall not be defined in return or parameter types.
4517    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
4518      << Context.getTypeDeclType(OwnedDecl);
4519  }
4520
4521  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
4522  IdentifierInfo *II = D.getIdentifier();
4523  if (II) {
4524    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
4525                   ForRedeclaration);
4526    LookupName(R, S);
4527    if (R.isSingleResult()) {
4528      NamedDecl *PrevDecl = R.getFoundDecl();
4529      if (PrevDecl->isTemplateParameter()) {
4530        // Maybe we will complain about the shadowed template parameter.
4531        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4532        // Just pretend that we didn't see the previous declaration.
4533        PrevDecl = 0;
4534      } else if (S->isDeclScope(PrevDecl)) {
4535        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
4536        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4537
4538        // Recover by removing the name
4539        II = 0;
4540        D.SetIdentifier(0, D.getIdentifierLoc());
4541        D.setInvalidType(true);
4542      }
4543    }
4544  }
4545
4546  // Temporarily put parameter variables in the translation unit, not
4547  // the enclosing context.  This prevents them from accidentally
4548  // looking like class members in C++.
4549  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
4550                                    TInfo, parmDeclType, II,
4551                                    D.getIdentifierLoc(),
4552                                    StorageClass, StorageClassAsWritten);
4553
4554  if (D.isInvalidType())
4555    New->setInvalidDecl();
4556
4557  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
4558  if (D.getCXXScopeSpec().isSet()) {
4559    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
4560      << D.getCXXScopeSpec().getRange();
4561    New->setInvalidDecl();
4562  }
4563
4564  // Add the parameter declaration into this scope.
4565  S->AddDecl(New);
4566  if (II)
4567    IdResolver.AddDecl(New);
4568
4569  ProcessDeclAttributes(S, New, D);
4570
4571  if (New->hasAttr<BlocksAttr>()) {
4572    Diag(New->getLocation(), diag::err_block_on_nonlocal);
4573  }
4574  return New;
4575}
4576
4577/// \brief Synthesizes a variable for a parameter arising from a
4578/// typedef.
4579ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
4580                                              SourceLocation Loc,
4581                                              QualType T) {
4582  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, 0,
4583                                T, Context.getTrivialTypeSourceInfo(T, Loc),
4584                                           VarDecl::None, VarDecl::None, 0);
4585  Param->setImplicit();
4586  return Param;
4587}
4588
4589ParmVarDecl *Sema::CheckParameter(DeclContext *DC,
4590                                  TypeSourceInfo *TSInfo, QualType T,
4591                                  IdentifierInfo *Name,
4592                                  SourceLocation NameLoc,
4593                                  VarDecl::StorageClass StorageClass,
4594                                  VarDecl::StorageClass StorageClassAsWritten) {
4595  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, NameLoc, Name,
4596                                         adjustParameterType(T), TSInfo,
4597                                         StorageClass, StorageClassAsWritten,
4598                                         0);
4599
4600  // Parameters can not be abstract class types.
4601  // For record types, this is done by the AbstractClassUsageDiagnoser once
4602  // the class has been completely parsed.
4603  if (!CurContext->isRecord() &&
4604      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
4605                             AbstractParamType))
4606    New->setInvalidDecl();
4607
4608  // Parameter declarators cannot be interface types. All ObjC objects are
4609  // passed by reference.
4610  if (T->isObjCObjectType()) {
4611    Diag(NameLoc,
4612         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
4613    New->setInvalidDecl();
4614  }
4615
4616  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
4617  // duration shall not be qualified by an address-space qualifier."
4618  // Since all parameters have automatic store duration, they can not have
4619  // an address space.
4620  if (T.getAddressSpace() != 0) {
4621    Diag(NameLoc, diag::err_arg_with_address_space);
4622    New->setInvalidDecl();
4623  }
4624
4625  return New;
4626}
4627
4628void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
4629                                           SourceLocation LocAfterDecls) {
4630  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4631         "Not a function declarator!");
4632  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4633
4634  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
4635  // for a K&R function.
4636  if (!FTI.hasPrototype) {
4637    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
4638      --i;
4639      if (FTI.ArgInfo[i].Param == 0) {
4640        llvm::SmallString<256> Code;
4641        llvm::raw_svector_ostream(Code) << "  int "
4642                                        << FTI.ArgInfo[i].Ident->getName()
4643                                        << ";\n";
4644        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
4645          << FTI.ArgInfo[i].Ident
4646          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
4647
4648        // Implicitly declare the argument as type 'int' for lack of a better
4649        // type.
4650        DeclSpec DS;
4651        const char* PrevSpec; // unused
4652        unsigned DiagID; // unused
4653        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
4654                           PrevSpec, DiagID);
4655        Declarator ParamD(DS, Declarator::KNRTypeListContext);
4656        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
4657        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
4658      }
4659    }
4660  }
4661}
4662
4663Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
4664                                         Declarator &D) {
4665  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4666  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4667         "Not a function declarator!");
4668  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4669
4670  if (FTI.hasPrototype) {
4671    // FIXME: Diagnose arguments without names in C.
4672  }
4673
4674  Scope *ParentScope = FnBodyScope->getParent();
4675
4676  Decl *DP = HandleDeclarator(ParentScope, D,
4677                              MultiTemplateParamsArg(*this),
4678                              /*IsFunctionDefinition=*/true);
4679  return ActOnStartOfFunctionDef(FnBodyScope, DP);
4680}
4681
4682static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
4683  // Don't warn about invalid declarations.
4684  if (FD->isInvalidDecl())
4685    return false;
4686
4687  // Or declarations that aren't global.
4688  if (!FD->isGlobal())
4689    return false;
4690
4691  // Don't warn about C++ member functions.
4692  if (isa<CXXMethodDecl>(FD))
4693    return false;
4694
4695  // Don't warn about 'main'.
4696  if (FD->isMain())
4697    return false;
4698
4699  // Don't warn about inline functions.
4700  if (FD->isInlineSpecified())
4701    return false;
4702
4703  // Don't warn about function templates.
4704  if (FD->getDescribedFunctionTemplate())
4705    return false;
4706
4707  // Don't warn about function template specializations.
4708  if (FD->isFunctionTemplateSpecialization())
4709    return false;
4710
4711  bool MissingPrototype = true;
4712  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
4713       Prev; Prev = Prev->getPreviousDeclaration()) {
4714    // Ignore any declarations that occur in function or method
4715    // scope, because they aren't visible from the header.
4716    if (Prev->getDeclContext()->isFunctionOrMethod())
4717      continue;
4718
4719    MissingPrototype = !Prev->getType()->isFunctionProtoType();
4720    break;
4721  }
4722
4723  return MissingPrototype;
4724}
4725
4726Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
4727  // Clear the last template instantiation error context.
4728  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
4729
4730  if (!D)
4731    return D;
4732  FunctionDecl *FD = 0;
4733
4734  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
4735    FD = FunTmpl->getTemplatedDecl();
4736  else
4737    FD = cast<FunctionDecl>(D);
4738
4739  // Enter a new function scope
4740  PushFunctionScope();
4741
4742  // See if this is a redefinition.
4743  // But don't complain if we're in GNU89 mode and the previous definition
4744  // was an extern inline function.
4745  const FunctionDecl *Definition;
4746  if (FD->hasBody(Definition) &&
4747      !canRedefineFunction(Definition, getLangOptions())) {
4748    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
4749    Diag(Definition->getLocation(), diag::note_previous_definition);
4750  }
4751
4752  // Builtin functions cannot be defined.
4753  if (unsigned BuiltinID = FD->getBuiltinID()) {
4754    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
4755      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
4756      FD->setInvalidDecl();
4757    }
4758  }
4759
4760  // The return type of a function definition must be complete
4761  // (C99 6.9.1p3, C++ [dcl.fct]p6).
4762  QualType ResultType = FD->getResultType();
4763  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
4764      !FD->isInvalidDecl() &&
4765      RequireCompleteType(FD->getLocation(), ResultType,
4766                          diag::err_func_def_incomplete_result))
4767    FD->setInvalidDecl();
4768
4769  // GNU warning -Wmissing-prototypes:
4770  //   Warn if a global function is defined without a previous
4771  //   prototype declaration. This warning is issued even if the
4772  //   definition itself provides a prototype. The aim is to detect
4773  //   global functions that fail to be declared in header files.
4774  if (ShouldWarnAboutMissingPrototype(FD))
4775    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
4776
4777  if (FnBodyScope)
4778    PushDeclContext(FnBodyScope, FD);
4779
4780  // Check the validity of our function parameters
4781  CheckParmsForFunctionDef(FD);
4782
4783  bool ShouldCheckShadow =
4784    Diags.getDiagnosticLevel(diag::warn_decl_shadow) != Diagnostic::Ignored;
4785
4786  // Introduce our parameters into the function scope
4787  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
4788    ParmVarDecl *Param = FD->getParamDecl(p);
4789    Param->setOwningFunction(FD);
4790
4791    // If this has an identifier, add it to the scope stack.
4792    if (Param->getIdentifier() && FnBodyScope) {
4793      if (ShouldCheckShadow)
4794        CheckShadow(FnBodyScope, Param);
4795
4796      PushOnScopeChains(Param, FnBodyScope);
4797    }
4798  }
4799
4800  // Checking attributes of current function definition
4801  // dllimport attribute.
4802  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
4803  if (DA && (!FD->getAttr<DLLExportAttr>())) {
4804    // dllimport attribute cannot be directly applied to definition.
4805    if (!DA->isInherited()) {
4806      Diag(FD->getLocation(),
4807           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
4808        << "dllimport";
4809      FD->setInvalidDecl();
4810      return FD;
4811    }
4812
4813    // Visual C++ appears to not think this is an issue, so only issue
4814    // a warning when Microsoft extensions are disabled.
4815    if (!LangOpts.Microsoft) {
4816      // If a symbol previously declared dllimport is later defined, the
4817      // attribute is ignored in subsequent references, and a warning is
4818      // emitted.
4819      Diag(FD->getLocation(),
4820           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
4821        << FD->getName() << "dllimport";
4822    }
4823  }
4824  return FD;
4825}
4826
4827/// \brief Given the set of return statements within a function body,
4828/// compute the variables that are subject to the named return value
4829/// optimization.
4830///
4831/// Each of the variables that is subject to the named return value
4832/// optimization will be marked as NRVO variables in the AST, and any
4833/// return statement that has a marked NRVO variable as its NRVO candidate can
4834/// use the named return value optimization.
4835///
4836/// This function applies a very simplistic algorithm for NRVO: if every return
4837/// statement in the function has the same NRVO candidate, that candidate is
4838/// the NRVO variable.
4839///
4840/// FIXME: Employ a smarter algorithm that accounts for multiple return
4841/// statements and the lifetimes of the NRVO candidates. We should be able to
4842/// find a maximal set of NRVO variables.
4843static void ComputeNRVO(Stmt *Body, ReturnStmt **Returns, unsigned NumReturns) {
4844  const VarDecl *NRVOCandidate = 0;
4845  for (unsigned I = 0; I != NumReturns; ++I) {
4846    if (!Returns[I]->getNRVOCandidate())
4847      return;
4848
4849    if (!NRVOCandidate)
4850      NRVOCandidate = Returns[I]->getNRVOCandidate();
4851    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
4852      return;
4853  }
4854
4855  if (NRVOCandidate)
4856    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
4857}
4858
4859Decl *Sema::ActOnFinishFunctionBody(Decl *D, StmtArg BodyArg) {
4860  return ActOnFinishFunctionBody(D, move(BodyArg), false);
4861}
4862
4863Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, StmtArg BodyArg,
4864                                         bool IsInstantiation) {
4865  Stmt *Body = BodyArg.takeAs<Stmt>();
4866
4867  FunctionDecl *FD = 0;
4868  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
4869  if (FunTmpl)
4870    FD = FunTmpl->getTemplatedDecl();
4871  else
4872    FD = dyn_cast_or_null<FunctionDecl>(dcl);
4873
4874  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
4875
4876  if (FD) {
4877    FD->setBody(Body);
4878    if (FD->isMain()) {
4879      // C and C++ allow for main to automagically return 0.
4880      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
4881      FD->setHasImplicitReturnZero(true);
4882      WP.disableCheckFallThrough();
4883    }
4884
4885    if (!FD->isInvalidDecl()) {
4886      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
4887
4888      // If this is a constructor, we need a vtable.
4889      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
4890        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
4891
4892      ComputeNRVO(Body, FunctionScopes.back()->Returns.data(),
4893                  FunctionScopes.back()->Returns.size());
4894    }
4895
4896    assert(FD == getCurFunctionDecl() && "Function parsing confused");
4897  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
4898    assert(MD == getCurMethodDecl() && "Method parsing confused");
4899    MD->setBody(Body);
4900    MD->setEndLoc(Body->getLocEnd());
4901    if (!MD->isInvalidDecl())
4902      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
4903  } else {
4904    return 0;
4905  }
4906
4907  // Verify and clean out per-function state.
4908
4909  // Check goto/label use.
4910  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
4911       I = getLabelMap().begin(), E = getLabelMap().end(); I != E; ++I) {
4912    LabelStmt *L = I->second;
4913
4914    // Verify that we have no forward references left.  If so, there was a goto
4915    // or address of a label taken, but no definition of it.  Label fwd
4916    // definitions are indicated with a null substmt.
4917    if (L->getSubStmt() != 0)
4918      continue;
4919
4920    // Emit error.
4921    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
4922
4923    // At this point, we have gotos that use the bogus label.  Stitch it into
4924    // the function body so that they aren't leaked and that the AST is well
4925    // formed.
4926    if (Body == 0) {
4927      // The whole function wasn't parsed correctly.
4928      continue;
4929    }
4930
4931    // Otherwise, the body is valid: we want to stitch the label decl into the
4932    // function somewhere so that it is properly owned and so that the goto
4933    // has a valid target.  Do this by creating a new compound stmt with the
4934    // label in it.
4935
4936    // Give the label a sub-statement.
4937    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
4938
4939    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
4940                               cast<CXXTryStmt>(Body)->getTryBlock() :
4941                               cast<CompoundStmt>(Body);
4942    llvm::SmallVector<Stmt*, 64> Elements(Compound->body_begin(),
4943                                          Compound->body_end());
4944    Elements.push_back(L);
4945    Compound->setStmts(Context, Elements.data(), Elements.size());
4946  }
4947
4948  if (Body) {
4949    // C++ constructors that have function-try-blocks can't have return
4950    // statements in the handlers of that block. (C++ [except.handle]p14)
4951    // Verify this.
4952    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
4953      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
4954
4955    // Verify that that gotos and switch cases don't jump into scopes illegally.
4956    // Verify that that gotos and switch cases don't jump into scopes illegally.
4957    if (FunctionNeedsScopeChecking() &&
4958        !dcl->isInvalidDecl() &&
4959        !hasAnyErrorsInThisFunction())
4960      DiagnoseInvalidJumps(Body);
4961
4962    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
4963      if (!Destructor->getParent()->isDependentType())
4964        CheckDestructor(Destructor);
4965
4966      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
4967                                             Destructor->getParent());
4968    }
4969
4970    // If any errors have occurred, clear out any temporaries that may have
4971    // been leftover. This ensures that these temporaries won't be picked up for
4972    // deletion in some later function.
4973    if (PP.getDiagnostics().hasErrorOccurred())
4974      ExprTemporaries.clear();
4975    else if (!isa<FunctionTemplateDecl>(dcl)) {
4976      // Since the body is valid, issue any analysis-based warnings that are
4977      // enabled.
4978      QualType ResultType;
4979      if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(dcl)) {
4980        ResultType = FD->getResultType();
4981      }
4982      else {
4983        ObjCMethodDecl *MD = cast<ObjCMethodDecl>(dcl);
4984        ResultType = MD->getResultType();
4985      }
4986      AnalysisWarnings.IssueWarnings(WP, dcl);
4987    }
4988
4989    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
4990  }
4991
4992  if (!IsInstantiation)
4993    PopDeclContext();
4994
4995  PopFunctionOrBlockScope();
4996
4997  // If any errors have occurred, clear out any temporaries that may have
4998  // been leftover. This ensures that these temporaries won't be picked up for
4999  // deletion in some later function.
5000  if (getDiagnostics().hasErrorOccurred())
5001    ExprTemporaries.clear();
5002
5003  return dcl;
5004}
5005
5006/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
5007/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
5008NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
5009                                          IdentifierInfo &II, Scope *S) {
5010  // Before we produce a declaration for an implicitly defined
5011  // function, see whether there was a locally-scoped declaration of
5012  // this name as a function or variable. If so, use that
5013  // (non-visible) declaration, and complain about it.
5014  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5015    = LocallyScopedExternalDecls.find(&II);
5016  if (Pos != LocallyScopedExternalDecls.end()) {
5017    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
5018    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
5019    return Pos->second;
5020  }
5021
5022  // Extension in C99.  Legal in C90, but warn about it.
5023  if (II.getName().startswith("__builtin_"))
5024    Diag(Loc, diag::warn_builtin_unknown) << &II;
5025  else if (getLangOptions().C99)
5026    Diag(Loc, diag::ext_implicit_function_decl) << &II;
5027  else
5028    Diag(Loc, diag::warn_implicit_function_decl) << &II;
5029
5030  // Set a Declarator for the implicit definition: int foo();
5031  const char *Dummy;
5032  DeclSpec DS;
5033  unsigned DiagID;
5034  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
5035  Error = Error; // Silence warning.
5036  assert(!Error && "Error setting up implicit decl!");
5037  Declarator D(DS, Declarator::BlockContext);
5038  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
5039                                             0, 0, false, SourceLocation(),
5040                                             false, 0,0,0, Loc, Loc, D),
5041                SourceLocation());
5042  D.SetIdentifier(&II, Loc);
5043
5044  // Insert this function into translation-unit scope.
5045
5046  DeclContext *PrevDC = CurContext;
5047  CurContext = Context.getTranslationUnitDecl();
5048
5049  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
5050  FD->setImplicit();
5051
5052  CurContext = PrevDC;
5053
5054  AddKnownFunctionAttributes(FD);
5055
5056  return FD;
5057}
5058
5059/// \brief Adds any function attributes that we know a priori based on
5060/// the declaration of this function.
5061///
5062/// These attributes can apply both to implicitly-declared builtins
5063/// (like __builtin___printf_chk) or to library-declared functions
5064/// like NSLog or printf.
5065void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
5066  if (FD->isInvalidDecl())
5067    return;
5068
5069  // If this is a built-in function, map its builtin attributes to
5070  // actual attributes.
5071  if (unsigned BuiltinID = FD->getBuiltinID()) {
5072    // Handle printf-formatting attributes.
5073    unsigned FormatIdx;
5074    bool HasVAListArg;
5075    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
5076      if (!FD->getAttr<FormatAttr>())
5077        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5078                                                "printf", FormatIdx+1,
5079                                               HasVAListArg ? 0 : FormatIdx+2));
5080    }
5081    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
5082                                             HasVAListArg)) {
5083     if (!FD->getAttr<FormatAttr>())
5084       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5085                                              "scanf", FormatIdx+1,
5086                                              HasVAListArg ? 0 : FormatIdx+2));
5087    }
5088
5089    // Mark const if we don't care about errno and that is the only
5090    // thing preventing the function from being const. This allows
5091    // IRgen to use LLVM intrinsics for such functions.
5092    if (!getLangOptions().MathErrno &&
5093        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
5094      if (!FD->getAttr<ConstAttr>())
5095        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
5096    }
5097
5098    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
5099      FD->setType(Context.getNoReturnType(FD->getType()));
5100    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
5101      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
5102    if (Context.BuiltinInfo.isConst(BuiltinID))
5103      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
5104  }
5105
5106  IdentifierInfo *Name = FD->getIdentifier();
5107  if (!Name)
5108    return;
5109  if ((!getLangOptions().CPlusPlus &&
5110       FD->getDeclContext()->isTranslationUnit()) ||
5111      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
5112       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
5113       LinkageSpecDecl::lang_c)) {
5114    // Okay: this could be a libc/libm/Objective-C function we know
5115    // about.
5116  } else
5117    return;
5118
5119  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
5120    // FIXME: NSLog and NSLogv should be target specific
5121    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
5122      // FIXME: We known better than our headers.
5123      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
5124    } else
5125      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5126                                             "printf", 1,
5127                                             Name->isStr("NSLogv") ? 0 : 2));
5128  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
5129    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
5130    // target-specific builtins, perhaps?
5131    if (!FD->getAttr<FormatAttr>())
5132      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5133                                             "printf", 2,
5134                                             Name->isStr("vasprintf") ? 0 : 3));
5135  }
5136}
5137
5138TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
5139                                    TypeSourceInfo *TInfo) {
5140  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
5141  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
5142
5143  if (!TInfo) {
5144    assert(D.isInvalidType() && "no declarator info for valid type");
5145    TInfo = Context.getTrivialTypeSourceInfo(T);
5146  }
5147
5148  // Scope manipulation handled by caller.
5149  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
5150                                           D.getIdentifierLoc(),
5151                                           D.getIdentifier(),
5152                                           TInfo);
5153
5154  if (const TagType *TT = T->getAs<TagType>()) {
5155    TagDecl *TD = TT->getDecl();
5156
5157    // If the TagDecl that the TypedefDecl points to is an anonymous decl
5158    // keep track of the TypedefDecl.
5159    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
5160      TD->setTypedefForAnonDecl(NewTD);
5161  }
5162
5163  if (D.isInvalidType())
5164    NewTD->setInvalidDecl();
5165  return NewTD;
5166}
5167
5168
5169/// \brief Determine whether a tag with a given kind is acceptable
5170/// as a redeclaration of the given tag declaration.
5171///
5172/// \returns true if the new tag kind is acceptable, false otherwise.
5173bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
5174                                        TagTypeKind NewTag,
5175                                        SourceLocation NewTagLoc,
5176                                        const IdentifierInfo &Name) {
5177  // C++ [dcl.type.elab]p3:
5178  //   The class-key or enum keyword present in the
5179  //   elaborated-type-specifier shall agree in kind with the
5180  //   declaration to which the name in the elaborated-type-specifier
5181  //   refers. This rule also applies to the form of
5182  //   elaborated-type-specifier that declares a class-name or
5183  //   friend class since it can be construed as referring to the
5184  //   definition of the class. Thus, in any
5185  //   elaborated-type-specifier, the enum keyword shall be used to
5186  //   refer to an enumeration (7.2), the union class-key shall be
5187  //   used to refer to a union (clause 9), and either the class or
5188  //   struct class-key shall be used to refer to a class (clause 9)
5189  //   declared using the class or struct class-key.
5190  TagTypeKind OldTag = Previous->getTagKind();
5191  if (OldTag == NewTag)
5192    return true;
5193
5194  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
5195      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
5196    // Warn about the struct/class tag mismatch.
5197    bool isTemplate = false;
5198    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
5199      isTemplate = Record->getDescribedClassTemplate();
5200
5201    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
5202      << (NewTag == TTK_Class)
5203      << isTemplate << &Name
5204      << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
5205                              OldTag == TTK_Class? "class" : "struct");
5206    Diag(Previous->getLocation(), diag::note_previous_use);
5207    return true;
5208  }
5209  return false;
5210}
5211
5212/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
5213/// former case, Name will be non-null.  In the later case, Name will be null.
5214/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
5215/// reference/declaration/definition of a tag.
5216Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
5217                               SourceLocation KWLoc, CXXScopeSpec &SS,
5218                               IdentifierInfo *Name, SourceLocation NameLoc,
5219                               AttributeList *Attr, AccessSpecifier AS,
5220                               MultiTemplateParamsArg TemplateParameterLists,
5221                               bool &OwnedDecl, bool &IsDependent) {
5222  // If this is not a definition, it must have a name.
5223  assert((Name != 0 || TUK == TUK_Definition) &&
5224         "Nameless record must be a definition!");
5225
5226  OwnedDecl = false;
5227  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5228
5229  // FIXME: Check explicit specializations more carefully.
5230  bool isExplicitSpecialization = false;
5231  unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size();
5232  bool Invalid = false;
5233  if (TUK != TUK_Reference) {
5234    if (TemplateParameterList *TemplateParams
5235          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
5236                        (TemplateParameterList**)TemplateParameterLists.get(),
5237                                              TemplateParameterLists.size(),
5238                                                    TUK == TUK_Friend,
5239                                                    isExplicitSpecialization,
5240                                                    Invalid)) {
5241      // All but one template parameter lists have been matching.
5242      --NumMatchedTemplateParamLists;
5243
5244      if (TemplateParams->size() > 0) {
5245        // This is a declaration or definition of a class template (which may
5246        // be a member of another template).
5247        if (Invalid)
5248          return 0;
5249
5250        OwnedDecl = false;
5251        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
5252                                               SS, Name, NameLoc, Attr,
5253                                               TemplateParams,
5254                                               AS);
5255        TemplateParameterLists.release();
5256        return Result.get();
5257      } else {
5258        // The "template<>" header is extraneous.
5259        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
5260          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
5261        isExplicitSpecialization = true;
5262      }
5263    }
5264  }
5265
5266  DeclContext *SearchDC = CurContext;
5267  DeclContext *DC = CurContext;
5268  bool isStdBadAlloc = false;
5269
5270  RedeclarationKind Redecl = ForRedeclaration;
5271  if (TUK == TUK_Friend || TUK == TUK_Reference)
5272    Redecl = NotForRedeclaration;
5273
5274  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
5275
5276  if (Name && SS.isNotEmpty()) {
5277    // We have a nested-name tag ('struct foo::bar').
5278
5279    // Check for invalid 'foo::'.
5280    if (SS.isInvalid()) {
5281      Name = 0;
5282      goto CreateNewDecl;
5283    }
5284
5285    // If this is a friend or a reference to a class in a dependent
5286    // context, don't try to make a decl for it.
5287    if (TUK == TUK_Friend || TUK == TUK_Reference) {
5288      DC = computeDeclContext(SS, false);
5289      if (!DC) {
5290        IsDependent = true;
5291        return 0;
5292      }
5293    } else {
5294      DC = computeDeclContext(SS, true);
5295      if (!DC) {
5296        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
5297          << SS.getRange();
5298        return 0;
5299      }
5300    }
5301
5302    if (RequireCompleteDeclContext(SS, DC))
5303      return 0;
5304
5305    SearchDC = DC;
5306    // Look-up name inside 'foo::'.
5307    LookupQualifiedName(Previous, DC);
5308
5309    if (Previous.isAmbiguous())
5310      return 0;
5311
5312    if (Previous.empty()) {
5313      // Name lookup did not find anything. However, if the
5314      // nested-name-specifier refers to the current instantiation,
5315      // and that current instantiation has any dependent base
5316      // classes, we might find something at instantiation time: treat
5317      // this as a dependent elaborated-type-specifier.
5318      if (Previous.wasNotFoundInCurrentInstantiation()) {
5319        IsDependent = true;
5320        return 0;
5321      }
5322
5323      // A tag 'foo::bar' must already exist.
5324      Diag(NameLoc, diag::err_not_tag_in_scope)
5325        << Kind << Name << DC << SS.getRange();
5326      Name = 0;
5327      Invalid = true;
5328      goto CreateNewDecl;
5329    }
5330  } else if (Name) {
5331    // If this is a named struct, check to see if there was a previous forward
5332    // declaration or definition.
5333    // FIXME: We're looking into outer scopes here, even when we
5334    // shouldn't be. Doing so can result in ambiguities that we
5335    // shouldn't be diagnosing.
5336    LookupName(Previous, S);
5337
5338    // Note:  there used to be some attempt at recovery here.
5339    if (Previous.isAmbiguous())
5340      return 0;
5341
5342    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
5343      // FIXME: This makes sure that we ignore the contexts associated
5344      // with C structs, unions, and enums when looking for a matching
5345      // tag declaration or definition. See the similar lookup tweak
5346      // in Sema::LookupName; is there a better way to deal with this?
5347      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
5348        SearchDC = SearchDC->getParent();
5349    }
5350  }
5351
5352  if (Previous.isSingleResult() &&
5353      Previous.getFoundDecl()->isTemplateParameter()) {
5354    // Maybe we will complain about the shadowed template parameter.
5355    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
5356    // Just pretend that we didn't see the previous declaration.
5357    Previous.clear();
5358  }
5359
5360  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
5361      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
5362    // This is a declaration of or a reference to "std::bad_alloc".
5363    isStdBadAlloc = true;
5364
5365    if (Previous.empty() && StdBadAlloc) {
5366      // std::bad_alloc has been implicitly declared (but made invisible to
5367      // name lookup). Fill in this implicit declaration as the previous
5368      // declaration, so that the declarations get chained appropriately.
5369      Previous.addDecl(getStdBadAlloc());
5370    }
5371  }
5372
5373  // If we didn't find a previous declaration, and this is a reference
5374  // (or friend reference), move to the correct scope.  In C++, we
5375  // also need to do a redeclaration lookup there, just in case
5376  // there's a shadow friend decl.
5377  if (Name && Previous.empty() &&
5378      (TUK == TUK_Reference || TUK == TUK_Friend)) {
5379    if (Invalid) goto CreateNewDecl;
5380    assert(SS.isEmpty());
5381
5382    if (TUK == TUK_Reference) {
5383      // C++ [basic.scope.pdecl]p5:
5384      //   -- for an elaborated-type-specifier of the form
5385      //
5386      //          class-key identifier
5387      //
5388      //      if the elaborated-type-specifier is used in the
5389      //      decl-specifier-seq or parameter-declaration-clause of a
5390      //      function defined in namespace scope, the identifier is
5391      //      declared as a class-name in the namespace that contains
5392      //      the declaration; otherwise, except as a friend
5393      //      declaration, the identifier is declared in the smallest
5394      //      non-class, non-function-prototype scope that contains the
5395      //      declaration.
5396      //
5397      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
5398      // C structs and unions.
5399      //
5400      // It is an error in C++ to declare (rather than define) an enum
5401      // type, including via an elaborated type specifier.  We'll
5402      // diagnose that later; for now, declare the enum in the same
5403      // scope as we would have picked for any other tag type.
5404      //
5405      // GNU C also supports this behavior as part of its incomplete
5406      // enum types extension, while GNU C++ does not.
5407      //
5408      // Find the context where we'll be declaring the tag.
5409      // FIXME: We would like to maintain the current DeclContext as the
5410      // lexical context,
5411      while (SearchDC->isRecord())
5412        SearchDC = SearchDC->getParent();
5413
5414      // Find the scope where we'll be declaring the tag.
5415      while (S->isClassScope() ||
5416             (getLangOptions().CPlusPlus &&
5417              S->isFunctionPrototypeScope()) ||
5418             ((S->getFlags() & Scope::DeclScope) == 0) ||
5419             (S->getEntity() &&
5420              ((DeclContext *)S->getEntity())->isTransparentContext()))
5421        S = S->getParent();
5422    } else {
5423      assert(TUK == TUK_Friend);
5424      // C++ [namespace.memdef]p3:
5425      //   If a friend declaration in a non-local class first declares a
5426      //   class or function, the friend class or function is a member of
5427      //   the innermost enclosing namespace.
5428      SearchDC = SearchDC->getEnclosingNamespaceContext();
5429    }
5430
5431    // In C++, we need to do a redeclaration lookup to properly
5432    // diagnose some problems.
5433    if (getLangOptions().CPlusPlus) {
5434      Previous.setRedeclarationKind(ForRedeclaration);
5435      LookupQualifiedName(Previous, SearchDC);
5436    }
5437  }
5438
5439  if (!Previous.empty()) {
5440    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
5441
5442    // It's okay to have a tag decl in the same scope as a typedef
5443    // which hides a tag decl in the same scope.  Finding this
5444    // insanity with a redeclaration lookup can only actually happen
5445    // in C++.
5446    //
5447    // This is also okay for elaborated-type-specifiers, which is
5448    // technically forbidden by the current standard but which is
5449    // okay according to the likely resolution of an open issue;
5450    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
5451    if (getLangOptions().CPlusPlus) {
5452      if (TypedefDecl *TD = dyn_cast<TypedefDecl>(PrevDecl)) {
5453        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
5454          TagDecl *Tag = TT->getDecl();
5455          if (Tag->getDeclName() == Name &&
5456              Tag->getDeclContext()->getLookupContext()
5457                          ->Equals(TD->getDeclContext()->getLookupContext())) {
5458            PrevDecl = Tag;
5459            Previous.clear();
5460            Previous.addDecl(Tag);
5461          }
5462        }
5463      }
5464    }
5465
5466    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
5467      // If this is a use of a previous tag, or if the tag is already declared
5468      // in the same scope (so that the definition/declaration completes or
5469      // rementions the tag), reuse the decl.
5470      if (TUK == TUK_Reference || TUK == TUK_Friend ||
5471          isDeclInScope(PrevDecl, SearchDC, S)) {
5472        // Make sure that this wasn't declared as an enum and now used as a
5473        // struct or something similar.
5474        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
5475          bool SafeToContinue
5476            = (PrevTagDecl->getTagKind() != TTK_Enum &&
5477               Kind != TTK_Enum);
5478          if (SafeToContinue)
5479            Diag(KWLoc, diag::err_use_with_wrong_tag)
5480              << Name
5481              << FixItHint::CreateReplacement(SourceRange(KWLoc),
5482                                              PrevTagDecl->getKindName());
5483          else
5484            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
5485          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
5486
5487          if (SafeToContinue)
5488            Kind = PrevTagDecl->getTagKind();
5489          else {
5490            // Recover by making this an anonymous redefinition.
5491            Name = 0;
5492            Previous.clear();
5493            Invalid = true;
5494          }
5495        }
5496
5497        if (!Invalid) {
5498          // If this is a use, just return the declaration we found.
5499
5500          // FIXME: In the future, return a variant or some other clue
5501          // for the consumer of this Decl to know it doesn't own it.
5502          // For our current ASTs this shouldn't be a problem, but will
5503          // need to be changed with DeclGroups.
5504          if ((TUK == TUK_Reference && !PrevTagDecl->getFriendObjectKind()) ||
5505              TUK == TUK_Friend)
5506            return PrevTagDecl;
5507
5508          // Diagnose attempts to redefine a tag.
5509          if (TUK == TUK_Definition) {
5510            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
5511              // If we're defining a specialization and the previous definition
5512              // is from an implicit instantiation, don't emit an error
5513              // here; we'll catch this in the general case below.
5514              if (!isExplicitSpecialization ||
5515                  !isa<CXXRecordDecl>(Def) ||
5516                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
5517                                               == TSK_ExplicitSpecialization) {
5518                Diag(NameLoc, diag::err_redefinition) << Name;
5519                Diag(Def->getLocation(), diag::note_previous_definition);
5520                // If this is a redefinition, recover by making this
5521                // struct be anonymous, which will make any later
5522                // references get the previous definition.
5523                Name = 0;
5524                Previous.clear();
5525                Invalid = true;
5526              }
5527            } else {
5528              // If the type is currently being defined, complain
5529              // about a nested redefinition.
5530              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
5531              if (Tag->isBeingDefined()) {
5532                Diag(NameLoc, diag::err_nested_redefinition) << Name;
5533                Diag(PrevTagDecl->getLocation(),
5534                     diag::note_previous_definition);
5535                Name = 0;
5536                Previous.clear();
5537                Invalid = true;
5538              }
5539            }
5540
5541            // Okay, this is definition of a previously declared or referenced
5542            // tag PrevDecl. We're going to create a new Decl for it.
5543          }
5544        }
5545        // If we get here we have (another) forward declaration or we
5546        // have a definition.  Just create a new decl.
5547
5548      } else {
5549        // If we get here, this is a definition of a new tag type in a nested
5550        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
5551        // new decl/type.  We set PrevDecl to NULL so that the entities
5552        // have distinct types.
5553        Previous.clear();
5554      }
5555      // If we get here, we're going to create a new Decl. If PrevDecl
5556      // is non-NULL, it's a definition of the tag declared by
5557      // PrevDecl. If it's NULL, we have a new definition.
5558
5559
5560    // Otherwise, PrevDecl is not a tag, but was found with tag
5561    // lookup.  This is only actually possible in C++, where a few
5562    // things like templates still live in the tag namespace.
5563    } else {
5564      assert(getLangOptions().CPlusPlus);
5565
5566      // Use a better diagnostic if an elaborated-type-specifier
5567      // found the wrong kind of type on the first
5568      // (non-redeclaration) lookup.
5569      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
5570          !Previous.isForRedeclaration()) {
5571        unsigned Kind = 0;
5572        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
5573        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
5574        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
5575        Diag(PrevDecl->getLocation(), diag::note_declared_at);
5576        Invalid = true;
5577
5578      // Otherwise, only diagnose if the declaration is in scope.
5579      } else if (!isDeclInScope(PrevDecl, SearchDC, S)) {
5580        // do nothing
5581
5582      // Diagnose implicit declarations introduced by elaborated types.
5583      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
5584        unsigned Kind = 0;
5585        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
5586        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
5587        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
5588        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
5589        Invalid = true;
5590
5591      // Otherwise it's a declaration.  Call out a particularly common
5592      // case here.
5593      } else if (isa<TypedefDecl>(PrevDecl)) {
5594        Diag(NameLoc, diag::err_tag_definition_of_typedef)
5595          << Name
5596          << cast<TypedefDecl>(PrevDecl)->getUnderlyingType();
5597        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
5598        Invalid = true;
5599
5600      // Otherwise, diagnose.
5601      } else {
5602        // The tag name clashes with something else in the target scope,
5603        // issue an error and recover by making this tag be anonymous.
5604        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
5605        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5606        Name = 0;
5607        Invalid = true;
5608      }
5609
5610      // The existing declaration isn't relevant to us; we're in a
5611      // new scope, so clear out the previous declaration.
5612      Previous.clear();
5613    }
5614  }
5615
5616CreateNewDecl:
5617
5618  TagDecl *PrevDecl = 0;
5619  if (Previous.isSingleResult())
5620    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
5621
5622  // If there is an identifier, use the location of the identifier as the
5623  // location of the decl, otherwise use the location of the struct/union
5624  // keyword.
5625  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
5626
5627  // Otherwise, create a new declaration. If there is a previous
5628  // declaration of the same entity, the two will be linked via
5629  // PrevDecl.
5630  TagDecl *New;
5631
5632  if (Kind == TTK_Enum) {
5633    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5634    // enum X { A, B, C } D;    D should chain to X.
5635    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
5636                           cast_or_null<EnumDecl>(PrevDecl));
5637    // If this is an undefined enum, warn.
5638    if (TUK != TUK_Definition && !Invalid) {
5639      TagDecl *Def;
5640      if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
5641        Diag(Loc, diag::ext_forward_ref_enum_def)
5642          << New;
5643        Diag(Def->getLocation(), diag::note_previous_definition);
5644      } else {
5645        Diag(Loc,
5646             getLangOptions().CPlusPlus? diag::err_forward_ref_enum
5647                                       : diag::ext_forward_ref_enum);
5648      }
5649    }
5650  } else {
5651    // struct/union/class
5652
5653    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5654    // struct X { int A; } D;    D should chain to X.
5655    if (getLangOptions().CPlusPlus) {
5656      // FIXME: Look for a way to use RecordDecl for simple structs.
5657      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5658                                  cast_or_null<CXXRecordDecl>(PrevDecl));
5659
5660      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
5661        StdBadAlloc = cast<CXXRecordDecl>(New);
5662    } else
5663      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5664                               cast_or_null<RecordDecl>(PrevDecl));
5665  }
5666
5667  // Maybe add qualifier info.
5668  if (SS.isNotEmpty()) {
5669    if (SS.isSet()) {
5670      NestedNameSpecifier *NNS
5671        = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
5672      New->setQualifierInfo(NNS, SS.getRange());
5673      if (NumMatchedTemplateParamLists > 0) {
5674        New->setTemplateParameterListsInfo(Context,
5675                                           NumMatchedTemplateParamLists,
5676                    (TemplateParameterList**) TemplateParameterLists.release());
5677      }
5678    }
5679    else
5680      Invalid = true;
5681  }
5682
5683  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
5684    // Add alignment attributes if necessary; these attributes are checked when
5685    // the ASTContext lays out the structure.
5686    //
5687    // It is important for implementing the correct semantics that this
5688    // happen here (in act on tag decl). The #pragma pack stack is
5689    // maintained as a result of parser callbacks which can occur at
5690    // many points during the parsing of a struct declaration (because
5691    // the #pragma tokens are effectively skipped over during the
5692    // parsing of the struct).
5693    AddAlignmentAttributesForRecord(RD);
5694  }
5695
5696  // If this is a specialization of a member class (of a class template),
5697  // check the specialization.
5698  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
5699    Invalid = true;
5700
5701  if (Invalid)
5702    New->setInvalidDecl();
5703
5704  if (Attr)
5705    ProcessDeclAttributeList(S, New, Attr);
5706
5707  // If we're declaring or defining a tag in function prototype scope
5708  // in C, note that this type can only be used within the function.
5709  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
5710    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
5711
5712  // Set the lexical context. If the tag has a C++ scope specifier, the
5713  // lexical context will be different from the semantic context.
5714  New->setLexicalDeclContext(CurContext);
5715
5716  // Mark this as a friend decl if applicable.
5717  if (TUK == TUK_Friend)
5718    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
5719
5720  // Set the access specifier.
5721  if (!Invalid && SearchDC->isRecord())
5722    SetMemberAccessSpecifier(New, PrevDecl, AS);
5723
5724  if (TUK == TUK_Definition)
5725    New->startDefinition();
5726
5727  // If this has an identifier, add it to the scope stack.
5728  if (TUK == TUK_Friend) {
5729    // We might be replacing an existing declaration in the lookup tables;
5730    // if so, borrow its access specifier.
5731    if (PrevDecl)
5732      New->setAccess(PrevDecl->getAccess());
5733
5734    DeclContext *DC = New->getDeclContext()->getLookupContext();
5735    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
5736    if (Name) // can be null along some error paths
5737      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
5738        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
5739  } else if (Name) {
5740    S = getNonFieldDeclScope(S);
5741    PushOnScopeChains(New, S);
5742  } else {
5743    CurContext->addDecl(New);
5744  }
5745
5746  // If this is the C FILE type, notify the AST context.
5747  if (IdentifierInfo *II = New->getIdentifier())
5748    if (!New->isInvalidDecl() &&
5749        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
5750        II->isStr("FILE"))
5751      Context.setFILEDecl(New);
5752
5753  OwnedDecl = true;
5754  return New;
5755}
5756
5757void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
5758  AdjustDeclIfTemplate(TagD);
5759  TagDecl *Tag = cast<TagDecl>(TagD);
5760
5761  // Enter the tag context.
5762  PushDeclContext(S, Tag);
5763}
5764
5765void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
5766                                           SourceLocation LBraceLoc) {
5767  AdjustDeclIfTemplate(TagD);
5768  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
5769
5770  FieldCollector->StartClass();
5771
5772  if (!Record->getIdentifier())
5773    return;
5774
5775  // C++ [class]p2:
5776  //   [...] The class-name is also inserted into the scope of the
5777  //   class itself; this is known as the injected-class-name. For
5778  //   purposes of access checking, the injected-class-name is treated
5779  //   as if it were a public member name.
5780  CXXRecordDecl *InjectedClassName
5781    = CXXRecordDecl::Create(Context, Record->getTagKind(),
5782                            CurContext, Record->getLocation(),
5783                            Record->getIdentifier(),
5784                            Record->getTagKeywordLoc(),
5785                            Record);
5786  InjectedClassName->setImplicit();
5787  InjectedClassName->setAccess(AS_public);
5788  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
5789      InjectedClassName->setDescribedClassTemplate(Template);
5790  PushOnScopeChains(InjectedClassName, S);
5791  assert(InjectedClassName->isInjectedClassName() &&
5792         "Broken injected-class-name");
5793}
5794
5795void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
5796                                    SourceLocation RBraceLoc) {
5797  AdjustDeclIfTemplate(TagD);
5798  TagDecl *Tag = cast<TagDecl>(TagD);
5799  Tag->setRBraceLoc(RBraceLoc);
5800
5801  if (isa<CXXRecordDecl>(Tag))
5802    FieldCollector->FinishClass();
5803
5804  // Exit this scope of this tag's definition.
5805  PopDeclContext();
5806
5807  // Notify the consumer that we've defined a tag.
5808  Consumer.HandleTagDeclDefinition(Tag);
5809}
5810
5811void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
5812  AdjustDeclIfTemplate(TagD);
5813  TagDecl *Tag = cast<TagDecl>(TagD);
5814  Tag->setInvalidDecl();
5815
5816  // We're undoing ActOnTagStartDefinition here, not
5817  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
5818  // the FieldCollector.
5819
5820  PopDeclContext();
5821}
5822
5823// Note that FieldName may be null for anonymous bitfields.
5824bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
5825                          QualType FieldTy, const Expr *BitWidth,
5826                          bool *ZeroWidth) {
5827  // Default to true; that shouldn't confuse checks for emptiness
5828  if (ZeroWidth)
5829    *ZeroWidth = true;
5830
5831  // C99 6.7.2.1p4 - verify the field type.
5832  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
5833  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
5834    // Handle incomplete types with specific error.
5835    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
5836      return true;
5837    if (FieldName)
5838      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
5839        << FieldName << FieldTy << BitWidth->getSourceRange();
5840    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
5841      << FieldTy << BitWidth->getSourceRange();
5842  }
5843
5844  // If the bit-width is type- or value-dependent, don't try to check
5845  // it now.
5846  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
5847    return false;
5848
5849  llvm::APSInt Value;
5850  if (VerifyIntegerConstantExpression(BitWidth, &Value))
5851    return true;
5852
5853  if (Value != 0 && ZeroWidth)
5854    *ZeroWidth = false;
5855
5856  // Zero-width bitfield is ok for anonymous field.
5857  if (Value == 0 && FieldName)
5858    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
5859
5860  if (Value.isSigned() && Value.isNegative()) {
5861    if (FieldName)
5862      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
5863               << FieldName << Value.toString(10);
5864    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
5865      << Value.toString(10);
5866  }
5867
5868  if (!FieldTy->isDependentType()) {
5869    uint64_t TypeSize = Context.getTypeSize(FieldTy);
5870    if (Value.getZExtValue() > TypeSize) {
5871      if (!getLangOptions().CPlusPlus) {
5872        if (FieldName)
5873          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
5874            << FieldName << (unsigned)Value.getZExtValue()
5875            << (unsigned)TypeSize;
5876
5877        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
5878          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
5879      }
5880
5881      if (FieldName)
5882        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
5883          << FieldName << (unsigned)Value.getZExtValue()
5884          << (unsigned)TypeSize;
5885      else
5886        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
5887          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
5888    }
5889  }
5890
5891  return false;
5892}
5893
5894/// ActOnField - Each field of a struct/union/class is passed into this in order
5895/// to create a FieldDecl object for it.
5896Decl *Sema::ActOnField(Scope *S, Decl *TagD,
5897                                 SourceLocation DeclStart,
5898                                 Declarator &D, ExprTy *BitfieldWidth) {
5899  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
5900                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
5901                               AS_public);
5902  return Res;
5903}
5904
5905/// HandleField - Analyze a field of a C struct or a C++ data member.
5906///
5907FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
5908                             SourceLocation DeclStart,
5909                             Declarator &D, Expr *BitWidth,
5910                             AccessSpecifier AS) {
5911  IdentifierInfo *II = D.getIdentifier();
5912  SourceLocation Loc = DeclStart;
5913  if (II) Loc = D.getIdentifierLoc();
5914
5915  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
5916  QualType T = TInfo->getType();
5917  if (getLangOptions().CPlusPlus)
5918    CheckExtraCXXDefaultArguments(D);
5919
5920  DiagnoseFunctionSpecifiers(D);
5921
5922  if (D.getDeclSpec().isThreadSpecified())
5923    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5924
5925  NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
5926                                         ForRedeclaration);
5927
5928  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5929    // Maybe we will complain about the shadowed template parameter.
5930    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5931    // Just pretend that we didn't see the previous declaration.
5932    PrevDecl = 0;
5933  }
5934
5935  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
5936    PrevDecl = 0;
5937
5938  bool Mutable
5939    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
5940  SourceLocation TSSL = D.getSourceRange().getBegin();
5941  FieldDecl *NewFD
5942    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
5943                     AS, PrevDecl, &D);
5944
5945  if (NewFD->isInvalidDecl())
5946    Record->setInvalidDecl();
5947
5948  if (NewFD->isInvalidDecl() && PrevDecl) {
5949    // Don't introduce NewFD into scope; there's already something
5950    // with the same name in the same scope.
5951  } else if (II) {
5952    PushOnScopeChains(NewFD, S);
5953  } else
5954    Record->addDecl(NewFD);
5955
5956  return NewFD;
5957}
5958
5959/// \brief Build a new FieldDecl and check its well-formedness.
5960///
5961/// This routine builds a new FieldDecl given the fields name, type,
5962/// record, etc. \p PrevDecl should refer to any previous declaration
5963/// with the same name and in the same scope as the field to be
5964/// created.
5965///
5966/// \returns a new FieldDecl.
5967///
5968/// \todo The Declarator argument is a hack. It will be removed once
5969FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
5970                                TypeSourceInfo *TInfo,
5971                                RecordDecl *Record, SourceLocation Loc,
5972                                bool Mutable, Expr *BitWidth,
5973                                SourceLocation TSSL,
5974                                AccessSpecifier AS, NamedDecl *PrevDecl,
5975                                Declarator *D) {
5976  IdentifierInfo *II = Name.getAsIdentifierInfo();
5977  bool InvalidDecl = false;
5978  if (D) InvalidDecl = D->isInvalidType();
5979
5980  // If we receive a broken type, recover by assuming 'int' and
5981  // marking this declaration as invalid.
5982  if (T.isNull()) {
5983    InvalidDecl = true;
5984    T = Context.IntTy;
5985  }
5986
5987  QualType EltTy = Context.getBaseElementType(T);
5988  if (!EltTy->isDependentType() &&
5989      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
5990    // Fields of incomplete type force their record to be invalid.
5991    Record->setInvalidDecl();
5992    InvalidDecl = true;
5993  }
5994
5995  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5996  // than a variably modified type.
5997  if (!InvalidDecl && T->isVariablyModifiedType()) {
5998    bool SizeIsNegative;
5999    llvm::APSInt Oversized;
6000    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
6001                                                           SizeIsNegative,
6002                                                           Oversized);
6003    if (!FixedTy.isNull()) {
6004      Diag(Loc, diag::warn_illegal_constant_array_size);
6005      T = FixedTy;
6006    } else {
6007      if (SizeIsNegative)
6008        Diag(Loc, diag::err_typecheck_negative_array_size);
6009      else if (Oversized.getBoolValue())
6010        Diag(Loc, diag::err_array_too_large)
6011          << Oversized.toString(10);
6012      else
6013        Diag(Loc, diag::err_typecheck_field_variable_size);
6014      InvalidDecl = true;
6015    }
6016  }
6017
6018  // Fields can not have abstract class types
6019  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
6020                                             diag::err_abstract_type_in_decl,
6021                                             AbstractFieldType))
6022    InvalidDecl = true;
6023
6024  bool ZeroWidth = false;
6025  // If this is declared as a bit-field, check the bit-field.
6026  if (!InvalidDecl && BitWidth &&
6027      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
6028    InvalidDecl = true;
6029    DeleteExpr(BitWidth);
6030    BitWidth = 0;
6031    ZeroWidth = false;
6032  }
6033
6034  // Check that 'mutable' is consistent with the type of the declaration.
6035  if (!InvalidDecl && Mutable) {
6036    unsigned DiagID = 0;
6037    if (T->isReferenceType())
6038      DiagID = diag::err_mutable_reference;
6039    else if (T.isConstQualified())
6040      DiagID = diag::err_mutable_const;
6041
6042    if (DiagID) {
6043      SourceLocation ErrLoc = Loc;
6044      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
6045        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
6046      Diag(ErrLoc, DiagID);
6047      Mutable = false;
6048      InvalidDecl = true;
6049    }
6050  }
6051
6052  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo,
6053                                       BitWidth, Mutable);
6054  if (InvalidDecl)
6055    NewFD->setInvalidDecl();
6056
6057  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
6058    Diag(Loc, diag::err_duplicate_member) << II;
6059    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6060    NewFD->setInvalidDecl();
6061  }
6062
6063  if (!InvalidDecl && getLangOptions().CPlusPlus) {
6064    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
6065
6066    if (!T->isPODType())
6067      CXXRecord->setPOD(false);
6068    if (!ZeroWidth)
6069      CXXRecord->setEmpty(false);
6070
6071    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
6072      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
6073      if (RDecl->getDefinition()) {
6074        if (!RDecl->hasTrivialConstructor())
6075          CXXRecord->setHasTrivialConstructor(false);
6076        if (!RDecl->hasTrivialCopyConstructor())
6077          CXXRecord->setHasTrivialCopyConstructor(false);
6078        if (!RDecl->hasTrivialCopyAssignment())
6079          CXXRecord->setHasTrivialCopyAssignment(false);
6080        if (!RDecl->hasTrivialDestructor())
6081          CXXRecord->setHasTrivialDestructor(false);
6082
6083        // C++ 9.5p1: An object of a class with a non-trivial
6084        // constructor, a non-trivial copy constructor, a non-trivial
6085        // destructor, or a non-trivial copy assignment operator
6086        // cannot be a member of a union, nor can an array of such
6087        // objects.
6088        // TODO: C++0x alters this restriction significantly.
6089        if (Record->isUnion() && CheckNontrivialField(NewFD))
6090          NewFD->setInvalidDecl();
6091      }
6092    }
6093  }
6094
6095  // FIXME: We need to pass in the attributes given an AST
6096  // representation, not a parser representation.
6097  if (D)
6098    // FIXME: What to pass instead of TUScope?
6099    ProcessDeclAttributes(TUScope, NewFD, *D);
6100
6101  if (T.isObjCGCWeak())
6102    Diag(Loc, diag::warn_attribute_weak_on_field);
6103
6104  NewFD->setAccess(AS);
6105
6106  // C++ [dcl.init.aggr]p1:
6107  //   An aggregate is an array or a class (clause 9) with [...] no
6108  //   private or protected non-static data members (clause 11).
6109  // A POD must be an aggregate.
6110  if (getLangOptions().CPlusPlus &&
6111      (AS == AS_private || AS == AS_protected)) {
6112    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
6113    CXXRecord->setAggregate(false);
6114    CXXRecord->setPOD(false);
6115  }
6116
6117  return NewFD;
6118}
6119
6120bool Sema::CheckNontrivialField(FieldDecl *FD) {
6121  assert(FD);
6122  assert(getLangOptions().CPlusPlus && "valid check only for C++");
6123
6124  if (FD->isInvalidDecl())
6125    return true;
6126
6127  QualType EltTy = Context.getBaseElementType(FD->getType());
6128  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
6129    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
6130    if (RDecl->getDefinition()) {
6131      // We check for copy constructors before constructors
6132      // because otherwise we'll never get complaints about
6133      // copy constructors.
6134
6135      CXXSpecialMember member = CXXInvalid;
6136      if (!RDecl->hasTrivialCopyConstructor())
6137        member = CXXCopyConstructor;
6138      else if (!RDecl->hasTrivialConstructor())
6139        member = CXXConstructor;
6140      else if (!RDecl->hasTrivialCopyAssignment())
6141        member = CXXCopyAssignment;
6142      else if (!RDecl->hasTrivialDestructor())
6143        member = CXXDestructor;
6144
6145      if (member != CXXInvalid) {
6146        Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
6147              << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
6148        DiagnoseNontrivial(RT, member);
6149        return true;
6150      }
6151    }
6152  }
6153
6154  return false;
6155}
6156
6157/// DiagnoseNontrivial - Given that a class has a non-trivial
6158/// special member, figure out why.
6159void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
6160  QualType QT(T, 0U);
6161  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
6162
6163  // Check whether the member was user-declared.
6164  switch (member) {
6165  case CXXInvalid:
6166    break;
6167
6168  case CXXConstructor:
6169    if (RD->hasUserDeclaredConstructor()) {
6170      typedef CXXRecordDecl::ctor_iterator ctor_iter;
6171      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
6172        const FunctionDecl *body = 0;
6173        ci->hasBody(body);
6174        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
6175          SourceLocation CtorLoc = ci->getLocation();
6176          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6177          return;
6178        }
6179      }
6180
6181      assert(0 && "found no user-declared constructors");
6182      return;
6183    }
6184    break;
6185
6186  case CXXCopyConstructor:
6187    if (RD->hasUserDeclaredCopyConstructor()) {
6188      SourceLocation CtorLoc =
6189        RD->getCopyConstructor(Context, 0)->getLocation();
6190      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6191      return;
6192    }
6193    break;
6194
6195  case CXXCopyAssignment:
6196    if (RD->hasUserDeclaredCopyAssignment()) {
6197      // FIXME: this should use the location of the copy
6198      // assignment, not the type.
6199      SourceLocation TyLoc = RD->getSourceRange().getBegin();
6200      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
6201      return;
6202    }
6203    break;
6204
6205  case CXXDestructor:
6206    if (RD->hasUserDeclaredDestructor()) {
6207      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
6208      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6209      return;
6210    }
6211    break;
6212  }
6213
6214  typedef CXXRecordDecl::base_class_iterator base_iter;
6215
6216  // Virtual bases and members inhibit trivial copying/construction,
6217  // but not trivial destruction.
6218  if (member != CXXDestructor) {
6219    // Check for virtual bases.  vbases includes indirect virtual bases,
6220    // so we just iterate through the direct bases.
6221    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
6222      if (bi->isVirtual()) {
6223        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6224        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
6225        return;
6226      }
6227
6228    // Check for virtual methods.
6229    typedef CXXRecordDecl::method_iterator meth_iter;
6230    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
6231         ++mi) {
6232      if (mi->isVirtual()) {
6233        SourceLocation MLoc = mi->getSourceRange().getBegin();
6234        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
6235        return;
6236      }
6237    }
6238  }
6239
6240  bool (CXXRecordDecl::*hasTrivial)() const;
6241  switch (member) {
6242  case CXXConstructor:
6243    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
6244  case CXXCopyConstructor:
6245    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
6246  case CXXCopyAssignment:
6247    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
6248  case CXXDestructor:
6249    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
6250  default:
6251    assert(0 && "unexpected special member"); return;
6252  }
6253
6254  // Check for nontrivial bases (and recurse).
6255  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
6256    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
6257    assert(BaseRT && "Don't know how to handle dependent bases");
6258    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
6259    if (!(BaseRecTy->*hasTrivial)()) {
6260      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6261      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
6262      DiagnoseNontrivial(BaseRT, member);
6263      return;
6264    }
6265  }
6266
6267  // Check for nontrivial members (and recurse).
6268  typedef RecordDecl::field_iterator field_iter;
6269  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
6270       ++fi) {
6271    QualType EltTy = Context.getBaseElementType((*fi)->getType());
6272    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
6273      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
6274
6275      if (!(EltRD->*hasTrivial)()) {
6276        SourceLocation FLoc = (*fi)->getLocation();
6277        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
6278        DiagnoseNontrivial(EltRT, member);
6279        return;
6280      }
6281    }
6282  }
6283
6284  assert(0 && "found no explanation for non-trivial member");
6285}
6286
6287/// TranslateIvarVisibility - Translate visibility from a token ID to an
6288///  AST enum value.
6289static ObjCIvarDecl::AccessControl
6290TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
6291  switch (ivarVisibility) {
6292  default: assert(0 && "Unknown visitibility kind");
6293  case tok::objc_private: return ObjCIvarDecl::Private;
6294  case tok::objc_public: return ObjCIvarDecl::Public;
6295  case tok::objc_protected: return ObjCIvarDecl::Protected;
6296  case tok::objc_package: return ObjCIvarDecl::Package;
6297  }
6298}
6299
6300/// ActOnIvar - Each ivar field of an objective-c class is passed into this
6301/// in order to create an IvarDecl object for it.
6302Decl *Sema::ActOnIvar(Scope *S,
6303                                SourceLocation DeclStart,
6304                                Decl *IntfDecl,
6305                                Declarator &D, ExprTy *BitfieldWidth,
6306                                tok::ObjCKeywordKind Visibility) {
6307
6308  IdentifierInfo *II = D.getIdentifier();
6309  Expr *BitWidth = (Expr*)BitfieldWidth;
6310  SourceLocation Loc = DeclStart;
6311  if (II) Loc = D.getIdentifierLoc();
6312
6313  // FIXME: Unnamed fields can be handled in various different ways, for
6314  // example, unnamed unions inject all members into the struct namespace!
6315
6316  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6317  QualType T = TInfo->getType();
6318
6319  if (BitWidth) {
6320    // 6.7.2.1p3, 6.7.2.1p4
6321    if (VerifyBitField(Loc, II, T, BitWidth)) {
6322      D.setInvalidType();
6323      DeleteExpr(BitWidth);
6324      BitWidth = 0;
6325    }
6326  } else {
6327    // Not a bitfield.
6328
6329    // validate II.
6330
6331  }
6332  if (T->isReferenceType()) {
6333    Diag(Loc, diag::err_ivar_reference_type);
6334    D.setInvalidType();
6335  }
6336  // C99 6.7.2.1p8: A member of a structure or union may have any type other
6337  // than a variably modified type.
6338  else if (T->isVariablyModifiedType()) {
6339    Diag(Loc, diag::err_typecheck_ivar_variable_size);
6340    D.setInvalidType();
6341  }
6342
6343  // Get the visibility (access control) for this ivar.
6344  ObjCIvarDecl::AccessControl ac =
6345    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
6346                                        : ObjCIvarDecl::None;
6347  // Must set ivar's DeclContext to its enclosing interface.
6348  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(IntfDecl);
6349  ObjCContainerDecl *EnclosingContext;
6350  if (ObjCImplementationDecl *IMPDecl =
6351      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
6352    if (!LangOpts.ObjCNonFragileABI2) {
6353    // Case of ivar declared in an implementation. Context is that of its class.
6354      EnclosingContext = IMPDecl->getClassInterface();
6355      assert(EnclosingContext && "Implementation has no class interface!");
6356    }
6357    else
6358      EnclosingContext = EnclosingDecl;
6359  } else {
6360    if (ObjCCategoryDecl *CDecl =
6361        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6362      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
6363        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
6364        return 0;
6365      }
6366    }
6367    EnclosingContext = EnclosingDecl;
6368  }
6369
6370  // Construct the decl.
6371  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
6372                                             EnclosingContext, Loc, II, T,
6373                                             TInfo, ac, (Expr *)BitfieldWidth);
6374
6375  if (II) {
6376    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
6377                                           ForRedeclaration);
6378    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
6379        && !isa<TagDecl>(PrevDecl)) {
6380      Diag(Loc, diag::err_duplicate_member) << II;
6381      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6382      NewID->setInvalidDecl();
6383    }
6384  }
6385
6386  // Process attributes attached to the ivar.
6387  ProcessDeclAttributes(S, NewID, D);
6388
6389  if (D.isInvalidType())
6390    NewID->setInvalidDecl();
6391
6392  if (II) {
6393    // FIXME: When interfaces are DeclContexts, we'll need to add
6394    // these to the interface.
6395    S->AddDecl(NewID);
6396    IdResolver.AddDecl(NewID);
6397  }
6398
6399  return NewID;
6400}
6401
6402void Sema::ActOnFields(Scope* S,
6403                       SourceLocation RecLoc, Decl *EnclosingDecl,
6404                       Decl **Fields, unsigned NumFields,
6405                       SourceLocation LBrac, SourceLocation RBrac,
6406                       AttributeList *Attr) {
6407  assert(EnclosingDecl && "missing record or interface decl");
6408
6409  // If the decl this is being inserted into is invalid, then it may be a
6410  // redeclaration or some other bogus case.  Don't try to add fields to it.
6411  if (EnclosingDecl->isInvalidDecl()) {
6412    // FIXME: Deallocate fields?
6413    return;
6414  }
6415
6416
6417  // Verify that all the fields are okay.
6418  unsigned NumNamedMembers = 0;
6419  llvm::SmallVector<FieldDecl*, 32> RecFields;
6420
6421  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
6422  for (unsigned i = 0; i != NumFields; ++i) {
6423    FieldDecl *FD = cast<FieldDecl>(Fields[i]);
6424
6425    // Get the type for the field.
6426    Type *FDTy = FD->getType().getTypePtr();
6427
6428    if (!FD->isAnonymousStructOrUnion()) {
6429      // Remember all fields written by the user.
6430      RecFields.push_back(FD);
6431    }
6432
6433    // If the field is already invalid for some reason, don't emit more
6434    // diagnostics about it.
6435    if (FD->isInvalidDecl()) {
6436      EnclosingDecl->setInvalidDecl();
6437      continue;
6438    }
6439
6440    // C99 6.7.2.1p2:
6441    //   A structure or union shall not contain a member with
6442    //   incomplete or function type (hence, a structure shall not
6443    //   contain an instance of itself, but may contain a pointer to
6444    //   an instance of itself), except that the last member of a
6445    //   structure with more than one named member may have incomplete
6446    //   array type; such a structure (and any union containing,
6447    //   possibly recursively, a member that is such a structure)
6448    //   shall not be a member of a structure or an element of an
6449    //   array.
6450    if (FDTy->isFunctionType()) {
6451      // Field declared as a function.
6452      Diag(FD->getLocation(), diag::err_field_declared_as_function)
6453        << FD->getDeclName();
6454      FD->setInvalidDecl();
6455      EnclosingDecl->setInvalidDecl();
6456      continue;
6457    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
6458               Record && Record->isStruct()) {
6459      // Flexible array member.
6460      if (NumNamedMembers < 1) {
6461        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
6462          << FD->getDeclName();
6463        FD->setInvalidDecl();
6464        EnclosingDecl->setInvalidDecl();
6465        continue;
6466      }
6467      if (!FD->getType()->isDependentType() &&
6468          !Context.getBaseElementType(FD->getType())->isPODType()) {
6469        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
6470          << FD->getDeclName() << FD->getType();
6471        FD->setInvalidDecl();
6472        EnclosingDecl->setInvalidDecl();
6473        continue;
6474      }
6475
6476      // Okay, we have a legal flexible array member at the end of the struct.
6477      if (Record)
6478        Record->setHasFlexibleArrayMember(true);
6479    } else if (!FDTy->isDependentType() &&
6480               RequireCompleteType(FD->getLocation(), FD->getType(),
6481                                   diag::err_field_incomplete)) {
6482      // Incomplete type
6483      FD->setInvalidDecl();
6484      EnclosingDecl->setInvalidDecl();
6485      continue;
6486    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
6487      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
6488        // If this is a member of a union, then entire union becomes "flexible".
6489        if (Record && Record->isUnion()) {
6490          Record->setHasFlexibleArrayMember(true);
6491        } else {
6492          // If this is a struct/class and this is not the last element, reject
6493          // it.  Note that GCC supports variable sized arrays in the middle of
6494          // structures.
6495          if (i != NumFields-1)
6496            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
6497              << FD->getDeclName() << FD->getType();
6498          else {
6499            // We support flexible arrays at the end of structs in
6500            // other structs as an extension.
6501            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
6502              << FD->getDeclName();
6503            if (Record)
6504              Record->setHasFlexibleArrayMember(true);
6505          }
6506        }
6507      }
6508      if (Record && FDTTy->getDecl()->hasObjectMember())
6509        Record->setHasObjectMember(true);
6510    } else if (FDTy->isObjCObjectType()) {
6511      /// A field cannot be an Objective-c object
6512      Diag(FD->getLocation(), diag::err_statically_allocated_object);
6513      FD->setInvalidDecl();
6514      EnclosingDecl->setInvalidDecl();
6515      continue;
6516    } else if (getLangOptions().ObjC1 &&
6517               getLangOptions().getGCMode() != LangOptions::NonGC &&
6518               Record &&
6519               (FD->getType()->isObjCObjectPointerType() ||
6520                FD->getType().isObjCGCStrong()))
6521      Record->setHasObjectMember(true);
6522    else if (Context.getAsArrayType(FD->getType())) {
6523      QualType BaseType = Context.getBaseElementType(FD->getType());
6524      if (Record && BaseType->isRecordType() &&
6525          BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
6526        Record->setHasObjectMember(true);
6527    }
6528    // Keep track of the number of named members.
6529    if (FD->getIdentifier())
6530      ++NumNamedMembers;
6531  }
6532
6533  // Okay, we successfully defined 'Record'.
6534  if (Record) {
6535    Record->completeDefinition();
6536  } else {
6537    ObjCIvarDecl **ClsFields =
6538      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
6539    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
6540      ID->setLocEnd(RBrac);
6541      // Add ivar's to class's DeclContext.
6542      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
6543        ClsFields[i]->setLexicalDeclContext(ID);
6544        ID->addDecl(ClsFields[i]);
6545      }
6546      // Must enforce the rule that ivars in the base classes may not be
6547      // duplicates.
6548      if (ID->getSuperClass())
6549        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
6550    } else if (ObjCImplementationDecl *IMPDecl =
6551                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
6552      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
6553      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
6554        // Ivar declared in @implementation never belongs to the implementation.
6555        // Only it is in implementation's lexical context.
6556        ClsFields[I]->setLexicalDeclContext(IMPDecl);
6557      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
6558    } else if (ObjCCategoryDecl *CDecl =
6559                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6560      // case of ivars in class extension; all other cases have been
6561      // reported as errors elsewhere.
6562      // FIXME. Class extension does not have a LocEnd field.
6563      // CDecl->setLocEnd(RBrac);
6564      // Add ivar's to class extension's DeclContext.
6565      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
6566        ClsFields[i]->setLexicalDeclContext(CDecl);
6567        CDecl->addDecl(ClsFields[i]);
6568      }
6569    }
6570  }
6571
6572  if (Attr)
6573    ProcessDeclAttributeList(S, Record, Attr);
6574
6575  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
6576  // set the visibility of this record.
6577  if (Record && !Record->getDeclContext()->isRecord())
6578    AddPushedVisibilityAttribute(Record);
6579}
6580
6581/// \brief Determine whether the given integral value is representable within
6582/// the given type T.
6583static bool isRepresentableIntegerValue(ASTContext &Context,
6584                                        llvm::APSInt &Value,
6585                                        QualType T) {
6586  assert(T->isIntegralType(Context) && "Integral type required!");
6587  unsigned BitWidth = Context.getIntWidth(T);
6588
6589  if (Value.isUnsigned() || Value.isNonNegative())
6590    return Value.getActiveBits() < BitWidth;
6591
6592  return Value.getMinSignedBits() <= BitWidth;
6593}
6594
6595// \brief Given an integral type, return the next larger integral type
6596// (or a NULL type of no such type exists).
6597static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
6598  // FIXME: Int128/UInt128 support, which also needs to be introduced into
6599  // enum checking below.
6600  assert(T->isIntegralType(Context) && "Integral type required!");
6601  const unsigned NumTypes = 4;
6602  QualType SignedIntegralTypes[NumTypes] = {
6603    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
6604  };
6605  QualType UnsignedIntegralTypes[NumTypes] = {
6606    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
6607    Context.UnsignedLongLongTy
6608  };
6609
6610  unsigned BitWidth = Context.getTypeSize(T);
6611  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
6612                                            : UnsignedIntegralTypes;
6613  for (unsigned I = 0; I != NumTypes; ++I)
6614    if (Context.getTypeSize(Types[I]) > BitWidth)
6615      return Types[I];
6616
6617  return QualType();
6618}
6619
6620EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
6621                                          EnumConstantDecl *LastEnumConst,
6622                                          SourceLocation IdLoc,
6623                                          IdentifierInfo *Id,
6624                                          ExprArg val) {
6625  Expr *Val = (Expr *)val.get();
6626
6627  unsigned IntWidth = Context.Target.getIntWidth();
6628  llvm::APSInt EnumVal(IntWidth);
6629  QualType EltTy;
6630  if (Val) {
6631    if (Enum->isDependentType() || Val->isTypeDependent())
6632      EltTy = Context.DependentTy;
6633    else {
6634      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
6635      SourceLocation ExpLoc;
6636      if (!Val->isValueDependent() &&
6637          VerifyIntegerConstantExpression(Val, &EnumVal)) {
6638        Val = 0;
6639      } else {
6640        if (!getLangOptions().CPlusPlus) {
6641          // C99 6.7.2.2p2:
6642          //   The expression that defines the value of an enumeration constant
6643          //   shall be an integer constant expression that has a value
6644          //   representable as an int.
6645
6646          // Complain if the value is not representable in an int.
6647          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
6648            Diag(IdLoc, diag::ext_enum_value_not_int)
6649              << EnumVal.toString(10) << Val->getSourceRange()
6650              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
6651          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
6652            // Force the type of the expression to 'int'.
6653            ImpCastExprToType(Val, Context.IntTy, CastExpr::CK_IntegralCast);
6654
6655            if (Val != val.get()) {
6656              val.release();
6657              val = Val;
6658            }
6659          }
6660        }
6661
6662        // C++0x [dcl.enum]p5:
6663        //   If the underlying type is not fixed, the type of each enumerator
6664        //   is the type of its initializing value:
6665        //     - If an initializer is specified for an enumerator, the
6666        //       initializing value has the same type as the expression.
6667        EltTy = Val->getType();
6668      }
6669    }
6670  }
6671
6672  if (!Val) {
6673    if (Enum->isDependentType())
6674      EltTy = Context.DependentTy;
6675    else if (!LastEnumConst) {
6676      // C++0x [dcl.enum]p5:
6677      //   If the underlying type is not fixed, the type of each enumerator
6678      //   is the type of its initializing value:
6679      //     - If no initializer is specified for the first enumerator, the
6680      //       initializing value has an unspecified integral type.
6681      //
6682      // GCC uses 'int' for its unspecified integral type, as does
6683      // C99 6.7.2.2p3.
6684      EltTy = Context.IntTy;
6685    } else {
6686      // Assign the last value + 1.
6687      EnumVal = LastEnumConst->getInitVal();
6688      ++EnumVal;
6689      EltTy = LastEnumConst->getType();
6690
6691      // Check for overflow on increment.
6692      if (EnumVal < LastEnumConst->getInitVal()) {
6693        // C++0x [dcl.enum]p5:
6694        //   If the underlying type is not fixed, the type of each enumerator
6695        //   is the type of its initializing value:
6696        //
6697        //     - Otherwise the type of the initializing value is the same as
6698        //       the type of the initializing value of the preceding enumerator
6699        //       unless the incremented value is not representable in that type,
6700        //       in which case the type is an unspecified integral type
6701        //       sufficient to contain the incremented value. If no such type
6702        //       exists, the program is ill-formed.
6703        QualType T = getNextLargerIntegralType(Context, EltTy);
6704        if (T.isNull()) {
6705          // There is no integral type larger enough to represent this
6706          // value. Complain, then allow the value to wrap around.
6707          EnumVal = LastEnumConst->getInitVal();
6708          EnumVal.zext(EnumVal.getBitWidth() * 2);
6709          Diag(IdLoc, diag::warn_enumerator_too_large)
6710            << EnumVal.toString(10);
6711        } else {
6712          EltTy = T;
6713        }
6714
6715        // Retrieve the last enumerator's value, extent that type to the
6716        // type that is supposed to be large enough to represent the incremented
6717        // value, then increment.
6718        EnumVal = LastEnumConst->getInitVal();
6719        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
6720        EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
6721        ++EnumVal;
6722
6723        // If we're not in C++, diagnose the overflow of enumerator values,
6724        // which in C99 means that the enumerator value is not representable in
6725        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
6726        // permits enumerator values that are representable in some larger
6727        // integral type.
6728        if (!getLangOptions().CPlusPlus && !T.isNull())
6729          Diag(IdLoc, diag::warn_enum_value_overflow);
6730      } else if (!getLangOptions().CPlusPlus &&
6731                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
6732        // Enforce C99 6.7.2.2p2 even when we compute the next value.
6733        Diag(IdLoc, diag::ext_enum_value_not_int)
6734          << EnumVal.toString(10) << 1;
6735      }
6736    }
6737  }
6738
6739  if (!EltTy->isDependentType()) {
6740    // Make the enumerator value match the signedness and size of the
6741    // enumerator's type.
6742    EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
6743    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
6744  }
6745
6746  val.release();
6747  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
6748                                  Val, EnumVal);
6749}
6750
6751
6752Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl,
6753                                        Decl *lastEnumConst,
6754                                        SourceLocation IdLoc,
6755                                        IdentifierInfo *Id,
6756                                        SourceLocation EqualLoc, ExprTy *val) {
6757  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
6758  EnumConstantDecl *LastEnumConst =
6759    cast_or_null<EnumConstantDecl>(lastEnumConst);
6760  Expr *Val = static_cast<Expr*>(val);
6761
6762  // The scope passed in may not be a decl scope.  Zip up the scope tree until
6763  // we find one that is.
6764  S = getNonFieldDeclScope(S);
6765
6766  // Verify that there isn't already something declared with this name in this
6767  // scope.
6768  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
6769                                         ForRedeclaration);
6770  if (PrevDecl && PrevDecl->isTemplateParameter()) {
6771    // Maybe we will complain about the shadowed template parameter.
6772    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
6773    // Just pretend that we didn't see the previous declaration.
6774    PrevDecl = 0;
6775  }
6776
6777  if (PrevDecl) {
6778    // When in C++, we may get a TagDecl with the same name; in this case the
6779    // enum constant will 'hide' the tag.
6780    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
6781           "Received TagDecl when not in C++!");
6782    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
6783      if (isa<EnumConstantDecl>(PrevDecl))
6784        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
6785      else
6786        Diag(IdLoc, diag::err_redefinition) << Id;
6787      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6788      return 0;
6789    }
6790  }
6791
6792  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
6793                                            IdLoc, Id, Owned(Val));
6794
6795  // Register this decl in the current scope stack.
6796  if (New) {
6797    New->setAccess(TheEnumDecl->getAccess());
6798    PushOnScopeChains(New, S);
6799  }
6800
6801  return New;
6802}
6803
6804void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
6805                         SourceLocation RBraceLoc, Decl *EnumDeclX,
6806                         Decl **Elements, unsigned NumElements,
6807                         Scope *S, AttributeList *Attr) {
6808  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
6809  QualType EnumType = Context.getTypeDeclType(Enum);
6810
6811  if (Attr)
6812    ProcessDeclAttributeList(S, Enum, Attr);
6813
6814  if (Enum->isDependentType()) {
6815    for (unsigned i = 0; i != NumElements; ++i) {
6816      EnumConstantDecl *ECD =
6817        cast_or_null<EnumConstantDecl>(Elements[i]);
6818      if (!ECD) continue;
6819
6820      ECD->setType(EnumType);
6821    }
6822
6823    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
6824    return;
6825  }
6826
6827  // TODO: If the result value doesn't fit in an int, it must be a long or long
6828  // long value.  ISO C does not support this, but GCC does as an extension,
6829  // emit a warning.
6830  unsigned IntWidth = Context.Target.getIntWidth();
6831  unsigned CharWidth = Context.Target.getCharWidth();
6832  unsigned ShortWidth = Context.Target.getShortWidth();
6833
6834  // Verify that all the values are okay, compute the size of the values, and
6835  // reverse the list.
6836  unsigned NumNegativeBits = 0;
6837  unsigned NumPositiveBits = 0;
6838
6839  // Keep track of whether all elements have type int.
6840  bool AllElementsInt = true;
6841
6842  for (unsigned i = 0; i != NumElements; ++i) {
6843    EnumConstantDecl *ECD =
6844      cast_or_null<EnumConstantDecl>(Elements[i]);
6845    if (!ECD) continue;  // Already issued a diagnostic.
6846
6847    const llvm::APSInt &InitVal = ECD->getInitVal();
6848
6849    // Keep track of the size of positive and negative values.
6850    if (InitVal.isUnsigned() || InitVal.isNonNegative())
6851      NumPositiveBits = std::max(NumPositiveBits,
6852                                 (unsigned)InitVal.getActiveBits());
6853    else
6854      NumNegativeBits = std::max(NumNegativeBits,
6855                                 (unsigned)InitVal.getMinSignedBits());
6856
6857    // Keep track of whether every enum element has type int (very commmon).
6858    if (AllElementsInt)
6859      AllElementsInt = ECD->getType() == Context.IntTy;
6860  }
6861
6862  // Figure out the type that should be used for this enum.
6863  // FIXME: Support -fshort-enums.
6864  QualType BestType;
6865  unsigned BestWidth;
6866
6867  // C++0x N3000 [conv.prom]p3:
6868  //   An rvalue of an unscoped enumeration type whose underlying
6869  //   type is not fixed can be converted to an rvalue of the first
6870  //   of the following types that can represent all the values of
6871  //   the enumeration: int, unsigned int, long int, unsigned long
6872  //   int, long long int, or unsigned long long int.
6873  // C99 6.4.4.3p2:
6874  //   An identifier declared as an enumeration constant has type int.
6875  // The C99 rule is modified by a gcc extension
6876  QualType BestPromotionType;
6877
6878  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
6879
6880  if (NumNegativeBits) {
6881    // If there is a negative value, figure out the smallest integer type (of
6882    // int/long/longlong) that fits.
6883    // If it's packed, check also if it fits a char or a short.
6884    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
6885      BestType = Context.SignedCharTy;
6886      BestWidth = CharWidth;
6887    } else if (Packed && NumNegativeBits <= ShortWidth &&
6888               NumPositiveBits < ShortWidth) {
6889      BestType = Context.ShortTy;
6890      BestWidth = ShortWidth;
6891    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
6892      BestType = Context.IntTy;
6893      BestWidth = IntWidth;
6894    } else {
6895      BestWidth = Context.Target.getLongWidth();
6896
6897      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
6898        BestType = Context.LongTy;
6899      } else {
6900        BestWidth = Context.Target.getLongLongWidth();
6901
6902        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
6903          Diag(Enum->getLocation(), diag::warn_enum_too_large);
6904        BestType = Context.LongLongTy;
6905      }
6906    }
6907    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
6908  } else {
6909    // If there is no negative value, figure out the smallest type that fits
6910    // all of the enumerator values.
6911    // If it's packed, check also if it fits a char or a short.
6912    if (Packed && NumPositiveBits <= CharWidth) {
6913      BestType = Context.UnsignedCharTy;
6914      BestPromotionType = Context.IntTy;
6915      BestWidth = CharWidth;
6916    } else if (Packed && NumPositiveBits <= ShortWidth) {
6917      BestType = Context.UnsignedShortTy;
6918      BestPromotionType = Context.IntTy;
6919      BestWidth = ShortWidth;
6920    } else if (NumPositiveBits <= IntWidth) {
6921      BestType = Context.UnsignedIntTy;
6922      BestWidth = IntWidth;
6923      BestPromotionType
6924        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6925                           ? Context.UnsignedIntTy : Context.IntTy;
6926    } else if (NumPositiveBits <=
6927               (BestWidth = Context.Target.getLongWidth())) {
6928      BestType = Context.UnsignedLongTy;
6929      BestPromotionType
6930        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6931                           ? Context.UnsignedLongTy : Context.LongTy;
6932    } else {
6933      BestWidth = Context.Target.getLongLongWidth();
6934      assert(NumPositiveBits <= BestWidth &&
6935             "How could an initializer get larger than ULL?");
6936      BestType = Context.UnsignedLongLongTy;
6937      BestPromotionType
6938        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6939                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
6940    }
6941  }
6942
6943  // Loop over all of the enumerator constants, changing their types to match
6944  // the type of the enum if needed.
6945  for (unsigned i = 0; i != NumElements; ++i) {
6946    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
6947    if (!ECD) continue;  // Already issued a diagnostic.
6948
6949    // Standard C says the enumerators have int type, but we allow, as an
6950    // extension, the enumerators to be larger than int size.  If each
6951    // enumerator value fits in an int, type it as an int, otherwise type it the
6952    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
6953    // that X has type 'int', not 'unsigned'.
6954
6955    // Determine whether the value fits into an int.
6956    llvm::APSInt InitVal = ECD->getInitVal();
6957
6958    // If it fits into an integer type, force it.  Otherwise force it to match
6959    // the enum decl type.
6960    QualType NewTy;
6961    unsigned NewWidth;
6962    bool NewSign;
6963    if (!getLangOptions().CPlusPlus &&
6964        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
6965      NewTy = Context.IntTy;
6966      NewWidth = IntWidth;
6967      NewSign = true;
6968    } else if (ECD->getType() == BestType) {
6969      // Already the right type!
6970      if (getLangOptions().CPlusPlus)
6971        // C++ [dcl.enum]p4: Following the closing brace of an
6972        // enum-specifier, each enumerator has the type of its
6973        // enumeration.
6974        ECD->setType(EnumType);
6975      continue;
6976    } else {
6977      NewTy = BestType;
6978      NewWidth = BestWidth;
6979      NewSign = BestType->isSignedIntegerType();
6980    }
6981
6982    // Adjust the APSInt value.
6983    InitVal.extOrTrunc(NewWidth);
6984    InitVal.setIsSigned(NewSign);
6985    ECD->setInitVal(InitVal);
6986
6987    // Adjust the Expr initializer and type.
6988    if (ECD->getInitExpr())
6989      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
6990                                                CastExpr::CK_IntegralCast,
6991                                                ECD->getInitExpr(),
6992                                                /*base paths*/ 0,
6993                                                ImplicitCastExpr::RValue));
6994    if (getLangOptions().CPlusPlus)
6995      // C++ [dcl.enum]p4: Following the closing brace of an
6996      // enum-specifier, each enumerator has the type of its
6997      // enumeration.
6998      ECD->setType(EnumType);
6999    else
7000      ECD->setType(NewTy);
7001  }
7002
7003  Enum->completeDefinition(BestType, BestPromotionType,
7004                           NumPositiveBits, NumNegativeBits);
7005}
7006
7007Decl *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc, ExprArg expr) {
7008  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
7009
7010  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
7011                                                   Loc, AsmString);
7012  CurContext->addDecl(New);
7013  return New;
7014}
7015
7016void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
7017                             SourceLocation PragmaLoc,
7018                             SourceLocation NameLoc) {
7019  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
7020
7021  if (PrevDecl) {
7022    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
7023  } else {
7024    (void)WeakUndeclaredIdentifiers.insert(
7025      std::pair<IdentifierInfo*,WeakInfo>
7026        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
7027  }
7028}
7029
7030void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
7031                                IdentifierInfo* AliasName,
7032                                SourceLocation PragmaLoc,
7033                                SourceLocation NameLoc,
7034                                SourceLocation AliasNameLoc) {
7035  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
7036                                    LookupOrdinaryName);
7037  WeakInfo W = WeakInfo(Name, NameLoc);
7038
7039  if (PrevDecl) {
7040    if (!PrevDecl->hasAttr<AliasAttr>())
7041      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
7042        DeclApplyPragmaWeak(TUScope, ND, W);
7043  } else {
7044    (void)WeakUndeclaredIdentifiers.insert(
7045      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
7046  }
7047}
7048