SemaDecl.cpp revision 0dd7ceb72cc369195d698ccc26c70ac0e56ab945
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/AST/APValue.h"
18#include "clang/AST/ASTConsumer.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/Analysis/CFG.h"
21#include "clang/AST/CXXInheritance.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/StmtCXX.h"
26#include "clang/AST/StmtObjC.h"
27#include "clang/Parse/DeclSpec.h"
28#include "clang/Parse/ParseDiagnostic.h"
29#include "clang/Parse/Template.h"
30#include "clang/Basic/PartialDiagnostic.h"
31#include "clang/Basic/SourceManager.h"
32#include "clang/Basic/TargetInfo.h"
33// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
34#include "clang/Lex/Preprocessor.h"
35#include "clang/Lex/HeaderSearch.h"
36#include "llvm/ADT/BitVector.h"
37#include "llvm/ADT/STLExtras.h"
38#include <algorithm>
39#include <cstring>
40#include <functional>
41#include <queue>
42using namespace clang;
43
44/// getDeclName - Return a pretty name for the specified decl if possible, or
45/// an empty string if not.  This is used for pretty crash reporting.
46std::string Sema::getDeclName(DeclPtrTy d) {
47  Decl *D = d.getAs<Decl>();
48  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
49    return DN->getQualifiedNameAsString();
50  return "";
51}
52
53Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
54  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
55}
56
57/// \brief If the identifier refers to a type name within this scope,
58/// return the declaration of that type.
59///
60/// This routine performs ordinary name lookup of the identifier II
61/// within the given scope, with optional C++ scope specifier SS, to
62/// determine whether the name refers to a type. If so, returns an
63/// opaque pointer (actually a QualType) corresponding to that
64/// type. Otherwise, returns NULL.
65///
66/// If name lookup results in an ambiguity, this routine will complain
67/// and then return NULL.
68Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
69                                Scope *S, const CXXScopeSpec *SS,
70                                bool isClassName,
71                                TypeTy *ObjectTypePtr) {
72  // Determine where we will perform name lookup.
73  DeclContext *LookupCtx = 0;
74  if (ObjectTypePtr) {
75    QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
76    if (ObjectType->isRecordType())
77      LookupCtx = computeDeclContext(ObjectType);
78  } else if (SS && SS->isSet()) {
79    LookupCtx = computeDeclContext(*SS, false);
80
81    if (!LookupCtx) {
82      if (isDependentScopeSpecifier(*SS)) {
83        // C++ [temp.res]p3:
84        //   A qualified-id that refers to a type and in which the
85        //   nested-name-specifier depends on a template-parameter (14.6.2)
86        //   shall be prefixed by the keyword typename to indicate that the
87        //   qualified-id denotes a type, forming an
88        //   elaborated-type-specifier (7.1.5.3).
89        //
90        // We therefore do not perform any name lookup if the result would
91        // refer to a member of an unknown specialization.
92        if (!isClassName)
93          return 0;
94
95        // We know from the grammar that this name refers to a type, so build a
96        // TypenameType node to describe the type.
97        // FIXME: Record somewhere that this TypenameType node has no "typename"
98        // keyword associated with it.
99        return CheckTypenameType((NestedNameSpecifier *)SS->getScopeRep(),
100                                 II, SS->getRange()).getAsOpaquePtr();
101      }
102
103      return 0;
104    }
105
106    if (!LookupCtx->isDependentContext() && RequireCompleteDeclContext(*SS))
107      return 0;
108  }
109
110  LookupResult Result(*this, &II, NameLoc, LookupOrdinaryName);
111  if (LookupCtx) {
112    // Perform "qualified" name lookup into the declaration context we
113    // computed, which is either the type of the base of a member access
114    // expression or the declaration context associated with a prior
115    // nested-name-specifier.
116    LookupQualifiedName(Result, LookupCtx);
117
118    if (ObjectTypePtr && Result.empty()) {
119      // C++ [basic.lookup.classref]p3:
120      //   If the unqualified-id is ~type-name, the type-name is looked up
121      //   in the context of the entire postfix-expression. If the type T of
122      //   the object expression is of a class type C, the type-name is also
123      //   looked up in the scope of class C. At least one of the lookups shall
124      //   find a name that refers to (possibly cv-qualified) T.
125      LookupName(Result, S);
126    }
127  } else {
128    // Perform unqualified name lookup.
129    LookupName(Result, S);
130  }
131
132  NamedDecl *IIDecl = 0;
133  switch (Result.getResultKind()) {
134  case LookupResult::NotFound:
135  case LookupResult::FoundOverloaded:
136  case LookupResult::FoundUnresolvedValue:
137    return 0;
138
139  case LookupResult::Ambiguous:
140    // Recover from type-hiding ambiguities by hiding the type.  We'll
141    // do the lookup again when looking for an object, and we can
142    // diagnose the error then.  If we don't do this, then the error
143    // about hiding the type will be immediately followed by an error
144    // that only makes sense if the identifier was treated like a type.
145    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
146      Result.suppressDiagnostics();
147      return 0;
148    }
149
150    // Look to see if we have a type anywhere in the list of results.
151    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
152         Res != ResEnd; ++Res) {
153      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
154        if (!IIDecl ||
155            (*Res)->getLocation().getRawEncoding() <
156              IIDecl->getLocation().getRawEncoding())
157          IIDecl = *Res;
158      }
159    }
160
161    if (!IIDecl) {
162      // None of the entities we found is a type, so there is no way
163      // to even assume that the result is a type. In this case, don't
164      // complain about the ambiguity. The parser will either try to
165      // perform this lookup again (e.g., as an object name), which
166      // will produce the ambiguity, or will complain that it expected
167      // a type name.
168      Result.suppressDiagnostics();
169      return 0;
170    }
171
172    // We found a type within the ambiguous lookup; diagnose the
173    // ambiguity and then return that type. This might be the right
174    // answer, or it might not be, but it suppresses any attempt to
175    // perform the name lookup again.
176    break;
177
178  case LookupResult::Found:
179    IIDecl = Result.getFoundDecl();
180    break;
181  }
182
183  assert(IIDecl && "Didn't find decl");
184
185  QualType T;
186  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
187    DiagnoseUseOfDecl(IIDecl, NameLoc);
188
189    // C++ [temp.local]p2:
190    //   Within the scope of a class template specialization or
191    //   partial specialization, when the injected-class-name is
192    //   not followed by a <, it is equivalent to the
193    //   injected-class-name followed by the template-argument s
194    //   of the class template specialization or partial
195    //   specialization enclosed in <>.
196    if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
197      if (RD->isInjectedClassName())
198        if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
199          T = Template->getInjectedClassNameType(Context);
200
201    if (T.isNull())
202      T = Context.getTypeDeclType(TD);
203
204    if (SS)
205      T = getQualifiedNameType(*SS, T);
206
207  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
208    T = Context.getObjCInterfaceType(IDecl);
209  } else if (UnresolvedUsingTypenameDecl *UUDecl =
210               dyn_cast<UnresolvedUsingTypenameDecl>(IIDecl)) {
211    // FIXME: preserve source structure information.
212    T = Context.getTypenameType(UUDecl->getTargetNestedNameSpecifier(), &II);
213  } else {
214    // If it's not plausibly a type, suppress diagnostics.
215    Result.suppressDiagnostics();
216    return 0;
217  }
218
219  return T.getAsOpaquePtr();
220}
221
222/// isTagName() - This method is called *for error recovery purposes only*
223/// to determine if the specified name is a valid tag name ("struct foo").  If
224/// so, this returns the TST for the tag corresponding to it (TST_enum,
225/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
226/// where the user forgot to specify the tag.
227DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
228  // Do a tag name lookup in this scope.
229  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
230  LookupName(R, S, false);
231  R.suppressDiagnostics();
232  if (R.getResultKind() == LookupResult::Found)
233    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
234      switch (TD->getTagKind()) {
235      case TagDecl::TK_struct: return DeclSpec::TST_struct;
236      case TagDecl::TK_union:  return DeclSpec::TST_union;
237      case TagDecl::TK_class:  return DeclSpec::TST_class;
238      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
239      }
240    }
241
242  return DeclSpec::TST_unspecified;
243}
244
245bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
246                                   SourceLocation IILoc,
247                                   Scope *S,
248                                   const CXXScopeSpec *SS,
249                                   TypeTy *&SuggestedType) {
250  // We don't have anything to suggest (yet).
251  SuggestedType = 0;
252
253  // FIXME: Should we move the logic that tries to recover from a missing tag
254  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
255
256  if (!SS)
257    Diag(IILoc, diag::err_unknown_typename) << &II;
258  else if (DeclContext *DC = computeDeclContext(*SS, false))
259    Diag(IILoc, diag::err_typename_nested_not_found)
260      << &II << DC << SS->getRange();
261  else if (isDependentScopeSpecifier(*SS)) {
262    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
263      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
264      << SourceRange(SS->getRange().getBegin(), IILoc)
265      << CodeModificationHint::CreateInsertion(SS->getRange().getBegin(),
266                                               "typename ");
267    SuggestedType = ActOnTypenameType(SourceLocation(), *SS, II, IILoc).get();
268  } else {
269    assert(SS && SS->isInvalid() &&
270           "Invalid scope specifier has already been diagnosed");
271  }
272
273  return true;
274}
275
276// Determines the context to return to after temporarily entering a
277// context.  This depends in an unnecessarily complicated way on the
278// exact ordering of callbacks from the parser.
279DeclContext *Sema::getContainingDC(DeclContext *DC) {
280
281  // Functions defined inline within classes aren't parsed until we've
282  // finished parsing the top-level class, so the top-level class is
283  // the context we'll need to return to.
284  if (isa<FunctionDecl>(DC)) {
285    DC = DC->getLexicalParent();
286
287    // A function not defined within a class will always return to its
288    // lexical context.
289    if (!isa<CXXRecordDecl>(DC))
290      return DC;
291
292    // A C++ inline method/friend is parsed *after* the topmost class
293    // it was declared in is fully parsed ("complete");  the topmost
294    // class is the context we need to return to.
295    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
296      DC = RD;
297
298    // Return the declaration context of the topmost class the inline method is
299    // declared in.
300    return DC;
301  }
302
303  if (isa<ObjCMethodDecl>(DC))
304    return Context.getTranslationUnitDecl();
305
306  return DC->getLexicalParent();
307}
308
309void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
310  assert(getContainingDC(DC) == CurContext &&
311      "The next DeclContext should be lexically contained in the current one.");
312  CurContext = DC;
313  S->setEntity(DC);
314}
315
316void Sema::PopDeclContext() {
317  assert(CurContext && "DeclContext imbalance!");
318
319  CurContext = getContainingDC(CurContext);
320}
321
322/// EnterDeclaratorContext - Used when we must lookup names in the context
323/// of a declarator's nested name specifier.
324void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
325  assert(PreDeclaratorDC == 0 && "Previous declarator context not popped?");
326  PreDeclaratorDC = static_cast<DeclContext*>(S->getEntity());
327  CurContext = DC;
328  assert(CurContext && "No context?");
329  S->setEntity(CurContext);
330}
331
332void Sema::ExitDeclaratorContext(Scope *S) {
333  S->setEntity(PreDeclaratorDC);
334  PreDeclaratorDC = 0;
335
336  // Reset CurContext to the nearest enclosing context.
337  while (!S->getEntity() && S->getParent())
338    S = S->getParent();
339  CurContext = static_cast<DeclContext*>(S->getEntity());
340  assert(CurContext && "No context?");
341}
342
343/// \brief Determine whether we allow overloading of the function
344/// PrevDecl with another declaration.
345///
346/// This routine determines whether overloading is possible, not
347/// whether some new function is actually an overload. It will return
348/// true in C++ (where we can always provide overloads) or, as an
349/// extension, in C when the previous function is already an
350/// overloaded function declaration or has the "overloadable"
351/// attribute.
352static bool AllowOverloadingOfFunction(LookupResult &Previous,
353                                       ASTContext &Context) {
354  if (Context.getLangOptions().CPlusPlus)
355    return true;
356
357  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
358    return true;
359
360  return (Previous.getResultKind() == LookupResult::Found
361          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
362}
363
364/// Add this decl to the scope shadowed decl chains.
365void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
366  // Move up the scope chain until we find the nearest enclosing
367  // non-transparent context. The declaration will be introduced into this
368  // scope.
369  while (S->getEntity() &&
370         ((DeclContext *)S->getEntity())->isTransparentContext())
371    S = S->getParent();
372
373  // Add scoped declarations into their context, so that they can be
374  // found later. Declarations without a context won't be inserted
375  // into any context.
376  if (AddToContext)
377    CurContext->addDecl(D);
378
379  // Out-of-line function and variable definitions should not be pushed into
380  // scope.
381  if ((isa<FunctionTemplateDecl>(D) &&
382       cast<FunctionTemplateDecl>(D)->getTemplatedDecl()->isOutOfLine()) ||
383      (isa<FunctionDecl>(D) &&
384       (cast<FunctionDecl>(D)->isFunctionTemplateSpecialization() ||
385        cast<FunctionDecl>(D)->isOutOfLine())) ||
386      (isa<VarDecl>(D) && cast<VarDecl>(D)->isOutOfLine()))
387    return;
388
389  // If this replaces anything in the current scope,
390  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
391                               IEnd = IdResolver.end();
392  for (; I != IEnd; ++I) {
393    if (S->isDeclScope(DeclPtrTy::make(*I)) && D->declarationReplaces(*I)) {
394      S->RemoveDecl(DeclPtrTy::make(*I));
395      IdResolver.RemoveDecl(*I);
396
397      // Should only need to replace one decl.
398      break;
399    }
400  }
401
402  S->AddDecl(DeclPtrTy::make(D));
403  IdResolver.AddDecl(D);
404}
405
406bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
407  return IdResolver.isDeclInScope(D, Ctx, Context, S);
408}
409
410static bool isOutOfScopePreviousDeclaration(NamedDecl *,
411                                            DeclContext*,
412                                            ASTContext&);
413
414/// Filters out lookup results that don't fall within the given scope
415/// as determined by isDeclInScope.
416static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
417                                 DeclContext *Ctx, Scope *S,
418                                 bool ConsiderLinkage) {
419  LookupResult::Filter F = R.makeFilter();
420  while (F.hasNext()) {
421    NamedDecl *D = F.next();
422
423    if (SemaRef.isDeclInScope(D, Ctx, S))
424      continue;
425
426    if (ConsiderLinkage &&
427        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
428      continue;
429
430    F.erase();
431  }
432
433  F.done();
434}
435
436static bool isUsingDecl(NamedDecl *D) {
437  return isa<UsingShadowDecl>(D) ||
438         isa<UnresolvedUsingTypenameDecl>(D) ||
439         isa<UnresolvedUsingValueDecl>(D);
440}
441
442/// Removes using shadow declarations from the lookup results.
443static void RemoveUsingDecls(LookupResult &R) {
444  LookupResult::Filter F = R.makeFilter();
445  while (F.hasNext())
446    if (isUsingDecl(F.next()))
447      F.erase();
448
449  F.done();
450}
451
452static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
453  if (D->isUsed() || D->hasAttr<UnusedAttr>())
454    return false;
455
456  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
457    if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
458      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
459        if (!RD->hasTrivialConstructor())
460          return false;
461        if (!RD->hasTrivialDestructor())
462          return false;
463      }
464    }
465  }
466
467  return (isa<VarDecl>(D) && !isa<ParmVarDecl>(D) &&
468          !isa<ImplicitParamDecl>(D) &&
469          D->getDeclContext()->isFunctionOrMethod());
470}
471
472void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
473  if (S->decl_empty()) return;
474  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
475         "Scope shouldn't contain decls!");
476
477  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
478       I != E; ++I) {
479    Decl *TmpD = (*I).getAs<Decl>();
480    assert(TmpD && "This decl didn't get pushed??");
481
482    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
483    NamedDecl *D = cast<NamedDecl>(TmpD);
484
485    if (!D->getDeclName()) continue;
486
487    // Diagnose unused variables in this scope.
488    if (ShouldDiagnoseUnusedDecl(D))
489      Diag(D->getLocation(), diag::warn_unused_variable) << D->getDeclName();
490
491    // Remove this name from our lexical scope.
492    IdResolver.RemoveDecl(D);
493  }
494}
495
496/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
497/// return 0 if one not found.
498ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
499  // The third "scope" argument is 0 since we aren't enabling lazy built-in
500  // creation from this context.
501  NamedDecl *IDecl = LookupSingleName(TUScope, Id, LookupOrdinaryName);
502
503  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
504}
505
506/// getNonFieldDeclScope - Retrieves the innermost scope, starting
507/// from S, where a non-field would be declared. This routine copes
508/// with the difference between C and C++ scoping rules in structs and
509/// unions. For example, the following code is well-formed in C but
510/// ill-formed in C++:
511/// @code
512/// struct S6 {
513///   enum { BAR } e;
514/// };
515///
516/// void test_S6() {
517///   struct S6 a;
518///   a.e = BAR;
519/// }
520/// @endcode
521/// For the declaration of BAR, this routine will return a different
522/// scope. The scope S will be the scope of the unnamed enumeration
523/// within S6. In C++, this routine will return the scope associated
524/// with S6, because the enumeration's scope is a transparent
525/// context but structures can contain non-field names. In C, this
526/// routine will return the translation unit scope, since the
527/// enumeration's scope is a transparent context and structures cannot
528/// contain non-field names.
529Scope *Sema::getNonFieldDeclScope(Scope *S) {
530  while (((S->getFlags() & Scope::DeclScope) == 0) ||
531         (S->getEntity() &&
532          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
533         (S->isClassScope() && !getLangOptions().CPlusPlus))
534    S = S->getParent();
535  return S;
536}
537
538void Sema::InitBuiltinVaListType() {
539  if (!Context.getBuiltinVaListType().isNull())
540    return;
541
542  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
543  NamedDecl *VaDecl = LookupSingleName(TUScope, VaIdent, LookupOrdinaryName);
544  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
545  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
546}
547
548/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
549/// file scope.  lazily create a decl for it. ForRedeclaration is true
550/// if we're creating this built-in in anticipation of redeclaring the
551/// built-in.
552NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
553                                     Scope *S, bool ForRedeclaration,
554                                     SourceLocation Loc) {
555  Builtin::ID BID = (Builtin::ID)bid;
556
557  if (Context.BuiltinInfo.hasVAListUse(BID))
558    InitBuiltinVaListType();
559
560  ASTContext::GetBuiltinTypeError Error;
561  QualType R = Context.GetBuiltinType(BID, Error);
562  switch (Error) {
563  case ASTContext::GE_None:
564    // Okay
565    break;
566
567  case ASTContext::GE_Missing_stdio:
568    if (ForRedeclaration)
569      Diag(Loc, diag::err_implicit_decl_requires_stdio)
570        << Context.BuiltinInfo.GetName(BID);
571    return 0;
572
573  case ASTContext::GE_Missing_setjmp:
574    if (ForRedeclaration)
575      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
576        << Context.BuiltinInfo.GetName(BID);
577    return 0;
578  }
579
580  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
581    Diag(Loc, diag::ext_implicit_lib_function_decl)
582      << Context.BuiltinInfo.GetName(BID)
583      << R;
584    if (Context.BuiltinInfo.getHeaderName(BID) &&
585        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
586          != Diagnostic::Ignored)
587      Diag(Loc, diag::note_please_include_header)
588        << Context.BuiltinInfo.getHeaderName(BID)
589        << Context.BuiltinInfo.GetName(BID);
590  }
591
592  FunctionDecl *New = FunctionDecl::Create(Context,
593                                           Context.getTranslationUnitDecl(),
594                                           Loc, II, R, /*TInfo=*/0,
595                                           FunctionDecl::Extern, false,
596                                           /*hasPrototype=*/true);
597  New->setImplicit();
598
599  // Create Decl objects for each parameter, adding them to the
600  // FunctionDecl.
601  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
602    llvm::SmallVector<ParmVarDecl*, 16> Params;
603    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
604      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
605                                           FT->getArgType(i), /*TInfo=*/0,
606                                           VarDecl::None, 0));
607    New->setParams(Context, Params.data(), Params.size());
608  }
609
610  AddKnownFunctionAttributes(New);
611
612  // TUScope is the translation-unit scope to insert this function into.
613  // FIXME: This is hideous. We need to teach PushOnScopeChains to
614  // relate Scopes to DeclContexts, and probably eliminate CurContext
615  // entirely, but we're not there yet.
616  DeclContext *SavedContext = CurContext;
617  CurContext = Context.getTranslationUnitDecl();
618  PushOnScopeChains(New, TUScope);
619  CurContext = SavedContext;
620  return New;
621}
622
623/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
624/// same name and scope as a previous declaration 'Old'.  Figure out
625/// how to resolve this situation, merging decls or emitting
626/// diagnostics as appropriate. If there was an error, set New to be invalid.
627///
628void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
629  // If the new decl is known invalid already, don't bother doing any
630  // merging checks.
631  if (New->isInvalidDecl()) return;
632
633  // Allow multiple definitions for ObjC built-in typedefs.
634  // FIXME: Verify the underlying types are equivalent!
635  if (getLangOptions().ObjC1) {
636    const IdentifierInfo *TypeID = New->getIdentifier();
637    switch (TypeID->getLength()) {
638    default: break;
639    case 2:
640      if (!TypeID->isStr("id"))
641        break;
642      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
643      // Install the built-in type for 'id', ignoring the current definition.
644      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
645      return;
646    case 5:
647      if (!TypeID->isStr("Class"))
648        break;
649      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
650      // Install the built-in type for 'Class', ignoring the current definition.
651      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
652      return;
653    case 3:
654      if (!TypeID->isStr("SEL"))
655        break;
656      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
657      // Install the built-in type for 'SEL', ignoring the current definition.
658      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
659      return;
660    case 8:
661      if (!TypeID->isStr("Protocol"))
662        break;
663      Context.setObjCProtoType(New->getUnderlyingType());
664      return;
665    }
666    // Fall through - the typedef name was not a builtin type.
667  }
668
669  // Verify the old decl was also a type.
670  TypeDecl *Old = 0;
671  if (!OldDecls.isSingleResult() ||
672      !(Old = dyn_cast<TypeDecl>(OldDecls.getFoundDecl()))) {
673    Diag(New->getLocation(), diag::err_redefinition_different_kind)
674      << New->getDeclName();
675
676    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
677    if (OldD->getLocation().isValid())
678      Diag(OldD->getLocation(), diag::note_previous_definition);
679
680    return New->setInvalidDecl();
681  }
682
683  // If the old declaration is invalid, just give up here.
684  if (Old->isInvalidDecl())
685    return New->setInvalidDecl();
686
687  // Determine the "old" type we'll use for checking and diagnostics.
688  QualType OldType;
689  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
690    OldType = OldTypedef->getUnderlyingType();
691  else
692    OldType = Context.getTypeDeclType(Old);
693
694  // If the typedef types are not identical, reject them in all languages and
695  // with any extensions enabled.
696
697  if (OldType != New->getUnderlyingType() &&
698      Context.getCanonicalType(OldType) !=
699      Context.getCanonicalType(New->getUnderlyingType())) {
700    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
701      << New->getUnderlyingType() << OldType;
702    if (Old->getLocation().isValid())
703      Diag(Old->getLocation(), diag::note_previous_definition);
704    return New->setInvalidDecl();
705  }
706
707  if (getLangOptions().Microsoft)
708    return;
709
710  // C++ [dcl.typedef]p2:
711  //   In a given non-class scope, a typedef specifier can be used to
712  //   redefine the name of any type declared in that scope to refer
713  //   to the type to which it already refers.
714  if (getLangOptions().CPlusPlus) {
715    if (!isa<CXXRecordDecl>(CurContext))
716      return;
717    Diag(New->getLocation(), diag::err_redefinition)
718      << New->getDeclName();
719    Diag(Old->getLocation(), diag::note_previous_definition);
720    return New->setInvalidDecl();
721  }
722
723  // If we have a redefinition of a typedef in C, emit a warning.  This warning
724  // is normally mapped to an error, but can be controlled with
725  // -Wtypedef-redefinition.  If either the original or the redefinition is
726  // in a system header, don't emit this for compatibility with GCC.
727  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
728      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
729       Context.getSourceManager().isInSystemHeader(New->getLocation())))
730    return;
731
732  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
733    << New->getDeclName();
734  Diag(Old->getLocation(), diag::note_previous_definition);
735  return;
736}
737
738/// DeclhasAttr - returns true if decl Declaration already has the target
739/// attribute.
740static bool
741DeclHasAttr(const Decl *decl, const Attr *target) {
742  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
743    if (attr->getKind() == target->getKind())
744      return true;
745
746  return false;
747}
748
749/// MergeAttributes - append attributes from the Old decl to the New one.
750static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
751  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
752    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
753      Attr *NewAttr = attr->clone(C);
754      NewAttr->setInherited(true);
755      New->addAttr(NewAttr);
756    }
757  }
758}
759
760/// Used in MergeFunctionDecl to keep track of function parameters in
761/// C.
762struct GNUCompatibleParamWarning {
763  ParmVarDecl *OldParm;
764  ParmVarDecl *NewParm;
765  QualType PromotedType;
766};
767
768
769/// getSpecialMember - get the special member enum for a method.
770static Sema::CXXSpecialMember getSpecialMember(ASTContext &Ctx,
771                                               const CXXMethodDecl *MD) {
772  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
773    if (Ctor->isDefaultConstructor())
774      return Sema::CXXDefaultConstructor;
775    if (Ctor->isCopyConstructor(Ctx))
776      return Sema::CXXCopyConstructor;
777  }
778
779  if (isa<CXXDestructorDecl>(MD))
780    return Sema::CXXDestructor;
781
782  assert(MD->isCopyAssignment() && "Must have copy assignment operator");
783  return Sema::CXXCopyAssignment;
784}
785
786/// MergeFunctionDecl - We just parsed a function 'New' from
787/// declarator D which has the same name and scope as a previous
788/// declaration 'Old'.  Figure out how to resolve this situation,
789/// merging decls or emitting diagnostics as appropriate.
790///
791/// In C++, New and Old must be declarations that are not
792/// overloaded. Use IsOverload to determine whether New and Old are
793/// overloaded, and to select the Old declaration that New should be
794/// merged with.
795///
796/// Returns true if there was an error, false otherwise.
797bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
798  // Verify the old decl was also a function.
799  FunctionDecl *Old = 0;
800  if (FunctionTemplateDecl *OldFunctionTemplate
801        = dyn_cast<FunctionTemplateDecl>(OldD))
802    Old = OldFunctionTemplate->getTemplatedDecl();
803  else
804    Old = dyn_cast<FunctionDecl>(OldD);
805  if (!Old) {
806    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
807      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
808      Diag(Shadow->getTargetDecl()->getLocation(),
809           diag::note_using_decl_target);
810      Diag(Shadow->getUsingDecl()->getLocation(),
811           diag::note_using_decl) << 0;
812      return true;
813    }
814
815    Diag(New->getLocation(), diag::err_redefinition_different_kind)
816      << New->getDeclName();
817    Diag(OldD->getLocation(), diag::note_previous_definition);
818    return true;
819  }
820
821  // Determine whether the previous declaration was a definition,
822  // implicit declaration, or a declaration.
823  diag::kind PrevDiag;
824  if (Old->isThisDeclarationADefinition())
825    PrevDiag = diag::note_previous_definition;
826  else if (Old->isImplicit())
827    PrevDiag = diag::note_previous_implicit_declaration;
828  else
829    PrevDiag = diag::note_previous_declaration;
830
831  QualType OldQType = Context.getCanonicalType(Old->getType());
832  QualType NewQType = Context.getCanonicalType(New->getType());
833
834  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
835      New->getStorageClass() == FunctionDecl::Static &&
836      Old->getStorageClass() != FunctionDecl::Static) {
837    Diag(New->getLocation(), diag::err_static_non_static)
838      << New;
839    Diag(Old->getLocation(), PrevDiag);
840    return true;
841  }
842
843  if (getLangOptions().CPlusPlus) {
844    // (C++98 13.1p2):
845    //   Certain function declarations cannot be overloaded:
846    //     -- Function declarations that differ only in the return type
847    //        cannot be overloaded.
848    QualType OldReturnType
849      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
850    QualType NewReturnType
851      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
852    if (OldReturnType != NewReturnType) {
853      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
854      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
855      return true;
856    }
857
858    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
859    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
860    if (OldMethod && NewMethod) {
861      if (!NewMethod->getFriendObjectKind() &&
862          NewMethod->getLexicalDeclContext()->isRecord()) {
863        //    -- Member function declarations with the same name and the
864        //       same parameter types cannot be overloaded if any of them
865        //       is a static member function declaration.
866        if (OldMethod->isStatic() || NewMethod->isStatic()) {
867          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
868          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
869          return true;
870        }
871
872        // C++ [class.mem]p1:
873        //   [...] A member shall not be declared twice in the
874        //   member-specification, except that a nested class or member
875        //   class template can be declared and then later defined.
876        unsigned NewDiag;
877        if (isa<CXXConstructorDecl>(OldMethod))
878          NewDiag = diag::err_constructor_redeclared;
879        else if (isa<CXXDestructorDecl>(NewMethod))
880          NewDiag = diag::err_destructor_redeclared;
881        else if (isa<CXXConversionDecl>(NewMethod))
882          NewDiag = diag::err_conv_function_redeclared;
883        else
884          NewDiag = diag::err_member_redeclared;
885
886        Diag(New->getLocation(), NewDiag);
887        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
888      } else {
889        if (OldMethod->isImplicit()) {
890          Diag(NewMethod->getLocation(),
891               diag::err_definition_of_implicitly_declared_member)
892          << New << getSpecialMember(Context, OldMethod);
893
894          Diag(OldMethod->getLocation(),
895               diag::note_previous_implicit_declaration);
896          return true;
897        }
898      }
899    }
900
901    // (C++98 8.3.5p3):
902    //   All declarations for a function shall agree exactly in both the
903    //   return type and the parameter-type-list.
904    if (OldQType == NewQType)
905      return MergeCompatibleFunctionDecls(New, Old);
906
907    // Fall through for conflicting redeclarations and redefinitions.
908  }
909
910  // C: Function types need to be compatible, not identical. This handles
911  // duplicate function decls like "void f(int); void f(enum X);" properly.
912  if (!getLangOptions().CPlusPlus &&
913      Context.typesAreCompatible(OldQType, NewQType)) {
914    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
915    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
916    const FunctionProtoType *OldProto = 0;
917    if (isa<FunctionNoProtoType>(NewFuncType) &&
918        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
919      // The old declaration provided a function prototype, but the
920      // new declaration does not. Merge in the prototype.
921      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
922      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
923                                                 OldProto->arg_type_end());
924      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
925                                         ParamTypes.data(), ParamTypes.size(),
926                                         OldProto->isVariadic(),
927                                         OldProto->getTypeQuals());
928      New->setType(NewQType);
929      New->setHasInheritedPrototype();
930
931      // Synthesize a parameter for each argument type.
932      llvm::SmallVector<ParmVarDecl*, 16> Params;
933      for (FunctionProtoType::arg_type_iterator
934             ParamType = OldProto->arg_type_begin(),
935             ParamEnd = OldProto->arg_type_end();
936           ParamType != ParamEnd; ++ParamType) {
937        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
938                                                 SourceLocation(), 0,
939                                                 *ParamType, /*TInfo=*/0,
940                                                 VarDecl::None, 0);
941        Param->setImplicit();
942        Params.push_back(Param);
943      }
944
945      New->setParams(Context, Params.data(), Params.size());
946    }
947
948    return MergeCompatibleFunctionDecls(New, Old);
949  }
950
951  // GNU C permits a K&R definition to follow a prototype declaration
952  // if the declared types of the parameters in the K&R definition
953  // match the types in the prototype declaration, even when the
954  // promoted types of the parameters from the K&R definition differ
955  // from the types in the prototype. GCC then keeps the types from
956  // the prototype.
957  //
958  // If a variadic prototype is followed by a non-variadic K&R definition,
959  // the K&R definition becomes variadic.  This is sort of an edge case, but
960  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
961  // C99 6.9.1p8.
962  if (!getLangOptions().CPlusPlus &&
963      Old->hasPrototype() && !New->hasPrototype() &&
964      New->getType()->getAs<FunctionProtoType>() &&
965      Old->getNumParams() == New->getNumParams()) {
966    llvm::SmallVector<QualType, 16> ArgTypes;
967    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
968    const FunctionProtoType *OldProto
969      = Old->getType()->getAs<FunctionProtoType>();
970    const FunctionProtoType *NewProto
971      = New->getType()->getAs<FunctionProtoType>();
972
973    // Determine whether this is the GNU C extension.
974    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
975                                               NewProto->getResultType());
976    bool LooseCompatible = !MergedReturn.isNull();
977    for (unsigned Idx = 0, End = Old->getNumParams();
978         LooseCompatible && Idx != End; ++Idx) {
979      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
980      ParmVarDecl *NewParm = New->getParamDecl(Idx);
981      if (Context.typesAreCompatible(OldParm->getType(),
982                                     NewProto->getArgType(Idx))) {
983        ArgTypes.push_back(NewParm->getType());
984      } else if (Context.typesAreCompatible(OldParm->getType(),
985                                            NewParm->getType())) {
986        GNUCompatibleParamWarning Warn
987          = { OldParm, NewParm, NewProto->getArgType(Idx) };
988        Warnings.push_back(Warn);
989        ArgTypes.push_back(NewParm->getType());
990      } else
991        LooseCompatible = false;
992    }
993
994    if (LooseCompatible) {
995      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
996        Diag(Warnings[Warn].NewParm->getLocation(),
997             diag::ext_param_promoted_not_compatible_with_prototype)
998          << Warnings[Warn].PromotedType
999          << Warnings[Warn].OldParm->getType();
1000        Diag(Warnings[Warn].OldParm->getLocation(),
1001             diag::note_previous_declaration);
1002      }
1003
1004      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1005                                           ArgTypes.size(),
1006                                           OldProto->isVariadic(), 0));
1007      return MergeCompatibleFunctionDecls(New, Old);
1008    }
1009
1010    // Fall through to diagnose conflicting types.
1011  }
1012
1013  // A function that has already been declared has been redeclared or defined
1014  // with a different type- show appropriate diagnostic
1015  if (unsigned BuiltinID = Old->getBuiltinID()) {
1016    // The user has declared a builtin function with an incompatible
1017    // signature.
1018    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1019      // The function the user is redeclaring is a library-defined
1020      // function like 'malloc' or 'printf'. Warn about the
1021      // redeclaration, then pretend that we don't know about this
1022      // library built-in.
1023      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1024      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1025        << Old << Old->getType();
1026      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1027      Old->setInvalidDecl();
1028      return false;
1029    }
1030
1031    PrevDiag = diag::note_previous_builtin_declaration;
1032  }
1033
1034  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1035  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1036  return true;
1037}
1038
1039/// \brief Completes the merge of two function declarations that are
1040/// known to be compatible.
1041///
1042/// This routine handles the merging of attributes and other
1043/// properties of function declarations form the old declaration to
1044/// the new declaration, once we know that New is in fact a
1045/// redeclaration of Old.
1046///
1047/// \returns false
1048bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1049  // Merge the attributes
1050  MergeAttributes(New, Old, Context);
1051
1052  // Merge the storage class.
1053  if (Old->getStorageClass() != FunctionDecl::Extern &&
1054      Old->getStorageClass() != FunctionDecl::None)
1055    New->setStorageClass(Old->getStorageClass());
1056
1057  // Merge "pure" flag.
1058  if (Old->isPure())
1059    New->setPure();
1060
1061  // Merge the "deleted" flag.
1062  if (Old->isDeleted())
1063    New->setDeleted();
1064
1065  if (getLangOptions().CPlusPlus)
1066    return MergeCXXFunctionDecl(New, Old);
1067
1068  return false;
1069}
1070
1071/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1072/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1073/// situation, merging decls or emitting diagnostics as appropriate.
1074///
1075/// Tentative definition rules (C99 6.9.2p2) are checked by
1076/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1077/// definitions here, since the initializer hasn't been attached.
1078///
1079void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1080  // If the new decl is already invalid, don't do any other checking.
1081  if (New->isInvalidDecl())
1082    return;
1083
1084  // Verify the old decl was also a variable.
1085  VarDecl *Old = 0;
1086  if (!Previous.isSingleResult() ||
1087      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1088    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1089      << New->getDeclName();
1090    Diag(Previous.getRepresentativeDecl()->getLocation(),
1091         diag::note_previous_definition);
1092    return New->setInvalidDecl();
1093  }
1094
1095  MergeAttributes(New, Old, Context);
1096
1097  // Merge the types
1098  QualType MergedT;
1099  if (getLangOptions().CPlusPlus) {
1100    if (Context.hasSameType(New->getType(), Old->getType()))
1101      MergedT = New->getType();
1102    // C++ [basic.link]p10:
1103    //   [...] the types specified by all declarations referring to a given
1104    //   object or function shall be identical, except that declarations for an
1105    //   array object can specify array types that differ by the presence or
1106    //   absence of a major array bound (8.3.4).
1107    else if (Old->getType()->isIncompleteArrayType() &&
1108             New->getType()->isArrayType()) {
1109      CanQual<ArrayType> OldArray
1110        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1111      CanQual<ArrayType> NewArray
1112        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1113      if (OldArray->getElementType() == NewArray->getElementType())
1114        MergedT = New->getType();
1115    } else if (Old->getType()->isArrayType() &&
1116             New->getType()->isIncompleteArrayType()) {
1117      CanQual<ArrayType> OldArray
1118        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1119      CanQual<ArrayType> NewArray
1120        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1121      if (OldArray->getElementType() == NewArray->getElementType())
1122        MergedT = Old->getType();
1123    }
1124  } else {
1125    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1126  }
1127  if (MergedT.isNull()) {
1128    Diag(New->getLocation(), diag::err_redefinition_different_type)
1129      << New->getDeclName();
1130    Diag(Old->getLocation(), diag::note_previous_definition);
1131    return New->setInvalidDecl();
1132  }
1133  New->setType(MergedT);
1134
1135  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1136  if (New->getStorageClass() == VarDecl::Static &&
1137      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
1138    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1139    Diag(Old->getLocation(), diag::note_previous_definition);
1140    return New->setInvalidDecl();
1141  }
1142  // C99 6.2.2p4:
1143  //   For an identifier declared with the storage-class specifier
1144  //   extern in a scope in which a prior declaration of that
1145  //   identifier is visible,23) if the prior declaration specifies
1146  //   internal or external linkage, the linkage of the identifier at
1147  //   the later declaration is the same as the linkage specified at
1148  //   the prior declaration. If no prior declaration is visible, or
1149  //   if the prior declaration specifies no linkage, then the
1150  //   identifier has external linkage.
1151  if (New->hasExternalStorage() && Old->hasLinkage())
1152    /* Okay */;
1153  else if (New->getStorageClass() != VarDecl::Static &&
1154           Old->getStorageClass() == VarDecl::Static) {
1155    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1156    Diag(Old->getLocation(), diag::note_previous_definition);
1157    return New->setInvalidDecl();
1158  }
1159
1160  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1161
1162  // FIXME: The test for external storage here seems wrong? We still
1163  // need to check for mismatches.
1164  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1165      // Don't complain about out-of-line definitions of static members.
1166      !(Old->getLexicalDeclContext()->isRecord() &&
1167        !New->getLexicalDeclContext()->isRecord())) {
1168    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1169    Diag(Old->getLocation(), diag::note_previous_definition);
1170    return New->setInvalidDecl();
1171  }
1172
1173  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1174    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1175    Diag(Old->getLocation(), diag::note_previous_definition);
1176  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1177    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1178    Diag(Old->getLocation(), diag::note_previous_definition);
1179  }
1180
1181  // Keep a chain of previous declarations.
1182  New->setPreviousDeclaration(Old);
1183}
1184
1185/// CheckFallThrough - Check that we don't fall off the end of a
1186/// Statement that should return a value.
1187///
1188/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
1189/// MaybeFallThrough iff we might or might not fall off the end,
1190/// NeverFallThroughOrReturn iff we never fall off the end of the statement or
1191/// return.  We assume NeverFallThrough iff we never fall off the end of the
1192/// statement but we may return.  We assume that functions not marked noreturn
1193/// will return.
1194Sema::ControlFlowKind Sema::CheckFallThrough(Stmt *Root) {
1195  // FIXME: Eventually share this CFG object when we have other warnings based
1196  // of the CFG.  This can be done using AnalysisContext.
1197  llvm::OwningPtr<CFG> cfg (CFG::buildCFG(Root, &Context));
1198
1199  // FIXME: They should never return 0, fix that, delete this code.
1200  if (cfg == 0)
1201    // FIXME: This should be NeverFallThrough
1202    return NeverFallThroughOrReturn;
1203  // The CFG leaves in dead things, and we don't want to dead code paths to
1204  // confuse us, so we mark all live things first.
1205  std::queue<CFGBlock*> workq;
1206  llvm::BitVector live(cfg->getNumBlockIDs());
1207  // Prep work queue
1208  workq.push(&cfg->getEntry());
1209  // Solve
1210  while (!workq.empty()) {
1211    CFGBlock *item = workq.front();
1212    workq.pop();
1213    live.set(item->getBlockID());
1214    for (CFGBlock::succ_iterator I=item->succ_begin(),
1215           E=item->succ_end();
1216         I != E;
1217         ++I) {
1218      if ((*I) && !live[(*I)->getBlockID()]) {
1219        live.set((*I)->getBlockID());
1220        workq.push(*I);
1221      }
1222    }
1223  }
1224
1225  // Now we know what is live, we check the live precessors of the exit block
1226  // and look for fall through paths, being careful to ignore normal returns,
1227  // and exceptional paths.
1228  bool HasLiveReturn = false;
1229  bool HasFakeEdge = false;
1230  bool HasPlainEdge = false;
1231  for (CFGBlock::pred_iterator I=cfg->getExit().pred_begin(),
1232         E = cfg->getExit().pred_end();
1233       I != E;
1234       ++I) {
1235    CFGBlock& B = **I;
1236    if (!live[B.getBlockID()])
1237      continue;
1238    if (B.size() == 0) {
1239      // A labeled empty statement, or the entry block...
1240      HasPlainEdge = true;
1241      continue;
1242    }
1243    Stmt *S = B[B.size()-1];
1244    if (isa<ReturnStmt>(S)) {
1245      HasLiveReturn = true;
1246      continue;
1247    }
1248    if (isa<ObjCAtThrowStmt>(S)) {
1249      HasFakeEdge = true;
1250      continue;
1251    }
1252    if (isa<CXXThrowExpr>(S)) {
1253      HasFakeEdge = true;
1254      continue;
1255    }
1256    bool NoReturnEdge = false;
1257    if (CallExpr *C = dyn_cast<CallExpr>(S)) {
1258      Expr *CEE = C->getCallee()->IgnoreParenCasts();
1259      if (CEE->getType().getNoReturnAttr()) {
1260        NoReturnEdge = true;
1261        HasFakeEdge = true;
1262      } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) {
1263        ValueDecl *VD = DRE->getDecl();
1264        if (VD->hasAttr<NoReturnAttr>()) {
1265          NoReturnEdge = true;
1266          HasFakeEdge = true;
1267        }
1268      }
1269    }
1270    // FIXME: Add noreturn message sends.
1271    if (NoReturnEdge == false)
1272      HasPlainEdge = true;
1273  }
1274  if (!HasPlainEdge) {
1275    if (HasLiveReturn)
1276      return NeverFallThrough;
1277    return NeverFallThroughOrReturn;
1278  }
1279  if (HasFakeEdge || HasLiveReturn)
1280    return MaybeFallThrough;
1281  // This says AlwaysFallThrough for calls to functions that are not marked
1282  // noreturn, that don't return.  If people would like this warning to be more
1283  // accurate, such functions should be marked as noreturn.
1284  return AlwaysFallThrough;
1285}
1286
1287/// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
1288/// function that should return a value.  Check that we don't fall off the end
1289/// of a noreturn function.  We assume that functions and blocks not marked
1290/// noreturn will return.
1291void Sema::CheckFallThroughForFunctionDef(Decl *D, Stmt *Body) {
1292  // FIXME: Would be nice if we had a better way to control cascading errors,
1293  // but for now, avoid them.  The problem is that when Parse sees:
1294  //   int foo() { return a; }
1295  // The return is eaten and the Sema code sees just:
1296  //   int foo() { }
1297  // which this code would then warn about.
1298  if (getDiagnostics().hasErrorOccurred())
1299    return;
1300
1301  bool ReturnsVoid = false;
1302  bool HasNoReturn = false;
1303  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1304    // If the result type of the function is a dependent type, we don't know
1305    // whether it will be void or not, so don't
1306    if (FD->getResultType()->isDependentType())
1307      return;
1308    if (FD->getResultType()->isVoidType())
1309      ReturnsVoid = true;
1310    if (FD->hasAttr<NoReturnAttr>())
1311      HasNoReturn = true;
1312  } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
1313    if (MD->getResultType()->isVoidType())
1314      ReturnsVoid = true;
1315    if (MD->hasAttr<NoReturnAttr>())
1316      HasNoReturn = true;
1317  }
1318
1319  // Short circuit for compilation speed.
1320  if ((Diags.getDiagnosticLevel(diag::warn_maybe_falloff_nonvoid_function)
1321       == Diagnostic::Ignored || ReturnsVoid)
1322      && (Diags.getDiagnosticLevel(diag::warn_noreturn_function_has_return_expr)
1323          == Diagnostic::Ignored || !HasNoReturn)
1324      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1325          == Diagnostic::Ignored || !ReturnsVoid))
1326    return;
1327  // FIXME: Function try block
1328  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1329    switch (CheckFallThrough(Body)) {
1330    case MaybeFallThrough:
1331      if (HasNoReturn)
1332        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1333      else if (!ReturnsVoid)
1334        Diag(Compound->getRBracLoc(),diag::warn_maybe_falloff_nonvoid_function);
1335      break;
1336    case AlwaysFallThrough:
1337      if (HasNoReturn)
1338        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1339      else if (!ReturnsVoid)
1340        Diag(Compound->getRBracLoc(), diag::warn_falloff_nonvoid_function);
1341      break;
1342    case NeverFallThroughOrReturn:
1343      if (ReturnsVoid && !HasNoReturn)
1344        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_function);
1345      break;
1346    case NeverFallThrough:
1347      break;
1348    }
1349  }
1350}
1351
1352/// CheckFallThroughForBlock - Check that we don't fall off the end of a block
1353/// that should return a value.  Check that we don't fall off the end of a
1354/// noreturn block.  We assume that functions and blocks not marked noreturn
1355/// will return.
1356void Sema::CheckFallThroughForBlock(QualType BlockTy, Stmt *Body) {
1357  // FIXME: Would be nice if we had a better way to control cascading errors,
1358  // but for now, avoid them.  The problem is that when Parse sees:
1359  //   int foo() { return a; }
1360  // The return is eaten and the Sema code sees just:
1361  //   int foo() { }
1362  // which this code would then warn about.
1363  if (getDiagnostics().hasErrorOccurred())
1364    return;
1365  bool ReturnsVoid = false;
1366  bool HasNoReturn = false;
1367  if (const FunctionType *FT =BlockTy->getPointeeType()->getAs<FunctionType>()){
1368    if (FT->getResultType()->isVoidType())
1369      ReturnsVoid = true;
1370    if (FT->getNoReturnAttr())
1371      HasNoReturn = true;
1372  }
1373
1374  // Short circuit for compilation speed.
1375  if (ReturnsVoid
1376      && !HasNoReturn
1377      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1378          == Diagnostic::Ignored || !ReturnsVoid))
1379    return;
1380  // FIXME: Funtion try block
1381  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1382    switch (CheckFallThrough(Body)) {
1383    case MaybeFallThrough:
1384      if (HasNoReturn)
1385        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1386      else if (!ReturnsVoid)
1387        Diag(Compound->getRBracLoc(), diag::err_maybe_falloff_nonvoid_block);
1388      break;
1389    case AlwaysFallThrough:
1390      if (HasNoReturn)
1391        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1392      else if (!ReturnsVoid)
1393        Diag(Compound->getRBracLoc(), diag::err_falloff_nonvoid_block);
1394      break;
1395    case NeverFallThroughOrReturn:
1396      if (ReturnsVoid)
1397        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_block);
1398      break;
1399    case NeverFallThrough:
1400      break;
1401    }
1402  }
1403}
1404
1405/// CheckParmsForFunctionDef - Check that the parameters of the given
1406/// function are appropriate for the definition of a function. This
1407/// takes care of any checks that cannot be performed on the
1408/// declaration itself, e.g., that the types of each of the function
1409/// parameters are complete.
1410bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
1411  bool HasInvalidParm = false;
1412  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1413    ParmVarDecl *Param = FD->getParamDecl(p);
1414
1415    // C99 6.7.5.3p4: the parameters in a parameter type list in a
1416    // function declarator that is part of a function definition of
1417    // that function shall not have incomplete type.
1418    //
1419    // This is also C++ [dcl.fct]p6.
1420    if (!Param->isInvalidDecl() &&
1421        RequireCompleteType(Param->getLocation(), Param->getType(),
1422                               diag::err_typecheck_decl_incomplete_type)) {
1423      Param->setInvalidDecl();
1424      HasInvalidParm = true;
1425    }
1426
1427    // C99 6.9.1p5: If the declarator includes a parameter type list, the
1428    // declaration of each parameter shall include an identifier.
1429    if (Param->getIdentifier() == 0 &&
1430        !Param->isImplicit() &&
1431        !getLangOptions().CPlusPlus)
1432      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
1433  }
1434
1435  return HasInvalidParm;
1436}
1437
1438/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1439/// no declarator (e.g. "struct foo;") is parsed.
1440Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1441  // FIXME: Error on auto/register at file scope
1442  // FIXME: Error on inline/virtual/explicit
1443  // FIXME: Warn on useless __thread
1444  // FIXME: Warn on useless const/volatile
1445  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1446  // FIXME: Warn on useless attributes
1447  Decl *TagD = 0;
1448  TagDecl *Tag = 0;
1449  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1450      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1451      DS.getTypeSpecType() == DeclSpec::TST_union ||
1452      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1453    TagD = static_cast<Decl *>(DS.getTypeRep());
1454
1455    if (!TagD) // We probably had an error
1456      return DeclPtrTy();
1457
1458    // Note that the above type specs guarantee that the
1459    // type rep is a Decl, whereas in many of the others
1460    // it's a Type.
1461    Tag = dyn_cast<TagDecl>(TagD);
1462  }
1463
1464  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1465    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1466    // or incomplete types shall not be restrict-qualified."
1467    if (TypeQuals & DeclSpec::TQ_restrict)
1468      Diag(DS.getRestrictSpecLoc(),
1469           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1470           << DS.getSourceRange();
1471  }
1472
1473  if (DS.isFriendSpecified()) {
1474    // If we're dealing with a class template decl, assume that the
1475    // template routines are handling it.
1476    if (TagD && isa<ClassTemplateDecl>(TagD))
1477      return DeclPtrTy();
1478    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1479  }
1480
1481  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1482    // If there are attributes in the DeclSpec, apply them to the record.
1483    if (const AttributeList *AL = DS.getAttributes())
1484      ProcessDeclAttributeList(S, Record, AL);
1485
1486    if (!Record->getDeclName() && Record->isDefinition() &&
1487        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1488      if (getLangOptions().CPlusPlus ||
1489          Record->getDeclContext()->isRecord())
1490        return BuildAnonymousStructOrUnion(S, DS, Record);
1491
1492      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1493        << DS.getSourceRange();
1494    }
1495
1496    // Microsoft allows unnamed struct/union fields. Don't complain
1497    // about them.
1498    // FIXME: Should we support Microsoft's extensions in this area?
1499    if (Record->getDeclName() && getLangOptions().Microsoft)
1500      return DeclPtrTy::make(Tag);
1501  }
1502
1503  if (!DS.isMissingDeclaratorOk() &&
1504      DS.getTypeSpecType() != DeclSpec::TST_error) {
1505    // Warn about typedefs of enums without names, since this is an
1506    // extension in both Microsoft an GNU.
1507    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1508        Tag && isa<EnumDecl>(Tag)) {
1509      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1510        << DS.getSourceRange();
1511      return DeclPtrTy::make(Tag);
1512    }
1513
1514    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1515      << DS.getSourceRange();
1516    return DeclPtrTy();
1517  }
1518
1519  return DeclPtrTy::make(Tag);
1520}
1521
1522/// We are trying to inject an anonymous member into the given scope;
1523/// check if there's an existing declaration that can't be overloaded.
1524///
1525/// \return true if this is a forbidden redeclaration
1526static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1527                                         Scope *S,
1528                                         DeclarationName Name,
1529                                         SourceLocation NameLoc,
1530                                         unsigned diagnostic) {
1531  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1532                 Sema::ForRedeclaration);
1533  if (!SemaRef.LookupName(R, S)) return false;
1534
1535  if (R.getAsSingle<TagDecl>())
1536    return false;
1537
1538  // Pick a representative declaration.
1539  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1540
1541  SemaRef.Diag(NameLoc, diagnostic) << Name;
1542  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1543
1544  return true;
1545}
1546
1547/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1548/// anonymous struct or union AnonRecord into the owning context Owner
1549/// and scope S. This routine will be invoked just after we realize
1550/// that an unnamed union or struct is actually an anonymous union or
1551/// struct, e.g.,
1552///
1553/// @code
1554/// union {
1555///   int i;
1556///   float f;
1557/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1558///    // f into the surrounding scope.x
1559/// @endcode
1560///
1561/// This routine is recursive, injecting the names of nested anonymous
1562/// structs/unions into the owning context and scope as well.
1563bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1564                                               RecordDecl *AnonRecord) {
1565  unsigned diagKind
1566    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1567                            : diag::err_anonymous_struct_member_redecl;
1568
1569  bool Invalid = false;
1570  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1571                               FEnd = AnonRecord->field_end();
1572       F != FEnd; ++F) {
1573    if ((*F)->getDeclName()) {
1574      if (CheckAnonMemberRedeclaration(*this, S, (*F)->getDeclName(),
1575                                       (*F)->getLocation(), diagKind)) {
1576        // C++ [class.union]p2:
1577        //   The names of the members of an anonymous union shall be
1578        //   distinct from the names of any other entity in the
1579        //   scope in which the anonymous union is declared.
1580        Invalid = true;
1581      } else {
1582        // C++ [class.union]p2:
1583        //   For the purpose of name lookup, after the anonymous union
1584        //   definition, the members of the anonymous union are
1585        //   considered to have been defined in the scope in which the
1586        //   anonymous union is declared.
1587        Owner->makeDeclVisibleInContext(*F);
1588        S->AddDecl(DeclPtrTy::make(*F));
1589        IdResolver.AddDecl(*F);
1590      }
1591    } else if (const RecordType *InnerRecordType
1592                 = (*F)->getType()->getAs<RecordType>()) {
1593      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1594      if (InnerRecord->isAnonymousStructOrUnion())
1595        Invalid = Invalid ||
1596          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1597    }
1598  }
1599
1600  return Invalid;
1601}
1602
1603/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1604/// anonymous structure or union. Anonymous unions are a C++ feature
1605/// (C++ [class.union]) and a GNU C extension; anonymous structures
1606/// are a GNU C and GNU C++ extension.
1607Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1608                                                  RecordDecl *Record) {
1609  DeclContext *Owner = Record->getDeclContext();
1610
1611  // Diagnose whether this anonymous struct/union is an extension.
1612  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1613    Diag(Record->getLocation(), diag::ext_anonymous_union);
1614  else if (!Record->isUnion())
1615    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1616
1617  // C and C++ require different kinds of checks for anonymous
1618  // structs/unions.
1619  bool Invalid = false;
1620  if (getLangOptions().CPlusPlus) {
1621    const char* PrevSpec = 0;
1622    unsigned DiagID;
1623    // C++ [class.union]p3:
1624    //   Anonymous unions declared in a named namespace or in the
1625    //   global namespace shall be declared static.
1626    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1627        (isa<TranslationUnitDecl>(Owner) ||
1628         (isa<NamespaceDecl>(Owner) &&
1629          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1630      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1631      Invalid = true;
1632
1633      // Recover by adding 'static'.
1634      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1635                             PrevSpec, DiagID);
1636    }
1637    // C++ [class.union]p3:
1638    //   A storage class is not allowed in a declaration of an
1639    //   anonymous union in a class scope.
1640    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1641             isa<RecordDecl>(Owner)) {
1642      Diag(DS.getStorageClassSpecLoc(),
1643           diag::err_anonymous_union_with_storage_spec);
1644      Invalid = true;
1645
1646      // Recover by removing the storage specifier.
1647      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1648                             PrevSpec, DiagID);
1649    }
1650
1651    // C++ [class.union]p2:
1652    //   The member-specification of an anonymous union shall only
1653    //   define non-static data members. [Note: nested types and
1654    //   functions cannot be declared within an anonymous union. ]
1655    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1656                                 MemEnd = Record->decls_end();
1657         Mem != MemEnd; ++Mem) {
1658      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1659        // C++ [class.union]p3:
1660        //   An anonymous union shall not have private or protected
1661        //   members (clause 11).
1662        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1663          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1664            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1665          Invalid = true;
1666        }
1667      } else if ((*Mem)->isImplicit()) {
1668        // Any implicit members are fine.
1669      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1670        // This is a type that showed up in an
1671        // elaborated-type-specifier inside the anonymous struct or
1672        // union, but which actually declares a type outside of the
1673        // anonymous struct or union. It's okay.
1674      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1675        if (!MemRecord->isAnonymousStructOrUnion() &&
1676            MemRecord->getDeclName()) {
1677          // This is a nested type declaration.
1678          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1679            << (int)Record->isUnion();
1680          Invalid = true;
1681        }
1682      } else {
1683        // We have something that isn't a non-static data
1684        // member. Complain about it.
1685        unsigned DK = diag::err_anonymous_record_bad_member;
1686        if (isa<TypeDecl>(*Mem))
1687          DK = diag::err_anonymous_record_with_type;
1688        else if (isa<FunctionDecl>(*Mem))
1689          DK = diag::err_anonymous_record_with_function;
1690        else if (isa<VarDecl>(*Mem))
1691          DK = diag::err_anonymous_record_with_static;
1692        Diag((*Mem)->getLocation(), DK)
1693            << (int)Record->isUnion();
1694          Invalid = true;
1695      }
1696    }
1697  }
1698
1699  if (!Record->isUnion() && !Owner->isRecord()) {
1700    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1701      << (int)getLangOptions().CPlusPlus;
1702    Invalid = true;
1703  }
1704
1705  // Mock up a declarator.
1706  Declarator Dc(DS, Declarator::TypeNameContext);
1707  TypeSourceInfo *TInfo = 0;
1708  GetTypeForDeclarator(Dc, S, &TInfo);
1709  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
1710
1711  // Create a declaration for this anonymous struct/union.
1712  NamedDecl *Anon = 0;
1713  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1714    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1715                             /*IdentifierInfo=*/0,
1716                             Context.getTypeDeclType(Record),
1717                             TInfo,
1718                             /*BitWidth=*/0, /*Mutable=*/false);
1719    Anon->setAccess(AS_public);
1720    if (getLangOptions().CPlusPlus)
1721      FieldCollector->Add(cast<FieldDecl>(Anon));
1722  } else {
1723    VarDecl::StorageClass SC;
1724    switch (DS.getStorageClassSpec()) {
1725    default: assert(0 && "Unknown storage class!");
1726    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1727    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1728    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1729    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1730    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1731    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1732    case DeclSpec::SCS_mutable:
1733      // mutable can only appear on non-static class members, so it's always
1734      // an error here
1735      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1736      Invalid = true;
1737      SC = VarDecl::None;
1738      break;
1739    }
1740
1741    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1742                           /*IdentifierInfo=*/0,
1743                           Context.getTypeDeclType(Record),
1744                           TInfo,
1745                           SC);
1746  }
1747  Anon->setImplicit();
1748
1749  // Add the anonymous struct/union object to the current
1750  // context. We'll be referencing this object when we refer to one of
1751  // its members.
1752  Owner->addDecl(Anon);
1753
1754  // Inject the members of the anonymous struct/union into the owning
1755  // context and into the identifier resolver chain for name lookup
1756  // purposes.
1757  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1758    Invalid = true;
1759
1760  // Mark this as an anonymous struct/union type. Note that we do not
1761  // do this until after we have already checked and injected the
1762  // members of this anonymous struct/union type, because otherwise
1763  // the members could be injected twice: once by DeclContext when it
1764  // builds its lookup table, and once by
1765  // InjectAnonymousStructOrUnionMembers.
1766  Record->setAnonymousStructOrUnion(true);
1767
1768  if (Invalid)
1769    Anon->setInvalidDecl();
1770
1771  return DeclPtrTy::make(Anon);
1772}
1773
1774
1775/// GetNameForDeclarator - Determine the full declaration name for the
1776/// given Declarator.
1777DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1778  return GetNameFromUnqualifiedId(D.getName());
1779}
1780
1781/// \brief Retrieves the canonicalized name from a parsed unqualified-id.
1782DeclarationName Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
1783  switch (Name.getKind()) {
1784    case UnqualifiedId::IK_Identifier:
1785      return DeclarationName(Name.Identifier);
1786
1787    case UnqualifiedId::IK_OperatorFunctionId:
1788      return Context.DeclarationNames.getCXXOperatorName(
1789                                              Name.OperatorFunctionId.Operator);
1790
1791    case UnqualifiedId::IK_LiteralOperatorId:
1792      return Context.DeclarationNames.getCXXLiteralOperatorName(
1793                                                               Name.Identifier);
1794
1795    case UnqualifiedId::IK_ConversionFunctionId: {
1796      QualType Ty = GetTypeFromParser(Name.ConversionFunctionId);
1797      if (Ty.isNull())
1798        return DeclarationName();
1799
1800      return Context.DeclarationNames.getCXXConversionFunctionName(
1801                                                  Context.getCanonicalType(Ty));
1802    }
1803
1804    case UnqualifiedId::IK_ConstructorName: {
1805      QualType Ty = GetTypeFromParser(Name.ConstructorName);
1806      if (Ty.isNull())
1807        return DeclarationName();
1808
1809      return Context.DeclarationNames.getCXXConstructorName(
1810                                                  Context.getCanonicalType(Ty));
1811    }
1812
1813    case UnqualifiedId::IK_DestructorName: {
1814      QualType Ty = GetTypeFromParser(Name.DestructorName);
1815      if (Ty.isNull())
1816        return DeclarationName();
1817
1818      return Context.DeclarationNames.getCXXDestructorName(
1819                                                           Context.getCanonicalType(Ty));
1820    }
1821
1822    case UnqualifiedId::IK_TemplateId: {
1823      TemplateName TName
1824        = TemplateName::getFromVoidPointer(Name.TemplateId->Template);
1825      return Context.getNameForTemplate(TName);
1826    }
1827  }
1828
1829  assert(false && "Unknown name kind");
1830  return DeclarationName();
1831}
1832
1833/// isNearlyMatchingFunction - Determine whether the C++ functions
1834/// Declaration and Definition are "nearly" matching. This heuristic
1835/// is used to improve diagnostics in the case where an out-of-line
1836/// function definition doesn't match any declaration within
1837/// the class or namespace.
1838static bool isNearlyMatchingFunction(ASTContext &Context,
1839                                     FunctionDecl *Declaration,
1840                                     FunctionDecl *Definition) {
1841  if (Declaration->param_size() != Definition->param_size())
1842    return false;
1843  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1844    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1845    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1846
1847    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
1848                                        DefParamTy.getNonReferenceType()))
1849      return false;
1850  }
1851
1852  return true;
1853}
1854
1855Sema::DeclPtrTy
1856Sema::HandleDeclarator(Scope *S, Declarator &D,
1857                       MultiTemplateParamsArg TemplateParamLists,
1858                       bool IsFunctionDefinition) {
1859  DeclarationName Name = GetNameForDeclarator(D);
1860
1861  // All of these full declarators require an identifier.  If it doesn't have
1862  // one, the ParsedFreeStandingDeclSpec action should be used.
1863  if (!Name) {
1864    if (!D.isInvalidType())  // Reject this if we think it is valid.
1865      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1866           diag::err_declarator_need_ident)
1867        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1868    return DeclPtrTy();
1869  }
1870
1871  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1872  // we find one that is.
1873  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1874         (S->getFlags() & Scope::TemplateParamScope) != 0)
1875    S = S->getParent();
1876
1877  // If this is an out-of-line definition of a member of a class template
1878  // or class template partial specialization, we may need to rebuild the
1879  // type specifier in the declarator. See RebuildTypeInCurrentInstantiation()
1880  // for more information.
1881  // FIXME: cope with decltype(expr) and typeof(expr) once the rebuilder can
1882  // handle expressions properly.
1883  DeclSpec &DS = const_cast<DeclSpec&>(D.getDeclSpec());
1884  if (D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid() &&
1885      isDependentScopeSpecifier(D.getCXXScopeSpec()) &&
1886      (DS.getTypeSpecType() == DeclSpec::TST_typename ||
1887       DS.getTypeSpecType() == DeclSpec::TST_typeofType ||
1888       DS.getTypeSpecType() == DeclSpec::TST_typeofExpr ||
1889       DS.getTypeSpecType() == DeclSpec::TST_decltype)) {
1890    if (DeclContext *DC = computeDeclContext(D.getCXXScopeSpec(), true)) {
1891      // FIXME: Preserve type source info.
1892      QualType T = GetTypeFromParser(DS.getTypeRep());
1893
1894      DeclContext *SavedContext = CurContext;
1895      CurContext = DC;
1896      T = RebuildTypeInCurrentInstantiation(T, D.getIdentifierLoc(), Name);
1897      CurContext = SavedContext;
1898
1899      if (T.isNull())
1900        return DeclPtrTy();
1901      DS.UpdateTypeRep(T.getAsOpaquePtr());
1902    }
1903  }
1904
1905  DeclContext *DC;
1906  NamedDecl *New;
1907
1908  TypeSourceInfo *TInfo = 0;
1909  QualType R = GetTypeForDeclarator(D, S, &TInfo);
1910
1911  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
1912                        ForRedeclaration);
1913
1914  // See if this is a redefinition of a variable in the same scope.
1915  if (D.getCXXScopeSpec().isInvalid()) {
1916    DC = CurContext;
1917    D.setInvalidType();
1918  } else if (!D.getCXXScopeSpec().isSet()) {
1919    bool IsLinkageLookup = false;
1920
1921    // If the declaration we're planning to build will be a function
1922    // or object with linkage, then look for another declaration with
1923    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1924    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1925      /* Do nothing*/;
1926    else if (R->isFunctionType()) {
1927      if (CurContext->isFunctionOrMethod() ||
1928          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1929        IsLinkageLookup = true;
1930    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1931      IsLinkageLookup = true;
1932    else if (CurContext->getLookupContext()->isTranslationUnit() &&
1933             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1934      IsLinkageLookup = true;
1935
1936    if (IsLinkageLookup)
1937      Previous.clear(LookupRedeclarationWithLinkage);
1938
1939    DC = CurContext;
1940    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
1941  } else { // Something like "int foo::x;"
1942    DC = computeDeclContext(D.getCXXScopeSpec(), true);
1943
1944    if (!DC) {
1945      // If we could not compute the declaration context, it's because the
1946      // declaration context is dependent but does not refer to a class,
1947      // class template, or class template partial specialization. Complain
1948      // and return early, to avoid the coming semantic disaster.
1949      Diag(D.getIdentifierLoc(),
1950           diag::err_template_qualified_declarator_no_match)
1951        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
1952        << D.getCXXScopeSpec().getRange();
1953      return DeclPtrTy();
1954    }
1955
1956    if (!DC->isDependentContext() &&
1957        RequireCompleteDeclContext(D.getCXXScopeSpec()))
1958      return DeclPtrTy();
1959
1960    LookupQualifiedName(Previous, DC);
1961
1962    // Don't consider using declarations as previous declarations for
1963    // out-of-line members.
1964    RemoveUsingDecls(Previous);
1965
1966    // C++ 7.3.1.2p2:
1967    // Members (including explicit specializations of templates) of a named
1968    // namespace can also be defined outside that namespace by explicit
1969    // qualification of the name being defined, provided that the entity being
1970    // defined was already declared in the namespace and the definition appears
1971    // after the point of declaration in a namespace that encloses the
1972    // declarations namespace.
1973    //
1974    // Note that we only check the context at this point. We don't yet
1975    // have enough information to make sure that PrevDecl is actually
1976    // the declaration we want to match. For example, given:
1977    //
1978    //   class X {
1979    //     void f();
1980    //     void f(float);
1981    //   };
1982    //
1983    //   void X::f(int) { } // ill-formed
1984    //
1985    // In this case, PrevDecl will point to the overload set
1986    // containing the two f's declared in X, but neither of them
1987    // matches.
1988
1989    // First check whether we named the global scope.
1990    if (isa<TranslationUnitDecl>(DC)) {
1991      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1992        << Name << D.getCXXScopeSpec().getRange();
1993    } else {
1994      DeclContext *Cur = CurContext;
1995      while (isa<LinkageSpecDecl>(Cur))
1996        Cur = Cur->getParent();
1997      if (!Cur->Encloses(DC)) {
1998        // The qualifying scope doesn't enclose the original declaration.
1999        // Emit diagnostic based on current scope.
2000        SourceLocation L = D.getIdentifierLoc();
2001        SourceRange R = D.getCXXScopeSpec().getRange();
2002        if (isa<FunctionDecl>(Cur))
2003          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
2004        else
2005          Diag(L, diag::err_invalid_declarator_scope)
2006            << Name << cast<NamedDecl>(DC) << R;
2007        D.setInvalidType();
2008      }
2009    }
2010  }
2011
2012  if (Previous.isSingleResult() &&
2013      Previous.getFoundDecl()->isTemplateParameter()) {
2014    // Maybe we will complain about the shadowed template parameter.
2015    if (!D.isInvalidType())
2016      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
2017                                          Previous.getFoundDecl()))
2018        D.setInvalidType();
2019
2020    // Just pretend that we didn't see the previous declaration.
2021    Previous.clear();
2022  }
2023
2024  // In C++, the previous declaration we find might be a tag type
2025  // (class or enum). In this case, the new declaration will hide the
2026  // tag type. Note that this does does not apply if we're declaring a
2027  // typedef (C++ [dcl.typedef]p4).
2028  if (Previous.isSingleTagDecl() &&
2029      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2030    Previous.clear();
2031
2032  bool Redeclaration = false;
2033  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2034    if (TemplateParamLists.size()) {
2035      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2036      return DeclPtrTy();
2037    }
2038
2039    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2040  } else if (R->isFunctionType()) {
2041    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2042                                  move(TemplateParamLists),
2043                                  IsFunctionDefinition, Redeclaration);
2044  } else {
2045    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2046                                  move(TemplateParamLists),
2047                                  Redeclaration);
2048  }
2049
2050  if (New == 0)
2051    return DeclPtrTy();
2052
2053  // If this has an identifier and is not an invalid redeclaration or
2054  // function template specialization, add it to the scope stack.
2055  if (Name && !(Redeclaration && New->isInvalidDecl()))
2056    PushOnScopeChains(New, S);
2057
2058  return DeclPtrTy::make(New);
2059}
2060
2061/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2062/// types into constant array types in certain situations which would otherwise
2063/// be errors (for GCC compatibility).
2064static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2065                                                    ASTContext &Context,
2066                                                    bool &SizeIsNegative) {
2067  // This method tries to turn a variable array into a constant
2068  // array even when the size isn't an ICE.  This is necessary
2069  // for compatibility with code that depends on gcc's buggy
2070  // constant expression folding, like struct {char x[(int)(char*)2];}
2071  SizeIsNegative = false;
2072
2073  QualifierCollector Qs;
2074  const Type *Ty = Qs.strip(T);
2075
2076  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2077    QualType Pointee = PTy->getPointeeType();
2078    QualType FixedType =
2079        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
2080    if (FixedType.isNull()) return FixedType;
2081    FixedType = Context.getPointerType(FixedType);
2082    return Qs.apply(FixedType);
2083  }
2084
2085  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2086  if (!VLATy)
2087    return QualType();
2088  // FIXME: We should probably handle this case
2089  if (VLATy->getElementType()->isVariablyModifiedType())
2090    return QualType();
2091
2092  Expr::EvalResult EvalResult;
2093  if (!VLATy->getSizeExpr() ||
2094      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2095      !EvalResult.Val.isInt())
2096    return QualType();
2097
2098  llvm::APSInt &Res = EvalResult.Val.getInt();
2099  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
2100    // TODO: preserve the size expression in declarator info
2101    return Context.getConstantArrayType(VLATy->getElementType(),
2102                                        Res, ArrayType::Normal, 0);
2103  }
2104
2105  SizeIsNegative = true;
2106  return QualType();
2107}
2108
2109/// \brief Register the given locally-scoped external C declaration so
2110/// that it can be found later for redeclarations
2111void
2112Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2113                                       const LookupResult &Previous,
2114                                       Scope *S) {
2115  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2116         "Decl is not a locally-scoped decl!");
2117  // Note that we have a locally-scoped external with this name.
2118  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2119
2120  if (!Previous.isSingleResult())
2121    return;
2122
2123  NamedDecl *PrevDecl = Previous.getFoundDecl();
2124
2125  // If there was a previous declaration of this variable, it may be
2126  // in our identifier chain. Update the identifier chain with the new
2127  // declaration.
2128  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2129    // The previous declaration was found on the identifer resolver
2130    // chain, so remove it from its scope.
2131    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
2132      S = S->getParent();
2133
2134    if (S)
2135      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
2136  }
2137}
2138
2139/// \brief Diagnose function specifiers on a declaration of an identifier that
2140/// does not identify a function.
2141void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2142  // FIXME: We should probably indicate the identifier in question to avoid
2143  // confusion for constructs like "inline int a(), b;"
2144  if (D.getDeclSpec().isInlineSpecified())
2145    Diag(D.getDeclSpec().getInlineSpecLoc(),
2146         diag::err_inline_non_function);
2147
2148  if (D.getDeclSpec().isVirtualSpecified())
2149    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2150         diag::err_virtual_non_function);
2151
2152  if (D.getDeclSpec().isExplicitSpecified())
2153    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2154         diag::err_explicit_non_function);
2155}
2156
2157NamedDecl*
2158Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2159                             QualType R,  TypeSourceInfo *TInfo,
2160                             LookupResult &Previous, bool &Redeclaration) {
2161  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2162  if (D.getCXXScopeSpec().isSet()) {
2163    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2164      << D.getCXXScopeSpec().getRange();
2165    D.setInvalidType();
2166    // Pretend we didn't see the scope specifier.
2167    DC = 0;
2168  }
2169
2170  if (getLangOptions().CPlusPlus) {
2171    // Check that there are no default arguments (C++ only).
2172    CheckExtraCXXDefaultArguments(D);
2173  }
2174
2175  DiagnoseFunctionSpecifiers(D);
2176
2177  if (D.getDeclSpec().isThreadSpecified())
2178    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2179
2180  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2181  if (!NewTD) return 0;
2182
2183  // Handle attributes prior to checking for duplicates in MergeVarDecl
2184  ProcessDeclAttributes(S, NewTD, D);
2185
2186  // Merge the decl with the existing one if appropriate. If the decl is
2187  // in an outer scope, it isn't the same thing.
2188  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2189  if (!Previous.empty()) {
2190    Redeclaration = true;
2191    MergeTypeDefDecl(NewTD, Previous);
2192  }
2193
2194  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2195  // then it shall have block scope.
2196  QualType T = NewTD->getUnderlyingType();
2197  if (T->isVariablyModifiedType()) {
2198    CurFunctionNeedsScopeChecking = true;
2199
2200    if (S->getFnParent() == 0) {
2201      bool SizeIsNegative;
2202      QualType FixedTy =
2203          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2204      if (!FixedTy.isNull()) {
2205        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2206        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2207      } else {
2208        if (SizeIsNegative)
2209          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2210        else if (T->isVariableArrayType())
2211          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2212        else
2213          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2214        NewTD->setInvalidDecl();
2215      }
2216    }
2217  }
2218
2219  // If this is the C FILE type, notify the AST context.
2220  if (IdentifierInfo *II = NewTD->getIdentifier())
2221    if (!NewTD->isInvalidDecl() &&
2222        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
2223      if (II->isStr("FILE"))
2224        Context.setFILEDecl(NewTD);
2225      else if (II->isStr("jmp_buf"))
2226        Context.setjmp_bufDecl(NewTD);
2227      else if (II->isStr("sigjmp_buf"))
2228        Context.setsigjmp_bufDecl(NewTD);
2229    }
2230
2231  return NewTD;
2232}
2233
2234/// \brief Determines whether the given declaration is an out-of-scope
2235/// previous declaration.
2236///
2237/// This routine should be invoked when name lookup has found a
2238/// previous declaration (PrevDecl) that is not in the scope where a
2239/// new declaration by the same name is being introduced. If the new
2240/// declaration occurs in a local scope, previous declarations with
2241/// linkage may still be considered previous declarations (C99
2242/// 6.2.2p4-5, C++ [basic.link]p6).
2243///
2244/// \param PrevDecl the previous declaration found by name
2245/// lookup
2246///
2247/// \param DC the context in which the new declaration is being
2248/// declared.
2249///
2250/// \returns true if PrevDecl is an out-of-scope previous declaration
2251/// for a new delcaration with the same name.
2252static bool
2253isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2254                                ASTContext &Context) {
2255  if (!PrevDecl)
2256    return 0;
2257
2258  if (!PrevDecl->hasLinkage())
2259    return false;
2260
2261  if (Context.getLangOptions().CPlusPlus) {
2262    // C++ [basic.link]p6:
2263    //   If there is a visible declaration of an entity with linkage
2264    //   having the same name and type, ignoring entities declared
2265    //   outside the innermost enclosing namespace scope, the block
2266    //   scope declaration declares that same entity and receives the
2267    //   linkage of the previous declaration.
2268    DeclContext *OuterContext = DC->getLookupContext();
2269    if (!OuterContext->isFunctionOrMethod())
2270      // This rule only applies to block-scope declarations.
2271      return false;
2272    else {
2273      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2274      if (PrevOuterContext->isRecord())
2275        // We found a member function: ignore it.
2276        return false;
2277      else {
2278        // Find the innermost enclosing namespace for the new and
2279        // previous declarations.
2280        while (!OuterContext->isFileContext())
2281          OuterContext = OuterContext->getParent();
2282        while (!PrevOuterContext->isFileContext())
2283          PrevOuterContext = PrevOuterContext->getParent();
2284
2285        // The previous declaration is in a different namespace, so it
2286        // isn't the same function.
2287        if (OuterContext->getPrimaryContext() !=
2288            PrevOuterContext->getPrimaryContext())
2289          return false;
2290      }
2291    }
2292  }
2293
2294  return true;
2295}
2296
2297NamedDecl*
2298Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2299                              QualType R, TypeSourceInfo *TInfo,
2300                              LookupResult &Previous,
2301                              MultiTemplateParamsArg TemplateParamLists,
2302                              bool &Redeclaration) {
2303  DeclarationName Name = GetNameForDeclarator(D);
2304
2305  // Check that there are no default arguments (C++ only).
2306  if (getLangOptions().CPlusPlus)
2307    CheckExtraCXXDefaultArguments(D);
2308
2309  VarDecl *NewVD;
2310  VarDecl::StorageClass SC;
2311  switch (D.getDeclSpec().getStorageClassSpec()) {
2312  default: assert(0 && "Unknown storage class!");
2313  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
2314  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
2315  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
2316  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
2317  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
2318  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
2319  case DeclSpec::SCS_mutable:
2320    // mutable can only appear on non-static class members, so it's always
2321    // an error here
2322    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2323    D.setInvalidType();
2324    SC = VarDecl::None;
2325    break;
2326  }
2327
2328  IdentifierInfo *II = Name.getAsIdentifierInfo();
2329  if (!II) {
2330    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2331      << Name.getAsString();
2332    return 0;
2333  }
2334
2335  DiagnoseFunctionSpecifiers(D);
2336
2337  if (!DC->isRecord() && S->getFnParent() == 0) {
2338    // C99 6.9p2: The storage-class specifiers auto and register shall not
2339    // appear in the declaration specifiers in an external declaration.
2340    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2341
2342      // If this is a register variable with an asm label specified, then this
2343      // is a GNU extension.
2344      if (SC == VarDecl::Register && D.getAsmLabel())
2345        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2346      else
2347        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2348      D.setInvalidType();
2349    }
2350  }
2351  if (DC->isRecord() && !CurContext->isRecord()) {
2352    // This is an out-of-line definition of a static data member.
2353    if (SC == VarDecl::Static) {
2354      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2355           diag::err_static_out_of_line)
2356        << CodeModificationHint::CreateRemoval(
2357                                      D.getDeclSpec().getStorageClassSpecLoc());
2358    } else if (SC == VarDecl::None)
2359      SC = VarDecl::Static;
2360  }
2361  if (SC == VarDecl::Static) {
2362    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2363      if (RD->isLocalClass())
2364        Diag(D.getIdentifierLoc(),
2365             diag::err_static_data_member_not_allowed_in_local_class)
2366          << Name << RD->getDeclName();
2367    }
2368  }
2369
2370  // Match up the template parameter lists with the scope specifier, then
2371  // determine whether we have a template or a template specialization.
2372  bool isExplicitSpecialization = false;
2373  if (TemplateParameterList *TemplateParams
2374        = MatchTemplateParametersToScopeSpecifier(
2375                                  D.getDeclSpec().getSourceRange().getBegin(),
2376                                                  D.getCXXScopeSpec(),
2377                        (TemplateParameterList**)TemplateParamLists.get(),
2378                                                   TemplateParamLists.size(),
2379                                                  isExplicitSpecialization)) {
2380    if (TemplateParams->size() > 0) {
2381      // There is no such thing as a variable template.
2382      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2383        << II
2384        << SourceRange(TemplateParams->getTemplateLoc(),
2385                       TemplateParams->getRAngleLoc());
2386      return 0;
2387    } else {
2388      // There is an extraneous 'template<>' for this variable. Complain
2389      // about it, but allow the declaration of the variable.
2390      Diag(TemplateParams->getTemplateLoc(),
2391           diag::err_template_variable_noparams)
2392        << II
2393        << SourceRange(TemplateParams->getTemplateLoc(),
2394                       TemplateParams->getRAngleLoc());
2395
2396      isExplicitSpecialization = true;
2397    }
2398  }
2399
2400  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2401                          II, R, TInfo, SC);
2402
2403  if (D.isInvalidType())
2404    NewVD->setInvalidDecl();
2405
2406  if (D.getDeclSpec().isThreadSpecified()) {
2407    if (NewVD->hasLocalStorage())
2408      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2409    else if (!Context.Target.isTLSSupported())
2410      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2411    else
2412      NewVD->setThreadSpecified(true);
2413  }
2414
2415  // Set the lexical context. If the declarator has a C++ scope specifier, the
2416  // lexical context will be different from the semantic context.
2417  NewVD->setLexicalDeclContext(CurContext);
2418
2419  // Handle attributes prior to checking for duplicates in MergeVarDecl
2420  ProcessDeclAttributes(S, NewVD, D);
2421
2422  // Handle GNU asm-label extension (encoded as an attribute).
2423  if (Expr *E = (Expr*) D.getAsmLabel()) {
2424    // The parser guarantees this is a string.
2425    StringLiteral *SE = cast<StringLiteral>(E);
2426    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getString()));
2427  }
2428
2429  // Don't consider existing declarations that are in a different
2430  // scope and are out-of-semantic-context declarations (if the new
2431  // declaration has linkage).
2432  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
2433
2434  // Merge the decl with the existing one if appropriate.
2435  if (!Previous.empty()) {
2436    if (Previous.isSingleResult() &&
2437        isa<FieldDecl>(Previous.getFoundDecl()) &&
2438        D.getCXXScopeSpec().isSet()) {
2439      // The user tried to define a non-static data member
2440      // out-of-line (C++ [dcl.meaning]p1).
2441      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2442        << D.getCXXScopeSpec().getRange();
2443      Previous.clear();
2444      NewVD->setInvalidDecl();
2445    }
2446  } else if (D.getCXXScopeSpec().isSet()) {
2447    // No previous declaration in the qualifying scope.
2448    Diag(D.getIdentifierLoc(), diag::err_no_member)
2449      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2450      << D.getCXXScopeSpec().getRange();
2451    NewVD->setInvalidDecl();
2452  }
2453
2454  CheckVariableDeclaration(NewVD, Previous, Redeclaration);
2455
2456  // This is an explicit specialization of a static data member. Check it.
2457  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2458      CheckMemberSpecialization(NewVD, Previous))
2459    NewVD->setInvalidDecl();
2460
2461  // attributes declared post-definition are currently ignored
2462  if (Previous.isSingleResult()) {
2463    const VarDecl *Def = 0;
2464    VarDecl *PrevDecl = dyn_cast<VarDecl>(Previous.getFoundDecl());
2465    if (PrevDecl && PrevDecl->getDefinition(Def) && D.hasAttributes()) {
2466      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2467      Diag(Def->getLocation(), diag::note_previous_definition);
2468    }
2469  }
2470
2471  // If this is a locally-scoped extern C variable, update the map of
2472  // such variables.
2473  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2474      !NewVD->isInvalidDecl())
2475    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
2476
2477  return NewVD;
2478}
2479
2480/// \brief Perform semantic checking on a newly-created variable
2481/// declaration.
2482///
2483/// This routine performs all of the type-checking required for a
2484/// variable declaration once it has been built. It is used both to
2485/// check variables after they have been parsed and their declarators
2486/// have been translated into a declaration, and to check variables
2487/// that have been instantiated from a template.
2488///
2489/// Sets NewVD->isInvalidDecl() if an error was encountered.
2490void Sema::CheckVariableDeclaration(VarDecl *NewVD,
2491                                    LookupResult &Previous,
2492                                    bool &Redeclaration) {
2493  // If the decl is already known invalid, don't check it.
2494  if (NewVD->isInvalidDecl())
2495    return;
2496
2497  QualType T = NewVD->getType();
2498
2499  if (T->isObjCInterfaceType()) {
2500    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2501    return NewVD->setInvalidDecl();
2502  }
2503
2504  // Emit an error if an address space was applied to decl with local storage.
2505  // This includes arrays of objects with address space qualifiers, but not
2506  // automatic variables that point to other address spaces.
2507  // ISO/IEC TR 18037 S5.1.2
2508  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2509    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2510    return NewVD->setInvalidDecl();
2511  }
2512
2513  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2514      && !NewVD->hasAttr<BlocksAttr>())
2515    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2516
2517  bool isVM = T->isVariablyModifiedType();
2518  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2519      NewVD->hasAttr<BlocksAttr>())
2520    CurFunctionNeedsScopeChecking = true;
2521
2522  if ((isVM && NewVD->hasLinkage()) ||
2523      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2524    bool SizeIsNegative;
2525    QualType FixedTy =
2526        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2527
2528    if (FixedTy.isNull() && T->isVariableArrayType()) {
2529      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2530      // FIXME: This won't give the correct result for
2531      // int a[10][n];
2532      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2533
2534      if (NewVD->isFileVarDecl())
2535        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2536        << SizeRange;
2537      else if (NewVD->getStorageClass() == VarDecl::Static)
2538        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2539        << SizeRange;
2540      else
2541        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2542        << SizeRange;
2543      return NewVD->setInvalidDecl();
2544    }
2545
2546    if (FixedTy.isNull()) {
2547      if (NewVD->isFileVarDecl())
2548        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2549      else
2550        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2551      return NewVD->setInvalidDecl();
2552    }
2553
2554    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2555    NewVD->setType(FixedTy);
2556  }
2557
2558  if (Previous.empty() && NewVD->isExternC()) {
2559    // Since we did not find anything by this name and we're declaring
2560    // an extern "C" variable, look for a non-visible extern "C"
2561    // declaration with the same name.
2562    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2563      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2564    if (Pos != LocallyScopedExternalDecls.end())
2565      Previous.addDecl(Pos->second);
2566  }
2567
2568  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2569    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2570      << T;
2571    return NewVD->setInvalidDecl();
2572  }
2573
2574  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2575    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2576    return NewVD->setInvalidDecl();
2577  }
2578
2579  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2580    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2581    return NewVD->setInvalidDecl();
2582  }
2583
2584  if (!Previous.empty()) {
2585    Redeclaration = true;
2586    MergeVarDecl(NewVD, Previous);
2587  }
2588}
2589
2590/// \brief Data used with FindOverriddenMethod
2591struct FindOverriddenMethodData {
2592  Sema *S;
2593  CXXMethodDecl *Method;
2594};
2595
2596/// \brief Member lookup function that determines whether a given C++
2597/// method overrides a method in a base class, to be used with
2598/// CXXRecordDecl::lookupInBases().
2599static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
2600                                 CXXBasePath &Path,
2601                                 void *UserData) {
2602  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
2603
2604  FindOverriddenMethodData *Data
2605    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
2606
2607  DeclarationName Name = Data->Method->getDeclName();
2608
2609  // FIXME: Do we care about other names here too?
2610  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2611    // We really want to find the base class constructor here.
2612    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
2613    CanQualType CT = Data->S->Context.getCanonicalType(T);
2614
2615    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
2616  }
2617
2618  for (Path.Decls = BaseRecord->lookup(Name);
2619       Path.Decls.first != Path.Decls.second;
2620       ++Path.Decls.first) {
2621    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*Path.Decls.first)) {
2622      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD))
2623        return true;
2624    }
2625  }
2626
2627  return false;
2628}
2629
2630/// AddOverriddenMethods - See if a method overrides any in the base classes,
2631/// and if so, check that it's a valid override and remember it.
2632void Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
2633  // Look for virtual methods in base classes that this method might override.
2634  CXXBasePaths Paths;
2635  FindOverriddenMethodData Data;
2636  Data.Method = MD;
2637  Data.S = this;
2638  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
2639    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
2640         E = Paths.found_decls_end(); I != E; ++I) {
2641      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2642        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
2643            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
2644            !CheckOverridingFunctionAttributes(MD, OldMD))
2645          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
2646      }
2647    }
2648  }
2649}
2650
2651NamedDecl*
2652Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2653                              QualType R, TypeSourceInfo *TInfo,
2654                              LookupResult &Previous,
2655                              MultiTemplateParamsArg TemplateParamLists,
2656                              bool IsFunctionDefinition, bool &Redeclaration) {
2657  assert(R.getTypePtr()->isFunctionType());
2658
2659  DeclarationName Name = GetNameForDeclarator(D);
2660  FunctionDecl::StorageClass SC = FunctionDecl::None;
2661  switch (D.getDeclSpec().getStorageClassSpec()) {
2662  default: assert(0 && "Unknown storage class!");
2663  case DeclSpec::SCS_auto:
2664  case DeclSpec::SCS_register:
2665  case DeclSpec::SCS_mutable:
2666    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2667         diag::err_typecheck_sclass_func);
2668    D.setInvalidType();
2669    break;
2670  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2671  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2672  case DeclSpec::SCS_static: {
2673    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2674      // C99 6.7.1p5:
2675      //   The declaration of an identifier for a function that has
2676      //   block scope shall have no explicit storage-class specifier
2677      //   other than extern
2678      // See also (C++ [dcl.stc]p4).
2679      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2680           diag::err_static_block_func);
2681      SC = FunctionDecl::None;
2682    } else
2683      SC = FunctionDecl::Static;
2684    break;
2685  }
2686  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2687  }
2688
2689  if (D.getDeclSpec().isThreadSpecified())
2690    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2691
2692  bool isFriend = D.getDeclSpec().isFriendSpecified();
2693  bool isInline = D.getDeclSpec().isInlineSpecified();
2694  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2695  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2696
2697  // Check that the return type is not an abstract class type.
2698  // For record types, this is done by the AbstractClassUsageDiagnoser once
2699  // the class has been completely parsed.
2700  if (!DC->isRecord() &&
2701      RequireNonAbstractType(D.getIdentifierLoc(),
2702                             R->getAs<FunctionType>()->getResultType(),
2703                             diag::err_abstract_type_in_decl,
2704                             AbstractReturnType))
2705    D.setInvalidType();
2706
2707  // Do not allow returning a objc interface by-value.
2708  if (R->getAs<FunctionType>()->getResultType()->isObjCInterfaceType()) {
2709    Diag(D.getIdentifierLoc(),
2710         diag::err_object_cannot_be_passed_returned_by_value) << 0
2711      << R->getAs<FunctionType>()->getResultType();
2712    D.setInvalidType();
2713  }
2714
2715  bool isVirtualOkay = false;
2716  FunctionDecl *NewFD;
2717
2718  if (isFriend) {
2719    // C++ [class.friend]p5
2720    //   A function can be defined in a friend declaration of a
2721    //   class . . . . Such a function is implicitly inline.
2722    isInline |= IsFunctionDefinition;
2723  }
2724
2725  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
2726    // This is a C++ constructor declaration.
2727    assert(DC->isRecord() &&
2728           "Constructors can only be declared in a member context");
2729
2730    R = CheckConstructorDeclarator(D, R, SC);
2731
2732    // Create the new declaration
2733    NewFD = CXXConstructorDecl::Create(Context,
2734                                       cast<CXXRecordDecl>(DC),
2735                                       D.getIdentifierLoc(), Name, R, TInfo,
2736                                       isExplicit, isInline,
2737                                       /*isImplicitlyDeclared=*/false);
2738  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2739    // This is a C++ destructor declaration.
2740    if (DC->isRecord()) {
2741      R = CheckDestructorDeclarator(D, SC);
2742
2743      NewFD = CXXDestructorDecl::Create(Context,
2744                                        cast<CXXRecordDecl>(DC),
2745                                        D.getIdentifierLoc(), Name, R,
2746                                        isInline,
2747                                        /*isImplicitlyDeclared=*/false);
2748
2749      isVirtualOkay = true;
2750    } else {
2751      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2752
2753      // Create a FunctionDecl to satisfy the function definition parsing
2754      // code path.
2755      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2756                                   Name, R, TInfo, SC, isInline,
2757                                   /*hasPrototype=*/true);
2758      D.setInvalidType();
2759    }
2760  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
2761    if (!DC->isRecord()) {
2762      Diag(D.getIdentifierLoc(),
2763           diag::err_conv_function_not_member);
2764      return 0;
2765    }
2766
2767    CheckConversionDeclarator(D, R, SC);
2768    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2769                                      D.getIdentifierLoc(), Name, R, TInfo,
2770                                      isInline, isExplicit);
2771
2772    isVirtualOkay = true;
2773  } else if (DC->isRecord()) {
2774    // If the of the function is the same as the name of the record, then this
2775    // must be an invalid constructor that has a return type.
2776    // (The parser checks for a return type and makes the declarator a
2777    // constructor if it has no return type).
2778    // must have an invalid constructor that has a return type
2779    if (Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2780      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2781        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2782        << SourceRange(D.getIdentifierLoc());
2783      return 0;
2784    }
2785
2786    bool isStatic = SC == FunctionDecl::Static;
2787
2788    // [class.free]p1:
2789    // Any allocation function for a class T is a static member
2790    // (even if not explicitly declared static).
2791    if (Name.getCXXOverloadedOperator() == OO_New ||
2792        Name.getCXXOverloadedOperator() == OO_Array_New)
2793      isStatic = true;
2794
2795    // [class.free]p6 Any deallocation function for a class X is a static member
2796    // (even if not explicitly declared static).
2797    if (Name.getCXXOverloadedOperator() == OO_Delete ||
2798        Name.getCXXOverloadedOperator() == OO_Array_Delete)
2799      isStatic = true;
2800
2801    // This is a C++ method declaration.
2802    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2803                                  D.getIdentifierLoc(), Name, R, TInfo,
2804                                  isStatic, isInline);
2805
2806    isVirtualOkay = !isStatic;
2807  } else {
2808    // Determine whether the function was written with a
2809    // prototype. This true when:
2810    //   - we're in C++ (where every function has a prototype),
2811    //   - there is a prototype in the declarator, or
2812    //   - the type R of the function is some kind of typedef or other reference
2813    //     to a type name (which eventually refers to a function type).
2814    bool HasPrototype =
2815       getLangOptions().CPlusPlus ||
2816       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2817       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2818
2819    NewFD = FunctionDecl::Create(Context, DC,
2820                                 D.getIdentifierLoc(),
2821                                 Name, R, TInfo, SC, isInline, HasPrototype);
2822  }
2823
2824  if (D.isInvalidType())
2825    NewFD->setInvalidDecl();
2826
2827  // Set the lexical context. If the declarator has a C++
2828  // scope specifier, or is the object of a friend declaration, the
2829  // lexical context will be different from the semantic context.
2830  NewFD->setLexicalDeclContext(CurContext);
2831
2832  // Match up the template parameter lists with the scope specifier, then
2833  // determine whether we have a template or a template specialization.
2834  FunctionTemplateDecl *FunctionTemplate = 0;
2835  bool isExplicitSpecialization = false;
2836  bool isFunctionTemplateSpecialization = false;
2837  if (TemplateParameterList *TemplateParams
2838        = MatchTemplateParametersToScopeSpecifier(
2839                                  D.getDeclSpec().getSourceRange().getBegin(),
2840                                  D.getCXXScopeSpec(),
2841                           (TemplateParameterList**)TemplateParamLists.get(),
2842                                                  TemplateParamLists.size(),
2843                                                  isExplicitSpecialization)) {
2844    if (TemplateParams->size() > 0) {
2845      // This is a function template
2846
2847      // Check that we can declare a template here.
2848      if (CheckTemplateDeclScope(S, TemplateParams))
2849        return 0;
2850
2851      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
2852                                                      NewFD->getLocation(),
2853                                                      Name, TemplateParams,
2854                                                      NewFD);
2855      FunctionTemplate->setLexicalDeclContext(CurContext);
2856      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
2857    } else {
2858      // This is a function template specialization.
2859      isFunctionTemplateSpecialization = true;
2860    }
2861
2862    // FIXME: Free this memory properly.
2863    TemplateParamLists.release();
2864  }
2865
2866  // C++ [dcl.fct.spec]p5:
2867  //   The virtual specifier shall only be used in declarations of
2868  //   nonstatic class member functions that appear within a
2869  //   member-specification of a class declaration; see 10.3.
2870  //
2871  if (isVirtual && !NewFD->isInvalidDecl()) {
2872    if (!isVirtualOkay) {
2873       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2874           diag::err_virtual_non_function);
2875    } else if (!CurContext->isRecord()) {
2876      // 'virtual' was specified outside of the class.
2877      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2878        << CodeModificationHint::CreateRemoval(
2879                                           D.getDeclSpec().getVirtualSpecLoc());
2880    } else {
2881      // Okay: Add virtual to the method.
2882      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2883      CurClass->setMethodAsVirtual(NewFD);
2884    }
2885  }
2886
2887  // Filter out previous declarations that don't match the scope.
2888  FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
2889
2890  if (isFriend) {
2891    // DC is the namespace in which the function is being declared.
2892    assert((DC->isFileContext() || !Previous.empty()) &&
2893           "previously-undeclared friend function being created "
2894           "in a non-namespace context");
2895
2896    if (FunctionTemplate) {
2897      FunctionTemplate->setObjectOfFriendDecl(
2898                                   /* PreviouslyDeclared= */ !Previous.empty());
2899      FunctionTemplate->setAccess(AS_public);
2900    }
2901    else
2902      NewFD->setObjectOfFriendDecl(/* PreviouslyDeclared= */ !Previous.empty());
2903
2904    NewFD->setAccess(AS_public);
2905  }
2906
2907  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2908      !CurContext->isRecord()) {
2909    // C++ [class.static]p1:
2910    //   A data or function member of a class may be declared static
2911    //   in a class definition, in which case it is a static member of
2912    //   the class.
2913
2914    // Complain about the 'static' specifier if it's on an out-of-line
2915    // member function definition.
2916    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2917         diag::err_static_out_of_line)
2918      << CodeModificationHint::CreateRemoval(
2919                                      D.getDeclSpec().getStorageClassSpecLoc());
2920  }
2921
2922  // Handle GNU asm-label extension (encoded as an attribute).
2923  if (Expr *E = (Expr*) D.getAsmLabel()) {
2924    // The parser guarantees this is a string.
2925    StringLiteral *SE = cast<StringLiteral>(E);
2926    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getString()));
2927  }
2928
2929  // Copy the parameter declarations from the declarator D to the function
2930  // declaration NewFD, if they are available.  First scavenge them into Params.
2931  llvm::SmallVector<ParmVarDecl*, 16> Params;
2932  if (D.getNumTypeObjects() > 0) {
2933    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2934
2935    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2936    // function that takes no arguments, not a function that takes a
2937    // single void argument.
2938    // We let through "const void" here because Sema::GetTypeForDeclarator
2939    // already checks for that case.
2940    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2941        FTI.ArgInfo[0].Param &&
2942        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2943      // Empty arg list, don't push any params.
2944      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2945
2946      // In C++, the empty parameter-type-list must be spelled "void"; a
2947      // typedef of void is not permitted.
2948      if (getLangOptions().CPlusPlus &&
2949          Param->getType().getUnqualifiedType() != Context.VoidTy)
2950        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2951      // FIXME: Leaks decl?
2952    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2953      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2954        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
2955        assert(Param->getDeclContext() != NewFD && "Was set before ?");
2956        Param->setDeclContext(NewFD);
2957        Params.push_back(Param);
2958      }
2959    }
2960
2961  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
2962    // When we're declaring a function with a typedef, typeof, etc as in the
2963    // following example, we'll need to synthesize (unnamed)
2964    // parameters for use in the declaration.
2965    //
2966    // @code
2967    // typedef void fn(int);
2968    // fn f;
2969    // @endcode
2970
2971    // Synthesize a parameter for each argument type.
2972    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2973         AE = FT->arg_type_end(); AI != AE; ++AI) {
2974      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2975                                               SourceLocation(), 0,
2976                                               *AI, /*TInfo=*/0,
2977                                               VarDecl::None, 0);
2978      Param->setImplicit();
2979      Params.push_back(Param);
2980    }
2981  } else {
2982    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
2983           "Should not need args for typedef of non-prototype fn");
2984  }
2985  // Finally, we know we have the right number of parameters, install them.
2986  NewFD->setParams(Context, Params.data(), Params.size());
2987
2988  // If the declarator is a template-id, translate the parser's template
2989  // argument list into our AST format.
2990  bool HasExplicitTemplateArgs = false;
2991  TemplateArgumentListInfo TemplateArgs;
2992  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
2993    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
2994    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
2995    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
2996    ASTTemplateArgsPtr TemplateArgsPtr(*this,
2997                                       TemplateId->getTemplateArgs(),
2998                                       TemplateId->NumArgs);
2999    translateTemplateArguments(TemplateArgsPtr,
3000                               TemplateArgs);
3001    TemplateArgsPtr.release();
3002
3003    HasExplicitTemplateArgs = true;
3004
3005    if (FunctionTemplate) {
3006      // FIXME: Diagnose function template with explicit template
3007      // arguments.
3008      HasExplicitTemplateArgs = false;
3009    } else if (!isFunctionTemplateSpecialization &&
3010               !D.getDeclSpec().isFriendSpecified()) {
3011      // We have encountered something that the user meant to be a
3012      // specialization (because it has explicitly-specified template
3013      // arguments) but that was not introduced with a "template<>" (or had
3014      // too few of them).
3015      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
3016        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
3017        << CodeModificationHint::CreateInsertion(
3018                                   D.getDeclSpec().getSourceRange().getBegin(),
3019                                                 "template<> ");
3020      isFunctionTemplateSpecialization = true;
3021    }
3022  }
3023
3024  if (isFunctionTemplateSpecialization) {
3025      if (CheckFunctionTemplateSpecialization(NewFD,
3026                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
3027                                              Previous))
3028        NewFD->setInvalidDecl();
3029  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD) &&
3030             CheckMemberSpecialization(NewFD, Previous))
3031    NewFD->setInvalidDecl();
3032
3033  // Perform semantic checking on the function declaration.
3034  bool OverloadableAttrRequired = false; // FIXME: HACK!
3035  CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
3036                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
3037
3038  assert((NewFD->isInvalidDecl() || !Redeclaration ||
3039          Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3040         "previous declaration set still overloaded");
3041
3042  // If we have a function template, check the template parameter
3043  // list. This will check and merge default template arguments.
3044  if (FunctionTemplate) {
3045    FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
3046    CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
3047                      PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
3048             D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate
3049                                                : TPC_FunctionTemplate);
3050  }
3051
3052  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
3053    // An out-of-line member function declaration must also be a
3054    // definition (C++ [dcl.meaning]p1).
3055    // Note that this is not the case for explicit specializations of
3056    // function templates or member functions of class templates, per
3057    // C++ [temp.expl.spec]p2.
3058    if (!IsFunctionDefinition && !isFriend &&
3059        !isFunctionTemplateSpecialization && !isExplicitSpecialization) {
3060      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
3061        << D.getCXXScopeSpec().getRange();
3062      NewFD->setInvalidDecl();
3063    } else if (!Redeclaration) {
3064      // The user tried to provide an out-of-line definition for a
3065      // function that is a member of a class or namespace, but there
3066      // was no such member function declared (C++ [class.mfct]p2,
3067      // C++ [namespace.memdef]p2). For example:
3068      //
3069      // class X {
3070      //   void f() const;
3071      // };
3072      //
3073      // void X::f() { } // ill-formed
3074      //
3075      // Complain about this problem, and attempt to suggest close
3076      // matches (e.g., those that differ only in cv-qualifiers and
3077      // whether the parameter types are references).
3078      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
3079        << Name << DC << D.getCXXScopeSpec().getRange();
3080      NewFD->setInvalidDecl();
3081
3082      LookupResult Prev(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
3083                        ForRedeclaration);
3084      LookupQualifiedName(Prev, DC);
3085      assert(!Prev.isAmbiguous() &&
3086             "Cannot have an ambiguity in previous-declaration lookup");
3087      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3088           Func != FuncEnd; ++Func) {
3089        if (isa<FunctionDecl>(*Func) &&
3090            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
3091          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3092      }
3093    }
3094  }
3095
3096  // Handle attributes. We need to have merged decls when handling attributes
3097  // (for example to check for conflicts, etc).
3098  // FIXME: This needs to happen before we merge declarations. Then,
3099  // let attribute merging cope with attribute conflicts.
3100  ProcessDeclAttributes(S, NewFD, D);
3101
3102  // attributes declared post-definition are currently ignored
3103  if (Redeclaration && Previous.isSingleResult()) {
3104    const FunctionDecl *Def;
3105    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
3106    if (PrevFD && PrevFD->getBody(Def) && D.hasAttributes()) {
3107      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
3108      Diag(Def->getLocation(), diag::note_previous_definition);
3109    }
3110  }
3111
3112  AddKnownFunctionAttributes(NewFD);
3113
3114  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
3115    // If a function name is overloadable in C, then every function
3116    // with that name must be marked "overloadable".
3117    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
3118      << Redeclaration << NewFD;
3119    if (!Previous.empty())
3120      Diag(Previous.getRepresentativeDecl()->getLocation(),
3121           diag::note_attribute_overloadable_prev_overload);
3122    NewFD->addAttr(::new (Context) OverloadableAttr());
3123  }
3124
3125  // If this is a locally-scoped extern C function, update the
3126  // map of such names.
3127  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
3128      && !NewFD->isInvalidDecl())
3129    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
3130
3131  // Set this FunctionDecl's range up to the right paren.
3132  NewFD->setLocEnd(D.getSourceRange().getEnd());
3133
3134  if (FunctionTemplate && NewFD->isInvalidDecl())
3135    FunctionTemplate->setInvalidDecl();
3136
3137  if (FunctionTemplate)
3138    return FunctionTemplate;
3139
3140  return NewFD;
3141}
3142
3143/// \brief Perform semantic checking of a new function declaration.
3144///
3145/// Performs semantic analysis of the new function declaration
3146/// NewFD. This routine performs all semantic checking that does not
3147/// require the actual declarator involved in the declaration, and is
3148/// used both for the declaration of functions as they are parsed
3149/// (called via ActOnDeclarator) and for the declaration of functions
3150/// that have been instantiated via C++ template instantiation (called
3151/// via InstantiateDecl).
3152///
3153/// \param IsExplicitSpecialiation whether this new function declaration is
3154/// an explicit specialization of the previous declaration.
3155///
3156/// This sets NewFD->isInvalidDecl() to true if there was an error.
3157void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
3158                                    LookupResult &Previous,
3159                                    bool IsExplicitSpecialization,
3160                                    bool &Redeclaration,
3161                                    bool &OverloadableAttrRequired) {
3162  // If NewFD is already known erroneous, don't do any of this checking.
3163  if (NewFD->isInvalidDecl())
3164    return;
3165
3166  if (NewFD->getResultType()->isVariablyModifiedType()) {
3167    // Functions returning a variably modified type violate C99 6.7.5.2p2
3168    // because all functions have linkage.
3169    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
3170    return NewFD->setInvalidDecl();
3171  }
3172
3173  if (NewFD->isMain())
3174    CheckMain(NewFD);
3175
3176  // Check for a previous declaration of this name.
3177  if (Previous.empty() && NewFD->isExternC()) {
3178    // Since we did not find anything by this name and we're declaring
3179    // an extern "C" function, look for a non-visible extern "C"
3180    // declaration with the same name.
3181    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3182      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
3183    if (Pos != LocallyScopedExternalDecls.end())
3184      Previous.addDecl(Pos->second);
3185  }
3186
3187  // Merge or overload the declaration with an existing declaration of
3188  // the same name, if appropriate.
3189  if (!Previous.empty()) {
3190    // Determine whether NewFD is an overload of PrevDecl or
3191    // a declaration that requires merging. If it's an overload,
3192    // there's no more work to do here; we'll just add the new
3193    // function to the scope.
3194
3195    NamedDecl *OldDecl = 0;
3196    if (!AllowOverloadingOfFunction(Previous, Context)) {
3197      Redeclaration = true;
3198      OldDecl = Previous.getFoundDecl();
3199    } else {
3200      if (!getLangOptions().CPlusPlus) {
3201        OverloadableAttrRequired = true;
3202
3203        // Functions marked "overloadable" must have a prototype (that
3204        // we can't get through declaration merging).
3205        if (!NewFD->getType()->getAs<FunctionProtoType>()) {
3206          Diag(NewFD->getLocation(),
3207               diag::err_attribute_overloadable_no_prototype)
3208            << NewFD;
3209          Redeclaration = true;
3210
3211          // Turn this into a variadic function with no parameters.
3212          QualType R = Context.getFunctionType(
3213                     NewFD->getType()->getAs<FunctionType>()->getResultType(),
3214                     0, 0, true, 0);
3215          NewFD->setType(R);
3216          return NewFD->setInvalidDecl();
3217        }
3218      }
3219
3220      switch (CheckOverload(NewFD, Previous, OldDecl)) {
3221      case Ovl_Match:
3222        Redeclaration = true;
3223        if (isa<UsingShadowDecl>(OldDecl) && CurContext->isRecord()) {
3224          HideUsingShadowDecl(S, cast<UsingShadowDecl>(OldDecl));
3225          Redeclaration = false;
3226        }
3227        break;
3228
3229      case Ovl_NonFunction:
3230        Redeclaration = true;
3231        break;
3232
3233      case Ovl_Overload:
3234        Redeclaration = false;
3235        break;
3236      }
3237    }
3238
3239    if (Redeclaration) {
3240      // NewFD and OldDecl represent declarations that need to be
3241      // merged.
3242      if (MergeFunctionDecl(NewFD, OldDecl))
3243        return NewFD->setInvalidDecl();
3244
3245      Previous.clear();
3246      Previous.addDecl(OldDecl);
3247
3248      if (FunctionTemplateDecl *OldTemplateDecl
3249                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
3250        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3251        FunctionTemplateDecl *NewTemplateDecl
3252          = NewFD->getDescribedFunctionTemplate();
3253        assert(NewTemplateDecl && "Template/non-template mismatch");
3254        if (CXXMethodDecl *Method
3255              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
3256          Method->setAccess(OldTemplateDecl->getAccess());
3257          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
3258        }
3259
3260        // If this is an explicit specialization of a member that is a function
3261        // template, mark it as a member specialization.
3262        if (IsExplicitSpecialization &&
3263            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
3264          NewTemplateDecl->setMemberSpecialization();
3265          assert(OldTemplateDecl->isMemberSpecialization());
3266        }
3267      } else {
3268        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3269          NewFD->setAccess(OldDecl->getAccess());
3270        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3271      }
3272    }
3273  }
3274
3275  // Semantic checking for this function declaration (in isolation).
3276  if (getLangOptions().CPlusPlus) {
3277    // C++-specific checks.
3278    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3279      CheckConstructor(Constructor);
3280    } else if (CXXDestructorDecl *Destructor =
3281                dyn_cast<CXXDestructorDecl>(NewFD)) {
3282      CXXRecordDecl *Record = Destructor->getParent();
3283      QualType ClassType = Context.getTypeDeclType(Record);
3284
3285      // FIXME: Shouldn't we be able to perform thisc heck even when the class
3286      // type is dependent? Both gcc and edg can handle that.
3287      if (!ClassType->isDependentType()) {
3288        DeclarationName Name
3289          = Context.DeclarationNames.getCXXDestructorName(
3290                                        Context.getCanonicalType(ClassType));
3291        if (NewFD->getDeclName() != Name) {
3292          Diag(NewFD->getLocation(), diag::err_destructor_name);
3293          return NewFD->setInvalidDecl();
3294        }
3295      }
3296
3297      Record->setUserDeclaredDestructor(true);
3298      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
3299      // user-defined destructor.
3300      Record->setPOD(false);
3301
3302      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
3303      // declared destructor.
3304      // FIXME: C++0x: don't do this for "= default" destructors
3305      Record->setHasTrivialDestructor(false);
3306    } else if (CXXConversionDecl *Conversion
3307               = dyn_cast<CXXConversionDecl>(NewFD)) {
3308      ActOnConversionDeclarator(Conversion);
3309    }
3310
3311    // Find any virtual functions that this function overrides.
3312    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
3313      if (!Method->isFunctionTemplateSpecialization() &&
3314          !Method->getDescribedFunctionTemplate())
3315        AddOverriddenMethods(Method->getParent(), Method);
3316    }
3317
3318    // Additional checks for the destructor; make sure we do this after we
3319    // figure out whether the destructor is virtual.
3320    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(NewFD))
3321      if (!Destructor->getParent()->isDependentType())
3322        CheckDestructor(Destructor);
3323
3324    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3325    if (NewFD->isOverloadedOperator() &&
3326        CheckOverloadedOperatorDeclaration(NewFD))
3327      return NewFD->setInvalidDecl();
3328
3329    // In C++, check default arguments now that we have merged decls. Unless
3330    // the lexical context is the class, because in this case this is done
3331    // during delayed parsing anyway.
3332    if (!CurContext->isRecord())
3333      CheckCXXDefaultArguments(NewFD);
3334  }
3335}
3336
3337void Sema::CheckMain(FunctionDecl* FD) {
3338  // C++ [basic.start.main]p3:  A program that declares main to be inline
3339  //   or static is ill-formed.
3340  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3341  //   shall not appear in a declaration of main.
3342  // static main is not an error under C99, but we should warn about it.
3343  bool isInline = FD->isInlineSpecified();
3344  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
3345  if (isInline || isStatic) {
3346    unsigned diagID = diag::warn_unusual_main_decl;
3347    if (isInline || getLangOptions().CPlusPlus)
3348      diagID = diag::err_unusual_main_decl;
3349
3350    int which = isStatic + (isInline << 1) - 1;
3351    Diag(FD->getLocation(), diagID) << which;
3352  }
3353
3354  QualType T = FD->getType();
3355  assert(T->isFunctionType() && "function decl is not of function type");
3356  const FunctionType* FT = T->getAs<FunctionType>();
3357
3358  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3359    // TODO: add a replacement fixit to turn the return type into 'int'.
3360    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
3361    FD->setInvalidDecl(true);
3362  }
3363
3364  // Treat protoless main() as nullary.
3365  if (isa<FunctionNoProtoType>(FT)) return;
3366
3367  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
3368  unsigned nparams = FTP->getNumArgs();
3369  assert(FD->getNumParams() == nparams);
3370
3371  if (nparams > 3) {
3372    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
3373    FD->setInvalidDecl(true);
3374    nparams = 3;
3375  }
3376
3377  // FIXME: a lot of the following diagnostics would be improved
3378  // if we had some location information about types.
3379
3380  QualType CharPP =
3381    Context.getPointerType(Context.getPointerType(Context.CharTy));
3382  QualType Expected[] = { Context.IntTy, CharPP, CharPP };
3383
3384  for (unsigned i = 0; i < nparams; ++i) {
3385    QualType AT = FTP->getArgType(i);
3386
3387    bool mismatch = true;
3388
3389    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
3390      mismatch = false;
3391    else if (Expected[i] == CharPP) {
3392      // As an extension, the following forms are okay:
3393      //   char const **
3394      //   char const * const *
3395      //   char * const *
3396
3397      QualifierCollector qs;
3398      const PointerType* PT;
3399      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
3400          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
3401          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
3402        qs.removeConst();
3403        mismatch = !qs.empty();
3404      }
3405    }
3406
3407    if (mismatch) {
3408      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
3409      // TODO: suggest replacing given type with expected type
3410      FD->setInvalidDecl(true);
3411    }
3412  }
3413
3414  if (nparams == 1 && !FD->isInvalidDecl()) {
3415    Diag(FD->getLocation(), diag::warn_main_one_arg);
3416  }
3417}
3418
3419bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
3420  // FIXME: Need strict checking.  In C89, we need to check for
3421  // any assignment, increment, decrement, function-calls, or
3422  // commas outside of a sizeof.  In C99, it's the same list,
3423  // except that the aforementioned are allowed in unevaluated
3424  // expressions.  Everything else falls under the
3425  // "may accept other forms of constant expressions" exception.
3426  // (We never end up here for C++, so the constant expression
3427  // rules there don't matter.)
3428  if (Init->isConstantInitializer(Context))
3429    return false;
3430  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
3431    << Init->getSourceRange();
3432  return true;
3433}
3434
3435void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
3436  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
3437}
3438
3439/// AddInitializerToDecl - Adds the initializer Init to the
3440/// declaration dcl. If DirectInit is true, this is C++ direct
3441/// initialization rather than copy initialization.
3442void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
3443  Decl *RealDecl = dcl.getAs<Decl>();
3444  // If there is no declaration, there was an error parsing it.  Just ignore
3445  // the initializer.
3446  if (RealDecl == 0)
3447    return;
3448
3449  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
3450    // With declarators parsed the way they are, the parser cannot
3451    // distinguish between a normal initializer and a pure-specifier.
3452    // Thus this grotesque test.
3453    IntegerLiteral *IL;
3454    Expr *Init = static_cast<Expr *>(init.get());
3455    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
3456        Context.getCanonicalType(IL->getType()) == Context.IntTy)
3457      CheckPureMethod(Method, Init->getSourceRange());
3458    else {
3459      Diag(Method->getLocation(), diag::err_member_function_initialization)
3460        << Method->getDeclName() << Init->getSourceRange();
3461      Method->setInvalidDecl();
3462    }
3463    return;
3464  }
3465
3466  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3467  if (!VDecl) {
3468    if (getLangOptions().CPlusPlus &&
3469        RealDecl->getLexicalDeclContext()->isRecord() &&
3470        isa<NamedDecl>(RealDecl))
3471      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3472        << cast<NamedDecl>(RealDecl)->getDeclName();
3473    else
3474      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3475    RealDecl->setInvalidDecl();
3476    return;
3477  }
3478
3479  // A definition must end up with a complete type, which means it must be
3480  // complete with the restriction that an array type might be completed by the
3481  // initializer; note that later code assumes this restriction.
3482  QualType BaseDeclType = VDecl->getType();
3483  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
3484    BaseDeclType = Array->getElementType();
3485  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
3486                          diag::err_typecheck_decl_incomplete_type)) {
3487    RealDecl->setInvalidDecl();
3488    return;
3489  }
3490
3491  // The variable can not have an abstract class type.
3492  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
3493                             diag::err_abstract_type_in_decl,
3494                             AbstractVariableType))
3495    VDecl->setInvalidDecl();
3496
3497  const VarDecl *Def = 0;
3498  if (VDecl->getDefinition(Def)) {
3499    Diag(VDecl->getLocation(), diag::err_redefinition)
3500      << VDecl->getDeclName();
3501    Diag(Def->getLocation(), diag::note_previous_definition);
3502    VDecl->setInvalidDecl();
3503    return;
3504  }
3505
3506  // Take ownership of the expression, now that we're sure we have somewhere
3507  // to put it.
3508  Expr *Init = init.takeAs<Expr>();
3509  assert(Init && "missing initializer");
3510
3511  // Capture the variable that is being initialized and the style of
3512  // initialization.
3513  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
3514
3515  // FIXME: Poor source location information.
3516  InitializationKind Kind
3517    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
3518                                                   Init->getLocStart(),
3519                                                   Init->getLocEnd())
3520                : InitializationKind::CreateCopy(VDecl->getLocation(),
3521                                                 Init->getLocStart());
3522
3523  // Get the decls type and save a reference for later, since
3524  // CheckInitializerTypes may change it.
3525  QualType DclT = VDecl->getType(), SavT = DclT;
3526  if (VDecl->isBlockVarDecl()) {
3527    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
3528      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
3529      VDecl->setInvalidDecl();
3530    } else if (!VDecl->isInvalidDecl()) {
3531      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
3532      if (InitSeq) {
3533        OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3534                                          MultiExprArg(*this, (void**)&Init, 1),
3535                                                  &DclT);
3536        if (Result.isInvalid()) {
3537          VDecl->setInvalidDecl();
3538          return;
3539        }
3540
3541        Init = Result.takeAs<Expr>();
3542      } else {
3543        InitSeq.Diagnose(*this, Entity, Kind, &Init, 1);
3544        VDecl->setInvalidDecl();
3545        return;
3546      }
3547
3548      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3549      // Don't check invalid declarations to avoid emitting useless diagnostics.
3550      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3551        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
3552          CheckForConstantInitializer(Init, DclT);
3553      }
3554    }
3555  } else if (VDecl->isStaticDataMember() &&
3556             VDecl->getLexicalDeclContext()->isRecord()) {
3557    // This is an in-class initialization for a static data member, e.g.,
3558    //
3559    // struct S {
3560    //   static const int value = 17;
3561    // };
3562
3563    // Attach the initializer
3564    VDecl->setInit(Context, Init);
3565
3566    // C++ [class.mem]p4:
3567    //   A member-declarator can contain a constant-initializer only
3568    //   if it declares a static member (9.4) of const integral or
3569    //   const enumeration type, see 9.4.2.
3570    QualType T = VDecl->getType();
3571    if (!T->isDependentType() &&
3572        (!Context.getCanonicalType(T).isConstQualified() ||
3573         !T->isIntegralType())) {
3574      Diag(VDecl->getLocation(), diag::err_member_initialization)
3575        << VDecl->getDeclName() << Init->getSourceRange();
3576      VDecl->setInvalidDecl();
3577    } else {
3578      // C++ [class.static.data]p4:
3579      //   If a static data member is of const integral or const
3580      //   enumeration type, its declaration in the class definition
3581      //   can specify a constant-initializer which shall be an
3582      //   integral constant expression (5.19).
3583      if (!Init->isTypeDependent() &&
3584          !Init->getType()->isIntegralType()) {
3585        // We have a non-dependent, non-integral or enumeration type.
3586        Diag(Init->getSourceRange().getBegin(),
3587             diag::err_in_class_initializer_non_integral_type)
3588          << Init->getType() << Init->getSourceRange();
3589        VDecl->setInvalidDecl();
3590      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
3591        // Check whether the expression is a constant expression.
3592        llvm::APSInt Value;
3593        SourceLocation Loc;
3594        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
3595          Diag(Loc, diag::err_in_class_initializer_non_constant)
3596            << Init->getSourceRange();
3597          VDecl->setInvalidDecl();
3598        } else if (!VDecl->getType()->isDependentType())
3599          ImpCastExprToType(Init, VDecl->getType(), CastExpr::CK_IntegralCast);
3600      }
3601    }
3602  } else if (VDecl->isFileVarDecl()) {
3603    if (VDecl->getStorageClass() == VarDecl::Extern)
3604      Diag(VDecl->getLocation(), diag::warn_extern_init);
3605    if (!VDecl->isInvalidDecl())
3606      if (CheckInitializerTypes(Init, DclT, Entity, Kind))
3607        VDecl->setInvalidDecl();
3608
3609    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3610    // Don't check invalid declarations to avoid emitting useless diagnostics.
3611    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3612      // C99 6.7.8p4. All file scoped initializers need to be constant.
3613      CheckForConstantInitializer(Init, DclT);
3614    }
3615  }
3616  // If the type changed, it means we had an incomplete type that was
3617  // completed by the initializer. For example:
3618  //   int ary[] = { 1, 3, 5 };
3619  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
3620  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
3621    VDecl->setType(DclT);
3622    Init->setType(DclT);
3623  }
3624
3625  Init = MaybeCreateCXXExprWithTemporaries(Init);
3626  // Attach the initializer to the decl.
3627  VDecl->setInit(Context, Init);
3628
3629  // If the previous declaration of VDecl was a tentative definition,
3630  // remove it from the set of tentative definitions.
3631  if (VDecl->getPreviousDeclaration() &&
3632      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
3633    bool Deleted = TentativeDefinitions.erase(VDecl->getDeclName());
3634    assert(Deleted && "Unrecorded tentative definition?"); Deleted=Deleted;
3635  }
3636
3637  return;
3638}
3639
3640void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
3641                                  bool TypeContainsUndeducedAuto) {
3642  Decl *RealDecl = dcl.getAs<Decl>();
3643
3644  // If there is no declaration, there was an error parsing it. Just ignore it.
3645  if (RealDecl == 0)
3646    return;
3647
3648  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
3649    QualType Type = Var->getType();
3650
3651    // Record tentative definitions.
3652    if (Var->isTentativeDefinition(Context)) {
3653      std::pair<llvm::DenseMap<DeclarationName, VarDecl *>::iterator, bool>
3654        InsertPair =
3655           TentativeDefinitions.insert(std::make_pair(Var->getDeclName(), Var));
3656
3657      // Keep the latest definition in the map.  If we see 'int i; int i;' we
3658      // want the second one in the map.
3659      InsertPair.first->second = Var;
3660
3661      // However, for the list, we don't care about the order, just make sure
3662      // that there are no dupes for a given declaration name.
3663      if (InsertPair.second)
3664        TentativeDefinitionList.push_back(Var->getDeclName());
3665    }
3666
3667    // C++ [dcl.init.ref]p3:
3668    //   The initializer can be omitted for a reference only in a
3669    //   parameter declaration (8.3.5), in the declaration of a
3670    //   function return type, in the declaration of a class member
3671    //   within its class declaration (9.2), and where the extern
3672    //   specifier is explicitly used.
3673    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
3674      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
3675        << Var->getDeclName()
3676        << SourceRange(Var->getLocation(), Var->getLocation());
3677      Var->setInvalidDecl();
3678      return;
3679    }
3680
3681    // C++0x [dcl.spec.auto]p3
3682    if (TypeContainsUndeducedAuto) {
3683      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
3684        << Var->getDeclName() << Type;
3685      Var->setInvalidDecl();
3686      return;
3687    }
3688
3689    // An array without size is an incomplete type, and there are no special
3690    // rules in C++ to make such a definition acceptable.
3691    if (getLangOptions().CPlusPlus && Type->isIncompleteArrayType() &&
3692        !Var->hasExternalStorage()) {
3693      Diag(Var->getLocation(),
3694           diag::err_typecheck_incomplete_array_needs_initializer);
3695      Var->setInvalidDecl();
3696      return;
3697    }
3698
3699    // C++ [temp.expl.spec]p15:
3700    //   An explicit specialization of a static data member of a template is a
3701    //   definition if the declaration includes an initializer; otherwise, it
3702    //   is a declaration.
3703    if (Var->isStaticDataMember() &&
3704        Var->getInstantiatedFromStaticDataMember() &&
3705        Var->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
3706      return;
3707
3708    // C++ [dcl.init]p9:
3709    //   If no initializer is specified for an object, and the object
3710    //   is of (possibly cv-qualified) non-POD class type (or array
3711    //   thereof), the object shall be default-initialized; if the
3712    //   object is of const-qualified type, the underlying class type
3713    //   shall have a user-declared default constructor.
3714    //
3715    // FIXME: Diagnose the "user-declared default constructor" bit.
3716    if (getLangOptions().CPlusPlus) {
3717      QualType InitType = Type;
3718      if (const ArrayType *Array = Context.getAsArrayType(Type))
3719        InitType = Context.getBaseElementType(Array);
3720      if ((!Var->hasExternalStorage() && !Var->isExternC()) &&
3721          InitType->isRecordType() && !InitType->isDependentType()) {
3722        if (!RequireCompleteType(Var->getLocation(), InitType,
3723                                 diag::err_invalid_incomplete_type_use)) {
3724          ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
3725
3726          CXXConstructorDecl *Constructor
3727            = PerformInitializationByConstructor(InitType,
3728                                                 MultiExprArg(*this, 0, 0),
3729                                                 Var->getLocation(),
3730                                               SourceRange(Var->getLocation(),
3731                                                           Var->getLocation()),
3732                                                 Var->getDeclName(),
3733                         InitializationKind::CreateDefault(Var->getLocation()),
3734                                                 ConstructorArgs);
3735
3736          // FIXME: Location info for the variable initialization?
3737          if (!Constructor)
3738            Var->setInvalidDecl();
3739          else {
3740            // FIXME: Cope with initialization of arrays
3741            if (!Constructor->isTrivial() &&
3742                InitializeVarWithConstructor(Var, Constructor,
3743                                             move_arg(ConstructorArgs)))
3744              Var->setInvalidDecl();
3745
3746            FinalizeVarWithDestructor(Var, InitType);
3747          }
3748        } else {
3749          Var->setInvalidDecl();
3750        }
3751      }
3752
3753      // The variable can not have an abstract class type.
3754      if (RequireNonAbstractType(Var->getLocation(), Type,
3755                                 diag::err_abstract_type_in_decl,
3756                                 AbstractVariableType))
3757        Var->setInvalidDecl();
3758    }
3759
3760#if 0
3761    // FIXME: Temporarily disabled because we are not properly parsing
3762    // linkage specifications on declarations, e.g.,
3763    //
3764    //   extern "C" const CGPoint CGPointerZero;
3765    //
3766    // C++ [dcl.init]p9:
3767    //
3768    //     If no initializer is specified for an object, and the
3769    //     object is of (possibly cv-qualified) non-POD class type (or
3770    //     array thereof), the object shall be default-initialized; if
3771    //     the object is of const-qualified type, the underlying class
3772    //     type shall have a user-declared default
3773    //     constructor. Otherwise, if no initializer is specified for
3774    //     an object, the object and its subobjects, if any, have an
3775    //     indeterminate initial value; if the object or any of its
3776    //     subobjects are of const-qualified type, the program is
3777    //     ill-formed.
3778    //
3779    // This isn't technically an error in C, so we don't diagnose it.
3780    //
3781    // FIXME: Actually perform the POD/user-defined default
3782    // constructor check.
3783    if (getLangOptions().CPlusPlus &&
3784        Context.getCanonicalType(Type).isConstQualified() &&
3785        !Var->hasExternalStorage())
3786      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
3787        << Var->getName()
3788        << SourceRange(Var->getLocation(), Var->getLocation());
3789#endif
3790  }
3791}
3792
3793Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
3794                                                   DeclPtrTy *Group,
3795                                                   unsigned NumDecls) {
3796  llvm::SmallVector<Decl*, 8> Decls;
3797
3798  if (DS.isTypeSpecOwned())
3799    Decls.push_back((Decl*)DS.getTypeRep());
3800
3801  for (unsigned i = 0; i != NumDecls; ++i)
3802    if (Decl *D = Group[i].getAs<Decl>())
3803      Decls.push_back(D);
3804
3805  // Perform semantic analysis that depends on having fully processed both
3806  // the declarator and initializer.
3807  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
3808    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
3809    if (!IDecl)
3810      continue;
3811    QualType T = IDecl->getType();
3812
3813    // Block scope. C99 6.7p7: If an identifier for an object is declared with
3814    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
3815    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
3816      if (T->isDependentType()) {
3817        // If T is dependent, we should not require a complete type.
3818        // (RequireCompleteType shouldn't be called with dependent types.)
3819        // But we still can at least check if we've got an array of unspecified
3820        // size without an initializer.
3821        if (!IDecl->isInvalidDecl() && T->isIncompleteArrayType() &&
3822            !IDecl->getInit()) {
3823          Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type)
3824            << T;
3825          IDecl->setInvalidDecl();
3826        }
3827      } else if (!IDecl->isInvalidDecl()) {
3828        // If T is an incomplete array type with an initializer list that is
3829        // dependent on something, its size has not been fixed. We could attempt
3830        // to fix the size for such arrays, but we would still have to check
3831        // here for initializers containing a C++0x vararg expansion, e.g.
3832        // template <typename... Args> void f(Args... args) {
3833        //   int vals[] = { args };
3834        // }
3835        const IncompleteArrayType *IAT = Context.getAsIncompleteArrayType(T);
3836        Expr *Init = IDecl->getInit();
3837        if (IAT && Init &&
3838            (Init->isTypeDependent() || Init->isValueDependent())) {
3839          // Check that the member type of the array is complete, at least.
3840          if (RequireCompleteType(IDecl->getLocation(), IAT->getElementType(),
3841                                  diag::err_typecheck_decl_incomplete_type))
3842            IDecl->setInvalidDecl();
3843        } else if (RequireCompleteType(IDecl->getLocation(), T,
3844                                      diag::err_typecheck_decl_incomplete_type))
3845          IDecl->setInvalidDecl();
3846      }
3847    }
3848    // File scope. C99 6.9.2p2: A declaration of an identifier for an
3849    // object that has file scope without an initializer, and without a
3850    // storage-class specifier or with the storage-class specifier "static",
3851    // constitutes a tentative definition. Note: A tentative definition with
3852    // external linkage is valid (C99 6.2.2p5).
3853    if (IDecl->isTentativeDefinition(Context) && !IDecl->isInvalidDecl()) {
3854      if (const IncompleteArrayType *ArrayT
3855          = Context.getAsIncompleteArrayType(T)) {
3856        if (RequireCompleteType(IDecl->getLocation(),
3857                                ArrayT->getElementType(),
3858                                diag::err_illegal_decl_array_incomplete_type))
3859          IDecl->setInvalidDecl();
3860      } else if (IDecl->getStorageClass() == VarDecl::Static) {
3861        // C99 6.9.2p3: If the declaration of an identifier for an object is
3862        // a tentative definition and has internal linkage (C99 6.2.2p3), the
3863        // declared type shall not be an incomplete type.
3864        // NOTE: code such as the following
3865        //     static struct s;
3866        //     struct s { int a; };
3867        // is accepted by gcc. Hence here we issue a warning instead of
3868        // an error and we do not invalidate the static declaration.
3869        // NOTE: to avoid multiple warnings, only check the first declaration.
3870        if (IDecl->getPreviousDeclaration() == 0)
3871          RequireCompleteType(IDecl->getLocation(), T,
3872                              diag::ext_typecheck_decl_incomplete_type);
3873      }
3874    }
3875  }
3876  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
3877                                                   Decls.data(), Decls.size()));
3878}
3879
3880
3881/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
3882/// to introduce parameters into function prototype scope.
3883Sema::DeclPtrTy
3884Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
3885  const DeclSpec &DS = D.getDeclSpec();
3886
3887  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
3888  VarDecl::StorageClass StorageClass = VarDecl::None;
3889  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
3890    StorageClass = VarDecl::Register;
3891  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
3892    Diag(DS.getStorageClassSpecLoc(),
3893         diag::err_invalid_storage_class_in_func_decl);
3894    D.getMutableDeclSpec().ClearStorageClassSpecs();
3895  }
3896
3897  if (D.getDeclSpec().isThreadSpecified())
3898    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3899
3900  DiagnoseFunctionSpecifiers(D);
3901
3902  // Check that there are no default arguments inside the type of this
3903  // parameter (C++ only).
3904  if (getLangOptions().CPlusPlus)
3905    CheckExtraCXXDefaultArguments(D);
3906
3907  TypeSourceInfo *TInfo = 0;
3908  TagDecl *OwnedDecl = 0;
3909  QualType parmDeclType = GetTypeForDeclarator(D, S, &TInfo, &OwnedDecl);
3910
3911  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
3912    // C++ [dcl.fct]p6:
3913    //   Types shall not be defined in return or parameter types.
3914    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
3915      << Context.getTypeDeclType(OwnedDecl);
3916  }
3917
3918  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
3919  // Can this happen for params?  We already checked that they don't conflict
3920  // among each other.  Here they can only shadow globals, which is ok.
3921  IdentifierInfo *II = D.getIdentifier();
3922  if (II) {
3923    if (NamedDecl *PrevDecl = LookupSingleName(S, II, LookupOrdinaryName)) {
3924      if (PrevDecl->isTemplateParameter()) {
3925        // Maybe we will complain about the shadowed template parameter.
3926        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3927        // Just pretend that we didn't see the previous declaration.
3928        PrevDecl = 0;
3929      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
3930        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
3931
3932        // Recover by removing the name
3933        II = 0;
3934        D.SetIdentifier(0, D.getIdentifierLoc());
3935      }
3936    }
3937  }
3938
3939  // Parameters can not be abstract class types.
3940  // For record types, this is done by the AbstractClassUsageDiagnoser once
3941  // the class has been completely parsed.
3942  if (!CurContext->isRecord() &&
3943      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
3944                             diag::err_abstract_type_in_decl,
3945                             AbstractParamType))
3946    D.setInvalidType(true);
3947
3948  QualType T = adjustParameterType(parmDeclType);
3949
3950  ParmVarDecl *New
3951    = ParmVarDecl::Create(Context, CurContext, D.getIdentifierLoc(), II,
3952                          T, TInfo, StorageClass, 0);
3953
3954  if (D.isInvalidType())
3955    New->setInvalidDecl();
3956
3957  // Parameter declarators cannot be interface types. All ObjC objects are
3958  // passed by reference.
3959  if (T->isObjCInterfaceType()) {
3960    Diag(D.getIdentifierLoc(),
3961         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
3962    New->setInvalidDecl();
3963  }
3964
3965  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
3966  if (D.getCXXScopeSpec().isSet()) {
3967    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
3968      << D.getCXXScopeSpec().getRange();
3969    New->setInvalidDecl();
3970  }
3971
3972  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
3973  // duration shall not be qualified by an address-space qualifier."
3974  // Since all parameters have automatic store duration, they can not have
3975  // an address space.
3976  if (T.getAddressSpace() != 0) {
3977    Diag(D.getIdentifierLoc(),
3978         diag::err_arg_with_address_space);
3979    New->setInvalidDecl();
3980  }
3981
3982
3983  // Add the parameter declaration into this scope.
3984  S->AddDecl(DeclPtrTy::make(New));
3985  if (II)
3986    IdResolver.AddDecl(New);
3987
3988  ProcessDeclAttributes(S, New, D);
3989
3990  if (New->hasAttr<BlocksAttr>()) {
3991    Diag(New->getLocation(), diag::err_block_on_nonlocal);
3992  }
3993  return DeclPtrTy::make(New);
3994}
3995
3996void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
3997                                           SourceLocation LocAfterDecls) {
3998  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3999         "Not a function declarator!");
4000  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4001
4002  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
4003  // for a K&R function.
4004  if (!FTI.hasPrototype) {
4005    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
4006      --i;
4007      if (FTI.ArgInfo[i].Param == 0) {
4008        llvm::SmallString<256> Code;
4009        llvm::raw_svector_ostream(Code) << "  int "
4010                                        << FTI.ArgInfo[i].Ident->getName()
4011                                        << ";\n";
4012        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
4013          << FTI.ArgInfo[i].Ident
4014          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code.str());
4015
4016        // Implicitly declare the argument as type 'int' for lack of a better
4017        // type.
4018        DeclSpec DS;
4019        const char* PrevSpec; // unused
4020        unsigned DiagID; // unused
4021        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
4022                           PrevSpec, DiagID);
4023        Declarator ParamD(DS, Declarator::KNRTypeListContext);
4024        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
4025        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
4026      }
4027    }
4028  }
4029}
4030
4031Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
4032                                              Declarator &D) {
4033  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4034  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4035         "Not a function declarator!");
4036  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4037
4038  if (FTI.hasPrototype) {
4039    // FIXME: Diagnose arguments without names in C.
4040  }
4041
4042  Scope *ParentScope = FnBodyScope->getParent();
4043
4044  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
4045                                  MultiTemplateParamsArg(*this),
4046                                  /*IsFunctionDefinition=*/true);
4047  return ActOnStartOfFunctionDef(FnBodyScope, DP);
4048}
4049
4050static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
4051  // Don't warn about invalid declarations.
4052  if (FD->isInvalidDecl())
4053    return false;
4054
4055  // Or declarations that aren't global.
4056  if (!FD->isGlobal())
4057    return false;
4058
4059  // Don't warn about C++ member functions.
4060  if (isa<CXXMethodDecl>(FD))
4061    return false;
4062
4063  // Don't warn about 'main'.
4064  if (FD->isMain())
4065    return false;
4066
4067  // Don't warn about inline functions.
4068  if (FD->isInlineSpecified())
4069    return false;
4070
4071  // Don't warn about function templates.
4072  if (FD->getDescribedFunctionTemplate())
4073    return false;
4074
4075  // Don't warn about function template specializations.
4076  if (FD->isFunctionTemplateSpecialization())
4077    return false;
4078
4079  bool MissingPrototype = true;
4080  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
4081       Prev; Prev = Prev->getPreviousDeclaration()) {
4082    // Ignore any declarations that occur in function or method
4083    // scope, because they aren't visible from the header.
4084    if (Prev->getDeclContext()->isFunctionOrMethod())
4085      continue;
4086
4087    MissingPrototype = !Prev->getType()->isFunctionProtoType();
4088    break;
4089  }
4090
4091  return MissingPrototype;
4092}
4093
4094Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
4095  // Clear the last template instantiation error context.
4096  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
4097
4098  if (!D)
4099    return D;
4100  FunctionDecl *FD = 0;
4101
4102  if (FunctionTemplateDecl *FunTmpl
4103        = dyn_cast<FunctionTemplateDecl>(D.getAs<Decl>()))
4104    FD = FunTmpl->getTemplatedDecl();
4105  else
4106    FD = cast<FunctionDecl>(D.getAs<Decl>());
4107
4108  CurFunctionNeedsScopeChecking = false;
4109
4110  // See if this is a redefinition.
4111  const FunctionDecl *Definition;
4112  if (FD->getBody(Definition)) {
4113    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
4114    Diag(Definition->getLocation(), diag::note_previous_definition);
4115  }
4116
4117  // Builtin functions cannot be defined.
4118  if (unsigned BuiltinID = FD->getBuiltinID()) {
4119    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
4120      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
4121      FD->setInvalidDecl();
4122    }
4123  }
4124
4125  // The return type of a function definition must be complete
4126  // (C99 6.9.1p3, C++ [dcl.fct]p6).
4127  QualType ResultType = FD->getResultType();
4128  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
4129      !FD->isInvalidDecl() &&
4130      RequireCompleteType(FD->getLocation(), ResultType,
4131                          diag::err_func_def_incomplete_result))
4132    FD->setInvalidDecl();
4133
4134  // GNU warning -Wmissing-prototypes:
4135  //   Warn if a global function is defined without a previous
4136  //   prototype declaration. This warning is issued even if the
4137  //   definition itself provides a prototype. The aim is to detect
4138  //   global functions that fail to be declared in header files.
4139  if (ShouldWarnAboutMissingPrototype(FD))
4140    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
4141
4142  if (FnBodyScope)
4143    PushDeclContext(FnBodyScope, FD);
4144
4145  // Check the validity of our function parameters
4146  CheckParmsForFunctionDef(FD);
4147
4148  // Introduce our parameters into the function scope
4149  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
4150    ParmVarDecl *Param = FD->getParamDecl(p);
4151    Param->setOwningFunction(FD);
4152
4153    // If this has an identifier, add it to the scope stack.
4154    if (Param->getIdentifier() && FnBodyScope)
4155      PushOnScopeChains(Param, FnBodyScope);
4156  }
4157
4158  // Checking attributes of current function definition
4159  // dllimport attribute.
4160  if (FD->getAttr<DLLImportAttr>() &&
4161      (!FD->getAttr<DLLExportAttr>())) {
4162    // dllimport attribute cannot be applied to definition.
4163    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
4164      Diag(FD->getLocation(),
4165           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
4166        << "dllimport";
4167      FD->setInvalidDecl();
4168      return DeclPtrTy::make(FD);
4169    } else {
4170      // If a symbol previously declared dllimport is later defined, the
4171      // attribute is ignored in subsequent references, and a warning is
4172      // emitted.
4173      Diag(FD->getLocation(),
4174           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
4175        << FD->getNameAsCString() << "dllimport";
4176    }
4177  }
4178  return DeclPtrTy::make(FD);
4179}
4180
4181Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
4182  return ActOnFinishFunctionBody(D, move(BodyArg), false);
4183}
4184
4185Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
4186                                              bool IsInstantiation) {
4187  Decl *dcl = D.getAs<Decl>();
4188  Stmt *Body = BodyArg.takeAs<Stmt>();
4189
4190  FunctionDecl *FD = 0;
4191  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
4192  if (FunTmpl)
4193    FD = FunTmpl->getTemplatedDecl();
4194  else
4195    FD = dyn_cast_or_null<FunctionDecl>(dcl);
4196
4197  if (FD) {
4198    FD->setBody(Body);
4199    if (FD->isMain())
4200      // C and C++ allow for main to automagically return 0.
4201      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
4202      FD->setHasImplicitReturnZero(true);
4203    else
4204      CheckFallThroughForFunctionDef(FD, Body);
4205
4206    if (!FD->isInvalidDecl())
4207      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
4208
4209    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
4210      MaybeMarkVirtualMembersReferenced(Method->getLocation(), Method);
4211
4212    assert(FD == getCurFunctionDecl() && "Function parsing confused");
4213  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
4214    assert(MD == getCurMethodDecl() && "Method parsing confused");
4215    MD->setBody(Body);
4216    CheckFallThroughForFunctionDef(MD, Body);
4217    MD->setEndLoc(Body->getLocEnd());
4218
4219    if (!MD->isInvalidDecl())
4220      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
4221  } else {
4222    Body->Destroy(Context);
4223    return DeclPtrTy();
4224  }
4225  if (!IsInstantiation)
4226    PopDeclContext();
4227
4228  // Verify and clean out per-function state.
4229
4230  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
4231
4232  // Check goto/label use.
4233  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
4234       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
4235    LabelStmt *L = I->second;
4236
4237    // Verify that we have no forward references left.  If so, there was a goto
4238    // or address of a label taken, but no definition of it.  Label fwd
4239    // definitions are indicated with a null substmt.
4240    if (L->getSubStmt() != 0)
4241      continue;
4242
4243    // Emit error.
4244    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
4245
4246    // At this point, we have gotos that use the bogus label.  Stitch it into
4247    // the function body so that they aren't leaked and that the AST is well
4248    // formed.
4249    if (Body == 0) {
4250      // The whole function wasn't parsed correctly, just delete this.
4251      L->Destroy(Context);
4252      continue;
4253    }
4254
4255    // Otherwise, the body is valid: we want to stitch the label decl into the
4256    // function somewhere so that it is properly owned and so that the goto
4257    // has a valid target.  Do this by creating a new compound stmt with the
4258    // label in it.
4259
4260    // Give the label a sub-statement.
4261    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
4262
4263    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
4264                               cast<CXXTryStmt>(Body)->getTryBlock() :
4265                               cast<CompoundStmt>(Body);
4266    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
4267    Elements.push_back(L);
4268    Compound->setStmts(Context, &Elements[0], Elements.size());
4269  }
4270  FunctionLabelMap.clear();
4271
4272  if (!Body) return D;
4273
4274  // Verify that that gotos and switch cases don't jump into scopes illegally.
4275  if (CurFunctionNeedsScopeChecking)
4276    DiagnoseInvalidJumps(Body);
4277
4278  // C++ constructors that have function-try-blocks can't have return
4279  // statements in the handlers of that block. (C++ [except.handle]p14)
4280  // Verify this.
4281  if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
4282    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
4283
4284  if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
4285    MarkBaseAndMemberDestructorsReferenced(Destructor);
4286
4287  // If any errors have occurred, clear out any temporaries that may have
4288  // been leftover. This ensures that these temporaries won't be picked up for
4289  // deletion in some later function.
4290  if (PP.getDiagnostics().hasErrorOccurred())
4291    ExprTemporaries.clear();
4292
4293  assert(ExprTemporaries.empty() && "Leftover temporaries in function");
4294  return D;
4295}
4296
4297/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
4298/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
4299NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
4300                                          IdentifierInfo &II, Scope *S) {
4301  // Before we produce a declaration for an implicitly defined
4302  // function, see whether there was a locally-scoped declaration of
4303  // this name as a function or variable. If so, use that
4304  // (non-visible) declaration, and complain about it.
4305  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4306    = LocallyScopedExternalDecls.find(&II);
4307  if (Pos != LocallyScopedExternalDecls.end()) {
4308    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
4309    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
4310    return Pos->second;
4311  }
4312
4313  // Extension in C99.  Legal in C90, but warn about it.
4314  if (II.getName().startswith("__builtin_"))
4315    Diag(Loc, diag::warn_builtin_unknown) << &II;
4316  else if (getLangOptions().C99)
4317    Diag(Loc, diag::ext_implicit_function_decl) << &II;
4318  else
4319    Diag(Loc, diag::warn_implicit_function_decl) << &II;
4320
4321  // Set a Declarator for the implicit definition: int foo();
4322  const char *Dummy;
4323  DeclSpec DS;
4324  unsigned DiagID;
4325  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
4326  Error = Error; // Silence warning.
4327  assert(!Error && "Error setting up implicit decl!");
4328  Declarator D(DS, Declarator::BlockContext);
4329  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
4330                                             0, 0, false, SourceLocation(),
4331                                             false, 0,0,0, Loc, Loc, D),
4332                SourceLocation());
4333  D.SetIdentifier(&II, Loc);
4334
4335  // Insert this function into translation-unit scope.
4336
4337  DeclContext *PrevDC = CurContext;
4338  CurContext = Context.getTranslationUnitDecl();
4339
4340  FunctionDecl *FD =
4341 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
4342  FD->setImplicit();
4343
4344  CurContext = PrevDC;
4345
4346  AddKnownFunctionAttributes(FD);
4347
4348  return FD;
4349}
4350
4351/// \brief Adds any function attributes that we know a priori based on
4352/// the declaration of this function.
4353///
4354/// These attributes can apply both to implicitly-declared builtins
4355/// (like __builtin___printf_chk) or to library-declared functions
4356/// like NSLog or printf.
4357void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
4358  if (FD->isInvalidDecl())
4359    return;
4360
4361  // If this is a built-in function, map its builtin attributes to
4362  // actual attributes.
4363  if (unsigned BuiltinID = FD->getBuiltinID()) {
4364    // Handle printf-formatting attributes.
4365    unsigned FormatIdx;
4366    bool HasVAListArg;
4367    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
4368      if (!FD->getAttr<FormatAttr>())
4369        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
4370                                             HasVAListArg ? 0 : FormatIdx + 2));
4371    }
4372
4373    // Mark const if we don't care about errno and that is the only
4374    // thing preventing the function from being const. This allows
4375    // IRgen to use LLVM intrinsics for such functions.
4376    if (!getLangOptions().MathErrno &&
4377        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
4378      if (!FD->getAttr<ConstAttr>())
4379        FD->addAttr(::new (Context) ConstAttr());
4380    }
4381
4382    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
4383      FD->addAttr(::new (Context) NoReturnAttr());
4384  }
4385
4386  IdentifierInfo *Name = FD->getIdentifier();
4387  if (!Name)
4388    return;
4389  if ((!getLangOptions().CPlusPlus &&
4390       FD->getDeclContext()->isTranslationUnit()) ||
4391      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
4392       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
4393       LinkageSpecDecl::lang_c)) {
4394    // Okay: this could be a libc/libm/Objective-C function we know
4395    // about.
4396  } else
4397    return;
4398
4399  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
4400    // FIXME: NSLog and NSLogv should be target specific
4401    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
4402      // FIXME: We known better than our headers.
4403      const_cast<FormatAttr *>(Format)->setType("printf");
4404    } else
4405      FD->addAttr(::new (Context) FormatAttr("printf", 1,
4406                                             Name->isStr("NSLogv") ? 0 : 2));
4407  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
4408    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
4409    // target-specific builtins, perhaps?
4410    if (!FD->getAttr<FormatAttr>())
4411      FD->addAttr(::new (Context) FormatAttr("printf", 2,
4412                                             Name->isStr("vasprintf") ? 0 : 3));
4413  }
4414}
4415
4416TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
4417                                    TypeSourceInfo *TInfo) {
4418  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
4419  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
4420
4421  if (!TInfo) {
4422    assert(D.isInvalidType() && "no declarator info for valid type");
4423    TInfo = Context.getTrivialTypeSourceInfo(T);
4424  }
4425
4426  // Scope manipulation handled by caller.
4427  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
4428                                           D.getIdentifierLoc(),
4429                                           D.getIdentifier(),
4430                                           TInfo);
4431
4432  if (const TagType *TT = T->getAs<TagType>()) {
4433    TagDecl *TD = TT->getDecl();
4434
4435    // If the TagDecl that the TypedefDecl points to is an anonymous decl
4436    // keep track of the TypedefDecl.
4437    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
4438      TD->setTypedefForAnonDecl(NewTD);
4439  }
4440
4441  if (D.isInvalidType())
4442    NewTD->setInvalidDecl();
4443  return NewTD;
4444}
4445
4446
4447/// \brief Determine whether a tag with a given kind is acceptable
4448/// as a redeclaration of the given tag declaration.
4449///
4450/// \returns true if the new tag kind is acceptable, false otherwise.
4451bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
4452                                        TagDecl::TagKind NewTag,
4453                                        SourceLocation NewTagLoc,
4454                                        const IdentifierInfo &Name) {
4455  // C++ [dcl.type.elab]p3:
4456  //   The class-key or enum keyword present in the
4457  //   elaborated-type-specifier shall agree in kind with the
4458  //   declaration to which the name in theelaborated-type-specifier
4459  //   refers. This rule also applies to the form of
4460  //   elaborated-type-specifier that declares a class-name or
4461  //   friend class since it can be construed as referring to the
4462  //   definition of the class. Thus, in any
4463  //   elaborated-type-specifier, the enum keyword shall be used to
4464  //   refer to an enumeration (7.2), the union class-keyshall be
4465  //   used to refer to a union (clause 9), and either the class or
4466  //   struct class-key shall be used to refer to a class (clause 9)
4467  //   declared using the class or struct class-key.
4468  TagDecl::TagKind OldTag = Previous->getTagKind();
4469  if (OldTag == NewTag)
4470    return true;
4471
4472  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
4473      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
4474    // Warn about the struct/class tag mismatch.
4475    bool isTemplate = false;
4476    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
4477      isTemplate = Record->getDescribedClassTemplate();
4478
4479    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
4480      << (NewTag == TagDecl::TK_class)
4481      << isTemplate << &Name
4482      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
4483                              OldTag == TagDecl::TK_class? "class" : "struct");
4484    Diag(Previous->getLocation(), diag::note_previous_use);
4485    return true;
4486  }
4487  return false;
4488}
4489
4490/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
4491/// former case, Name will be non-null.  In the later case, Name will be null.
4492/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
4493/// reference/declaration/definition of a tag.
4494Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
4495                               SourceLocation KWLoc, const CXXScopeSpec &SS,
4496                               IdentifierInfo *Name, SourceLocation NameLoc,
4497                               AttributeList *Attr, AccessSpecifier AS,
4498                               MultiTemplateParamsArg TemplateParameterLists,
4499                               bool &OwnedDecl, bool &IsDependent) {
4500  // If this is not a definition, it must have a name.
4501  assert((Name != 0 || TUK == TUK_Definition) &&
4502         "Nameless record must be a definition!");
4503
4504  OwnedDecl = false;
4505  TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec);
4506
4507  // FIXME: Check explicit specializations more carefully.
4508  bool isExplicitSpecialization = false;
4509  if (TUK != TUK_Reference) {
4510    if (TemplateParameterList *TemplateParams
4511          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
4512                        (TemplateParameterList**)TemplateParameterLists.get(),
4513                                              TemplateParameterLists.size(),
4514                                                    isExplicitSpecialization)) {
4515      if (TemplateParams->size() > 0) {
4516        // This is a declaration or definition of a class template (which may
4517        // be a member of another template).
4518        OwnedDecl = false;
4519        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
4520                                               SS, Name, NameLoc, Attr,
4521                                               TemplateParams,
4522                                               AS);
4523        TemplateParameterLists.release();
4524        return Result.get();
4525      } else {
4526        // The "template<>" header is extraneous.
4527        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
4528          << ElaboratedType::getNameForTagKind(Kind) << Name;
4529        isExplicitSpecialization = true;
4530      }
4531    }
4532
4533    TemplateParameterLists.release();
4534  }
4535
4536  DeclContext *SearchDC = CurContext;
4537  DeclContext *DC = CurContext;
4538  bool isStdBadAlloc = false;
4539  bool Invalid = false;
4540
4541  RedeclarationKind Redecl = (TUK != TUK_Reference ? ForRedeclaration
4542                                                   : NotForRedeclaration);
4543
4544  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
4545
4546  if (Name && SS.isNotEmpty()) {
4547    // We have a nested-name tag ('struct foo::bar').
4548
4549    // Check for invalid 'foo::'.
4550    if (SS.isInvalid()) {
4551      Name = 0;
4552      goto CreateNewDecl;
4553    }
4554
4555    // If this is a friend or a reference to a class in a dependent
4556    // context, don't try to make a decl for it.
4557    if (TUK == TUK_Friend || TUK == TUK_Reference) {
4558      DC = computeDeclContext(SS, false);
4559      if (!DC) {
4560        IsDependent = true;
4561        return DeclPtrTy();
4562      }
4563    }
4564
4565    if (RequireCompleteDeclContext(SS))
4566      return DeclPtrTy::make((Decl *)0);
4567
4568    DC = computeDeclContext(SS, true);
4569    SearchDC = DC;
4570    // Look-up name inside 'foo::'.
4571    LookupQualifiedName(Previous, DC);
4572
4573    if (Previous.isAmbiguous())
4574      return DeclPtrTy();
4575
4576    // A tag 'foo::bar' must already exist.
4577    if (Previous.empty()) {
4578      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
4579      Name = 0;
4580      Invalid = true;
4581      goto CreateNewDecl;
4582    }
4583  } else if (Name) {
4584    // If this is a named struct, check to see if there was a previous forward
4585    // declaration or definition.
4586    // FIXME: We're looking into outer scopes here, even when we
4587    // shouldn't be. Doing so can result in ambiguities that we
4588    // shouldn't be diagnosing.
4589    LookupName(Previous, S);
4590
4591    // Note:  there used to be some attempt at recovery here.
4592    if (Previous.isAmbiguous())
4593      return DeclPtrTy();
4594
4595    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
4596      // FIXME: This makes sure that we ignore the contexts associated
4597      // with C structs, unions, and enums when looking for a matching
4598      // tag declaration or definition. See the similar lookup tweak
4599      // in Sema::LookupName; is there a better way to deal with this?
4600      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
4601        SearchDC = SearchDC->getParent();
4602    }
4603  }
4604
4605  if (Previous.isSingleResult() &&
4606      Previous.getFoundDecl()->isTemplateParameter()) {
4607    // Maybe we will complain about the shadowed template parameter.
4608    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
4609    // Just pretend that we didn't see the previous declaration.
4610    Previous.clear();
4611  }
4612
4613  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
4614      DC->Equals(StdNamespace) && Name->isStr("bad_alloc")) {
4615    // This is a declaration of or a reference to "std::bad_alloc".
4616    isStdBadAlloc = true;
4617
4618    if (Previous.empty() && StdBadAlloc) {
4619      // std::bad_alloc has been implicitly declared (but made invisible to
4620      // name lookup). Fill in this implicit declaration as the previous
4621      // declaration, so that the declarations get chained appropriately.
4622      Previous.addDecl(StdBadAlloc);
4623    }
4624  }
4625
4626  if (!Previous.empty()) {
4627    assert(Previous.isSingleResult());
4628    NamedDecl *PrevDecl = Previous.getFoundDecl();
4629    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
4630      // If this is a use of a previous tag, or if the tag is already declared
4631      // in the same scope (so that the definition/declaration completes or
4632      // rementions the tag), reuse the decl.
4633      if (TUK == TUK_Reference || TUK == TUK_Friend ||
4634          isDeclInScope(PrevDecl, SearchDC, S)) {
4635        // Make sure that this wasn't declared as an enum and now used as a
4636        // struct or something similar.
4637        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
4638          bool SafeToContinue
4639            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
4640               Kind != TagDecl::TK_enum);
4641          if (SafeToContinue)
4642            Diag(KWLoc, diag::err_use_with_wrong_tag)
4643              << Name
4644              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
4645                                                  PrevTagDecl->getKindName());
4646          else
4647            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
4648          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
4649
4650          if (SafeToContinue)
4651            Kind = PrevTagDecl->getTagKind();
4652          else {
4653            // Recover by making this an anonymous redefinition.
4654            Name = 0;
4655            Previous.clear();
4656            Invalid = true;
4657          }
4658        }
4659
4660        if (!Invalid) {
4661          // If this is a use, just return the declaration we found.
4662
4663          // FIXME: In the future, return a variant or some other clue
4664          // for the consumer of this Decl to know it doesn't own it.
4665          // For our current ASTs this shouldn't be a problem, but will
4666          // need to be changed with DeclGroups.
4667          if (TUK == TUK_Reference || TUK == TUK_Friend)
4668            return DeclPtrTy::make(PrevTagDecl);
4669
4670          // Diagnose attempts to redefine a tag.
4671          if (TUK == TUK_Definition) {
4672            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
4673              // If we're defining a specialization and the previous definition
4674              // is from an implicit instantiation, don't emit an error
4675              // here; we'll catch this in the general case below.
4676              if (!isExplicitSpecialization ||
4677                  !isa<CXXRecordDecl>(Def) ||
4678                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
4679                                               == TSK_ExplicitSpecialization) {
4680                Diag(NameLoc, diag::err_redefinition) << Name;
4681                Diag(Def->getLocation(), diag::note_previous_definition);
4682                // If this is a redefinition, recover by making this
4683                // struct be anonymous, which will make any later
4684                // references get the previous definition.
4685                Name = 0;
4686                Previous.clear();
4687                Invalid = true;
4688              }
4689            } else {
4690              // If the type is currently being defined, complain
4691              // about a nested redefinition.
4692              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
4693              if (Tag->isBeingDefined()) {
4694                Diag(NameLoc, diag::err_nested_redefinition) << Name;
4695                Diag(PrevTagDecl->getLocation(),
4696                     diag::note_previous_definition);
4697                Name = 0;
4698                Previous.clear();
4699                Invalid = true;
4700              }
4701            }
4702
4703            // Okay, this is definition of a previously declared or referenced
4704            // tag PrevDecl. We're going to create a new Decl for it.
4705          }
4706        }
4707        // If we get here we have (another) forward declaration or we
4708        // have a definition.  Just create a new decl.
4709
4710      } else {
4711        // If we get here, this is a definition of a new tag type in a nested
4712        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
4713        // new decl/type.  We set PrevDecl to NULL so that the entities
4714        // have distinct types.
4715        Previous.clear();
4716      }
4717      // If we get here, we're going to create a new Decl. If PrevDecl
4718      // is non-NULL, it's a definition of the tag declared by
4719      // PrevDecl. If it's NULL, we have a new definition.
4720    } else {
4721      // PrevDecl is a namespace, template, or anything else
4722      // that lives in the IDNS_Tag identifier namespace.
4723      if (isDeclInScope(PrevDecl, SearchDC, S)) {
4724        // The tag name clashes with a namespace name, issue an error and
4725        // recover by making this tag be anonymous.
4726        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
4727        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4728        Name = 0;
4729        Previous.clear();
4730        Invalid = true;
4731      } else {
4732        // The existing declaration isn't relevant to us; we're in a
4733        // new scope, so clear out the previous declaration.
4734        Previous.clear();
4735      }
4736    }
4737  } else if (TUK == TUK_Reference && SS.isEmpty() && Name) {
4738    // C++ [basic.scope.pdecl]p5:
4739    //   -- for an elaborated-type-specifier of the form
4740    //
4741    //          class-key identifier
4742    //
4743    //      if the elaborated-type-specifier is used in the
4744    //      decl-specifier-seq or parameter-declaration-clause of a
4745    //      function defined in namespace scope, the identifier is
4746    //      declared as a class-name in the namespace that contains
4747    //      the declaration; otherwise, except as a friend
4748    //      declaration, the identifier is declared in the smallest
4749    //      non-class, non-function-prototype scope that contains the
4750    //      declaration.
4751    //
4752    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
4753    // C structs and unions.
4754    //
4755    // It is an error in C++ to declare (rather than define) an enum
4756    // type, including via an elaborated type specifier.  We'll
4757    // diagnose that later; for now, declare the enum in the same
4758    // scope as we would have picked for any other tag type.
4759    //
4760    // GNU C also supports this behavior as part of its incomplete
4761    // enum types extension, while GNU C++ does not.
4762    //
4763    // Find the context where we'll be declaring the tag.
4764    // FIXME: We would like to maintain the current DeclContext as the
4765    // lexical context,
4766    while (SearchDC->isRecord())
4767      SearchDC = SearchDC->getParent();
4768
4769    // Find the scope where we'll be declaring the tag.
4770    while (S->isClassScope() ||
4771           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
4772           ((S->getFlags() & Scope::DeclScope) == 0) ||
4773           (S->getEntity() &&
4774            ((DeclContext *)S->getEntity())->isTransparentContext()))
4775      S = S->getParent();
4776
4777  } else if (TUK == TUK_Friend && SS.isEmpty() && Name) {
4778    // C++ [namespace.memdef]p3:
4779    //   If a friend declaration in a non-local class first declares a
4780    //   class or function, the friend class or function is a member of
4781    //   the innermost enclosing namespace.
4782    while (!SearchDC->isFileContext())
4783      SearchDC = SearchDC->getParent();
4784
4785    // The entity of a decl scope is a DeclContext; see PushDeclContext.
4786    while (S->getEntity() != SearchDC)
4787      S = S->getParent();
4788  }
4789
4790CreateNewDecl:
4791
4792  TagDecl *PrevDecl = 0;
4793  if (Previous.isSingleResult())
4794    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
4795
4796  // If there is an identifier, use the location of the identifier as the
4797  // location of the decl, otherwise use the location of the struct/union
4798  // keyword.
4799  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
4800
4801  // Otherwise, create a new declaration. If there is a previous
4802  // declaration of the same entity, the two will be linked via
4803  // PrevDecl.
4804  TagDecl *New;
4805
4806  if (Kind == TagDecl::TK_enum) {
4807    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4808    // enum X { A, B, C } D;    D should chain to X.
4809    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
4810                           cast_or_null<EnumDecl>(PrevDecl));
4811    // If this is an undefined enum, warn.
4812    if (TUK != TUK_Definition && !Invalid)  {
4813      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
4814                                              : diag::ext_forward_ref_enum;
4815      Diag(Loc, DK);
4816    }
4817  } else {
4818    // struct/union/class
4819
4820    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4821    // struct X { int A; } D;    D should chain to X.
4822    if (getLangOptions().CPlusPlus) {
4823      // FIXME: Look for a way to use RecordDecl for simple structs.
4824      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4825                                  cast_or_null<CXXRecordDecl>(PrevDecl));
4826
4827      if (isStdBadAlloc && (!StdBadAlloc || StdBadAlloc->isImplicit()))
4828        StdBadAlloc = cast<CXXRecordDecl>(New);
4829    } else
4830      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4831                               cast_or_null<RecordDecl>(PrevDecl));
4832  }
4833
4834  if (Kind != TagDecl::TK_enum) {
4835    // Handle #pragma pack: if the #pragma pack stack has non-default
4836    // alignment, make up a packed attribute for this decl. These
4837    // attributes are checked when the ASTContext lays out the
4838    // structure.
4839    //
4840    // It is important for implementing the correct semantics that this
4841    // happen here (in act on tag decl). The #pragma pack stack is
4842    // maintained as a result of parser callbacks which can occur at
4843    // many points during the parsing of a struct declaration (because
4844    // the #pragma tokens are effectively skipped over during the
4845    // parsing of the struct).
4846    if (unsigned Alignment = getPragmaPackAlignment())
4847      New->addAttr(::new (Context) PragmaPackAttr(Alignment * 8));
4848  }
4849
4850  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
4851    // C++ [dcl.typedef]p3:
4852    //   [...] Similarly, in a given scope, a class or enumeration
4853    //   shall not be declared with the same name as a typedef-name
4854    //   that is declared in that scope and refers to a type other
4855    //   than the class or enumeration itself.
4856    LookupResult Lookup(*this, Name, NameLoc, LookupOrdinaryName,
4857                        ForRedeclaration);
4858    LookupName(Lookup, S);
4859    TypedefDecl *PrevTypedef = Lookup.getAsSingle<TypedefDecl>();
4860    NamedDecl *PrevTypedefNamed = PrevTypedef;
4861    if (PrevTypedef && isDeclInScope(PrevTypedefNamed, SearchDC, S) &&
4862        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
4863          Context.getCanonicalType(Context.getTypeDeclType(New))) {
4864      Diag(Loc, diag::err_tag_definition_of_typedef)
4865        << Context.getTypeDeclType(New)
4866        << PrevTypedef->getUnderlyingType();
4867      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
4868      Invalid = true;
4869    }
4870  }
4871
4872  // If this is a specialization of a member class (of a class template),
4873  // check the specialization.
4874  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
4875    Invalid = true;
4876
4877  if (Invalid)
4878    New->setInvalidDecl();
4879
4880  if (Attr)
4881    ProcessDeclAttributeList(S, New, Attr);
4882
4883  // If we're declaring or defining a tag in function prototype scope
4884  // in C, note that this type can only be used within the function.
4885  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
4886    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
4887
4888  // Set the lexical context. If the tag has a C++ scope specifier, the
4889  // lexical context will be different from the semantic context.
4890  New->setLexicalDeclContext(CurContext);
4891
4892  // Mark this as a friend decl if applicable.
4893  if (TUK == TUK_Friend)
4894    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
4895
4896  // Set the access specifier.
4897  if (!Invalid && TUK != TUK_Friend)
4898    SetMemberAccessSpecifier(New, PrevDecl, AS);
4899
4900  if (TUK == TUK_Definition)
4901    New->startDefinition();
4902
4903  // If this has an identifier, add it to the scope stack.
4904  if (TUK == TUK_Friend) {
4905    // We might be replacing an existing declaration in the lookup tables;
4906    // if so, borrow its access specifier.
4907    if (PrevDecl)
4908      New->setAccess(PrevDecl->getAccess());
4909
4910    // Friend tag decls are visible in fairly strange ways.
4911    if (!CurContext->isDependentContext()) {
4912      DeclContext *DC = New->getDeclContext()->getLookupContext();
4913      DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
4914      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
4915        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
4916    }
4917  } else if (Name) {
4918    S = getNonFieldDeclScope(S);
4919    PushOnScopeChains(New, S);
4920  } else {
4921    CurContext->addDecl(New);
4922  }
4923
4924  // If this is the C FILE type, notify the AST context.
4925  if (IdentifierInfo *II = New->getIdentifier())
4926    if (!New->isInvalidDecl() &&
4927        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
4928        II->isStr("FILE"))
4929      Context.setFILEDecl(New);
4930
4931  OwnedDecl = true;
4932  return DeclPtrTy::make(New);
4933}
4934
4935void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
4936  AdjustDeclIfTemplate(TagD);
4937  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4938
4939  // Enter the tag context.
4940  PushDeclContext(S, Tag);
4941
4942  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
4943    FieldCollector->StartClass();
4944
4945    if (Record->getIdentifier()) {
4946      // C++ [class]p2:
4947      //   [...] The class-name is also inserted into the scope of the
4948      //   class itself; this is known as the injected-class-name. For
4949      //   purposes of access checking, the injected-class-name is treated
4950      //   as if it were a public member name.
4951      CXXRecordDecl *InjectedClassName
4952        = CXXRecordDecl::Create(Context, Record->getTagKind(),
4953                                CurContext, Record->getLocation(),
4954                                Record->getIdentifier(),
4955                                Record->getTagKeywordLoc(),
4956                                Record);
4957      InjectedClassName->setImplicit();
4958      InjectedClassName->setAccess(AS_public);
4959      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
4960        InjectedClassName->setDescribedClassTemplate(Template);
4961      PushOnScopeChains(InjectedClassName, S);
4962      assert(InjectedClassName->isInjectedClassName() &&
4963             "Broken injected-class-name");
4964    }
4965  }
4966}
4967
4968void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
4969                                    SourceLocation RBraceLoc) {
4970  AdjustDeclIfTemplate(TagD);
4971  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4972  Tag->setRBraceLoc(RBraceLoc);
4973
4974  if (isa<CXXRecordDecl>(Tag))
4975    FieldCollector->FinishClass();
4976
4977  // Exit this scope of this tag's definition.
4978  PopDeclContext();
4979
4980  // Notify the consumer that we've defined a tag.
4981  Consumer.HandleTagDeclDefinition(Tag);
4982}
4983
4984// Note that FieldName may be null for anonymous bitfields.
4985bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
4986                          QualType FieldTy, const Expr *BitWidth,
4987                          bool *ZeroWidth) {
4988  // Default to true; that shouldn't confuse checks for emptiness
4989  if (ZeroWidth)
4990    *ZeroWidth = true;
4991
4992  // C99 6.7.2.1p4 - verify the field type.
4993  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
4994  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
4995    // Handle incomplete types with specific error.
4996    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
4997      return true;
4998    if (FieldName)
4999      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
5000        << FieldName << FieldTy << BitWidth->getSourceRange();
5001    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
5002      << FieldTy << BitWidth->getSourceRange();
5003  }
5004
5005  // If the bit-width is type- or value-dependent, don't try to check
5006  // it now.
5007  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
5008    return false;
5009
5010  llvm::APSInt Value;
5011  if (VerifyIntegerConstantExpression(BitWidth, &Value))
5012    return true;
5013
5014  if (Value != 0 && ZeroWidth)
5015    *ZeroWidth = false;
5016
5017  // Zero-width bitfield is ok for anonymous field.
5018  if (Value == 0 && FieldName)
5019    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
5020
5021  if (Value.isSigned() && Value.isNegative()) {
5022    if (FieldName)
5023      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
5024               << FieldName << Value.toString(10);
5025    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
5026      << Value.toString(10);
5027  }
5028
5029  if (!FieldTy->isDependentType()) {
5030    uint64_t TypeSize = Context.getTypeSize(FieldTy);
5031    if (Value.getZExtValue() > TypeSize) {
5032      if (FieldName)
5033        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
5034          << FieldName << (unsigned)TypeSize;
5035      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
5036        << (unsigned)TypeSize;
5037    }
5038  }
5039
5040  return false;
5041}
5042
5043/// ActOnField - Each field of a struct/union/class is passed into this in order
5044/// to create a FieldDecl object for it.
5045Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
5046                                 SourceLocation DeclStart,
5047                                 Declarator &D, ExprTy *BitfieldWidth) {
5048  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
5049                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
5050                               AS_public);
5051  return DeclPtrTy::make(Res);
5052}
5053
5054/// HandleField - Analyze a field of a C struct or a C++ data member.
5055///
5056FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
5057                             SourceLocation DeclStart,
5058                             Declarator &D, Expr *BitWidth,
5059                             AccessSpecifier AS) {
5060  IdentifierInfo *II = D.getIdentifier();
5061  SourceLocation Loc = DeclStart;
5062  if (II) Loc = D.getIdentifierLoc();
5063
5064  TypeSourceInfo *TInfo = 0;
5065  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5066  if (getLangOptions().CPlusPlus)
5067    CheckExtraCXXDefaultArguments(D);
5068
5069  DiagnoseFunctionSpecifiers(D);
5070
5071  if (D.getDeclSpec().isThreadSpecified())
5072    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5073
5074  NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName,
5075                                         ForRedeclaration);
5076
5077  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5078    // Maybe we will complain about the shadowed template parameter.
5079    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5080    // Just pretend that we didn't see the previous declaration.
5081    PrevDecl = 0;
5082  }
5083
5084  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
5085    PrevDecl = 0;
5086
5087  bool Mutable
5088    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
5089  SourceLocation TSSL = D.getSourceRange().getBegin();
5090  FieldDecl *NewFD
5091    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
5092                     AS, PrevDecl, &D);
5093  if (NewFD->isInvalidDecl() && PrevDecl) {
5094    // Don't introduce NewFD into scope; there's already something
5095    // with the same name in the same scope.
5096  } else if (II) {
5097    PushOnScopeChains(NewFD, S);
5098  } else
5099    Record->addDecl(NewFD);
5100
5101  return NewFD;
5102}
5103
5104/// \brief Build a new FieldDecl and check its well-formedness.
5105///
5106/// This routine builds a new FieldDecl given the fields name, type,
5107/// record, etc. \p PrevDecl should refer to any previous declaration
5108/// with the same name and in the same scope as the field to be
5109/// created.
5110///
5111/// \returns a new FieldDecl.
5112///
5113/// \todo The Declarator argument is a hack. It will be removed once
5114FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
5115                                TypeSourceInfo *TInfo,
5116                                RecordDecl *Record, SourceLocation Loc,
5117                                bool Mutable, Expr *BitWidth,
5118                                SourceLocation TSSL,
5119                                AccessSpecifier AS, NamedDecl *PrevDecl,
5120                                Declarator *D) {
5121  IdentifierInfo *II = Name.getAsIdentifierInfo();
5122  bool InvalidDecl = false;
5123  if (D) InvalidDecl = D->isInvalidType();
5124
5125  // If we receive a broken type, recover by assuming 'int' and
5126  // marking this declaration as invalid.
5127  if (T.isNull()) {
5128    InvalidDecl = true;
5129    T = Context.IntTy;
5130  }
5131
5132  QualType EltTy = Context.getBaseElementType(T);
5133  if (!EltTy->isDependentType() &&
5134      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete))
5135    InvalidDecl = true;
5136
5137  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5138  // than a variably modified type.
5139  if (!InvalidDecl && T->isVariablyModifiedType()) {
5140    bool SizeIsNegative;
5141    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
5142                                                           SizeIsNegative);
5143    if (!FixedTy.isNull()) {
5144      Diag(Loc, diag::warn_illegal_constant_array_size);
5145      T = FixedTy;
5146    } else {
5147      if (SizeIsNegative)
5148        Diag(Loc, diag::err_typecheck_negative_array_size);
5149      else
5150        Diag(Loc, diag::err_typecheck_field_variable_size);
5151      InvalidDecl = true;
5152    }
5153  }
5154
5155  // Fields can not have abstract class types
5156  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
5157                                             diag::err_abstract_type_in_decl,
5158                                             AbstractFieldType))
5159    InvalidDecl = true;
5160
5161  bool ZeroWidth = false;
5162  // If this is declared as a bit-field, check the bit-field.
5163  if (!InvalidDecl && BitWidth &&
5164      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
5165    InvalidDecl = true;
5166    DeleteExpr(BitWidth);
5167    BitWidth = 0;
5168    ZeroWidth = false;
5169  }
5170
5171  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo,
5172                                       BitWidth, Mutable);
5173  if (InvalidDecl)
5174    NewFD->setInvalidDecl();
5175
5176  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
5177    Diag(Loc, diag::err_duplicate_member) << II;
5178    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5179    NewFD->setInvalidDecl();
5180  }
5181
5182  if (getLangOptions().CPlusPlus) {
5183    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
5184
5185    if (!T->isPODType())
5186      CXXRecord->setPOD(false);
5187    if (!ZeroWidth)
5188      CXXRecord->setEmpty(false);
5189
5190    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
5191      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
5192
5193      if (!RDecl->hasTrivialConstructor())
5194        CXXRecord->setHasTrivialConstructor(false);
5195      if (!RDecl->hasTrivialCopyConstructor())
5196        CXXRecord->setHasTrivialCopyConstructor(false);
5197      if (!RDecl->hasTrivialCopyAssignment())
5198        CXXRecord->setHasTrivialCopyAssignment(false);
5199      if (!RDecl->hasTrivialDestructor())
5200        CXXRecord->setHasTrivialDestructor(false);
5201
5202      // C++ 9.5p1: An object of a class with a non-trivial
5203      // constructor, a non-trivial copy constructor, a non-trivial
5204      // destructor, or a non-trivial copy assignment operator
5205      // cannot be a member of a union, nor can an array of such
5206      // objects.
5207      // TODO: C++0x alters this restriction significantly.
5208      if (Record->isUnion()) {
5209        // We check for copy constructors before constructors
5210        // because otherwise we'll never get complaints about
5211        // copy constructors.
5212
5213        const CXXSpecialMember invalid = (CXXSpecialMember) -1;
5214
5215        CXXSpecialMember member;
5216        if (!RDecl->hasTrivialCopyConstructor())
5217          member = CXXCopyConstructor;
5218        else if (!RDecl->hasTrivialConstructor())
5219          member = CXXDefaultConstructor;
5220        else if (!RDecl->hasTrivialCopyAssignment())
5221          member = CXXCopyAssignment;
5222        else if (!RDecl->hasTrivialDestructor())
5223          member = CXXDestructor;
5224        else
5225          member = invalid;
5226
5227        if (member != invalid) {
5228          Diag(Loc, diag::err_illegal_union_member) << Name << member;
5229          DiagnoseNontrivial(RT, member);
5230          NewFD->setInvalidDecl();
5231        }
5232      }
5233    }
5234  }
5235
5236  // FIXME: We need to pass in the attributes given an AST
5237  // representation, not a parser representation.
5238  if (D)
5239    // FIXME: What to pass instead of TUScope?
5240    ProcessDeclAttributes(TUScope, NewFD, *D);
5241
5242  if (T.isObjCGCWeak())
5243    Diag(Loc, diag::warn_attribute_weak_on_field);
5244
5245  NewFD->setAccess(AS);
5246
5247  // C++ [dcl.init.aggr]p1:
5248  //   An aggregate is an array or a class (clause 9) with [...] no
5249  //   private or protected non-static data members (clause 11).
5250  // A POD must be an aggregate.
5251  if (getLangOptions().CPlusPlus &&
5252      (AS == AS_private || AS == AS_protected)) {
5253    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
5254    CXXRecord->setAggregate(false);
5255    CXXRecord->setPOD(false);
5256  }
5257
5258  return NewFD;
5259}
5260
5261/// DiagnoseNontrivial - Given that a class has a non-trivial
5262/// special member, figure out why.
5263void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
5264  QualType QT(T, 0U);
5265  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
5266
5267  // Check whether the member was user-declared.
5268  switch (member) {
5269  case CXXDefaultConstructor:
5270    if (RD->hasUserDeclaredConstructor()) {
5271      typedef CXXRecordDecl::ctor_iterator ctor_iter;
5272      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
5273        const FunctionDecl *body = 0;
5274        ci->getBody(body);
5275        if (!body ||
5276            !cast<CXXConstructorDecl>(body)->isImplicitlyDefined(Context)) {
5277          SourceLocation CtorLoc = ci->getLocation();
5278          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5279          return;
5280        }
5281      }
5282
5283      assert(0 && "found no user-declared constructors");
5284      return;
5285    }
5286    break;
5287
5288  case CXXCopyConstructor:
5289    if (RD->hasUserDeclaredCopyConstructor()) {
5290      SourceLocation CtorLoc =
5291        RD->getCopyConstructor(Context, 0)->getLocation();
5292      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5293      return;
5294    }
5295    break;
5296
5297  case CXXCopyAssignment:
5298    if (RD->hasUserDeclaredCopyAssignment()) {
5299      // FIXME: this should use the location of the copy
5300      // assignment, not the type.
5301      SourceLocation TyLoc = RD->getSourceRange().getBegin();
5302      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
5303      return;
5304    }
5305    break;
5306
5307  case CXXDestructor:
5308    if (RD->hasUserDeclaredDestructor()) {
5309      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
5310      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5311      return;
5312    }
5313    break;
5314  }
5315
5316  typedef CXXRecordDecl::base_class_iterator base_iter;
5317
5318  // Virtual bases and members inhibit trivial copying/construction,
5319  // but not trivial destruction.
5320  if (member != CXXDestructor) {
5321    // Check for virtual bases.  vbases includes indirect virtual bases,
5322    // so we just iterate through the direct bases.
5323    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
5324      if (bi->isVirtual()) {
5325        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5326        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
5327        return;
5328      }
5329
5330    // Check for virtual methods.
5331    typedef CXXRecordDecl::method_iterator meth_iter;
5332    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
5333         ++mi) {
5334      if (mi->isVirtual()) {
5335        SourceLocation MLoc = mi->getSourceRange().getBegin();
5336        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
5337        return;
5338      }
5339    }
5340  }
5341
5342  bool (CXXRecordDecl::*hasTrivial)() const;
5343  switch (member) {
5344  case CXXDefaultConstructor:
5345    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
5346  case CXXCopyConstructor:
5347    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
5348  case CXXCopyAssignment:
5349    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
5350  case CXXDestructor:
5351    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
5352  default:
5353    assert(0 && "unexpected special member"); return;
5354  }
5355
5356  // Check for nontrivial bases (and recurse).
5357  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
5358    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
5359    assert(BaseRT && "Don't know how to handle dependent bases");
5360    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
5361    if (!(BaseRecTy->*hasTrivial)()) {
5362      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5363      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
5364      DiagnoseNontrivial(BaseRT, member);
5365      return;
5366    }
5367  }
5368
5369  // Check for nontrivial members (and recurse).
5370  typedef RecordDecl::field_iterator field_iter;
5371  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
5372       ++fi) {
5373    QualType EltTy = Context.getBaseElementType((*fi)->getType());
5374    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
5375      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
5376
5377      if (!(EltRD->*hasTrivial)()) {
5378        SourceLocation FLoc = (*fi)->getLocation();
5379        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
5380        DiagnoseNontrivial(EltRT, member);
5381        return;
5382      }
5383    }
5384  }
5385
5386  assert(0 && "found no explanation for non-trivial member");
5387}
5388
5389/// TranslateIvarVisibility - Translate visibility from a token ID to an
5390///  AST enum value.
5391static ObjCIvarDecl::AccessControl
5392TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
5393  switch (ivarVisibility) {
5394  default: assert(0 && "Unknown visitibility kind");
5395  case tok::objc_private: return ObjCIvarDecl::Private;
5396  case tok::objc_public: return ObjCIvarDecl::Public;
5397  case tok::objc_protected: return ObjCIvarDecl::Protected;
5398  case tok::objc_package: return ObjCIvarDecl::Package;
5399  }
5400}
5401
5402/// ActOnIvar - Each ivar field of an objective-c class is passed into this
5403/// in order to create an IvarDecl object for it.
5404Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
5405                                SourceLocation DeclStart,
5406                                DeclPtrTy IntfDecl,
5407                                Declarator &D, ExprTy *BitfieldWidth,
5408                                tok::ObjCKeywordKind Visibility) {
5409
5410  IdentifierInfo *II = D.getIdentifier();
5411  Expr *BitWidth = (Expr*)BitfieldWidth;
5412  SourceLocation Loc = DeclStart;
5413  if (II) Loc = D.getIdentifierLoc();
5414
5415  // FIXME: Unnamed fields can be handled in various different ways, for
5416  // example, unnamed unions inject all members into the struct namespace!
5417
5418  TypeSourceInfo *TInfo = 0;
5419  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5420
5421  if (BitWidth) {
5422    // 6.7.2.1p3, 6.7.2.1p4
5423    if (VerifyBitField(Loc, II, T, BitWidth)) {
5424      D.setInvalidType();
5425      DeleteExpr(BitWidth);
5426      BitWidth = 0;
5427    }
5428  } else {
5429    // Not a bitfield.
5430
5431    // validate II.
5432
5433  }
5434
5435  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5436  // than a variably modified type.
5437  if (T->isVariablyModifiedType()) {
5438    Diag(Loc, diag::err_typecheck_ivar_variable_size);
5439    D.setInvalidType();
5440  }
5441
5442  // Get the visibility (access control) for this ivar.
5443  ObjCIvarDecl::AccessControl ac =
5444    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
5445                                        : ObjCIvarDecl::None;
5446  // Must set ivar's DeclContext to its enclosing interface.
5447  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
5448  DeclContext *EnclosingContext;
5449  if (ObjCImplementationDecl *IMPDecl =
5450      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5451    // Case of ivar declared in an implementation. Context is that of its class.
5452    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
5453    assert(IDecl && "No class- ActOnIvar");
5454    EnclosingContext = cast_or_null<DeclContext>(IDecl);
5455  } else
5456    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
5457  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
5458
5459  // Construct the decl.
5460  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
5461                                             EnclosingContext, Loc, II, T,
5462                                             TInfo, ac, (Expr *)BitfieldWidth);
5463
5464  if (II) {
5465    NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName,
5466                                           ForRedeclaration);
5467    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
5468        && !isa<TagDecl>(PrevDecl)) {
5469      Diag(Loc, diag::err_duplicate_member) << II;
5470      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5471      NewID->setInvalidDecl();
5472    }
5473  }
5474
5475  // Process attributes attached to the ivar.
5476  ProcessDeclAttributes(S, NewID, D);
5477
5478  if (D.isInvalidType())
5479    NewID->setInvalidDecl();
5480
5481  if (II) {
5482    // FIXME: When interfaces are DeclContexts, we'll need to add
5483    // these to the interface.
5484    S->AddDecl(DeclPtrTy::make(NewID));
5485    IdResolver.AddDecl(NewID);
5486  }
5487
5488  return DeclPtrTy::make(NewID);
5489}
5490
5491void Sema::ActOnFields(Scope* S,
5492                       SourceLocation RecLoc, DeclPtrTy RecDecl,
5493                       DeclPtrTy *Fields, unsigned NumFields,
5494                       SourceLocation LBrac, SourceLocation RBrac,
5495                       AttributeList *Attr) {
5496  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
5497  assert(EnclosingDecl && "missing record or interface decl");
5498
5499  // If the decl this is being inserted into is invalid, then it may be a
5500  // redeclaration or some other bogus case.  Don't try to add fields to it.
5501  if (EnclosingDecl->isInvalidDecl()) {
5502    // FIXME: Deallocate fields?
5503    return;
5504  }
5505
5506
5507  // Verify that all the fields are okay.
5508  unsigned NumNamedMembers = 0;
5509  llvm::SmallVector<FieldDecl*, 32> RecFields;
5510
5511  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
5512  for (unsigned i = 0; i != NumFields; ++i) {
5513    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
5514
5515    // Get the type for the field.
5516    Type *FDTy = FD->getType().getTypePtr();
5517
5518    if (!FD->isAnonymousStructOrUnion()) {
5519      // Remember all fields written by the user.
5520      RecFields.push_back(FD);
5521    }
5522
5523    // If the field is already invalid for some reason, don't emit more
5524    // diagnostics about it.
5525    if (FD->isInvalidDecl()) {
5526      EnclosingDecl->setInvalidDecl();
5527      continue;
5528    }
5529
5530    // C99 6.7.2.1p2:
5531    //   A structure or union shall not contain a member with
5532    //   incomplete or function type (hence, a structure shall not
5533    //   contain an instance of itself, but may contain a pointer to
5534    //   an instance of itself), except that the last member of a
5535    //   structure with more than one named member may have incomplete
5536    //   array type; such a structure (and any union containing,
5537    //   possibly recursively, a member that is such a structure)
5538    //   shall not be a member of a structure or an element of an
5539    //   array.
5540    if (FDTy->isFunctionType()) {
5541      // Field declared as a function.
5542      Diag(FD->getLocation(), diag::err_field_declared_as_function)
5543        << FD->getDeclName();
5544      FD->setInvalidDecl();
5545      EnclosingDecl->setInvalidDecl();
5546      continue;
5547    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
5548               Record && Record->isStruct()) {
5549      // Flexible array member.
5550      if (NumNamedMembers < 1) {
5551        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
5552          << FD->getDeclName();
5553        FD->setInvalidDecl();
5554        EnclosingDecl->setInvalidDecl();
5555        continue;
5556      }
5557      // Okay, we have a legal flexible array member at the end of the struct.
5558      if (Record)
5559        Record->setHasFlexibleArrayMember(true);
5560    } else if (!FDTy->isDependentType() &&
5561               RequireCompleteType(FD->getLocation(), FD->getType(),
5562                                   diag::err_field_incomplete)) {
5563      // Incomplete type
5564      FD->setInvalidDecl();
5565      EnclosingDecl->setInvalidDecl();
5566      continue;
5567    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
5568      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
5569        // If this is a member of a union, then entire union becomes "flexible".
5570        if (Record && Record->isUnion()) {
5571          Record->setHasFlexibleArrayMember(true);
5572        } else {
5573          // If this is a struct/class and this is not the last element, reject
5574          // it.  Note that GCC supports variable sized arrays in the middle of
5575          // structures.
5576          if (i != NumFields-1)
5577            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
5578              << FD->getDeclName() << FD->getType();
5579          else {
5580            // We support flexible arrays at the end of structs in
5581            // other structs as an extension.
5582            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
5583              << FD->getDeclName();
5584            if (Record)
5585              Record->setHasFlexibleArrayMember(true);
5586          }
5587        }
5588      }
5589      if (Record && FDTTy->getDecl()->hasObjectMember())
5590        Record->setHasObjectMember(true);
5591    } else if (FDTy->isObjCInterfaceType()) {
5592      /// A field cannot be an Objective-c object
5593      Diag(FD->getLocation(), diag::err_statically_allocated_object);
5594      FD->setInvalidDecl();
5595      EnclosingDecl->setInvalidDecl();
5596      continue;
5597    } else if (getLangOptions().ObjC1 &&
5598               getLangOptions().getGCMode() != LangOptions::NonGC &&
5599               Record &&
5600               (FD->getType()->isObjCObjectPointerType() ||
5601                FD->getType().isObjCGCStrong()))
5602      Record->setHasObjectMember(true);
5603    // Keep track of the number of named members.
5604    if (FD->getIdentifier())
5605      ++NumNamedMembers;
5606  }
5607
5608  // Okay, we successfully defined 'Record'.
5609  if (Record) {
5610    Record->completeDefinition(Context);
5611  } else {
5612    ObjCIvarDecl **ClsFields =
5613      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
5614    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
5615      ID->setIVarList(ClsFields, RecFields.size(), Context);
5616      ID->setLocEnd(RBrac);
5617      // Add ivar's to class's DeclContext.
5618      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
5619        ClsFields[i]->setLexicalDeclContext(ID);
5620        ID->addDecl(ClsFields[i]);
5621      }
5622      // Must enforce the rule that ivars in the base classes may not be
5623      // duplicates.
5624      if (ID->getSuperClass()) {
5625        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
5626             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
5627          ObjCIvarDecl* Ivar = (*IVI);
5628
5629          if (IdentifierInfo *II = Ivar->getIdentifier()) {
5630            ObjCIvarDecl* prevIvar =
5631              ID->getSuperClass()->lookupInstanceVariable(II);
5632            if (prevIvar) {
5633              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
5634              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
5635            }
5636          }
5637        }
5638      }
5639    } else if (ObjCImplementationDecl *IMPDecl =
5640                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5641      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
5642      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
5643        // Ivar declared in @implementation never belongs to the implementation.
5644        // Only it is in implementation's lexical context.
5645        ClsFields[I]->setLexicalDeclContext(IMPDecl);
5646      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
5647    }
5648  }
5649
5650  if (Attr)
5651    ProcessDeclAttributeList(S, Record, Attr);
5652}
5653
5654EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
5655                                          EnumConstantDecl *LastEnumConst,
5656                                          SourceLocation IdLoc,
5657                                          IdentifierInfo *Id,
5658                                          ExprArg val) {
5659  Expr *Val = (Expr *)val.get();
5660
5661  llvm::APSInt EnumVal(32);
5662  QualType EltTy;
5663  if (Val) {
5664    if (Enum->isDependentType())
5665      EltTy = Context.DependentTy;
5666    else {
5667      // Make sure to promote the operand type to int.
5668      UsualUnaryConversions(Val);
5669      if (Val != val.get()) {
5670        val.release();
5671        val = Val;
5672      }
5673
5674      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
5675      SourceLocation ExpLoc;
5676      if (VerifyIntegerConstantExpression(Val, &EnumVal)) {
5677        Val = 0;
5678      } else {
5679        EltTy = Val->getType();
5680      }
5681    }
5682  }
5683
5684  if (!Val) {
5685    if (Enum->isDependentType())
5686      EltTy = Context.DependentTy;
5687    else if (LastEnumConst) {
5688      // Assign the last value + 1.
5689      EnumVal = LastEnumConst->getInitVal();
5690      ++EnumVal;
5691
5692      // Check for overflow on increment.
5693      if (EnumVal < LastEnumConst->getInitVal())
5694        Diag(IdLoc, diag::warn_enum_value_overflow);
5695
5696      EltTy = LastEnumConst->getType();
5697    } else {
5698      // First value, set to zero.
5699      EltTy = Context.IntTy;
5700      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
5701      EnumVal.setIsSigned(true);
5702    }
5703  }
5704
5705  assert(!EltTy.isNull() && "Enum constant with NULL type");
5706
5707  val.release();
5708  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
5709                                  Val, EnumVal);
5710}
5711
5712
5713Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
5714                                        DeclPtrTy lastEnumConst,
5715                                        SourceLocation IdLoc,
5716                                        IdentifierInfo *Id,
5717                                        SourceLocation EqualLoc, ExprTy *val) {
5718  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
5719  EnumConstantDecl *LastEnumConst =
5720    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
5721  Expr *Val = static_cast<Expr*>(val);
5722
5723  // The scope passed in may not be a decl scope.  Zip up the scope tree until
5724  // we find one that is.
5725  S = getNonFieldDeclScope(S);
5726
5727  // Verify that there isn't already something declared with this name in this
5728  // scope.
5729  NamedDecl *PrevDecl = LookupSingleName(S, Id, LookupOrdinaryName);
5730  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5731    // Maybe we will complain about the shadowed template parameter.
5732    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
5733    // Just pretend that we didn't see the previous declaration.
5734    PrevDecl = 0;
5735  }
5736
5737  if (PrevDecl) {
5738    // When in C++, we may get a TagDecl with the same name; in this case the
5739    // enum constant will 'hide' the tag.
5740    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
5741           "Received TagDecl when not in C++!");
5742    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
5743      if (isa<EnumConstantDecl>(PrevDecl))
5744        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
5745      else
5746        Diag(IdLoc, diag::err_redefinition) << Id;
5747      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5748      if (Val) Val->Destroy(Context);
5749      return DeclPtrTy();
5750    }
5751  }
5752
5753  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
5754                                            IdLoc, Id, Owned(Val));
5755
5756  // Register this decl in the current scope stack.
5757  if (New)
5758    PushOnScopeChains(New, S);
5759
5760  return DeclPtrTy::make(New);
5761}
5762
5763void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
5764                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
5765                         DeclPtrTy *Elements, unsigned NumElements,
5766                         Scope *S, AttributeList *Attr) {
5767  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
5768  QualType EnumType = Context.getTypeDeclType(Enum);
5769
5770  if (Attr)
5771    ProcessDeclAttributeList(S, Enum, Attr);
5772
5773  if (Enum->isDependentType()) {
5774    for (unsigned i = 0; i != NumElements; ++i) {
5775      EnumConstantDecl *ECD =
5776        cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5777      if (!ECD) continue;
5778
5779      ECD->setType(EnumType);
5780    }
5781
5782    Enum->completeDefinition(Context, Context.DependentTy, Context.DependentTy);
5783    return;
5784  }
5785
5786  // TODO: If the result value doesn't fit in an int, it must be a long or long
5787  // long value.  ISO C does not support this, but GCC does as an extension,
5788  // emit a warning.
5789  unsigned IntWidth = Context.Target.getIntWidth();
5790  unsigned CharWidth = Context.Target.getCharWidth();
5791  unsigned ShortWidth = Context.Target.getShortWidth();
5792
5793  // Verify that all the values are okay, compute the size of the values, and
5794  // reverse the list.
5795  unsigned NumNegativeBits = 0;
5796  unsigned NumPositiveBits = 0;
5797
5798  // Keep track of whether all elements have type int.
5799  bool AllElementsInt = true;
5800
5801  for (unsigned i = 0; i != NumElements; ++i) {
5802    EnumConstantDecl *ECD =
5803      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5804    if (!ECD) continue;  // Already issued a diagnostic.
5805
5806    // If the enum value doesn't fit in an int, emit an extension warning.
5807    const llvm::APSInt &InitVal = ECD->getInitVal();
5808    assert(InitVal.getBitWidth() >= IntWidth &&
5809           "Should have promoted value to int");
5810    if (!getLangOptions().CPlusPlus && InitVal.getBitWidth() > IntWidth) {
5811      llvm::APSInt V(InitVal);
5812      V.trunc(IntWidth);
5813      V.extend(InitVal.getBitWidth());
5814      if (V != InitVal)
5815        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
5816          << InitVal.toString(10);
5817    }
5818
5819    // Keep track of the size of positive and negative values.
5820    if (InitVal.isUnsigned() || InitVal.isNonNegative())
5821      NumPositiveBits = std::max(NumPositiveBits,
5822                                 (unsigned)InitVal.getActiveBits());
5823    else
5824      NumNegativeBits = std::max(NumNegativeBits,
5825                                 (unsigned)InitVal.getMinSignedBits());
5826
5827    // Keep track of whether every enum element has type int (very commmon).
5828    if (AllElementsInt)
5829      AllElementsInt = ECD->getType() == Context.IntTy;
5830  }
5831
5832  // Figure out the type that should be used for this enum.
5833  // FIXME: Support -fshort-enums.
5834  QualType BestType;
5835  unsigned BestWidth;
5836
5837  // C++0x N3000 [conv.prom]p3:
5838  //   An rvalue of an unscoped enumeration type whose underlying
5839  //   type is not fixed can be converted to an rvalue of the first
5840  //   of the following types that can represent all the values of
5841  //   the enumeration: int, unsigned int, long int, unsigned long
5842  //   int, long long int, or unsigned long long int.
5843  // C99 6.4.4.3p2:
5844  //   An identifier declared as an enumeration constant has type int.
5845  // The C99 rule is modified by a gcc extension
5846  QualType BestPromotionType;
5847
5848  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
5849
5850  if (NumNegativeBits) {
5851    // If there is a negative value, figure out the smallest integer type (of
5852    // int/long/longlong) that fits.
5853    // If it's packed, check also if it fits a char or a short.
5854    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
5855      BestType = Context.SignedCharTy;
5856      BestWidth = CharWidth;
5857    } else if (Packed && NumNegativeBits <= ShortWidth &&
5858               NumPositiveBits < ShortWidth) {
5859      BestType = Context.ShortTy;
5860      BestWidth = ShortWidth;
5861    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
5862      BestType = Context.IntTy;
5863      BestWidth = IntWidth;
5864    } else {
5865      BestWidth = Context.Target.getLongWidth();
5866
5867      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
5868        BestType = Context.LongTy;
5869      } else {
5870        BestWidth = Context.Target.getLongLongWidth();
5871
5872        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
5873          Diag(Enum->getLocation(), diag::warn_enum_too_large);
5874        BestType = Context.LongLongTy;
5875      }
5876    }
5877    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
5878  } else {
5879    // If there is no negative value, figure out which of uint, ulong, ulonglong
5880    // fits.
5881    // If it's packed, check also if it fits a char or a short.
5882    if (Packed && NumPositiveBits <= CharWidth) {
5883      BestType = Context.UnsignedCharTy;
5884      BestPromotionType = Context.IntTy;
5885      BestWidth = CharWidth;
5886    } else if (Packed && NumPositiveBits <= ShortWidth) {
5887      BestType = Context.UnsignedShortTy;
5888      BestPromotionType = Context.IntTy;
5889      BestWidth = ShortWidth;
5890    } else if (NumPositiveBits <= IntWidth) {
5891      BestType = Context.UnsignedIntTy;
5892      BestWidth = IntWidth;
5893      BestPromotionType = (NumPositiveBits == BestWidth
5894                           ? Context.UnsignedIntTy : Context.IntTy);
5895    } else if (NumPositiveBits <=
5896               (BestWidth = Context.Target.getLongWidth())) {
5897      BestType = Context.UnsignedLongTy;
5898      BestPromotionType = (NumPositiveBits == BestWidth
5899                           ? Context.UnsignedLongTy : Context.LongTy);
5900    } else {
5901      BestWidth = Context.Target.getLongLongWidth();
5902      assert(NumPositiveBits <= BestWidth &&
5903             "How could an initializer get larger than ULL?");
5904      BestType = Context.UnsignedLongLongTy;
5905      BestPromotionType = (NumPositiveBits == BestWidth
5906                           ? Context.UnsignedLongLongTy : Context.LongLongTy);
5907    }
5908  }
5909
5910  // If we're in C and the promotion type is larger than an int, just
5911  // use the underlying type, which is generally the unsigned integer
5912  // type of the same rank as the promotion type.  This is how the gcc
5913  // extension works.
5914  if (!getLangOptions().CPlusPlus && BestPromotionType != Context.IntTy)
5915    BestPromotionType = BestType;
5916
5917  // Loop over all of the enumerator constants, changing their types to match
5918  // the type of the enum if needed.
5919  for (unsigned i = 0; i != NumElements; ++i) {
5920    EnumConstantDecl *ECD =
5921      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5922    if (!ECD) continue;  // Already issued a diagnostic.
5923
5924    // Standard C says the enumerators have int type, but we allow, as an
5925    // extension, the enumerators to be larger than int size.  If each
5926    // enumerator value fits in an int, type it as an int, otherwise type it the
5927    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
5928    // that X has type 'int', not 'unsigned'.
5929    if (!getLangOptions().CPlusPlus && ECD->getType() == Context.IntTy)
5930      continue;
5931
5932    // Determine whether the value fits into an int.
5933    llvm::APSInt InitVal = ECD->getInitVal();
5934    bool FitsInInt;
5935    if (InitVal.isUnsigned() || !InitVal.isNegative())
5936      FitsInInt = InitVal.getActiveBits() < IntWidth;
5937    else
5938      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
5939
5940    // If it fits into an integer type, force it.  Otherwise force it to match
5941    // the enum decl type.
5942    QualType NewTy;
5943    unsigned NewWidth;
5944    bool NewSign;
5945    if (FitsInInt && !getLangOptions().CPlusPlus) {
5946      NewTy = Context.IntTy;
5947      NewWidth = IntWidth;
5948      NewSign = true;
5949    } else if (ECD->getType() == BestType) {
5950      // Already the right type!
5951      if (getLangOptions().CPlusPlus)
5952        // C++ [dcl.enum]p4: Following the closing brace of an
5953        // enum-specifier, each enumerator has the type of its
5954        // enumeration.
5955        ECD->setType(EnumType);
5956      continue;
5957    } else {
5958      NewTy = BestType;
5959      NewWidth = BestWidth;
5960      NewSign = BestType->isSignedIntegerType();
5961    }
5962
5963    // Adjust the APSInt value.
5964    InitVal.extOrTrunc(NewWidth);
5965    InitVal.setIsSigned(NewSign);
5966    ECD->setInitVal(InitVal);
5967
5968    // Adjust the Expr initializer and type.
5969    if (ECD->getInitExpr())
5970      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
5971                                                      CastExpr::CK_IntegralCast,
5972                                                      ECD->getInitExpr(),
5973                                                      /*isLvalue=*/false));
5974    if (getLangOptions().CPlusPlus)
5975      // C++ [dcl.enum]p4: Following the closing brace of an
5976      // enum-specifier, each enumerator has the type of its
5977      // enumeration.
5978      ECD->setType(EnumType);
5979    else
5980      ECD->setType(NewTy);
5981  }
5982
5983  Enum->completeDefinition(Context, BestType, BestPromotionType);
5984}
5985
5986Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
5987                                            ExprArg expr) {
5988  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
5989
5990  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
5991                                                   Loc, AsmString);
5992  CurContext->addDecl(New);
5993  return DeclPtrTy::make(New);
5994}
5995
5996void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
5997                             SourceLocation PragmaLoc,
5998                             SourceLocation NameLoc) {
5999  Decl *PrevDecl = LookupSingleName(TUScope, Name, LookupOrdinaryName);
6000
6001  if (PrevDecl) {
6002    PrevDecl->addAttr(::new (Context) WeakAttr());
6003  } else {
6004    (void)WeakUndeclaredIdentifiers.insert(
6005      std::pair<IdentifierInfo*,WeakInfo>
6006        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
6007  }
6008}
6009
6010void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
6011                                IdentifierInfo* AliasName,
6012                                SourceLocation PragmaLoc,
6013                                SourceLocation NameLoc,
6014                                SourceLocation AliasNameLoc) {
6015  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, LookupOrdinaryName);
6016  WeakInfo W = WeakInfo(Name, NameLoc);
6017
6018  if (PrevDecl) {
6019    if (!PrevDecl->hasAttr<AliasAttr>())
6020      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
6021        DeclApplyPragmaWeak(TUScope, ND, W);
6022  } else {
6023    (void)WeakUndeclaredIdentifiers.insert(
6024      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
6025  }
6026}
6027