SemaDecl.cpp revision 1f6f54be86a514d531ec231fd837858a43cfe72e
1069490a5ca2fd1988d29daf45d892f47ad665115The Android Open Source Project//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2069490a5ca2fd1988d29daf45d892f47ad665115The Android Open Source Project//
3069490a5ca2fd1988d29daf45d892f47ad665115The Android Open Source Project//                     The LLVM Compiler Infrastructure
4069490a5ca2fd1988d29daf45d892f47ad665115The Android Open Source Project//
5069490a5ca2fd1988d29daf45d892f47ad665115The Android Open Source Project// This file is distributed under the University of Illinois Open Source
6069490a5ca2fd1988d29daf45d892f47ad665115The Android Open Source Project// License. See LICENSE.TXT for details.
7069490a5ca2fd1988d29daf45d892f47ad665115The Android Open Source Project//
8069490a5ca2fd1988d29daf45d892f47ad665115The Android Open Source Project//===----------------------------------------------------------------------===//
9069490a5ca2fd1988d29daf45d892f47ad665115The Android Open Source Project//
10069490a5ca2fd1988d29daf45d892f47ad665115The Android Open Source Project//  This file implements semantic analysis for declarations.
11069490a5ca2fd1988d29daf45d892f47ad665115The Android Open Source Project//
12069490a5ca2fd1988d29daf45d892f47ad665115The Android Open Source Project//===----------------------------------------------------------------------===//
13069490a5ca2fd1988d29daf45d892f47ad665115The Android Open Source Project
14069490a5ca2fd1988d29daf45d892f47ad665115The Android Open Source Project#include "Sema.h"
15069490a5ca2fd1988d29daf45d892f47ad665115The Android Open Source Project#include "clang/AST/APValue.h"
16069490a5ca2fd1988d29daf45d892f47ad665115The Android Open Source Project#include "clang/AST/ASTConsumer.h"
17069490a5ca2fd1988d29daf45d892f47ad665115The Android Open Source Project#include "clang/AST/ASTContext.h"
18069490a5ca2fd1988d29daf45d892f47ad665115The Android Open Source Project#include "clang/AST/DeclObjC.h"
19069490a5ca2fd1988d29daf45d892f47ad665115The Android Open Source Project#include "clang/AST/ExprCXX.h"
20069490a5ca2fd1988d29daf45d892f47ad665115The Android Open Source Project#include "clang/Parse/DeclSpec.h"
21069490a5ca2fd1988d29daf45d892f47ad665115The Android Open Source Project#include "clang/Basic/Diagnostic.h"
22069490a5ca2fd1988d29daf45d892f47ad665115The Android Open Source Project#include "clang/Basic/TargetInfo.h"
23069490a5ca2fd1988d29daf45d892f47ad665115The Android Open Source Project#include "clang/Basic/SourceManager.h"
24069490a5ca2fd1988d29daf45d892f47ad665115The Android Open Source Project// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
25069490a5ca2fd1988d29daf45d892f47ad665115The Android Open Source Project#include "clang/Lex/Preprocessor.h"
26069490a5ca2fd1988d29daf45d892f47ad665115The Android Open Source Project#include "clang/Lex/HeaderSearch.h"
27069490a5ca2fd1988d29daf45d892f47ad665115The Android Open Source Project#include "llvm/ADT/SmallSet.h"
28069490a5ca2fd1988d29daf45d892f47ad665115The Android Open Source Project#include "llvm/ADT/StringExtras.h"
29069490a5ca2fd1988d29daf45d892f47ad665115The Android Open Source Projectusing namespace clang;
30069490a5ca2fd1988d29daf45d892f47ad665115The Android Open Source Project
31069490a5ca2fd1988d29daf45d892f47ad665115The Android Open Source ProjectSema::TypeTy *Sema::isTypeName(const IdentifierInfo &II, Scope *S,
32069490a5ca2fd1988d29daf45d892f47ad665115The Android Open Source Project                               const CXXScopeSpec *SS) {
33069490a5ca2fd1988d29daf45d892f47ad665115The Android Open Source Project  DeclContext *DC = 0;
34069490a5ca2fd1988d29daf45d892f47ad665115The Android Open Source Project  if (SS) {
35069490a5ca2fd1988d29daf45d892f47ad665115The Android Open Source Project    if (SS->isInvalid())
36069490a5ca2fd1988d29daf45d892f47ad665115The Android Open Source Project      return 0;
37069490a5ca2fd1988d29daf45d892f47ad665115The Android Open Source Project    DC = static_cast<DeclContext*>(SS->getScopeRep());
38069490a5ca2fd1988d29daf45d892f47ad665115The Android Open Source Project  }
39069490a5ca2fd1988d29daf45d892f47ad665115The Android Open Source Project  Decl *IIDecl = LookupDecl(&II, Decl::IDNS_Ordinary, S, DC, false);
40069490a5ca2fd1988d29daf45d892f47ad665115The Android Open Source Project
41069490a5ca2fd1988d29daf45d892f47ad665115The Android Open Source Project  if (IIDecl && (isa<TypedefDecl>(IIDecl) ||
42069490a5ca2fd1988d29daf45d892f47ad665115The Android Open Source Project                 isa<ObjCInterfaceDecl>(IIDecl) ||
43069490a5ca2fd1988d29daf45d892f47ad665115The Android Open Source Project                 isa<TagDecl>(IIDecl)))
44069490a5ca2fd1988d29daf45d892f47ad665115The Android Open Source Project    return IIDecl;
45069490a5ca2fd1988d29daf45d892f47ad665115The Android Open Source Project  return 0;
46069490a5ca2fd1988d29daf45d892f47ad665115The Android Open Source Project}
47069490a5ca2fd1988d29daf45d892f47ad665115The Android Open Source Project
48069490a5ca2fd1988d29daf45d892f47ad665115The Android Open Source Projectstd::string Sema::getTypeAsString(TypeTy *Type) {
49069490a5ca2fd1988d29daf45d892f47ad665115The Android Open Source Project  QualType Ty = QualType::getFromOpaquePtr(Type);
50069490a5ca2fd1988d29daf45d892f47ad665115The Android Open Source Project  return Ty.getAsString();
51069490a5ca2fd1988d29daf45d892f47ad665115The Android Open Source Project}
52069490a5ca2fd1988d29daf45d892f47ad665115The Android Open Source Project
53069490a5ca2fd1988d29daf45d892f47ad665115The Android Open Source ProjectDeclContext *Sema::getContainingDC(DeclContext *DC) {
54069490a5ca2fd1988d29daf45d892f47ad665115The Android Open Source Project  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
55069490a5ca2fd1988d29daf45d892f47ad665115The Android Open Source Project    // A C++ out-of-line method will return to the file declaration context.
56069490a5ca2fd1988d29daf45d892f47ad665115The Android Open Source Project    if (MD->isOutOfLineDefinition())
57069490a5ca2fd1988d29daf45d892f47ad665115The Android Open Source Project      return MD->getLexicalDeclContext();
58069490a5ca2fd1988d29daf45d892f47ad665115The Android Open Source Project
59069490a5ca2fd1988d29daf45d892f47ad665115The Android Open Source Project    // A C++ inline method is parsed *after* the topmost class it was declared in
60069490a5ca2fd1988d29daf45d892f47ad665115The Android Open Source Project    // is fully parsed (it's "complete").
61069490a5ca2fd1988d29daf45d892f47ad665115The Android Open Source Project    // The parsing of a C++ inline method happens at the declaration context of
62069490a5ca2fd1988d29daf45d892f47ad665115The Android Open Source Project    // the topmost (non-nested) class it is declared in.
63069490a5ca2fd1988d29daf45d892f47ad665115The Android Open Source Project    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
64069490a5ca2fd1988d29daf45d892f47ad665115The Android Open Source Project    DC = MD->getParent();
65069490a5ca2fd1988d29daf45d892f47ad665115The Android Open Source Project    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getParent()))
66069490a5ca2fd1988d29daf45d892f47ad665115The Android Open Source Project      DC = RD;
67069490a5ca2fd1988d29daf45d892f47ad665115The Android Open Source Project
68    // Return the declaration context of the topmost class the inline method is
69    // declared in.
70    return DC;
71  }
72
73  if (isa<ObjCMethodDecl>(DC))
74    return Context.getTranslationUnitDecl();
75
76  if (ScopedDecl *SD = dyn_cast<ScopedDecl>(DC))
77    return SD->getLexicalDeclContext();
78
79  return DC->getParent();
80}
81
82void Sema::PushDeclContext(DeclContext *DC) {
83  assert(getContainingDC(DC) == CurContext &&
84       "The next DeclContext should be lexically contained in the current one.");
85  CurContext = DC;
86}
87
88void Sema::PopDeclContext() {
89  assert(CurContext && "DeclContext imbalance!");
90  CurContext = getContainingDC(CurContext);
91}
92
93/// Add this decl to the scope shadowed decl chains.
94void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
95  S->AddDecl(D);
96
97  // C++ [basic.scope]p4:
98  //   -- exactly one declaration shall declare a class name or
99  //   enumeration name that is not a typedef name and the other
100  //   declarations shall all refer to the same object or
101  //   enumerator, or all refer to functions and function templates;
102  //   in this case the class name or enumeration name is hidden.
103  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
104    // We are pushing the name of a tag (enum or class).
105    IdentifierResolver::iterator
106        I = IdResolver.begin(TD->getIdentifier(),
107                             TD->getDeclContext(), false/*LookInParentCtx*/);
108    if (I != IdResolver.end() && isDeclInScope(*I, TD->getDeclContext(), S)) {
109      // There is already a declaration with the same name in the same
110      // scope. It must be found before we find the new declaration,
111      // so swap the order on the shadowed declaration chain.
112
113      IdResolver.AddShadowedDecl(TD, *I);
114      return;
115    }
116  } else if (getLangOptions().CPlusPlus && isa<FunctionDecl>(D)) {
117    FunctionDecl *FD = cast<FunctionDecl>(D);
118    // We are pushing the name of a function, which might be an
119    // overloaded name.
120    IdentifierResolver::iterator
121        I = IdResolver.begin(FD->getIdentifier(),
122                             FD->getDeclContext(), false/*LookInParentCtx*/);
123    if (I != IdResolver.end() &&
124        IdResolver.isDeclInScope(*I, FD->getDeclContext(), S) &&
125        (isa<OverloadedFunctionDecl>(*I) || isa<FunctionDecl>(*I))) {
126      // There is already a declaration with the same name in the same
127      // scope. It must be a function or an overloaded function.
128      OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(*I);
129      if (!Ovl) {
130        // We haven't yet overloaded this function. Take the existing
131        // FunctionDecl and put it into an OverloadedFunctionDecl.
132        Ovl = OverloadedFunctionDecl::Create(Context,
133                                             FD->getDeclContext(),
134                                             FD->getIdentifier());
135        Ovl->addOverload(dyn_cast<FunctionDecl>(*I));
136
137        // Remove the name binding to the existing FunctionDecl...
138        IdResolver.RemoveDecl(*I);
139
140        // ... and put the OverloadedFunctionDecl in its place.
141        IdResolver.AddDecl(Ovl);
142      }
143
144      // We have an OverloadedFunctionDecl. Add the new FunctionDecl
145      // to its list of overloads.
146      Ovl->addOverload(FD);
147
148      return;
149    }
150  }
151
152  IdResolver.AddDecl(D);
153}
154
155void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
156  if (S->decl_empty()) return;
157  assert((S->getFlags() & Scope::DeclScope) &&"Scope shouldn't contain decls!");
158
159  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
160       I != E; ++I) {
161    Decl *TmpD = static_cast<Decl*>(*I);
162    assert(TmpD && "This decl didn't get pushed??");
163
164    if (isa<CXXFieldDecl>(TmpD)) continue;
165
166    assert(isa<ScopedDecl>(TmpD) && "Decl isn't ScopedDecl?");
167    ScopedDecl *D = cast<ScopedDecl>(TmpD);
168
169    IdentifierInfo *II = D->getIdentifier();
170    if (!II) continue;
171
172    // We only want to remove the decls from the identifier decl chains for
173    // local scopes, when inside a function/method.
174    if (S->getFnParent() != 0)
175      IdResolver.RemoveDecl(D);
176
177    // Chain this decl to the containing DeclContext.
178    D->setNext(CurContext->getDeclChain());
179    CurContext->setDeclChain(D);
180  }
181}
182
183/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
184/// return 0 if one not found.
185ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
186  // The third "scope" argument is 0 since we aren't enabling lazy built-in
187  // creation from this context.
188  Decl *IDecl = LookupDecl(Id, Decl::IDNS_Ordinary, 0, false);
189
190  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
191}
192
193/// LookupDecl - Look up the inner-most declaration in the specified
194/// namespace.
195Decl *Sema::LookupDecl(const IdentifierInfo *II, unsigned NSI, Scope *S,
196                       DeclContext *LookupCtx, bool enableLazyBuiltinCreation) {
197  if (II == 0) return 0;
198  unsigned NS = NSI;
199  if (getLangOptions().CPlusPlus && (NS & Decl::IDNS_Ordinary))
200    NS |= Decl::IDNS_Tag;
201
202  IdentifierResolver::iterator
203    I = LookupCtx ? IdResolver.begin(II, LookupCtx, false/*LookInParentCtx*/) :
204                    IdResolver.begin(II, CurContext, true/*LookInParentCtx*/);
205  // Scan up the scope chain looking for a decl that matches this identifier
206  // that is in the appropriate namespace.  This search should not take long, as
207  // shadowing of names is uncommon, and deep shadowing is extremely uncommon.
208  for (; I != IdResolver.end(); ++I)
209    if ((*I)->getIdentifierNamespace() & NS)
210      return *I;
211
212  // If we didn't find a use of this identifier, and if the identifier
213  // corresponds to a compiler builtin, create the decl object for the builtin
214  // now, injecting it into translation unit scope, and return it.
215  if (NS & Decl::IDNS_Ordinary) {
216    if (enableLazyBuiltinCreation &&
217        (LookupCtx == 0 || isa<TranslationUnitDecl>(LookupCtx))) {
218      // If this is a builtin on this (or all) targets, create the decl.
219      if (unsigned BuiltinID = II->getBuiltinID())
220        return LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID, S);
221    }
222    if (getLangOptions().ObjC1) {
223      // @interface and @compatibility_alias introduce typedef-like names.
224      // Unlike typedef's, they can only be introduced at file-scope (and are
225      // therefore not scoped decls). They can, however, be shadowed by
226      // other names in IDNS_Ordinary.
227      ObjCInterfaceDeclsTy::iterator IDI = ObjCInterfaceDecls.find(II);
228      if (IDI != ObjCInterfaceDecls.end())
229        return IDI->second;
230      ObjCAliasTy::iterator I = ObjCAliasDecls.find(II);
231      if (I != ObjCAliasDecls.end())
232        return I->second->getClassInterface();
233    }
234  }
235  return 0;
236}
237
238void Sema::InitBuiltinVaListType() {
239  if (!Context.getBuiltinVaListType().isNull())
240    return;
241
242  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
243  Decl *VaDecl = LookupDecl(VaIdent, Decl::IDNS_Ordinary, TUScope);
244  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
245  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
246}
247
248/// LazilyCreateBuiltin - The specified Builtin-ID was first used at file scope.
249/// lazily create a decl for it.
250ScopedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
251                                      Scope *S) {
252  Builtin::ID BID = (Builtin::ID)bid;
253
254  if (Context.BuiltinInfo.hasVAListUse(BID))
255    InitBuiltinVaListType();
256
257  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context);
258  FunctionDecl *New = FunctionDecl::Create(Context,
259                                           Context.getTranslationUnitDecl(),
260                                           SourceLocation(), II, R,
261                                           FunctionDecl::Extern, false, 0);
262
263  // Create Decl objects for each parameter, adding them to the
264  // FunctionDecl.
265  if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(R)) {
266    llvm::SmallVector<ParmVarDecl*, 16> Params;
267    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
268      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
269                                           FT->getArgType(i), VarDecl::None, 0,
270                                           0));
271    New->setParams(&Params[0], Params.size());
272  }
273
274
275
276  // TUScope is the translation-unit scope to insert this function into.
277  PushOnScopeChains(New, TUScope);
278  return New;
279}
280
281/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the same name
282/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
283/// situation, merging decls or emitting diagnostics as appropriate.
284///
285TypedefDecl *Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
286  // Allow multiple definitions for ObjC built-in typedefs.
287  // FIXME: Verify the underlying types are equivalent!
288  if (getLangOptions().ObjC1) {
289    const IdentifierInfo *typeIdent = New->getIdentifier();
290    if (typeIdent == Ident_id) {
291      Context.setObjCIdType(New);
292      return New;
293    } else if (typeIdent == Ident_Class) {
294      Context.setObjCClassType(New);
295      return New;
296    } else if (typeIdent == Ident_SEL) {
297      Context.setObjCSelType(New);
298      return New;
299    } else if (typeIdent == Ident_Protocol) {
300      Context.setObjCProtoType(New->getUnderlyingType());
301      return New;
302    }
303    // Fall through - the typedef name was not a builtin type.
304  }
305  // Verify the old decl was also a typedef.
306  TypedefDecl *Old = dyn_cast<TypedefDecl>(OldD);
307  if (!Old) {
308    Diag(New->getLocation(), diag::err_redefinition_different_kind,
309         New->getName());
310    Diag(OldD->getLocation(), diag::err_previous_definition);
311    return New;
312  }
313
314  // If the typedef types are not identical, reject them in all languages and
315  // with any extensions enabled.
316  if (Old->getUnderlyingType() != New->getUnderlyingType() &&
317      Context.getCanonicalType(Old->getUnderlyingType()) !=
318      Context.getCanonicalType(New->getUnderlyingType())) {
319    Diag(New->getLocation(), diag::err_redefinition_different_typedef,
320         New->getUnderlyingType().getAsString(),
321         Old->getUnderlyingType().getAsString());
322    Diag(Old->getLocation(), diag::err_previous_definition);
323    return Old;
324  }
325
326  if (getLangOptions().Microsoft) return New;
327
328  // Redeclaration of a type is a constraint violation (6.7.2.3p1).
329  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
330  // *either* declaration is in a system header. The code below implements
331  // this adhoc compatibility rule. FIXME: The following code will not
332  // work properly when compiling ".i" files (containing preprocessed output).
333  if (PP.getDiagnostics().getSuppressSystemWarnings()) {
334    SourceManager &SrcMgr = Context.getSourceManager();
335    if (SrcMgr.isInSystemHeader(Old->getLocation()))
336      return New;
337    if (SrcMgr.isInSystemHeader(New->getLocation()))
338      return New;
339  }
340
341  Diag(New->getLocation(), diag::err_redefinition, New->getName());
342  Diag(Old->getLocation(), diag::err_previous_definition);
343  return New;
344}
345
346/// DeclhasAttr - returns true if decl Declaration already has the target
347/// attribute.
348static bool DeclHasAttr(const Decl *decl, const Attr *target) {
349  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
350    if (attr->getKind() == target->getKind())
351      return true;
352
353  return false;
354}
355
356/// MergeAttributes - append attributes from the Old decl to the New one.
357static void MergeAttributes(Decl *New, Decl *Old) {
358  Attr *attr = const_cast<Attr*>(Old->getAttrs()), *tmp;
359
360  while (attr) {
361     tmp = attr;
362     attr = attr->getNext();
363
364    if (!DeclHasAttr(New, tmp)) {
365       New->addAttr(tmp);
366    } else {
367       tmp->setNext(0);
368       delete(tmp);
369    }
370  }
371
372  Old->invalidateAttrs();
373}
374
375/// MergeFunctionDecl - We just parsed a function 'New' from
376/// declarator D which has the same name and scope as a previous
377/// declaration 'Old'.  Figure out how to resolve this situation,
378/// merging decls or emitting diagnostics as appropriate.
379/// Redeclaration will be set true if this New is a redeclaration OldD.
380///
381/// In C++, New and Old must be declarations that are not
382/// overloaded. Use IsOverload to determine whether New and Old are
383/// overloaded, and to select the Old declaration that New should be
384/// merged with.
385FunctionDecl *
386Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, bool &Redeclaration) {
387  assert(!isa<OverloadedFunctionDecl>(OldD) &&
388         "Cannot merge with an overloaded function declaration");
389
390  Redeclaration = false;
391  // Verify the old decl was also a function.
392  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
393  if (!Old) {
394    Diag(New->getLocation(), diag::err_redefinition_different_kind,
395         New->getName());
396    Diag(OldD->getLocation(), diag::err_previous_definition);
397    return New;
398  }
399
400  // Determine whether the previous declaration was a definition,
401  // implicit declaration, or a declaration.
402  diag::kind PrevDiag;
403  if (Old->isThisDeclarationADefinition())
404    PrevDiag = diag::err_previous_definition;
405  else if (Old->isImplicit())
406    PrevDiag = diag::err_previous_implicit_declaration;
407  else
408    PrevDiag = diag::err_previous_declaration;
409
410  QualType OldQType = Context.getCanonicalType(Old->getType());
411  QualType NewQType = Context.getCanonicalType(New->getType());
412
413  if (getLangOptions().CPlusPlus) {
414    // (C++98 13.1p2):
415    //   Certain function declarations cannot be overloaded:
416    //     -- Function declarations that differ only in the return type
417    //        cannot be overloaded.
418    QualType OldReturnType
419      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
420    QualType NewReturnType
421      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
422    if (OldReturnType != NewReturnType) {
423      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
424      Diag(Old->getLocation(), PrevDiag);
425      return New;
426    }
427
428    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
429    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
430    if (OldMethod && NewMethod) {
431      //    -- Member function declarations with the same name and the
432      //       same parameter types cannot be overloaded if any of them
433      //       is a static member function declaration.
434      if (OldMethod->isStatic() || NewMethod->isStatic()) {
435        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
436        Diag(Old->getLocation(), PrevDiag);
437        return New;
438      }
439    }
440
441    // (C++98 8.3.5p3):
442    //   All declarations for a function shall agree exactly in both the
443    //   return type and the parameter-type-list.
444    if (OldQType == NewQType) {
445      // We have a redeclaration.
446      MergeAttributes(New, Old);
447      Redeclaration = true;
448      return MergeCXXFunctionDecl(New, Old);
449    }
450
451    // Fall through for conflicting redeclarations and redefinitions.
452  }
453
454  // C: Function types need to be compatible, not identical. This handles
455  // duplicate function decls like "void f(int); void f(enum X);" properly.
456  if (!getLangOptions().CPlusPlus &&
457      Context.typesAreCompatible(OldQType, NewQType)) {
458    MergeAttributes(New, Old);
459    Redeclaration = true;
460    return New;
461  }
462
463  // A function that has already been declared has been redeclared or defined
464  // with a different type- show appropriate diagnostic
465
466  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
467  // TODO: This is totally simplistic.  It should handle merging functions
468  // together etc, merging extern int X; int X; ...
469  Diag(New->getLocation(), diag::err_conflicting_types, New->getName());
470  Diag(Old->getLocation(), PrevDiag);
471  return New;
472}
473
474/// Predicate for C "tentative" external object definitions (C99 6.9.2).
475static bool isTentativeDefinition(VarDecl *VD) {
476  if (VD->isFileVarDecl())
477    return (!VD->getInit() &&
478            (VD->getStorageClass() == VarDecl::None ||
479             VD->getStorageClass() == VarDecl::Static));
480  return false;
481}
482
483/// CheckForFileScopedRedefinitions - Make sure we forgo redefinition errors
484/// when dealing with C "tentative" external object definitions (C99 6.9.2).
485void Sema::CheckForFileScopedRedefinitions(Scope *S, VarDecl *VD) {
486  bool VDIsTentative = isTentativeDefinition(VD);
487  bool VDIsIncompleteArray = VD->getType()->isIncompleteArrayType();
488
489  for (IdentifierResolver::iterator
490       I = IdResolver.begin(VD->getIdentifier(),
491                            VD->getDeclContext(), false/*LookInParentCtx*/),
492       E = IdResolver.end(); I != E; ++I) {
493    if (*I != VD && isDeclInScope(*I, VD->getDeclContext(), S)) {
494      VarDecl *OldDecl = dyn_cast<VarDecl>(*I);
495
496      // Handle the following case:
497      //   int a[10];
498      //   int a[];   - the code below makes sure we set the correct type.
499      //   int a[11]; - this is an error, size isn't 10.
500      if (OldDecl && VDIsTentative && VDIsIncompleteArray &&
501          OldDecl->getType()->isConstantArrayType())
502        VD->setType(OldDecl->getType());
503
504      // Check for "tentative" definitions. We can't accomplish this in
505      // MergeVarDecl since the initializer hasn't been attached.
506      if (!OldDecl || isTentativeDefinition(OldDecl) || VDIsTentative)
507        continue;
508
509      // Handle __private_extern__ just like extern.
510      if (OldDecl->getStorageClass() != VarDecl::Extern &&
511          OldDecl->getStorageClass() != VarDecl::PrivateExtern &&
512          VD->getStorageClass() != VarDecl::Extern &&
513          VD->getStorageClass() != VarDecl::PrivateExtern) {
514        Diag(VD->getLocation(), diag::err_redefinition, VD->getName());
515        Diag(OldDecl->getLocation(), diag::err_previous_definition);
516      }
517    }
518  }
519}
520
521/// MergeVarDecl - We just parsed a variable 'New' which has the same name
522/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
523/// situation, merging decls or emitting diagnostics as appropriate.
524///
525/// Tentative definition rules (C99 6.9.2p2) are checked by
526/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
527/// definitions here, since the initializer hasn't been attached.
528///
529VarDecl *Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
530  // Verify the old decl was also a variable.
531  VarDecl *Old = dyn_cast<VarDecl>(OldD);
532  if (!Old) {
533    Diag(New->getLocation(), diag::err_redefinition_different_kind,
534         New->getName());
535    Diag(OldD->getLocation(), diag::err_previous_definition);
536    return New;
537  }
538
539  MergeAttributes(New, Old);
540
541  // Verify the types match.
542  QualType OldCType = Context.getCanonicalType(Old->getType());
543  QualType NewCType = Context.getCanonicalType(New->getType());
544  if (OldCType != NewCType && !Context.typesAreCompatible(OldCType, NewCType)) {
545    Diag(New->getLocation(), diag::err_redefinition, New->getName());
546    Diag(Old->getLocation(), diag::err_previous_definition);
547    return New;
548  }
549  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
550  if (New->getStorageClass() == VarDecl::Static &&
551      (Old->getStorageClass() == VarDecl::None ||
552       Old->getStorageClass() == VarDecl::Extern)) {
553    Diag(New->getLocation(), diag::err_static_non_static, New->getName());
554    Diag(Old->getLocation(), diag::err_previous_definition);
555    return New;
556  }
557  // C99 6.2.2p4: Check if we have a non-static decl followed by a static.
558  if (New->getStorageClass() != VarDecl::Static &&
559      Old->getStorageClass() == VarDecl::Static) {
560    Diag(New->getLocation(), diag::err_non_static_static, New->getName());
561    Diag(Old->getLocation(), diag::err_previous_definition);
562    return New;
563  }
564  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
565  if (New->getStorageClass() != VarDecl::Extern && !New->isFileVarDecl()) {
566    Diag(New->getLocation(), diag::err_redefinition, New->getName());
567    Diag(Old->getLocation(), diag::err_previous_definition);
568  }
569  return New;
570}
571
572/// CheckParmsForFunctionDef - Check that the parameters of the given
573/// function are appropriate for the definition of a function. This
574/// takes care of any checks that cannot be performed on the
575/// declaration itself, e.g., that the types of each of the function
576/// parameters are complete.
577bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
578  bool HasInvalidParm = false;
579  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
580    ParmVarDecl *Param = FD->getParamDecl(p);
581
582    // C99 6.7.5.3p4: the parameters in a parameter type list in a
583    // function declarator that is part of a function definition of
584    // that function shall not have incomplete type.
585    if (Param->getType()->isIncompleteType() &&
586        !Param->isInvalidDecl()) {
587      Diag(Param->getLocation(), diag::err_typecheck_decl_incomplete_type,
588           Param->getType().getAsString());
589      Param->setInvalidDecl();
590      HasInvalidParm = true;
591    }
592  }
593
594  return HasInvalidParm;
595}
596
597/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
598/// no declarator (e.g. "struct foo;") is parsed.
599Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
600  // TODO: emit error on 'int;' or 'const enum foo;'.
601  // TODO: emit error on 'typedef int;'
602  // if (!DS.isMissingDeclaratorOk()) Diag(...);
603
604  return dyn_cast_or_null<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
605}
606
607bool Sema::CheckSingleInitializer(Expr *&Init, QualType DeclType) {
608  // Get the type before calling CheckSingleAssignmentConstraints(), since
609  // it can promote the expression.
610  QualType InitType = Init->getType();
611
612  AssignConvertType ConvTy = CheckSingleAssignmentConstraints(DeclType, Init);
613  return DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType,
614                                  InitType, Init, "initializing");
615}
616
617bool Sema::CheckStringLiteralInit(StringLiteral *strLiteral, QualType &DeclT) {
618  const ArrayType *AT = Context.getAsArrayType(DeclT);
619
620  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
621    // C99 6.7.8p14. We have an array of character type with unknown size
622    // being initialized to a string literal.
623    llvm::APSInt ConstVal(32);
624    ConstVal = strLiteral->getByteLength() + 1;
625    // Return a new array type (C99 6.7.8p22).
626    DeclT = Context.getConstantArrayType(IAT->getElementType(), ConstVal,
627                                         ArrayType::Normal, 0);
628  } else {
629    const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
630    // C99 6.7.8p14. We have an array of character type with known size.
631    // FIXME: Avoid truncation for 64-bit length strings.
632    if (strLiteral->getByteLength() > (unsigned)CAT->getSize().getZExtValue())
633      Diag(strLiteral->getSourceRange().getBegin(),
634           diag::warn_initializer_string_for_char_array_too_long,
635           strLiteral->getSourceRange());
636  }
637  // Set type from "char *" to "constant array of char".
638  strLiteral->setType(DeclT);
639  // For now, we always return false (meaning success).
640  return false;
641}
642
643StringLiteral *Sema::IsStringLiteralInit(Expr *Init, QualType DeclType) {
644  const ArrayType *AT = Context.getAsArrayType(DeclType);
645  if (AT && AT->getElementType()->isCharType()) {
646    return dyn_cast<StringLiteral>(Init);
647  }
648  return 0;
649}
650
651bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType,
652                                 SourceLocation InitLoc,
653                                 std::string InitEntity) {
654  // C++ [dcl.init.ref]p1:
655  //   A variable declared to be a T&, that is “reference to type T”
656  //   (8.3.2), shall be initialized by an object, or function, of
657  //   type T or by an object that can be converted into a T.
658  if (DeclType->isReferenceType())
659    return CheckReferenceInit(Init, DeclType);
660
661  // C99 6.7.8p3: The type of the entity to be initialized shall be an array
662  // of unknown size ("[]") or an object type that is not a variable array type.
663  if (const VariableArrayType *VAT = Context.getAsVariableArrayType(DeclType))
664    return Diag(InitLoc,
665                diag::err_variable_object_no_init,
666                VAT->getSizeExpr()->getSourceRange());
667
668  InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
669  if (!InitList) {
670    // FIXME: Handle wide strings
671    if (StringLiteral *strLiteral = IsStringLiteralInit(Init, DeclType))
672      return CheckStringLiteralInit(strLiteral, DeclType);
673
674    // C++ [dcl.init]p14:
675    //   -- If the destination type is a (possibly cv-qualified) class
676    //      type:
677    if (getLangOptions().CPlusPlus && DeclType->isRecordType()) {
678      QualType DeclTypeC = Context.getCanonicalType(DeclType);
679      QualType InitTypeC = Context.getCanonicalType(Init->getType());
680
681      //   -- If the initialization is direct-initialization, or if it is
682      //      copy-initialization where the cv-unqualified version of the
683      //      source type is the same class as, or a derived class of, the
684      //      class of the destination, constructors are considered.
685      if ((DeclTypeC.getUnqualifiedType() == InitTypeC.getUnqualifiedType()) ||
686          IsDerivedFrom(InitTypeC, DeclTypeC)) {
687        CXXConstructorDecl *Constructor
688          = PerformInitializationByConstructor(DeclType, &Init, 1,
689                                               InitLoc, Init->getSourceRange(),
690                                               InitEntity, IK_Copy);
691        return Constructor == 0;
692      }
693
694      //   -- Otherwise (i.e., for the remaining copy-initialization
695      //      cases), user-defined conversion sequences that can
696      //      convert from the source type to the destination type or
697      //      (when a conversion function is used) to a derived class
698      //      thereof are enumerated as described in 13.3.1.4, and the
699      //      best one is chosen through overload resolution
700      //      (13.3). If the conversion cannot be done or is
701      //      ambiguous, the initialization is ill-formed. The
702      //      function selected is called with the initializer
703      //      expression as its argument; if the function is a
704      //      constructor, the call initializes a temporary of the
705      //      destination type.
706      // FIXME: We're pretending to do copy elision here; return to
707      // this when we have ASTs for such things.
708      if (PerformImplicitConversion(Init, DeclType))
709        return Diag(InitLoc,
710                    diag::err_typecheck_convert_incompatible,
711                    DeclType.getAsString(), InitEntity,
712                    "initializing",
713                    Init->getSourceRange());
714      else
715        return false;
716    }
717
718    // C99 6.7.8p16.
719    if (DeclType->isArrayType())
720      return Diag(Init->getLocStart(),
721                  diag::err_array_init_list_required,
722                  Init->getSourceRange());
723
724    return CheckSingleInitializer(Init, DeclType);
725  } else if (getLangOptions().CPlusPlus) {
726    // C++ [dcl.init]p14:
727    //   [...] If the class is an aggregate (8.5.1), and the initializer
728    //   is a brace-enclosed list, see 8.5.1.
729    //
730    // Note: 8.5.1 is handled below; here, we diagnose the case where
731    // we have an initializer list and a destination type that is not
732    // an aggregate.
733    // FIXME: In C++0x, this is yet another form of initialization.
734    if (const RecordType *ClassRec = DeclType->getAsRecordType()) {
735      const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
736      if (!ClassDecl->isAggregate())
737        return Diag(InitLoc,
738                    diag::err_init_non_aggr_init_list,
739                    DeclType.getAsString(),
740                    Init->getSourceRange());
741    }
742  }
743
744  InitListChecker CheckInitList(this, InitList, DeclType);
745  return CheckInitList.HadError();
746}
747
748Sema::DeclTy *
749Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl) {
750  ScopedDecl *LastDeclarator = dyn_cast_or_null<ScopedDecl>((Decl *)lastDecl);
751  IdentifierInfo *II = D.getIdentifier();
752
753  // All of these full declarators require an identifier.  If it doesn't have
754  // one, the ParsedFreeStandingDeclSpec action should be used.
755  if (II == 0) {
756    if (!D.getInvalidType())  // Reject this if we think it is valid.
757      Diag(D.getDeclSpec().getSourceRange().getBegin(),
758           diag::err_declarator_need_ident,
759           D.getDeclSpec().getSourceRange(), D.getSourceRange());
760    return 0;
761  }
762
763  // The scope passed in may not be a decl scope.  Zip up the scope tree until
764  // we find one that is.
765  while ((S->getFlags() & Scope::DeclScope) == 0)
766    S = S->getParent();
767
768  DeclContext *DC;
769  Decl *PrevDecl;
770  ScopedDecl *New;
771  bool InvalidDecl = false;
772
773  // See if this is a redefinition of a variable in the same scope.
774  if (!D.getCXXScopeSpec().isSet()) {
775    DC = CurContext;
776    PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S);
777  } else { // Something like "int foo::x;"
778    DC = static_cast<DeclContext*>(D.getCXXScopeSpec().getScopeRep());
779    PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S, DC);
780
781    // C++ 7.3.1.2p2:
782    // Members (including explicit specializations of templates) of a named
783    // namespace can also be defined outside that namespace by explicit
784    // qualification of the name being defined, provided that the entity being
785    // defined was already declared in the namespace and the definition appears
786    // after the point of declaration in a namespace that encloses the
787    // declarations namespace.
788    //
789    if (PrevDecl == 0) {
790      // No previous declaration in the qualifying scope.
791      Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member,
792           II->getName(), D.getCXXScopeSpec().getRange());
793    } else if (!CurContext->Encloses(DC)) {
794      // The qualifying scope doesn't enclose the original declaration.
795      // Emit diagnostic based on current scope.
796      SourceLocation L = D.getIdentifierLoc();
797      SourceRange R = D.getCXXScopeSpec().getRange();
798      if (isa<FunctionDecl>(CurContext)) {
799        Diag(L, diag::err_invalid_declarator_in_function, II->getName(), R);
800      } else {
801      Diag(L, diag::err_invalid_declarator_scope, II->getName(),
802           cast<NamedDecl>(DC)->getName(), R);
803      }
804    }
805  }
806
807  // In C++, the previous declaration we find might be a tag type
808  // (class or enum). In this case, the new declaration will hide the
809  // tag type.
810  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag)
811    PrevDecl = 0;
812
813  QualType R = GetTypeForDeclarator(D, S);
814  assert(!R.isNull() && "GetTypeForDeclarator() returned null type");
815
816  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
817    // Check that there are no default arguments (C++ only).
818    if (getLangOptions().CPlusPlus)
819      CheckExtraCXXDefaultArguments(D);
820
821    TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
822    if (!NewTD) return 0;
823
824    // Handle attributes prior to checking for duplicates in MergeVarDecl
825    ProcessDeclAttributes(NewTD, D);
826    // Merge the decl with the existing one if appropriate. If the decl is
827    // in an outer scope, it isn't the same thing.
828    if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
829      NewTD = MergeTypeDefDecl(NewTD, PrevDecl);
830      if (NewTD == 0) return 0;
831    }
832    New = NewTD;
833    if (S->getFnParent() == 0) {
834      // C99 6.7.7p2: If a typedef name specifies a variably modified type
835      // then it shall have block scope.
836      if (NewTD->getUnderlyingType()->isVariablyModifiedType()) {
837        // FIXME: Diagnostic needs to be fixed.
838        Diag(D.getIdentifierLoc(), diag::err_typecheck_illegal_vla);
839        InvalidDecl = true;
840      }
841    }
842  } else if (R.getTypePtr()->isFunctionType()) {
843    FunctionDecl::StorageClass SC = FunctionDecl::None;
844    switch (D.getDeclSpec().getStorageClassSpec()) {
845      default: assert(0 && "Unknown storage class!");
846      case DeclSpec::SCS_auto:
847      case DeclSpec::SCS_register:
848        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_func,
849             R.getAsString());
850        InvalidDecl = true;
851        break;
852      case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
853      case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
854      case DeclSpec::SCS_static:      SC = FunctionDecl::Static; break;
855      case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
856    }
857
858    bool isInline = D.getDeclSpec().isInlineSpecified();
859    // bool isVirtual = D.getDeclSpec().isVirtualSpecified();
860    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
861
862    FunctionDecl *NewFD;
863    if (D.getKind() == Declarator::DK_Constructor) {
864      // This is a C++ constructor declaration.
865      assert(DC->isCXXRecord() &&
866             "Constructors can only be declared in a member context");
867
868      bool isInvalidDecl = CheckConstructorDeclarator(D, R, SC);
869
870      // Create the new declaration
871      NewFD = CXXConstructorDecl::Create(Context,
872                                         cast<CXXRecordDecl>(DC),
873                                         D.getIdentifierLoc(), II, R,
874                                         isExplicit, isInline,
875                                         /*isImplicitlyDeclared=*/false);
876
877      if (isInvalidDecl)
878        NewFD->setInvalidDecl();
879    } else if (D.getKind() == Declarator::DK_Destructor) {
880      // This is a C++ destructor declaration.
881      if (DC->isCXXRecord()) {
882        bool isInvalidDecl = CheckDestructorDeclarator(D, R, SC);
883
884        NewFD = CXXDestructorDecl::Create(Context,
885                                          cast<CXXRecordDecl>(DC),
886                                          D.getIdentifierLoc(), II, R,
887                                          isInline,
888                                          /*isImplicitlyDeclared=*/false);
889
890        if (isInvalidDecl)
891          NewFD->setInvalidDecl();
892      } else {
893        Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
894        // Create a FunctionDecl to satisfy the function definition parsing
895        // code path.
896        NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
897                                     II, R, SC, isInline, LastDeclarator,
898                                     // FIXME: Move to DeclGroup...
899                                   D.getDeclSpec().getSourceRange().getBegin());
900        NewFD->setInvalidDecl();
901      }
902    } else if (D.getKind() == Declarator::DK_Conversion) {
903      if (!DC->isCXXRecord()) {
904        Diag(D.getIdentifierLoc(),
905             diag::err_conv_function_not_member);
906        return 0;
907      } else {
908        bool isInvalidDecl = CheckConversionDeclarator(D, R, SC);
909
910        NewFD = CXXConversionDecl::Create(Context,
911                                          cast<CXXRecordDecl>(DC),
912                                          D.getIdentifierLoc(), II, R,
913                                          isInline, isExplicit);
914
915        if (isInvalidDecl)
916          NewFD->setInvalidDecl();
917      }
918    } else if (DC->isCXXRecord()) {
919      // This is a C++ method declaration.
920      NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
921                                    D.getIdentifierLoc(), II, R,
922                                    (SC == FunctionDecl::Static), isInline,
923                                    LastDeclarator);
924    } else {
925      NewFD = FunctionDecl::Create(Context, DC,
926                                   D.getIdentifierLoc(),
927                                   II, R, SC, isInline, LastDeclarator,
928                                   // FIXME: Move to DeclGroup...
929                                   D.getDeclSpec().getSourceRange().getBegin());
930    }
931    // Handle attributes.
932    ProcessDeclAttributes(NewFD, D);
933
934    // Handle GNU asm-label extension (encoded as an attribute).
935    if (Expr *E = (Expr*) D.getAsmLabel()) {
936      // The parser guarantees this is a string.
937      StringLiteral *SE = cast<StringLiteral>(E);
938      NewFD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
939                                                  SE->getByteLength())));
940    }
941
942    // Copy the parameter declarations from the declarator D to
943    // the function declaration NewFD, if they are available.
944    if (D.getNumTypeObjects() > 0) {
945      DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
946
947      // Create Decl objects for each parameter, adding them to the
948      // FunctionDecl.
949      llvm::SmallVector<ParmVarDecl*, 16> Params;
950
951      // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
952      // function that takes no arguments, not a function that takes a
953      // single void argument.
954      // We let through "const void" here because Sema::GetTypeForDeclarator
955      // already checks for that case.
956      if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
957          FTI.ArgInfo[0].Param &&
958          ((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
959        // empty arg list, don't push any params.
960        ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
961
962        // In C++, the empty parameter-type-list must be spelled "void"; a
963        // typedef of void is not permitted.
964        if (getLangOptions().CPlusPlus &&
965            Param->getType().getUnqualifiedType() != Context.VoidTy) {
966          Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
967        }
968      } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
969        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
970          Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
971      }
972
973      NewFD->setParams(&Params[0], Params.size());
974    } else if (R->getAsTypedefType()) {
975      // When we're declaring a function with a typedef, as in the
976      // following example, we'll need to synthesize (unnamed)
977      // parameters for use in the declaration.
978      //
979      // @code
980      // typedef void fn(int);
981      // fn f;
982      // @endcode
983      const FunctionTypeProto *FT = R->getAsFunctionTypeProto();
984      if (!FT) {
985        // This is a typedef of a function with no prototype, so we
986        // don't need to do anything.
987      } else if ((FT->getNumArgs() == 0) ||
988          (FT->getNumArgs() == 1 && !FT->isVariadic() &&
989           FT->getArgType(0)->isVoidType())) {
990        // This is a zero-argument function. We don't need to do anything.
991      } else {
992        // Synthesize a parameter for each argument type.
993        llvm::SmallVector<ParmVarDecl*, 16> Params;
994        for (FunctionTypeProto::arg_type_iterator ArgType = FT->arg_type_begin();
995             ArgType != FT->arg_type_end(); ++ArgType) {
996          Params.push_back(ParmVarDecl::Create(Context, DC,
997                                               SourceLocation(), 0,
998                                               *ArgType, VarDecl::None,
999                                               0, 0));
1000        }
1001
1002        NewFD->setParams(&Params[0], Params.size());
1003      }
1004    }
1005
1006    // C++ constructors and destructors are handled by separate
1007    // routines, since they don't require any declaration merging (C++
1008    // [class.mfct]p2) and they aren't ever pushed into scope, because
1009    // they can't be found by name lookup anyway (C++ [class.ctor]p2).
1010    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD))
1011      return ActOnConstructorDeclarator(Constructor);
1012    else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(NewFD))
1013      return ActOnDestructorDeclarator(Destructor);
1014    else if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(NewFD))
1015      return ActOnConversionDeclarator(Conversion);
1016
1017    // Extra checking for C++ overloaded operators (C++ [over.oper]).
1018    if (NewFD->isOverloadedOperator() &&
1019        CheckOverloadedOperatorDeclaration(NewFD))
1020      NewFD->setInvalidDecl();
1021
1022    // Merge the decl with the existing one if appropriate. Since C functions
1023    // are in a flat namespace, make sure we consider decls in outer scopes.
1024    if (PrevDecl &&
1025        (!getLangOptions().CPlusPlus||isDeclInScope(PrevDecl, DC, S))) {
1026      bool Redeclaration = false;
1027
1028      // If C++, determine whether NewFD is an overload of PrevDecl or
1029      // a declaration that requires merging. If it's an overload,
1030      // there's no more work to do here; we'll just add the new
1031      // function to the scope.
1032      OverloadedFunctionDecl::function_iterator MatchedDecl;
1033      if (!getLangOptions().CPlusPlus ||
1034          !IsOverload(NewFD, PrevDecl, MatchedDecl)) {
1035        Decl *OldDecl = PrevDecl;
1036
1037        // If PrevDecl was an overloaded function, extract the
1038        // FunctionDecl that matched.
1039        if (isa<OverloadedFunctionDecl>(PrevDecl))
1040          OldDecl = *MatchedDecl;
1041
1042        // NewFD and PrevDecl represent declarations that need to be
1043        // merged.
1044        NewFD = MergeFunctionDecl(NewFD, OldDecl, Redeclaration);
1045
1046        if (NewFD == 0) return 0;
1047        if (Redeclaration) {
1048          NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
1049
1050          if (OldDecl == PrevDecl) {
1051            // Remove the name binding for the previous
1052            // declaration. We'll add the binding back later, but then
1053            // it will refer to the new declaration (which will
1054            // contain more information).
1055            IdResolver.RemoveDecl(cast<NamedDecl>(PrevDecl));
1056          } else {
1057            // We need to update the OverloadedFunctionDecl with the
1058            // latest declaration of this function, so that name
1059            // lookup will always refer to the latest declaration of
1060            // this function.
1061            *MatchedDecl = NewFD;
1062
1063            // Add the redeclaration to the current scope, since we'll
1064            // be skipping PushOnScopeChains.
1065            S->AddDecl(NewFD);
1066
1067            return NewFD;
1068          }
1069        }
1070      }
1071    }
1072    New = NewFD;
1073
1074    // In C++, check default arguments now that we have merged decls.
1075    if (getLangOptions().CPlusPlus)
1076      CheckCXXDefaultArguments(NewFD);
1077  } else {
1078    // Check that there are no default arguments (C++ only).
1079    if (getLangOptions().CPlusPlus)
1080      CheckExtraCXXDefaultArguments(D);
1081
1082    if (R.getTypePtr()->isObjCInterfaceType()) {
1083      Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object,
1084           D.getIdentifier()->getName());
1085      InvalidDecl = true;
1086    }
1087
1088    VarDecl *NewVD;
1089    VarDecl::StorageClass SC;
1090    switch (D.getDeclSpec().getStorageClassSpec()) {
1091    default: assert(0 && "Unknown storage class!");
1092    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1093    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1094    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1095    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1096    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1097    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1098    }
1099    if (DC->isCXXRecord()) {
1100      assert(SC == VarDecl::Static && "Invalid storage class for member!");
1101      // This is a static data member for a C++ class.
1102      NewVD = CXXClassVarDecl::Create(Context, cast<CXXRecordDecl>(DC),
1103                                      D.getIdentifierLoc(), II,
1104                                      R, LastDeclarator);
1105    } else {
1106      bool ThreadSpecified = D.getDeclSpec().isThreadSpecified();
1107      if (S->getFnParent() == 0) {
1108        // C99 6.9p2: The storage-class specifiers auto and register shall not
1109        // appear in the declaration specifiers in an external declaration.
1110        if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1111          Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope,
1112               R.getAsString());
1113          InvalidDecl = true;
1114        }
1115      }
1116        NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1117                                II, R, SC, LastDeclarator,
1118                                // FIXME: Move to DeclGroup...
1119                                D.getDeclSpec().getSourceRange().getBegin());
1120        NewVD->setThreadSpecified(ThreadSpecified);
1121    }
1122    // Handle attributes prior to checking for duplicates in MergeVarDecl
1123    ProcessDeclAttributes(NewVD, D);
1124
1125    // Handle GNU asm-label extension (encoded as an attribute).
1126    if (Expr *E = (Expr*) D.getAsmLabel()) {
1127      // The parser guarantees this is a string.
1128      StringLiteral *SE = cast<StringLiteral>(E);
1129      NewVD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1130                                                  SE->getByteLength())));
1131    }
1132
1133    // Emit an error if an address space was applied to decl with local storage.
1134    // This includes arrays of objects with address space qualifiers, but not
1135    // automatic variables that point to other address spaces.
1136    // ISO/IEC TR 18037 S5.1.2
1137    if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
1138      Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
1139      InvalidDecl = true;
1140    }
1141    // Merge the decl with the existing one if appropriate. If the decl is
1142    // in an outer scope, it isn't the same thing.
1143    if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1144      NewVD = MergeVarDecl(NewVD, PrevDecl);
1145      if (NewVD == 0) return 0;
1146    }
1147    New = NewVD;
1148  }
1149
1150  // Set the lexical context. If the declarator has a C++ scope specifier, the
1151  // lexical context will be different from the semantic context.
1152  New->setLexicalDeclContext(CurContext);
1153
1154  // If this has an identifier, add it to the scope stack.
1155  if (II)
1156    PushOnScopeChains(New, S);
1157  // If any semantic error occurred, mark the decl as invalid.
1158  if (D.getInvalidType() || InvalidDecl)
1159    New->setInvalidDecl();
1160
1161  return New;
1162}
1163
1164void Sema::InitializerElementNotConstant(const Expr *Init) {
1165  Diag(Init->getExprLoc(),
1166       diag::err_init_element_not_constant, Init->getSourceRange());
1167}
1168
1169bool Sema::CheckAddressConstantExpressionLValue(const Expr* Init) {
1170  switch (Init->getStmtClass()) {
1171  default:
1172    InitializerElementNotConstant(Init);
1173    return true;
1174  case Expr::ParenExprClass: {
1175    const ParenExpr* PE = cast<ParenExpr>(Init);
1176    return CheckAddressConstantExpressionLValue(PE->getSubExpr());
1177  }
1178  case Expr::CompoundLiteralExprClass:
1179    return cast<CompoundLiteralExpr>(Init)->isFileScope();
1180  case Expr::DeclRefExprClass: {
1181    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
1182    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1183      if (VD->hasGlobalStorage())
1184        return false;
1185      InitializerElementNotConstant(Init);
1186      return true;
1187    }
1188    if (isa<FunctionDecl>(D))
1189      return false;
1190    InitializerElementNotConstant(Init);
1191    return true;
1192  }
1193  case Expr::MemberExprClass: {
1194    const MemberExpr *M = cast<MemberExpr>(Init);
1195    if (M->isArrow())
1196      return CheckAddressConstantExpression(M->getBase());
1197    return CheckAddressConstantExpressionLValue(M->getBase());
1198  }
1199  case Expr::ArraySubscriptExprClass: {
1200    // FIXME: Should we pedwarn for "x[0+0]" (where x is a pointer)?
1201    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(Init);
1202    return CheckAddressConstantExpression(ASE->getBase()) ||
1203           CheckArithmeticConstantExpression(ASE->getIdx());
1204  }
1205  case Expr::StringLiteralClass:
1206  case Expr::PredefinedExprClass:
1207    return false;
1208  case Expr::UnaryOperatorClass: {
1209    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1210
1211    // C99 6.6p9
1212    if (Exp->getOpcode() == UnaryOperator::Deref)
1213      return CheckAddressConstantExpression(Exp->getSubExpr());
1214
1215    InitializerElementNotConstant(Init);
1216    return true;
1217  }
1218  }
1219}
1220
1221bool Sema::CheckAddressConstantExpression(const Expr* Init) {
1222  switch (Init->getStmtClass()) {
1223  default:
1224    InitializerElementNotConstant(Init);
1225    return true;
1226  case Expr::ParenExprClass:
1227    return CheckAddressConstantExpression(cast<ParenExpr>(Init)->getSubExpr());
1228  case Expr::StringLiteralClass:
1229  case Expr::ObjCStringLiteralClass:
1230    return false;
1231  case Expr::CallExprClass:
1232    // __builtin___CFStringMakeConstantString is a valid constant l-value.
1233    if (cast<CallExpr>(Init)->isBuiltinCall() ==
1234           Builtin::BI__builtin___CFStringMakeConstantString)
1235      return false;
1236
1237    InitializerElementNotConstant(Init);
1238    return true;
1239
1240  case Expr::UnaryOperatorClass: {
1241    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1242
1243    // C99 6.6p9
1244    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1245      return CheckAddressConstantExpressionLValue(Exp->getSubExpr());
1246
1247    if (Exp->getOpcode() == UnaryOperator::Extension)
1248      return CheckAddressConstantExpression(Exp->getSubExpr());
1249
1250    InitializerElementNotConstant(Init);
1251    return true;
1252  }
1253  case Expr::BinaryOperatorClass: {
1254    // FIXME: Should we pedwarn for expressions like "a + 1 + 2"?
1255    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
1256
1257    Expr *PExp = Exp->getLHS();
1258    Expr *IExp = Exp->getRHS();
1259    if (IExp->getType()->isPointerType())
1260      std::swap(PExp, IExp);
1261
1262    // FIXME: Should we pedwarn if IExp isn't an integer constant expression?
1263    return CheckAddressConstantExpression(PExp) ||
1264           CheckArithmeticConstantExpression(IExp);
1265  }
1266  case Expr::ImplicitCastExprClass:
1267  case Expr::CStyleCastExprClass: {
1268    const Expr* SubExpr = cast<CastExpr>(Init)->getSubExpr();
1269    if (Init->getStmtClass() == Expr::ImplicitCastExprClass) {
1270      // Check for implicit promotion
1271      if (SubExpr->getType()->isFunctionType() ||
1272          SubExpr->getType()->isArrayType())
1273        return CheckAddressConstantExpressionLValue(SubExpr);
1274    }
1275
1276    // Check for pointer->pointer cast
1277    if (SubExpr->getType()->isPointerType())
1278      return CheckAddressConstantExpression(SubExpr);
1279
1280    if (SubExpr->getType()->isIntegralType()) {
1281      // Check for the special-case of a pointer->int->pointer cast;
1282      // this isn't standard, but some code requires it. See
1283      // PR2720 for an example.
1284      if (const CastExpr* SubCast = dyn_cast<CastExpr>(SubExpr)) {
1285        if (SubCast->getSubExpr()->getType()->isPointerType()) {
1286          unsigned IntWidth = Context.getIntWidth(SubCast->getType());
1287          unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
1288          if (IntWidth >= PointerWidth) {
1289            return CheckAddressConstantExpression(SubCast->getSubExpr());
1290          }
1291        }
1292      }
1293    }
1294    if (SubExpr->getType()->isArithmeticType()) {
1295      return CheckArithmeticConstantExpression(SubExpr);
1296    }
1297
1298    InitializerElementNotConstant(Init);
1299    return true;
1300  }
1301  case Expr::ConditionalOperatorClass: {
1302    // FIXME: Should we pedwarn here?
1303    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
1304    if (!Exp->getCond()->getType()->isArithmeticType()) {
1305      InitializerElementNotConstant(Init);
1306      return true;
1307    }
1308    if (CheckArithmeticConstantExpression(Exp->getCond()))
1309      return true;
1310    if (Exp->getLHS() &&
1311        CheckAddressConstantExpression(Exp->getLHS()))
1312      return true;
1313    return CheckAddressConstantExpression(Exp->getRHS());
1314  }
1315  case Expr::AddrLabelExprClass:
1316    return false;
1317  }
1318}
1319
1320static const Expr* FindExpressionBaseAddress(const Expr* E);
1321
1322static const Expr* FindExpressionBaseAddressLValue(const Expr* E) {
1323  switch (E->getStmtClass()) {
1324  default:
1325    return E;
1326  case Expr::ParenExprClass: {
1327    const ParenExpr* PE = cast<ParenExpr>(E);
1328    return FindExpressionBaseAddressLValue(PE->getSubExpr());
1329  }
1330  case Expr::MemberExprClass: {
1331    const MemberExpr *M = cast<MemberExpr>(E);
1332    if (M->isArrow())
1333      return FindExpressionBaseAddress(M->getBase());
1334    return FindExpressionBaseAddressLValue(M->getBase());
1335  }
1336  case Expr::ArraySubscriptExprClass: {
1337    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(E);
1338    return FindExpressionBaseAddress(ASE->getBase());
1339  }
1340  case Expr::UnaryOperatorClass: {
1341    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1342
1343    if (Exp->getOpcode() == UnaryOperator::Deref)
1344      return FindExpressionBaseAddress(Exp->getSubExpr());
1345
1346    return E;
1347  }
1348  }
1349}
1350
1351static const Expr* FindExpressionBaseAddress(const Expr* E) {
1352  switch (E->getStmtClass()) {
1353  default:
1354    return E;
1355  case Expr::ParenExprClass: {
1356    const ParenExpr* PE = cast<ParenExpr>(E);
1357    return FindExpressionBaseAddress(PE->getSubExpr());
1358  }
1359  case Expr::UnaryOperatorClass: {
1360    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1361
1362    // C99 6.6p9
1363    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1364      return FindExpressionBaseAddressLValue(Exp->getSubExpr());
1365
1366    if (Exp->getOpcode() == UnaryOperator::Extension)
1367      return FindExpressionBaseAddress(Exp->getSubExpr());
1368
1369    return E;
1370  }
1371  case Expr::BinaryOperatorClass: {
1372    const BinaryOperator *Exp = cast<BinaryOperator>(E);
1373
1374    Expr *PExp = Exp->getLHS();
1375    Expr *IExp = Exp->getRHS();
1376    if (IExp->getType()->isPointerType())
1377      std::swap(PExp, IExp);
1378
1379    return FindExpressionBaseAddress(PExp);
1380  }
1381  case Expr::ImplicitCastExprClass: {
1382    const Expr* SubExpr = cast<ImplicitCastExpr>(E)->getSubExpr();
1383
1384    // Check for implicit promotion
1385    if (SubExpr->getType()->isFunctionType() ||
1386        SubExpr->getType()->isArrayType())
1387      return FindExpressionBaseAddressLValue(SubExpr);
1388
1389    // Check for pointer->pointer cast
1390    if (SubExpr->getType()->isPointerType())
1391      return FindExpressionBaseAddress(SubExpr);
1392
1393    // We assume that we have an arithmetic expression here;
1394    // if we don't, we'll figure it out later
1395    return 0;
1396  }
1397  case Expr::CStyleCastExprClass: {
1398    const Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
1399
1400    // Check for pointer->pointer cast
1401    if (SubExpr->getType()->isPointerType())
1402      return FindExpressionBaseAddress(SubExpr);
1403
1404    // We assume that we have an arithmetic expression here;
1405    // if we don't, we'll figure it out later
1406    return 0;
1407  }
1408  }
1409}
1410
1411bool Sema::CheckArithmeticConstantExpression(const Expr* Init) {
1412  switch (Init->getStmtClass()) {
1413  default:
1414    InitializerElementNotConstant(Init);
1415    return true;
1416  case Expr::ParenExprClass: {
1417    const ParenExpr* PE = cast<ParenExpr>(Init);
1418    return CheckArithmeticConstantExpression(PE->getSubExpr());
1419  }
1420  case Expr::FloatingLiteralClass:
1421  case Expr::IntegerLiteralClass:
1422  case Expr::CharacterLiteralClass:
1423  case Expr::ImaginaryLiteralClass:
1424  case Expr::TypesCompatibleExprClass:
1425  case Expr::CXXBoolLiteralExprClass:
1426    return false;
1427  case Expr::CallExprClass: {
1428    const CallExpr *CE = cast<CallExpr>(Init);
1429
1430    // Allow any constant foldable calls to builtins.
1431    if (CE->isBuiltinCall() && CE->isEvaluatable(Context))
1432      return false;
1433
1434    InitializerElementNotConstant(Init);
1435    return true;
1436  }
1437  case Expr::DeclRefExprClass: {
1438    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
1439    if (isa<EnumConstantDecl>(D))
1440      return false;
1441    InitializerElementNotConstant(Init);
1442    return true;
1443  }
1444  case Expr::CompoundLiteralExprClass:
1445    // Allow "(vector type){2,4}"; normal C constraints don't allow this,
1446    // but vectors are allowed to be magic.
1447    if (Init->getType()->isVectorType())
1448      return false;
1449    InitializerElementNotConstant(Init);
1450    return true;
1451  case Expr::UnaryOperatorClass: {
1452    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1453
1454    switch (Exp->getOpcode()) {
1455    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
1456    // See C99 6.6p3.
1457    default:
1458      InitializerElementNotConstant(Init);
1459      return true;
1460    case UnaryOperator::SizeOf:
1461    case UnaryOperator::AlignOf:
1462    case UnaryOperator::OffsetOf:
1463      // sizeof(E) is a constantexpr if and only if E is not evaluted.
1464      // See C99 6.5.3.4p2 and 6.6p3.
1465      if (Exp->getSubExpr()->getType()->isConstantSizeType())
1466        return false;
1467      InitializerElementNotConstant(Init);
1468      return true;
1469    case UnaryOperator::Extension:
1470    case UnaryOperator::LNot:
1471    case UnaryOperator::Plus:
1472    case UnaryOperator::Minus:
1473    case UnaryOperator::Not:
1474      return CheckArithmeticConstantExpression(Exp->getSubExpr());
1475    }
1476  }
1477  case Expr::SizeOfAlignOfTypeExprClass: {
1478    const SizeOfAlignOfTypeExpr *Exp = cast<SizeOfAlignOfTypeExpr>(Init);
1479    // Special check for void types, which are allowed as an extension
1480    if (Exp->getArgumentType()->isVoidType())
1481      return false;
1482    // alignof always evaluates to a constant.
1483    // FIXME: is sizeof(int[3.0]) a constant expression?
1484    if (Exp->isSizeOf() && !Exp->getArgumentType()->isConstantSizeType()) {
1485      InitializerElementNotConstant(Init);
1486      return true;
1487    }
1488    return false;
1489  }
1490  case Expr::BinaryOperatorClass: {
1491    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
1492
1493    if (Exp->getLHS()->getType()->isArithmeticType() &&
1494        Exp->getRHS()->getType()->isArithmeticType()) {
1495      return CheckArithmeticConstantExpression(Exp->getLHS()) ||
1496             CheckArithmeticConstantExpression(Exp->getRHS());
1497    }
1498
1499    if (Exp->getLHS()->getType()->isPointerType() &&
1500        Exp->getRHS()->getType()->isPointerType()) {
1501      const Expr* LHSBase = FindExpressionBaseAddress(Exp->getLHS());
1502      const Expr* RHSBase = FindExpressionBaseAddress(Exp->getRHS());
1503
1504      // Only allow a null (constant integer) base; we could
1505      // allow some additional cases if necessary, but this
1506      // is sufficient to cover offsetof-like constructs.
1507      if (!LHSBase && !RHSBase) {
1508        return CheckAddressConstantExpression(Exp->getLHS()) ||
1509               CheckAddressConstantExpression(Exp->getRHS());
1510      }
1511    }
1512
1513    InitializerElementNotConstant(Init);
1514    return true;
1515  }
1516  case Expr::ImplicitCastExprClass:
1517  case Expr::CStyleCastExprClass: {
1518    const Expr *SubExpr = cast<CastExpr>(Init)->getSubExpr();
1519    if (SubExpr->getType()->isArithmeticType())
1520      return CheckArithmeticConstantExpression(SubExpr);
1521
1522    if (SubExpr->getType()->isPointerType()) {
1523      const Expr* Base = FindExpressionBaseAddress(SubExpr);
1524      // If the pointer has a null base, this is an offsetof-like construct
1525      if (!Base)
1526        return CheckAddressConstantExpression(SubExpr);
1527    }
1528
1529    InitializerElementNotConstant(Init);
1530    return true;
1531  }
1532  case Expr::ConditionalOperatorClass: {
1533    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
1534
1535    // If GNU extensions are disabled, we require all operands to be arithmetic
1536    // constant expressions.
1537    if (getLangOptions().NoExtensions) {
1538      return CheckArithmeticConstantExpression(Exp->getCond()) ||
1539          (Exp->getLHS() && CheckArithmeticConstantExpression(Exp->getLHS())) ||
1540             CheckArithmeticConstantExpression(Exp->getRHS());
1541    }
1542
1543    // Otherwise, we have to emulate some of the behavior of fold here.
1544    // Basically GCC treats things like "4 ? 1 : somefunc()" as a constant
1545    // because it can constant fold things away.  To retain compatibility with
1546    // GCC code, we see if we can fold the condition to a constant (which we
1547    // should always be able to do in theory).  If so, we only require the
1548    // specified arm of the conditional to be a constant.  This is a horrible
1549    // hack, but is require by real world code that uses __builtin_constant_p.
1550    APValue Val;
1551    if (!Exp->getCond()->tryEvaluate(Val, Context)) {
1552      // If the tryEvaluate couldn't fold it, CheckArithmeticConstantExpression
1553      // won't be able to either.  Use it to emit the diagnostic though.
1554      bool Res = CheckArithmeticConstantExpression(Exp->getCond());
1555      assert(Res && "tryEvaluate couldn't evaluate this constant?");
1556      return Res;
1557    }
1558
1559    // Verify that the side following the condition is also a constant.
1560    const Expr *TrueSide = Exp->getLHS(), *FalseSide = Exp->getRHS();
1561    if (Val.getInt() == 0)
1562      std::swap(TrueSide, FalseSide);
1563
1564    if (TrueSide && CheckArithmeticConstantExpression(TrueSide))
1565      return true;
1566
1567    // Okay, the evaluated side evaluates to a constant, so we accept this.
1568    // Check to see if the other side is obviously not a constant.  If so,
1569    // emit a warning that this is a GNU extension.
1570    if (FalseSide && !FalseSide->isEvaluatable(Context))
1571      Diag(Init->getExprLoc(),
1572           diag::ext_typecheck_expression_not_constant_but_accepted,
1573           FalseSide->getSourceRange());
1574    return false;
1575  }
1576  }
1577}
1578
1579bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
1580  Init = Init->IgnoreParens();
1581
1582  // Look through CXXDefaultArgExprs; they have no meaning in this context.
1583  if (CXXDefaultArgExpr* DAE = dyn_cast<CXXDefaultArgExpr>(Init))
1584    return CheckForConstantInitializer(DAE->getExpr(), DclT);
1585
1586  if (CompoundLiteralExpr *e = dyn_cast<CompoundLiteralExpr>(Init))
1587    return CheckForConstantInitializer(e->getInitializer(), DclT);
1588
1589  if (InitListExpr *Exp = dyn_cast<InitListExpr>(Init)) {
1590    unsigned numInits = Exp->getNumInits();
1591    for (unsigned i = 0; i < numInits; i++) {
1592      // FIXME: Need to get the type of the declaration for C++,
1593      // because it could be a reference?
1594      if (CheckForConstantInitializer(Exp->getInit(i),
1595                                      Exp->getInit(i)->getType()))
1596        return true;
1597    }
1598    return false;
1599  }
1600
1601  if (Init->isNullPointerConstant(Context))
1602    return false;
1603  if (Init->getType()->isArithmeticType()) {
1604    QualType InitTy = Context.getCanonicalType(Init->getType())
1605                             .getUnqualifiedType();
1606    if (InitTy == Context.BoolTy) {
1607      // Special handling for pointers implicitly cast to bool;
1608      // (e.g. "_Bool rr = &rr;"). This is only legal at the top level.
1609      if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Init)) {
1610        Expr* SubE = ICE->getSubExpr();
1611        if (SubE->getType()->isPointerType() ||
1612            SubE->getType()->isArrayType() ||
1613            SubE->getType()->isFunctionType()) {
1614          return CheckAddressConstantExpression(Init);
1615        }
1616      }
1617    } else if (InitTy->isIntegralType()) {
1618      Expr* SubE = 0;
1619      if (CastExpr* CE = dyn_cast<CastExpr>(Init))
1620        SubE = CE->getSubExpr();
1621      // Special check for pointer cast to int; we allow as an extension
1622      // an address constant cast to an integer if the integer
1623      // is of an appropriate width (this sort of code is apparently used
1624      // in some places).
1625      // FIXME: Add pedwarn?
1626      // FIXME: Don't allow bitfields here!  Need the FieldDecl for that.
1627      if (SubE && (SubE->getType()->isPointerType() ||
1628                   SubE->getType()->isArrayType() ||
1629                   SubE->getType()->isFunctionType())) {
1630        unsigned IntWidth = Context.getTypeSize(Init->getType());
1631        unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
1632        if (IntWidth >= PointerWidth)
1633          return CheckAddressConstantExpression(Init);
1634      }
1635    }
1636
1637    return CheckArithmeticConstantExpression(Init);
1638  }
1639
1640  if (Init->getType()->isPointerType())
1641    return CheckAddressConstantExpression(Init);
1642
1643  // An array type at the top level that isn't an init-list must
1644  // be a string literal
1645  if (Init->getType()->isArrayType())
1646    return false;
1647
1648  if (Init->getType()->isFunctionType())
1649    return false;
1650
1651  // Allow block exprs at top level.
1652  if (Init->getType()->isBlockPointerType())
1653    return false;
1654
1655  InitializerElementNotConstant(Init);
1656  return true;
1657}
1658
1659void Sema::AddInitializerToDecl(DeclTy *dcl, ExprTy *init) {
1660  Decl *RealDecl = static_cast<Decl *>(dcl);
1661  Expr *Init = static_cast<Expr *>(init);
1662  assert(Init && "missing initializer");
1663
1664  // If there is no declaration, there was an error parsing it.  Just ignore
1665  // the initializer.
1666  if (RealDecl == 0) {
1667    delete Init;
1668    return;
1669  }
1670
1671  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
1672  if (!VDecl) {
1673    Diag(dyn_cast<ScopedDecl>(RealDecl)->getLocation(),
1674         diag::err_illegal_initializer);
1675    RealDecl->setInvalidDecl();
1676    return;
1677  }
1678  // Get the decls type and save a reference for later, since
1679  // CheckInitializerTypes may change it.
1680  QualType DclT = VDecl->getType(), SavT = DclT;
1681  if (VDecl->isBlockVarDecl()) {
1682    VarDecl::StorageClass SC = VDecl->getStorageClass();
1683    if (SC == VarDecl::Extern) { // C99 6.7.8p5
1684      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
1685      VDecl->setInvalidDecl();
1686    } else if (!VDecl->isInvalidDecl()) {
1687      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
1688                                VDecl->getName()))
1689        VDecl->setInvalidDecl();
1690
1691      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
1692      if (!getLangOptions().CPlusPlus) {
1693        if (SC == VarDecl::Static) // C99 6.7.8p4.
1694          CheckForConstantInitializer(Init, DclT);
1695      }
1696    }
1697  } else if (VDecl->isFileVarDecl()) {
1698    if (VDecl->getStorageClass() == VarDecl::Extern)
1699      Diag(VDecl->getLocation(), diag::warn_extern_init);
1700    if (!VDecl->isInvalidDecl())
1701      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
1702                                VDecl->getName()))
1703        VDecl->setInvalidDecl();
1704
1705    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
1706    if (!getLangOptions().CPlusPlus) {
1707      // C99 6.7.8p4. All file scoped initializers need to be constant.
1708      CheckForConstantInitializer(Init, DclT);
1709    }
1710  }
1711  // If the type changed, it means we had an incomplete type that was
1712  // completed by the initializer. For example:
1713  //   int ary[] = { 1, 3, 5 };
1714  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
1715  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
1716    VDecl->setType(DclT);
1717    Init->setType(DclT);
1718  }
1719
1720  // Attach the initializer to the decl.
1721  VDecl->setInit(Init);
1722  return;
1723}
1724
1725void Sema::ActOnUninitializedDecl(DeclTy *dcl) {
1726  Decl *RealDecl = static_cast<Decl *>(dcl);
1727
1728  // If there is no declaration, there was an error parsing it. Just ignore it.
1729  if (RealDecl == 0)
1730    return;
1731
1732  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
1733    QualType Type = Var->getType();
1734    // C++ [dcl.init.ref]p3:
1735    //   The initializer can be omitted for a reference only in a
1736    //   parameter declaration (8.3.5), in the declaration of a
1737    //   function return type, in the declaration of a class member
1738    //   within its class declaration (9.2), and where the extern
1739    //   specifier is explicitly used.
1740    if (Type->isReferenceType() && Var->getStorageClass() != VarDecl::Extern) {
1741      Diag(Var->getLocation(),
1742           diag::err_reference_var_requires_init,
1743           Var->getName(),
1744           SourceRange(Var->getLocation(), Var->getLocation()));
1745      Var->setInvalidDecl();
1746      return;
1747    }
1748
1749    // C++ [dcl.init]p9:
1750    //
1751    //   If no initializer is specified for an object, and the object
1752    //   is of (possibly cv-qualified) non-POD class type (or array
1753    //   thereof), the object shall be default-initialized; if the
1754    //   object is of const-qualified type, the underlying class type
1755    //   shall have a user-declared default constructor.
1756    if (getLangOptions().CPlusPlus) {
1757      QualType InitType = Type;
1758      if (const ArrayType *Array = Context.getAsArrayType(Type))
1759        InitType = Array->getElementType();
1760      if (InitType->isRecordType()) {
1761        const CXXConstructorDecl *Constructor
1762          = PerformInitializationByConstructor(InitType, 0, 0,
1763                                               Var->getLocation(),
1764                                               SourceRange(Var->getLocation(),
1765                                                           Var->getLocation()),
1766                                               Var->getName(),
1767                                               IK_Default);
1768        if (!Constructor)
1769          Var->setInvalidDecl();
1770      }
1771    }
1772
1773#if 0
1774    // FIXME: Temporarily disabled because we are not properly parsing
1775    // linkage specifications on declarations, e.g.,
1776    //
1777    //   extern "C" const CGPoint CGPointerZero;
1778    //
1779    // C++ [dcl.init]p9:
1780    //
1781    //     If no initializer is specified for an object, and the
1782    //     object is of (possibly cv-qualified) non-POD class type (or
1783    //     array thereof), the object shall be default-initialized; if
1784    //     the object is of const-qualified type, the underlying class
1785    //     type shall have a user-declared default
1786    //     constructor. Otherwise, if no initializer is specified for
1787    //     an object, the object and its subobjects, if any, have an
1788    //     indeterminate initial value; if the object or any of its
1789    //     subobjects are of const-qualified type, the program is
1790    //     ill-formed.
1791    //
1792    // This isn't technically an error in C, so we don't diagnose it.
1793    //
1794    // FIXME: Actually perform the POD/user-defined default
1795    // constructor check.
1796    if (getLangOptions().CPlusPlus &&
1797        Context.getCanonicalType(Type).isConstQualified() &&
1798        Var->getStorageClass() != VarDecl::Extern)
1799      Diag(Var->getLocation(),
1800           diag::err_const_var_requires_init,
1801           Var->getName(),
1802           SourceRange(Var->getLocation(), Var->getLocation()));
1803#endif
1804  }
1805}
1806
1807/// The declarators are chained together backwards, reverse the list.
1808Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
1809  // Often we have single declarators, handle them quickly.
1810  Decl *GroupDecl = static_cast<Decl*>(group);
1811  if (GroupDecl == 0)
1812    return 0;
1813
1814  ScopedDecl *Group = dyn_cast<ScopedDecl>(GroupDecl);
1815  ScopedDecl *NewGroup = 0;
1816  if (Group->getNextDeclarator() == 0)
1817    NewGroup = Group;
1818  else { // reverse the list.
1819    while (Group) {
1820      ScopedDecl *Next = Group->getNextDeclarator();
1821      Group->setNextDeclarator(NewGroup);
1822      NewGroup = Group;
1823      Group = Next;
1824    }
1825  }
1826  // Perform semantic analysis that depends on having fully processed both
1827  // the declarator and initializer.
1828  for (ScopedDecl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
1829    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
1830    if (!IDecl)
1831      continue;
1832    QualType T = IDecl->getType();
1833
1834    // C99 6.7.5.2p2: If an identifier is declared to be an object with
1835    // static storage duration, it shall not have a variable length array.
1836    if ((IDecl->isFileVarDecl() || IDecl->isBlockVarDecl()) &&
1837        IDecl->getStorageClass() == VarDecl::Static) {
1838      if (T->isVariableArrayType()) {
1839        Diag(IDecl->getLocation(), diag::err_typecheck_illegal_vla);
1840        IDecl->setInvalidDecl();
1841      }
1842    }
1843    // Block scope. C99 6.7p7: If an identifier for an object is declared with
1844    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
1845    if (IDecl->isBlockVarDecl() &&
1846        IDecl->getStorageClass() != VarDecl::Extern) {
1847      if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
1848        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type,
1849             T.getAsString());
1850        IDecl->setInvalidDecl();
1851      }
1852    }
1853    // File scope. C99 6.9.2p2: A declaration of an identifier for and
1854    // object that has file scope without an initializer, and without a
1855    // storage-class specifier or with the storage-class specifier "static",
1856    // constitutes a tentative definition. Note: A tentative definition with
1857    // external linkage is valid (C99 6.2.2p5).
1858    if (isTentativeDefinition(IDecl)) {
1859      if (T->isIncompleteArrayType()) {
1860        // C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete
1861        // array to be completed. Don't issue a diagnostic.
1862      } else if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
1863        // C99 6.9.2p3: If the declaration of an identifier for an object is
1864        // a tentative definition and has internal linkage (C99 6.2.2p3), the
1865        // declared type shall not be an incomplete type.
1866        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type,
1867             T.getAsString());
1868        IDecl->setInvalidDecl();
1869      }
1870    }
1871    if (IDecl->isFileVarDecl())
1872      CheckForFileScopedRedefinitions(S, IDecl);
1873  }
1874  return NewGroup;
1875}
1876
1877/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
1878/// to introduce parameters into function prototype scope.
1879Sema::DeclTy *
1880Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
1881  // FIXME: disallow CXXScopeSpec for param declarators.
1882  const DeclSpec &DS = D.getDeclSpec();
1883
1884  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
1885  VarDecl::StorageClass StorageClass = VarDecl::None;
1886  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
1887    StorageClass = VarDecl::Register;
1888  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
1889    Diag(DS.getStorageClassSpecLoc(),
1890         diag::err_invalid_storage_class_in_func_decl);
1891    D.getMutableDeclSpec().ClearStorageClassSpecs();
1892  }
1893  if (DS.isThreadSpecified()) {
1894    Diag(DS.getThreadSpecLoc(),
1895         diag::err_invalid_storage_class_in_func_decl);
1896    D.getMutableDeclSpec().ClearStorageClassSpecs();
1897  }
1898
1899  // Check that there are no default arguments inside the type of this
1900  // parameter (C++ only).
1901  if (getLangOptions().CPlusPlus)
1902    CheckExtraCXXDefaultArguments(D);
1903
1904  // In this context, we *do not* check D.getInvalidType(). If the declarator
1905  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
1906  // though it will not reflect the user specified type.
1907  QualType parmDeclType = GetTypeForDeclarator(D, S);
1908
1909  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
1910
1911  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
1912  // Can this happen for params?  We already checked that they don't conflict
1913  // among each other.  Here they can only shadow globals, which is ok.
1914  IdentifierInfo *II = D.getIdentifier();
1915  if (Decl *PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S)) {
1916    if (S->isDeclScope(PrevDecl)) {
1917      Diag(D.getIdentifierLoc(), diag::err_param_redefinition,
1918           dyn_cast<NamedDecl>(PrevDecl)->getName());
1919
1920      // Recover by removing the name
1921      II = 0;
1922      D.SetIdentifier(0, D.getIdentifierLoc());
1923    }
1924  }
1925
1926  // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
1927  // Doing the promotion here has a win and a loss. The win is the type for
1928  // both Decl's and DeclRefExpr's will match (a convenient invariant for the
1929  // code generator). The loss is the orginal type isn't preserved. For example:
1930  //
1931  // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
1932  //    int blockvardecl[5];
1933  //    sizeof(parmvardecl);  // size == 4
1934  //    sizeof(blockvardecl); // size == 20
1935  // }
1936  //
1937  // For expressions, all implicit conversions are captured using the
1938  // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
1939  //
1940  // FIXME: If a source translation tool needs to see the original type, then
1941  // we need to consider storing both types (in ParmVarDecl)...
1942  //
1943  if (parmDeclType->isArrayType()) {
1944    // int x[restrict 4] ->  int *restrict
1945    parmDeclType = Context.getArrayDecayedType(parmDeclType);
1946  } else if (parmDeclType->isFunctionType())
1947    parmDeclType = Context.getPointerType(parmDeclType);
1948
1949  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext,
1950                                         D.getIdentifierLoc(), II,
1951                                         parmDeclType, StorageClass,
1952                                         0, 0);
1953
1954  if (D.getInvalidType())
1955    New->setInvalidDecl();
1956
1957  if (II)
1958    PushOnScopeChains(New, S);
1959
1960  ProcessDeclAttributes(New, D);
1961  return New;
1962
1963}
1964
1965Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
1966  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
1967  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
1968         "Not a function declarator!");
1969  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1970
1971  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
1972  // for a K&R function.
1973  if (!FTI.hasPrototype) {
1974    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
1975      if (FTI.ArgInfo[i].Param == 0) {
1976        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared,
1977             FTI.ArgInfo[i].Ident->getName());
1978        // Implicitly declare the argument as type 'int' for lack of a better
1979        // type.
1980        DeclSpec DS;
1981        const char* PrevSpec; // unused
1982        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
1983                           PrevSpec);
1984        Declarator ParamD(DS, Declarator::KNRTypeListContext);
1985        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
1986        FTI.ArgInfo[i].Param = ActOnParamDeclarator(FnBodyScope, ParamD);
1987      }
1988    }
1989  } else {
1990    // FIXME: Diagnose arguments without names in C.
1991  }
1992
1993  Scope *GlobalScope = FnBodyScope->getParent();
1994
1995  return ActOnStartOfFunctionDef(FnBodyScope,
1996                                 ActOnDeclarator(GlobalScope, D, 0));
1997}
1998
1999Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclTy *D) {
2000  Decl *decl = static_cast<Decl*>(D);
2001  FunctionDecl *FD = cast<FunctionDecl>(decl);
2002
2003  // See if this is a redefinition.
2004  const FunctionDecl *Definition;
2005  if (FD->getBody(Definition)) {
2006    Diag(FD->getLocation(), diag::err_redefinition,
2007         FD->getName());
2008    Diag(Definition->getLocation(), diag::err_previous_definition);
2009  }
2010
2011  PushDeclContext(FD);
2012
2013  // Check the validity of our function parameters
2014  CheckParmsForFunctionDef(FD);
2015
2016  // Introduce our parameters into the function scope
2017  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2018    ParmVarDecl *Param = FD->getParamDecl(p);
2019    // If this has an identifier, add it to the scope stack.
2020    if (Param->getIdentifier())
2021      PushOnScopeChains(Param, FnBodyScope);
2022  }
2023
2024  return FD;
2025}
2026
2027Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtTy *Body) {
2028  Decl *dcl = static_cast<Decl *>(D);
2029  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
2030    FD->setBody((Stmt*)Body);
2031    assert(FD == getCurFunctionDecl() && "Function parsing confused");
2032  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
2033    MD->setBody((Stmt*)Body);
2034  } else
2035    return 0;
2036  PopDeclContext();
2037  // Verify and clean out per-function state.
2038
2039  // Check goto/label use.
2040  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
2041       I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
2042    // Verify that we have no forward references left.  If so, there was a goto
2043    // or address of a label taken, but no definition of it.  Label fwd
2044    // definitions are indicated with a null substmt.
2045    if (I->second->getSubStmt() == 0) {
2046      LabelStmt *L = I->second;
2047      // Emit error.
2048      Diag(L->getIdentLoc(), diag::err_undeclared_label_use, L->getName());
2049
2050      // At this point, we have gotos that use the bogus label.  Stitch it into
2051      // the function body so that they aren't leaked and that the AST is well
2052      // formed.
2053      if (Body) {
2054        L->setSubStmt(new NullStmt(L->getIdentLoc()));
2055        cast<CompoundStmt>((Stmt*)Body)->push_back(L);
2056      } else {
2057        // The whole function wasn't parsed correctly, just delete this.
2058        delete L;
2059      }
2060    }
2061  }
2062  LabelMap.clear();
2063
2064  return D;
2065}
2066
2067/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
2068/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
2069ScopedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
2070                                           IdentifierInfo &II, Scope *S) {
2071  // Extension in C99.  Legal in C90, but warn about it.
2072  if (getLangOptions().C99)
2073    Diag(Loc, diag::ext_implicit_function_decl, II.getName());
2074  else
2075    Diag(Loc, diag::warn_implicit_function_decl, II.getName());
2076
2077  // FIXME: handle stuff like:
2078  // void foo() { extern float X(); }
2079  // void bar() { X(); }  <-- implicit decl for X in another scope.
2080
2081  // Set a Declarator for the implicit definition: int foo();
2082  const char *Dummy;
2083  DeclSpec DS;
2084  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
2085  Error = Error; // Silence warning.
2086  assert(!Error && "Error setting up implicit decl!");
2087  Declarator D(DS, Declarator::BlockContext);
2088  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, 0, 0, 0, Loc));
2089  D.SetIdentifier(&II, Loc);
2090
2091  // Insert this function into translation-unit scope.
2092
2093  DeclContext *PrevDC = CurContext;
2094  CurContext = Context.getTranslationUnitDecl();
2095
2096  FunctionDecl *FD =
2097    dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0)));
2098  FD->setImplicit();
2099
2100  CurContext = PrevDC;
2101
2102  return FD;
2103}
2104
2105
2106TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
2107                                    ScopedDecl *LastDeclarator) {
2108  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
2109  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2110
2111  // Scope manipulation handled by caller.
2112  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
2113                                           D.getIdentifierLoc(),
2114                                           D.getIdentifier(),
2115                                           T, LastDeclarator);
2116  if (D.getInvalidType())
2117    NewTD->setInvalidDecl();
2118  return NewTD;
2119}
2120
2121/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
2122/// former case, Name will be non-null.  In the later case, Name will be null.
2123/// TagType indicates what kind of tag this is. TK indicates whether this is a
2124/// reference/declaration/definition of a tag.
2125Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagType, TagKind TK,
2126                             SourceLocation KWLoc, const CXXScopeSpec &SS,
2127                             IdentifierInfo *Name, SourceLocation NameLoc,
2128                             AttributeList *Attr) {
2129  // If this is a use of an existing tag, it must have a name.
2130  assert((Name != 0 || TK == TK_Definition) &&
2131         "Nameless record must be a definition!");
2132
2133  TagDecl::TagKind Kind;
2134  switch (TagType) {
2135  default: assert(0 && "Unknown tag type!");
2136  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
2137  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
2138  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
2139  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
2140  }
2141
2142  // Two code paths: a new one for structs/unions/classes where we create
2143  //   separate decls for forward declarations, and an old (eventually to
2144  //   be removed) code path for enums.
2145  if (Kind != TagDecl::TK_enum)
2146    return ActOnTagStruct(S, Kind, TK, KWLoc, SS, Name, NameLoc, Attr);
2147
2148  DeclContext *DC = CurContext;
2149  ScopedDecl *PrevDecl = 0;
2150
2151  if (Name && SS.isNotEmpty()) {
2152    // We have a nested-name tag ('struct foo::bar').
2153
2154    // Check for invalid 'foo::'.
2155    if (SS.isInvalid()) {
2156      Name = 0;
2157      goto CreateNewDecl;
2158    }
2159
2160    DC = static_cast<DeclContext*>(SS.getScopeRep());
2161    // Look-up name inside 'foo::'.
2162    PrevDecl = dyn_cast_or_null<TagDecl>(LookupDecl(Name, Decl::IDNS_Tag,S,DC));
2163
2164    // A tag 'foo::bar' must already exist.
2165    if (PrevDecl == 0) {
2166      Diag(NameLoc, diag::err_not_tag_in_scope, Name->getName(),
2167           SS.getRange());
2168      Name = 0;
2169      goto CreateNewDecl;
2170    }
2171  } else {
2172    // If this is a named struct, check to see if there was a previous forward
2173    // declaration or definition.
2174    // Use ScopedDecl instead of TagDecl, because a NamespaceDecl may come up.
2175    PrevDecl = dyn_cast_or_null<ScopedDecl>(LookupDecl(Name, Decl::IDNS_Tag,S));
2176  }
2177
2178  if (PrevDecl) {
2179    assert((isa<TagDecl>(PrevDecl) || isa<NamespaceDecl>(PrevDecl)) &&
2180            "unexpected Decl type");
2181    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
2182      // If this is a use of a previous tag, or if the tag is already declared
2183      // in the same scope (so that the definition/declaration completes or
2184      // rementions the tag), reuse the decl.
2185      if (TK == TK_Reference || isDeclInScope(PrevDecl, DC, S)) {
2186        // Make sure that this wasn't declared as an enum and now used as a
2187        // struct or something similar.
2188        if (PrevTagDecl->getTagKind() != Kind) {
2189          Diag(KWLoc, diag::err_use_with_wrong_tag, Name->getName());
2190          Diag(PrevDecl->getLocation(), diag::err_previous_use);
2191          // Recover by making this an anonymous redefinition.
2192          Name = 0;
2193          PrevDecl = 0;
2194        } else {
2195          // If this is a use or a forward declaration, we're good.
2196          if (TK != TK_Definition)
2197            return PrevDecl;
2198
2199          // Diagnose attempts to redefine a tag.
2200          if (PrevTagDecl->isDefinition()) {
2201            Diag(NameLoc, diag::err_redefinition, Name->getName());
2202            Diag(PrevDecl->getLocation(), diag::err_previous_definition);
2203            // If this is a redefinition, recover by making this struct be
2204            // anonymous, which will make any later references get the previous
2205            // definition.
2206            Name = 0;
2207          } else {
2208            // Okay, this is definition of a previously declared or referenced
2209            // tag. Move the location of the decl to be the definition site.
2210            PrevDecl->setLocation(NameLoc);
2211            return PrevDecl;
2212          }
2213        }
2214      }
2215      // If we get here, this is a definition of a new struct type in a nested
2216      // scope, e.g. "struct foo; void bar() { struct foo; }", just create a new
2217      // type.
2218    } else {
2219      // PrevDecl is a namespace.
2220      if (isDeclInScope(PrevDecl, DC, S)) {
2221        // The tag name clashes with a namespace name, issue an error and
2222        // recover by making this tag be anonymous.
2223        Diag(NameLoc, diag::err_redefinition_different_kind, Name->getName());
2224        Diag(PrevDecl->getLocation(), diag::err_previous_definition);
2225        Name = 0;
2226      }
2227    }
2228  }
2229
2230  CreateNewDecl:
2231
2232  // If there is an identifier, use the location of the identifier as the
2233  // location of the decl, otherwise use the location of the struct/union
2234  // keyword.
2235  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
2236
2237  // Otherwise, if this is the first time we've seen this tag, create the decl.
2238  TagDecl *New;
2239  if (Kind == TagDecl::TK_enum) {
2240    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
2241    // enum X { A, B, C } D;    D should chain to X.
2242    New = EnumDecl::Create(Context, DC, Loc, Name, 0);
2243    // If this is an undefined enum, warn.
2244    if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum);
2245  } else {
2246    // struct/union/class
2247
2248    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
2249    // struct X { int A; } D;    D should chain to X.
2250    if (getLangOptions().CPlusPlus)
2251      // FIXME: Look for a way to use RecordDecl for simple structs.
2252      New = CXXRecordDecl::Create(Context, Kind, DC, Loc, Name);
2253    else
2254      New = RecordDecl::Create(Context, Kind, DC, Loc, Name);
2255  }
2256
2257  // If this has an identifier, add it to the scope stack.
2258  if (Name) {
2259    // The scope passed in may not be a decl scope.  Zip up the scope tree until
2260    // we find one that is.
2261    while ((S->getFlags() & Scope::DeclScope) == 0)
2262      S = S->getParent();
2263
2264    // Add it to the decl chain.
2265    PushOnScopeChains(New, S);
2266  }
2267
2268  if (Attr)
2269    ProcessDeclAttributeList(New, Attr);
2270
2271  // Set the lexical context. If the tag has a C++ scope specifier, the
2272  // lexical context will be different from the semantic context.
2273  New->setLexicalDeclContext(CurContext);
2274
2275  return New;
2276}
2277
2278/// ActOnTagStruct - New "ActOnTag" logic for structs/unions/classes.  Unlike
2279///  the logic for enums, we create separate decls for forward declarations.
2280///  This is called by ActOnTag, but eventually will replace its logic.
2281Sema::DeclTy *Sema::ActOnTagStruct(Scope *S, TagDecl::TagKind Kind, TagKind TK,
2282                             SourceLocation KWLoc, const CXXScopeSpec &SS,
2283                             IdentifierInfo *Name, SourceLocation NameLoc,
2284                             AttributeList *Attr) {
2285  DeclContext *DC = CurContext;
2286  ScopedDecl *PrevDecl = 0;
2287
2288  if (Name && SS.isNotEmpty()) {
2289    // We have a nested-name tag ('struct foo::bar').
2290
2291    // Check for invalid 'foo::'.
2292    if (SS.isInvalid()) {
2293      Name = 0;
2294      goto CreateNewDecl;
2295    }
2296
2297    DC = static_cast<DeclContext*>(SS.getScopeRep());
2298    // Look-up name inside 'foo::'.
2299    PrevDecl = dyn_cast_or_null<TagDecl>(LookupDecl(Name, Decl::IDNS_Tag,S,DC));
2300
2301    // A tag 'foo::bar' must already exist.
2302    if (PrevDecl == 0) {
2303      Diag(NameLoc, diag::err_not_tag_in_scope, Name->getName(),
2304           SS.getRange());
2305      Name = 0;
2306      goto CreateNewDecl;
2307    }
2308  } else {
2309    // If this is a named struct, check to see if there was a previous forward
2310    // declaration or definition.
2311    // Use ScopedDecl instead of TagDecl, because a NamespaceDecl may come up.
2312    PrevDecl = dyn_cast_or_null<ScopedDecl>(LookupDecl(Name, Decl::IDNS_Tag,S));
2313  }
2314
2315  if (PrevDecl) {
2316    assert((isa<TagDecl>(PrevDecl) || isa<NamespaceDecl>(PrevDecl)) &&
2317           "unexpected Decl type");
2318
2319    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
2320      // If this is a use of a previous tag, or if the tag is already declared
2321      // in the same scope (so that the definition/declaration completes or
2322      // rementions the tag), reuse the decl.
2323      if (TK == TK_Reference || isDeclInScope(PrevDecl, DC, S)) {
2324        // Make sure that this wasn't declared as an enum and now used as a
2325        // struct or something similar.
2326        if (PrevTagDecl->getTagKind() != Kind) {
2327          Diag(KWLoc, diag::err_use_with_wrong_tag, Name->getName());
2328          Diag(PrevDecl->getLocation(), diag::err_previous_use);
2329          // Recover by making this an anonymous redefinition.
2330          Name = 0;
2331          PrevDecl = 0;
2332        } else {
2333          // If this is a use, return the original decl.
2334
2335          // FIXME: In the future, return a variant or some other clue
2336          //  for the consumer of this Decl to know it doesn't own it.
2337          //  For our current ASTs this shouldn't be a problem, but will
2338          //  need to be changed with DeclGroups.
2339          if (TK == TK_Reference)
2340            return PrevDecl;
2341
2342          // The new decl is a definition?
2343          if (TK == TK_Definition) {
2344            // Diagnose attempts to redefine a tag.
2345            if (RecordDecl* DefRecord =
2346                cast<RecordDecl>(PrevTagDecl)->getDefinition(Context)) {
2347              Diag(NameLoc, diag::err_redefinition, Name->getName());
2348              Diag(DefRecord->getLocation(), diag::err_previous_definition);
2349              // If this is a redefinition, recover by making this struct be
2350              // anonymous, which will make any later references get the previous
2351              // definition.
2352              Name = 0;
2353              PrevDecl = 0;
2354            }
2355            // Okay, this is definition of a previously declared or referenced
2356            // tag.  We're going to create a new Decl.
2357          }
2358        }
2359        // If we get here we have (another) forward declaration.  Just create
2360        // a new decl.
2361      }
2362      else {
2363        // If we get here, this is a definition of a new struct type in a nested
2364        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
2365        // new decl/type.  We set PrevDecl to NULL so that the Records
2366        // have distinct types.
2367        PrevDecl = 0;
2368      }
2369    } else {
2370      // PrevDecl is a namespace.
2371      if (isDeclInScope(PrevDecl, DC, S)) {
2372        // The tag name clashes with a namespace name, issue an error and
2373        // recover by making this tag be anonymous.
2374        Diag(NameLoc, diag::err_redefinition_different_kind, Name->getName());
2375        Diag(PrevDecl->getLocation(), diag::err_previous_definition);
2376        Name = 0;
2377      }
2378    }
2379  }
2380
2381  CreateNewDecl:
2382
2383  // If there is an identifier, use the location of the identifier as the
2384  // location of the decl, otherwise use the location of the struct/union
2385  // keyword.
2386  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
2387
2388  // Otherwise, if this is the first time we've seen this tag, create the decl.
2389  TagDecl *New;
2390
2391  // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
2392  // struct X { int A; } D;    D should chain to X.
2393  if (getLangOptions().CPlusPlus)
2394    // FIXME: Look for a way to use RecordDecl for simple structs.
2395    New = CXXRecordDecl::Create(Context, Kind, DC, Loc, Name,
2396                                dyn_cast_or_null<CXXRecordDecl>(PrevDecl));
2397  else
2398    New = RecordDecl::Create(Context, Kind, DC, Loc, Name,
2399                             dyn_cast_or_null<RecordDecl>(PrevDecl));
2400
2401  // If this has an identifier, add it to the scope stack.
2402  if ((TK == TK_Definition || !PrevDecl) && Name) {
2403    // The scope passed in may not be a decl scope.  Zip up the scope tree until
2404    // we find one that is.
2405    while ((S->getFlags() & Scope::DeclScope) == 0)
2406      S = S->getParent();
2407
2408    // Add it to the decl chain.
2409    PushOnScopeChains(New, S);
2410  }
2411
2412  // Handle #pragma pack: if the #pragma pack stack has non-default
2413  // alignment, make up a packed attribute for this decl. These
2414  // attributes are checked when the ASTContext lays out the
2415  // structure.
2416  //
2417  // It is important for implementing the correct semantics that this
2418  // happen here (in act on tag decl). The #pragma pack stack is
2419  // maintained as a result of parser callbacks which can occur at
2420  // many points during the parsing of a struct declaration (because
2421  // the #pragma tokens are effectively skipped over during the
2422  // parsing of the struct).
2423  if (unsigned Alignment = PackContext.getAlignment())
2424    New->addAttr(new PackedAttr(Alignment * 8));
2425
2426  if (Attr)
2427    ProcessDeclAttributeList(New, Attr);
2428
2429  // Set the lexical context. If the tag has a C++ scope specifier, the
2430  // lexical context will be different from the semantic context.
2431  New->setLexicalDeclContext(CurContext);
2432
2433  return New;
2434}
2435
2436
2437/// Collect the instance variables declared in an Objective-C object.  Used in
2438/// the creation of structures from objects using the @defs directive.
2439static void CollectIvars(ObjCInterfaceDecl *Class, ASTContext& Ctx,
2440                         llvm::SmallVectorImpl<Sema::DeclTy*> &ivars) {
2441  if (Class->getSuperClass())
2442    CollectIvars(Class->getSuperClass(), Ctx, ivars);
2443
2444  // For each ivar, create a fresh ObjCAtDefsFieldDecl.
2445  for (ObjCInterfaceDecl::ivar_iterator
2446        I=Class->ivar_begin(), E=Class->ivar_end(); I!=E; ++I) {
2447
2448    ObjCIvarDecl* ID = *I;
2449    ivars.push_back(ObjCAtDefsFieldDecl::Create(Ctx, ID->getLocation(),
2450                                                ID->getIdentifier(),
2451                                                ID->getType(),
2452                                                ID->getBitWidth()));
2453  }
2454}
2455
2456/// Called whenever @defs(ClassName) is encountered in the source.  Inserts the
2457/// instance variables of ClassName into Decls.
2458void Sema::ActOnDefs(Scope *S, SourceLocation DeclStart,
2459                     IdentifierInfo *ClassName,
2460                     llvm::SmallVectorImpl<DeclTy*> &Decls) {
2461  // Check that ClassName is a valid class
2462  ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName);
2463  if (!Class) {
2464    Diag(DeclStart, diag::err_undef_interface, ClassName->getName());
2465    return;
2466  }
2467  // Collect the instance variables
2468  CollectIvars(Class, Context, Decls);
2469}
2470
2471QualType Sema::TryFixInvalidVariablyModifiedType(QualType T) {
2472  // This method tries to turn a variable array into a constant
2473  // array even when the size isn't an ICE.  This is necessary
2474  // for compatibility with code that depends on gcc's buggy
2475  // constant expression folding, like struct {char x[(int)(char*)2];}
2476  if (const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T)) {
2477    APValue Result;
2478    if (VLATy->getSizeExpr() &&
2479        VLATy->getSizeExpr()->tryEvaluate(Result, Context) && Result.isInt()) {
2480      llvm::APSInt &Res = Result.getInt();
2481      if (Res > llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
2482        return Context.getConstantArrayType(VLATy->getElementType(),
2483                                            Res, ArrayType::Normal, 0);
2484    }
2485  }
2486  return QualType();
2487}
2488
2489/// ActOnField - Each field of a struct/union/class is passed into this in order
2490/// to create a FieldDecl object for it.
2491Sema::DeclTy *Sema::ActOnField(Scope *S,
2492                               SourceLocation DeclStart,
2493                               Declarator &D, ExprTy *BitfieldWidth) {
2494  IdentifierInfo *II = D.getIdentifier();
2495  Expr *BitWidth = (Expr*)BitfieldWidth;
2496  SourceLocation Loc = DeclStart;
2497  if (II) Loc = D.getIdentifierLoc();
2498
2499  // FIXME: Unnamed fields can be handled in various different ways, for
2500  // example, unnamed unions inject all members into the struct namespace!
2501
2502  if (BitWidth) {
2503    // TODO: Validate.
2504    //printf("WARNING: BITFIELDS IGNORED!\n");
2505
2506    // 6.7.2.1p3
2507    // 6.7.2.1p4
2508
2509  } else {
2510    // Not a bitfield.
2511
2512    // validate II.
2513
2514  }
2515
2516  QualType T = GetTypeForDeclarator(D, S);
2517  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2518  bool InvalidDecl = false;
2519
2520  // C99 6.7.2.1p8: A member of a structure or union may have any type other
2521  // than a variably modified type.
2522  if (T->isVariablyModifiedType()) {
2523    QualType FixedTy = TryFixInvalidVariablyModifiedType(T);
2524    if (!FixedTy.isNull()) {
2525      Diag(Loc, diag::warn_illegal_constant_array_size, Loc);
2526      T = FixedTy;
2527    } else {
2528      // FIXME: This diagnostic needs work
2529      Diag(Loc, diag::err_typecheck_illegal_vla, Loc);
2530      InvalidDecl = true;
2531    }
2532  }
2533  // FIXME: Chain fielddecls together.
2534  FieldDecl *NewFD;
2535
2536  if (getLangOptions().CPlusPlus) {
2537    // FIXME: Replace CXXFieldDecls with FieldDecls for simple structs.
2538    NewFD = CXXFieldDecl::Create(Context, cast<CXXRecordDecl>(CurContext),
2539                                 Loc, II, T, BitWidth);
2540    if (II)
2541      PushOnScopeChains(NewFD, S);
2542  }
2543  else
2544    NewFD = FieldDecl::Create(Context, Loc, II, T, BitWidth);
2545
2546  ProcessDeclAttributes(NewFD, D);
2547
2548  if (D.getInvalidType() || InvalidDecl)
2549    NewFD->setInvalidDecl();
2550  return NewFD;
2551}
2552
2553/// TranslateIvarVisibility - Translate visibility from a token ID to an
2554///  AST enum value.
2555static ObjCIvarDecl::AccessControl
2556TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
2557  switch (ivarVisibility) {
2558  default: assert(0 && "Unknown visitibility kind");
2559  case tok::objc_private: return ObjCIvarDecl::Private;
2560  case tok::objc_public: return ObjCIvarDecl::Public;
2561  case tok::objc_protected: return ObjCIvarDecl::Protected;
2562  case tok::objc_package: return ObjCIvarDecl::Package;
2563  }
2564}
2565
2566/// ActOnIvar - Each ivar field of an objective-c class is passed into this
2567/// in order to create an IvarDecl object for it.
2568Sema::DeclTy *Sema::ActOnIvar(Scope *S,
2569                              SourceLocation DeclStart,
2570                              Declarator &D, ExprTy *BitfieldWidth,
2571                              tok::ObjCKeywordKind Visibility) {
2572  IdentifierInfo *II = D.getIdentifier();
2573  Expr *BitWidth = (Expr*)BitfieldWidth;
2574  SourceLocation Loc = DeclStart;
2575  if (II) Loc = D.getIdentifierLoc();
2576
2577  // FIXME: Unnamed fields can be handled in various different ways, for
2578  // example, unnamed unions inject all members into the struct namespace!
2579
2580
2581  if (BitWidth) {
2582    // TODO: Validate.
2583    //printf("WARNING: BITFIELDS IGNORED!\n");
2584
2585    // 6.7.2.1p3
2586    // 6.7.2.1p4
2587
2588  } else {
2589    // Not a bitfield.
2590
2591    // validate II.
2592
2593  }
2594
2595  QualType T = GetTypeForDeclarator(D, S);
2596  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2597  bool InvalidDecl = false;
2598
2599  // C99 6.7.2.1p8: A member of a structure or union may have any type other
2600  // than a variably modified type.
2601  if (T->isVariablyModifiedType()) {
2602    // FIXME: This diagnostic needs work
2603    Diag(Loc, diag::err_typecheck_illegal_vla, Loc);
2604    InvalidDecl = true;
2605  }
2606
2607  // Get the visibility (access control) for this ivar.
2608  ObjCIvarDecl::AccessControl ac =
2609    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
2610                                        : ObjCIvarDecl::None;
2611
2612  // Construct the decl.
2613  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, Loc, II, T, ac,
2614                                             (Expr *)BitfieldWidth);
2615
2616  // Process attributes attached to the ivar.
2617  ProcessDeclAttributes(NewID, D);
2618
2619  if (D.getInvalidType() || InvalidDecl)
2620    NewID->setInvalidDecl();
2621
2622  return NewID;
2623}
2624
2625void Sema::ActOnFields(Scope* S,
2626                       SourceLocation RecLoc, DeclTy *RecDecl,
2627                       DeclTy **Fields, unsigned NumFields,
2628                       SourceLocation LBrac, SourceLocation RBrac,
2629                       AttributeList *Attr) {
2630  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
2631  assert(EnclosingDecl && "missing record or interface decl");
2632  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
2633
2634  if (Record)
2635    if (RecordDecl* DefRecord = Record->getDefinition(Context)) {
2636      // Diagnose code like:
2637      //     struct S { struct S {} X; };
2638      // We discover this when we complete the outer S.  Reject and ignore the
2639      // outer S.
2640      Diag(DefRecord->getLocation(), diag::err_nested_redefinition,
2641           DefRecord->getKindName());
2642      Diag(RecLoc, diag::err_previous_definition);
2643      Record->setInvalidDecl();
2644      return;
2645    }
2646
2647  // Verify that all the fields are okay.
2648  unsigned NumNamedMembers = 0;
2649  llvm::SmallVector<FieldDecl*, 32> RecFields;
2650  llvm::SmallSet<const IdentifierInfo*, 32> FieldIDs;
2651
2652  for (unsigned i = 0; i != NumFields; ++i) {
2653
2654    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
2655    assert(FD && "missing field decl");
2656
2657    // Remember all fields.
2658    RecFields.push_back(FD);
2659
2660    // Get the type for the field.
2661    Type *FDTy = FD->getType().getTypePtr();
2662
2663    // C99 6.7.2.1p2 - A field may not be a function type.
2664    if (FDTy->isFunctionType()) {
2665      Diag(FD->getLocation(), diag::err_field_declared_as_function,
2666           FD->getName());
2667      FD->setInvalidDecl();
2668      EnclosingDecl->setInvalidDecl();
2669      continue;
2670    }
2671    // C99 6.7.2.1p2 - A field may not be an incomplete type except...
2672    if (FDTy->isIncompleteType()) {
2673      if (!Record) {  // Incomplete ivar type is always an error.
2674        Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName());
2675        FD->setInvalidDecl();
2676        EnclosingDecl->setInvalidDecl();
2677        continue;
2678      }
2679      if (i != NumFields-1 ||                   // ... that the last member ...
2680          !Record->isStruct() ||  // ... of a structure ...
2681          !FDTy->isArrayType()) {         //... may have incomplete array type.
2682        Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName());
2683        FD->setInvalidDecl();
2684        EnclosingDecl->setInvalidDecl();
2685        continue;
2686      }
2687      if (NumNamedMembers < 1) {  //... must have more than named member ...
2688        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct,
2689             FD->getName());
2690        FD->setInvalidDecl();
2691        EnclosingDecl->setInvalidDecl();
2692        continue;
2693      }
2694      // Okay, we have a legal flexible array member at the end of the struct.
2695      if (Record)
2696        Record->setHasFlexibleArrayMember(true);
2697    }
2698    /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
2699    /// field of another structure or the element of an array.
2700    if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
2701      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
2702        // If this is a member of a union, then entire union becomes "flexible".
2703        if (Record && Record->isUnion()) {
2704          Record->setHasFlexibleArrayMember(true);
2705        } else {
2706          // If this is a struct/class and this is not the last element, reject
2707          // it.  Note that GCC supports variable sized arrays in the middle of
2708          // structures.
2709          if (i != NumFields-1) {
2710            Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct,
2711                 FD->getName());
2712            FD->setInvalidDecl();
2713            EnclosingDecl->setInvalidDecl();
2714            continue;
2715          }
2716          // We support flexible arrays at the end of structs in other structs
2717          // as an extension.
2718          Diag(FD->getLocation(), diag::ext_flexible_array_in_struct,
2719               FD->getName());
2720          if (Record)
2721            Record->setHasFlexibleArrayMember(true);
2722        }
2723      }
2724    }
2725    /// A field cannot be an Objective-c object
2726    if (FDTy->isObjCInterfaceType()) {
2727      Diag(FD->getLocation(), diag::err_statically_allocated_object,
2728           FD->getName());
2729      FD->setInvalidDecl();
2730      EnclosingDecl->setInvalidDecl();
2731      continue;
2732    }
2733    // Keep track of the number of named members.
2734    if (IdentifierInfo *II = FD->getIdentifier()) {
2735      // Detect duplicate member names.
2736      if (!FieldIDs.insert(II)) {
2737        Diag(FD->getLocation(), diag::err_duplicate_member, II->getName());
2738        // Find the previous decl.
2739        SourceLocation PrevLoc;
2740        for (unsigned i = 0; ; ++i) {
2741          assert(i != RecFields.size() && "Didn't find previous def!");
2742          if (RecFields[i]->getIdentifier() == II) {
2743            PrevLoc = RecFields[i]->getLocation();
2744            break;
2745          }
2746        }
2747        Diag(PrevLoc, diag::err_previous_definition);
2748        FD->setInvalidDecl();
2749        EnclosingDecl->setInvalidDecl();
2750        continue;
2751      }
2752      ++NumNamedMembers;
2753    }
2754  }
2755
2756  // Okay, we successfully defined 'Record'.
2757  if (Record) {
2758    Record->defineBody(Context, &RecFields[0], RecFields.size());
2759    // If this is a C++ record, HandleTagDeclDefinition will be invoked in
2760    // Sema::ActOnFinishCXXClassDef.
2761    if (!isa<CXXRecordDecl>(Record))
2762      Consumer.HandleTagDeclDefinition(Record);
2763  } else {
2764    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
2765    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl))
2766      ID->addInstanceVariablesToClass(ClsFields, RecFields.size(), RBrac);
2767    else if (ObjCImplementationDecl *IMPDecl =
2768               dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
2769      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
2770      IMPDecl->ObjCAddInstanceVariablesToClassImpl(ClsFields, RecFields.size());
2771      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
2772    }
2773  }
2774
2775  if (Attr)
2776    ProcessDeclAttributeList(Record, Attr);
2777}
2778
2779Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
2780                                      DeclTy *lastEnumConst,
2781                                      SourceLocation IdLoc, IdentifierInfo *Id,
2782                                      SourceLocation EqualLoc, ExprTy *val) {
2783  EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
2784  EnumConstantDecl *LastEnumConst =
2785    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
2786  Expr *Val = static_cast<Expr*>(val);
2787
2788  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2789  // we find one that is.
2790  while ((S->getFlags() & Scope::DeclScope) == 0)
2791    S = S->getParent();
2792
2793  // Verify that there isn't already something declared with this name in this
2794  // scope.
2795  if (Decl *PrevDecl = LookupDecl(Id, Decl::IDNS_Ordinary, S)) {
2796    // When in C++, we may get a TagDecl with the same name; in this case the
2797    // enum constant will 'hide' the tag.
2798    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
2799           "Received TagDecl when not in C++!");
2800    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
2801      if (isa<EnumConstantDecl>(PrevDecl))
2802        Diag(IdLoc, diag::err_redefinition_of_enumerator, Id->getName());
2803      else
2804        Diag(IdLoc, diag::err_redefinition, Id->getName());
2805      Diag(PrevDecl->getLocation(), diag::err_previous_definition);
2806      delete Val;
2807      return 0;
2808    }
2809  }
2810
2811  llvm::APSInt EnumVal(32);
2812  QualType EltTy;
2813  if (Val) {
2814    // Make sure to promote the operand type to int.
2815    UsualUnaryConversions(Val);
2816
2817    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
2818    SourceLocation ExpLoc;
2819    if (!Val->isIntegerConstantExpr(EnumVal, Context, &ExpLoc)) {
2820      Diag(ExpLoc, diag::err_enum_value_not_integer_constant_expr,
2821           Id->getName());
2822      delete Val;
2823      Val = 0;  // Just forget about it.
2824    } else {
2825      EltTy = Val->getType();
2826    }
2827  }
2828
2829  if (!Val) {
2830    if (LastEnumConst) {
2831      // Assign the last value + 1.
2832      EnumVal = LastEnumConst->getInitVal();
2833      ++EnumVal;
2834
2835      // Check for overflow on increment.
2836      if (EnumVal < LastEnumConst->getInitVal())
2837        Diag(IdLoc, diag::warn_enum_value_overflow);
2838
2839      EltTy = LastEnumConst->getType();
2840    } else {
2841      // First value, set to zero.
2842      EltTy = Context.IntTy;
2843      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
2844    }
2845  }
2846
2847  EnumConstantDecl *New =
2848    EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy,
2849                             Val, EnumVal,
2850                             LastEnumConst);
2851
2852  // Register this decl in the current scope stack.
2853  PushOnScopeChains(New, S);
2854  return New;
2855}
2856
2857// FIXME: For consistency with ActOnFields(), we should have the parser
2858// pass in the source location for the left/right braces.
2859void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
2860                         DeclTy **Elements, unsigned NumElements) {
2861  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
2862
2863  if (Enum && Enum->isDefinition()) {
2864    // Diagnose code like:
2865    //   enum e0 {
2866    //     E0 = sizeof(enum e0 { E1 })
2867    //   };
2868    Diag(Enum->getLocation(), diag::err_nested_redefinition,
2869         Enum->getName());
2870    Diag(EnumLoc, diag::err_previous_definition);
2871    Enum->setInvalidDecl();
2872    return;
2873  }
2874  // TODO: If the result value doesn't fit in an int, it must be a long or long
2875  // long value.  ISO C does not support this, but GCC does as an extension,
2876  // emit a warning.
2877  unsigned IntWidth = Context.Target.getIntWidth();
2878
2879  // Verify that all the values are okay, compute the size of the values, and
2880  // reverse the list.
2881  unsigned NumNegativeBits = 0;
2882  unsigned NumPositiveBits = 0;
2883
2884  // Keep track of whether all elements have type int.
2885  bool AllElementsInt = true;
2886
2887  EnumConstantDecl *EltList = 0;
2888  for (unsigned i = 0; i != NumElements; ++i) {
2889    EnumConstantDecl *ECD =
2890      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
2891    if (!ECD) continue;  // Already issued a diagnostic.
2892
2893    // If the enum value doesn't fit in an int, emit an extension warning.
2894    const llvm::APSInt &InitVal = ECD->getInitVal();
2895    assert(InitVal.getBitWidth() >= IntWidth &&
2896           "Should have promoted value to int");
2897    if (InitVal.getBitWidth() > IntWidth) {
2898      llvm::APSInt V(InitVal);
2899      V.trunc(IntWidth);
2900      V.extend(InitVal.getBitWidth());
2901      if (V != InitVal)
2902        Diag(ECD->getLocation(), diag::ext_enum_value_not_int,
2903             InitVal.toString(10));
2904    }
2905
2906    // Keep track of the size of positive and negative values.
2907    if (InitVal.isUnsigned() || InitVal.isNonNegative())
2908      NumPositiveBits = std::max(NumPositiveBits,
2909                                 (unsigned)InitVal.getActiveBits());
2910    else
2911      NumNegativeBits = std::max(NumNegativeBits,
2912                                 (unsigned)InitVal.getMinSignedBits());
2913
2914    // Keep track of whether every enum element has type int (very commmon).
2915    if (AllElementsInt)
2916      AllElementsInt = ECD->getType() == Context.IntTy;
2917
2918    ECD->setNextDeclarator(EltList);
2919    EltList = ECD;
2920  }
2921
2922  // Figure out the type that should be used for this enum.
2923  // FIXME: Support attribute(packed) on enums and -fshort-enums.
2924  QualType BestType;
2925  unsigned BestWidth;
2926
2927  if (NumNegativeBits) {
2928    // If there is a negative value, figure out the smallest integer type (of
2929    // int/long/longlong) that fits.
2930    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
2931      BestType = Context.IntTy;
2932      BestWidth = IntWidth;
2933    } else {
2934      BestWidth = Context.Target.getLongWidth();
2935
2936      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
2937        BestType = Context.LongTy;
2938      else {
2939        BestWidth = Context.Target.getLongLongWidth();
2940
2941        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
2942          Diag(Enum->getLocation(), diag::warn_enum_too_large);
2943        BestType = Context.LongLongTy;
2944      }
2945    }
2946  } else {
2947    // If there is no negative value, figure out which of uint, ulong, ulonglong
2948    // fits.
2949    if (NumPositiveBits <= IntWidth) {
2950      BestType = Context.UnsignedIntTy;
2951      BestWidth = IntWidth;
2952    } else if (NumPositiveBits <=
2953               (BestWidth = Context.Target.getLongWidth())) {
2954      BestType = Context.UnsignedLongTy;
2955    } else {
2956      BestWidth = Context.Target.getLongLongWidth();
2957      assert(NumPositiveBits <= BestWidth &&
2958             "How could an initializer get larger than ULL?");
2959      BestType = Context.UnsignedLongLongTy;
2960    }
2961  }
2962
2963  // Loop over all of the enumerator constants, changing their types to match
2964  // the type of the enum if needed.
2965  for (unsigned i = 0; i != NumElements; ++i) {
2966    EnumConstantDecl *ECD =
2967      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
2968    if (!ECD) continue;  // Already issued a diagnostic.
2969
2970    // Standard C says the enumerators have int type, but we allow, as an
2971    // extension, the enumerators to be larger than int size.  If each
2972    // enumerator value fits in an int, type it as an int, otherwise type it the
2973    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
2974    // that X has type 'int', not 'unsigned'.
2975    if (ECD->getType() == Context.IntTy) {
2976      // Make sure the init value is signed.
2977      llvm::APSInt IV = ECD->getInitVal();
2978      IV.setIsSigned(true);
2979      ECD->setInitVal(IV);
2980      continue;  // Already int type.
2981    }
2982
2983    // Determine whether the value fits into an int.
2984    llvm::APSInt InitVal = ECD->getInitVal();
2985    bool FitsInInt;
2986    if (InitVal.isUnsigned() || !InitVal.isNegative())
2987      FitsInInt = InitVal.getActiveBits() < IntWidth;
2988    else
2989      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
2990
2991    // If it fits into an integer type, force it.  Otherwise force it to match
2992    // the enum decl type.
2993    QualType NewTy;
2994    unsigned NewWidth;
2995    bool NewSign;
2996    if (FitsInInt) {
2997      NewTy = Context.IntTy;
2998      NewWidth = IntWidth;
2999      NewSign = true;
3000    } else if (ECD->getType() == BestType) {
3001      // Already the right type!
3002      continue;
3003    } else {
3004      NewTy = BestType;
3005      NewWidth = BestWidth;
3006      NewSign = BestType->isSignedIntegerType();
3007    }
3008
3009    // Adjust the APSInt value.
3010    InitVal.extOrTrunc(NewWidth);
3011    InitVal.setIsSigned(NewSign);
3012    ECD->setInitVal(InitVal);
3013
3014    // Adjust the Expr initializer and type.
3015    ECD->setInitExpr(new ImplicitCastExpr(NewTy, ECD->getInitExpr()));
3016    ECD->setType(NewTy);
3017  }
3018
3019  Enum->defineElements(EltList, BestType);
3020  Consumer.HandleTagDeclDefinition(Enum);
3021}
3022
3023Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
3024                                          ExprTy *expr) {
3025  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr);
3026
3027  return FileScopeAsmDecl::Create(Context, Loc, AsmString);
3028}
3029
3030Sema::DeclTy* Sema::ActOnLinkageSpec(SourceLocation Loc,
3031                                     SourceLocation LBrace,
3032                                     SourceLocation RBrace,
3033                                     const char *Lang,
3034                                     unsigned StrSize,
3035                                     DeclTy *D) {
3036  LinkageSpecDecl::LanguageIDs Language;
3037  Decl *dcl = static_cast<Decl *>(D);
3038  if (strncmp(Lang, "\"C\"", StrSize) == 0)
3039    Language = LinkageSpecDecl::lang_c;
3040  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
3041    Language = LinkageSpecDecl::lang_cxx;
3042  else {
3043    Diag(Loc, diag::err_bad_language);
3044    return 0;
3045  }
3046
3047  // FIXME: Add all the various semantics of linkage specifications
3048  return LinkageSpecDecl::Create(Context, Loc, Language, dcl);
3049}
3050
3051void Sema::ActOnPragmaPack(PragmaPackKind Kind, IdentifierInfo *Name,
3052                           ExprTy *alignment, SourceLocation PragmaLoc,
3053                           SourceLocation LParenLoc, SourceLocation RParenLoc) {
3054  Expr *Alignment = static_cast<Expr *>(alignment);
3055
3056  // If specified then alignment must be a "small" power of two.
3057  unsigned AlignmentVal = 0;
3058  if (Alignment) {
3059    llvm::APSInt Val;
3060    if (!Alignment->isIntegerConstantExpr(Val, Context) ||
3061        !Val.isPowerOf2() ||
3062        Val.getZExtValue() > 16) {
3063      Diag(PragmaLoc, diag::warn_pragma_pack_invalid_alignment);
3064      delete Alignment;
3065      return; // Ignore
3066    }
3067
3068    AlignmentVal = (unsigned) Val.getZExtValue();
3069  }
3070
3071  switch (Kind) {
3072  case Action::PPK_Default: // pack([n])
3073    PackContext.setAlignment(AlignmentVal);
3074    break;
3075
3076  case Action::PPK_Show: // pack(show)
3077    // Show the current alignment, making sure to show the right value
3078    // for the default.
3079    AlignmentVal = PackContext.getAlignment();
3080    // FIXME: This should come from the target.
3081    if (AlignmentVal == 0)
3082      AlignmentVal = 8;
3083    Diag(PragmaLoc, diag::warn_pragma_pack_show, llvm::utostr(AlignmentVal));
3084    break;
3085
3086  case Action::PPK_Push: // pack(push [, id] [, [n])
3087    PackContext.push(Name);
3088    // Set the new alignment if specified.
3089    if (Alignment)
3090      PackContext.setAlignment(AlignmentVal);
3091    break;
3092
3093  case Action::PPK_Pop: // pack(pop [, id] [,  n])
3094    // MSDN, C/C++ Preprocessor Reference > Pragma Directives > pack:
3095    // "#pragma pack(pop, identifier, n) is undefined"
3096    if (Alignment && Name)
3097      Diag(PragmaLoc, diag::warn_pragma_pack_pop_identifer_and_alignment);
3098
3099    // Do the pop.
3100    if (!PackContext.pop(Name)) {
3101      // If a name was specified then failure indicates the name
3102      // wasn't found. Otherwise failure indicates the stack was
3103      // empty.
3104      Diag(PragmaLoc, diag::warn_pragma_pack_pop_failed,
3105           Name ? "no record matching name" : "stack empty");
3106
3107      // FIXME: Warn about popping named records as MSVC does.
3108    } else {
3109      // Pop succeeded, set the new alignment if specified.
3110      if (Alignment)
3111        PackContext.setAlignment(AlignmentVal);
3112    }
3113    break;
3114
3115  default:
3116    assert(0 && "Invalid #pragma pack kind.");
3117  }
3118}
3119
3120bool PragmaPackStack::pop(IdentifierInfo *Name) {
3121  if (Stack.empty())
3122    return false;
3123
3124  // If name is empty just pop top.
3125  if (!Name) {
3126    Alignment = Stack.back().first;
3127    Stack.pop_back();
3128    return true;
3129  }
3130
3131  // Otherwise, find the named record.
3132  for (unsigned i = Stack.size(); i != 0; ) {
3133    --i;
3134    if (strcmp(Stack[i].second.c_str(), Name->getName()) == 0) {
3135      // Found it, pop up to and including this record.
3136      Alignment = Stack[i].first;
3137      Stack.erase(Stack.begin() + i, Stack.end());
3138      return true;
3139    }
3140  }
3141
3142  return false;
3143}
3144