SemaDecl.cpp revision 2dbd285f5033ca6dea25babfd1c43d9fec35e7e5
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/Parse/DeclSpec.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Basic/SourceManager.h"
24// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "llvm/ADT/SmallSet.h"
28#include "llvm/ADT/STLExtras.h"
29#include <algorithm>
30#include <functional>
31using namespace clang;
32
33/// getDeclName - Return a pretty name for the specified decl if possible, or
34/// an empty string if not.  This is used for pretty crash reporting.
35std::string Sema::getDeclName(DeclPtrTy d) {
36  Decl *D = d.getAs<Decl>();
37  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
38    return DN->getQualifiedNameAsString();
39  return "";
40}
41
42Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
43  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
44}
45
46/// \brief If the identifier refers to a type name within this scope,
47/// return the declaration of that type.
48///
49/// This routine performs ordinary name lookup of the identifier II
50/// within the given scope, with optional C++ scope specifier SS, to
51/// determine whether the name refers to a type. If so, returns an
52/// opaque pointer (actually a QualType) corresponding to that
53/// type. Otherwise, returns NULL.
54///
55/// If name lookup results in an ambiguity, this routine will complain
56/// and then return NULL.
57Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
58                                Scope *S, const CXXScopeSpec *SS) {
59  // C++ [temp.res]p3:
60  //   A qualified-id that refers to a type and in which the
61  //   nested-name-specifier depends on a template-parameter (14.6.2)
62  //   shall be prefixed by the keyword typename to indicate that the
63  //   qualified-id denotes a type, forming an
64  //   elaborated-type-specifier (7.1.5.3).
65  //
66  // We therefore do not perform any name lookup up SS is a dependent
67  // scope name. FIXME: we will need to perform a special kind of
68  // lookup if the scope specifier names a member of the current
69  // instantiation.
70  if (SS && isDependentScopeSpecifier(*SS))
71    return 0;
72
73  NamedDecl *IIDecl = 0;
74  LookupResult Result = LookupParsedName(S, SS, &II, LookupOrdinaryName,
75                                         false, false);
76  switch (Result.getKind()) {
77  case LookupResult::NotFound:
78  case LookupResult::FoundOverloaded:
79    return 0;
80
81  case LookupResult::AmbiguousBaseSubobjectTypes:
82  case LookupResult::AmbiguousBaseSubobjects:
83  case LookupResult::AmbiguousReference: {
84    // Look to see if we have a type anywhere in the list of results.
85    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
86         Res != ResEnd; ++Res) {
87      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
88        if (!IIDecl ||
89            (*Res)->getLocation().getRawEncoding() <
90              IIDecl->getLocation().getRawEncoding())
91          IIDecl = *Res;
92      }
93    }
94
95    if (!IIDecl) {
96      // None of the entities we found is a type, so there is no way
97      // to even assume that the result is a type. In this case, don't
98      // complain about the ambiguity. The parser will either try to
99      // perform this lookup again (e.g., as an object name), which
100      // will produce the ambiguity, or will complain that it expected
101      // a type name.
102      Result.Destroy();
103      return 0;
104    }
105
106    // We found a type within the ambiguous lookup; diagnose the
107    // ambiguity and then return that type. This might be the right
108    // answer, or it might not be, but it suppresses any attempt to
109    // perform the name lookup again.
110    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
111    break;
112  }
113
114  case LookupResult::Found:
115    IIDecl = Result.getAsDecl();
116    break;
117  }
118
119  if (IIDecl) {
120    QualType T;
121
122    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
123      // Check whether we can use this type
124      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
125
126      T = Context.getTypeDeclType(TD);
127    } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
128      // Check whether we can use this interface.
129      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
130
131      T = Context.getObjCInterfaceType(IDecl);
132    } else
133      return 0;
134
135    if (SS)
136      T = getQualifiedNameType(*SS, T);
137
138    return T.getAsOpaquePtr();
139  }
140
141  return 0;
142}
143
144/// isTagName() - This method is called *for error recovery purposes only*
145/// to determine if the specified name is a valid tag name ("struct foo").  If
146/// so, this returns the TST for the tag corresponding to it (TST_enum,
147/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
148/// where the user forgot to specify the tag.
149DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
150  // Do a tag name lookup in this scope.
151  LookupResult R = LookupName(S, &II, LookupTagName, false, false);
152  if (R.getKind() == LookupResult::Found)
153    if (const TagDecl *TD = dyn_cast<TagDecl>(R.getAsDecl())) {
154      switch (TD->getTagKind()) {
155      case TagDecl::TK_struct: return DeclSpec::TST_struct;
156      case TagDecl::TK_union:  return DeclSpec::TST_union;
157      case TagDecl::TK_class:  return DeclSpec::TST_class;
158      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
159      }
160    }
161
162  return DeclSpec::TST_unspecified;
163}
164
165
166
167DeclContext *Sema::getContainingDC(DeclContext *DC) {
168  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
169    // A C++ out-of-line method will return to the file declaration context.
170    if (MD->isOutOfLineDefinition())
171      return MD->getLexicalDeclContext();
172
173    // A C++ inline method is parsed *after* the topmost class it was declared
174    // in is fully parsed (it's "complete").
175    // The parsing of a C++ inline method happens at the declaration context of
176    // the topmost (non-nested) class it is lexically declared in.
177    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
178    DC = MD->getParent();
179    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
180      DC = RD;
181
182    // Return the declaration context of the topmost class the inline method is
183    // declared in.
184    return DC;
185  }
186
187  if (isa<ObjCMethodDecl>(DC))
188    return Context.getTranslationUnitDecl();
189
190  return DC->getLexicalParent();
191}
192
193void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
194  assert(getContainingDC(DC) == CurContext &&
195      "The next DeclContext should be lexically contained in the current one.");
196  CurContext = DC;
197  S->setEntity(DC);
198}
199
200void Sema::PopDeclContext() {
201  assert(CurContext && "DeclContext imbalance!");
202
203  CurContext = getContainingDC(CurContext);
204}
205
206/// \brief Determine whether we allow overloading of the function
207/// PrevDecl with another declaration.
208///
209/// This routine determines whether overloading is possible, not
210/// whether some new function is actually an overload. It will return
211/// true in C++ (where we can always provide overloads) or, as an
212/// extension, in C when the previous function is already an
213/// overloaded function declaration or has the "overloadable"
214/// attribute.
215static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
216  if (Context.getLangOptions().CPlusPlus)
217    return true;
218
219  if (isa<OverloadedFunctionDecl>(PrevDecl))
220    return true;
221
222  return PrevDecl->getAttr<OverloadableAttr>() != 0;
223}
224
225/// Add this decl to the scope shadowed decl chains.
226void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
227  // Move up the scope chain until we find the nearest enclosing
228  // non-transparent context. The declaration will be introduced into this
229  // scope.
230  while (S->getEntity() &&
231         ((DeclContext *)S->getEntity())->isTransparentContext())
232    S = S->getParent();
233
234  S->AddDecl(DeclPtrTy::make(D));
235
236  // Add scoped declarations into their context, so that they can be
237  // found later. Declarations without a context won't be inserted
238  // into any context.
239  CurContext->addDecl(Context, D);
240
241  // C++ [basic.scope]p4:
242  //   -- exactly one declaration shall declare a class name or
243  //   enumeration name that is not a typedef name and the other
244  //   declarations shall all refer to the same object or
245  //   enumerator, or all refer to functions and function templates;
246  //   in this case the class name or enumeration name is hidden.
247  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
248    // We are pushing the name of a tag (enum or class).
249    if (CurContext->getLookupContext()
250          == TD->getDeclContext()->getLookupContext()) {
251      // We're pushing the tag into the current context, which might
252      // require some reshuffling in the identifier resolver.
253      IdentifierResolver::iterator
254        I = IdResolver.begin(TD->getDeclName()),
255        IEnd = IdResolver.end();
256      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
257        NamedDecl *PrevDecl = *I;
258        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
259             PrevDecl = *I, ++I) {
260          if (TD->declarationReplaces(*I)) {
261            // This is a redeclaration. Remove it from the chain and
262            // break out, so that we'll add in the shadowed
263            // declaration.
264            S->RemoveDecl(DeclPtrTy::make(*I));
265            if (PrevDecl == *I) {
266              IdResolver.RemoveDecl(*I);
267              IdResolver.AddDecl(TD);
268              return;
269            } else {
270              IdResolver.RemoveDecl(*I);
271              break;
272            }
273          }
274        }
275
276        // There is already a declaration with the same name in the same
277        // scope, which is not a tag declaration. It must be found
278        // before we find the new declaration, so insert the new
279        // declaration at the end of the chain.
280        IdResolver.AddShadowedDecl(TD, PrevDecl);
281
282        return;
283      }
284    }
285  } else if (isa<FunctionDecl>(D) &&
286             AllowOverloadingOfFunction(D, Context)) {
287    // We are pushing the name of a function, which might be an
288    // overloaded name.
289    FunctionDecl *FD = cast<FunctionDecl>(D);
290    IdentifierResolver::iterator Redecl
291      = std::find_if(IdResolver.begin(FD->getDeclName()),
292                     IdResolver.end(),
293                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
294                                  FD));
295    if (Redecl != IdResolver.end() &&
296        S->isDeclScope(DeclPtrTy::make(*Redecl))) {
297      // There is already a declaration of a function on our
298      // IdResolver chain. Replace it with this declaration.
299      S->RemoveDecl(DeclPtrTy::make(*Redecl));
300      IdResolver.RemoveDecl(*Redecl);
301    }
302  } else if (isa<ObjCInterfaceDecl>(D)) {
303    // We're pushing an Objective-C interface into the current
304    // context. If there is already an alias declaration, remove it first.
305    for (IdentifierResolver::iterator
306           I = IdResolver.begin(D->getDeclName()), IEnd = IdResolver.end();
307         I != IEnd; ++I) {
308      if (isa<ObjCCompatibleAliasDecl>(*I)) {
309        S->RemoveDecl(DeclPtrTy::make(*I));
310        IdResolver.RemoveDecl(*I);
311        break;
312      }
313    }
314  }
315
316  IdResolver.AddDecl(D);
317}
318
319void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
320  if (S->decl_empty()) return;
321  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
322	 "Scope shouldn't contain decls!");
323
324  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
325       I != E; ++I) {
326    Decl *TmpD = (*I).getAs<Decl>();
327    assert(TmpD && "This decl didn't get pushed??");
328
329    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
330    NamedDecl *D = cast<NamedDecl>(TmpD);
331
332    if (!D->getDeclName()) continue;
333
334    // Remove this name from our lexical scope.
335    IdResolver.RemoveDecl(D);
336  }
337}
338
339/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
340/// return 0 if one not found.
341ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
342  // The third "scope" argument is 0 since we aren't enabling lazy built-in
343  // creation from this context.
344  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
345
346  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
347}
348
349/// getNonFieldDeclScope - Retrieves the innermost scope, starting
350/// from S, where a non-field would be declared. This routine copes
351/// with the difference between C and C++ scoping rules in structs and
352/// unions. For example, the following code is well-formed in C but
353/// ill-formed in C++:
354/// @code
355/// struct S6 {
356///   enum { BAR } e;
357/// };
358///
359/// void test_S6() {
360///   struct S6 a;
361///   a.e = BAR;
362/// }
363/// @endcode
364/// For the declaration of BAR, this routine will return a different
365/// scope. The scope S will be the scope of the unnamed enumeration
366/// within S6. In C++, this routine will return the scope associated
367/// with S6, because the enumeration's scope is a transparent
368/// context but structures can contain non-field names. In C, this
369/// routine will return the translation unit scope, since the
370/// enumeration's scope is a transparent context and structures cannot
371/// contain non-field names.
372Scope *Sema::getNonFieldDeclScope(Scope *S) {
373  while (((S->getFlags() & Scope::DeclScope) == 0) ||
374         (S->getEntity() &&
375          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
376         (S->isClassScope() && !getLangOptions().CPlusPlus))
377    S = S->getParent();
378  return S;
379}
380
381void Sema::InitBuiltinVaListType() {
382  if (!Context.getBuiltinVaListType().isNull())
383    return;
384
385  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
386  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
387  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
388  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
389}
390
391/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
392/// file scope.  lazily create a decl for it. ForRedeclaration is true
393/// if we're creating this built-in in anticipation of redeclaring the
394/// built-in.
395NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
396                                     Scope *S, bool ForRedeclaration,
397                                     SourceLocation Loc) {
398  Builtin::ID BID = (Builtin::ID)bid;
399
400  if (Context.BuiltinInfo.hasVAListUse(BID))
401    InitBuiltinVaListType();
402
403  Builtin::Context::GetBuiltinTypeError Error;
404  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context, Error);
405  switch (Error) {
406  case Builtin::Context::GE_None:
407    // Okay
408    break;
409
410  case Builtin::Context::GE_Missing_FILE:
411    if (ForRedeclaration)
412      Diag(Loc, diag::err_implicit_decl_requires_stdio)
413        << Context.BuiltinInfo.GetName(BID);
414    return 0;
415  }
416
417  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
418    Diag(Loc, diag::ext_implicit_lib_function_decl)
419      << Context.BuiltinInfo.GetName(BID)
420      << R;
421    if (Context.BuiltinInfo.getHeaderName(BID) &&
422        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
423          != Diagnostic::Ignored)
424      Diag(Loc, diag::note_please_include_header)
425        << Context.BuiltinInfo.getHeaderName(BID)
426        << Context.BuiltinInfo.GetName(BID);
427  }
428
429  FunctionDecl *New = FunctionDecl::Create(Context,
430                                           Context.getTranslationUnitDecl(),
431                                           Loc, II, R,
432                                           FunctionDecl::Extern, false,
433                                           /*hasPrototype=*/true);
434  New->setImplicit();
435
436  // Create Decl objects for each parameter, adding them to the
437  // FunctionDecl.
438  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
439    llvm::SmallVector<ParmVarDecl*, 16> Params;
440    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
441      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
442                                           FT->getArgType(i), VarDecl::None, 0));
443    New->setParams(Context, &Params[0], Params.size());
444  }
445
446  AddKnownFunctionAttributes(New);
447
448  // TUScope is the translation-unit scope to insert this function into.
449  // FIXME: This is hideous. We need to teach PushOnScopeChains to
450  // relate Scopes to DeclContexts, and probably eliminate CurContext
451  // entirely, but we're not there yet.
452  DeclContext *SavedContext = CurContext;
453  CurContext = Context.getTranslationUnitDecl();
454  PushOnScopeChains(New, TUScope);
455  CurContext = SavedContext;
456  return New;
457}
458
459/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
460/// everything from the standard library is defined.
461NamespaceDecl *Sema::GetStdNamespace() {
462  if (!StdNamespace) {
463    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
464    DeclContext *Global = Context.getTranslationUnitDecl();
465    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
466    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
467  }
468  return StdNamespace;
469}
470
471/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
472/// same name and scope as a previous declaration 'Old'.  Figure out
473/// how to resolve this situation, merging decls or emitting
474/// diagnostics as appropriate. Returns true if there was an error,
475/// false otherwise.
476///
477bool Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
478  bool objc_types = false;
479  // Allow multiple definitions for ObjC built-in typedefs.
480  // FIXME: Verify the underlying types are equivalent!
481  if (getLangOptions().ObjC1) {
482    const IdentifierInfo *TypeID = New->getIdentifier();
483    switch (TypeID->getLength()) {
484    default: break;
485    case 2:
486      if (!TypeID->isStr("id"))
487        break;
488      Context.setObjCIdType(Context.getTypeDeclType(New));
489      objc_types = true;
490      break;
491    case 5:
492      if (!TypeID->isStr("Class"))
493        break;
494      Context.setObjCClassType(Context.getTypeDeclType(New));
495      objc_types = true;
496      return false;
497    case 3:
498      if (!TypeID->isStr("SEL"))
499        break;
500      Context.setObjCSelType(Context.getTypeDeclType(New));
501      objc_types = true;
502      return false;
503    case 8:
504      if (!TypeID->isStr("Protocol"))
505        break;
506      Context.setObjCProtoType(New->getUnderlyingType());
507      objc_types = true;
508      return false;
509    }
510    // Fall through - the typedef name was not a builtin type.
511  }
512  // Verify the old decl was also a type.
513  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
514  if (!Old) {
515    Diag(New->getLocation(), diag::err_redefinition_different_kind)
516      << New->getDeclName();
517    if (!objc_types)
518      Diag(OldD->getLocation(), diag::note_previous_definition);
519    return true;
520  }
521
522  // Determine the "old" type we'll use for checking and diagnostics.
523  QualType OldType;
524  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
525    OldType = OldTypedef->getUnderlyingType();
526  else
527    OldType = Context.getTypeDeclType(Old);
528
529  // If the typedef types are not identical, reject them in all languages and
530  // with any extensions enabled.
531
532  if (OldType != New->getUnderlyingType() &&
533      Context.getCanonicalType(OldType) !=
534      Context.getCanonicalType(New->getUnderlyingType())) {
535    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
536      << New->getUnderlyingType() << OldType;
537    if (!objc_types)
538      Diag(Old->getLocation(), diag::note_previous_definition);
539    return true;
540  }
541  if (objc_types) return false;
542  if (getLangOptions().Microsoft) return false;
543
544  // C++ [dcl.typedef]p2:
545  //   In a given non-class scope, a typedef specifier can be used to
546  //   redefine the name of any type declared in that scope to refer
547  //   to the type to which it already refers.
548  if (getLangOptions().CPlusPlus) {
549    if (!isa<CXXRecordDecl>(CurContext))
550      return false;
551    Diag(New->getLocation(), diag::err_redefinition)
552      << New->getDeclName();
553    Diag(Old->getLocation(), diag::note_previous_definition);
554    return true;
555  }
556
557  // If we have a redefinition of a typedef in C, emit a warning.  This warning
558  // is normally mapped to an error, but can be controlled with
559  // -Wtypedef-redefinition.
560  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
561    << New->getDeclName();
562  Diag(Old->getLocation(), diag::note_previous_definition);
563  return false;
564}
565
566/// DeclhasAttr - returns true if decl Declaration already has the target
567/// attribute.
568static bool DeclHasAttr(const Decl *decl, const Attr *target) {
569  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
570    if (attr->getKind() == target->getKind())
571      return true;
572
573  return false;
574}
575
576/// MergeAttributes - append attributes from the Old decl to the New one.
577static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
578  Attr *attr = const_cast<Attr*>(Old->getAttrs());
579
580  while (attr) {
581    Attr *tmp = attr;
582    attr = attr->getNext();
583
584    if (!DeclHasAttr(New, tmp) && tmp->isMerged()) {
585      tmp->setInherited(true);
586      New->addAttr(tmp);
587    } else {
588      tmp->setNext(0);
589      tmp->Destroy(C);
590    }
591  }
592
593  Old->invalidateAttrs();
594}
595
596/// Used in MergeFunctionDecl to keep track of function parameters in
597/// C.
598struct GNUCompatibleParamWarning {
599  ParmVarDecl *OldParm;
600  ParmVarDecl *NewParm;
601  QualType PromotedType;
602};
603
604/// MergeFunctionDecl - We just parsed a function 'New' from
605/// declarator D which has the same name and scope as a previous
606/// declaration 'Old'.  Figure out how to resolve this situation,
607/// merging decls or emitting diagnostics as appropriate.
608///
609/// In C++, New and Old must be declarations that are not
610/// overloaded. Use IsOverload to determine whether New and Old are
611/// overloaded, and to select the Old declaration that New should be
612/// merged with.
613///
614/// Returns true if there was an error, false otherwise.
615bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
616  assert(!isa<OverloadedFunctionDecl>(OldD) &&
617         "Cannot merge with an overloaded function declaration");
618
619  // Verify the old decl was also a function.
620  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
621  if (!Old) {
622    Diag(New->getLocation(), diag::err_redefinition_different_kind)
623      << New->getDeclName();
624    Diag(OldD->getLocation(), diag::note_previous_definition);
625    return true;
626  }
627
628  // Determine whether the previous declaration was a definition,
629  // implicit declaration, or a declaration.
630  diag::kind PrevDiag;
631  if (Old->isThisDeclarationADefinition())
632    PrevDiag = diag::note_previous_definition;
633  else if (Old->isImplicit())
634    PrevDiag = diag::note_previous_implicit_declaration;
635  else
636    PrevDiag = diag::note_previous_declaration;
637
638  QualType OldQType = Context.getCanonicalType(Old->getType());
639  QualType NewQType = Context.getCanonicalType(New->getType());
640
641  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
642      New->getStorageClass() == FunctionDecl::Static &&
643      Old->getStorageClass() != FunctionDecl::Static) {
644    Diag(New->getLocation(), diag::err_static_non_static)
645      << New;
646    Diag(Old->getLocation(), PrevDiag);
647    return true;
648  }
649
650  if (getLangOptions().CPlusPlus) {
651    // (C++98 13.1p2):
652    //   Certain function declarations cannot be overloaded:
653    //     -- Function declarations that differ only in the return type
654    //        cannot be overloaded.
655    QualType OldReturnType
656      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
657    QualType NewReturnType
658      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
659    if (OldReturnType != NewReturnType) {
660      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
661      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
662      return true;
663    }
664
665    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
666    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
667    if (OldMethod && NewMethod &&
668        OldMethod->getLexicalDeclContext() ==
669          NewMethod->getLexicalDeclContext()) {
670      //    -- Member function declarations with the same name and the
671      //       same parameter types cannot be overloaded if any of them
672      //       is a static member function declaration.
673      if (OldMethod->isStatic() || NewMethod->isStatic()) {
674        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
675        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
676        return true;
677      }
678
679      // C++ [class.mem]p1:
680      //   [...] A member shall not be declared twice in the
681      //   member-specification, except that a nested class or member
682      //   class template can be declared and then later defined.
683      unsigned NewDiag;
684      if (isa<CXXConstructorDecl>(OldMethod))
685        NewDiag = diag::err_constructor_redeclared;
686      else if (isa<CXXDestructorDecl>(NewMethod))
687        NewDiag = diag::err_destructor_redeclared;
688      else if (isa<CXXConversionDecl>(NewMethod))
689        NewDiag = diag::err_conv_function_redeclared;
690      else
691        NewDiag = diag::err_member_redeclared;
692
693      Diag(New->getLocation(), NewDiag);
694      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
695    }
696
697    // (C++98 8.3.5p3):
698    //   All declarations for a function shall agree exactly in both the
699    //   return type and the parameter-type-list.
700    if (OldQType == NewQType)
701      return MergeCompatibleFunctionDecls(New, Old);
702
703    // Fall through for conflicting redeclarations and redefinitions.
704  }
705
706  // C: Function types need to be compatible, not identical. This handles
707  // duplicate function decls like "void f(int); void f(enum X);" properly.
708  if (!getLangOptions().CPlusPlus &&
709      Context.typesAreCompatible(OldQType, NewQType)) {
710    const FunctionType *OldFuncType = OldQType->getAsFunctionType();
711    const FunctionType *NewFuncType = NewQType->getAsFunctionType();
712    const FunctionProtoType *OldProto = 0;
713    if (isa<FunctionNoProtoType>(NewFuncType) &&
714        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
715      // The old declaration provided a function prototype, but the
716      // new declaration does not. Merge in the prototype.
717      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
718                                                 OldProto->arg_type_end());
719      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
720                                         &ParamTypes[0], ParamTypes.size(),
721                                         OldProto->isVariadic(),
722                                         OldProto->getTypeQuals());
723      New->setType(NewQType);
724      New->setInheritedPrototype();
725
726      // Synthesize a parameter for each argument type.
727      llvm::SmallVector<ParmVarDecl*, 16> Params;
728      for (FunctionProtoType::arg_type_iterator
729             ParamType = OldProto->arg_type_begin(),
730             ParamEnd = OldProto->arg_type_end();
731           ParamType != ParamEnd; ++ParamType) {
732        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
733                                                 SourceLocation(), 0,
734                                                 *ParamType, VarDecl::None,
735                                                 0);
736        Param->setImplicit();
737        Params.push_back(Param);
738      }
739
740      New->setParams(Context, &Params[0], Params.size());
741    }
742
743    return MergeCompatibleFunctionDecls(New, Old);
744  }
745
746  // GNU C permits a K&R definition to follow a prototype declaration
747  // if the declared types of the parameters in the K&R definition
748  // match the types in the prototype declaration, even when the
749  // promoted types of the parameters from the K&R definition differ
750  // from the types in the prototype. GCC then keeps the types from
751  // the prototype.
752  if (!getLangOptions().CPlusPlus &&
753      !getLangOptions().NoExtensions &&
754      Old->hasPrototype() && !New->hasPrototype() &&
755      New->getType()->getAsFunctionProtoType() &&
756      Old->getNumParams() == New->getNumParams()) {
757    llvm::SmallVector<QualType, 16> ArgTypes;
758    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
759    const FunctionProtoType *OldProto
760      = Old->getType()->getAsFunctionProtoType();
761    const FunctionProtoType *NewProto
762      = New->getType()->getAsFunctionProtoType();
763
764    // Determine whether this is the GNU C extension.
765    bool GNUCompatible =
766      Context.typesAreCompatible(OldProto->getResultType(),
767                                 NewProto->getResultType()) &&
768      (OldProto->isVariadic() == NewProto->isVariadic());
769    for (unsigned Idx = 0, End = Old->getNumParams();
770         GNUCompatible && Idx != End; ++Idx) {
771      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
772      ParmVarDecl *NewParm = New->getParamDecl(Idx);
773      if (Context.typesAreCompatible(OldParm->getType(),
774                                     NewProto->getArgType(Idx))) {
775        ArgTypes.push_back(NewParm->getType());
776      } else if (Context.typesAreCompatible(OldParm->getType(),
777                                            NewParm->getType())) {
778        GNUCompatibleParamWarning Warn
779          = { OldParm, NewParm, NewProto->getArgType(Idx) };
780        Warnings.push_back(Warn);
781        ArgTypes.push_back(NewParm->getType());
782      } else
783        GNUCompatible = false;
784    }
785
786    if (GNUCompatible) {
787      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
788        Diag(Warnings[Warn].NewParm->getLocation(),
789             diag::ext_param_promoted_not_compatible_with_prototype)
790          << Warnings[Warn].PromotedType
791          << Warnings[Warn].OldParm->getType();
792        Diag(Warnings[Warn].OldParm->getLocation(),
793             diag::note_previous_declaration);
794      }
795
796      New->setType(Context.getFunctionType(NewProto->getResultType(),
797                                           &ArgTypes[0], ArgTypes.size(),
798                                           NewProto->isVariadic(),
799                                           NewProto->getTypeQuals()));
800      return MergeCompatibleFunctionDecls(New, Old);
801    }
802
803    // Fall through to diagnose conflicting types.
804  }
805
806  // A function that has already been declared has been redeclared or defined
807  // with a different type- show appropriate diagnostic
808  if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
809    // The user has declared a builtin function with an incompatible
810    // signature.
811    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
812      // The function the user is redeclaring is a library-defined
813      // function like 'malloc' or 'printf'. Warn about the
814      // redeclaration, then pretend that we don't know about this
815      // library built-in.
816      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
817      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
818        << Old << Old->getType();
819      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
820      Old->setInvalidDecl();
821      return false;
822    }
823
824    PrevDiag = diag::note_previous_builtin_declaration;
825  }
826
827  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
828  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
829  return true;
830}
831
832/// \brief Completes the merge of two function declarations that are
833/// known to be compatible.
834///
835/// This routine handles the merging of attributes and other
836/// properties of function declarations form the old declaration to
837/// the new declaration, once we know that New is in fact a
838/// redeclaration of Old.
839///
840/// \returns false
841bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
842  // Merge the attributes
843  MergeAttributes(New, Old, Context);
844
845  // Merge the storage class.
846  New->setStorageClass(Old->getStorageClass());
847
848  // Merge "inline"
849  if (Old->isInline())
850    New->setInline(true);
851
852  // If this function declaration by itself qualifies as a C99 inline
853  // definition (C99 6.7.4p6), but the previous definition did not,
854  // then the function is not a C99 inline definition.
855  if (New->isC99InlineDefinition() && !Old->isC99InlineDefinition())
856    New->setC99InlineDefinition(false);
857  else if (Old->isC99InlineDefinition() && !New->isC99InlineDefinition()) {
858    // Mark all preceding definitions as not being C99 inline definitions.
859    for (const FunctionDecl *Prev = Old; Prev;
860         Prev = Prev->getPreviousDeclaration())
861      const_cast<FunctionDecl *>(Prev)->setC99InlineDefinition(false);
862  }
863
864  // Merge "pure" flag.
865  if (Old->isPure())
866    New->setPure();
867
868  // Merge the "deleted" flag.
869  if (Old->isDeleted())
870    New->setDeleted();
871
872  if (getLangOptions().CPlusPlus)
873    return MergeCXXFunctionDecl(New, Old);
874
875  return false;
876}
877
878/// MergeVarDecl - We just parsed a variable 'New' which has the same name
879/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
880/// situation, merging decls or emitting diagnostics as appropriate.
881///
882/// Tentative definition rules (C99 6.9.2p2) are checked by
883/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
884/// definitions here, since the initializer hasn't been attached.
885///
886bool Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
887  // Verify the old decl was also a variable.
888  VarDecl *Old = dyn_cast<VarDecl>(OldD);
889  if (!Old) {
890    Diag(New->getLocation(), diag::err_redefinition_different_kind)
891      << New->getDeclName();
892    Diag(OldD->getLocation(), diag::note_previous_definition);
893    return true;
894  }
895
896  MergeAttributes(New, Old, Context);
897
898  // Merge the types
899  QualType MergedT = Context.mergeTypes(New->getType(), Old->getType());
900  if (MergedT.isNull()) {
901    Diag(New->getLocation(), diag::err_redefinition_different_type)
902      << New->getDeclName();
903    Diag(Old->getLocation(), diag::note_previous_definition);
904    return true;
905  }
906  New->setType(MergedT);
907
908  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
909  if (New->getStorageClass() == VarDecl::Static &&
910      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
911    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
912    Diag(Old->getLocation(), diag::note_previous_definition);
913    return true;
914  }
915  // C99 6.2.2p4:
916  //   For an identifier declared with the storage-class specifier
917  //   extern in a scope in which a prior declaration of that
918  //   identifier is visible,23) if the prior declaration specifies
919  //   internal or external linkage, the linkage of the identifier at
920  //   the later declaration is the same as the linkage specified at
921  //   the prior declaration. If no prior declaration is visible, or
922  //   if the prior declaration specifies no linkage, then the
923  //   identifier has external linkage.
924  if (New->hasExternalStorage() && Old->hasLinkage())
925    /* Okay */;
926  else if (New->getStorageClass() != VarDecl::Static &&
927           Old->getStorageClass() == VarDecl::Static) {
928    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
929    Diag(Old->getLocation(), diag::note_previous_definition);
930    return true;
931  }
932
933  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
934
935  // FIXME: The test for external storage here seems wrong? We still
936  // need to check for mismatches.
937  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
938      // Don't complain about out-of-line definitions of static members.
939      !(Old->getLexicalDeclContext()->isRecord() &&
940        !New->getLexicalDeclContext()->isRecord())) {
941    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
942    Diag(Old->getLocation(), diag::note_previous_definition);
943    return true;
944  }
945
946  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
947    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
948    Diag(Old->getLocation(), diag::note_previous_definition);
949  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
950    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
951    Diag(Old->getLocation(), diag::note_previous_definition);
952  }
953
954  // Keep a chain of previous declarations.
955  New->setPreviousDeclaration(Old);
956
957  return false;
958}
959
960/// CheckParmsForFunctionDef - Check that the parameters of the given
961/// function are appropriate for the definition of a function. This
962/// takes care of any checks that cannot be performed on the
963/// declaration itself, e.g., that the types of each of the function
964/// parameters are complete.
965bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
966  bool HasInvalidParm = false;
967  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
968    ParmVarDecl *Param = FD->getParamDecl(p);
969
970    // C99 6.7.5.3p4: the parameters in a parameter type list in a
971    // function declarator that is part of a function definition of
972    // that function shall not have incomplete type.
973    //
974    // This is also C++ [dcl.fct]p6.
975    if (!Param->isInvalidDecl() &&
976        RequireCompleteType(Param->getLocation(), Param->getType(),
977                               diag::err_typecheck_decl_incomplete_type)) {
978      Param->setInvalidDecl();
979      HasInvalidParm = true;
980    }
981
982    // C99 6.9.1p5: If the declarator includes a parameter type list, the
983    // declaration of each parameter shall include an identifier.
984    if (Param->getIdentifier() == 0 &&
985        !Param->isImplicit() &&
986        !getLangOptions().CPlusPlus)
987      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
988  }
989
990  return HasInvalidParm;
991}
992
993/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
994/// no declarator (e.g. "struct foo;") is parsed.
995Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
996  // FIXME: Error on auto/register at file scope
997  // FIXME: Error on inline/virtual/explicit
998  // FIXME: Error on invalid restrict
999  // FIXME: Warn on useless __thread
1000  // FIXME: Warn on useless const/volatile
1001  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1002  // FIXME: Warn on useless attributes
1003
1004  TagDecl *Tag = 0;
1005  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1006      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1007      DS.getTypeSpecType() == DeclSpec::TST_union ||
1008      DS.getTypeSpecType() == DeclSpec::TST_enum)
1009    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
1010
1011  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1012    if (!Record->getDeclName() && Record->isDefinition() &&
1013        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1014      if (getLangOptions().CPlusPlus ||
1015          Record->getDeclContext()->isRecord())
1016        return BuildAnonymousStructOrUnion(S, DS, Record);
1017
1018      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1019        << DS.getSourceRange();
1020    }
1021
1022    // Microsoft allows unnamed struct/union fields. Don't complain
1023    // about them.
1024    // FIXME: Should we support Microsoft's extensions in this area?
1025    if (Record->getDeclName() && getLangOptions().Microsoft)
1026      return DeclPtrTy::make(Tag);
1027  }
1028
1029  if (!DS.isMissingDeclaratorOk() &&
1030      DS.getTypeSpecType() != DeclSpec::TST_error) {
1031    // Warn about typedefs of enums without names, since this is an
1032    // extension in both Microsoft an GNU.
1033    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1034        Tag && isa<EnumDecl>(Tag)) {
1035      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1036        << DS.getSourceRange();
1037      return DeclPtrTy::make(Tag);
1038    }
1039
1040    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1041      << DS.getSourceRange();
1042    return DeclPtrTy();
1043  }
1044
1045  return DeclPtrTy::make(Tag);
1046}
1047
1048/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1049/// anonymous struct or union AnonRecord into the owning context Owner
1050/// and scope S. This routine will be invoked just after we realize
1051/// that an unnamed union or struct is actually an anonymous union or
1052/// struct, e.g.,
1053///
1054/// @code
1055/// union {
1056///   int i;
1057///   float f;
1058/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1059///    // f into the surrounding scope.x
1060/// @endcode
1061///
1062/// This routine is recursive, injecting the names of nested anonymous
1063/// structs/unions into the owning context and scope as well.
1064bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1065                                               RecordDecl *AnonRecord) {
1066  bool Invalid = false;
1067  for (RecordDecl::field_iterator F = AnonRecord->field_begin(Context),
1068                               FEnd = AnonRecord->field_end(Context);
1069       F != FEnd; ++F) {
1070    if ((*F)->getDeclName()) {
1071      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
1072                                                LookupOrdinaryName, true);
1073      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
1074        // C++ [class.union]p2:
1075        //   The names of the members of an anonymous union shall be
1076        //   distinct from the names of any other entity in the
1077        //   scope in which the anonymous union is declared.
1078        unsigned diagKind
1079          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
1080                                 : diag::err_anonymous_struct_member_redecl;
1081        Diag((*F)->getLocation(), diagKind)
1082          << (*F)->getDeclName();
1083        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1084        Invalid = true;
1085      } else {
1086        // C++ [class.union]p2:
1087        //   For the purpose of name lookup, after the anonymous union
1088        //   definition, the members of the anonymous union are
1089        //   considered to have been defined in the scope in which the
1090        //   anonymous union is declared.
1091        Owner->makeDeclVisibleInContext(Context, *F);
1092        S->AddDecl(DeclPtrTy::make(*F));
1093        IdResolver.AddDecl(*F);
1094      }
1095    } else if (const RecordType *InnerRecordType
1096                 = (*F)->getType()->getAsRecordType()) {
1097      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1098      if (InnerRecord->isAnonymousStructOrUnion())
1099        Invalid = Invalid ||
1100          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1101    }
1102  }
1103
1104  return Invalid;
1105}
1106
1107/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1108/// anonymous structure or union. Anonymous unions are a C++ feature
1109/// (C++ [class.union]) and a GNU C extension; anonymous structures
1110/// are a GNU C and GNU C++ extension.
1111Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1112                                                  RecordDecl *Record) {
1113  DeclContext *Owner = Record->getDeclContext();
1114
1115  // Diagnose whether this anonymous struct/union is an extension.
1116  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1117    Diag(Record->getLocation(), diag::ext_anonymous_union);
1118  else if (!Record->isUnion())
1119    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1120
1121  // C and C++ require different kinds of checks for anonymous
1122  // structs/unions.
1123  bool Invalid = false;
1124  if (getLangOptions().CPlusPlus) {
1125    const char* PrevSpec = 0;
1126    // C++ [class.union]p3:
1127    //   Anonymous unions declared in a named namespace or in the
1128    //   global namespace shall be declared static.
1129    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1130        (isa<TranslationUnitDecl>(Owner) ||
1131         (isa<NamespaceDecl>(Owner) &&
1132          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1133      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1134      Invalid = true;
1135
1136      // Recover by adding 'static'.
1137      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
1138    }
1139    // C++ [class.union]p3:
1140    //   A storage class is not allowed in a declaration of an
1141    //   anonymous union in a class scope.
1142    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1143             isa<RecordDecl>(Owner)) {
1144      Diag(DS.getStorageClassSpecLoc(),
1145           diag::err_anonymous_union_with_storage_spec);
1146      Invalid = true;
1147
1148      // Recover by removing the storage specifier.
1149      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1150                             PrevSpec);
1151    }
1152
1153    // C++ [class.union]p2:
1154    //   The member-specification of an anonymous union shall only
1155    //   define non-static data members. [Note: nested types and
1156    //   functions cannot be declared within an anonymous union. ]
1157    for (DeclContext::decl_iterator Mem = Record->decls_begin(Context),
1158                                 MemEnd = Record->decls_end(Context);
1159         Mem != MemEnd; ++Mem) {
1160      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1161        // C++ [class.union]p3:
1162        //   An anonymous union shall not have private or protected
1163        //   members (clause 11).
1164        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1165          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1166            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1167          Invalid = true;
1168        }
1169      } else if ((*Mem)->isImplicit()) {
1170        // Any implicit members are fine.
1171      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1172        // This is a type that showed up in an
1173        // elaborated-type-specifier inside the anonymous struct or
1174        // union, but which actually declares a type outside of the
1175        // anonymous struct or union. It's okay.
1176      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1177        if (!MemRecord->isAnonymousStructOrUnion() &&
1178            MemRecord->getDeclName()) {
1179          // This is a nested type declaration.
1180          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1181            << (int)Record->isUnion();
1182          Invalid = true;
1183        }
1184      } else {
1185        // We have something that isn't a non-static data
1186        // member. Complain about it.
1187        unsigned DK = diag::err_anonymous_record_bad_member;
1188        if (isa<TypeDecl>(*Mem))
1189          DK = diag::err_anonymous_record_with_type;
1190        else if (isa<FunctionDecl>(*Mem))
1191          DK = diag::err_anonymous_record_with_function;
1192        else if (isa<VarDecl>(*Mem))
1193          DK = diag::err_anonymous_record_with_static;
1194        Diag((*Mem)->getLocation(), DK)
1195            << (int)Record->isUnion();
1196          Invalid = true;
1197      }
1198    }
1199  }
1200
1201  if (!Record->isUnion() && !Owner->isRecord()) {
1202    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1203      << (int)getLangOptions().CPlusPlus;
1204    Invalid = true;
1205  }
1206
1207  // Create a declaration for this anonymous struct/union.
1208  NamedDecl *Anon = 0;
1209  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1210    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1211                             /*IdentifierInfo=*/0,
1212                             Context.getTypeDeclType(Record),
1213                             /*BitWidth=*/0, /*Mutable=*/false);
1214    Anon->setAccess(AS_public);
1215    if (getLangOptions().CPlusPlus)
1216      FieldCollector->Add(cast<FieldDecl>(Anon));
1217  } else {
1218    VarDecl::StorageClass SC;
1219    switch (DS.getStorageClassSpec()) {
1220    default: assert(0 && "Unknown storage class!");
1221    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1222    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1223    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1224    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1225    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1226    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1227    case DeclSpec::SCS_mutable:
1228      // mutable can only appear on non-static class members, so it's always
1229      // an error here
1230      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1231      Invalid = true;
1232      SC = VarDecl::None;
1233      break;
1234    }
1235
1236    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1237                           /*IdentifierInfo=*/0,
1238                           Context.getTypeDeclType(Record),
1239                           SC, DS.getSourceRange().getBegin());
1240  }
1241  Anon->setImplicit();
1242
1243  // Add the anonymous struct/union object to the current
1244  // context. We'll be referencing this object when we refer to one of
1245  // its members.
1246  Owner->addDecl(Context, Anon);
1247
1248  // Inject the members of the anonymous struct/union into the owning
1249  // context and into the identifier resolver chain for name lookup
1250  // purposes.
1251  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1252    Invalid = true;
1253
1254  // Mark this as an anonymous struct/union type. Note that we do not
1255  // do this until after we have already checked and injected the
1256  // members of this anonymous struct/union type, because otherwise
1257  // the members could be injected twice: once by DeclContext when it
1258  // builds its lookup table, and once by
1259  // InjectAnonymousStructOrUnionMembers.
1260  Record->setAnonymousStructOrUnion(true);
1261
1262  if (Invalid)
1263    Anon->setInvalidDecl();
1264
1265  return DeclPtrTy::make(Anon);
1266}
1267
1268
1269/// GetNameForDeclarator - Determine the full declaration name for the
1270/// given Declarator.
1271DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1272  switch (D.getKind()) {
1273  case Declarator::DK_Abstract:
1274    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1275    return DeclarationName();
1276
1277  case Declarator::DK_Normal:
1278    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1279    return DeclarationName(D.getIdentifier());
1280
1281  case Declarator::DK_Constructor: {
1282    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1283    Ty = Context.getCanonicalType(Ty);
1284    return Context.DeclarationNames.getCXXConstructorName(Ty);
1285  }
1286
1287  case Declarator::DK_Destructor: {
1288    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1289    Ty = Context.getCanonicalType(Ty);
1290    return Context.DeclarationNames.getCXXDestructorName(Ty);
1291  }
1292
1293  case Declarator::DK_Conversion: {
1294    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1295    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1296    Ty = Context.getCanonicalType(Ty);
1297    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1298  }
1299
1300  case Declarator::DK_Operator:
1301    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1302    return Context.DeclarationNames.getCXXOperatorName(
1303                                                D.getOverloadedOperator());
1304  }
1305
1306  assert(false && "Unknown name kind");
1307  return DeclarationName();
1308}
1309
1310/// isNearlyMatchingFunction - Determine whether the C++ functions
1311/// Declaration and Definition are "nearly" matching. This heuristic
1312/// is used to improve diagnostics in the case where an out-of-line
1313/// function definition doesn't match any declaration within
1314/// the class or namespace.
1315static bool isNearlyMatchingFunction(ASTContext &Context,
1316                                     FunctionDecl *Declaration,
1317                                     FunctionDecl *Definition) {
1318  if (Declaration->param_size() != Definition->param_size())
1319    return false;
1320  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1321    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1322    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1323
1324    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1325    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1326    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1327      return false;
1328  }
1329
1330  return true;
1331}
1332
1333Sema::DeclPtrTy
1334Sema::ActOnDeclarator(Scope *S, Declarator &D, bool IsFunctionDefinition) {
1335  DeclarationName Name = GetNameForDeclarator(D);
1336
1337  // All of these full declarators require an identifier.  If it doesn't have
1338  // one, the ParsedFreeStandingDeclSpec action should be used.
1339  if (!Name) {
1340    if (!D.getInvalidType())  // Reject this if we think it is valid.
1341      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1342           diag::err_declarator_need_ident)
1343        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1344    return DeclPtrTy();
1345  }
1346
1347  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1348  // we find one that is.
1349  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1350         (S->getFlags() & Scope::TemplateParamScope) != 0)
1351    S = S->getParent();
1352
1353  DeclContext *DC;
1354  NamedDecl *PrevDecl;
1355  NamedDecl *New;
1356  bool InvalidDecl = false;
1357
1358  QualType R = GetTypeForDeclarator(D, S);
1359  if (R.isNull()) {
1360    InvalidDecl = true;
1361    R = Context.IntTy;
1362    if (IsFunctionDefinition) // int(...)
1363      R = Context.getFunctionType(R, 0, 0, true, 0);
1364
1365  }
1366
1367  // See if this is a redefinition of a variable in the same scope.
1368  if (D.getCXXScopeSpec().isInvalid()) {
1369    DC = CurContext;
1370    PrevDecl = 0;
1371    InvalidDecl = true;
1372  } else if (!D.getCXXScopeSpec().isSet()) {
1373    LookupNameKind NameKind = LookupOrdinaryName;
1374
1375    // If the declaration we're planning to build will be a function
1376    // or object with linkage, then look for another declaration with
1377    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1378    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1379      /* Do nothing*/;
1380    else if (R->isFunctionType()) {
1381      if (CurContext->isFunctionOrMethod())
1382        NameKind = LookupRedeclarationWithLinkage;
1383    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1384      NameKind = LookupRedeclarationWithLinkage;
1385
1386    DC = CurContext;
1387    PrevDecl = LookupName(S, Name, NameKind, true,
1388                          D.getDeclSpec().getStorageClassSpec() !=
1389                            DeclSpec::SCS_static,
1390                          D.getIdentifierLoc());
1391  } else { // Something like "int foo::x;"
1392    DC = computeDeclContext(D.getCXXScopeSpec());
1393    // FIXME: RequireCompleteDeclContext(D.getCXXScopeSpec()); ?
1394    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1395
1396    // C++ 7.3.1.2p2:
1397    // Members (including explicit specializations of templates) of a named
1398    // namespace can also be defined outside that namespace by explicit
1399    // qualification of the name being defined, provided that the entity being
1400    // defined was already declared in the namespace and the definition appears
1401    // after the point of declaration in a namespace that encloses the
1402    // declarations namespace.
1403    //
1404    // Note that we only check the context at this point. We don't yet
1405    // have enough information to make sure that PrevDecl is actually
1406    // the declaration we want to match. For example, given:
1407    //
1408    //   class X {
1409    //     void f();
1410    //     void f(float);
1411    //   };
1412    //
1413    //   void X::f(int) { } // ill-formed
1414    //
1415    // In this case, PrevDecl will point to the overload set
1416    // containing the two f's declared in X, but neither of them
1417    // matches.
1418
1419    // First check whether we named the global scope.
1420    if (isa<TranslationUnitDecl>(DC)) {
1421      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1422        << Name << D.getCXXScopeSpec().getRange();
1423    } else if (!CurContext->Encloses(DC)) {
1424      // The qualifying scope doesn't enclose the original declaration.
1425      // Emit diagnostic based on current scope.
1426      SourceLocation L = D.getIdentifierLoc();
1427      SourceRange R = D.getCXXScopeSpec().getRange();
1428      if (isa<FunctionDecl>(CurContext))
1429        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1430      else
1431        Diag(L, diag::err_invalid_declarator_scope)
1432          << Name << cast<NamedDecl>(DC) << R;
1433      InvalidDecl = true;
1434    }
1435  }
1436
1437  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1438    // Maybe we will complain about the shadowed template parameter.
1439    InvalidDecl = InvalidDecl
1440      || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
1441    // Just pretend that we didn't see the previous declaration.
1442    PrevDecl = 0;
1443  }
1444
1445  // In C++, the previous declaration we find might be a tag type
1446  // (class or enum). In this case, the new declaration will hide the
1447  // tag type. Note that this does does not apply if we're declaring a
1448  // typedef (C++ [dcl.typedef]p4).
1449  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1450      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1451    PrevDecl = 0;
1452
1453  bool Redeclaration = false;
1454  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1455    New = ActOnTypedefDeclarator(S, D, DC, R, PrevDecl,
1456                                 InvalidDecl, Redeclaration);
1457  } else if (R->isFunctionType()) {
1458    New = ActOnFunctionDeclarator(S, D, DC, R, PrevDecl,
1459                                  IsFunctionDefinition, InvalidDecl,
1460                                  Redeclaration);
1461  } else {
1462    New = ActOnVariableDeclarator(S, D, DC, R, PrevDecl,
1463                                  InvalidDecl, Redeclaration);
1464  }
1465
1466  if (New == 0)
1467    return DeclPtrTy();
1468
1469  // If this has an identifier and is not an invalid redeclaration,
1470  // add it to the scope stack.
1471  if (Name && !(Redeclaration && InvalidDecl))
1472    PushOnScopeChains(New, S);
1473  // If any semantic error occurred, mark the decl as invalid.
1474  if (D.getInvalidType() || InvalidDecl)
1475    New->setInvalidDecl();
1476
1477  return DeclPtrTy::make(New);
1478}
1479
1480/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1481/// types into constant array types in certain situations which would otherwise
1482/// be errors (for GCC compatibility).
1483static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1484                                                    ASTContext &Context,
1485                                                    bool &SizeIsNegative) {
1486  // This method tries to turn a variable array into a constant
1487  // array even when the size isn't an ICE.  This is necessary
1488  // for compatibility with code that depends on gcc's buggy
1489  // constant expression folding, like struct {char x[(int)(char*)2];}
1490  SizeIsNegative = false;
1491
1492  if (const PointerType* PTy = dyn_cast<PointerType>(T)) {
1493    QualType Pointee = PTy->getPointeeType();
1494    QualType FixedType =
1495        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1496    if (FixedType.isNull()) return FixedType;
1497    FixedType = Context.getPointerType(FixedType);
1498    FixedType.setCVRQualifiers(T.getCVRQualifiers());
1499    return FixedType;
1500  }
1501
1502  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1503  if (!VLATy)
1504    return QualType();
1505  // FIXME: We should probably handle this case
1506  if (VLATy->getElementType()->isVariablyModifiedType())
1507    return QualType();
1508
1509  Expr::EvalResult EvalResult;
1510  if (!VLATy->getSizeExpr() ||
1511      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1512      !EvalResult.Val.isInt())
1513    return QualType();
1514
1515  llvm::APSInt &Res = EvalResult.Val.getInt();
1516  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
1517    return Context.getConstantArrayType(VLATy->getElementType(),
1518                                        Res, ArrayType::Normal, 0);
1519
1520  SizeIsNegative = true;
1521  return QualType();
1522}
1523
1524/// \brief Register the given locally-scoped external C declaration so
1525/// that it can be found later for redeclarations
1526void
1527Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1528                                       Scope *S) {
1529  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1530         "Decl is not a locally-scoped decl!");
1531  // Note that we have a locally-scoped external with this name.
1532  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1533
1534  if (!PrevDecl)
1535    return;
1536
1537  // If there was a previous declaration of this variable, it may be
1538  // in our identifier chain. Update the identifier chain with the new
1539  // declaration.
1540  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
1541    // The previous declaration was found on the identifer resolver
1542    // chain, so remove it from its scope.
1543    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
1544      S = S->getParent();
1545
1546    if (S)
1547      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
1548  }
1549}
1550
1551/// \brief Diagnose function specifiers on a declaration of an identifier that
1552/// does not identify a function.
1553void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
1554  // FIXME: We should probably indicate the identifier in question to avoid
1555  // confusion for constructs like "inline int a(), b;"
1556  if (D.getDeclSpec().isInlineSpecified())
1557    Diag(D.getDeclSpec().getInlineSpecLoc(),
1558         diag::err_inline_non_function);
1559
1560  if (D.getDeclSpec().isVirtualSpecified())
1561    Diag(D.getDeclSpec().getVirtualSpecLoc(),
1562         diag::err_virtual_non_function);
1563
1564  if (D.getDeclSpec().isExplicitSpecified())
1565    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1566         diag::err_explicit_non_function);
1567}
1568
1569NamedDecl*
1570Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1571                             QualType R, Decl* PrevDecl, bool& InvalidDecl,
1572                             bool &Redeclaration) {
1573  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1574  if (D.getCXXScopeSpec().isSet()) {
1575    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1576      << D.getCXXScopeSpec().getRange();
1577    InvalidDecl = true;
1578    // Pretend we didn't see the scope specifier.
1579    DC = 0;
1580  }
1581
1582  if (getLangOptions().CPlusPlus) {
1583    // Check that there are no default arguments (C++ only).
1584    CheckExtraCXXDefaultArguments(D);
1585  }
1586
1587  DiagnoseFunctionSpecifiers(D);
1588
1589  if (D.getDeclSpec().isThreadSpecified())
1590    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
1591
1592  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R);
1593  if (!NewTD) return 0;
1594
1595  // Handle attributes prior to checking for duplicates in MergeVarDecl
1596  ProcessDeclAttributes(NewTD, D);
1597  // Merge the decl with the existing one if appropriate. If the decl is
1598  // in an outer scope, it isn't the same thing.
1599  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1600    Redeclaration = true;
1601    if (MergeTypeDefDecl(NewTD, PrevDecl))
1602      InvalidDecl = true;
1603  }
1604
1605  // C99 6.7.7p2: If a typedef name specifies a variably modified type
1606  // then it shall have block scope.
1607  QualType T = NewTD->getUnderlyingType();
1608  if (T->isVariablyModifiedType()) {
1609    CurFunctionNeedsScopeChecking = true;
1610
1611    if (S->getFnParent() == 0) {
1612      bool SizeIsNegative;
1613      QualType FixedTy =
1614          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1615      if (!FixedTy.isNull()) {
1616        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
1617        NewTD->setUnderlyingType(FixedTy);
1618      } else {
1619        if (SizeIsNegative)
1620          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
1621        else if (T->isVariableArrayType())
1622          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1623        else
1624          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1625        InvalidDecl = true;
1626      }
1627    }
1628  }
1629  return NewTD;
1630}
1631
1632/// \brief Determines whether the given declaration is an out-of-scope
1633/// previous declaration.
1634///
1635/// This routine should be invoked when name lookup has found a
1636/// previous declaration (PrevDecl) that is not in the scope where a
1637/// new declaration by the same name is being introduced. If the new
1638/// declaration occurs in a local scope, previous declarations with
1639/// linkage may still be considered previous declarations (C99
1640/// 6.2.2p4-5, C++ [basic.link]p6).
1641///
1642/// \param PrevDecl the previous declaration found by name
1643/// lookup
1644///
1645/// \param DC the context in which the new declaration is being
1646/// declared.
1647///
1648/// \returns true if PrevDecl is an out-of-scope previous declaration
1649/// for a new delcaration with the same name.
1650static bool
1651isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
1652                                ASTContext &Context) {
1653  if (!PrevDecl)
1654    return 0;
1655
1656  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
1657  // case we need to check each of the overloaded functions.
1658  if (!PrevDecl->hasLinkage())
1659    return false;
1660
1661  if (Context.getLangOptions().CPlusPlus) {
1662    // C++ [basic.link]p6:
1663    //   If there is a visible declaration of an entity with linkage
1664    //   having the same name and type, ignoring entities declared
1665    //   outside the innermost enclosing namespace scope, the block
1666    //   scope declaration declares that same entity and receives the
1667    //   linkage of the previous declaration.
1668    DeclContext *OuterContext = DC->getLookupContext();
1669    if (!OuterContext->isFunctionOrMethod())
1670      // This rule only applies to block-scope declarations.
1671      return false;
1672    else {
1673      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
1674      if (PrevOuterContext->isRecord())
1675        // We found a member function: ignore it.
1676        return false;
1677      else {
1678        // Find the innermost enclosing namespace for the new and
1679        // previous declarations.
1680        while (!OuterContext->isFileContext())
1681          OuterContext = OuterContext->getParent();
1682        while (!PrevOuterContext->isFileContext())
1683          PrevOuterContext = PrevOuterContext->getParent();
1684
1685        // The previous declaration is in a different namespace, so it
1686        // isn't the same function.
1687        if (OuterContext->getPrimaryContext() !=
1688            PrevOuterContext->getPrimaryContext())
1689          return false;
1690      }
1691    }
1692  }
1693
1694  return true;
1695}
1696
1697NamedDecl*
1698Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1699                              QualType R,NamedDecl* PrevDecl, bool& InvalidDecl,
1700                              bool &Redeclaration) {
1701  DeclarationName Name = GetNameForDeclarator(D);
1702
1703  // Check that there are no default arguments (C++ only).
1704  if (getLangOptions().CPlusPlus)
1705    CheckExtraCXXDefaultArguments(D);
1706
1707  VarDecl *NewVD;
1708  VarDecl::StorageClass SC;
1709  switch (D.getDeclSpec().getStorageClassSpec()) {
1710  default: assert(0 && "Unknown storage class!");
1711  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1712  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1713  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1714  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1715  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1716  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1717  case DeclSpec::SCS_mutable:
1718    // mutable can only appear on non-static class members, so it's always
1719    // an error here
1720    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1721    InvalidDecl = true;
1722    SC = VarDecl::None;
1723    break;
1724  }
1725
1726  IdentifierInfo *II = Name.getAsIdentifierInfo();
1727  if (!II) {
1728    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1729      << Name.getAsString();
1730    return 0;
1731  }
1732
1733  DiagnoseFunctionSpecifiers(D);
1734
1735  if (!DC->isRecord() && S->getFnParent() == 0) {
1736    // C99 6.9p2: The storage-class specifiers auto and register shall not
1737    // appear in the declaration specifiers in an external declaration.
1738    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1739      Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1740      InvalidDecl = true;
1741    }
1742  }
1743  if (DC->isRecord() && !CurContext->isRecord()) {
1744    // This is an out-of-line definition of a static data member.
1745    if (SC == VarDecl::Static) {
1746      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1747           diag::err_static_out_of_line)
1748        << CodeModificationHint::CreateRemoval(
1749                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
1750    } else if (SC == VarDecl::None)
1751      SC = VarDecl::Static;
1752  }
1753
1754  // The variable can not
1755  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1756                          II, R, SC,
1757                          // FIXME: Move to DeclGroup...
1758                          D.getDeclSpec().getSourceRange().getBegin());
1759
1760  if (D.getDeclSpec().isThreadSpecified()) {
1761    if (NewVD->hasLocalStorage())
1762      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
1763    else if (!Context.Target.isTLSSupported())
1764      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
1765    else
1766      NewVD->setThreadSpecified(true);
1767  }
1768
1769  // Set the lexical context. If the declarator has a C++ scope specifier, the
1770  // lexical context will be different from the semantic context.
1771  NewVD->setLexicalDeclContext(CurContext);
1772
1773  // Handle attributes prior to checking for duplicates in MergeVarDecl
1774  ProcessDeclAttributes(NewVD, D);
1775
1776  // Handle GNU asm-label extension (encoded as an attribute).
1777  if (Expr *E = (Expr*) D.getAsmLabel()) {
1778    // The parser guarantees this is a string.
1779    StringLiteral *SE = cast<StringLiteral>(E);
1780    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
1781                                                        SE->getByteLength())));
1782  }
1783
1784  // If name lookup finds a previous declaration that is not in the
1785  // same scope as the new declaration, this may still be an
1786  // acceptable redeclaration.
1787  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
1788      !(NewVD->hasLinkage() &&
1789        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
1790    PrevDecl = 0;
1791
1792  // Merge the decl with the existing one if appropriate.
1793  if (PrevDecl) {
1794    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
1795      // The user tried to define a non-static data member
1796      // out-of-line (C++ [dcl.meaning]p1).
1797      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
1798        << D.getCXXScopeSpec().getRange();
1799      PrevDecl = 0;
1800      InvalidDecl = true;
1801    }
1802  } else if (D.getCXXScopeSpec().isSet()) {
1803    // No previous declaration in the qualifying scope.
1804    Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
1805      << Name << D.getCXXScopeSpec().getRange();
1806    InvalidDecl = true;
1807  }
1808
1809  if (CheckVariableDeclaration(NewVD, PrevDecl, Redeclaration))
1810    InvalidDecl = true;
1811
1812  // If this is a locally-scoped extern C variable, update the map of
1813  // such variables.
1814  if (CurContext->isFunctionOrMethod() && NewVD->isExternC(Context) &&
1815      !InvalidDecl)
1816    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
1817
1818  return NewVD;
1819}
1820
1821/// \brief Perform semantic checking on a newly-created variable
1822/// declaration.
1823///
1824/// This routine performs all of the type-checking required for a
1825/// variable declaration once it has been build. It is used both to
1826/// check variables after they have been parsed and their declarators
1827/// have been translated into a declaration, and to check
1828///
1829/// \returns true if an error was encountered, false otherwise.
1830bool Sema::CheckVariableDeclaration(VarDecl *NewVD, NamedDecl *PrevDecl,
1831                                    bool &Redeclaration) {
1832  bool Invalid = false;
1833
1834  QualType T = NewVD->getType();
1835
1836  if (T->isObjCInterfaceType()) {
1837    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
1838    Invalid = true;
1839  }
1840
1841  // The variable can not have an abstract class type.
1842  if (RequireNonAbstractType(NewVD->getLocation(), T,
1843                             diag::err_abstract_type_in_decl,
1844                             AbstractVariableType))
1845    Invalid = true;
1846
1847  // Emit an error if an address space was applied to decl with local storage.
1848  // This includes arrays of objects with address space qualifiers, but not
1849  // automatic variables that point to other address spaces.
1850  // ISO/IEC TR 18037 S5.1.2
1851  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
1852    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
1853    Invalid = true;
1854  }
1855
1856  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
1857      && !NewVD->hasAttr<BlocksAttr>())
1858    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
1859
1860  bool isVM = T->isVariablyModifiedType();
1861  if (isVM || NewVD->hasAttr<CleanupAttr>())
1862    CurFunctionNeedsScopeChecking = true;
1863
1864  if ((isVM && NewVD->hasLinkage()) ||
1865      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
1866    bool SizeIsNegative;
1867    QualType FixedTy =
1868        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1869    if (!FixedTy.isNull()) {
1870      Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
1871      NewVD->setType(FixedTy);
1872    } else if (T->isVariableArrayType()) {
1873      Invalid = true;
1874
1875      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
1876      // FIXME: This won't give the correct result for
1877      // int a[10][n];
1878      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
1879
1880      if (NewVD->isFileVarDecl())
1881        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
1882          << SizeRange;
1883      else if (NewVD->getStorageClass() == VarDecl::Static)
1884        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
1885          << SizeRange;
1886      else
1887        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
1888            << SizeRange;
1889    } else {
1890      Invalid = true;
1891
1892      if (NewVD->isFileVarDecl())
1893        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
1894      else
1895        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
1896    }
1897  }
1898
1899  if (!PrevDecl && NewVD->isExternC(Context)) {
1900    // Since we did not find anything by this name and we're declaring
1901    // an extern "C" variable, look for a non-visible extern "C"
1902    // declaration with the same name.
1903    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
1904      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
1905    if (Pos != LocallyScopedExternalDecls.end())
1906      PrevDecl = Pos->second;
1907  }
1908
1909  if (!Invalid && T->isVoidType() && !NewVD->hasExternalStorage()) {
1910    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
1911      << T;
1912    Invalid = true;
1913  }
1914
1915  if (PrevDecl) {
1916    Redeclaration = true;
1917    if (MergeVarDecl(NewVD, PrevDecl))
1918      Invalid = true;
1919  }
1920
1921  return NewVD->isInvalidDecl() || Invalid;
1922}
1923
1924NamedDecl*
1925Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1926                              QualType R, NamedDecl* PrevDecl,
1927                              bool IsFunctionDefinition,
1928                              bool &InvalidDecl, bool &Redeclaration) {
1929  assert(R.getTypePtr()->isFunctionType());
1930
1931  DeclarationName Name = GetNameForDeclarator(D);
1932  FunctionDecl::StorageClass SC = FunctionDecl::None;
1933  switch (D.getDeclSpec().getStorageClassSpec()) {
1934  default: assert(0 && "Unknown storage class!");
1935  case DeclSpec::SCS_auto:
1936  case DeclSpec::SCS_register:
1937  case DeclSpec::SCS_mutable:
1938    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1939         diag::err_typecheck_sclass_func);
1940    InvalidDecl = true;
1941    break;
1942  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
1943  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
1944  case DeclSpec::SCS_static: {
1945    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
1946      // C99 6.7.1p5:
1947      //   The declaration of an identifier for a function that has
1948      //   block scope shall have no explicit storage-class specifier
1949      //   other than extern
1950      // See also (C++ [dcl.stc]p4).
1951      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1952           diag::err_static_block_func);
1953      SC = FunctionDecl::None;
1954    } else
1955      SC = FunctionDecl::Static;
1956    break;
1957  }
1958  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
1959  }
1960
1961  if (D.getDeclSpec().isThreadSpecified())
1962    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
1963
1964  bool isInline = D.getDeclSpec().isInlineSpecified();
1965  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1966  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
1967
1968  // Check that the return type is not an abstract class type.
1969  // For record types, this is done by the AbstractClassUsageDiagnoser once
1970  // the class has been completely parsed.
1971  if (!DC->isRecord() &&
1972      RequireNonAbstractType(D.getIdentifierLoc(),
1973                             R->getAsFunctionType()->getResultType(),
1974                             diag::err_abstract_type_in_decl,
1975                             AbstractReturnType))
1976    InvalidDecl = true;
1977
1978  // Do not allow returning a objc interface by-value.
1979  if (R->getAsFunctionType()->getResultType()->isObjCInterfaceType()) {
1980    Diag(D.getIdentifierLoc(),
1981         diag::err_object_cannot_be_passed_returned_by_value) << 0
1982      << R->getAsFunctionType()->getResultType();
1983    InvalidDecl = true;
1984  }
1985
1986  bool isVirtualOkay = false;
1987  FunctionDecl *NewFD;
1988  if (D.getKind() == Declarator::DK_Constructor) {
1989    // This is a C++ constructor declaration.
1990    assert(DC->isRecord() &&
1991           "Constructors can only be declared in a member context");
1992
1993    InvalidDecl = InvalidDecl || CheckConstructorDeclarator(D, R, SC);
1994
1995    // Create the new declaration
1996    NewFD = CXXConstructorDecl::Create(Context,
1997                                       cast<CXXRecordDecl>(DC),
1998                                       D.getIdentifierLoc(), Name, R,
1999                                       isExplicit, isInline,
2000                                       /*isImplicitlyDeclared=*/false);
2001  } else if (D.getKind() == Declarator::DK_Destructor) {
2002    // This is a C++ destructor declaration.
2003    if (DC->isRecord()) {
2004      InvalidDecl = InvalidDecl || CheckDestructorDeclarator(D, R, SC);
2005
2006      NewFD = CXXDestructorDecl::Create(Context,
2007                                        cast<CXXRecordDecl>(DC),
2008                                        D.getIdentifierLoc(), Name, R,
2009                                        isInline,
2010                                        /*isImplicitlyDeclared=*/false);
2011
2012      isVirtualOkay = true;
2013    } else {
2014      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2015
2016      // Create a FunctionDecl to satisfy the function definition parsing
2017      // code path.
2018      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2019                                   Name, R, SC, isInline,
2020                                   /*hasPrototype=*/true,
2021                                   // FIXME: Move to DeclGroup...
2022                                   D.getDeclSpec().getSourceRange().getBegin());
2023      InvalidDecl = true;
2024    }
2025  } else if (D.getKind() == Declarator::DK_Conversion) {
2026    if (!DC->isRecord()) {
2027      Diag(D.getIdentifierLoc(),
2028           diag::err_conv_function_not_member);
2029      return 0;
2030    } else {
2031      InvalidDecl = InvalidDecl || CheckConversionDeclarator(D, R, SC);
2032
2033      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2034                                        D.getIdentifierLoc(), Name, R,
2035                                        isInline, isExplicit);
2036
2037      isVirtualOkay = true;
2038    }
2039  } else if (DC->isRecord()) {
2040    // This is a C++ method declaration.
2041    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2042                                  D.getIdentifierLoc(), Name, R,
2043                                  (SC == FunctionDecl::Static), isInline);
2044
2045    isVirtualOkay = (SC != FunctionDecl::Static);
2046  } else {
2047    // Determine whether the function was written with a
2048    // prototype. This true when:
2049    //   - we're in C++ (where every function has a prototype),
2050    //   - there is a prototype in the declarator, or
2051    //   - the type R of the function is some kind of typedef or other reference
2052    //     to a type name (which eventually refers to a function type).
2053    bool HasPrototype =
2054       getLangOptions().CPlusPlus ||
2055       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2056       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2057
2058    NewFD = FunctionDecl::Create(Context, DC,
2059                                 D.getIdentifierLoc(),
2060                                 Name, R, SC, isInline, HasPrototype,
2061                                 // FIXME: Move to DeclGroup...
2062                                 D.getDeclSpec().getSourceRange().getBegin());
2063  }
2064
2065  if (InvalidDecl)
2066    NewFD->setInvalidDecl();
2067
2068  // Set the lexical context. If the declarator has a C++
2069  // scope specifier, the lexical context will be different
2070  // from the semantic context.
2071  NewFD->setLexicalDeclContext(CurContext);
2072
2073  // C++ [dcl.fct.spec]p5:
2074  //   The virtual specifier shall only be used in declarations of
2075  //   nonstatic class member functions that appear within a
2076  //   member-specification of a class declaration; see 10.3.
2077  //
2078  // FIXME: Checking the 'virtual' specifier is not sufficient. A
2079  // function is also virtual if it overrides an already virtual
2080  // function. This is important to do here because it's part of the
2081  // declaration.
2082  if (isVirtual && !InvalidDecl) {
2083    if (!isVirtualOkay) {
2084       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2085           diag::err_virtual_non_function);
2086    } else if (!CurContext->isRecord()) {
2087      // 'virtual' was specified outside of the class.
2088      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2089        << CodeModificationHint::CreateRemoval(
2090                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
2091    } else {
2092      // Okay: Add virtual to the method.
2093      cast<CXXMethodDecl>(NewFD)->setVirtual();
2094      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2095      CurClass->setAggregate(false);
2096      CurClass->setPOD(false);
2097      CurClass->setPolymorphic(true);
2098      CurClass->setHasTrivialConstructor(false);
2099    }
2100  }
2101
2102  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2103      !CurContext->isRecord()) {
2104    // C++ [class.static]p1:
2105    //   A data or function member of a class may be declared static
2106    //   in a class definition, in which case it is a static member of
2107    //   the class.
2108
2109    // Complain about the 'static' specifier if it's on an out-of-line
2110    // member function definition.
2111    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2112         diag::err_static_out_of_line)
2113      << CodeModificationHint::CreateRemoval(
2114                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2115  }
2116
2117  // Handle GNU asm-label extension (encoded as an attribute).
2118  if (Expr *E = (Expr*) D.getAsmLabel()) {
2119    // The parser guarantees this is a string.
2120    StringLiteral *SE = cast<StringLiteral>(E);
2121    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2122                                                        SE->getByteLength())));
2123  }
2124
2125  // Copy the parameter declarations from the declarator D to the function
2126  // declaration NewFD, if they are available.  First scavenge them into Params.
2127  llvm::SmallVector<ParmVarDecl*, 16> Params;
2128  if (D.getNumTypeObjects() > 0) {
2129    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2130
2131    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2132    // function that takes no arguments, not a function that takes a
2133    // single void argument.
2134    // We let through "const void" here because Sema::GetTypeForDeclarator
2135    // already checks for that case.
2136    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2137        FTI.ArgInfo[0].Param &&
2138        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2139      // Empty arg list, don't push any params.
2140      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2141
2142      // In C++, the empty parameter-type-list must be spelled "void"; a
2143      // typedef of void is not permitted.
2144      if (getLangOptions().CPlusPlus &&
2145          Param->getType().getUnqualifiedType() != Context.VoidTy)
2146        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2147      // FIXME: Leaks decl?
2148    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2149      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
2150        Params.push_back(FTI.ArgInfo[i].Param.getAs<ParmVarDecl>());
2151    }
2152
2153  } else if (const FunctionProtoType *FT = R->getAsFunctionProtoType()) {
2154    // When we're declaring a function with a typedef, typeof, etc as in the
2155    // following example, we'll need to synthesize (unnamed)
2156    // parameters for use in the declaration.
2157    //
2158    // @code
2159    // typedef void fn(int);
2160    // fn f;
2161    // @endcode
2162
2163    // Synthesize a parameter for each argument type.
2164    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2165         AE = FT->arg_type_end(); AI != AE; ++AI) {
2166      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2167                                               SourceLocation(), 0,
2168                                               *AI, VarDecl::None, 0);
2169      Param->setImplicit();
2170      Params.push_back(Param);
2171    }
2172  }
2173
2174  // If NewFD is invalid, then the Params list may not have the right number of
2175  // decls for this FunctionDecl.  Because we want the AST to be as correct as
2176  // possible, "fix" these problems by removing or adding params as needed.
2177  if (NewFD->isInvalidDecl()) {
2178    unsigned NumNeededParams = NewFD->getNumParams();
2179    while (NumNeededParams > Params.size()) {
2180      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2181                                               SourceLocation(), 0,
2182                                               Context.IntTy, VarDecl::None, 0);
2183      Param->setImplicit();
2184      Param->setInvalidDecl();
2185      Params.push_back(Param);
2186    }
2187
2188    while (NumNeededParams < Params.size()) {
2189      Params.pop_back();
2190      // FIXME: Don't leak the decl.
2191    }
2192  }
2193
2194  // Finally, we know we have the right number of parameters, install them.
2195  NewFD->setParams(Context, &Params[0], Params.size());
2196
2197
2198  // If name lookup finds a previous declaration that is not in the
2199  // same scope as the new declaration, this may still be an
2200  // acceptable redeclaration.
2201  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2202      !(NewFD->hasLinkage() &&
2203        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2204    PrevDecl = 0;
2205
2206  // FIXME: We need to determine whether the GNU inline attribute will
2207  // be applied to this function declaration, since it affects
2208  // declaration merging. This hack will go away when the FIXME below
2209  // is resolved, since we should be putting *all* attributes onto the
2210  // declaration now.
2211  for (const AttributeList *Attr = D.getDeclSpec().getAttributes();
2212       Attr; Attr = Attr->getNext()) {
2213    if (Attr->getKind() == AttributeList::AT_gnu_inline) {
2214      NewFD->addAttr(::new (Context) GNUInlineAttr());
2215      break;
2216    }
2217  }
2218
2219  // Perform semantic checking on the function declaration.
2220  bool OverloadableAttrRequired = false; // FIXME: HACK!
2221  if (CheckFunctionDeclaration(NewFD, PrevDecl, Redeclaration,
2222                               /*FIXME:*/OverloadableAttrRequired))
2223    InvalidDecl = true;
2224
2225  if (D.getCXXScopeSpec().isSet() && !InvalidDecl) {
2226    // An out-of-line member function declaration must also be a
2227    // definition (C++ [dcl.meaning]p1).
2228    if (!IsFunctionDefinition) {
2229      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2230        << D.getCXXScopeSpec().getRange();
2231      InvalidDecl = true;
2232    } else if (!Redeclaration) {
2233      // The user tried to provide an out-of-line definition for a
2234      // function that is a member of a class or namespace, but there
2235      // was no such member function declared (C++ [class.mfct]p2,
2236      // C++ [namespace.memdef]p2). For example:
2237      //
2238      // class X {
2239      //   void f() const;
2240      // };
2241      //
2242      // void X::f() { } // ill-formed
2243      //
2244      // Complain about this problem, and attempt to suggest close
2245      // matches (e.g., those that differ only in cv-qualifiers and
2246      // whether the parameter types are references).
2247      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2248        << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
2249      InvalidDecl = true;
2250
2251      LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
2252                                              true);
2253      assert(!Prev.isAmbiguous() &&
2254             "Cannot have an ambiguity in previous-declaration lookup");
2255      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2256           Func != FuncEnd; ++Func) {
2257        if (isa<FunctionDecl>(*Func) &&
2258            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2259          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2260      }
2261
2262      PrevDecl = 0;
2263    }
2264  }
2265
2266  // Handle attributes. We need to have merged decls when handling attributes
2267  // (for example to check for conflicts, etc).
2268  // FIXME: This needs to happen before we merge declarations. Then,
2269  // let attribute merging cope with attribute conflicts.
2270  ProcessDeclAttributes(NewFD, D);
2271  AddKnownFunctionAttributes(NewFD);
2272
2273  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2274    // If a function name is overloadable in C, then every function
2275    // with that name must be marked "overloadable".
2276    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2277      << Redeclaration << NewFD;
2278    if (PrevDecl)
2279      Diag(PrevDecl->getLocation(),
2280           diag::note_attribute_overloadable_prev_overload);
2281    NewFD->addAttr(::new (Context) OverloadableAttr());
2282  }
2283
2284  // If this is a locally-scoped extern C function, update the
2285  // map of such names.
2286  if (CurContext->isFunctionOrMethod() && NewFD->isExternC(Context)
2287      && !InvalidDecl)
2288    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2289
2290  return NewFD;
2291}
2292
2293/// \brief Perform semantic checking of a new function declaration.
2294///
2295/// Performs semantic analysis of the new function declaration
2296/// NewFD. This routine performs all semantic checking that does not
2297/// require the actual declarator involved in the declaration, and is
2298/// used both for the declaration of functions as they are parsed
2299/// (called via ActOnDeclarator) and for the declaration of functions
2300/// that have been instantiated via C++ template instantiation (called
2301/// via InstantiateDecl).
2302///
2303/// \returns true if there was an error, false otherwise.
2304bool Sema::CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl,
2305                                    bool &Redeclaration,
2306                                    bool &OverloadableAttrRequired) {
2307  bool InvalidDecl = false;
2308
2309  // Semantic checking for this function declaration (in isolation).
2310  if (getLangOptions().CPlusPlus) {
2311    // C++-specific checks.
2312    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD))
2313      InvalidDecl = InvalidDecl || CheckConstructor(Constructor);
2314    else if (isa<CXXDestructorDecl>(NewFD)) {
2315      CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
2316      Record->setUserDeclaredDestructor(true);
2317      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
2318      // user-defined destructor.
2319      Record->setPOD(false);
2320
2321      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
2322      // declared destructor.
2323      Record->setHasTrivialDestructor(false);
2324    } else if (CXXConversionDecl *Conversion
2325               = dyn_cast<CXXConversionDecl>(NewFD))
2326      ActOnConversionDeclarator(Conversion);
2327
2328    // Extra checking for C++ overloaded operators (C++ [over.oper]).
2329    if (NewFD->isOverloadedOperator() &&
2330        CheckOverloadedOperatorDeclaration(NewFD))
2331      InvalidDecl = true;
2332  }
2333
2334  // C99 6.7.4p6:
2335  //   [... ] For a function with external linkage, the following
2336  //   restrictions apply: [...] If all of the file scope declarations
2337  //   for a function in a translation unit include the inline
2338  //   function specifier without extern, then the definition in that
2339  //   translation unit is an inline definition. An inline definition
2340  //   does not provide an external definition for the function, and
2341  //   does not forbid an external definition in another translation
2342  //   unit.
2343  //
2344  // Here we determine whether this function, in isolation, would be a
2345  // C99 inline definition. MergeCompatibleFunctionDecls looks at
2346  // previous declarations.
2347  if (NewFD->isInline() &&
2348      NewFD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
2349    bool GNUInline = NewFD->hasAttr<GNUInlineAttr>() ||
2350      (PrevDecl && PrevDecl->hasAttr<GNUInlineAttr>());
2351    if (GNUInline || (!getLangOptions().CPlusPlus && !getLangOptions().C99)) {
2352      // GNU "extern inline" is the same as "inline" in C99.
2353      if (NewFD->getStorageClass() == FunctionDecl::Extern)
2354        NewFD->setC99InlineDefinition(true);
2355    } else if (getLangOptions().C99 &&
2356               NewFD->getStorageClass() == FunctionDecl::None)
2357      NewFD->setC99InlineDefinition(true);
2358  }
2359
2360  // Check for a previous declaration of this name.
2361  if (!PrevDecl && NewFD->isExternC(Context)) {
2362    // Since we did not find anything by this name and we're declaring
2363    // an extern "C" function, look for a non-visible extern "C"
2364    // declaration with the same name.
2365    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2366      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
2367    if (Pos != LocallyScopedExternalDecls.end())
2368      PrevDecl = Pos->second;
2369  }
2370
2371  // Merge or overload the declaration with an existing declaration of
2372  // the same name, if appropriate.
2373  if (PrevDecl) {
2374    // Determine whether NewFD is an overload of PrevDecl or
2375    // a declaration that requires merging. If it's an overload,
2376    // there's no more work to do here; we'll just add the new
2377    // function to the scope.
2378    OverloadedFunctionDecl::function_iterator MatchedDecl;
2379
2380    if (!getLangOptions().CPlusPlus &&
2381        AllowOverloadingOfFunction(PrevDecl, Context)) {
2382      OverloadableAttrRequired = true;
2383
2384      // Functions marked "overloadable" must have a prototype (that
2385      // we can't get through declaration merging).
2386      if (!NewFD->getType()->getAsFunctionProtoType()) {
2387        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
2388          << NewFD;
2389        InvalidDecl = true;
2390        Redeclaration = true;
2391
2392        // Turn this into a variadic function with no parameters.
2393        QualType R = Context.getFunctionType(
2394                       NewFD->getType()->getAsFunctionType()->getResultType(),
2395                       0, 0, true, 0);
2396        NewFD->setType(R);
2397      }
2398    }
2399
2400    if (PrevDecl &&
2401        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
2402         !IsOverload(NewFD, PrevDecl, MatchedDecl))) {
2403      Redeclaration = true;
2404      Decl *OldDecl = PrevDecl;
2405
2406      // If PrevDecl was an overloaded function, extract the
2407      // FunctionDecl that matched.
2408      if (isa<OverloadedFunctionDecl>(PrevDecl))
2409        OldDecl = *MatchedDecl;
2410
2411      // NewFD and OldDecl represent declarations that need to be
2412      // merged.
2413      if (MergeFunctionDecl(NewFD, OldDecl))
2414        InvalidDecl = true;
2415
2416      if (!InvalidDecl)
2417        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
2418    }
2419  }
2420
2421  if (getLangOptions().CPlusPlus && !CurContext->isRecord()) {
2422    // In C++, check default arguments now that we have merged decls. Unless
2423    // the lexical context is the class, because in this case this is done
2424    // during delayed parsing anyway.
2425    CheckCXXDefaultArguments(NewFD);
2426  }
2427
2428  return InvalidDecl || NewFD->isInvalidDecl();
2429}
2430
2431bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2432  // FIXME: Need strict checking.  In C89, we need to check for
2433  // any assignment, increment, decrement, function-calls, or
2434  // commas outside of a sizeof.  In C99, it's the same list,
2435  // except that the aforementioned are allowed in unevaluated
2436  // expressions.  Everything else falls under the
2437  // "may accept other forms of constant expressions" exception.
2438  // (We never end up here for C++, so the constant expression
2439  // rules there don't matter.)
2440  if (Init->isConstantInitializer(Context))
2441    return false;
2442  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
2443    << Init->getSourceRange();
2444  return true;
2445}
2446
2447void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
2448  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
2449}
2450
2451/// AddInitializerToDecl - Adds the initializer Init to the
2452/// declaration dcl. If DirectInit is true, this is C++ direct
2453/// initialization rather than copy initialization.
2454void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
2455  Decl *RealDecl = dcl.getAs<Decl>();
2456  // If there is no declaration, there was an error parsing it.  Just ignore
2457  // the initializer.
2458  if (RealDecl == 0)
2459    return;
2460
2461  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
2462    // With declarators parsed the way they are, the parser cannot
2463    // distinguish between a normal initializer and a pure-specifier.
2464    // Thus this grotesque test.
2465    IntegerLiteral *IL;
2466    Expr *Init = static_cast<Expr *>(init.get());
2467    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
2468        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
2469      if (Method->isVirtual()) {
2470        Method->setPure();
2471
2472        // A class is abstract if at least one function is pure virtual.
2473        cast<CXXRecordDecl>(CurContext)->setAbstract(true);
2474      } else if (!Method->isInvalidDecl()) {
2475        Diag(Method->getLocation(), diag::err_non_virtual_pure)
2476          << Method->getDeclName() << Init->getSourceRange();
2477        Method->setInvalidDecl();
2478      }
2479    } else {
2480      Diag(Method->getLocation(), diag::err_member_function_initialization)
2481        << Method->getDeclName() << Init->getSourceRange();
2482      Method->setInvalidDecl();
2483    }
2484    return;
2485  }
2486
2487  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2488  if (!VDecl) {
2489    if (getLangOptions().CPlusPlus &&
2490        RealDecl->getLexicalDeclContext()->isRecord() &&
2491        isa<NamedDecl>(RealDecl))
2492      Diag(RealDecl->getLocation(), diag::err_member_initialization)
2493        << cast<NamedDecl>(RealDecl)->getDeclName();
2494    else
2495      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2496    RealDecl->setInvalidDecl();
2497    return;
2498  }
2499
2500  if (!VDecl->getType()->isArrayType() &&
2501      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
2502                          diag::err_typecheck_decl_incomplete_type)) {
2503    RealDecl->setInvalidDecl();
2504    return;
2505  }
2506
2507  const VarDecl *Def = 0;
2508  if (VDecl->getDefinition(Def)) {
2509    Diag(VDecl->getLocation(), diag::err_redefinition)
2510      << VDecl->getDeclName();
2511    Diag(Def->getLocation(), diag::note_previous_definition);
2512    VDecl->setInvalidDecl();
2513    return;
2514  }
2515
2516  // Take ownership of the expression, now that we're sure we have somewhere
2517  // to put it.
2518  Expr *Init = static_cast<Expr *>(init.release());
2519  assert(Init && "missing initializer");
2520
2521  // Get the decls type and save a reference for later, since
2522  // CheckInitializerTypes may change it.
2523  QualType DclT = VDecl->getType(), SavT = DclT;
2524  if (VDecl->isBlockVarDecl()) {
2525    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
2526      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2527      VDecl->setInvalidDecl();
2528    } else if (!VDecl->isInvalidDecl()) {
2529      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2530                                VDecl->getDeclName(), DirectInit))
2531        VDecl->setInvalidDecl();
2532
2533      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2534      // Don't check invalid declarations to avoid emitting useless diagnostics.
2535      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2536        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
2537          CheckForConstantInitializer(Init, DclT);
2538      }
2539    }
2540  } else if (VDecl->isStaticDataMember() &&
2541             VDecl->getLexicalDeclContext()->isRecord()) {
2542    // This is an in-class initialization for a static data member, e.g.,
2543    //
2544    // struct S {
2545    //   static const int value = 17;
2546    // };
2547
2548    // Attach the initializer
2549    VDecl->setInit(Init);
2550
2551    // C++ [class.mem]p4:
2552    //   A member-declarator can contain a constant-initializer only
2553    //   if it declares a static member (9.4) of const integral or
2554    //   const enumeration type, see 9.4.2.
2555    QualType T = VDecl->getType();
2556    if (!T->isDependentType() &&
2557        (!Context.getCanonicalType(T).isConstQualified() ||
2558         !T->isIntegralType())) {
2559      Diag(VDecl->getLocation(), diag::err_member_initialization)
2560        << VDecl->getDeclName() << Init->getSourceRange();
2561      VDecl->setInvalidDecl();
2562    } else {
2563      // C++ [class.static.data]p4:
2564      //   If a static data member is of const integral or const
2565      //   enumeration type, its declaration in the class definition
2566      //   can specify a constant-initializer which shall be an
2567      //   integral constant expression (5.19).
2568      if (!Init->isTypeDependent() &&
2569          !Init->getType()->isIntegralType()) {
2570        // We have a non-dependent, non-integral or enumeration type.
2571        Diag(Init->getSourceRange().getBegin(),
2572             diag::err_in_class_initializer_non_integral_type)
2573          << Init->getType() << Init->getSourceRange();
2574        VDecl->setInvalidDecl();
2575      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
2576        // Check whether the expression is a constant expression.
2577        llvm::APSInt Value;
2578        SourceLocation Loc;
2579        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
2580          Diag(Loc, diag::err_in_class_initializer_non_constant)
2581            << Init->getSourceRange();
2582          VDecl->setInvalidDecl();
2583        } else if (!VDecl->getType()->isDependentType())
2584          ImpCastExprToType(Init, VDecl->getType());
2585      }
2586    }
2587  } else if (VDecl->isFileVarDecl()) {
2588    if (VDecl->getStorageClass() == VarDecl::Extern)
2589      Diag(VDecl->getLocation(), diag::warn_extern_init);
2590    if (!VDecl->isInvalidDecl())
2591      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2592                                VDecl->getDeclName(), DirectInit))
2593        VDecl->setInvalidDecl();
2594
2595    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2596    // Don't check invalid declarations to avoid emitting useless diagnostics.
2597    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2598      // C99 6.7.8p4. All file scoped initializers need to be constant.
2599      CheckForConstantInitializer(Init, DclT);
2600    }
2601  }
2602  // If the type changed, it means we had an incomplete type that was
2603  // completed by the initializer. For example:
2604  //   int ary[] = { 1, 3, 5 };
2605  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2606  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2607    VDecl->setType(DclT);
2608    Init->setType(DclT);
2609  }
2610
2611  // Attach the initializer to the decl.
2612  VDecl->setInit(Init);
2613
2614  // If the previous declaration of VDecl was a tentative definition,
2615  // remove it from the set of tentative definitions.
2616  if (VDecl->getPreviousDeclaration() &&
2617      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
2618    llvm::DenseMap<DeclarationName, VarDecl *>::iterator Pos
2619      = TentativeDefinitions.find(VDecl->getDeclName());
2620    assert(Pos != TentativeDefinitions.end() &&
2621           "Unrecorded tentative definition?");
2622    TentativeDefinitions.erase(Pos);
2623  }
2624
2625  return;
2626}
2627
2628void Sema::ActOnUninitializedDecl(DeclPtrTy dcl) {
2629  Decl *RealDecl = dcl.getAs<Decl>();
2630
2631  // If there is no declaration, there was an error parsing it. Just ignore it.
2632  if (RealDecl == 0)
2633    return;
2634
2635  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2636    QualType Type = Var->getType();
2637
2638    // Record tentative definitions.
2639    if (Var->isTentativeDefinition(Context))
2640      TentativeDefinitions[Var->getDeclName()] = Var;
2641
2642    // C++ [dcl.init.ref]p3:
2643    //   The initializer can be omitted for a reference only in a
2644    //   parameter declaration (8.3.5), in the declaration of a
2645    //   function return type, in the declaration of a class member
2646    //   within its class declaration (9.2), and where the extern
2647    //   specifier is explicitly used.
2648    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
2649      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2650        << Var->getDeclName()
2651        << SourceRange(Var->getLocation(), Var->getLocation());
2652      Var->setInvalidDecl();
2653      return;
2654    }
2655
2656    // C++ [dcl.init]p9:
2657    //
2658    //   If no initializer is specified for an object, and the object
2659    //   is of (possibly cv-qualified) non-POD class type (or array
2660    //   thereof), the object shall be default-initialized; if the
2661    //   object is of const-qualified type, the underlying class type
2662    //   shall have a user-declared default constructor.
2663    if (getLangOptions().CPlusPlus) {
2664      QualType InitType = Type;
2665      if (const ArrayType *Array = Context.getAsArrayType(Type))
2666        InitType = Array->getElementType();
2667      if (!Var->hasExternalStorage() && InitType->isRecordType()) {
2668        CXXRecordDecl *RD =
2669          cast<CXXRecordDecl>(InitType->getAsRecordType()->getDecl());
2670        CXXConstructorDecl *Constructor = 0;
2671        if (!RequireCompleteType(Var->getLocation(), InitType,
2672                                    diag::err_invalid_incomplete_type_use))
2673          Constructor
2674            = PerformInitializationByConstructor(InitType, 0, 0,
2675                                                 Var->getLocation(),
2676                                               SourceRange(Var->getLocation(),
2677                                                           Var->getLocation()),
2678                                                 Var->getDeclName(),
2679                                                 IK_Default);
2680        if (!Constructor)
2681          Var->setInvalidDecl();
2682        else if (!RD->hasTrivialConstructor())
2683          InitializeVarWithConstructor(Var, Constructor, InitType, 0, 0);
2684      }
2685    }
2686
2687#if 0
2688    // FIXME: Temporarily disabled because we are not properly parsing
2689    // linkage specifications on declarations, e.g.,
2690    //
2691    //   extern "C" const CGPoint CGPointerZero;
2692    //
2693    // C++ [dcl.init]p9:
2694    //
2695    //     If no initializer is specified for an object, and the
2696    //     object is of (possibly cv-qualified) non-POD class type (or
2697    //     array thereof), the object shall be default-initialized; if
2698    //     the object is of const-qualified type, the underlying class
2699    //     type shall have a user-declared default
2700    //     constructor. Otherwise, if no initializer is specified for
2701    //     an object, the object and its subobjects, if any, have an
2702    //     indeterminate initial value; if the object or any of its
2703    //     subobjects are of const-qualified type, the program is
2704    //     ill-formed.
2705    //
2706    // This isn't technically an error in C, so we don't diagnose it.
2707    //
2708    // FIXME: Actually perform the POD/user-defined default
2709    // constructor check.
2710    if (getLangOptions().CPlusPlus &&
2711        Context.getCanonicalType(Type).isConstQualified() &&
2712        !Var->hasExternalStorage())
2713      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2714        << Var->getName()
2715        << SourceRange(Var->getLocation(), Var->getLocation());
2716#endif
2717  }
2718}
2719
2720Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, DeclPtrTy *Group,
2721                                                   unsigned NumDecls) {
2722  llvm::SmallVector<Decl*, 8> Decls;
2723
2724  for (unsigned i = 0; i != NumDecls; ++i)
2725    if (Decl *D = Group[i].getAs<Decl>())
2726      Decls.push_back(D);
2727
2728  // Perform semantic analysis that depends on having fully processed both
2729  // the declarator and initializer.
2730  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
2731    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
2732    if (!IDecl)
2733      continue;
2734    QualType T = IDecl->getType();
2735
2736    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2737    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2738    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
2739      if (!IDecl->isInvalidDecl() &&
2740          RequireCompleteType(IDecl->getLocation(), T,
2741                              diag::err_typecheck_decl_incomplete_type))
2742        IDecl->setInvalidDecl();
2743    }
2744    // File scope. C99 6.9.2p2: A declaration of an identifier for and
2745    // object that has file scope without an initializer, and without a
2746    // storage-class specifier or with the storage-class specifier "static",
2747    // constitutes a tentative definition. Note: A tentative definition with
2748    // external linkage is valid (C99 6.2.2p5).
2749    if (IDecl->isTentativeDefinition(Context)) {
2750      QualType CheckType = T;
2751      unsigned DiagID = diag::err_typecheck_decl_incomplete_type;
2752
2753      const IncompleteArrayType *ArrayT = Context.getAsIncompleteArrayType(T);
2754      if (ArrayT) {
2755        CheckType = ArrayT->getElementType();
2756        DiagID = diag::err_illegal_decl_array_incomplete_type;
2757      }
2758
2759      if (IDecl->isInvalidDecl()) {
2760        // Do nothing with invalid declarations
2761      } else if ((ArrayT || IDecl->getStorageClass() == VarDecl::Static) &&
2762                 RequireCompleteType(IDecl->getLocation(), CheckType, DiagID)) {
2763        // C99 6.9.2p3: If the declaration of an identifier for an object is
2764        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2765        // declared type shall not be an incomplete type.
2766        IDecl->setInvalidDecl();
2767      }
2768    }
2769  }
2770  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
2771                                                   &Decls[0], Decls.size()));
2772}
2773
2774
2775/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2776/// to introduce parameters into function prototype scope.
2777Sema::DeclPtrTy
2778Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2779  const DeclSpec &DS = D.getDeclSpec();
2780
2781  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2782  VarDecl::StorageClass StorageClass = VarDecl::None;
2783  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2784    StorageClass = VarDecl::Register;
2785  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2786    Diag(DS.getStorageClassSpecLoc(),
2787         diag::err_invalid_storage_class_in_func_decl);
2788    D.getMutableDeclSpec().ClearStorageClassSpecs();
2789  }
2790
2791  if (D.getDeclSpec().isThreadSpecified())
2792    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2793
2794  DiagnoseFunctionSpecifiers(D);
2795
2796  // Check that there are no default arguments inside the type of this
2797  // parameter (C++ only).
2798  if (getLangOptions().CPlusPlus)
2799    CheckExtraCXXDefaultArguments(D);
2800
2801  // In this context, we *do not* check D.getInvalidType(). If the declarator
2802  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
2803  // though it will not reflect the user specified type.
2804  QualType parmDeclType = GetTypeForDeclarator(D, S);
2805  if (parmDeclType.isNull()) {
2806    D.setInvalidType(true);
2807    parmDeclType = Context.IntTy;
2808  }
2809
2810  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2811  // Can this happen for params?  We already checked that they don't conflict
2812  // among each other.  Here they can only shadow globals, which is ok.
2813  IdentifierInfo *II = D.getIdentifier();
2814  if (II) {
2815    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2816      if (PrevDecl->isTemplateParameter()) {
2817        // Maybe we will complain about the shadowed template parameter.
2818        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2819        // Just pretend that we didn't see the previous declaration.
2820        PrevDecl = 0;
2821      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
2822        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2823
2824        // Recover by removing the name
2825        II = 0;
2826        D.SetIdentifier(0, D.getIdentifierLoc());
2827      }
2828    }
2829  }
2830
2831  // Parameters can not be abstract class types.
2832  // For record types, this is done by the AbstractClassUsageDiagnoser once
2833  // the class has been completely parsed.
2834  if (!CurContext->isRecord() &&
2835      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
2836                             diag::err_abstract_type_in_decl,
2837                             AbstractParamType))
2838    D.setInvalidType(true);
2839
2840  QualType T = adjustParameterType(parmDeclType);
2841
2842  ParmVarDecl *New;
2843  if (T == parmDeclType) // parameter type did not need adjustment
2844    New = ParmVarDecl::Create(Context, CurContext,
2845                              D.getIdentifierLoc(), II,
2846                              parmDeclType, StorageClass,
2847                              0);
2848  else // keep track of both the adjusted and unadjusted types
2849    New = OriginalParmVarDecl::Create(Context, CurContext,
2850                                      D.getIdentifierLoc(), II, T,
2851                                      parmDeclType, StorageClass, 0);
2852
2853  if (D.getInvalidType())
2854    New->setInvalidDecl();
2855
2856  // Parameter declarators cannot be interface types. All ObjC objects are
2857  // passed by reference.
2858  if (T->isObjCInterfaceType()) {
2859    Diag(D.getIdentifierLoc(),
2860         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
2861    New->setInvalidDecl();
2862  }
2863
2864  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2865  if (D.getCXXScopeSpec().isSet()) {
2866    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
2867      << D.getCXXScopeSpec().getRange();
2868    New->setInvalidDecl();
2869  }
2870
2871  // Add the parameter declaration into this scope.
2872  S->AddDecl(DeclPtrTy::make(New));
2873  if (II)
2874    IdResolver.AddDecl(New);
2875
2876  ProcessDeclAttributes(New, D);
2877  return DeclPtrTy::make(New);
2878}
2879
2880void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
2881                                           SourceLocation LocAfterDecls) {
2882  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2883         "Not a function declarator!");
2884  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2885
2886  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
2887  // for a K&R function.
2888  if (!FTI.hasPrototype) {
2889    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
2890      --i;
2891      if (FTI.ArgInfo[i].Param == 0) {
2892        std::string Code = "  int ";
2893        Code += FTI.ArgInfo[i].Ident->getName();
2894        Code += ";\n";
2895        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
2896          << FTI.ArgInfo[i].Ident
2897          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code);
2898
2899        // Implicitly declare the argument as type 'int' for lack of a better
2900        // type.
2901        DeclSpec DS;
2902        const char* PrevSpec; // unused
2903        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
2904                           PrevSpec);
2905        Declarator ParamD(DS, Declarator::KNRTypeListContext);
2906        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
2907        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
2908      }
2909    }
2910  }
2911}
2912
2913Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
2914                                              Declarator &D) {
2915  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2916  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2917         "Not a function declarator!");
2918  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2919
2920  if (FTI.hasPrototype) {
2921    // FIXME: Diagnose arguments without names in C.
2922  }
2923
2924  Scope *ParentScope = FnBodyScope->getParent();
2925
2926  DeclPtrTy DP = ActOnDeclarator(ParentScope, D, /*IsFunctionDefinition=*/true);
2927  return ActOnStartOfFunctionDef(FnBodyScope, DP);
2928}
2929
2930Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
2931  FunctionDecl *FD = cast<FunctionDecl>(D.getAs<Decl>());
2932
2933  CurFunctionNeedsScopeChecking = false;
2934
2935  // See if this is a redefinition.
2936  const FunctionDecl *Definition;
2937  if (FD->getBody(Context, Definition)) {
2938    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
2939    Diag(Definition->getLocation(), diag::note_previous_definition);
2940  }
2941
2942  // Builtin functions cannot be defined.
2943  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
2944    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2945      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
2946      FD->setInvalidDecl();
2947    }
2948  }
2949
2950  // The return type of a function definition must be complete
2951  // (C99 6.9.1p3, C++ [dcl.fct]p6).
2952  QualType ResultType = FD->getResultType();
2953  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
2954      RequireCompleteType(FD->getLocation(), ResultType,
2955                          diag::err_func_def_incomplete_result))
2956    FD->setInvalidDecl();
2957
2958  // GNU warning -Wmissing-prototypes:
2959  //   Warn if a global function is defined without a previous
2960  //   prototype declaration. This warning is issued even if the
2961  //   definition itself provides a prototype. The aim is to detect
2962  //   global functions that fail to be declared in header files.
2963  if (!FD->isInvalidDecl() && FD->isGlobal() && !isa<CXXMethodDecl>(FD) &&
2964      !FD->isMain()) {
2965    bool MissingPrototype = true;
2966    for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
2967         Prev; Prev = Prev->getPreviousDeclaration()) {
2968      // Ignore any declarations that occur in function or method
2969      // scope, because they aren't visible from the header.
2970      if (Prev->getDeclContext()->isFunctionOrMethod())
2971        continue;
2972
2973      MissingPrototype = !Prev->getType()->isFunctionProtoType();
2974      break;
2975    }
2976
2977    if (MissingPrototype)
2978      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
2979  }
2980
2981  PushDeclContext(FnBodyScope, FD);
2982
2983  // Check the validity of our function parameters
2984  CheckParmsForFunctionDef(FD);
2985
2986  // Introduce our parameters into the function scope
2987  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2988    ParmVarDecl *Param = FD->getParamDecl(p);
2989    Param->setOwningFunction(FD);
2990
2991    // If this has an identifier, add it to the scope stack.
2992    if (Param->getIdentifier())
2993      PushOnScopeChains(Param, FnBodyScope);
2994  }
2995
2996  // Checking attributes of current function definition
2997  // dllimport attribute.
2998  if (FD->getAttr<DLLImportAttr>() && (!FD->getAttr<DLLExportAttr>())) {
2999    // dllimport attribute cannot be applied to definition.
3000    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
3001      Diag(FD->getLocation(),
3002           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
3003        << "dllimport";
3004      FD->setInvalidDecl();
3005      return DeclPtrTy::make(FD);
3006    } else {
3007      // If a symbol previously declared dllimport is later defined, the
3008      // attribute is ignored in subsequent references, and a warning is
3009      // emitted.
3010      Diag(FD->getLocation(),
3011           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
3012        << FD->getNameAsCString() << "dllimport";
3013    }
3014  }
3015  return DeclPtrTy::make(FD);
3016}
3017
3018
3019Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
3020  Decl *dcl = D.getAs<Decl>();
3021  CompoundStmt *Body =cast<CompoundStmt>(static_cast<Stmt*>(BodyArg.release()));
3022  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
3023    FD->setBody(Body);
3024    assert(FD == getCurFunctionDecl() && "Function parsing confused");
3025  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
3026    assert(MD == getCurMethodDecl() && "Method parsing confused");
3027    MD->setBody(Body);
3028  } else {
3029    Body->Destroy(Context);
3030    return DeclPtrTy();
3031  }
3032  PopDeclContext();
3033  // Verify and clean out per-function state.
3034
3035  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
3036
3037  // Check goto/label use.
3038  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
3039       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
3040    LabelStmt *L = I->second;
3041
3042    // Verify that we have no forward references left.  If so, there was a goto
3043    // or address of a label taken, but no definition of it.  Label fwd
3044    // definitions are indicated with a null substmt.
3045    if (L->getSubStmt() != 0)
3046      continue;
3047
3048    // Emit error.
3049    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
3050
3051    // At this point, we have gotos that use the bogus label.  Stitch it into
3052    // the function body so that they aren't leaked and that the AST is well
3053    // formed.
3054    if (Body == 0) {
3055      // The whole function wasn't parsed correctly, just delete this.
3056      L->Destroy(Context);
3057      continue;
3058    }
3059
3060    // Otherwise, the body is valid: we want to stitch the label decl into the
3061    // function somewhere so that it is properly owned and so that the goto
3062    // has a valid target.  Do this by creating a new compound stmt with the
3063    // label in it.
3064
3065    // Give the label a sub-statement.
3066    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
3067
3068    std::vector<Stmt*> Elements(Body->body_begin(), Body->body_end());
3069    Elements.push_back(L);
3070    Body->setStmts(Context, &Elements[0], Elements.size());
3071  }
3072  FunctionLabelMap.clear();
3073
3074  if (!Body) return D;
3075
3076  // Verify that that gotos and switch cases don't jump into scopes illegally.
3077  if (CurFunctionNeedsScopeChecking)
3078    DiagnoseInvalidJumps(Body);
3079
3080  return D;
3081}
3082
3083/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
3084/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
3085NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
3086                                          IdentifierInfo &II, Scope *S) {
3087  // Before we produce a declaration for an implicitly defined
3088  // function, see whether there was a locally-scoped declaration of
3089  // this name as a function or variable. If so, use that
3090  // (non-visible) declaration, and complain about it.
3091  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3092    = LocallyScopedExternalDecls.find(&II);
3093  if (Pos != LocallyScopedExternalDecls.end()) {
3094    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
3095    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
3096    return Pos->second;
3097  }
3098
3099  // Extension in C99.  Legal in C90, but warn about it.
3100  if (getLangOptions().C99)
3101    Diag(Loc, diag::ext_implicit_function_decl) << &II;
3102  else
3103    Diag(Loc, diag::warn_implicit_function_decl) << &II;
3104
3105  // FIXME: handle stuff like:
3106  // void foo() { extern float X(); }
3107  // void bar() { X(); }  <-- implicit decl for X in another scope.
3108
3109  // Set a Declarator for the implicit definition: int foo();
3110  const char *Dummy;
3111  DeclSpec DS;
3112  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
3113  Error = Error; // Silence warning.
3114  assert(!Error && "Error setting up implicit decl!");
3115  Declarator D(DS, Declarator::BlockContext);
3116  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(),
3117                                             0, 0, 0, Loc, D),
3118                SourceLocation());
3119  D.SetIdentifier(&II, Loc);
3120
3121  // Insert this function into translation-unit scope.
3122
3123  DeclContext *PrevDC = CurContext;
3124  CurContext = Context.getTranslationUnitDecl();
3125
3126  FunctionDecl *FD =
3127 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D, DeclPtrTy()).getAs<Decl>());
3128  FD->setImplicit();
3129
3130  CurContext = PrevDC;
3131
3132  AddKnownFunctionAttributes(FD);
3133
3134  return FD;
3135}
3136
3137/// \brief Adds any function attributes that we know a priori based on
3138/// the declaration of this function.
3139///
3140/// These attributes can apply both to implicitly-declared builtins
3141/// (like __builtin___printf_chk) or to library-declared functions
3142/// like NSLog or printf.
3143void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
3144  if (FD->isInvalidDecl())
3145    return;
3146
3147  // If this is a built-in function, map its builtin attributes to
3148  // actual attributes.
3149  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3150    // Handle printf-formatting attributes.
3151    unsigned FormatIdx;
3152    bool HasVAListArg;
3153    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
3154      if (!FD->getAttr<FormatAttr>())
3155        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
3156                                               FormatIdx + 2));
3157    }
3158
3159    // Mark const if we don't care about errno and that is the only
3160    // thing preventing the function from being const. This allows
3161    // IRgen to use LLVM intrinsics for such functions.
3162    if (!getLangOptions().MathErrno &&
3163        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
3164      if (!FD->getAttr<ConstAttr>())
3165        FD->addAttr(::new (Context) ConstAttr());
3166    }
3167  }
3168
3169  IdentifierInfo *Name = FD->getIdentifier();
3170  if (!Name)
3171    return;
3172  if ((!getLangOptions().CPlusPlus &&
3173       FD->getDeclContext()->isTranslationUnit()) ||
3174      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
3175       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
3176       LinkageSpecDecl::lang_c)) {
3177    // Okay: this could be a libc/libm/Objective-C function we know
3178    // about.
3179  } else
3180    return;
3181
3182  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
3183    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
3184      // FIXME: We known better than our headers.
3185      const_cast<FormatAttr *>(Format)->setType("printf");
3186    } else
3187      FD->addAttr(::new (Context) FormatAttr("printf", 1, 2));
3188  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
3189    if (!FD->getAttr<FormatAttr>())
3190      FD->addAttr(::new (Context) FormatAttr("printf", 2, 3));
3191  }
3192}
3193
3194TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T) {
3195  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
3196  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3197
3198  // Scope manipulation handled by caller.
3199  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
3200                                           D.getIdentifierLoc(),
3201                                           D.getIdentifier(),
3202                                           T);
3203
3204  if (TagType *TT = dyn_cast<TagType>(T)) {
3205    TagDecl *TD = TT->getDecl();
3206
3207    // If the TagDecl that the TypedefDecl points to is an anonymous decl
3208    // keep track of the TypedefDecl.
3209    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
3210      TD->setTypedefForAnonDecl(NewTD);
3211  }
3212
3213  if (D.getInvalidType())
3214    NewTD->setInvalidDecl();
3215  return NewTD;
3216}
3217
3218/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
3219/// former case, Name will be non-null.  In the later case, Name will be null.
3220/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
3221/// reference/declaration/definition of a tag.
3222Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
3223                               SourceLocation KWLoc, const CXXScopeSpec &SS,
3224                               IdentifierInfo *Name, SourceLocation NameLoc,
3225                               AttributeList *Attr, AccessSpecifier AS) {
3226  // If this is not a definition, it must have a name.
3227  assert((Name != 0 || TK == TK_Definition) &&
3228         "Nameless record must be a definition!");
3229
3230  TagDecl::TagKind Kind;
3231  switch (TagSpec) {
3232  default: assert(0 && "Unknown tag type!");
3233  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3234  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3235  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3236  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
3237  }
3238
3239  DeclContext *SearchDC = CurContext;
3240  DeclContext *DC = CurContext;
3241  NamedDecl *PrevDecl = 0;
3242
3243  bool Invalid = false;
3244
3245  if (Name && SS.isNotEmpty()) {
3246    // We have a nested-name tag ('struct foo::bar').
3247
3248    // Check for invalid 'foo::'.
3249    if (SS.isInvalid()) {
3250      Name = 0;
3251      goto CreateNewDecl;
3252    }
3253
3254    // FIXME: RequireCompleteDeclContext(SS)?
3255    DC = computeDeclContext(SS);
3256    SearchDC = DC;
3257    // Look-up name inside 'foo::'.
3258    PrevDecl = dyn_cast_or_null<TagDecl>(
3259                 LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
3260
3261    // A tag 'foo::bar' must already exist.
3262    if (PrevDecl == 0) {
3263      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
3264      Name = 0;
3265      goto CreateNewDecl;
3266    }
3267  } else if (Name) {
3268    // If this is a named struct, check to see if there was a previous forward
3269    // declaration or definition.
3270    // FIXME: We're looking into outer scopes here, even when we
3271    // shouldn't be. Doing so can result in ambiguities that we
3272    // shouldn't be diagnosing.
3273    LookupResult R = LookupName(S, Name, LookupTagName,
3274                                /*RedeclarationOnly=*/(TK != TK_Reference));
3275    if (R.isAmbiguous()) {
3276      DiagnoseAmbiguousLookup(R, Name, NameLoc);
3277      // FIXME: This is not best way to recover from case like:
3278      //
3279      // struct S s;
3280      //
3281      // causes needless "incomplete type" error later.
3282      Name = 0;
3283      PrevDecl = 0;
3284      Invalid = true;
3285    }
3286    else
3287      PrevDecl = R;
3288
3289    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
3290      // FIXME: This makes sure that we ignore the contexts associated
3291      // with C structs, unions, and enums when looking for a matching
3292      // tag declaration or definition. See the similar lookup tweak
3293      // in Sema::LookupName; is there a better way to deal with this?
3294      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
3295        SearchDC = SearchDC->getParent();
3296    }
3297  }
3298
3299  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3300    // Maybe we will complain about the shadowed template parameter.
3301    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
3302    // Just pretend that we didn't see the previous declaration.
3303    PrevDecl = 0;
3304  }
3305
3306  if (PrevDecl) {
3307    // Check whether the previous declaration is usable.
3308    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
3309
3310    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
3311      // If this is a use of a previous tag, or if the tag is already declared
3312      // in the same scope (so that the definition/declaration completes or
3313      // rementions the tag), reuse the decl.
3314      if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
3315        // Make sure that this wasn't declared as an enum and now used as a
3316        // struct or something similar.
3317        if (PrevTagDecl->getTagKind() != Kind) {
3318          bool SafeToContinue
3319            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
3320               Kind != TagDecl::TK_enum);
3321          if (SafeToContinue)
3322            Diag(KWLoc, diag::err_use_with_wrong_tag)
3323              << Name
3324              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
3325                                                  PrevTagDecl->getKindName());
3326          else
3327            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
3328          Diag(PrevDecl->getLocation(), diag::note_previous_use);
3329
3330          if (SafeToContinue)
3331            Kind = PrevTagDecl->getTagKind();
3332          else {
3333            // Recover by making this an anonymous redefinition.
3334            Name = 0;
3335            PrevDecl = 0;
3336            Invalid = true;
3337          }
3338        }
3339
3340        if (!Invalid) {
3341          // If this is a use, just return the declaration we found.
3342
3343          // FIXME: In the future, return a variant or some other clue
3344          // for the consumer of this Decl to know it doesn't own it.
3345          // For our current ASTs this shouldn't be a problem, but will
3346          // need to be changed with DeclGroups.
3347          if (TK == TK_Reference)
3348            return DeclPtrTy::make(PrevDecl);
3349
3350          // Diagnose attempts to redefine a tag.
3351          if (TK == TK_Definition) {
3352            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
3353              Diag(NameLoc, diag::err_redefinition) << Name;
3354              Diag(Def->getLocation(), diag::note_previous_definition);
3355              // If this is a redefinition, recover by making this
3356              // struct be anonymous, which will make any later
3357              // references get the previous definition.
3358              Name = 0;
3359              PrevDecl = 0;
3360              Invalid = true;
3361            } else {
3362              // If the type is currently being defined, complain
3363              // about a nested redefinition.
3364              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
3365              if (Tag->isBeingDefined()) {
3366                Diag(NameLoc, diag::err_nested_redefinition) << Name;
3367                Diag(PrevTagDecl->getLocation(),
3368                     diag::note_previous_definition);
3369                Name = 0;
3370                PrevDecl = 0;
3371                Invalid = true;
3372              }
3373            }
3374
3375            // Okay, this is definition of a previously declared or referenced
3376            // tag PrevDecl. We're going to create a new Decl for it.
3377          }
3378        }
3379        // If we get here we have (another) forward declaration or we
3380        // have a definition.  Just create a new decl.
3381      } else {
3382        // If we get here, this is a definition of a new tag type in a nested
3383        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
3384        // new decl/type.  We set PrevDecl to NULL so that the entities
3385        // have distinct types.
3386        PrevDecl = 0;
3387      }
3388      // If we get here, we're going to create a new Decl. If PrevDecl
3389      // is non-NULL, it's a definition of the tag declared by
3390      // PrevDecl. If it's NULL, we have a new definition.
3391    } else {
3392      // PrevDecl is a namespace, template, or anything else
3393      // that lives in the IDNS_Tag identifier namespace.
3394      if (isDeclInScope(PrevDecl, SearchDC, S)) {
3395        // The tag name clashes with a namespace name, issue an error and
3396        // recover by making this tag be anonymous.
3397        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
3398        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3399        Name = 0;
3400        PrevDecl = 0;
3401        Invalid = true;
3402      } else {
3403        // The existing declaration isn't relevant to us; we're in a
3404        // new scope, so clear out the previous declaration.
3405        PrevDecl = 0;
3406      }
3407    }
3408  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
3409             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
3410    // C.scope.pdecl]p5:
3411    //   -- for an elaborated-type-specifier of the form
3412    //
3413    //          class-key identifier
3414    //
3415    //      if the elaborated-type-specifier is used in the
3416    //      decl-specifier-seq or parameter-declaration-clause of a
3417    //      function defined in namespace scope, the identifier is
3418    //      declared as a class-name in the namespace that contains
3419    //      the declaration; otherwise, except as a friend
3420    //      declaration, the identifier is declared in the smallest
3421    //      non-class, non-function-prototype scope that contains the
3422    //      declaration.
3423    //
3424    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
3425    // C structs and unions.
3426    //
3427    // GNU C also supports this behavior as part of its incomplete
3428    // enum types extension, while GNU C++ does not.
3429    //
3430    // Find the context where we'll be declaring the tag.
3431    // FIXME: We would like to maintain the current DeclContext as the
3432    // lexical context,
3433    while (SearchDC->isRecord())
3434      SearchDC = SearchDC->getParent();
3435
3436    // Find the scope where we'll be declaring the tag.
3437    while (S->isClassScope() ||
3438           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
3439           ((S->getFlags() & Scope::DeclScope) == 0) ||
3440           (S->getEntity() &&
3441            ((DeclContext *)S->getEntity())->isTransparentContext()))
3442      S = S->getParent();
3443  }
3444
3445CreateNewDecl:
3446
3447  // If there is an identifier, use the location of the identifier as the
3448  // location of the decl, otherwise use the location of the struct/union
3449  // keyword.
3450  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
3451
3452  // Otherwise, create a new declaration. If there is a previous
3453  // declaration of the same entity, the two will be linked via
3454  // PrevDecl.
3455  TagDecl *New;
3456
3457  if (Kind == TagDecl::TK_enum) {
3458    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3459    // enum X { A, B, C } D;    D should chain to X.
3460    New = EnumDecl::Create(Context, SearchDC, Loc, Name,
3461                           cast_or_null<EnumDecl>(PrevDecl));
3462    // If this is an undefined enum, warn.
3463    if (TK != TK_Definition && !Invalid)  {
3464      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
3465                                              : diag::ext_forward_ref_enum;
3466      Diag(Loc, DK);
3467    }
3468  } else {
3469    // struct/union/class
3470
3471    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3472    // struct X { int A; } D;    D should chain to X.
3473    if (getLangOptions().CPlusPlus)
3474      // FIXME: Look for a way to use RecordDecl for simple structs.
3475      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3476                                  cast_or_null<CXXRecordDecl>(PrevDecl));
3477    else
3478      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3479                               cast_or_null<RecordDecl>(PrevDecl));
3480  }
3481
3482  if (Kind != TagDecl::TK_enum) {
3483    // Handle #pragma pack: if the #pragma pack stack has non-default
3484    // alignment, make up a packed attribute for this decl. These
3485    // attributes are checked when the ASTContext lays out the
3486    // structure.
3487    //
3488    // It is important for implementing the correct semantics that this
3489    // happen here (in act on tag decl). The #pragma pack stack is
3490    // maintained as a result of parser callbacks which can occur at
3491    // many points during the parsing of a struct declaration (because
3492    // the #pragma tokens are effectively skipped over during the
3493    // parsing of the struct).
3494    if (unsigned Alignment = getPragmaPackAlignment())
3495      New->addAttr(::new (Context) PackedAttr(Alignment * 8));
3496  }
3497
3498  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
3499    // C++ [dcl.typedef]p3:
3500    //   [...] Similarly, in a given scope, a class or enumeration
3501    //   shall not be declared with the same name as a typedef-name
3502    //   that is declared in that scope and refers to a type other
3503    //   than the class or enumeration itself.
3504    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
3505    TypedefDecl *PrevTypedef = 0;
3506    if (Lookup.getKind() == LookupResult::Found)
3507      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
3508
3509    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
3510        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
3511          Context.getCanonicalType(Context.getTypeDeclType(New))) {
3512      Diag(Loc, diag::err_tag_definition_of_typedef)
3513        << Context.getTypeDeclType(New)
3514        << PrevTypedef->getUnderlyingType();
3515      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
3516      Invalid = true;
3517    }
3518  }
3519
3520  if (Invalid)
3521    New->setInvalidDecl();
3522
3523  if (Attr)
3524    ProcessDeclAttributeList(New, Attr);
3525
3526  // If we're declaring or defining a tag in function prototype scope
3527  // in C, note that this type can only be used within the function.
3528  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
3529    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
3530
3531  // Set the lexical context. If the tag has a C++ scope specifier, the
3532  // lexical context will be different from the semantic context.
3533  New->setLexicalDeclContext(CurContext);
3534
3535  // Set the access specifier.
3536  SetMemberAccessSpecifier(New, PrevDecl, AS);
3537
3538  if (TK == TK_Definition)
3539    New->startDefinition();
3540
3541  // If this has an identifier, add it to the scope stack.
3542  if (Name) {
3543    S = getNonFieldDeclScope(S);
3544    PushOnScopeChains(New, S);
3545  } else {
3546    CurContext->addDecl(Context, New);
3547  }
3548
3549  return DeclPtrTy::make(New);
3550}
3551
3552void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
3553  AdjustDeclIfTemplate(TagD);
3554  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
3555
3556  // Enter the tag context.
3557  PushDeclContext(S, Tag);
3558
3559  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
3560    FieldCollector->StartClass();
3561
3562    if (Record->getIdentifier()) {
3563      // C++ [class]p2:
3564      //   [...] The class-name is also inserted into the scope of the
3565      //   class itself; this is known as the injected-class-name. For
3566      //   purposes of access checking, the injected-class-name is treated
3567      //   as if it were a public member name.
3568      CXXRecordDecl *InjectedClassName
3569        = CXXRecordDecl::Create(Context, Record->getTagKind(),
3570                                CurContext, Record->getLocation(),
3571                                Record->getIdentifier(), Record);
3572      InjectedClassName->setImplicit();
3573      InjectedClassName->setAccess(AS_public);
3574      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
3575        InjectedClassName->setDescribedClassTemplate(Template);
3576      PushOnScopeChains(InjectedClassName, S);
3577      assert(InjectedClassName->isInjectedClassName() &&
3578             "Broken injected-class-name");
3579    }
3580  }
3581}
3582
3583void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD) {
3584  AdjustDeclIfTemplate(TagD);
3585  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
3586
3587  if (isa<CXXRecordDecl>(Tag))
3588    FieldCollector->FinishClass();
3589
3590  // Exit this scope of this tag's definition.
3591  PopDeclContext();
3592
3593  // Notify the consumer that we've defined a tag.
3594  Consumer.HandleTagDeclDefinition(Tag);
3595}
3596
3597// Note that FieldName may be null for anonymous bitfields.
3598bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
3599                          QualType FieldTy, const Expr *BitWidth) {
3600
3601  // C99 6.7.2.1p4 - verify the field type.
3602  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
3603  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
3604    // Handle incomplete types with specific error.
3605    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
3606      return true;
3607    if (FieldName)
3608      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
3609        << FieldName << FieldTy << BitWidth->getSourceRange();
3610    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
3611      << FieldTy << BitWidth->getSourceRange();
3612  }
3613
3614  // If the bit-width is type- or value-dependent, don't try to check
3615  // it now.
3616  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
3617    return false;
3618
3619  llvm::APSInt Value;
3620  if (VerifyIntegerConstantExpression(BitWidth, &Value))
3621    return true;
3622
3623  // Zero-width bitfield is ok for anonymous field.
3624  if (Value == 0 && FieldName)
3625    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
3626
3627  if (Value.isSigned() && Value.isNegative()) {
3628    if (FieldName)
3629      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
3630               << FieldName << Value.toString(10);
3631    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
3632      << Value.toString(10);
3633  }
3634
3635  if (!FieldTy->isDependentType()) {
3636    uint64_t TypeSize = Context.getTypeSize(FieldTy);
3637    if (Value.getZExtValue() > TypeSize) {
3638      if (FieldName)
3639        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
3640          << FieldName << (unsigned)TypeSize;
3641      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
3642        << (unsigned)TypeSize;
3643    }
3644  }
3645
3646  return false;
3647}
3648
3649/// ActOnField - Each field of a struct/union/class is passed into this in order
3650/// to create a FieldDecl object for it.
3651Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
3652                                 SourceLocation DeclStart,
3653                                 Declarator &D, ExprTy *BitfieldWidth) {
3654  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
3655                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
3656                               AS_public);
3657  return DeclPtrTy::make(Res);
3658}
3659
3660/// HandleField - Analyze a field of a C struct or a C++ data member.
3661///
3662FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
3663                             SourceLocation DeclStart,
3664                             Declarator &D, Expr *BitWidth,
3665                             AccessSpecifier AS) {
3666  IdentifierInfo *II = D.getIdentifier();
3667  SourceLocation Loc = DeclStart;
3668  if (II) Loc = D.getIdentifierLoc();
3669
3670  QualType T = GetTypeForDeclarator(D, S);
3671  if (getLangOptions().CPlusPlus)
3672    CheckExtraCXXDefaultArguments(D);
3673
3674  DiagnoseFunctionSpecifiers(D);
3675
3676  if (D.getDeclSpec().isThreadSpecified())
3677    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3678
3679  NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3680  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
3681    PrevDecl = 0;
3682
3683  FieldDecl *NewFD
3684    = CheckFieldDecl(II, T, Record, Loc,
3685               D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable,
3686                     BitWidth, AS, PrevDecl, &D);
3687  if (NewFD->isInvalidDecl() && PrevDecl) {
3688    // Don't introduce NewFD into scope; there's already something
3689    // with the same name in the same scope.
3690  } else if (II) {
3691    PushOnScopeChains(NewFD, S);
3692  } else
3693    Record->addDecl(Context, NewFD);
3694
3695  return NewFD;
3696}
3697
3698/// \brief Build a new FieldDecl and check its well-formedness.
3699///
3700/// This routine builds a new FieldDecl given the fields name, type,
3701/// record, etc. \p PrevDecl should refer to any previous declaration
3702/// with the same name and in the same scope as the field to be
3703/// created.
3704///
3705/// \returns a new FieldDecl.
3706///
3707/// \todo The Declarator argument is a hack. It will be removed once
3708FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
3709                                RecordDecl *Record, SourceLocation Loc,
3710                                bool Mutable, Expr *BitWidth,
3711                                AccessSpecifier AS, NamedDecl *PrevDecl,
3712                                Declarator *D) {
3713  IdentifierInfo *II = Name.getAsIdentifierInfo();
3714  bool InvalidDecl = false;
3715
3716  // If we receive a broken type, recover by assuming 'int' and
3717  // marking this declaration as invalid.
3718  if (T.isNull()) {
3719    InvalidDecl = true;
3720    T = Context.IntTy;
3721  }
3722
3723  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3724  // than a variably modified type.
3725  if (T->isVariablyModifiedType()) {
3726    bool SizeIsNegative;
3727    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
3728                                                           SizeIsNegative);
3729    if (!FixedTy.isNull()) {
3730      Diag(Loc, diag::warn_illegal_constant_array_size);
3731      T = FixedTy;
3732    } else {
3733      if (SizeIsNegative)
3734        Diag(Loc, diag::err_typecheck_negative_array_size);
3735      else
3736        Diag(Loc, diag::err_typecheck_field_variable_size);
3737      T = Context.IntTy;
3738      InvalidDecl = true;
3739    }
3740  }
3741
3742  // Fields can not have abstract class types
3743  if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl,
3744                             AbstractFieldType))
3745    InvalidDecl = true;
3746
3747  // If this is declared as a bit-field, check the bit-field.
3748  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth)) {
3749    InvalidDecl = true;
3750    DeleteExpr(BitWidth);
3751    BitWidth = 0;
3752  }
3753
3754  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, BitWidth,
3755                                       Mutable);
3756
3757  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
3758    Diag(Loc, diag::err_duplicate_member) << II;
3759    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3760    NewFD->setInvalidDecl();
3761    Record->setInvalidDecl();
3762  }
3763
3764  if (getLangOptions().CPlusPlus && !T->isPODType())
3765    cast<CXXRecordDecl>(Record)->setPOD(false);
3766
3767  // FIXME: We need to pass in the attributes given an AST
3768  // representation, not a parser representation.
3769  if (D)
3770    ProcessDeclAttributes(NewFD, *D);
3771
3772  if (T.isObjCGCWeak())
3773    Diag(Loc, diag::warn_attribute_weak_on_field);
3774
3775  if (InvalidDecl)
3776    NewFD->setInvalidDecl();
3777
3778  NewFD->setAccess(AS);
3779
3780  // C++ [dcl.init.aggr]p1:
3781  //   An aggregate is an array or a class (clause 9) with [...] no
3782  //   private or protected non-static data members (clause 11).
3783  // A POD must be an aggregate.
3784  if (getLangOptions().CPlusPlus &&
3785      (AS == AS_private || AS == AS_protected)) {
3786    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
3787    CXXRecord->setAggregate(false);
3788    CXXRecord->setPOD(false);
3789  }
3790
3791  return NewFD;
3792}
3793
3794/// TranslateIvarVisibility - Translate visibility from a token ID to an
3795///  AST enum value.
3796static ObjCIvarDecl::AccessControl
3797TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
3798  switch (ivarVisibility) {
3799  default: assert(0 && "Unknown visitibility kind");
3800  case tok::objc_private: return ObjCIvarDecl::Private;
3801  case tok::objc_public: return ObjCIvarDecl::Public;
3802  case tok::objc_protected: return ObjCIvarDecl::Protected;
3803  case tok::objc_package: return ObjCIvarDecl::Package;
3804  }
3805}
3806
3807/// ActOnIvar - Each ivar field of an objective-c class is passed into this
3808/// in order to create an IvarDecl object for it.
3809Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
3810                                SourceLocation DeclStart,
3811                                Declarator &D, ExprTy *BitfieldWidth,
3812                                tok::ObjCKeywordKind Visibility) {
3813
3814  IdentifierInfo *II = D.getIdentifier();
3815  Expr *BitWidth = (Expr*)BitfieldWidth;
3816  SourceLocation Loc = DeclStart;
3817  if (II) Loc = D.getIdentifierLoc();
3818
3819  // FIXME: Unnamed fields can be handled in various different ways, for
3820  // example, unnamed unions inject all members into the struct namespace!
3821
3822  QualType T = GetTypeForDeclarator(D, S);
3823  bool InvalidDecl = D.getInvalidType();
3824  if (T.isNull()) {
3825    InvalidDecl = true;
3826    T = Context.IntTy;
3827  }
3828
3829  if (BitWidth) {
3830    // 6.7.2.1p3, 6.7.2.1p4
3831    if (VerifyBitField(Loc, II, T, BitWidth)) {
3832      InvalidDecl = true;
3833      DeleteExpr(BitWidth);
3834      BitWidth = 0;
3835    }
3836  } else {
3837    // Not a bitfield.
3838
3839    // validate II.
3840
3841  }
3842
3843  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3844  // than a variably modified type.
3845  if (T->isVariablyModifiedType()) {
3846    Diag(Loc, diag::err_typecheck_ivar_variable_size);
3847    InvalidDecl = true;
3848  }
3849
3850  // Get the visibility (access control) for this ivar.
3851  ObjCIvarDecl::AccessControl ac =
3852    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
3853                                        : ObjCIvarDecl::None;
3854
3855  // Construct the decl.
3856  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, CurContext, Loc, II, T,ac,
3857                                             (Expr *)BitfieldWidth);
3858
3859  if (II) {
3860    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3861    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3862        && !isa<TagDecl>(PrevDecl)) {
3863      Diag(Loc, diag::err_duplicate_member) << II;
3864      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3865      NewID->setInvalidDecl();
3866    }
3867  }
3868
3869  // Process attributes attached to the ivar.
3870  ProcessDeclAttributes(NewID, D);
3871
3872  if (D.getInvalidType() || InvalidDecl)
3873    NewID->setInvalidDecl();
3874
3875  if (II) {
3876    // FIXME: When interfaces are DeclContexts, we'll need to add
3877    // these to the interface.
3878    S->AddDecl(DeclPtrTy::make(NewID));
3879    IdResolver.AddDecl(NewID);
3880  }
3881
3882  return DeclPtrTy::make(NewID);
3883}
3884
3885void Sema::ActOnFields(Scope* S,
3886                       SourceLocation RecLoc, DeclPtrTy RecDecl,
3887                       DeclPtrTy *Fields, unsigned NumFields,
3888                       SourceLocation LBrac, SourceLocation RBrac,
3889                       AttributeList *Attr) {
3890  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
3891  assert(EnclosingDecl && "missing record or interface decl");
3892
3893  // If the decl this is being inserted into is invalid, then it may be a
3894  // redeclaration or some other bogus case.  Don't try to add fields to it.
3895  if (EnclosingDecl->isInvalidDecl()) {
3896    // FIXME: Deallocate fields?
3897    return;
3898  }
3899
3900
3901  // Verify that all the fields are okay.
3902  unsigned NumNamedMembers = 0;
3903  llvm::SmallVector<FieldDecl*, 32> RecFields;
3904
3905  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
3906  for (unsigned i = 0; i != NumFields; ++i) {
3907    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
3908
3909    // Get the type for the field.
3910    Type *FDTy = FD->getType().getTypePtr();
3911
3912    if (!FD->isAnonymousStructOrUnion()) {
3913      // Remember all fields written by the user.
3914      RecFields.push_back(FD);
3915    }
3916
3917    // If the field is already invalid for some reason, don't emit more
3918    // diagnostics about it.
3919    if (FD->isInvalidDecl())
3920      continue;
3921
3922    // C99 6.7.2.1p2:
3923    //   A structure or union shall not contain a member with
3924    //   incomplete or function type (hence, a structure shall not
3925    //   contain an instance of itself, but may contain a pointer to
3926    //   an instance of itself), except that the last member of a
3927    //   structure with more than one named member may have incomplete
3928    //   array type; such a structure (and any union containing,
3929    //   possibly recursively, a member that is such a structure)
3930    //   shall not be a member of a structure or an element of an
3931    //   array.
3932    if (FDTy->isFunctionType()) {
3933      // Field declared as a function.
3934      Diag(FD->getLocation(), diag::err_field_declared_as_function)
3935        << FD->getDeclName();
3936      FD->setInvalidDecl();
3937      EnclosingDecl->setInvalidDecl();
3938      continue;
3939    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
3940               Record && Record->isStruct()) {
3941      // Flexible array member.
3942      if (NumNamedMembers < 1) {
3943        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
3944          << FD->getDeclName();
3945        FD->setInvalidDecl();
3946        EnclosingDecl->setInvalidDecl();
3947        continue;
3948      }
3949      // Okay, we have a legal flexible array member at the end of the struct.
3950      if (Record)
3951        Record->setHasFlexibleArrayMember(true);
3952    } else if (!FDTy->isDependentType() &&
3953               RequireCompleteType(FD->getLocation(), FD->getType(),
3954                                   diag::err_field_incomplete)) {
3955      // Incomplete type
3956      FD->setInvalidDecl();
3957      EnclosingDecl->setInvalidDecl();
3958      continue;
3959    } else if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
3960      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
3961        // If this is a member of a union, then entire union becomes "flexible".
3962        if (Record && Record->isUnion()) {
3963          Record->setHasFlexibleArrayMember(true);
3964        } else {
3965          // If this is a struct/class and this is not the last element, reject
3966          // it.  Note that GCC supports variable sized arrays in the middle of
3967          // structures.
3968          if (i != NumFields-1)
3969            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
3970              << FD->getDeclName();
3971          else {
3972            // We support flexible arrays at the end of structs in
3973            // other structs as an extension.
3974            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
3975              << FD->getDeclName();
3976            if (Record)
3977              Record->setHasFlexibleArrayMember(true);
3978          }
3979        }
3980      }
3981    } else if (FDTy->isObjCInterfaceType()) {
3982      /// A field cannot be an Objective-c object
3983      Diag(FD->getLocation(), diag::err_statically_allocated_object);
3984      FD->setInvalidDecl();
3985      EnclosingDecl->setInvalidDecl();
3986      continue;
3987    }
3988    // Keep track of the number of named members.
3989    if (FD->getIdentifier())
3990      ++NumNamedMembers;
3991  }
3992
3993  // Okay, we successfully defined 'Record'.
3994  if (Record) {
3995    Record->completeDefinition(Context);
3996  } else {
3997    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
3998    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
3999      ID->setIVarList(ClsFields, RecFields.size(), Context);
4000      ID->setLocEnd(RBrac);
4001
4002      // Must enforce the rule that ivars in the base classes may not be
4003      // duplicates.
4004      if (ID->getSuperClass()) {
4005        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
4006             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
4007          ObjCIvarDecl* Ivar = (*IVI);
4008          IdentifierInfo *II = Ivar->getIdentifier();
4009          ObjCIvarDecl* prevIvar =
4010            ID->getSuperClass()->lookupInstanceVariable(Context, II);
4011          if (prevIvar) {
4012            Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
4013            Diag(prevIvar->getLocation(), diag::note_previous_declaration);
4014          }
4015        }
4016      }
4017    } else if (ObjCImplementationDecl *IMPDecl =
4018                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
4019      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
4020      for (unsigned I = 0, N = RecFields.size(); I != N; ++I) {
4021        // FIXME: Set the DeclContext correctly when we build the
4022        // declarations.
4023        ClsFields[I]->setLexicalDeclContext(IMPDecl);
4024        IMPDecl->addDecl(Context, ClsFields[I]);
4025      }
4026      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
4027    }
4028  }
4029
4030  if (Attr)
4031    ProcessDeclAttributeList(Record, Attr);
4032}
4033
4034EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
4035                                          EnumConstantDecl *LastEnumConst,
4036                                          SourceLocation IdLoc,
4037                                          IdentifierInfo *Id,
4038                                          ExprArg val) {
4039  Expr *Val = (Expr *)val.get();
4040
4041  llvm::APSInt EnumVal(32);
4042  QualType EltTy;
4043  if (Val && !Val->isTypeDependent()) {
4044    // Make sure to promote the operand type to int.
4045    UsualUnaryConversions(Val);
4046    if (Val != val.get()) {
4047      val.release();
4048      val = Val;
4049    }
4050
4051    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
4052    SourceLocation ExpLoc;
4053    if (!Val->isValueDependent() &&
4054        VerifyIntegerConstantExpression(Val, &EnumVal)) {
4055      Val = 0;
4056    } else {
4057      EltTy = Val->getType();
4058    }
4059  }
4060
4061  if (!Val) {
4062    if (LastEnumConst) {
4063      // Assign the last value + 1.
4064      EnumVal = LastEnumConst->getInitVal();
4065      ++EnumVal;
4066
4067      // Check for overflow on increment.
4068      if (EnumVal < LastEnumConst->getInitVal())
4069        Diag(IdLoc, diag::warn_enum_value_overflow);
4070
4071      EltTy = LastEnumConst->getType();
4072    } else {
4073      // First value, set to zero.
4074      EltTy = Context.IntTy;
4075      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
4076    }
4077  }
4078
4079  val.release();
4080  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
4081                                  Val, EnumVal);
4082}
4083
4084
4085Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
4086                                        DeclPtrTy lastEnumConst,
4087                                        SourceLocation IdLoc,
4088                                        IdentifierInfo *Id,
4089                                        SourceLocation EqualLoc, ExprTy *val) {
4090  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
4091  EnumConstantDecl *LastEnumConst =
4092    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
4093  Expr *Val = static_cast<Expr*>(val);
4094
4095  // The scope passed in may not be a decl scope.  Zip up the scope tree until
4096  // we find one that is.
4097  S = getNonFieldDeclScope(S);
4098
4099  // Verify that there isn't already something declared with this name in this
4100  // scope.
4101  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
4102  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4103    // Maybe we will complain about the shadowed template parameter.
4104    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
4105    // Just pretend that we didn't see the previous declaration.
4106    PrevDecl = 0;
4107  }
4108
4109  if (PrevDecl) {
4110    // When in C++, we may get a TagDecl with the same name; in this case the
4111    // enum constant will 'hide' the tag.
4112    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
4113           "Received TagDecl when not in C++!");
4114    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
4115      if (isa<EnumConstantDecl>(PrevDecl))
4116        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
4117      else
4118        Diag(IdLoc, diag::err_redefinition) << Id;
4119      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4120      if (Val) Val->Destroy(Context);
4121      return DeclPtrTy();
4122    }
4123  }
4124
4125  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
4126                                            IdLoc, Id, Owned(Val));
4127
4128  // Register this decl in the current scope stack.
4129  if (New)
4130    PushOnScopeChains(New, S);
4131
4132  return DeclPtrTy::make(New);
4133}
4134
4135// FIXME: For consistency with ActOnFields(), we should have the parser
4136// pass in the source location for the left/right braces.
4137void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclPtrTy EnumDeclX,
4138                         DeclPtrTy *Elements, unsigned NumElements) {
4139  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
4140  QualType EnumType = Context.getTypeDeclType(Enum);
4141
4142  // TODO: If the result value doesn't fit in an int, it must be a long or long
4143  // long value.  ISO C does not support this, but GCC does as an extension,
4144  // emit a warning.
4145  unsigned IntWidth = Context.Target.getIntWidth();
4146
4147  // Verify that all the values are okay, compute the size of the values, and
4148  // reverse the list.
4149  unsigned NumNegativeBits = 0;
4150  unsigned NumPositiveBits = 0;
4151
4152  // Keep track of whether all elements have type int.
4153  bool AllElementsInt = true;
4154
4155  for (unsigned i = 0; i != NumElements; ++i) {
4156    EnumConstantDecl *ECD =
4157      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
4158    if (!ECD) continue;  // Already issued a diagnostic.
4159
4160    // If the enum value doesn't fit in an int, emit an extension warning.
4161    const llvm::APSInt &InitVal = ECD->getInitVal();
4162    assert(InitVal.getBitWidth() >= IntWidth &&
4163           "Should have promoted value to int");
4164    if (InitVal.getBitWidth() > IntWidth) {
4165      llvm::APSInt V(InitVal);
4166      V.trunc(IntWidth);
4167      V.extend(InitVal.getBitWidth());
4168      if (V != InitVal)
4169        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
4170          << InitVal.toString(10);
4171    }
4172
4173    // Keep track of the size of positive and negative values.
4174    if (InitVal.isUnsigned() || InitVal.isNonNegative())
4175      NumPositiveBits = std::max(NumPositiveBits,
4176                                 (unsigned)InitVal.getActiveBits());
4177    else
4178      NumNegativeBits = std::max(NumNegativeBits,
4179                                 (unsigned)InitVal.getMinSignedBits());
4180
4181    // Keep track of whether every enum element has type int (very commmon).
4182    if (AllElementsInt)
4183      AllElementsInt = ECD->getType() == Context.IntTy;
4184  }
4185
4186  // Figure out the type that should be used for this enum.
4187  // FIXME: Support attribute(packed) on enums and -fshort-enums.
4188  QualType BestType;
4189  unsigned BestWidth;
4190
4191  if (NumNegativeBits) {
4192    // If there is a negative value, figure out the smallest integer type (of
4193    // int/long/longlong) that fits.
4194    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
4195      BestType = Context.IntTy;
4196      BestWidth = IntWidth;
4197    } else {
4198      BestWidth = Context.Target.getLongWidth();
4199
4200      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
4201        BestType = Context.LongTy;
4202      else {
4203        BestWidth = Context.Target.getLongLongWidth();
4204
4205        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
4206          Diag(Enum->getLocation(), diag::warn_enum_too_large);
4207        BestType = Context.LongLongTy;
4208      }
4209    }
4210  } else {
4211    // If there is no negative value, figure out which of uint, ulong, ulonglong
4212    // fits.
4213    if (NumPositiveBits <= IntWidth) {
4214      BestType = Context.UnsignedIntTy;
4215      BestWidth = IntWidth;
4216    } else if (NumPositiveBits <=
4217               (BestWidth = Context.Target.getLongWidth())) {
4218      BestType = Context.UnsignedLongTy;
4219    } else {
4220      BestWidth = Context.Target.getLongLongWidth();
4221      assert(NumPositiveBits <= BestWidth &&
4222             "How could an initializer get larger than ULL?");
4223      BestType = Context.UnsignedLongLongTy;
4224    }
4225  }
4226
4227  // Loop over all of the enumerator constants, changing their types to match
4228  // the type of the enum if needed.
4229  for (unsigned i = 0; i != NumElements; ++i) {
4230    EnumConstantDecl *ECD =
4231      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
4232    if (!ECD) continue;  // Already issued a diagnostic.
4233
4234    // Standard C says the enumerators have int type, but we allow, as an
4235    // extension, the enumerators to be larger than int size.  If each
4236    // enumerator value fits in an int, type it as an int, otherwise type it the
4237    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
4238    // that X has type 'int', not 'unsigned'.
4239    if (ECD->getType() == Context.IntTy) {
4240      // Make sure the init value is signed.
4241      llvm::APSInt IV = ECD->getInitVal();
4242      IV.setIsSigned(true);
4243      ECD->setInitVal(IV);
4244
4245      if (getLangOptions().CPlusPlus)
4246        // C++ [dcl.enum]p4: Following the closing brace of an
4247        // enum-specifier, each enumerator has the type of its
4248        // enumeration.
4249        ECD->setType(EnumType);
4250      continue;  // Already int type.
4251    }
4252
4253    // Determine whether the value fits into an int.
4254    llvm::APSInt InitVal = ECD->getInitVal();
4255    bool FitsInInt;
4256    if (InitVal.isUnsigned() || !InitVal.isNegative())
4257      FitsInInt = InitVal.getActiveBits() < IntWidth;
4258    else
4259      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
4260
4261    // If it fits into an integer type, force it.  Otherwise force it to match
4262    // the enum decl type.
4263    QualType NewTy;
4264    unsigned NewWidth;
4265    bool NewSign;
4266    if (FitsInInt) {
4267      NewTy = Context.IntTy;
4268      NewWidth = IntWidth;
4269      NewSign = true;
4270    } else if (ECD->getType() == BestType) {
4271      // Already the right type!
4272      if (getLangOptions().CPlusPlus)
4273        // C++ [dcl.enum]p4: Following the closing brace of an
4274        // enum-specifier, each enumerator has the type of its
4275        // enumeration.
4276        ECD->setType(EnumType);
4277      continue;
4278    } else {
4279      NewTy = BestType;
4280      NewWidth = BestWidth;
4281      NewSign = BestType->isSignedIntegerType();
4282    }
4283
4284    // Adjust the APSInt value.
4285    InitVal.extOrTrunc(NewWidth);
4286    InitVal.setIsSigned(NewSign);
4287    ECD->setInitVal(InitVal);
4288
4289    // Adjust the Expr initializer and type.
4290    if (ECD->getInitExpr())
4291      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy, ECD->getInitExpr(),
4292                                                      /*isLvalue=*/false));
4293    if (getLangOptions().CPlusPlus)
4294      // C++ [dcl.enum]p4: Following the closing brace of an
4295      // enum-specifier, each enumerator has the type of its
4296      // enumeration.
4297      ECD->setType(EnumType);
4298    else
4299      ECD->setType(NewTy);
4300  }
4301
4302  Enum->completeDefinition(Context, BestType);
4303}
4304
4305Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
4306                                            ExprArg expr) {
4307  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr.release());
4308
4309  return DeclPtrTy::make(FileScopeAsmDecl::Create(Context, CurContext,
4310                                                  Loc, AsmString));
4311}
4312
4313