SemaDecl.cpp revision 1fa8028d9ff5de64f8b9d55731ca83a2d3423a77
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "TypeLocBuilder.h"
21#include "clang/AST/APValue.h"
22#include "clang/AST/ASTConsumer.h"
23#include "clang/AST/ASTContext.h"
24#include "clang/AST/CXXInheritance.h"
25#include "clang/AST/DeclCXX.h"
26#include "clang/AST/DeclObjC.h"
27#include "clang/AST/DeclTemplate.h"
28#include "clang/AST/EvaluatedExprVisitor.h"
29#include "clang/AST/ExprCXX.h"
30#include "clang/AST/StmtCXX.h"
31#include "clang/AST/CharUnits.h"
32#include "clang/Sema/DeclSpec.h"
33#include "clang/Sema/ParsedTemplate.h"
34#include "clang/Parse/ParseDiagnostic.h"
35#include "clang/Basic/PartialDiagnostic.h"
36#include "clang/Basic/SourceManager.h"
37#include "clang/Basic/TargetInfo.h"
38// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
39#include "clang/Lex/Preprocessor.h"
40#include "clang/Lex/HeaderSearch.h"
41#include "llvm/ADT/Triple.h"
42#include <algorithm>
43#include <cstring>
44#include <functional>
45using namespace clang;
46using namespace sema;
47
48Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr) {
49  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
50}
51
52/// \brief If the identifier refers to a type name within this scope,
53/// return the declaration of that type.
54///
55/// This routine performs ordinary name lookup of the identifier II
56/// within the given scope, with optional C++ scope specifier SS, to
57/// determine whether the name refers to a type. If so, returns an
58/// opaque pointer (actually a QualType) corresponding to that
59/// type. Otherwise, returns NULL.
60///
61/// If name lookup results in an ambiguity, this routine will complain
62/// and then return NULL.
63ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
64                             Scope *S, CXXScopeSpec *SS,
65                             bool isClassName, bool HasTrailingDot,
66                             ParsedType ObjectTypePtr,
67                             bool WantNontrivialTypeSourceInfo) {
68  // Determine where we will perform name lookup.
69  DeclContext *LookupCtx = 0;
70  if (ObjectTypePtr) {
71    QualType ObjectType = ObjectTypePtr.get();
72    if (ObjectType->isRecordType())
73      LookupCtx = computeDeclContext(ObjectType);
74  } else if (SS && SS->isNotEmpty()) {
75    LookupCtx = computeDeclContext(*SS, false);
76
77    if (!LookupCtx) {
78      if (isDependentScopeSpecifier(*SS)) {
79        // C++ [temp.res]p3:
80        //   A qualified-id that refers to a type and in which the
81        //   nested-name-specifier depends on a template-parameter (14.6.2)
82        //   shall be prefixed by the keyword typename to indicate that the
83        //   qualified-id denotes a type, forming an
84        //   elaborated-type-specifier (7.1.5.3).
85        //
86        // We therefore do not perform any name lookup if the result would
87        // refer to a member of an unknown specialization.
88        if (!isClassName)
89          return ParsedType();
90
91        // We know from the grammar that this name refers to a type,
92        // so build a dependent node to describe the type.
93        if (WantNontrivialTypeSourceInfo)
94          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
95
96        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
97        QualType T =
98          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
99                            II, NameLoc);
100
101          return ParsedType::make(T);
102      }
103
104      return ParsedType();
105    }
106
107    if (!LookupCtx->isDependentContext() &&
108        RequireCompleteDeclContext(*SS, LookupCtx))
109      return ParsedType();
110  }
111
112  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
113  // lookup for class-names.
114  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
115                                      LookupOrdinaryName;
116  LookupResult Result(*this, &II, NameLoc, Kind);
117  if (LookupCtx) {
118    // Perform "qualified" name lookup into the declaration context we
119    // computed, which is either the type of the base of a member access
120    // expression or the declaration context associated with a prior
121    // nested-name-specifier.
122    LookupQualifiedName(Result, LookupCtx);
123
124    if (ObjectTypePtr && Result.empty()) {
125      // C++ [basic.lookup.classref]p3:
126      //   If the unqualified-id is ~type-name, the type-name is looked up
127      //   in the context of the entire postfix-expression. If the type T of
128      //   the object expression is of a class type C, the type-name is also
129      //   looked up in the scope of class C. At least one of the lookups shall
130      //   find a name that refers to (possibly cv-qualified) T.
131      LookupName(Result, S);
132    }
133  } else {
134    // Perform unqualified name lookup.
135    LookupName(Result, S);
136  }
137
138  NamedDecl *IIDecl = 0;
139  switch (Result.getResultKind()) {
140  case LookupResult::NotFound:
141  case LookupResult::NotFoundInCurrentInstantiation:
142  case LookupResult::FoundOverloaded:
143  case LookupResult::FoundUnresolvedValue:
144    Result.suppressDiagnostics();
145    return ParsedType();
146
147  case LookupResult::Ambiguous:
148    // Recover from type-hiding ambiguities by hiding the type.  We'll
149    // do the lookup again when looking for an object, and we can
150    // diagnose the error then.  If we don't do this, then the error
151    // about hiding the type will be immediately followed by an error
152    // that only makes sense if the identifier was treated like a type.
153    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
154      Result.suppressDiagnostics();
155      return ParsedType();
156    }
157
158    // Look to see if we have a type anywhere in the list of results.
159    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
160         Res != ResEnd; ++Res) {
161      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
162        if (!IIDecl ||
163            (*Res)->getLocation().getRawEncoding() <
164              IIDecl->getLocation().getRawEncoding())
165          IIDecl = *Res;
166      }
167    }
168
169    if (!IIDecl) {
170      // None of the entities we found is a type, so there is no way
171      // to even assume that the result is a type. In this case, don't
172      // complain about the ambiguity. The parser will either try to
173      // perform this lookup again (e.g., as an object name), which
174      // will produce the ambiguity, or will complain that it expected
175      // a type name.
176      Result.suppressDiagnostics();
177      return ParsedType();
178    }
179
180    // We found a type within the ambiguous lookup; diagnose the
181    // ambiguity and then return that type. This might be the right
182    // answer, or it might not be, but it suppresses any attempt to
183    // perform the name lookup again.
184    break;
185
186  case LookupResult::Found:
187    IIDecl = Result.getFoundDecl();
188    break;
189  }
190
191  assert(IIDecl && "Didn't find decl");
192
193  QualType T;
194  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
195    DiagnoseUseOfDecl(IIDecl, NameLoc);
196
197    if (T.isNull())
198      T = Context.getTypeDeclType(TD);
199
200    if (SS && SS->isNotEmpty()) {
201      if (WantNontrivialTypeSourceInfo) {
202        // Construct a type with type-source information.
203        TypeLocBuilder Builder;
204        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
205
206        T = getElaboratedType(ETK_None, *SS, T);
207        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
208        ElabTL.setKeywordLoc(SourceLocation());
209        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
210        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
211      } else {
212        T = getElaboratedType(ETK_None, *SS, T);
213      }
214    }
215  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
216    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
217    if (!HasTrailingDot)
218      T = Context.getObjCInterfaceType(IDecl);
219  }
220
221  if (T.isNull()) {
222    // If it's not plausibly a type, suppress diagnostics.
223    Result.suppressDiagnostics();
224    return ParsedType();
225  }
226  return ParsedType::make(T);
227}
228
229/// isTagName() - This method is called *for error recovery purposes only*
230/// to determine if the specified name is a valid tag name ("struct foo").  If
231/// so, this returns the TST for the tag corresponding to it (TST_enum,
232/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
233/// where the user forgot to specify the tag.
234DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
235  // Do a tag name lookup in this scope.
236  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
237  LookupName(R, S, false);
238  R.suppressDiagnostics();
239  if (R.getResultKind() == LookupResult::Found)
240    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
241      switch (TD->getTagKind()) {
242      default:         return DeclSpec::TST_unspecified;
243      case TTK_Struct: return DeclSpec::TST_struct;
244      case TTK_Union:  return DeclSpec::TST_union;
245      case TTK_Class:  return DeclSpec::TST_class;
246      case TTK_Enum:   return DeclSpec::TST_enum;
247      }
248    }
249
250  return DeclSpec::TST_unspecified;
251}
252
253/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
254/// if a CXXScopeSpec's type is equal to the type of one of the base classes
255/// then downgrade the missing typename error to a warning.
256/// This is needed for MSVC compatibility; Example:
257/// @code
258/// template<class T> class A {
259/// public:
260///   typedef int TYPE;
261/// };
262/// template<class T> class B : public A<T> {
263/// public:
264///   A<T>::TYPE a; // no typename required because A<T> is a base class.
265/// };
266/// @endcode
267bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS) {
268  if (CurContext->isRecord()) {
269    const Type *Ty = SS->getScopeRep()->getAsType();
270
271    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
272    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
273          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
274      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
275        return true;
276  }
277  return false;
278}
279
280bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
281                                   SourceLocation IILoc,
282                                   Scope *S,
283                                   CXXScopeSpec *SS,
284                                   ParsedType &SuggestedType) {
285  // We don't have anything to suggest (yet).
286  SuggestedType = ParsedType();
287
288  // There may have been a typo in the name of the type. Look up typo
289  // results, in case we have something that we can suggest.
290  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
291                      NotForRedeclaration);
292
293  if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
294    if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
295      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
296          !Result->isInvalidDecl()) {
297        // We found a similarly-named type or interface; suggest that.
298        if (!SS || !SS->isSet())
299          Diag(IILoc, diag::err_unknown_typename_suggest)
300            << &II << Lookup.getLookupName()
301            << FixItHint::CreateReplacement(SourceRange(IILoc),
302                                            Result->getNameAsString());
303        else if (DeclContext *DC = computeDeclContext(*SS, false))
304          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
305            << &II << DC << Lookup.getLookupName() << SS->getRange()
306            << FixItHint::CreateReplacement(SourceRange(IILoc),
307                                            Result->getNameAsString());
308        else
309          llvm_unreachable("could not have corrected a typo here");
310
311        Diag(Result->getLocation(), diag::note_previous_decl)
312          << Result->getDeclName();
313
314        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
315                                    false, false, ParsedType(),
316                                    /*NonTrivialTypeSourceInfo=*/true);
317        return true;
318      }
319    } else if (Lookup.empty()) {
320      // We corrected to a keyword.
321      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
322      Diag(IILoc, diag::err_unknown_typename_suggest)
323        << &II << Corrected;
324      return true;
325    }
326  }
327
328  if (getLangOptions().CPlusPlus) {
329    // See if II is a class template that the user forgot to pass arguments to.
330    UnqualifiedId Name;
331    Name.setIdentifier(&II, IILoc);
332    CXXScopeSpec EmptySS;
333    TemplateTy TemplateResult;
334    bool MemberOfUnknownSpecialization;
335    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
336                       Name, ParsedType(), true, TemplateResult,
337                       MemberOfUnknownSpecialization) == TNK_Type_template) {
338      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
339      Diag(IILoc, diag::err_template_missing_args) << TplName;
340      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
341        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
342          << TplDecl->getTemplateParameters()->getSourceRange();
343      }
344      return true;
345    }
346  }
347
348  // FIXME: Should we move the logic that tries to recover from a missing tag
349  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
350
351  if (!SS || (!SS->isSet() && !SS->isInvalid()))
352    Diag(IILoc, diag::err_unknown_typename) << &II;
353  else if (DeclContext *DC = computeDeclContext(*SS, false))
354    Diag(IILoc, diag::err_typename_nested_not_found)
355      << &II << DC << SS->getRange();
356  else if (isDependentScopeSpecifier(*SS)) {
357    unsigned DiagID = diag::err_typename_missing;
358    if (getLangOptions().Microsoft && isMicrosoftMissingTypename(SS))
359      DiagID = diag::warn_typename_missing;
360
361    Diag(SS->getRange().getBegin(), DiagID)
362      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
363      << SourceRange(SS->getRange().getBegin(), IILoc)
364      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
365    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
366  } else {
367    assert(SS && SS->isInvalid() &&
368           "Invalid scope specifier has already been diagnosed");
369  }
370
371  return true;
372}
373
374/// \brief Determine whether the given result set contains either a type name
375/// or
376static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
377  bool CheckTemplate = R.getSema().getLangOptions().CPlusPlus &&
378                       NextToken.is(tok::less);
379
380  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
381    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
382      return true;
383
384    if (CheckTemplate && isa<TemplateDecl>(*I))
385      return true;
386  }
387
388  return false;
389}
390
391Sema::NameClassification Sema::ClassifyName(Scope *S,
392                                            CXXScopeSpec &SS,
393                                            IdentifierInfo *&Name,
394                                            SourceLocation NameLoc,
395                                            const Token &NextToken) {
396  DeclarationNameInfo NameInfo(Name, NameLoc);
397  ObjCMethodDecl *CurMethod = getCurMethodDecl();
398
399  if (NextToken.is(tok::coloncolon)) {
400    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
401                                QualType(), false, SS, 0, false);
402
403  }
404
405  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
406  LookupParsedName(Result, S, &SS, !CurMethod);
407
408  // Perform lookup for Objective-C instance variables (including automatically
409  // synthesized instance variables), if we're in an Objective-C method.
410  // FIXME: This lookup really, really needs to be folded in to the normal
411  // unqualified lookup mechanism.
412  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
413    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
414    if (E.get() || E.isInvalid())
415      return E;
416
417    // Synthesize ivars lazily.
418    if (getLangOptions().ObjCDefaultSynthProperties &&
419        getLangOptions().ObjCNonFragileABI2) {
420      if (SynthesizeProvisionalIvar(Result, Name, NameLoc)) {
421        if (const ObjCPropertyDecl *Property =
422                                          canSynthesizeProvisionalIvar(Name)) {
423          Diag(NameLoc, diag::warn_synthesized_ivar_access) << Name;
424          Diag(Property->getLocation(), diag::note_property_declare);
425        }
426
427        // FIXME: This is strange. Shouldn't we just take the ivar returned
428        // from SynthesizeProvisionalIvar and continue with that?
429        E = LookupInObjCMethod(Result, S, Name, true);
430        if (E.get() || E.isInvalid())
431          return E;
432      }
433    }
434  }
435
436  bool SecondTry = false;
437  bool IsFilteredTemplateName = false;
438
439Corrected:
440  switch (Result.getResultKind()) {
441  case LookupResult::NotFound:
442    // If an unqualified-id is followed by a '(', then we have a function
443    // call.
444    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
445      // In C++, this is an ADL-only call.
446      // FIXME: Reference?
447      if (getLangOptions().CPlusPlus)
448        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
449
450      // C90 6.3.2.2:
451      //   If the expression that precedes the parenthesized argument list in a
452      //   function call consists solely of an identifier, and if no
453      //   declaration is visible for this identifier, the identifier is
454      //   implicitly declared exactly as if, in the innermost block containing
455      //   the function call, the declaration
456      //
457      //     extern int identifier ();
458      //
459      //   appeared.
460      //
461      // We also allow this in C99 as an extension.
462      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
463        Result.addDecl(D);
464        Result.resolveKind();
465        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
466      }
467    }
468
469    // In C, we first see whether there is a tag type by the same name, in
470    // which case it's likely that the user just forget to write "enum",
471    // "struct", or "union".
472    if (!getLangOptions().CPlusPlus && !SecondTry) {
473      Result.clear(LookupTagName);
474      LookupParsedName(Result, S, &SS);
475      if (TagDecl *Tag = Result.getAsSingle<TagDecl>()) {
476        const char *TagName = 0;
477        const char *FixItTagName = 0;
478        switch (Tag->getTagKind()) {
479          case TTK_Class:
480            TagName = "class";
481            FixItTagName = "class ";
482            break;
483
484          case TTK_Enum:
485            TagName = "enum";
486            FixItTagName = "enum ";
487            break;
488
489          case TTK_Struct:
490            TagName = "struct";
491            FixItTagName = "struct ";
492            break;
493
494          case TTK_Union:
495            TagName = "union";
496            FixItTagName = "union ";
497            break;
498        }
499
500        Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
501          << Name << TagName << getLangOptions().CPlusPlus
502          << FixItHint::CreateInsertion(NameLoc, FixItTagName);
503        break;
504      }
505
506      Result.clear(LookupOrdinaryName);
507    }
508
509    // Perform typo correction to determine if there is another name that is
510    // close to this name.
511    if (!SecondTry) {
512      if (DeclarationName Corrected = CorrectTypo(Result, S, &SS)) {
513        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
514        unsigned QualifiedDiag = diag::err_no_member_suggest;
515
516        NamedDecl *FirstDecl = Result.empty()? 0 : *Result.begin();
517        NamedDecl *UnderlyingFirstDecl
518          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
519        if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
520            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
521          UnqualifiedDiag = diag::err_no_template_suggest;
522          QualifiedDiag = diag::err_no_member_template_suggest;
523        } else if (UnderlyingFirstDecl &&
524                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
525                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
526                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
527           UnqualifiedDiag = diag::err_unknown_typename_suggest;
528           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
529         }
530
531        if (SS.isEmpty())
532          Diag(NameLoc, UnqualifiedDiag)
533            << Name << Corrected
534            << FixItHint::CreateReplacement(NameLoc, Corrected.getAsString());
535        else
536          Diag(NameLoc, QualifiedDiag)
537            << Name << computeDeclContext(SS, false) << Corrected
538            << SS.getRange()
539            << FixItHint::CreateReplacement(NameLoc, Corrected.getAsString());
540
541        // Update the name, so that the caller has the new name.
542        Name = Corrected.getAsIdentifierInfo();
543
544        // Typo correction corrected to a keyword.
545        if (Result.empty())
546          return Corrected.getAsIdentifierInfo();
547
548        Diag(FirstDecl->getLocation(), diag::note_previous_decl)
549          << FirstDecl->getDeclName();
550
551        // If we found an Objective-C instance variable, let
552        // LookupInObjCMethod build the appropriate expression to
553        // reference the ivar.
554        // FIXME: This is a gross hack.
555        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
556          Result.clear();
557          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
558          return move(E);
559        }
560
561        goto Corrected;
562      }
563    }
564
565    // We failed to correct; just fall through and let the parser deal with it.
566    Result.suppressDiagnostics();
567    return NameClassification::Unknown();
568
569  case LookupResult::NotFoundInCurrentInstantiation:
570    // We performed name lookup into the current instantiation, and there were
571    // dependent bases, so we treat this result the same way as any other
572    // dependent nested-name-specifier.
573
574    // C++ [temp.res]p2:
575    //   A name used in a template declaration or definition and that is
576    //   dependent on a template-parameter is assumed not to name a type
577    //   unless the applicable name lookup finds a type name or the name is
578    //   qualified by the keyword typename.
579    //
580    // FIXME: If the next token is '<', we might want to ask the parser to
581    // perform some heroics to see if we actually have a
582    // template-argument-list, which would indicate a missing 'template'
583    // keyword here.
584    return BuildDependentDeclRefExpr(SS, NameInfo, /*TemplateArgs=*/0);
585
586  case LookupResult::Found:
587  case LookupResult::FoundOverloaded:
588  case LookupResult::FoundUnresolvedValue:
589    break;
590
591  case LookupResult::Ambiguous:
592    if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
593        hasAnyAcceptableTemplateNames(Result)) {
594      // C++ [temp.local]p3:
595      //   A lookup that finds an injected-class-name (10.2) can result in an
596      //   ambiguity in certain cases (for example, if it is found in more than
597      //   one base class). If all of the injected-class-names that are found
598      //   refer to specializations of the same class template, and if the name
599      //   is followed by a template-argument-list, the reference refers to the
600      //   class template itself and not a specialization thereof, and is not
601      //   ambiguous.
602      //
603      // This filtering can make an ambiguous result into an unambiguous one,
604      // so try again after filtering out template names.
605      FilterAcceptableTemplateNames(Result);
606      if (!Result.isAmbiguous()) {
607        IsFilteredTemplateName = true;
608        break;
609      }
610    }
611
612    // Diagnose the ambiguity and return an error.
613    return NameClassification::Error();
614  }
615
616  if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
617      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
618    // C++ [temp.names]p3:
619    //   After name lookup (3.4) finds that a name is a template-name or that
620    //   an operator-function-id or a literal- operator-id refers to a set of
621    //   overloaded functions any member of which is a function template if
622    //   this is followed by a <, the < is always taken as the delimiter of a
623    //   template-argument-list and never as the less-than operator.
624    if (!IsFilteredTemplateName)
625      FilterAcceptableTemplateNames(Result);
626
627    if (!Result.empty()) {
628      bool IsFunctionTemplate;
629      TemplateName Template;
630      if (Result.end() - Result.begin() > 1) {
631        IsFunctionTemplate = true;
632        Template = Context.getOverloadedTemplateName(Result.begin(),
633                                                     Result.end());
634      } else {
635        TemplateDecl *TD
636          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
637        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
638
639        if (SS.isSet() && !SS.isInvalid())
640          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
641                                                    /*TemplateKeyword=*/false,
642                                                      TD);
643        else
644          Template = TemplateName(TD);
645      }
646
647      if (IsFunctionTemplate) {
648        // Function templates always go through overload resolution, at which
649        // point we'll perform the various checks (e.g., accessibility) we need
650        // to based on which function we selected.
651        Result.suppressDiagnostics();
652
653        return NameClassification::FunctionTemplate(Template);
654      }
655
656      return NameClassification::TypeTemplate(Template);
657    }
658  }
659
660  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
661  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
662    DiagnoseUseOfDecl(Type, NameLoc);
663    QualType T = Context.getTypeDeclType(Type);
664    return ParsedType::make(T);
665  }
666
667  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
668  if (!Class) {
669    // FIXME: It's unfortunate that we don't have a Type node for handling this.
670    if (ObjCCompatibleAliasDecl *Alias
671                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
672      Class = Alias->getClassInterface();
673  }
674
675  if (Class) {
676    DiagnoseUseOfDecl(Class, NameLoc);
677
678    if (NextToken.is(tok::period)) {
679      // Interface. <something> is parsed as a property reference expression.
680      // Just return "unknown" as a fall-through for now.
681      Result.suppressDiagnostics();
682      return NameClassification::Unknown();
683    }
684
685    QualType T = Context.getObjCInterfaceType(Class);
686    return ParsedType::make(T);
687  }
688
689  if (!Result.empty() && (*Result.begin())->isCXXClassMember())
690    return BuildPossibleImplicitMemberExpr(SS, Result, 0);
691
692  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
693  return BuildDeclarationNameExpr(SS, Result, ADL);
694}
695
696// Determines the context to return to after temporarily entering a
697// context.  This depends in an unnecessarily complicated way on the
698// exact ordering of callbacks from the parser.
699DeclContext *Sema::getContainingDC(DeclContext *DC) {
700
701  // Functions defined inline within classes aren't parsed until we've
702  // finished parsing the top-level class, so the top-level class is
703  // the context we'll need to return to.
704  if (isa<FunctionDecl>(DC)) {
705    DC = DC->getLexicalParent();
706
707    // A function not defined within a class will always return to its
708    // lexical context.
709    if (!isa<CXXRecordDecl>(DC))
710      return DC;
711
712    // A C++ inline method/friend is parsed *after* the topmost class
713    // it was declared in is fully parsed ("complete");  the topmost
714    // class is the context we need to return to.
715    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
716      DC = RD;
717
718    // Return the declaration context of the topmost class the inline method is
719    // declared in.
720    return DC;
721  }
722
723  // ObjCMethodDecls are parsed (for some reason) outside the context
724  // of the class.
725  if (isa<ObjCMethodDecl>(DC))
726    return DC->getLexicalParent()->getLexicalParent();
727
728  return DC->getLexicalParent();
729}
730
731void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
732  assert(getContainingDC(DC) == CurContext &&
733      "The next DeclContext should be lexically contained in the current one.");
734  CurContext = DC;
735  S->setEntity(DC);
736}
737
738void Sema::PopDeclContext() {
739  assert(CurContext && "DeclContext imbalance!");
740
741  CurContext = getContainingDC(CurContext);
742  assert(CurContext && "Popped translation unit!");
743}
744
745/// EnterDeclaratorContext - Used when we must lookup names in the context
746/// of a declarator's nested name specifier.
747///
748void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
749  // C++0x [basic.lookup.unqual]p13:
750  //   A name used in the definition of a static data member of class
751  //   X (after the qualified-id of the static member) is looked up as
752  //   if the name was used in a member function of X.
753  // C++0x [basic.lookup.unqual]p14:
754  //   If a variable member of a namespace is defined outside of the
755  //   scope of its namespace then any name used in the definition of
756  //   the variable member (after the declarator-id) is looked up as
757  //   if the definition of the variable member occurred in its
758  //   namespace.
759  // Both of these imply that we should push a scope whose context
760  // is the semantic context of the declaration.  We can't use
761  // PushDeclContext here because that context is not necessarily
762  // lexically contained in the current context.  Fortunately,
763  // the containing scope should have the appropriate information.
764
765  assert(!S->getEntity() && "scope already has entity");
766
767#ifndef NDEBUG
768  Scope *Ancestor = S->getParent();
769  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
770  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
771#endif
772
773  CurContext = DC;
774  S->setEntity(DC);
775}
776
777void Sema::ExitDeclaratorContext(Scope *S) {
778  assert(S->getEntity() == CurContext && "Context imbalance!");
779
780  // Switch back to the lexical context.  The safety of this is
781  // enforced by an assert in EnterDeclaratorContext.
782  Scope *Ancestor = S->getParent();
783  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
784  CurContext = (DeclContext*) Ancestor->getEntity();
785
786  // We don't need to do anything with the scope, which is going to
787  // disappear.
788}
789
790/// \brief Determine whether we allow overloading of the function
791/// PrevDecl with another declaration.
792///
793/// This routine determines whether overloading is possible, not
794/// whether some new function is actually an overload. It will return
795/// true in C++ (where we can always provide overloads) or, as an
796/// extension, in C when the previous function is already an
797/// overloaded function declaration or has the "overloadable"
798/// attribute.
799static bool AllowOverloadingOfFunction(LookupResult &Previous,
800                                       ASTContext &Context) {
801  if (Context.getLangOptions().CPlusPlus)
802    return true;
803
804  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
805    return true;
806
807  return (Previous.getResultKind() == LookupResult::Found
808          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
809}
810
811/// Add this decl to the scope shadowed decl chains.
812void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
813  // Move up the scope chain until we find the nearest enclosing
814  // non-transparent context. The declaration will be introduced into this
815  // scope.
816  while (S->getEntity() &&
817         ((DeclContext *)S->getEntity())->isTransparentContext())
818    S = S->getParent();
819
820  // Add scoped declarations into their context, so that they can be
821  // found later. Declarations without a context won't be inserted
822  // into any context.
823  if (AddToContext)
824    CurContext->addDecl(D);
825
826  // Out-of-line definitions shouldn't be pushed into scope in C++.
827  // Out-of-line variable and function definitions shouldn't even in C.
828  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
829      D->isOutOfLine())
830    return;
831
832  // Template instantiations should also not be pushed into scope.
833  if (isa<FunctionDecl>(D) &&
834      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
835    return;
836
837  // If this replaces anything in the current scope,
838  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
839                               IEnd = IdResolver.end();
840  for (; I != IEnd; ++I) {
841    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
842      S->RemoveDecl(*I);
843      IdResolver.RemoveDecl(*I);
844
845      // Should only need to replace one decl.
846      break;
847    }
848  }
849
850  S->AddDecl(D);
851
852  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
853    // Implicitly-generated labels may end up getting generated in an order that
854    // isn't strictly lexical, which breaks name lookup. Be careful to insert
855    // the label at the appropriate place in the identifier chain.
856    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
857      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
858      if (IDC == CurContext) {
859        if (!S->isDeclScope(*I))
860          continue;
861      } else if (IDC->Encloses(CurContext))
862        break;
863    }
864
865    IdResolver.InsertDeclAfter(I, D);
866  } else {
867    IdResolver.AddDecl(D);
868  }
869}
870
871bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
872                         bool ExplicitInstantiationOrSpecialization) {
873  return IdResolver.isDeclInScope(D, Ctx, Context, S,
874                                  ExplicitInstantiationOrSpecialization);
875}
876
877Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
878  DeclContext *TargetDC = DC->getPrimaryContext();
879  do {
880    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
881      if (ScopeDC->getPrimaryContext() == TargetDC)
882        return S;
883  } while ((S = S->getParent()));
884
885  return 0;
886}
887
888static bool isOutOfScopePreviousDeclaration(NamedDecl *,
889                                            DeclContext*,
890                                            ASTContext&);
891
892/// Filters out lookup results that don't fall within the given scope
893/// as determined by isDeclInScope.
894void Sema::FilterLookupForScope(LookupResult &R,
895                                DeclContext *Ctx, Scope *S,
896                                bool ConsiderLinkage,
897                                bool ExplicitInstantiationOrSpecialization) {
898  LookupResult::Filter F = R.makeFilter();
899  while (F.hasNext()) {
900    NamedDecl *D = F.next();
901
902    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
903      continue;
904
905    if (ConsiderLinkage &&
906        isOutOfScopePreviousDeclaration(D, Ctx, Context))
907      continue;
908
909    F.erase();
910  }
911
912  F.done();
913}
914
915static bool isUsingDecl(NamedDecl *D) {
916  return isa<UsingShadowDecl>(D) ||
917         isa<UnresolvedUsingTypenameDecl>(D) ||
918         isa<UnresolvedUsingValueDecl>(D);
919}
920
921/// Removes using shadow declarations from the lookup results.
922static void RemoveUsingDecls(LookupResult &R) {
923  LookupResult::Filter F = R.makeFilter();
924  while (F.hasNext())
925    if (isUsingDecl(F.next()))
926      F.erase();
927
928  F.done();
929}
930
931/// \brief Check for this common pattern:
932/// @code
933/// class S {
934///   S(const S&); // DO NOT IMPLEMENT
935///   void operator=(const S&); // DO NOT IMPLEMENT
936/// };
937/// @endcode
938static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
939  // FIXME: Should check for private access too but access is set after we get
940  // the decl here.
941  if (D->doesThisDeclarationHaveABody())
942    return false;
943
944  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
945    return CD->isCopyConstructor();
946  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
947    return Method->isCopyAssignmentOperator();
948  return false;
949}
950
951bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
952  assert(D);
953
954  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
955    return false;
956
957  // Ignore class templates.
958  if (D->getDeclContext()->isDependentContext() ||
959      D->getLexicalDeclContext()->isDependentContext())
960    return false;
961
962  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
963    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
964      return false;
965
966    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
967      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
968        return false;
969    } else {
970      // 'static inline' functions are used in headers; don't warn.
971      if (FD->getStorageClass() == SC_Static &&
972          FD->isInlineSpecified())
973        return false;
974    }
975
976    if (FD->doesThisDeclarationHaveABody() &&
977        Context.DeclMustBeEmitted(FD))
978      return false;
979  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
980    if (!VD->isFileVarDecl() ||
981        VD->getType().isConstant(Context) ||
982        Context.DeclMustBeEmitted(VD))
983      return false;
984
985    if (VD->isStaticDataMember() &&
986        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
987      return false;
988
989  } else {
990    return false;
991  }
992
993  // Only warn for unused decls internal to the translation unit.
994  if (D->getLinkage() == ExternalLinkage)
995    return false;
996
997  return true;
998}
999
1000void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1001  if (!D)
1002    return;
1003
1004  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1005    const FunctionDecl *First = FD->getFirstDeclaration();
1006    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1007      return; // First should already be in the vector.
1008  }
1009
1010  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1011    const VarDecl *First = VD->getFirstDeclaration();
1012    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1013      return; // First should already be in the vector.
1014  }
1015
1016   if (ShouldWarnIfUnusedFileScopedDecl(D))
1017     UnusedFileScopedDecls.push_back(D);
1018 }
1019
1020static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1021  if (D->isInvalidDecl())
1022    return false;
1023
1024  if (D->isUsed() || D->hasAttr<UnusedAttr>())
1025    return false;
1026
1027  if (isa<LabelDecl>(D))
1028    return true;
1029
1030  // White-list anything that isn't a local variable.
1031  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1032      !D->getDeclContext()->isFunctionOrMethod())
1033    return false;
1034
1035  // Types of valid local variables should be complete, so this should succeed.
1036  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1037
1038    // White-list anything with an __attribute__((unused)) type.
1039    QualType Ty = VD->getType();
1040
1041    // Only look at the outermost level of typedef.
1042    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
1043      if (TT->getDecl()->hasAttr<UnusedAttr>())
1044        return false;
1045    }
1046
1047    // If we failed to complete the type for some reason, or if the type is
1048    // dependent, don't diagnose the variable.
1049    if (Ty->isIncompleteType() || Ty->isDependentType())
1050      return false;
1051
1052    if (const TagType *TT = Ty->getAs<TagType>()) {
1053      const TagDecl *Tag = TT->getDecl();
1054      if (Tag->hasAttr<UnusedAttr>())
1055        return false;
1056
1057      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1058        // FIXME: Checking for the presence of a user-declared constructor
1059        // isn't completely accurate; we'd prefer to check that the initializer
1060        // has no side effects.
1061        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
1062          return false;
1063      }
1064    }
1065
1066    // TODO: __attribute__((unused)) templates?
1067  }
1068
1069  return true;
1070}
1071
1072/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1073/// unless they are marked attr(unused).
1074void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1075  if (!ShouldDiagnoseUnusedDecl(D))
1076    return;
1077
1078  unsigned DiagID;
1079  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1080    DiagID = diag::warn_unused_exception_param;
1081  else if (isa<LabelDecl>(D))
1082    DiagID = diag::warn_unused_label;
1083  else
1084    DiagID = diag::warn_unused_variable;
1085
1086  Diag(D->getLocation(), DiagID) << D->getDeclName();
1087}
1088
1089static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1090  // Verify that we have no forward references left.  If so, there was a goto
1091  // or address of a label taken, but no definition of it.  Label fwd
1092  // definitions are indicated with a null substmt.
1093  if (L->getStmt() == 0)
1094    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1095}
1096
1097void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1098  if (S->decl_empty()) return;
1099  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1100         "Scope shouldn't contain decls!");
1101
1102  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1103       I != E; ++I) {
1104    Decl *TmpD = (*I);
1105    assert(TmpD && "This decl didn't get pushed??");
1106
1107    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1108    NamedDecl *D = cast<NamedDecl>(TmpD);
1109
1110    if (!D->getDeclName()) continue;
1111
1112    // Diagnose unused variables in this scope.
1113    if (!S->hasErrorOccurred())
1114      DiagnoseUnusedDecl(D);
1115
1116    // If this was a forward reference to a label, verify it was defined.
1117    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1118      CheckPoppedLabel(LD, *this);
1119
1120    // Remove this name from our lexical scope.
1121    IdResolver.RemoveDecl(D);
1122  }
1123}
1124
1125/// \brief Look for an Objective-C class in the translation unit.
1126///
1127/// \param Id The name of the Objective-C class we're looking for. If
1128/// typo-correction fixes this name, the Id will be updated
1129/// to the fixed name.
1130///
1131/// \param IdLoc The location of the name in the translation unit.
1132///
1133/// \param TypoCorrection If true, this routine will attempt typo correction
1134/// if there is no class with the given name.
1135///
1136/// \returns The declaration of the named Objective-C class, or NULL if the
1137/// class could not be found.
1138ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1139                                              SourceLocation IdLoc,
1140                                              bool TypoCorrection) {
1141  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1142  // creation from this context.
1143  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1144
1145  if (!IDecl && TypoCorrection) {
1146    // Perform typo correction at the given location, but only if we
1147    // find an Objective-C class name.
1148    LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
1149    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
1150        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
1151      Diag(IdLoc, diag::err_undef_interface_suggest)
1152        << Id << IDecl->getDeclName()
1153        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1154      Diag(IDecl->getLocation(), diag::note_previous_decl)
1155        << IDecl->getDeclName();
1156
1157      Id = IDecl->getIdentifier();
1158    }
1159  }
1160
1161  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1162}
1163
1164/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1165/// from S, where a non-field would be declared. This routine copes
1166/// with the difference between C and C++ scoping rules in structs and
1167/// unions. For example, the following code is well-formed in C but
1168/// ill-formed in C++:
1169/// @code
1170/// struct S6 {
1171///   enum { BAR } e;
1172/// };
1173///
1174/// void test_S6() {
1175///   struct S6 a;
1176///   a.e = BAR;
1177/// }
1178/// @endcode
1179/// For the declaration of BAR, this routine will return a different
1180/// scope. The scope S will be the scope of the unnamed enumeration
1181/// within S6. In C++, this routine will return the scope associated
1182/// with S6, because the enumeration's scope is a transparent
1183/// context but structures can contain non-field names. In C, this
1184/// routine will return the translation unit scope, since the
1185/// enumeration's scope is a transparent context and structures cannot
1186/// contain non-field names.
1187Scope *Sema::getNonFieldDeclScope(Scope *S) {
1188  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1189         (S->getEntity() &&
1190          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1191         (S->isClassScope() && !getLangOptions().CPlusPlus))
1192    S = S->getParent();
1193  return S;
1194}
1195
1196/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1197/// file scope.  lazily create a decl for it. ForRedeclaration is true
1198/// if we're creating this built-in in anticipation of redeclaring the
1199/// built-in.
1200NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1201                                     Scope *S, bool ForRedeclaration,
1202                                     SourceLocation Loc) {
1203  Builtin::ID BID = (Builtin::ID)bid;
1204
1205  ASTContext::GetBuiltinTypeError Error;
1206  QualType R = Context.GetBuiltinType(BID, Error);
1207  switch (Error) {
1208  case ASTContext::GE_None:
1209    // Okay
1210    break;
1211
1212  case ASTContext::GE_Missing_stdio:
1213    if (ForRedeclaration)
1214      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1215        << Context.BuiltinInfo.GetName(BID);
1216    return 0;
1217
1218  case ASTContext::GE_Missing_setjmp:
1219    if (ForRedeclaration)
1220      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1221        << Context.BuiltinInfo.GetName(BID);
1222    return 0;
1223  }
1224
1225  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1226    Diag(Loc, diag::ext_implicit_lib_function_decl)
1227      << Context.BuiltinInfo.GetName(BID)
1228      << R;
1229    if (Context.BuiltinInfo.getHeaderName(BID) &&
1230        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1231          != Diagnostic::Ignored)
1232      Diag(Loc, diag::note_please_include_header)
1233        << Context.BuiltinInfo.getHeaderName(BID)
1234        << Context.BuiltinInfo.GetName(BID);
1235  }
1236
1237  FunctionDecl *New = FunctionDecl::Create(Context,
1238                                           Context.getTranslationUnitDecl(),
1239                                           Loc, Loc, II, R, /*TInfo=*/0,
1240                                           SC_Extern,
1241                                           SC_None, false,
1242                                           /*hasPrototype=*/true);
1243  New->setImplicit();
1244
1245  // Create Decl objects for each parameter, adding them to the
1246  // FunctionDecl.
1247  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1248    llvm::SmallVector<ParmVarDecl*, 16> Params;
1249    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1250      ParmVarDecl *parm =
1251        ParmVarDecl::Create(Context, New, SourceLocation(),
1252                            SourceLocation(), 0,
1253                            FT->getArgType(i), /*TInfo=*/0,
1254                            SC_None, SC_None, 0);
1255      parm->setScopeInfo(0, i);
1256      Params.push_back(parm);
1257    }
1258    New->setParams(Params.data(), Params.size());
1259  }
1260
1261  AddKnownFunctionAttributes(New);
1262
1263  // TUScope is the translation-unit scope to insert this function into.
1264  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1265  // relate Scopes to DeclContexts, and probably eliminate CurContext
1266  // entirely, but we're not there yet.
1267  DeclContext *SavedContext = CurContext;
1268  CurContext = Context.getTranslationUnitDecl();
1269  PushOnScopeChains(New, TUScope);
1270  CurContext = SavedContext;
1271  return New;
1272}
1273
1274/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1275/// same name and scope as a previous declaration 'Old'.  Figure out
1276/// how to resolve this situation, merging decls or emitting
1277/// diagnostics as appropriate. If there was an error, set New to be invalid.
1278///
1279void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1280  // If the new decl is known invalid already, don't bother doing any
1281  // merging checks.
1282  if (New->isInvalidDecl()) return;
1283
1284  // Allow multiple definitions for ObjC built-in typedefs.
1285  // FIXME: Verify the underlying types are equivalent!
1286  if (getLangOptions().ObjC1) {
1287    const IdentifierInfo *TypeID = New->getIdentifier();
1288    switch (TypeID->getLength()) {
1289    default: break;
1290    case 2:
1291      if (!TypeID->isStr("id"))
1292        break;
1293      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
1294      // Install the built-in type for 'id', ignoring the current definition.
1295      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1296      return;
1297    case 5:
1298      if (!TypeID->isStr("Class"))
1299        break;
1300      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
1301      // Install the built-in type for 'Class', ignoring the current definition.
1302      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1303      return;
1304    case 3:
1305      if (!TypeID->isStr("SEL"))
1306        break;
1307      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
1308      // Install the built-in type for 'SEL', ignoring the current definition.
1309      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1310      return;
1311    case 8:
1312      if (!TypeID->isStr("Protocol"))
1313        break;
1314      Context.setObjCProtoType(New->getUnderlyingType());
1315      return;
1316    }
1317    // Fall through - the typedef name was not a builtin type.
1318  }
1319
1320  // Verify the old decl was also a type.
1321  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1322  if (!Old) {
1323    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1324      << New->getDeclName();
1325
1326    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1327    if (OldD->getLocation().isValid())
1328      Diag(OldD->getLocation(), diag::note_previous_definition);
1329
1330    return New->setInvalidDecl();
1331  }
1332
1333  // If the old declaration is invalid, just give up here.
1334  if (Old->isInvalidDecl())
1335    return New->setInvalidDecl();
1336
1337  // Determine the "old" type we'll use for checking and diagnostics.
1338  QualType OldType;
1339  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1340    OldType = OldTypedef->getUnderlyingType();
1341  else
1342    OldType = Context.getTypeDeclType(Old);
1343
1344  // If the typedef types are not identical, reject them in all languages and
1345  // with any extensions enabled.
1346
1347  if (OldType != New->getUnderlyingType() &&
1348      Context.getCanonicalType(OldType) !=
1349      Context.getCanonicalType(New->getUnderlyingType())) {
1350    int Kind = 0;
1351    if (isa<TypeAliasDecl>(Old))
1352      Kind = 1;
1353    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1354      << Kind << New->getUnderlyingType() << OldType;
1355    if (Old->getLocation().isValid())
1356      Diag(Old->getLocation(), diag::note_previous_definition);
1357    return New->setInvalidDecl();
1358  }
1359
1360  // The types match.  Link up the redeclaration chain if the old
1361  // declaration was a typedef.
1362  // FIXME: this is a potential source of wierdness if the type
1363  // spellings don't match exactly.
1364  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1365    New->setPreviousDeclaration(Typedef);
1366
1367  if (getLangOptions().Microsoft)
1368    return;
1369
1370  if (getLangOptions().CPlusPlus) {
1371    // C++ [dcl.typedef]p2:
1372    //   In a given non-class scope, a typedef specifier can be used to
1373    //   redefine the name of any type declared in that scope to refer
1374    //   to the type to which it already refers.
1375    if (!isa<CXXRecordDecl>(CurContext))
1376      return;
1377
1378    // C++0x [dcl.typedef]p4:
1379    //   In a given class scope, a typedef specifier can be used to redefine
1380    //   any class-name declared in that scope that is not also a typedef-name
1381    //   to refer to the type to which it already refers.
1382    //
1383    // This wording came in via DR424, which was a correction to the
1384    // wording in DR56, which accidentally banned code like:
1385    //
1386    //   struct S {
1387    //     typedef struct A { } A;
1388    //   };
1389    //
1390    // in the C++03 standard. We implement the C++0x semantics, which
1391    // allow the above but disallow
1392    //
1393    //   struct S {
1394    //     typedef int I;
1395    //     typedef int I;
1396    //   };
1397    //
1398    // since that was the intent of DR56.
1399    if (!isa<TypedefNameDecl>(Old))
1400      return;
1401
1402    Diag(New->getLocation(), diag::err_redefinition)
1403      << New->getDeclName();
1404    Diag(Old->getLocation(), diag::note_previous_definition);
1405    return New->setInvalidDecl();
1406  }
1407
1408  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1409  // is normally mapped to an error, but can be controlled with
1410  // -Wtypedef-redefinition.  If either the original or the redefinition is
1411  // in a system header, don't emit this for compatibility with GCC.
1412  if (getDiagnostics().getSuppressSystemWarnings() &&
1413      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1414       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1415    return;
1416
1417  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1418    << New->getDeclName();
1419  Diag(Old->getLocation(), diag::note_previous_definition);
1420  return;
1421}
1422
1423/// DeclhasAttr - returns true if decl Declaration already has the target
1424/// attribute.
1425static bool
1426DeclHasAttr(const Decl *D, const Attr *A) {
1427  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1428  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1429    if ((*i)->getKind() == A->getKind()) {
1430      // FIXME: Don't hardcode this check
1431      if (OA && isa<OwnershipAttr>(*i))
1432        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1433      return true;
1434    }
1435
1436  return false;
1437}
1438
1439/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1440static void mergeDeclAttributes(Decl *newDecl, const Decl *oldDecl,
1441                                ASTContext &C) {
1442  if (!oldDecl->hasAttrs())
1443    return;
1444
1445  bool foundAny = newDecl->hasAttrs();
1446
1447  // Ensure that any moving of objects within the allocated map is done before
1448  // we process them.
1449  if (!foundAny) newDecl->setAttrs(AttrVec());
1450
1451  for (specific_attr_iterator<InheritableAttr>
1452       i = oldDecl->specific_attr_begin<InheritableAttr>(),
1453       e = oldDecl->specific_attr_end<InheritableAttr>(); i != e; ++i) {
1454    if (!DeclHasAttr(newDecl, *i)) {
1455      InheritableAttr *newAttr = cast<InheritableAttr>((*i)->clone(C));
1456      newAttr->setInherited(true);
1457      newDecl->addAttr(newAttr);
1458      foundAny = true;
1459    }
1460  }
1461
1462  if (!foundAny) newDecl->dropAttrs();
1463}
1464
1465/// mergeParamDeclAttributes - Copy attributes from the old parameter
1466/// to the new one.
1467static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1468                                     const ParmVarDecl *oldDecl,
1469                                     ASTContext &C) {
1470  if (!oldDecl->hasAttrs())
1471    return;
1472
1473  bool foundAny = newDecl->hasAttrs();
1474
1475  // Ensure that any moving of objects within the allocated map is
1476  // done before we process them.
1477  if (!foundAny) newDecl->setAttrs(AttrVec());
1478
1479  for (specific_attr_iterator<InheritableParamAttr>
1480       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1481       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1482    if (!DeclHasAttr(newDecl, *i)) {
1483      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1484      newAttr->setInherited(true);
1485      newDecl->addAttr(newAttr);
1486      foundAny = true;
1487    }
1488  }
1489
1490  if (!foundAny) newDecl->dropAttrs();
1491}
1492
1493namespace {
1494
1495/// Used in MergeFunctionDecl to keep track of function parameters in
1496/// C.
1497struct GNUCompatibleParamWarning {
1498  ParmVarDecl *OldParm;
1499  ParmVarDecl *NewParm;
1500  QualType PromotedType;
1501};
1502
1503}
1504
1505/// getSpecialMember - get the special member enum for a method.
1506Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1507  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1508    if (Ctor->isCopyConstructor())
1509      return Sema::CXXCopyConstructor;
1510
1511    if (Ctor->isDefaultConstructor())
1512      return Sema::CXXDefaultConstructor;
1513  }
1514
1515  if (isa<CXXDestructorDecl>(MD))
1516    return Sema::CXXDestructor;
1517
1518  if (MD->isCopyAssignmentOperator())
1519    return Sema::CXXCopyAssignment;
1520
1521  return Sema::CXXInvalid;
1522}
1523
1524/// canRedefineFunction - checks if a function can be redefined. Currently,
1525/// only extern inline functions can be redefined, and even then only in
1526/// GNU89 mode.
1527static bool canRedefineFunction(const FunctionDecl *FD,
1528                                const LangOptions& LangOpts) {
1529  return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
1530          FD->isInlineSpecified() &&
1531          FD->getStorageClass() == SC_Extern);
1532}
1533
1534/// MergeFunctionDecl - We just parsed a function 'New' from
1535/// declarator D which has the same name and scope as a previous
1536/// declaration 'Old'.  Figure out how to resolve this situation,
1537/// merging decls or emitting diagnostics as appropriate.
1538///
1539/// In C++, New and Old must be declarations that are not
1540/// overloaded. Use IsOverload to determine whether New and Old are
1541/// overloaded, and to select the Old declaration that New should be
1542/// merged with.
1543///
1544/// Returns true if there was an error, false otherwise.
1545bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1546  // Verify the old decl was also a function.
1547  FunctionDecl *Old = 0;
1548  if (FunctionTemplateDecl *OldFunctionTemplate
1549        = dyn_cast<FunctionTemplateDecl>(OldD))
1550    Old = OldFunctionTemplate->getTemplatedDecl();
1551  else
1552    Old = dyn_cast<FunctionDecl>(OldD);
1553  if (!Old) {
1554    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1555      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1556      Diag(Shadow->getTargetDecl()->getLocation(),
1557           diag::note_using_decl_target);
1558      Diag(Shadow->getUsingDecl()->getLocation(),
1559           diag::note_using_decl) << 0;
1560      return true;
1561    }
1562
1563    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1564      << New->getDeclName();
1565    Diag(OldD->getLocation(), diag::note_previous_definition);
1566    return true;
1567  }
1568
1569  // Determine whether the previous declaration was a definition,
1570  // implicit declaration, or a declaration.
1571  diag::kind PrevDiag;
1572  if (Old->isThisDeclarationADefinition())
1573    PrevDiag = diag::note_previous_definition;
1574  else if (Old->isImplicit())
1575    PrevDiag = diag::note_previous_implicit_declaration;
1576  else
1577    PrevDiag = diag::note_previous_declaration;
1578
1579  QualType OldQType = Context.getCanonicalType(Old->getType());
1580  QualType NewQType = Context.getCanonicalType(New->getType());
1581
1582  // Don't complain about this if we're in GNU89 mode and the old function
1583  // is an extern inline function.
1584  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1585      New->getStorageClass() == SC_Static &&
1586      Old->getStorageClass() != SC_Static &&
1587      !canRedefineFunction(Old, getLangOptions())) {
1588    if (getLangOptions().Microsoft) {
1589      Diag(New->getLocation(), diag::warn_static_non_static) << New;
1590      Diag(Old->getLocation(), PrevDiag);
1591    } else {
1592      Diag(New->getLocation(), diag::err_static_non_static) << New;
1593      Diag(Old->getLocation(), PrevDiag);
1594      return true;
1595    }
1596  }
1597
1598  // If a function is first declared with a calling convention, but is
1599  // later declared or defined without one, the second decl assumes the
1600  // calling convention of the first.
1601  //
1602  // For the new decl, we have to look at the NON-canonical type to tell the
1603  // difference between a function that really doesn't have a calling
1604  // convention and one that is declared cdecl. That's because in
1605  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1606  // because it is the default calling convention.
1607  //
1608  // Note also that we DO NOT return at this point, because we still have
1609  // other tests to run.
1610  const FunctionType *OldType = cast<FunctionType>(OldQType);
1611  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1612  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1613  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1614  bool RequiresAdjustment = false;
1615  if (OldTypeInfo.getCC() != CC_Default &&
1616      NewTypeInfo.getCC() == CC_Default) {
1617    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1618    RequiresAdjustment = true;
1619  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1620                                     NewTypeInfo.getCC())) {
1621    // Calling conventions really aren't compatible, so complain.
1622    Diag(New->getLocation(), diag::err_cconv_change)
1623      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1624      << (OldTypeInfo.getCC() == CC_Default)
1625      << (OldTypeInfo.getCC() == CC_Default ? "" :
1626          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1627    Diag(Old->getLocation(), diag::note_previous_declaration);
1628    return true;
1629  }
1630
1631  // FIXME: diagnose the other way around?
1632  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1633    NewTypeInfo = NewTypeInfo.withNoReturn(true);
1634    RequiresAdjustment = true;
1635  }
1636
1637  // Merge regparm attribute.
1638  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
1639      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1640    if (NewTypeInfo.getHasRegParm()) {
1641      Diag(New->getLocation(), diag::err_regparm_mismatch)
1642        << NewType->getRegParmType()
1643        << OldType->getRegParmType();
1644      Diag(Old->getLocation(), diag::note_previous_declaration);
1645      return true;
1646    }
1647
1648    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1649    RequiresAdjustment = true;
1650  }
1651
1652  if (RequiresAdjustment) {
1653    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1654    New->setType(QualType(NewType, 0));
1655    NewQType = Context.getCanonicalType(New->getType());
1656  }
1657
1658  if (getLangOptions().CPlusPlus) {
1659    // (C++98 13.1p2):
1660    //   Certain function declarations cannot be overloaded:
1661    //     -- Function declarations that differ only in the return type
1662    //        cannot be overloaded.
1663    QualType OldReturnType = OldType->getResultType();
1664    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1665    QualType ResQT;
1666    if (OldReturnType != NewReturnType) {
1667      if (NewReturnType->isObjCObjectPointerType()
1668          && OldReturnType->isObjCObjectPointerType())
1669        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1670      if (ResQT.isNull()) {
1671        if (New->isCXXClassMember() && New->isOutOfLine())
1672          Diag(New->getLocation(),
1673               diag::err_member_def_does_not_match_ret_type) << New;
1674        else
1675          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1676        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1677        return true;
1678      }
1679      else
1680        NewQType = ResQT;
1681    }
1682
1683    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1684    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1685    if (OldMethod && NewMethod) {
1686      // Preserve triviality.
1687      NewMethod->setTrivial(OldMethod->isTrivial());
1688
1689      // MSVC allows explicit template specialization at class scope.
1690      bool IsMSExplicitSpecialization = getLangOptions().Microsoft &&
1691                                 NewMethod->isFunctionTemplateSpecialization();
1692      bool isFriend = NewMethod->getFriendObjectKind();
1693
1694      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
1695          !IsMSExplicitSpecialization) {
1696        //    -- Member function declarations with the same name and the
1697        //       same parameter types cannot be overloaded if any of them
1698        //       is a static member function declaration.
1699        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1700          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1701          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1702          return true;
1703        }
1704
1705        // C++ [class.mem]p1:
1706        //   [...] A member shall not be declared twice in the
1707        //   member-specification, except that a nested class or member
1708        //   class template can be declared and then later defined.
1709        unsigned NewDiag;
1710        if (isa<CXXConstructorDecl>(OldMethod))
1711          NewDiag = diag::err_constructor_redeclared;
1712        else if (isa<CXXDestructorDecl>(NewMethod))
1713          NewDiag = diag::err_destructor_redeclared;
1714        else if (isa<CXXConversionDecl>(NewMethod))
1715          NewDiag = diag::err_conv_function_redeclared;
1716        else
1717          NewDiag = diag::err_member_redeclared;
1718
1719        Diag(New->getLocation(), NewDiag);
1720        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1721
1722      // Complain if this is an explicit declaration of a special
1723      // member that was initially declared implicitly.
1724      //
1725      // As an exception, it's okay to befriend such methods in order
1726      // to permit the implicit constructor/destructor/operator calls.
1727      } else if (OldMethod->isImplicit()) {
1728        if (isFriend) {
1729          NewMethod->setImplicit();
1730        } else {
1731          Diag(NewMethod->getLocation(),
1732               diag::err_definition_of_implicitly_declared_member)
1733            << New << getSpecialMember(OldMethod);
1734          return true;
1735        }
1736      } else if (OldMethod->isExplicitlyDefaulted()) {
1737        Diag(NewMethod->getLocation(),
1738             diag::err_definition_of_explicitly_defaulted_member)
1739          << getSpecialMember(OldMethod);
1740        return true;
1741      }
1742    }
1743
1744    // (C++98 8.3.5p3):
1745    //   All declarations for a function shall agree exactly in both the
1746    //   return type and the parameter-type-list.
1747    // We also want to respect all the extended bits except noreturn.
1748
1749    // noreturn should now match unless the old type info didn't have it.
1750    QualType OldQTypeForComparison = OldQType;
1751    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
1752      assert(OldQType == QualType(OldType, 0));
1753      const FunctionType *OldTypeForComparison
1754        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
1755      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
1756      assert(OldQTypeForComparison.isCanonical());
1757    }
1758
1759    if (OldQTypeForComparison == NewQType)
1760      return MergeCompatibleFunctionDecls(New, Old);
1761
1762    // Fall through for conflicting redeclarations and redefinitions.
1763  }
1764
1765  // C: Function types need to be compatible, not identical. This handles
1766  // duplicate function decls like "void f(int); void f(enum X);" properly.
1767  if (!getLangOptions().CPlusPlus &&
1768      Context.typesAreCompatible(OldQType, NewQType)) {
1769    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1770    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1771    const FunctionProtoType *OldProto = 0;
1772    if (isa<FunctionNoProtoType>(NewFuncType) &&
1773        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1774      // The old declaration provided a function prototype, but the
1775      // new declaration does not. Merge in the prototype.
1776      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1777      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1778                                                 OldProto->arg_type_end());
1779      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1780                                         ParamTypes.data(), ParamTypes.size(),
1781                                         OldProto->getExtProtoInfo());
1782      New->setType(NewQType);
1783      New->setHasInheritedPrototype();
1784
1785      // Synthesize a parameter for each argument type.
1786      llvm::SmallVector<ParmVarDecl*, 16> Params;
1787      for (FunctionProtoType::arg_type_iterator
1788             ParamType = OldProto->arg_type_begin(),
1789             ParamEnd = OldProto->arg_type_end();
1790           ParamType != ParamEnd; ++ParamType) {
1791        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1792                                                 SourceLocation(),
1793                                                 SourceLocation(), 0,
1794                                                 *ParamType, /*TInfo=*/0,
1795                                                 SC_None, SC_None,
1796                                                 0);
1797        Param->setScopeInfo(0, Params.size());
1798        Param->setImplicit();
1799        Params.push_back(Param);
1800      }
1801
1802      New->setParams(Params.data(), Params.size());
1803    }
1804
1805    return MergeCompatibleFunctionDecls(New, Old);
1806  }
1807
1808  // GNU C permits a K&R definition to follow a prototype declaration
1809  // if the declared types of the parameters in the K&R definition
1810  // match the types in the prototype declaration, even when the
1811  // promoted types of the parameters from the K&R definition differ
1812  // from the types in the prototype. GCC then keeps the types from
1813  // the prototype.
1814  //
1815  // If a variadic prototype is followed by a non-variadic K&R definition,
1816  // the K&R definition becomes variadic.  This is sort of an edge case, but
1817  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1818  // C99 6.9.1p8.
1819  if (!getLangOptions().CPlusPlus &&
1820      Old->hasPrototype() && !New->hasPrototype() &&
1821      New->getType()->getAs<FunctionProtoType>() &&
1822      Old->getNumParams() == New->getNumParams()) {
1823    llvm::SmallVector<QualType, 16> ArgTypes;
1824    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1825    const FunctionProtoType *OldProto
1826      = Old->getType()->getAs<FunctionProtoType>();
1827    const FunctionProtoType *NewProto
1828      = New->getType()->getAs<FunctionProtoType>();
1829
1830    // Determine whether this is the GNU C extension.
1831    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1832                                               NewProto->getResultType());
1833    bool LooseCompatible = !MergedReturn.isNull();
1834    for (unsigned Idx = 0, End = Old->getNumParams();
1835         LooseCompatible && Idx != End; ++Idx) {
1836      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1837      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1838      if (Context.typesAreCompatible(OldParm->getType(),
1839                                     NewProto->getArgType(Idx))) {
1840        ArgTypes.push_back(NewParm->getType());
1841      } else if (Context.typesAreCompatible(OldParm->getType(),
1842                                            NewParm->getType(),
1843                                            /*CompareUnqualified=*/true)) {
1844        GNUCompatibleParamWarning Warn
1845          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1846        Warnings.push_back(Warn);
1847        ArgTypes.push_back(NewParm->getType());
1848      } else
1849        LooseCompatible = false;
1850    }
1851
1852    if (LooseCompatible) {
1853      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1854        Diag(Warnings[Warn].NewParm->getLocation(),
1855             diag::ext_param_promoted_not_compatible_with_prototype)
1856          << Warnings[Warn].PromotedType
1857          << Warnings[Warn].OldParm->getType();
1858        if (Warnings[Warn].OldParm->getLocation().isValid())
1859          Diag(Warnings[Warn].OldParm->getLocation(),
1860               diag::note_previous_declaration);
1861      }
1862
1863      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1864                                           ArgTypes.size(),
1865                                           OldProto->getExtProtoInfo()));
1866      return MergeCompatibleFunctionDecls(New, Old);
1867    }
1868
1869    // Fall through to diagnose conflicting types.
1870  }
1871
1872  // A function that has already been declared has been redeclared or defined
1873  // with a different type- show appropriate diagnostic
1874  if (unsigned BuiltinID = Old->getBuiltinID()) {
1875    // The user has declared a builtin function with an incompatible
1876    // signature.
1877    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1878      // The function the user is redeclaring is a library-defined
1879      // function like 'malloc' or 'printf'. Warn about the
1880      // redeclaration, then pretend that we don't know about this
1881      // library built-in.
1882      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1883      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1884        << Old << Old->getType();
1885      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1886      Old->setInvalidDecl();
1887      return false;
1888    }
1889
1890    PrevDiag = diag::note_previous_builtin_declaration;
1891  }
1892
1893  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1894  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1895  return true;
1896}
1897
1898/// \brief Completes the merge of two function declarations that are
1899/// known to be compatible.
1900///
1901/// This routine handles the merging of attributes and other
1902/// properties of function declarations form the old declaration to
1903/// the new declaration, once we know that New is in fact a
1904/// redeclaration of Old.
1905///
1906/// \returns false
1907bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1908  // Merge the attributes
1909  mergeDeclAttributes(New, Old, Context);
1910
1911  // Merge the storage class.
1912  if (Old->getStorageClass() != SC_Extern &&
1913      Old->getStorageClass() != SC_None)
1914    New->setStorageClass(Old->getStorageClass());
1915
1916  // Merge "pure" flag.
1917  if (Old->isPure())
1918    New->setPure();
1919
1920  // Merge attributes from the parameters.  These can mismatch with K&R
1921  // declarations.
1922  if (New->getNumParams() == Old->getNumParams())
1923    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
1924      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
1925                               Context);
1926
1927  if (getLangOptions().CPlusPlus)
1928    return MergeCXXFunctionDecl(New, Old);
1929
1930  return false;
1931}
1932
1933void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
1934                                const ObjCMethodDecl *oldMethod) {
1935  // Merge the attributes.
1936  mergeDeclAttributes(newMethod, oldMethod, Context);
1937
1938  // Merge attributes from the parameters.
1939  for (ObjCMethodDecl::param_iterator oi = oldMethod->param_begin(),
1940         ni = newMethod->param_begin(), ne = newMethod->param_end();
1941       ni != ne; ++ni, ++oi)
1942    mergeParamDeclAttributes(*ni, *oi, Context);
1943}
1944
1945/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
1946/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
1947/// emitting diagnostics as appropriate.
1948///
1949/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
1950/// to here in AddInitializerToDecl and AddCXXDirectInitializerToDecl. We can't
1951/// check them before the initializer is attached.
1952///
1953void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
1954  if (New->isInvalidDecl() || Old->isInvalidDecl())
1955    return;
1956
1957  QualType MergedT;
1958  if (getLangOptions().CPlusPlus) {
1959    AutoType *AT = New->getType()->getContainedAutoType();
1960    if (AT && !AT->isDeduced()) {
1961      // We don't know what the new type is until the initializer is attached.
1962      return;
1963    } else if (Context.hasSameType(New->getType(), Old->getType())) {
1964      // These could still be something that needs exception specs checked.
1965      return MergeVarDeclExceptionSpecs(New, Old);
1966    }
1967    // C++ [basic.link]p10:
1968    //   [...] the types specified by all declarations referring to a given
1969    //   object or function shall be identical, except that declarations for an
1970    //   array object can specify array types that differ by the presence or
1971    //   absence of a major array bound (8.3.4).
1972    else if (Old->getType()->isIncompleteArrayType() &&
1973             New->getType()->isArrayType()) {
1974      CanQual<ArrayType> OldArray
1975        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1976      CanQual<ArrayType> NewArray
1977        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1978      if (OldArray->getElementType() == NewArray->getElementType())
1979        MergedT = New->getType();
1980    } else if (Old->getType()->isArrayType() &&
1981             New->getType()->isIncompleteArrayType()) {
1982      CanQual<ArrayType> OldArray
1983        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1984      CanQual<ArrayType> NewArray
1985        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1986      if (OldArray->getElementType() == NewArray->getElementType())
1987        MergedT = Old->getType();
1988    } else if (New->getType()->isObjCObjectPointerType()
1989               && Old->getType()->isObjCObjectPointerType()) {
1990        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
1991                                                        Old->getType());
1992    }
1993  } else {
1994    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1995  }
1996  if (MergedT.isNull()) {
1997    Diag(New->getLocation(), diag::err_redefinition_different_type)
1998      << New->getDeclName();
1999    Diag(Old->getLocation(), diag::note_previous_definition);
2000    return New->setInvalidDecl();
2001  }
2002  New->setType(MergedT);
2003}
2004
2005/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2006/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2007/// situation, merging decls or emitting diagnostics as appropriate.
2008///
2009/// Tentative definition rules (C99 6.9.2p2) are checked by
2010/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2011/// definitions here, since the initializer hasn't been attached.
2012///
2013void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2014  // If the new decl is already invalid, don't do any other checking.
2015  if (New->isInvalidDecl())
2016    return;
2017
2018  // Verify the old decl was also a variable.
2019  VarDecl *Old = 0;
2020  if (!Previous.isSingleResult() ||
2021      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2022    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2023      << New->getDeclName();
2024    Diag(Previous.getRepresentativeDecl()->getLocation(),
2025         diag::note_previous_definition);
2026    return New->setInvalidDecl();
2027  }
2028
2029  // C++ [class.mem]p1:
2030  //   A member shall not be declared twice in the member-specification [...]
2031  //
2032  // Here, we need only consider static data members.
2033  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2034    Diag(New->getLocation(), diag::err_duplicate_member)
2035      << New->getIdentifier();
2036    Diag(Old->getLocation(), diag::note_previous_declaration);
2037    New->setInvalidDecl();
2038  }
2039
2040  mergeDeclAttributes(New, Old, Context);
2041
2042  // Merge the types.
2043  MergeVarDeclTypes(New, Old);
2044  if (New->isInvalidDecl())
2045    return;
2046
2047  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2048  if (New->getStorageClass() == SC_Static &&
2049      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2050    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2051    Diag(Old->getLocation(), diag::note_previous_definition);
2052    return New->setInvalidDecl();
2053  }
2054  // C99 6.2.2p4:
2055  //   For an identifier declared with the storage-class specifier
2056  //   extern in a scope in which a prior declaration of that
2057  //   identifier is visible,23) if the prior declaration specifies
2058  //   internal or external linkage, the linkage of the identifier at
2059  //   the later declaration is the same as the linkage specified at
2060  //   the prior declaration. If no prior declaration is visible, or
2061  //   if the prior declaration specifies no linkage, then the
2062  //   identifier has external linkage.
2063  if (New->hasExternalStorage() && Old->hasLinkage())
2064    /* Okay */;
2065  else if (New->getStorageClass() != SC_Static &&
2066           Old->getStorageClass() == SC_Static) {
2067    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2068    Diag(Old->getLocation(), diag::note_previous_definition);
2069    return New->setInvalidDecl();
2070  }
2071
2072  // Check if extern is followed by non-extern and vice-versa.
2073  if (New->hasExternalStorage() &&
2074      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2075    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2076    Diag(Old->getLocation(), diag::note_previous_definition);
2077    return New->setInvalidDecl();
2078  }
2079  if (Old->hasExternalStorage() &&
2080      !New->hasLinkage() && New->isLocalVarDecl()) {
2081    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2082    Diag(Old->getLocation(), diag::note_previous_definition);
2083    return New->setInvalidDecl();
2084  }
2085
2086  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2087
2088  // FIXME: The test for external storage here seems wrong? We still
2089  // need to check for mismatches.
2090  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2091      // Don't complain about out-of-line definitions of static members.
2092      !(Old->getLexicalDeclContext()->isRecord() &&
2093        !New->getLexicalDeclContext()->isRecord())) {
2094    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2095    Diag(Old->getLocation(), diag::note_previous_definition);
2096    return New->setInvalidDecl();
2097  }
2098
2099  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2100    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2101    Diag(Old->getLocation(), diag::note_previous_definition);
2102  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2103    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2104    Diag(Old->getLocation(), diag::note_previous_definition);
2105  }
2106
2107  // C++ doesn't have tentative definitions, so go right ahead and check here.
2108  const VarDecl *Def;
2109  if (getLangOptions().CPlusPlus &&
2110      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2111      (Def = Old->getDefinition())) {
2112    Diag(New->getLocation(), diag::err_redefinition)
2113      << New->getDeclName();
2114    Diag(Def->getLocation(), diag::note_previous_definition);
2115    New->setInvalidDecl();
2116    return;
2117  }
2118  // c99 6.2.2 P4.
2119  // For an identifier declared with the storage-class specifier extern in a
2120  // scope in which a prior declaration of that identifier is visible, if
2121  // the prior declaration specifies internal or external linkage, the linkage
2122  // of the identifier at the later declaration is the same as the linkage
2123  // specified at the prior declaration.
2124  // FIXME. revisit this code.
2125  if (New->hasExternalStorage() &&
2126      Old->getLinkage() == InternalLinkage &&
2127      New->getDeclContext() == Old->getDeclContext())
2128    New->setStorageClass(Old->getStorageClass());
2129
2130  // Keep a chain of previous declarations.
2131  New->setPreviousDeclaration(Old);
2132
2133  // Inherit access appropriately.
2134  New->setAccess(Old->getAccess());
2135}
2136
2137/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2138/// no declarator (e.g. "struct foo;") is parsed.
2139Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2140                                       DeclSpec &DS) {
2141  return ParsedFreeStandingDeclSpec(S, AS, DS,
2142                                    MultiTemplateParamsArg(*this, 0, 0));
2143}
2144
2145/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2146/// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2147/// parameters to cope with template friend declarations.
2148Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2149                                       DeclSpec &DS,
2150                                       MultiTemplateParamsArg TemplateParams) {
2151  Decl *TagD = 0;
2152  TagDecl *Tag = 0;
2153  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2154      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2155      DS.getTypeSpecType() == DeclSpec::TST_union ||
2156      DS.getTypeSpecType() == DeclSpec::TST_enum) {
2157    TagD = DS.getRepAsDecl();
2158
2159    if (!TagD) // We probably had an error
2160      return 0;
2161
2162    // Note that the above type specs guarantee that the
2163    // type rep is a Decl, whereas in many of the others
2164    // it's a Type.
2165    Tag = dyn_cast<TagDecl>(TagD);
2166  }
2167
2168  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2169    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2170    // or incomplete types shall not be restrict-qualified."
2171    if (TypeQuals & DeclSpec::TQ_restrict)
2172      Diag(DS.getRestrictSpecLoc(),
2173           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2174           << DS.getSourceRange();
2175  }
2176
2177  if (DS.isFriendSpecified()) {
2178    // If we're dealing with a decl but not a TagDecl, assume that
2179    // whatever routines created it handled the friendship aspect.
2180    if (TagD && !Tag)
2181      return 0;
2182    return ActOnFriendTypeDecl(S, DS, TemplateParams);
2183  }
2184
2185  // Track whether we warned about the fact that there aren't any
2186  // declarators.
2187  bool emittedWarning = false;
2188
2189  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2190    ProcessDeclAttributeList(S, Record, DS.getAttributes().getList());
2191
2192    if (!Record->getDeclName() && Record->isDefinition() &&
2193        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2194      if (getLangOptions().CPlusPlus ||
2195          Record->getDeclContext()->isRecord())
2196        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2197
2198      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2199        << DS.getSourceRange();
2200      emittedWarning = true;
2201    }
2202  }
2203
2204  // Check for Microsoft C extension: anonymous struct.
2205  if (getLangOptions().Microsoft && !getLangOptions().CPlusPlus &&
2206      CurContext->isRecord() &&
2207      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2208    // Handle 2 kinds of anonymous struct:
2209    //   struct STRUCT;
2210    // and
2211    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
2212    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2213    if ((Record && Record->getDeclName() && !Record->isDefinition()) ||
2214        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2215         DS.getRepAsType().get()->isStructureType())) {
2216      Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
2217        << DS.getSourceRange();
2218      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2219    }
2220  }
2221
2222  if (getLangOptions().CPlusPlus &&
2223      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2224    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2225      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2226          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2227        Diag(Enum->getLocation(), diag::ext_no_declarators)
2228          << DS.getSourceRange();
2229        emittedWarning = true;
2230      }
2231
2232  // Skip all the checks below if we have a type error.
2233  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2234
2235  if (!DS.isMissingDeclaratorOk()) {
2236    // Warn about typedefs of enums without names, since this is an
2237    // extension in both Microsoft and GNU.
2238    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2239        Tag && isa<EnumDecl>(Tag)) {
2240      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
2241        << DS.getSourceRange();
2242      return Tag;
2243    }
2244
2245    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2246      << DS.getSourceRange();
2247    emittedWarning = true;
2248  }
2249
2250  // We're going to complain about a bunch of spurious specifiers;
2251  // only do this if we're declaring a tag, because otherwise we
2252  // should be getting diag::ext_no_declarators.
2253  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2254    return TagD;
2255
2256  // Note that a linkage-specification sets a storage class, but
2257  // 'extern "C" struct foo;' is actually valid and not theoretically
2258  // useless.
2259  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2260    if (!DS.isExternInLinkageSpec())
2261      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2262        << DeclSpec::getSpecifierName(scs);
2263
2264  if (DS.isThreadSpecified())
2265    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2266  if (DS.getTypeQualifiers()) {
2267    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2268      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2269    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2270      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2271    // Restrict is covered above.
2272  }
2273  if (DS.isInlineSpecified())
2274    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2275  if (DS.isVirtualSpecified())
2276    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2277  if (DS.isExplicitSpecified())
2278    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2279
2280  // FIXME: Warn on useless attributes
2281
2282  return TagD;
2283}
2284
2285/// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec.
2286/// builds a statement for it and returns it so it is evaluated.
2287StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) {
2288  StmtResult R;
2289  if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) {
2290    Expr *Exp = DS.getRepAsExpr();
2291    QualType Ty = Exp->getType();
2292    if (Ty->isPointerType()) {
2293      do
2294        Ty = Ty->getAs<PointerType>()->getPointeeType();
2295      while (Ty->isPointerType());
2296    }
2297    if (Ty->isVariableArrayType()) {
2298      R = ActOnExprStmt(MakeFullExpr(Exp));
2299    }
2300  }
2301  return R;
2302}
2303
2304/// We are trying to inject an anonymous member into the given scope;
2305/// check if there's an existing declaration that can't be overloaded.
2306///
2307/// \return true if this is a forbidden redeclaration
2308static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2309                                         Scope *S,
2310                                         DeclContext *Owner,
2311                                         DeclarationName Name,
2312                                         SourceLocation NameLoc,
2313                                         unsigned diagnostic) {
2314  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2315                 Sema::ForRedeclaration);
2316  if (!SemaRef.LookupName(R, S)) return false;
2317
2318  if (R.getAsSingle<TagDecl>())
2319    return false;
2320
2321  // Pick a representative declaration.
2322  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2323  assert(PrevDecl && "Expected a non-null Decl");
2324
2325  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2326    return false;
2327
2328  SemaRef.Diag(NameLoc, diagnostic) << Name;
2329  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2330
2331  return true;
2332}
2333
2334/// InjectAnonymousStructOrUnionMembers - Inject the members of the
2335/// anonymous struct or union AnonRecord into the owning context Owner
2336/// and scope S. This routine will be invoked just after we realize
2337/// that an unnamed union or struct is actually an anonymous union or
2338/// struct, e.g.,
2339///
2340/// @code
2341/// union {
2342///   int i;
2343///   float f;
2344/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
2345///    // f into the surrounding scope.x
2346/// @endcode
2347///
2348/// This routine is recursive, injecting the names of nested anonymous
2349/// structs/unions into the owning context and scope as well.
2350static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2351                                                DeclContext *Owner,
2352                                                RecordDecl *AnonRecord,
2353                                                AccessSpecifier AS,
2354                              llvm::SmallVector<NamedDecl*, 2> &Chaining,
2355                                                      bool MSAnonStruct) {
2356  unsigned diagKind
2357    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2358                            : diag::err_anonymous_struct_member_redecl;
2359
2360  bool Invalid = false;
2361
2362  // Look every FieldDecl and IndirectFieldDecl with a name.
2363  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2364                               DEnd = AnonRecord->decls_end();
2365       D != DEnd; ++D) {
2366    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2367        cast<NamedDecl>(*D)->getDeclName()) {
2368      ValueDecl *VD = cast<ValueDecl>(*D);
2369      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2370                                       VD->getLocation(), diagKind)) {
2371        // C++ [class.union]p2:
2372        //   The names of the members of an anonymous union shall be
2373        //   distinct from the names of any other entity in the
2374        //   scope in which the anonymous union is declared.
2375        Invalid = true;
2376      } else {
2377        // C++ [class.union]p2:
2378        //   For the purpose of name lookup, after the anonymous union
2379        //   definition, the members of the anonymous union are
2380        //   considered to have been defined in the scope in which the
2381        //   anonymous union is declared.
2382        unsigned OldChainingSize = Chaining.size();
2383        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2384          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2385               PE = IF->chain_end(); PI != PE; ++PI)
2386            Chaining.push_back(*PI);
2387        else
2388          Chaining.push_back(VD);
2389
2390        assert(Chaining.size() >= 2);
2391        NamedDecl **NamedChain =
2392          new (SemaRef.Context)NamedDecl*[Chaining.size()];
2393        for (unsigned i = 0; i < Chaining.size(); i++)
2394          NamedChain[i] = Chaining[i];
2395
2396        IndirectFieldDecl* IndirectField =
2397          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2398                                    VD->getIdentifier(), VD->getType(),
2399                                    NamedChain, Chaining.size());
2400
2401        IndirectField->setAccess(AS);
2402        IndirectField->setImplicit();
2403        SemaRef.PushOnScopeChains(IndirectField, S);
2404
2405        // That includes picking up the appropriate access specifier.
2406        if (AS != AS_none) IndirectField->setAccess(AS);
2407
2408        Chaining.resize(OldChainingSize);
2409      }
2410    }
2411  }
2412
2413  return Invalid;
2414}
2415
2416/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2417/// a VarDecl::StorageClass. Any error reporting is up to the caller:
2418/// illegal input values are mapped to SC_None.
2419static StorageClass
2420StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2421  switch (StorageClassSpec) {
2422  case DeclSpec::SCS_unspecified:    return SC_None;
2423  case DeclSpec::SCS_extern:         return SC_Extern;
2424  case DeclSpec::SCS_static:         return SC_Static;
2425  case DeclSpec::SCS_auto:           return SC_Auto;
2426  case DeclSpec::SCS_register:       return SC_Register;
2427  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2428    // Illegal SCSs map to None: error reporting is up to the caller.
2429  case DeclSpec::SCS_mutable:        // Fall through.
2430  case DeclSpec::SCS_typedef:        return SC_None;
2431  }
2432  llvm_unreachable("unknown storage class specifier");
2433}
2434
2435/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2436/// a StorageClass. Any error reporting is up to the caller:
2437/// illegal input values are mapped to SC_None.
2438static StorageClass
2439StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2440  switch (StorageClassSpec) {
2441  case DeclSpec::SCS_unspecified:    return SC_None;
2442  case DeclSpec::SCS_extern:         return SC_Extern;
2443  case DeclSpec::SCS_static:         return SC_Static;
2444  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2445    // Illegal SCSs map to None: error reporting is up to the caller.
2446  case DeclSpec::SCS_auto:           // Fall through.
2447  case DeclSpec::SCS_mutable:        // Fall through.
2448  case DeclSpec::SCS_register:       // Fall through.
2449  case DeclSpec::SCS_typedef:        return SC_None;
2450  }
2451  llvm_unreachable("unknown storage class specifier");
2452}
2453
2454/// BuildAnonymousStructOrUnion - Handle the declaration of an
2455/// anonymous structure or union. Anonymous unions are a C++ feature
2456/// (C++ [class.union]) and a GNU C extension; anonymous structures
2457/// are a GNU C and GNU C++ extension.
2458Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2459                                             AccessSpecifier AS,
2460                                             RecordDecl *Record) {
2461  DeclContext *Owner = Record->getDeclContext();
2462
2463  // Diagnose whether this anonymous struct/union is an extension.
2464  if (Record->isUnion() && !getLangOptions().CPlusPlus)
2465    Diag(Record->getLocation(), diag::ext_anonymous_union);
2466  else if (!Record->isUnion())
2467    Diag(Record->getLocation(), diag::ext_anonymous_struct);
2468
2469  // C and C++ require different kinds of checks for anonymous
2470  // structs/unions.
2471  bool Invalid = false;
2472  if (getLangOptions().CPlusPlus) {
2473    const char* PrevSpec = 0;
2474    unsigned DiagID;
2475    // C++ [class.union]p3:
2476    //   Anonymous unions declared in a named namespace or in the
2477    //   global namespace shall be declared static.
2478    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2479        (isa<TranslationUnitDecl>(Owner) ||
2480         (isa<NamespaceDecl>(Owner) &&
2481          cast<NamespaceDecl>(Owner)->getDeclName()))) {
2482      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
2483      Invalid = true;
2484
2485      // Recover by adding 'static'.
2486      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
2487                             PrevSpec, DiagID, getLangOptions());
2488    }
2489    // C++ [class.union]p3:
2490    //   A storage class is not allowed in a declaration of an
2491    //   anonymous union in a class scope.
2492    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2493             isa<RecordDecl>(Owner)) {
2494      Diag(DS.getStorageClassSpecLoc(),
2495           diag::err_anonymous_union_with_storage_spec);
2496      Invalid = true;
2497
2498      // Recover by removing the storage specifier.
2499      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
2500                             PrevSpec, DiagID, getLangOptions());
2501    }
2502
2503    // Ignore const/volatile/restrict qualifiers.
2504    if (DS.getTypeQualifiers()) {
2505      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2506        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2507          << Record->isUnion() << 0
2508          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
2509      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2510        Diag(DS.getVolatileSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2511          << Record->isUnion() << 1
2512          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
2513      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
2514        Diag(DS.getRestrictSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2515          << Record->isUnion() << 2
2516          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
2517
2518      DS.ClearTypeQualifiers();
2519    }
2520
2521    // C++ [class.union]p2:
2522    //   The member-specification of an anonymous union shall only
2523    //   define non-static data members. [Note: nested types and
2524    //   functions cannot be declared within an anonymous union. ]
2525    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
2526                                 MemEnd = Record->decls_end();
2527         Mem != MemEnd; ++Mem) {
2528      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
2529        // C++ [class.union]p3:
2530        //   An anonymous union shall not have private or protected
2531        //   members (clause 11).
2532        assert(FD->getAccess() != AS_none);
2533        if (FD->getAccess() != AS_public) {
2534          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
2535            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
2536          Invalid = true;
2537        }
2538
2539        if (CheckNontrivialField(FD))
2540          Invalid = true;
2541      } else if ((*Mem)->isImplicit()) {
2542        // Any implicit members are fine.
2543      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
2544        // This is a type that showed up in an
2545        // elaborated-type-specifier inside the anonymous struct or
2546        // union, but which actually declares a type outside of the
2547        // anonymous struct or union. It's okay.
2548      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
2549        if (!MemRecord->isAnonymousStructOrUnion() &&
2550            MemRecord->getDeclName()) {
2551          // Visual C++ allows type definition in anonymous struct or union.
2552          if (getLangOptions().Microsoft)
2553            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
2554              << (int)Record->isUnion();
2555          else {
2556            // This is a nested type declaration.
2557            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
2558              << (int)Record->isUnion();
2559            Invalid = true;
2560          }
2561        }
2562      } else if (isa<AccessSpecDecl>(*Mem)) {
2563        // Any access specifier is fine.
2564      } else {
2565        // We have something that isn't a non-static data
2566        // member. Complain about it.
2567        unsigned DK = diag::err_anonymous_record_bad_member;
2568        if (isa<TypeDecl>(*Mem))
2569          DK = diag::err_anonymous_record_with_type;
2570        else if (isa<FunctionDecl>(*Mem))
2571          DK = diag::err_anonymous_record_with_function;
2572        else if (isa<VarDecl>(*Mem))
2573          DK = diag::err_anonymous_record_with_static;
2574
2575        // Visual C++ allows type definition in anonymous struct or union.
2576        if (getLangOptions().Microsoft &&
2577            DK == diag::err_anonymous_record_with_type)
2578          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
2579            << (int)Record->isUnion();
2580        else {
2581          Diag((*Mem)->getLocation(), DK)
2582              << (int)Record->isUnion();
2583          Invalid = true;
2584        }
2585      }
2586    }
2587  }
2588
2589  if (!Record->isUnion() && !Owner->isRecord()) {
2590    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
2591      << (int)getLangOptions().CPlusPlus;
2592    Invalid = true;
2593  }
2594
2595  // Mock up a declarator.
2596  Declarator Dc(DS, Declarator::TypeNameContext);
2597  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2598  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
2599
2600  // Create a declaration for this anonymous struct/union.
2601  NamedDecl *Anon = 0;
2602  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2603    Anon = FieldDecl::Create(Context, OwningClass,
2604                             DS.getSourceRange().getBegin(),
2605                             Record->getLocation(),
2606                             /*IdentifierInfo=*/0,
2607                             Context.getTypeDeclType(Record),
2608                             TInfo,
2609                             /*BitWidth=*/0, /*Mutable=*/false);
2610    Anon->setAccess(AS);
2611    if (getLangOptions().CPlusPlus)
2612      FieldCollector->Add(cast<FieldDecl>(Anon));
2613  } else {
2614    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2615    assert(SCSpec != DeclSpec::SCS_typedef &&
2616           "Parser allowed 'typedef' as storage class VarDecl.");
2617    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2618    if (SCSpec == DeclSpec::SCS_mutable) {
2619      // mutable can only appear on non-static class members, so it's always
2620      // an error here
2621      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2622      Invalid = true;
2623      SC = SC_None;
2624    }
2625    SCSpec = DS.getStorageClassSpecAsWritten();
2626    VarDecl::StorageClass SCAsWritten
2627      = StorageClassSpecToVarDeclStorageClass(SCSpec);
2628
2629    Anon = VarDecl::Create(Context, Owner,
2630                           DS.getSourceRange().getBegin(),
2631                           Record->getLocation(), /*IdentifierInfo=*/0,
2632                           Context.getTypeDeclType(Record),
2633                           TInfo, SC, SCAsWritten);
2634  }
2635  Anon->setImplicit();
2636
2637  // Add the anonymous struct/union object to the current
2638  // context. We'll be referencing this object when we refer to one of
2639  // its members.
2640  Owner->addDecl(Anon);
2641
2642  // Inject the members of the anonymous struct/union into the owning
2643  // context and into the identifier resolver chain for name lookup
2644  // purposes.
2645  llvm::SmallVector<NamedDecl*, 2> Chain;
2646  Chain.push_back(Anon);
2647
2648  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2649                                          Chain, false))
2650    Invalid = true;
2651
2652  // Mark this as an anonymous struct/union type. Note that we do not
2653  // do this until after we have already checked and injected the
2654  // members of this anonymous struct/union type, because otherwise
2655  // the members could be injected twice: once by DeclContext when it
2656  // builds its lookup table, and once by
2657  // InjectAnonymousStructOrUnionMembers.
2658  Record->setAnonymousStructOrUnion(true);
2659
2660  if (Invalid)
2661    Anon->setInvalidDecl();
2662
2663  return Anon;
2664}
2665
2666/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2667/// Microsoft C anonymous structure.
2668/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2669/// Example:
2670///
2671/// struct A { int a; };
2672/// struct B { struct A; int b; };
2673///
2674/// void foo() {
2675///   B var;
2676///   var.a = 3;
2677/// }
2678///
2679Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2680                                           RecordDecl *Record) {
2681
2682  // If there is no Record, get the record via the typedef.
2683  if (!Record)
2684    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2685
2686  // Mock up a declarator.
2687  Declarator Dc(DS, Declarator::TypeNameContext);
2688  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2689  assert(TInfo && "couldn't build declarator info for anonymous struct");
2690
2691  // Create a declaration for this anonymous struct.
2692  NamedDecl* Anon = FieldDecl::Create(Context,
2693                             cast<RecordDecl>(CurContext),
2694                             DS.getSourceRange().getBegin(),
2695                             DS.getSourceRange().getBegin(),
2696                             /*IdentifierInfo=*/0,
2697                             Context.getTypeDeclType(Record),
2698                             TInfo,
2699                             /*BitWidth=*/0, /*Mutable=*/false);
2700  Anon->setImplicit();
2701
2702  // Add the anonymous struct object to the current context.
2703  CurContext->addDecl(Anon);
2704
2705  // Inject the members of the anonymous struct into the current
2706  // context and into the identifier resolver chain for name lookup
2707  // purposes.
2708  llvm::SmallVector<NamedDecl*, 2> Chain;
2709  Chain.push_back(Anon);
2710
2711  if (InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2712                                          Record->getDefinition(),
2713                                          AS_none, Chain, true))
2714    Anon->setInvalidDecl();
2715
2716  return Anon;
2717}
2718
2719/// GetNameForDeclarator - Determine the full declaration name for the
2720/// given Declarator.
2721DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2722  return GetNameFromUnqualifiedId(D.getName());
2723}
2724
2725/// \brief Retrieves the declaration name from a parsed unqualified-id.
2726DeclarationNameInfo
2727Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2728  DeclarationNameInfo NameInfo;
2729  NameInfo.setLoc(Name.StartLocation);
2730
2731  switch (Name.getKind()) {
2732
2733  case UnqualifiedId::IK_Identifier:
2734    NameInfo.setName(Name.Identifier);
2735    NameInfo.setLoc(Name.StartLocation);
2736    return NameInfo;
2737
2738  case UnqualifiedId::IK_OperatorFunctionId:
2739    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2740                                           Name.OperatorFunctionId.Operator));
2741    NameInfo.setLoc(Name.StartLocation);
2742    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2743      = Name.OperatorFunctionId.SymbolLocations[0];
2744    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2745      = Name.EndLocation.getRawEncoding();
2746    return NameInfo;
2747
2748  case UnqualifiedId::IK_LiteralOperatorId:
2749    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2750                                                           Name.Identifier));
2751    NameInfo.setLoc(Name.StartLocation);
2752    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2753    return NameInfo;
2754
2755  case UnqualifiedId::IK_ConversionFunctionId: {
2756    TypeSourceInfo *TInfo;
2757    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2758    if (Ty.isNull())
2759      return DeclarationNameInfo();
2760    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2761                                               Context.getCanonicalType(Ty)));
2762    NameInfo.setLoc(Name.StartLocation);
2763    NameInfo.setNamedTypeInfo(TInfo);
2764    return NameInfo;
2765  }
2766
2767  case UnqualifiedId::IK_ConstructorName: {
2768    TypeSourceInfo *TInfo;
2769    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2770    if (Ty.isNull())
2771      return DeclarationNameInfo();
2772    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2773                                              Context.getCanonicalType(Ty)));
2774    NameInfo.setLoc(Name.StartLocation);
2775    NameInfo.setNamedTypeInfo(TInfo);
2776    return NameInfo;
2777  }
2778
2779  case UnqualifiedId::IK_ConstructorTemplateId: {
2780    // In well-formed code, we can only have a constructor
2781    // template-id that refers to the current context, so go there
2782    // to find the actual type being constructed.
2783    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2784    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2785      return DeclarationNameInfo();
2786
2787    // Determine the type of the class being constructed.
2788    QualType CurClassType = Context.getTypeDeclType(CurClass);
2789
2790    // FIXME: Check two things: that the template-id names the same type as
2791    // CurClassType, and that the template-id does not occur when the name
2792    // was qualified.
2793
2794    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2795                                    Context.getCanonicalType(CurClassType)));
2796    NameInfo.setLoc(Name.StartLocation);
2797    // FIXME: should we retrieve TypeSourceInfo?
2798    NameInfo.setNamedTypeInfo(0);
2799    return NameInfo;
2800  }
2801
2802  case UnqualifiedId::IK_DestructorName: {
2803    TypeSourceInfo *TInfo;
2804    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2805    if (Ty.isNull())
2806      return DeclarationNameInfo();
2807    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2808                                              Context.getCanonicalType(Ty)));
2809    NameInfo.setLoc(Name.StartLocation);
2810    NameInfo.setNamedTypeInfo(TInfo);
2811    return NameInfo;
2812  }
2813
2814  case UnqualifiedId::IK_TemplateId: {
2815    TemplateName TName = Name.TemplateId->Template.get();
2816    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
2817    return Context.getNameForTemplate(TName, TNameLoc);
2818  }
2819
2820  } // switch (Name.getKind())
2821
2822  assert(false && "Unknown name kind");
2823  return DeclarationNameInfo();
2824}
2825
2826/// isNearlyMatchingFunction - Determine whether the C++ functions
2827/// Declaration and Definition are "nearly" matching. This heuristic
2828/// is used to improve diagnostics in the case where an out-of-line
2829/// function definition doesn't match any declaration within
2830/// the class or namespace.
2831static bool isNearlyMatchingFunction(ASTContext &Context,
2832                                     FunctionDecl *Declaration,
2833                                     FunctionDecl *Definition) {
2834  if (Declaration->param_size() != Definition->param_size())
2835    return false;
2836  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2837    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2838    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2839
2840    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
2841                                        DefParamTy.getNonReferenceType()))
2842      return false;
2843  }
2844
2845  return true;
2846}
2847
2848/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
2849/// declarator needs to be rebuilt in the current instantiation.
2850/// Any bits of declarator which appear before the name are valid for
2851/// consideration here.  That's specifically the type in the decl spec
2852/// and the base type in any member-pointer chunks.
2853static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
2854                                                    DeclarationName Name) {
2855  // The types we specifically need to rebuild are:
2856  //   - typenames, typeofs, and decltypes
2857  //   - types which will become injected class names
2858  // Of course, we also need to rebuild any type referencing such a
2859  // type.  It's safest to just say "dependent", but we call out a
2860  // few cases here.
2861
2862  DeclSpec &DS = D.getMutableDeclSpec();
2863  switch (DS.getTypeSpecType()) {
2864  case DeclSpec::TST_typename:
2865  case DeclSpec::TST_typeofType:
2866  case DeclSpec::TST_decltype: {
2867    // Grab the type from the parser.
2868    TypeSourceInfo *TSI = 0;
2869    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
2870    if (T.isNull() || !T->isDependentType()) break;
2871
2872    // Make sure there's a type source info.  This isn't really much
2873    // of a waste; most dependent types should have type source info
2874    // attached already.
2875    if (!TSI)
2876      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
2877
2878    // Rebuild the type in the current instantiation.
2879    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
2880    if (!TSI) return true;
2881
2882    // Store the new type back in the decl spec.
2883    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
2884    DS.UpdateTypeRep(LocType);
2885    break;
2886  }
2887
2888  case DeclSpec::TST_typeofExpr: {
2889    Expr *E = DS.getRepAsExpr();
2890    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
2891    if (Result.isInvalid()) return true;
2892    DS.UpdateExprRep(Result.get());
2893    break;
2894  }
2895
2896  default:
2897    // Nothing to do for these decl specs.
2898    break;
2899  }
2900
2901  // It doesn't matter what order we do this in.
2902  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2903    DeclaratorChunk &Chunk = D.getTypeObject(I);
2904
2905    // The only type information in the declarator which can come
2906    // before the declaration name is the base type of a member
2907    // pointer.
2908    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
2909      continue;
2910
2911    // Rebuild the scope specifier in-place.
2912    CXXScopeSpec &SS = Chunk.Mem.Scope();
2913    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2914      return true;
2915  }
2916
2917  return false;
2918}
2919
2920Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D,
2921                            bool IsFunctionDefinition) {
2922  return HandleDeclarator(S, D, MultiTemplateParamsArg(*this),
2923                          IsFunctionDefinition);
2924}
2925
2926/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
2927///   If T is the name of a class, then each of the following shall have a
2928///   name different from T:
2929///     - every static data member of class T;
2930///     - every member function of class T
2931///     - every member of class T that is itself a type;
2932/// \returns true if the declaration name violates these rules.
2933bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
2934                                   DeclarationNameInfo NameInfo) {
2935  DeclarationName Name = NameInfo.getName();
2936
2937  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
2938    if (Record->getIdentifier() && Record->getDeclName() == Name) {
2939      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
2940      return true;
2941    }
2942
2943  return false;
2944}
2945
2946Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
2947                             MultiTemplateParamsArg TemplateParamLists,
2948                             bool IsFunctionDefinition) {
2949  // TODO: consider using NameInfo for diagnostic.
2950  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2951  DeclarationName Name = NameInfo.getName();
2952
2953  // All of these full declarators require an identifier.  If it doesn't have
2954  // one, the ParsedFreeStandingDeclSpec action should be used.
2955  if (!Name) {
2956    if (!D.isInvalidType())  // Reject this if we think it is valid.
2957      Diag(D.getDeclSpec().getSourceRange().getBegin(),
2958           diag::err_declarator_need_ident)
2959        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2960    return 0;
2961  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
2962    return 0;
2963
2964  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2965  // we find one that is.
2966  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2967         (S->getFlags() & Scope::TemplateParamScope) != 0)
2968    S = S->getParent();
2969
2970  DeclContext *DC = CurContext;
2971  if (D.getCXXScopeSpec().isInvalid())
2972    D.setInvalidType();
2973  else if (D.getCXXScopeSpec().isSet()) {
2974    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
2975                                        UPPC_DeclarationQualifier))
2976      return 0;
2977
2978    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
2979    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
2980    if (!DC) {
2981      // If we could not compute the declaration context, it's because the
2982      // declaration context is dependent but does not refer to a class,
2983      // class template, or class template partial specialization. Complain
2984      // and return early, to avoid the coming semantic disaster.
2985      Diag(D.getIdentifierLoc(),
2986           diag::err_template_qualified_declarator_no_match)
2987        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2988        << D.getCXXScopeSpec().getRange();
2989      return 0;
2990    }
2991    bool IsDependentContext = DC->isDependentContext();
2992
2993    if (!IsDependentContext &&
2994        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
2995      return 0;
2996
2997    if (isa<CXXRecordDecl>(DC)) {
2998      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
2999        Diag(D.getIdentifierLoc(),
3000             diag::err_member_def_undefined_record)
3001          << Name << DC << D.getCXXScopeSpec().getRange();
3002        D.setInvalidType();
3003      } else if (isa<CXXRecordDecl>(CurContext) &&
3004                 !D.getDeclSpec().isFriendSpecified()) {
3005        // The user provided a superfluous scope specifier inside a class
3006        // definition:
3007        //
3008        // class X {
3009        //   void X::f();
3010        // };
3011        if (CurContext->Equals(DC))
3012          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
3013            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
3014        else
3015          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
3016            << Name << D.getCXXScopeSpec().getRange();
3017
3018        // Pretend that this qualifier was not here.
3019        D.getCXXScopeSpec().clear();
3020      }
3021    }
3022
3023    // Check whether we need to rebuild the type of the given
3024    // declaration in the current instantiation.
3025    if (EnteringContext && IsDependentContext &&
3026        TemplateParamLists.size() != 0) {
3027      ContextRAII SavedContext(*this, DC);
3028      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
3029        D.setInvalidType();
3030    }
3031  }
3032
3033  if (DiagnoseClassNameShadow(DC, NameInfo))
3034    // If this is a typedef, we'll end up spewing multiple diagnostics.
3035    // Just return early; it's safer.
3036    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3037      return 0;
3038
3039  NamedDecl *New;
3040
3041  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3042  QualType R = TInfo->getType();
3043
3044  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
3045                                      UPPC_DeclarationType))
3046    D.setInvalidType();
3047
3048  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
3049                        ForRedeclaration);
3050
3051  // See if this is a redefinition of a variable in the same scope.
3052  if (!D.getCXXScopeSpec().isSet()) {
3053    bool IsLinkageLookup = false;
3054
3055    // If the declaration we're planning to build will be a function
3056    // or object with linkage, then look for another declaration with
3057    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3058    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3059      /* Do nothing*/;
3060    else if (R->isFunctionType()) {
3061      if (CurContext->isFunctionOrMethod() ||
3062          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3063        IsLinkageLookup = true;
3064    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3065      IsLinkageLookup = true;
3066    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3067             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3068      IsLinkageLookup = true;
3069
3070    if (IsLinkageLookup)
3071      Previous.clear(LookupRedeclarationWithLinkage);
3072
3073    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3074  } else { // Something like "int foo::x;"
3075    LookupQualifiedName(Previous, DC);
3076
3077    // Don't consider using declarations as previous declarations for
3078    // out-of-line members.
3079    RemoveUsingDecls(Previous);
3080
3081    // C++ 7.3.1.2p2:
3082    // Members (including explicit specializations of templates) of a named
3083    // namespace can also be defined outside that namespace by explicit
3084    // qualification of the name being defined, provided that the entity being
3085    // defined was already declared in the namespace and the definition appears
3086    // after the point of declaration in a namespace that encloses the
3087    // declarations namespace.
3088    //
3089    // Note that we only check the context at this point. We don't yet
3090    // have enough information to make sure that PrevDecl is actually
3091    // the declaration we want to match. For example, given:
3092    //
3093    //   class X {
3094    //     void f();
3095    //     void f(float);
3096    //   };
3097    //
3098    //   void X::f(int) { } // ill-formed
3099    //
3100    // In this case, PrevDecl will point to the overload set
3101    // containing the two f's declared in X, but neither of them
3102    // matches.
3103
3104    // First check whether we named the global scope.
3105    if (isa<TranslationUnitDecl>(DC)) {
3106      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
3107        << Name << D.getCXXScopeSpec().getRange();
3108    } else {
3109      DeclContext *Cur = CurContext;
3110      while (isa<LinkageSpecDecl>(Cur))
3111        Cur = Cur->getParent();
3112      if (!Cur->Encloses(DC)) {
3113        // The qualifying scope doesn't enclose the original declaration.
3114        // Emit diagnostic based on current scope.
3115        SourceLocation L = D.getIdentifierLoc();
3116        SourceRange R = D.getCXXScopeSpec().getRange();
3117        if (isa<FunctionDecl>(Cur))
3118          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
3119        else
3120          Diag(L, diag::err_invalid_declarator_scope)
3121            << Name << cast<NamedDecl>(DC) << R;
3122        D.setInvalidType();
3123      }
3124    }
3125  }
3126
3127  if (Previous.isSingleResult() &&
3128      Previous.getFoundDecl()->isTemplateParameter()) {
3129    // Maybe we will complain about the shadowed template parameter.
3130    if (!D.isInvalidType())
3131      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3132                                          Previous.getFoundDecl()))
3133        D.setInvalidType();
3134
3135    // Just pretend that we didn't see the previous declaration.
3136    Previous.clear();
3137  }
3138
3139  // In C++, the previous declaration we find might be a tag type
3140  // (class or enum). In this case, the new declaration will hide the
3141  // tag type. Note that this does does not apply if we're declaring a
3142  // typedef (C++ [dcl.typedef]p4).
3143  if (Previous.isSingleTagDecl() &&
3144      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3145    Previous.clear();
3146
3147  bool Redeclaration = false;
3148  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3149    if (TemplateParamLists.size()) {
3150      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3151      return 0;
3152    }
3153
3154    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
3155  } else if (R->isFunctionType()) {
3156    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
3157                                  move(TemplateParamLists),
3158                                  IsFunctionDefinition, Redeclaration);
3159  } else {
3160    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
3161                                  move(TemplateParamLists),
3162                                  Redeclaration);
3163  }
3164
3165  if (New == 0)
3166    return 0;
3167
3168  // If this has an identifier and is not an invalid redeclaration or
3169  // function template specialization, add it to the scope stack.
3170  if (New->getDeclName() && !(Redeclaration && New->isInvalidDecl()))
3171    PushOnScopeChains(New, S);
3172
3173  return New;
3174}
3175
3176/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3177/// types into constant array types in certain situations which would otherwise
3178/// be errors (for GCC compatibility).
3179static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3180                                                    ASTContext &Context,
3181                                                    bool &SizeIsNegative,
3182                                                    llvm::APSInt &Oversized) {
3183  // This method tries to turn a variable array into a constant
3184  // array even when the size isn't an ICE.  This is necessary
3185  // for compatibility with code that depends on gcc's buggy
3186  // constant expression folding, like struct {char x[(int)(char*)2];}
3187  SizeIsNegative = false;
3188  Oversized = 0;
3189
3190  if (T->isDependentType())
3191    return QualType();
3192
3193  QualifierCollector Qs;
3194  const Type *Ty = Qs.strip(T);
3195
3196  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3197    QualType Pointee = PTy->getPointeeType();
3198    QualType FixedType =
3199        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3200                                            Oversized);
3201    if (FixedType.isNull()) return FixedType;
3202    FixedType = Context.getPointerType(FixedType);
3203    return Qs.apply(Context, FixedType);
3204  }
3205  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3206    QualType Inner = PTy->getInnerType();
3207    QualType FixedType =
3208        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3209                                            Oversized);
3210    if (FixedType.isNull()) return FixedType;
3211    FixedType = Context.getParenType(FixedType);
3212    return Qs.apply(Context, FixedType);
3213  }
3214
3215  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3216  if (!VLATy)
3217    return QualType();
3218  // FIXME: We should probably handle this case
3219  if (VLATy->getElementType()->isVariablyModifiedType())
3220    return QualType();
3221
3222  Expr::EvalResult EvalResult;
3223  if (!VLATy->getSizeExpr() ||
3224      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
3225      !EvalResult.Val.isInt())
3226    return QualType();
3227
3228  // Check whether the array size is negative.
3229  llvm::APSInt &Res = EvalResult.Val.getInt();
3230  if (Res.isSigned() && Res.isNegative()) {
3231    SizeIsNegative = true;
3232    return QualType();
3233  }
3234
3235  // Check whether the array is too large to be addressed.
3236  unsigned ActiveSizeBits
3237    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
3238                                              Res);
3239  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
3240    Oversized = Res;
3241    return QualType();
3242  }
3243
3244  return Context.getConstantArrayType(VLATy->getElementType(),
3245                                      Res, ArrayType::Normal, 0);
3246}
3247
3248/// \brief Register the given locally-scoped external C declaration so
3249/// that it can be found later for redeclarations
3250void
3251Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
3252                                       const LookupResult &Previous,
3253                                       Scope *S) {
3254  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
3255         "Decl is not a locally-scoped decl!");
3256  // Note that we have a locally-scoped external with this name.
3257  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
3258
3259  if (!Previous.isSingleResult())
3260    return;
3261
3262  NamedDecl *PrevDecl = Previous.getFoundDecl();
3263
3264  // If there was a previous declaration of this variable, it may be
3265  // in our identifier chain. Update the identifier chain with the new
3266  // declaration.
3267  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
3268    // The previous declaration was found on the identifer resolver
3269    // chain, so remove it from its scope.
3270    while (S && !S->isDeclScope(PrevDecl))
3271      S = S->getParent();
3272
3273    if (S)
3274      S->RemoveDecl(PrevDecl);
3275  }
3276}
3277
3278/// \brief Diagnose function specifiers on a declaration of an identifier that
3279/// does not identify a function.
3280void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
3281  // FIXME: We should probably indicate the identifier in question to avoid
3282  // confusion for constructs like "inline int a(), b;"
3283  if (D.getDeclSpec().isInlineSpecified())
3284    Diag(D.getDeclSpec().getInlineSpecLoc(),
3285         diag::err_inline_non_function);
3286
3287  if (D.getDeclSpec().isVirtualSpecified())
3288    Diag(D.getDeclSpec().getVirtualSpecLoc(),
3289         diag::err_virtual_non_function);
3290
3291  if (D.getDeclSpec().isExplicitSpecified())
3292    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3293         diag::err_explicit_non_function);
3294}
3295
3296NamedDecl*
3297Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3298                             QualType R,  TypeSourceInfo *TInfo,
3299                             LookupResult &Previous, bool &Redeclaration) {
3300  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
3301  if (D.getCXXScopeSpec().isSet()) {
3302    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
3303      << D.getCXXScopeSpec().getRange();
3304    D.setInvalidType();
3305    // Pretend we didn't see the scope specifier.
3306    DC = CurContext;
3307    Previous.clear();
3308  }
3309
3310  if (getLangOptions().CPlusPlus) {
3311    // Check that there are no default arguments (C++ only).
3312    CheckExtraCXXDefaultArguments(D);
3313  }
3314
3315  DiagnoseFunctionSpecifiers(D);
3316
3317  if (D.getDeclSpec().isThreadSpecified())
3318    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3319
3320  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
3321    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
3322      << D.getName().getSourceRange();
3323    return 0;
3324  }
3325
3326  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
3327  if (!NewTD) return 0;
3328
3329  // Handle attributes prior to checking for duplicates in MergeVarDecl
3330  ProcessDeclAttributes(S, NewTD, D);
3331
3332  CheckTypedefForVariablyModifiedType(S, NewTD);
3333
3334  return ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
3335}
3336
3337void
3338Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
3339  // C99 6.7.7p2: If a typedef name specifies a variably modified type
3340  // then it shall have block scope.
3341  // Note that variably modified types must be fixed before merging the decl so
3342  // that redeclarations will match.
3343  QualType T = NewTD->getUnderlyingType();
3344  if (T->isVariablyModifiedType()) {
3345    getCurFunction()->setHasBranchProtectedScope();
3346
3347    if (S->getFnParent() == 0) {
3348      bool SizeIsNegative;
3349      llvm::APSInt Oversized;
3350      QualType FixedTy =
3351          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3352                                              Oversized);
3353      if (!FixedTy.isNull()) {
3354        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
3355        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
3356      } else {
3357        if (SizeIsNegative)
3358          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
3359        else if (T->isVariableArrayType())
3360          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
3361        else if (Oversized.getBoolValue())
3362          Diag(NewTD->getLocation(), diag::err_array_too_large) << Oversized.toString(10);
3363        else
3364          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
3365        NewTD->setInvalidDecl();
3366      }
3367    }
3368  }
3369}
3370
3371
3372/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
3373/// declares a typedef-name, either using the 'typedef' type specifier or via
3374/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
3375NamedDecl*
3376Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
3377                           LookupResult &Previous, bool &Redeclaration) {
3378  // Merge the decl with the existing one if appropriate. If the decl is
3379  // in an outer scope, it isn't the same thing.
3380  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
3381                       /*ExplicitInstantiationOrSpecialization=*/false);
3382  if (!Previous.empty()) {
3383    Redeclaration = true;
3384    MergeTypedefNameDecl(NewTD, Previous);
3385  }
3386
3387  // If this is the C FILE type, notify the AST context.
3388  if (IdentifierInfo *II = NewTD->getIdentifier())
3389    if (!NewTD->isInvalidDecl() &&
3390        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
3391      if (II->isStr("FILE"))
3392        Context.setFILEDecl(NewTD);
3393      else if (II->isStr("jmp_buf"))
3394        Context.setjmp_bufDecl(NewTD);
3395      else if (II->isStr("sigjmp_buf"))
3396        Context.setsigjmp_bufDecl(NewTD);
3397      else if (II->isStr("__builtin_va_list"))
3398        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
3399    }
3400
3401  return NewTD;
3402}
3403
3404/// \brief Determines whether the given declaration is an out-of-scope
3405/// previous declaration.
3406///
3407/// This routine should be invoked when name lookup has found a
3408/// previous declaration (PrevDecl) that is not in the scope where a
3409/// new declaration by the same name is being introduced. If the new
3410/// declaration occurs in a local scope, previous declarations with
3411/// linkage may still be considered previous declarations (C99
3412/// 6.2.2p4-5, C++ [basic.link]p6).
3413///
3414/// \param PrevDecl the previous declaration found by name
3415/// lookup
3416///
3417/// \param DC the context in which the new declaration is being
3418/// declared.
3419///
3420/// \returns true if PrevDecl is an out-of-scope previous declaration
3421/// for a new delcaration with the same name.
3422static bool
3423isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
3424                                ASTContext &Context) {
3425  if (!PrevDecl)
3426    return false;
3427
3428  if (!PrevDecl->hasLinkage())
3429    return false;
3430
3431  if (Context.getLangOptions().CPlusPlus) {
3432    // C++ [basic.link]p6:
3433    //   If there is a visible declaration of an entity with linkage
3434    //   having the same name and type, ignoring entities declared
3435    //   outside the innermost enclosing namespace scope, the block
3436    //   scope declaration declares that same entity and receives the
3437    //   linkage of the previous declaration.
3438    DeclContext *OuterContext = DC->getRedeclContext();
3439    if (!OuterContext->isFunctionOrMethod())
3440      // This rule only applies to block-scope declarations.
3441      return false;
3442
3443    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
3444    if (PrevOuterContext->isRecord())
3445      // We found a member function: ignore it.
3446      return false;
3447
3448    // Find the innermost enclosing namespace for the new and
3449    // previous declarations.
3450    OuterContext = OuterContext->getEnclosingNamespaceContext();
3451    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
3452
3453    // The previous declaration is in a different namespace, so it
3454    // isn't the same function.
3455    if (!OuterContext->Equals(PrevOuterContext))
3456      return false;
3457  }
3458
3459  return true;
3460}
3461
3462static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
3463  CXXScopeSpec &SS = D.getCXXScopeSpec();
3464  if (!SS.isSet()) return;
3465  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
3466}
3467
3468NamedDecl*
3469Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
3470                              QualType R, TypeSourceInfo *TInfo,
3471                              LookupResult &Previous,
3472                              MultiTemplateParamsArg TemplateParamLists,
3473                              bool &Redeclaration) {
3474  DeclarationName Name = GetNameForDeclarator(D).getName();
3475
3476  // Check that there are no default arguments (C++ only).
3477  if (getLangOptions().CPlusPlus)
3478    CheckExtraCXXDefaultArguments(D);
3479
3480  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
3481  assert(SCSpec != DeclSpec::SCS_typedef &&
3482         "Parser allowed 'typedef' as storage class VarDecl.");
3483  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3484  if (SCSpec == DeclSpec::SCS_mutable) {
3485    // mutable can only appear on non-static class members, so it's always
3486    // an error here
3487    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
3488    D.setInvalidType();
3489    SC = SC_None;
3490  }
3491  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3492  VarDecl::StorageClass SCAsWritten
3493    = StorageClassSpecToVarDeclStorageClass(SCSpec);
3494
3495  IdentifierInfo *II = Name.getAsIdentifierInfo();
3496  if (!II) {
3497    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
3498      << Name.getAsString();
3499    return 0;
3500  }
3501
3502  DiagnoseFunctionSpecifiers(D);
3503
3504  if (!DC->isRecord() && S->getFnParent() == 0) {
3505    // C99 6.9p2: The storage-class specifiers auto and register shall not
3506    // appear in the declaration specifiers in an external declaration.
3507    if (SC == SC_Auto || SC == SC_Register) {
3508
3509      // If this is a register variable with an asm label specified, then this
3510      // is a GNU extension.
3511      if (SC == SC_Register && D.getAsmLabel())
3512        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
3513      else
3514        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
3515      D.setInvalidType();
3516    }
3517  }
3518
3519  bool isExplicitSpecialization = false;
3520  VarDecl *NewVD;
3521  if (!getLangOptions().CPlusPlus) {
3522    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3523                            D.getIdentifierLoc(), II,
3524                            R, TInfo, SC, SCAsWritten);
3525
3526    if (D.isInvalidType())
3527      NewVD->setInvalidDecl();
3528  } else {
3529    if (DC->isRecord() && !CurContext->isRecord()) {
3530      // This is an out-of-line definition of a static data member.
3531      if (SC == SC_Static) {
3532        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3533             diag::err_static_out_of_line)
3534          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3535      } else if (SC == SC_None)
3536        SC = SC_Static;
3537    }
3538    if (SC == SC_Static) {
3539      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
3540        if (RD->isLocalClass())
3541          Diag(D.getIdentifierLoc(),
3542               diag::err_static_data_member_not_allowed_in_local_class)
3543            << Name << RD->getDeclName();
3544
3545        // C++ [class.union]p1: If a union contains a static data member,
3546        // the program is ill-formed.
3547        //
3548        // We also disallow static data members in anonymous structs.
3549        if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
3550          Diag(D.getIdentifierLoc(),
3551               diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
3552            << Name << RD->isUnion();
3553      }
3554    }
3555
3556    // Match up the template parameter lists with the scope specifier, then
3557    // determine whether we have a template or a template specialization.
3558    isExplicitSpecialization = false;
3559    bool Invalid = false;
3560    if (TemplateParameterList *TemplateParams
3561        = MatchTemplateParametersToScopeSpecifier(
3562                                  D.getDeclSpec().getSourceRange().getBegin(),
3563                                                  D.getIdentifierLoc(),
3564                                                  D.getCXXScopeSpec(),
3565                                                  TemplateParamLists.get(),
3566                                                  TemplateParamLists.size(),
3567                                                  /*never a friend*/ false,
3568                                                  isExplicitSpecialization,
3569                                                  Invalid)) {
3570      if (TemplateParams->size() > 0) {
3571        // There is no such thing as a variable template.
3572        Diag(D.getIdentifierLoc(), diag::err_template_variable)
3573          << II
3574          << SourceRange(TemplateParams->getTemplateLoc(),
3575                         TemplateParams->getRAngleLoc());
3576        return 0;
3577      } else {
3578        // There is an extraneous 'template<>' for this variable. Complain
3579        // about it, but allow the declaration of the variable.
3580        Diag(TemplateParams->getTemplateLoc(),
3581             diag::err_template_variable_noparams)
3582          << II
3583          << SourceRange(TemplateParams->getTemplateLoc(),
3584                         TemplateParams->getRAngleLoc());
3585      }
3586    }
3587
3588    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3589                            D.getIdentifierLoc(), II,
3590                            R, TInfo, SC, SCAsWritten);
3591
3592    // If this decl has an auto type in need of deduction, make a note of the
3593    // Decl so we can diagnose uses of it in its own initializer.
3594    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
3595        R->getContainedAutoType())
3596      ParsingInitForAutoVars.insert(NewVD);
3597
3598    if (D.isInvalidType() || Invalid)
3599      NewVD->setInvalidDecl();
3600
3601    SetNestedNameSpecifier(NewVD, D);
3602
3603    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
3604      NewVD->setTemplateParameterListsInfo(Context,
3605                                           TemplateParamLists.size(),
3606                                           TemplateParamLists.release());
3607    }
3608  }
3609
3610  if (D.getDeclSpec().isThreadSpecified()) {
3611    if (NewVD->hasLocalStorage())
3612      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
3613    else if (!Context.Target.isTLSSupported())
3614      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
3615    else
3616      NewVD->setThreadSpecified(true);
3617  }
3618
3619  // Set the lexical context. If the declarator has a C++ scope specifier, the
3620  // lexical context will be different from the semantic context.
3621  NewVD->setLexicalDeclContext(CurContext);
3622
3623  // Handle attributes prior to checking for duplicates in MergeVarDecl
3624  ProcessDeclAttributes(S, NewVD, D);
3625
3626  // Handle GNU asm-label extension (encoded as an attribute).
3627  if (Expr *E = (Expr*)D.getAsmLabel()) {
3628    // The parser guarantees this is a string.
3629    StringLiteral *SE = cast<StringLiteral>(E);
3630    llvm::StringRef Label = SE->getString();
3631    if (S->getFnParent() != 0) {
3632      switch (SC) {
3633      case SC_None:
3634      case SC_Auto:
3635        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
3636        break;
3637      case SC_Register:
3638        if (!Context.Target.isValidGCCRegisterName(Label))
3639          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
3640        break;
3641      case SC_Static:
3642      case SC_Extern:
3643      case SC_PrivateExtern:
3644        break;
3645      }
3646    }
3647
3648    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
3649                                                Context, Label));
3650  }
3651
3652  // Diagnose shadowed variables before filtering for scope.
3653  if (!D.getCXXScopeSpec().isSet())
3654    CheckShadow(S, NewVD, Previous);
3655
3656  // Don't consider existing declarations that are in a different
3657  // scope and are out-of-semantic-context declarations (if the new
3658  // declaration has linkage).
3659  FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
3660                       isExplicitSpecialization);
3661
3662  if (!getLangOptions().CPlusPlus)
3663    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3664  else {
3665    // Merge the decl with the existing one if appropriate.
3666    if (!Previous.empty()) {
3667      if (Previous.isSingleResult() &&
3668          isa<FieldDecl>(Previous.getFoundDecl()) &&
3669          D.getCXXScopeSpec().isSet()) {
3670        // The user tried to define a non-static data member
3671        // out-of-line (C++ [dcl.meaning]p1).
3672        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
3673          << D.getCXXScopeSpec().getRange();
3674        Previous.clear();
3675        NewVD->setInvalidDecl();
3676      }
3677    } else if (D.getCXXScopeSpec().isSet()) {
3678      // No previous declaration in the qualifying scope.
3679      Diag(D.getIdentifierLoc(), diag::err_no_member)
3680        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
3681        << D.getCXXScopeSpec().getRange();
3682      NewVD->setInvalidDecl();
3683    }
3684
3685    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3686
3687    // This is an explicit specialization of a static data member. Check it.
3688    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
3689        CheckMemberSpecialization(NewVD, Previous))
3690      NewVD->setInvalidDecl();
3691  }
3692
3693  // attributes declared post-definition are currently ignored
3694  // FIXME: This should be handled in attribute merging, not
3695  // here.
3696  if (Previous.isSingleResult()) {
3697    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
3698    if (Def && (Def = Def->getDefinition()) &&
3699        Def != NewVD && D.hasAttributes()) {
3700      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
3701      Diag(Def->getLocation(), diag::note_previous_definition);
3702    }
3703  }
3704
3705  // If this is a locally-scoped extern C variable, update the map of
3706  // such variables.
3707  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
3708      !NewVD->isInvalidDecl())
3709    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
3710
3711  // If there's a #pragma GCC visibility in scope, and this isn't a class
3712  // member, set the visibility of this variable.
3713  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
3714    AddPushedVisibilityAttribute(NewVD);
3715
3716  MarkUnusedFileScopedDecl(NewVD);
3717
3718  return NewVD;
3719}
3720
3721/// \brief Diagnose variable or built-in function shadowing.  Implements
3722/// -Wshadow.
3723///
3724/// This method is called whenever a VarDecl is added to a "useful"
3725/// scope.
3726///
3727/// \param S the scope in which the shadowing name is being declared
3728/// \param R the lookup of the name
3729///
3730void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
3731  // Return if warning is ignored.
3732  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
3733        Diagnostic::Ignored)
3734    return;
3735
3736  // Don't diagnose declarations at file scope.
3737  if (D->hasGlobalStorage())
3738    return;
3739
3740  DeclContext *NewDC = D->getDeclContext();
3741
3742  // Only diagnose if we're shadowing an unambiguous field or variable.
3743  if (R.getResultKind() != LookupResult::Found)
3744    return;
3745
3746  NamedDecl* ShadowedDecl = R.getFoundDecl();
3747  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
3748    return;
3749
3750  // Fields are not shadowed by variables in C++ static methods.
3751  if (isa<FieldDecl>(ShadowedDecl))
3752    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
3753      if (MD->isStatic())
3754        return;
3755
3756  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
3757    if (shadowedVar->isExternC()) {
3758      // For shadowing external vars, make sure that we point to the global
3759      // declaration, not a locally scoped extern declaration.
3760      for (VarDecl::redecl_iterator
3761             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
3762           I != E; ++I)
3763        if (I->isFileVarDecl()) {
3764          ShadowedDecl = *I;
3765          break;
3766        }
3767    }
3768
3769  DeclContext *OldDC = ShadowedDecl->getDeclContext();
3770
3771  // Only warn about certain kinds of shadowing for class members.
3772  if (NewDC && NewDC->isRecord()) {
3773    // In particular, don't warn about shadowing non-class members.
3774    if (!OldDC->isRecord())
3775      return;
3776
3777    // TODO: should we warn about static data members shadowing
3778    // static data members from base classes?
3779
3780    // TODO: don't diagnose for inaccessible shadowed members.
3781    // This is hard to do perfectly because we might friend the
3782    // shadowing context, but that's just a false negative.
3783  }
3784
3785  // Determine what kind of declaration we're shadowing.
3786  unsigned Kind;
3787  if (isa<RecordDecl>(OldDC)) {
3788    if (isa<FieldDecl>(ShadowedDecl))
3789      Kind = 3; // field
3790    else
3791      Kind = 2; // static data member
3792  } else if (OldDC->isFileContext())
3793    Kind = 1; // global
3794  else
3795    Kind = 0; // local
3796
3797  DeclarationName Name = R.getLookupName();
3798
3799  // Emit warning and note.
3800  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
3801  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
3802}
3803
3804/// \brief Check -Wshadow without the advantage of a previous lookup.
3805void Sema::CheckShadow(Scope *S, VarDecl *D) {
3806  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
3807        Diagnostic::Ignored)
3808    return;
3809
3810  LookupResult R(*this, D->getDeclName(), D->getLocation(),
3811                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3812  LookupName(R, S);
3813  CheckShadow(S, D, R);
3814}
3815
3816/// \brief Perform semantic checking on a newly-created variable
3817/// declaration.
3818///
3819/// This routine performs all of the type-checking required for a
3820/// variable declaration once it has been built. It is used both to
3821/// check variables after they have been parsed and their declarators
3822/// have been translated into a declaration, and to check variables
3823/// that have been instantiated from a template.
3824///
3825/// Sets NewVD->isInvalidDecl() if an error was encountered.
3826void Sema::CheckVariableDeclaration(VarDecl *NewVD,
3827                                    LookupResult &Previous,
3828                                    bool &Redeclaration) {
3829  // If the decl is already known invalid, don't check it.
3830  if (NewVD->isInvalidDecl())
3831    return;
3832
3833  QualType T = NewVD->getType();
3834
3835  if (T->isObjCObjectType()) {
3836    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
3837    return NewVD->setInvalidDecl();
3838  }
3839
3840  // Emit an error if an address space was applied to decl with local storage.
3841  // This includes arrays of objects with address space qualifiers, but not
3842  // automatic variables that point to other address spaces.
3843  // ISO/IEC TR 18037 S5.1.2
3844  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
3845    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
3846    return NewVD->setInvalidDecl();
3847  }
3848
3849  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
3850      && !NewVD->hasAttr<BlocksAttr>())
3851    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
3852
3853  bool isVM = T->isVariablyModifiedType();
3854  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
3855      NewVD->hasAttr<BlocksAttr>())
3856    getCurFunction()->setHasBranchProtectedScope();
3857
3858  if ((isVM && NewVD->hasLinkage()) ||
3859      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
3860    bool SizeIsNegative;
3861    llvm::APSInt Oversized;
3862    QualType FixedTy =
3863        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3864                                            Oversized);
3865
3866    if (FixedTy.isNull() && T->isVariableArrayType()) {
3867      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
3868      // FIXME: This won't give the correct result for
3869      // int a[10][n];
3870      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
3871
3872      if (NewVD->isFileVarDecl())
3873        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
3874        << SizeRange;
3875      else if (NewVD->getStorageClass() == SC_Static)
3876        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
3877        << SizeRange;
3878      else
3879        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
3880        << SizeRange;
3881      return NewVD->setInvalidDecl();
3882    }
3883
3884    if (FixedTy.isNull()) {
3885      if (NewVD->isFileVarDecl())
3886        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
3887      else
3888        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
3889      return NewVD->setInvalidDecl();
3890    }
3891
3892    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
3893    NewVD->setType(FixedTy);
3894  }
3895
3896  if (Previous.empty() && NewVD->isExternC()) {
3897    // Since we did not find anything by this name and we're declaring
3898    // an extern "C" variable, look for a non-visible extern "C"
3899    // declaration with the same name.
3900    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3901      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
3902    if (Pos != LocallyScopedExternalDecls.end())
3903      Previous.addDecl(Pos->second);
3904  }
3905
3906  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
3907    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
3908      << T;
3909    return NewVD->setInvalidDecl();
3910  }
3911
3912  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
3913    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
3914    return NewVD->setInvalidDecl();
3915  }
3916
3917  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
3918    Diag(NewVD->getLocation(), diag::err_block_on_vm);
3919    return NewVD->setInvalidDecl();
3920  }
3921
3922  // Function pointers and references cannot have qualified function type, only
3923  // function pointer-to-members can do that.
3924  QualType Pointee;
3925  unsigned PtrOrRef = 0;
3926  if (const PointerType *Ptr = T->getAs<PointerType>())
3927    Pointee = Ptr->getPointeeType();
3928  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
3929    Pointee = Ref->getPointeeType();
3930    PtrOrRef = 1;
3931  }
3932  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
3933      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
3934    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
3935        << PtrOrRef;
3936    return NewVD->setInvalidDecl();
3937  }
3938
3939  if (!Previous.empty()) {
3940    Redeclaration = true;
3941    MergeVarDecl(NewVD, Previous);
3942  }
3943}
3944
3945/// \brief Data used with FindOverriddenMethod
3946struct FindOverriddenMethodData {
3947  Sema *S;
3948  CXXMethodDecl *Method;
3949};
3950
3951/// \brief Member lookup function that determines whether a given C++
3952/// method overrides a method in a base class, to be used with
3953/// CXXRecordDecl::lookupInBases().
3954static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
3955                                 CXXBasePath &Path,
3956                                 void *UserData) {
3957  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
3958
3959  FindOverriddenMethodData *Data
3960    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
3961
3962  DeclarationName Name = Data->Method->getDeclName();
3963
3964  // FIXME: Do we care about other names here too?
3965  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3966    // We really want to find the base class destructor here.
3967    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
3968    CanQualType CT = Data->S->Context.getCanonicalType(T);
3969
3970    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
3971  }
3972
3973  for (Path.Decls = BaseRecord->lookup(Name);
3974       Path.Decls.first != Path.Decls.second;
3975       ++Path.Decls.first) {
3976    NamedDecl *D = *Path.Decls.first;
3977    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
3978      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
3979        return true;
3980    }
3981  }
3982
3983  return false;
3984}
3985
3986/// AddOverriddenMethods - See if a method overrides any in the base classes,
3987/// and if so, check that it's a valid override and remember it.
3988bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
3989  // Look for virtual methods in base classes that this method might override.
3990  CXXBasePaths Paths;
3991  FindOverriddenMethodData Data;
3992  Data.Method = MD;
3993  Data.S = this;
3994  bool AddedAny = false;
3995  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
3996    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
3997         E = Paths.found_decls_end(); I != E; ++I) {
3998      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
3999        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
4000            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
4001            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
4002          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
4003          AddedAny = true;
4004        }
4005      }
4006    }
4007  }
4008
4009  return AddedAny;
4010}
4011
4012static void DiagnoseInvalidRedeclaration(Sema &S, FunctionDecl *NewFD) {
4013  LookupResult Prev(S, NewFD->getDeclName(), NewFD->getLocation(),
4014                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4015  S.LookupQualifiedName(Prev, NewFD->getDeclContext());
4016  assert(!Prev.isAmbiguous() &&
4017         "Cannot have an ambiguity in previous-declaration lookup");
4018  for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
4019       Func != FuncEnd; ++Func) {
4020    if (isa<FunctionDecl>(*Func) &&
4021        isNearlyMatchingFunction(S.Context, cast<FunctionDecl>(*Func), NewFD))
4022      S.Diag((*Func)->getLocation(), diag::note_member_def_close_match);
4023  }
4024}
4025
4026NamedDecl*
4027Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
4028                              QualType R, TypeSourceInfo *TInfo,
4029                              LookupResult &Previous,
4030                              MultiTemplateParamsArg TemplateParamLists,
4031                              bool IsFunctionDefinition, bool &Redeclaration) {
4032  assert(R.getTypePtr()->isFunctionType());
4033
4034  // TODO: consider using NameInfo for diagnostic.
4035  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4036  DeclarationName Name = NameInfo.getName();
4037  FunctionDecl::StorageClass SC = SC_None;
4038  switch (D.getDeclSpec().getStorageClassSpec()) {
4039  default: assert(0 && "Unknown storage class!");
4040  case DeclSpec::SCS_auto:
4041  case DeclSpec::SCS_register:
4042  case DeclSpec::SCS_mutable:
4043    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4044         diag::err_typecheck_sclass_func);
4045    D.setInvalidType();
4046    break;
4047  case DeclSpec::SCS_unspecified: SC = SC_None; break;
4048  case DeclSpec::SCS_extern:      SC = SC_Extern; break;
4049  case DeclSpec::SCS_static: {
4050    if (CurContext->getRedeclContext()->isFunctionOrMethod()) {
4051      // C99 6.7.1p5:
4052      //   The declaration of an identifier for a function that has
4053      //   block scope shall have no explicit storage-class specifier
4054      //   other than extern
4055      // See also (C++ [dcl.stc]p4).
4056      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4057           diag::err_static_block_func);
4058      SC = SC_None;
4059    } else
4060      SC = SC_Static;
4061    break;
4062  }
4063  case DeclSpec::SCS_private_extern: SC = SC_PrivateExtern; break;
4064  }
4065
4066  if (D.getDeclSpec().isThreadSpecified())
4067    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4068
4069  // Do not allow returning a objc interface by-value.
4070  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
4071    Diag(D.getIdentifierLoc(),
4072         diag::err_object_cannot_be_passed_returned_by_value) << 0
4073    << R->getAs<FunctionType>()->getResultType();
4074    D.setInvalidType();
4075  }
4076
4077  FunctionDecl *NewFD;
4078  bool isInline = D.getDeclSpec().isInlineSpecified();
4079  bool isFriend = false;
4080  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4081  FunctionDecl::StorageClass SCAsWritten
4082    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
4083  FunctionTemplateDecl *FunctionTemplate = 0;
4084  bool isExplicitSpecialization = false;
4085  bool isFunctionTemplateSpecialization = false;
4086
4087  if (!getLangOptions().CPlusPlus) {
4088    // Determine whether the function was written with a
4089    // prototype. This true when:
4090    //   - there is a prototype in the declarator, or
4091    //   - the type R of the function is some kind of typedef or other reference
4092    //     to a type name (which eventually refers to a function type).
4093    bool HasPrototype =
4094    (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
4095    (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
4096
4097    NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4098                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4099                                 HasPrototype);
4100    if (D.isInvalidType())
4101      NewFD->setInvalidDecl();
4102
4103    // Set the lexical context.
4104    NewFD->setLexicalDeclContext(CurContext);
4105    // Filter out previous declarations that don't match the scope.
4106    FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
4107                         /*ExplicitInstantiationOrSpecialization=*/false);
4108  } else {
4109    isFriend = D.getDeclSpec().isFriendSpecified();
4110    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4111    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4112    bool isVirtualOkay = false;
4113
4114    // Check that the return type is not an abstract class type.
4115    // For record types, this is done by the AbstractClassUsageDiagnoser once
4116    // the class has been completely parsed.
4117    if (!DC->isRecord() &&
4118      RequireNonAbstractType(D.getIdentifierLoc(),
4119                             R->getAs<FunctionType>()->getResultType(),
4120                             diag::err_abstract_type_in_decl,
4121                             AbstractReturnType))
4122      D.setInvalidType();
4123
4124    if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
4125      // This is a C++ constructor declaration.
4126      assert(DC->isRecord() &&
4127             "Constructors can only be declared in a member context");
4128
4129      R = CheckConstructorDeclarator(D, R, SC);
4130
4131      // Create the new declaration
4132      CXXConstructorDecl *NewCD = CXXConstructorDecl::Create(
4133                                         Context,
4134                                         cast<CXXRecordDecl>(DC),
4135                                         D.getSourceRange().getBegin(),
4136                                         NameInfo, R, TInfo,
4137                                         isExplicit, isInline,
4138                                         /*isImplicitlyDeclared=*/false);
4139
4140      NewFD = NewCD;
4141    } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4142      // This is a C++ destructor declaration.
4143      if (DC->isRecord()) {
4144        R = CheckDestructorDeclarator(D, R, SC);
4145
4146        NewFD = CXXDestructorDecl::Create(Context,
4147                                          cast<CXXRecordDecl>(DC),
4148                                          D.getSourceRange().getBegin(),
4149                                          NameInfo, R, TInfo,
4150                                          isInline,
4151                                          /*isImplicitlyDeclared=*/false);
4152        isVirtualOkay = true;
4153      } else {
4154        Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
4155
4156        // Create a FunctionDecl to satisfy the function definition parsing
4157        // code path.
4158        NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4159                                     D.getIdentifierLoc(), Name, R, TInfo,
4160                                     SC, SCAsWritten, isInline,
4161                                     /*hasPrototype=*/true);
4162        D.setInvalidType();
4163      }
4164    } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
4165      if (!DC->isRecord()) {
4166        Diag(D.getIdentifierLoc(),
4167             diag::err_conv_function_not_member);
4168        return 0;
4169      }
4170
4171      CheckConversionDeclarator(D, R, SC);
4172      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
4173                                        D.getSourceRange().getBegin(),
4174                                        NameInfo, R, TInfo,
4175                                        isInline, isExplicit,
4176                                        SourceLocation());
4177
4178      isVirtualOkay = true;
4179    } else if (DC->isRecord()) {
4180      // If the of the function is the same as the name of the record, then this
4181      // must be an invalid constructor that has a return type.
4182      // (The parser checks for a return type and makes the declarator a
4183      // constructor if it has no return type).
4184      // must have an invalid constructor that has a return type
4185      if (Name.getAsIdentifierInfo() &&
4186          Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
4187        Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
4188          << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4189          << SourceRange(D.getIdentifierLoc());
4190        return 0;
4191      }
4192
4193      bool isStatic = SC == SC_Static;
4194
4195      // [class.free]p1:
4196      // Any allocation function for a class T is a static member
4197      // (even if not explicitly declared static).
4198      if (Name.getCXXOverloadedOperator() == OO_New ||
4199          Name.getCXXOverloadedOperator() == OO_Array_New)
4200        isStatic = true;
4201
4202      // [class.free]p6 Any deallocation function for a class X is a static member
4203      // (even if not explicitly declared static).
4204      if (Name.getCXXOverloadedOperator() == OO_Delete ||
4205          Name.getCXXOverloadedOperator() == OO_Array_Delete)
4206        isStatic = true;
4207
4208      // This is a C++ method declaration.
4209      CXXMethodDecl *NewMD = CXXMethodDecl::Create(
4210                                               Context, cast<CXXRecordDecl>(DC),
4211                                               D.getSourceRange().getBegin(),
4212                                               NameInfo, R, TInfo,
4213                                               isStatic, SCAsWritten, isInline,
4214                                               SourceLocation());
4215      NewFD = NewMD;
4216
4217      isVirtualOkay = !isStatic;
4218    } else {
4219      // Determine whether the function was written with a
4220      // prototype. This true when:
4221      //   - we're in C++ (where every function has a prototype),
4222      NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4223                                   NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4224                                   true/*HasPrototype*/);
4225    }
4226
4227    if (isFriend && !isInline && IsFunctionDefinition) {
4228      // C++ [class.friend]p5
4229      //   A function can be defined in a friend declaration of a
4230      //   class . . . . Such a function is implicitly inline.
4231      NewFD->setImplicitlyInline();
4232    }
4233
4234    SetNestedNameSpecifier(NewFD, D);
4235    isExplicitSpecialization = false;
4236    isFunctionTemplateSpecialization = false;
4237    if (D.isInvalidType())
4238      NewFD->setInvalidDecl();
4239
4240    // Set the lexical context. If the declarator has a C++
4241    // scope specifier, or is the object of a friend declaration, the
4242    // lexical context will be different from the semantic context.
4243    NewFD->setLexicalDeclContext(CurContext);
4244
4245    // Match up the template parameter lists with the scope specifier, then
4246    // determine whether we have a template or a template specialization.
4247    bool Invalid = false;
4248    if (TemplateParameterList *TemplateParams
4249          = MatchTemplateParametersToScopeSpecifier(
4250                                  D.getDeclSpec().getSourceRange().getBegin(),
4251                                  D.getIdentifierLoc(),
4252                                  D.getCXXScopeSpec(),
4253                                  TemplateParamLists.get(),
4254                                  TemplateParamLists.size(),
4255                                  isFriend,
4256                                  isExplicitSpecialization,
4257                                  Invalid)) {
4258      if (TemplateParams->size() > 0) {
4259        // This is a function template
4260
4261        // Check that we can declare a template here.
4262        if (CheckTemplateDeclScope(S, TemplateParams))
4263          return 0;
4264
4265        // A destructor cannot be a template.
4266        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4267          Diag(NewFD->getLocation(), diag::err_destructor_template);
4268          return 0;
4269        }
4270
4271        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
4272                                                        NewFD->getLocation(),
4273                                                        Name, TemplateParams,
4274                                                        NewFD);
4275        FunctionTemplate->setLexicalDeclContext(CurContext);
4276        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
4277
4278        // For source fidelity, store the other template param lists.
4279        if (TemplateParamLists.size() > 1) {
4280          NewFD->setTemplateParameterListsInfo(Context,
4281                                               TemplateParamLists.size() - 1,
4282                                               TemplateParamLists.release());
4283        }
4284      } else {
4285        // This is a function template specialization.
4286        isFunctionTemplateSpecialization = true;
4287        // For source fidelity, store all the template param lists.
4288        NewFD->setTemplateParameterListsInfo(Context,
4289                                             TemplateParamLists.size(),
4290                                             TemplateParamLists.release());
4291
4292        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
4293        if (isFriend) {
4294          // We want to remove the "template<>", found here.
4295          SourceRange RemoveRange = TemplateParams->getSourceRange();
4296
4297          // If we remove the template<> and the name is not a
4298          // template-id, we're actually silently creating a problem:
4299          // the friend declaration will refer to an untemplated decl,
4300          // and clearly the user wants a template specialization.  So
4301          // we need to insert '<>' after the name.
4302          SourceLocation InsertLoc;
4303          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
4304            InsertLoc = D.getName().getSourceRange().getEnd();
4305            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
4306          }
4307
4308          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
4309            << Name << RemoveRange
4310            << FixItHint::CreateRemoval(RemoveRange)
4311            << FixItHint::CreateInsertion(InsertLoc, "<>");
4312        }
4313      }
4314    }
4315    else {
4316      // All template param lists were matched against the scope specifier:
4317      // this is NOT (an explicit specialization of) a template.
4318      if (TemplateParamLists.size() > 0)
4319        // For source fidelity, store all the template param lists.
4320        NewFD->setTemplateParameterListsInfo(Context,
4321                                             TemplateParamLists.size(),
4322                                             TemplateParamLists.release());
4323    }
4324
4325    if (Invalid) {
4326      NewFD->setInvalidDecl();
4327      if (FunctionTemplate)
4328        FunctionTemplate->setInvalidDecl();
4329    }
4330
4331    // C++ [dcl.fct.spec]p5:
4332    //   The virtual specifier shall only be used in declarations of
4333    //   nonstatic class member functions that appear within a
4334    //   member-specification of a class declaration; see 10.3.
4335    //
4336    if (isVirtual && !NewFD->isInvalidDecl()) {
4337      if (!isVirtualOkay) {
4338        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4339             diag::err_virtual_non_function);
4340      } else if (!CurContext->isRecord()) {
4341        // 'virtual' was specified outside of the class.
4342        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4343             diag::err_virtual_out_of_class)
4344          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4345      } else if (NewFD->getDescribedFunctionTemplate()) {
4346        // C++ [temp.mem]p3:
4347        //  A member function template shall not be virtual.
4348        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4349             diag::err_virtual_member_function_template)
4350          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4351      } else {
4352        // Okay: Add virtual to the method.
4353        NewFD->setVirtualAsWritten(true);
4354      }
4355    }
4356
4357    // C++ [dcl.fct.spec]p3:
4358    //  The inline specifier shall not appear on a block scope function declaration.
4359    if (isInline && !NewFD->isInvalidDecl()) {
4360      if (CurContext->isFunctionOrMethod()) {
4361        // 'inline' is not allowed on block scope function declaration.
4362        Diag(D.getDeclSpec().getInlineSpecLoc(),
4363             diag::err_inline_declaration_block_scope) << Name
4364          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
4365      }
4366    }
4367
4368    // C++ [dcl.fct.spec]p6:
4369    //  The explicit specifier shall be used only in the declaration of a
4370    //  constructor or conversion function within its class definition; see 12.3.1
4371    //  and 12.3.2.
4372    if (isExplicit && !NewFD->isInvalidDecl()) {
4373      if (!CurContext->isRecord()) {
4374        // 'explicit' was specified outside of the class.
4375        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4376             diag::err_explicit_out_of_class)
4377          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4378      } else if (!isa<CXXConstructorDecl>(NewFD) &&
4379                 !isa<CXXConversionDecl>(NewFD)) {
4380        // 'explicit' was specified on a function that wasn't a constructor
4381        // or conversion function.
4382        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4383             diag::err_explicit_non_ctor_or_conv_function)
4384          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4385      }
4386    }
4387
4388    // Filter out previous declarations that don't match the scope.
4389    FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
4390                         isExplicitSpecialization ||
4391                         isFunctionTemplateSpecialization);
4392
4393    if (isFriend) {
4394      // For now, claim that the objects have no previous declaration.
4395      if (FunctionTemplate) {
4396        FunctionTemplate->setObjectOfFriendDecl(false);
4397        FunctionTemplate->setAccess(AS_public);
4398      }
4399      NewFD->setObjectOfFriendDecl(false);
4400      NewFD->setAccess(AS_public);
4401    }
4402
4403    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext && IsFunctionDefinition) {
4404      // A method is implicitly inline if it's defined in its class
4405      // definition.
4406      NewFD->setImplicitlyInline();
4407    }
4408
4409    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
4410        !CurContext->isRecord()) {
4411      // C++ [class.static]p1:
4412      //   A data or function member of a class may be declared static
4413      //   in a class definition, in which case it is a static member of
4414      //   the class.
4415
4416      // Complain about the 'static' specifier if it's on an out-of-line
4417      // member function definition.
4418      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4419           diag::err_static_out_of_line)
4420        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4421    }
4422  }
4423
4424  // Handle GNU asm-label extension (encoded as an attribute).
4425  if (Expr *E = (Expr*) D.getAsmLabel()) {
4426    // The parser guarantees this is a string.
4427    StringLiteral *SE = cast<StringLiteral>(E);
4428    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
4429                                                SE->getString()));
4430  }
4431
4432  // Copy the parameter declarations from the declarator D to the function
4433  // declaration NewFD, if they are available.  First scavenge them into Params.
4434  llvm::SmallVector<ParmVarDecl*, 16> Params;
4435  if (D.isFunctionDeclarator()) {
4436    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4437
4438    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
4439    // function that takes no arguments, not a function that takes a
4440    // single void argument.
4441    // We let through "const void" here because Sema::GetTypeForDeclarator
4442    // already checks for that case.
4443    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
4444        FTI.ArgInfo[0].Param &&
4445        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
4446      // Empty arg list, don't push any params.
4447      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
4448
4449      // In C++, the empty parameter-type-list must be spelled "void"; a
4450      // typedef of void is not permitted.
4451      if (getLangOptions().CPlusPlus &&
4452          Param->getType().getUnqualifiedType() != Context.VoidTy) {
4453        bool IsTypeAlias = false;
4454        if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
4455          IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
4456        else if (const TemplateSpecializationType *TST =
4457                   Param->getType()->getAs<TemplateSpecializationType>())
4458          IsTypeAlias = TST->isTypeAlias();
4459        Diag(Param->getLocation(), diag::err_param_typedef_of_void)
4460          << IsTypeAlias;
4461      }
4462    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
4463      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
4464        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
4465        assert(Param->getDeclContext() != NewFD && "Was set before ?");
4466        Param->setDeclContext(NewFD);
4467        Params.push_back(Param);
4468
4469        if (Param->isInvalidDecl())
4470          NewFD->setInvalidDecl();
4471      }
4472    }
4473
4474  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
4475    // When we're declaring a function with a typedef, typeof, etc as in the
4476    // following example, we'll need to synthesize (unnamed)
4477    // parameters for use in the declaration.
4478    //
4479    // @code
4480    // typedef void fn(int);
4481    // fn f;
4482    // @endcode
4483
4484    // Synthesize a parameter for each argument type.
4485    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
4486         AE = FT->arg_type_end(); AI != AE; ++AI) {
4487      ParmVarDecl *Param =
4488        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
4489      Param->setScopeInfo(0, Params.size());
4490      Params.push_back(Param);
4491    }
4492  } else {
4493    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
4494           "Should not need args for typedef of non-prototype fn");
4495  }
4496  // Finally, we know we have the right number of parameters, install them.
4497  NewFD->setParams(Params.data(), Params.size());
4498
4499  // Process the non-inheritable attributes on this declaration.
4500  ProcessDeclAttributes(S, NewFD, D,
4501                        /*NonInheritable=*/true, /*Inheritable=*/false);
4502
4503  if (!getLangOptions().CPlusPlus) {
4504    // Perform semantic checking on the function declaration.
4505    bool isExplctSpecialization=false;
4506    CheckFunctionDeclaration(S, NewFD, Previous, isExplctSpecialization,
4507                             Redeclaration);
4508    assert((NewFD->isInvalidDecl() || !Redeclaration ||
4509            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
4510           "previous declaration set still overloaded");
4511  } else {
4512    // If the declarator is a template-id, translate the parser's template
4513    // argument list into our AST format.
4514    bool HasExplicitTemplateArgs = false;
4515    TemplateArgumentListInfo TemplateArgs;
4516    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
4517      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
4518      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
4519      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
4520      ASTTemplateArgsPtr TemplateArgsPtr(*this,
4521                                         TemplateId->getTemplateArgs(),
4522                                         TemplateId->NumArgs);
4523      translateTemplateArguments(TemplateArgsPtr,
4524                                 TemplateArgs);
4525      TemplateArgsPtr.release();
4526
4527      HasExplicitTemplateArgs = true;
4528
4529      if (FunctionTemplate) {
4530        // Function template with explicit template arguments.
4531        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
4532          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
4533
4534        HasExplicitTemplateArgs = false;
4535      } else if (!isFunctionTemplateSpecialization &&
4536                 !D.getDeclSpec().isFriendSpecified()) {
4537        // We have encountered something that the user meant to be a
4538        // specialization (because it has explicitly-specified template
4539        // arguments) but that was not introduced with a "template<>" (or had
4540        // too few of them).
4541        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
4542          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
4543          << FixItHint::CreateInsertion(
4544                                        D.getDeclSpec().getSourceRange().getBegin(),
4545                                                  "template<> ");
4546        isFunctionTemplateSpecialization = true;
4547      } else {
4548        // "friend void foo<>(int);" is an implicit specialization decl.
4549        isFunctionTemplateSpecialization = true;
4550      }
4551    } else if (isFriend && isFunctionTemplateSpecialization) {
4552      // This combination is only possible in a recovery case;  the user
4553      // wrote something like:
4554      //   template <> friend void foo(int);
4555      // which we're recovering from as if the user had written:
4556      //   friend void foo<>(int);
4557      // Go ahead and fake up a template id.
4558      HasExplicitTemplateArgs = true;
4559        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
4560      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
4561    }
4562
4563    // If it's a friend (and only if it's a friend), it's possible
4564    // that either the specialized function type or the specialized
4565    // template is dependent, and therefore matching will fail.  In
4566    // this case, don't check the specialization yet.
4567    if (isFunctionTemplateSpecialization && isFriend &&
4568        (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
4569      assert(HasExplicitTemplateArgs &&
4570             "friend function specialization without template args");
4571      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
4572                                                       Previous))
4573        NewFD->setInvalidDecl();
4574    } else if (isFunctionTemplateSpecialization) {
4575      if (CurContext->isDependentContext() && CurContext->isRecord()
4576          && !isFriend) {
4577        Diag(NewFD->getLocation(), diag::err_function_specialization_in_class)
4578          << NewFD->getDeclName();
4579        NewFD->setInvalidDecl();
4580        return 0;
4581      } else if (CheckFunctionTemplateSpecialization(NewFD,
4582                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
4583                                                     Previous))
4584        NewFD->setInvalidDecl();
4585    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
4586      if (CheckMemberSpecialization(NewFD, Previous))
4587          NewFD->setInvalidDecl();
4588    }
4589
4590    // Perform semantic checking on the function declaration.
4591    CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
4592                             Redeclaration);
4593
4594    assert((NewFD->isInvalidDecl() || !Redeclaration ||
4595            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
4596           "previous declaration set still overloaded");
4597
4598    NamedDecl *PrincipalDecl = (FunctionTemplate
4599                                ? cast<NamedDecl>(FunctionTemplate)
4600                                : NewFD);
4601
4602    if (isFriend && Redeclaration) {
4603      AccessSpecifier Access = AS_public;
4604      if (!NewFD->isInvalidDecl())
4605        Access = NewFD->getPreviousDeclaration()->getAccess();
4606
4607      NewFD->setAccess(Access);
4608      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
4609
4610      PrincipalDecl->setObjectOfFriendDecl(true);
4611    }
4612
4613    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
4614        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
4615      PrincipalDecl->setNonMemberOperator();
4616
4617    // If we have a function template, check the template parameter
4618    // list. This will check and merge default template arguments.
4619    if (FunctionTemplate) {
4620      FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
4621      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
4622                                 PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
4623                            D.getDeclSpec().isFriendSpecified()
4624                              ? (IsFunctionDefinition
4625                                   ? TPC_FriendFunctionTemplateDefinition
4626                                   : TPC_FriendFunctionTemplate)
4627                              : (D.getCXXScopeSpec().isSet() &&
4628                                 DC && DC->isRecord() &&
4629                                 DC->isDependentContext())
4630                                  ? TPC_ClassTemplateMember
4631                                  : TPC_FunctionTemplate);
4632    }
4633
4634    if (NewFD->isInvalidDecl()) {
4635      // Ignore all the rest of this.
4636    } else if (!Redeclaration) {
4637      // Fake up an access specifier if it's supposed to be a class member.
4638      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
4639        NewFD->setAccess(AS_public);
4640
4641      // Qualified decls generally require a previous declaration.
4642      if (D.getCXXScopeSpec().isSet()) {
4643        // ...with the major exception of templated-scope or
4644        // dependent-scope friend declarations.
4645
4646        // TODO: we currently also suppress this check in dependent
4647        // contexts because (1) the parameter depth will be off when
4648        // matching friend templates and (2) we might actually be
4649        // selecting a friend based on a dependent factor.  But there
4650        // are situations where these conditions don't apply and we
4651        // can actually do this check immediately.
4652        if (isFriend &&
4653            (TemplateParamLists.size() ||
4654             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
4655             CurContext->isDependentContext())) {
4656              // ignore these
4657            } else {
4658              // The user tried to provide an out-of-line definition for a
4659              // function that is a member of a class or namespace, but there
4660              // was no such member function declared (C++ [class.mfct]p2,
4661              // C++ [namespace.memdef]p2). For example:
4662              //
4663              // class X {
4664              //   void f() const;
4665              // };
4666              //
4667              // void X::f() { } // ill-formed
4668              //
4669              // Complain about this problem, and attempt to suggest close
4670              // matches (e.g., those that differ only in cv-qualifiers and
4671              // whether the parameter types are references).
4672              Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
4673              << Name << DC << D.getCXXScopeSpec().getRange();
4674              NewFD->setInvalidDecl();
4675
4676              DiagnoseInvalidRedeclaration(*this, NewFD);
4677            }
4678
4679        // Unqualified local friend declarations are required to resolve
4680        // to something.
4681        } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
4682          Diag(D.getIdentifierLoc(), diag::err_no_matching_local_friend);
4683          NewFD->setInvalidDecl();
4684          DiagnoseInvalidRedeclaration(*this, NewFD);
4685        }
4686
4687    } else if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
4688               !isFriend && !isFunctionTemplateSpecialization &&
4689               !isExplicitSpecialization) {
4690      // An out-of-line member function declaration must also be a
4691      // definition (C++ [dcl.meaning]p1).
4692      // Note that this is not the case for explicit specializations of
4693      // function templates or member functions of class templates, per
4694      // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
4695      // for compatibility with old SWIG code which likes to generate them.
4696      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
4697        << D.getCXXScopeSpec().getRange();
4698    }
4699  }
4700
4701
4702  // Handle attributes. We need to have merged decls when handling attributes
4703  // (for example to check for conflicts, etc).
4704  // FIXME: This needs to happen before we merge declarations. Then,
4705  // let attribute merging cope with attribute conflicts.
4706  ProcessDeclAttributes(S, NewFD, D,
4707                        /*NonInheritable=*/false, /*Inheritable=*/true);
4708
4709  // attributes declared post-definition are currently ignored
4710  // FIXME: This should happen during attribute merging
4711  if (Redeclaration && Previous.isSingleResult()) {
4712    const FunctionDecl *Def;
4713    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
4714    if (PrevFD && PrevFD->isDefined(Def) && D.hasAttributes()) {
4715      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
4716      Diag(Def->getLocation(), diag::note_previous_definition);
4717    }
4718  }
4719
4720  AddKnownFunctionAttributes(NewFD);
4721
4722  if (NewFD->hasAttr<OverloadableAttr>() &&
4723      !NewFD->getType()->getAs<FunctionProtoType>()) {
4724    Diag(NewFD->getLocation(),
4725         diag::err_attribute_overloadable_no_prototype)
4726      << NewFD;
4727
4728    // Turn this into a variadic function with no parameters.
4729    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
4730    FunctionProtoType::ExtProtoInfo EPI;
4731    EPI.Variadic = true;
4732    EPI.ExtInfo = FT->getExtInfo();
4733
4734    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
4735    NewFD->setType(R);
4736  }
4737
4738  // If there's a #pragma GCC visibility in scope, and this isn't a class
4739  // member, set the visibility of this function.
4740  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
4741    AddPushedVisibilityAttribute(NewFD);
4742
4743  // If this is a locally-scoped extern C function, update the
4744  // map of such names.
4745  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
4746      && !NewFD->isInvalidDecl())
4747    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
4748
4749  // Set this FunctionDecl's range up to the right paren.
4750  NewFD->setRangeEnd(D.getSourceRange().getEnd());
4751
4752  if (getLangOptions().CPlusPlus) {
4753    if (FunctionTemplate) {
4754      if (NewFD->isInvalidDecl())
4755        FunctionTemplate->setInvalidDecl();
4756      return FunctionTemplate;
4757    }
4758  }
4759
4760  MarkUnusedFileScopedDecl(NewFD);
4761
4762  if (getLangOptions().CUDA)
4763    if (IdentifierInfo *II = NewFD->getIdentifier())
4764      if (!NewFD->isInvalidDecl() &&
4765          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
4766        if (II->isStr("cudaConfigureCall")) {
4767          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
4768            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
4769
4770          Context.setcudaConfigureCallDecl(NewFD);
4771        }
4772      }
4773
4774  return NewFD;
4775}
4776
4777/// \brief Perform semantic checking of a new function declaration.
4778///
4779/// Performs semantic analysis of the new function declaration
4780/// NewFD. This routine performs all semantic checking that does not
4781/// require the actual declarator involved in the declaration, and is
4782/// used both for the declaration of functions as they are parsed
4783/// (called via ActOnDeclarator) and for the declaration of functions
4784/// that have been instantiated via C++ template instantiation (called
4785/// via InstantiateDecl).
4786///
4787/// \param IsExplicitSpecialiation whether this new function declaration is
4788/// an explicit specialization of the previous declaration.
4789///
4790/// This sets NewFD->isInvalidDecl() to true if there was an error.
4791void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
4792                                    LookupResult &Previous,
4793                                    bool IsExplicitSpecialization,
4794                                    bool &Redeclaration) {
4795  // If NewFD is already known erroneous, don't do any of this checking.
4796  if (NewFD->isInvalidDecl()) {
4797    // If this is a class member, mark the class invalid immediately.
4798    // This avoids some consistency errors later.
4799    if (isa<CXXMethodDecl>(NewFD))
4800      cast<CXXMethodDecl>(NewFD)->getParent()->setInvalidDecl();
4801
4802    return;
4803  }
4804
4805  if (NewFD->getResultType()->isVariablyModifiedType()) {
4806    // Functions returning a variably modified type violate C99 6.7.5.2p2
4807    // because all functions have linkage.
4808    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
4809    return NewFD->setInvalidDecl();
4810  }
4811
4812  if (NewFD->isMain())
4813    CheckMain(NewFD);
4814
4815  // Check for a previous declaration of this name.
4816  if (Previous.empty() && NewFD->isExternC()) {
4817    // Since we did not find anything by this name and we're declaring
4818    // an extern "C" function, look for a non-visible extern "C"
4819    // declaration with the same name.
4820    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4821      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
4822    if (Pos != LocallyScopedExternalDecls.end())
4823      Previous.addDecl(Pos->second);
4824  }
4825
4826  // Merge or overload the declaration with an existing declaration of
4827  // the same name, if appropriate.
4828  if (!Previous.empty()) {
4829    // Determine whether NewFD is an overload of PrevDecl or
4830    // a declaration that requires merging. If it's an overload,
4831    // there's no more work to do here; we'll just add the new
4832    // function to the scope.
4833
4834    NamedDecl *OldDecl = 0;
4835    if (!AllowOverloadingOfFunction(Previous, Context)) {
4836      Redeclaration = true;
4837      OldDecl = Previous.getFoundDecl();
4838    } else {
4839      switch (CheckOverload(S, NewFD, Previous, OldDecl,
4840                            /*NewIsUsingDecl*/ false)) {
4841      case Ovl_Match:
4842        Redeclaration = true;
4843        break;
4844
4845      case Ovl_NonFunction:
4846        Redeclaration = true;
4847        break;
4848
4849      case Ovl_Overload:
4850        Redeclaration = false;
4851        break;
4852      }
4853
4854      if (!getLangOptions().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
4855        // If a function name is overloadable in C, then every function
4856        // with that name must be marked "overloadable".
4857        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
4858          << Redeclaration << NewFD;
4859        NamedDecl *OverloadedDecl = 0;
4860        if (Redeclaration)
4861          OverloadedDecl = OldDecl;
4862        else if (!Previous.empty())
4863          OverloadedDecl = Previous.getRepresentativeDecl();
4864        if (OverloadedDecl)
4865          Diag(OverloadedDecl->getLocation(),
4866               diag::note_attribute_overloadable_prev_overload);
4867        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
4868                                                        Context));
4869      }
4870    }
4871
4872    if (Redeclaration) {
4873      // NewFD and OldDecl represent declarations that need to be
4874      // merged.
4875      if (MergeFunctionDecl(NewFD, OldDecl))
4876        return NewFD->setInvalidDecl();
4877
4878      Previous.clear();
4879      Previous.addDecl(OldDecl);
4880
4881      if (FunctionTemplateDecl *OldTemplateDecl
4882                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
4883        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
4884        FunctionTemplateDecl *NewTemplateDecl
4885          = NewFD->getDescribedFunctionTemplate();
4886        assert(NewTemplateDecl && "Template/non-template mismatch");
4887        if (CXXMethodDecl *Method
4888              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
4889          Method->setAccess(OldTemplateDecl->getAccess());
4890          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
4891        }
4892
4893        // If this is an explicit specialization of a member that is a function
4894        // template, mark it as a member specialization.
4895        if (IsExplicitSpecialization &&
4896            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
4897          NewTemplateDecl->setMemberSpecialization();
4898          assert(OldTemplateDecl->isMemberSpecialization());
4899        }
4900      } else {
4901        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
4902          NewFD->setAccess(OldDecl->getAccess());
4903        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
4904      }
4905    }
4906  }
4907
4908  // Semantic checking for this function declaration (in isolation).
4909  if (getLangOptions().CPlusPlus) {
4910    // C++-specific checks.
4911    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
4912      CheckConstructor(Constructor);
4913    } else if (CXXDestructorDecl *Destructor =
4914                dyn_cast<CXXDestructorDecl>(NewFD)) {
4915      CXXRecordDecl *Record = Destructor->getParent();
4916      QualType ClassType = Context.getTypeDeclType(Record);
4917
4918      // FIXME: Shouldn't we be able to perform this check even when the class
4919      // type is dependent? Both gcc and edg can handle that.
4920      if (!ClassType->isDependentType()) {
4921        DeclarationName Name
4922          = Context.DeclarationNames.getCXXDestructorName(
4923                                        Context.getCanonicalType(ClassType));
4924        if (NewFD->getDeclName() != Name) {
4925          Diag(NewFD->getLocation(), diag::err_destructor_name);
4926          return NewFD->setInvalidDecl();
4927        }
4928      }
4929    } else if (CXXConversionDecl *Conversion
4930               = dyn_cast<CXXConversionDecl>(NewFD)) {
4931      ActOnConversionDeclarator(Conversion);
4932    }
4933
4934    // Find any virtual functions that this function overrides.
4935    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
4936      if (!Method->isFunctionTemplateSpecialization() &&
4937          !Method->getDescribedFunctionTemplate()) {
4938        if (AddOverriddenMethods(Method->getParent(), Method)) {
4939          // If the function was marked as "static", we have a problem.
4940          if (NewFD->getStorageClass() == SC_Static) {
4941            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
4942              << NewFD->getDeclName();
4943            for (CXXMethodDecl::method_iterator
4944                      Overridden = Method->begin_overridden_methods(),
4945                   OverriddenEnd = Method->end_overridden_methods();
4946                 Overridden != OverriddenEnd;
4947                 ++Overridden) {
4948              Diag((*Overridden)->getLocation(),
4949                   diag::note_overridden_virtual_function);
4950            }
4951          }
4952        }
4953      }
4954    }
4955
4956    // Extra checking for C++ overloaded operators (C++ [over.oper]).
4957    if (NewFD->isOverloadedOperator() &&
4958        CheckOverloadedOperatorDeclaration(NewFD))
4959      return NewFD->setInvalidDecl();
4960
4961    // Extra checking for C++0x literal operators (C++0x [over.literal]).
4962    if (NewFD->getLiteralIdentifier() &&
4963        CheckLiteralOperatorDeclaration(NewFD))
4964      return NewFD->setInvalidDecl();
4965
4966    // In C++, check default arguments now that we have merged decls. Unless
4967    // the lexical context is the class, because in this case this is done
4968    // during delayed parsing anyway.
4969    if (!CurContext->isRecord())
4970      CheckCXXDefaultArguments(NewFD);
4971
4972    // If this function declares a builtin function, check the type of this
4973    // declaration against the expected type for the builtin.
4974    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
4975      ASTContext::GetBuiltinTypeError Error;
4976      QualType T = Context.GetBuiltinType(BuiltinID, Error);
4977      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
4978        // The type of this function differs from the type of the builtin,
4979        // so forget about the builtin entirely.
4980        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
4981      }
4982    }
4983  }
4984}
4985
4986void Sema::CheckMain(FunctionDecl* FD) {
4987  // C++ [basic.start.main]p3:  A program that declares main to be inline
4988  //   or static is ill-formed.
4989  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
4990  //   shall not appear in a declaration of main.
4991  // static main is not an error under C99, but we should warn about it.
4992  bool isInline = FD->isInlineSpecified();
4993  bool isStatic = FD->getStorageClass() == SC_Static;
4994  if (isInline || isStatic) {
4995    unsigned diagID = diag::warn_unusual_main_decl;
4996    if (isInline || getLangOptions().CPlusPlus)
4997      diagID = diag::err_unusual_main_decl;
4998
4999    int which = isStatic + (isInline << 1) - 1;
5000    Diag(FD->getLocation(), diagID) << which;
5001  }
5002
5003  QualType T = FD->getType();
5004  assert(T->isFunctionType() && "function decl is not of function type");
5005  const FunctionType* FT = T->getAs<FunctionType>();
5006
5007  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
5008    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
5009    FD->setInvalidDecl(true);
5010  }
5011
5012  // Treat protoless main() as nullary.
5013  if (isa<FunctionNoProtoType>(FT)) return;
5014
5015  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
5016  unsigned nparams = FTP->getNumArgs();
5017  assert(FD->getNumParams() == nparams);
5018
5019  bool HasExtraParameters = (nparams > 3);
5020
5021  // Darwin passes an undocumented fourth argument of type char**.  If
5022  // other platforms start sprouting these, the logic below will start
5023  // getting shifty.
5024  if (nparams == 4 && Context.Target.getTriple().isOSDarwin())
5025    HasExtraParameters = false;
5026
5027  if (HasExtraParameters) {
5028    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
5029    FD->setInvalidDecl(true);
5030    nparams = 3;
5031  }
5032
5033  // FIXME: a lot of the following diagnostics would be improved
5034  // if we had some location information about types.
5035
5036  QualType CharPP =
5037    Context.getPointerType(Context.getPointerType(Context.CharTy));
5038  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
5039
5040  for (unsigned i = 0; i < nparams; ++i) {
5041    QualType AT = FTP->getArgType(i);
5042
5043    bool mismatch = true;
5044
5045    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
5046      mismatch = false;
5047    else if (Expected[i] == CharPP) {
5048      // As an extension, the following forms are okay:
5049      //   char const **
5050      //   char const * const *
5051      //   char * const *
5052
5053      QualifierCollector qs;
5054      const PointerType* PT;
5055      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
5056          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
5057          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
5058        qs.removeConst();
5059        mismatch = !qs.empty();
5060      }
5061    }
5062
5063    if (mismatch) {
5064      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
5065      // TODO: suggest replacing given type with expected type
5066      FD->setInvalidDecl(true);
5067    }
5068  }
5069
5070  if (nparams == 1 && !FD->isInvalidDecl()) {
5071    Diag(FD->getLocation(), diag::warn_main_one_arg);
5072  }
5073
5074  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
5075    Diag(FD->getLocation(), diag::err_main_template_decl);
5076    FD->setInvalidDecl();
5077  }
5078}
5079
5080bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
5081  // FIXME: Need strict checking.  In C89, we need to check for
5082  // any assignment, increment, decrement, function-calls, or
5083  // commas outside of a sizeof.  In C99, it's the same list,
5084  // except that the aforementioned are allowed in unevaluated
5085  // expressions.  Everything else falls under the
5086  // "may accept other forms of constant expressions" exception.
5087  // (We never end up here for C++, so the constant expression
5088  // rules there don't matter.)
5089  if (Init->isConstantInitializer(Context, false))
5090    return false;
5091  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
5092    << Init->getSourceRange();
5093  return true;
5094}
5095
5096namespace {
5097  // Visits an initialization expression to see if OrigDecl is evaluated in
5098  // its own initialization and throws a warning if it does.
5099  class SelfReferenceChecker
5100      : public EvaluatedExprVisitor<SelfReferenceChecker> {
5101    Sema &S;
5102    Decl *OrigDecl;
5103
5104  public:
5105    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
5106
5107    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
5108                                                    S(S), OrigDecl(OrigDecl) { }
5109
5110    void VisitExpr(Expr *E) {
5111      if (isa<ObjCMessageExpr>(*E)) return;
5112      Inherited::VisitExpr(E);
5113    }
5114
5115    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
5116      CheckForSelfReference(E);
5117      Inherited::VisitImplicitCastExpr(E);
5118    }
5119
5120    void CheckForSelfReference(ImplicitCastExpr *E) {
5121      if (E->getCastKind() != CK_LValueToRValue) return;
5122      Expr* SubExpr = E->getSubExpr()->IgnoreParenImpCasts();
5123      DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SubExpr);
5124      if (!DRE) return;
5125      Decl* ReferenceDecl = DRE->getDecl();
5126      if (OrigDecl != ReferenceDecl) return;
5127      LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
5128                          Sema::NotForRedeclaration);
5129      S.Diag(SubExpr->getLocStart(), diag::warn_uninit_self_reference_in_init)
5130        << Result.getLookupName() << OrigDecl->getLocation()
5131        << SubExpr->getSourceRange();
5132    }
5133  };
5134}
5135
5136/// AddInitializerToDecl - Adds the initializer Init to the
5137/// declaration dcl. If DirectInit is true, this is C++ direct
5138/// initialization rather than copy initialization.
5139void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
5140                                bool DirectInit, bool TypeMayContainAuto) {
5141  // If there is no declaration, there was an error parsing it.  Just ignore
5142  // the initializer.
5143  if (RealDecl == 0 || RealDecl->isInvalidDecl())
5144    return;
5145
5146  // Check for self-references within variable initializers.
5147  if (VarDecl *vd = dyn_cast<VarDecl>(RealDecl)) {
5148    // Variables declared within a function/method body are handled
5149    // by a dataflow analysis.
5150    if (!vd->hasLocalStorage() && !vd->isStaticLocal())
5151      SelfReferenceChecker(*this, RealDecl).VisitExpr(Init);
5152  }
5153  else {
5154    SelfReferenceChecker(*this, RealDecl).VisitExpr(Init);
5155  }
5156
5157  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
5158    // With declarators parsed the way they are, the parser cannot
5159    // distinguish between a normal initializer and a pure-specifier.
5160    // Thus this grotesque test.
5161    IntegerLiteral *IL;
5162    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
5163        Context.getCanonicalType(IL->getType()) == Context.IntTy)
5164      CheckPureMethod(Method, Init->getSourceRange());
5165    else {
5166      Diag(Method->getLocation(), diag::err_member_function_initialization)
5167        << Method->getDeclName() << Init->getSourceRange();
5168      Method->setInvalidDecl();
5169    }
5170    return;
5171  }
5172
5173  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
5174  if (!VDecl) {
5175    if (getLangOptions().CPlusPlus &&
5176        RealDecl->getLexicalDeclContext()->isRecord() &&
5177        isa<NamedDecl>(RealDecl))
5178      Diag(RealDecl->getLocation(), diag::err_member_initialization);
5179    else
5180      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
5181    RealDecl->setInvalidDecl();
5182    return;
5183  }
5184
5185  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
5186  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
5187    TypeSourceInfo *DeducedType = 0;
5188    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
5189      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
5190        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
5191        << Init->getSourceRange();
5192    if (!DeducedType) {
5193      RealDecl->setInvalidDecl();
5194      return;
5195    }
5196    VDecl->setTypeSourceInfo(DeducedType);
5197    VDecl->setType(DeducedType->getType());
5198
5199    // If this is a redeclaration, check that the type we just deduced matches
5200    // the previously declared type.
5201    if (VarDecl *Old = VDecl->getPreviousDeclaration())
5202      MergeVarDeclTypes(VDecl, Old);
5203  }
5204
5205
5206  // A definition must end up with a complete type, which means it must be
5207  // complete with the restriction that an array type might be completed by the
5208  // initializer; note that later code assumes this restriction.
5209  QualType BaseDeclType = VDecl->getType();
5210  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
5211    BaseDeclType = Array->getElementType();
5212  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
5213                          diag::err_typecheck_decl_incomplete_type)) {
5214    RealDecl->setInvalidDecl();
5215    return;
5216  }
5217
5218  // The variable can not have an abstract class type.
5219  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
5220                             diag::err_abstract_type_in_decl,
5221                             AbstractVariableType))
5222    VDecl->setInvalidDecl();
5223
5224  const VarDecl *Def;
5225  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
5226    Diag(VDecl->getLocation(), diag::err_redefinition)
5227      << VDecl->getDeclName();
5228    Diag(Def->getLocation(), diag::note_previous_definition);
5229    VDecl->setInvalidDecl();
5230    return;
5231  }
5232
5233  const VarDecl* PrevInit = 0;
5234  if (getLangOptions().CPlusPlus) {
5235    // C++ [class.static.data]p4
5236    //   If a static data member is of const integral or const
5237    //   enumeration type, its declaration in the class definition can
5238    //   specify a constant-initializer which shall be an integral
5239    //   constant expression (5.19). In that case, the member can appear
5240    //   in integral constant expressions. The member shall still be
5241    //   defined in a namespace scope if it is used in the program and the
5242    //   namespace scope definition shall not contain an initializer.
5243    //
5244    // We already performed a redefinition check above, but for static
5245    // data members we also need to check whether there was an in-class
5246    // declaration with an initializer.
5247    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
5248      Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
5249      Diag(PrevInit->getLocation(), diag::note_previous_definition);
5250      return;
5251    }
5252
5253    if (VDecl->hasLocalStorage())
5254      getCurFunction()->setHasBranchProtectedScope();
5255
5256    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
5257      VDecl->setInvalidDecl();
5258      return;
5259    }
5260  }
5261
5262  // Capture the variable that is being initialized and the style of
5263  // initialization.
5264  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
5265
5266  // FIXME: Poor source location information.
5267  InitializationKind Kind
5268    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
5269                                                   Init->getLocStart(),
5270                                                   Init->getLocEnd())
5271                : InitializationKind::CreateCopy(VDecl->getLocation(),
5272                                                 Init->getLocStart());
5273
5274  // Get the decls type and save a reference for later, since
5275  // CheckInitializerTypes may change it.
5276  QualType DclT = VDecl->getType(), SavT = DclT;
5277  if (VDecl->isLocalVarDecl()) {
5278    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
5279      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
5280      VDecl->setInvalidDecl();
5281    } else if (!VDecl->isInvalidDecl()) {
5282      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5283      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5284                                                MultiExprArg(*this, &Init, 1),
5285                                                &DclT);
5286      if (Result.isInvalid()) {
5287        VDecl->setInvalidDecl();
5288        return;
5289      }
5290
5291      Init = Result.takeAs<Expr>();
5292
5293      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
5294      // Don't check invalid declarations to avoid emitting useless diagnostics.
5295      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
5296        if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
5297          CheckForConstantInitializer(Init, DclT);
5298      }
5299    }
5300  } else if (VDecl->isStaticDataMember() &&
5301             VDecl->getLexicalDeclContext()->isRecord()) {
5302    // This is an in-class initialization for a static data member, e.g.,
5303    //
5304    // struct S {
5305    //   static const int value = 17;
5306    // };
5307
5308    // Try to perform the initialization regardless.
5309    if (!VDecl->isInvalidDecl()) {
5310      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5311      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5312                                          MultiExprArg(*this, &Init, 1),
5313                                          &DclT);
5314      if (Result.isInvalid()) {
5315        VDecl->setInvalidDecl();
5316        return;
5317      }
5318
5319      Init = Result.takeAs<Expr>();
5320    }
5321
5322    // C++ [class.mem]p4:
5323    //   A member-declarator can contain a constant-initializer only
5324    //   if it declares a static member (9.4) of const integral or
5325    //   const enumeration type, see 9.4.2.
5326    QualType T = VDecl->getType();
5327
5328    // Do nothing on dependent types.
5329    if (T->isDependentType()) {
5330
5331    // Require constness.
5332    } else if (!T.isConstQualified()) {
5333      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
5334        << Init->getSourceRange();
5335      VDecl->setInvalidDecl();
5336
5337    // We allow integer constant expressions in all cases.
5338    } else if (T->isIntegralOrEnumerationType()) {
5339      if (!Init->isValueDependent()) {
5340        // Check whether the expression is a constant expression.
5341        llvm::APSInt Value;
5342        SourceLocation Loc;
5343        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
5344          Diag(Loc, diag::err_in_class_initializer_non_constant)
5345            << Init->getSourceRange();
5346          VDecl->setInvalidDecl();
5347        }
5348      }
5349
5350    // We allow floating-point constants as an extension in C++03, and
5351    // C++0x has far more complicated rules that we don't really
5352    // implement fully.
5353    } else {
5354      bool Allowed = false;
5355      if (getLangOptions().CPlusPlus0x) {
5356        Allowed = T->isLiteralType();
5357      } else if (T->isFloatingType()) { // also permits complex, which is ok
5358        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
5359          << T << Init->getSourceRange();
5360        Allowed = true;
5361      }
5362
5363      if (!Allowed) {
5364        Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
5365          << T << Init->getSourceRange();
5366        VDecl->setInvalidDecl();
5367
5368      // TODO: there are probably expressions that pass here that shouldn't.
5369      } else if (!Init->isValueDependent() &&
5370                 !Init->isConstantInitializer(Context, false)) {
5371        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
5372          << Init->getSourceRange();
5373        VDecl->setInvalidDecl();
5374      }
5375    }
5376  } else if (VDecl->isFileVarDecl()) {
5377    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
5378        (!getLangOptions().CPlusPlus ||
5379         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
5380      Diag(VDecl->getLocation(), diag::warn_extern_init);
5381    if (!VDecl->isInvalidDecl()) {
5382      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5383      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5384                                                MultiExprArg(*this, &Init, 1),
5385                                                &DclT);
5386      if (Result.isInvalid()) {
5387        VDecl->setInvalidDecl();
5388        return;
5389      }
5390
5391      Init = Result.takeAs<Expr>();
5392    }
5393
5394    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
5395    // Don't check invalid declarations to avoid emitting useless diagnostics.
5396    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
5397      // C99 6.7.8p4. All file scoped initializers need to be constant.
5398      CheckForConstantInitializer(Init, DclT);
5399    }
5400  }
5401  // If the type changed, it means we had an incomplete type that was
5402  // completed by the initializer. For example:
5403  //   int ary[] = { 1, 3, 5 };
5404  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
5405  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
5406    VDecl->setType(DclT);
5407    Init->setType(DclT);
5408  }
5409
5410
5411  // If this variable is a local declaration with record type, make sure it
5412  // doesn't have a flexible member initialization.  We only support this as a
5413  // global/static definition.
5414  if (VDecl->hasLocalStorage())
5415    if (const RecordType *RT = VDecl->getType()->getAs<RecordType>())
5416      if (RT->getDecl()->hasFlexibleArrayMember()) {
5417        // Check whether the initializer tries to initialize the flexible
5418        // array member itself to anything other than an empty initializer list.
5419        if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
5420          unsigned Index = std::distance(RT->getDecl()->field_begin(),
5421                                         RT->getDecl()->field_end()) - 1;
5422          if (Index < ILE->getNumInits() &&
5423              !(isa<InitListExpr>(ILE->getInit(Index)) &&
5424                cast<InitListExpr>(ILE->getInit(Index))->getNumInits() == 0)) {
5425            Diag(VDecl->getLocation(), diag::err_nonstatic_flexible_variable);
5426            VDecl->setInvalidDecl();
5427          }
5428        }
5429      }
5430
5431  // Check any implicit conversions within the expression.
5432  CheckImplicitConversions(Init, VDecl->getLocation());
5433
5434  Init = MaybeCreateExprWithCleanups(Init);
5435  // Attach the initializer to the decl.
5436  VDecl->setInit(Init);
5437
5438  CheckCompleteVariableDeclaration(VDecl);
5439}
5440
5441/// ActOnInitializerError - Given that there was an error parsing an
5442/// initializer for the given declaration, try to return to some form
5443/// of sanity.
5444void Sema::ActOnInitializerError(Decl *D) {
5445  // Our main concern here is re-establishing invariants like "a
5446  // variable's type is either dependent or complete".
5447  if (!D || D->isInvalidDecl()) return;
5448
5449  VarDecl *VD = dyn_cast<VarDecl>(D);
5450  if (!VD) return;
5451
5452  // Auto types are meaningless if we can't make sense of the initializer.
5453  if (ParsingInitForAutoVars.count(D)) {
5454    D->setInvalidDecl();
5455    return;
5456  }
5457
5458  QualType Ty = VD->getType();
5459  if (Ty->isDependentType()) return;
5460
5461  // Require a complete type.
5462  if (RequireCompleteType(VD->getLocation(),
5463                          Context.getBaseElementType(Ty),
5464                          diag::err_typecheck_decl_incomplete_type)) {
5465    VD->setInvalidDecl();
5466    return;
5467  }
5468
5469  // Require an abstract type.
5470  if (RequireNonAbstractType(VD->getLocation(), Ty,
5471                             diag::err_abstract_type_in_decl,
5472                             AbstractVariableType)) {
5473    VD->setInvalidDecl();
5474    return;
5475  }
5476
5477  // Don't bother complaining about constructors or destructors,
5478  // though.
5479}
5480
5481void Sema::ActOnUninitializedDecl(Decl *RealDecl,
5482                                  bool TypeMayContainAuto) {
5483  // If there is no declaration, there was an error parsing it. Just ignore it.
5484  if (RealDecl == 0)
5485    return;
5486
5487  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
5488    QualType Type = Var->getType();
5489
5490    // C++0x [dcl.spec.auto]p3
5491    if (TypeMayContainAuto && Type->getContainedAutoType()) {
5492      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
5493        << Var->getDeclName() << Type;
5494      Var->setInvalidDecl();
5495      return;
5496    }
5497
5498    switch (Var->isThisDeclarationADefinition()) {
5499    case VarDecl::Definition:
5500      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
5501        break;
5502
5503      // We have an out-of-line definition of a static data member
5504      // that has an in-class initializer, so we type-check this like
5505      // a declaration.
5506      //
5507      // Fall through
5508
5509    case VarDecl::DeclarationOnly:
5510      // It's only a declaration.
5511
5512      // Block scope. C99 6.7p7: If an identifier for an object is
5513      // declared with no linkage (C99 6.2.2p6), the type for the
5514      // object shall be complete.
5515      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
5516          !Var->getLinkage() && !Var->isInvalidDecl() &&
5517          RequireCompleteType(Var->getLocation(), Type,
5518                              diag::err_typecheck_decl_incomplete_type))
5519        Var->setInvalidDecl();
5520
5521      // Make sure that the type is not abstract.
5522      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
5523          RequireNonAbstractType(Var->getLocation(), Type,
5524                                 diag::err_abstract_type_in_decl,
5525                                 AbstractVariableType))
5526        Var->setInvalidDecl();
5527      return;
5528
5529    case VarDecl::TentativeDefinition:
5530      // File scope. C99 6.9.2p2: A declaration of an identifier for an
5531      // object that has file scope without an initializer, and without a
5532      // storage-class specifier or with the storage-class specifier "static",
5533      // constitutes a tentative definition. Note: A tentative definition with
5534      // external linkage is valid (C99 6.2.2p5).
5535      if (!Var->isInvalidDecl()) {
5536        if (const IncompleteArrayType *ArrayT
5537                                    = Context.getAsIncompleteArrayType(Type)) {
5538          if (RequireCompleteType(Var->getLocation(),
5539                                  ArrayT->getElementType(),
5540                                  diag::err_illegal_decl_array_incomplete_type))
5541            Var->setInvalidDecl();
5542        } else if (Var->getStorageClass() == SC_Static) {
5543          // C99 6.9.2p3: If the declaration of an identifier for an object is
5544          // a tentative definition and has internal linkage (C99 6.2.2p3), the
5545          // declared type shall not be an incomplete type.
5546          // NOTE: code such as the following
5547          //     static struct s;
5548          //     struct s { int a; };
5549          // is accepted by gcc. Hence here we issue a warning instead of
5550          // an error and we do not invalidate the static declaration.
5551          // NOTE: to avoid multiple warnings, only check the first declaration.
5552          if (Var->getPreviousDeclaration() == 0)
5553            RequireCompleteType(Var->getLocation(), Type,
5554                                diag::ext_typecheck_decl_incomplete_type);
5555        }
5556      }
5557
5558      // Record the tentative definition; we're done.
5559      if (!Var->isInvalidDecl())
5560        TentativeDefinitions.push_back(Var);
5561      return;
5562    }
5563
5564    // Provide a specific diagnostic for uninitialized variable
5565    // definitions with incomplete array type.
5566    if (Type->isIncompleteArrayType()) {
5567      Diag(Var->getLocation(),
5568           diag::err_typecheck_incomplete_array_needs_initializer);
5569      Var->setInvalidDecl();
5570      return;
5571    }
5572
5573    // Provide a specific diagnostic for uninitialized variable
5574    // definitions with reference type.
5575    if (Type->isReferenceType()) {
5576      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
5577        << Var->getDeclName()
5578        << SourceRange(Var->getLocation(), Var->getLocation());
5579      Var->setInvalidDecl();
5580      return;
5581    }
5582
5583    // Do not attempt to type-check the default initializer for a
5584    // variable with dependent type.
5585    if (Type->isDependentType())
5586      return;
5587
5588    if (Var->isInvalidDecl())
5589      return;
5590
5591    if (RequireCompleteType(Var->getLocation(),
5592                            Context.getBaseElementType(Type),
5593                            diag::err_typecheck_decl_incomplete_type)) {
5594      Var->setInvalidDecl();
5595      return;
5596    }
5597
5598    // The variable can not have an abstract class type.
5599    if (RequireNonAbstractType(Var->getLocation(), Type,
5600                               diag::err_abstract_type_in_decl,
5601                               AbstractVariableType)) {
5602      Var->setInvalidDecl();
5603      return;
5604    }
5605
5606    const RecordType *Record
5607      = Context.getBaseElementType(Type)->getAs<RecordType>();
5608    if (Record && getLangOptions().CPlusPlus && !getLangOptions().CPlusPlus0x &&
5609        cast<CXXRecordDecl>(Record->getDecl())->isPOD()) {
5610      // C++03 [dcl.init]p9:
5611      //   If no initializer is specified for an object, and the
5612      //   object is of (possibly cv-qualified) non-POD class type (or
5613      //   array thereof), the object shall be default-initialized; if
5614      //   the object is of const-qualified type, the underlying class
5615      //   type shall have a user-declared default
5616      //   constructor. Otherwise, if no initializer is specified for
5617      //   a non- static object, the object and its subobjects, if
5618      //   any, have an indeterminate initial value); if the object
5619      //   or any of its subobjects are of const-qualified type, the
5620      //   program is ill-formed.
5621      // C++0x [dcl.init]p11:
5622      //   If no initializer is specified for an object, the object is
5623      //   default-initialized; [...].
5624    } else {
5625      // Check for jumps past the implicit initializer.  C++0x
5626      // clarifies that this applies to a "variable with automatic
5627      // storage duration", not a "local variable".
5628      // C++0x [stmt.dcl]p3
5629      //   A program that jumps from a point where a variable with automatic
5630      //   storage duration is not ins cope to a point where it is in scope is
5631      //   ill-formed unless the variable has scalar type, class type with a
5632      //   trivial defautl constructor and a trivial destructor, a cv-qualified
5633      //   version of one of these types, or an array of one of the preceding
5634      //   types and is declared without an initializer.
5635      if (getLangOptions().CPlusPlus && Var->hasLocalStorage() && Record) {
5636        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
5637        if (!getLangOptions().CPlusPlus0x ||
5638            !CXXRecord->hasTrivialDefaultConstructor() ||
5639            !CXXRecord->hasTrivialDestructor())
5640          getCurFunction()->setHasBranchProtectedScope();
5641      }
5642
5643      InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
5644      InitializationKind Kind
5645        = InitializationKind::CreateDefault(Var->getLocation());
5646
5647      InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
5648      ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
5649                                        MultiExprArg(*this, 0, 0));
5650      if (Init.isInvalid())
5651        Var->setInvalidDecl();
5652      else if (Init.get())
5653        Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
5654    }
5655
5656    CheckCompleteVariableDeclaration(Var);
5657  }
5658}
5659
5660void Sema::ActOnCXXForRangeDecl(Decl *D) {
5661  VarDecl *VD = dyn_cast<VarDecl>(D);
5662  if (!VD) {
5663    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
5664    D->setInvalidDecl();
5665    return;
5666  }
5667
5668  VD->setCXXForRangeDecl(true);
5669
5670  // for-range-declaration cannot be given a storage class specifier.
5671  int Error = -1;
5672  switch (VD->getStorageClassAsWritten()) {
5673  case SC_None:
5674    break;
5675  case SC_Extern:
5676    Error = 0;
5677    break;
5678  case SC_Static:
5679    Error = 1;
5680    break;
5681  case SC_PrivateExtern:
5682    Error = 2;
5683    break;
5684  case SC_Auto:
5685    Error = 3;
5686    break;
5687  case SC_Register:
5688    Error = 4;
5689    break;
5690  }
5691  // FIXME: constexpr isn't allowed here.
5692  //if (DS.isConstexprSpecified())
5693  //  Error = 5;
5694  if (Error != -1) {
5695    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
5696      << VD->getDeclName() << Error;
5697    D->setInvalidDecl();
5698  }
5699}
5700
5701void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
5702  if (var->isInvalidDecl()) return;
5703
5704  // All the following checks are C++ only.
5705  if (!getLangOptions().CPlusPlus) return;
5706
5707  QualType baseType = Context.getBaseElementType(var->getType());
5708  if (baseType->isDependentType()) return;
5709
5710  // __block variables might require us to capture a copy-initializer.
5711  if (var->hasAttr<BlocksAttr>()) {
5712    // It's currently invalid to ever have a __block variable with an
5713    // array type; should we diagnose that here?
5714
5715    // Regardless, we don't want to ignore array nesting when
5716    // constructing this copy.
5717    QualType type = var->getType();
5718
5719    if (type->isStructureOrClassType()) {
5720      SourceLocation poi = var->getLocation();
5721      Expr *varRef = new (Context) DeclRefExpr(var, type, VK_LValue, poi);
5722      ExprResult result =
5723        PerformCopyInitialization(
5724                        InitializedEntity::InitializeBlock(poi, type, false),
5725                                  poi, Owned(varRef));
5726      if (!result.isInvalid()) {
5727        result = MaybeCreateExprWithCleanups(result);
5728        Expr *init = result.takeAs<Expr>();
5729        Context.setBlockVarCopyInits(var, init);
5730      }
5731    }
5732  }
5733
5734  // Check for global constructors.
5735  if (!var->getDeclContext()->isDependentContext() &&
5736      var->hasGlobalStorage() &&
5737      !var->isStaticLocal() &&
5738      var->getInit() &&
5739      !var->getInit()->isConstantInitializer(Context,
5740                                             baseType->isReferenceType()))
5741    Diag(var->getLocation(), diag::warn_global_constructor)
5742      << var->getInit()->getSourceRange();
5743
5744  // Require the destructor.
5745  if (const RecordType *recordType = baseType->getAs<RecordType>())
5746    FinalizeVarWithDestructor(var, recordType);
5747}
5748
5749/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
5750/// any semantic actions necessary after any initializer has been attached.
5751void
5752Sema::FinalizeDeclaration(Decl *ThisDecl) {
5753  // Note that we are no longer parsing the initializer for this declaration.
5754  ParsingInitForAutoVars.erase(ThisDecl);
5755}
5756
5757Sema::DeclGroupPtrTy
5758Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
5759                              Decl **Group, unsigned NumDecls) {
5760  llvm::SmallVector<Decl*, 8> Decls;
5761
5762  if (DS.isTypeSpecOwned())
5763    Decls.push_back(DS.getRepAsDecl());
5764
5765  for (unsigned i = 0; i != NumDecls; ++i)
5766    if (Decl *D = Group[i])
5767      Decls.push_back(D);
5768
5769  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
5770                              DS.getTypeSpecType() == DeclSpec::TST_auto);
5771}
5772
5773/// BuildDeclaratorGroup - convert a list of declarations into a declaration
5774/// group, performing any necessary semantic checking.
5775Sema::DeclGroupPtrTy
5776Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
5777                           bool TypeMayContainAuto) {
5778  // C++0x [dcl.spec.auto]p7:
5779  //   If the type deduced for the template parameter U is not the same in each
5780  //   deduction, the program is ill-formed.
5781  // FIXME: When initializer-list support is added, a distinction is needed
5782  // between the deduced type U and the deduced type which 'auto' stands for.
5783  //   auto a = 0, b = { 1, 2, 3 };
5784  // is legal because the deduced type U is 'int' in both cases.
5785  if (TypeMayContainAuto && NumDecls > 1) {
5786    QualType Deduced;
5787    CanQualType DeducedCanon;
5788    VarDecl *DeducedDecl = 0;
5789    for (unsigned i = 0; i != NumDecls; ++i) {
5790      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
5791        AutoType *AT = D->getType()->getContainedAutoType();
5792        // Don't reissue diagnostics when instantiating a template.
5793        if (AT && D->isInvalidDecl())
5794          break;
5795        if (AT && AT->isDeduced()) {
5796          QualType U = AT->getDeducedType();
5797          CanQualType UCanon = Context.getCanonicalType(U);
5798          if (Deduced.isNull()) {
5799            Deduced = U;
5800            DeducedCanon = UCanon;
5801            DeducedDecl = D;
5802          } else if (DeducedCanon != UCanon) {
5803            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
5804                 diag::err_auto_different_deductions)
5805              << Deduced << DeducedDecl->getDeclName()
5806              << U << D->getDeclName()
5807              << DeducedDecl->getInit()->getSourceRange()
5808              << D->getInit()->getSourceRange();
5809            D->setInvalidDecl();
5810            break;
5811          }
5812        }
5813      }
5814    }
5815  }
5816
5817  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
5818}
5819
5820
5821/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
5822/// to introduce parameters into function prototype scope.
5823Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
5824  const DeclSpec &DS = D.getDeclSpec();
5825
5826  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
5827  VarDecl::StorageClass StorageClass = SC_None;
5828  VarDecl::StorageClass StorageClassAsWritten = SC_None;
5829  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
5830    StorageClass = SC_Register;
5831    StorageClassAsWritten = SC_Register;
5832  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
5833    Diag(DS.getStorageClassSpecLoc(),
5834         diag::err_invalid_storage_class_in_func_decl);
5835    D.getMutableDeclSpec().ClearStorageClassSpecs();
5836  }
5837
5838  if (D.getDeclSpec().isThreadSpecified())
5839    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5840
5841  DiagnoseFunctionSpecifiers(D);
5842
5843  TagDecl *OwnedDecl = 0;
5844  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
5845  QualType parmDeclType = TInfo->getType();
5846
5847  if (getLangOptions().CPlusPlus) {
5848    // Check that there are no default arguments inside the type of this
5849    // parameter.
5850    CheckExtraCXXDefaultArguments(D);
5851
5852    if (OwnedDecl && OwnedDecl->isDefinition()) {
5853      // C++ [dcl.fct]p6:
5854      //   Types shall not be defined in return or parameter types.
5855      Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
5856        << Context.getTypeDeclType(OwnedDecl);
5857    }
5858
5859    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
5860    if (D.getCXXScopeSpec().isSet()) {
5861      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
5862        << D.getCXXScopeSpec().getRange();
5863      D.getCXXScopeSpec().clear();
5864    }
5865  }
5866
5867  // Ensure we have a valid name
5868  IdentifierInfo *II = 0;
5869  if (D.hasName()) {
5870    II = D.getIdentifier();
5871    if (!II) {
5872      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
5873        << GetNameForDeclarator(D).getName().getAsString();
5874      D.setInvalidType(true);
5875    }
5876  }
5877
5878  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
5879  if (II) {
5880    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
5881                   ForRedeclaration);
5882    LookupName(R, S);
5883    if (R.isSingleResult()) {
5884      NamedDecl *PrevDecl = R.getFoundDecl();
5885      if (PrevDecl->isTemplateParameter()) {
5886        // Maybe we will complain about the shadowed template parameter.
5887        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5888        // Just pretend that we didn't see the previous declaration.
5889        PrevDecl = 0;
5890      } else if (S->isDeclScope(PrevDecl)) {
5891        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
5892        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5893
5894        // Recover by removing the name
5895        II = 0;
5896        D.SetIdentifier(0, D.getIdentifierLoc());
5897        D.setInvalidType(true);
5898      }
5899    }
5900  }
5901
5902  // Temporarily put parameter variables in the translation unit, not
5903  // the enclosing context.  This prevents them from accidentally
5904  // looking like class members in C++.
5905  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
5906                                    D.getSourceRange().getBegin(),
5907                                    D.getIdentifierLoc(), II,
5908                                    parmDeclType, TInfo,
5909                                    StorageClass, StorageClassAsWritten);
5910
5911  if (D.isInvalidType())
5912    New->setInvalidDecl();
5913
5914  assert(S->isFunctionPrototypeScope());
5915  assert(S->getFunctionPrototypeDepth() >= 1);
5916  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
5917                    S->getNextFunctionPrototypeIndex());
5918
5919  // Add the parameter declaration into this scope.
5920  S->AddDecl(New);
5921  if (II)
5922    IdResolver.AddDecl(New);
5923
5924  ProcessDeclAttributes(S, New, D);
5925
5926  if (New->hasAttr<BlocksAttr>()) {
5927    Diag(New->getLocation(), diag::err_block_on_nonlocal);
5928  }
5929  return New;
5930}
5931
5932/// \brief Synthesizes a variable for a parameter arising from a
5933/// typedef.
5934ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
5935                                              SourceLocation Loc,
5936                                              QualType T) {
5937  /* FIXME: setting StartLoc == Loc.
5938     Would it be worth to modify callers so as to provide proper source
5939     location for the unnamed parameters, embedding the parameter's type? */
5940  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
5941                                T, Context.getTrivialTypeSourceInfo(T, Loc),
5942                                           SC_None, SC_None, 0);
5943  Param->setImplicit();
5944  return Param;
5945}
5946
5947void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
5948                                    ParmVarDecl * const *ParamEnd) {
5949  // Don't diagnose unused-parameter errors in template instantiations; we
5950  // will already have done so in the template itself.
5951  if (!ActiveTemplateInstantiations.empty())
5952    return;
5953
5954  for (; Param != ParamEnd; ++Param) {
5955    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
5956        !(*Param)->hasAttr<UnusedAttr>()) {
5957      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
5958        << (*Param)->getDeclName();
5959    }
5960  }
5961}
5962
5963void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
5964                                                  ParmVarDecl * const *ParamEnd,
5965                                                  QualType ReturnTy,
5966                                                  NamedDecl *D) {
5967  if (LangOpts.NumLargeByValueCopy == 0) // No check.
5968    return;
5969
5970  // Warn if the return value is pass-by-value and larger than the specified
5971  // threshold.
5972  if (ReturnTy->isPODType()) {
5973    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
5974    if (Size > LangOpts.NumLargeByValueCopy)
5975      Diag(D->getLocation(), diag::warn_return_value_size)
5976          << D->getDeclName() << Size;
5977  }
5978
5979  // Warn if any parameter is pass-by-value and larger than the specified
5980  // threshold.
5981  for (; Param != ParamEnd; ++Param) {
5982    QualType T = (*Param)->getType();
5983    if (!T->isPODType())
5984      continue;
5985    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
5986    if (Size > LangOpts.NumLargeByValueCopy)
5987      Diag((*Param)->getLocation(), diag::warn_parameter_size)
5988          << (*Param)->getDeclName() << Size;
5989  }
5990}
5991
5992ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
5993                                  SourceLocation NameLoc, IdentifierInfo *Name,
5994                                  QualType T, TypeSourceInfo *TSInfo,
5995                                  VarDecl::StorageClass StorageClass,
5996                                  VarDecl::StorageClass StorageClassAsWritten) {
5997  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
5998                                         adjustParameterType(T), TSInfo,
5999                                         StorageClass, StorageClassAsWritten,
6000                                         0);
6001
6002  // Parameters can not be abstract class types.
6003  // For record types, this is done by the AbstractClassUsageDiagnoser once
6004  // the class has been completely parsed.
6005  if (!CurContext->isRecord() &&
6006      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
6007                             AbstractParamType))
6008    New->setInvalidDecl();
6009
6010  // Parameter declarators cannot be interface types. All ObjC objects are
6011  // passed by reference.
6012  if (T->isObjCObjectType()) {
6013    Diag(NameLoc,
6014         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
6015    New->setInvalidDecl();
6016  }
6017
6018  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
6019  // duration shall not be qualified by an address-space qualifier."
6020  // Since all parameters have automatic store duration, they can not have
6021  // an address space.
6022  if (T.getAddressSpace() != 0) {
6023    Diag(NameLoc, diag::err_arg_with_address_space);
6024    New->setInvalidDecl();
6025  }
6026
6027  return New;
6028}
6029
6030void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
6031                                           SourceLocation LocAfterDecls) {
6032  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6033
6034  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
6035  // for a K&R function.
6036  if (!FTI.hasPrototype) {
6037    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
6038      --i;
6039      if (FTI.ArgInfo[i].Param == 0) {
6040        llvm::SmallString<256> Code;
6041        llvm::raw_svector_ostream(Code) << "  int "
6042                                        << FTI.ArgInfo[i].Ident->getName()
6043                                        << ";\n";
6044        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
6045          << FTI.ArgInfo[i].Ident
6046          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
6047
6048        // Implicitly declare the argument as type 'int' for lack of a better
6049        // type.
6050        AttributeFactory attrs;
6051        DeclSpec DS(attrs);
6052        const char* PrevSpec; // unused
6053        unsigned DiagID; // unused
6054        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
6055                           PrevSpec, DiagID);
6056        Declarator ParamD(DS, Declarator::KNRTypeListContext);
6057        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
6058        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
6059      }
6060    }
6061  }
6062}
6063
6064Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
6065                                         Declarator &D) {
6066  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
6067  assert(D.isFunctionDeclarator() && "Not a function declarator!");
6068  Scope *ParentScope = FnBodyScope->getParent();
6069
6070  Decl *DP = HandleDeclarator(ParentScope, D,
6071                              MultiTemplateParamsArg(*this),
6072                              /*IsFunctionDefinition=*/true);
6073  return ActOnStartOfFunctionDef(FnBodyScope, DP);
6074}
6075
6076static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
6077  // Don't warn about invalid declarations.
6078  if (FD->isInvalidDecl())
6079    return false;
6080
6081  // Or declarations that aren't global.
6082  if (!FD->isGlobal())
6083    return false;
6084
6085  // Don't warn about C++ member functions.
6086  if (isa<CXXMethodDecl>(FD))
6087    return false;
6088
6089  // Don't warn about 'main'.
6090  if (FD->isMain())
6091    return false;
6092
6093  // Don't warn about inline functions.
6094  if (FD->isInlined())
6095    return false;
6096
6097  // Don't warn about function templates.
6098  if (FD->getDescribedFunctionTemplate())
6099    return false;
6100
6101  // Don't warn about function template specializations.
6102  if (FD->isFunctionTemplateSpecialization())
6103    return false;
6104
6105  bool MissingPrototype = true;
6106  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
6107       Prev; Prev = Prev->getPreviousDeclaration()) {
6108    // Ignore any declarations that occur in function or method
6109    // scope, because they aren't visible from the header.
6110    if (Prev->getDeclContext()->isFunctionOrMethod())
6111      continue;
6112
6113    MissingPrototype = !Prev->getType()->isFunctionProtoType();
6114    break;
6115  }
6116
6117  return MissingPrototype;
6118}
6119
6120void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
6121  // Don't complain if we're in GNU89 mode and the previous definition
6122  // was an extern inline function.
6123  const FunctionDecl *Definition;
6124  if (FD->isDefined(Definition) &&
6125      !canRedefineFunction(Definition, getLangOptions())) {
6126    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
6127        Definition->getStorageClass() == SC_Extern)
6128      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
6129        << FD->getDeclName() << getLangOptions().CPlusPlus;
6130    else
6131      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
6132    Diag(Definition->getLocation(), diag::note_previous_definition);
6133  }
6134}
6135
6136Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
6137  // Clear the last template instantiation error context.
6138  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
6139
6140  if (!D)
6141    return D;
6142  FunctionDecl *FD = 0;
6143
6144  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
6145    FD = FunTmpl->getTemplatedDecl();
6146  else
6147    FD = cast<FunctionDecl>(D);
6148
6149  // Enter a new function scope
6150  PushFunctionScope();
6151
6152  // See if this is a redefinition.
6153  if (!FD->isLateTemplateParsed())
6154    CheckForFunctionRedefinition(FD);
6155
6156  // Builtin functions cannot be defined.
6157  if (unsigned BuiltinID = FD->getBuiltinID()) {
6158    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
6159      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
6160      FD->setInvalidDecl();
6161    }
6162  }
6163
6164  // The return type of a function definition must be complete
6165  // (C99 6.9.1p3, C++ [dcl.fct]p6).
6166  QualType ResultType = FD->getResultType();
6167  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
6168      !FD->isInvalidDecl() &&
6169      RequireCompleteType(FD->getLocation(), ResultType,
6170                          diag::err_func_def_incomplete_result))
6171    FD->setInvalidDecl();
6172
6173  // GNU warning -Wmissing-prototypes:
6174  //   Warn if a global function is defined without a previous
6175  //   prototype declaration. This warning is issued even if the
6176  //   definition itself provides a prototype. The aim is to detect
6177  //   global functions that fail to be declared in header files.
6178  if (ShouldWarnAboutMissingPrototype(FD))
6179    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
6180
6181  if (FnBodyScope)
6182    PushDeclContext(FnBodyScope, FD);
6183
6184  // Check the validity of our function parameters
6185  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
6186                           /*CheckParameterNames=*/true);
6187
6188  // Introduce our parameters into the function scope
6189  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
6190    ParmVarDecl *Param = FD->getParamDecl(p);
6191    Param->setOwningFunction(FD);
6192
6193    // If this has an identifier, add it to the scope stack.
6194    if (Param->getIdentifier() && FnBodyScope) {
6195      CheckShadow(FnBodyScope, Param);
6196
6197      PushOnScopeChains(Param, FnBodyScope);
6198    }
6199  }
6200
6201  // Checking attributes of current function definition
6202  // dllimport attribute.
6203  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
6204  if (DA && (!FD->getAttr<DLLExportAttr>())) {
6205    // dllimport attribute cannot be directly applied to definition.
6206    // Microsoft accepts dllimport for functions defined within class scope.
6207    if (!DA->isInherited() &&
6208        !(LangOpts.Microsoft && FD->getLexicalDeclContext()->isRecord())) {
6209      Diag(FD->getLocation(),
6210           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
6211        << "dllimport";
6212      FD->setInvalidDecl();
6213      return FD;
6214    }
6215
6216    // Visual C++ appears to not think this is an issue, so only issue
6217    // a warning when Microsoft extensions are disabled.
6218    if (!LangOpts.Microsoft) {
6219      // If a symbol previously declared dllimport is later defined, the
6220      // attribute is ignored in subsequent references, and a warning is
6221      // emitted.
6222      Diag(FD->getLocation(),
6223           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
6224        << FD->getName() << "dllimport";
6225    }
6226  }
6227  return FD;
6228}
6229
6230/// \brief Given the set of return statements within a function body,
6231/// compute the variables that are subject to the named return value
6232/// optimization.
6233///
6234/// Each of the variables that is subject to the named return value
6235/// optimization will be marked as NRVO variables in the AST, and any
6236/// return statement that has a marked NRVO variable as its NRVO candidate can
6237/// use the named return value optimization.
6238///
6239/// This function applies a very simplistic algorithm for NRVO: if every return
6240/// statement in the function has the same NRVO candidate, that candidate is
6241/// the NRVO variable.
6242///
6243/// FIXME: Employ a smarter algorithm that accounts for multiple return
6244/// statements and the lifetimes of the NRVO candidates. We should be able to
6245/// find a maximal set of NRVO variables.
6246static void ComputeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
6247  ReturnStmt **Returns = Scope->Returns.data();
6248
6249  const VarDecl *NRVOCandidate = 0;
6250  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
6251    if (!Returns[I]->getNRVOCandidate())
6252      return;
6253
6254    if (!NRVOCandidate)
6255      NRVOCandidate = Returns[I]->getNRVOCandidate();
6256    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
6257      return;
6258  }
6259
6260  if (NRVOCandidate)
6261    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
6262}
6263
6264Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
6265  return ActOnFinishFunctionBody(D, move(BodyArg), false);
6266}
6267
6268Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
6269                                    bool IsInstantiation) {
6270  FunctionDecl *FD = 0;
6271  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
6272  if (FunTmpl)
6273    FD = FunTmpl->getTemplatedDecl();
6274  else
6275    FD = dyn_cast_or_null<FunctionDecl>(dcl);
6276
6277  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
6278  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
6279
6280  if (FD) {
6281    FD->setBody(Body);
6282    if (FD->isMain()) {
6283      // C and C++ allow for main to automagically return 0.
6284      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
6285      FD->setHasImplicitReturnZero(true);
6286      WP.disableCheckFallThrough();
6287    }
6288
6289    // MSVC permits the use of pure specifier (=0) on function definition,
6290    // defined at class scope, warn about this non standard construct.
6291    if (getLangOptions().Microsoft && FD->isPure())
6292      Diag(FD->getLocation(), diag::warn_pure_function_definition);
6293
6294    if (!FD->isInvalidDecl()) {
6295      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
6296      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
6297                                             FD->getResultType(), FD);
6298
6299      // If this is a constructor, we need a vtable.
6300      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
6301        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
6302
6303      ComputeNRVO(Body, getCurFunction());
6304    }
6305
6306    assert(FD == getCurFunctionDecl() && "Function parsing confused");
6307  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
6308    assert(MD == getCurMethodDecl() && "Method parsing confused");
6309    MD->setBody(Body);
6310    if (Body)
6311      MD->setEndLoc(Body->getLocEnd());
6312    if (!MD->isInvalidDecl()) {
6313      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
6314      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
6315                                             MD->getResultType(), MD);
6316    }
6317  } else {
6318    return 0;
6319  }
6320
6321  // Verify and clean out per-function state.
6322  if (Body) {
6323    // C++ constructors that have function-try-blocks can't have return
6324    // statements in the handlers of that block. (C++ [except.handle]p14)
6325    // Verify this.
6326    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
6327      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
6328
6329    // Verify that that gotos and switch cases don't jump into scopes illegally.
6330    // Verify that that gotos and switch cases don't jump into scopes illegally.
6331    if (getCurFunction()->NeedsScopeChecking() &&
6332        !dcl->isInvalidDecl() &&
6333        !hasAnyErrorsInThisFunction())
6334      DiagnoseInvalidJumps(Body);
6335
6336    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
6337      if (!Destructor->getParent()->isDependentType())
6338        CheckDestructor(Destructor);
6339
6340      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
6341                                             Destructor->getParent());
6342    }
6343
6344    // If any errors have occurred, clear out any temporaries that may have
6345    // been leftover. This ensures that these temporaries won't be picked up for
6346    // deletion in some later function.
6347    if (PP.getDiagnostics().hasErrorOccurred() ||
6348        PP.getDiagnostics().getSuppressAllDiagnostics())
6349      ExprTemporaries.clear();
6350    else if (!isa<FunctionTemplateDecl>(dcl)) {
6351      // Since the body is valid, issue any analysis-based warnings that are
6352      // enabled.
6353      ActivePolicy = &WP;
6354    }
6355
6356    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
6357  }
6358
6359  if (!IsInstantiation)
6360    PopDeclContext();
6361
6362  PopFunctionOrBlockScope(ActivePolicy, dcl);
6363
6364  // If any errors have occurred, clear out any temporaries that may have
6365  // been leftover. This ensures that these temporaries won't be picked up for
6366  // deletion in some later function.
6367  if (getDiagnostics().hasErrorOccurred())
6368    ExprTemporaries.clear();
6369
6370  return dcl;
6371}
6372
6373/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
6374/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
6375NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
6376                                          IdentifierInfo &II, Scope *S) {
6377  // Before we produce a declaration for an implicitly defined
6378  // function, see whether there was a locally-scoped declaration of
6379  // this name as a function or variable. If so, use that
6380  // (non-visible) declaration, and complain about it.
6381  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
6382    = LocallyScopedExternalDecls.find(&II);
6383  if (Pos != LocallyScopedExternalDecls.end()) {
6384    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
6385    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
6386    return Pos->second;
6387  }
6388
6389  // Extension in C99.  Legal in C90, but warn about it.
6390  if (II.getName().startswith("__builtin_"))
6391    Diag(Loc, diag::warn_builtin_unknown) << &II;
6392  else if (getLangOptions().C99)
6393    Diag(Loc, diag::ext_implicit_function_decl) << &II;
6394  else
6395    Diag(Loc, diag::warn_implicit_function_decl) << &II;
6396
6397  // Set a Declarator for the implicit definition: int foo();
6398  const char *Dummy;
6399  AttributeFactory attrFactory;
6400  DeclSpec DS(attrFactory);
6401  unsigned DiagID;
6402  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
6403  (void)Error; // Silence warning.
6404  assert(!Error && "Error setting up implicit decl!");
6405  Declarator D(DS, Declarator::BlockContext);
6406  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
6407                                             0, 0, true, SourceLocation(),
6408                                             EST_None, SourceLocation(),
6409                                             0, 0, 0, 0, Loc, Loc, D),
6410                DS.getAttributes(),
6411                SourceLocation());
6412  D.SetIdentifier(&II, Loc);
6413
6414  // Insert this function into translation-unit scope.
6415
6416  DeclContext *PrevDC = CurContext;
6417  CurContext = Context.getTranslationUnitDecl();
6418
6419  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
6420  FD->setImplicit();
6421
6422  CurContext = PrevDC;
6423
6424  AddKnownFunctionAttributes(FD);
6425
6426  return FD;
6427}
6428
6429/// \brief Adds any function attributes that we know a priori based on
6430/// the declaration of this function.
6431///
6432/// These attributes can apply both to implicitly-declared builtins
6433/// (like __builtin___printf_chk) or to library-declared functions
6434/// like NSLog or printf.
6435void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
6436  if (FD->isInvalidDecl())
6437    return;
6438
6439  // If this is a built-in function, map its builtin attributes to
6440  // actual attributes.
6441  if (unsigned BuiltinID = FD->getBuiltinID()) {
6442    // Handle printf-formatting attributes.
6443    unsigned FormatIdx;
6444    bool HasVAListArg;
6445    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
6446      if (!FD->getAttr<FormatAttr>())
6447        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6448                                                "printf", FormatIdx+1,
6449                                               HasVAListArg ? 0 : FormatIdx+2));
6450    }
6451    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
6452                                             HasVAListArg)) {
6453     if (!FD->getAttr<FormatAttr>())
6454       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6455                                              "scanf", FormatIdx+1,
6456                                              HasVAListArg ? 0 : FormatIdx+2));
6457    }
6458
6459    // Mark const if we don't care about errno and that is the only
6460    // thing preventing the function from being const. This allows
6461    // IRgen to use LLVM intrinsics for such functions.
6462    if (!getLangOptions().MathErrno &&
6463        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
6464      if (!FD->getAttr<ConstAttr>())
6465        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
6466    }
6467
6468    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
6469      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
6470    if (Context.BuiltinInfo.isConst(BuiltinID))
6471      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
6472  }
6473
6474  IdentifierInfo *Name = FD->getIdentifier();
6475  if (!Name)
6476    return;
6477  if ((!getLangOptions().CPlusPlus &&
6478       FD->getDeclContext()->isTranslationUnit()) ||
6479      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
6480       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
6481       LinkageSpecDecl::lang_c)) {
6482    // Okay: this could be a libc/libm/Objective-C function we know
6483    // about.
6484  } else
6485    return;
6486
6487  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
6488    // FIXME: NSLog and NSLogv should be target specific
6489    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
6490      // FIXME: We known better than our headers.
6491      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
6492    } else
6493      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6494                                             "printf", 1,
6495                                             Name->isStr("NSLogv") ? 0 : 2));
6496  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
6497    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
6498    // target-specific builtins, perhaps?
6499    if (!FD->getAttr<FormatAttr>())
6500      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6501                                             "printf", 2,
6502                                             Name->isStr("vasprintf") ? 0 : 3));
6503  }
6504}
6505
6506TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
6507                                    TypeSourceInfo *TInfo) {
6508  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
6509  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
6510
6511  if (!TInfo) {
6512    assert(D.isInvalidType() && "no declarator info for valid type");
6513    TInfo = Context.getTrivialTypeSourceInfo(T);
6514  }
6515
6516  // Scope manipulation handled by caller.
6517  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
6518                                           D.getSourceRange().getBegin(),
6519                                           D.getIdentifierLoc(),
6520                                           D.getIdentifier(),
6521                                           TInfo);
6522
6523  // Bail out immediately if we have an invalid declaration.
6524  if (D.isInvalidType()) {
6525    NewTD->setInvalidDecl();
6526    return NewTD;
6527  }
6528
6529  // C++ [dcl.typedef]p8:
6530  //   If the typedef declaration defines an unnamed class (or
6531  //   enum), the first typedef-name declared by the declaration
6532  //   to be that class type (or enum type) is used to denote the
6533  //   class type (or enum type) for linkage purposes only.
6534  // We need to check whether the type was declared in the declaration.
6535  switch (D.getDeclSpec().getTypeSpecType()) {
6536  case TST_enum:
6537  case TST_struct:
6538  case TST_union:
6539  case TST_class: {
6540    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
6541
6542    // Do nothing if the tag is not anonymous or already has an
6543    // associated typedef (from an earlier typedef in this decl group).
6544    if (tagFromDeclSpec->getIdentifier()) break;
6545    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
6546
6547    // A well-formed anonymous tag must always be a TUK_Definition.
6548    assert(tagFromDeclSpec->isThisDeclarationADefinition());
6549
6550    // The type must match the tag exactly;  no qualifiers allowed.
6551    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
6552      break;
6553
6554    // Otherwise, set this is the anon-decl typedef for the tag.
6555    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
6556    break;
6557  }
6558
6559  default:
6560    break;
6561  }
6562
6563  return NewTD;
6564}
6565
6566
6567/// \brief Determine whether a tag with a given kind is acceptable
6568/// as a redeclaration of the given tag declaration.
6569///
6570/// \returns true if the new tag kind is acceptable, false otherwise.
6571bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
6572                                        TagTypeKind NewTag,
6573                                        SourceLocation NewTagLoc,
6574                                        const IdentifierInfo &Name) {
6575  // C++ [dcl.type.elab]p3:
6576  //   The class-key or enum keyword present in the
6577  //   elaborated-type-specifier shall agree in kind with the
6578  //   declaration to which the name in the elaborated-type-specifier
6579  //   refers. This rule also applies to the form of
6580  //   elaborated-type-specifier that declares a class-name or
6581  //   friend class since it can be construed as referring to the
6582  //   definition of the class. Thus, in any
6583  //   elaborated-type-specifier, the enum keyword shall be used to
6584  //   refer to an enumeration (7.2), the union class-key shall be
6585  //   used to refer to a union (clause 9), and either the class or
6586  //   struct class-key shall be used to refer to a class (clause 9)
6587  //   declared using the class or struct class-key.
6588  TagTypeKind OldTag = Previous->getTagKind();
6589  if (OldTag == NewTag)
6590    return true;
6591
6592  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
6593      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
6594    // Warn about the struct/class tag mismatch.
6595    bool isTemplate = false;
6596    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
6597      isTemplate = Record->getDescribedClassTemplate();
6598
6599    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
6600      << (NewTag == TTK_Class)
6601      << isTemplate << &Name
6602      << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
6603                              OldTag == TTK_Class? "class" : "struct");
6604    Diag(Previous->getLocation(), diag::note_previous_use);
6605    return true;
6606  }
6607  return false;
6608}
6609
6610/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
6611/// former case, Name will be non-null.  In the later case, Name will be null.
6612/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
6613/// reference/declaration/definition of a tag.
6614Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
6615                     SourceLocation KWLoc, CXXScopeSpec &SS,
6616                     IdentifierInfo *Name, SourceLocation NameLoc,
6617                     AttributeList *Attr, AccessSpecifier AS,
6618                     MultiTemplateParamsArg TemplateParameterLists,
6619                     bool &OwnedDecl, bool &IsDependent,
6620                     bool ScopedEnum, bool ScopedEnumUsesClassTag,
6621                     TypeResult UnderlyingType) {
6622  // If this is not a definition, it must have a name.
6623  assert((Name != 0 || TUK == TUK_Definition) &&
6624         "Nameless record must be a definition!");
6625  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
6626
6627  OwnedDecl = false;
6628  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6629
6630  // FIXME: Check explicit specializations more carefully.
6631  bool isExplicitSpecialization = false;
6632  bool Invalid = false;
6633
6634  // We only need to do this matching if we have template parameters
6635  // or a scope specifier, which also conveniently avoids this work
6636  // for non-C++ cases.
6637  if (TemplateParameterLists.size() > 0 ||
6638      (SS.isNotEmpty() && TUK != TUK_Reference)) {
6639    if (TemplateParameterList *TemplateParams
6640          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
6641                                                TemplateParameterLists.get(),
6642                                                TemplateParameterLists.size(),
6643                                                    TUK == TUK_Friend,
6644                                                    isExplicitSpecialization,
6645                                                    Invalid)) {
6646      if (TemplateParams->size() > 0) {
6647        // This is a declaration or definition of a class template (which may
6648        // be a member of another template).
6649
6650        if (Invalid)
6651          return 0;
6652
6653        OwnedDecl = false;
6654        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
6655                                               SS, Name, NameLoc, Attr,
6656                                               TemplateParams, AS,
6657                                           TemplateParameterLists.size() - 1,
6658                 (TemplateParameterList**) TemplateParameterLists.release());
6659        return Result.get();
6660      } else {
6661        // The "template<>" header is extraneous.
6662        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
6663          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
6664        isExplicitSpecialization = true;
6665      }
6666    }
6667  }
6668
6669  // Figure out the underlying type if this a enum declaration. We need to do
6670  // this early, because it's needed to detect if this is an incompatible
6671  // redeclaration.
6672  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
6673
6674  if (Kind == TTK_Enum) {
6675    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
6676      // No underlying type explicitly specified, or we failed to parse the
6677      // type, default to int.
6678      EnumUnderlying = Context.IntTy.getTypePtr();
6679    else if (UnderlyingType.get()) {
6680      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
6681      // integral type; any cv-qualification is ignored.
6682      TypeSourceInfo *TI = 0;
6683      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
6684      EnumUnderlying = TI;
6685
6686      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
6687
6688      if (!T->isDependentType() && !T->isIntegralType(Context)) {
6689        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
6690          << T;
6691        // Recover by falling back to int.
6692        EnumUnderlying = Context.IntTy.getTypePtr();
6693      }
6694
6695      if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI,
6696                                          UPPC_FixedUnderlyingType))
6697        EnumUnderlying = Context.IntTy.getTypePtr();
6698
6699    } else if (getLangOptions().Microsoft)
6700      // Microsoft enums are always of int type.
6701      EnumUnderlying = Context.IntTy.getTypePtr();
6702  }
6703
6704  DeclContext *SearchDC = CurContext;
6705  DeclContext *DC = CurContext;
6706  bool isStdBadAlloc = false;
6707
6708  RedeclarationKind Redecl = ForRedeclaration;
6709  if (TUK == TUK_Friend || TUK == TUK_Reference)
6710    Redecl = NotForRedeclaration;
6711
6712  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
6713
6714  if (Name && SS.isNotEmpty()) {
6715    // We have a nested-name tag ('struct foo::bar').
6716
6717    // Check for invalid 'foo::'.
6718    if (SS.isInvalid()) {
6719      Name = 0;
6720      goto CreateNewDecl;
6721    }
6722
6723    // If this is a friend or a reference to a class in a dependent
6724    // context, don't try to make a decl for it.
6725    if (TUK == TUK_Friend || TUK == TUK_Reference) {
6726      DC = computeDeclContext(SS, false);
6727      if (!DC) {
6728        IsDependent = true;
6729        return 0;
6730      }
6731    } else {
6732      DC = computeDeclContext(SS, true);
6733      if (!DC) {
6734        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
6735          << SS.getRange();
6736        return 0;
6737      }
6738    }
6739
6740    if (RequireCompleteDeclContext(SS, DC))
6741      return 0;
6742
6743    SearchDC = DC;
6744    // Look-up name inside 'foo::'.
6745    LookupQualifiedName(Previous, DC);
6746
6747    if (Previous.isAmbiguous())
6748      return 0;
6749
6750    if (Previous.empty()) {
6751      // Name lookup did not find anything. However, if the
6752      // nested-name-specifier refers to the current instantiation,
6753      // and that current instantiation has any dependent base
6754      // classes, we might find something at instantiation time: treat
6755      // this as a dependent elaborated-type-specifier.
6756      // But this only makes any sense for reference-like lookups.
6757      if (Previous.wasNotFoundInCurrentInstantiation() &&
6758          (TUK == TUK_Reference || TUK == TUK_Friend)) {
6759        IsDependent = true;
6760        return 0;
6761      }
6762
6763      // A tag 'foo::bar' must already exist.
6764      Diag(NameLoc, diag::err_not_tag_in_scope)
6765        << Kind << Name << DC << SS.getRange();
6766      Name = 0;
6767      Invalid = true;
6768      goto CreateNewDecl;
6769    }
6770  } else if (Name) {
6771    // If this is a named struct, check to see if there was a previous forward
6772    // declaration or definition.
6773    // FIXME: We're looking into outer scopes here, even when we
6774    // shouldn't be. Doing so can result in ambiguities that we
6775    // shouldn't be diagnosing.
6776    LookupName(Previous, S);
6777
6778    if (Previous.isAmbiguous() &&
6779        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
6780      LookupResult::Filter F = Previous.makeFilter();
6781      while (F.hasNext()) {
6782        NamedDecl *ND = F.next();
6783        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
6784          F.erase();
6785      }
6786      F.done();
6787    }
6788
6789    // Note:  there used to be some attempt at recovery here.
6790    if (Previous.isAmbiguous())
6791      return 0;
6792
6793    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
6794      // FIXME: This makes sure that we ignore the contexts associated
6795      // with C structs, unions, and enums when looking for a matching
6796      // tag declaration or definition. See the similar lookup tweak
6797      // in Sema::LookupName; is there a better way to deal with this?
6798      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
6799        SearchDC = SearchDC->getParent();
6800    }
6801  } else if (S->isFunctionPrototypeScope()) {
6802    // If this is an enum declaration in function prototype scope, set its
6803    // initial context to the translation unit.
6804    SearchDC = Context.getTranslationUnitDecl();
6805  }
6806
6807  if (Previous.isSingleResult() &&
6808      Previous.getFoundDecl()->isTemplateParameter()) {
6809    // Maybe we will complain about the shadowed template parameter.
6810    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
6811    // Just pretend that we didn't see the previous declaration.
6812    Previous.clear();
6813  }
6814
6815  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
6816      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
6817    // This is a declaration of or a reference to "std::bad_alloc".
6818    isStdBadAlloc = true;
6819
6820    if (Previous.empty() && StdBadAlloc) {
6821      // std::bad_alloc has been implicitly declared (but made invisible to
6822      // name lookup). Fill in this implicit declaration as the previous
6823      // declaration, so that the declarations get chained appropriately.
6824      Previous.addDecl(getStdBadAlloc());
6825    }
6826  }
6827
6828  // If we didn't find a previous declaration, and this is a reference
6829  // (or friend reference), move to the correct scope.  In C++, we
6830  // also need to do a redeclaration lookup there, just in case
6831  // there's a shadow friend decl.
6832  if (Name && Previous.empty() &&
6833      (TUK == TUK_Reference || TUK == TUK_Friend)) {
6834    if (Invalid) goto CreateNewDecl;
6835    assert(SS.isEmpty());
6836
6837    if (TUK == TUK_Reference) {
6838      // C++ [basic.scope.pdecl]p5:
6839      //   -- for an elaborated-type-specifier of the form
6840      //
6841      //          class-key identifier
6842      //
6843      //      if the elaborated-type-specifier is used in the
6844      //      decl-specifier-seq or parameter-declaration-clause of a
6845      //      function defined in namespace scope, the identifier is
6846      //      declared as a class-name in the namespace that contains
6847      //      the declaration; otherwise, except as a friend
6848      //      declaration, the identifier is declared in the smallest
6849      //      non-class, non-function-prototype scope that contains the
6850      //      declaration.
6851      //
6852      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
6853      // C structs and unions.
6854      //
6855      // It is an error in C++ to declare (rather than define) an enum
6856      // type, including via an elaborated type specifier.  We'll
6857      // diagnose that later; for now, declare the enum in the same
6858      // scope as we would have picked for any other tag type.
6859      //
6860      // GNU C also supports this behavior as part of its incomplete
6861      // enum types extension, while GNU C++ does not.
6862      //
6863      // Find the context where we'll be declaring the tag.
6864      // FIXME: We would like to maintain the current DeclContext as the
6865      // lexical context,
6866      while (SearchDC->isRecord() || SearchDC->isTransparentContext())
6867        SearchDC = SearchDC->getParent();
6868
6869      // Find the scope where we'll be declaring the tag.
6870      while (S->isClassScope() ||
6871             (getLangOptions().CPlusPlus &&
6872              S->isFunctionPrototypeScope()) ||
6873             ((S->getFlags() & Scope::DeclScope) == 0) ||
6874             (S->getEntity() &&
6875              ((DeclContext *)S->getEntity())->isTransparentContext()))
6876        S = S->getParent();
6877    } else {
6878      assert(TUK == TUK_Friend);
6879      // C++ [namespace.memdef]p3:
6880      //   If a friend declaration in a non-local class first declares a
6881      //   class or function, the friend class or function is a member of
6882      //   the innermost enclosing namespace.
6883      SearchDC = SearchDC->getEnclosingNamespaceContext();
6884    }
6885
6886    // In C++, we need to do a redeclaration lookup to properly
6887    // diagnose some problems.
6888    if (getLangOptions().CPlusPlus) {
6889      Previous.setRedeclarationKind(ForRedeclaration);
6890      LookupQualifiedName(Previous, SearchDC);
6891    }
6892  }
6893
6894  if (!Previous.empty()) {
6895    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
6896
6897    // It's okay to have a tag decl in the same scope as a typedef
6898    // which hides a tag decl in the same scope.  Finding this
6899    // insanity with a redeclaration lookup can only actually happen
6900    // in C++.
6901    //
6902    // This is also okay for elaborated-type-specifiers, which is
6903    // technically forbidden by the current standard but which is
6904    // okay according to the likely resolution of an open issue;
6905    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
6906    if (getLangOptions().CPlusPlus) {
6907      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
6908        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
6909          TagDecl *Tag = TT->getDecl();
6910          if (Tag->getDeclName() == Name &&
6911              Tag->getDeclContext()->getRedeclContext()
6912                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
6913            PrevDecl = Tag;
6914            Previous.clear();
6915            Previous.addDecl(Tag);
6916            Previous.resolveKind();
6917          }
6918        }
6919      }
6920    }
6921
6922    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
6923      // If this is a use of a previous tag, or if the tag is already declared
6924      // in the same scope (so that the definition/declaration completes or
6925      // rementions the tag), reuse the decl.
6926      if (TUK == TUK_Reference || TUK == TUK_Friend ||
6927          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
6928        // Make sure that this wasn't declared as an enum and now used as a
6929        // struct or something similar.
6930        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
6931          bool SafeToContinue
6932            = (PrevTagDecl->getTagKind() != TTK_Enum &&
6933               Kind != TTK_Enum);
6934          if (SafeToContinue)
6935            Diag(KWLoc, diag::err_use_with_wrong_tag)
6936              << Name
6937              << FixItHint::CreateReplacement(SourceRange(KWLoc),
6938                                              PrevTagDecl->getKindName());
6939          else
6940            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
6941          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6942
6943          if (SafeToContinue)
6944            Kind = PrevTagDecl->getTagKind();
6945          else {
6946            // Recover by making this an anonymous redefinition.
6947            Name = 0;
6948            Previous.clear();
6949            Invalid = true;
6950          }
6951        }
6952
6953        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
6954          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
6955
6956          // All conflicts with previous declarations are recovered by
6957          // returning the previous declaration.
6958          if (ScopedEnum != PrevEnum->isScoped()) {
6959            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
6960              << PrevEnum->isScoped();
6961            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6962            return PrevTagDecl;
6963          }
6964          else if (EnumUnderlying && PrevEnum->isFixed()) {
6965            QualType T;
6966            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
6967                T = TI->getType();
6968            else
6969                T = QualType(EnumUnderlying.get<const Type*>(), 0);
6970
6971            if (!Context.hasSameUnqualifiedType(T, PrevEnum->getIntegerType())) {
6972              Diag(NameLoc.isValid() ? NameLoc : KWLoc,
6973                   diag::err_enum_redeclare_type_mismatch)
6974                << T
6975                << PrevEnum->getIntegerType();
6976              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6977              return PrevTagDecl;
6978            }
6979          }
6980          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
6981            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
6982              << PrevEnum->isFixed();
6983            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6984            return PrevTagDecl;
6985          }
6986        }
6987
6988        if (!Invalid) {
6989          // If this is a use, just return the declaration we found.
6990
6991          // FIXME: In the future, return a variant or some other clue
6992          // for the consumer of this Decl to know it doesn't own it.
6993          // For our current ASTs this shouldn't be a problem, but will
6994          // need to be changed with DeclGroups.
6995          if ((TUK == TUK_Reference && !PrevTagDecl->getFriendObjectKind()) ||
6996              TUK == TUK_Friend)
6997            return PrevTagDecl;
6998
6999          // Diagnose attempts to redefine a tag.
7000          if (TUK == TUK_Definition) {
7001            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
7002              // If we're defining a specialization and the previous definition
7003              // is from an implicit instantiation, don't emit an error
7004              // here; we'll catch this in the general case below.
7005              if (!isExplicitSpecialization ||
7006                  !isa<CXXRecordDecl>(Def) ||
7007                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
7008                                               == TSK_ExplicitSpecialization) {
7009                Diag(NameLoc, diag::err_redefinition) << Name;
7010                Diag(Def->getLocation(), diag::note_previous_definition);
7011                // If this is a redefinition, recover by making this
7012                // struct be anonymous, which will make any later
7013                // references get the previous definition.
7014                Name = 0;
7015                Previous.clear();
7016                Invalid = true;
7017              }
7018            } else {
7019              // If the type is currently being defined, complain
7020              // about a nested redefinition.
7021              const TagType *Tag
7022                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
7023              if (Tag->isBeingDefined()) {
7024                Diag(NameLoc, diag::err_nested_redefinition) << Name;
7025                Diag(PrevTagDecl->getLocation(),
7026                     diag::note_previous_definition);
7027                Name = 0;
7028                Previous.clear();
7029                Invalid = true;
7030              }
7031            }
7032
7033            // Okay, this is definition of a previously declared or referenced
7034            // tag PrevDecl. We're going to create a new Decl for it.
7035          }
7036        }
7037        // If we get here we have (another) forward declaration or we
7038        // have a definition.  Just create a new decl.
7039
7040      } else {
7041        // If we get here, this is a definition of a new tag type in a nested
7042        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
7043        // new decl/type.  We set PrevDecl to NULL so that the entities
7044        // have distinct types.
7045        Previous.clear();
7046      }
7047      // If we get here, we're going to create a new Decl. If PrevDecl
7048      // is non-NULL, it's a definition of the tag declared by
7049      // PrevDecl. If it's NULL, we have a new definition.
7050
7051
7052    // Otherwise, PrevDecl is not a tag, but was found with tag
7053    // lookup.  This is only actually possible in C++, where a few
7054    // things like templates still live in the tag namespace.
7055    } else {
7056      assert(getLangOptions().CPlusPlus);
7057
7058      // Use a better diagnostic if an elaborated-type-specifier
7059      // found the wrong kind of type on the first
7060      // (non-redeclaration) lookup.
7061      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
7062          !Previous.isForRedeclaration()) {
7063        unsigned Kind = 0;
7064        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
7065        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
7066        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
7067        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
7068        Diag(PrevDecl->getLocation(), diag::note_declared_at);
7069        Invalid = true;
7070
7071      // Otherwise, only diagnose if the declaration is in scope.
7072      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
7073                                isExplicitSpecialization)) {
7074        // do nothing
7075
7076      // Diagnose implicit declarations introduced by elaborated types.
7077      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
7078        unsigned Kind = 0;
7079        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
7080        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
7081        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
7082        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
7083        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
7084        Invalid = true;
7085
7086      // Otherwise it's a declaration.  Call out a particularly common
7087      // case here.
7088      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
7089        unsigned Kind = 0;
7090        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
7091        Diag(NameLoc, diag::err_tag_definition_of_typedef)
7092          << Name << Kind << TND->getUnderlyingType();
7093        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
7094        Invalid = true;
7095
7096      // Otherwise, diagnose.
7097      } else {
7098        // The tag name clashes with something else in the target scope,
7099        // issue an error and recover by making this tag be anonymous.
7100        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
7101        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7102        Name = 0;
7103        Invalid = true;
7104      }
7105
7106      // The existing declaration isn't relevant to us; we're in a
7107      // new scope, so clear out the previous declaration.
7108      Previous.clear();
7109    }
7110  }
7111
7112CreateNewDecl:
7113
7114  TagDecl *PrevDecl = 0;
7115  if (Previous.isSingleResult())
7116    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
7117
7118  // If there is an identifier, use the location of the identifier as the
7119  // location of the decl, otherwise use the location of the struct/union
7120  // keyword.
7121  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
7122
7123  // Otherwise, create a new declaration. If there is a previous
7124  // declaration of the same entity, the two will be linked via
7125  // PrevDecl.
7126  TagDecl *New;
7127
7128  bool IsForwardReference = false;
7129  if (Kind == TTK_Enum) {
7130    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
7131    // enum X { A, B, C } D;    D should chain to X.
7132    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
7133                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
7134                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
7135    // If this is an undefined enum, warn.
7136    if (TUK != TUK_Definition && !Invalid) {
7137      TagDecl *Def;
7138      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
7139        // C++0x: 7.2p2: opaque-enum-declaration.
7140        // Conflicts are diagnosed above. Do nothing.
7141      }
7142      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
7143        Diag(Loc, diag::ext_forward_ref_enum_def)
7144          << New;
7145        Diag(Def->getLocation(), diag::note_previous_definition);
7146      } else {
7147        unsigned DiagID = diag::ext_forward_ref_enum;
7148        if (getLangOptions().Microsoft)
7149          DiagID = diag::ext_ms_forward_ref_enum;
7150        else if (getLangOptions().CPlusPlus)
7151          DiagID = diag::err_forward_ref_enum;
7152        Diag(Loc, DiagID);
7153
7154        // If this is a forward-declared reference to an enumeration, make a
7155        // note of it; we won't actually be introducing the declaration into
7156        // the declaration context.
7157        if (TUK == TUK_Reference)
7158          IsForwardReference = true;
7159      }
7160    }
7161
7162    if (EnumUnderlying) {
7163      EnumDecl *ED = cast<EnumDecl>(New);
7164      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
7165        ED->setIntegerTypeSourceInfo(TI);
7166      else
7167        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
7168      ED->setPromotionType(ED->getIntegerType());
7169    }
7170
7171  } else {
7172    // struct/union/class
7173
7174    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
7175    // struct X { int A; } D;    D should chain to X.
7176    if (getLangOptions().CPlusPlus) {
7177      // FIXME: Look for a way to use RecordDecl for simple structs.
7178      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
7179                                  cast_or_null<CXXRecordDecl>(PrevDecl));
7180
7181      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
7182        StdBadAlloc = cast<CXXRecordDecl>(New);
7183    } else
7184      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
7185                               cast_or_null<RecordDecl>(PrevDecl));
7186  }
7187
7188  // Maybe add qualifier info.
7189  if (SS.isNotEmpty()) {
7190    if (SS.isSet()) {
7191      New->setQualifierInfo(SS.getWithLocInContext(Context));
7192      if (TemplateParameterLists.size() > 0) {
7193        New->setTemplateParameterListsInfo(Context,
7194                                           TemplateParameterLists.size(),
7195                    (TemplateParameterList**) TemplateParameterLists.release());
7196      }
7197    }
7198    else
7199      Invalid = true;
7200  }
7201
7202  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
7203    // Add alignment attributes if necessary; these attributes are checked when
7204    // the ASTContext lays out the structure.
7205    //
7206    // It is important for implementing the correct semantics that this
7207    // happen here (in act on tag decl). The #pragma pack stack is
7208    // maintained as a result of parser callbacks which can occur at
7209    // many points during the parsing of a struct declaration (because
7210    // the #pragma tokens are effectively skipped over during the
7211    // parsing of the struct).
7212    AddAlignmentAttributesForRecord(RD);
7213
7214    AddMsStructLayoutForRecord(RD);
7215  }
7216
7217  // If this is a specialization of a member class (of a class template),
7218  // check the specialization.
7219  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
7220    Invalid = true;
7221
7222  if (Invalid)
7223    New->setInvalidDecl();
7224
7225  if (Attr)
7226    ProcessDeclAttributeList(S, New, Attr);
7227
7228  // If we're declaring or defining a tag in function prototype scope
7229  // in C, note that this type can only be used within the function.
7230  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
7231    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
7232
7233  // Set the lexical context. If the tag has a C++ scope specifier, the
7234  // lexical context will be different from the semantic context.
7235  New->setLexicalDeclContext(CurContext);
7236
7237  // Mark this as a friend decl if applicable.
7238  if (TUK == TUK_Friend)
7239    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
7240
7241  // Set the access specifier.
7242  if (!Invalid && SearchDC->isRecord())
7243    SetMemberAccessSpecifier(New, PrevDecl, AS);
7244
7245  if (TUK == TUK_Definition)
7246    New->startDefinition();
7247
7248  // If this has an identifier, add it to the scope stack.
7249  if (TUK == TUK_Friend) {
7250    // We might be replacing an existing declaration in the lookup tables;
7251    // if so, borrow its access specifier.
7252    if (PrevDecl)
7253      New->setAccess(PrevDecl->getAccess());
7254
7255    DeclContext *DC = New->getDeclContext()->getRedeclContext();
7256    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
7257    if (Name) // can be null along some error paths
7258      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
7259        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
7260  } else if (Name) {
7261    S = getNonFieldDeclScope(S);
7262    PushOnScopeChains(New, S, !IsForwardReference);
7263    if (IsForwardReference)
7264      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
7265
7266  } else {
7267    CurContext->addDecl(New);
7268  }
7269
7270  // If this is the C FILE type, notify the AST context.
7271  if (IdentifierInfo *II = New->getIdentifier())
7272    if (!New->isInvalidDecl() &&
7273        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
7274        II->isStr("FILE"))
7275      Context.setFILEDecl(New);
7276
7277  OwnedDecl = true;
7278  return New;
7279}
7280
7281void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
7282  AdjustDeclIfTemplate(TagD);
7283  TagDecl *Tag = cast<TagDecl>(TagD);
7284
7285  // Enter the tag context.
7286  PushDeclContext(S, Tag);
7287}
7288
7289void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
7290                                           SourceLocation FinalLoc,
7291                                           SourceLocation LBraceLoc) {
7292  AdjustDeclIfTemplate(TagD);
7293  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
7294
7295  FieldCollector->StartClass();
7296
7297  if (!Record->getIdentifier())
7298    return;
7299
7300  if (FinalLoc.isValid())
7301    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
7302
7303  // C++ [class]p2:
7304  //   [...] The class-name is also inserted into the scope of the
7305  //   class itself; this is known as the injected-class-name. For
7306  //   purposes of access checking, the injected-class-name is treated
7307  //   as if it were a public member name.
7308  CXXRecordDecl *InjectedClassName
7309    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
7310                            Record->getLocStart(), Record->getLocation(),
7311                            Record->getIdentifier(),
7312                            /*PrevDecl=*/0,
7313                            /*DelayTypeCreation=*/true);
7314  Context.getTypeDeclType(InjectedClassName, Record);
7315  InjectedClassName->setImplicit();
7316  InjectedClassName->setAccess(AS_public);
7317  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
7318      InjectedClassName->setDescribedClassTemplate(Template);
7319  PushOnScopeChains(InjectedClassName, S);
7320  assert(InjectedClassName->isInjectedClassName() &&
7321         "Broken injected-class-name");
7322}
7323
7324void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
7325                                    SourceLocation RBraceLoc) {
7326  AdjustDeclIfTemplate(TagD);
7327  TagDecl *Tag = cast<TagDecl>(TagD);
7328  Tag->setRBraceLoc(RBraceLoc);
7329
7330  if (isa<CXXRecordDecl>(Tag))
7331    FieldCollector->FinishClass();
7332
7333  // Exit this scope of this tag's definition.
7334  PopDeclContext();
7335
7336  // Notify the consumer that we've defined a tag.
7337  Consumer.HandleTagDeclDefinition(Tag);
7338}
7339
7340void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
7341  AdjustDeclIfTemplate(TagD);
7342  TagDecl *Tag = cast<TagDecl>(TagD);
7343  Tag->setInvalidDecl();
7344
7345  // We're undoing ActOnTagStartDefinition here, not
7346  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
7347  // the FieldCollector.
7348
7349  PopDeclContext();
7350}
7351
7352// Note that FieldName may be null for anonymous bitfields.
7353bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
7354                          QualType FieldTy, const Expr *BitWidth,
7355                          bool *ZeroWidth) {
7356  // Default to true; that shouldn't confuse checks for emptiness
7357  if (ZeroWidth)
7358    *ZeroWidth = true;
7359
7360  // C99 6.7.2.1p4 - verify the field type.
7361  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
7362  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
7363    // Handle incomplete types with specific error.
7364    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
7365      return true;
7366    if (FieldName)
7367      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
7368        << FieldName << FieldTy << BitWidth->getSourceRange();
7369    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
7370      << FieldTy << BitWidth->getSourceRange();
7371  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
7372                                             UPPC_BitFieldWidth))
7373    return true;
7374
7375  // If the bit-width is type- or value-dependent, don't try to check
7376  // it now.
7377  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
7378    return false;
7379
7380  llvm::APSInt Value;
7381  if (VerifyIntegerConstantExpression(BitWidth, &Value))
7382    return true;
7383
7384  if (Value != 0 && ZeroWidth)
7385    *ZeroWidth = false;
7386
7387  // Zero-width bitfield is ok for anonymous field.
7388  if (Value == 0 && FieldName)
7389    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
7390
7391  if (Value.isSigned() && Value.isNegative()) {
7392    if (FieldName)
7393      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
7394               << FieldName << Value.toString(10);
7395    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
7396      << Value.toString(10);
7397  }
7398
7399  if (!FieldTy->isDependentType()) {
7400    uint64_t TypeSize = Context.getTypeSize(FieldTy);
7401    if (Value.getZExtValue() > TypeSize) {
7402      if (!getLangOptions().CPlusPlus) {
7403        if (FieldName)
7404          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
7405            << FieldName << (unsigned)Value.getZExtValue()
7406            << (unsigned)TypeSize;
7407
7408        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
7409          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
7410      }
7411
7412      if (FieldName)
7413        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
7414          << FieldName << (unsigned)Value.getZExtValue()
7415          << (unsigned)TypeSize;
7416      else
7417        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
7418          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
7419    }
7420  }
7421
7422  return false;
7423}
7424
7425/// ActOnField - Each field of a struct/union/class is passed into this in order
7426/// to create a FieldDecl object for it.
7427Decl *Sema::ActOnField(Scope *S, Decl *TagD,
7428                                 SourceLocation DeclStart,
7429                                 Declarator &D, ExprTy *BitfieldWidth) {
7430  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
7431                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
7432                               AS_public);
7433  return Res;
7434}
7435
7436/// HandleField - Analyze a field of a C struct or a C++ data member.
7437///
7438FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
7439                             SourceLocation DeclStart,
7440                             Declarator &D, Expr *BitWidth,
7441                             AccessSpecifier AS) {
7442  IdentifierInfo *II = D.getIdentifier();
7443  SourceLocation Loc = DeclStart;
7444  if (II) Loc = D.getIdentifierLoc();
7445
7446  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7447  QualType T = TInfo->getType();
7448  if (getLangOptions().CPlusPlus) {
7449    CheckExtraCXXDefaultArguments(D);
7450
7451    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
7452                                        UPPC_DataMemberType)) {
7453      D.setInvalidType();
7454      T = Context.IntTy;
7455      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
7456    }
7457  }
7458
7459  DiagnoseFunctionSpecifiers(D);
7460
7461  if (D.getDeclSpec().isThreadSpecified())
7462    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
7463
7464  // Check to see if this name was declared as a member previously
7465  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
7466  LookupName(Previous, S);
7467  assert((Previous.empty() || Previous.isOverloadedResult() ||
7468          Previous.isSingleResult())
7469    && "Lookup of member name should be either overloaded, single or null");
7470
7471  // If the name is overloaded then get any declaration else get the single result
7472  NamedDecl *PrevDecl = Previous.isOverloadedResult() ?
7473    Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>();
7474
7475  if (PrevDecl && PrevDecl->isTemplateParameter()) {
7476    // Maybe we will complain about the shadowed template parameter.
7477    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
7478    // Just pretend that we didn't see the previous declaration.
7479    PrevDecl = 0;
7480  }
7481
7482  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
7483    PrevDecl = 0;
7484
7485  bool Mutable
7486    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
7487  SourceLocation TSSL = D.getSourceRange().getBegin();
7488  FieldDecl *NewFD
7489    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
7490                     AS, PrevDecl, &D);
7491
7492  if (NewFD->isInvalidDecl())
7493    Record->setInvalidDecl();
7494
7495  if (NewFD->isInvalidDecl() && PrevDecl) {
7496    // Don't introduce NewFD into scope; there's already something
7497    // with the same name in the same scope.
7498  } else if (II) {
7499    PushOnScopeChains(NewFD, S);
7500  } else
7501    Record->addDecl(NewFD);
7502
7503  return NewFD;
7504}
7505
7506/// \brief Build a new FieldDecl and check its well-formedness.
7507///
7508/// This routine builds a new FieldDecl given the fields name, type,
7509/// record, etc. \p PrevDecl should refer to any previous declaration
7510/// with the same name and in the same scope as the field to be
7511/// created.
7512///
7513/// \returns a new FieldDecl.
7514///
7515/// \todo The Declarator argument is a hack. It will be removed once
7516FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
7517                                TypeSourceInfo *TInfo,
7518                                RecordDecl *Record, SourceLocation Loc,
7519                                bool Mutable, Expr *BitWidth,
7520                                SourceLocation TSSL,
7521                                AccessSpecifier AS, NamedDecl *PrevDecl,
7522                                Declarator *D) {
7523  IdentifierInfo *II = Name.getAsIdentifierInfo();
7524  bool InvalidDecl = false;
7525  if (D) InvalidDecl = D->isInvalidType();
7526
7527  // If we receive a broken type, recover by assuming 'int' and
7528  // marking this declaration as invalid.
7529  if (T.isNull()) {
7530    InvalidDecl = true;
7531    T = Context.IntTy;
7532  }
7533
7534  QualType EltTy = Context.getBaseElementType(T);
7535  if (!EltTy->isDependentType() &&
7536      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
7537    // Fields of incomplete type force their record to be invalid.
7538    Record->setInvalidDecl();
7539    InvalidDecl = true;
7540  }
7541
7542  // C99 6.7.2.1p8: A member of a structure or union may have any type other
7543  // than a variably modified type.
7544  if (!InvalidDecl && T->isVariablyModifiedType()) {
7545    bool SizeIsNegative;
7546    llvm::APSInt Oversized;
7547    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
7548                                                           SizeIsNegative,
7549                                                           Oversized);
7550    if (!FixedTy.isNull()) {
7551      Diag(Loc, diag::warn_illegal_constant_array_size);
7552      T = FixedTy;
7553    } else {
7554      if (SizeIsNegative)
7555        Diag(Loc, diag::err_typecheck_negative_array_size);
7556      else if (Oversized.getBoolValue())
7557        Diag(Loc, diag::err_array_too_large)
7558          << Oversized.toString(10);
7559      else
7560        Diag(Loc, diag::err_typecheck_field_variable_size);
7561      InvalidDecl = true;
7562    }
7563  }
7564
7565  // Fields can not have abstract class types
7566  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
7567                                             diag::err_abstract_type_in_decl,
7568                                             AbstractFieldType))
7569    InvalidDecl = true;
7570
7571  bool ZeroWidth = false;
7572  // If this is declared as a bit-field, check the bit-field.
7573  if (!InvalidDecl && BitWidth &&
7574      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
7575    InvalidDecl = true;
7576    BitWidth = 0;
7577    ZeroWidth = false;
7578  }
7579
7580  // Check that 'mutable' is consistent with the type of the declaration.
7581  if (!InvalidDecl && Mutable) {
7582    unsigned DiagID = 0;
7583    if (T->isReferenceType())
7584      DiagID = diag::err_mutable_reference;
7585    else if (T.isConstQualified())
7586      DiagID = diag::err_mutable_const;
7587
7588    if (DiagID) {
7589      SourceLocation ErrLoc = Loc;
7590      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
7591        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
7592      Diag(ErrLoc, DiagID);
7593      Mutable = false;
7594      InvalidDecl = true;
7595    }
7596  }
7597
7598  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
7599                                       BitWidth, Mutable);
7600  if (InvalidDecl)
7601    NewFD->setInvalidDecl();
7602
7603  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
7604    Diag(Loc, diag::err_duplicate_member) << II;
7605    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7606    NewFD->setInvalidDecl();
7607  }
7608
7609  if (!InvalidDecl && getLangOptions().CPlusPlus) {
7610    if (Record->isUnion()) {
7611      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
7612        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
7613        if (RDecl->getDefinition()) {
7614          // C++ [class.union]p1: An object of a class with a non-trivial
7615          // constructor, a non-trivial copy constructor, a non-trivial
7616          // destructor, or a non-trivial copy assignment operator
7617          // cannot be a member of a union, nor can an array of such
7618          // objects.
7619          // TODO: C++0x alters this restriction significantly.
7620          if (CheckNontrivialField(NewFD))
7621            NewFD->setInvalidDecl();
7622        }
7623      }
7624
7625      // C++ [class.union]p1: If a union contains a member of reference type,
7626      // the program is ill-formed.
7627      if (EltTy->isReferenceType()) {
7628        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
7629          << NewFD->getDeclName() << EltTy;
7630        NewFD->setInvalidDecl();
7631      }
7632    }
7633  }
7634
7635  // FIXME: We need to pass in the attributes given an AST
7636  // representation, not a parser representation.
7637  if (D)
7638    // FIXME: What to pass instead of TUScope?
7639    ProcessDeclAttributes(TUScope, NewFD, *D);
7640
7641  if (T.isObjCGCWeak())
7642    Diag(Loc, diag::warn_attribute_weak_on_field);
7643
7644  NewFD->setAccess(AS);
7645  return NewFD;
7646}
7647
7648bool Sema::CheckNontrivialField(FieldDecl *FD) {
7649  assert(FD);
7650  assert(getLangOptions().CPlusPlus && "valid check only for C++");
7651
7652  if (FD->isInvalidDecl())
7653    return true;
7654
7655  QualType EltTy = Context.getBaseElementType(FD->getType());
7656  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
7657    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
7658    if (RDecl->getDefinition()) {
7659      // We check for copy constructors before constructors
7660      // because otherwise we'll never get complaints about
7661      // copy constructors.
7662
7663      CXXSpecialMember member = CXXInvalid;
7664      if (!RDecl->hasTrivialCopyConstructor())
7665        member = CXXCopyConstructor;
7666      else if (!RDecl->hasTrivialDefaultConstructor())
7667        member = CXXDefaultConstructor;
7668      else if (!RDecl->hasTrivialCopyAssignment())
7669        member = CXXCopyAssignment;
7670      else if (!RDecl->hasTrivialDestructor())
7671        member = CXXDestructor;
7672
7673      if (member != CXXInvalid) {
7674        Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
7675              << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
7676        DiagnoseNontrivial(RT, member);
7677        return true;
7678      }
7679    }
7680  }
7681
7682  return false;
7683}
7684
7685/// DiagnoseNontrivial - Given that a class has a non-trivial
7686/// special member, figure out why.
7687void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
7688  QualType QT(T, 0U);
7689  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
7690
7691  // Check whether the member was user-declared.
7692  switch (member) {
7693  case CXXInvalid:
7694    break;
7695
7696  case CXXDefaultConstructor:
7697    if (RD->hasUserDeclaredConstructor()) {
7698      typedef CXXRecordDecl::ctor_iterator ctor_iter;
7699      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
7700        const FunctionDecl *body = 0;
7701        ci->hasBody(body);
7702        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
7703          SourceLocation CtorLoc = ci->getLocation();
7704          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7705          return;
7706        }
7707      }
7708
7709      assert(0 && "found no user-declared constructors");
7710      return;
7711    }
7712    break;
7713
7714  case CXXCopyConstructor:
7715    if (RD->hasUserDeclaredCopyConstructor()) {
7716      SourceLocation CtorLoc =
7717        RD->getCopyConstructor(Context, 0)->getLocation();
7718      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7719      return;
7720    }
7721    break;
7722
7723  case CXXCopyAssignment:
7724    if (RD->hasUserDeclaredCopyAssignment()) {
7725      // FIXME: this should use the location of the copy
7726      // assignment, not the type.
7727      SourceLocation TyLoc = RD->getSourceRange().getBegin();
7728      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
7729      return;
7730    }
7731    break;
7732
7733  case CXXDestructor:
7734    if (RD->hasUserDeclaredDestructor()) {
7735      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
7736      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7737      return;
7738    }
7739    break;
7740  }
7741
7742  typedef CXXRecordDecl::base_class_iterator base_iter;
7743
7744  // Virtual bases and members inhibit trivial copying/construction,
7745  // but not trivial destruction.
7746  if (member != CXXDestructor) {
7747    // Check for virtual bases.  vbases includes indirect virtual bases,
7748    // so we just iterate through the direct bases.
7749    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
7750      if (bi->isVirtual()) {
7751        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
7752        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
7753        return;
7754      }
7755
7756    // Check for virtual methods.
7757    typedef CXXRecordDecl::method_iterator meth_iter;
7758    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
7759         ++mi) {
7760      if (mi->isVirtual()) {
7761        SourceLocation MLoc = mi->getSourceRange().getBegin();
7762        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
7763        return;
7764      }
7765    }
7766  }
7767
7768  bool (CXXRecordDecl::*hasTrivial)() const;
7769  switch (member) {
7770  case CXXDefaultConstructor:
7771    hasTrivial = &CXXRecordDecl::hasTrivialDefaultConstructor; break;
7772  case CXXCopyConstructor:
7773    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
7774  case CXXCopyAssignment:
7775    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
7776  case CXXDestructor:
7777    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
7778  default:
7779    assert(0 && "unexpected special member"); return;
7780  }
7781
7782  // Check for nontrivial bases (and recurse).
7783  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
7784    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
7785    assert(BaseRT && "Don't know how to handle dependent bases");
7786    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
7787    if (!(BaseRecTy->*hasTrivial)()) {
7788      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
7789      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
7790      DiagnoseNontrivial(BaseRT, member);
7791      return;
7792    }
7793  }
7794
7795  // Check for nontrivial members (and recurse).
7796  typedef RecordDecl::field_iterator field_iter;
7797  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
7798       ++fi) {
7799    QualType EltTy = Context.getBaseElementType((*fi)->getType());
7800    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
7801      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
7802
7803      if (!(EltRD->*hasTrivial)()) {
7804        SourceLocation FLoc = (*fi)->getLocation();
7805        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
7806        DiagnoseNontrivial(EltRT, member);
7807        return;
7808      }
7809    }
7810  }
7811
7812  assert(0 && "found no explanation for non-trivial member");
7813}
7814
7815/// TranslateIvarVisibility - Translate visibility from a token ID to an
7816///  AST enum value.
7817static ObjCIvarDecl::AccessControl
7818TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
7819  switch (ivarVisibility) {
7820  default: assert(0 && "Unknown visitibility kind");
7821  case tok::objc_private: return ObjCIvarDecl::Private;
7822  case tok::objc_public: return ObjCIvarDecl::Public;
7823  case tok::objc_protected: return ObjCIvarDecl::Protected;
7824  case tok::objc_package: return ObjCIvarDecl::Package;
7825  }
7826}
7827
7828/// ActOnIvar - Each ivar field of an objective-c class is passed into this
7829/// in order to create an IvarDecl object for it.
7830Decl *Sema::ActOnIvar(Scope *S,
7831                                SourceLocation DeclStart,
7832                                Decl *IntfDecl,
7833                                Declarator &D, ExprTy *BitfieldWidth,
7834                                tok::ObjCKeywordKind Visibility) {
7835
7836  IdentifierInfo *II = D.getIdentifier();
7837  Expr *BitWidth = (Expr*)BitfieldWidth;
7838  SourceLocation Loc = DeclStart;
7839  if (II) Loc = D.getIdentifierLoc();
7840
7841  // FIXME: Unnamed fields can be handled in various different ways, for
7842  // example, unnamed unions inject all members into the struct namespace!
7843
7844  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7845  QualType T = TInfo->getType();
7846
7847  if (BitWidth) {
7848    // 6.7.2.1p3, 6.7.2.1p4
7849    if (VerifyBitField(Loc, II, T, BitWidth)) {
7850      D.setInvalidType();
7851      BitWidth = 0;
7852    }
7853  } else {
7854    // Not a bitfield.
7855
7856    // validate II.
7857
7858  }
7859  if (T->isReferenceType()) {
7860    Diag(Loc, diag::err_ivar_reference_type);
7861    D.setInvalidType();
7862  }
7863  // C99 6.7.2.1p8: A member of a structure or union may have any type other
7864  // than a variably modified type.
7865  else if (T->isVariablyModifiedType()) {
7866    Diag(Loc, diag::err_typecheck_ivar_variable_size);
7867    D.setInvalidType();
7868  }
7869
7870  // Get the visibility (access control) for this ivar.
7871  ObjCIvarDecl::AccessControl ac =
7872    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
7873                                        : ObjCIvarDecl::None;
7874  // Must set ivar's DeclContext to its enclosing interface.
7875  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(IntfDecl);
7876  ObjCContainerDecl *EnclosingContext;
7877  if (ObjCImplementationDecl *IMPDecl =
7878      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
7879    if (!LangOpts.ObjCNonFragileABI2) {
7880    // Case of ivar declared in an implementation. Context is that of its class.
7881      EnclosingContext = IMPDecl->getClassInterface();
7882      assert(EnclosingContext && "Implementation has no class interface!");
7883    }
7884    else
7885      EnclosingContext = EnclosingDecl;
7886  } else {
7887    if (ObjCCategoryDecl *CDecl =
7888        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7889      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
7890        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
7891        return 0;
7892      }
7893    }
7894    EnclosingContext = EnclosingDecl;
7895  }
7896
7897  // Construct the decl.
7898  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
7899                                             DeclStart, Loc, II, T,
7900                                             TInfo, ac, (Expr *)BitfieldWidth);
7901
7902  if (II) {
7903    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
7904                                           ForRedeclaration);
7905    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
7906        && !isa<TagDecl>(PrevDecl)) {
7907      Diag(Loc, diag::err_duplicate_member) << II;
7908      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7909      NewID->setInvalidDecl();
7910    }
7911  }
7912
7913  // Process attributes attached to the ivar.
7914  ProcessDeclAttributes(S, NewID, D);
7915
7916  if (D.isInvalidType())
7917    NewID->setInvalidDecl();
7918
7919  if (II) {
7920    // FIXME: When interfaces are DeclContexts, we'll need to add
7921    // these to the interface.
7922    S->AddDecl(NewID);
7923    IdResolver.AddDecl(NewID);
7924  }
7925
7926  return NewID;
7927}
7928
7929/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
7930/// class and class extensions. For every class @interface and class
7931/// extension @interface, if the last ivar is a bitfield of any type,
7932/// then add an implicit `char :0` ivar to the end of that interface.
7933void Sema::ActOnLastBitfield(SourceLocation DeclLoc, Decl *EnclosingDecl,
7934                             llvm::SmallVectorImpl<Decl *> &AllIvarDecls) {
7935  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
7936    return;
7937
7938  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
7939  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
7940
7941  if (!Ivar->isBitField())
7942    return;
7943  uint64_t BitFieldSize =
7944    Ivar->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
7945  if (BitFieldSize == 0)
7946    return;
7947  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl);
7948  if (!ID) {
7949    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7950      if (!CD->IsClassExtension())
7951        return;
7952    }
7953    // No need to add this to end of @implementation.
7954    else
7955      return;
7956  }
7957  // All conditions are met. Add a new bitfield to the tail end of ivars.
7958  llvm::APInt Zero(Context.getTypeSize(Context.CharTy), 0);
7959  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.CharTy, DeclLoc);
7960
7961  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(EnclosingDecl),
7962                              DeclLoc, DeclLoc, 0,
7963                              Context.CharTy,
7964                              Context.CreateTypeSourceInfo(Context.CharTy),
7965                              ObjCIvarDecl::Private, BW,
7966                              true);
7967  AllIvarDecls.push_back(Ivar);
7968}
7969
7970void Sema::ActOnFields(Scope* S,
7971                       SourceLocation RecLoc, Decl *EnclosingDecl,
7972                       Decl **Fields, unsigned NumFields,
7973                       SourceLocation LBrac, SourceLocation RBrac,
7974                       AttributeList *Attr) {
7975  assert(EnclosingDecl && "missing record or interface decl");
7976
7977  // If the decl this is being inserted into is invalid, then it may be a
7978  // redeclaration or some other bogus case.  Don't try to add fields to it.
7979  if (EnclosingDecl->isInvalidDecl()) {
7980    // FIXME: Deallocate fields?
7981    return;
7982  }
7983
7984
7985  // Verify that all the fields are okay.
7986  unsigned NumNamedMembers = 0;
7987  llvm::SmallVector<FieldDecl*, 32> RecFields;
7988
7989  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
7990  for (unsigned i = 0; i != NumFields; ++i) {
7991    FieldDecl *FD = cast<FieldDecl>(Fields[i]);
7992
7993    // Get the type for the field.
7994    const Type *FDTy = FD->getType().getTypePtr();
7995
7996    if (!FD->isAnonymousStructOrUnion()) {
7997      // Remember all fields written by the user.
7998      RecFields.push_back(FD);
7999    }
8000
8001    // If the field is already invalid for some reason, don't emit more
8002    // diagnostics about it.
8003    if (FD->isInvalidDecl()) {
8004      EnclosingDecl->setInvalidDecl();
8005      continue;
8006    }
8007
8008    // C99 6.7.2.1p2:
8009    //   A structure or union shall not contain a member with
8010    //   incomplete or function type (hence, a structure shall not
8011    //   contain an instance of itself, but may contain a pointer to
8012    //   an instance of itself), except that the last member of a
8013    //   structure with more than one named member may have incomplete
8014    //   array type; such a structure (and any union containing,
8015    //   possibly recursively, a member that is such a structure)
8016    //   shall not be a member of a structure or an element of an
8017    //   array.
8018    if (FDTy->isFunctionType()) {
8019      // Field declared as a function.
8020      Diag(FD->getLocation(), diag::err_field_declared_as_function)
8021        << FD->getDeclName();
8022      FD->setInvalidDecl();
8023      EnclosingDecl->setInvalidDecl();
8024      continue;
8025    } else if (FDTy->isIncompleteArrayType() && Record &&
8026               ((i == NumFields - 1 && !Record->isUnion()) ||
8027                ((getLangOptions().Microsoft || getLangOptions().CPlusPlus) &&
8028                 (i == NumFields - 1 || Record->isUnion())))) {
8029      // Flexible array member.
8030      // Microsoft and g++ is more permissive regarding flexible array.
8031      // It will accept flexible array in union and also
8032      // as the sole element of a struct/class.
8033      if (getLangOptions().Microsoft) {
8034        if (Record->isUnion())
8035          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
8036            << FD->getDeclName();
8037        else if (NumFields == 1)
8038          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
8039            << FD->getDeclName() << Record->getTagKind();
8040      } else if (getLangOptions().CPlusPlus) {
8041        if (Record->isUnion())
8042          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
8043            << FD->getDeclName();
8044        else if (NumFields == 1)
8045          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
8046            << FD->getDeclName() << Record->getTagKind();
8047      } else if (NumNamedMembers < 1) {
8048        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
8049          << FD->getDeclName();
8050        FD->setInvalidDecl();
8051        EnclosingDecl->setInvalidDecl();
8052        continue;
8053      }
8054      if (!FD->getType()->isDependentType() &&
8055          !Context.getBaseElementType(FD->getType())->isPODType()) {
8056        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
8057          << FD->getDeclName() << FD->getType();
8058        FD->setInvalidDecl();
8059        EnclosingDecl->setInvalidDecl();
8060        continue;
8061      }
8062      // Okay, we have a legal flexible array member at the end of the struct.
8063      if (Record)
8064        Record->setHasFlexibleArrayMember(true);
8065    } else if (!FDTy->isDependentType() &&
8066               RequireCompleteType(FD->getLocation(), FD->getType(),
8067                                   diag::err_field_incomplete)) {
8068      // Incomplete type
8069      FD->setInvalidDecl();
8070      EnclosingDecl->setInvalidDecl();
8071      continue;
8072    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
8073      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
8074        // If this is a member of a union, then entire union becomes "flexible".
8075        if (Record && Record->isUnion()) {
8076          Record->setHasFlexibleArrayMember(true);
8077        } else {
8078          // If this is a struct/class and this is not the last element, reject
8079          // it.  Note that GCC supports variable sized arrays in the middle of
8080          // structures.
8081          if (i != NumFields-1)
8082            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
8083              << FD->getDeclName() << FD->getType();
8084          else {
8085            // We support flexible arrays at the end of structs in
8086            // other structs as an extension.
8087            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
8088              << FD->getDeclName();
8089            if (Record)
8090              Record->setHasFlexibleArrayMember(true);
8091          }
8092        }
8093      }
8094      if (Record && FDTTy->getDecl()->hasObjectMember())
8095        Record->setHasObjectMember(true);
8096    } else if (FDTy->isObjCObjectType()) {
8097      /// A field cannot be an Objective-c object
8098      Diag(FD->getLocation(), diag::err_statically_allocated_object);
8099      FD->setInvalidDecl();
8100      EnclosingDecl->setInvalidDecl();
8101      continue;
8102    } else if (getLangOptions().ObjC1 &&
8103               getLangOptions().getGCMode() != LangOptions::NonGC &&
8104               Record &&
8105               (FD->getType()->isObjCObjectPointerType() ||
8106                FD->getType().isObjCGCStrong()))
8107      Record->setHasObjectMember(true);
8108    else if (Context.getAsArrayType(FD->getType())) {
8109      QualType BaseType = Context.getBaseElementType(FD->getType());
8110      if (Record && BaseType->isRecordType() &&
8111          BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
8112        Record->setHasObjectMember(true);
8113    }
8114    // Keep track of the number of named members.
8115    if (FD->getIdentifier())
8116      ++NumNamedMembers;
8117  }
8118
8119  // Okay, we successfully defined 'Record'.
8120  if (Record) {
8121    bool Completed = false;
8122    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
8123      if (!CXXRecord->isInvalidDecl()) {
8124        // Set access bits correctly on the directly-declared conversions.
8125        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
8126        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
8127             I != E; ++I)
8128          Convs->setAccess(I, (*I)->getAccess());
8129
8130        if (!CXXRecord->isDependentType()) {
8131          // Add any implicitly-declared members to this class.
8132          AddImplicitlyDeclaredMembersToClass(CXXRecord);
8133
8134          // If we have virtual base classes, we may end up finding multiple
8135          // final overriders for a given virtual function. Check for this
8136          // problem now.
8137          if (CXXRecord->getNumVBases()) {
8138            CXXFinalOverriderMap FinalOverriders;
8139            CXXRecord->getFinalOverriders(FinalOverriders);
8140
8141            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
8142                                             MEnd = FinalOverriders.end();
8143                 M != MEnd; ++M) {
8144              for (OverridingMethods::iterator SO = M->second.begin(),
8145                                            SOEnd = M->second.end();
8146                   SO != SOEnd; ++SO) {
8147                assert(SO->second.size() > 0 &&
8148                       "Virtual function without overridding functions?");
8149                if (SO->second.size() == 1)
8150                  continue;
8151
8152                // C++ [class.virtual]p2:
8153                //   In a derived class, if a virtual member function of a base
8154                //   class subobject has more than one final overrider the
8155                //   program is ill-formed.
8156                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
8157                  << (NamedDecl *)M->first << Record;
8158                Diag(M->first->getLocation(),
8159                     diag::note_overridden_virtual_function);
8160                for (OverridingMethods::overriding_iterator
8161                          OM = SO->second.begin(),
8162                       OMEnd = SO->second.end();
8163                     OM != OMEnd; ++OM)
8164                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
8165                    << (NamedDecl *)M->first << OM->Method->getParent();
8166
8167                Record->setInvalidDecl();
8168              }
8169            }
8170            CXXRecord->completeDefinition(&FinalOverriders);
8171            Completed = true;
8172          }
8173        }
8174      }
8175    }
8176
8177    if (!Completed)
8178      Record->completeDefinition();
8179  } else {
8180    ObjCIvarDecl **ClsFields =
8181      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
8182    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
8183      ID->setLocEnd(RBrac);
8184      // Add ivar's to class's DeclContext.
8185      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
8186        ClsFields[i]->setLexicalDeclContext(ID);
8187        ID->addDecl(ClsFields[i]);
8188      }
8189      // Must enforce the rule that ivars in the base classes may not be
8190      // duplicates.
8191      if (ID->getSuperClass())
8192        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
8193    } else if (ObjCImplementationDecl *IMPDecl =
8194                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
8195      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
8196      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
8197        // Ivar declared in @implementation never belongs to the implementation.
8198        // Only it is in implementation's lexical context.
8199        ClsFields[I]->setLexicalDeclContext(IMPDecl);
8200      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
8201    } else if (ObjCCategoryDecl *CDecl =
8202                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
8203      // case of ivars in class extension; all other cases have been
8204      // reported as errors elsewhere.
8205      // FIXME. Class extension does not have a LocEnd field.
8206      // CDecl->setLocEnd(RBrac);
8207      // Add ivar's to class extension's DeclContext.
8208      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
8209        ClsFields[i]->setLexicalDeclContext(CDecl);
8210        CDecl->addDecl(ClsFields[i]);
8211      }
8212    }
8213  }
8214
8215  if (Attr)
8216    ProcessDeclAttributeList(S, Record, Attr);
8217
8218  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
8219  // set the visibility of this record.
8220  if (Record && !Record->getDeclContext()->isRecord())
8221    AddPushedVisibilityAttribute(Record);
8222}
8223
8224/// \brief Determine whether the given integral value is representable within
8225/// the given type T.
8226static bool isRepresentableIntegerValue(ASTContext &Context,
8227                                        llvm::APSInt &Value,
8228                                        QualType T) {
8229  assert(T->isIntegralType(Context) && "Integral type required!");
8230  unsigned BitWidth = Context.getIntWidth(T);
8231
8232  if (Value.isUnsigned() || Value.isNonNegative()) {
8233    if (T->isSignedIntegerType())
8234      --BitWidth;
8235    return Value.getActiveBits() <= BitWidth;
8236  }
8237  return Value.getMinSignedBits() <= BitWidth;
8238}
8239
8240// \brief Given an integral type, return the next larger integral type
8241// (or a NULL type of no such type exists).
8242static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
8243  // FIXME: Int128/UInt128 support, which also needs to be introduced into
8244  // enum checking below.
8245  assert(T->isIntegralType(Context) && "Integral type required!");
8246  const unsigned NumTypes = 4;
8247  QualType SignedIntegralTypes[NumTypes] = {
8248    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
8249  };
8250  QualType UnsignedIntegralTypes[NumTypes] = {
8251    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
8252    Context.UnsignedLongLongTy
8253  };
8254
8255  unsigned BitWidth = Context.getTypeSize(T);
8256  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
8257                                            : UnsignedIntegralTypes;
8258  for (unsigned I = 0; I != NumTypes; ++I)
8259    if (Context.getTypeSize(Types[I]) > BitWidth)
8260      return Types[I];
8261
8262  return QualType();
8263}
8264
8265EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
8266                                          EnumConstantDecl *LastEnumConst,
8267                                          SourceLocation IdLoc,
8268                                          IdentifierInfo *Id,
8269                                          Expr *Val) {
8270  unsigned IntWidth = Context.Target.getIntWidth();
8271  llvm::APSInt EnumVal(IntWidth);
8272  QualType EltTy;
8273
8274  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
8275    Val = 0;
8276
8277  if (Val) {
8278    if (Enum->isDependentType() || Val->isTypeDependent())
8279      EltTy = Context.DependentTy;
8280    else {
8281      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
8282      SourceLocation ExpLoc;
8283      if (!Val->isValueDependent() &&
8284          VerifyIntegerConstantExpression(Val, &EnumVal)) {
8285        Val = 0;
8286      } else {
8287        if (!getLangOptions().CPlusPlus) {
8288          // C99 6.7.2.2p2:
8289          //   The expression that defines the value of an enumeration constant
8290          //   shall be an integer constant expression that has a value
8291          //   representable as an int.
8292
8293          // Complain if the value is not representable in an int.
8294          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
8295            Diag(IdLoc, diag::ext_enum_value_not_int)
8296              << EnumVal.toString(10) << Val->getSourceRange()
8297              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
8298          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
8299            // Force the type of the expression to 'int'.
8300            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
8301          }
8302        }
8303
8304        if (Enum->isFixed()) {
8305          EltTy = Enum->getIntegerType();
8306
8307          // C++0x [dcl.enum]p5:
8308          //   ... if the initializing value of an enumerator cannot be
8309          //   represented by the underlying type, the program is ill-formed.
8310          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
8311            if (getLangOptions().Microsoft) {
8312              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
8313              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
8314            } else
8315              Diag(IdLoc, diag::err_enumerator_too_large)
8316                << EltTy;
8317          } else
8318            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
8319        }
8320        else {
8321          // C++0x [dcl.enum]p5:
8322          //   If the underlying type is not fixed, the type of each enumerator
8323          //   is the type of its initializing value:
8324          //     - If an initializer is specified for an enumerator, the
8325          //       initializing value has the same type as the expression.
8326          EltTy = Val->getType();
8327        }
8328      }
8329    }
8330  }
8331
8332  if (!Val) {
8333    if (Enum->isDependentType())
8334      EltTy = Context.DependentTy;
8335    else if (!LastEnumConst) {
8336      // C++0x [dcl.enum]p5:
8337      //   If the underlying type is not fixed, the type of each enumerator
8338      //   is the type of its initializing value:
8339      //     - If no initializer is specified for the first enumerator, the
8340      //       initializing value has an unspecified integral type.
8341      //
8342      // GCC uses 'int' for its unspecified integral type, as does
8343      // C99 6.7.2.2p3.
8344      if (Enum->isFixed()) {
8345        EltTy = Enum->getIntegerType();
8346      }
8347      else {
8348        EltTy = Context.IntTy;
8349      }
8350    } else {
8351      // Assign the last value + 1.
8352      EnumVal = LastEnumConst->getInitVal();
8353      ++EnumVal;
8354      EltTy = LastEnumConst->getType();
8355
8356      // Check for overflow on increment.
8357      if (EnumVal < LastEnumConst->getInitVal()) {
8358        // C++0x [dcl.enum]p5:
8359        //   If the underlying type is not fixed, the type of each enumerator
8360        //   is the type of its initializing value:
8361        //
8362        //     - Otherwise the type of the initializing value is the same as
8363        //       the type of the initializing value of the preceding enumerator
8364        //       unless the incremented value is not representable in that type,
8365        //       in which case the type is an unspecified integral type
8366        //       sufficient to contain the incremented value. If no such type
8367        //       exists, the program is ill-formed.
8368        QualType T = getNextLargerIntegralType(Context, EltTy);
8369        if (T.isNull() || Enum->isFixed()) {
8370          // There is no integral type larger enough to represent this
8371          // value. Complain, then allow the value to wrap around.
8372          EnumVal = LastEnumConst->getInitVal();
8373          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
8374          ++EnumVal;
8375          if (Enum->isFixed())
8376            // When the underlying type is fixed, this is ill-formed.
8377            Diag(IdLoc, diag::err_enumerator_wrapped)
8378              << EnumVal.toString(10)
8379              << EltTy;
8380          else
8381            Diag(IdLoc, diag::warn_enumerator_too_large)
8382              << EnumVal.toString(10);
8383        } else {
8384          EltTy = T;
8385        }
8386
8387        // Retrieve the last enumerator's value, extent that type to the
8388        // type that is supposed to be large enough to represent the incremented
8389        // value, then increment.
8390        EnumVal = LastEnumConst->getInitVal();
8391        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
8392        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
8393        ++EnumVal;
8394
8395        // If we're not in C++, diagnose the overflow of enumerator values,
8396        // which in C99 means that the enumerator value is not representable in
8397        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
8398        // permits enumerator values that are representable in some larger
8399        // integral type.
8400        if (!getLangOptions().CPlusPlus && !T.isNull())
8401          Diag(IdLoc, diag::warn_enum_value_overflow);
8402      } else if (!getLangOptions().CPlusPlus &&
8403                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
8404        // Enforce C99 6.7.2.2p2 even when we compute the next value.
8405        Diag(IdLoc, diag::ext_enum_value_not_int)
8406          << EnumVal.toString(10) << 1;
8407      }
8408    }
8409  }
8410
8411  if (!EltTy->isDependentType()) {
8412    // Make the enumerator value match the signedness and size of the
8413    // enumerator's type.
8414    EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
8415    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
8416  }
8417
8418  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
8419                                  Val, EnumVal);
8420}
8421
8422
8423Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
8424                              SourceLocation IdLoc, IdentifierInfo *Id,
8425                              AttributeList *Attr,
8426                              SourceLocation EqualLoc, ExprTy *val) {
8427  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
8428  EnumConstantDecl *LastEnumConst =
8429    cast_or_null<EnumConstantDecl>(lastEnumConst);
8430  Expr *Val = static_cast<Expr*>(val);
8431
8432  // The scope passed in may not be a decl scope.  Zip up the scope tree until
8433  // we find one that is.
8434  S = getNonFieldDeclScope(S);
8435
8436  // Verify that there isn't already something declared with this name in this
8437  // scope.
8438  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
8439                                         ForRedeclaration);
8440  if (PrevDecl && PrevDecl->isTemplateParameter()) {
8441    // Maybe we will complain about the shadowed template parameter.
8442    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
8443    // Just pretend that we didn't see the previous declaration.
8444    PrevDecl = 0;
8445  }
8446
8447  if (PrevDecl) {
8448    // When in C++, we may get a TagDecl with the same name; in this case the
8449    // enum constant will 'hide' the tag.
8450    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
8451           "Received TagDecl when not in C++!");
8452    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
8453      if (isa<EnumConstantDecl>(PrevDecl))
8454        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
8455      else
8456        Diag(IdLoc, diag::err_redefinition) << Id;
8457      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
8458      return 0;
8459    }
8460  }
8461
8462  // C++ [class.mem]p13:
8463  //   If T is the name of a class, then each of the following shall have a
8464  //   name different from T:
8465  //     - every enumerator of every member of class T that is an enumerated
8466  //       type
8467  if (CXXRecordDecl *Record
8468                      = dyn_cast<CXXRecordDecl>(
8469                             TheEnumDecl->getDeclContext()->getRedeclContext()))
8470    if (Record->getIdentifier() && Record->getIdentifier() == Id)
8471      Diag(IdLoc, diag::err_member_name_of_class) << Id;
8472
8473  EnumConstantDecl *New =
8474    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
8475
8476  if (New) {
8477    // Process attributes.
8478    if (Attr) ProcessDeclAttributeList(S, New, Attr);
8479
8480    // Register this decl in the current scope stack.
8481    New->setAccess(TheEnumDecl->getAccess());
8482    PushOnScopeChains(New, S);
8483  }
8484
8485  return New;
8486}
8487
8488void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
8489                         SourceLocation RBraceLoc, Decl *EnumDeclX,
8490                         Decl **Elements, unsigned NumElements,
8491                         Scope *S, AttributeList *Attr) {
8492  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
8493  QualType EnumType = Context.getTypeDeclType(Enum);
8494
8495  if (Attr)
8496    ProcessDeclAttributeList(S, Enum, Attr);
8497
8498  if (Enum->isDependentType()) {
8499    for (unsigned i = 0; i != NumElements; ++i) {
8500      EnumConstantDecl *ECD =
8501        cast_or_null<EnumConstantDecl>(Elements[i]);
8502      if (!ECD) continue;
8503
8504      ECD->setType(EnumType);
8505    }
8506
8507    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
8508    return;
8509  }
8510
8511  // TODO: If the result value doesn't fit in an int, it must be a long or long
8512  // long value.  ISO C does not support this, but GCC does as an extension,
8513  // emit a warning.
8514  unsigned IntWidth = Context.Target.getIntWidth();
8515  unsigned CharWidth = Context.Target.getCharWidth();
8516  unsigned ShortWidth = Context.Target.getShortWidth();
8517
8518  // Verify that all the values are okay, compute the size of the values, and
8519  // reverse the list.
8520  unsigned NumNegativeBits = 0;
8521  unsigned NumPositiveBits = 0;
8522
8523  // Keep track of whether all elements have type int.
8524  bool AllElementsInt = true;
8525
8526  for (unsigned i = 0; i != NumElements; ++i) {
8527    EnumConstantDecl *ECD =
8528      cast_or_null<EnumConstantDecl>(Elements[i]);
8529    if (!ECD) continue;  // Already issued a diagnostic.
8530
8531    const llvm::APSInt &InitVal = ECD->getInitVal();
8532
8533    // Keep track of the size of positive and negative values.
8534    if (InitVal.isUnsigned() || InitVal.isNonNegative())
8535      NumPositiveBits = std::max(NumPositiveBits,
8536                                 (unsigned)InitVal.getActiveBits());
8537    else
8538      NumNegativeBits = std::max(NumNegativeBits,
8539                                 (unsigned)InitVal.getMinSignedBits());
8540
8541    // Keep track of whether every enum element has type int (very commmon).
8542    if (AllElementsInt)
8543      AllElementsInt = ECD->getType() == Context.IntTy;
8544  }
8545
8546  // Figure out the type that should be used for this enum.
8547  QualType BestType;
8548  unsigned BestWidth;
8549
8550  // C++0x N3000 [conv.prom]p3:
8551  //   An rvalue of an unscoped enumeration type whose underlying
8552  //   type is not fixed can be converted to an rvalue of the first
8553  //   of the following types that can represent all the values of
8554  //   the enumeration: int, unsigned int, long int, unsigned long
8555  //   int, long long int, or unsigned long long int.
8556  // C99 6.4.4.3p2:
8557  //   An identifier declared as an enumeration constant has type int.
8558  // The C99 rule is modified by a gcc extension
8559  QualType BestPromotionType;
8560
8561  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
8562  // -fshort-enums is the equivalent to specifying the packed attribute on all
8563  // enum definitions.
8564  if (LangOpts.ShortEnums)
8565    Packed = true;
8566
8567  if (Enum->isFixed()) {
8568    BestType = BestPromotionType = Enum->getIntegerType();
8569    // We don't need to set BestWidth, because BestType is going to be the type
8570    // of the enumerators, but we do anyway because otherwise some compilers
8571    // warn that it might be used uninitialized.
8572    BestWidth = CharWidth;
8573  }
8574  else if (NumNegativeBits) {
8575    // If there is a negative value, figure out the smallest integer type (of
8576    // int/long/longlong) that fits.
8577    // If it's packed, check also if it fits a char or a short.
8578    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
8579      BestType = Context.SignedCharTy;
8580      BestWidth = CharWidth;
8581    } else if (Packed && NumNegativeBits <= ShortWidth &&
8582               NumPositiveBits < ShortWidth) {
8583      BestType = Context.ShortTy;
8584      BestWidth = ShortWidth;
8585    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
8586      BestType = Context.IntTy;
8587      BestWidth = IntWidth;
8588    } else {
8589      BestWidth = Context.Target.getLongWidth();
8590
8591      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
8592        BestType = Context.LongTy;
8593      } else {
8594        BestWidth = Context.Target.getLongLongWidth();
8595
8596        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
8597          Diag(Enum->getLocation(), diag::warn_enum_too_large);
8598        BestType = Context.LongLongTy;
8599      }
8600    }
8601    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
8602  } else {
8603    // If there is no negative value, figure out the smallest type that fits
8604    // all of the enumerator values.
8605    // If it's packed, check also if it fits a char or a short.
8606    if (Packed && NumPositiveBits <= CharWidth) {
8607      BestType = Context.UnsignedCharTy;
8608      BestPromotionType = Context.IntTy;
8609      BestWidth = CharWidth;
8610    } else if (Packed && NumPositiveBits <= ShortWidth) {
8611      BestType = Context.UnsignedShortTy;
8612      BestPromotionType = Context.IntTy;
8613      BestWidth = ShortWidth;
8614    } else if (NumPositiveBits <= IntWidth) {
8615      BestType = Context.UnsignedIntTy;
8616      BestWidth = IntWidth;
8617      BestPromotionType
8618        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8619                           ? Context.UnsignedIntTy : Context.IntTy;
8620    } else if (NumPositiveBits <=
8621               (BestWidth = Context.Target.getLongWidth())) {
8622      BestType = Context.UnsignedLongTy;
8623      BestPromotionType
8624        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8625                           ? Context.UnsignedLongTy : Context.LongTy;
8626    } else {
8627      BestWidth = Context.Target.getLongLongWidth();
8628      assert(NumPositiveBits <= BestWidth &&
8629             "How could an initializer get larger than ULL?");
8630      BestType = Context.UnsignedLongLongTy;
8631      BestPromotionType
8632        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8633                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
8634    }
8635  }
8636
8637  // Loop over all of the enumerator constants, changing their types to match
8638  // the type of the enum if needed.
8639  for (unsigned i = 0; i != NumElements; ++i) {
8640    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
8641    if (!ECD) continue;  // Already issued a diagnostic.
8642
8643    // Standard C says the enumerators have int type, but we allow, as an
8644    // extension, the enumerators to be larger than int size.  If each
8645    // enumerator value fits in an int, type it as an int, otherwise type it the
8646    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
8647    // that X has type 'int', not 'unsigned'.
8648
8649    // Determine whether the value fits into an int.
8650    llvm::APSInt InitVal = ECD->getInitVal();
8651
8652    // If it fits into an integer type, force it.  Otherwise force it to match
8653    // the enum decl type.
8654    QualType NewTy;
8655    unsigned NewWidth;
8656    bool NewSign;
8657    if (!getLangOptions().CPlusPlus &&
8658        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
8659      NewTy = Context.IntTy;
8660      NewWidth = IntWidth;
8661      NewSign = true;
8662    } else if (ECD->getType() == BestType) {
8663      // Already the right type!
8664      if (getLangOptions().CPlusPlus)
8665        // C++ [dcl.enum]p4: Following the closing brace of an
8666        // enum-specifier, each enumerator has the type of its
8667        // enumeration.
8668        ECD->setType(EnumType);
8669      continue;
8670    } else {
8671      NewTy = BestType;
8672      NewWidth = BestWidth;
8673      NewSign = BestType->isSignedIntegerType();
8674    }
8675
8676    // Adjust the APSInt value.
8677    InitVal = InitVal.extOrTrunc(NewWidth);
8678    InitVal.setIsSigned(NewSign);
8679    ECD->setInitVal(InitVal);
8680
8681    // Adjust the Expr initializer and type.
8682    if (ECD->getInitExpr() &&
8683	!Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
8684      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
8685                                                CK_IntegralCast,
8686                                                ECD->getInitExpr(),
8687                                                /*base paths*/ 0,
8688                                                VK_RValue));
8689    if (getLangOptions().CPlusPlus)
8690      // C++ [dcl.enum]p4: Following the closing brace of an
8691      // enum-specifier, each enumerator has the type of its
8692      // enumeration.
8693      ECD->setType(EnumType);
8694    else
8695      ECD->setType(NewTy);
8696  }
8697
8698  Enum->completeDefinition(BestType, BestPromotionType,
8699                           NumPositiveBits, NumNegativeBits);
8700}
8701
8702Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
8703                                  SourceLocation StartLoc,
8704                                  SourceLocation EndLoc) {
8705  StringLiteral *AsmString = cast<StringLiteral>(expr);
8706
8707  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
8708                                                   AsmString, StartLoc,
8709                                                   EndLoc);
8710  CurContext->addDecl(New);
8711  return New;
8712}
8713
8714void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
8715                             SourceLocation PragmaLoc,
8716                             SourceLocation NameLoc) {
8717  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
8718
8719  if (PrevDecl) {
8720    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
8721  } else {
8722    (void)WeakUndeclaredIdentifiers.insert(
8723      std::pair<IdentifierInfo*,WeakInfo>
8724        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
8725  }
8726}
8727
8728void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
8729                                IdentifierInfo* AliasName,
8730                                SourceLocation PragmaLoc,
8731                                SourceLocation NameLoc,
8732                                SourceLocation AliasNameLoc) {
8733  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
8734                                    LookupOrdinaryName);
8735  WeakInfo W = WeakInfo(Name, NameLoc);
8736
8737  if (PrevDecl) {
8738    if (!PrevDecl->hasAttr<AliasAttr>())
8739      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
8740        DeclApplyPragmaWeak(TUScope, ND, W);
8741  } else {
8742    (void)WeakUndeclaredIdentifiers.insert(
8743      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
8744  }
8745}
8746