SemaDecl.cpp revision 11b3a95d1698c033691fce6cd444201668ba3e0a
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/Analysis/CFG.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/AST/StmtObjC.h"
25#include "clang/Parse/DeclSpec.h"
26#include "clang/Basic/TargetInfo.h"
27#include "clang/Basic/SourceManager.h"
28// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
29#include "clang/Lex/Preprocessor.h"
30#include "clang/Lex/HeaderSearch.h"
31#include "llvm/ADT/BitVector.h"
32#include "llvm/ADT/STLExtras.h"
33#include <algorithm>
34#include <functional>
35#include <queue>
36using namespace clang;
37
38/// getDeclName - Return a pretty name for the specified decl if possible, or
39/// an empty string if not.  This is used for pretty crash reporting.
40std::string Sema::getDeclName(DeclPtrTy d) {
41  Decl *D = d.getAs<Decl>();
42  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
43    return DN->getQualifiedNameAsString();
44  return "";
45}
46
47Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
48  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
49}
50
51/// \brief If the identifier refers to a type name within this scope,
52/// return the declaration of that type.
53///
54/// This routine performs ordinary name lookup of the identifier II
55/// within the given scope, with optional C++ scope specifier SS, to
56/// determine whether the name refers to a type. If so, returns an
57/// opaque pointer (actually a QualType) corresponding to that
58/// type. Otherwise, returns NULL.
59///
60/// If name lookup results in an ambiguity, this routine will complain
61/// and then return NULL.
62Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
63                                Scope *S, const CXXScopeSpec *SS) {
64  // C++ [temp.res]p3:
65  //   A qualified-id that refers to a type and in which the
66  //   nested-name-specifier depends on a template-parameter (14.6.2)
67  //   shall be prefixed by the keyword typename to indicate that the
68  //   qualified-id denotes a type, forming an
69  //   elaborated-type-specifier (7.1.5.3).
70  //
71  // We therefore do not perform any name lookup if the result would
72  // refer to a member of an unknown specialization.
73  if (SS && isUnknownSpecialization(*SS))
74    return 0;
75
76  LookupResult Result
77    = LookupParsedName(S, SS, &II, LookupOrdinaryName, false, false);
78
79  NamedDecl *IIDecl = 0;
80  switch (Result.getKind()) {
81  case LookupResult::NotFound:
82  case LookupResult::FoundOverloaded:
83    return 0;
84
85  case LookupResult::AmbiguousBaseSubobjectTypes:
86  case LookupResult::AmbiguousBaseSubobjects:
87  case LookupResult::AmbiguousReference: {
88    // Look to see if we have a type anywhere in the list of results.
89    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
90         Res != ResEnd; ++Res) {
91      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
92        if (!IIDecl ||
93            (*Res)->getLocation().getRawEncoding() <
94              IIDecl->getLocation().getRawEncoding())
95          IIDecl = *Res;
96      }
97    }
98
99    if (!IIDecl) {
100      // None of the entities we found is a type, so there is no way
101      // to even assume that the result is a type. In this case, don't
102      // complain about the ambiguity. The parser will either try to
103      // perform this lookup again (e.g., as an object name), which
104      // will produce the ambiguity, or will complain that it expected
105      // a type name.
106      Result.Destroy();
107      return 0;
108    }
109
110    // We found a type within the ambiguous lookup; diagnose the
111    // ambiguity and then return that type. This might be the right
112    // answer, or it might not be, but it suppresses any attempt to
113    // perform the name lookup again.
114    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
115    break;
116  }
117
118  case LookupResult::Found:
119    IIDecl = Result.getAsDecl();
120    break;
121  }
122
123  if (IIDecl) {
124    QualType T;
125
126    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
127      // Check whether we can use this type
128      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
129
130      if (getLangOptions().CPlusPlus) {
131        // C++ [temp.local]p2:
132        //   Within the scope of a class template specialization or
133        //   partial specialization, when the injected-class-name is
134        //   not followed by a <, it is equivalent to the
135        //   injected-class-name followed by the template-argument s
136        //   of the class template specialization or partial
137        //   specialization enclosed in <>.
138        if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
139          if (RD->isInjectedClassName())
140            if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
141              T = Template->getInjectedClassNameType(Context);
142      }
143
144      if (T.isNull())
145        T = Context.getTypeDeclType(TD);
146    } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
147      // Check whether we can use this interface.
148      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
149
150      T = Context.getObjCInterfaceType(IDecl);
151    } else
152      return 0;
153
154    if (SS)
155      T = getQualifiedNameType(*SS, T);
156
157    return T.getAsOpaquePtr();
158  }
159
160  return 0;
161}
162
163/// isTagName() - This method is called *for error recovery purposes only*
164/// to determine if the specified name is a valid tag name ("struct foo").  If
165/// so, this returns the TST for the tag corresponding to it (TST_enum,
166/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
167/// where the user forgot to specify the tag.
168DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
169  // Do a tag name lookup in this scope.
170  LookupResult R = LookupName(S, &II, LookupTagName, false, false);
171  if (R.getKind() == LookupResult::Found)
172    if (const TagDecl *TD = dyn_cast<TagDecl>(R.getAsDecl())) {
173      switch (TD->getTagKind()) {
174      case TagDecl::TK_struct: return DeclSpec::TST_struct;
175      case TagDecl::TK_union:  return DeclSpec::TST_union;
176      case TagDecl::TK_class:  return DeclSpec::TST_class;
177      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
178      }
179    }
180
181  return DeclSpec::TST_unspecified;
182}
183
184
185
186DeclContext *Sema::getContainingDC(DeclContext *DC) {
187  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
188    // A C++ out-of-line method will return to the file declaration context.
189    if (MD->isOutOfLine())
190      return MD->getLexicalDeclContext();
191
192    // A C++ inline method is parsed *after* the topmost class it was declared
193    // in is fully parsed (it's "complete").
194    // The parsing of a C++ inline method happens at the declaration context of
195    // the topmost (non-nested) class it is lexically declared in.
196    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
197    DC = MD->getParent();
198    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
199      DC = RD;
200
201    // Return the declaration context of the topmost class the inline method is
202    // declared in.
203    return DC;
204  }
205
206  if (isa<ObjCMethodDecl>(DC))
207    return Context.getTranslationUnitDecl();
208
209  return DC->getLexicalParent();
210}
211
212void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
213  assert(getContainingDC(DC) == CurContext &&
214      "The next DeclContext should be lexically contained in the current one.");
215  CurContext = DC;
216  S->setEntity(DC);
217}
218
219void Sema::PopDeclContext() {
220  assert(CurContext && "DeclContext imbalance!");
221
222  CurContext = getContainingDC(CurContext);
223}
224
225/// EnterDeclaratorContext - Used when we must lookup names in the context
226/// of a declarator's nested name specifier.
227void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
228  assert(PreDeclaratorDC == 0 && "Previous declarator context not popped?");
229  PreDeclaratorDC = static_cast<DeclContext*>(S->getEntity());
230  CurContext = DC;
231  assert(CurContext && "No context?");
232  S->setEntity(CurContext);
233}
234
235void Sema::ExitDeclaratorContext(Scope *S) {
236  S->setEntity(PreDeclaratorDC);
237  PreDeclaratorDC = 0;
238
239  // Reset CurContext to the nearest enclosing context.
240  while (!S->getEntity() && S->getParent())
241    S = S->getParent();
242  CurContext = static_cast<DeclContext*>(S->getEntity());
243  assert(CurContext && "No context?");
244}
245
246/// \brief Determine whether we allow overloading of the function
247/// PrevDecl with another declaration.
248///
249/// This routine determines whether overloading is possible, not
250/// whether some new function is actually an overload. It will return
251/// true in C++ (where we can always provide overloads) or, as an
252/// extension, in C when the previous function is already an
253/// overloaded function declaration or has the "overloadable"
254/// attribute.
255static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
256  if (Context.getLangOptions().CPlusPlus)
257    return true;
258
259  if (isa<OverloadedFunctionDecl>(PrevDecl))
260    return true;
261
262  return PrevDecl->getAttr<OverloadableAttr>() != 0;
263}
264
265/// Add this decl to the scope shadowed decl chains.
266void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
267  // Move up the scope chain until we find the nearest enclosing
268  // non-transparent context. The declaration will be introduced into this
269  // scope.
270  while (S->getEntity() &&
271         ((DeclContext *)S->getEntity())->isTransparentContext())
272    S = S->getParent();
273
274  S->AddDecl(DeclPtrTy::make(D));
275
276  // Add scoped declarations into their context, so that they can be
277  // found later. Declarations without a context won't be inserted
278  // into any context.
279  CurContext->addDecl(D);
280
281  // C++ [basic.scope]p4:
282  //   -- exactly one declaration shall declare a class name or
283  //   enumeration name that is not a typedef name and the other
284  //   declarations shall all refer to the same object or
285  //   enumerator, or all refer to functions and function templates;
286  //   in this case the class name or enumeration name is hidden.
287  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
288    // We are pushing the name of a tag (enum or class).
289    if (CurContext->getLookupContext()
290          == TD->getDeclContext()->getLookupContext()) {
291      // We're pushing the tag into the current context, which might
292      // require some reshuffling in the identifier resolver.
293      IdentifierResolver::iterator
294        I = IdResolver.begin(TD->getDeclName()),
295        IEnd = IdResolver.end();
296      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
297        NamedDecl *PrevDecl = *I;
298        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
299             PrevDecl = *I, ++I) {
300          if (TD->declarationReplaces(*I)) {
301            // This is a redeclaration. Remove it from the chain and
302            // break out, so that we'll add in the shadowed
303            // declaration.
304            S->RemoveDecl(DeclPtrTy::make(*I));
305            if (PrevDecl == *I) {
306              IdResolver.RemoveDecl(*I);
307              IdResolver.AddDecl(TD);
308              return;
309            } else {
310              IdResolver.RemoveDecl(*I);
311              break;
312            }
313          }
314        }
315
316        // There is already a declaration with the same name in the same
317        // scope, which is not a tag declaration. It must be found
318        // before we find the new declaration, so insert the new
319        // declaration at the end of the chain.
320        IdResolver.AddShadowedDecl(TD, PrevDecl);
321
322        return;
323      }
324    }
325  } else if ((isa<FunctionDecl>(D) &&
326              AllowOverloadingOfFunction(D, Context)) ||
327             isa<FunctionTemplateDecl>(D)) {
328    // We are pushing the name of a function or function template,
329    // which might be an overloaded name.
330    IdentifierResolver::iterator Redecl
331      = std::find_if(IdResolver.begin(D->getDeclName()),
332                     IdResolver.end(),
333                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
334                                  D));
335    if (Redecl != IdResolver.end() &&
336        S->isDeclScope(DeclPtrTy::make(*Redecl))) {
337      // There is already a declaration of a function on our
338      // IdResolver chain. Replace it with this declaration.
339      S->RemoveDecl(DeclPtrTy::make(*Redecl));
340      IdResolver.RemoveDecl(*Redecl);
341    }
342  } else if (isa<ObjCInterfaceDecl>(D)) {
343    // We're pushing an Objective-C interface into the current
344    // context. If there is already an alias declaration, remove it first.
345    for (IdentifierResolver::iterator
346           I = IdResolver.begin(D->getDeclName()), IEnd = IdResolver.end();
347         I != IEnd; ++I) {
348      if (isa<ObjCCompatibleAliasDecl>(*I)) {
349        S->RemoveDecl(DeclPtrTy::make(*I));
350        IdResolver.RemoveDecl(*I);
351        break;
352      }
353    }
354  }
355
356  IdResolver.AddDecl(D);
357}
358
359void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
360  if (S->decl_empty()) return;
361  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
362	 "Scope shouldn't contain decls!");
363
364  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
365       I != E; ++I) {
366    Decl *TmpD = (*I).getAs<Decl>();
367    assert(TmpD && "This decl didn't get pushed??");
368
369    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
370    NamedDecl *D = cast<NamedDecl>(TmpD);
371
372    if (!D->getDeclName()) continue;
373
374    // Remove this name from our lexical scope.
375    IdResolver.RemoveDecl(D);
376  }
377}
378
379/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
380/// return 0 if one not found.
381ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
382  // The third "scope" argument is 0 since we aren't enabling lazy built-in
383  // creation from this context.
384  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
385
386  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
387}
388
389/// getNonFieldDeclScope - Retrieves the innermost scope, starting
390/// from S, where a non-field would be declared. This routine copes
391/// with the difference between C and C++ scoping rules in structs and
392/// unions. For example, the following code is well-formed in C but
393/// ill-formed in C++:
394/// @code
395/// struct S6 {
396///   enum { BAR } e;
397/// };
398///
399/// void test_S6() {
400///   struct S6 a;
401///   a.e = BAR;
402/// }
403/// @endcode
404/// For the declaration of BAR, this routine will return a different
405/// scope. The scope S will be the scope of the unnamed enumeration
406/// within S6. In C++, this routine will return the scope associated
407/// with S6, because the enumeration's scope is a transparent
408/// context but structures can contain non-field names. In C, this
409/// routine will return the translation unit scope, since the
410/// enumeration's scope is a transparent context and structures cannot
411/// contain non-field names.
412Scope *Sema::getNonFieldDeclScope(Scope *S) {
413  while (((S->getFlags() & Scope::DeclScope) == 0) ||
414         (S->getEntity() &&
415          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
416         (S->isClassScope() && !getLangOptions().CPlusPlus))
417    S = S->getParent();
418  return S;
419}
420
421void Sema::InitBuiltinVaListType() {
422  if (!Context.getBuiltinVaListType().isNull())
423    return;
424
425  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
426  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
427  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
428  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
429}
430
431/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
432/// file scope.  lazily create a decl for it. ForRedeclaration is true
433/// if we're creating this built-in in anticipation of redeclaring the
434/// built-in.
435NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
436                                     Scope *S, bool ForRedeclaration,
437                                     SourceLocation Loc) {
438  Builtin::ID BID = (Builtin::ID)bid;
439
440  if (Context.BuiltinInfo.hasVAListUse(BID))
441    InitBuiltinVaListType();
442
443  ASTContext::GetBuiltinTypeError Error;
444  QualType R = Context.GetBuiltinType(BID, Error);
445  switch (Error) {
446  case ASTContext::GE_None:
447    // Okay
448    break;
449
450  case ASTContext::GE_Missing_stdio:
451    if (ForRedeclaration)
452      Diag(Loc, diag::err_implicit_decl_requires_stdio)
453        << Context.BuiltinInfo.GetName(BID);
454    return 0;
455
456  case ASTContext::GE_Missing_setjmp:
457    if (ForRedeclaration)
458      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
459        << Context.BuiltinInfo.GetName(BID);
460    return 0;
461  }
462
463  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
464    Diag(Loc, diag::ext_implicit_lib_function_decl)
465      << Context.BuiltinInfo.GetName(BID)
466      << R;
467    if (Context.BuiltinInfo.getHeaderName(BID) &&
468        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
469          != Diagnostic::Ignored)
470      Diag(Loc, diag::note_please_include_header)
471        << Context.BuiltinInfo.getHeaderName(BID)
472        << Context.BuiltinInfo.GetName(BID);
473  }
474
475  FunctionDecl *New = FunctionDecl::Create(Context,
476                                           Context.getTranslationUnitDecl(),
477                                           Loc, II, R,
478                                           FunctionDecl::Extern, false,
479                                           /*hasPrototype=*/true);
480  New->setImplicit();
481
482  // Create Decl objects for each parameter, adding them to the
483  // FunctionDecl.
484  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
485    llvm::SmallVector<ParmVarDecl*, 16> Params;
486    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
487      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
488                                           FT->getArgType(i), VarDecl::None, 0));
489    New->setParams(Context, Params.data(), Params.size());
490  }
491
492  AddKnownFunctionAttributes(New);
493
494  // TUScope is the translation-unit scope to insert this function into.
495  // FIXME: This is hideous. We need to teach PushOnScopeChains to
496  // relate Scopes to DeclContexts, and probably eliminate CurContext
497  // entirely, but we're not there yet.
498  DeclContext *SavedContext = CurContext;
499  CurContext = Context.getTranslationUnitDecl();
500  PushOnScopeChains(New, TUScope);
501  CurContext = SavedContext;
502  return New;
503}
504
505/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
506/// everything from the standard library is defined.
507NamespaceDecl *Sema::GetStdNamespace() {
508  if (!StdNamespace) {
509    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
510    DeclContext *Global = Context.getTranslationUnitDecl();
511    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
512    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
513  }
514  return StdNamespace;
515}
516
517/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
518/// same name and scope as a previous declaration 'Old'.  Figure out
519/// how to resolve this situation, merging decls or emitting
520/// diagnostics as appropriate. If there was an error, set New to be invalid.
521///
522void Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
523  // If either decl is known invalid already, set the new one to be invalid and
524  // don't bother doing any merging checks.
525  if (New->isInvalidDecl() || OldD->isInvalidDecl())
526    return New->setInvalidDecl();
527
528  // Allow multiple definitions for ObjC built-in typedefs.
529  // FIXME: Verify the underlying types are equivalent!
530  if (getLangOptions().ObjC1) {
531    const IdentifierInfo *TypeID = New->getIdentifier();
532    switch (TypeID->getLength()) {
533    default: break;
534    case 2:
535      if (!TypeID->isStr("id"))
536        break;
537      // Install the built-in type for 'id', ignoring the current definition.
538      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
539      return;
540    case 5:
541      if (!TypeID->isStr("Class"))
542        break;
543      // Install the built-in type for 'Class', ignoring the current definition.
544      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
545      return;
546    case 3:
547      if (!TypeID->isStr("SEL"))
548        break;
549      Context.setObjCSelType(Context.getTypeDeclType(New));
550      return;
551    case 8:
552      if (!TypeID->isStr("Protocol"))
553        break;
554      Context.setObjCProtoType(New->getUnderlyingType());
555      return;
556    }
557    // Fall through - the typedef name was not a builtin type.
558  }
559  // Verify the old decl was also a type.
560  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
561  if (!Old) {
562    Diag(New->getLocation(), diag::err_redefinition_different_kind)
563      << New->getDeclName();
564    if (OldD->getLocation().isValid())
565      Diag(OldD->getLocation(), diag::note_previous_definition);
566    return New->setInvalidDecl();
567  }
568
569  // Determine the "old" type we'll use for checking and diagnostics.
570  QualType OldType;
571  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
572    OldType = OldTypedef->getUnderlyingType();
573  else
574    OldType = Context.getTypeDeclType(Old);
575
576  // If the typedef types are not identical, reject them in all languages and
577  // with any extensions enabled.
578
579  if (OldType != New->getUnderlyingType() &&
580      Context.getCanonicalType(OldType) !=
581      Context.getCanonicalType(New->getUnderlyingType())) {
582    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
583      << New->getUnderlyingType() << OldType;
584    if (Old->getLocation().isValid())
585      Diag(Old->getLocation(), diag::note_previous_definition);
586    return New->setInvalidDecl();
587  }
588
589  if (getLangOptions().Microsoft)
590    return;
591
592  // C++ [dcl.typedef]p2:
593  //   In a given non-class scope, a typedef specifier can be used to
594  //   redefine the name of any type declared in that scope to refer
595  //   to the type to which it already refers.
596  if (getLangOptions().CPlusPlus) {
597    if (!isa<CXXRecordDecl>(CurContext))
598      return;
599    Diag(New->getLocation(), diag::err_redefinition)
600      << New->getDeclName();
601    Diag(Old->getLocation(), diag::note_previous_definition);
602    return New->setInvalidDecl();
603  }
604
605  // If we have a redefinition of a typedef in C, emit a warning.  This warning
606  // is normally mapped to an error, but can be controlled with
607  // -Wtypedef-redefinition.  If either the original or the redefinition is
608  // in a system header, don't emit this for compatibility with GCC.
609  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
610      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
611       Context.getSourceManager().isInSystemHeader(New->getLocation())))
612    return;
613
614  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
615    << New->getDeclName();
616  Diag(Old->getLocation(), diag::note_previous_definition);
617  return;
618}
619
620/// DeclhasAttr - returns true if decl Declaration already has the target
621/// attribute.
622static bool
623DeclHasAttr(const Decl *decl, const Attr *target) {
624  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
625    if (attr->getKind() == target->getKind())
626      return true;
627
628  return false;
629}
630
631/// MergeAttributes - append attributes from the Old decl to the New one.
632static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
633  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
634    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
635      Attr *NewAttr = attr->clone(C);
636      NewAttr->setInherited(true);
637      New->addAttr(NewAttr);
638    }
639  }
640}
641
642/// Used in MergeFunctionDecl to keep track of function parameters in
643/// C.
644struct GNUCompatibleParamWarning {
645  ParmVarDecl *OldParm;
646  ParmVarDecl *NewParm;
647  QualType PromotedType;
648};
649
650/// MergeFunctionDecl - We just parsed a function 'New' from
651/// declarator D which has the same name and scope as a previous
652/// declaration 'Old'.  Figure out how to resolve this situation,
653/// merging decls or emitting diagnostics as appropriate.
654///
655/// In C++, New and Old must be declarations that are not
656/// overloaded. Use IsOverload to determine whether New and Old are
657/// overloaded, and to select the Old declaration that New should be
658/// merged with.
659///
660/// Returns true if there was an error, false otherwise.
661bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
662  assert(!isa<OverloadedFunctionDecl>(OldD) &&
663         "Cannot merge with an overloaded function declaration");
664
665  // Verify the old decl was also a function.
666  FunctionDecl *Old = 0;
667  if (FunctionTemplateDecl *OldFunctionTemplate
668        = dyn_cast<FunctionTemplateDecl>(OldD))
669    Old = OldFunctionTemplate->getTemplatedDecl();
670  else
671    Old = dyn_cast<FunctionDecl>(OldD);
672  if (!Old) {
673    Diag(New->getLocation(), diag::err_redefinition_different_kind)
674      << New->getDeclName();
675    Diag(OldD->getLocation(), diag::note_previous_definition);
676    return true;
677  }
678
679  // Determine whether the previous declaration was a definition,
680  // implicit declaration, or a declaration.
681  diag::kind PrevDiag;
682  if (Old->isThisDeclarationADefinition())
683    PrevDiag = diag::note_previous_definition;
684  else if (Old->isImplicit())
685    PrevDiag = diag::note_previous_implicit_declaration;
686  else
687    PrevDiag = diag::note_previous_declaration;
688
689  QualType OldQType = Context.getCanonicalType(Old->getType());
690  QualType NewQType = Context.getCanonicalType(New->getType());
691
692  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
693      New->getStorageClass() == FunctionDecl::Static &&
694      Old->getStorageClass() != FunctionDecl::Static) {
695    Diag(New->getLocation(), diag::err_static_non_static)
696      << New;
697    Diag(Old->getLocation(), PrevDiag);
698    return true;
699  }
700
701  if (getLangOptions().CPlusPlus) {
702    // (C++98 13.1p2):
703    //   Certain function declarations cannot be overloaded:
704    //     -- Function declarations that differ only in the return type
705    //        cannot be overloaded.
706    QualType OldReturnType
707      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
708    QualType NewReturnType
709      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
710    if (OldReturnType != NewReturnType) {
711      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
712      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
713      return true;
714    }
715
716    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
717    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
718    if (OldMethod && NewMethod &&
719        NewMethod->getLexicalDeclContext()->isRecord()) {
720      //    -- Member function declarations with the same name and the
721      //       same parameter types cannot be overloaded if any of them
722      //       is a static member function declaration.
723      if (OldMethod->isStatic() || NewMethod->isStatic()) {
724        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
725        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
726        return true;
727      }
728
729      // C++ [class.mem]p1:
730      //   [...] A member shall not be declared twice in the
731      //   member-specification, except that a nested class or member
732      //   class template can be declared and then later defined.
733      unsigned NewDiag;
734      if (isa<CXXConstructorDecl>(OldMethod))
735        NewDiag = diag::err_constructor_redeclared;
736      else if (isa<CXXDestructorDecl>(NewMethod))
737        NewDiag = diag::err_destructor_redeclared;
738      else if (isa<CXXConversionDecl>(NewMethod))
739        NewDiag = diag::err_conv_function_redeclared;
740      else
741        NewDiag = diag::err_member_redeclared;
742
743      Diag(New->getLocation(), NewDiag);
744      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
745    }
746
747    // (C++98 8.3.5p3):
748    //   All declarations for a function shall agree exactly in both the
749    //   return type and the parameter-type-list.
750    if (OldQType == NewQType)
751      return MergeCompatibleFunctionDecls(New, Old);
752
753    // Fall through for conflicting redeclarations and redefinitions.
754  }
755
756  // C: Function types need to be compatible, not identical. This handles
757  // duplicate function decls like "void f(int); void f(enum X);" properly.
758  if (!getLangOptions().CPlusPlus &&
759      Context.typesAreCompatible(OldQType, NewQType)) {
760    const FunctionType *OldFuncType = OldQType->getAsFunctionType();
761    const FunctionType *NewFuncType = NewQType->getAsFunctionType();
762    const FunctionProtoType *OldProto = 0;
763    if (isa<FunctionNoProtoType>(NewFuncType) &&
764        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
765      // The old declaration provided a function prototype, but the
766      // new declaration does not. Merge in the prototype.
767      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
768      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
769                                                 OldProto->arg_type_end());
770      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
771                                         ParamTypes.data(), ParamTypes.size(),
772                                         OldProto->isVariadic(),
773                                         OldProto->getTypeQuals());
774      New->setType(NewQType);
775      New->setHasInheritedPrototype();
776
777      // Synthesize a parameter for each argument type.
778      llvm::SmallVector<ParmVarDecl*, 16> Params;
779      for (FunctionProtoType::arg_type_iterator
780             ParamType = OldProto->arg_type_begin(),
781             ParamEnd = OldProto->arg_type_end();
782           ParamType != ParamEnd; ++ParamType) {
783        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
784                                                 SourceLocation(), 0,
785                                                 *ParamType, VarDecl::None,
786                                                 0);
787        Param->setImplicit();
788        Params.push_back(Param);
789      }
790
791      New->setParams(Context, Params.data(), Params.size());
792    }
793
794    return MergeCompatibleFunctionDecls(New, Old);
795  }
796
797  // GNU C permits a K&R definition to follow a prototype declaration
798  // if the declared types of the parameters in the K&R definition
799  // match the types in the prototype declaration, even when the
800  // promoted types of the parameters from the K&R definition differ
801  // from the types in the prototype. GCC then keeps the types from
802  // the prototype.
803  //
804  // If a variadic prototype is followed by a non-variadic K&R definition,
805  // the K&R definition becomes variadic.  This is sort of an edge case, but
806  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
807  // C99 6.9.1p8.
808  if (!getLangOptions().CPlusPlus &&
809      Old->hasPrototype() && !New->hasPrototype() &&
810      New->getType()->getAsFunctionProtoType() &&
811      Old->getNumParams() == New->getNumParams()) {
812    llvm::SmallVector<QualType, 16> ArgTypes;
813    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
814    const FunctionProtoType *OldProto
815      = Old->getType()->getAsFunctionProtoType();
816    const FunctionProtoType *NewProto
817      = New->getType()->getAsFunctionProtoType();
818
819    // Determine whether this is the GNU C extension.
820    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
821                                               NewProto->getResultType());
822    bool LooseCompatible = !MergedReturn.isNull();
823    for (unsigned Idx = 0, End = Old->getNumParams();
824         LooseCompatible && Idx != End; ++Idx) {
825      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
826      ParmVarDecl *NewParm = New->getParamDecl(Idx);
827      if (Context.typesAreCompatible(OldParm->getType(),
828                                     NewProto->getArgType(Idx))) {
829        ArgTypes.push_back(NewParm->getType());
830      } else if (Context.typesAreCompatible(OldParm->getType(),
831                                            NewParm->getType())) {
832        GNUCompatibleParamWarning Warn
833          = { OldParm, NewParm, NewProto->getArgType(Idx) };
834        Warnings.push_back(Warn);
835        ArgTypes.push_back(NewParm->getType());
836      } else
837        LooseCompatible = false;
838    }
839
840    if (LooseCompatible) {
841      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
842        Diag(Warnings[Warn].NewParm->getLocation(),
843             diag::ext_param_promoted_not_compatible_with_prototype)
844          << Warnings[Warn].PromotedType
845          << Warnings[Warn].OldParm->getType();
846        Diag(Warnings[Warn].OldParm->getLocation(),
847             diag::note_previous_declaration);
848      }
849
850      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
851                                           ArgTypes.size(),
852                                           OldProto->isVariadic(), 0));
853      return MergeCompatibleFunctionDecls(New, Old);
854    }
855
856    // Fall through to diagnose conflicting types.
857  }
858
859  // A function that has already been declared has been redeclared or defined
860  // with a different type- show appropriate diagnostic
861  if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
862    // The user has declared a builtin function with an incompatible
863    // signature.
864    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
865      // The function the user is redeclaring is a library-defined
866      // function like 'malloc' or 'printf'. Warn about the
867      // redeclaration, then pretend that we don't know about this
868      // library built-in.
869      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
870      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
871        << Old << Old->getType();
872      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
873      Old->setInvalidDecl();
874      return false;
875    }
876
877    PrevDiag = diag::note_previous_builtin_declaration;
878  }
879
880  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
881  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
882  return true;
883}
884
885/// \brief Completes the merge of two function declarations that are
886/// known to be compatible.
887///
888/// This routine handles the merging of attributes and other
889/// properties of function declarations form the old declaration to
890/// the new declaration, once we know that New is in fact a
891/// redeclaration of Old.
892///
893/// \returns false
894bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
895  // Merge the attributes
896  MergeAttributes(New, Old, Context);
897
898  // Merge the storage class.
899  if (Old->getStorageClass() != FunctionDecl::Extern)
900    New->setStorageClass(Old->getStorageClass());
901
902  // Merge "inline"
903  if (Old->isInline())
904    New->setInline(true);
905
906  // If this function declaration by itself qualifies as a C99 inline
907  // definition (C99 6.7.4p6), but the previous definition did not,
908  // then the function is not a C99 inline definition.
909  if (New->isC99InlineDefinition() && !Old->isC99InlineDefinition())
910    New->setC99InlineDefinition(false);
911  else if (Old->isC99InlineDefinition() && !New->isC99InlineDefinition()) {
912    // Mark all preceding definitions as not being C99 inline definitions.
913    for (const FunctionDecl *Prev = Old; Prev;
914         Prev = Prev->getPreviousDeclaration())
915      const_cast<FunctionDecl *>(Prev)->setC99InlineDefinition(false);
916  }
917
918  // Merge "pure" flag.
919  if (Old->isPure())
920    New->setPure();
921
922  // Merge the "deleted" flag.
923  if (Old->isDeleted())
924    New->setDeleted();
925
926  if (getLangOptions().CPlusPlus)
927    return MergeCXXFunctionDecl(New, Old);
928
929  return false;
930}
931
932/// MergeVarDecl - We just parsed a variable 'New' which has the same name
933/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
934/// situation, merging decls or emitting diagnostics as appropriate.
935///
936/// Tentative definition rules (C99 6.9.2p2) are checked by
937/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
938/// definitions here, since the initializer hasn't been attached.
939///
940void Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
941  // If either decl is invalid, make sure the new one is marked invalid and
942  // don't do any other checking.
943  if (New->isInvalidDecl() || OldD->isInvalidDecl())
944    return New->setInvalidDecl();
945
946  // Verify the old decl was also a variable.
947  VarDecl *Old = dyn_cast<VarDecl>(OldD);
948  if (!Old) {
949    Diag(New->getLocation(), diag::err_redefinition_different_kind)
950      << New->getDeclName();
951    Diag(OldD->getLocation(), diag::note_previous_definition);
952    return New->setInvalidDecl();
953  }
954
955  MergeAttributes(New, Old, Context);
956
957  // Merge the types
958  QualType MergedT;
959  if (getLangOptions().CPlusPlus) {
960    if (Context.hasSameType(New->getType(), Old->getType()))
961      MergedT = New->getType();
962  } else {
963    MergedT = Context.mergeTypes(New->getType(), Old->getType());
964  }
965  if (MergedT.isNull()) {
966    Diag(New->getLocation(), diag::err_redefinition_different_type)
967      << New->getDeclName();
968    Diag(Old->getLocation(), diag::note_previous_definition);
969    return New->setInvalidDecl();
970  }
971  New->setType(MergedT);
972
973  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
974  if (New->getStorageClass() == VarDecl::Static &&
975      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
976    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
977    Diag(Old->getLocation(), diag::note_previous_definition);
978    return New->setInvalidDecl();
979  }
980  // C99 6.2.2p4:
981  //   For an identifier declared with the storage-class specifier
982  //   extern in a scope in which a prior declaration of that
983  //   identifier is visible,23) if the prior declaration specifies
984  //   internal or external linkage, the linkage of the identifier at
985  //   the later declaration is the same as the linkage specified at
986  //   the prior declaration. If no prior declaration is visible, or
987  //   if the prior declaration specifies no linkage, then the
988  //   identifier has external linkage.
989  if (New->hasExternalStorage() && Old->hasLinkage())
990    /* Okay */;
991  else if (New->getStorageClass() != VarDecl::Static &&
992           Old->getStorageClass() == VarDecl::Static) {
993    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
994    Diag(Old->getLocation(), diag::note_previous_definition);
995    return New->setInvalidDecl();
996  }
997
998  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
999
1000  // FIXME: The test for external storage here seems wrong? We still
1001  // need to check for mismatches.
1002  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1003      // Don't complain about out-of-line definitions of static members.
1004      !(Old->getLexicalDeclContext()->isRecord() &&
1005        !New->getLexicalDeclContext()->isRecord())) {
1006    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1007    Diag(Old->getLocation(), diag::note_previous_definition);
1008    return New->setInvalidDecl();
1009  }
1010
1011  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1012    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1013    Diag(Old->getLocation(), diag::note_previous_definition);
1014  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1015    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1016    Diag(Old->getLocation(), diag::note_previous_definition);
1017  }
1018
1019  // Keep a chain of previous declarations.
1020  New->setPreviousDeclaration(Old);
1021}
1022
1023/// CheckFallThrough - Check that we don't fall off the end of a
1024/// Statement that should return a value.
1025///
1026/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
1027/// MaybeFallThrough iff we might or might not fall off the end and
1028/// NeverFallThrough iff we never fall off the end of the statement.  We assume
1029/// that functions not marked noreturn will return.
1030Sema::ControlFlowKind Sema::CheckFallThrough(Stmt *Root) {
1031  llvm::OwningPtr<CFG> cfg (CFG::buildCFG(Root, &Context));
1032
1033  // FIXME: They should never return 0, fix that, delete this code.
1034  if (cfg == 0)
1035    return NeverFallThrough;
1036  // The CFG leaves in dead things, and we don't want to dead code paths to
1037  // confuse us, so we mark all live things first.
1038  std::queue<CFGBlock*> workq;
1039  llvm::BitVector live(cfg->getNumBlockIDs());
1040  // Prep work queue
1041  workq.push(&cfg->getEntry());
1042  // Solve
1043  while (!workq.empty()) {
1044    CFGBlock *item = workq.front();
1045    workq.pop();
1046    live.set(item->getBlockID());
1047    for (CFGBlock::succ_iterator I=item->succ_begin(),
1048           E=item->succ_end();
1049         I != E;
1050         ++I) {
1051      if ((*I) && !live[(*I)->getBlockID()]) {
1052        live.set((*I)->getBlockID());
1053        workq.push(*I);
1054      }
1055    }
1056  }
1057
1058  // Now we know what is live, we check the live precessors of the exit block
1059  // and look for fall through paths, being careful to ignore normal returns,
1060  // and exceptional paths.
1061  bool HasLiveReturn = false;
1062  bool HasFakeEdge = false;
1063  bool HasPlainEdge = false;
1064  for (CFGBlock::succ_iterator I=cfg->getExit().pred_begin(),
1065         E = cfg->getExit().pred_end();
1066       I != E;
1067       ++I) {
1068    CFGBlock& B = **I;
1069    if (!live[B.getBlockID()])
1070      continue;
1071    if (B.size() == 0) {
1072      // A labeled empty statement, or the entry block...
1073      HasPlainEdge = true;
1074      continue;
1075    }
1076    Stmt *S = B[B.size()-1];
1077    if (isa<ReturnStmt>(S)) {
1078      HasLiveReturn = true;
1079      continue;
1080    }
1081    if (isa<ObjCAtThrowStmt>(S)) {
1082      HasFakeEdge = true;
1083      continue;
1084    }
1085    if (isa<CXXThrowExpr>(S)) {
1086      HasFakeEdge = true;
1087      continue;
1088    }
1089    bool NoReturnEdge = false;
1090    if (CallExpr *C = dyn_cast<CallExpr>(S)) {
1091      Expr *CEE = C->getCallee()->IgnoreParenCasts();
1092      if (CEE->getType().getNoReturnAttr()) {
1093        NoReturnEdge = true;
1094        HasFakeEdge = true;
1095      } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) {
1096        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1097          if (FD->hasAttr<NoReturnAttr>()) {
1098            NoReturnEdge = true;
1099            HasFakeEdge = true;
1100          }
1101        }
1102      }
1103    }
1104    // FIXME: Add noreturn message sends.
1105    if (NoReturnEdge == false)
1106      HasPlainEdge = true;
1107  }
1108  if (!HasPlainEdge)
1109    return NeverFallThrough;
1110  if (HasFakeEdge || HasLiveReturn)
1111    return MaybeFallThrough;
1112  // This says AlwaysFallThrough for calls to functions that are not marked
1113  // noreturn, that don't return.  If people would like this warning to be more
1114  // accurate, such functions should be marked as noreturn.
1115  return AlwaysFallThrough;
1116}
1117
1118/// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
1119/// function that should return a value.  Check that we don't fall off the end
1120/// of a noreturn function.  We assume that functions and blocks not marked
1121/// noreturn will return.
1122void Sema::CheckFallThroughForFunctionDef(Decl *D, Stmt *Body) {
1123  // FIXME: Would be nice if we had a better way to control cascading errors,
1124  // but for now, avoid them.  The problem is that when Parse sees:
1125  //   int foo() { return a; }
1126  // The return is eaten and the Sema code sees just:
1127  //   int foo() { }
1128  // which this code would then warn about.
1129  if (getDiagnostics().hasErrorOccurred())
1130    return;
1131  bool ReturnsVoid = false;
1132  bool HasNoReturn = false;
1133  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1134    if (FD->getResultType()->isVoidType())
1135      ReturnsVoid = true;
1136    if (FD->hasAttr<NoReturnAttr>())
1137      HasNoReturn = true;
1138  } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
1139    if (MD->getResultType()->isVoidType())
1140      ReturnsVoid = true;
1141    if (MD->hasAttr<NoReturnAttr>())
1142      HasNoReturn = true;
1143  }
1144
1145  // Short circuit for compilation speed.
1146  if ((Diags.getDiagnosticLevel(diag::warn_maybe_falloff_nonvoid_function)
1147       == Diagnostic::Ignored || ReturnsVoid)
1148      && (Diags.getDiagnosticLevel(diag::warn_noreturn_function_has_return_expr)
1149          == Diagnostic::Ignored || !HasNoReturn)
1150      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1151          == Diagnostic::Ignored || !ReturnsVoid))
1152    return;
1153  // FIXME: Funtion try block
1154  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1155    switch (CheckFallThrough(Body)) {
1156    case MaybeFallThrough:
1157      if (HasNoReturn)
1158        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1159      else if (!ReturnsVoid)
1160        Diag(Compound->getRBracLoc(),diag::warn_maybe_falloff_nonvoid_function);
1161      break;
1162    case AlwaysFallThrough:
1163      if (HasNoReturn)
1164        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1165      else if (!ReturnsVoid)
1166        Diag(Compound->getRBracLoc(), diag::warn_falloff_nonvoid_function);
1167      break;
1168    case NeverFallThrough:
1169      if (ReturnsVoid)
1170        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_function);
1171      break;
1172    }
1173  }
1174}
1175
1176/// CheckFallThroughForBlock - Check that we don't fall off the end of a block
1177/// that should return a value.  Check that we don't fall off the end of a
1178/// noreturn block.  We assume that functions and blocks not marked noreturn
1179/// will return.
1180void Sema::CheckFallThroughForBlock(QualType BlockTy, Stmt *Body) {
1181  // FIXME: Would be nice if we had a better way to control cascading errors,
1182  // but for now, avoid them.  The problem is that when Parse sees:
1183  //   int foo() { return a; }
1184  // The return is eaten and the Sema code sees just:
1185  //   int foo() { }
1186  // which this code would then warn about.
1187  if (getDiagnostics().hasErrorOccurred())
1188    return;
1189  bool ReturnsVoid = false;
1190  bool HasNoReturn = false;
1191  if (const FunctionType *FT = BlockTy->getPointeeType()->getAsFunctionType()) {
1192    if (FT->getResultType()->isVoidType())
1193      ReturnsVoid = true;
1194    if (FT->getNoReturnAttr())
1195      HasNoReturn = true;
1196  }
1197
1198  // Short circuit for compilation speed.
1199  if (ReturnsVoid
1200      && !HasNoReturn
1201      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1202          == Diagnostic::Ignored || !ReturnsVoid))
1203    return;
1204  // FIXME: Funtion try block
1205  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1206    switch (CheckFallThrough(Body)) {
1207    case MaybeFallThrough:
1208      if (HasNoReturn)
1209        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1210      else if (!ReturnsVoid)
1211        Diag(Compound->getRBracLoc(), diag::err_maybe_falloff_nonvoid_block);
1212      break;
1213    case AlwaysFallThrough:
1214      if (HasNoReturn)
1215        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1216      else if (!ReturnsVoid)
1217        Diag(Compound->getRBracLoc(), diag::err_falloff_nonvoid_block);
1218      break;
1219    case NeverFallThrough:
1220      if (ReturnsVoid)
1221        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_block);
1222      break;
1223    }
1224  }
1225}
1226
1227/// CheckParmsForFunctionDef - Check that the parameters of the given
1228/// function are appropriate for the definition of a function. This
1229/// takes care of any checks that cannot be performed on the
1230/// declaration itself, e.g., that the types of each of the function
1231/// parameters are complete.
1232bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
1233  bool HasInvalidParm = false;
1234  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1235    ParmVarDecl *Param = FD->getParamDecl(p);
1236
1237    // C99 6.7.5.3p4: the parameters in a parameter type list in a
1238    // function declarator that is part of a function definition of
1239    // that function shall not have incomplete type.
1240    //
1241    // This is also C++ [dcl.fct]p6.
1242    if (!Param->isInvalidDecl() &&
1243        RequireCompleteType(Param->getLocation(), Param->getType(),
1244                               diag::err_typecheck_decl_incomplete_type)) {
1245      Param->setInvalidDecl();
1246      HasInvalidParm = true;
1247    }
1248
1249    // C99 6.9.1p5: If the declarator includes a parameter type list, the
1250    // declaration of each parameter shall include an identifier.
1251    if (Param->getIdentifier() == 0 &&
1252        !Param->isImplicit() &&
1253        !getLangOptions().CPlusPlus)
1254      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
1255  }
1256
1257  return HasInvalidParm;
1258}
1259
1260/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1261/// no declarator (e.g. "struct foo;") is parsed.
1262Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1263  // FIXME: Error on auto/register at file scope
1264  // FIXME: Error on inline/virtual/explicit
1265  // FIXME: Error on invalid restrict
1266  // FIXME: Warn on useless __thread
1267  // FIXME: Warn on useless const/volatile
1268  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1269  // FIXME: Warn on useless attributes
1270  TagDecl *Tag = 0;
1271  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1272      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1273      DS.getTypeSpecType() == DeclSpec::TST_union ||
1274      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1275    if (!DS.getTypeRep()) // We probably had an error
1276      return DeclPtrTy();
1277
1278    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
1279  }
1280
1281  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1282    if (!Record->getDeclName() && Record->isDefinition() &&
1283        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1284      if (getLangOptions().CPlusPlus ||
1285          Record->getDeclContext()->isRecord())
1286        return BuildAnonymousStructOrUnion(S, DS, Record);
1287
1288      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1289        << DS.getSourceRange();
1290    }
1291
1292    // Microsoft allows unnamed struct/union fields. Don't complain
1293    // about them.
1294    // FIXME: Should we support Microsoft's extensions in this area?
1295    if (Record->getDeclName() && getLangOptions().Microsoft)
1296      return DeclPtrTy::make(Tag);
1297  }
1298
1299  if (!DS.isMissingDeclaratorOk() &&
1300      DS.getTypeSpecType() != DeclSpec::TST_error) {
1301    // Warn about typedefs of enums without names, since this is an
1302    // extension in both Microsoft an GNU.
1303    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1304        Tag && isa<EnumDecl>(Tag)) {
1305      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1306        << DS.getSourceRange();
1307      return DeclPtrTy::make(Tag);
1308    }
1309
1310    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1311      << DS.getSourceRange();
1312    return DeclPtrTy();
1313  }
1314
1315  return DeclPtrTy::make(Tag);
1316}
1317
1318/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1319/// anonymous struct or union AnonRecord into the owning context Owner
1320/// and scope S. This routine will be invoked just after we realize
1321/// that an unnamed union or struct is actually an anonymous union or
1322/// struct, e.g.,
1323///
1324/// @code
1325/// union {
1326///   int i;
1327///   float f;
1328/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1329///    // f into the surrounding scope.x
1330/// @endcode
1331///
1332/// This routine is recursive, injecting the names of nested anonymous
1333/// structs/unions into the owning context and scope as well.
1334bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1335                                               RecordDecl *AnonRecord) {
1336  bool Invalid = false;
1337  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1338                               FEnd = AnonRecord->field_end();
1339       F != FEnd; ++F) {
1340    if ((*F)->getDeclName()) {
1341      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
1342                                                LookupOrdinaryName, true);
1343      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
1344        // C++ [class.union]p2:
1345        //   The names of the members of an anonymous union shall be
1346        //   distinct from the names of any other entity in the
1347        //   scope in which the anonymous union is declared.
1348        unsigned diagKind
1349          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
1350                                 : diag::err_anonymous_struct_member_redecl;
1351        Diag((*F)->getLocation(), diagKind)
1352          << (*F)->getDeclName();
1353        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1354        Invalid = true;
1355      } else {
1356        // C++ [class.union]p2:
1357        //   For the purpose of name lookup, after the anonymous union
1358        //   definition, the members of the anonymous union are
1359        //   considered to have been defined in the scope in which the
1360        //   anonymous union is declared.
1361        Owner->makeDeclVisibleInContext(*F);
1362        S->AddDecl(DeclPtrTy::make(*F));
1363        IdResolver.AddDecl(*F);
1364      }
1365    } else if (const RecordType *InnerRecordType
1366                 = (*F)->getType()->getAs<RecordType>()) {
1367      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1368      if (InnerRecord->isAnonymousStructOrUnion())
1369        Invalid = Invalid ||
1370          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1371    }
1372  }
1373
1374  return Invalid;
1375}
1376
1377/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1378/// anonymous structure or union. Anonymous unions are a C++ feature
1379/// (C++ [class.union]) and a GNU C extension; anonymous structures
1380/// are a GNU C and GNU C++ extension.
1381Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1382                                                  RecordDecl *Record) {
1383  DeclContext *Owner = Record->getDeclContext();
1384
1385  // Diagnose whether this anonymous struct/union is an extension.
1386  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1387    Diag(Record->getLocation(), diag::ext_anonymous_union);
1388  else if (!Record->isUnion())
1389    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1390
1391  // C and C++ require different kinds of checks for anonymous
1392  // structs/unions.
1393  bool Invalid = false;
1394  if (getLangOptions().CPlusPlus) {
1395    const char* PrevSpec = 0;
1396    unsigned DiagID;
1397    // C++ [class.union]p3:
1398    //   Anonymous unions declared in a named namespace or in the
1399    //   global namespace shall be declared static.
1400    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1401        (isa<TranslationUnitDecl>(Owner) ||
1402         (isa<NamespaceDecl>(Owner) &&
1403          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1404      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1405      Invalid = true;
1406
1407      // Recover by adding 'static'.
1408      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1409                             PrevSpec, DiagID);
1410    }
1411    // C++ [class.union]p3:
1412    //   A storage class is not allowed in a declaration of an
1413    //   anonymous union in a class scope.
1414    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1415             isa<RecordDecl>(Owner)) {
1416      Diag(DS.getStorageClassSpecLoc(),
1417           diag::err_anonymous_union_with_storage_spec);
1418      Invalid = true;
1419
1420      // Recover by removing the storage specifier.
1421      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1422                             PrevSpec, DiagID);
1423    }
1424
1425    // C++ [class.union]p2:
1426    //   The member-specification of an anonymous union shall only
1427    //   define non-static data members. [Note: nested types and
1428    //   functions cannot be declared within an anonymous union. ]
1429    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1430                                 MemEnd = Record->decls_end();
1431         Mem != MemEnd; ++Mem) {
1432      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1433        // C++ [class.union]p3:
1434        //   An anonymous union shall not have private or protected
1435        //   members (clause 11).
1436        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1437          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1438            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1439          Invalid = true;
1440        }
1441      } else if ((*Mem)->isImplicit()) {
1442        // Any implicit members are fine.
1443      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1444        // This is a type that showed up in an
1445        // elaborated-type-specifier inside the anonymous struct or
1446        // union, but which actually declares a type outside of the
1447        // anonymous struct or union. It's okay.
1448      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1449        if (!MemRecord->isAnonymousStructOrUnion() &&
1450            MemRecord->getDeclName()) {
1451          // This is a nested type declaration.
1452          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1453            << (int)Record->isUnion();
1454          Invalid = true;
1455        }
1456      } else {
1457        // We have something that isn't a non-static data
1458        // member. Complain about it.
1459        unsigned DK = diag::err_anonymous_record_bad_member;
1460        if (isa<TypeDecl>(*Mem))
1461          DK = diag::err_anonymous_record_with_type;
1462        else if (isa<FunctionDecl>(*Mem))
1463          DK = diag::err_anonymous_record_with_function;
1464        else if (isa<VarDecl>(*Mem))
1465          DK = diag::err_anonymous_record_with_static;
1466        Diag((*Mem)->getLocation(), DK)
1467            << (int)Record->isUnion();
1468          Invalid = true;
1469      }
1470    }
1471  }
1472
1473  if (!Record->isUnion() && !Owner->isRecord()) {
1474    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1475      << (int)getLangOptions().CPlusPlus;
1476    Invalid = true;
1477  }
1478
1479  // Create a declaration for this anonymous struct/union.
1480  NamedDecl *Anon = 0;
1481  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1482    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1483                             /*IdentifierInfo=*/0,
1484                             Context.getTypeDeclType(Record),
1485                             /*BitWidth=*/0, /*Mutable=*/false,
1486                             DS.getSourceRange().getBegin());
1487    Anon->setAccess(AS_public);
1488    if (getLangOptions().CPlusPlus)
1489      FieldCollector->Add(cast<FieldDecl>(Anon));
1490  } else {
1491    VarDecl::StorageClass SC;
1492    switch (DS.getStorageClassSpec()) {
1493    default: assert(0 && "Unknown storage class!");
1494    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1495    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1496    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1497    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1498    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1499    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1500    case DeclSpec::SCS_mutable:
1501      // mutable can only appear on non-static class members, so it's always
1502      // an error here
1503      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1504      Invalid = true;
1505      SC = VarDecl::None;
1506      break;
1507    }
1508
1509    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1510                           /*IdentifierInfo=*/0,
1511                           Context.getTypeDeclType(Record),
1512                           SC, DS.getSourceRange().getBegin());
1513  }
1514  Anon->setImplicit();
1515
1516  // Add the anonymous struct/union object to the current
1517  // context. We'll be referencing this object when we refer to one of
1518  // its members.
1519  Owner->addDecl(Anon);
1520
1521  // Inject the members of the anonymous struct/union into the owning
1522  // context and into the identifier resolver chain for name lookup
1523  // purposes.
1524  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1525    Invalid = true;
1526
1527  // Mark this as an anonymous struct/union type. Note that we do not
1528  // do this until after we have already checked and injected the
1529  // members of this anonymous struct/union type, because otherwise
1530  // the members could be injected twice: once by DeclContext when it
1531  // builds its lookup table, and once by
1532  // InjectAnonymousStructOrUnionMembers.
1533  Record->setAnonymousStructOrUnion(true);
1534
1535  if (Invalid)
1536    Anon->setInvalidDecl();
1537
1538  return DeclPtrTy::make(Anon);
1539}
1540
1541
1542/// GetNameForDeclarator - Determine the full declaration name for the
1543/// given Declarator.
1544DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1545  switch (D.getKind()) {
1546  case Declarator::DK_Abstract:
1547    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1548    return DeclarationName();
1549
1550  case Declarator::DK_Normal:
1551    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1552    return DeclarationName(D.getIdentifier());
1553
1554  case Declarator::DK_Constructor: {
1555    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1556    Ty = Context.getCanonicalType(Ty);
1557    return Context.DeclarationNames.getCXXConstructorName(Ty);
1558  }
1559
1560  case Declarator::DK_Destructor: {
1561    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1562    Ty = Context.getCanonicalType(Ty);
1563    return Context.DeclarationNames.getCXXDestructorName(Ty);
1564  }
1565
1566  case Declarator::DK_Conversion: {
1567    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1568    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1569    Ty = Context.getCanonicalType(Ty);
1570    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1571  }
1572
1573  case Declarator::DK_Operator:
1574    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1575    return Context.DeclarationNames.getCXXOperatorName(
1576                                                D.getOverloadedOperator());
1577  }
1578
1579  assert(false && "Unknown name kind");
1580  return DeclarationName();
1581}
1582
1583/// isNearlyMatchingFunction - Determine whether the C++ functions
1584/// Declaration and Definition are "nearly" matching. This heuristic
1585/// is used to improve diagnostics in the case where an out-of-line
1586/// function definition doesn't match any declaration within
1587/// the class or namespace.
1588static bool isNearlyMatchingFunction(ASTContext &Context,
1589                                     FunctionDecl *Declaration,
1590                                     FunctionDecl *Definition) {
1591  if (Declaration->param_size() != Definition->param_size())
1592    return false;
1593  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1594    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1595    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1596
1597    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1598    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1599    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1600      return false;
1601  }
1602
1603  return true;
1604}
1605
1606Sema::DeclPtrTy
1607Sema::HandleDeclarator(Scope *S, Declarator &D,
1608                       MultiTemplateParamsArg TemplateParamLists,
1609                       bool IsFunctionDefinition) {
1610  DeclarationName Name = GetNameForDeclarator(D);
1611
1612  // All of these full declarators require an identifier.  If it doesn't have
1613  // one, the ParsedFreeStandingDeclSpec action should be used.
1614  if (!Name) {
1615    if (!D.isInvalidType())  // Reject this if we think it is valid.
1616      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1617           diag::err_declarator_need_ident)
1618        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1619    return DeclPtrTy();
1620  }
1621
1622  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1623  // we find one that is.
1624  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1625         (S->getFlags() & Scope::TemplateParamScope) != 0)
1626    S = S->getParent();
1627
1628  DeclContext *DC;
1629  NamedDecl *PrevDecl;
1630  NamedDecl *New;
1631
1632  QualType R = GetTypeForDeclarator(D, S);
1633
1634  // See if this is a redefinition of a variable in the same scope.
1635  if (D.getCXXScopeSpec().isInvalid()) {
1636    DC = CurContext;
1637    PrevDecl = 0;
1638    D.setInvalidType();
1639  } else if (!D.getCXXScopeSpec().isSet()) {
1640    LookupNameKind NameKind = LookupOrdinaryName;
1641
1642    // If the declaration we're planning to build will be a function
1643    // or object with linkage, then look for another declaration with
1644    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1645    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1646      /* Do nothing*/;
1647    else if (R->isFunctionType()) {
1648      if (CurContext->isFunctionOrMethod() ||
1649          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1650        NameKind = LookupRedeclarationWithLinkage;
1651    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1652      NameKind = LookupRedeclarationWithLinkage;
1653    else if (CurContext->getLookupContext()->isTranslationUnit() &&
1654             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1655      NameKind = LookupRedeclarationWithLinkage;
1656
1657    DC = CurContext;
1658    PrevDecl = LookupName(S, Name, NameKind, true,
1659                          NameKind == LookupRedeclarationWithLinkage,
1660                          D.getIdentifierLoc());
1661  } else { // Something like "int foo::x;"
1662    DC = computeDeclContext(D.getCXXScopeSpec(), true);
1663    // FIXME: RequireCompleteDeclContext(D.getCXXScopeSpec()); ?
1664    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1665
1666    // C++ 7.3.1.2p2:
1667    // Members (including explicit specializations of templates) of a named
1668    // namespace can also be defined outside that namespace by explicit
1669    // qualification of the name being defined, provided that the entity being
1670    // defined was already declared in the namespace and the definition appears
1671    // after the point of declaration in a namespace that encloses the
1672    // declarations namespace.
1673    //
1674    // Note that we only check the context at this point. We don't yet
1675    // have enough information to make sure that PrevDecl is actually
1676    // the declaration we want to match. For example, given:
1677    //
1678    //   class X {
1679    //     void f();
1680    //     void f(float);
1681    //   };
1682    //
1683    //   void X::f(int) { } // ill-formed
1684    //
1685    // In this case, PrevDecl will point to the overload set
1686    // containing the two f's declared in X, but neither of them
1687    // matches.
1688
1689    // First check whether we named the global scope.
1690    if (isa<TranslationUnitDecl>(DC)) {
1691      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1692        << Name << D.getCXXScopeSpec().getRange();
1693    } else if (!CurContext->Encloses(DC)) {
1694      // The qualifying scope doesn't enclose the original declaration.
1695      // Emit diagnostic based on current scope.
1696      SourceLocation L = D.getIdentifierLoc();
1697      SourceRange R = D.getCXXScopeSpec().getRange();
1698      if (isa<FunctionDecl>(CurContext))
1699        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1700      else
1701        Diag(L, diag::err_invalid_declarator_scope)
1702          << Name << cast<NamedDecl>(DC) << R;
1703      D.setInvalidType();
1704    }
1705  }
1706
1707  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1708    // Maybe we will complain about the shadowed template parameter.
1709    if (!D.isInvalidType())
1710      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl))
1711        D.setInvalidType();
1712
1713    // Just pretend that we didn't see the previous declaration.
1714    PrevDecl = 0;
1715  }
1716
1717  // In C++, the previous declaration we find might be a tag type
1718  // (class or enum). In this case, the new declaration will hide the
1719  // tag type. Note that this does does not apply if we're declaring a
1720  // typedef (C++ [dcl.typedef]p4).
1721  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1722      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1723    PrevDecl = 0;
1724
1725  bool Redeclaration = false;
1726  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1727    if (TemplateParamLists.size()) {
1728      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
1729      return DeclPtrTy();
1730    }
1731
1732    New = ActOnTypedefDeclarator(S, D, DC, R, PrevDecl, Redeclaration);
1733  } else if (R->isFunctionType()) {
1734    New = ActOnFunctionDeclarator(S, D, DC, R, PrevDecl,
1735                                  move(TemplateParamLists),
1736                                  IsFunctionDefinition, Redeclaration);
1737  } else {
1738    New = ActOnVariableDeclarator(S, D, DC, R, PrevDecl,
1739                                  move(TemplateParamLists),
1740                                  Redeclaration);
1741  }
1742
1743  if (New == 0)
1744    return DeclPtrTy();
1745
1746  // If this has an identifier and is not an invalid redeclaration,
1747  // add it to the scope stack.
1748  if (Name && !(Redeclaration && New->isInvalidDecl()))
1749    PushOnScopeChains(New, S);
1750
1751  return DeclPtrTy::make(New);
1752}
1753
1754/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1755/// types into constant array types in certain situations which would otherwise
1756/// be errors (for GCC compatibility).
1757static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1758                                                    ASTContext &Context,
1759                                                    bool &SizeIsNegative) {
1760  // This method tries to turn a variable array into a constant
1761  // array even when the size isn't an ICE.  This is necessary
1762  // for compatibility with code that depends on gcc's buggy
1763  // constant expression folding, like struct {char x[(int)(char*)2];}
1764  SizeIsNegative = false;
1765
1766  if (const PointerType* PTy = dyn_cast<PointerType>(T)) {
1767    QualType Pointee = PTy->getPointeeType();
1768    QualType FixedType =
1769        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1770    if (FixedType.isNull()) return FixedType;
1771    FixedType = Context.getPointerType(FixedType);
1772    FixedType.setCVRQualifiers(T.getCVRQualifiers());
1773    return FixedType;
1774  }
1775
1776  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1777  if (!VLATy)
1778    return QualType();
1779  // FIXME: We should probably handle this case
1780  if (VLATy->getElementType()->isVariablyModifiedType())
1781    return QualType();
1782
1783  Expr::EvalResult EvalResult;
1784  if (!VLATy->getSizeExpr() ||
1785      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1786      !EvalResult.Val.isInt())
1787    return QualType();
1788
1789  llvm::APSInt &Res = EvalResult.Val.getInt();
1790  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
1791    Expr* ArySizeExpr = VLATy->getSizeExpr();
1792    // FIXME: here we could "steal" (how?) ArySizeExpr from the VLA,
1793    // so as to transfer ownership to the ConstantArrayWithExpr.
1794    // Alternatively, we could "clone" it (how?).
1795    // Since we don't know how to do things above, we just use the
1796    // very same Expr*.
1797    return Context.getConstantArrayWithExprType(VLATy->getElementType(),
1798                                                Res, ArySizeExpr,
1799                                                ArrayType::Normal, 0,
1800                                                VLATy->getBracketsRange());
1801  }
1802
1803  SizeIsNegative = true;
1804  return QualType();
1805}
1806
1807/// \brief Register the given locally-scoped external C declaration so
1808/// that it can be found later for redeclarations
1809void
1810Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1811                                       Scope *S) {
1812  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1813         "Decl is not a locally-scoped decl!");
1814  // Note that we have a locally-scoped external with this name.
1815  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1816
1817  if (!PrevDecl)
1818    return;
1819
1820  // If there was a previous declaration of this variable, it may be
1821  // in our identifier chain. Update the identifier chain with the new
1822  // declaration.
1823  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
1824    // The previous declaration was found on the identifer resolver
1825    // chain, so remove it from its scope.
1826    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
1827      S = S->getParent();
1828
1829    if (S)
1830      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
1831  }
1832}
1833
1834/// \brief Diagnose function specifiers on a declaration of an identifier that
1835/// does not identify a function.
1836void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
1837  // FIXME: We should probably indicate the identifier in question to avoid
1838  // confusion for constructs like "inline int a(), b;"
1839  if (D.getDeclSpec().isInlineSpecified())
1840    Diag(D.getDeclSpec().getInlineSpecLoc(),
1841         diag::err_inline_non_function);
1842
1843  if (D.getDeclSpec().isVirtualSpecified())
1844    Diag(D.getDeclSpec().getVirtualSpecLoc(),
1845         diag::err_virtual_non_function);
1846
1847  if (D.getDeclSpec().isExplicitSpecified())
1848    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1849         diag::err_explicit_non_function);
1850}
1851
1852NamedDecl*
1853Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1854                             QualType R, Decl* PrevDecl, bool &Redeclaration) {
1855  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1856  if (D.getCXXScopeSpec().isSet()) {
1857    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1858      << D.getCXXScopeSpec().getRange();
1859    D.setInvalidType();
1860    // Pretend we didn't see the scope specifier.
1861    DC = 0;
1862  }
1863
1864  if (getLangOptions().CPlusPlus) {
1865    // Check that there are no default arguments (C++ only).
1866    CheckExtraCXXDefaultArguments(D);
1867  }
1868
1869  DiagnoseFunctionSpecifiers(D);
1870
1871  if (D.getDeclSpec().isThreadSpecified())
1872    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
1873
1874  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R);
1875  if (!NewTD) return 0;
1876
1877  if (D.isInvalidType())
1878    NewTD->setInvalidDecl();
1879
1880  // Handle attributes prior to checking for duplicates in MergeVarDecl
1881  ProcessDeclAttributes(S, NewTD, D);
1882  // Merge the decl with the existing one if appropriate. If the decl is
1883  // in an outer scope, it isn't the same thing.
1884  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1885    Redeclaration = true;
1886    MergeTypeDefDecl(NewTD, PrevDecl);
1887  }
1888
1889  // C99 6.7.7p2: If a typedef name specifies a variably modified type
1890  // then it shall have block scope.
1891  QualType T = NewTD->getUnderlyingType();
1892  if (T->isVariablyModifiedType()) {
1893    CurFunctionNeedsScopeChecking = true;
1894
1895    if (S->getFnParent() == 0) {
1896      bool SizeIsNegative;
1897      QualType FixedTy =
1898          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1899      if (!FixedTy.isNull()) {
1900        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
1901        NewTD->setUnderlyingType(FixedTy);
1902      } else {
1903        if (SizeIsNegative)
1904          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
1905        else if (T->isVariableArrayType())
1906          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1907        else
1908          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1909        NewTD->setInvalidDecl();
1910      }
1911    }
1912  }
1913
1914  // If this is the C FILE type, notify the AST context.
1915  if (IdentifierInfo *II = NewTD->getIdentifier())
1916    if (!NewTD->isInvalidDecl() &&
1917        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
1918      if (II->isStr("FILE"))
1919        Context.setFILEDecl(NewTD);
1920      else if (II->isStr("jmp_buf"))
1921        Context.setjmp_bufDecl(NewTD);
1922      else if (II->isStr("sigjmp_buf"))
1923        Context.setsigjmp_bufDecl(NewTD);
1924    }
1925
1926  return NewTD;
1927}
1928
1929/// \brief Determines whether the given declaration is an out-of-scope
1930/// previous declaration.
1931///
1932/// This routine should be invoked when name lookup has found a
1933/// previous declaration (PrevDecl) that is not in the scope where a
1934/// new declaration by the same name is being introduced. If the new
1935/// declaration occurs in a local scope, previous declarations with
1936/// linkage may still be considered previous declarations (C99
1937/// 6.2.2p4-5, C++ [basic.link]p6).
1938///
1939/// \param PrevDecl the previous declaration found by name
1940/// lookup
1941///
1942/// \param DC the context in which the new declaration is being
1943/// declared.
1944///
1945/// \returns true if PrevDecl is an out-of-scope previous declaration
1946/// for a new delcaration with the same name.
1947static bool
1948isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
1949                                ASTContext &Context) {
1950  if (!PrevDecl)
1951    return 0;
1952
1953  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
1954  // case we need to check each of the overloaded functions.
1955  if (!PrevDecl->hasLinkage())
1956    return false;
1957
1958  if (Context.getLangOptions().CPlusPlus) {
1959    // C++ [basic.link]p6:
1960    //   If there is a visible declaration of an entity with linkage
1961    //   having the same name and type, ignoring entities declared
1962    //   outside the innermost enclosing namespace scope, the block
1963    //   scope declaration declares that same entity and receives the
1964    //   linkage of the previous declaration.
1965    DeclContext *OuterContext = DC->getLookupContext();
1966    if (!OuterContext->isFunctionOrMethod())
1967      // This rule only applies to block-scope declarations.
1968      return false;
1969    else {
1970      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
1971      if (PrevOuterContext->isRecord())
1972        // We found a member function: ignore it.
1973        return false;
1974      else {
1975        // Find the innermost enclosing namespace for the new and
1976        // previous declarations.
1977        while (!OuterContext->isFileContext())
1978          OuterContext = OuterContext->getParent();
1979        while (!PrevOuterContext->isFileContext())
1980          PrevOuterContext = PrevOuterContext->getParent();
1981
1982        // The previous declaration is in a different namespace, so it
1983        // isn't the same function.
1984        if (OuterContext->getPrimaryContext() !=
1985            PrevOuterContext->getPrimaryContext())
1986          return false;
1987      }
1988    }
1989  }
1990
1991  return true;
1992}
1993
1994NamedDecl*
1995Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1996                              QualType R,NamedDecl* PrevDecl,
1997                              MultiTemplateParamsArg TemplateParamLists,
1998                              bool &Redeclaration) {
1999  DeclarationName Name = GetNameForDeclarator(D);
2000
2001  // Check that there are no default arguments (C++ only).
2002  if (getLangOptions().CPlusPlus)
2003    CheckExtraCXXDefaultArguments(D);
2004
2005  VarDecl *NewVD;
2006  VarDecl::StorageClass SC;
2007  switch (D.getDeclSpec().getStorageClassSpec()) {
2008  default: assert(0 && "Unknown storage class!");
2009  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
2010  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
2011  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
2012  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
2013  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
2014  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
2015  case DeclSpec::SCS_mutable:
2016    // mutable can only appear on non-static class members, so it's always
2017    // an error here
2018    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2019    D.setInvalidType();
2020    SC = VarDecl::None;
2021    break;
2022  }
2023
2024  IdentifierInfo *II = Name.getAsIdentifierInfo();
2025  if (!II) {
2026    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2027      << Name.getAsString();
2028    return 0;
2029  }
2030
2031  DiagnoseFunctionSpecifiers(D);
2032
2033  if (!DC->isRecord() && S->getFnParent() == 0) {
2034    // C99 6.9p2: The storage-class specifiers auto and register shall not
2035    // appear in the declaration specifiers in an external declaration.
2036    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2037
2038      // If this is a register variable with an asm label specified, then this
2039      // is a GNU extension.
2040      if (SC == VarDecl::Register && D.getAsmLabel())
2041        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2042      else
2043        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2044      D.setInvalidType();
2045    }
2046  }
2047  if (DC->isRecord() && !CurContext->isRecord()) {
2048    // This is an out-of-line definition of a static data member.
2049    if (SC == VarDecl::Static) {
2050      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2051           diag::err_static_out_of_line)
2052        << CodeModificationHint::CreateRemoval(
2053                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2054    } else if (SC == VarDecl::None)
2055      SC = VarDecl::Static;
2056  }
2057  if (SC == VarDecl::Static) {
2058    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2059      if (RD->isLocalClass())
2060        Diag(D.getIdentifierLoc(),
2061             diag::err_static_data_member_not_allowed_in_local_class)
2062          << Name << RD->getDeclName();
2063    }
2064  }
2065
2066  // Check that we can declare a template here.
2067  if (TemplateParamLists.size() &&
2068      CheckTemplateDeclScope(S, TemplateParamLists))
2069    return 0;
2070
2071  // Match up the template parameter lists with the scope specifier, then
2072  // determine whether we have a template or a template specialization.
2073  if (TemplateParameterList *TemplateParams
2074      = MatchTemplateParametersToScopeSpecifier(
2075                                  D.getDeclSpec().getSourceRange().getBegin(),
2076                                                D.getCXXScopeSpec(),
2077                        (TemplateParameterList**)TemplateParamLists.get(),
2078                                                 TemplateParamLists.size())) {
2079    if (TemplateParams->size() > 0) {
2080      // There is no such thing as a variable template.
2081      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2082        << II
2083        << SourceRange(TemplateParams->getTemplateLoc(),
2084                       TemplateParams->getRAngleLoc());
2085      return 0;
2086    } else {
2087      // There is an extraneous 'template<>' for this variable. Complain
2088      // about it, but allow the declaration of the variable.
2089      Diag(TemplateParams->getTemplateLoc(),
2090           diag::err_template_variable_noparams)
2091        << II
2092        << SourceRange(TemplateParams->getTemplateLoc(),
2093                       TemplateParams->getRAngleLoc());
2094    }
2095  }
2096
2097  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2098                          II, R, SC,
2099                          // FIXME: Move to DeclGroup...
2100                          D.getDeclSpec().getSourceRange().getBegin());
2101
2102  if (D.isInvalidType())
2103    NewVD->setInvalidDecl();
2104
2105  if (D.getDeclSpec().isThreadSpecified()) {
2106    if (NewVD->hasLocalStorage())
2107      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2108    else if (!Context.Target.isTLSSupported())
2109      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2110    else
2111      NewVD->setThreadSpecified(true);
2112  }
2113
2114  // Set the lexical context. If the declarator has a C++ scope specifier, the
2115  // lexical context will be different from the semantic context.
2116  NewVD->setLexicalDeclContext(CurContext);
2117
2118  // Handle attributes prior to checking for duplicates in MergeVarDecl
2119  ProcessDeclAttributes(S, NewVD, D);
2120
2121  // Handle GNU asm-label extension (encoded as an attribute).
2122  if (Expr *E = (Expr*) D.getAsmLabel()) {
2123    // The parser guarantees this is a string.
2124    StringLiteral *SE = cast<StringLiteral>(E);
2125    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2126                                                        SE->getByteLength())));
2127  }
2128
2129  // If name lookup finds a previous declaration that is not in the
2130  // same scope as the new declaration, this may still be an
2131  // acceptable redeclaration.
2132  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2133      !(NewVD->hasLinkage() &&
2134        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2135    PrevDecl = 0;
2136
2137  // Merge the decl with the existing one if appropriate.
2138  if (PrevDecl) {
2139    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
2140      // The user tried to define a non-static data member
2141      // out-of-line (C++ [dcl.meaning]p1).
2142      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2143        << D.getCXXScopeSpec().getRange();
2144      PrevDecl = 0;
2145      NewVD->setInvalidDecl();
2146    }
2147  } else if (D.getCXXScopeSpec().isSet()) {
2148    // No previous declaration in the qualifying scope.
2149    Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
2150      << Name << D.getCXXScopeSpec().getRange();
2151    NewVD->setInvalidDecl();
2152  }
2153
2154  CheckVariableDeclaration(NewVD, PrevDecl, Redeclaration);
2155
2156  // attributes declared post-definition are currently ignored
2157  if (PrevDecl) {
2158    const VarDecl *Def = 0, *PrevVD = dyn_cast<VarDecl>(PrevDecl);
2159    if (PrevVD->getDefinition(Def) && D.hasAttributes()) {
2160      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2161      Diag(Def->getLocation(), diag::note_previous_definition);
2162    }
2163  }
2164
2165  // If this is a locally-scoped extern C variable, update the map of
2166  // such variables.
2167  if (CurContext->isFunctionOrMethod() && NewVD->isExternC(Context) &&
2168      !NewVD->isInvalidDecl())
2169    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
2170
2171  return NewVD;
2172}
2173
2174/// \brief Perform semantic checking on a newly-created variable
2175/// declaration.
2176///
2177/// This routine performs all of the type-checking required for a
2178/// variable declaration once it has been built. It is used both to
2179/// check variables after they have been parsed and their declarators
2180/// have been translated into a declaration, and to check variables
2181/// that have been instantiated from a template.
2182///
2183/// Sets NewVD->isInvalidDecl() if an error was encountered.
2184void Sema::CheckVariableDeclaration(VarDecl *NewVD, NamedDecl *PrevDecl,
2185                                    bool &Redeclaration) {
2186  // If the decl is already known invalid, don't check it.
2187  if (NewVD->isInvalidDecl())
2188    return;
2189
2190  QualType T = NewVD->getType();
2191
2192  if (T->isObjCInterfaceType()) {
2193    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2194    return NewVD->setInvalidDecl();
2195  }
2196
2197  // The variable can not have an abstract class type.
2198  if (RequireNonAbstractType(NewVD->getLocation(), T,
2199                             diag::err_abstract_type_in_decl,
2200                             AbstractVariableType))
2201    return NewVD->setInvalidDecl();
2202
2203  // Emit an error if an address space was applied to decl with local storage.
2204  // This includes arrays of objects with address space qualifiers, but not
2205  // automatic variables that point to other address spaces.
2206  // ISO/IEC TR 18037 S5.1.2
2207  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2208    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2209    return NewVD->setInvalidDecl();
2210  }
2211
2212  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2213      && !NewVD->hasAttr<BlocksAttr>())
2214    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2215
2216  bool isVM = T->isVariablyModifiedType();
2217  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2218      NewVD->hasAttr<BlocksAttr>())
2219    CurFunctionNeedsScopeChecking = true;
2220
2221  if ((isVM && NewVD->hasLinkage()) ||
2222      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2223    bool SizeIsNegative;
2224    QualType FixedTy =
2225        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2226
2227    if (FixedTy.isNull() && T->isVariableArrayType()) {
2228      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2229      // FIXME: This won't give the correct result for
2230      // int a[10][n];
2231      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2232
2233      if (NewVD->isFileVarDecl())
2234        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2235        << SizeRange;
2236      else if (NewVD->getStorageClass() == VarDecl::Static)
2237        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2238        << SizeRange;
2239      else
2240        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2241        << SizeRange;
2242      return NewVD->setInvalidDecl();
2243    }
2244
2245    if (FixedTy.isNull()) {
2246      if (NewVD->isFileVarDecl())
2247        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2248      else
2249        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2250      return NewVD->setInvalidDecl();
2251    }
2252
2253    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2254    NewVD->setType(FixedTy);
2255  }
2256
2257  if (!PrevDecl && NewVD->isExternC(Context)) {
2258    // Since we did not find anything by this name and we're declaring
2259    // an extern "C" variable, look for a non-visible extern "C"
2260    // declaration with the same name.
2261    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2262      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2263    if (Pos != LocallyScopedExternalDecls.end())
2264      PrevDecl = Pos->second;
2265  }
2266
2267  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2268    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2269      << T;
2270    return NewVD->setInvalidDecl();
2271  }
2272
2273  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2274    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2275    return NewVD->setInvalidDecl();
2276  }
2277
2278  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2279    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2280    return NewVD->setInvalidDecl();
2281  }
2282
2283  if (PrevDecl) {
2284    Redeclaration = true;
2285    MergeVarDecl(NewVD, PrevDecl);
2286  }
2287}
2288
2289NamedDecl*
2290Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2291                              QualType R, NamedDecl* PrevDecl,
2292                              MultiTemplateParamsArg TemplateParamLists,
2293                              bool IsFunctionDefinition, bool &Redeclaration) {
2294  assert(R.getTypePtr()->isFunctionType());
2295
2296  DeclarationName Name = GetNameForDeclarator(D);
2297  FunctionDecl::StorageClass SC = FunctionDecl::None;
2298  switch (D.getDeclSpec().getStorageClassSpec()) {
2299  default: assert(0 && "Unknown storage class!");
2300  case DeclSpec::SCS_auto:
2301  case DeclSpec::SCS_register:
2302  case DeclSpec::SCS_mutable:
2303    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2304         diag::err_typecheck_sclass_func);
2305    D.setInvalidType();
2306    break;
2307  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2308  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2309  case DeclSpec::SCS_static: {
2310    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2311      // C99 6.7.1p5:
2312      //   The declaration of an identifier for a function that has
2313      //   block scope shall have no explicit storage-class specifier
2314      //   other than extern
2315      // See also (C++ [dcl.stc]p4).
2316      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2317           diag::err_static_block_func);
2318      SC = FunctionDecl::None;
2319    } else
2320      SC = FunctionDecl::Static;
2321    break;
2322  }
2323  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2324  }
2325
2326  if (D.getDeclSpec().isThreadSpecified())
2327    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2328
2329  bool isInline = D.getDeclSpec().isInlineSpecified();
2330  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2331  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2332
2333  // Check that the return type is not an abstract class type.
2334  // For record types, this is done by the AbstractClassUsageDiagnoser once
2335  // the class has been completely parsed.
2336  if (!DC->isRecord() &&
2337      RequireNonAbstractType(D.getIdentifierLoc(),
2338                             R->getAsFunctionType()->getResultType(),
2339                             diag::err_abstract_type_in_decl,
2340                             AbstractReturnType))
2341    D.setInvalidType();
2342
2343  // Do not allow returning a objc interface by-value.
2344  if (R->getAsFunctionType()->getResultType()->isObjCInterfaceType()) {
2345    Diag(D.getIdentifierLoc(),
2346         diag::err_object_cannot_be_passed_returned_by_value) << 0
2347      << R->getAsFunctionType()->getResultType();
2348    D.setInvalidType();
2349  }
2350
2351  // Check that we can declare a template here.
2352  if (TemplateParamLists.size() &&
2353      CheckTemplateDeclScope(S, TemplateParamLists))
2354    return 0;
2355
2356  bool isVirtualOkay = false;
2357  FunctionDecl *NewFD;
2358  if (D.getKind() == Declarator::DK_Constructor) {
2359    // This is a C++ constructor declaration.
2360    assert(DC->isRecord() &&
2361           "Constructors can only be declared in a member context");
2362
2363    R = CheckConstructorDeclarator(D, R, SC);
2364
2365    // Create the new declaration
2366    NewFD = CXXConstructorDecl::Create(Context,
2367                                       cast<CXXRecordDecl>(DC),
2368                                       D.getIdentifierLoc(), Name, R,
2369                                       isExplicit, isInline,
2370                                       /*isImplicitlyDeclared=*/false);
2371  } else if (D.getKind() == Declarator::DK_Destructor) {
2372    // This is a C++ destructor declaration.
2373    if (DC->isRecord()) {
2374      R = CheckDestructorDeclarator(D, SC);
2375
2376      NewFD = CXXDestructorDecl::Create(Context,
2377                                        cast<CXXRecordDecl>(DC),
2378                                        D.getIdentifierLoc(), Name, R,
2379                                        isInline,
2380                                        /*isImplicitlyDeclared=*/false);
2381
2382      isVirtualOkay = true;
2383    } else {
2384      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2385
2386      // Create a FunctionDecl to satisfy the function definition parsing
2387      // code path.
2388      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2389                                   Name, R, SC, isInline,
2390                                   /*hasPrototype=*/true,
2391                                   // FIXME: Move to DeclGroup...
2392                                   D.getDeclSpec().getSourceRange().getBegin());
2393      D.setInvalidType();
2394    }
2395  } else if (D.getKind() == Declarator::DK_Conversion) {
2396    if (!DC->isRecord()) {
2397      Diag(D.getIdentifierLoc(),
2398           diag::err_conv_function_not_member);
2399      return 0;
2400    }
2401
2402    CheckConversionDeclarator(D, R, SC);
2403    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2404                                      D.getIdentifierLoc(), Name, R,
2405                                      isInline, isExplicit);
2406
2407    isVirtualOkay = true;
2408  } else if (DC->isRecord()) {
2409    // If the of the function is the same as the name of the record, then this
2410    // must be an invalid constructor that has a return type.
2411    // (The parser checks for a return type and makes the declarator a
2412    // constructor if it has no return type).
2413    // must have an invalid constructor that has a return type
2414    if (Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2415      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2416        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2417        << SourceRange(D.getIdentifierLoc());
2418      return 0;
2419    }
2420
2421    // This is a C++ method declaration.
2422    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2423                                  D.getIdentifierLoc(), Name, R,
2424                                  (SC == FunctionDecl::Static), isInline);
2425
2426    isVirtualOkay = (SC != FunctionDecl::Static);
2427  } else {
2428    // Determine whether the function was written with a
2429    // prototype. This true when:
2430    //   - we're in C++ (where every function has a prototype),
2431    //   - there is a prototype in the declarator, or
2432    //   - the type R of the function is some kind of typedef or other reference
2433    //     to a type name (which eventually refers to a function type).
2434    bool HasPrototype =
2435       getLangOptions().CPlusPlus ||
2436       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2437       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2438
2439    NewFD = FunctionDecl::Create(Context, DC,
2440                                 D.getIdentifierLoc(),
2441                                 Name, R, SC, isInline, HasPrototype,
2442                                 // FIXME: Move to DeclGroup...
2443                                 D.getDeclSpec().getSourceRange().getBegin());
2444  }
2445
2446  if (D.isInvalidType())
2447    NewFD->setInvalidDecl();
2448
2449  // Set the lexical context. If the declarator has a C++
2450  // scope specifier, the lexical context will be different
2451  // from the semantic context.
2452  NewFD->setLexicalDeclContext(CurContext);
2453
2454  // Match up the template parameter lists with the scope specifier, then
2455  // determine whether we have a template or a template specialization.
2456  FunctionTemplateDecl *FunctionTemplate = 0;
2457  if (TemplateParameterList *TemplateParams
2458        = MatchTemplateParametersToScopeSpecifier(
2459                                  D.getDeclSpec().getSourceRange().getBegin(),
2460                                  D.getCXXScopeSpec(),
2461                           (TemplateParameterList**)TemplateParamLists.get(),
2462                                                  TemplateParamLists.size())) {
2463    if (TemplateParams->size() > 0) {
2464      // This is a function template
2465      FunctionTemplate = FunctionTemplateDecl::Create(Context, CurContext,
2466                                                      NewFD->getLocation(),
2467                                                      Name, TemplateParams,
2468                                                      NewFD);
2469      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
2470    } else {
2471      // FIXME: Handle function template specializations
2472    }
2473
2474    // FIXME: Free this memory properly.
2475    TemplateParamLists.release();
2476  }
2477
2478  // C++ [dcl.fct.spec]p5:
2479  //   The virtual specifier shall only be used in declarations of
2480  //   nonstatic class member functions that appear within a
2481  //   member-specification of a class declaration; see 10.3.
2482  //
2483  if (isVirtual && !NewFD->isInvalidDecl()) {
2484    if (!isVirtualOkay) {
2485       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2486           diag::err_virtual_non_function);
2487    } else if (!CurContext->isRecord()) {
2488      // 'virtual' was specified outside of the class.
2489      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2490        << CodeModificationHint::CreateRemoval(
2491                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
2492    } else {
2493      // Okay: Add virtual to the method.
2494      cast<CXXMethodDecl>(NewFD)->setVirtualAsWritten(true);
2495      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2496      CurClass->setAggregate(false);
2497      CurClass->setPOD(false);
2498      CurClass->setPolymorphic(true);
2499      CurClass->setHasTrivialConstructor(false);
2500      CurClass->setHasTrivialCopyConstructor(false);
2501      CurClass->setHasTrivialCopyAssignment(false);
2502    }
2503  }
2504
2505  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD)) {
2506    // Look for virtual methods in base classes that this method might override.
2507
2508    BasePaths Paths;
2509    if (LookupInBases(cast<CXXRecordDecl>(DC),
2510                      MemberLookupCriteria(NewMD), Paths)) {
2511      for (BasePaths::decl_iterator I = Paths.found_decls_begin(),
2512           E = Paths.found_decls_end(); I != E; ++I) {
2513        if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2514          if (!CheckOverridingFunctionReturnType(NewMD, OldMD) &&
2515              !CheckOverridingFunctionExceptionSpec(NewMD, OldMD))
2516            NewMD->addOverriddenMethod(OldMD);
2517        }
2518      }
2519    }
2520  }
2521
2522  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2523      !CurContext->isRecord()) {
2524    // C++ [class.static]p1:
2525    //   A data or function member of a class may be declared static
2526    //   in a class definition, in which case it is a static member of
2527    //   the class.
2528
2529    // Complain about the 'static' specifier if it's on an out-of-line
2530    // member function definition.
2531    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2532         diag::err_static_out_of_line)
2533      << CodeModificationHint::CreateRemoval(
2534                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2535  }
2536
2537  // Handle GNU asm-label extension (encoded as an attribute).
2538  if (Expr *E = (Expr*) D.getAsmLabel()) {
2539    // The parser guarantees this is a string.
2540    StringLiteral *SE = cast<StringLiteral>(E);
2541    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2542                                                        SE->getByteLength())));
2543  }
2544
2545  // Copy the parameter declarations from the declarator D to the function
2546  // declaration NewFD, if they are available.  First scavenge them into Params.
2547  llvm::SmallVector<ParmVarDecl*, 16> Params;
2548  if (D.getNumTypeObjects() > 0) {
2549    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2550
2551    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2552    // function that takes no arguments, not a function that takes a
2553    // single void argument.
2554    // We let through "const void" here because Sema::GetTypeForDeclarator
2555    // already checks for that case.
2556    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2557        FTI.ArgInfo[0].Param &&
2558        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2559      // Empty arg list, don't push any params.
2560      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2561
2562      // In C++, the empty parameter-type-list must be spelled "void"; a
2563      // typedef of void is not permitted.
2564      if (getLangOptions().CPlusPlus &&
2565          Param->getType().getUnqualifiedType() != Context.VoidTy)
2566        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2567      // FIXME: Leaks decl?
2568    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2569      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2570        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
2571        assert(Param->getDeclContext() != NewFD && "Was set before ?");
2572        Param->setDeclContext(NewFD);
2573        Params.push_back(Param);
2574      }
2575    }
2576
2577  } else if (const FunctionProtoType *FT = R->getAsFunctionProtoType()) {
2578    // When we're declaring a function with a typedef, typeof, etc as in the
2579    // following example, we'll need to synthesize (unnamed)
2580    // parameters for use in the declaration.
2581    //
2582    // @code
2583    // typedef void fn(int);
2584    // fn f;
2585    // @endcode
2586
2587    // Synthesize a parameter for each argument type.
2588    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2589         AE = FT->arg_type_end(); AI != AE; ++AI) {
2590      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2591                                               SourceLocation(), 0,
2592                                               *AI, VarDecl::None, 0);
2593      Param->setImplicit();
2594      Params.push_back(Param);
2595    }
2596  } else {
2597    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
2598           "Should not need args for typedef of non-prototype fn");
2599  }
2600  // Finally, we know we have the right number of parameters, install them.
2601  NewFD->setParams(Context, Params.data(), Params.size());
2602
2603  // If name lookup finds a previous declaration that is not in the
2604  // same scope as the new declaration, this may still be an
2605  // acceptable redeclaration.
2606  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2607      !(NewFD->hasLinkage() &&
2608        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2609    PrevDecl = 0;
2610
2611  // Perform semantic checking on the function declaration.
2612  bool OverloadableAttrRequired = false; // FIXME: HACK!
2613  CheckFunctionDeclaration(NewFD, PrevDecl, Redeclaration,
2614                           /*FIXME:*/OverloadableAttrRequired);
2615
2616  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
2617    // An out-of-line member function declaration must also be a
2618    // definition (C++ [dcl.meaning]p1).
2619    if (!IsFunctionDefinition) {
2620      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2621        << D.getCXXScopeSpec().getRange();
2622      NewFD->setInvalidDecl();
2623    } else if (!Redeclaration && (!PrevDecl || !isa<UsingDecl>(PrevDecl))) {
2624      // The user tried to provide an out-of-line definition for a
2625      // function that is a member of a class or namespace, but there
2626      // was no such member function declared (C++ [class.mfct]p2,
2627      // C++ [namespace.memdef]p2). For example:
2628      //
2629      // class X {
2630      //   void f() const;
2631      // };
2632      //
2633      // void X::f() { } // ill-formed
2634      //
2635      // Complain about this problem, and attempt to suggest close
2636      // matches (e.g., those that differ only in cv-qualifiers and
2637      // whether the parameter types are references).
2638      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2639        << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
2640      NewFD->setInvalidDecl();
2641
2642      LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
2643                                              true);
2644      assert(!Prev.isAmbiguous() &&
2645             "Cannot have an ambiguity in previous-declaration lookup");
2646      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2647           Func != FuncEnd; ++Func) {
2648        if (isa<FunctionDecl>(*Func) &&
2649            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2650          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2651      }
2652
2653      PrevDecl = 0;
2654    }
2655  }
2656
2657  // Handle attributes. We need to have merged decls when handling attributes
2658  // (for example to check for conflicts, etc).
2659  // FIXME: This needs to happen before we merge declarations. Then,
2660  // let attribute merging cope with attribute conflicts.
2661  ProcessDeclAttributes(S, NewFD, D);
2662
2663  // attributes declared post-definition are currently ignored
2664  if (PrevDecl) {
2665    const FunctionDecl *Def, *PrevFD = dyn_cast<FunctionDecl>(PrevDecl);
2666    if (PrevFD && PrevFD->getBody(Def) && D.hasAttributes()) {
2667      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
2668      Diag(Def->getLocation(), diag::note_previous_definition);
2669    }
2670  }
2671
2672  AddKnownFunctionAttributes(NewFD);
2673
2674  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2675    // If a function name is overloadable in C, then every function
2676    // with that name must be marked "overloadable".
2677    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2678      << Redeclaration << NewFD;
2679    if (PrevDecl)
2680      Diag(PrevDecl->getLocation(),
2681           diag::note_attribute_overloadable_prev_overload);
2682    NewFD->addAttr(::new (Context) OverloadableAttr());
2683  }
2684
2685  // If this is a locally-scoped extern C function, update the
2686  // map of such names.
2687  if (CurContext->isFunctionOrMethod() && NewFD->isExternC(Context)
2688      && !NewFD->isInvalidDecl())
2689    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2690
2691  // Set this FunctionDecl's range up to the right paren.
2692  NewFD->setLocEnd(D.getSourceRange().getEnd());
2693
2694  if (FunctionTemplate && NewFD->isInvalidDecl())
2695    FunctionTemplate->setInvalidDecl();
2696
2697  if (FunctionTemplate)
2698    return FunctionTemplate;
2699
2700  return NewFD;
2701}
2702
2703/// \brief Perform semantic checking of a new function declaration.
2704///
2705/// Performs semantic analysis of the new function declaration
2706/// NewFD. This routine performs all semantic checking that does not
2707/// require the actual declarator involved in the declaration, and is
2708/// used both for the declaration of functions as they are parsed
2709/// (called via ActOnDeclarator) and for the declaration of functions
2710/// that have been instantiated via C++ template instantiation (called
2711/// via InstantiateDecl).
2712///
2713/// This sets NewFD->isInvalidDecl() to true if there was an error.
2714void Sema::CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl,
2715                                    bool &Redeclaration,
2716                                    bool &OverloadableAttrRequired) {
2717  // If NewFD is already known erroneous, don't do any of this checking.
2718  if (NewFD->isInvalidDecl())
2719    return;
2720
2721  if (NewFD->getResultType()->isVariablyModifiedType()) {
2722    // Functions returning a variably modified type violate C99 6.7.5.2p2
2723    // because all functions have linkage.
2724    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
2725    return NewFD->setInvalidDecl();
2726  }
2727
2728  if (NewFD->isMain()) CheckMain(NewFD);
2729
2730  // Semantic checking for this function declaration (in isolation).
2731  if (getLangOptions().CPlusPlus) {
2732    // C++-specific checks.
2733    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
2734      CheckConstructor(Constructor);
2735    } else if (isa<CXXDestructorDecl>(NewFD)) {
2736      CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
2737      QualType ClassType = Context.getTypeDeclType(Record);
2738      if (!ClassType->isDependentType()) {
2739        ClassType = Context.getCanonicalType(ClassType);
2740        DeclarationName Name
2741          = Context.DeclarationNames.getCXXDestructorName(ClassType);
2742        if (NewFD->getDeclName() != Name) {
2743          Diag(NewFD->getLocation(), diag::err_destructor_name);
2744          return NewFD->setInvalidDecl();
2745        }
2746      }
2747      Record->setUserDeclaredDestructor(true);
2748      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
2749      // user-defined destructor.
2750      Record->setPOD(false);
2751
2752      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
2753      // declared destructor.
2754      // FIXME: C++0x: don't do this for "= default" destructors
2755      Record->setHasTrivialDestructor(false);
2756    } else if (CXXConversionDecl *Conversion
2757               = dyn_cast<CXXConversionDecl>(NewFD))
2758      ActOnConversionDeclarator(Conversion);
2759
2760    // Extra checking for C++ overloaded operators (C++ [over.oper]).
2761    if (NewFD->isOverloadedOperator() &&
2762        CheckOverloadedOperatorDeclaration(NewFD))
2763      return NewFD->setInvalidDecl();
2764  }
2765
2766  // C99 6.7.4p6:
2767  //   [... ] For a function with external linkage, the following
2768  //   restrictions apply: [...] If all of the file scope declarations
2769  //   for a function in a translation unit include the inline
2770  //   function specifier without extern, then the definition in that
2771  //   translation unit is an inline definition. An inline definition
2772  //   does not provide an external definition for the function, and
2773  //   does not forbid an external definition in another translation
2774  //   unit.
2775  //
2776  // Here we determine whether this function, in isolation, would be a
2777  // C99 inline definition. MergeCompatibleFunctionDecls looks at
2778  // previous declarations.
2779  if (NewFD->isInline() && getLangOptions().C99 &&
2780      NewFD->getStorageClass() == FunctionDecl::None &&
2781      NewFD->getDeclContext()->getLookupContext()->isTranslationUnit())
2782    NewFD->setC99InlineDefinition(true);
2783
2784  // Check for a previous declaration of this name.
2785  if (!PrevDecl && NewFD->isExternC(Context)) {
2786    // Since we did not find anything by this name and we're declaring
2787    // an extern "C" function, look for a non-visible extern "C"
2788    // declaration with the same name.
2789    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2790      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
2791    if (Pos != LocallyScopedExternalDecls.end())
2792      PrevDecl = Pos->second;
2793  }
2794
2795  // Merge or overload the declaration with an existing declaration of
2796  // the same name, if appropriate.
2797  if (PrevDecl) {
2798    // Determine whether NewFD is an overload of PrevDecl or
2799    // a declaration that requires merging. If it's an overload,
2800    // there's no more work to do here; we'll just add the new
2801    // function to the scope.
2802    OverloadedFunctionDecl::function_iterator MatchedDecl;
2803
2804    if (!getLangOptions().CPlusPlus &&
2805        AllowOverloadingOfFunction(PrevDecl, Context)) {
2806      OverloadableAttrRequired = true;
2807
2808      // Functions marked "overloadable" must have a prototype (that
2809      // we can't get through declaration merging).
2810      if (!NewFD->getType()->getAsFunctionProtoType()) {
2811        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
2812          << NewFD;
2813        Redeclaration = true;
2814
2815        // Turn this into a variadic function with no parameters.
2816        QualType R = Context.getFunctionType(
2817                       NewFD->getType()->getAsFunctionType()->getResultType(),
2818                       0, 0, true, 0);
2819        NewFD->setType(R);
2820        return NewFD->setInvalidDecl();
2821      }
2822    }
2823
2824    if (PrevDecl &&
2825        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
2826         !IsOverload(NewFD, PrevDecl, MatchedDecl)) &&
2827        !isa<UsingDecl>(PrevDecl)) {
2828      Redeclaration = true;
2829      Decl *OldDecl = PrevDecl;
2830
2831      // If PrevDecl was an overloaded function, extract the
2832      // FunctionDecl that matched.
2833      if (isa<OverloadedFunctionDecl>(PrevDecl))
2834        OldDecl = *MatchedDecl;
2835
2836      // NewFD and OldDecl represent declarations that need to be
2837      // merged.
2838      if (MergeFunctionDecl(NewFD, OldDecl))
2839        return NewFD->setInvalidDecl();
2840
2841      if (FunctionTemplateDecl *OldTemplateDecl
2842            = dyn_cast<FunctionTemplateDecl>(OldDecl))
2843        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
2844      else {
2845        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
2846          NewFD->setAccess(OldDecl->getAccess());
2847        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
2848      }
2849    }
2850  }
2851
2852  // In C++, check default arguments now that we have merged decls. Unless
2853  // the lexical context is the class, because in this case this is done
2854  // during delayed parsing anyway.
2855  if (getLangOptions().CPlusPlus && !CurContext->isRecord())
2856    CheckCXXDefaultArguments(NewFD);
2857}
2858
2859void Sema::CheckMain(FunctionDecl* FD) {
2860  // C++ [basic.start.main]p3:  A program that declares main to be inline
2861  //   or static is ill-formed.
2862  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
2863  //   shall not appear in a declaration of main.
2864  // static main is not an error under C99, but we should warn about it.
2865  bool isInline = FD->isInline();
2866  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
2867  if (isInline || isStatic) {
2868    unsigned diagID = diag::warn_unusual_main_decl;
2869    if (isInline || getLangOptions().CPlusPlus)
2870      diagID = diag::err_unusual_main_decl;
2871
2872    int which = isStatic + (isInline << 1) - 1;
2873    Diag(FD->getLocation(), diagID) << which;
2874  }
2875
2876  QualType T = FD->getType();
2877  assert(T->isFunctionType() && "function decl is not of function type");
2878  const FunctionType* FT = T->getAsFunctionType();
2879
2880  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
2881    // TODO: add a replacement fixit to turn the return type into 'int'.
2882    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
2883    FD->setInvalidDecl(true);
2884  }
2885
2886  // Treat protoless main() as nullary.
2887  if (isa<FunctionNoProtoType>(FT)) return;
2888
2889  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
2890  unsigned nparams = FTP->getNumArgs();
2891  assert(FD->getNumParams() == nparams);
2892
2893  if (nparams > 3) {
2894    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
2895    FD->setInvalidDecl(true);
2896    nparams = 3;
2897  }
2898
2899  // FIXME: a lot of the following diagnostics would be improved
2900  // if we had some location information about types.
2901
2902  QualType CharPP =
2903    Context.getPointerType(Context.getPointerType(Context.CharTy));
2904  QualType Expected[] = { Context.IntTy, CharPP, CharPP };
2905
2906  for (unsigned i = 0; i < nparams; ++i) {
2907    QualType AT = FTP->getArgType(i);
2908
2909    bool mismatch = true;
2910
2911    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
2912      mismatch = false;
2913    else if (Expected[i] == CharPP) {
2914      // As an extension, the following forms are okay:
2915      //   char const **
2916      //   char const * const *
2917      //   char * const *
2918
2919      QualifierSet qs;
2920      const PointerType* PT;
2921      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
2922          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
2923          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
2924        qs.removeConst();
2925        mismatch = !qs.empty();
2926      }
2927    }
2928
2929    if (mismatch) {
2930      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
2931      // TODO: suggest replacing given type with expected type
2932      FD->setInvalidDecl(true);
2933    }
2934  }
2935
2936  if (nparams == 1 && !FD->isInvalidDecl()) {
2937    Diag(FD->getLocation(), diag::warn_main_one_arg);
2938  }
2939}
2940
2941bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2942  // FIXME: Need strict checking.  In C89, we need to check for
2943  // any assignment, increment, decrement, function-calls, or
2944  // commas outside of a sizeof.  In C99, it's the same list,
2945  // except that the aforementioned are allowed in unevaluated
2946  // expressions.  Everything else falls under the
2947  // "may accept other forms of constant expressions" exception.
2948  // (We never end up here for C++, so the constant expression
2949  // rules there don't matter.)
2950  if (Init->isConstantInitializer(Context))
2951    return false;
2952  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
2953    << Init->getSourceRange();
2954  return true;
2955}
2956
2957void Sema::AddInitializerToDecl(DeclPtrTy dcl, FullExprArg init) {
2958  AddInitializerToDecl(dcl, init.release(), /*DirectInit=*/false);
2959}
2960
2961/// AddInitializerToDecl - Adds the initializer Init to the
2962/// declaration dcl. If DirectInit is true, this is C++ direct
2963/// initialization rather than copy initialization.
2964void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
2965  Decl *RealDecl = dcl.getAs<Decl>();
2966  // If there is no declaration, there was an error parsing it.  Just ignore
2967  // the initializer.
2968  if (RealDecl == 0)
2969    return;
2970
2971  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
2972    // With declarators parsed the way they are, the parser cannot
2973    // distinguish between a normal initializer and a pure-specifier.
2974    // Thus this grotesque test.
2975    IntegerLiteral *IL;
2976    Expr *Init = static_cast<Expr *>(init.get());
2977    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
2978        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
2979      if (Method->isVirtualAsWritten()) {
2980        Method->setPure();
2981
2982        // A class is abstract if at least one function is pure virtual.
2983        cast<CXXRecordDecl>(CurContext)->setAbstract(true);
2984      } else if (!Method->isInvalidDecl()) {
2985        Diag(Method->getLocation(), diag::err_non_virtual_pure)
2986          << Method->getDeclName() << Init->getSourceRange();
2987        Method->setInvalidDecl();
2988      }
2989    } else {
2990      Diag(Method->getLocation(), diag::err_member_function_initialization)
2991        << Method->getDeclName() << Init->getSourceRange();
2992      Method->setInvalidDecl();
2993    }
2994    return;
2995  }
2996
2997  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2998  if (!VDecl) {
2999    if (getLangOptions().CPlusPlus &&
3000        RealDecl->getLexicalDeclContext()->isRecord() &&
3001        isa<NamedDecl>(RealDecl))
3002      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3003        << cast<NamedDecl>(RealDecl)->getDeclName();
3004    else
3005      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3006    RealDecl->setInvalidDecl();
3007    return;
3008  }
3009
3010  if (!VDecl->getType()->isArrayType() &&
3011      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
3012                          diag::err_typecheck_decl_incomplete_type)) {
3013    RealDecl->setInvalidDecl();
3014    return;
3015  }
3016
3017  const VarDecl *Def = 0;
3018  if (VDecl->getDefinition(Def)) {
3019    Diag(VDecl->getLocation(), diag::err_redefinition)
3020      << VDecl->getDeclName();
3021    Diag(Def->getLocation(), diag::note_previous_definition);
3022    VDecl->setInvalidDecl();
3023    return;
3024  }
3025
3026  // Take ownership of the expression, now that we're sure we have somewhere
3027  // to put it.
3028  Expr *Init = init.takeAs<Expr>();
3029  assert(Init && "missing initializer");
3030
3031  // Get the decls type and save a reference for later, since
3032  // CheckInitializerTypes may change it.
3033  QualType DclT = VDecl->getType(), SavT = DclT;
3034  if (VDecl->isBlockVarDecl()) {
3035    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
3036      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
3037      VDecl->setInvalidDecl();
3038    } else if (!VDecl->isInvalidDecl()) {
3039      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3040                                VDecl->getDeclName(), DirectInit))
3041        VDecl->setInvalidDecl();
3042
3043      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3044      // Don't check invalid declarations to avoid emitting useless diagnostics.
3045      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3046        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
3047          CheckForConstantInitializer(Init, DclT);
3048      }
3049    }
3050  } else if (VDecl->isStaticDataMember() &&
3051             VDecl->getLexicalDeclContext()->isRecord()) {
3052    // This is an in-class initialization for a static data member, e.g.,
3053    //
3054    // struct S {
3055    //   static const int value = 17;
3056    // };
3057
3058    // Attach the initializer
3059    VDecl->setInit(Context, Init);
3060
3061    // C++ [class.mem]p4:
3062    //   A member-declarator can contain a constant-initializer only
3063    //   if it declares a static member (9.4) of const integral or
3064    //   const enumeration type, see 9.4.2.
3065    QualType T = VDecl->getType();
3066    if (!T->isDependentType() &&
3067        (!Context.getCanonicalType(T).isConstQualified() ||
3068         !T->isIntegralType())) {
3069      Diag(VDecl->getLocation(), diag::err_member_initialization)
3070        << VDecl->getDeclName() << Init->getSourceRange();
3071      VDecl->setInvalidDecl();
3072    } else {
3073      // C++ [class.static.data]p4:
3074      //   If a static data member is of const integral or const
3075      //   enumeration type, its declaration in the class definition
3076      //   can specify a constant-initializer which shall be an
3077      //   integral constant expression (5.19).
3078      if (!Init->isTypeDependent() &&
3079          !Init->getType()->isIntegralType()) {
3080        // We have a non-dependent, non-integral or enumeration type.
3081        Diag(Init->getSourceRange().getBegin(),
3082             diag::err_in_class_initializer_non_integral_type)
3083          << Init->getType() << Init->getSourceRange();
3084        VDecl->setInvalidDecl();
3085      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
3086        // Check whether the expression is a constant expression.
3087        llvm::APSInt Value;
3088        SourceLocation Loc;
3089        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
3090          Diag(Loc, diag::err_in_class_initializer_non_constant)
3091            << Init->getSourceRange();
3092          VDecl->setInvalidDecl();
3093        } else if (!VDecl->getType()->isDependentType())
3094          ImpCastExprToType(Init, VDecl->getType());
3095      }
3096    }
3097  } else if (VDecl->isFileVarDecl()) {
3098    if (VDecl->getStorageClass() == VarDecl::Extern)
3099      Diag(VDecl->getLocation(), diag::warn_extern_init);
3100    if (!VDecl->isInvalidDecl())
3101      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3102                                VDecl->getDeclName(), DirectInit))
3103        VDecl->setInvalidDecl();
3104
3105    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3106    // Don't check invalid declarations to avoid emitting useless diagnostics.
3107    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3108      // C99 6.7.8p4. All file scoped initializers need to be constant.
3109      CheckForConstantInitializer(Init, DclT);
3110    }
3111  }
3112  // If the type changed, it means we had an incomplete type that was
3113  // completed by the initializer. For example:
3114  //   int ary[] = { 1, 3, 5 };
3115  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
3116  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
3117    VDecl->setType(DclT);
3118    Init->setType(DclT);
3119  }
3120
3121  // Attach the initializer to the decl.
3122  VDecl->setInit(Context, Init);
3123
3124  // If the previous declaration of VDecl was a tentative definition,
3125  // remove it from the set of tentative definitions.
3126  if (VDecl->getPreviousDeclaration() &&
3127      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
3128    llvm::DenseMap<DeclarationName, VarDecl *>::iterator Pos
3129      = TentativeDefinitions.find(VDecl->getDeclName());
3130    assert(Pos != TentativeDefinitions.end() &&
3131           "Unrecorded tentative definition?");
3132    TentativeDefinitions.erase(Pos);
3133  }
3134
3135  return;
3136}
3137
3138void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
3139                                  bool TypeContainsUndeducedAuto) {
3140  Decl *RealDecl = dcl.getAs<Decl>();
3141
3142  // If there is no declaration, there was an error parsing it. Just ignore it.
3143  if (RealDecl == 0)
3144    return;
3145
3146  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
3147    QualType Type = Var->getType();
3148
3149    // Record tentative definitions.
3150    if (Var->isTentativeDefinition(Context))
3151      TentativeDefinitions[Var->getDeclName()] = Var;
3152
3153    // C++ [dcl.init.ref]p3:
3154    //   The initializer can be omitted for a reference only in a
3155    //   parameter declaration (8.3.5), in the declaration of a
3156    //   function return type, in the declaration of a class member
3157    //   within its class declaration (9.2), and where the extern
3158    //   specifier is explicitly used.
3159    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
3160      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
3161        << Var->getDeclName()
3162        << SourceRange(Var->getLocation(), Var->getLocation());
3163      Var->setInvalidDecl();
3164      return;
3165    }
3166
3167    // C++0x [dcl.spec.auto]p3
3168    if (TypeContainsUndeducedAuto) {
3169      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
3170        << Var->getDeclName() << Type;
3171      Var->setInvalidDecl();
3172      return;
3173    }
3174
3175    // C++ [dcl.init]p9:
3176    //
3177    //   If no initializer is specified for an object, and the object
3178    //   is of (possibly cv-qualified) non-POD class type (or array
3179    //   thereof), the object shall be default-initialized; if the
3180    //   object is of const-qualified type, the underlying class type
3181    //   shall have a user-declared default constructor.
3182    if (getLangOptions().CPlusPlus) {
3183      QualType InitType = Type;
3184      if (const ArrayType *Array = Context.getAsArrayType(Type))
3185        InitType = Array->getElementType();
3186      if ((!Var->hasExternalStorage() && !Var->isExternC(Context)) &&
3187          InitType->isRecordType() && !InitType->isDependentType()) {
3188        CXXRecordDecl *RD =
3189          cast<CXXRecordDecl>(InitType->getAs<RecordType>()->getDecl());
3190        CXXConstructorDecl *Constructor = 0;
3191        if (!RequireCompleteType(Var->getLocation(), InitType,
3192                                    diag::err_invalid_incomplete_type_use))
3193          Constructor
3194            = PerformInitializationByConstructor(InitType, 0, 0,
3195                                                 Var->getLocation(),
3196                                               SourceRange(Var->getLocation(),
3197                                                           Var->getLocation()),
3198                                                 Var->getDeclName(),
3199                                                 IK_Default);
3200        if (!Constructor)
3201          Var->setInvalidDecl();
3202        else {
3203          if (!RD->hasTrivialConstructor())
3204            InitializeVarWithConstructor(Var, Constructor, InitType, 0, 0);
3205          FinalizeVarWithDestructor(Var, InitType);
3206        }
3207      }
3208    }
3209
3210#if 0
3211    // FIXME: Temporarily disabled because we are not properly parsing
3212    // linkage specifications on declarations, e.g.,
3213    //
3214    //   extern "C" const CGPoint CGPointerZero;
3215    //
3216    // C++ [dcl.init]p9:
3217    //
3218    //     If no initializer is specified for an object, and the
3219    //     object is of (possibly cv-qualified) non-POD class type (or
3220    //     array thereof), the object shall be default-initialized; if
3221    //     the object is of const-qualified type, the underlying class
3222    //     type shall have a user-declared default
3223    //     constructor. Otherwise, if no initializer is specified for
3224    //     an object, the object and its subobjects, if any, have an
3225    //     indeterminate initial value; if the object or any of its
3226    //     subobjects are of const-qualified type, the program is
3227    //     ill-formed.
3228    //
3229    // This isn't technically an error in C, so we don't diagnose it.
3230    //
3231    // FIXME: Actually perform the POD/user-defined default
3232    // constructor check.
3233    if (getLangOptions().CPlusPlus &&
3234        Context.getCanonicalType(Type).isConstQualified() &&
3235        !Var->hasExternalStorage())
3236      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
3237        << Var->getName()
3238        << SourceRange(Var->getLocation(), Var->getLocation());
3239#endif
3240  }
3241}
3242
3243Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
3244                                                   DeclPtrTy *Group,
3245                                                   unsigned NumDecls) {
3246  llvm::SmallVector<Decl*, 8> Decls;
3247
3248  if (DS.isTypeSpecOwned())
3249    Decls.push_back((Decl*)DS.getTypeRep());
3250
3251  for (unsigned i = 0; i != NumDecls; ++i)
3252    if (Decl *D = Group[i].getAs<Decl>())
3253      Decls.push_back(D);
3254
3255  // Perform semantic analysis that depends on having fully processed both
3256  // the declarator and initializer.
3257  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
3258    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
3259    if (!IDecl)
3260      continue;
3261    QualType T = IDecl->getType();
3262
3263    // Block scope. C99 6.7p7: If an identifier for an object is declared with
3264    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
3265    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
3266      if (!IDecl->isInvalidDecl() &&
3267          RequireCompleteType(IDecl->getLocation(), T,
3268                              diag::err_typecheck_decl_incomplete_type))
3269        IDecl->setInvalidDecl();
3270    }
3271    // File scope. C99 6.9.2p2: A declaration of an identifier for an
3272    // object that has file scope without an initializer, and without a
3273    // storage-class specifier or with the storage-class specifier "static",
3274    // constitutes a tentative definition. Note: A tentative definition with
3275    // external linkage is valid (C99 6.2.2p5).
3276    if (IDecl->isTentativeDefinition(Context) && !IDecl->isInvalidDecl()) {
3277      if (const IncompleteArrayType *ArrayT
3278          = Context.getAsIncompleteArrayType(T)) {
3279        if (RequireCompleteType(IDecl->getLocation(),
3280                                ArrayT->getElementType(),
3281                                diag::err_illegal_decl_array_incomplete_type))
3282          IDecl->setInvalidDecl();
3283      } else if (IDecl->getStorageClass() == VarDecl::Static) {
3284        // C99 6.9.2p3: If the declaration of an identifier for an object is
3285        // a tentative definition and has internal linkage (C99 6.2.2p3), the
3286        // declared type shall not be an incomplete type.
3287        // NOTE: code such as the following
3288        //     static struct s;
3289        //     struct s { int a; };
3290        // is accepted by gcc. Hence here we issue a warning instead of
3291        // an error and we do not invalidate the static declaration.
3292        // NOTE: to avoid multiple warnings, only check the first declaration.
3293        if (IDecl->getPreviousDeclaration() == 0)
3294          RequireCompleteType(IDecl->getLocation(), T,
3295                              diag::ext_typecheck_decl_incomplete_type);
3296      }
3297    }
3298  }
3299  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
3300                                                   Decls.data(), Decls.size()));
3301}
3302
3303
3304/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
3305/// to introduce parameters into function prototype scope.
3306Sema::DeclPtrTy
3307Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
3308  const DeclSpec &DS = D.getDeclSpec();
3309
3310  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
3311  VarDecl::StorageClass StorageClass = VarDecl::None;
3312  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
3313    StorageClass = VarDecl::Register;
3314  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
3315    Diag(DS.getStorageClassSpecLoc(),
3316         diag::err_invalid_storage_class_in_func_decl);
3317    D.getMutableDeclSpec().ClearStorageClassSpecs();
3318  }
3319
3320  if (D.getDeclSpec().isThreadSpecified())
3321    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3322
3323  DiagnoseFunctionSpecifiers(D);
3324
3325  // Check that there are no default arguments inside the type of this
3326  // parameter (C++ only).
3327  if (getLangOptions().CPlusPlus)
3328    CheckExtraCXXDefaultArguments(D);
3329
3330  TagDecl *OwnedDecl = 0;
3331  QualType parmDeclType = GetTypeForDeclarator(D, S, /*Skip=*/0, &OwnedDecl);
3332
3333  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
3334    // C++ [dcl.fct]p6:
3335    //   Types shall not be defined in return or parameter types.
3336    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
3337      << Context.getTypeDeclType(OwnedDecl);
3338  }
3339
3340  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
3341  // Can this happen for params?  We already checked that they don't conflict
3342  // among each other.  Here they can only shadow globals, which is ok.
3343  IdentifierInfo *II = D.getIdentifier();
3344  if (II) {
3345    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
3346      if (PrevDecl->isTemplateParameter()) {
3347        // Maybe we will complain about the shadowed template parameter.
3348        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3349        // Just pretend that we didn't see the previous declaration.
3350        PrevDecl = 0;
3351      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
3352        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
3353
3354        // Recover by removing the name
3355        II = 0;
3356        D.SetIdentifier(0, D.getIdentifierLoc());
3357      }
3358    }
3359  }
3360
3361  // Parameters can not be abstract class types.
3362  // For record types, this is done by the AbstractClassUsageDiagnoser once
3363  // the class has been completely parsed.
3364  if (!CurContext->isRecord() &&
3365      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
3366                             diag::err_abstract_type_in_decl,
3367                             AbstractParamType))
3368    D.setInvalidType(true);
3369
3370  QualType T = adjustParameterType(parmDeclType);
3371
3372  ParmVarDecl *New;
3373  if (T == parmDeclType) // parameter type did not need adjustment
3374    New = ParmVarDecl::Create(Context, CurContext,
3375                              D.getIdentifierLoc(), II,
3376                              parmDeclType, StorageClass,
3377                              0);
3378  else // keep track of both the adjusted and unadjusted types
3379    New = OriginalParmVarDecl::Create(Context, CurContext,
3380                                      D.getIdentifierLoc(), II, T,
3381                                      parmDeclType, StorageClass, 0);
3382
3383  if (D.isInvalidType())
3384    New->setInvalidDecl();
3385
3386  // Parameter declarators cannot be interface types. All ObjC objects are
3387  // passed by reference.
3388  if (T->isObjCInterfaceType()) {
3389    Diag(D.getIdentifierLoc(),
3390         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
3391    New->setInvalidDecl();
3392  }
3393
3394  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
3395  if (D.getCXXScopeSpec().isSet()) {
3396    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
3397      << D.getCXXScopeSpec().getRange();
3398    New->setInvalidDecl();
3399  }
3400
3401  // Add the parameter declaration into this scope.
3402  S->AddDecl(DeclPtrTy::make(New));
3403  if (II)
3404    IdResolver.AddDecl(New);
3405
3406  ProcessDeclAttributes(S, New, D);
3407
3408  if (New->hasAttr<BlocksAttr>()) {
3409    Diag(New->getLocation(), diag::err_block_on_nonlocal);
3410  }
3411  return DeclPtrTy::make(New);
3412}
3413
3414void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
3415                                           SourceLocation LocAfterDecls) {
3416  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3417         "Not a function declarator!");
3418  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3419
3420  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
3421  // for a K&R function.
3422  if (!FTI.hasPrototype) {
3423    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
3424      --i;
3425      if (FTI.ArgInfo[i].Param == 0) {
3426        std::string Code = "  int ";
3427        Code += FTI.ArgInfo[i].Ident->getName();
3428        Code += ";\n";
3429        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
3430          << FTI.ArgInfo[i].Ident
3431          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code);
3432
3433        // Implicitly declare the argument as type 'int' for lack of a better
3434        // type.
3435        DeclSpec DS;
3436        const char* PrevSpec; // unused
3437        unsigned DiagID; // unused
3438        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
3439                           PrevSpec, DiagID);
3440        Declarator ParamD(DS, Declarator::KNRTypeListContext);
3441        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
3442        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
3443      }
3444    }
3445  }
3446}
3447
3448Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
3449                                              Declarator &D) {
3450  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
3451  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3452         "Not a function declarator!");
3453  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3454
3455  if (FTI.hasPrototype) {
3456    // FIXME: Diagnose arguments without names in C.
3457  }
3458
3459  Scope *ParentScope = FnBodyScope->getParent();
3460
3461  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
3462                                  MultiTemplateParamsArg(*this),
3463                                  /*IsFunctionDefinition=*/true);
3464  return ActOnStartOfFunctionDef(FnBodyScope, DP);
3465}
3466
3467Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
3468  if (!D)
3469    return D;
3470  FunctionDecl *FD = cast<FunctionDecl>(D.getAs<Decl>());
3471
3472  CurFunctionNeedsScopeChecking = false;
3473
3474  // See if this is a redefinition.
3475  const FunctionDecl *Definition;
3476  if (FD->getBody(Definition)) {
3477    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
3478    Diag(Definition->getLocation(), diag::note_previous_definition);
3479  }
3480
3481  // Builtin functions cannot be defined.
3482  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3483    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3484      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
3485      FD->setInvalidDecl();
3486    }
3487  }
3488
3489  // The return type of a function definition must be complete
3490  // (C99 6.9.1p3, C++ [dcl.fct]p6).
3491  QualType ResultType = FD->getResultType();
3492  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
3493      !FD->isInvalidDecl() &&
3494      RequireCompleteType(FD->getLocation(), ResultType,
3495                          diag::err_func_def_incomplete_result))
3496    FD->setInvalidDecl();
3497
3498  // GNU warning -Wmissing-prototypes:
3499  //   Warn if a global function is defined without a previous
3500  //   prototype declaration. This warning is issued even if the
3501  //   definition itself provides a prototype. The aim is to detect
3502  //   global functions that fail to be declared in header files.
3503  if (!FD->isInvalidDecl() && FD->isGlobal() && !isa<CXXMethodDecl>(FD) &&
3504      !FD->isMain()) {
3505    bool MissingPrototype = true;
3506    for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
3507         Prev; Prev = Prev->getPreviousDeclaration()) {
3508      // Ignore any declarations that occur in function or method
3509      // scope, because they aren't visible from the header.
3510      if (Prev->getDeclContext()->isFunctionOrMethod())
3511        continue;
3512
3513      MissingPrototype = !Prev->getType()->isFunctionProtoType();
3514      break;
3515    }
3516
3517    if (MissingPrototype)
3518      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
3519  }
3520
3521  if (FnBodyScope)
3522    PushDeclContext(FnBodyScope, FD);
3523
3524  // Check the validity of our function parameters
3525  CheckParmsForFunctionDef(FD);
3526
3527  // Introduce our parameters into the function scope
3528  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
3529    ParmVarDecl *Param = FD->getParamDecl(p);
3530    Param->setOwningFunction(FD);
3531
3532    // If this has an identifier, add it to the scope stack.
3533    if (Param->getIdentifier() && FnBodyScope)
3534      PushOnScopeChains(Param, FnBodyScope);
3535  }
3536
3537  // Checking attributes of current function definition
3538  // dllimport attribute.
3539  if (FD->getAttr<DLLImportAttr>() &&
3540      (!FD->getAttr<DLLExportAttr>())) {
3541    // dllimport attribute cannot be applied to definition.
3542    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
3543      Diag(FD->getLocation(),
3544           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
3545        << "dllimport";
3546      FD->setInvalidDecl();
3547      return DeclPtrTy::make(FD);
3548    } else {
3549      // If a symbol previously declared dllimport is later defined, the
3550      // attribute is ignored in subsequent references, and a warning is
3551      // emitted.
3552      Diag(FD->getLocation(),
3553           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
3554        << FD->getNameAsCString() << "dllimport";
3555    }
3556  }
3557  return DeclPtrTy::make(FD);
3558}
3559
3560Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
3561  return ActOnFinishFunctionBody(D, move(BodyArg), false);
3562}
3563
3564Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
3565                                              bool IsInstantiation) {
3566  Decl *dcl = D.getAs<Decl>();
3567  Stmt *Body = BodyArg.takeAs<Stmt>();
3568  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
3569    FD->setBody(Body);
3570    if (FD->isMain())
3571      // C and C++ allow for main to automagically return 0.
3572      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
3573      FD->setHasImplicitReturnZero(true);
3574    else
3575      CheckFallThroughForFunctionDef(FD, Body);
3576
3577    if (!FD->isInvalidDecl())
3578      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
3579
3580    // C++ [basic.def.odr]p2:
3581    //   [...] A virtual member function is used if it is not pure. [...]
3582    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
3583      if (Method->isVirtual() && !Method->isPure())
3584        MarkDeclarationReferenced(Method->getLocation(), Method);
3585
3586    assert(FD == getCurFunctionDecl() && "Function parsing confused");
3587  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
3588    assert(MD == getCurMethodDecl() && "Method parsing confused");
3589    MD->setBody(Body);
3590    CheckFallThroughForFunctionDef(MD, Body);
3591    MD->setEndLoc(Body->getLocEnd());
3592
3593    if (!MD->isInvalidDecl())
3594      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
3595  } else {
3596    Body->Destroy(Context);
3597    return DeclPtrTy();
3598  }
3599  if (!IsInstantiation)
3600    PopDeclContext();
3601
3602  // Verify and clean out per-function state.
3603
3604  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
3605
3606  // Check goto/label use.
3607  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
3608       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
3609    LabelStmt *L = I->second;
3610
3611    // Verify that we have no forward references left.  If so, there was a goto
3612    // or address of a label taken, but no definition of it.  Label fwd
3613    // definitions are indicated with a null substmt.
3614    if (L->getSubStmt() != 0)
3615      continue;
3616
3617    // Emit error.
3618    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
3619
3620    // At this point, we have gotos that use the bogus label.  Stitch it into
3621    // the function body so that they aren't leaked and that the AST is well
3622    // formed.
3623    if (Body == 0) {
3624      // The whole function wasn't parsed correctly, just delete this.
3625      L->Destroy(Context);
3626      continue;
3627    }
3628
3629    // Otherwise, the body is valid: we want to stitch the label decl into the
3630    // function somewhere so that it is properly owned and so that the goto
3631    // has a valid target.  Do this by creating a new compound stmt with the
3632    // label in it.
3633
3634    // Give the label a sub-statement.
3635    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
3636
3637    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
3638                               cast<CXXTryStmt>(Body)->getTryBlock() :
3639                               cast<CompoundStmt>(Body);
3640    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
3641    Elements.push_back(L);
3642    Compound->setStmts(Context, &Elements[0], Elements.size());
3643  }
3644  FunctionLabelMap.clear();
3645
3646  if (!Body) return D;
3647
3648  // Verify that that gotos and switch cases don't jump into scopes illegally.
3649  if (CurFunctionNeedsScopeChecking)
3650    DiagnoseInvalidJumps(Body);
3651
3652  // C++ constructors that have function-try-blocks can't have return
3653  // statements in the handlers of that block. (C++ [except.handle]p14)
3654  // Verify this.
3655  if (isa<CXXConstructorDecl>(dcl) && isa<CXXTryStmt>(Body))
3656    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
3657
3658  if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
3659    Destructor->computeBaseOrMembersToDestroy(Context);
3660  return D;
3661}
3662
3663/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
3664/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
3665NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
3666                                          IdentifierInfo &II, Scope *S) {
3667  // Before we produce a declaration for an implicitly defined
3668  // function, see whether there was a locally-scoped declaration of
3669  // this name as a function or variable. If so, use that
3670  // (non-visible) declaration, and complain about it.
3671  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3672    = LocallyScopedExternalDecls.find(&II);
3673  if (Pos != LocallyScopedExternalDecls.end()) {
3674    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
3675    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
3676    return Pos->second;
3677  }
3678
3679  // Extension in C99.  Legal in C90, but warn about it.
3680  if (getLangOptions().C99)
3681    Diag(Loc, diag::ext_implicit_function_decl) << &II;
3682  else
3683    Diag(Loc, diag::warn_implicit_function_decl) << &II;
3684
3685  // FIXME: handle stuff like:
3686  // void foo() { extern float X(); }
3687  // void bar() { X(); }  <-- implicit decl for X in another scope.
3688
3689  // Set a Declarator for the implicit definition: int foo();
3690  const char *Dummy;
3691  DeclSpec DS;
3692  unsigned DiagID;
3693  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
3694  Error = Error; // Silence warning.
3695  assert(!Error && "Error setting up implicit decl!");
3696  Declarator D(DS, Declarator::BlockContext);
3697  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
3698                                             0, 0, false, SourceLocation(),
3699                                             false, 0,0,0, Loc, D),
3700                SourceLocation());
3701  D.SetIdentifier(&II, Loc);
3702
3703  // Insert this function into translation-unit scope.
3704
3705  DeclContext *PrevDC = CurContext;
3706  CurContext = Context.getTranslationUnitDecl();
3707
3708  FunctionDecl *FD =
3709 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
3710  FD->setImplicit();
3711
3712  CurContext = PrevDC;
3713
3714  AddKnownFunctionAttributes(FD);
3715
3716  return FD;
3717}
3718
3719/// \brief Adds any function attributes that we know a priori based on
3720/// the declaration of this function.
3721///
3722/// These attributes can apply both to implicitly-declared builtins
3723/// (like __builtin___printf_chk) or to library-declared functions
3724/// like NSLog or printf.
3725void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
3726  if (FD->isInvalidDecl())
3727    return;
3728
3729  // If this is a built-in function, map its builtin attributes to
3730  // actual attributes.
3731  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3732    // Handle printf-formatting attributes.
3733    unsigned FormatIdx;
3734    bool HasVAListArg;
3735    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
3736      if (!FD->getAttr<FormatAttr>())
3737        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
3738                                             HasVAListArg ? 0 : FormatIdx + 2));
3739    }
3740
3741    // Mark const if we don't care about errno and that is the only
3742    // thing preventing the function from being const. This allows
3743    // IRgen to use LLVM intrinsics for such functions.
3744    if (!getLangOptions().MathErrno &&
3745        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
3746      if (!FD->getAttr<ConstAttr>())
3747        FD->addAttr(::new (Context) ConstAttr());
3748    }
3749
3750    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
3751      FD->addAttr(::new (Context) NoReturnAttr());
3752  }
3753
3754  IdentifierInfo *Name = FD->getIdentifier();
3755  if (!Name)
3756    return;
3757  if ((!getLangOptions().CPlusPlus &&
3758       FD->getDeclContext()->isTranslationUnit()) ||
3759      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
3760       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
3761       LinkageSpecDecl::lang_c)) {
3762    // Okay: this could be a libc/libm/Objective-C function we know
3763    // about.
3764  } else
3765    return;
3766
3767  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
3768    // FIXME: NSLog and NSLogv should be target specific
3769    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
3770      // FIXME: We known better than our headers.
3771      const_cast<FormatAttr *>(Format)->setType("printf");
3772    } else
3773      FD->addAttr(::new (Context) FormatAttr("printf", 1,
3774                                             Name->isStr("NSLogv") ? 0 : 2));
3775  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
3776    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
3777    // target-specific builtins, perhaps?
3778    if (!FD->getAttr<FormatAttr>())
3779      FD->addAttr(::new (Context) FormatAttr("printf", 2,
3780                                             Name->isStr("vasprintf") ? 0 : 3));
3781  }
3782}
3783
3784TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T) {
3785  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
3786  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3787
3788  // Scope manipulation handled by caller.
3789  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
3790                                           D.getIdentifierLoc(),
3791                                           D.getIdentifier(),
3792                                           T);
3793
3794  if (TagType *TT = dyn_cast<TagType>(T)) {
3795    TagDecl *TD = TT->getDecl();
3796
3797    // If the TagDecl that the TypedefDecl points to is an anonymous decl
3798    // keep track of the TypedefDecl.
3799    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
3800      TD->setTypedefForAnonDecl(NewTD);
3801  }
3802
3803  if (D.isInvalidType())
3804    NewTD->setInvalidDecl();
3805  return NewTD;
3806}
3807
3808
3809/// \brief Determine whether a tag with a given kind is acceptable
3810/// as a redeclaration of the given tag declaration.
3811///
3812/// \returns true if the new tag kind is acceptable, false otherwise.
3813bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
3814                                        TagDecl::TagKind NewTag,
3815                                        SourceLocation NewTagLoc,
3816                                        const IdentifierInfo &Name) {
3817  // C++ [dcl.type.elab]p3:
3818  //   The class-key or enum keyword present in the
3819  //   elaborated-type-specifier shall agree in kind with the
3820  //   declaration to which the name in theelaborated-type-specifier
3821  //   refers. This rule also applies to the form of
3822  //   elaborated-type-specifier that declares a class-name or
3823  //   friend class since it can be construed as referring to the
3824  //   definition of the class. Thus, in any
3825  //   elaborated-type-specifier, the enum keyword shall be used to
3826  //   refer to an enumeration (7.2), the union class-keyshall be
3827  //   used to refer to a union (clause 9), and either the class or
3828  //   struct class-key shall be used to refer to a class (clause 9)
3829  //   declared using the class or struct class-key.
3830  TagDecl::TagKind OldTag = Previous->getTagKind();
3831  if (OldTag == NewTag)
3832    return true;
3833
3834  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
3835      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
3836    // Warn about the struct/class tag mismatch.
3837    bool isTemplate = false;
3838    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
3839      isTemplate = Record->getDescribedClassTemplate();
3840
3841    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
3842      << (NewTag == TagDecl::TK_class)
3843      << isTemplate << &Name
3844      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
3845                              OldTag == TagDecl::TK_class? "class" : "struct");
3846    Diag(Previous->getLocation(), diag::note_previous_use);
3847    return true;
3848  }
3849  return false;
3850}
3851
3852/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
3853/// former case, Name will be non-null.  In the later case, Name will be null.
3854/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
3855/// reference/declaration/definition of a tag.
3856Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
3857                               SourceLocation KWLoc, const CXXScopeSpec &SS,
3858                               IdentifierInfo *Name, SourceLocation NameLoc,
3859                               AttributeList *Attr, AccessSpecifier AS,
3860                               MultiTemplateParamsArg TemplateParameterLists,
3861                               bool &OwnedDecl) {
3862  // If this is not a definition, it must have a name.
3863  assert((Name != 0 || TUK == TUK_Definition) &&
3864         "Nameless record must be a definition!");
3865
3866  OwnedDecl = false;
3867  TagDecl::TagKind Kind;
3868  switch (TagSpec) {
3869  default: assert(0 && "Unknown tag type!");
3870  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3871  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3872  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3873  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
3874  }
3875
3876  if (TUK != TUK_Reference) {
3877    if (TemplateParameterList *TemplateParams
3878          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
3879                        (TemplateParameterList**)TemplateParameterLists.get(),
3880                                              TemplateParameterLists.size())) {
3881      if (TemplateParams->size() > 0) {
3882        // This is a declaration or definition of a class template (which may
3883        // be a member of another template).
3884        OwnedDecl = false;
3885        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
3886                                               SS, Name, NameLoc, Attr,
3887                                               move(TemplateParameterLists),
3888                                               AS);
3889        return Result.get();
3890      } else {
3891        // FIXME: diagnose the extraneous 'template<>', once we recover
3892        // slightly better in ParseTemplate.cpp from bogus template
3893        // parameters.
3894      }
3895    }
3896  }
3897
3898  DeclContext *SearchDC = CurContext;
3899  DeclContext *DC = CurContext;
3900  NamedDecl *PrevDecl = 0;
3901
3902  bool Invalid = false;
3903
3904  if (Name && SS.isNotEmpty()) {
3905    // We have a nested-name tag ('struct foo::bar').
3906
3907    // Check for invalid 'foo::'.
3908    if (SS.isInvalid()) {
3909      Name = 0;
3910      goto CreateNewDecl;
3911    }
3912
3913    if (RequireCompleteDeclContext(SS))
3914      return DeclPtrTy::make((Decl *)0);
3915
3916    DC = computeDeclContext(SS, true);
3917    SearchDC = DC;
3918    // Look-up name inside 'foo::'.
3919    PrevDecl
3920      = dyn_cast_or_null<TagDecl>(
3921               LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
3922
3923    // A tag 'foo::bar' must already exist.
3924    if (PrevDecl == 0) {
3925      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
3926      Name = 0;
3927      Invalid = true;
3928      goto CreateNewDecl;
3929    }
3930  } else if (Name) {
3931    // If this is a named struct, check to see if there was a previous forward
3932    // declaration or definition.
3933    // FIXME: We're looking into outer scopes here, even when we
3934    // shouldn't be. Doing so can result in ambiguities that we
3935    // shouldn't be diagnosing.
3936    LookupResult R = LookupName(S, Name, LookupTagName,
3937                                /*RedeclarationOnly=*/(TUK != TUK_Reference));
3938    if (R.isAmbiguous()) {
3939      DiagnoseAmbiguousLookup(R, Name, NameLoc);
3940      // FIXME: This is not best way to recover from case like:
3941      //
3942      // struct S s;
3943      //
3944      // causes needless "incomplete type" error later.
3945      Name = 0;
3946      PrevDecl = 0;
3947      Invalid = true;
3948    } else
3949      PrevDecl = R;
3950
3951    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
3952      // FIXME: This makes sure that we ignore the contexts associated
3953      // with C structs, unions, and enums when looking for a matching
3954      // tag declaration or definition. See the similar lookup tweak
3955      // in Sema::LookupName; is there a better way to deal with this?
3956      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
3957        SearchDC = SearchDC->getParent();
3958    }
3959  }
3960
3961  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3962    // Maybe we will complain about the shadowed template parameter.
3963    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
3964    // Just pretend that we didn't see the previous declaration.
3965    PrevDecl = 0;
3966  }
3967
3968  if (PrevDecl) {
3969    // Check whether the previous declaration is usable.
3970    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
3971
3972    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
3973      // If this is a use of a previous tag, or if the tag is already declared
3974      // in the same scope (so that the definition/declaration completes or
3975      // rementions the tag), reuse the decl.
3976      if (TUK == TUK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
3977        // Make sure that this wasn't declared as an enum and now used as a
3978        // struct or something similar.
3979        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
3980          bool SafeToContinue
3981            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
3982               Kind != TagDecl::TK_enum);
3983          if (SafeToContinue)
3984            Diag(KWLoc, diag::err_use_with_wrong_tag)
3985              << Name
3986              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
3987                                                  PrevTagDecl->getKindName());
3988          else
3989            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
3990          Diag(PrevDecl->getLocation(), diag::note_previous_use);
3991
3992          if (SafeToContinue)
3993            Kind = PrevTagDecl->getTagKind();
3994          else {
3995            // Recover by making this an anonymous redefinition.
3996            Name = 0;
3997            PrevDecl = 0;
3998            Invalid = true;
3999          }
4000        }
4001
4002        if (!Invalid) {
4003          // If this is a use, just return the declaration we found.
4004
4005          // FIXME: In the future, return a variant or some other clue
4006          // for the consumer of this Decl to know it doesn't own it.
4007          // For our current ASTs this shouldn't be a problem, but will
4008          // need to be changed with DeclGroups.
4009          if (TUK == TUK_Reference)
4010            return DeclPtrTy::make(PrevDecl);
4011
4012          // Diagnose attempts to redefine a tag.
4013          if (TUK == TUK_Definition) {
4014            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
4015              Diag(NameLoc, diag::err_redefinition) << Name;
4016              Diag(Def->getLocation(), diag::note_previous_definition);
4017              // If this is a redefinition, recover by making this
4018              // struct be anonymous, which will make any later
4019              // references get the previous definition.
4020              Name = 0;
4021              PrevDecl = 0;
4022              Invalid = true;
4023            } else {
4024              // If the type is currently being defined, complain
4025              // about a nested redefinition.
4026              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
4027              if (Tag->isBeingDefined()) {
4028                Diag(NameLoc, diag::err_nested_redefinition) << Name;
4029                Diag(PrevTagDecl->getLocation(),
4030                     diag::note_previous_definition);
4031                Name = 0;
4032                PrevDecl = 0;
4033                Invalid = true;
4034              }
4035            }
4036
4037            // Okay, this is definition of a previously declared or referenced
4038            // tag PrevDecl. We're going to create a new Decl for it.
4039          }
4040        }
4041        // If we get here we have (another) forward declaration or we
4042        // have a definition.  Just create a new decl.
4043      } else {
4044        // If we get here, this is a definition of a new tag type in a nested
4045        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
4046        // new decl/type.  We set PrevDecl to NULL so that the entities
4047        // have distinct types.
4048        PrevDecl = 0;
4049      }
4050      // If we get here, we're going to create a new Decl. If PrevDecl
4051      // is non-NULL, it's a definition of the tag declared by
4052      // PrevDecl. If it's NULL, we have a new definition.
4053    } else {
4054      // PrevDecl is a namespace, template, or anything else
4055      // that lives in the IDNS_Tag identifier namespace.
4056      if (isDeclInScope(PrevDecl, SearchDC, S)) {
4057        // The tag name clashes with a namespace name, issue an error and
4058        // recover by making this tag be anonymous.
4059        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
4060        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4061        Name = 0;
4062        PrevDecl = 0;
4063        Invalid = true;
4064      } else {
4065        // The existing declaration isn't relevant to us; we're in a
4066        // new scope, so clear out the previous declaration.
4067        PrevDecl = 0;
4068      }
4069    }
4070  } else if (TUK == TUK_Reference && SS.isEmpty() && Name &&
4071             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
4072    // C++ [basic.scope.pdecl]p5:
4073    //   -- for an elaborated-type-specifier of the form
4074    //
4075    //          class-key identifier
4076    //
4077    //      if the elaborated-type-specifier is used in the
4078    //      decl-specifier-seq or parameter-declaration-clause of a
4079    //      function defined in namespace scope, the identifier is
4080    //      declared as a class-name in the namespace that contains
4081    //      the declaration; otherwise, except as a friend
4082    //      declaration, the identifier is declared in the smallest
4083    //      non-class, non-function-prototype scope that contains the
4084    //      declaration.
4085    //
4086    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
4087    // C structs and unions.
4088    //
4089    // GNU C also supports this behavior as part of its incomplete
4090    // enum types extension, while GNU C++ does not.
4091    //
4092    // Find the context where we'll be declaring the tag.
4093    // FIXME: We would like to maintain the current DeclContext as the
4094    // lexical context,
4095    while (SearchDC->isRecord())
4096      SearchDC = SearchDC->getParent();
4097
4098    // Find the scope where we'll be declaring the tag.
4099    while (S->isClassScope() ||
4100           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
4101           ((S->getFlags() & Scope::DeclScope) == 0) ||
4102           (S->getEntity() &&
4103            ((DeclContext *)S->getEntity())->isTransparentContext()))
4104      S = S->getParent();
4105  }
4106
4107CreateNewDecl:
4108
4109  // If there is an identifier, use the location of the identifier as the
4110  // location of the decl, otherwise use the location of the struct/union
4111  // keyword.
4112  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
4113
4114  // Otherwise, create a new declaration. If there is a previous
4115  // declaration of the same entity, the two will be linked via
4116  // PrevDecl.
4117  TagDecl *New;
4118
4119  if (Kind == TagDecl::TK_enum) {
4120    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4121    // enum X { A, B, C } D;    D should chain to X.
4122    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
4123                           cast_or_null<EnumDecl>(PrevDecl));
4124    // If this is an undefined enum, warn.
4125    if (TUK != TUK_Definition && !Invalid)  {
4126      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
4127                                              : diag::ext_forward_ref_enum;
4128      Diag(Loc, DK);
4129    }
4130  } else {
4131    // struct/union/class
4132
4133    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4134    // struct X { int A; } D;    D should chain to X.
4135    if (getLangOptions().CPlusPlus)
4136      // FIXME: Look for a way to use RecordDecl for simple structs.
4137      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4138                                  cast_or_null<CXXRecordDecl>(PrevDecl));
4139    else
4140      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4141                               cast_or_null<RecordDecl>(PrevDecl));
4142  }
4143
4144  if (Kind != TagDecl::TK_enum) {
4145    // Handle #pragma pack: if the #pragma pack stack has non-default
4146    // alignment, make up a packed attribute for this decl. These
4147    // attributes are checked when the ASTContext lays out the
4148    // structure.
4149    //
4150    // It is important for implementing the correct semantics that this
4151    // happen here (in act on tag decl). The #pragma pack stack is
4152    // maintained as a result of parser callbacks which can occur at
4153    // many points during the parsing of a struct declaration (because
4154    // the #pragma tokens are effectively skipped over during the
4155    // parsing of the struct).
4156    if (unsigned Alignment = getPragmaPackAlignment())
4157      New->addAttr(::new (Context) PackedAttr(Alignment * 8));
4158  }
4159
4160  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
4161    // C++ [dcl.typedef]p3:
4162    //   [...] Similarly, in a given scope, a class or enumeration
4163    //   shall not be declared with the same name as a typedef-name
4164    //   that is declared in that scope and refers to a type other
4165    //   than the class or enumeration itself.
4166    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
4167    TypedefDecl *PrevTypedef = 0;
4168    if (Lookup.getKind() == LookupResult::Found)
4169      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
4170
4171    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
4172        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
4173          Context.getCanonicalType(Context.getTypeDeclType(New))) {
4174      Diag(Loc, diag::err_tag_definition_of_typedef)
4175        << Context.getTypeDeclType(New)
4176        << PrevTypedef->getUnderlyingType();
4177      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
4178      Invalid = true;
4179    }
4180  }
4181
4182  if (Invalid)
4183    New->setInvalidDecl();
4184
4185  if (Attr)
4186    ProcessDeclAttributeList(S, New, Attr);
4187
4188  // If we're declaring or defining a tag in function prototype scope
4189  // in C, note that this type can only be used within the function.
4190  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
4191    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
4192
4193  // Set the lexical context. If the tag has a C++ scope specifier, the
4194  // lexical context will be different from the semantic context.
4195  New->setLexicalDeclContext(CurContext);
4196
4197  // Set the access specifier.
4198  if (!Invalid)
4199    SetMemberAccessSpecifier(New, PrevDecl, AS);
4200
4201  if (TUK == TUK_Definition)
4202    New->startDefinition();
4203
4204  // If this has an identifier, add it to the scope stack.
4205  if (Name) {
4206    S = getNonFieldDeclScope(S);
4207    PushOnScopeChains(New, S);
4208  } else {
4209    CurContext->addDecl(New);
4210  }
4211
4212  // If this is the C FILE type, notify the AST context.
4213  if (IdentifierInfo *II = New->getIdentifier())
4214    if (!New->isInvalidDecl() &&
4215        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
4216        II->isStr("FILE"))
4217      Context.setFILEDecl(New);
4218
4219  OwnedDecl = true;
4220  return DeclPtrTy::make(New);
4221}
4222
4223void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
4224  AdjustDeclIfTemplate(TagD);
4225  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4226
4227  // Enter the tag context.
4228  PushDeclContext(S, Tag);
4229
4230  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
4231    FieldCollector->StartClass();
4232
4233    if (Record->getIdentifier()) {
4234      // C++ [class]p2:
4235      //   [...] The class-name is also inserted into the scope of the
4236      //   class itself; this is known as the injected-class-name. For
4237      //   purposes of access checking, the injected-class-name is treated
4238      //   as if it were a public member name.
4239      CXXRecordDecl *InjectedClassName
4240        = CXXRecordDecl::Create(Context, Record->getTagKind(),
4241                                CurContext, Record->getLocation(),
4242                                Record->getIdentifier(),
4243                                Record->getTagKeywordLoc(),
4244                                Record);
4245      InjectedClassName->setImplicit();
4246      InjectedClassName->setAccess(AS_public);
4247      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
4248        InjectedClassName->setDescribedClassTemplate(Template);
4249      PushOnScopeChains(InjectedClassName, S);
4250      assert(InjectedClassName->isInjectedClassName() &&
4251             "Broken injected-class-name");
4252    }
4253  }
4254}
4255
4256void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
4257                                    SourceLocation RBraceLoc) {
4258  AdjustDeclIfTemplate(TagD);
4259  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4260  Tag->setRBraceLoc(RBraceLoc);
4261
4262  if (isa<CXXRecordDecl>(Tag))
4263    FieldCollector->FinishClass();
4264
4265  // Exit this scope of this tag's definition.
4266  PopDeclContext();
4267
4268  // Notify the consumer that we've defined a tag.
4269  Consumer.HandleTagDeclDefinition(Tag);
4270}
4271
4272// Note that FieldName may be null for anonymous bitfields.
4273bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
4274                          QualType FieldTy, const Expr *BitWidth) {
4275
4276  // C99 6.7.2.1p4 - verify the field type.
4277  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
4278  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
4279    // Handle incomplete types with specific error.
4280    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
4281      return true;
4282    if (FieldName)
4283      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
4284        << FieldName << FieldTy << BitWidth->getSourceRange();
4285    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
4286      << FieldTy << BitWidth->getSourceRange();
4287  }
4288
4289  // If the bit-width is type- or value-dependent, don't try to check
4290  // it now.
4291  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
4292    return false;
4293
4294  llvm::APSInt Value;
4295  if (VerifyIntegerConstantExpression(BitWidth, &Value))
4296    return true;
4297
4298  // Zero-width bitfield is ok for anonymous field.
4299  if (Value == 0 && FieldName)
4300    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
4301
4302  if (Value.isSigned() && Value.isNegative()) {
4303    if (FieldName)
4304      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
4305               << FieldName << Value.toString(10);
4306    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
4307      << Value.toString(10);
4308  }
4309
4310  if (!FieldTy->isDependentType()) {
4311    uint64_t TypeSize = Context.getTypeSize(FieldTy);
4312    if (Value.getZExtValue() > TypeSize) {
4313      if (FieldName)
4314        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
4315          << FieldName << (unsigned)TypeSize;
4316      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
4317        << (unsigned)TypeSize;
4318    }
4319  }
4320
4321  return false;
4322}
4323
4324/// ActOnField - Each field of a struct/union/class is passed into this in order
4325/// to create a FieldDecl object for it.
4326Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
4327                                 SourceLocation DeclStart,
4328                                 Declarator &D, ExprTy *BitfieldWidth) {
4329  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
4330                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
4331                               AS_public);
4332  return DeclPtrTy::make(Res);
4333}
4334
4335/// HandleField - Analyze a field of a C struct or a C++ data member.
4336///
4337FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
4338                             SourceLocation DeclStart,
4339                             Declarator &D, Expr *BitWidth,
4340                             AccessSpecifier AS) {
4341  IdentifierInfo *II = D.getIdentifier();
4342  SourceLocation Loc = DeclStart;
4343  if (II) Loc = D.getIdentifierLoc();
4344
4345  QualType T = GetTypeForDeclarator(D, S);
4346  if (getLangOptions().CPlusPlus)
4347    CheckExtraCXXDefaultArguments(D);
4348
4349  DiagnoseFunctionSpecifiers(D);
4350
4351  if (D.getDeclSpec().isThreadSpecified())
4352    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4353
4354  NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
4355
4356  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4357    // Maybe we will complain about the shadowed template parameter.
4358    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4359    // Just pretend that we didn't see the previous declaration.
4360    PrevDecl = 0;
4361  }
4362
4363  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
4364    PrevDecl = 0;
4365
4366  bool Mutable
4367    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
4368  SourceLocation TSSL = D.getSourceRange().getBegin();
4369  FieldDecl *NewFD
4370    = CheckFieldDecl(II, T, Record, Loc, Mutable, BitWidth, TSSL,
4371                     AS, PrevDecl, &D);
4372  if (NewFD->isInvalidDecl() && PrevDecl) {
4373    // Don't introduce NewFD into scope; there's already something
4374    // with the same name in the same scope.
4375  } else if (II) {
4376    PushOnScopeChains(NewFD, S);
4377  } else
4378    Record->addDecl(NewFD);
4379
4380  return NewFD;
4381}
4382
4383/// \brief Build a new FieldDecl and check its well-formedness.
4384///
4385/// This routine builds a new FieldDecl given the fields name, type,
4386/// record, etc. \p PrevDecl should refer to any previous declaration
4387/// with the same name and in the same scope as the field to be
4388/// created.
4389///
4390/// \returns a new FieldDecl.
4391///
4392/// \todo The Declarator argument is a hack. It will be removed once
4393FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
4394                                RecordDecl *Record, SourceLocation Loc,
4395                                bool Mutable, Expr *BitWidth,
4396                                SourceLocation TSSL,
4397                                AccessSpecifier AS, NamedDecl *PrevDecl,
4398                                Declarator *D) {
4399  IdentifierInfo *II = Name.getAsIdentifierInfo();
4400  bool InvalidDecl = false;
4401  if (D) InvalidDecl = D->isInvalidType();
4402
4403  // If we receive a broken type, recover by assuming 'int' and
4404  // marking this declaration as invalid.
4405  if (T.isNull()) {
4406    InvalidDecl = true;
4407    T = Context.IntTy;
4408  }
4409
4410  // C99 6.7.2.1p8: A member of a structure or union may have any type other
4411  // than a variably modified type.
4412  if (T->isVariablyModifiedType()) {
4413    bool SizeIsNegative;
4414    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
4415                                                           SizeIsNegative);
4416    if (!FixedTy.isNull()) {
4417      Diag(Loc, diag::warn_illegal_constant_array_size);
4418      T = FixedTy;
4419    } else {
4420      if (SizeIsNegative)
4421        Diag(Loc, diag::err_typecheck_negative_array_size);
4422      else
4423        Diag(Loc, diag::err_typecheck_field_variable_size);
4424      InvalidDecl = true;
4425    }
4426  }
4427
4428  // Fields can not have abstract class types
4429  if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl,
4430                             AbstractFieldType))
4431    InvalidDecl = true;
4432
4433  // If this is declared as a bit-field, check the bit-field.
4434  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth)) {
4435    InvalidDecl = true;
4436    DeleteExpr(BitWidth);
4437    BitWidth = 0;
4438  }
4439
4440  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, BitWidth,
4441                                       Mutable, TSSL);
4442  if (InvalidDecl)
4443    NewFD->setInvalidDecl();
4444
4445  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
4446    Diag(Loc, diag::err_duplicate_member) << II;
4447    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4448    NewFD->setInvalidDecl();
4449  }
4450
4451  if (getLangOptions().CPlusPlus) {
4452    QualType EltTy = Context.getBaseElementType(T);
4453
4454    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
4455      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
4456
4457      if (!RDecl->hasTrivialConstructor())
4458        cast<CXXRecordDecl>(Record)->setHasTrivialConstructor(false);
4459      if (!RDecl->hasTrivialCopyConstructor())
4460        cast<CXXRecordDecl>(Record)->setHasTrivialCopyConstructor(false);
4461      if (!RDecl->hasTrivialCopyAssignment())
4462        cast<CXXRecordDecl>(Record)->setHasTrivialCopyAssignment(false);
4463      if (!RDecl->hasTrivialDestructor())
4464        cast<CXXRecordDecl>(Record)->setHasTrivialDestructor(false);
4465
4466      // C++ 9.5p1: An object of a class with a non-trivial
4467      // constructor, a non-trivial copy constructor, a non-trivial
4468      // destructor, or a non-trivial copy assignment operator
4469      // cannot be a member of a union, nor can an array of such
4470      // objects.
4471      // TODO: C++0x alters this restriction significantly.
4472      if (Record->isUnion()) {
4473        // We check for copy constructors before constructors
4474        // because otherwise we'll never get complaints about
4475        // copy constructors.
4476
4477        const CXXSpecialMember invalid = (CXXSpecialMember) -1;
4478
4479        CXXSpecialMember member;
4480        if (!RDecl->hasTrivialCopyConstructor())
4481          member = CXXCopyConstructor;
4482        else if (!RDecl->hasTrivialConstructor())
4483          member = CXXDefaultConstructor;
4484        else if (!RDecl->hasTrivialCopyAssignment())
4485          member = CXXCopyAssignment;
4486        else if (!RDecl->hasTrivialDestructor())
4487          member = CXXDestructor;
4488        else
4489          member = invalid;
4490
4491        if (member != invalid) {
4492          Diag(Loc, diag::err_illegal_union_member) << Name << member;
4493          DiagnoseNontrivial(RT, member);
4494          NewFD->setInvalidDecl();
4495        }
4496      }
4497    }
4498  }
4499
4500  if (getLangOptions().CPlusPlus && !T->isPODType())
4501    cast<CXXRecordDecl>(Record)->setPOD(false);
4502
4503  // FIXME: We need to pass in the attributes given an AST
4504  // representation, not a parser representation.
4505  if (D)
4506    // FIXME: What to pass instead of TUScope?
4507    ProcessDeclAttributes(TUScope, NewFD, *D);
4508
4509  if (T.isObjCGCWeak())
4510    Diag(Loc, diag::warn_attribute_weak_on_field);
4511
4512  NewFD->setAccess(AS);
4513
4514  // C++ [dcl.init.aggr]p1:
4515  //   An aggregate is an array or a class (clause 9) with [...] no
4516  //   private or protected non-static data members (clause 11).
4517  // A POD must be an aggregate.
4518  if (getLangOptions().CPlusPlus &&
4519      (AS == AS_private || AS == AS_protected)) {
4520    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
4521    CXXRecord->setAggregate(false);
4522    CXXRecord->setPOD(false);
4523  }
4524
4525  return NewFD;
4526}
4527
4528/// DiagnoseNontrivial - Given that a class has a non-trivial
4529/// special member, figure out why.
4530void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
4531  QualType QT(T, 0U);
4532  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
4533
4534  // Check whether the member was user-declared.
4535  switch (member) {
4536  case CXXDefaultConstructor:
4537    if (RD->hasUserDeclaredConstructor()) {
4538      typedef CXXRecordDecl::ctor_iterator ctor_iter;
4539      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce; ++ci)
4540        if (!ci->isImplicitlyDefined(Context)) {
4541          SourceLocation CtorLoc = ci->getLocation();
4542          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4543          return;
4544        }
4545
4546      assert(0 && "found no user-declared constructors");
4547      return;
4548    }
4549    break;
4550
4551  case CXXCopyConstructor:
4552    if (RD->hasUserDeclaredCopyConstructor()) {
4553      SourceLocation CtorLoc =
4554        RD->getCopyConstructor(Context, 0)->getLocation();
4555      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4556      return;
4557    }
4558    break;
4559
4560  case CXXCopyAssignment:
4561    if (RD->hasUserDeclaredCopyAssignment()) {
4562      // FIXME: this should use the location of the copy
4563      // assignment, not the type.
4564      SourceLocation TyLoc = RD->getSourceRange().getBegin();
4565      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
4566      return;
4567    }
4568    break;
4569
4570  case CXXDestructor:
4571    if (RD->hasUserDeclaredDestructor()) {
4572      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
4573      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4574      return;
4575    }
4576    break;
4577  }
4578
4579  typedef CXXRecordDecl::base_class_iterator base_iter;
4580
4581  // Virtual bases and members inhibit trivial copying/construction,
4582  // but not trivial destruction.
4583  if (member != CXXDestructor) {
4584    // Check for virtual bases.  vbases includes indirect virtual bases,
4585    // so we just iterate through the direct bases.
4586    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
4587      if (bi->isVirtual()) {
4588        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
4589        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
4590        return;
4591      }
4592
4593    // Check for virtual methods.
4594    typedef CXXRecordDecl::method_iterator meth_iter;
4595    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
4596         ++mi) {
4597      if (mi->isVirtual()) {
4598        SourceLocation MLoc = mi->getSourceRange().getBegin();
4599        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
4600        return;
4601      }
4602    }
4603  }
4604
4605  bool (CXXRecordDecl::*hasTrivial)() const;
4606  switch (member) {
4607  case CXXDefaultConstructor:
4608    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
4609  case CXXCopyConstructor:
4610    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
4611  case CXXCopyAssignment:
4612    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
4613  case CXXDestructor:
4614    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
4615  default:
4616    assert(0 && "unexpected special member"); return;
4617  }
4618
4619  // Check for nontrivial bases (and recurse).
4620  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
4621    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
4622    assert(BaseRT);
4623    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
4624    if (!(BaseRecTy->*hasTrivial)()) {
4625      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
4626      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
4627      DiagnoseNontrivial(BaseRT, member);
4628      return;
4629    }
4630  }
4631
4632  // Check for nontrivial members (and recurse).
4633  typedef RecordDecl::field_iterator field_iter;
4634  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
4635       ++fi) {
4636    QualType EltTy = Context.getBaseElementType((*fi)->getType());
4637    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
4638      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
4639
4640      if (!(EltRD->*hasTrivial)()) {
4641        SourceLocation FLoc = (*fi)->getLocation();
4642        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
4643        DiagnoseNontrivial(EltRT, member);
4644        return;
4645      }
4646    }
4647  }
4648
4649  assert(0 && "found no explanation for non-trivial member");
4650}
4651
4652/// TranslateIvarVisibility - Translate visibility from a token ID to an
4653///  AST enum value.
4654static ObjCIvarDecl::AccessControl
4655TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
4656  switch (ivarVisibility) {
4657  default: assert(0 && "Unknown visitibility kind");
4658  case tok::objc_private: return ObjCIvarDecl::Private;
4659  case tok::objc_public: return ObjCIvarDecl::Public;
4660  case tok::objc_protected: return ObjCIvarDecl::Protected;
4661  case tok::objc_package: return ObjCIvarDecl::Package;
4662  }
4663}
4664
4665/// ActOnIvar - Each ivar field of an objective-c class is passed into this
4666/// in order to create an IvarDecl object for it.
4667Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
4668                                SourceLocation DeclStart,
4669                                DeclPtrTy IntfDecl,
4670                                Declarator &D, ExprTy *BitfieldWidth,
4671                                tok::ObjCKeywordKind Visibility) {
4672
4673  IdentifierInfo *II = D.getIdentifier();
4674  Expr *BitWidth = (Expr*)BitfieldWidth;
4675  SourceLocation Loc = DeclStart;
4676  if (II) Loc = D.getIdentifierLoc();
4677
4678  // FIXME: Unnamed fields can be handled in various different ways, for
4679  // example, unnamed unions inject all members into the struct namespace!
4680
4681  QualType T = GetTypeForDeclarator(D, S);
4682
4683  if (BitWidth) {
4684    // 6.7.2.1p3, 6.7.2.1p4
4685    if (VerifyBitField(Loc, II, T, BitWidth)) {
4686      D.setInvalidType();
4687      DeleteExpr(BitWidth);
4688      BitWidth = 0;
4689    }
4690  } else {
4691    // Not a bitfield.
4692
4693    // validate II.
4694
4695  }
4696
4697  // C99 6.7.2.1p8: A member of a structure or union may have any type other
4698  // than a variably modified type.
4699  if (T->isVariablyModifiedType()) {
4700    Diag(Loc, diag::err_typecheck_ivar_variable_size);
4701    D.setInvalidType();
4702  }
4703
4704  // Get the visibility (access control) for this ivar.
4705  ObjCIvarDecl::AccessControl ac =
4706    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
4707                                        : ObjCIvarDecl::None;
4708  // Must set ivar's DeclContext to its enclosing interface.
4709  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
4710  DeclContext *EnclosingContext;
4711  if (ObjCImplementationDecl *IMPDecl =
4712      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
4713    // Case of ivar declared in an implementation. Context is that of its class.
4714    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
4715    assert(IDecl && "No class- ActOnIvar");
4716    EnclosingContext = cast_or_null<DeclContext>(IDecl);
4717  } else
4718    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
4719  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
4720
4721  // Construct the decl.
4722  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
4723                                             EnclosingContext, Loc, II, T,ac,
4724                                             (Expr *)BitfieldWidth);
4725
4726  if (II) {
4727    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
4728    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
4729        && !isa<TagDecl>(PrevDecl)) {
4730      Diag(Loc, diag::err_duplicate_member) << II;
4731      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4732      NewID->setInvalidDecl();
4733    }
4734  }
4735
4736  // Process attributes attached to the ivar.
4737  ProcessDeclAttributes(S, NewID, D);
4738
4739  if (D.isInvalidType())
4740    NewID->setInvalidDecl();
4741
4742  if (II) {
4743    // FIXME: When interfaces are DeclContexts, we'll need to add
4744    // these to the interface.
4745    S->AddDecl(DeclPtrTy::make(NewID));
4746    IdResolver.AddDecl(NewID);
4747  }
4748
4749  return DeclPtrTy::make(NewID);
4750}
4751
4752void Sema::ActOnFields(Scope* S,
4753                       SourceLocation RecLoc, DeclPtrTy RecDecl,
4754                       DeclPtrTy *Fields, unsigned NumFields,
4755                       SourceLocation LBrac, SourceLocation RBrac,
4756                       AttributeList *Attr) {
4757  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
4758  assert(EnclosingDecl && "missing record or interface decl");
4759
4760  // If the decl this is being inserted into is invalid, then it may be a
4761  // redeclaration or some other bogus case.  Don't try to add fields to it.
4762  if (EnclosingDecl->isInvalidDecl()) {
4763    // FIXME: Deallocate fields?
4764    return;
4765  }
4766
4767
4768  // Verify that all the fields are okay.
4769  unsigned NumNamedMembers = 0;
4770  llvm::SmallVector<FieldDecl*, 32> RecFields;
4771
4772  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
4773  for (unsigned i = 0; i != NumFields; ++i) {
4774    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
4775
4776    // Get the type for the field.
4777    Type *FDTy = FD->getType().getTypePtr();
4778
4779    if (!FD->isAnonymousStructOrUnion()) {
4780      // Remember all fields written by the user.
4781      RecFields.push_back(FD);
4782    }
4783
4784    // If the field is already invalid for some reason, don't emit more
4785    // diagnostics about it.
4786    if (FD->isInvalidDecl())
4787      continue;
4788
4789    // C99 6.7.2.1p2:
4790    //   A structure or union shall not contain a member with
4791    //   incomplete or function type (hence, a structure shall not
4792    //   contain an instance of itself, but may contain a pointer to
4793    //   an instance of itself), except that the last member of a
4794    //   structure with more than one named member may have incomplete
4795    //   array type; such a structure (and any union containing,
4796    //   possibly recursively, a member that is such a structure)
4797    //   shall not be a member of a structure or an element of an
4798    //   array.
4799    if (FDTy->isFunctionType()) {
4800      // Field declared as a function.
4801      Diag(FD->getLocation(), diag::err_field_declared_as_function)
4802        << FD->getDeclName();
4803      FD->setInvalidDecl();
4804      EnclosingDecl->setInvalidDecl();
4805      continue;
4806    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
4807               Record && Record->isStruct()) {
4808      // Flexible array member.
4809      if (NumNamedMembers < 1) {
4810        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
4811          << FD->getDeclName();
4812        FD->setInvalidDecl();
4813        EnclosingDecl->setInvalidDecl();
4814        continue;
4815      }
4816      // Okay, we have a legal flexible array member at the end of the struct.
4817      if (Record)
4818        Record->setHasFlexibleArrayMember(true);
4819    } else if (!FDTy->isDependentType() &&
4820               RequireCompleteType(FD->getLocation(), FD->getType(),
4821                                   diag::err_field_incomplete)) {
4822      // Incomplete type
4823      FD->setInvalidDecl();
4824      EnclosingDecl->setInvalidDecl();
4825      continue;
4826    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
4827      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
4828        // If this is a member of a union, then entire union becomes "flexible".
4829        if (Record && Record->isUnion()) {
4830          Record->setHasFlexibleArrayMember(true);
4831        } else {
4832          // If this is a struct/class and this is not the last element, reject
4833          // it.  Note that GCC supports variable sized arrays in the middle of
4834          // structures.
4835          if (i != NumFields-1)
4836            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
4837              << FD->getDeclName() << FD->getType();
4838          else {
4839            // We support flexible arrays at the end of structs in
4840            // other structs as an extension.
4841            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
4842              << FD->getDeclName();
4843            if (Record)
4844              Record->setHasFlexibleArrayMember(true);
4845          }
4846        }
4847      }
4848      if (Record && FDTTy->getDecl()->hasObjectMember())
4849        Record->setHasObjectMember(true);
4850    } else if (FDTy->isObjCInterfaceType()) {
4851      /// A field cannot be an Objective-c object
4852      Diag(FD->getLocation(), diag::err_statically_allocated_object);
4853      FD->setInvalidDecl();
4854      EnclosingDecl->setInvalidDecl();
4855      continue;
4856    } else if (getLangOptions().ObjC1 &&
4857               getLangOptions().getGCMode() != LangOptions::NonGC &&
4858               Record &&
4859               (FD->getType()->isObjCObjectPointerType() ||
4860                FD->getType().isObjCGCStrong()))
4861      Record->setHasObjectMember(true);
4862    // Keep track of the number of named members.
4863    if (FD->getIdentifier())
4864      ++NumNamedMembers;
4865  }
4866
4867  // Okay, we successfully defined 'Record'.
4868  if (Record) {
4869    Record->completeDefinition(Context);
4870  } else {
4871    ObjCIvarDecl **ClsFields =
4872      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
4873    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
4874      ID->setIVarList(ClsFields, RecFields.size(), Context);
4875      ID->setLocEnd(RBrac);
4876      // Add ivar's to class's DeclContext.
4877      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
4878        ClsFields[i]->setLexicalDeclContext(ID);
4879        ID->addDecl(ClsFields[i]);
4880      }
4881      // Must enforce the rule that ivars in the base classes may not be
4882      // duplicates.
4883      if (ID->getSuperClass()) {
4884        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
4885             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
4886          ObjCIvarDecl* Ivar = (*IVI);
4887
4888          if (IdentifierInfo *II = Ivar->getIdentifier()) {
4889            ObjCIvarDecl* prevIvar =
4890              ID->getSuperClass()->lookupInstanceVariable(II);
4891            if (prevIvar) {
4892              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
4893              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
4894            }
4895          }
4896        }
4897      }
4898    } else if (ObjCImplementationDecl *IMPDecl =
4899                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
4900      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
4901      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
4902        // Ivar declared in @implementation never belongs to the implementation.
4903        // Only it is in implementation's lexical context.
4904        ClsFields[I]->setLexicalDeclContext(IMPDecl);
4905      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
4906    }
4907  }
4908
4909  if (Attr)
4910    ProcessDeclAttributeList(S, Record, Attr);
4911}
4912
4913EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
4914                                          EnumConstantDecl *LastEnumConst,
4915                                          SourceLocation IdLoc,
4916                                          IdentifierInfo *Id,
4917                                          ExprArg val) {
4918  Expr *Val = (Expr *)val.get();
4919
4920  llvm::APSInt EnumVal(32);
4921  QualType EltTy;
4922  if (Val && !Val->isTypeDependent()) {
4923    // Make sure to promote the operand type to int.
4924    UsualUnaryConversions(Val);
4925    if (Val != val.get()) {
4926      val.release();
4927      val = Val;
4928    }
4929
4930    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
4931    SourceLocation ExpLoc;
4932    if (!Val->isValueDependent() &&
4933        VerifyIntegerConstantExpression(Val, &EnumVal)) {
4934      Val = 0;
4935    } else {
4936      EltTy = Val->getType();
4937    }
4938  }
4939
4940  if (!Val) {
4941    if (LastEnumConst) {
4942      // Assign the last value + 1.
4943      EnumVal = LastEnumConst->getInitVal();
4944      ++EnumVal;
4945
4946      // Check for overflow on increment.
4947      if (EnumVal < LastEnumConst->getInitVal())
4948        Diag(IdLoc, diag::warn_enum_value_overflow);
4949
4950      EltTy = LastEnumConst->getType();
4951    } else {
4952      // First value, set to zero.
4953      EltTy = Context.IntTy;
4954      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
4955    }
4956  }
4957
4958  val.release();
4959  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
4960                                  Val, EnumVal);
4961}
4962
4963
4964Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
4965                                        DeclPtrTy lastEnumConst,
4966                                        SourceLocation IdLoc,
4967                                        IdentifierInfo *Id,
4968                                        SourceLocation EqualLoc, ExprTy *val) {
4969  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
4970  EnumConstantDecl *LastEnumConst =
4971    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
4972  Expr *Val = static_cast<Expr*>(val);
4973
4974  // The scope passed in may not be a decl scope.  Zip up the scope tree until
4975  // we find one that is.
4976  S = getNonFieldDeclScope(S);
4977
4978  // Verify that there isn't already something declared with this name in this
4979  // scope.
4980  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
4981  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4982    // Maybe we will complain about the shadowed template parameter.
4983    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
4984    // Just pretend that we didn't see the previous declaration.
4985    PrevDecl = 0;
4986  }
4987
4988  if (PrevDecl) {
4989    // When in C++, we may get a TagDecl with the same name; in this case the
4990    // enum constant will 'hide' the tag.
4991    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
4992           "Received TagDecl when not in C++!");
4993    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
4994      if (isa<EnumConstantDecl>(PrevDecl))
4995        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
4996      else
4997        Diag(IdLoc, diag::err_redefinition) << Id;
4998      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4999      if (Val) Val->Destroy(Context);
5000      return DeclPtrTy();
5001    }
5002  }
5003
5004  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
5005                                            IdLoc, Id, Owned(Val));
5006
5007  // Register this decl in the current scope stack.
5008  if (New)
5009    PushOnScopeChains(New, S);
5010
5011  return DeclPtrTy::make(New);
5012}
5013
5014void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
5015                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
5016                         DeclPtrTy *Elements, unsigned NumElements) {
5017  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
5018  QualType EnumType = Context.getTypeDeclType(Enum);
5019
5020  // TODO: If the result value doesn't fit in an int, it must be a long or long
5021  // long value.  ISO C does not support this, but GCC does as an extension,
5022  // emit a warning.
5023  unsigned IntWidth = Context.Target.getIntWidth();
5024
5025  // Verify that all the values are okay, compute the size of the values, and
5026  // reverse the list.
5027  unsigned NumNegativeBits = 0;
5028  unsigned NumPositiveBits = 0;
5029
5030  // Keep track of whether all elements have type int.
5031  bool AllElementsInt = true;
5032
5033  for (unsigned i = 0; i != NumElements; ++i) {
5034    EnumConstantDecl *ECD =
5035      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5036    if (!ECD) continue;  // Already issued a diagnostic.
5037
5038    // If the enum value doesn't fit in an int, emit an extension warning.
5039    const llvm::APSInt &InitVal = ECD->getInitVal();
5040    assert(InitVal.getBitWidth() >= IntWidth &&
5041           "Should have promoted value to int");
5042    if (InitVal.getBitWidth() > IntWidth) {
5043      llvm::APSInt V(InitVal);
5044      V.trunc(IntWidth);
5045      V.extend(InitVal.getBitWidth());
5046      if (V != InitVal)
5047        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
5048          << InitVal.toString(10);
5049    }
5050
5051    // Keep track of the size of positive and negative values.
5052    if (InitVal.isUnsigned() || InitVal.isNonNegative())
5053      NumPositiveBits = std::max(NumPositiveBits,
5054                                 (unsigned)InitVal.getActiveBits());
5055    else
5056      NumNegativeBits = std::max(NumNegativeBits,
5057                                 (unsigned)InitVal.getMinSignedBits());
5058
5059    // Keep track of whether every enum element has type int (very commmon).
5060    if (AllElementsInt)
5061      AllElementsInt = ECD->getType() == Context.IntTy;
5062  }
5063
5064  // Figure out the type that should be used for this enum.
5065  // FIXME: Support attribute(packed) on enums and -fshort-enums.
5066  QualType BestType;
5067  unsigned BestWidth;
5068
5069  if (NumNegativeBits) {
5070    // If there is a negative value, figure out the smallest integer type (of
5071    // int/long/longlong) that fits.
5072    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
5073      BestType = Context.IntTy;
5074      BestWidth = IntWidth;
5075    } else {
5076      BestWidth = Context.Target.getLongWidth();
5077
5078      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
5079        BestType = Context.LongTy;
5080      else {
5081        BestWidth = Context.Target.getLongLongWidth();
5082
5083        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
5084          Diag(Enum->getLocation(), diag::warn_enum_too_large);
5085        BestType = Context.LongLongTy;
5086      }
5087    }
5088  } else {
5089    // If there is no negative value, figure out which of uint, ulong, ulonglong
5090    // fits.
5091    if (NumPositiveBits <= IntWidth) {
5092      BestType = Context.UnsignedIntTy;
5093      BestWidth = IntWidth;
5094    } else if (NumPositiveBits <=
5095               (BestWidth = Context.Target.getLongWidth())) {
5096      BestType = Context.UnsignedLongTy;
5097    } else {
5098      BestWidth = Context.Target.getLongLongWidth();
5099      assert(NumPositiveBits <= BestWidth &&
5100             "How could an initializer get larger than ULL?");
5101      BestType = Context.UnsignedLongLongTy;
5102    }
5103  }
5104
5105  // Loop over all of the enumerator constants, changing their types to match
5106  // the type of the enum if needed.
5107  for (unsigned i = 0; i != NumElements; ++i) {
5108    EnumConstantDecl *ECD =
5109      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5110    if (!ECD) continue;  // Already issued a diagnostic.
5111
5112    // Standard C says the enumerators have int type, but we allow, as an
5113    // extension, the enumerators to be larger than int size.  If each
5114    // enumerator value fits in an int, type it as an int, otherwise type it the
5115    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
5116    // that X has type 'int', not 'unsigned'.
5117    if (ECD->getType() == Context.IntTy) {
5118      // Make sure the init value is signed.
5119      llvm::APSInt IV = ECD->getInitVal();
5120      IV.setIsSigned(true);
5121      ECD->setInitVal(IV);
5122
5123      if (getLangOptions().CPlusPlus)
5124        // C++ [dcl.enum]p4: Following the closing brace of an
5125        // enum-specifier, each enumerator has the type of its
5126        // enumeration.
5127        ECD->setType(EnumType);
5128      continue;  // Already int type.
5129    }
5130
5131    // Determine whether the value fits into an int.
5132    llvm::APSInt InitVal = ECD->getInitVal();
5133    bool FitsInInt;
5134    if (InitVal.isUnsigned() || !InitVal.isNegative())
5135      FitsInInt = InitVal.getActiveBits() < IntWidth;
5136    else
5137      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
5138
5139    // If it fits into an integer type, force it.  Otherwise force it to match
5140    // the enum decl type.
5141    QualType NewTy;
5142    unsigned NewWidth;
5143    bool NewSign;
5144    if (FitsInInt) {
5145      NewTy = Context.IntTy;
5146      NewWidth = IntWidth;
5147      NewSign = true;
5148    } else if (ECD->getType() == BestType) {
5149      // Already the right type!
5150      if (getLangOptions().CPlusPlus)
5151        // C++ [dcl.enum]p4: Following the closing brace of an
5152        // enum-specifier, each enumerator has the type of its
5153        // enumeration.
5154        ECD->setType(EnumType);
5155      continue;
5156    } else {
5157      NewTy = BestType;
5158      NewWidth = BestWidth;
5159      NewSign = BestType->isSignedIntegerType();
5160    }
5161
5162    // Adjust the APSInt value.
5163    InitVal.extOrTrunc(NewWidth);
5164    InitVal.setIsSigned(NewSign);
5165    ECD->setInitVal(InitVal);
5166
5167    // Adjust the Expr initializer and type.
5168    if (ECD->getInitExpr())
5169      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
5170                                                      CastExpr::CK_Unknown,
5171                                                      ECD->getInitExpr(),
5172                                                      /*isLvalue=*/false));
5173    if (getLangOptions().CPlusPlus)
5174      // C++ [dcl.enum]p4: Following the closing brace of an
5175      // enum-specifier, each enumerator has the type of its
5176      // enumeration.
5177      ECD->setType(EnumType);
5178    else
5179      ECD->setType(NewTy);
5180  }
5181
5182  Enum->completeDefinition(Context, BestType);
5183}
5184
5185Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
5186                                            ExprArg expr) {
5187  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
5188
5189  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
5190                                                   Loc, AsmString);
5191  CurContext->addDecl(New);
5192  return DeclPtrTy::make(New);
5193}
5194
5195void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
5196                             SourceLocation PragmaLoc,
5197                             SourceLocation NameLoc) {
5198  Decl *PrevDecl = LookupName(TUScope, Name, LookupOrdinaryName);
5199
5200  if (PrevDecl) {
5201    PrevDecl->addAttr(::new (Context) WeakAttr());
5202  } else {
5203    (void)WeakUndeclaredIdentifiers.insert(
5204      std::pair<IdentifierInfo*,WeakInfo>
5205        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
5206  }
5207}
5208
5209void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
5210                                IdentifierInfo* AliasName,
5211                                SourceLocation PragmaLoc,
5212                                SourceLocation NameLoc,
5213                                SourceLocation AliasNameLoc) {
5214  Decl *PrevDecl = LookupName(TUScope, AliasName, LookupOrdinaryName);
5215  WeakInfo W = WeakInfo(Name, NameLoc);
5216
5217  if (PrevDecl) {
5218    if (!PrevDecl->hasAttr<AliasAttr>())
5219      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
5220        DeclApplyPragmaWeak(TUScope, ND, W);
5221  } else {
5222    (void)WeakUndeclaredIdentifiers.insert(
5223      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
5224  }
5225}
5226