SemaDecl.cpp revision 25d944af5d8d665611e09956954f10896c1071f6
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/Parse/DeclSpec.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Basic/SourceManager.h"
24// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "llvm/ADT/SmallSet.h"
28#include "llvm/ADT/STLExtras.h"
29#include <algorithm>
30#include <functional>
31using namespace clang;
32
33/// \brief If the identifier refers to a type name within this scope,
34/// return the declaration of that type.
35///
36/// This routine performs ordinary name lookup of the identifier II
37/// within the given scope, with optional C++ scope specifier SS, to
38/// determine whether the name refers to a type. If so, returns an
39/// opaque pointer (actually a QualType) corresponding to that
40/// type. Otherwise, returns NULL.
41///
42/// If name lookup results in an ambiguity, this routine will complain
43/// and then return NULL.
44Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
45                                Scope *S, const CXXScopeSpec *SS) {
46  NamedDecl *IIDecl = 0;
47  LookupResult Result = LookupParsedName(S, SS, &II, LookupOrdinaryName,
48                                         false, false);
49  switch (Result.getKind()) {
50  case LookupResult::NotFound:
51  case LookupResult::FoundOverloaded:
52    return 0;
53
54  case LookupResult::AmbiguousBaseSubobjectTypes:
55  case LookupResult::AmbiguousBaseSubobjects:
56  case LookupResult::AmbiguousReference:
57    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
58    return 0;
59
60  case LookupResult::Found:
61    IIDecl = Result.getAsDecl();
62    break;
63  }
64
65  if (IIDecl) {
66    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
67      // Check whether we can use this type
68      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
69
70      return Context.getTypeDeclType(TD).getAsOpaquePtr();
71    }
72
73    if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
74      // Check whether we can use this interface.
75      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
76
77      return Context.getObjCInterfaceType(IDecl).getAsOpaquePtr();
78    }
79
80    // Otherwise, could be a variable, function etc.
81  }
82  return 0;
83}
84
85DeclContext *Sema::getContainingDC(DeclContext *DC) {
86  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
87    // A C++ out-of-line method will return to the file declaration context.
88    if (MD->isOutOfLineDefinition())
89      return MD->getLexicalDeclContext();
90
91    // A C++ inline method is parsed *after* the topmost class it was declared
92    // in is fully parsed (it's "complete").
93    // The parsing of a C++ inline method happens at the declaration context of
94    // the topmost (non-nested) class it is lexically declared in.
95    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
96    DC = MD->getParent();
97    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
98      DC = RD;
99
100    // Return the declaration context of the topmost class the inline method is
101    // declared in.
102    return DC;
103  }
104
105  if (isa<ObjCMethodDecl>(DC))
106    return Context.getTranslationUnitDecl();
107
108  return DC->getLexicalParent();
109}
110
111void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
112  assert(getContainingDC(DC) == CurContext &&
113      "The next DeclContext should be lexically contained in the current one.");
114  CurContext = DC;
115  S->setEntity(DC);
116}
117
118void Sema::PopDeclContext() {
119  assert(CurContext && "DeclContext imbalance!");
120
121  CurContext = getContainingDC(CurContext);
122}
123
124/// \brief Determine whether we allow overloading of the function
125/// PrevDecl with another declaration.
126///
127/// This routine determines whether overloading is possible, not
128/// whether some new function is actually an overload. It will return
129/// true in C++ (where we can always provide overloads) or, as an
130/// extension, in C when the previous function is already an
131/// overloaded function declaration or has the "overloadable"
132/// attribute.
133static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
134  if (Context.getLangOptions().CPlusPlus)
135    return true;
136
137  if (isa<OverloadedFunctionDecl>(PrevDecl))
138    return true;
139
140  return PrevDecl->getAttr<OverloadableAttr>() != 0;
141}
142
143/// Add this decl to the scope shadowed decl chains.
144void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
145  // Move up the scope chain until we find the nearest enclosing
146  // non-transparent context. The declaration will be introduced into this
147  // scope.
148  while (S->getEntity() &&
149         ((DeclContext *)S->getEntity())->isTransparentContext())
150    S = S->getParent();
151
152  S->AddDecl(D);
153
154  // Add scoped declarations into their context, so that they can be
155  // found later. Declarations without a context won't be inserted
156  // into any context.
157  CurContext->addDecl(D);
158
159  // C++ [basic.scope]p4:
160  //   -- exactly one declaration shall declare a class name or
161  //   enumeration name that is not a typedef name and the other
162  //   declarations shall all refer to the same object or
163  //   enumerator, or all refer to functions and function templates;
164  //   in this case the class name or enumeration name is hidden.
165  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
166    // We are pushing the name of a tag (enum or class).
167    if (CurContext->getLookupContext()
168          == TD->getDeclContext()->getLookupContext()) {
169      // We're pushing the tag into the current context, which might
170      // require some reshuffling in the identifier resolver.
171      IdentifierResolver::iterator
172        I = IdResolver.begin(TD->getDeclName()),
173        IEnd = IdResolver.end();
174      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
175        NamedDecl *PrevDecl = *I;
176        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
177             PrevDecl = *I, ++I) {
178          if (TD->declarationReplaces(*I)) {
179            // This is a redeclaration. Remove it from the chain and
180            // break out, so that we'll add in the shadowed
181            // declaration.
182            S->RemoveDecl(*I);
183            if (PrevDecl == *I) {
184              IdResolver.RemoveDecl(*I);
185              IdResolver.AddDecl(TD);
186              return;
187            } else {
188              IdResolver.RemoveDecl(*I);
189              break;
190            }
191          }
192        }
193
194        // There is already a declaration with the same name in the same
195        // scope, which is not a tag declaration. It must be found
196        // before we find the new declaration, so insert the new
197        // declaration at the end of the chain.
198        IdResolver.AddShadowedDecl(TD, PrevDecl);
199
200        return;
201      }
202    }
203  } else if (isa<FunctionDecl>(D) &&
204             AllowOverloadingOfFunction(D, Context)) {
205    // We are pushing the name of a function, which might be an
206    // overloaded name.
207    FunctionDecl *FD = cast<FunctionDecl>(D);
208    IdentifierResolver::iterator Redecl
209      = std::find_if(IdResolver.begin(FD->getDeclName()),
210                     IdResolver.end(),
211                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
212                                  FD));
213    if (Redecl != IdResolver.end() && S->isDeclScope(*Redecl)) {
214      // There is already a declaration of a function on our
215      // IdResolver chain. Replace it with this declaration.
216      S->RemoveDecl(*Redecl);
217      IdResolver.RemoveDecl(*Redecl);
218    }
219  }
220
221  IdResolver.AddDecl(D);
222}
223
224void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
225  if (S->decl_empty()) return;
226  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
227	 "Scope shouldn't contain decls!");
228
229  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
230       I != E; ++I) {
231    Decl *TmpD = static_cast<Decl*>(*I);
232    assert(TmpD && "This decl didn't get pushed??");
233
234    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
235    NamedDecl *D = cast<NamedDecl>(TmpD);
236
237    if (!D->getDeclName()) continue;
238
239    // Remove this name from our lexical scope.
240    IdResolver.RemoveDecl(D);
241  }
242}
243
244/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
245/// return 0 if one not found.
246ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
247  // The third "scope" argument is 0 since we aren't enabling lazy built-in
248  // creation from this context.
249  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
250
251  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
252}
253
254/// getNonFieldDeclScope - Retrieves the innermost scope, starting
255/// from S, where a non-field would be declared. This routine copes
256/// with the difference between C and C++ scoping rules in structs and
257/// unions. For example, the following code is well-formed in C but
258/// ill-formed in C++:
259/// @code
260/// struct S6 {
261///   enum { BAR } e;
262/// };
263///
264/// void test_S6() {
265///   struct S6 a;
266///   a.e = BAR;
267/// }
268/// @endcode
269/// For the declaration of BAR, this routine will return a different
270/// scope. The scope S will be the scope of the unnamed enumeration
271/// within S6. In C++, this routine will return the scope associated
272/// with S6, because the enumeration's scope is a transparent
273/// context but structures can contain non-field names. In C, this
274/// routine will return the translation unit scope, since the
275/// enumeration's scope is a transparent context and structures cannot
276/// contain non-field names.
277Scope *Sema::getNonFieldDeclScope(Scope *S) {
278  while (((S->getFlags() & Scope::DeclScope) == 0) ||
279         (S->getEntity() &&
280          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
281         (S->isClassScope() && !getLangOptions().CPlusPlus))
282    S = S->getParent();
283  return S;
284}
285
286void Sema::InitBuiltinVaListType() {
287  if (!Context.getBuiltinVaListType().isNull())
288    return;
289
290  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
291  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
292  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
293  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
294}
295
296/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
297/// file scope.  lazily create a decl for it. ForRedeclaration is true
298/// if we're creating this built-in in anticipation of redeclaring the
299/// built-in.
300NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
301                                     Scope *S, bool ForRedeclaration,
302                                     SourceLocation Loc) {
303  Builtin::ID BID = (Builtin::ID)bid;
304
305  if (Context.BuiltinInfo.hasVAListUse(BID))
306    InitBuiltinVaListType();
307
308  Builtin::Context::GetBuiltinTypeError Error;
309  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context, Error);
310  switch (Error) {
311  case Builtin::Context::GE_None:
312    // Okay
313    break;
314
315  case Builtin::Context::GE_Missing_FILE:
316    if (ForRedeclaration)
317      Diag(Loc, diag::err_implicit_decl_requires_stdio)
318        << Context.BuiltinInfo.GetName(BID);
319    return 0;
320  }
321
322  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
323    Diag(Loc, diag::ext_implicit_lib_function_decl)
324      << Context.BuiltinInfo.GetName(BID)
325      << R;
326    if (Context.BuiltinInfo.getHeaderName(BID) &&
327        Diags.getDiagnosticMapping(diag::ext_implicit_lib_function_decl)
328          != diag::MAP_IGNORE)
329      Diag(Loc, diag::note_please_include_header)
330        << Context.BuiltinInfo.getHeaderName(BID)
331        << Context.BuiltinInfo.GetName(BID);
332  }
333
334  FunctionDecl *New = FunctionDecl::Create(Context,
335                                           Context.getTranslationUnitDecl(),
336                                           Loc, II, R,
337                                           FunctionDecl::Extern, false);
338  New->setImplicit();
339
340  // Create Decl objects for each parameter, adding them to the
341  // FunctionDecl.
342  if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(R)) {
343    llvm::SmallVector<ParmVarDecl*, 16> Params;
344    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
345      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
346                                           FT->getArgType(i), VarDecl::None, 0));
347    New->setParams(Context, &Params[0], Params.size());
348  }
349
350  AddKnownFunctionAttributes(New);
351
352  // TUScope is the translation-unit scope to insert this function into.
353  // FIXME: This is hideous. We need to teach PushOnScopeChains to
354  // relate Scopes to DeclContexts, and probably eliminate CurContext
355  // entirely, but we're not there yet.
356  DeclContext *SavedContext = CurContext;
357  CurContext = Context.getTranslationUnitDecl();
358  PushOnScopeChains(New, TUScope);
359  CurContext = SavedContext;
360  return New;
361}
362
363/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
364/// everything from the standard library is defined.
365NamespaceDecl *Sema::GetStdNamespace() {
366  if (!StdNamespace) {
367    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
368    DeclContext *Global = Context.getTranslationUnitDecl();
369    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
370    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
371  }
372  return StdNamespace;
373}
374
375/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
376/// same name and scope as a previous declaration 'Old'.  Figure out
377/// how to resolve this situation, merging decls or emitting
378/// diagnostics as appropriate. Returns true if there was an error,
379/// false otherwise.
380///
381bool Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
382  bool objc_types = false;
383  // Allow multiple definitions for ObjC built-in typedefs.
384  // FIXME: Verify the underlying types are equivalent!
385  if (getLangOptions().ObjC1) {
386    const IdentifierInfo *TypeID = New->getIdentifier();
387    switch (TypeID->getLength()) {
388    default: break;
389    case 2:
390      if (!TypeID->isStr("id"))
391        break;
392      Context.setObjCIdType(New);
393      objc_types = true;
394      break;
395    case 5:
396      if (!TypeID->isStr("Class"))
397        break;
398      Context.setObjCClassType(New);
399      objc_types = true;
400      return false;
401    case 3:
402      if (!TypeID->isStr("SEL"))
403        break;
404      Context.setObjCSelType(New);
405      objc_types = true;
406      return false;
407    case 8:
408      if (!TypeID->isStr("Protocol"))
409        break;
410      Context.setObjCProtoType(New->getUnderlyingType());
411      objc_types = true;
412      return false;
413    }
414    // Fall through - the typedef name was not a builtin type.
415  }
416  // Verify the old decl was also a type.
417  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
418  if (!Old) {
419    Diag(New->getLocation(), diag::err_redefinition_different_kind)
420      << New->getDeclName();
421    if (!objc_types)
422      Diag(OldD->getLocation(), diag::note_previous_definition);
423    return true;
424  }
425
426  // Determine the "old" type we'll use for checking and diagnostics.
427  QualType OldType;
428  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
429    OldType = OldTypedef->getUnderlyingType();
430  else
431    OldType = Context.getTypeDeclType(Old);
432
433  // If the typedef types are not identical, reject them in all languages and
434  // with any extensions enabled.
435
436  if (OldType != New->getUnderlyingType() &&
437      Context.getCanonicalType(OldType) !=
438      Context.getCanonicalType(New->getUnderlyingType())) {
439    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
440      << New->getUnderlyingType() << OldType;
441    if (!objc_types)
442      Diag(Old->getLocation(), diag::note_previous_definition);
443    return true;
444  }
445  if (objc_types) return false;
446  if (getLangOptions().Microsoft) return false;
447
448  // C++ [dcl.typedef]p2:
449  //   In a given non-class scope, a typedef specifier can be used to
450  //   redefine the name of any type declared in that scope to refer
451  //   to the type to which it already refers.
452  if (getLangOptions().CPlusPlus && !isa<CXXRecordDecl>(CurContext))
453    return false;
454
455  // In C, redeclaration of a type is a constraint violation (6.7.2.3p1).
456  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
457  // *either* declaration is in a system header. The code below implements
458  // this adhoc compatibility rule. FIXME: The following code will not
459  // work properly when compiling ".i" files (containing preprocessed output).
460  if (PP.getDiagnostics().getSuppressSystemWarnings()) {
461    SourceManager &SrcMgr = Context.getSourceManager();
462    if (SrcMgr.isInSystemHeader(Old->getLocation()))
463      return false;
464    if (SrcMgr.isInSystemHeader(New->getLocation()))
465      return false;
466  }
467
468  Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
469  Diag(Old->getLocation(), diag::note_previous_definition);
470  return true;
471}
472
473/// DeclhasAttr - returns true if decl Declaration already has the target
474/// attribute.
475static bool DeclHasAttr(const Decl *decl, const Attr *target) {
476  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
477    if (attr->getKind() == target->getKind())
478      return true;
479
480  return false;
481}
482
483/// MergeAttributes - append attributes from the Old decl to the New one.
484static void MergeAttributes(Decl *New, Decl *Old) {
485  Attr *attr = const_cast<Attr*>(Old->getAttrs()), *tmp;
486
487  while (attr) {
488    tmp = attr;
489    attr = attr->getNext();
490
491    if (!DeclHasAttr(New, tmp) && tmp->isMerged()) {
492      tmp->setInherited(true);
493      New->addAttr(tmp);
494    } else {
495      tmp->setNext(0);
496      delete(tmp);
497    }
498  }
499
500  Old->invalidateAttrs();
501}
502
503/// MergeFunctionDecl - We just parsed a function 'New' from
504/// declarator D which has the same name and scope as a previous
505/// declaration 'Old'.  Figure out how to resolve this situation,
506/// merging decls or emitting diagnostics as appropriate.
507///
508/// In C++, New and Old must be declarations that are not
509/// overloaded. Use IsOverload to determine whether New and Old are
510/// overloaded, and to select the Old declaration that New should be
511/// merged with.
512///
513/// Returns true if there was an error, false otherwise.
514bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
515  assert(!isa<OverloadedFunctionDecl>(OldD) &&
516         "Cannot merge with an overloaded function declaration");
517
518  // Verify the old decl was also a function.
519  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
520  if (!Old) {
521    Diag(New->getLocation(), diag::err_redefinition_different_kind)
522      << New->getDeclName();
523    Diag(OldD->getLocation(), diag::note_previous_definition);
524    return true;
525  }
526
527  // Determine whether the previous declaration was a definition,
528  // implicit declaration, or a declaration.
529  diag::kind PrevDiag;
530  if (Old->isThisDeclarationADefinition())
531    PrevDiag = diag::note_previous_definition;
532  else if (Old->isImplicit())
533    PrevDiag = diag::note_previous_implicit_declaration;
534  else
535    PrevDiag = diag::note_previous_declaration;
536
537  QualType OldQType = Context.getCanonicalType(Old->getType());
538  QualType NewQType = Context.getCanonicalType(New->getType());
539
540  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
541      New->getStorageClass() == FunctionDecl::Static &&
542      Old->getStorageClass() != FunctionDecl::Static) {
543    Diag(New->getLocation(), diag::err_static_non_static)
544      << New;
545    Diag(Old->getLocation(), PrevDiag);
546    return true;
547  }
548
549  if (getLangOptions().CPlusPlus) {
550    // (C++98 13.1p2):
551    //   Certain function declarations cannot be overloaded:
552    //     -- Function declarations that differ only in the return type
553    //        cannot be overloaded.
554    QualType OldReturnType
555      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
556    QualType NewReturnType
557      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
558    if (OldReturnType != NewReturnType) {
559      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
560      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
561      return true;
562    }
563
564    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
565    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
566    if (OldMethod && NewMethod) {
567      //    -- Member function declarations with the same name and the
568      //       same parameter types cannot be overloaded if any of them
569      //       is a static member function declaration.
570      if (OldMethod->isStatic() || NewMethod->isStatic()) {
571        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
572        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
573        return true;
574      }
575
576      // C++ [class.mem]p1:
577      //   [...] A member shall not be declared twice in the
578      //   member-specification, except that a nested class or member
579      //   class template can be declared and then later defined.
580      if (OldMethod->getLexicalDeclContext() ==
581            NewMethod->getLexicalDeclContext()) {
582        unsigned NewDiag;
583        if (isa<CXXConstructorDecl>(OldMethod))
584          NewDiag = diag::err_constructor_redeclared;
585        else if (isa<CXXDestructorDecl>(NewMethod))
586          NewDiag = diag::err_destructor_redeclared;
587        else if (isa<CXXConversionDecl>(NewMethod))
588          NewDiag = diag::err_conv_function_redeclared;
589        else
590          NewDiag = diag::err_member_redeclared;
591
592        Diag(New->getLocation(), NewDiag);
593        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
594      }
595    }
596
597    // (C++98 8.3.5p3):
598    //   All declarations for a function shall agree exactly in both the
599    //   return type and the parameter-type-list.
600    if (OldQType == NewQType)
601      return MergeCompatibleFunctionDecls(New, Old);
602
603    // Fall through for conflicting redeclarations and redefinitions.
604  }
605
606  // C: Function types need to be compatible, not identical. This handles
607  // duplicate function decls like "void f(int); void f(enum X);" properly.
608  if (!getLangOptions().CPlusPlus &&
609      Context.typesAreCompatible(OldQType, NewQType)) {
610    const FunctionType *NewFuncType = NewQType->getAsFunctionType();
611    const FunctionTypeProto *OldProto = 0;
612    if (isa<FunctionTypeNoProto>(NewFuncType) &&
613        (OldProto = OldQType->getAsFunctionTypeProto())) {
614      // The old declaration provided a function prototype, but the
615      // new declaration does not. Merge in the prototype.
616      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
617                                                 OldProto->arg_type_end());
618      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
619                                         &ParamTypes[0], ParamTypes.size(),
620                                         OldProto->isVariadic(),
621                                         OldProto->getTypeQuals());
622      New->setType(NewQType);
623      New->setInheritedPrototype();
624
625      // Synthesize a parameter for each argument type.
626      llvm::SmallVector<ParmVarDecl*, 16> Params;
627      for (FunctionTypeProto::arg_type_iterator
628             ParamType = OldProto->arg_type_begin(),
629             ParamEnd = OldProto->arg_type_end();
630           ParamType != ParamEnd; ++ParamType) {
631        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
632                                                 SourceLocation(), 0,
633                                                 *ParamType, VarDecl::None,
634                                                 0);
635        Param->setImplicit();
636        Params.push_back(Param);
637      }
638
639      New->setParams(Context, &Params[0], Params.size());
640
641    }
642
643    return MergeCompatibleFunctionDecls(New, Old);
644  }
645
646  // A function that has already been declared has been redeclared or defined
647  // with a different type- show appropriate diagnostic
648  if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
649    // The user has declared a builtin function with an incompatible
650    // signature.
651    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
652      // The function the user is redeclaring is a library-defined
653      // function like 'malloc' or 'printf'. Warn about the
654      // redeclaration, then ignore it.
655      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
656      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
657        << Old << Old->getType();
658      return true;
659    }
660
661    PrevDiag = diag::note_previous_builtin_declaration;
662  }
663
664  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
665  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
666  return true;
667}
668
669/// \brief Completes the merge of two function declarations that are
670/// known to be compatible.
671///
672/// This routine handles the merging of attributes and other
673/// properties of function declarations form the old declaration to
674/// the new declaration, once we know that New is in fact a
675/// redeclaration of Old.
676///
677/// \returns false
678bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
679  // Merge the attributes
680  MergeAttributes(New, Old);
681
682  // Merge the storage class.
683  New->setStorageClass(Old->getStorageClass());
684
685  // FIXME: need to implement inline semantics
686
687  // Merge "pure" flag.
688  if (Old->isPure())
689    New->setPure();
690
691  // Merge the "deleted" flag.
692  if (Old->isDeleted())
693    New->setDeleted();
694
695  if (getLangOptions().CPlusPlus)
696    return MergeCXXFunctionDecl(New, Old);
697
698  return false;
699}
700
701/// Predicate for C "tentative" external object definitions (C99 6.9.2).
702static bool isTentativeDefinition(VarDecl *VD) {
703  if (VD->isFileVarDecl())
704    return (!VD->getInit() &&
705            (VD->getStorageClass() == VarDecl::None ||
706             VD->getStorageClass() == VarDecl::Static));
707  return false;
708}
709
710/// CheckForFileScopedRedefinitions - Make sure we forgo redefinition errors
711/// when dealing with C "tentative" external object definitions (C99 6.9.2).
712void Sema::CheckForFileScopedRedefinitions(Scope *S, VarDecl *VD) {
713  bool VDIsTentative = isTentativeDefinition(VD);
714  bool VDIsIncompleteArray = VD->getType()->isIncompleteArrayType();
715
716  // FIXME: I don't think this will actually see all of the
717  // redefinitions. Can't we check this property on-the-fly?
718  for (IdentifierResolver::iterator I = IdResolver.begin(VD->getIdentifier()),
719                                    E = IdResolver.end();
720       I != E; ++I) {
721    if (*I != VD && isDeclInScope(*I, VD->getDeclContext(), S)) {
722      VarDecl *OldDecl = dyn_cast<VarDecl>(*I);
723
724      // Handle the following case:
725      //   int a[10];
726      //   int a[];   - the code below makes sure we set the correct type.
727      //   int a[11]; - this is an error, size isn't 10.
728      if (OldDecl && VDIsTentative && VDIsIncompleteArray &&
729          OldDecl->getType()->isConstantArrayType())
730        VD->setType(OldDecl->getType());
731
732      // Check for "tentative" definitions. We can't accomplish this in
733      // MergeVarDecl since the initializer hasn't been attached.
734      if (!OldDecl || isTentativeDefinition(OldDecl) || VDIsTentative)
735        continue;
736
737      // Handle __private_extern__ just like extern.
738      if (OldDecl->getStorageClass() != VarDecl::Extern &&
739          OldDecl->getStorageClass() != VarDecl::PrivateExtern &&
740          VD->getStorageClass() != VarDecl::Extern &&
741          VD->getStorageClass() != VarDecl::PrivateExtern) {
742        Diag(VD->getLocation(), diag::err_redefinition) << VD->getDeclName();
743        Diag(OldDecl->getLocation(), diag::note_previous_definition);
744        // One redefinition error is enough.
745        break;
746      }
747    }
748  }
749}
750
751/// MergeVarDecl - We just parsed a variable 'New' which has the same name
752/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
753/// situation, merging decls or emitting diagnostics as appropriate.
754///
755/// Tentative definition rules (C99 6.9.2p2) are checked by
756/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
757/// definitions here, since the initializer hasn't been attached.
758///
759bool Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
760  // Verify the old decl was also a variable.
761  VarDecl *Old = dyn_cast<VarDecl>(OldD);
762  if (!Old) {
763    Diag(New->getLocation(), diag::err_redefinition_different_kind)
764      << New->getDeclName();
765    Diag(OldD->getLocation(), diag::note_previous_definition);
766    return true;
767  }
768
769  MergeAttributes(New, Old);
770
771  // Merge the types
772  QualType MergedT = Context.mergeTypes(New->getType(), Old->getType());
773  if (MergedT.isNull()) {
774    Diag(New->getLocation(), diag::err_redefinition_different_type)
775      << New->getDeclName();
776    Diag(Old->getLocation(), diag::note_previous_definition);
777    return true;
778  }
779  New->setType(MergedT);
780  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
781  if (New->getStorageClass() == VarDecl::Static &&
782      (Old->getStorageClass() == VarDecl::None ||
783       Old->getStorageClass() == VarDecl::Extern)) {
784    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
785    Diag(Old->getLocation(), diag::note_previous_definition);
786    return true;
787  }
788  // C99 6.2.2p4: Check if we have a non-static decl followed by a static.
789  if (New->getStorageClass() != VarDecl::Static &&
790      Old->getStorageClass() == VarDecl::Static) {
791    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
792    Diag(Old->getLocation(), diag::note_previous_definition);
793    return true;
794  }
795  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
796  if (New->getStorageClass() != VarDecl::Extern && !New->isFileVarDecl()) {
797    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
798    Diag(Old->getLocation(), diag::note_previous_definition);
799    return true;
800  }
801  return false;
802}
803
804/// CheckParmsForFunctionDef - Check that the parameters of the given
805/// function are appropriate for the definition of a function. This
806/// takes care of any checks that cannot be performed on the
807/// declaration itself, e.g., that the types of each of the function
808/// parameters are complete.
809bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
810  bool HasInvalidParm = false;
811  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
812    ParmVarDecl *Param = FD->getParamDecl(p);
813
814    // C99 6.7.5.3p4: the parameters in a parameter type list in a
815    // function declarator that is part of a function definition of
816    // that function shall not have incomplete type.
817    if (!Param->isInvalidDecl() &&
818        DiagnoseIncompleteType(Param->getLocation(), Param->getType(),
819                               diag::err_typecheck_decl_incomplete_type)) {
820      Param->setInvalidDecl();
821      HasInvalidParm = true;
822    }
823
824    // C99 6.9.1p5: If the declarator includes a parameter type list, the
825    // declaration of each parameter shall include an identifier.
826    if (Param->getIdentifier() == 0 &&
827        !Param->isImplicit() &&
828        !getLangOptions().CPlusPlus)
829      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
830  }
831
832  return HasInvalidParm;
833}
834
835/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
836/// no declarator (e.g. "struct foo;") is parsed.
837Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
838  TagDecl *Tag = 0;
839  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
840      DS.getTypeSpecType() == DeclSpec::TST_struct ||
841      DS.getTypeSpecType() == DeclSpec::TST_union ||
842      DS.getTypeSpecType() == DeclSpec::TST_enum)
843    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
844
845  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
846    if (!Record->getDeclName() && Record->isDefinition() &&
847        DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
848      return BuildAnonymousStructOrUnion(S, DS, Record);
849
850    // Microsoft allows unnamed struct/union fields. Don't complain
851    // about them.
852    // FIXME: Should we support Microsoft's extensions in this area?
853    if (Record->getDeclName() && getLangOptions().Microsoft)
854      return Tag;
855  }
856
857  if (!DS.isMissingDeclaratorOk() &&
858      DS.getTypeSpecType() != DeclSpec::TST_error) {
859    // Warn about typedefs of enums without names, since this is an
860    // extension in both Microsoft an GNU.
861    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
862        Tag && isa<EnumDecl>(Tag)) {
863      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
864        << DS.getSourceRange();
865      return Tag;
866    }
867
868    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
869      << DS.getSourceRange();
870    return 0;
871  }
872
873  return Tag;
874}
875
876/// InjectAnonymousStructOrUnionMembers - Inject the members of the
877/// anonymous struct or union AnonRecord into the owning context Owner
878/// and scope S. This routine will be invoked just after we realize
879/// that an unnamed union or struct is actually an anonymous union or
880/// struct, e.g.,
881///
882/// @code
883/// union {
884///   int i;
885///   float f;
886/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
887///    // f into the surrounding scope.x
888/// @endcode
889///
890/// This routine is recursive, injecting the names of nested anonymous
891/// structs/unions into the owning context and scope as well.
892bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
893                                               RecordDecl *AnonRecord) {
894  bool Invalid = false;
895  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
896                               FEnd = AnonRecord->field_end();
897       F != FEnd; ++F) {
898    if ((*F)->getDeclName()) {
899      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
900                                                LookupOrdinaryName, true);
901      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
902        // C++ [class.union]p2:
903        //   The names of the members of an anonymous union shall be
904        //   distinct from the names of any other entity in the
905        //   scope in which the anonymous union is declared.
906        unsigned diagKind
907          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
908                                 : diag::err_anonymous_struct_member_redecl;
909        Diag((*F)->getLocation(), diagKind)
910          << (*F)->getDeclName();
911        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
912        Invalid = true;
913      } else {
914        // C++ [class.union]p2:
915        //   For the purpose of name lookup, after the anonymous union
916        //   definition, the members of the anonymous union are
917        //   considered to have been defined in the scope in which the
918        //   anonymous union is declared.
919        Owner->makeDeclVisibleInContext(*F);
920        S->AddDecl(*F);
921        IdResolver.AddDecl(*F);
922      }
923    } else if (const RecordType *InnerRecordType
924                 = (*F)->getType()->getAsRecordType()) {
925      RecordDecl *InnerRecord = InnerRecordType->getDecl();
926      if (InnerRecord->isAnonymousStructOrUnion())
927        Invalid = Invalid ||
928          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
929    }
930  }
931
932  return Invalid;
933}
934
935/// ActOnAnonymousStructOrUnion - Handle the declaration of an
936/// anonymous structure or union. Anonymous unions are a C++ feature
937/// (C++ [class.union]) and a GNU C extension; anonymous structures
938/// are a GNU C and GNU C++ extension.
939Sema::DeclTy *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
940                                                RecordDecl *Record) {
941  DeclContext *Owner = Record->getDeclContext();
942
943  // Diagnose whether this anonymous struct/union is an extension.
944  if (Record->isUnion() && !getLangOptions().CPlusPlus)
945    Diag(Record->getLocation(), diag::ext_anonymous_union);
946  else if (!Record->isUnion())
947    Diag(Record->getLocation(), diag::ext_anonymous_struct);
948
949  // C and C++ require different kinds of checks for anonymous
950  // structs/unions.
951  bool Invalid = false;
952  if (getLangOptions().CPlusPlus) {
953    const char* PrevSpec = 0;
954    // C++ [class.union]p3:
955    //   Anonymous unions declared in a named namespace or in the
956    //   global namespace shall be declared static.
957    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
958        (isa<TranslationUnitDecl>(Owner) ||
959         (isa<NamespaceDecl>(Owner) &&
960          cast<NamespaceDecl>(Owner)->getDeclName()))) {
961      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
962      Invalid = true;
963
964      // Recover by adding 'static'.
965      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
966    }
967    // C++ [class.union]p3:
968    //   A storage class is not allowed in a declaration of an
969    //   anonymous union in a class scope.
970    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
971             isa<RecordDecl>(Owner)) {
972      Diag(DS.getStorageClassSpecLoc(),
973           diag::err_anonymous_union_with_storage_spec);
974      Invalid = true;
975
976      // Recover by removing the storage specifier.
977      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
978                             PrevSpec);
979    }
980
981    // C++ [class.union]p2:
982    //   The member-specification of an anonymous union shall only
983    //   define non-static data members. [Note: nested types and
984    //   functions cannot be declared within an anonymous union. ]
985    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
986                                 MemEnd = Record->decls_end();
987         Mem != MemEnd; ++Mem) {
988      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
989        // C++ [class.union]p3:
990        //   An anonymous union shall not have private or protected
991        //   members (clause 11).
992        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
993          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
994            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
995          Invalid = true;
996        }
997      } else if ((*Mem)->isImplicit()) {
998        // Any implicit members are fine.
999      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1000        // This is a type that showed up in an
1001        // elaborated-type-specifier inside the anonymous struct or
1002        // union, but which actually declares a type outside of the
1003        // anonymous struct or union. It's okay.
1004      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1005        if (!MemRecord->isAnonymousStructOrUnion() &&
1006            MemRecord->getDeclName()) {
1007          // This is a nested type declaration.
1008          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1009            << (int)Record->isUnion();
1010          Invalid = true;
1011        }
1012      } else {
1013        // We have something that isn't a non-static data
1014        // member. Complain about it.
1015        unsigned DK = diag::err_anonymous_record_bad_member;
1016        if (isa<TypeDecl>(*Mem))
1017          DK = diag::err_anonymous_record_with_type;
1018        else if (isa<FunctionDecl>(*Mem))
1019          DK = diag::err_anonymous_record_with_function;
1020        else if (isa<VarDecl>(*Mem))
1021          DK = diag::err_anonymous_record_with_static;
1022        Diag((*Mem)->getLocation(), DK)
1023            << (int)Record->isUnion();
1024          Invalid = true;
1025      }
1026    }
1027  } else {
1028    // FIXME: Check GNU C semantics
1029    if (Record->isUnion() && !Owner->isRecord()) {
1030      Diag(Record->getLocation(), diag::err_anonymous_union_not_member)
1031        << (int)getLangOptions().CPlusPlus;
1032      Invalid = true;
1033    }
1034  }
1035
1036  if (!Record->isUnion() && !Owner->isRecord()) {
1037    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1038      << (int)getLangOptions().CPlusPlus;
1039    Invalid = true;
1040  }
1041
1042  // Create a declaration for this anonymous struct/union.
1043  NamedDecl *Anon = 0;
1044  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1045    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1046                             /*IdentifierInfo=*/0,
1047                             Context.getTypeDeclType(Record),
1048                             /*BitWidth=*/0, /*Mutable=*/false);
1049    Anon->setAccess(AS_public);
1050    if (getLangOptions().CPlusPlus)
1051      FieldCollector->Add(cast<FieldDecl>(Anon));
1052  } else {
1053    VarDecl::StorageClass SC;
1054    switch (DS.getStorageClassSpec()) {
1055    default: assert(0 && "Unknown storage class!");
1056    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1057    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1058    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1059    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1060    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1061    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1062    case DeclSpec::SCS_mutable:
1063      // mutable can only appear on non-static class members, so it's always
1064      // an error here
1065      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1066      Invalid = true;
1067      SC = VarDecl::None;
1068      break;
1069    }
1070
1071    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1072                           /*IdentifierInfo=*/0,
1073                           Context.getTypeDeclType(Record),
1074                           SC, DS.getSourceRange().getBegin());
1075  }
1076  Anon->setImplicit();
1077
1078  // Add the anonymous struct/union object to the current
1079  // context. We'll be referencing this object when we refer to one of
1080  // its members.
1081  Owner->addDecl(Anon);
1082
1083  // Inject the members of the anonymous struct/union into the owning
1084  // context and into the identifier resolver chain for name lookup
1085  // purposes.
1086  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1087    Invalid = true;
1088
1089  // Mark this as an anonymous struct/union type. Note that we do not
1090  // do this until after we have already checked and injected the
1091  // members of this anonymous struct/union type, because otherwise
1092  // the members could be injected twice: once by DeclContext when it
1093  // builds its lookup table, and once by
1094  // InjectAnonymousStructOrUnionMembers.
1095  Record->setAnonymousStructOrUnion(true);
1096
1097  if (Invalid)
1098    Anon->setInvalidDecl();
1099
1100  return Anon;
1101}
1102
1103bool Sema::CheckSingleInitializer(Expr *&Init, QualType DeclType,
1104                                  bool DirectInit) {
1105  // Get the type before calling CheckSingleAssignmentConstraints(), since
1106  // it can promote the expression.
1107  QualType InitType = Init->getType();
1108
1109  if (getLangOptions().CPlusPlus) {
1110    // FIXME: I dislike this error message. A lot.
1111    if (PerformImplicitConversion(Init, DeclType, "initializing", DirectInit))
1112      return Diag(Init->getSourceRange().getBegin(),
1113                  diag::err_typecheck_convert_incompatible)
1114        << DeclType << Init->getType() << "initializing"
1115        << Init->getSourceRange();
1116
1117    return false;
1118  }
1119
1120  AssignConvertType ConvTy = CheckSingleAssignmentConstraints(DeclType, Init);
1121  return DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType,
1122                                  InitType, Init, "initializing");
1123}
1124
1125bool Sema::CheckStringLiteralInit(StringLiteral *strLiteral, QualType &DeclT) {
1126  const ArrayType *AT = Context.getAsArrayType(DeclT);
1127
1128  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
1129    // C99 6.7.8p14. We have an array of character type with unknown size
1130    // being initialized to a string literal.
1131    llvm::APSInt ConstVal(32);
1132    ConstVal = strLiteral->getByteLength() + 1;
1133    // Return a new array type (C99 6.7.8p22).
1134    DeclT = Context.getConstantArrayType(IAT->getElementType(), ConstVal,
1135                                         ArrayType::Normal, 0);
1136  } else {
1137    const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
1138    // C99 6.7.8p14. We have an array of character type with known size.
1139    // FIXME: Avoid truncation for 64-bit length strings.
1140    if (strLiteral->getByteLength() > (unsigned)CAT->getSize().getZExtValue())
1141      Diag(strLiteral->getSourceRange().getBegin(),
1142           diag::warn_initializer_string_for_char_array_too_long)
1143        << strLiteral->getSourceRange();
1144  }
1145  // Set type from "char *" to "constant array of char".
1146  strLiteral->setType(DeclT);
1147  // For now, we always return false (meaning success).
1148  return false;
1149}
1150
1151StringLiteral *Sema::IsStringLiteralInit(Expr *Init, QualType DeclType) {
1152  const ArrayType *AT = Context.getAsArrayType(DeclType);
1153  if (AT && AT->getElementType()->isCharType()) {
1154    return dyn_cast<StringLiteral>(Init->IgnoreParens());
1155  }
1156  return 0;
1157}
1158
1159bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType,
1160                                 SourceLocation InitLoc,
1161                                 DeclarationName InitEntity,
1162                                 bool DirectInit) {
1163  if (DeclType->isDependentType() || Init->isTypeDependent())
1164    return false;
1165
1166  // C++ [dcl.init.ref]p1:
1167  //   A variable declared to be a T&, that is "reference to type T"
1168  //   (8.3.2), shall be initialized by an object, or function, of
1169  //   type T or by an object that can be converted into a T.
1170  if (DeclType->isReferenceType())
1171    return CheckReferenceInit(Init, DeclType, 0, false, DirectInit);
1172
1173  // C99 6.7.8p3: The type of the entity to be initialized shall be an array
1174  // of unknown size ("[]") or an object type that is not a variable array type.
1175  if (const VariableArrayType *VAT = Context.getAsVariableArrayType(DeclType))
1176    return Diag(InitLoc,  diag::err_variable_object_no_init)
1177      << VAT->getSizeExpr()->getSourceRange();
1178
1179  InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
1180  if (!InitList) {
1181    // FIXME: Handle wide strings
1182    if (StringLiteral *strLiteral = IsStringLiteralInit(Init, DeclType))
1183      return CheckStringLiteralInit(strLiteral, DeclType);
1184
1185    // C++ [dcl.init]p14:
1186    //   -- If the destination type is a (possibly cv-qualified) class
1187    //      type:
1188    if (getLangOptions().CPlusPlus && DeclType->isRecordType()) {
1189      QualType DeclTypeC = Context.getCanonicalType(DeclType);
1190      QualType InitTypeC = Context.getCanonicalType(Init->getType());
1191
1192      //   -- If the initialization is direct-initialization, or if it is
1193      //      copy-initialization where the cv-unqualified version of the
1194      //      source type is the same class as, or a derived class of, the
1195      //      class of the destination, constructors are considered.
1196      if ((DeclTypeC.getUnqualifiedType() == InitTypeC.getUnqualifiedType()) ||
1197          IsDerivedFrom(InitTypeC, DeclTypeC)) {
1198        CXXConstructorDecl *Constructor
1199          = PerformInitializationByConstructor(DeclType, &Init, 1,
1200                                               InitLoc, Init->getSourceRange(),
1201                                               InitEntity,
1202                                               DirectInit? IK_Direct : IK_Copy);
1203        return Constructor == 0;
1204      }
1205
1206      //   -- Otherwise (i.e., for the remaining copy-initialization
1207      //      cases), user-defined conversion sequences that can
1208      //      convert from the source type to the destination type or
1209      //      (when a conversion function is used) to a derived class
1210      //      thereof are enumerated as described in 13.3.1.4, and the
1211      //      best one is chosen through overload resolution
1212      //      (13.3). If the conversion cannot be done or is
1213      //      ambiguous, the initialization is ill-formed. The
1214      //      function selected is called with the initializer
1215      //      expression as its argument; if the function is a
1216      //      constructor, the call initializes a temporary of the
1217      //      destination type.
1218      // FIXME: We're pretending to do copy elision here; return to
1219      // this when we have ASTs for such things.
1220      if (!PerformImplicitConversion(Init, DeclType, "initializing"))
1221        return false;
1222
1223      if (InitEntity)
1224        return Diag(InitLoc, diag::err_cannot_initialize_decl)
1225          << InitEntity << (int)(Init->isLvalue(Context) == Expr::LV_Valid)
1226          << Init->getType() << Init->getSourceRange();
1227      else
1228        return Diag(InitLoc, diag::err_cannot_initialize_decl_noname)
1229          << DeclType << (int)(Init->isLvalue(Context) == Expr::LV_Valid)
1230          << Init->getType() << Init->getSourceRange();
1231    }
1232
1233    // C99 6.7.8p16.
1234    if (DeclType->isArrayType())
1235      return Diag(Init->getLocStart(), diag::err_array_init_list_required)
1236        << Init->getSourceRange();
1237
1238    return CheckSingleInitializer(Init, DeclType, DirectInit);
1239  }
1240
1241  bool hadError = CheckInitList(InitList, DeclType);
1242  Init = InitList;
1243  return hadError;
1244}
1245
1246/// GetNameForDeclarator - Determine the full declaration name for the
1247/// given Declarator.
1248DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1249  switch (D.getKind()) {
1250  case Declarator::DK_Abstract:
1251    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1252    return DeclarationName();
1253
1254  case Declarator::DK_Normal:
1255    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1256    return DeclarationName(D.getIdentifier());
1257
1258  case Declarator::DK_Constructor: {
1259    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1260    Ty = Context.getCanonicalType(Ty);
1261    return Context.DeclarationNames.getCXXConstructorName(Ty);
1262  }
1263
1264  case Declarator::DK_Destructor: {
1265    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1266    Ty = Context.getCanonicalType(Ty);
1267    return Context.DeclarationNames.getCXXDestructorName(Ty);
1268  }
1269
1270  case Declarator::DK_Conversion: {
1271    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1272    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1273    Ty = Context.getCanonicalType(Ty);
1274    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1275  }
1276
1277  case Declarator::DK_Operator:
1278    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1279    return Context.DeclarationNames.getCXXOperatorName(
1280                                                D.getOverloadedOperator());
1281  }
1282
1283  assert(false && "Unknown name kind");
1284  return DeclarationName();
1285}
1286
1287/// isNearlyMatchingFunction - Determine whether the C++ functions
1288/// Declaration and Definition are "nearly" matching. This heuristic
1289/// is used to improve diagnostics in the case where an out-of-line
1290/// function definition doesn't match any declaration within
1291/// the class or namespace.
1292static bool isNearlyMatchingFunction(ASTContext &Context,
1293                                     FunctionDecl *Declaration,
1294                                     FunctionDecl *Definition) {
1295  if (Declaration->param_size() != Definition->param_size())
1296    return false;
1297  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1298    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1299    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1300
1301    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1302    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1303    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1304      return false;
1305  }
1306
1307  return true;
1308}
1309
1310Sema::DeclTy *
1311Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl,
1312                      bool IsFunctionDefinition) {
1313  NamedDecl *LastDeclarator = dyn_cast_or_null<NamedDecl>((Decl *)lastDecl);
1314  DeclarationName Name = GetNameForDeclarator(D);
1315
1316  // All of these full declarators require an identifier.  If it doesn't have
1317  // one, the ParsedFreeStandingDeclSpec action should be used.
1318  if (!Name) {
1319    if (!D.getInvalidType())  // Reject this if we think it is valid.
1320      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1321           diag::err_declarator_need_ident)
1322        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1323    return 0;
1324  }
1325
1326  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1327  // we find one that is.
1328  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1329         (S->getFlags() & Scope::TemplateParamScope) != 0)
1330    S = S->getParent();
1331
1332  DeclContext *DC;
1333  NamedDecl *PrevDecl;
1334  NamedDecl *New;
1335  bool InvalidDecl = false;
1336
1337  // See if this is a redefinition of a variable in the same scope.
1338  if (!D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid()) {
1339    DC = CurContext;
1340    PrevDecl = LookupName(S, Name, LookupOrdinaryName, true,
1341                          D.getDeclSpec().getStorageClassSpec() !=
1342                            DeclSpec::SCS_static,
1343                          D.getIdentifierLoc());
1344  } else { // Something like "int foo::x;"
1345    DC = static_cast<DeclContext*>(D.getCXXScopeSpec().getScopeRep());
1346    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1347
1348    // C++ 7.3.1.2p2:
1349    // Members (including explicit specializations of templates) of a named
1350    // namespace can also be defined outside that namespace by explicit
1351    // qualification of the name being defined, provided that the entity being
1352    // defined was already declared in the namespace and the definition appears
1353    // after the point of declaration in a namespace that encloses the
1354    // declarations namespace.
1355    //
1356    // Note that we only check the context at this point. We don't yet
1357    // have enough information to make sure that PrevDecl is actually
1358    // the declaration we want to match. For example, given:
1359    //
1360    //   class X {
1361    //     void f();
1362    //     void f(float);
1363    //   };
1364    //
1365    //   void X::f(int) { } // ill-formed
1366    //
1367    // In this case, PrevDecl will point to the overload set
1368    // containing the two f's declared in X, but neither of them
1369    // matches.
1370
1371    // First check whether we named the global scope.
1372    if (isa<TranslationUnitDecl>(DC)) {
1373      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1374        << Name << D.getCXXScopeSpec().getRange();
1375    } else if (!CurContext->Encloses(DC)) {
1376      // The qualifying scope doesn't enclose the original declaration.
1377      // Emit diagnostic based on current scope.
1378      SourceLocation L = D.getIdentifierLoc();
1379      SourceRange R = D.getCXXScopeSpec().getRange();
1380      if (isa<FunctionDecl>(CurContext))
1381        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1382      else
1383        Diag(L, diag::err_invalid_declarator_scope)
1384          << Name << cast<NamedDecl>(DC) << R;
1385      InvalidDecl = true;
1386    }
1387  }
1388
1389  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1390    // Maybe we will complain about the shadowed template parameter.
1391    InvalidDecl = InvalidDecl
1392      || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
1393    // Just pretend that we didn't see the previous declaration.
1394    PrevDecl = 0;
1395  }
1396
1397  // In C++, the previous declaration we find might be a tag type
1398  // (class or enum). In this case, the new declaration will hide the
1399  // tag type. Note that this does does not apply if we're declaring a
1400  // typedef (C++ [dcl.typedef]p4).
1401  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1402      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1403    PrevDecl = 0;
1404
1405  QualType R = GetTypeForDeclarator(D, S);
1406  if (R.isNull()) {
1407    InvalidDecl = true;
1408    R = Context.IntTy;
1409  }
1410
1411  bool Redeclaration = false;
1412  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1413    New = ActOnTypedefDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1414                                 InvalidDecl, Redeclaration);
1415  } else if (R.getTypePtr()->isFunctionType()) {
1416    New = ActOnFunctionDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1417                                  IsFunctionDefinition, InvalidDecl,
1418                                  Redeclaration);
1419  } else {
1420    New = ActOnVariableDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1421                                  InvalidDecl, Redeclaration);
1422  }
1423
1424  if (New == 0)
1425    return 0;
1426
1427  // Set the lexical context. If the declarator has a C++ scope specifier, the
1428  // lexical context will be different from the semantic context.
1429  New->setLexicalDeclContext(CurContext);
1430
1431  // If this has an identifier and is not an invalid redeclaration,
1432  // add it to the scope stack.
1433  if (Name && !(Redeclaration && InvalidDecl))
1434    PushOnScopeChains(New, S);
1435  // If any semantic error occurred, mark the decl as invalid.
1436  if (D.getInvalidType() || InvalidDecl)
1437    New->setInvalidDecl();
1438
1439  return New;
1440}
1441
1442/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1443/// types into constant array types in certain situations which would otherwise
1444/// be errors (for GCC compatibility).
1445static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1446                                                    ASTContext &Context,
1447                                                    bool &SizeIsNegative) {
1448  // This method tries to turn a variable array into a constant
1449  // array even when the size isn't an ICE.  This is necessary
1450  // for compatibility with code that depends on gcc's buggy
1451  // constant expression folding, like struct {char x[(int)(char*)2];}
1452  SizeIsNegative = false;
1453
1454  if (const PointerType* PTy = dyn_cast<PointerType>(T)) {
1455    QualType Pointee = PTy->getPointeeType();
1456    QualType FixedType =
1457        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1458    if (FixedType.isNull()) return FixedType;
1459    FixedType = Context.getPointerType(FixedType);
1460    FixedType.setCVRQualifiers(T.getCVRQualifiers());
1461    return FixedType;
1462  }
1463
1464  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1465  if (!VLATy) return QualType();
1466
1467  Expr::EvalResult EvalResult;
1468  if (!VLATy->getSizeExpr() ||
1469      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context))
1470    return QualType();
1471
1472  assert(EvalResult.Val.isInt() && "Size expressions must be integers!");
1473  llvm::APSInt &Res = EvalResult.Val.getInt();
1474  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
1475    return Context.getConstantArrayType(VLATy->getElementType(),
1476                                        Res, ArrayType::Normal, 0);
1477
1478  SizeIsNegative = true;
1479  return QualType();
1480}
1481
1482NamedDecl*
1483Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1484                             QualType R, Decl* LastDeclarator,
1485                             Decl* PrevDecl, bool& InvalidDecl,
1486                             bool &Redeclaration) {
1487  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1488  if (D.getCXXScopeSpec().isSet()) {
1489    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1490      << D.getCXXScopeSpec().getRange();
1491    InvalidDecl = true;
1492    // Pretend we didn't see the scope specifier.
1493    DC = 0;
1494  }
1495
1496  // Check that there are no default arguments (C++ only).
1497  if (getLangOptions().CPlusPlus)
1498    CheckExtraCXXDefaultArguments(D);
1499
1500  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
1501  if (!NewTD) return 0;
1502
1503  // Handle attributes prior to checking for duplicates in MergeVarDecl
1504  ProcessDeclAttributes(NewTD, D);
1505  // Merge the decl with the existing one if appropriate. If the decl is
1506  // in an outer scope, it isn't the same thing.
1507  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1508    Redeclaration = true;
1509    if (MergeTypeDefDecl(NewTD, PrevDecl))
1510      InvalidDecl = true;
1511  }
1512
1513  if (S->getFnParent() == 0) {
1514    QualType T = NewTD->getUnderlyingType();
1515    // C99 6.7.7p2: If a typedef name specifies a variably modified type
1516    // then it shall have block scope.
1517    if (T->isVariablyModifiedType()) {
1518      bool SizeIsNegative;
1519      QualType FixedTy =
1520          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1521      if (!FixedTy.isNull()) {
1522        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
1523        NewTD->setUnderlyingType(FixedTy);
1524      } else {
1525        if (SizeIsNegative)
1526          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
1527        else if (T->isVariableArrayType())
1528          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1529        else
1530          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1531        InvalidDecl = true;
1532      }
1533    }
1534  }
1535  return NewTD;
1536}
1537
1538NamedDecl*
1539Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1540                              QualType R, Decl* LastDeclarator,
1541                              Decl* PrevDecl, bool& InvalidDecl,
1542                              bool &Redeclaration) {
1543  DeclarationName Name = GetNameForDeclarator(D);
1544
1545  // Check that there are no default arguments (C++ only).
1546  if (getLangOptions().CPlusPlus)
1547    CheckExtraCXXDefaultArguments(D);
1548
1549  if (R.getTypePtr()->isObjCInterfaceType()) {
1550    Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object);
1551    InvalidDecl = true;
1552  }
1553
1554  VarDecl *NewVD;
1555  VarDecl::StorageClass SC;
1556  switch (D.getDeclSpec().getStorageClassSpec()) {
1557  default: assert(0 && "Unknown storage class!");
1558  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1559  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1560  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1561  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1562  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1563  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1564  case DeclSpec::SCS_mutable:
1565    // mutable can only appear on non-static class members, so it's always
1566    // an error here
1567    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1568    InvalidDecl = true;
1569    SC = VarDecl::None;
1570    break;
1571  }
1572
1573  IdentifierInfo *II = Name.getAsIdentifierInfo();
1574  if (!II) {
1575    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1576      << Name.getAsString();
1577    return 0;
1578  }
1579
1580  if (DC->isRecord()) {
1581    // This is a static data member for a C++ class.
1582    NewVD = CXXClassVarDecl::Create(Context, cast<CXXRecordDecl>(DC),
1583                                    D.getIdentifierLoc(), II,
1584                                    R);
1585  } else {
1586    bool ThreadSpecified = D.getDeclSpec().isThreadSpecified();
1587    if (S->getFnParent() == 0) {
1588      // C99 6.9p2: The storage-class specifiers auto and register shall not
1589      // appear in the declaration specifiers in an external declaration.
1590      if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1591        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1592        InvalidDecl = true;
1593      }
1594    }
1595    NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1596                            II, R, SC,
1597                            // FIXME: Move to DeclGroup...
1598                            D.getDeclSpec().getSourceRange().getBegin());
1599    NewVD->setThreadSpecified(ThreadSpecified);
1600  }
1601  NewVD->setNextDeclarator(LastDeclarator);
1602
1603  // Handle attributes prior to checking for duplicates in MergeVarDecl
1604  ProcessDeclAttributes(NewVD, D);
1605
1606  // Handle GNU asm-label extension (encoded as an attribute).
1607  if (Expr *E = (Expr*) D.getAsmLabel()) {
1608    // The parser guarantees this is a string.
1609    StringLiteral *SE = cast<StringLiteral>(E);
1610    NewVD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1611                                                SE->getByteLength())));
1612  }
1613
1614  // Emit an error if an address space was applied to decl with local storage.
1615  // This includes arrays of objects with address space qualifiers, but not
1616  // automatic variables that point to other address spaces.
1617  // ISO/IEC TR 18037 S5.1.2
1618  if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
1619    Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
1620    InvalidDecl = true;
1621  }
1622
1623  if (NewVD->hasLocalStorage() && NewVD->getType().isObjCGCWeak()) {
1624    Diag(D.getIdentifierLoc(), diag::warn_attribute_weak_on_local);
1625  }
1626
1627  // Merge the decl with the existing one if appropriate. If the decl is
1628  // in an outer scope, it isn't the same thing.
1629  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1630    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
1631      // The user tried to define a non-static data member
1632      // out-of-line (C++ [dcl.meaning]p1).
1633      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
1634        << D.getCXXScopeSpec().getRange();
1635      NewVD->Destroy(Context);
1636      return 0;
1637    }
1638
1639    Redeclaration = true;
1640    if (MergeVarDecl(NewVD, PrevDecl))
1641      InvalidDecl = true;
1642
1643    if (D.getCXXScopeSpec().isSet()) {
1644      // No previous declaration in the qualifying scope.
1645      Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
1646        << Name << D.getCXXScopeSpec().getRange();
1647      InvalidDecl = true;
1648    }
1649  }
1650  return NewVD;
1651}
1652
1653NamedDecl*
1654Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1655                              QualType R, Decl *LastDeclarator,
1656                              NamedDecl* PrevDecl, bool IsFunctionDefinition,
1657                              bool& InvalidDecl, bool &Redeclaration) {
1658  assert(R.getTypePtr()->isFunctionType());
1659
1660  DeclarationName Name = GetNameForDeclarator(D);
1661  FunctionDecl::StorageClass SC = FunctionDecl::None;
1662  switch (D.getDeclSpec().getStorageClassSpec()) {
1663  default: assert(0 && "Unknown storage class!");
1664  case DeclSpec::SCS_auto:
1665  case DeclSpec::SCS_register:
1666  case DeclSpec::SCS_mutable:
1667    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1668         diag::err_typecheck_sclass_func);
1669    InvalidDecl = true;
1670    break;
1671  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
1672  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
1673  case DeclSpec::SCS_static: {
1674    if (DC->getLookupContext()->isFunctionOrMethod()) {
1675      // C99 6.7.1p5:
1676      //   The declaration of an identifier for a function that has
1677      //   block scope shall have no explicit storage-class specifier
1678      //   other than extern
1679      // See also (C++ [dcl.stc]p4).
1680      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1681           diag::err_static_block_func);
1682      SC = FunctionDecl::None;
1683    } else
1684      SC = FunctionDecl::Static;
1685    break;
1686  }
1687  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
1688  }
1689
1690  bool isInline = D.getDeclSpec().isInlineSpecified();
1691  // bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1692  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
1693
1694  FunctionDecl *NewFD;
1695  if (D.getKind() == Declarator::DK_Constructor) {
1696    // This is a C++ constructor declaration.
1697    assert(DC->isRecord() &&
1698           "Constructors can only be declared in a member context");
1699
1700    InvalidDecl = InvalidDecl || CheckConstructorDeclarator(D, R, SC);
1701
1702    // Create the new declaration
1703    NewFD = CXXConstructorDecl::Create(Context,
1704                                       cast<CXXRecordDecl>(DC),
1705                                       D.getIdentifierLoc(), Name, R,
1706                                       isExplicit, isInline,
1707                                       /*isImplicitlyDeclared=*/false);
1708
1709    if (InvalidDecl)
1710      NewFD->setInvalidDecl();
1711  } else if (D.getKind() == Declarator::DK_Destructor) {
1712    // This is a C++ destructor declaration.
1713    if (DC->isRecord()) {
1714      InvalidDecl = InvalidDecl || CheckDestructorDeclarator(D, R, SC);
1715
1716      NewFD = CXXDestructorDecl::Create(Context,
1717                                        cast<CXXRecordDecl>(DC),
1718                                        D.getIdentifierLoc(), Name, R,
1719                                        isInline,
1720                                        /*isImplicitlyDeclared=*/false);
1721
1722      if (InvalidDecl)
1723        NewFD->setInvalidDecl();
1724    } else {
1725      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
1726
1727      // Create a FunctionDecl to satisfy the function definition parsing
1728      // code path.
1729      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
1730                                   Name, R, SC, isInline,
1731                                   // FIXME: Move to DeclGroup...
1732                                   D.getDeclSpec().getSourceRange().getBegin());
1733      InvalidDecl = true;
1734      NewFD->setInvalidDecl();
1735    }
1736  } else if (D.getKind() == Declarator::DK_Conversion) {
1737    if (!DC->isRecord()) {
1738      Diag(D.getIdentifierLoc(),
1739           diag::err_conv_function_not_member);
1740      return 0;
1741    } else {
1742      InvalidDecl = InvalidDecl || CheckConversionDeclarator(D, R, SC);
1743
1744      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
1745                                        D.getIdentifierLoc(), Name, R,
1746                                        isInline, isExplicit);
1747
1748      if (InvalidDecl)
1749        NewFD->setInvalidDecl();
1750    }
1751  } else if (DC->isRecord()) {
1752    // This is a C++ method declaration.
1753    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
1754                                  D.getIdentifierLoc(), Name, R,
1755                                  (SC == FunctionDecl::Static), isInline);
1756  } else {
1757    NewFD = FunctionDecl::Create(Context, DC,
1758                                 D.getIdentifierLoc(),
1759                                 Name, R, SC, isInline,
1760                                 // FIXME: Move to DeclGroup...
1761                                 D.getDeclSpec().getSourceRange().getBegin());
1762  }
1763  NewFD->setNextDeclarator(LastDeclarator);
1764
1765  // Set the lexical context. If the declarator has a C++
1766  // scope specifier, the lexical context will be different
1767  // from the semantic context.
1768  NewFD->setLexicalDeclContext(CurContext);
1769
1770  // Handle GNU asm-label extension (encoded as an attribute).
1771  if (Expr *E = (Expr*) D.getAsmLabel()) {
1772    // The parser guarantees this is a string.
1773    StringLiteral *SE = cast<StringLiteral>(E);
1774    NewFD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1775                                                SE->getByteLength())));
1776  }
1777
1778  // Copy the parameter declarations from the declarator D to
1779  // the function declaration NewFD, if they are available.
1780  if (D.getNumTypeObjects() > 0) {
1781    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1782
1783    // Create Decl objects for each parameter, adding them to the
1784    // FunctionDecl.
1785    llvm::SmallVector<ParmVarDecl*, 16> Params;
1786
1787    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
1788    // function that takes no arguments, not a function that takes a
1789    // single void argument.
1790    // We let through "const void" here because Sema::GetTypeForDeclarator
1791    // already checks for that case.
1792    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1793        FTI.ArgInfo[0].Param &&
1794        ((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
1795      // empty arg list, don't push any params.
1796      ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
1797
1798      // In C++, the empty parameter-type-list must be spelled "void"; a
1799      // typedef of void is not permitted.
1800      if (getLangOptions().CPlusPlus &&
1801          Param->getType().getUnqualifiedType() != Context.VoidTy) {
1802        Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
1803      }
1804    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
1805      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
1806        Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
1807    }
1808
1809    NewFD->setParams(Context, &Params[0], Params.size());
1810  } else if (R->getAsTypedefType()) {
1811    // When we're declaring a function with a typedef, as in the
1812    // following example, we'll need to synthesize (unnamed)
1813    // parameters for use in the declaration.
1814    //
1815    // @code
1816    // typedef void fn(int);
1817    // fn f;
1818    // @endcode
1819    const FunctionTypeProto *FT = R->getAsFunctionTypeProto();
1820    if (!FT) {
1821      // This is a typedef of a function with no prototype, so we
1822      // don't need to do anything.
1823    } else if ((FT->getNumArgs() == 0) ||
1824               (FT->getNumArgs() == 1 && !FT->isVariadic() &&
1825                FT->getArgType(0)->isVoidType())) {
1826      // This is a zero-argument function. We don't need to do anything.
1827    } else {
1828      // Synthesize a parameter for each argument type.
1829      llvm::SmallVector<ParmVarDecl*, 16> Params;
1830      for (FunctionTypeProto::arg_type_iterator ArgType = FT->arg_type_begin();
1831           ArgType != FT->arg_type_end(); ++ArgType) {
1832        ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
1833                                                 SourceLocation(), 0,
1834                                                 *ArgType, VarDecl::None,
1835                                                 0);
1836        Param->setImplicit();
1837        Params.push_back(Param);
1838      }
1839
1840      NewFD->setParams(Context, &Params[0], Params.size());
1841    }
1842  }
1843
1844  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD))
1845    InvalidDecl = InvalidDecl || CheckConstructor(Constructor);
1846  else if (isa<CXXDestructorDecl>(NewFD)) {
1847    CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
1848    Record->setUserDeclaredDestructor(true);
1849    // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
1850    // user-defined destructor.
1851    Record->setPOD(false);
1852  } else if (CXXConversionDecl *Conversion =
1853             dyn_cast<CXXConversionDecl>(NewFD))
1854    ActOnConversionDeclarator(Conversion);
1855
1856  // Extra checking for C++ overloaded operators (C++ [over.oper]).
1857  if (NewFD->isOverloadedOperator() &&
1858      CheckOverloadedOperatorDeclaration(NewFD))
1859    NewFD->setInvalidDecl();
1860
1861  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S)) {
1862    // Name lookup has found a previous declaration that is not in the
1863    // same scope as the new declaration. However, these two
1864    // declarations might still declare the same thing (C99 6.2.2p3-4,
1865    // C++ [basic.link]p6).
1866
1867    // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
1868    // case we need to check each of the overloaded functions.
1869
1870    if (getLangOptions().CPlusPlus) {
1871      // C++ [basic.link]p6:
1872      //   If there is a visible declaration of an entity with linkage
1873      //   having the same name and type, ignoring entities declared
1874      //   outside the innermost enclosing namespace scope, the block
1875      //   scope declaration declares that same entity and receives the
1876      //   linkage of the previous declaration.
1877      DeclContext *OuterContext = DC->getLookupContext();
1878      if (!OuterContext->isFunctionOrMethod())
1879        // This rule only applies to block-scope declarations.
1880        PrevDecl = 0;
1881      else {
1882        DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
1883        if (PrevOuterContext->isRecord())
1884          // We found a member function: ignore it.
1885          PrevDecl = 0;
1886        else {
1887          // Find the innermost enclosing namespace for the new and
1888          // previous declarations.
1889          while (!OuterContext->isFileContext())
1890            OuterContext = OuterContext->getParent();
1891          while (!PrevOuterContext->isFileContext())
1892            PrevOuterContext = PrevOuterContext->getParent();
1893
1894          // The previous declaration is in a different namespace, so it
1895          // isn't the same function.
1896          if (OuterContext->getPrimaryContext() !=
1897              PrevOuterContext->getPrimaryContext())
1898            PrevDecl = 0;
1899        }
1900      }
1901    }
1902
1903    // If the declaration we've found has no linkage, ignore it.
1904    if (VarDecl *VD = dyn_cast_or_null<VarDecl>(PrevDecl)) {
1905      if (!VD->hasGlobalStorage())
1906        PrevDecl = 0;
1907    } else if (PrevDecl && !isa<FunctionDecl>(PrevDecl))
1908      PrevDecl = 0;
1909  }
1910
1911  // Merge or overload the declaration with an existing declaration of
1912  // the same name, if appropriate.
1913  bool OverloadableAttrRequired = false;
1914  if (PrevDecl) {
1915    // Determine whether NewFD is an overload of PrevDecl or
1916    // a declaration that requires merging. If it's an overload,
1917    // there's no more work to do here; we'll just add the new
1918    // function to the scope.
1919    OverloadedFunctionDecl::function_iterator MatchedDecl;
1920
1921    if (!getLangOptions().CPlusPlus &&
1922        AllowOverloadingOfFunction(PrevDecl, Context)) {
1923      OverloadableAttrRequired = true;
1924
1925      // Functions marked "overloadable" must have a prototype (that
1926      // we can't get through declaration merging).
1927      if (!R->getAsFunctionTypeProto()) {
1928        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
1929          << NewFD;
1930        InvalidDecl = true;
1931        Redeclaration = true;
1932
1933        // Turn this into a variadic function with no parameters.
1934        R = Context.getFunctionType(R->getAsFunctionType()->getResultType(),
1935                                    0, 0, true, 0);
1936        NewFD->setType(R);
1937      }
1938    }
1939
1940    if (PrevDecl &&
1941        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
1942         !IsOverload(NewFD, PrevDecl, MatchedDecl))) {
1943      Redeclaration = true;
1944      Decl *OldDecl = PrevDecl;
1945
1946      // If PrevDecl was an overloaded function, extract the
1947      // FunctionDecl that matched.
1948      if (isa<OverloadedFunctionDecl>(PrevDecl))
1949        OldDecl = *MatchedDecl;
1950
1951      // NewFD and PrevDecl represent declarations that need to be
1952      // merged.
1953      if (MergeFunctionDecl(NewFD, OldDecl))
1954        InvalidDecl = true;
1955
1956      if (!InvalidDecl) {
1957        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
1958
1959        // An out-of-line member function declaration must also be a
1960        // definition (C++ [dcl.meaning]p1).
1961        if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
1962            !InvalidDecl) {
1963          Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
1964            << D.getCXXScopeSpec().getRange();
1965          NewFD->setInvalidDecl();
1966        }
1967      }
1968    }
1969  }
1970
1971  if (D.getCXXScopeSpec().isSet() &&
1972      (!PrevDecl || !Redeclaration)) {
1973    // The user tried to provide an out-of-line definition for a
1974    // function that is a member of a class or namespace, but there
1975    // was no such member function declared (C++ [class.mfct]p2,
1976    // C++ [namespace.memdef]p2). For example:
1977    //
1978    // class X {
1979    //   void f() const;
1980    // };
1981    //
1982    // void X::f() { } // ill-formed
1983    //
1984    // Complain about this problem, and attempt to suggest close
1985    // matches (e.g., those that differ only in cv-qualifiers and
1986    // whether the parameter types are references).
1987    Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
1988      << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
1989    InvalidDecl = true;
1990
1991    LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
1992                                            true);
1993    assert(!Prev.isAmbiguous() &&
1994           "Cannot have an ambiguity in previous-declaration lookup");
1995    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
1996         Func != FuncEnd; ++Func) {
1997      if (isa<FunctionDecl>(*Func) &&
1998          isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
1999        Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2000    }
2001
2002    PrevDecl = 0;
2003  }
2004
2005  // Handle attributes. We need to have merged decls when handling attributes
2006  // (for example to check for conflicts, etc).
2007  ProcessDeclAttributes(NewFD, D);
2008  AddKnownFunctionAttributes(NewFD);
2009
2010  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2011    // If a function name is overloadable in C, then every function
2012    // with that name must be marked "overloadable".
2013    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2014      << Redeclaration << NewFD;
2015    if (PrevDecl)
2016      Diag(PrevDecl->getLocation(),
2017           diag::note_attribute_overloadable_prev_overload);
2018    NewFD->addAttr(new OverloadableAttr);
2019  }
2020
2021  if (getLangOptions().CPlusPlus) {
2022    // In C++, check default arguments now that we have merged decls. Unless
2023    // the lexical context is the class, because in this case this is done
2024    // during delayed parsing anyway.
2025    if (!CurContext->isRecord())
2026      CheckCXXDefaultArguments(NewFD);
2027
2028    // An out-of-line member function declaration must also be a
2029    // definition (C++ [dcl.meaning]p1).
2030    if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() && !InvalidDecl) {
2031      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2032        << D.getCXXScopeSpec().getRange();
2033      InvalidDecl = true;
2034    }
2035  }
2036
2037  if (!getLangOptions().CPlusPlus && CurContext->isFunctionOrMethod()) {
2038    // If this is a function declaration in local scope, inject its
2039    // name into the top-level scope so that it will be visible to
2040    // later uses and declarations of the same function, since the
2041    // function is external.
2042    // FIXME: We don't do this in C++ because, although we would like
2043    // to get the extra checking that this operation implies,
2044    // the declaration itself is not visible according to C++'s rules.
2045    IdentifierResolver::iterator I = IdResolver.begin(Name),
2046                              IEnd = IdResolver.end();
2047    NamedDecl *PrevIdDecl = 0;
2048    while (I != IEnd && !isa<TranslationUnitDecl>((*I)->getDeclContext())) {
2049      PrevIdDecl = *I;
2050      ++I;
2051    }
2052
2053    if (I == IEnd) {
2054      // No name with this identifier has been declared at translation
2055      // unit scope. Add this name into the appropriate scope.
2056      if (PrevIdDecl)
2057        IdResolver.AddShadowedDecl(NewFD, PrevIdDecl);
2058      else
2059        IdResolver.AddDecl(NewFD);
2060      TUScope->AddDecl(NewFD);
2061      return NewFD;
2062    }
2063
2064    if (isa<TagDecl>(*I)) {
2065      // The first thing we found was a tag declaration, so insert
2066      // this function so that it will be found before the tag
2067      // declaration.
2068      if (PrevIdDecl)
2069        IdResolver.AddShadowedDecl(NewFD, PrevIdDecl);
2070      else
2071        IdResolver.AddDecl(NewFD);
2072      TUScope->AddDecl(NewFD);
2073    } else if (isa<FunctionDecl>(*I) && NewFD->declarationReplaces(*I)) {
2074      // We found a previous declaration of the same function. Replace
2075      // that declaration with this one.
2076      TUScope->RemoveDecl(*I);
2077      TUScope->AddDecl(NewFD);
2078      IdResolver.RemoveDecl(*I);
2079      if (PrevIdDecl)
2080        IdResolver.AddShadowedDecl(NewFD, PrevIdDecl);
2081      else
2082        IdResolver.AddDecl(NewFD);
2083    }
2084
2085    return NewFD;
2086  }
2087
2088  return NewFD;
2089}
2090
2091void Sema::InitializerElementNotConstant(const Expr *Init) {
2092  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
2093    << Init->getSourceRange();
2094}
2095
2096bool Sema::CheckAddressConstantExpressionLValue(const Expr* Init) {
2097  switch (Init->getStmtClass()) {
2098  default:
2099    InitializerElementNotConstant(Init);
2100    return true;
2101  case Expr::ParenExprClass: {
2102    const ParenExpr* PE = cast<ParenExpr>(Init);
2103    return CheckAddressConstantExpressionLValue(PE->getSubExpr());
2104  }
2105  case Expr::CompoundLiteralExprClass:
2106    return cast<CompoundLiteralExpr>(Init)->isFileScope();
2107  case Expr::DeclRefExprClass:
2108  case Expr::QualifiedDeclRefExprClass: {
2109    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
2110    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2111      if (VD->hasGlobalStorage())
2112        return false;
2113      InitializerElementNotConstant(Init);
2114      return true;
2115    }
2116    if (isa<FunctionDecl>(D))
2117      return false;
2118    InitializerElementNotConstant(Init);
2119    return true;
2120  }
2121  case Expr::MemberExprClass: {
2122    const MemberExpr *M = cast<MemberExpr>(Init);
2123    if (M->isArrow())
2124      return CheckAddressConstantExpression(M->getBase());
2125    return CheckAddressConstantExpressionLValue(M->getBase());
2126  }
2127  case Expr::ArraySubscriptExprClass: {
2128    // FIXME: Should we pedwarn for "x[0+0]" (where x is a pointer)?
2129    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(Init);
2130    return CheckAddressConstantExpression(ASE->getBase()) ||
2131           CheckArithmeticConstantExpression(ASE->getIdx());
2132  }
2133  case Expr::StringLiteralClass:
2134  case Expr::PredefinedExprClass:
2135    return false;
2136  case Expr::UnaryOperatorClass: {
2137    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
2138
2139    // C99 6.6p9
2140    if (Exp->getOpcode() == UnaryOperator::Deref)
2141      return CheckAddressConstantExpression(Exp->getSubExpr());
2142
2143    InitializerElementNotConstant(Init);
2144    return true;
2145  }
2146  }
2147}
2148
2149bool Sema::CheckAddressConstantExpression(const Expr* Init) {
2150  switch (Init->getStmtClass()) {
2151  default:
2152    InitializerElementNotConstant(Init);
2153    return true;
2154  case Expr::ParenExprClass:
2155    return CheckAddressConstantExpression(cast<ParenExpr>(Init)->getSubExpr());
2156  case Expr::StringLiteralClass:
2157  case Expr::ObjCStringLiteralClass:
2158    return false;
2159  case Expr::CallExprClass:
2160  case Expr::CXXOperatorCallExprClass:
2161    // __builtin___CFStringMakeConstantString is a valid constant l-value.
2162    if (cast<CallExpr>(Init)->isBuiltinCall(Context) ==
2163           Builtin::BI__builtin___CFStringMakeConstantString)
2164      return false;
2165
2166    InitializerElementNotConstant(Init);
2167    return true;
2168
2169  case Expr::UnaryOperatorClass: {
2170    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
2171
2172    // C99 6.6p9
2173    if (Exp->getOpcode() == UnaryOperator::AddrOf)
2174      return CheckAddressConstantExpressionLValue(Exp->getSubExpr());
2175
2176    if (Exp->getOpcode() == UnaryOperator::Extension)
2177      return CheckAddressConstantExpression(Exp->getSubExpr());
2178
2179    InitializerElementNotConstant(Init);
2180    return true;
2181  }
2182  case Expr::BinaryOperatorClass: {
2183    // FIXME: Should we pedwarn for expressions like "a + 1 + 2"?
2184    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
2185
2186    Expr *PExp = Exp->getLHS();
2187    Expr *IExp = Exp->getRHS();
2188    if (IExp->getType()->isPointerType())
2189      std::swap(PExp, IExp);
2190
2191    // FIXME: Should we pedwarn if IExp isn't an integer constant expression?
2192    return CheckAddressConstantExpression(PExp) ||
2193           CheckArithmeticConstantExpression(IExp);
2194  }
2195  case Expr::ImplicitCastExprClass:
2196  case Expr::CStyleCastExprClass: {
2197    const Expr* SubExpr = cast<CastExpr>(Init)->getSubExpr();
2198    if (Init->getStmtClass() == Expr::ImplicitCastExprClass) {
2199      // Check for implicit promotion
2200      if (SubExpr->getType()->isFunctionType() ||
2201          SubExpr->getType()->isArrayType())
2202        return CheckAddressConstantExpressionLValue(SubExpr);
2203    }
2204
2205    // Check for pointer->pointer cast
2206    if (SubExpr->getType()->isPointerType())
2207      return CheckAddressConstantExpression(SubExpr);
2208
2209    if (SubExpr->getType()->isIntegralType()) {
2210      // Check for the special-case of a pointer->int->pointer cast;
2211      // this isn't standard, but some code requires it. See
2212      // PR2720 for an example.
2213      if (const CastExpr* SubCast = dyn_cast<CastExpr>(SubExpr)) {
2214        if (SubCast->getSubExpr()->getType()->isPointerType()) {
2215          unsigned IntWidth = Context.getIntWidth(SubCast->getType());
2216          unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
2217          if (IntWidth >= PointerWidth) {
2218            return CheckAddressConstantExpression(SubCast->getSubExpr());
2219          }
2220        }
2221      }
2222    }
2223    if (SubExpr->getType()->isArithmeticType()) {
2224      return CheckArithmeticConstantExpression(SubExpr);
2225    }
2226
2227    InitializerElementNotConstant(Init);
2228    return true;
2229  }
2230  case Expr::ConditionalOperatorClass: {
2231    // FIXME: Should we pedwarn here?
2232    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
2233    if (!Exp->getCond()->getType()->isArithmeticType()) {
2234      InitializerElementNotConstant(Init);
2235      return true;
2236    }
2237    if (CheckArithmeticConstantExpression(Exp->getCond()))
2238      return true;
2239    if (Exp->getLHS() &&
2240        CheckAddressConstantExpression(Exp->getLHS()))
2241      return true;
2242    return CheckAddressConstantExpression(Exp->getRHS());
2243  }
2244  case Expr::AddrLabelExprClass:
2245    return false;
2246  }
2247}
2248
2249static const Expr* FindExpressionBaseAddress(const Expr* E);
2250
2251static const Expr* FindExpressionBaseAddressLValue(const Expr* E) {
2252  switch (E->getStmtClass()) {
2253  default:
2254    return E;
2255  case Expr::ParenExprClass: {
2256    const ParenExpr* PE = cast<ParenExpr>(E);
2257    return FindExpressionBaseAddressLValue(PE->getSubExpr());
2258  }
2259  case Expr::MemberExprClass: {
2260    const MemberExpr *M = cast<MemberExpr>(E);
2261    if (M->isArrow())
2262      return FindExpressionBaseAddress(M->getBase());
2263    return FindExpressionBaseAddressLValue(M->getBase());
2264  }
2265  case Expr::ArraySubscriptExprClass: {
2266    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(E);
2267    return FindExpressionBaseAddress(ASE->getBase());
2268  }
2269  case Expr::UnaryOperatorClass: {
2270    const UnaryOperator *Exp = cast<UnaryOperator>(E);
2271
2272    if (Exp->getOpcode() == UnaryOperator::Deref)
2273      return FindExpressionBaseAddress(Exp->getSubExpr());
2274
2275    return E;
2276  }
2277  }
2278}
2279
2280static const Expr* FindExpressionBaseAddress(const Expr* E) {
2281  switch (E->getStmtClass()) {
2282  default:
2283    return E;
2284  case Expr::ParenExprClass: {
2285    const ParenExpr* PE = cast<ParenExpr>(E);
2286    return FindExpressionBaseAddress(PE->getSubExpr());
2287  }
2288  case Expr::UnaryOperatorClass: {
2289    const UnaryOperator *Exp = cast<UnaryOperator>(E);
2290
2291    // C99 6.6p9
2292    if (Exp->getOpcode() == UnaryOperator::AddrOf)
2293      return FindExpressionBaseAddressLValue(Exp->getSubExpr());
2294
2295    if (Exp->getOpcode() == UnaryOperator::Extension)
2296      return FindExpressionBaseAddress(Exp->getSubExpr());
2297
2298    return E;
2299  }
2300  case Expr::BinaryOperatorClass: {
2301    const BinaryOperator *Exp = cast<BinaryOperator>(E);
2302
2303    Expr *PExp = Exp->getLHS();
2304    Expr *IExp = Exp->getRHS();
2305    if (IExp->getType()->isPointerType())
2306      std::swap(PExp, IExp);
2307
2308    return FindExpressionBaseAddress(PExp);
2309  }
2310  case Expr::ImplicitCastExprClass: {
2311    const Expr* SubExpr = cast<ImplicitCastExpr>(E)->getSubExpr();
2312
2313    // Check for implicit promotion
2314    if (SubExpr->getType()->isFunctionType() ||
2315        SubExpr->getType()->isArrayType())
2316      return FindExpressionBaseAddressLValue(SubExpr);
2317
2318    // Check for pointer->pointer cast
2319    if (SubExpr->getType()->isPointerType())
2320      return FindExpressionBaseAddress(SubExpr);
2321
2322    // We assume that we have an arithmetic expression here;
2323    // if we don't, we'll figure it out later
2324    return 0;
2325  }
2326  case Expr::CStyleCastExprClass: {
2327    const Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
2328
2329    // Check for pointer->pointer cast
2330    if (SubExpr->getType()->isPointerType())
2331      return FindExpressionBaseAddress(SubExpr);
2332
2333    // We assume that we have an arithmetic expression here;
2334    // if we don't, we'll figure it out later
2335    return 0;
2336  }
2337  }
2338}
2339
2340bool Sema::CheckArithmeticConstantExpression(const Expr* Init) {
2341  switch (Init->getStmtClass()) {
2342  default:
2343    InitializerElementNotConstant(Init);
2344    return true;
2345  case Expr::ParenExprClass: {
2346    const ParenExpr* PE = cast<ParenExpr>(Init);
2347    return CheckArithmeticConstantExpression(PE->getSubExpr());
2348  }
2349  case Expr::FloatingLiteralClass:
2350  case Expr::IntegerLiteralClass:
2351  case Expr::CharacterLiteralClass:
2352  case Expr::ImaginaryLiteralClass:
2353  case Expr::TypesCompatibleExprClass:
2354  case Expr::CXXBoolLiteralExprClass:
2355    return false;
2356  case Expr::CallExprClass:
2357  case Expr::CXXOperatorCallExprClass: {
2358    const CallExpr *CE = cast<CallExpr>(Init);
2359
2360    // Allow any constant foldable calls to builtins.
2361    if (CE->isBuiltinCall(Context) && CE->isEvaluatable(Context))
2362      return false;
2363
2364    InitializerElementNotConstant(Init);
2365    return true;
2366  }
2367  case Expr::DeclRefExprClass:
2368  case Expr::QualifiedDeclRefExprClass: {
2369    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
2370    if (isa<EnumConstantDecl>(D))
2371      return false;
2372    InitializerElementNotConstant(Init);
2373    return true;
2374  }
2375  case Expr::CompoundLiteralExprClass:
2376    // Allow "(vector type){2,4}"; normal C constraints don't allow this,
2377    // but vectors are allowed to be magic.
2378    if (Init->getType()->isVectorType())
2379      return false;
2380    InitializerElementNotConstant(Init);
2381    return true;
2382  case Expr::UnaryOperatorClass: {
2383    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
2384
2385    switch (Exp->getOpcode()) {
2386    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
2387    // See C99 6.6p3.
2388    default:
2389      InitializerElementNotConstant(Init);
2390      return true;
2391    case UnaryOperator::OffsetOf:
2392      if (Exp->getSubExpr()->getType()->isConstantSizeType())
2393        return false;
2394      InitializerElementNotConstant(Init);
2395      return true;
2396    case UnaryOperator::Extension:
2397    case UnaryOperator::LNot:
2398    case UnaryOperator::Plus:
2399    case UnaryOperator::Minus:
2400    case UnaryOperator::Not:
2401      return CheckArithmeticConstantExpression(Exp->getSubExpr());
2402    }
2403  }
2404  case Expr::SizeOfAlignOfExprClass: {
2405    const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(Init);
2406    // Special check for void types, which are allowed as an extension
2407    if (Exp->getTypeOfArgument()->isVoidType())
2408      return false;
2409    // alignof always evaluates to a constant.
2410    // FIXME: is sizeof(int[3.0]) a constant expression?
2411    if (Exp->isSizeOf() && !Exp->getTypeOfArgument()->isConstantSizeType()) {
2412      InitializerElementNotConstant(Init);
2413      return true;
2414    }
2415    return false;
2416  }
2417  case Expr::BinaryOperatorClass: {
2418    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
2419
2420    if (Exp->getLHS()->getType()->isArithmeticType() &&
2421        Exp->getRHS()->getType()->isArithmeticType()) {
2422      return CheckArithmeticConstantExpression(Exp->getLHS()) ||
2423             CheckArithmeticConstantExpression(Exp->getRHS());
2424    }
2425
2426    if (Exp->getLHS()->getType()->isPointerType() &&
2427        Exp->getRHS()->getType()->isPointerType()) {
2428      const Expr* LHSBase = FindExpressionBaseAddress(Exp->getLHS());
2429      const Expr* RHSBase = FindExpressionBaseAddress(Exp->getRHS());
2430
2431      // Only allow a null (constant integer) base; we could
2432      // allow some additional cases if necessary, but this
2433      // is sufficient to cover offsetof-like constructs.
2434      if (!LHSBase && !RHSBase) {
2435        return CheckAddressConstantExpression(Exp->getLHS()) ||
2436               CheckAddressConstantExpression(Exp->getRHS());
2437      }
2438    }
2439
2440    InitializerElementNotConstant(Init);
2441    return true;
2442  }
2443  case Expr::ImplicitCastExprClass:
2444  case Expr::CStyleCastExprClass: {
2445    const CastExpr *CE = cast<CastExpr>(Init);
2446    const Expr *SubExpr = CE->getSubExpr();
2447
2448    if (SubExpr->getType()->isArithmeticType())
2449      return CheckArithmeticConstantExpression(SubExpr);
2450
2451    if (SubExpr->getType()->isPointerType()) {
2452      const Expr* Base = FindExpressionBaseAddress(SubExpr);
2453      if (Base) {
2454        // the cast is only valid if done to a wide enough type
2455        if (Context.getTypeSize(CE->getType()) >=
2456            Context.getTypeSize(SubExpr->getType()))
2457          return false;
2458      } else {
2459        // If the pointer has a null base, this is an offsetof-like construct
2460        return CheckAddressConstantExpression(SubExpr);
2461      }
2462    }
2463
2464    InitializerElementNotConstant(Init);
2465    return true;
2466  }
2467  case Expr::ConditionalOperatorClass: {
2468    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
2469
2470    // If GNU extensions are disabled, we require all operands to be arithmetic
2471    // constant expressions.
2472    if (getLangOptions().NoExtensions) {
2473      return CheckArithmeticConstantExpression(Exp->getCond()) ||
2474          (Exp->getLHS() && CheckArithmeticConstantExpression(Exp->getLHS())) ||
2475             CheckArithmeticConstantExpression(Exp->getRHS());
2476    }
2477
2478    // Otherwise, we have to emulate some of the behavior of fold here.
2479    // Basically GCC treats things like "4 ? 1 : somefunc()" as a constant
2480    // because it can constant fold things away.  To retain compatibility with
2481    // GCC code, we see if we can fold the condition to a constant (which we
2482    // should always be able to do in theory).  If so, we only require the
2483    // specified arm of the conditional to be a constant.  This is a horrible
2484    // hack, but is require by real world code that uses __builtin_constant_p.
2485    Expr::EvalResult EvalResult;
2486    if (!Exp->getCond()->Evaluate(EvalResult, Context) ||
2487        EvalResult.HasSideEffects) {
2488      // If Evaluate couldn't fold it, CheckArithmeticConstantExpression
2489      // won't be able to either.  Use it to emit the diagnostic though.
2490      bool Res = CheckArithmeticConstantExpression(Exp->getCond());
2491      assert(Res && "Evaluate couldn't evaluate this constant?");
2492      return Res;
2493    }
2494
2495    // Verify that the side following the condition is also a constant.
2496    const Expr *TrueSide = Exp->getLHS(), *FalseSide = Exp->getRHS();
2497    if (EvalResult.Val.getInt() == 0)
2498      std::swap(TrueSide, FalseSide);
2499
2500    if (TrueSide && CheckArithmeticConstantExpression(TrueSide))
2501      return true;
2502
2503    // Okay, the evaluated side evaluates to a constant, so we accept this.
2504    // Check to see if the other side is obviously not a constant.  If so,
2505    // emit a warning that this is a GNU extension.
2506    if (FalseSide && !FalseSide->isEvaluatable(Context))
2507      Diag(Init->getExprLoc(),
2508           diag::ext_typecheck_expression_not_constant_but_accepted)
2509        << FalseSide->getSourceRange();
2510    return false;
2511  }
2512  }
2513}
2514
2515bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2516  if (Init->isConstantInitializer(Context)) {
2517    return false;
2518  }
2519  InitializerElementNotConstant(Init);
2520  return true;
2521
2522  if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init))
2523    Init = DIE->getInit();
2524
2525  Init = Init->IgnoreParens();
2526
2527  if (Init->isEvaluatable(Context))
2528    return false;
2529
2530  // Look through CXXDefaultArgExprs; they have no meaning in this context.
2531  if (CXXDefaultArgExpr* DAE = dyn_cast<CXXDefaultArgExpr>(Init))
2532    return CheckForConstantInitializer(DAE->getExpr(), DclT);
2533
2534  if (CompoundLiteralExpr *e = dyn_cast<CompoundLiteralExpr>(Init))
2535    return CheckForConstantInitializer(e->getInitializer(), DclT);
2536
2537  if (isa<ImplicitValueInitExpr>(Init)) {
2538    // FIXME: In C++, check for non-POD types.
2539    return false;
2540  }
2541
2542  if (InitListExpr *Exp = dyn_cast<InitListExpr>(Init)) {
2543    unsigned numInits = Exp->getNumInits();
2544    for (unsigned i = 0; i < numInits; i++) {
2545      // FIXME: Need to get the type of the declaration for C++,
2546      // because it could be a reference?
2547
2548      if (CheckForConstantInitializer(Exp->getInit(i),
2549                                      Exp->getInit(i)->getType()))
2550        return true;
2551    }
2552    return false;
2553  }
2554
2555  // FIXME: We can probably remove some of this code below, now that
2556  // Expr::Evaluate is doing the heavy lifting for scalars.
2557
2558  if (Init->isNullPointerConstant(Context))
2559    return false;
2560  if (Init->getType()->isArithmeticType()) {
2561    QualType InitTy = Context.getCanonicalType(Init->getType())
2562                             .getUnqualifiedType();
2563    if (InitTy == Context.BoolTy) {
2564      // Special handling for pointers implicitly cast to bool;
2565      // (e.g. "_Bool rr = &rr;"). This is only legal at the top level.
2566      if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Init)) {
2567        Expr* SubE = ICE->getSubExpr();
2568        if (SubE->getType()->isPointerType() ||
2569            SubE->getType()->isArrayType() ||
2570            SubE->getType()->isFunctionType()) {
2571          return CheckAddressConstantExpression(Init);
2572        }
2573      }
2574    } else if (InitTy->isIntegralType()) {
2575      Expr* SubE = 0;
2576      if (CastExpr* CE = dyn_cast<CastExpr>(Init))
2577        SubE = CE->getSubExpr();
2578      // Special check for pointer cast to int; we allow as an extension
2579      // an address constant cast to an integer if the integer
2580      // is of an appropriate width (this sort of code is apparently used
2581      // in some places).
2582      // FIXME: Add pedwarn?
2583      // FIXME: Don't allow bitfields here!  Need the FieldDecl for that.
2584      if (SubE && (SubE->getType()->isPointerType() ||
2585                   SubE->getType()->isArrayType() ||
2586                   SubE->getType()->isFunctionType())) {
2587        unsigned IntWidth = Context.getTypeSize(Init->getType());
2588        unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
2589        if (IntWidth >= PointerWidth)
2590          return CheckAddressConstantExpression(Init);
2591      }
2592    }
2593
2594    return CheckArithmeticConstantExpression(Init);
2595  }
2596
2597  if (Init->getType()->isPointerType())
2598    return CheckAddressConstantExpression(Init);
2599
2600  // An array type at the top level that isn't an init-list must
2601  // be a string literal
2602  if (Init->getType()->isArrayType())
2603    return false;
2604
2605  if (Init->getType()->isFunctionType())
2606    return false;
2607
2608  // Allow block exprs at top level.
2609  if (Init->getType()->isBlockPointerType())
2610    return false;
2611
2612  // GCC cast to union extension
2613  // note: the validity of the cast expr is checked by CheckCastTypes()
2614  if (CastExpr *C = dyn_cast<CastExpr>(Init)) {
2615    QualType T = C->getType();
2616    return T->isUnionType() && CheckForConstantInitializer(C->getSubExpr(), T);
2617  }
2618
2619  InitializerElementNotConstant(Init);
2620  return true;
2621}
2622
2623void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init) {
2624  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
2625}
2626
2627/// AddInitializerToDecl - Adds the initializer Init to the
2628/// declaration dcl. If DirectInit is true, this is C++ direct
2629/// initialization rather than copy initialization.
2630void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init, bool DirectInit) {
2631  Decl *RealDecl = static_cast<Decl *>(dcl);
2632  Expr *Init = static_cast<Expr *>(init.release());
2633  assert(Init && "missing initializer");
2634
2635  // If there is no declaration, there was an error parsing it.  Just ignore
2636  // the initializer.
2637  if (RealDecl == 0) {
2638    Init->Destroy(Context);
2639    return;
2640  }
2641
2642  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2643  if (!VDecl) {
2644    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2645    RealDecl->setInvalidDecl();
2646    return;
2647  }
2648  // Get the decls type and save a reference for later, since
2649  // CheckInitializerTypes may change it.
2650  QualType DclT = VDecl->getType(), SavT = DclT;
2651  if (VDecl->isBlockVarDecl()) {
2652    VarDecl::StorageClass SC = VDecl->getStorageClass();
2653    if (SC == VarDecl::Extern) { // C99 6.7.8p5
2654      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2655      VDecl->setInvalidDecl();
2656    } else if (!VDecl->isInvalidDecl()) {
2657      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2658                                VDecl->getDeclName(), DirectInit))
2659        VDecl->setInvalidDecl();
2660
2661      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2662      // Don't check invalid declarations to avoid emitting useless diagnostics.
2663      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2664        if (SC == VarDecl::Static) // C99 6.7.8p4.
2665          CheckForConstantInitializer(Init, DclT);
2666      }
2667    }
2668  } else if (VDecl->isFileVarDecl()) {
2669    if (VDecl->getStorageClass() == VarDecl::Extern)
2670      Diag(VDecl->getLocation(), diag::warn_extern_init);
2671    if (!VDecl->isInvalidDecl())
2672      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2673                                VDecl->getDeclName(), DirectInit))
2674        VDecl->setInvalidDecl();
2675
2676    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2677    // Don't check invalid declarations to avoid emitting useless diagnostics.
2678    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2679      // C99 6.7.8p4. All file scoped initializers need to be constant.
2680      CheckForConstantInitializer(Init, DclT);
2681    }
2682  }
2683  // If the type changed, it means we had an incomplete type that was
2684  // completed by the initializer. For example:
2685  //   int ary[] = { 1, 3, 5 };
2686  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2687  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2688    VDecl->setType(DclT);
2689    Init->setType(DclT);
2690  }
2691
2692  // Attach the initializer to the decl.
2693  VDecl->setInit(Init);
2694  return;
2695}
2696
2697void Sema::ActOnUninitializedDecl(DeclTy *dcl) {
2698  Decl *RealDecl = static_cast<Decl *>(dcl);
2699
2700  // If there is no declaration, there was an error parsing it. Just ignore it.
2701  if (RealDecl == 0)
2702    return;
2703
2704  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2705    QualType Type = Var->getType();
2706    // C++ [dcl.init.ref]p3:
2707    //   The initializer can be omitted for a reference only in a
2708    //   parameter declaration (8.3.5), in the declaration of a
2709    //   function return type, in the declaration of a class member
2710    //   within its class declaration (9.2), and where the extern
2711    //   specifier is explicitly used.
2712    if (Type->isReferenceType() &&
2713        Var->getStorageClass() != VarDecl::Extern &&
2714        Var->getStorageClass() != VarDecl::PrivateExtern) {
2715      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2716        << Var->getDeclName()
2717        << SourceRange(Var->getLocation(), Var->getLocation());
2718      Var->setInvalidDecl();
2719      return;
2720    }
2721
2722    // C++ [dcl.init]p9:
2723    //
2724    //   If no initializer is specified for an object, and the object
2725    //   is of (possibly cv-qualified) non-POD class type (or array
2726    //   thereof), the object shall be default-initialized; if the
2727    //   object is of const-qualified type, the underlying class type
2728    //   shall have a user-declared default constructor.
2729    if (getLangOptions().CPlusPlus) {
2730      QualType InitType = Type;
2731      if (const ArrayType *Array = Context.getAsArrayType(Type))
2732        InitType = Array->getElementType();
2733      if (Var->getStorageClass() != VarDecl::Extern &&
2734          Var->getStorageClass() != VarDecl::PrivateExtern &&
2735          InitType->isRecordType()) {
2736        const CXXConstructorDecl *Constructor
2737          = PerformInitializationByConstructor(InitType, 0, 0,
2738                                               Var->getLocation(),
2739                                               SourceRange(Var->getLocation(),
2740                                                           Var->getLocation()),
2741                                               Var->getDeclName(),
2742                                               IK_Default);
2743        if (!Constructor)
2744          Var->setInvalidDecl();
2745      }
2746    }
2747
2748#if 0
2749    // FIXME: Temporarily disabled because we are not properly parsing
2750    // linkage specifications on declarations, e.g.,
2751    //
2752    //   extern "C" const CGPoint CGPointerZero;
2753    //
2754    // C++ [dcl.init]p9:
2755    //
2756    //     If no initializer is specified for an object, and the
2757    //     object is of (possibly cv-qualified) non-POD class type (or
2758    //     array thereof), the object shall be default-initialized; if
2759    //     the object is of const-qualified type, the underlying class
2760    //     type shall have a user-declared default
2761    //     constructor. Otherwise, if no initializer is specified for
2762    //     an object, the object and its subobjects, if any, have an
2763    //     indeterminate initial value; if the object or any of its
2764    //     subobjects are of const-qualified type, the program is
2765    //     ill-formed.
2766    //
2767    // This isn't technically an error in C, so we don't diagnose it.
2768    //
2769    // FIXME: Actually perform the POD/user-defined default
2770    // constructor check.
2771    if (getLangOptions().CPlusPlus &&
2772        Context.getCanonicalType(Type).isConstQualified() &&
2773        Var->getStorageClass() != VarDecl::Extern)
2774      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2775        << Var->getName()
2776        << SourceRange(Var->getLocation(), Var->getLocation());
2777#endif
2778  }
2779}
2780
2781/// The declarators are chained together backwards, reverse the list.
2782Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
2783  // Often we have single declarators, handle them quickly.
2784  Decl *Group = static_cast<Decl*>(group);
2785  if (Group == 0)
2786    return 0;
2787
2788  Decl *NewGroup = 0;
2789  if (Group->getNextDeclarator() == 0)
2790    NewGroup = Group;
2791  else { // reverse the list.
2792    while (Group) {
2793      Decl *Next = Group->getNextDeclarator();
2794      Group->setNextDeclarator(NewGroup);
2795      NewGroup = Group;
2796      Group = Next;
2797    }
2798  }
2799  // Perform semantic analysis that depends on having fully processed both
2800  // the declarator and initializer.
2801  for (Decl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
2802    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
2803    if (!IDecl)
2804      continue;
2805    QualType T = IDecl->getType();
2806
2807    if (T->isVariableArrayType()) {
2808      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2809
2810      // FIXME: This won't give the correct result for
2811      // int a[10][n];
2812      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2813      if (IDecl->isFileVarDecl()) {
2814        Diag(IDecl->getLocation(), diag::err_vla_decl_in_file_scope) <<
2815          SizeRange;
2816
2817        IDecl->setInvalidDecl();
2818      } else {
2819        // C99 6.7.5.2p2: If an identifier is declared to be an object with
2820        // static storage duration, it shall not have a variable length array.
2821        if (IDecl->getStorageClass() == VarDecl::Static) {
2822          Diag(IDecl->getLocation(), diag::err_vla_decl_has_static_storage)
2823            << SizeRange;
2824          IDecl->setInvalidDecl();
2825        } else if (IDecl->getStorageClass() == VarDecl::Extern) {
2826          Diag(IDecl->getLocation(), diag::err_vla_decl_has_extern_linkage)
2827            << SizeRange;
2828          IDecl->setInvalidDecl();
2829        }
2830      }
2831    } else if (T->isVariablyModifiedType()) {
2832      if (IDecl->isFileVarDecl()) {
2833        Diag(IDecl->getLocation(), diag::err_vm_decl_in_file_scope);
2834        IDecl->setInvalidDecl();
2835      } else {
2836        if (IDecl->getStorageClass() == VarDecl::Extern) {
2837          Diag(IDecl->getLocation(), diag::err_vm_decl_has_extern_linkage);
2838          IDecl->setInvalidDecl();
2839        }
2840      }
2841    }
2842
2843    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2844    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2845    if (IDecl->isBlockVarDecl() &&
2846        IDecl->getStorageClass() != VarDecl::Extern) {
2847      if (!IDecl->isInvalidDecl() &&
2848          DiagnoseIncompleteType(IDecl->getLocation(), T,
2849                                 diag::err_typecheck_decl_incomplete_type))
2850        IDecl->setInvalidDecl();
2851    }
2852    // File scope. C99 6.9.2p2: A declaration of an identifier for and
2853    // object that has file scope without an initializer, and without a
2854    // storage-class specifier or with the storage-class specifier "static",
2855    // constitutes a tentative definition. Note: A tentative definition with
2856    // external linkage is valid (C99 6.2.2p5).
2857    if (isTentativeDefinition(IDecl)) {
2858      if (T->isIncompleteArrayType()) {
2859        // C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete
2860        // array to be completed. Don't issue a diagnostic.
2861      } else if (!IDecl->isInvalidDecl() &&
2862                 DiagnoseIncompleteType(IDecl->getLocation(), T,
2863                                        diag::err_typecheck_decl_incomplete_type))
2864        // C99 6.9.2p3: If the declaration of an identifier for an object is
2865        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2866        // declared type shall not be an incomplete type.
2867        IDecl->setInvalidDecl();
2868    }
2869    if (IDecl->isFileVarDecl())
2870      CheckForFileScopedRedefinitions(S, IDecl);
2871  }
2872  return NewGroup;
2873}
2874
2875/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2876/// to introduce parameters into function prototype scope.
2877Sema::DeclTy *
2878Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2879  const DeclSpec &DS = D.getDeclSpec();
2880
2881  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2882  VarDecl::StorageClass StorageClass = VarDecl::None;
2883  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2884    StorageClass = VarDecl::Register;
2885  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2886    Diag(DS.getStorageClassSpecLoc(),
2887         diag::err_invalid_storage_class_in_func_decl);
2888    D.getMutableDeclSpec().ClearStorageClassSpecs();
2889  }
2890  if (DS.isThreadSpecified()) {
2891    Diag(DS.getThreadSpecLoc(),
2892         diag::err_invalid_storage_class_in_func_decl);
2893    D.getMutableDeclSpec().ClearStorageClassSpecs();
2894  }
2895
2896  // Check that there are no default arguments inside the type of this
2897  // parameter (C++ only).
2898  if (getLangOptions().CPlusPlus)
2899    CheckExtraCXXDefaultArguments(D);
2900
2901  // In this context, we *do not* check D.getInvalidType(). If the declarator
2902  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
2903  // though it will not reflect the user specified type.
2904  QualType parmDeclType = GetTypeForDeclarator(D, S);
2905
2906  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
2907
2908  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2909  // Can this happen for params?  We already checked that they don't conflict
2910  // among each other.  Here they can only shadow globals, which is ok.
2911  IdentifierInfo *II = D.getIdentifier();
2912  if (II) {
2913    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2914      if (PrevDecl->isTemplateParameter()) {
2915        // Maybe we will complain about the shadowed template parameter.
2916        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2917        // Just pretend that we didn't see the previous declaration.
2918        PrevDecl = 0;
2919      } else if (S->isDeclScope(PrevDecl)) {
2920        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2921
2922        // Recover by removing the name
2923        II = 0;
2924        D.SetIdentifier(0, D.getIdentifierLoc());
2925      }
2926    }
2927  }
2928
2929  // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
2930  // Doing the promotion here has a win and a loss. The win is the type for
2931  // both Decl's and DeclRefExpr's will match (a convenient invariant for the
2932  // code generator). The loss is the orginal type isn't preserved. For example:
2933  //
2934  // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
2935  //    int blockvardecl[5];
2936  //    sizeof(parmvardecl);  // size == 4
2937  //    sizeof(blockvardecl); // size == 20
2938  // }
2939  //
2940  // For expressions, all implicit conversions are captured using the
2941  // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
2942  //
2943  // FIXME: If a source translation tool needs to see the original type, then
2944  // we need to consider storing both types (in ParmVarDecl)...
2945  //
2946  if (parmDeclType->isArrayType()) {
2947    // int x[restrict 4] ->  int *restrict
2948    parmDeclType = Context.getArrayDecayedType(parmDeclType);
2949  } else if (parmDeclType->isFunctionType())
2950    parmDeclType = Context.getPointerType(parmDeclType);
2951
2952  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext,
2953                                         D.getIdentifierLoc(), II,
2954                                         parmDeclType, StorageClass,
2955                                         0);
2956
2957  if (D.getInvalidType())
2958    New->setInvalidDecl();
2959
2960  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2961  if (D.getCXXScopeSpec().isSet()) {
2962    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
2963      << D.getCXXScopeSpec().getRange();
2964    New->setInvalidDecl();
2965  }
2966  // Parameter declarators cannot be interface types. All ObjC objects are
2967  // passed by reference.
2968  if (parmDeclType->isObjCInterfaceType()) {
2969    Diag(D.getIdentifierLoc(), diag::err_object_cannot_be_by_value)
2970         << "passed";
2971    New->setInvalidDecl();
2972  }
2973
2974  // Add the parameter declaration into this scope.
2975  S->AddDecl(New);
2976  if (II)
2977    IdResolver.AddDecl(New);
2978
2979  ProcessDeclAttributes(New, D);
2980  return New;
2981
2982}
2983
2984void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D) {
2985  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2986         "Not a function declarator!");
2987  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2988
2989  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
2990  // for a K&R function.
2991  if (!FTI.hasPrototype) {
2992    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2993      if (FTI.ArgInfo[i].Param == 0) {
2994        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
2995          << FTI.ArgInfo[i].Ident;
2996        // Implicitly declare the argument as type 'int' for lack of a better
2997        // type.
2998        DeclSpec DS;
2999        const char* PrevSpec; // unused
3000        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
3001                           PrevSpec);
3002        Declarator ParamD(DS, Declarator::KNRTypeListContext);
3003        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
3004        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
3005      }
3006    }
3007  }
3008}
3009
3010Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
3011  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
3012  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3013         "Not a function declarator!");
3014  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3015
3016  if (FTI.hasPrototype) {
3017    // FIXME: Diagnose arguments without names in C.
3018  }
3019
3020  Scope *ParentScope = FnBodyScope->getParent();
3021
3022  return ActOnStartOfFunctionDef(FnBodyScope,
3023                                 ActOnDeclarator(ParentScope, D, 0,
3024                                                 /*IsFunctionDefinition=*/true));
3025}
3026
3027Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclTy *D) {
3028  Decl *decl = static_cast<Decl*>(D);
3029  FunctionDecl *FD = cast<FunctionDecl>(decl);
3030
3031  // See if this is a redefinition.
3032  const FunctionDecl *Definition;
3033  if (FD->getBody(Definition)) {
3034    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
3035    Diag(Definition->getLocation(), diag::note_previous_definition);
3036  }
3037
3038  // Builtin functions cannot be defined.
3039  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3040    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3041      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
3042      FD->setInvalidDecl();
3043    }
3044  }
3045
3046  PushDeclContext(FnBodyScope, FD);
3047
3048  // Check the validity of our function parameters
3049  CheckParmsForFunctionDef(FD);
3050
3051  // Introduce our parameters into the function scope
3052  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
3053    ParmVarDecl *Param = FD->getParamDecl(p);
3054    Param->setOwningFunction(FD);
3055
3056    // If this has an identifier, add it to the scope stack.
3057    if (Param->getIdentifier())
3058      PushOnScopeChains(Param, FnBodyScope);
3059  }
3060
3061  // Checking attributes of current function definition
3062  // dllimport attribute.
3063  if (FD->getAttr<DLLImportAttr>() && (!FD->getAttr<DLLExportAttr>())) {
3064    // dllimport attribute cannot be applied to definition.
3065    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
3066      Diag(FD->getLocation(),
3067           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
3068        << "dllimport";
3069      FD->setInvalidDecl();
3070      return FD;
3071    } else {
3072      // If a symbol previously declared dllimport is later defined, the
3073      // attribute is ignored in subsequent references, and a warning is
3074      // emitted.
3075      Diag(FD->getLocation(),
3076           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
3077        << FD->getNameAsCString() << "dllimport";
3078    }
3079  }
3080  return FD;
3081}
3082
3083Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtArg BodyArg) {
3084  Decl *dcl = static_cast<Decl *>(D);
3085  Stmt *Body = static_cast<Stmt*>(BodyArg.release());
3086  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
3087    FD->setBody(Body);
3088    assert(FD == getCurFunctionDecl() && "Function parsing confused");
3089  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
3090    assert(MD == getCurMethodDecl() && "Method parsing confused");
3091    MD->setBody((Stmt*)Body);
3092  } else {
3093    Body->Destroy(Context);
3094    return 0;
3095  }
3096  PopDeclContext();
3097  // Verify and clean out per-function state.
3098
3099  // Check goto/label use.
3100  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
3101       I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
3102    // Verify that we have no forward references left.  If so, there was a goto
3103    // or address of a label taken, but no definition of it.  Label fwd
3104    // definitions are indicated with a null substmt.
3105    if (I->second->getSubStmt() == 0) {
3106      LabelStmt *L = I->second;
3107      // Emit error.
3108      Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
3109
3110      // At this point, we have gotos that use the bogus label.  Stitch it into
3111      // the function body so that they aren't leaked and that the AST is well
3112      // formed.
3113      if (Body) {
3114#if 0
3115        // FIXME: Why do this?  Having a 'push_back' in CompoundStmt is ugly,
3116        // and the AST is malformed anyway.  We should just blow away 'L'.
3117        L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
3118        cast<CompoundStmt>(Body)->push_back(L);
3119#else
3120        L->Destroy(Context);
3121#endif
3122      } else {
3123        // The whole function wasn't parsed correctly, just delete this.
3124        L->Destroy(Context);
3125      }
3126    }
3127  }
3128  LabelMap.clear();
3129
3130  return D;
3131}
3132
3133/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
3134/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
3135NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
3136                                          IdentifierInfo &II, Scope *S) {
3137  // Extension in C99.  Legal in C90, but warn about it.
3138  if (getLangOptions().C99)
3139    Diag(Loc, diag::ext_implicit_function_decl) << &II;
3140  else
3141    Diag(Loc, diag::warn_implicit_function_decl) << &II;
3142
3143  // FIXME: handle stuff like:
3144  // void foo() { extern float X(); }
3145  // void bar() { X(); }  <-- implicit decl for X in another scope.
3146
3147  // Set a Declarator for the implicit definition: int foo();
3148  const char *Dummy;
3149  DeclSpec DS;
3150  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
3151  Error = Error; // Silence warning.
3152  assert(!Error && "Error setting up implicit decl!");
3153  Declarator D(DS, Declarator::BlockContext);
3154  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(),
3155                                             0, 0, 0, Loc, D),
3156                SourceLocation());
3157  D.SetIdentifier(&II, Loc);
3158
3159  // Insert this function into translation-unit scope.
3160
3161  DeclContext *PrevDC = CurContext;
3162  CurContext = Context.getTranslationUnitDecl();
3163
3164  FunctionDecl *FD =
3165    dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0)));
3166  FD->setImplicit();
3167
3168  CurContext = PrevDC;
3169
3170  AddKnownFunctionAttributes(FD);
3171
3172  return FD;
3173}
3174
3175/// \brief Adds any function attributes that we know a priori based on
3176/// the declaration of this function.
3177///
3178/// These attributes can apply both to implicitly-declared builtins
3179/// (like __builtin___printf_chk) or to library-declared functions
3180/// like NSLog or printf.
3181void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
3182  if (FD->isInvalidDecl())
3183    return;
3184
3185  // If this is a built-in function, map its builtin attributes to
3186  // actual attributes.
3187  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3188    // Handle printf-formatting attributes.
3189    unsigned FormatIdx;
3190    bool HasVAListArg;
3191    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
3192      if (!FD->getAttr<FormatAttr>())
3193        FD->addAttr(new FormatAttr("printf", FormatIdx + 1, FormatIdx + 2));
3194    }
3195
3196    // Mark const if we don't care about errno and that is the only
3197    // thing preventing the function from being const. This allows
3198    // IRgen to use LLVM intrinsics for such functions.
3199    if (!getLangOptions().MathErrno &&
3200        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
3201      if (!FD->getAttr<ConstAttr>())
3202        FD->addAttr(new ConstAttr());
3203    }
3204  }
3205
3206  IdentifierInfo *Name = FD->getIdentifier();
3207  if (!Name)
3208    return;
3209  if ((!getLangOptions().CPlusPlus &&
3210       FD->getDeclContext()->isTranslationUnit()) ||
3211      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
3212       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
3213       LinkageSpecDecl::lang_c)) {
3214    // Okay: this could be a libc/libm/Objective-C function we know
3215    // about.
3216  } else
3217    return;
3218
3219  unsigned KnownID;
3220  for (KnownID = 0; KnownID != id_num_known_functions; ++KnownID)
3221    if (KnownFunctionIDs[KnownID] == Name)
3222      break;
3223
3224  switch (KnownID) {
3225  case id_NSLog:
3226  case id_NSLogv:
3227    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
3228      // FIXME: We known better than our headers.
3229      const_cast<FormatAttr *>(Format)->setType("printf");
3230    } else
3231      FD->addAttr(new FormatAttr("printf", 1, 2));
3232    break;
3233
3234  case id_asprintf:
3235  case id_vasprintf:
3236    if (!FD->getAttr<FormatAttr>())
3237      FD->addAttr(new FormatAttr("printf", 2, 3));
3238    break;
3239
3240  default:
3241    // Unknown function or known function without any attributes to
3242    // add. Do nothing.
3243    break;
3244  }
3245}
3246
3247TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
3248                                    Decl *LastDeclarator) {
3249  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
3250  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3251
3252  // Scope manipulation handled by caller.
3253  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
3254                                           D.getIdentifierLoc(),
3255                                           D.getIdentifier(),
3256                                           T);
3257  NewTD->setNextDeclarator(LastDeclarator);
3258  if (D.getInvalidType())
3259    NewTD->setInvalidDecl();
3260  return NewTD;
3261}
3262
3263/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
3264/// former case, Name will be non-null.  In the later case, Name will be null.
3265/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
3266/// reference/declaration/definition of a tag.
3267Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
3268                             SourceLocation KWLoc, const CXXScopeSpec &SS,
3269                             IdentifierInfo *Name, SourceLocation NameLoc,
3270                             AttributeList *Attr) {
3271  // If this is not a definition, it must have a name.
3272  assert((Name != 0 || TK == TK_Definition) &&
3273         "Nameless record must be a definition!");
3274
3275  TagDecl::TagKind Kind;
3276  switch (TagSpec) {
3277  default: assert(0 && "Unknown tag type!");
3278  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3279  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3280  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3281  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
3282  }
3283
3284  DeclContext *SearchDC = CurContext;
3285  DeclContext *DC = CurContext;
3286  NamedDecl *PrevDecl = 0;
3287
3288  bool Invalid = false;
3289
3290  if (Name && SS.isNotEmpty()) {
3291    // We have a nested-name tag ('struct foo::bar').
3292
3293    // Check for invalid 'foo::'.
3294    if (SS.isInvalid()) {
3295      Name = 0;
3296      goto CreateNewDecl;
3297    }
3298
3299    DC = static_cast<DeclContext*>(SS.getScopeRep());
3300    SearchDC = DC;
3301    // Look-up name inside 'foo::'.
3302    PrevDecl = dyn_cast_or_null<TagDecl>(
3303                 LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
3304
3305    // A tag 'foo::bar' must already exist.
3306    if (PrevDecl == 0) {
3307      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
3308      Name = 0;
3309      goto CreateNewDecl;
3310    }
3311  } else if (Name) {
3312    // If this is a named struct, check to see if there was a previous forward
3313    // declaration or definition.
3314    // FIXME: We're looking into outer scopes here, even when we
3315    // shouldn't be. Doing so can result in ambiguities that we
3316    // shouldn't be diagnosing.
3317    LookupResult R = LookupName(S, Name, LookupTagName,
3318                                /*RedeclarationOnly=*/(TK != TK_Reference));
3319    if (R.isAmbiguous()) {
3320      DiagnoseAmbiguousLookup(R, Name, NameLoc);
3321      // FIXME: This is not best way to recover from case like:
3322      //
3323      // struct S s;
3324      //
3325      // causes needless err_ovl_no_viable_function_in_init latter.
3326      Name = 0;
3327      PrevDecl = 0;
3328      Invalid = true;
3329    }
3330    else
3331      PrevDecl = R;
3332
3333    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
3334      // FIXME: This makes sure that we ignore the contexts associated
3335      // with C structs, unions, and enums when looking for a matching
3336      // tag declaration or definition. See the similar lookup tweak
3337      // in Sema::LookupName; is there a better way to deal with this?
3338      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
3339        SearchDC = SearchDC->getParent();
3340    }
3341  }
3342
3343  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3344    // Maybe we will complain about the shadowed template parameter.
3345    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
3346    // Just pretend that we didn't see the previous declaration.
3347    PrevDecl = 0;
3348  }
3349
3350  if (PrevDecl) {
3351    // Check whether the previous declaration is usable.
3352    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
3353
3354    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
3355      // If this is a use of a previous tag, or if the tag is already declared
3356      // in the same scope (so that the definition/declaration completes or
3357      // rementions the tag), reuse the decl.
3358      if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
3359        // Make sure that this wasn't declared as an enum and now used as a
3360        // struct or something similar.
3361        if (PrevTagDecl->getTagKind() != Kind) {
3362          Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
3363          Diag(PrevDecl->getLocation(), diag::note_previous_use);
3364          // Recover by making this an anonymous redefinition.
3365          Name = 0;
3366          PrevDecl = 0;
3367          Invalid = true;
3368        } else {
3369          // If this is a use, just return the declaration we found.
3370
3371          // FIXME: In the future, return a variant or some other clue
3372          // for the consumer of this Decl to know it doesn't own it.
3373          // For our current ASTs this shouldn't be a problem, but will
3374          // need to be changed with DeclGroups.
3375          if (TK == TK_Reference)
3376            return PrevDecl;
3377
3378          // Diagnose attempts to redefine a tag.
3379          if (TK == TK_Definition) {
3380            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
3381              Diag(NameLoc, diag::err_redefinition) << Name;
3382              Diag(Def->getLocation(), diag::note_previous_definition);
3383              // If this is a redefinition, recover by making this
3384              // struct be anonymous, which will make any later
3385              // references get the previous definition.
3386              Name = 0;
3387              PrevDecl = 0;
3388              Invalid = true;
3389            } else {
3390              // If the type is currently being defined, complain
3391              // about a nested redefinition.
3392              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
3393              if (Tag->isBeingDefined()) {
3394                Diag(NameLoc, diag::err_nested_redefinition) << Name;
3395                Diag(PrevTagDecl->getLocation(),
3396                     diag::note_previous_definition);
3397                Name = 0;
3398                PrevDecl = 0;
3399                Invalid = true;
3400              }
3401            }
3402
3403            // Okay, this is definition of a previously declared or referenced
3404            // tag PrevDecl. We're going to create a new Decl for it.
3405          }
3406        }
3407        // If we get here we have (another) forward declaration or we
3408        // have a definition.  Just create a new decl.
3409      } else {
3410        // If we get here, this is a definition of a new tag type in a nested
3411        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
3412        // new decl/type.  We set PrevDecl to NULL so that the entities
3413        // have distinct types.
3414        PrevDecl = 0;
3415      }
3416      // If we get here, we're going to create a new Decl. If PrevDecl
3417      // is non-NULL, it's a definition of the tag declared by
3418      // PrevDecl. If it's NULL, we have a new definition.
3419    } else {
3420      // PrevDecl is a namespace, template, or anything else
3421      // that lives in the IDNS_Tag identifier namespace.
3422      if (isDeclInScope(PrevDecl, SearchDC, S)) {
3423        // The tag name clashes with a namespace name, issue an error and
3424        // recover by making this tag be anonymous.
3425        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
3426        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3427        Name = 0;
3428        PrevDecl = 0;
3429        Invalid = true;
3430      } else {
3431        // The existing declaration isn't relevant to us; we're in a
3432        // new scope, so clear out the previous declaration.
3433        PrevDecl = 0;
3434      }
3435    }
3436  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
3437             (Kind != TagDecl::TK_enum))  {
3438    // C++ [basic.scope.pdecl]p5:
3439    //   -- for an elaborated-type-specifier of the form
3440    //
3441    //          class-key identifier
3442    //
3443    //      if the elaborated-type-specifier is used in the
3444    //      decl-specifier-seq or parameter-declaration-clause of a
3445    //      function defined in namespace scope, the identifier is
3446    //      declared as a class-name in the namespace that contains
3447    //      the declaration; otherwise, except as a friend
3448    //      declaration, the identifier is declared in the smallest
3449    //      non-class, non-function-prototype scope that contains the
3450    //      declaration.
3451    //
3452    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
3453    // C structs and unions.
3454
3455    // Find the context where we'll be declaring the tag.
3456    // FIXME: We would like to maintain the current DeclContext as the
3457    // lexical context,
3458    while (SearchDC->isRecord())
3459      SearchDC = SearchDC->getParent();
3460
3461    // Find the scope where we'll be declaring the tag.
3462    while (S->isClassScope() ||
3463           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
3464           ((S->getFlags() & Scope::DeclScope) == 0) ||
3465           (S->getEntity() &&
3466            ((DeclContext *)S->getEntity())->isTransparentContext()))
3467      S = S->getParent();
3468  }
3469
3470CreateNewDecl:
3471
3472  // If there is an identifier, use the location of the identifier as the
3473  // location of the decl, otherwise use the location of the struct/union
3474  // keyword.
3475  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
3476
3477  // Otherwise, create a new declaration. If there is a previous
3478  // declaration of the same entity, the two will be linked via
3479  // PrevDecl.
3480  TagDecl *New;
3481
3482  if (Kind == TagDecl::TK_enum) {
3483    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3484    // enum X { A, B, C } D;    D should chain to X.
3485    New = EnumDecl::Create(Context, SearchDC, Loc, Name,
3486                           cast_or_null<EnumDecl>(PrevDecl));
3487    // If this is an undefined enum, warn.
3488    if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum);
3489  } else {
3490    // struct/union/class
3491
3492    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3493    // struct X { int A; } D;    D should chain to X.
3494    if (getLangOptions().CPlusPlus)
3495      // FIXME: Look for a way to use RecordDecl for simple structs.
3496      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3497                                  cast_or_null<CXXRecordDecl>(PrevDecl));
3498    else
3499      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3500                               cast_or_null<RecordDecl>(PrevDecl));
3501  }
3502
3503  if (Kind != TagDecl::TK_enum) {
3504    // Handle #pragma pack: if the #pragma pack stack has non-default
3505    // alignment, make up a packed attribute for this decl. These
3506    // attributes are checked when the ASTContext lays out the
3507    // structure.
3508    //
3509    // It is important for implementing the correct semantics that this
3510    // happen here (in act on tag decl). The #pragma pack stack is
3511    // maintained as a result of parser callbacks which can occur at
3512    // many points during the parsing of a struct declaration (because
3513    // the #pragma tokens are effectively skipped over during the
3514    // parsing of the struct).
3515    if (unsigned Alignment = getPragmaPackAlignment())
3516      New->addAttr(new PackedAttr(Alignment * 8));
3517  }
3518
3519  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
3520    // C++ [dcl.typedef]p3:
3521    //   [...] Similarly, in a given scope, a class or enumeration
3522    //   shall not be declared with the same name as a typedef-name
3523    //   that is declared in that scope and refers to a type other
3524    //   than the class or enumeration itself.
3525    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
3526    TypedefDecl *PrevTypedef = 0;
3527    if (Lookup.getKind() == LookupResult::Found)
3528      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
3529
3530    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
3531        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
3532          Context.getCanonicalType(Context.getTypeDeclType(New))) {
3533      Diag(Loc, diag::err_tag_definition_of_typedef)
3534        << Context.getTypeDeclType(New)
3535        << PrevTypedef->getUnderlyingType();
3536      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
3537      Invalid = true;
3538    }
3539  }
3540
3541  if (Invalid)
3542    New->setInvalidDecl();
3543
3544  if (Attr)
3545    ProcessDeclAttributeList(New, Attr);
3546
3547  // If we're declaring or defining a tag in function prototype scope
3548  // in C, note that this type can only be used within the function.
3549  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
3550    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
3551
3552  // Set the lexical context. If the tag has a C++ scope specifier, the
3553  // lexical context will be different from the semantic context.
3554  New->setLexicalDeclContext(CurContext);
3555
3556  if (TK == TK_Definition)
3557    New->startDefinition();
3558
3559  // If this has an identifier, add it to the scope stack.
3560  if (Name) {
3561    S = getNonFieldDeclScope(S);
3562    PushOnScopeChains(New, S);
3563  } else {
3564    CurContext->addDecl(New);
3565  }
3566
3567  return New;
3568}
3569
3570void Sema::ActOnTagStartDefinition(Scope *S, DeclTy *TagD) {
3571  AdjustDeclIfTemplate(TagD);
3572  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3573
3574  // Enter the tag context.
3575  PushDeclContext(S, Tag);
3576
3577  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
3578    FieldCollector->StartClass();
3579
3580    if (Record->getIdentifier()) {
3581      // C++ [class]p2:
3582      //   [...] The class-name is also inserted into the scope of the
3583      //   class itself; this is known as the injected-class-name. For
3584      //   purposes of access checking, the injected-class-name is treated
3585      //   as if it were a public member name.
3586      RecordDecl *InjectedClassName
3587        = CXXRecordDecl::Create(Context, Record->getTagKind(),
3588                                CurContext, Record->getLocation(),
3589                                Record->getIdentifier(), Record);
3590      InjectedClassName->setImplicit();
3591      PushOnScopeChains(InjectedClassName, S);
3592    }
3593  }
3594}
3595
3596void Sema::ActOnTagFinishDefinition(Scope *S, DeclTy *TagD) {
3597  AdjustDeclIfTemplate(TagD);
3598  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3599
3600  if (isa<CXXRecordDecl>(Tag))
3601    FieldCollector->FinishClass();
3602
3603  // Exit this scope of this tag's definition.
3604  PopDeclContext();
3605
3606  // Notify the consumer that we've defined a tag.
3607  Consumer.HandleTagDeclDefinition(Tag);
3608}
3609
3610bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
3611                          QualType FieldTy, const Expr *BitWidth) {
3612  // FIXME: 6.7.2.1p4 - verify the field type.
3613
3614  llvm::APSInt Value;
3615  if (VerifyIntegerConstantExpression(BitWidth, &Value))
3616    return true;
3617
3618  // Zero-width bitfield is ok for anonymous field.
3619  if (Value == 0 && FieldName)
3620    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
3621
3622  if (Value.isNegative())
3623    return Diag(FieldLoc, diag::err_bitfield_has_negative_width) << FieldName;
3624
3625  uint64_t TypeSize = Context.getTypeSize(FieldTy);
3626  // FIXME: We won't need the 0 size once we check that the field type is valid.
3627  if (TypeSize && Value.getZExtValue() > TypeSize)
3628    return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
3629       << FieldName << (unsigned)TypeSize;
3630
3631  return false;
3632}
3633
3634/// ActOnField - Each field of a struct/union/class is passed into this in order
3635/// to create a FieldDecl object for it.
3636Sema::DeclTy *Sema::ActOnField(Scope *S, DeclTy *TagD,
3637                               SourceLocation DeclStart,
3638                               Declarator &D, ExprTy *BitfieldWidth) {
3639  IdentifierInfo *II = D.getIdentifier();
3640  Expr *BitWidth = (Expr*)BitfieldWidth;
3641  SourceLocation Loc = DeclStart;
3642  RecordDecl *Record = (RecordDecl *)TagD;
3643  if (II) Loc = D.getIdentifierLoc();
3644
3645  // FIXME: Unnamed fields can be handled in various different ways, for
3646  // example, unnamed unions inject all members into the struct namespace!
3647
3648  QualType T = GetTypeForDeclarator(D, S);
3649  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3650  bool InvalidDecl = false;
3651
3652  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3653  // than a variably modified type.
3654  if (T->isVariablyModifiedType()) {
3655    bool SizeIsNegative;
3656    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
3657                                                           SizeIsNegative);
3658    if (!FixedTy.isNull()) {
3659      Diag(Loc, diag::warn_illegal_constant_array_size);
3660      T = FixedTy;
3661    } else {
3662      if (SizeIsNegative)
3663        Diag(Loc, diag::err_typecheck_negative_array_size);
3664      else
3665        Diag(Loc, diag::err_typecheck_field_variable_size);
3666      T = Context.IntTy;
3667      InvalidDecl = true;
3668    }
3669  }
3670
3671  if (BitWidth) {
3672    if (VerifyBitField(Loc, II, T, BitWidth))
3673      InvalidDecl = true;
3674  } else {
3675    // Not a bitfield.
3676
3677    // validate II.
3678
3679  }
3680
3681  FieldDecl *NewFD = FieldDecl::Create(Context, Record,
3682                                       Loc, II, T, BitWidth,
3683                                       D.getDeclSpec().getStorageClassSpec() ==
3684                                       DeclSpec::SCS_mutable);
3685
3686  if (II) {
3687    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3688    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3689        && !isa<TagDecl>(PrevDecl)) {
3690      Diag(Loc, diag::err_duplicate_member) << II;
3691      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3692      NewFD->setInvalidDecl();
3693      Record->setInvalidDecl();
3694    }
3695  }
3696
3697  if (getLangOptions().CPlusPlus) {
3698    CheckExtraCXXDefaultArguments(D);
3699    if (!T->isPODType())
3700      cast<CXXRecordDecl>(Record)->setPOD(false);
3701  }
3702
3703  ProcessDeclAttributes(NewFD, D);
3704  if (T.isObjCGCWeak())
3705    Diag(Loc, diag::warn_attribute_weak_on_field);
3706
3707  if (D.getInvalidType() || InvalidDecl)
3708    NewFD->setInvalidDecl();
3709
3710  if (II) {
3711    PushOnScopeChains(NewFD, S);
3712  } else
3713    Record->addDecl(NewFD);
3714
3715  return NewFD;
3716}
3717
3718/// TranslateIvarVisibility - Translate visibility from a token ID to an
3719///  AST enum value.
3720static ObjCIvarDecl::AccessControl
3721TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
3722  switch (ivarVisibility) {
3723  default: assert(0 && "Unknown visitibility kind");
3724  case tok::objc_private: return ObjCIvarDecl::Private;
3725  case tok::objc_public: return ObjCIvarDecl::Public;
3726  case tok::objc_protected: return ObjCIvarDecl::Protected;
3727  case tok::objc_package: return ObjCIvarDecl::Package;
3728  }
3729}
3730
3731/// ActOnIvar - Each ivar field of an objective-c class is passed into this
3732/// in order to create an IvarDecl object for it.
3733Sema::DeclTy *Sema::ActOnIvar(Scope *S,
3734                              SourceLocation DeclStart,
3735                              Declarator &D, ExprTy *BitfieldWidth,
3736                              tok::ObjCKeywordKind Visibility) {
3737
3738  IdentifierInfo *II = D.getIdentifier();
3739  Expr *BitWidth = (Expr*)BitfieldWidth;
3740  SourceLocation Loc = DeclStart;
3741  if (II) Loc = D.getIdentifierLoc();
3742
3743  // FIXME: Unnamed fields can be handled in various different ways, for
3744  // example, unnamed unions inject all members into the struct namespace!
3745
3746  QualType T = GetTypeForDeclarator(D, S);
3747  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3748  bool InvalidDecl = false;
3749
3750  if (BitWidth) {
3751    // 6.7.2.1p3, 6.7.2.1p4
3752    if (VerifyBitField(Loc, II, T, BitWidth))
3753      InvalidDecl = true;
3754  } else {
3755    // Not a bitfield.
3756
3757    // validate II.
3758
3759  }
3760
3761  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3762  // than a variably modified type.
3763  if (T->isVariablyModifiedType()) {
3764    Diag(Loc, diag::err_typecheck_ivar_variable_size);
3765    InvalidDecl = true;
3766  }
3767
3768  // Get the visibility (access control) for this ivar.
3769  ObjCIvarDecl::AccessControl ac =
3770    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
3771                                        : ObjCIvarDecl::None;
3772
3773  // Construct the decl.
3774  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, CurContext, Loc, II, T,ac,
3775                                             (Expr *)BitfieldWidth);
3776
3777  if (II) {
3778    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3779    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3780        && !isa<TagDecl>(PrevDecl)) {
3781      Diag(Loc, diag::err_duplicate_member) << II;
3782      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3783      NewID->setInvalidDecl();
3784    }
3785  }
3786
3787  // Process attributes attached to the ivar.
3788  ProcessDeclAttributes(NewID, D);
3789
3790  if (D.getInvalidType() || InvalidDecl)
3791    NewID->setInvalidDecl();
3792
3793  if (II) {
3794    // FIXME: When interfaces are DeclContexts, we'll need to add
3795    // these to the interface.
3796    S->AddDecl(NewID);
3797    IdResolver.AddDecl(NewID);
3798  }
3799
3800  return NewID;
3801}
3802
3803void Sema::ActOnFields(Scope* S,
3804                       SourceLocation RecLoc, DeclTy *RecDecl,
3805                       DeclTy **Fields, unsigned NumFields,
3806                       SourceLocation LBrac, SourceLocation RBrac,
3807                       AttributeList *Attr) {
3808  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
3809  assert(EnclosingDecl && "missing record or interface decl");
3810
3811  // If the decl this is being inserted into is invalid, then it may be a
3812  // redeclaration or some other bogus case.  Don't try to add fields to it.
3813  if (EnclosingDecl->isInvalidDecl()) {
3814    // FIXME: Deallocate fields?
3815    return;
3816  }
3817
3818
3819  // Verify that all the fields are okay.
3820  unsigned NumNamedMembers = 0;
3821  llvm::SmallVector<FieldDecl*, 32> RecFields;
3822
3823  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
3824  for (unsigned i = 0; i != NumFields; ++i) {
3825    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
3826    assert(FD && "missing field decl");
3827
3828    // Get the type for the field.
3829    Type *FDTy = FD->getType().getTypePtr();
3830
3831    if (!FD->isAnonymousStructOrUnion()) {
3832      // Remember all fields written by the user.
3833      RecFields.push_back(FD);
3834    }
3835
3836    // C99 6.7.2.1p2 - A field may not be a function type.
3837    if (FDTy->isFunctionType()) {
3838      Diag(FD->getLocation(), diag::err_field_declared_as_function)
3839        << FD->getDeclName();
3840      FD->setInvalidDecl();
3841      EnclosingDecl->setInvalidDecl();
3842      continue;
3843    }
3844    // C99 6.7.2.1p2 - A field may not be an incomplete type except...
3845    if (FDTy->isIncompleteType()) {
3846      if (!Record) {  // Incomplete ivar type is always an error.
3847        DiagnoseIncompleteType(FD->getLocation(), FD->getType(),
3848                               diag::err_field_incomplete);
3849        FD->setInvalidDecl();
3850        EnclosingDecl->setInvalidDecl();
3851        continue;
3852      }
3853      if (i != NumFields-1 ||                   // ... that the last member ...
3854          !Record->isStruct() ||  // ... of a structure ...
3855          !FDTy->isArrayType()) {         //... may have incomplete array type.
3856        DiagnoseIncompleteType(FD->getLocation(), FD->getType(),
3857                               diag::err_field_incomplete);
3858        FD->setInvalidDecl();
3859        EnclosingDecl->setInvalidDecl();
3860        continue;
3861      }
3862      if (NumNamedMembers < 1) {  //... must have more than named member ...
3863        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
3864          << FD->getDeclName();
3865        FD->setInvalidDecl();
3866        EnclosingDecl->setInvalidDecl();
3867        continue;
3868      }
3869      // Okay, we have a legal flexible array member at the end of the struct.
3870      if (Record)
3871        Record->setHasFlexibleArrayMember(true);
3872    }
3873    /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
3874    /// field of another structure or the element of an array.
3875    if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
3876      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
3877        // If this is a member of a union, then entire union becomes "flexible".
3878        if (Record && Record->isUnion()) {
3879          Record->setHasFlexibleArrayMember(true);
3880        } else {
3881          // If this is a struct/class and this is not the last element, reject
3882          // it.  Note that GCC supports variable sized arrays in the middle of
3883          // structures.
3884          if (i != NumFields-1) {
3885            Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct)
3886              << FD->getDeclName();
3887            FD->setInvalidDecl();
3888            EnclosingDecl->setInvalidDecl();
3889            continue;
3890          }
3891          // We support flexible arrays at the end of structs in other structs
3892          // as an extension.
3893          Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
3894            << FD->getDeclName();
3895          if (Record)
3896            Record->setHasFlexibleArrayMember(true);
3897        }
3898      }
3899    }
3900    /// A field cannot be an Objective-c object
3901    if (FDTy->isObjCInterfaceType()) {
3902      Diag(FD->getLocation(), diag::err_statically_allocated_object);
3903      FD->setInvalidDecl();
3904      EnclosingDecl->setInvalidDecl();
3905      continue;
3906    }
3907    // Keep track of the number of named members.
3908    if (FD->getIdentifier())
3909      ++NumNamedMembers;
3910  }
3911
3912  // Okay, we successfully defined 'Record'.
3913  if (Record) {
3914    Record->completeDefinition(Context);
3915  } else {
3916    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
3917    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
3918      ID->setIVarList(ClsFields, RecFields.size(), Context);
3919      ID->setLocEnd(RBrac);
3920
3921      // Must enforce the rule that ivars in the base classes may not be
3922      // duplicates.
3923      if (ID->getSuperClass()) {
3924        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
3925             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
3926          ObjCIvarDecl* Ivar = (*IVI);
3927          IdentifierInfo *II = Ivar->getIdentifier();
3928          ObjCIvarDecl* prevIvar = ID->getSuperClass()->lookupInstanceVariable(II);
3929          if (prevIvar) {
3930            Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3931            Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3932          }
3933        }
3934      }
3935    } else if (ObjCImplementationDecl *IMPDecl =
3936                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
3937      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
3938      IMPDecl->setIVarList(ClsFields, RecFields.size(), Context);
3939      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
3940    }
3941  }
3942
3943  if (Attr)
3944    ProcessDeclAttributeList(Record, Attr);
3945}
3946
3947Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
3948                                      DeclTy *lastEnumConst,
3949                                      SourceLocation IdLoc, IdentifierInfo *Id,
3950                                      SourceLocation EqualLoc, ExprTy *val) {
3951  EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
3952  EnumConstantDecl *LastEnumConst =
3953    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
3954  Expr *Val = static_cast<Expr*>(val);
3955
3956  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3957  // we find one that is.
3958  S = getNonFieldDeclScope(S);
3959
3960  // Verify that there isn't already something declared with this name in this
3961  // scope.
3962  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
3963  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3964    // Maybe we will complain about the shadowed template parameter.
3965    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
3966    // Just pretend that we didn't see the previous declaration.
3967    PrevDecl = 0;
3968  }
3969
3970  if (PrevDecl) {
3971    // When in C++, we may get a TagDecl with the same name; in this case the
3972    // enum constant will 'hide' the tag.
3973    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
3974           "Received TagDecl when not in C++!");
3975    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
3976      if (isa<EnumConstantDecl>(PrevDecl))
3977        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
3978      else
3979        Diag(IdLoc, diag::err_redefinition) << Id;
3980      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3981      Val->Destroy(Context);
3982      return 0;
3983    }
3984  }
3985
3986  llvm::APSInt EnumVal(32);
3987  QualType EltTy;
3988  if (Val) {
3989    // Make sure to promote the operand type to int.
3990    UsualUnaryConversions(Val);
3991
3992    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
3993    SourceLocation ExpLoc;
3994    if (VerifyIntegerConstantExpression(Val, &EnumVal)) {
3995      Val->Destroy(Context);
3996      Val = 0;  // Just forget about it.
3997    } else {
3998      EltTy = Val->getType();
3999    }
4000  }
4001
4002  if (!Val) {
4003    if (LastEnumConst) {
4004      // Assign the last value + 1.
4005      EnumVal = LastEnumConst->getInitVal();
4006      ++EnumVal;
4007
4008      // Check for overflow on increment.
4009      if (EnumVal < LastEnumConst->getInitVal())
4010        Diag(IdLoc, diag::warn_enum_value_overflow);
4011
4012      EltTy = LastEnumConst->getType();
4013    } else {
4014      // First value, set to zero.
4015      EltTy = Context.IntTy;
4016      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
4017    }
4018  }
4019
4020  EnumConstantDecl *New =
4021    EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy,
4022                             Val, EnumVal);
4023
4024  // Register this decl in the current scope stack.
4025  PushOnScopeChains(New, S);
4026
4027  return New;
4028}
4029
4030// FIXME: For consistency with ActOnFields(), we should have the parser
4031// pass in the source location for the left/right braces.
4032void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
4033                         DeclTy **Elements, unsigned NumElements) {
4034  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
4035  QualType EnumType = Context.getTypeDeclType(Enum);
4036
4037  // TODO: If the result value doesn't fit in an int, it must be a long or long
4038  // long value.  ISO C does not support this, but GCC does as an extension,
4039  // emit a warning.
4040  unsigned IntWidth = Context.Target.getIntWidth();
4041
4042  // Verify that all the values are okay, compute the size of the values, and
4043  // reverse the list.
4044  unsigned NumNegativeBits = 0;
4045  unsigned NumPositiveBits = 0;
4046
4047  // Keep track of whether all elements have type int.
4048  bool AllElementsInt = true;
4049
4050  for (unsigned i = 0; i != NumElements; ++i) {
4051    EnumConstantDecl *ECD =
4052      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
4053    if (!ECD) continue;  // Already issued a diagnostic.
4054
4055    // If the enum value doesn't fit in an int, emit an extension warning.
4056    const llvm::APSInt &InitVal = ECD->getInitVal();
4057    assert(InitVal.getBitWidth() >= IntWidth &&
4058           "Should have promoted value to int");
4059    if (InitVal.getBitWidth() > IntWidth) {
4060      llvm::APSInt V(InitVal);
4061      V.trunc(IntWidth);
4062      V.extend(InitVal.getBitWidth());
4063      if (V != InitVal)
4064        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
4065          << InitVal.toString(10);
4066    }
4067
4068    // Keep track of the size of positive and negative values.
4069    if (InitVal.isUnsigned() || InitVal.isNonNegative())
4070      NumPositiveBits = std::max(NumPositiveBits,
4071                                 (unsigned)InitVal.getActiveBits());
4072    else
4073      NumNegativeBits = std::max(NumNegativeBits,
4074                                 (unsigned)InitVal.getMinSignedBits());
4075
4076    // Keep track of whether every enum element has type int (very commmon).
4077    if (AllElementsInt)
4078      AllElementsInt = ECD->getType() == Context.IntTy;
4079  }
4080
4081  // Figure out the type that should be used for this enum.
4082  // FIXME: Support attribute(packed) on enums and -fshort-enums.
4083  QualType BestType;
4084  unsigned BestWidth;
4085
4086  if (NumNegativeBits) {
4087    // If there is a negative value, figure out the smallest integer type (of
4088    // int/long/longlong) that fits.
4089    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
4090      BestType = Context.IntTy;
4091      BestWidth = IntWidth;
4092    } else {
4093      BestWidth = Context.Target.getLongWidth();
4094
4095      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
4096        BestType = Context.LongTy;
4097      else {
4098        BestWidth = Context.Target.getLongLongWidth();
4099
4100        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
4101          Diag(Enum->getLocation(), diag::warn_enum_too_large);
4102        BestType = Context.LongLongTy;
4103      }
4104    }
4105  } else {
4106    // If there is no negative value, figure out which of uint, ulong, ulonglong
4107    // fits.
4108    if (NumPositiveBits <= IntWidth) {
4109      BestType = Context.UnsignedIntTy;
4110      BestWidth = IntWidth;
4111    } else if (NumPositiveBits <=
4112               (BestWidth = Context.Target.getLongWidth())) {
4113      BestType = Context.UnsignedLongTy;
4114    } else {
4115      BestWidth = Context.Target.getLongLongWidth();
4116      assert(NumPositiveBits <= BestWidth &&
4117             "How could an initializer get larger than ULL?");
4118      BestType = Context.UnsignedLongLongTy;
4119    }
4120  }
4121
4122  // Loop over all of the enumerator constants, changing their types to match
4123  // the type of the enum if needed.
4124  for (unsigned i = 0; i != NumElements; ++i) {
4125    EnumConstantDecl *ECD =
4126      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
4127    if (!ECD) continue;  // Already issued a diagnostic.
4128
4129    // Standard C says the enumerators have int type, but we allow, as an
4130    // extension, the enumerators to be larger than int size.  If each
4131    // enumerator value fits in an int, type it as an int, otherwise type it the
4132    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
4133    // that X has type 'int', not 'unsigned'.
4134    if (ECD->getType() == Context.IntTy) {
4135      // Make sure the init value is signed.
4136      llvm::APSInt IV = ECD->getInitVal();
4137      IV.setIsSigned(true);
4138      ECD->setInitVal(IV);
4139
4140      if (getLangOptions().CPlusPlus)
4141        // C++ [dcl.enum]p4: Following the closing brace of an
4142        // enum-specifier, each enumerator has the type of its
4143        // enumeration.
4144        ECD->setType(EnumType);
4145      continue;  // Already int type.
4146    }
4147
4148    // Determine whether the value fits into an int.
4149    llvm::APSInt InitVal = ECD->getInitVal();
4150    bool FitsInInt;
4151    if (InitVal.isUnsigned() || !InitVal.isNegative())
4152      FitsInInt = InitVal.getActiveBits() < IntWidth;
4153    else
4154      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
4155
4156    // If it fits into an integer type, force it.  Otherwise force it to match
4157    // the enum decl type.
4158    QualType NewTy;
4159    unsigned NewWidth;
4160    bool NewSign;
4161    if (FitsInInt) {
4162      NewTy = Context.IntTy;
4163      NewWidth = IntWidth;
4164      NewSign = true;
4165    } else if (ECD->getType() == BestType) {
4166      // Already the right type!
4167      if (getLangOptions().CPlusPlus)
4168        // C++ [dcl.enum]p4: Following the closing brace of an
4169        // enum-specifier, each enumerator has the type of its
4170        // enumeration.
4171        ECD->setType(EnumType);
4172      continue;
4173    } else {
4174      NewTy = BestType;
4175      NewWidth = BestWidth;
4176      NewSign = BestType->isSignedIntegerType();
4177    }
4178
4179    // Adjust the APSInt value.
4180    InitVal.extOrTrunc(NewWidth);
4181    InitVal.setIsSigned(NewSign);
4182    ECD->setInitVal(InitVal);
4183
4184    // Adjust the Expr initializer and type.
4185    if (ECD->getInitExpr())
4186      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy, ECD->getInitExpr(),
4187                                                      /*isLvalue=*/false));
4188    if (getLangOptions().CPlusPlus)
4189      // C++ [dcl.enum]p4: Following the closing brace of an
4190      // enum-specifier, each enumerator has the type of its
4191      // enumeration.
4192      ECD->setType(EnumType);
4193    else
4194      ECD->setType(NewTy);
4195  }
4196
4197  Enum->completeDefinition(Context, BestType);
4198}
4199
4200Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
4201                                          ExprArg expr) {
4202  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr.release());
4203
4204  return FileScopeAsmDecl::Create(Context, CurContext, Loc, AsmString);
4205}
4206
4207