SemaDecl.cpp revision 337ec3d0e8cb24a591ecbecdc0a995a167f6af01
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/AST/APValue.h"
21#include "clang/AST/ASTConsumer.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclCXX.h"
25#include "clang/AST/DeclObjC.h"
26#include "clang/AST/DeclTemplate.h"
27#include "clang/AST/ExprCXX.h"
28#include "clang/AST/StmtCXX.h"
29#include "clang/Sema/DeclSpec.h"
30#include "clang/Sema/ParsedTemplate.h"
31#include "clang/Parse/ParseDiagnostic.h"
32#include "clang/Basic/PartialDiagnostic.h"
33#include "clang/Basic/SourceManager.h"
34#include "clang/Basic/TargetInfo.h"
35// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
36#include "clang/Lex/Preprocessor.h"
37#include "clang/Lex/HeaderSearch.h"
38#include "llvm/ADT/Triple.h"
39#include <algorithm>
40#include <cstring>
41#include <functional>
42using namespace clang;
43using namespace sema;
44
45Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr) {
46  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
47}
48
49/// \brief If the identifier refers to a type name within this scope,
50/// return the declaration of that type.
51///
52/// This routine performs ordinary name lookup of the identifier II
53/// within the given scope, with optional C++ scope specifier SS, to
54/// determine whether the name refers to a type. If so, returns an
55/// opaque pointer (actually a QualType) corresponding to that
56/// type. Otherwise, returns NULL.
57///
58/// If name lookup results in an ambiguity, this routine will complain
59/// and then return NULL.
60ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
61                             Scope *S, CXXScopeSpec *SS,
62                             bool isClassName,
63                             ParsedType ObjectTypePtr) {
64  // Determine where we will perform name lookup.
65  DeclContext *LookupCtx = 0;
66  if (ObjectTypePtr) {
67    QualType ObjectType = ObjectTypePtr.get();
68    if (ObjectType->isRecordType())
69      LookupCtx = computeDeclContext(ObjectType);
70  } else if (SS && SS->isNotEmpty()) {
71    LookupCtx = computeDeclContext(*SS, false);
72
73    if (!LookupCtx) {
74      if (isDependentScopeSpecifier(*SS)) {
75        // C++ [temp.res]p3:
76        //   A qualified-id that refers to a type and in which the
77        //   nested-name-specifier depends on a template-parameter (14.6.2)
78        //   shall be prefixed by the keyword typename to indicate that the
79        //   qualified-id denotes a type, forming an
80        //   elaborated-type-specifier (7.1.5.3).
81        //
82        // We therefore do not perform any name lookup if the result would
83        // refer to a member of an unknown specialization.
84        if (!isClassName)
85          return ParsedType();
86
87        // We know from the grammar that this name refers to a type,
88        // so build a dependent node to describe the type.
89        QualType T =
90          CheckTypenameType(ETK_None, SS->getScopeRep(), II,
91                            SourceLocation(), SS->getRange(), NameLoc);
92        return ParsedType::make(T);
93      }
94
95      return ParsedType();
96    }
97
98    if (!LookupCtx->isDependentContext() &&
99        RequireCompleteDeclContext(*SS, LookupCtx))
100      return ParsedType();
101  }
102
103  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
104  // lookup for class-names.
105  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
106                                      LookupOrdinaryName;
107  LookupResult Result(*this, &II, NameLoc, Kind);
108  if (LookupCtx) {
109    // Perform "qualified" name lookup into the declaration context we
110    // computed, which is either the type of the base of a member access
111    // expression or the declaration context associated with a prior
112    // nested-name-specifier.
113    LookupQualifiedName(Result, LookupCtx);
114
115    if (ObjectTypePtr && Result.empty()) {
116      // C++ [basic.lookup.classref]p3:
117      //   If the unqualified-id is ~type-name, the type-name is looked up
118      //   in the context of the entire postfix-expression. If the type T of
119      //   the object expression is of a class type C, the type-name is also
120      //   looked up in the scope of class C. At least one of the lookups shall
121      //   find a name that refers to (possibly cv-qualified) T.
122      LookupName(Result, S);
123    }
124  } else {
125    // Perform unqualified name lookup.
126    LookupName(Result, S);
127  }
128
129  NamedDecl *IIDecl = 0;
130  switch (Result.getResultKind()) {
131  case LookupResult::NotFound:
132  case LookupResult::NotFoundInCurrentInstantiation:
133  case LookupResult::FoundOverloaded:
134  case LookupResult::FoundUnresolvedValue:
135    Result.suppressDiagnostics();
136    return ParsedType();
137
138  case LookupResult::Ambiguous:
139    // Recover from type-hiding ambiguities by hiding the type.  We'll
140    // do the lookup again when looking for an object, and we can
141    // diagnose the error then.  If we don't do this, then the error
142    // about hiding the type will be immediately followed by an error
143    // that only makes sense if the identifier was treated like a type.
144    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
145      Result.suppressDiagnostics();
146      return ParsedType();
147    }
148
149    // Look to see if we have a type anywhere in the list of results.
150    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
151         Res != ResEnd; ++Res) {
152      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
153        if (!IIDecl ||
154            (*Res)->getLocation().getRawEncoding() <
155              IIDecl->getLocation().getRawEncoding())
156          IIDecl = *Res;
157      }
158    }
159
160    if (!IIDecl) {
161      // None of the entities we found is a type, so there is no way
162      // to even assume that the result is a type. In this case, don't
163      // complain about the ambiguity. The parser will either try to
164      // perform this lookup again (e.g., as an object name), which
165      // will produce the ambiguity, or will complain that it expected
166      // a type name.
167      Result.suppressDiagnostics();
168      return ParsedType();
169    }
170
171    // We found a type within the ambiguous lookup; diagnose the
172    // ambiguity and then return that type. This might be the right
173    // answer, or it might not be, but it suppresses any attempt to
174    // perform the name lookup again.
175    break;
176
177  case LookupResult::Found:
178    IIDecl = Result.getFoundDecl();
179    break;
180  }
181
182  assert(IIDecl && "Didn't find decl");
183
184  QualType T;
185  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
186    DiagnoseUseOfDecl(IIDecl, NameLoc);
187
188    if (T.isNull())
189      T = Context.getTypeDeclType(TD);
190
191    if (SS)
192      T = getElaboratedType(ETK_None, *SS, T);
193
194  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
195    T = Context.getObjCInterfaceType(IDecl);
196  } else {
197    // If it's not plausibly a type, suppress diagnostics.
198    Result.suppressDiagnostics();
199    return ParsedType();
200  }
201
202  return ParsedType::make(T);
203}
204
205/// isTagName() - This method is called *for error recovery purposes only*
206/// to determine if the specified name is a valid tag name ("struct foo").  If
207/// so, this returns the TST for the tag corresponding to it (TST_enum,
208/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
209/// where the user forgot to specify the tag.
210DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
211  // Do a tag name lookup in this scope.
212  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
213  LookupName(R, S, false);
214  R.suppressDiagnostics();
215  if (R.getResultKind() == LookupResult::Found)
216    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
217      switch (TD->getTagKind()) {
218      default:         return DeclSpec::TST_unspecified;
219      case TTK_Struct: return DeclSpec::TST_struct;
220      case TTK_Union:  return DeclSpec::TST_union;
221      case TTK_Class:  return DeclSpec::TST_class;
222      case TTK_Enum:   return DeclSpec::TST_enum;
223      }
224    }
225
226  return DeclSpec::TST_unspecified;
227}
228
229bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
230                                   SourceLocation IILoc,
231                                   Scope *S,
232                                   CXXScopeSpec *SS,
233                                   ParsedType &SuggestedType) {
234  // We don't have anything to suggest (yet).
235  SuggestedType = ParsedType();
236
237  // There may have been a typo in the name of the type. Look up typo
238  // results, in case we have something that we can suggest.
239  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
240                      NotForRedeclaration);
241
242  if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
243    if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
244      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
245          !Result->isInvalidDecl()) {
246        // We found a similarly-named type or interface; suggest that.
247        if (!SS || !SS->isSet())
248          Diag(IILoc, diag::err_unknown_typename_suggest)
249            << &II << Lookup.getLookupName()
250            << FixItHint::CreateReplacement(SourceRange(IILoc),
251                                            Result->getNameAsString());
252        else if (DeclContext *DC = computeDeclContext(*SS, false))
253          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
254            << &II << DC << Lookup.getLookupName() << SS->getRange()
255            << FixItHint::CreateReplacement(SourceRange(IILoc),
256                                            Result->getNameAsString());
257        else
258          llvm_unreachable("could not have corrected a typo here");
259
260        Diag(Result->getLocation(), diag::note_previous_decl)
261          << Result->getDeclName();
262
263        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS);
264        return true;
265      }
266    } else if (Lookup.empty()) {
267      // We corrected to a keyword.
268      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
269      Diag(IILoc, diag::err_unknown_typename_suggest)
270        << &II << Corrected;
271      return true;
272    }
273  }
274
275  if (getLangOptions().CPlusPlus) {
276    // See if II is a class template that the user forgot to pass arguments to.
277    UnqualifiedId Name;
278    Name.setIdentifier(&II, IILoc);
279    CXXScopeSpec EmptySS;
280    TemplateTy TemplateResult;
281    bool MemberOfUnknownSpecialization;
282    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
283                       Name, ParsedType(), true, TemplateResult,
284                       MemberOfUnknownSpecialization) == TNK_Type_template) {
285      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
286      Diag(IILoc, diag::err_template_missing_args) << TplName;
287      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
288        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
289          << TplDecl->getTemplateParameters()->getSourceRange();
290      }
291      return true;
292    }
293  }
294
295  // FIXME: Should we move the logic that tries to recover from a missing tag
296  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
297
298  if (!SS || (!SS->isSet() && !SS->isInvalid()))
299    Diag(IILoc, diag::err_unknown_typename) << &II;
300  else if (DeclContext *DC = computeDeclContext(*SS, false))
301    Diag(IILoc, diag::err_typename_nested_not_found)
302      << &II << DC << SS->getRange();
303  else if (isDependentScopeSpecifier(*SS)) {
304    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
305      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
306      << SourceRange(SS->getRange().getBegin(), IILoc)
307      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
308    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
309  } else {
310    assert(SS && SS->isInvalid() &&
311           "Invalid scope specifier has already been diagnosed");
312  }
313
314  return true;
315}
316
317// Determines the context to return to after temporarily entering a
318// context.  This depends in an unnecessarily complicated way on the
319// exact ordering of callbacks from the parser.
320DeclContext *Sema::getContainingDC(DeclContext *DC) {
321
322  // Functions defined inline within classes aren't parsed until we've
323  // finished parsing the top-level class, so the top-level class is
324  // the context we'll need to return to.
325  if (isa<FunctionDecl>(DC)) {
326    DC = DC->getLexicalParent();
327
328    // A function not defined within a class will always return to its
329    // lexical context.
330    if (!isa<CXXRecordDecl>(DC))
331      return DC;
332
333    // A C++ inline method/friend is parsed *after* the topmost class
334    // it was declared in is fully parsed ("complete");  the topmost
335    // class is the context we need to return to.
336    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
337      DC = RD;
338
339    // Return the declaration context of the topmost class the inline method is
340    // declared in.
341    return DC;
342  }
343
344  // ObjCMethodDecls are parsed (for some reason) outside the context
345  // of the class.
346  if (isa<ObjCMethodDecl>(DC))
347    return DC->getLexicalParent()->getLexicalParent();
348
349  return DC->getLexicalParent();
350}
351
352void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
353  assert(getContainingDC(DC) == CurContext &&
354      "The next DeclContext should be lexically contained in the current one.");
355  CurContext = DC;
356  S->setEntity(DC);
357}
358
359void Sema::PopDeclContext() {
360  assert(CurContext && "DeclContext imbalance!");
361
362  CurContext = getContainingDC(CurContext);
363  assert(CurContext && "Popped translation unit!");
364}
365
366/// EnterDeclaratorContext - Used when we must lookup names in the context
367/// of a declarator's nested name specifier.
368///
369void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
370  // C++0x [basic.lookup.unqual]p13:
371  //   A name used in the definition of a static data member of class
372  //   X (after the qualified-id of the static member) is looked up as
373  //   if the name was used in a member function of X.
374  // C++0x [basic.lookup.unqual]p14:
375  //   If a variable member of a namespace is defined outside of the
376  //   scope of its namespace then any name used in the definition of
377  //   the variable member (after the declarator-id) is looked up as
378  //   if the definition of the variable member occurred in its
379  //   namespace.
380  // Both of these imply that we should push a scope whose context
381  // is the semantic context of the declaration.  We can't use
382  // PushDeclContext here because that context is not necessarily
383  // lexically contained in the current context.  Fortunately,
384  // the containing scope should have the appropriate information.
385
386  assert(!S->getEntity() && "scope already has entity");
387
388#ifndef NDEBUG
389  Scope *Ancestor = S->getParent();
390  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
391  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
392#endif
393
394  CurContext = DC;
395  S->setEntity(DC);
396}
397
398void Sema::ExitDeclaratorContext(Scope *S) {
399  assert(S->getEntity() == CurContext && "Context imbalance!");
400
401  // Switch back to the lexical context.  The safety of this is
402  // enforced by an assert in EnterDeclaratorContext.
403  Scope *Ancestor = S->getParent();
404  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
405  CurContext = (DeclContext*) Ancestor->getEntity();
406
407  // We don't need to do anything with the scope, which is going to
408  // disappear.
409}
410
411/// \brief Determine whether we allow overloading of the function
412/// PrevDecl with another declaration.
413///
414/// This routine determines whether overloading is possible, not
415/// whether some new function is actually an overload. It will return
416/// true in C++ (where we can always provide overloads) or, as an
417/// extension, in C when the previous function is already an
418/// overloaded function declaration or has the "overloadable"
419/// attribute.
420static bool AllowOverloadingOfFunction(LookupResult &Previous,
421                                       ASTContext &Context) {
422  if (Context.getLangOptions().CPlusPlus)
423    return true;
424
425  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
426    return true;
427
428  return (Previous.getResultKind() == LookupResult::Found
429          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
430}
431
432/// Add this decl to the scope shadowed decl chains.
433void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
434  // Move up the scope chain until we find the nearest enclosing
435  // non-transparent context. The declaration will be introduced into this
436  // scope.
437  while (S->getEntity() &&
438         ((DeclContext *)S->getEntity())->isTransparentContext())
439    S = S->getParent();
440
441  // Add scoped declarations into their context, so that they can be
442  // found later. Declarations without a context won't be inserted
443  // into any context.
444  if (AddToContext)
445    CurContext->addDecl(D);
446
447  // Out-of-line definitions shouldn't be pushed into scope in C++.
448  // Out-of-line variable and function definitions shouldn't even in C.
449  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
450      D->isOutOfLine())
451    return;
452
453  // Template instantiations should also not be pushed into scope.
454  if (isa<FunctionDecl>(D) &&
455      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
456    return;
457
458  // If this replaces anything in the current scope,
459  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
460                               IEnd = IdResolver.end();
461  for (; I != IEnd; ++I) {
462    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
463      S->RemoveDecl(*I);
464      IdResolver.RemoveDecl(*I);
465
466      // Should only need to replace one decl.
467      break;
468    }
469  }
470
471  S->AddDecl(D);
472  IdResolver.AddDecl(D);
473}
474
475bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
476  return IdResolver.isDeclInScope(D, Ctx, Context, S);
477}
478
479Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
480  DeclContext *TargetDC = DC->getPrimaryContext();
481  do {
482    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
483      if (ScopeDC->getPrimaryContext() == TargetDC)
484        return S;
485  } while ((S = S->getParent()));
486
487  return 0;
488}
489
490static bool isOutOfScopePreviousDeclaration(NamedDecl *,
491                                            DeclContext*,
492                                            ASTContext&);
493
494/// Filters out lookup results that don't fall within the given scope
495/// as determined by isDeclInScope.
496static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
497                                 DeclContext *Ctx, Scope *S,
498                                 bool ConsiderLinkage) {
499  LookupResult::Filter F = R.makeFilter();
500  while (F.hasNext()) {
501    NamedDecl *D = F.next();
502
503    if (SemaRef.isDeclInScope(D, Ctx, S))
504      continue;
505
506    if (ConsiderLinkage &&
507        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
508      continue;
509
510    F.erase();
511  }
512
513  F.done();
514}
515
516static bool isUsingDecl(NamedDecl *D) {
517  return isa<UsingShadowDecl>(D) ||
518         isa<UnresolvedUsingTypenameDecl>(D) ||
519         isa<UnresolvedUsingValueDecl>(D);
520}
521
522/// Removes using shadow declarations from the lookup results.
523static void RemoveUsingDecls(LookupResult &R) {
524  LookupResult::Filter F = R.makeFilter();
525  while (F.hasNext())
526    if (isUsingDecl(F.next()))
527      F.erase();
528
529  F.done();
530}
531
532/// \brief Check for this common pattern:
533/// @code
534/// class S {
535///   S(const S&); // DO NOT IMPLEMENT
536///   void operator=(const S&); // DO NOT IMPLEMENT
537/// };
538/// @endcode
539static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
540  // FIXME: Should check for private access too but access is set after we get
541  // the decl here.
542  if (D->isThisDeclarationADefinition())
543    return false;
544
545  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
546    return CD->isCopyConstructor();
547  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
548    return Method->isCopyAssignmentOperator();
549  return false;
550}
551
552bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
553  assert(D);
554
555  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
556    return false;
557
558  // Ignore class templates.
559  if (D->getDeclContext()->isDependentContext())
560    return false;
561
562  // We warn for unused decls internal to the translation unit.
563  if (D->getLinkage() == ExternalLinkage)
564    return false;
565
566  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
567    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
568      return false;
569
570    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
571      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
572        return false;
573    } else {
574      // 'static inline' functions are used in headers; don't warn.
575      if (FD->getStorageClass() == SC_Static &&
576          FD->isInlineSpecified())
577        return false;
578    }
579
580    if (FD->isThisDeclarationADefinition())
581      return !Context.DeclMustBeEmitted(FD);
582    return true;
583  }
584
585  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
586    if (VD->isStaticDataMember() &&
587        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
588      return false;
589
590    if ( VD->isFileVarDecl() &&
591        !VD->getType().isConstant(Context))
592      return !Context.DeclMustBeEmitted(VD);
593  }
594
595   return false;
596 }
597
598 void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
599  if (!D)
600    return;
601
602  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
603    const FunctionDecl *First = FD->getFirstDeclaration();
604    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
605      return; // First should already be in the vector.
606  }
607
608  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
609    const VarDecl *First = VD->getFirstDeclaration();
610    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
611      return; // First should already be in the vector.
612  }
613
614   if (ShouldWarnIfUnusedFileScopedDecl(D))
615     UnusedFileScopedDecls.push_back(D);
616 }
617
618static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
619  if (D->isInvalidDecl())
620    return false;
621
622  if (D->isUsed() || D->hasAttr<UnusedAttr>())
623    return false;
624
625  // White-list anything that isn't a local variable.
626  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
627      !D->getDeclContext()->isFunctionOrMethod())
628    return false;
629
630  // Types of valid local variables should be complete, so this should succeed.
631  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
632
633    // White-list anything with an __attribute__((unused)) type.
634    QualType Ty = VD->getType();
635
636    // Only look at the outermost level of typedef.
637    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
638      if (TT->getDecl()->hasAttr<UnusedAttr>())
639        return false;
640    }
641
642    // If we failed to complete the type for some reason, or if the type is
643    // dependent, don't diagnose the variable.
644    if (Ty->isIncompleteType() || Ty->isDependentType())
645      return false;
646
647    if (const TagType *TT = Ty->getAs<TagType>()) {
648      const TagDecl *Tag = TT->getDecl();
649      if (Tag->hasAttr<UnusedAttr>())
650        return false;
651
652      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
653        // FIXME: Checking for the presence of a user-declared constructor
654        // isn't completely accurate; we'd prefer to check that the initializer
655        // has no side effects.
656        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
657          return false;
658      }
659    }
660
661    // TODO: __attribute__((unused)) templates?
662  }
663
664  return true;
665}
666
667void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
668  if (!ShouldDiagnoseUnusedDecl(D))
669    return;
670
671  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
672    Diag(D->getLocation(), diag::warn_unused_exception_param)
673    << D->getDeclName();
674  else
675    Diag(D->getLocation(), diag::warn_unused_variable)
676    << D->getDeclName();
677}
678
679void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
680  if (S->decl_empty()) return;
681  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
682         "Scope shouldn't contain decls!");
683
684  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
685       I != E; ++I) {
686    Decl *TmpD = (*I);
687    assert(TmpD && "This decl didn't get pushed??");
688
689    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
690    NamedDecl *D = cast<NamedDecl>(TmpD);
691
692    if (!D->getDeclName()) continue;
693
694    // Diagnose unused variables in this scope.
695    if (S->getNumErrorsAtStart() == getDiagnostics().getNumErrors())
696      DiagnoseUnusedDecl(D);
697
698    // Remove this name from our lexical scope.
699    IdResolver.RemoveDecl(D);
700  }
701}
702
703/// \brief Look for an Objective-C class in the translation unit.
704///
705/// \param Id The name of the Objective-C class we're looking for. If
706/// typo-correction fixes this name, the Id will be updated
707/// to the fixed name.
708///
709/// \param IdLoc The location of the name in the translation unit.
710///
711/// \param TypoCorrection If true, this routine will attempt typo correction
712/// if there is no class with the given name.
713///
714/// \returns The declaration of the named Objective-C class, or NULL if the
715/// class could not be found.
716ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
717                                              SourceLocation IdLoc,
718                                              bool TypoCorrection) {
719  // The third "scope" argument is 0 since we aren't enabling lazy built-in
720  // creation from this context.
721  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
722
723  if (!IDecl && TypoCorrection) {
724    // Perform typo correction at the given location, but only if we
725    // find an Objective-C class name.
726    LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
727    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
728        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
729      Diag(IdLoc, diag::err_undef_interface_suggest)
730        << Id << IDecl->getDeclName()
731        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
732      Diag(IDecl->getLocation(), diag::note_previous_decl)
733        << IDecl->getDeclName();
734
735      Id = IDecl->getIdentifier();
736    }
737  }
738
739  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
740}
741
742/// getNonFieldDeclScope - Retrieves the innermost scope, starting
743/// from S, where a non-field would be declared. This routine copes
744/// with the difference between C and C++ scoping rules in structs and
745/// unions. For example, the following code is well-formed in C but
746/// ill-formed in C++:
747/// @code
748/// struct S6 {
749///   enum { BAR } e;
750/// };
751///
752/// void test_S6() {
753///   struct S6 a;
754///   a.e = BAR;
755/// }
756/// @endcode
757/// For the declaration of BAR, this routine will return a different
758/// scope. The scope S will be the scope of the unnamed enumeration
759/// within S6. In C++, this routine will return the scope associated
760/// with S6, because the enumeration's scope is a transparent
761/// context but structures can contain non-field names. In C, this
762/// routine will return the translation unit scope, since the
763/// enumeration's scope is a transparent context and structures cannot
764/// contain non-field names.
765Scope *Sema::getNonFieldDeclScope(Scope *S) {
766  while (((S->getFlags() & Scope::DeclScope) == 0) ||
767         (S->getEntity() &&
768          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
769         (S->isClassScope() && !getLangOptions().CPlusPlus))
770    S = S->getParent();
771  return S;
772}
773
774/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
775/// file scope.  lazily create a decl for it. ForRedeclaration is true
776/// if we're creating this built-in in anticipation of redeclaring the
777/// built-in.
778NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
779                                     Scope *S, bool ForRedeclaration,
780                                     SourceLocation Loc) {
781  Builtin::ID BID = (Builtin::ID)bid;
782
783  ASTContext::GetBuiltinTypeError Error;
784  QualType R = Context.GetBuiltinType(BID, Error);
785  switch (Error) {
786  case ASTContext::GE_None:
787    // Okay
788    break;
789
790  case ASTContext::GE_Missing_stdio:
791    if (ForRedeclaration)
792      Diag(Loc, diag::err_implicit_decl_requires_stdio)
793        << Context.BuiltinInfo.GetName(BID);
794    return 0;
795
796  case ASTContext::GE_Missing_setjmp:
797    if (ForRedeclaration)
798      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
799        << Context.BuiltinInfo.GetName(BID);
800    return 0;
801  }
802
803  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
804    Diag(Loc, diag::ext_implicit_lib_function_decl)
805      << Context.BuiltinInfo.GetName(BID)
806      << R;
807    if (Context.BuiltinInfo.getHeaderName(BID) &&
808        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
809          != Diagnostic::Ignored)
810      Diag(Loc, diag::note_please_include_header)
811        << Context.BuiltinInfo.getHeaderName(BID)
812        << Context.BuiltinInfo.GetName(BID);
813  }
814
815  FunctionDecl *New = FunctionDecl::Create(Context,
816                                           Context.getTranslationUnitDecl(),
817                                           Loc, II, R, /*TInfo=*/0,
818                                           SC_Extern,
819                                           SC_None, false,
820                                           /*hasPrototype=*/true);
821  New->setImplicit();
822
823  // Create Decl objects for each parameter, adding them to the
824  // FunctionDecl.
825  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
826    llvm::SmallVector<ParmVarDecl*, 16> Params;
827    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
828      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
829                                           FT->getArgType(i), /*TInfo=*/0,
830                                           SC_None, SC_None, 0));
831    New->setParams(Params.data(), Params.size());
832  }
833
834  AddKnownFunctionAttributes(New);
835
836  // TUScope is the translation-unit scope to insert this function into.
837  // FIXME: This is hideous. We need to teach PushOnScopeChains to
838  // relate Scopes to DeclContexts, and probably eliminate CurContext
839  // entirely, but we're not there yet.
840  DeclContext *SavedContext = CurContext;
841  CurContext = Context.getTranslationUnitDecl();
842  PushOnScopeChains(New, TUScope);
843  CurContext = SavedContext;
844  return New;
845}
846
847/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
848/// same name and scope as a previous declaration 'Old'.  Figure out
849/// how to resolve this situation, merging decls or emitting
850/// diagnostics as appropriate. If there was an error, set New to be invalid.
851///
852void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
853  // If the new decl is known invalid already, don't bother doing any
854  // merging checks.
855  if (New->isInvalidDecl()) return;
856
857  // Allow multiple definitions for ObjC built-in typedefs.
858  // FIXME: Verify the underlying types are equivalent!
859  if (getLangOptions().ObjC1) {
860    const IdentifierInfo *TypeID = New->getIdentifier();
861    switch (TypeID->getLength()) {
862    default: break;
863    case 2:
864      if (!TypeID->isStr("id"))
865        break;
866      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
867      // Install the built-in type for 'id', ignoring the current definition.
868      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
869      return;
870    case 5:
871      if (!TypeID->isStr("Class"))
872        break;
873      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
874      // Install the built-in type for 'Class', ignoring the current definition.
875      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
876      return;
877    case 3:
878      if (!TypeID->isStr("SEL"))
879        break;
880      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
881      // Install the built-in type for 'SEL', ignoring the current definition.
882      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
883      return;
884    case 8:
885      if (!TypeID->isStr("Protocol"))
886        break;
887      Context.setObjCProtoType(New->getUnderlyingType());
888      return;
889    }
890    // Fall through - the typedef name was not a builtin type.
891  }
892
893  // Verify the old decl was also a type.
894  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
895  if (!Old) {
896    Diag(New->getLocation(), diag::err_redefinition_different_kind)
897      << New->getDeclName();
898
899    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
900    if (OldD->getLocation().isValid())
901      Diag(OldD->getLocation(), diag::note_previous_definition);
902
903    return New->setInvalidDecl();
904  }
905
906  // If the old declaration is invalid, just give up here.
907  if (Old->isInvalidDecl())
908    return New->setInvalidDecl();
909
910  // Determine the "old" type we'll use for checking and diagnostics.
911  QualType OldType;
912  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
913    OldType = OldTypedef->getUnderlyingType();
914  else
915    OldType = Context.getTypeDeclType(Old);
916
917  // If the typedef types are not identical, reject them in all languages and
918  // with any extensions enabled.
919
920  if (OldType != New->getUnderlyingType() &&
921      Context.getCanonicalType(OldType) !=
922      Context.getCanonicalType(New->getUnderlyingType())) {
923    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
924      << New->getUnderlyingType() << OldType;
925    if (Old->getLocation().isValid())
926      Diag(Old->getLocation(), diag::note_previous_definition);
927    return New->setInvalidDecl();
928  }
929
930  // The types match.  Link up the redeclaration chain if the old
931  // declaration was a typedef.
932  // FIXME: this is a potential source of wierdness if the type
933  // spellings don't match exactly.
934  if (isa<TypedefDecl>(Old))
935    New->setPreviousDeclaration(cast<TypedefDecl>(Old));
936
937  if (getLangOptions().Microsoft)
938    return;
939
940  if (getLangOptions().CPlusPlus) {
941    // C++ [dcl.typedef]p2:
942    //   In a given non-class scope, a typedef specifier can be used to
943    //   redefine the name of any type declared in that scope to refer
944    //   to the type to which it already refers.
945    if (!isa<CXXRecordDecl>(CurContext))
946      return;
947
948    // C++0x [dcl.typedef]p4:
949    //   In a given class scope, a typedef specifier can be used to redefine
950    //   any class-name declared in that scope that is not also a typedef-name
951    //   to refer to the type to which it already refers.
952    //
953    // This wording came in via DR424, which was a correction to the
954    // wording in DR56, which accidentally banned code like:
955    //
956    //   struct S {
957    //     typedef struct A { } A;
958    //   };
959    //
960    // in the C++03 standard. We implement the C++0x semantics, which
961    // allow the above but disallow
962    //
963    //   struct S {
964    //     typedef int I;
965    //     typedef int I;
966    //   };
967    //
968    // since that was the intent of DR56.
969    if (!isa<TypedefDecl >(Old))
970      return;
971
972    Diag(New->getLocation(), diag::err_redefinition)
973      << New->getDeclName();
974    Diag(Old->getLocation(), diag::note_previous_definition);
975    return New->setInvalidDecl();
976  }
977
978  // If we have a redefinition of a typedef in C, emit a warning.  This warning
979  // is normally mapped to an error, but can be controlled with
980  // -Wtypedef-redefinition.  If either the original or the redefinition is
981  // in a system header, don't emit this for compatibility with GCC.
982  if (getDiagnostics().getSuppressSystemWarnings() &&
983      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
984       Context.getSourceManager().isInSystemHeader(New->getLocation())))
985    return;
986
987  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
988    << New->getDeclName();
989  Diag(Old->getLocation(), diag::note_previous_definition);
990  return;
991}
992
993/// DeclhasAttr - returns true if decl Declaration already has the target
994/// attribute.
995static bool
996DeclHasAttr(const Decl *D, const Attr *A) {
997  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
998  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
999    if ((*i)->getKind() == A->getKind()) {
1000      // FIXME: Don't hardcode this check
1001      if (OA && isa<OwnershipAttr>(*i))
1002        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1003      return true;
1004    }
1005
1006  return false;
1007}
1008
1009/// MergeDeclAttributes - append attributes from the Old decl to the New one.
1010static void MergeDeclAttributes(Decl *New, Decl *Old, ASTContext &C) {
1011  if (!Old->hasAttrs())
1012    return;
1013  // Ensure that any moving of objects within the allocated map is done before
1014  // we process them.
1015  if (!New->hasAttrs())
1016    New->setAttrs(AttrVec());
1017  for (Decl::attr_iterator i = Old->attr_begin(), e = Old->attr_end(); i != e;
1018       ++i) {
1019    // FIXME: Make this more general than just checking for Overloadable.
1020    if (!DeclHasAttr(New, *i) && (*i)->getKind() != attr::Overloadable) {
1021      Attr *NewAttr = (*i)->clone(C);
1022      NewAttr->setInherited(true);
1023      New->addAttr(NewAttr);
1024    }
1025  }
1026}
1027
1028namespace {
1029
1030/// Used in MergeFunctionDecl to keep track of function parameters in
1031/// C.
1032struct GNUCompatibleParamWarning {
1033  ParmVarDecl *OldParm;
1034  ParmVarDecl *NewParm;
1035  QualType PromotedType;
1036};
1037
1038}
1039
1040/// getSpecialMember - get the special member enum for a method.
1041Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1042  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1043    if (Ctor->isCopyConstructor())
1044      return Sema::CXXCopyConstructor;
1045
1046    return Sema::CXXConstructor;
1047  }
1048
1049  if (isa<CXXDestructorDecl>(MD))
1050    return Sema::CXXDestructor;
1051
1052  assert(MD->isCopyAssignmentOperator() &&
1053         "Must have copy assignment operator");
1054  return Sema::CXXCopyAssignment;
1055}
1056
1057/// canRedefineFunction - checks if a function can be redefined. Currently,
1058/// only extern inline functions can be redefined, and even then only in
1059/// GNU89 mode.
1060static bool canRedefineFunction(const FunctionDecl *FD,
1061                                const LangOptions& LangOpts) {
1062  return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
1063          FD->isInlineSpecified() &&
1064          FD->getStorageClass() == SC_Extern);
1065}
1066
1067/// MergeFunctionDecl - We just parsed a function 'New' from
1068/// declarator D which has the same name and scope as a previous
1069/// declaration 'Old'.  Figure out how to resolve this situation,
1070/// merging decls or emitting diagnostics as appropriate.
1071///
1072/// In C++, New and Old must be declarations that are not
1073/// overloaded. Use IsOverload to determine whether New and Old are
1074/// overloaded, and to select the Old declaration that New should be
1075/// merged with.
1076///
1077/// Returns true if there was an error, false otherwise.
1078bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1079  // Verify the old decl was also a function.
1080  FunctionDecl *Old = 0;
1081  if (FunctionTemplateDecl *OldFunctionTemplate
1082        = dyn_cast<FunctionTemplateDecl>(OldD))
1083    Old = OldFunctionTemplate->getTemplatedDecl();
1084  else
1085    Old = dyn_cast<FunctionDecl>(OldD);
1086  if (!Old) {
1087    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1088      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1089      Diag(Shadow->getTargetDecl()->getLocation(),
1090           diag::note_using_decl_target);
1091      Diag(Shadow->getUsingDecl()->getLocation(),
1092           diag::note_using_decl) << 0;
1093      return true;
1094    }
1095
1096    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1097      << New->getDeclName();
1098    Diag(OldD->getLocation(), diag::note_previous_definition);
1099    return true;
1100  }
1101
1102  // Determine whether the previous declaration was a definition,
1103  // implicit declaration, or a declaration.
1104  diag::kind PrevDiag;
1105  if (Old->isThisDeclarationADefinition())
1106    PrevDiag = diag::note_previous_definition;
1107  else if (Old->isImplicit())
1108    PrevDiag = diag::note_previous_implicit_declaration;
1109  else
1110    PrevDiag = diag::note_previous_declaration;
1111
1112  QualType OldQType = Context.getCanonicalType(Old->getType());
1113  QualType NewQType = Context.getCanonicalType(New->getType());
1114
1115  // Don't complain about this if we're in GNU89 mode and the old function
1116  // is an extern inline function.
1117  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1118      New->getStorageClass() == SC_Static &&
1119      Old->getStorageClass() != SC_Static &&
1120      !canRedefineFunction(Old, getLangOptions())) {
1121    Diag(New->getLocation(), diag::err_static_non_static)
1122      << New;
1123    Diag(Old->getLocation(), PrevDiag);
1124    return true;
1125  }
1126
1127  // If a function is first declared with a calling convention, but is
1128  // later declared or defined without one, the second decl assumes the
1129  // calling convention of the first.
1130  //
1131  // For the new decl, we have to look at the NON-canonical type to tell the
1132  // difference between a function that really doesn't have a calling
1133  // convention and one that is declared cdecl. That's because in
1134  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1135  // because it is the default calling convention.
1136  //
1137  // Note also that we DO NOT return at this point, because we still have
1138  // other tests to run.
1139  const FunctionType *OldType = OldQType->getAs<FunctionType>();
1140  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1141  const FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1142  const FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1143  if (OldTypeInfo.getCC() != CC_Default &&
1144      NewTypeInfo.getCC() == CC_Default) {
1145    NewQType = Context.getCallConvType(NewQType, OldTypeInfo.getCC());
1146    New->setType(NewQType);
1147    NewQType = Context.getCanonicalType(NewQType);
1148  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1149                                     NewTypeInfo.getCC())) {
1150    // Calling conventions really aren't compatible, so complain.
1151    Diag(New->getLocation(), diag::err_cconv_change)
1152      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1153      << (OldTypeInfo.getCC() == CC_Default)
1154      << (OldTypeInfo.getCC() == CC_Default ? "" :
1155          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1156    Diag(Old->getLocation(), diag::note_previous_declaration);
1157    return true;
1158  }
1159
1160  // FIXME: diagnose the other way around?
1161  if (OldType->getNoReturnAttr() && !NewType->getNoReturnAttr()) {
1162    NewQType = Context.getNoReturnType(NewQType);
1163    New->setType(NewQType);
1164    assert(NewQType.isCanonical());
1165  }
1166
1167  // Merge regparm attribute.
1168  if (OldType->getRegParmType() != NewType->getRegParmType()) {
1169    if (NewType->getRegParmType()) {
1170      Diag(New->getLocation(), diag::err_regparm_mismatch)
1171        << NewType->getRegParmType()
1172        << OldType->getRegParmType();
1173      Diag(Old->getLocation(), diag::note_previous_declaration);
1174      return true;
1175    }
1176
1177    NewQType = Context.getRegParmType(NewQType, OldType->getRegParmType());
1178    New->setType(NewQType);
1179    assert(NewQType.isCanonical());
1180  }
1181
1182  if (getLangOptions().CPlusPlus) {
1183    // (C++98 13.1p2):
1184    //   Certain function declarations cannot be overloaded:
1185    //     -- Function declarations that differ only in the return type
1186    //        cannot be overloaded.
1187    QualType OldReturnType
1188      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
1189    QualType NewReturnType
1190      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
1191    QualType ResQT;
1192    if (OldReturnType != NewReturnType) {
1193      if (NewReturnType->isObjCObjectPointerType()
1194          && OldReturnType->isObjCObjectPointerType())
1195        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1196      if (ResQT.isNull()) {
1197        Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1198        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1199        return true;
1200      }
1201      else
1202        NewQType = ResQT;
1203    }
1204
1205    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1206    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1207    if (OldMethod && NewMethod) {
1208      // Preserve triviality.
1209      NewMethod->setTrivial(OldMethod->isTrivial());
1210
1211      bool isFriend = NewMethod->getFriendObjectKind();
1212
1213      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1214        //    -- Member function declarations with the same name and the
1215        //       same parameter types cannot be overloaded if any of them
1216        //       is a static member function declaration.
1217        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1218          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1219          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1220          return true;
1221        }
1222
1223        // C++ [class.mem]p1:
1224        //   [...] A member shall not be declared twice in the
1225        //   member-specification, except that a nested class or member
1226        //   class template can be declared and then later defined.
1227        unsigned NewDiag;
1228        if (isa<CXXConstructorDecl>(OldMethod))
1229          NewDiag = diag::err_constructor_redeclared;
1230        else if (isa<CXXDestructorDecl>(NewMethod))
1231          NewDiag = diag::err_destructor_redeclared;
1232        else if (isa<CXXConversionDecl>(NewMethod))
1233          NewDiag = diag::err_conv_function_redeclared;
1234        else
1235          NewDiag = diag::err_member_redeclared;
1236
1237        Diag(New->getLocation(), NewDiag);
1238        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1239
1240      // Complain if this is an explicit declaration of a special
1241      // member that was initially declared implicitly.
1242      //
1243      // As an exception, it's okay to befriend such methods in order
1244      // to permit the implicit constructor/destructor/operator calls.
1245      } else if (OldMethod->isImplicit()) {
1246        if (isFriend) {
1247          NewMethod->setImplicit();
1248        } else {
1249          Diag(NewMethod->getLocation(),
1250               diag::err_definition_of_implicitly_declared_member)
1251            << New << getSpecialMember(OldMethod);
1252          return true;
1253        }
1254      }
1255    }
1256
1257    // (C++98 8.3.5p3):
1258    //   All declarations for a function shall agree exactly in both the
1259    //   return type and the parameter-type-list.
1260    // attributes should be ignored when comparing.
1261    if (Context.getNoReturnType(OldQType, false) ==
1262        Context.getNoReturnType(NewQType, false))
1263      return MergeCompatibleFunctionDecls(New, Old);
1264
1265    // Fall through for conflicting redeclarations and redefinitions.
1266  }
1267
1268  // C: Function types need to be compatible, not identical. This handles
1269  // duplicate function decls like "void f(int); void f(enum X);" properly.
1270  if (!getLangOptions().CPlusPlus &&
1271      Context.typesAreCompatible(OldQType, NewQType)) {
1272    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1273    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1274    const FunctionProtoType *OldProto = 0;
1275    if (isa<FunctionNoProtoType>(NewFuncType) &&
1276        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1277      // The old declaration provided a function prototype, but the
1278      // new declaration does not. Merge in the prototype.
1279      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1280      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1281                                                 OldProto->arg_type_end());
1282      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1283                                         ParamTypes.data(), ParamTypes.size(),
1284                                         OldProto->isVariadic(),
1285                                         OldProto->getTypeQuals(),
1286                                         false, false, 0, 0,
1287                                         OldProto->getExtInfo());
1288      New->setType(NewQType);
1289      New->setHasInheritedPrototype();
1290
1291      // Synthesize a parameter for each argument type.
1292      llvm::SmallVector<ParmVarDecl*, 16> Params;
1293      for (FunctionProtoType::arg_type_iterator
1294             ParamType = OldProto->arg_type_begin(),
1295             ParamEnd = OldProto->arg_type_end();
1296           ParamType != ParamEnd; ++ParamType) {
1297        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1298                                                 SourceLocation(), 0,
1299                                                 *ParamType, /*TInfo=*/0,
1300                                                 SC_None, SC_None,
1301                                                 0);
1302        Param->setImplicit();
1303        Params.push_back(Param);
1304      }
1305
1306      New->setParams(Params.data(), Params.size());
1307    }
1308
1309    return MergeCompatibleFunctionDecls(New, Old);
1310  }
1311
1312  // GNU C permits a K&R definition to follow a prototype declaration
1313  // if the declared types of the parameters in the K&R definition
1314  // match the types in the prototype declaration, even when the
1315  // promoted types of the parameters from the K&R definition differ
1316  // from the types in the prototype. GCC then keeps the types from
1317  // the prototype.
1318  //
1319  // If a variadic prototype is followed by a non-variadic K&R definition,
1320  // the K&R definition becomes variadic.  This is sort of an edge case, but
1321  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1322  // C99 6.9.1p8.
1323  if (!getLangOptions().CPlusPlus &&
1324      Old->hasPrototype() && !New->hasPrototype() &&
1325      New->getType()->getAs<FunctionProtoType>() &&
1326      Old->getNumParams() == New->getNumParams()) {
1327    llvm::SmallVector<QualType, 16> ArgTypes;
1328    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1329    const FunctionProtoType *OldProto
1330      = Old->getType()->getAs<FunctionProtoType>();
1331    const FunctionProtoType *NewProto
1332      = New->getType()->getAs<FunctionProtoType>();
1333
1334    // Determine whether this is the GNU C extension.
1335    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1336                                               NewProto->getResultType());
1337    bool LooseCompatible = !MergedReturn.isNull();
1338    for (unsigned Idx = 0, End = Old->getNumParams();
1339         LooseCompatible && Idx != End; ++Idx) {
1340      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1341      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1342      if (Context.typesAreCompatible(OldParm->getType(),
1343                                     NewProto->getArgType(Idx))) {
1344        ArgTypes.push_back(NewParm->getType());
1345      } else if (Context.typesAreCompatible(OldParm->getType(),
1346                                            NewParm->getType(),
1347                                            /*CompareUnqualified=*/true)) {
1348        GNUCompatibleParamWarning Warn
1349          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1350        Warnings.push_back(Warn);
1351        ArgTypes.push_back(NewParm->getType());
1352      } else
1353        LooseCompatible = false;
1354    }
1355
1356    if (LooseCompatible) {
1357      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1358        Diag(Warnings[Warn].NewParm->getLocation(),
1359             diag::ext_param_promoted_not_compatible_with_prototype)
1360          << Warnings[Warn].PromotedType
1361          << Warnings[Warn].OldParm->getType();
1362        if (Warnings[Warn].OldParm->getLocation().isValid())
1363          Diag(Warnings[Warn].OldParm->getLocation(),
1364               diag::note_previous_declaration);
1365      }
1366
1367      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1368                                           ArgTypes.size(),
1369                                           OldProto->isVariadic(), 0,
1370                                           false, false, 0, 0,
1371                                           OldProto->getExtInfo()));
1372      return MergeCompatibleFunctionDecls(New, Old);
1373    }
1374
1375    // Fall through to diagnose conflicting types.
1376  }
1377
1378  // A function that has already been declared has been redeclared or defined
1379  // with a different type- show appropriate diagnostic
1380  if (unsigned BuiltinID = Old->getBuiltinID()) {
1381    // The user has declared a builtin function with an incompatible
1382    // signature.
1383    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1384      // The function the user is redeclaring is a library-defined
1385      // function like 'malloc' or 'printf'. Warn about the
1386      // redeclaration, then pretend that we don't know about this
1387      // library built-in.
1388      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1389      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1390        << Old << Old->getType();
1391      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1392      Old->setInvalidDecl();
1393      return false;
1394    }
1395
1396    PrevDiag = diag::note_previous_builtin_declaration;
1397  }
1398
1399  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1400  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1401  return true;
1402}
1403
1404/// \brief Completes the merge of two function declarations that are
1405/// known to be compatible.
1406///
1407/// This routine handles the merging of attributes and other
1408/// properties of function declarations form the old declaration to
1409/// the new declaration, once we know that New is in fact a
1410/// redeclaration of Old.
1411///
1412/// \returns false
1413bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1414  // Merge the attributes
1415  MergeDeclAttributes(New, Old, Context);
1416
1417  // Merge the storage class.
1418  if (Old->getStorageClass() != SC_Extern &&
1419      Old->getStorageClass() != SC_None)
1420    New->setStorageClass(Old->getStorageClass());
1421
1422  // Merge "pure" flag.
1423  if (Old->isPure())
1424    New->setPure();
1425
1426  // Merge the "deleted" flag.
1427  if (Old->isDeleted())
1428    New->setDeleted();
1429
1430  if (getLangOptions().CPlusPlus)
1431    return MergeCXXFunctionDecl(New, Old);
1432
1433  return false;
1434}
1435
1436/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1437/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1438/// situation, merging decls or emitting diagnostics as appropriate.
1439///
1440/// Tentative definition rules (C99 6.9.2p2) are checked by
1441/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1442/// definitions here, since the initializer hasn't been attached.
1443///
1444void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1445  // If the new decl is already invalid, don't do any other checking.
1446  if (New->isInvalidDecl())
1447    return;
1448
1449  // Verify the old decl was also a variable.
1450  VarDecl *Old = 0;
1451  if (!Previous.isSingleResult() ||
1452      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1453    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1454      << New->getDeclName();
1455    Diag(Previous.getRepresentativeDecl()->getLocation(),
1456         diag::note_previous_definition);
1457    return New->setInvalidDecl();
1458  }
1459
1460  // C++ [class.mem]p1:
1461  //   A member shall not be declared twice in the member-specification [...]
1462  //
1463  // Here, we need only consider static data members.
1464  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
1465    Diag(New->getLocation(), diag::err_duplicate_member)
1466      << New->getIdentifier();
1467    Diag(Old->getLocation(), diag::note_previous_declaration);
1468    New->setInvalidDecl();
1469  }
1470
1471  MergeDeclAttributes(New, Old, Context);
1472
1473  // Merge the types
1474  QualType MergedT;
1475  if (getLangOptions().CPlusPlus) {
1476    if (Context.hasSameType(New->getType(), Old->getType()))
1477      MergedT = New->getType();
1478    // C++ [basic.link]p10:
1479    //   [...] the types specified by all declarations referring to a given
1480    //   object or function shall be identical, except that declarations for an
1481    //   array object can specify array types that differ by the presence or
1482    //   absence of a major array bound (8.3.4).
1483    else if (Old->getType()->isIncompleteArrayType() &&
1484             New->getType()->isArrayType()) {
1485      CanQual<ArrayType> OldArray
1486        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1487      CanQual<ArrayType> NewArray
1488        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1489      if (OldArray->getElementType() == NewArray->getElementType())
1490        MergedT = New->getType();
1491    } else if (Old->getType()->isArrayType() &&
1492             New->getType()->isIncompleteArrayType()) {
1493      CanQual<ArrayType> OldArray
1494        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1495      CanQual<ArrayType> NewArray
1496        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1497      if (OldArray->getElementType() == NewArray->getElementType())
1498        MergedT = Old->getType();
1499    } else if (New->getType()->isObjCObjectPointerType()
1500               && Old->getType()->isObjCObjectPointerType()) {
1501        MergedT = Context.mergeObjCGCQualifiers(New->getType(), Old->getType());
1502    }
1503  } else {
1504    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1505  }
1506  if (MergedT.isNull()) {
1507    Diag(New->getLocation(), diag::err_redefinition_different_type)
1508      << New->getDeclName();
1509    Diag(Old->getLocation(), diag::note_previous_definition);
1510    return New->setInvalidDecl();
1511  }
1512  New->setType(MergedT);
1513
1514  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1515  if (New->getStorageClass() == SC_Static &&
1516      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
1517    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1518    Diag(Old->getLocation(), diag::note_previous_definition);
1519    return New->setInvalidDecl();
1520  }
1521  // C99 6.2.2p4:
1522  //   For an identifier declared with the storage-class specifier
1523  //   extern in a scope in which a prior declaration of that
1524  //   identifier is visible,23) if the prior declaration specifies
1525  //   internal or external linkage, the linkage of the identifier at
1526  //   the later declaration is the same as the linkage specified at
1527  //   the prior declaration. If no prior declaration is visible, or
1528  //   if the prior declaration specifies no linkage, then the
1529  //   identifier has external linkage.
1530  if (New->hasExternalStorage() && Old->hasLinkage())
1531    /* Okay */;
1532  else if (New->getStorageClass() != SC_Static &&
1533           Old->getStorageClass() == SC_Static) {
1534    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1535    Diag(Old->getLocation(), diag::note_previous_definition);
1536    return New->setInvalidDecl();
1537  }
1538
1539  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1540
1541  // FIXME: The test for external storage here seems wrong? We still
1542  // need to check for mismatches.
1543  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1544      // Don't complain about out-of-line definitions of static members.
1545      !(Old->getLexicalDeclContext()->isRecord() &&
1546        !New->getLexicalDeclContext()->isRecord())) {
1547    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1548    Diag(Old->getLocation(), diag::note_previous_definition);
1549    return New->setInvalidDecl();
1550  }
1551
1552  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1553    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1554    Diag(Old->getLocation(), diag::note_previous_definition);
1555  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1556    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1557    Diag(Old->getLocation(), diag::note_previous_definition);
1558  }
1559
1560  // C++ doesn't have tentative definitions, so go right ahead and check here.
1561  const VarDecl *Def;
1562  if (getLangOptions().CPlusPlus &&
1563      New->isThisDeclarationADefinition() == VarDecl::Definition &&
1564      (Def = Old->getDefinition())) {
1565    Diag(New->getLocation(), diag::err_redefinition)
1566      << New->getDeclName();
1567    Diag(Def->getLocation(), diag::note_previous_definition);
1568    New->setInvalidDecl();
1569    return;
1570  }
1571  // c99 6.2.2 P4.
1572  // For an identifier declared with the storage-class specifier extern in a
1573  // scope in which a prior declaration of that identifier is visible, if
1574  // the prior declaration specifies internal or external linkage, the linkage
1575  // of the identifier at the later declaration is the same as the linkage
1576  // specified at the prior declaration.
1577  // FIXME. revisit this code.
1578  if (New->hasExternalStorage() &&
1579      Old->getLinkage() == InternalLinkage &&
1580      New->getDeclContext() == Old->getDeclContext())
1581    New->setStorageClass(Old->getStorageClass());
1582
1583  // Keep a chain of previous declarations.
1584  New->setPreviousDeclaration(Old);
1585
1586  // Inherit access appropriately.
1587  New->setAccess(Old->getAccess());
1588}
1589
1590/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1591/// no declarator (e.g. "struct foo;") is parsed.
1592Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
1593                                            DeclSpec &DS) {
1594  // FIXME: Error on inline/virtual/explicit
1595  // FIXME: Warn on useless __thread
1596  // FIXME: Warn on useless const/volatile
1597  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1598  // FIXME: Warn on useless attributes
1599  Decl *TagD = 0;
1600  TagDecl *Tag = 0;
1601  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1602      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1603      DS.getTypeSpecType() == DeclSpec::TST_union ||
1604      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1605    TagD = DS.getRepAsDecl();
1606
1607    if (!TagD) // We probably had an error
1608      return 0;
1609
1610    // Note that the above type specs guarantee that the
1611    // type rep is a Decl, whereas in many of the others
1612    // it's a Type.
1613    Tag = dyn_cast<TagDecl>(TagD);
1614  }
1615
1616  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1617    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1618    // or incomplete types shall not be restrict-qualified."
1619    if (TypeQuals & DeclSpec::TQ_restrict)
1620      Diag(DS.getRestrictSpecLoc(),
1621           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1622           << DS.getSourceRange();
1623  }
1624
1625  if (DS.isFriendSpecified()) {
1626    // If we're dealing with a class template decl, assume that the
1627    // template routines are handling it.
1628    if (TagD && isa<ClassTemplateDecl>(TagD))
1629      return 0;
1630    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1631  }
1632
1633  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1634    ProcessDeclAttributeList(S, Record, DS.getAttributes());
1635
1636    if (!Record->getDeclName() && Record->isDefinition() &&
1637        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1638      if (getLangOptions().CPlusPlus ||
1639          Record->getDeclContext()->isRecord())
1640        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
1641
1642      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1643        << DS.getSourceRange();
1644    }
1645
1646    // Microsoft allows unnamed struct/union fields. Don't complain
1647    // about them.
1648    // FIXME: Should we support Microsoft's extensions in this area?
1649    if (Record->getDeclName() && getLangOptions().Microsoft)
1650      return Tag;
1651  }
1652
1653  if (getLangOptions().CPlusPlus &&
1654      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
1655    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
1656      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
1657          !Enum->getIdentifier() && !Enum->isInvalidDecl())
1658        Diag(Enum->getLocation(), diag::ext_no_declarators)
1659          << DS.getSourceRange();
1660
1661  if (!DS.isMissingDeclaratorOk() &&
1662      DS.getTypeSpecType() != DeclSpec::TST_error) {
1663    // Warn about typedefs of enums without names, since this is an
1664    // extension in both Microsoft and GNU.
1665    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1666        Tag && isa<EnumDecl>(Tag)) {
1667      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1668        << DS.getSourceRange();
1669      return Tag;
1670    }
1671
1672    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1673      << DS.getSourceRange();
1674  }
1675
1676  return TagD;
1677}
1678
1679/// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec.
1680/// builds a statement for it and returns it so it is evaluated.
1681StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) {
1682  StmtResult R;
1683  if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) {
1684    Expr *Exp = DS.getRepAsExpr();
1685    QualType Ty = Exp->getType();
1686    if (Ty->isPointerType()) {
1687      do
1688        Ty = Ty->getAs<PointerType>()->getPointeeType();
1689      while (Ty->isPointerType());
1690    }
1691    if (Ty->isVariableArrayType()) {
1692      R = ActOnExprStmt(MakeFullExpr(Exp));
1693    }
1694  }
1695  return R;
1696}
1697
1698/// We are trying to inject an anonymous member into the given scope;
1699/// check if there's an existing declaration that can't be overloaded.
1700///
1701/// \return true if this is a forbidden redeclaration
1702static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1703                                         Scope *S,
1704                                         DeclContext *Owner,
1705                                         DeclarationName Name,
1706                                         SourceLocation NameLoc,
1707                                         unsigned diagnostic) {
1708  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1709                 Sema::ForRedeclaration);
1710  if (!SemaRef.LookupName(R, S)) return false;
1711
1712  if (R.getAsSingle<TagDecl>())
1713    return false;
1714
1715  // Pick a representative declaration.
1716  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1717  assert(PrevDecl && "Expected a non-null Decl");
1718
1719  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
1720    return false;
1721
1722  SemaRef.Diag(NameLoc, diagnostic) << Name;
1723  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1724
1725  return true;
1726}
1727
1728/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1729/// anonymous struct or union AnonRecord into the owning context Owner
1730/// and scope S. This routine will be invoked just after we realize
1731/// that an unnamed union or struct is actually an anonymous union or
1732/// struct, e.g.,
1733///
1734/// @code
1735/// union {
1736///   int i;
1737///   float f;
1738/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1739///    // f into the surrounding scope.x
1740/// @endcode
1741///
1742/// This routine is recursive, injecting the names of nested anonymous
1743/// structs/unions into the owning context and scope as well.
1744static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
1745                                                DeclContext *Owner,
1746                                                RecordDecl *AnonRecord,
1747                                                AccessSpecifier AS) {
1748  unsigned diagKind
1749    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1750                            : diag::err_anonymous_struct_member_redecl;
1751
1752  bool Invalid = false;
1753  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1754                               FEnd = AnonRecord->field_end();
1755       F != FEnd; ++F) {
1756    if ((*F)->getDeclName()) {
1757      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, (*F)->getDeclName(),
1758                                       (*F)->getLocation(), diagKind)) {
1759        // C++ [class.union]p2:
1760        //   The names of the members of an anonymous union shall be
1761        //   distinct from the names of any other entity in the
1762        //   scope in which the anonymous union is declared.
1763        Invalid = true;
1764      } else {
1765        // C++ [class.union]p2:
1766        //   For the purpose of name lookup, after the anonymous union
1767        //   definition, the members of the anonymous union are
1768        //   considered to have been defined in the scope in which the
1769        //   anonymous union is declared.
1770        Owner->makeDeclVisibleInContext(*F);
1771        S->AddDecl(*F);
1772        SemaRef.IdResolver.AddDecl(*F);
1773
1774        // That includes picking up the appropriate access specifier.
1775        if (AS != AS_none) (*F)->setAccess(AS);
1776      }
1777    } else if (const RecordType *InnerRecordType
1778                 = (*F)->getType()->getAs<RecordType>()) {
1779      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1780      if (InnerRecord->isAnonymousStructOrUnion())
1781        Invalid = Invalid ||
1782          InjectAnonymousStructOrUnionMembers(SemaRef, S, Owner,
1783                                              InnerRecord, AS);
1784    }
1785  }
1786
1787  return Invalid;
1788}
1789
1790/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
1791/// a VarDecl::StorageClass. Any error reporting is up to the caller:
1792/// illegal input values are mapped to SC_None.
1793static StorageClass
1794StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1795  switch (StorageClassSpec) {
1796  case DeclSpec::SCS_unspecified:    return SC_None;
1797  case DeclSpec::SCS_extern:         return SC_Extern;
1798  case DeclSpec::SCS_static:         return SC_Static;
1799  case DeclSpec::SCS_auto:           return SC_Auto;
1800  case DeclSpec::SCS_register:       return SC_Register;
1801  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
1802    // Illegal SCSs map to None: error reporting is up to the caller.
1803  case DeclSpec::SCS_mutable:        // Fall through.
1804  case DeclSpec::SCS_typedef:        return SC_None;
1805  }
1806  llvm_unreachable("unknown storage class specifier");
1807}
1808
1809/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
1810/// a StorageClass. Any error reporting is up to the caller:
1811/// illegal input values are mapped to SC_None.
1812static StorageClass
1813StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1814  switch (StorageClassSpec) {
1815  case DeclSpec::SCS_unspecified:    return SC_None;
1816  case DeclSpec::SCS_extern:         return SC_Extern;
1817  case DeclSpec::SCS_static:         return SC_Static;
1818  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
1819    // Illegal SCSs map to None: error reporting is up to the caller.
1820  case DeclSpec::SCS_auto:           // Fall through.
1821  case DeclSpec::SCS_mutable:        // Fall through.
1822  case DeclSpec::SCS_register:       // Fall through.
1823  case DeclSpec::SCS_typedef:        return SC_None;
1824  }
1825  llvm_unreachable("unknown storage class specifier");
1826}
1827
1828/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1829/// anonymous structure or union. Anonymous unions are a C++ feature
1830/// (C++ [class.union]) and a GNU C extension; anonymous structures
1831/// are a GNU C and GNU C++ extension.
1832Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1833                                             AccessSpecifier AS,
1834                                             RecordDecl *Record) {
1835  DeclContext *Owner = Record->getDeclContext();
1836
1837  // Diagnose whether this anonymous struct/union is an extension.
1838  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1839    Diag(Record->getLocation(), diag::ext_anonymous_union);
1840  else if (!Record->isUnion())
1841    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1842
1843  // C and C++ require different kinds of checks for anonymous
1844  // structs/unions.
1845  bool Invalid = false;
1846  if (getLangOptions().CPlusPlus) {
1847    const char* PrevSpec = 0;
1848    unsigned DiagID;
1849    // C++ [class.union]p3:
1850    //   Anonymous unions declared in a named namespace or in the
1851    //   global namespace shall be declared static.
1852    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1853        (isa<TranslationUnitDecl>(Owner) ||
1854         (isa<NamespaceDecl>(Owner) &&
1855          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1856      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1857      Invalid = true;
1858
1859      // Recover by adding 'static'.
1860      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1861                             PrevSpec, DiagID);
1862    }
1863    // C++ [class.union]p3:
1864    //   A storage class is not allowed in a declaration of an
1865    //   anonymous union in a class scope.
1866    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1867             isa<RecordDecl>(Owner)) {
1868      Diag(DS.getStorageClassSpecLoc(),
1869           diag::err_anonymous_union_with_storage_spec);
1870      Invalid = true;
1871
1872      // Recover by removing the storage specifier.
1873      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1874                             PrevSpec, DiagID);
1875    }
1876
1877    // C++ [class.union]p2:
1878    //   The member-specification of an anonymous union shall only
1879    //   define non-static data members. [Note: nested types and
1880    //   functions cannot be declared within an anonymous union. ]
1881    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1882                                 MemEnd = Record->decls_end();
1883         Mem != MemEnd; ++Mem) {
1884      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1885        // C++ [class.union]p3:
1886        //   An anonymous union shall not have private or protected
1887        //   members (clause 11).
1888        assert(FD->getAccess() != AS_none);
1889        if (FD->getAccess() != AS_public) {
1890          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1891            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1892          Invalid = true;
1893        }
1894
1895        if (CheckNontrivialField(FD))
1896          Invalid = true;
1897      } else if ((*Mem)->isImplicit()) {
1898        // Any implicit members are fine.
1899      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1900        // This is a type that showed up in an
1901        // elaborated-type-specifier inside the anonymous struct or
1902        // union, but which actually declares a type outside of the
1903        // anonymous struct or union. It's okay.
1904      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1905        if (!MemRecord->isAnonymousStructOrUnion() &&
1906            MemRecord->getDeclName()) {
1907          // Visual C++ allows type definition in anonymous struct or union.
1908          if (getLangOptions().Microsoft)
1909            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
1910              << (int)Record->isUnion();
1911          else {
1912            // This is a nested type declaration.
1913            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1914              << (int)Record->isUnion();
1915            Invalid = true;
1916          }
1917        }
1918      } else if (isa<AccessSpecDecl>(*Mem)) {
1919        // Any access specifier is fine.
1920      } else {
1921        // We have something that isn't a non-static data
1922        // member. Complain about it.
1923        unsigned DK = diag::err_anonymous_record_bad_member;
1924        if (isa<TypeDecl>(*Mem))
1925          DK = diag::err_anonymous_record_with_type;
1926        else if (isa<FunctionDecl>(*Mem))
1927          DK = diag::err_anonymous_record_with_function;
1928        else if (isa<VarDecl>(*Mem))
1929          DK = diag::err_anonymous_record_with_static;
1930
1931        // Visual C++ allows type definition in anonymous struct or union.
1932        if (getLangOptions().Microsoft &&
1933            DK == diag::err_anonymous_record_with_type)
1934          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
1935            << (int)Record->isUnion();
1936        else {
1937          Diag((*Mem)->getLocation(), DK)
1938              << (int)Record->isUnion();
1939          Invalid = true;
1940        }
1941      }
1942    }
1943  }
1944
1945  if (!Record->isUnion() && !Owner->isRecord()) {
1946    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1947      << (int)getLangOptions().CPlusPlus;
1948    Invalid = true;
1949  }
1950
1951  // Mock up a declarator.
1952  Declarator Dc(DS, Declarator::TypeNameContext);
1953  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
1954  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
1955
1956  // Create a declaration for this anonymous struct/union.
1957  NamedDecl *Anon = 0;
1958  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1959    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1960                             /*IdentifierInfo=*/0,
1961                             Context.getTypeDeclType(Record),
1962                             TInfo,
1963                             /*BitWidth=*/0, /*Mutable=*/false);
1964    Anon->setAccess(AS);
1965    if (getLangOptions().CPlusPlus)
1966      FieldCollector->Add(cast<FieldDecl>(Anon));
1967  } else {
1968    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
1969    assert(SCSpec != DeclSpec::SCS_typedef &&
1970           "Parser allowed 'typedef' as storage class VarDecl.");
1971    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
1972    if (SCSpec == DeclSpec::SCS_mutable) {
1973      // mutable can only appear on non-static class members, so it's always
1974      // an error here
1975      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1976      Invalid = true;
1977      SC = SC_None;
1978    }
1979    SCSpec = DS.getStorageClassSpecAsWritten();
1980    VarDecl::StorageClass SCAsWritten
1981      = StorageClassSpecToVarDeclStorageClass(SCSpec);
1982
1983    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1984                           /*IdentifierInfo=*/0,
1985                           Context.getTypeDeclType(Record),
1986                           TInfo, SC, SCAsWritten);
1987  }
1988  Anon->setImplicit();
1989
1990  // Add the anonymous struct/union object to the current
1991  // context. We'll be referencing this object when we refer to one of
1992  // its members.
1993  Owner->addDecl(Anon);
1994
1995  // Inject the members of the anonymous struct/union into the owning
1996  // context and into the identifier resolver chain for name lookup
1997  // purposes.
1998  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS))
1999    Invalid = true;
2000
2001  // Mark this as an anonymous struct/union type. Note that we do not
2002  // do this until after we have already checked and injected the
2003  // members of this anonymous struct/union type, because otherwise
2004  // the members could be injected twice: once by DeclContext when it
2005  // builds its lookup table, and once by
2006  // InjectAnonymousStructOrUnionMembers.
2007  Record->setAnonymousStructOrUnion(true);
2008
2009  if (Invalid)
2010    Anon->setInvalidDecl();
2011
2012  return Anon;
2013}
2014
2015
2016/// GetNameForDeclarator - Determine the full declaration name for the
2017/// given Declarator.
2018DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2019  return GetNameFromUnqualifiedId(D.getName());
2020}
2021
2022/// \brief Retrieves the declaration name from a parsed unqualified-id.
2023DeclarationNameInfo
2024Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2025  DeclarationNameInfo NameInfo;
2026  NameInfo.setLoc(Name.StartLocation);
2027
2028  switch (Name.getKind()) {
2029
2030  case UnqualifiedId::IK_Identifier:
2031    NameInfo.setName(Name.Identifier);
2032    NameInfo.setLoc(Name.StartLocation);
2033    return NameInfo;
2034
2035  case UnqualifiedId::IK_OperatorFunctionId:
2036    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2037                                           Name.OperatorFunctionId.Operator));
2038    NameInfo.setLoc(Name.StartLocation);
2039    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2040      = Name.OperatorFunctionId.SymbolLocations[0];
2041    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2042      = Name.EndLocation.getRawEncoding();
2043    return NameInfo;
2044
2045  case UnqualifiedId::IK_LiteralOperatorId:
2046    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2047                                                           Name.Identifier));
2048    NameInfo.setLoc(Name.StartLocation);
2049    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2050    return NameInfo;
2051
2052  case UnqualifiedId::IK_ConversionFunctionId: {
2053    TypeSourceInfo *TInfo;
2054    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2055    if (Ty.isNull())
2056      return DeclarationNameInfo();
2057    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2058                                               Context.getCanonicalType(Ty)));
2059    NameInfo.setLoc(Name.StartLocation);
2060    NameInfo.setNamedTypeInfo(TInfo);
2061    return NameInfo;
2062  }
2063
2064  case UnqualifiedId::IK_ConstructorName: {
2065    TypeSourceInfo *TInfo;
2066    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2067    if (Ty.isNull())
2068      return DeclarationNameInfo();
2069    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2070                                              Context.getCanonicalType(Ty)));
2071    NameInfo.setLoc(Name.StartLocation);
2072    NameInfo.setNamedTypeInfo(TInfo);
2073    return NameInfo;
2074  }
2075
2076  case UnqualifiedId::IK_ConstructorTemplateId: {
2077    // In well-formed code, we can only have a constructor
2078    // template-id that refers to the current context, so go there
2079    // to find the actual type being constructed.
2080    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2081    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2082      return DeclarationNameInfo();
2083
2084    // Determine the type of the class being constructed.
2085    QualType CurClassType = Context.getTypeDeclType(CurClass);
2086
2087    // FIXME: Check two things: that the template-id names the same type as
2088    // CurClassType, and that the template-id does not occur when the name
2089    // was qualified.
2090
2091    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2092                                    Context.getCanonicalType(CurClassType)));
2093    NameInfo.setLoc(Name.StartLocation);
2094    // FIXME: should we retrieve TypeSourceInfo?
2095    NameInfo.setNamedTypeInfo(0);
2096    return NameInfo;
2097  }
2098
2099  case UnqualifiedId::IK_DestructorName: {
2100    TypeSourceInfo *TInfo;
2101    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2102    if (Ty.isNull())
2103      return DeclarationNameInfo();
2104    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2105                                              Context.getCanonicalType(Ty)));
2106    NameInfo.setLoc(Name.StartLocation);
2107    NameInfo.setNamedTypeInfo(TInfo);
2108    return NameInfo;
2109  }
2110
2111  case UnqualifiedId::IK_TemplateId: {
2112    TemplateName TName = Name.TemplateId->Template.get();
2113    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
2114    return Context.getNameForTemplate(TName, TNameLoc);
2115  }
2116
2117  } // switch (Name.getKind())
2118
2119  assert(false && "Unknown name kind");
2120  return DeclarationNameInfo();
2121}
2122
2123/// isNearlyMatchingFunction - Determine whether the C++ functions
2124/// Declaration and Definition are "nearly" matching. This heuristic
2125/// is used to improve diagnostics in the case where an out-of-line
2126/// function definition doesn't match any declaration within
2127/// the class or namespace.
2128static bool isNearlyMatchingFunction(ASTContext &Context,
2129                                     FunctionDecl *Declaration,
2130                                     FunctionDecl *Definition) {
2131  if (Declaration->param_size() != Definition->param_size())
2132    return false;
2133  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2134    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2135    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2136
2137    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
2138                                        DefParamTy.getNonReferenceType()))
2139      return false;
2140  }
2141
2142  return true;
2143}
2144
2145/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
2146/// declarator needs to be rebuilt in the current instantiation.
2147/// Any bits of declarator which appear before the name are valid for
2148/// consideration here.  That's specifically the type in the decl spec
2149/// and the base type in any member-pointer chunks.
2150static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
2151                                                    DeclarationName Name) {
2152  // The types we specifically need to rebuild are:
2153  //   - typenames, typeofs, and decltypes
2154  //   - types which will become injected class names
2155  // Of course, we also need to rebuild any type referencing such a
2156  // type.  It's safest to just say "dependent", but we call out a
2157  // few cases here.
2158
2159  DeclSpec &DS = D.getMutableDeclSpec();
2160  switch (DS.getTypeSpecType()) {
2161  case DeclSpec::TST_typename:
2162  case DeclSpec::TST_typeofType:
2163  case DeclSpec::TST_decltype: {
2164    // Grab the type from the parser.
2165    TypeSourceInfo *TSI = 0;
2166    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
2167    if (T.isNull() || !T->isDependentType()) break;
2168
2169    // Make sure there's a type source info.  This isn't really much
2170    // of a waste; most dependent types should have type source info
2171    // attached already.
2172    if (!TSI)
2173      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
2174
2175    // Rebuild the type in the current instantiation.
2176    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
2177    if (!TSI) return true;
2178
2179    // Store the new type back in the decl spec.
2180    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
2181    DS.UpdateTypeRep(LocType);
2182    break;
2183  }
2184
2185  case DeclSpec::TST_typeofExpr: {
2186    Expr *E = DS.getRepAsExpr();
2187    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
2188    if (Result.isInvalid()) return true;
2189    DS.UpdateExprRep(Result.get());
2190    break;
2191  }
2192
2193  default:
2194    // Nothing to do for these decl specs.
2195    break;
2196  }
2197
2198  // It doesn't matter what order we do this in.
2199  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2200    DeclaratorChunk &Chunk = D.getTypeObject(I);
2201
2202    // The only type information in the declarator which can come
2203    // before the declaration name is the base type of a member
2204    // pointer.
2205    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
2206      continue;
2207
2208    // Rebuild the scope specifier in-place.
2209    CXXScopeSpec &SS = Chunk.Mem.Scope();
2210    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2211      return true;
2212  }
2213
2214  return false;
2215}
2216
2217Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
2218  return HandleDeclarator(S, D, MultiTemplateParamsArg(*this), false);
2219}
2220
2221Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
2222                             MultiTemplateParamsArg TemplateParamLists,
2223                             bool IsFunctionDefinition) {
2224  // TODO: consider using NameInfo for diagnostic.
2225  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2226  DeclarationName Name = NameInfo.getName();
2227
2228  // All of these full declarators require an identifier.  If it doesn't have
2229  // one, the ParsedFreeStandingDeclSpec action should be used.
2230  if (!Name) {
2231    if (!D.isInvalidType())  // Reject this if we think it is valid.
2232      Diag(D.getDeclSpec().getSourceRange().getBegin(),
2233           diag::err_declarator_need_ident)
2234        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2235    return 0;
2236  }
2237
2238  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2239  // we find one that is.
2240  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2241         (S->getFlags() & Scope::TemplateParamScope) != 0)
2242    S = S->getParent();
2243
2244  DeclContext *DC = CurContext;
2245  if (D.getCXXScopeSpec().isInvalid())
2246    D.setInvalidType();
2247  else if (D.getCXXScopeSpec().isSet()) {
2248    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
2249    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
2250    if (!DC) {
2251      // If we could not compute the declaration context, it's because the
2252      // declaration context is dependent but does not refer to a class,
2253      // class template, or class template partial specialization. Complain
2254      // and return early, to avoid the coming semantic disaster.
2255      Diag(D.getIdentifierLoc(),
2256           diag::err_template_qualified_declarator_no_match)
2257        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2258        << D.getCXXScopeSpec().getRange();
2259      return 0;
2260    }
2261
2262    bool IsDependentContext = DC->isDependentContext();
2263
2264    if (!IsDependentContext &&
2265        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
2266      return 0;
2267
2268    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
2269      Diag(D.getIdentifierLoc(),
2270           diag::err_member_def_undefined_record)
2271        << Name << DC << D.getCXXScopeSpec().getRange();
2272      D.setInvalidType();
2273    }
2274
2275    // Check whether we need to rebuild the type of the given
2276    // declaration in the current instantiation.
2277    if (EnteringContext && IsDependentContext &&
2278        TemplateParamLists.size() != 0) {
2279      ContextRAII SavedContext(*this, DC);
2280      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
2281        D.setInvalidType();
2282    }
2283  }
2284
2285  NamedDecl *New;
2286
2287  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
2288  QualType R = TInfo->getType();
2289
2290  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
2291                        ForRedeclaration);
2292
2293  // See if this is a redefinition of a variable in the same scope.
2294  if (!D.getCXXScopeSpec().isSet()) {
2295    bool IsLinkageLookup = false;
2296
2297    // If the declaration we're planning to build will be a function
2298    // or object with linkage, then look for another declaration with
2299    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
2300    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2301      /* Do nothing*/;
2302    else if (R->isFunctionType()) {
2303      if (CurContext->isFunctionOrMethod() ||
2304          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2305        IsLinkageLookup = true;
2306    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
2307      IsLinkageLookup = true;
2308    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
2309             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2310      IsLinkageLookup = true;
2311
2312    if (IsLinkageLookup)
2313      Previous.clear(LookupRedeclarationWithLinkage);
2314
2315    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
2316  } else { // Something like "int foo::x;"
2317    LookupQualifiedName(Previous, DC);
2318
2319    // Don't consider using declarations as previous declarations for
2320    // out-of-line members.
2321    RemoveUsingDecls(Previous);
2322
2323    // C++ 7.3.1.2p2:
2324    // Members (including explicit specializations of templates) of a named
2325    // namespace can also be defined outside that namespace by explicit
2326    // qualification of the name being defined, provided that the entity being
2327    // defined was already declared in the namespace and the definition appears
2328    // after the point of declaration in a namespace that encloses the
2329    // declarations namespace.
2330    //
2331    // Note that we only check the context at this point. We don't yet
2332    // have enough information to make sure that PrevDecl is actually
2333    // the declaration we want to match. For example, given:
2334    //
2335    //   class X {
2336    //     void f();
2337    //     void f(float);
2338    //   };
2339    //
2340    //   void X::f(int) { } // ill-formed
2341    //
2342    // In this case, PrevDecl will point to the overload set
2343    // containing the two f's declared in X, but neither of them
2344    // matches.
2345
2346    // First check whether we named the global scope.
2347    if (isa<TranslationUnitDecl>(DC)) {
2348      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
2349        << Name << D.getCXXScopeSpec().getRange();
2350    } else {
2351      DeclContext *Cur = CurContext;
2352      while (isa<LinkageSpecDecl>(Cur))
2353        Cur = Cur->getParent();
2354      if (!Cur->Encloses(DC)) {
2355        // The qualifying scope doesn't enclose the original declaration.
2356        // Emit diagnostic based on current scope.
2357        SourceLocation L = D.getIdentifierLoc();
2358        SourceRange R = D.getCXXScopeSpec().getRange();
2359        if (isa<FunctionDecl>(Cur))
2360          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
2361        else
2362          Diag(L, diag::err_invalid_declarator_scope)
2363            << Name << cast<NamedDecl>(DC) << R;
2364        D.setInvalidType();
2365      }
2366    }
2367  }
2368
2369  if (Previous.isSingleResult() &&
2370      Previous.getFoundDecl()->isTemplateParameter()) {
2371    // Maybe we will complain about the shadowed template parameter.
2372    if (!D.isInvalidType())
2373      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
2374                                          Previous.getFoundDecl()))
2375        D.setInvalidType();
2376
2377    // Just pretend that we didn't see the previous declaration.
2378    Previous.clear();
2379  }
2380
2381  // In C++, the previous declaration we find might be a tag type
2382  // (class or enum). In this case, the new declaration will hide the
2383  // tag type. Note that this does does not apply if we're declaring a
2384  // typedef (C++ [dcl.typedef]p4).
2385  if (Previous.isSingleTagDecl() &&
2386      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2387    Previous.clear();
2388
2389  bool Redeclaration = false;
2390  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2391    if (TemplateParamLists.size()) {
2392      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2393      return 0;
2394    }
2395
2396    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2397  } else if (R->isFunctionType()) {
2398    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2399                                  move(TemplateParamLists),
2400                                  IsFunctionDefinition, Redeclaration);
2401  } else {
2402    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2403                                  move(TemplateParamLists),
2404                                  Redeclaration);
2405  }
2406
2407  if (New == 0)
2408    return 0;
2409
2410  // If this has an identifier and is not an invalid redeclaration or
2411  // function template specialization, add it to the scope stack.
2412  if (New->getDeclName() && !(Redeclaration && New->isInvalidDecl()))
2413    PushOnScopeChains(New, S);
2414
2415  return New;
2416}
2417
2418/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2419/// types into constant array types in certain situations which would otherwise
2420/// be errors (for GCC compatibility).
2421static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2422                                                    ASTContext &Context,
2423                                                    bool &SizeIsNegative,
2424                                                    llvm::APSInt &Oversized) {
2425  // This method tries to turn a variable array into a constant
2426  // array even when the size isn't an ICE.  This is necessary
2427  // for compatibility with code that depends on gcc's buggy
2428  // constant expression folding, like struct {char x[(int)(char*)2];}
2429  SizeIsNegative = false;
2430  Oversized = 0;
2431
2432  if (T->isDependentType())
2433    return QualType();
2434
2435  QualifierCollector Qs;
2436  const Type *Ty = Qs.strip(T);
2437
2438  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2439    QualType Pointee = PTy->getPointeeType();
2440    QualType FixedType =
2441        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
2442                                            Oversized);
2443    if (FixedType.isNull()) return FixedType;
2444    FixedType = Context.getPointerType(FixedType);
2445    return Qs.apply(FixedType);
2446  }
2447
2448  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2449  if (!VLATy)
2450    return QualType();
2451  // FIXME: We should probably handle this case
2452  if (VLATy->getElementType()->isVariablyModifiedType())
2453    return QualType();
2454
2455  Expr::EvalResult EvalResult;
2456  if (!VLATy->getSizeExpr() ||
2457      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2458      !EvalResult.Val.isInt())
2459    return QualType();
2460
2461  // Check whether the array size is negative.
2462  llvm::APSInt &Res = EvalResult.Val.getInt();
2463  if (Res.isSigned() && Res.isNegative()) {
2464    SizeIsNegative = true;
2465    return QualType();
2466  }
2467
2468  // Check whether the array is too large to be addressed.
2469  unsigned ActiveSizeBits
2470    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
2471                                              Res);
2472  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
2473    Oversized = Res;
2474    return QualType();
2475  }
2476
2477  return Context.getConstantArrayType(VLATy->getElementType(),
2478                                      Res, ArrayType::Normal, 0);
2479}
2480
2481/// \brief Register the given locally-scoped external C declaration so
2482/// that it can be found later for redeclarations
2483void
2484Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2485                                       const LookupResult &Previous,
2486                                       Scope *S) {
2487  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2488         "Decl is not a locally-scoped decl!");
2489  // Note that we have a locally-scoped external with this name.
2490  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2491
2492  if (!Previous.isSingleResult())
2493    return;
2494
2495  NamedDecl *PrevDecl = Previous.getFoundDecl();
2496
2497  // If there was a previous declaration of this variable, it may be
2498  // in our identifier chain. Update the identifier chain with the new
2499  // declaration.
2500  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2501    // The previous declaration was found on the identifer resolver
2502    // chain, so remove it from its scope.
2503    while (S && !S->isDeclScope(PrevDecl))
2504      S = S->getParent();
2505
2506    if (S)
2507      S->RemoveDecl(PrevDecl);
2508  }
2509}
2510
2511/// \brief Diagnose function specifiers on a declaration of an identifier that
2512/// does not identify a function.
2513void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2514  // FIXME: We should probably indicate the identifier in question to avoid
2515  // confusion for constructs like "inline int a(), b;"
2516  if (D.getDeclSpec().isInlineSpecified())
2517    Diag(D.getDeclSpec().getInlineSpecLoc(),
2518         diag::err_inline_non_function);
2519
2520  if (D.getDeclSpec().isVirtualSpecified())
2521    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2522         diag::err_virtual_non_function);
2523
2524  if (D.getDeclSpec().isExplicitSpecified())
2525    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2526         diag::err_explicit_non_function);
2527}
2528
2529NamedDecl*
2530Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2531                             QualType R,  TypeSourceInfo *TInfo,
2532                             LookupResult &Previous, bool &Redeclaration) {
2533  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2534  if (D.getCXXScopeSpec().isSet()) {
2535    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2536      << D.getCXXScopeSpec().getRange();
2537    D.setInvalidType();
2538    // Pretend we didn't see the scope specifier.
2539    DC = CurContext;
2540    Previous.clear();
2541  }
2542
2543  if (getLangOptions().CPlusPlus) {
2544    // Check that there are no default arguments (C++ only).
2545    CheckExtraCXXDefaultArguments(D);
2546  }
2547
2548  DiagnoseFunctionSpecifiers(D);
2549
2550  if (D.getDeclSpec().isThreadSpecified())
2551    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2552
2553  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
2554    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
2555      << D.getName().getSourceRange();
2556    return 0;
2557  }
2558
2559  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2560  if (!NewTD) return 0;
2561
2562  // Handle attributes prior to checking for duplicates in MergeVarDecl
2563  ProcessDeclAttributes(S, NewTD, D);
2564
2565  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2566  // then it shall have block scope.
2567  // Note that variably modified types must be fixed before merging the decl so
2568  // that redeclarations will match.
2569  QualType T = NewTD->getUnderlyingType();
2570  if (T->isVariablyModifiedType()) {
2571    getCurFunction()->setHasBranchProtectedScope();
2572
2573    if (S->getFnParent() == 0) {
2574      bool SizeIsNegative;
2575      llvm::APSInt Oversized;
2576      QualType FixedTy =
2577          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
2578                                              Oversized);
2579      if (!FixedTy.isNull()) {
2580        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2581        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2582      } else {
2583        if (SizeIsNegative)
2584          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2585        else if (T->isVariableArrayType())
2586          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2587        else if (Oversized.getBoolValue())
2588          Diag(D.getIdentifierLoc(), diag::err_array_too_large)
2589            << Oversized.toString(10);
2590        else
2591          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2592        NewTD->setInvalidDecl();
2593      }
2594    }
2595  }
2596
2597  // Merge the decl with the existing one if appropriate. If the decl is
2598  // in an outer scope, it isn't the same thing.
2599  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2600  if (!Previous.empty()) {
2601    Redeclaration = true;
2602    MergeTypeDefDecl(NewTD, Previous);
2603  }
2604
2605  // If this is the C FILE type, notify the AST context.
2606  if (IdentifierInfo *II = NewTD->getIdentifier())
2607    if (!NewTD->isInvalidDecl() &&
2608        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
2609      if (II->isStr("FILE"))
2610        Context.setFILEDecl(NewTD);
2611      else if (II->isStr("jmp_buf"))
2612        Context.setjmp_bufDecl(NewTD);
2613      else if (II->isStr("sigjmp_buf"))
2614        Context.setsigjmp_bufDecl(NewTD);
2615      else if (II->isStr("__builtin_va_list"))
2616        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
2617    }
2618
2619  return NewTD;
2620}
2621
2622/// \brief Determines whether the given declaration is an out-of-scope
2623/// previous declaration.
2624///
2625/// This routine should be invoked when name lookup has found a
2626/// previous declaration (PrevDecl) that is not in the scope where a
2627/// new declaration by the same name is being introduced. If the new
2628/// declaration occurs in a local scope, previous declarations with
2629/// linkage may still be considered previous declarations (C99
2630/// 6.2.2p4-5, C++ [basic.link]p6).
2631///
2632/// \param PrevDecl the previous declaration found by name
2633/// lookup
2634///
2635/// \param DC the context in which the new declaration is being
2636/// declared.
2637///
2638/// \returns true if PrevDecl is an out-of-scope previous declaration
2639/// for a new delcaration with the same name.
2640static bool
2641isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2642                                ASTContext &Context) {
2643  if (!PrevDecl)
2644    return false;
2645
2646  if (!PrevDecl->hasLinkage())
2647    return false;
2648
2649  if (Context.getLangOptions().CPlusPlus) {
2650    // C++ [basic.link]p6:
2651    //   If there is a visible declaration of an entity with linkage
2652    //   having the same name and type, ignoring entities declared
2653    //   outside the innermost enclosing namespace scope, the block
2654    //   scope declaration declares that same entity and receives the
2655    //   linkage of the previous declaration.
2656    DeclContext *OuterContext = DC->getRedeclContext();
2657    if (!OuterContext->isFunctionOrMethod())
2658      // This rule only applies to block-scope declarations.
2659      return false;
2660
2661    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2662    if (PrevOuterContext->isRecord())
2663      // We found a member function: ignore it.
2664      return false;
2665
2666    // Find the innermost enclosing namespace for the new and
2667    // previous declarations.
2668    OuterContext = OuterContext->getEnclosingNamespaceContext();
2669    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
2670
2671    // The previous declaration is in a different namespace, so it
2672    // isn't the same function.
2673    if (!OuterContext->Equals(PrevOuterContext))
2674      return false;
2675  }
2676
2677  return true;
2678}
2679
2680static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
2681  CXXScopeSpec &SS = D.getCXXScopeSpec();
2682  if (!SS.isSet()) return;
2683  DD->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
2684                       SS.getRange());
2685}
2686
2687NamedDecl*
2688Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
2689                              QualType R, TypeSourceInfo *TInfo,
2690                              LookupResult &Previous,
2691                              MultiTemplateParamsArg TemplateParamLists,
2692                              bool &Redeclaration) {
2693  DeclarationName Name = GetNameForDeclarator(D).getName();
2694
2695  // Check that there are no default arguments (C++ only).
2696  if (getLangOptions().CPlusPlus)
2697    CheckExtraCXXDefaultArguments(D);
2698
2699  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
2700  assert(SCSpec != DeclSpec::SCS_typedef &&
2701         "Parser allowed 'typedef' as storage class VarDecl.");
2702  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2703  if (SCSpec == DeclSpec::SCS_mutable) {
2704    // mutable can only appear on non-static class members, so it's always
2705    // an error here
2706    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2707    D.setInvalidType();
2708    SC = SC_None;
2709  }
2710  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
2711  VarDecl::StorageClass SCAsWritten
2712    = StorageClassSpecToVarDeclStorageClass(SCSpec);
2713
2714  IdentifierInfo *II = Name.getAsIdentifierInfo();
2715  if (!II) {
2716    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2717      << Name.getAsString();
2718    return 0;
2719  }
2720
2721  DiagnoseFunctionSpecifiers(D);
2722
2723  if (!DC->isRecord() && S->getFnParent() == 0) {
2724    // C99 6.9p2: The storage-class specifiers auto and register shall not
2725    // appear in the declaration specifiers in an external declaration.
2726    if (SC == SC_Auto || SC == SC_Register) {
2727
2728      // If this is a register variable with an asm label specified, then this
2729      // is a GNU extension.
2730      if (SC == SC_Register && D.getAsmLabel())
2731        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2732      else
2733        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2734      D.setInvalidType();
2735    }
2736  }
2737  if (DC->isRecord() && !CurContext->isRecord()) {
2738    // This is an out-of-line definition of a static data member.
2739    if (SC == SC_Static) {
2740      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2741           diag::err_static_out_of_line)
2742        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
2743    } else if (SC == SC_None)
2744      SC = SC_Static;
2745  }
2746  if (SC == SC_Static) {
2747    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2748      if (RD->isLocalClass())
2749        Diag(D.getIdentifierLoc(),
2750             diag::err_static_data_member_not_allowed_in_local_class)
2751          << Name << RD->getDeclName();
2752    }
2753  }
2754
2755  // Match up the template parameter lists with the scope specifier, then
2756  // determine whether we have a template or a template specialization.
2757  bool isExplicitSpecialization = false;
2758  unsigned NumMatchedTemplateParamLists = TemplateParamLists.size();
2759  bool Invalid = false;
2760  if (TemplateParameterList *TemplateParams
2761        = MatchTemplateParametersToScopeSpecifier(
2762                                  D.getDeclSpec().getSourceRange().getBegin(),
2763                                                  D.getCXXScopeSpec(),
2764                        (TemplateParameterList**)TemplateParamLists.get(),
2765                                                   TemplateParamLists.size(),
2766                                                  /*never a friend*/ false,
2767                                                  isExplicitSpecialization,
2768                                                  Invalid)) {
2769    // All but one template parameter lists have been matching.
2770    --NumMatchedTemplateParamLists;
2771
2772    if (TemplateParams->size() > 0) {
2773      // There is no such thing as a variable template.
2774      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2775        << II
2776        << SourceRange(TemplateParams->getTemplateLoc(),
2777                       TemplateParams->getRAngleLoc());
2778      return 0;
2779    } else {
2780      // There is an extraneous 'template<>' for this variable. Complain
2781      // about it, but allow the declaration of the variable.
2782      Diag(TemplateParams->getTemplateLoc(),
2783           diag::err_template_variable_noparams)
2784        << II
2785        << SourceRange(TemplateParams->getTemplateLoc(),
2786                       TemplateParams->getRAngleLoc());
2787
2788      isExplicitSpecialization = true;
2789    }
2790  }
2791
2792  VarDecl *NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2793                                   II, R, TInfo, SC, SCAsWritten);
2794
2795  if (D.isInvalidType() || Invalid)
2796    NewVD->setInvalidDecl();
2797
2798  SetNestedNameSpecifier(NewVD, D);
2799
2800  if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
2801    NewVD->setTemplateParameterListsInfo(Context,
2802                                         NumMatchedTemplateParamLists,
2803                        (TemplateParameterList**)TemplateParamLists.release());
2804  }
2805
2806  if (D.getDeclSpec().isThreadSpecified()) {
2807    if (NewVD->hasLocalStorage())
2808      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2809    else if (!Context.Target.isTLSSupported())
2810      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2811    else
2812      NewVD->setThreadSpecified(true);
2813  }
2814
2815  // Set the lexical context. If the declarator has a C++ scope specifier, the
2816  // lexical context will be different from the semantic context.
2817  NewVD->setLexicalDeclContext(CurContext);
2818
2819  // Handle attributes prior to checking for duplicates in MergeVarDecl
2820  ProcessDeclAttributes(S, NewVD, D);
2821
2822  // Handle GNU asm-label extension (encoded as an attribute).
2823  if (Expr *E = (Expr*)D.getAsmLabel()) {
2824    // The parser guarantees this is a string.
2825    StringLiteral *SE = cast<StringLiteral>(E);
2826    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
2827                                                Context, SE->getString()));
2828  }
2829
2830  // Diagnose shadowed variables before filtering for scope.
2831  if (!D.getCXXScopeSpec().isSet())
2832    CheckShadow(S, NewVD, Previous);
2833
2834  // Don't consider existing declarations that are in a different
2835  // scope and are out-of-semantic-context declarations (if the new
2836  // declaration has linkage).
2837  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
2838
2839  // Merge the decl with the existing one if appropriate.
2840  if (!Previous.empty()) {
2841    if (Previous.isSingleResult() &&
2842        isa<FieldDecl>(Previous.getFoundDecl()) &&
2843        D.getCXXScopeSpec().isSet()) {
2844      // The user tried to define a non-static data member
2845      // out-of-line (C++ [dcl.meaning]p1).
2846      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2847        << D.getCXXScopeSpec().getRange();
2848      Previous.clear();
2849      NewVD->setInvalidDecl();
2850    }
2851  } else if (D.getCXXScopeSpec().isSet()) {
2852    // No previous declaration in the qualifying scope.
2853    Diag(D.getIdentifierLoc(), diag::err_no_member)
2854      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2855      << D.getCXXScopeSpec().getRange();
2856    NewVD->setInvalidDecl();
2857  }
2858
2859  CheckVariableDeclaration(NewVD, Previous, Redeclaration);
2860
2861  // This is an explicit specialization of a static data member. Check it.
2862  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2863      CheckMemberSpecialization(NewVD, Previous))
2864    NewVD->setInvalidDecl();
2865
2866  // attributes declared post-definition are currently ignored
2867  // FIXME: This should be handled in attribute merging, not
2868  // here.
2869  if (Previous.isSingleResult()) {
2870    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
2871    if (Def && (Def = Def->getDefinition()) &&
2872        Def != NewVD && D.hasAttributes()) {
2873      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2874      Diag(Def->getLocation(), diag::note_previous_definition);
2875    }
2876  }
2877
2878  // If this is a locally-scoped extern C variable, update the map of
2879  // such variables.
2880  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2881      !NewVD->isInvalidDecl())
2882    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
2883
2884  // If there's a #pragma GCC visibility in scope, and this isn't a class
2885  // member, set the visibility of this variable.
2886  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
2887    AddPushedVisibilityAttribute(NewVD);
2888
2889  MarkUnusedFileScopedDecl(NewVD);
2890
2891  return NewVD;
2892}
2893
2894/// \brief Diagnose variable or built-in function shadowing.  Implements
2895/// -Wshadow.
2896///
2897/// This method is called whenever a VarDecl is added to a "useful"
2898/// scope.
2899///
2900/// \param S the scope in which the shadowing name is being declared
2901/// \param R the lookup of the name
2902///
2903void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
2904  // Return if warning is ignored.
2905  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow) == Diagnostic::Ignored)
2906    return;
2907
2908  // Don't diagnose declarations at file scope.  The scope might not
2909  // have a DeclContext if (e.g.) we're parsing a function prototype.
2910  DeclContext *NewDC = static_cast<DeclContext*>(S->getEntity());
2911  if (NewDC && NewDC->isFileContext())
2912    return;
2913
2914  // Only diagnose if we're shadowing an unambiguous field or variable.
2915  if (R.getResultKind() != LookupResult::Found)
2916    return;
2917
2918  NamedDecl* ShadowedDecl = R.getFoundDecl();
2919  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
2920    return;
2921
2922  DeclContext *OldDC = ShadowedDecl->getDeclContext();
2923
2924  // Only warn about certain kinds of shadowing for class members.
2925  if (NewDC && NewDC->isRecord()) {
2926    // In particular, don't warn about shadowing non-class members.
2927    if (!OldDC->isRecord())
2928      return;
2929
2930    // TODO: should we warn about static data members shadowing
2931    // static data members from base classes?
2932
2933    // TODO: don't diagnose for inaccessible shadowed members.
2934    // This is hard to do perfectly because we might friend the
2935    // shadowing context, but that's just a false negative.
2936  }
2937
2938  // Determine what kind of declaration we're shadowing.
2939  unsigned Kind;
2940  if (isa<RecordDecl>(OldDC)) {
2941    if (isa<FieldDecl>(ShadowedDecl))
2942      Kind = 3; // field
2943    else
2944      Kind = 2; // static data member
2945  } else if (OldDC->isFileContext())
2946    Kind = 1; // global
2947  else
2948    Kind = 0; // local
2949
2950  DeclarationName Name = R.getLookupName();
2951
2952  // Emit warning and note.
2953  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
2954  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
2955}
2956
2957/// \brief Check -Wshadow without the advantage of a previous lookup.
2958void Sema::CheckShadow(Scope *S, VarDecl *D) {
2959  LookupResult R(*this, D->getDeclName(), D->getLocation(),
2960                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
2961  LookupName(R, S);
2962  CheckShadow(S, D, R);
2963}
2964
2965/// \brief Perform semantic checking on a newly-created variable
2966/// declaration.
2967///
2968/// This routine performs all of the type-checking required for a
2969/// variable declaration once it has been built. It is used both to
2970/// check variables after they have been parsed and their declarators
2971/// have been translated into a declaration, and to check variables
2972/// that have been instantiated from a template.
2973///
2974/// Sets NewVD->isInvalidDecl() if an error was encountered.
2975void Sema::CheckVariableDeclaration(VarDecl *NewVD,
2976                                    LookupResult &Previous,
2977                                    bool &Redeclaration) {
2978  // If the decl is already known invalid, don't check it.
2979  if (NewVD->isInvalidDecl())
2980    return;
2981
2982  QualType T = NewVD->getType();
2983
2984  if (T->isObjCObjectType()) {
2985    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2986    return NewVD->setInvalidDecl();
2987  }
2988
2989  // Emit an error if an address space was applied to decl with local storage.
2990  // This includes arrays of objects with address space qualifiers, but not
2991  // automatic variables that point to other address spaces.
2992  // ISO/IEC TR 18037 S5.1.2
2993  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
2994    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2995    return NewVD->setInvalidDecl();
2996  }
2997
2998  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2999      && !NewVD->hasAttr<BlocksAttr>())
3000    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
3001
3002  bool isVM = T->isVariablyModifiedType();
3003  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
3004      NewVD->hasAttr<BlocksAttr>())
3005    getCurFunction()->setHasBranchProtectedScope();
3006
3007  if ((isVM && NewVD->hasLinkage()) ||
3008      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
3009    bool SizeIsNegative;
3010    llvm::APSInt Oversized;
3011    QualType FixedTy =
3012        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3013                                            Oversized);
3014
3015    if (FixedTy.isNull() && T->isVariableArrayType()) {
3016      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
3017      // FIXME: This won't give the correct result for
3018      // int a[10][n];
3019      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
3020
3021      if (NewVD->isFileVarDecl())
3022        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
3023        << SizeRange;
3024      else if (NewVD->getStorageClass() == SC_Static)
3025        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
3026        << SizeRange;
3027      else
3028        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
3029        << SizeRange;
3030      return NewVD->setInvalidDecl();
3031    }
3032
3033    if (FixedTy.isNull()) {
3034      if (NewVD->isFileVarDecl())
3035        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
3036      else
3037        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
3038      return NewVD->setInvalidDecl();
3039    }
3040
3041    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
3042    NewVD->setType(FixedTy);
3043  }
3044
3045  if (Previous.empty() && NewVD->isExternC()) {
3046    // Since we did not find anything by this name and we're declaring
3047    // an extern "C" variable, look for a non-visible extern "C"
3048    // declaration with the same name.
3049    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3050      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
3051    if (Pos != LocallyScopedExternalDecls.end())
3052      Previous.addDecl(Pos->second);
3053  }
3054
3055  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
3056    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
3057      << T;
3058    return NewVD->setInvalidDecl();
3059  }
3060
3061  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
3062    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
3063    return NewVD->setInvalidDecl();
3064  }
3065
3066  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
3067    Diag(NewVD->getLocation(), diag::err_block_on_vm);
3068    return NewVD->setInvalidDecl();
3069  }
3070
3071  // Function pointers and references cannot have qualified function type, only
3072  // function pointer-to-members can do that.
3073  QualType Pointee;
3074  unsigned PtrOrRef = 0;
3075  if (const PointerType *Ptr = T->getAs<PointerType>())
3076    Pointee = Ptr->getPointeeType();
3077  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
3078    Pointee = Ref->getPointeeType();
3079    PtrOrRef = 1;
3080  }
3081  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
3082      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
3083    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
3084        << PtrOrRef;
3085    return NewVD->setInvalidDecl();
3086  }
3087
3088  if (!Previous.empty()) {
3089    Redeclaration = true;
3090    MergeVarDecl(NewVD, Previous);
3091  }
3092}
3093
3094/// \brief Data used with FindOverriddenMethod
3095struct FindOverriddenMethodData {
3096  Sema *S;
3097  CXXMethodDecl *Method;
3098};
3099
3100/// \brief Member lookup function that determines whether a given C++
3101/// method overrides a method in a base class, to be used with
3102/// CXXRecordDecl::lookupInBases().
3103static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
3104                                 CXXBasePath &Path,
3105                                 void *UserData) {
3106  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
3107
3108  FindOverriddenMethodData *Data
3109    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
3110
3111  DeclarationName Name = Data->Method->getDeclName();
3112
3113  // FIXME: Do we care about other names here too?
3114  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3115    // We really want to find the base class destructor here.
3116    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
3117    CanQualType CT = Data->S->Context.getCanonicalType(T);
3118
3119    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
3120  }
3121
3122  for (Path.Decls = BaseRecord->lookup(Name);
3123       Path.Decls.first != Path.Decls.second;
3124       ++Path.Decls.first) {
3125    NamedDecl *D = *Path.Decls.first;
3126    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
3127      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
3128        return true;
3129    }
3130  }
3131
3132  return false;
3133}
3134
3135/// AddOverriddenMethods - See if a method overrides any in the base classes,
3136/// and if so, check that it's a valid override and remember it.
3137void Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
3138  // Look for virtual methods in base classes that this method might override.
3139  CXXBasePaths Paths;
3140  FindOverriddenMethodData Data;
3141  Data.Method = MD;
3142  Data.S = this;
3143  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
3144    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
3145         E = Paths.found_decls_end(); I != E; ++I) {
3146      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
3147        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
3148            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
3149            !CheckOverridingFunctionAttributes(MD, OldMD))
3150          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
3151      }
3152    }
3153  }
3154}
3155
3156NamedDecl*
3157Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3158                              QualType R, TypeSourceInfo *TInfo,
3159                              LookupResult &Previous,
3160                              MultiTemplateParamsArg TemplateParamLists,
3161                              bool IsFunctionDefinition, bool &Redeclaration) {
3162  assert(R.getTypePtr()->isFunctionType());
3163
3164  // TODO: consider using NameInfo for diagnostic.
3165  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3166  DeclarationName Name = NameInfo.getName();
3167  FunctionDecl::StorageClass SC = SC_None;
3168  switch (D.getDeclSpec().getStorageClassSpec()) {
3169  default: assert(0 && "Unknown storage class!");
3170  case DeclSpec::SCS_auto:
3171  case DeclSpec::SCS_register:
3172  case DeclSpec::SCS_mutable:
3173    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3174         diag::err_typecheck_sclass_func);
3175    D.setInvalidType();
3176    break;
3177  case DeclSpec::SCS_unspecified: SC = SC_None; break;
3178  case DeclSpec::SCS_extern:      SC = SC_Extern; break;
3179  case DeclSpec::SCS_static: {
3180    if (CurContext->getRedeclContext()->isFunctionOrMethod()) {
3181      // C99 6.7.1p5:
3182      //   The declaration of an identifier for a function that has
3183      //   block scope shall have no explicit storage-class specifier
3184      //   other than extern
3185      // See also (C++ [dcl.stc]p4).
3186      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3187           diag::err_static_block_func);
3188      SC = SC_None;
3189    } else
3190      SC = SC_Static;
3191    break;
3192  }
3193  case DeclSpec::SCS_private_extern: SC = SC_PrivateExtern; break;
3194  }
3195
3196  if (D.getDeclSpec().isThreadSpecified())
3197    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3198
3199  bool isFriend = D.getDeclSpec().isFriendSpecified();
3200  bool isInline = D.getDeclSpec().isInlineSpecified();
3201  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
3202  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
3203
3204  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3205  FunctionDecl::StorageClass SCAsWritten
3206    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
3207
3208  // Check that the return type is not an abstract class type.
3209  // For record types, this is done by the AbstractClassUsageDiagnoser once
3210  // the class has been completely parsed.
3211  if (!DC->isRecord() &&
3212      RequireNonAbstractType(D.getIdentifierLoc(),
3213                             R->getAs<FunctionType>()->getResultType(),
3214                             diag::err_abstract_type_in_decl,
3215                             AbstractReturnType))
3216    D.setInvalidType();
3217
3218  // Do not allow returning a objc interface by-value.
3219  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
3220    Diag(D.getIdentifierLoc(),
3221         diag::err_object_cannot_be_passed_returned_by_value) << 0
3222      << R->getAs<FunctionType>()->getResultType();
3223    D.setInvalidType();
3224  }
3225
3226  bool isVirtualOkay = false;
3227  FunctionDecl *NewFD;
3228
3229  if (isFriend) {
3230    // C++ [class.friend]p5
3231    //   A function can be defined in a friend declaration of a
3232    //   class . . . . Such a function is implicitly inline.
3233    isInline |= IsFunctionDefinition;
3234  }
3235
3236  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
3237    // This is a C++ constructor declaration.
3238    assert(DC->isRecord() &&
3239           "Constructors can only be declared in a member context");
3240
3241    R = CheckConstructorDeclarator(D, R, SC);
3242
3243    // Create the new declaration
3244    NewFD = CXXConstructorDecl::Create(Context,
3245                                       cast<CXXRecordDecl>(DC),
3246                                       NameInfo, R, TInfo,
3247                                       isExplicit, isInline,
3248                                       /*isImplicitlyDeclared=*/false);
3249  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3250    // This is a C++ destructor declaration.
3251    if (DC->isRecord()) {
3252      R = CheckDestructorDeclarator(D, R, SC);
3253
3254      NewFD = CXXDestructorDecl::Create(Context,
3255                                        cast<CXXRecordDecl>(DC),
3256                                        NameInfo, R,
3257                                        isInline,
3258                                        /*isImplicitlyDeclared=*/false);
3259      NewFD->setTypeSourceInfo(TInfo);
3260
3261      isVirtualOkay = true;
3262    } else {
3263      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
3264
3265      // Create a FunctionDecl to satisfy the function definition parsing
3266      // code path.
3267      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
3268                                   Name, R, TInfo, SC, SCAsWritten, isInline,
3269                                   /*hasPrototype=*/true);
3270      D.setInvalidType();
3271    }
3272  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
3273    if (!DC->isRecord()) {
3274      Diag(D.getIdentifierLoc(),
3275           diag::err_conv_function_not_member);
3276      return 0;
3277    }
3278
3279    CheckConversionDeclarator(D, R, SC);
3280    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
3281                                      NameInfo, R, TInfo,
3282                                      isInline, isExplicit);
3283
3284    isVirtualOkay = true;
3285  } else if (DC->isRecord()) {
3286    // If the of the function is the same as the name of the record, then this
3287    // must be an invalid constructor that has a return type.
3288    // (The parser checks for a return type and makes the declarator a
3289    // constructor if it has no return type).
3290    // must have an invalid constructor that has a return type
3291    if (Name.getAsIdentifierInfo() &&
3292        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
3293      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
3294        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3295        << SourceRange(D.getIdentifierLoc());
3296      return 0;
3297    }
3298
3299    bool isStatic = SC == SC_Static;
3300
3301    // [class.free]p1:
3302    // Any allocation function for a class T is a static member
3303    // (even if not explicitly declared static).
3304    if (Name.getCXXOverloadedOperator() == OO_New ||
3305        Name.getCXXOverloadedOperator() == OO_Array_New)
3306      isStatic = true;
3307
3308    // [class.free]p6 Any deallocation function for a class X is a static member
3309    // (even if not explicitly declared static).
3310    if (Name.getCXXOverloadedOperator() == OO_Delete ||
3311        Name.getCXXOverloadedOperator() == OO_Array_Delete)
3312      isStatic = true;
3313
3314    // This is a C++ method declaration.
3315    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
3316                                  NameInfo, R, TInfo,
3317                                  isStatic, SCAsWritten, isInline);
3318
3319    isVirtualOkay = !isStatic;
3320  } else {
3321    // Determine whether the function was written with a
3322    // prototype. This true when:
3323    //   - we're in C++ (where every function has a prototype),
3324    //   - there is a prototype in the declarator, or
3325    //   - the type R of the function is some kind of typedef or other reference
3326    //     to a type name (which eventually refers to a function type).
3327    bool HasPrototype =
3328       getLangOptions().CPlusPlus ||
3329       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
3330       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
3331
3332    NewFD = FunctionDecl::Create(Context, DC,
3333                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
3334                                 HasPrototype);
3335  }
3336
3337  if (D.isInvalidType())
3338    NewFD->setInvalidDecl();
3339
3340  SetNestedNameSpecifier(NewFD, D);
3341
3342  // Set the lexical context. If the declarator has a C++
3343  // scope specifier, or is the object of a friend declaration, the
3344  // lexical context will be different from the semantic context.
3345  NewFD->setLexicalDeclContext(CurContext);
3346
3347  // Match up the template parameter lists with the scope specifier, then
3348  // determine whether we have a template or a template specialization.
3349  FunctionTemplateDecl *FunctionTemplate = 0;
3350  bool isExplicitSpecialization = false;
3351  bool isFunctionTemplateSpecialization = false;
3352  unsigned NumMatchedTemplateParamLists = TemplateParamLists.size();
3353  bool Invalid = false;
3354  if (TemplateParameterList *TemplateParams
3355        = MatchTemplateParametersToScopeSpecifier(
3356                                  D.getDeclSpec().getSourceRange().getBegin(),
3357                                  D.getCXXScopeSpec(),
3358                           (TemplateParameterList**)TemplateParamLists.get(),
3359                                                  TemplateParamLists.size(),
3360                                                  isFriend,
3361                                                  isExplicitSpecialization,
3362                                                  Invalid)) {
3363    // All but one template parameter lists have been matching.
3364    --NumMatchedTemplateParamLists;
3365
3366    if (TemplateParams->size() > 0) {
3367      // This is a function template
3368
3369      // Check that we can declare a template here.
3370      if (CheckTemplateDeclScope(S, TemplateParams))
3371        return 0;
3372
3373      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
3374                                                      NewFD->getLocation(),
3375                                                      Name, TemplateParams,
3376                                                      NewFD);
3377      FunctionTemplate->setLexicalDeclContext(CurContext);
3378      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
3379    } else {
3380      // This is a function template specialization.
3381      isFunctionTemplateSpecialization = true;
3382
3383      // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
3384      if (isFriend && isFunctionTemplateSpecialization) {
3385        // We want to remove the "template<>", found here.
3386        SourceRange RemoveRange = TemplateParams->getSourceRange();
3387
3388        // If we remove the template<> and the name is not a
3389        // template-id, we're actually silently creating a problem:
3390        // the friend declaration will refer to an untemplated decl,
3391        // and clearly the user wants a template specialization.  So
3392        // we need to insert '<>' after the name.
3393        SourceLocation InsertLoc;
3394        if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
3395          InsertLoc = D.getName().getSourceRange().getEnd();
3396          InsertLoc = PP.getLocForEndOfToken(InsertLoc);
3397        }
3398
3399        Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
3400          << Name << RemoveRange
3401          << FixItHint::CreateRemoval(RemoveRange)
3402          << FixItHint::CreateInsertion(InsertLoc, "<>");
3403      }
3404    }
3405  }
3406
3407  if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
3408    NewFD->setTemplateParameterListsInfo(Context,
3409                                         NumMatchedTemplateParamLists,
3410                        (TemplateParameterList**)TemplateParamLists.release());
3411  }
3412
3413  if (Invalid) {
3414    NewFD->setInvalidDecl();
3415    if (FunctionTemplate)
3416      FunctionTemplate->setInvalidDecl();
3417  }
3418
3419  // C++ [dcl.fct.spec]p5:
3420  //   The virtual specifier shall only be used in declarations of
3421  //   nonstatic class member functions that appear within a
3422  //   member-specification of a class declaration; see 10.3.
3423  //
3424  if (isVirtual && !NewFD->isInvalidDecl()) {
3425    if (!isVirtualOkay) {
3426       Diag(D.getDeclSpec().getVirtualSpecLoc(),
3427           diag::err_virtual_non_function);
3428    } else if (!CurContext->isRecord()) {
3429      // 'virtual' was specified outside of the class.
3430      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
3431        << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
3432    } else {
3433      // Okay: Add virtual to the method.
3434      NewFD->setVirtualAsWritten(true);
3435    }
3436  }
3437
3438  // C++ [dcl.fct.spec]p3:
3439  //  The inline specifier shall not appear on a block scope function declaration.
3440  if (isInline && !NewFD->isInvalidDecl() && getLangOptions().CPlusPlus) {
3441    if (CurContext->isFunctionOrMethod()) {
3442      // 'inline' is not allowed on block scope function declaration.
3443      Diag(D.getDeclSpec().getInlineSpecLoc(),
3444           diag::err_inline_declaration_block_scope) << Name
3445        << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
3446    }
3447  }
3448
3449  // C++ [dcl.fct.spec]p6:
3450  //  The explicit specifier shall be used only in the declaration of a
3451  //  constructor or conversion function within its class definition; see 12.3.1
3452  //  and 12.3.2.
3453  if (isExplicit && !NewFD->isInvalidDecl()) {
3454    if (!CurContext->isRecord()) {
3455      // 'explicit' was specified outside of the class.
3456      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3457           diag::err_explicit_out_of_class)
3458        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3459    } else if (!isa<CXXConstructorDecl>(NewFD) &&
3460               !isa<CXXConversionDecl>(NewFD)) {
3461      // 'explicit' was specified on a function that wasn't a constructor
3462      // or conversion function.
3463      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3464           diag::err_explicit_non_ctor_or_conv_function)
3465        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3466    }
3467  }
3468
3469  // Filter out previous declarations that don't match the scope.
3470  FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
3471
3472  if (isFriend) {
3473    // DC is the namespace in which the function is being declared.
3474    assert((DC->isFileContext() || !Previous.empty() ||
3475            (D.getCXXScopeSpec().isSet() &&
3476             D.getCXXScopeSpec().getScopeRep()->isDependent())) &&
3477           "previously-undeclared friend function being created "
3478           "in a non-namespace context");
3479
3480    // For now, claim that the objects have no previous declaration.
3481    if (FunctionTemplate) {
3482      FunctionTemplate->setObjectOfFriendDecl(false);
3483      FunctionTemplate->setAccess(AS_public);
3484    }
3485    NewFD->setObjectOfFriendDecl(false);
3486    NewFD->setAccess(AS_public);
3487  }
3488
3489  if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
3490      !CurContext->isRecord()) {
3491    // C++ [class.static]p1:
3492    //   A data or function member of a class may be declared static
3493    //   in a class definition, in which case it is a static member of
3494    //   the class.
3495
3496    // Complain about the 'static' specifier if it's on an out-of-line
3497    // member function definition.
3498    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3499         diag::err_static_out_of_line)
3500      << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3501  }
3502
3503  // Handle GNU asm-label extension (encoded as an attribute).
3504  if (Expr *E = (Expr*) D.getAsmLabel()) {
3505    // The parser guarantees this is a string.
3506    StringLiteral *SE = cast<StringLiteral>(E);
3507    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
3508                                                SE->getString()));
3509  }
3510
3511  // Copy the parameter declarations from the declarator D to the function
3512  // declaration NewFD, if they are available.  First scavenge them into Params.
3513  llvm::SmallVector<ParmVarDecl*, 16> Params;
3514  if (D.getNumTypeObjects() > 0) {
3515    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3516
3517    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
3518    // function that takes no arguments, not a function that takes a
3519    // single void argument.
3520    // We let through "const void" here because Sema::GetTypeForDeclarator
3521    // already checks for that case.
3522    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3523        FTI.ArgInfo[0].Param &&
3524        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
3525      // Empty arg list, don't push any params.
3526      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
3527
3528      // In C++, the empty parameter-type-list must be spelled "void"; a
3529      // typedef of void is not permitted.
3530      if (getLangOptions().CPlusPlus &&
3531          Param->getType().getUnqualifiedType() != Context.VoidTy)
3532        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
3533      // FIXME: Leaks decl?
3534    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
3535      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
3536        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
3537        assert(Param->getDeclContext() != NewFD && "Was set before ?");
3538        Param->setDeclContext(NewFD);
3539        Params.push_back(Param);
3540
3541        if (Param->isInvalidDecl())
3542          NewFD->setInvalidDecl();
3543      }
3544    }
3545
3546  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
3547    // When we're declaring a function with a typedef, typeof, etc as in the
3548    // following example, we'll need to synthesize (unnamed)
3549    // parameters for use in the declaration.
3550    //
3551    // @code
3552    // typedef void fn(int);
3553    // fn f;
3554    // @endcode
3555
3556    // Synthesize a parameter for each argument type.
3557    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
3558         AE = FT->arg_type_end(); AI != AE; ++AI) {
3559      ParmVarDecl *Param =
3560        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
3561      Params.push_back(Param);
3562    }
3563  } else {
3564    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
3565           "Should not need args for typedef of non-prototype fn");
3566  }
3567  // Finally, we know we have the right number of parameters, install them.
3568  NewFD->setParams(Params.data(), Params.size());
3569
3570  // If the declarator is a template-id, translate the parser's template
3571  // argument list into our AST format.
3572  bool HasExplicitTemplateArgs = false;
3573  TemplateArgumentListInfo TemplateArgs;
3574  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
3575    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
3576    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
3577    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
3578    ASTTemplateArgsPtr TemplateArgsPtr(*this,
3579                                       TemplateId->getTemplateArgs(),
3580                                       TemplateId->NumArgs);
3581    translateTemplateArguments(TemplateArgsPtr,
3582                               TemplateArgs);
3583    TemplateArgsPtr.release();
3584
3585    HasExplicitTemplateArgs = true;
3586
3587    if (FunctionTemplate) {
3588      // FIXME: Diagnose function template with explicit template
3589      // arguments.
3590      HasExplicitTemplateArgs = false;
3591    } else if (!isFunctionTemplateSpecialization &&
3592               !D.getDeclSpec().isFriendSpecified()) {
3593      // We have encountered something that the user meant to be a
3594      // specialization (because it has explicitly-specified template
3595      // arguments) but that was not introduced with a "template<>" (or had
3596      // too few of them).
3597      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
3598        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
3599        << FixItHint::CreateInsertion(
3600                                   D.getDeclSpec().getSourceRange().getBegin(),
3601                                                 "template<> ");
3602      isFunctionTemplateSpecialization = true;
3603    } else {
3604      // "friend void foo<>(int);" is an implicit specialization decl.
3605      isFunctionTemplateSpecialization = true;
3606    }
3607  } else if (isFriend && isFunctionTemplateSpecialization) {
3608    // This combination is only possible in a recovery case;  the user
3609    // wrote something like:
3610    //   template <> friend void foo(int);
3611    // which we're recovering from as if the user had written:
3612    //   friend void foo<>(int);
3613    // Go ahead and fake up a template id.
3614    HasExplicitTemplateArgs = true;
3615    TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
3616    TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
3617  }
3618
3619  // If it's a friend (and only if it's a friend), it's possible
3620  // that either the specialized function type or the specialized
3621  // template is dependent, and therefore matching will fail.  In
3622  // this case, don't check the specialization yet.
3623  if (isFunctionTemplateSpecialization && isFriend &&
3624      (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
3625    assert(HasExplicitTemplateArgs &&
3626           "friend function specialization without template args");
3627    if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
3628                                                     Previous))
3629      NewFD->setInvalidDecl();
3630  } else if (isFunctionTemplateSpecialization) {
3631    if (CheckFunctionTemplateSpecialization(NewFD,
3632                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
3633                                            Previous))
3634      NewFD->setInvalidDecl();
3635  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
3636    if (CheckMemberSpecialization(NewFD, Previous))
3637      NewFD->setInvalidDecl();
3638  }
3639
3640  // Perform semantic checking on the function declaration.
3641  bool OverloadableAttrRequired = false; // FIXME: HACK!
3642  CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
3643                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
3644
3645  assert((NewFD->isInvalidDecl() || !Redeclaration ||
3646          Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3647         "previous declaration set still overloaded");
3648
3649  NamedDecl *PrincipalDecl = (FunctionTemplate
3650                              ? cast<NamedDecl>(FunctionTemplate)
3651                              : NewFD);
3652
3653  if (isFriend && Redeclaration) {
3654    AccessSpecifier Access = AS_public;
3655    if (!NewFD->isInvalidDecl())
3656      Access = NewFD->getPreviousDeclaration()->getAccess();
3657
3658    NewFD->setAccess(Access);
3659    if (FunctionTemplate) FunctionTemplate->setAccess(Access);
3660
3661    PrincipalDecl->setObjectOfFriendDecl(true);
3662  }
3663
3664  if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
3665      PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
3666    PrincipalDecl->setNonMemberOperator();
3667
3668  // If we have a function template, check the template parameter
3669  // list. This will check and merge default template arguments.
3670  if (FunctionTemplate) {
3671    FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
3672    CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
3673                      PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
3674             D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate
3675                                                : TPC_FunctionTemplate);
3676  }
3677
3678  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
3679    if (isFriend || !CurContext->isRecord()) {
3680      // Fake up an access specifier if it's supposed to be a class member.
3681      if (!Redeclaration && isa<CXXRecordDecl>(NewFD->getDeclContext()))
3682        NewFD->setAccess(AS_public);
3683
3684      // An out-of-line member function declaration must also be a
3685      // definition (C++ [dcl.meaning]p1).
3686      // Note that this is not the case for explicit specializations of
3687      // function templates or member functions of class templates, per
3688      // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
3689      // for compatibility with old SWIG code which likes to generate them.
3690      if (!IsFunctionDefinition && !isFriend &&
3691          !isFunctionTemplateSpecialization && !isExplicitSpecialization) {
3692        Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
3693          << D.getCXXScopeSpec().getRange();
3694      }
3695      if (!Redeclaration && !(isFriend && CurContext->isDependentContext())) {
3696        // The user tried to provide an out-of-line definition for a
3697        // function that is a member of a class or namespace, but there
3698        // was no such member function declared (C++ [class.mfct]p2,
3699        // C++ [namespace.memdef]p2). For example:
3700        //
3701        // class X {
3702        //   void f() const;
3703        // };
3704        //
3705        // void X::f() { } // ill-formed
3706        //
3707        // Complain about this problem, and attempt to suggest close
3708        // matches (e.g., those that differ only in cv-qualifiers and
3709        // whether the parameter types are references).
3710        Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
3711          << Name << DC << D.getCXXScopeSpec().getRange();
3712        NewFD->setInvalidDecl();
3713
3714        LookupResult Prev(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
3715                          ForRedeclaration);
3716        LookupQualifiedName(Prev, DC);
3717        assert(!Prev.isAmbiguous() &&
3718               "Cannot have an ambiguity in previous-declaration lookup");
3719        for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3720             Func != FuncEnd; ++Func) {
3721          if (isa<FunctionDecl>(*Func) &&
3722              isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
3723            Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3724        }
3725      }
3726    } else {
3727      // The user provided a superfluous scope specifier inside a class definition:
3728      //
3729      // class X {
3730      //   void X::f();
3731      // };
3732      Diag(NewFD->getLocation(), diag::warn_member_extra_qualification)
3733        << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
3734    }
3735  }
3736
3737  // Handle attributes. We need to have merged decls when handling attributes
3738  // (for example to check for conflicts, etc).
3739  // FIXME: This needs to happen before we merge declarations. Then,
3740  // let attribute merging cope with attribute conflicts.
3741  ProcessDeclAttributes(S, NewFD, D);
3742
3743  // attributes declared post-definition are currently ignored
3744  // FIXME: This should happen during attribute merging
3745  if (Redeclaration && Previous.isSingleResult()) {
3746    const FunctionDecl *Def;
3747    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
3748    if (PrevFD && PrevFD->hasBody(Def) && D.hasAttributes()) {
3749      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
3750      Diag(Def->getLocation(), diag::note_previous_definition);
3751    }
3752  }
3753
3754  AddKnownFunctionAttributes(NewFD);
3755
3756  if (OverloadableAttrRequired && !NewFD->hasAttr<OverloadableAttr>()) {
3757    // If a function name is overloadable in C, then every function
3758    // with that name must be marked "overloadable".
3759    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
3760      << Redeclaration << NewFD;
3761    if (!Previous.empty())
3762      Diag(Previous.getRepresentativeDecl()->getLocation(),
3763           diag::note_attribute_overloadable_prev_overload);
3764    NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(), Context));
3765  }
3766
3767  if (NewFD->hasAttr<OverloadableAttr>() &&
3768      !NewFD->getType()->getAs<FunctionProtoType>()) {
3769    Diag(NewFD->getLocation(),
3770         diag::err_attribute_overloadable_no_prototype)
3771      << NewFD;
3772
3773    // Turn this into a variadic function with no parameters.
3774    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
3775    QualType R = Context.getFunctionType(FT->getResultType(),
3776                                         0, 0, true, 0, false, false, 0, 0,
3777                                         FT->getExtInfo());
3778    NewFD->setType(R);
3779  }
3780
3781  // If there's a #pragma GCC visibility in scope, and this isn't a class
3782  // member, set the visibility of this function.
3783  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
3784    AddPushedVisibilityAttribute(NewFD);
3785
3786  // If this is a locally-scoped extern C function, update the
3787  // map of such names.
3788  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
3789      && !NewFD->isInvalidDecl())
3790    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
3791
3792  // Set this FunctionDecl's range up to the right paren.
3793  NewFD->setLocEnd(D.getSourceRange().getEnd());
3794
3795  if (FunctionTemplate && NewFD->isInvalidDecl())
3796    FunctionTemplate->setInvalidDecl();
3797
3798  if (FunctionTemplate)
3799    return FunctionTemplate;
3800
3801  MarkUnusedFileScopedDecl(NewFD);
3802
3803  return NewFD;
3804}
3805
3806/// \brief Perform semantic checking of a new function declaration.
3807///
3808/// Performs semantic analysis of the new function declaration
3809/// NewFD. This routine performs all semantic checking that does not
3810/// require the actual declarator involved in the declaration, and is
3811/// used both for the declaration of functions as they are parsed
3812/// (called via ActOnDeclarator) and for the declaration of functions
3813/// that have been instantiated via C++ template instantiation (called
3814/// via InstantiateDecl).
3815///
3816/// \param IsExplicitSpecialiation whether this new function declaration is
3817/// an explicit specialization of the previous declaration.
3818///
3819/// This sets NewFD->isInvalidDecl() to true if there was an error.
3820void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
3821                                    LookupResult &Previous,
3822                                    bool IsExplicitSpecialization,
3823                                    bool &Redeclaration,
3824                                    bool &OverloadableAttrRequired) {
3825  // If NewFD is already known erroneous, don't do any of this checking.
3826  if (NewFD->isInvalidDecl()) {
3827    // If this is a class member, mark the class invalid immediately.
3828    // This avoids some consistency errors later.
3829    if (isa<CXXMethodDecl>(NewFD))
3830      cast<CXXMethodDecl>(NewFD)->getParent()->setInvalidDecl();
3831
3832    return;
3833  }
3834
3835  if (NewFD->getResultType()->isVariablyModifiedType()) {
3836    // Functions returning a variably modified type violate C99 6.7.5.2p2
3837    // because all functions have linkage.
3838    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
3839    return NewFD->setInvalidDecl();
3840  }
3841
3842  if (NewFD->isMain())
3843    CheckMain(NewFD);
3844
3845  // Check for a previous declaration of this name.
3846  if (Previous.empty() && NewFD->isExternC()) {
3847    // Since we did not find anything by this name and we're declaring
3848    // an extern "C" function, look for a non-visible extern "C"
3849    // declaration with the same name.
3850    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3851      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
3852    if (Pos != LocallyScopedExternalDecls.end())
3853      Previous.addDecl(Pos->second);
3854  }
3855
3856  // Merge or overload the declaration with an existing declaration of
3857  // the same name, if appropriate.
3858  if (!Previous.empty()) {
3859    // Determine whether NewFD is an overload of PrevDecl or
3860    // a declaration that requires merging. If it's an overload,
3861    // there's no more work to do here; we'll just add the new
3862    // function to the scope.
3863
3864    NamedDecl *OldDecl = 0;
3865    if (!AllowOverloadingOfFunction(Previous, Context)) {
3866      Redeclaration = true;
3867      OldDecl = Previous.getFoundDecl();
3868    } else {
3869      if (!getLangOptions().CPlusPlus)
3870        OverloadableAttrRequired = true;
3871
3872      switch (CheckOverload(S, NewFD, Previous, OldDecl,
3873                            /*NewIsUsingDecl*/ false)) {
3874      case Ovl_Match:
3875        Redeclaration = true;
3876        break;
3877
3878      case Ovl_NonFunction:
3879        Redeclaration = true;
3880        break;
3881
3882      case Ovl_Overload:
3883        Redeclaration = false;
3884        break;
3885      }
3886    }
3887
3888    if (Redeclaration) {
3889      // NewFD and OldDecl represent declarations that need to be
3890      // merged.
3891      if (MergeFunctionDecl(NewFD, OldDecl))
3892        return NewFD->setInvalidDecl();
3893
3894      Previous.clear();
3895      Previous.addDecl(OldDecl);
3896
3897      if (FunctionTemplateDecl *OldTemplateDecl
3898                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
3899        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3900        FunctionTemplateDecl *NewTemplateDecl
3901          = NewFD->getDescribedFunctionTemplate();
3902        assert(NewTemplateDecl && "Template/non-template mismatch");
3903        if (CXXMethodDecl *Method
3904              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
3905          Method->setAccess(OldTemplateDecl->getAccess());
3906          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
3907        }
3908
3909        // If this is an explicit specialization of a member that is a function
3910        // template, mark it as a member specialization.
3911        if (IsExplicitSpecialization &&
3912            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
3913          NewTemplateDecl->setMemberSpecialization();
3914          assert(OldTemplateDecl->isMemberSpecialization());
3915        }
3916      } else {
3917        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3918          NewFD->setAccess(OldDecl->getAccess());
3919        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3920      }
3921    }
3922  }
3923
3924  // Semantic checking for this function declaration (in isolation).
3925  if (getLangOptions().CPlusPlus) {
3926    // C++-specific checks.
3927    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3928      CheckConstructor(Constructor);
3929    } else if (CXXDestructorDecl *Destructor =
3930                dyn_cast<CXXDestructorDecl>(NewFD)) {
3931      CXXRecordDecl *Record = Destructor->getParent();
3932      QualType ClassType = Context.getTypeDeclType(Record);
3933
3934      // FIXME: Shouldn't we be able to perform this check even when the class
3935      // type is dependent? Both gcc and edg can handle that.
3936      if (!ClassType->isDependentType()) {
3937        DeclarationName Name
3938          = Context.DeclarationNames.getCXXDestructorName(
3939                                        Context.getCanonicalType(ClassType));
3940//         NewFD->getDeclName().dump();
3941//         Name.dump();
3942        if (NewFD->getDeclName() != Name) {
3943          Diag(NewFD->getLocation(), diag::err_destructor_name);
3944          return NewFD->setInvalidDecl();
3945        }
3946      }
3947    } else if (CXXConversionDecl *Conversion
3948               = dyn_cast<CXXConversionDecl>(NewFD)) {
3949      ActOnConversionDeclarator(Conversion);
3950    }
3951
3952    // Find any virtual functions that this function overrides.
3953    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
3954      if (!Method->isFunctionTemplateSpecialization() &&
3955          !Method->getDescribedFunctionTemplate())
3956        AddOverriddenMethods(Method->getParent(), Method);
3957    }
3958
3959    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3960    if (NewFD->isOverloadedOperator() &&
3961        CheckOverloadedOperatorDeclaration(NewFD))
3962      return NewFD->setInvalidDecl();
3963
3964    // Extra checking for C++0x literal operators (C++0x [over.literal]).
3965    if (NewFD->getLiteralIdentifier() &&
3966        CheckLiteralOperatorDeclaration(NewFD))
3967      return NewFD->setInvalidDecl();
3968
3969    // In C++, check default arguments now that we have merged decls. Unless
3970    // the lexical context is the class, because in this case this is done
3971    // during delayed parsing anyway.
3972    if (!CurContext->isRecord())
3973      CheckCXXDefaultArguments(NewFD);
3974  }
3975}
3976
3977void Sema::CheckMain(FunctionDecl* FD) {
3978  // C++ [basic.start.main]p3:  A program that declares main to be inline
3979  //   or static is ill-formed.
3980  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3981  //   shall not appear in a declaration of main.
3982  // static main is not an error under C99, but we should warn about it.
3983  bool isInline = FD->isInlineSpecified();
3984  bool isStatic = FD->getStorageClass() == SC_Static;
3985  if (isInline || isStatic) {
3986    unsigned diagID = diag::warn_unusual_main_decl;
3987    if (isInline || getLangOptions().CPlusPlus)
3988      diagID = diag::err_unusual_main_decl;
3989
3990    int which = isStatic + (isInline << 1) - 1;
3991    Diag(FD->getLocation(), diagID) << which;
3992  }
3993
3994  QualType T = FD->getType();
3995  assert(T->isFunctionType() && "function decl is not of function type");
3996  const FunctionType* FT = T->getAs<FunctionType>();
3997
3998  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3999    TypeSourceInfo *TSI = FD->getTypeSourceInfo();
4000    TypeLoc TL = TSI->getTypeLoc();
4001    const SemaDiagnosticBuilder& D = Diag(FD->getTypeSpecStartLoc(),
4002                                          diag::err_main_returns_nonint);
4003    if (FunctionTypeLoc* PTL = dyn_cast<FunctionTypeLoc>(&TL)) {
4004      D << FixItHint::CreateReplacement(PTL->getResultLoc().getSourceRange(),
4005                                        "int");
4006    }
4007    FD->setInvalidDecl(true);
4008  }
4009
4010  // Treat protoless main() as nullary.
4011  if (isa<FunctionNoProtoType>(FT)) return;
4012
4013  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
4014  unsigned nparams = FTP->getNumArgs();
4015  assert(FD->getNumParams() == nparams);
4016
4017  bool HasExtraParameters = (nparams > 3);
4018
4019  // Darwin passes an undocumented fourth argument of type char**.  If
4020  // other platforms start sprouting these, the logic below will start
4021  // getting shifty.
4022  if (nparams == 4 &&
4023      Context.Target.getTriple().getOS() == llvm::Triple::Darwin)
4024    HasExtraParameters = false;
4025
4026  if (HasExtraParameters) {
4027    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
4028    FD->setInvalidDecl(true);
4029    nparams = 3;
4030  }
4031
4032  // FIXME: a lot of the following diagnostics would be improved
4033  // if we had some location information about types.
4034
4035  QualType CharPP =
4036    Context.getPointerType(Context.getPointerType(Context.CharTy));
4037  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
4038
4039  for (unsigned i = 0; i < nparams; ++i) {
4040    QualType AT = FTP->getArgType(i);
4041
4042    bool mismatch = true;
4043
4044    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
4045      mismatch = false;
4046    else if (Expected[i] == CharPP) {
4047      // As an extension, the following forms are okay:
4048      //   char const **
4049      //   char const * const *
4050      //   char * const *
4051
4052      QualifierCollector qs;
4053      const PointerType* PT;
4054      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
4055          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
4056          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
4057        qs.removeConst();
4058        mismatch = !qs.empty();
4059      }
4060    }
4061
4062    if (mismatch) {
4063      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
4064      // TODO: suggest replacing given type with expected type
4065      FD->setInvalidDecl(true);
4066    }
4067  }
4068
4069  if (nparams == 1 && !FD->isInvalidDecl()) {
4070    Diag(FD->getLocation(), diag::warn_main_one_arg);
4071  }
4072}
4073
4074bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
4075  // FIXME: Need strict checking.  In C89, we need to check for
4076  // any assignment, increment, decrement, function-calls, or
4077  // commas outside of a sizeof.  In C99, it's the same list,
4078  // except that the aforementioned are allowed in unevaluated
4079  // expressions.  Everything else falls under the
4080  // "may accept other forms of constant expressions" exception.
4081  // (We never end up here for C++, so the constant expression
4082  // rules there don't matter.)
4083  if (Init->isConstantInitializer(Context, false))
4084    return false;
4085  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
4086    << Init->getSourceRange();
4087  return true;
4088}
4089
4090void Sema::AddInitializerToDecl(Decl *dcl, Expr *init) {
4091  AddInitializerToDecl(dcl, init, /*DirectInit=*/false);
4092}
4093
4094/// AddInitializerToDecl - Adds the initializer Init to the
4095/// declaration dcl. If DirectInit is true, this is C++ direct
4096/// initialization rather than copy initialization.
4097void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init, bool DirectInit) {
4098  // If there is no declaration, there was an error parsing it.  Just ignore
4099  // the initializer.
4100  if (RealDecl == 0)
4101    return;
4102
4103  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
4104    // With declarators parsed the way they are, the parser cannot
4105    // distinguish between a normal initializer and a pure-specifier.
4106    // Thus this grotesque test.
4107    IntegerLiteral *IL;
4108    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
4109        Context.getCanonicalType(IL->getType()) == Context.IntTy)
4110      CheckPureMethod(Method, Init->getSourceRange());
4111    else {
4112      Diag(Method->getLocation(), diag::err_member_function_initialization)
4113        << Method->getDeclName() << Init->getSourceRange();
4114      Method->setInvalidDecl();
4115    }
4116    return;
4117  }
4118
4119  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
4120  if (!VDecl) {
4121    if (getLangOptions().CPlusPlus &&
4122        RealDecl->getLexicalDeclContext()->isRecord() &&
4123        isa<NamedDecl>(RealDecl))
4124      Diag(RealDecl->getLocation(), diag::err_member_initialization);
4125    else
4126      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
4127    RealDecl->setInvalidDecl();
4128    return;
4129  }
4130
4131
4132
4133  // A definition must end up with a complete type, which means it must be
4134  // complete with the restriction that an array type might be completed by the
4135  // initializer; note that later code assumes this restriction.
4136  QualType BaseDeclType = VDecl->getType();
4137  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
4138    BaseDeclType = Array->getElementType();
4139  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
4140                          diag::err_typecheck_decl_incomplete_type)) {
4141    RealDecl->setInvalidDecl();
4142    return;
4143  }
4144
4145  // The variable can not have an abstract class type.
4146  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
4147                             diag::err_abstract_type_in_decl,
4148                             AbstractVariableType))
4149    VDecl->setInvalidDecl();
4150
4151  const VarDecl *Def;
4152  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
4153    Diag(VDecl->getLocation(), diag::err_redefinition)
4154      << VDecl->getDeclName();
4155    Diag(Def->getLocation(), diag::note_previous_definition);
4156    VDecl->setInvalidDecl();
4157    return;
4158  }
4159
4160  // C++ [class.static.data]p4
4161  //   If a static data member is of const integral or const
4162  //   enumeration type, its declaration in the class definition can
4163  //   specify a constant-initializer which shall be an integral
4164  //   constant expression (5.19). In that case, the member can appear
4165  //   in integral constant expressions. The member shall still be
4166  //   defined in a namespace scope if it is used in the program and the
4167  //   namespace scope definition shall not contain an initializer.
4168  //
4169  // We already performed a redefinition check above, but for static
4170  // data members we also need to check whether there was an in-class
4171  // declaration with an initializer.
4172  const VarDecl* PrevInit = 0;
4173  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
4174    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
4175    Diag(PrevInit->getLocation(), diag::note_previous_definition);
4176    return;
4177  }
4178
4179  if (getLangOptions().CPlusPlus && VDecl->hasLocalStorage())
4180    getCurFunction()->setHasBranchProtectedScope();
4181
4182  // Capture the variable that is being initialized and the style of
4183  // initialization.
4184  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
4185
4186  // FIXME: Poor source location information.
4187  InitializationKind Kind
4188    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
4189                                                   Init->getLocStart(),
4190                                                   Init->getLocEnd())
4191                : InitializationKind::CreateCopy(VDecl->getLocation(),
4192                                                 Init->getLocStart());
4193
4194  // Get the decls type and save a reference for later, since
4195  // CheckInitializerTypes may change it.
4196  QualType DclT = VDecl->getType(), SavT = DclT;
4197  if (VDecl->isBlockVarDecl()) {
4198    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
4199      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
4200      VDecl->setInvalidDecl();
4201    } else if (!VDecl->isInvalidDecl()) {
4202      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4203      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4204                                                MultiExprArg(*this, &Init, 1),
4205                                                &DclT);
4206      if (Result.isInvalid()) {
4207        VDecl->setInvalidDecl();
4208        return;
4209      }
4210
4211      Init = Result.takeAs<Expr>();
4212
4213      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4214      // Don't check invalid declarations to avoid emitting useless diagnostics.
4215      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4216        if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
4217          CheckForConstantInitializer(Init, DclT);
4218      }
4219    }
4220  } else if (VDecl->isStaticDataMember() &&
4221             VDecl->getLexicalDeclContext()->isRecord()) {
4222    // This is an in-class initialization for a static data member, e.g.,
4223    //
4224    // struct S {
4225    //   static const int value = 17;
4226    // };
4227
4228    // Try to perform the initialization regardless.
4229    if (!VDecl->isInvalidDecl()) {
4230      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4231      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4232                                          MultiExprArg(*this, &Init, 1),
4233                                          &DclT);
4234      if (Result.isInvalid()) {
4235        VDecl->setInvalidDecl();
4236        return;
4237      }
4238
4239      Init = Result.takeAs<Expr>();
4240    }
4241
4242    // C++ [class.mem]p4:
4243    //   A member-declarator can contain a constant-initializer only
4244    //   if it declares a static member (9.4) of const integral or
4245    //   const enumeration type, see 9.4.2.
4246    QualType T = VDecl->getType();
4247
4248    // Do nothing on dependent types.
4249    if (T->isDependentType()) {
4250
4251    // Require constness.
4252    } else if (!T.isConstQualified()) {
4253      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
4254        << Init->getSourceRange();
4255      VDecl->setInvalidDecl();
4256
4257    // We allow integer constant expressions in all cases.
4258    } else if (T->isIntegralOrEnumerationType()) {
4259      if (!Init->isValueDependent()) {
4260        // Check whether the expression is a constant expression.
4261        llvm::APSInt Value;
4262        SourceLocation Loc;
4263        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
4264          Diag(Loc, diag::err_in_class_initializer_non_constant)
4265            << Init->getSourceRange();
4266          VDecl->setInvalidDecl();
4267        }
4268      }
4269
4270    // We allow floating-point constants as an extension in C++03, and
4271    // C++0x has far more complicated rules that we don't really
4272    // implement fully.
4273    } else {
4274      bool Allowed = false;
4275      if (getLangOptions().CPlusPlus0x) {
4276        Allowed = T->isLiteralType();
4277      } else if (T->isFloatingType()) { // also permits complex, which is ok
4278        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
4279          << T << Init->getSourceRange();
4280        Allowed = true;
4281      }
4282
4283      if (!Allowed) {
4284        Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
4285          << T << Init->getSourceRange();
4286        VDecl->setInvalidDecl();
4287
4288      // TODO: there are probably expressions that pass here that shouldn't.
4289      } else if (!Init->isValueDependent() &&
4290                 !Init->isConstantInitializer(Context, false)) {
4291        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
4292          << Init->getSourceRange();
4293        VDecl->setInvalidDecl();
4294      }
4295    }
4296  } else if (VDecl->isFileVarDecl()) {
4297    if (VDecl->getStorageClass() == SC_Extern &&
4298        (!getLangOptions().CPlusPlus ||
4299         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
4300      Diag(VDecl->getLocation(), diag::warn_extern_init);
4301    if (!VDecl->isInvalidDecl()) {
4302      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4303      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4304                                                MultiExprArg(*this, &Init, 1),
4305                                                &DclT);
4306      if (Result.isInvalid()) {
4307        VDecl->setInvalidDecl();
4308        return;
4309      }
4310
4311      Init = Result.takeAs<Expr>();
4312    }
4313
4314    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4315    // Don't check invalid declarations to avoid emitting useless diagnostics.
4316    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4317      // C99 6.7.8p4. All file scoped initializers need to be constant.
4318      CheckForConstantInitializer(Init, DclT);
4319    }
4320  }
4321  // If the type changed, it means we had an incomplete type that was
4322  // completed by the initializer. For example:
4323  //   int ary[] = { 1, 3, 5 };
4324  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
4325  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
4326    VDecl->setType(DclT);
4327    Init->setType(DclT);
4328  }
4329
4330
4331  // If this variable is a local declaration with record type, make sure it
4332  // doesn't have a flexible member initialization.  We only support this as a
4333  // global/static definition.
4334  if (VDecl->hasLocalStorage())
4335    if (const RecordType *RT = VDecl->getType()->getAs<RecordType>())
4336      if (RT->getDecl()->hasFlexibleArrayMember() && isa<InitListExpr>(Init)) {
4337        Diag(VDecl->getLocation(), diag::err_nonstatic_flexible_variable);
4338        VDecl->setInvalidDecl();
4339      }
4340
4341  // Check any implicit conversions within the expression.
4342  CheckImplicitConversions(Init, VDecl->getLocation());
4343
4344  Init = MaybeCreateCXXExprWithTemporaries(Init);
4345  // Attach the initializer to the decl.
4346  VDecl->setInit(Init);
4347
4348  if (getLangOptions().CPlusPlus) {
4349    if (!VDecl->isInvalidDecl() &&
4350        !VDecl->getDeclContext()->isDependentContext() &&
4351        VDecl->hasGlobalStorage() && !VDecl->isStaticLocal() &&
4352        !Init->isConstantInitializer(Context,
4353                                     VDecl->getType()->isReferenceType()))
4354      Diag(VDecl->getLocation(), diag::warn_global_constructor)
4355        << Init->getSourceRange();
4356
4357    // Make sure we mark the destructor as used if necessary.
4358    QualType InitType = VDecl->getType();
4359    while (const ArrayType *Array = Context.getAsArrayType(InitType))
4360      InitType = Context.getBaseElementType(Array);
4361    if (const RecordType *Record = InitType->getAs<RecordType>())
4362      FinalizeVarWithDestructor(VDecl, Record);
4363  }
4364
4365  return;
4366}
4367
4368/// ActOnInitializerError - Given that there was an error parsing an
4369/// initializer for the given declaration, try to return to some form
4370/// of sanity.
4371void Sema::ActOnInitializerError(Decl *D) {
4372  // Our main concern here is re-establishing invariants like "a
4373  // variable's type is either dependent or complete".
4374  if (!D || D->isInvalidDecl()) return;
4375
4376  VarDecl *VD = dyn_cast<VarDecl>(D);
4377  if (!VD) return;
4378
4379  QualType Ty = VD->getType();
4380  if (Ty->isDependentType()) return;
4381
4382  // Require a complete type.
4383  if (RequireCompleteType(VD->getLocation(),
4384                          Context.getBaseElementType(Ty),
4385                          diag::err_typecheck_decl_incomplete_type)) {
4386    VD->setInvalidDecl();
4387    return;
4388  }
4389
4390  // Require an abstract type.
4391  if (RequireNonAbstractType(VD->getLocation(), Ty,
4392                             diag::err_abstract_type_in_decl,
4393                             AbstractVariableType)) {
4394    VD->setInvalidDecl();
4395    return;
4396  }
4397
4398  // Don't bother complaining about constructors or destructors,
4399  // though.
4400}
4401
4402void Sema::ActOnUninitializedDecl(Decl *RealDecl,
4403                                  bool TypeContainsUndeducedAuto) {
4404  // If there is no declaration, there was an error parsing it. Just ignore it.
4405  if (RealDecl == 0)
4406    return;
4407
4408  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
4409    QualType Type = Var->getType();
4410
4411    // C++0x [dcl.spec.auto]p3
4412    if (TypeContainsUndeducedAuto) {
4413      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
4414        << Var->getDeclName() << Type;
4415      Var->setInvalidDecl();
4416      return;
4417    }
4418
4419    switch (Var->isThisDeclarationADefinition()) {
4420    case VarDecl::Definition:
4421      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
4422        break;
4423
4424      // We have an out-of-line definition of a static data member
4425      // that has an in-class initializer, so we type-check this like
4426      // a declaration.
4427      //
4428      // Fall through
4429
4430    case VarDecl::DeclarationOnly:
4431      // It's only a declaration.
4432
4433      // Block scope. C99 6.7p7: If an identifier for an object is
4434      // declared with no linkage (C99 6.2.2p6), the type for the
4435      // object shall be complete.
4436      if (!Type->isDependentType() && Var->isBlockVarDecl() &&
4437          !Var->getLinkage() && !Var->isInvalidDecl() &&
4438          RequireCompleteType(Var->getLocation(), Type,
4439                              diag::err_typecheck_decl_incomplete_type))
4440        Var->setInvalidDecl();
4441
4442      // Make sure that the type is not abstract.
4443      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
4444          RequireNonAbstractType(Var->getLocation(), Type,
4445                                 diag::err_abstract_type_in_decl,
4446                                 AbstractVariableType))
4447        Var->setInvalidDecl();
4448      return;
4449
4450    case VarDecl::TentativeDefinition:
4451      // File scope. C99 6.9.2p2: A declaration of an identifier for an
4452      // object that has file scope without an initializer, and without a
4453      // storage-class specifier or with the storage-class specifier "static",
4454      // constitutes a tentative definition. Note: A tentative definition with
4455      // external linkage is valid (C99 6.2.2p5).
4456      if (!Var->isInvalidDecl()) {
4457        if (const IncompleteArrayType *ArrayT
4458                                    = Context.getAsIncompleteArrayType(Type)) {
4459          if (RequireCompleteType(Var->getLocation(),
4460                                  ArrayT->getElementType(),
4461                                  diag::err_illegal_decl_array_incomplete_type))
4462            Var->setInvalidDecl();
4463        } else if (Var->getStorageClass() == SC_Static) {
4464          // C99 6.9.2p3: If the declaration of an identifier for an object is
4465          // a tentative definition and has internal linkage (C99 6.2.2p3), the
4466          // declared type shall not be an incomplete type.
4467          // NOTE: code such as the following
4468          //     static struct s;
4469          //     struct s { int a; };
4470          // is accepted by gcc. Hence here we issue a warning instead of
4471          // an error and we do not invalidate the static declaration.
4472          // NOTE: to avoid multiple warnings, only check the first declaration.
4473          if (Var->getPreviousDeclaration() == 0)
4474            RequireCompleteType(Var->getLocation(), Type,
4475                                diag::ext_typecheck_decl_incomplete_type);
4476        }
4477      }
4478
4479      // Record the tentative definition; we're done.
4480      if (!Var->isInvalidDecl())
4481        TentativeDefinitions.push_back(Var);
4482      return;
4483    }
4484
4485    // Provide a specific diagnostic for uninitialized variable
4486    // definitions with incomplete array type.
4487    if (Type->isIncompleteArrayType()) {
4488      Diag(Var->getLocation(),
4489           diag::err_typecheck_incomplete_array_needs_initializer);
4490      Var->setInvalidDecl();
4491      return;
4492    }
4493
4494    // Provide a specific diagnostic for uninitialized variable
4495    // definitions with reference type.
4496    if (Type->isReferenceType()) {
4497      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
4498        << Var->getDeclName()
4499        << SourceRange(Var->getLocation(), Var->getLocation());
4500      Var->setInvalidDecl();
4501      return;
4502    }
4503
4504    // Do not attempt to type-check the default initializer for a
4505    // variable with dependent type.
4506    if (Type->isDependentType())
4507      return;
4508
4509    if (Var->isInvalidDecl())
4510      return;
4511
4512    if (RequireCompleteType(Var->getLocation(),
4513                            Context.getBaseElementType(Type),
4514                            diag::err_typecheck_decl_incomplete_type)) {
4515      Var->setInvalidDecl();
4516      return;
4517    }
4518
4519    // The variable can not have an abstract class type.
4520    if (RequireNonAbstractType(Var->getLocation(), Type,
4521                               diag::err_abstract_type_in_decl,
4522                               AbstractVariableType)) {
4523      Var->setInvalidDecl();
4524      return;
4525    }
4526
4527    const RecordType *Record
4528      = Context.getBaseElementType(Type)->getAs<RecordType>();
4529    if (Record && getLangOptions().CPlusPlus && !getLangOptions().CPlusPlus0x &&
4530        cast<CXXRecordDecl>(Record->getDecl())->isPOD()) {
4531      // C++03 [dcl.init]p9:
4532      //   If no initializer is specified for an object, and the
4533      //   object is of (possibly cv-qualified) non-POD class type (or
4534      //   array thereof), the object shall be default-initialized; if
4535      //   the object is of const-qualified type, the underlying class
4536      //   type shall have a user-declared default
4537      //   constructor. Otherwise, if no initializer is specified for
4538      //   a non- static object, the object and its subobjects, if
4539      //   any, have an indeterminate initial value); if the object
4540      //   or any of its subobjects are of const-qualified type, the
4541      //   program is ill-formed.
4542      // FIXME: DPG thinks it is very fishy that C++0x disables this.
4543    } else {
4544      // Check for jumps past the implicit initializer.  C++0x
4545      // clarifies that this applies to a "variable with automatic
4546      // storage duration", not a "local variable".
4547      if (getLangOptions().CPlusPlus && Var->hasLocalStorage())
4548        getCurFunction()->setHasBranchProtectedScope();
4549
4550      InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
4551      InitializationKind Kind
4552        = InitializationKind::CreateDefault(Var->getLocation());
4553
4554      InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
4555      ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
4556                                        MultiExprArg(*this, 0, 0));
4557      if (Init.isInvalid())
4558        Var->setInvalidDecl();
4559      else if (Init.get()) {
4560        Var->setInit(MaybeCreateCXXExprWithTemporaries(Init.takeAs<Expr>()));
4561
4562        if (getLangOptions().CPlusPlus && !Var->isInvalidDecl() &&
4563            Var->hasGlobalStorage() && !Var->isStaticLocal() &&
4564            !Var->getDeclContext()->isDependentContext() &&
4565            !Var->getInit()->isConstantInitializer(Context, false))
4566          Diag(Var->getLocation(), diag::warn_global_constructor);
4567      }
4568    }
4569
4570    if (!Var->isInvalidDecl() && getLangOptions().CPlusPlus && Record)
4571      FinalizeVarWithDestructor(Var, Record);
4572  }
4573}
4574
4575Sema::DeclGroupPtrTy
4576Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
4577                              Decl **Group, unsigned NumDecls) {
4578  llvm::SmallVector<Decl*, 8> Decls;
4579
4580  if (DS.isTypeSpecOwned())
4581    Decls.push_back(DS.getRepAsDecl());
4582
4583  for (unsigned i = 0; i != NumDecls; ++i)
4584    if (Decl *D = Group[i])
4585      Decls.push_back(D);
4586
4587  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
4588                                                   Decls.data(), Decls.size()));
4589}
4590
4591
4592/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
4593/// to introduce parameters into function prototype scope.
4594Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
4595  const DeclSpec &DS = D.getDeclSpec();
4596
4597  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
4598  VarDecl::StorageClass StorageClass = SC_None;
4599  VarDecl::StorageClass StorageClassAsWritten = SC_None;
4600  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
4601    StorageClass = SC_Register;
4602    StorageClassAsWritten = SC_Register;
4603  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
4604    Diag(DS.getStorageClassSpecLoc(),
4605         diag::err_invalid_storage_class_in_func_decl);
4606    D.getMutableDeclSpec().ClearStorageClassSpecs();
4607  }
4608
4609  if (D.getDeclSpec().isThreadSpecified())
4610    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4611
4612  DiagnoseFunctionSpecifiers(D);
4613
4614  // Check that there are no default arguments inside the type of this
4615  // parameter (C++ only).
4616  if (getLangOptions().CPlusPlus)
4617    CheckExtraCXXDefaultArguments(D);
4618
4619  TagDecl *OwnedDecl = 0;
4620  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
4621  QualType parmDeclType = TInfo->getType();
4622
4623  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
4624    // C++ [dcl.fct]p6:
4625    //   Types shall not be defined in return or parameter types.
4626    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
4627      << Context.getTypeDeclType(OwnedDecl);
4628  }
4629
4630  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
4631  IdentifierInfo *II = D.getIdentifier();
4632  if (II) {
4633    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
4634                   ForRedeclaration);
4635    LookupName(R, S);
4636    if (R.isSingleResult()) {
4637      NamedDecl *PrevDecl = R.getFoundDecl();
4638      if (PrevDecl->isTemplateParameter()) {
4639        // Maybe we will complain about the shadowed template parameter.
4640        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4641        // Just pretend that we didn't see the previous declaration.
4642        PrevDecl = 0;
4643      } else if (S->isDeclScope(PrevDecl)) {
4644        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
4645        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4646
4647        // Recover by removing the name
4648        II = 0;
4649        D.SetIdentifier(0, D.getIdentifierLoc());
4650        D.setInvalidType(true);
4651      }
4652    }
4653  }
4654
4655  // Temporarily put parameter variables in the translation unit, not
4656  // the enclosing context.  This prevents them from accidentally
4657  // looking like class members in C++.
4658  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
4659                                    TInfo, parmDeclType, II,
4660                                    D.getIdentifierLoc(),
4661                                    StorageClass, StorageClassAsWritten);
4662
4663  if (D.isInvalidType())
4664    New->setInvalidDecl();
4665
4666  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
4667  if (D.getCXXScopeSpec().isSet()) {
4668    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
4669      << D.getCXXScopeSpec().getRange();
4670    New->setInvalidDecl();
4671  }
4672
4673  // Add the parameter declaration into this scope.
4674  S->AddDecl(New);
4675  if (II)
4676    IdResolver.AddDecl(New);
4677
4678  ProcessDeclAttributes(S, New, D);
4679
4680  if (New->hasAttr<BlocksAttr>()) {
4681    Diag(New->getLocation(), diag::err_block_on_nonlocal);
4682  }
4683  return New;
4684}
4685
4686/// \brief Synthesizes a variable for a parameter arising from a
4687/// typedef.
4688ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
4689                                              SourceLocation Loc,
4690                                              QualType T) {
4691  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, 0,
4692                                T, Context.getTrivialTypeSourceInfo(T, Loc),
4693                                           SC_None, SC_None, 0);
4694  Param->setImplicit();
4695  return Param;
4696}
4697
4698void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
4699                                    ParmVarDecl * const *ParamEnd) {
4700  if (Diags.getDiagnosticLevel(diag::warn_unused_parameter) ==
4701        Diagnostic::Ignored)
4702    return;
4703
4704  // Don't diagnose unused-parameter errors in template instantiations; we
4705  // will already have done so in the template itself.
4706  if (!ActiveTemplateInstantiations.empty())
4707    return;
4708
4709  for (; Param != ParamEnd; ++Param) {
4710    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
4711        !(*Param)->hasAttr<UnusedAttr>()) {
4712      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
4713        << (*Param)->getDeclName();
4714    }
4715  }
4716}
4717
4718ParmVarDecl *Sema::CheckParameter(DeclContext *DC,
4719                                  TypeSourceInfo *TSInfo, QualType T,
4720                                  IdentifierInfo *Name,
4721                                  SourceLocation NameLoc,
4722                                  VarDecl::StorageClass StorageClass,
4723                                  VarDecl::StorageClass StorageClassAsWritten) {
4724  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, NameLoc, Name,
4725                                         adjustParameterType(T), TSInfo,
4726                                         StorageClass, StorageClassAsWritten,
4727                                         0);
4728
4729  // Parameters can not be abstract class types.
4730  // For record types, this is done by the AbstractClassUsageDiagnoser once
4731  // the class has been completely parsed.
4732  if (!CurContext->isRecord() &&
4733      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
4734                             AbstractParamType))
4735    New->setInvalidDecl();
4736
4737  // Parameter declarators cannot be interface types. All ObjC objects are
4738  // passed by reference.
4739  if (T->isObjCObjectType()) {
4740    Diag(NameLoc,
4741         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
4742    New->setInvalidDecl();
4743  }
4744
4745  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
4746  // duration shall not be qualified by an address-space qualifier."
4747  // Since all parameters have automatic store duration, they can not have
4748  // an address space.
4749  if (T.getAddressSpace() != 0) {
4750    Diag(NameLoc, diag::err_arg_with_address_space);
4751    New->setInvalidDecl();
4752  }
4753
4754  return New;
4755}
4756
4757void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
4758                                           SourceLocation LocAfterDecls) {
4759  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4760         "Not a function declarator!");
4761  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4762
4763  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
4764  // for a K&R function.
4765  if (!FTI.hasPrototype) {
4766    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
4767      --i;
4768      if (FTI.ArgInfo[i].Param == 0) {
4769        llvm::SmallString<256> Code;
4770        llvm::raw_svector_ostream(Code) << "  int "
4771                                        << FTI.ArgInfo[i].Ident->getName()
4772                                        << ";\n";
4773        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
4774          << FTI.ArgInfo[i].Ident
4775          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
4776
4777        // Implicitly declare the argument as type 'int' for lack of a better
4778        // type.
4779        DeclSpec DS;
4780        const char* PrevSpec; // unused
4781        unsigned DiagID; // unused
4782        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
4783                           PrevSpec, DiagID);
4784        Declarator ParamD(DS, Declarator::KNRTypeListContext);
4785        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
4786        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
4787      }
4788    }
4789  }
4790}
4791
4792Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
4793                                         Declarator &D) {
4794  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4795  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4796         "Not a function declarator!");
4797  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4798
4799  if (FTI.hasPrototype) {
4800    // FIXME: Diagnose arguments without names in C.
4801  }
4802
4803  Scope *ParentScope = FnBodyScope->getParent();
4804
4805  Decl *DP = HandleDeclarator(ParentScope, D,
4806                              MultiTemplateParamsArg(*this),
4807                              /*IsFunctionDefinition=*/true);
4808  return ActOnStartOfFunctionDef(FnBodyScope, DP);
4809}
4810
4811static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
4812  // Don't warn about invalid declarations.
4813  if (FD->isInvalidDecl())
4814    return false;
4815
4816  // Or declarations that aren't global.
4817  if (!FD->isGlobal())
4818    return false;
4819
4820  // Don't warn about C++ member functions.
4821  if (isa<CXXMethodDecl>(FD))
4822    return false;
4823
4824  // Don't warn about 'main'.
4825  if (FD->isMain())
4826    return false;
4827
4828  // Don't warn about inline functions.
4829  if (FD->isInlineSpecified())
4830    return false;
4831
4832  // Don't warn about function templates.
4833  if (FD->getDescribedFunctionTemplate())
4834    return false;
4835
4836  // Don't warn about function template specializations.
4837  if (FD->isFunctionTemplateSpecialization())
4838    return false;
4839
4840  bool MissingPrototype = true;
4841  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
4842       Prev; Prev = Prev->getPreviousDeclaration()) {
4843    // Ignore any declarations that occur in function or method
4844    // scope, because they aren't visible from the header.
4845    if (Prev->getDeclContext()->isFunctionOrMethod())
4846      continue;
4847
4848    MissingPrototype = !Prev->getType()->isFunctionProtoType();
4849    break;
4850  }
4851
4852  return MissingPrototype;
4853}
4854
4855Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
4856  // Clear the last template instantiation error context.
4857  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
4858
4859  if (!D)
4860    return D;
4861  FunctionDecl *FD = 0;
4862
4863  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
4864    FD = FunTmpl->getTemplatedDecl();
4865  else
4866    FD = cast<FunctionDecl>(D);
4867
4868  // Enter a new function scope
4869  PushFunctionScope();
4870
4871  // See if this is a redefinition.
4872  // But don't complain if we're in GNU89 mode and the previous definition
4873  // was an extern inline function.
4874  const FunctionDecl *Definition;
4875  if (FD->hasBody(Definition) &&
4876      !canRedefineFunction(Definition, getLangOptions())) {
4877    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
4878        Definition->getStorageClass() == SC_Extern)
4879      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
4880        << FD->getDeclName() << getLangOptions().CPlusPlus;
4881    else
4882      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
4883    Diag(Definition->getLocation(), diag::note_previous_definition);
4884  }
4885
4886  // Builtin functions cannot be defined.
4887  if (unsigned BuiltinID = FD->getBuiltinID()) {
4888    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
4889      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
4890      FD->setInvalidDecl();
4891    }
4892  }
4893
4894  // The return type of a function definition must be complete
4895  // (C99 6.9.1p3, C++ [dcl.fct]p6).
4896  QualType ResultType = FD->getResultType();
4897  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
4898      !FD->isInvalidDecl() &&
4899      RequireCompleteType(FD->getLocation(), ResultType,
4900                          diag::err_func_def_incomplete_result))
4901    FD->setInvalidDecl();
4902
4903  // GNU warning -Wmissing-prototypes:
4904  //   Warn if a global function is defined without a previous
4905  //   prototype declaration. This warning is issued even if the
4906  //   definition itself provides a prototype. The aim is to detect
4907  //   global functions that fail to be declared in header files.
4908  if (ShouldWarnAboutMissingPrototype(FD))
4909    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
4910
4911  if (FnBodyScope)
4912    PushDeclContext(FnBodyScope, FD);
4913
4914  // Check the validity of our function parameters
4915  CheckParmsForFunctionDef(FD);
4916
4917  bool ShouldCheckShadow =
4918    Diags.getDiagnosticLevel(diag::warn_decl_shadow) != Diagnostic::Ignored;
4919
4920  // Introduce our parameters into the function scope
4921  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
4922    ParmVarDecl *Param = FD->getParamDecl(p);
4923    Param->setOwningFunction(FD);
4924
4925    // If this has an identifier, add it to the scope stack.
4926    if (Param->getIdentifier() && FnBodyScope) {
4927      if (ShouldCheckShadow)
4928        CheckShadow(FnBodyScope, Param);
4929
4930      PushOnScopeChains(Param, FnBodyScope);
4931    }
4932  }
4933
4934  // Checking attributes of current function definition
4935  // dllimport attribute.
4936  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
4937  if (DA && (!FD->getAttr<DLLExportAttr>())) {
4938    // dllimport attribute cannot be directly applied to definition.
4939    if (!DA->isInherited()) {
4940      Diag(FD->getLocation(),
4941           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
4942        << "dllimport";
4943      FD->setInvalidDecl();
4944      return FD;
4945    }
4946
4947    // Visual C++ appears to not think this is an issue, so only issue
4948    // a warning when Microsoft extensions are disabled.
4949    if (!LangOpts.Microsoft) {
4950      // If a symbol previously declared dllimport is later defined, the
4951      // attribute is ignored in subsequent references, and a warning is
4952      // emitted.
4953      Diag(FD->getLocation(),
4954           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
4955        << FD->getName() << "dllimport";
4956    }
4957  }
4958  return FD;
4959}
4960
4961/// \brief Given the set of return statements within a function body,
4962/// compute the variables that are subject to the named return value
4963/// optimization.
4964///
4965/// Each of the variables that is subject to the named return value
4966/// optimization will be marked as NRVO variables in the AST, and any
4967/// return statement that has a marked NRVO variable as its NRVO candidate can
4968/// use the named return value optimization.
4969///
4970/// This function applies a very simplistic algorithm for NRVO: if every return
4971/// statement in the function has the same NRVO candidate, that candidate is
4972/// the NRVO variable.
4973///
4974/// FIXME: Employ a smarter algorithm that accounts for multiple return
4975/// statements and the lifetimes of the NRVO candidates. We should be able to
4976/// find a maximal set of NRVO variables.
4977static void ComputeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
4978  ReturnStmt **Returns = Scope->Returns.data();
4979
4980  const VarDecl *NRVOCandidate = 0;
4981  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
4982    if (!Returns[I]->getNRVOCandidate())
4983      return;
4984
4985    if (!NRVOCandidate)
4986      NRVOCandidate = Returns[I]->getNRVOCandidate();
4987    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
4988      return;
4989  }
4990
4991  if (NRVOCandidate)
4992    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
4993}
4994
4995Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
4996  return ActOnFinishFunctionBody(D, move(BodyArg), false);
4997}
4998
4999Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
5000                                    bool IsInstantiation) {
5001  FunctionDecl *FD = 0;
5002  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
5003  if (FunTmpl)
5004    FD = FunTmpl->getTemplatedDecl();
5005  else
5006    FD = dyn_cast_or_null<FunctionDecl>(dcl);
5007
5008  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
5009
5010  if (FD) {
5011    FD->setBody(Body);
5012    if (FD->isMain()) {
5013      // C and C++ allow for main to automagically return 0.
5014      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
5015      FD->setHasImplicitReturnZero(true);
5016      WP.disableCheckFallThrough();
5017    }
5018
5019    if (!FD->isInvalidDecl()) {
5020      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
5021
5022      // If this is a constructor, we need a vtable.
5023      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
5024        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
5025
5026      ComputeNRVO(Body, getCurFunction());
5027    }
5028
5029    assert(FD == getCurFunctionDecl() && "Function parsing confused");
5030  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
5031    assert(MD == getCurMethodDecl() && "Method parsing confused");
5032    MD->setBody(Body);
5033    MD->setEndLoc(Body->getLocEnd());
5034    if (!MD->isInvalidDecl())
5035      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
5036  } else {
5037    return 0;
5038  }
5039
5040  // Verify and clean out per-function state.
5041
5042  // Check goto/label use.
5043  FunctionScopeInfo *CurFn = getCurFunction();
5044  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
5045         I = CurFn->LabelMap.begin(), E = CurFn->LabelMap.end(); I != E; ++I) {
5046    LabelStmt *L = I->second;
5047
5048    // Verify that we have no forward references left.  If so, there was a goto
5049    // or address of a label taken, but no definition of it.  Label fwd
5050    // definitions are indicated with a null substmt.
5051    if (L->getSubStmt() != 0) {
5052      if (!L->isUsed())
5053        Diag(L->getIdentLoc(), diag::warn_unused_label) << L->getName();
5054      continue;
5055    }
5056
5057    // Emit error.
5058    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
5059
5060    // At this point, we have gotos that use the bogus label.  Stitch it into
5061    // the function body so that they aren't leaked and that the AST is well
5062    // formed.
5063    if (Body == 0) {
5064      // The whole function wasn't parsed correctly.
5065      continue;
5066    }
5067
5068    // Otherwise, the body is valid: we want to stitch the label decl into the
5069    // function somewhere so that it is properly owned and so that the goto
5070    // has a valid target.  Do this by creating a new compound stmt with the
5071    // label in it.
5072
5073    // Give the label a sub-statement.
5074    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
5075
5076    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
5077                               cast<CXXTryStmt>(Body)->getTryBlock() :
5078                               cast<CompoundStmt>(Body);
5079    llvm::SmallVector<Stmt*, 64> Elements(Compound->body_begin(),
5080                                          Compound->body_end());
5081    Elements.push_back(L);
5082    Compound->setStmts(Context, Elements.data(), Elements.size());
5083  }
5084
5085  if (Body) {
5086    // C++ constructors that have function-try-blocks can't have return
5087    // statements in the handlers of that block. (C++ [except.handle]p14)
5088    // Verify this.
5089    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
5090      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
5091
5092    // Verify that that gotos and switch cases don't jump into scopes illegally.
5093    // Verify that that gotos and switch cases don't jump into scopes illegally.
5094    if (getCurFunction()->NeedsScopeChecking() &&
5095        !dcl->isInvalidDecl() &&
5096        !hasAnyErrorsInThisFunction())
5097      DiagnoseInvalidJumps(Body);
5098
5099    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
5100      if (!Destructor->getParent()->isDependentType())
5101        CheckDestructor(Destructor);
5102
5103      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
5104                                             Destructor->getParent());
5105    }
5106
5107    // If any errors have occurred, clear out any temporaries that may have
5108    // been leftover. This ensures that these temporaries won't be picked up for
5109    // deletion in some later function.
5110    if (PP.getDiagnostics().hasErrorOccurred())
5111      ExprTemporaries.clear();
5112    else if (!isa<FunctionTemplateDecl>(dcl)) {
5113      // Since the body is valid, issue any analysis-based warnings that are
5114      // enabled.
5115      QualType ResultType;
5116      if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(dcl)) {
5117        AnalysisWarnings.IssueWarnings(WP, FD);
5118      } else {
5119        ObjCMethodDecl *MD = cast<ObjCMethodDecl>(dcl);
5120        AnalysisWarnings.IssueWarnings(WP, MD);
5121      }
5122    }
5123
5124    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
5125  }
5126
5127  if (!IsInstantiation)
5128    PopDeclContext();
5129
5130  PopFunctionOrBlockScope();
5131
5132  // If any errors have occurred, clear out any temporaries that may have
5133  // been leftover. This ensures that these temporaries won't be picked up for
5134  // deletion in some later function.
5135  if (getDiagnostics().hasErrorOccurred())
5136    ExprTemporaries.clear();
5137
5138  return dcl;
5139}
5140
5141/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
5142/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
5143NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
5144                                          IdentifierInfo &II, Scope *S) {
5145  // Before we produce a declaration for an implicitly defined
5146  // function, see whether there was a locally-scoped declaration of
5147  // this name as a function or variable. If so, use that
5148  // (non-visible) declaration, and complain about it.
5149  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5150    = LocallyScopedExternalDecls.find(&II);
5151  if (Pos != LocallyScopedExternalDecls.end()) {
5152    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
5153    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
5154    return Pos->second;
5155  }
5156
5157  // Extension in C99.  Legal in C90, but warn about it.
5158  if (II.getName().startswith("__builtin_"))
5159    Diag(Loc, diag::warn_builtin_unknown) << &II;
5160  else if (getLangOptions().C99)
5161    Diag(Loc, diag::ext_implicit_function_decl) << &II;
5162  else
5163    Diag(Loc, diag::warn_implicit_function_decl) << &II;
5164
5165  // Set a Declarator for the implicit definition: int foo();
5166  const char *Dummy;
5167  DeclSpec DS;
5168  unsigned DiagID;
5169  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
5170  Error = Error; // Silence warning.
5171  assert(!Error && "Error setting up implicit decl!");
5172  Declarator D(DS, Declarator::BlockContext);
5173  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
5174                                             0, 0, false, SourceLocation(),
5175                                             false, 0,0,0, Loc, Loc, D),
5176                SourceLocation());
5177  D.SetIdentifier(&II, Loc);
5178
5179  // Insert this function into translation-unit scope.
5180
5181  DeclContext *PrevDC = CurContext;
5182  CurContext = Context.getTranslationUnitDecl();
5183
5184  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
5185  FD->setImplicit();
5186
5187  CurContext = PrevDC;
5188
5189  AddKnownFunctionAttributes(FD);
5190
5191  return FD;
5192}
5193
5194/// \brief Adds any function attributes that we know a priori based on
5195/// the declaration of this function.
5196///
5197/// These attributes can apply both to implicitly-declared builtins
5198/// (like __builtin___printf_chk) or to library-declared functions
5199/// like NSLog or printf.
5200void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
5201  if (FD->isInvalidDecl())
5202    return;
5203
5204  // If this is a built-in function, map its builtin attributes to
5205  // actual attributes.
5206  if (unsigned BuiltinID = FD->getBuiltinID()) {
5207    // Handle printf-formatting attributes.
5208    unsigned FormatIdx;
5209    bool HasVAListArg;
5210    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
5211      if (!FD->getAttr<FormatAttr>())
5212        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5213                                                "printf", FormatIdx+1,
5214                                               HasVAListArg ? 0 : FormatIdx+2));
5215    }
5216    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
5217                                             HasVAListArg)) {
5218     if (!FD->getAttr<FormatAttr>())
5219       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5220                                              "scanf", FormatIdx+1,
5221                                              HasVAListArg ? 0 : FormatIdx+2));
5222    }
5223
5224    // Mark const if we don't care about errno and that is the only
5225    // thing preventing the function from being const. This allows
5226    // IRgen to use LLVM intrinsics for such functions.
5227    if (!getLangOptions().MathErrno &&
5228        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
5229      if (!FD->getAttr<ConstAttr>())
5230        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
5231    }
5232
5233    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
5234      FD->setType(Context.getNoReturnType(FD->getType()));
5235    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
5236      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
5237    if (Context.BuiltinInfo.isConst(BuiltinID))
5238      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
5239  }
5240
5241  IdentifierInfo *Name = FD->getIdentifier();
5242  if (!Name)
5243    return;
5244  if ((!getLangOptions().CPlusPlus &&
5245       FD->getDeclContext()->isTranslationUnit()) ||
5246      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
5247       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
5248       LinkageSpecDecl::lang_c)) {
5249    // Okay: this could be a libc/libm/Objective-C function we know
5250    // about.
5251  } else
5252    return;
5253
5254  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
5255    // FIXME: NSLog and NSLogv should be target specific
5256    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
5257      // FIXME: We known better than our headers.
5258      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
5259    } else
5260      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5261                                             "printf", 1,
5262                                             Name->isStr("NSLogv") ? 0 : 2));
5263  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
5264    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
5265    // target-specific builtins, perhaps?
5266    if (!FD->getAttr<FormatAttr>())
5267      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5268                                             "printf", 2,
5269                                             Name->isStr("vasprintf") ? 0 : 3));
5270  }
5271}
5272
5273TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
5274                                    TypeSourceInfo *TInfo) {
5275  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
5276  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
5277
5278  if (!TInfo) {
5279    assert(D.isInvalidType() && "no declarator info for valid type");
5280    TInfo = Context.getTrivialTypeSourceInfo(T);
5281  }
5282
5283  // Scope manipulation handled by caller.
5284  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
5285                                           D.getIdentifierLoc(),
5286                                           D.getIdentifier(),
5287                                           TInfo);
5288
5289  if (const TagType *TT = T->getAs<TagType>()) {
5290    TagDecl *TD = TT->getDecl();
5291
5292    // If the TagDecl that the TypedefDecl points to is an anonymous decl
5293    // keep track of the TypedefDecl.
5294    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
5295      TD->setTypedefForAnonDecl(NewTD);
5296  }
5297
5298  if (D.isInvalidType())
5299    NewTD->setInvalidDecl();
5300  return NewTD;
5301}
5302
5303
5304/// \brief Determine whether a tag with a given kind is acceptable
5305/// as a redeclaration of the given tag declaration.
5306///
5307/// \returns true if the new tag kind is acceptable, false otherwise.
5308bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
5309                                        TagTypeKind NewTag,
5310                                        SourceLocation NewTagLoc,
5311                                        const IdentifierInfo &Name) {
5312  // C++ [dcl.type.elab]p3:
5313  //   The class-key or enum keyword present in the
5314  //   elaborated-type-specifier shall agree in kind with the
5315  //   declaration to which the name in the elaborated-type-specifier
5316  //   refers. This rule also applies to the form of
5317  //   elaborated-type-specifier that declares a class-name or
5318  //   friend class since it can be construed as referring to the
5319  //   definition of the class. Thus, in any
5320  //   elaborated-type-specifier, the enum keyword shall be used to
5321  //   refer to an enumeration (7.2), the union class-key shall be
5322  //   used to refer to a union (clause 9), and either the class or
5323  //   struct class-key shall be used to refer to a class (clause 9)
5324  //   declared using the class or struct class-key.
5325  TagTypeKind OldTag = Previous->getTagKind();
5326  if (OldTag == NewTag)
5327    return true;
5328
5329  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
5330      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
5331    // Warn about the struct/class tag mismatch.
5332    bool isTemplate = false;
5333    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
5334      isTemplate = Record->getDescribedClassTemplate();
5335
5336    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
5337      << (NewTag == TTK_Class)
5338      << isTemplate << &Name
5339      << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
5340                              OldTag == TTK_Class? "class" : "struct");
5341    Diag(Previous->getLocation(), diag::note_previous_use);
5342    return true;
5343  }
5344  return false;
5345}
5346
5347/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
5348/// former case, Name will be non-null.  In the later case, Name will be null.
5349/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
5350/// reference/declaration/definition of a tag.
5351Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
5352                     SourceLocation KWLoc, CXXScopeSpec &SS,
5353                     IdentifierInfo *Name, SourceLocation NameLoc,
5354                     AttributeList *Attr, AccessSpecifier AS,
5355                     MultiTemplateParamsArg TemplateParameterLists,
5356                     bool &OwnedDecl, bool &IsDependent, bool ScopedEnum,
5357                     TypeResult UnderlyingType) {
5358  // If this is not a definition, it must have a name.
5359  assert((Name != 0 || TUK == TUK_Definition) &&
5360         "Nameless record must be a definition!");
5361
5362  OwnedDecl = false;
5363  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5364
5365  // FIXME: Check explicit specializations more carefully.
5366  bool isExplicitSpecialization = false;
5367  unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size();
5368  bool Invalid = false;
5369  if (TUK != TUK_Reference) {
5370    if (TemplateParameterList *TemplateParams
5371          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
5372                        (TemplateParameterList**)TemplateParameterLists.get(),
5373                                              TemplateParameterLists.size(),
5374                                                    TUK == TUK_Friend,
5375                                                    isExplicitSpecialization,
5376                                                    Invalid)) {
5377      // All but one template parameter lists have been matching.
5378      --NumMatchedTemplateParamLists;
5379
5380      if (TemplateParams->size() > 0) {
5381        // This is a declaration or definition of a class template (which may
5382        // be a member of another template).
5383        if (Invalid)
5384          return 0;
5385
5386        OwnedDecl = false;
5387        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
5388                                               SS, Name, NameLoc, Attr,
5389                                               TemplateParams,
5390                                               AS);
5391        TemplateParameterLists.release();
5392        return Result.get();
5393      } else {
5394        // The "template<>" header is extraneous.
5395        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
5396          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
5397        isExplicitSpecialization = true;
5398      }
5399    }
5400  }
5401
5402  // Figure out the underlying type if this a enum declaration. We need to do
5403  // this early, because it's needed to detect if this is an incompatible
5404  // redeclaration.
5405  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
5406
5407  if (Kind == TTK_Enum) {
5408    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
5409      // No underlying type explicitly specified, or we failed to parse the
5410      // type, default to int.
5411      EnumUnderlying = Context.IntTy.getTypePtr();
5412    else if (UnderlyingType.get()) {
5413      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
5414      // integral type; any cv-qualification is ignored.
5415      TypeSourceInfo *TI = 0;
5416      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
5417      EnumUnderlying = TI;
5418
5419      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
5420
5421      if (!T->isDependentType() && !T->isIntegralType(Context)) {
5422        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
5423          << T;
5424        // Recover by falling back to int.
5425        EnumUnderlying = Context.IntTy.getTypePtr();
5426      }
5427    }
5428  }
5429
5430  DeclContext *SearchDC = CurContext;
5431  DeclContext *DC = CurContext;
5432  bool isStdBadAlloc = false;
5433
5434  RedeclarationKind Redecl = ForRedeclaration;
5435  if (TUK == TUK_Friend || TUK == TUK_Reference)
5436    Redecl = NotForRedeclaration;
5437
5438  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
5439
5440  if (Name && SS.isNotEmpty()) {
5441    // We have a nested-name tag ('struct foo::bar').
5442
5443    // Check for invalid 'foo::'.
5444    if (SS.isInvalid()) {
5445      Name = 0;
5446      goto CreateNewDecl;
5447    }
5448
5449    // If this is a friend or a reference to a class in a dependent
5450    // context, don't try to make a decl for it.
5451    if (TUK == TUK_Friend || TUK == TUK_Reference) {
5452      DC = computeDeclContext(SS, false);
5453      if (!DC) {
5454        IsDependent = true;
5455        return 0;
5456      }
5457    } else {
5458      DC = computeDeclContext(SS, true);
5459      if (!DC) {
5460        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
5461          << SS.getRange();
5462        return 0;
5463      }
5464    }
5465
5466    if (RequireCompleteDeclContext(SS, DC))
5467      return 0;
5468
5469    SearchDC = DC;
5470    // Look-up name inside 'foo::'.
5471    LookupQualifiedName(Previous, DC);
5472
5473    if (Previous.isAmbiguous())
5474      return 0;
5475
5476    if (Previous.empty()) {
5477      // Name lookup did not find anything. However, if the
5478      // nested-name-specifier refers to the current instantiation,
5479      // and that current instantiation has any dependent base
5480      // classes, we might find something at instantiation time: treat
5481      // this as a dependent elaborated-type-specifier.
5482      if (Previous.wasNotFoundInCurrentInstantiation()) {
5483        IsDependent = true;
5484        return 0;
5485      }
5486
5487      // A tag 'foo::bar' must already exist.
5488      Diag(NameLoc, diag::err_not_tag_in_scope)
5489        << Kind << Name << DC << SS.getRange();
5490      Name = 0;
5491      Invalid = true;
5492      goto CreateNewDecl;
5493    }
5494  } else if (Name) {
5495    // If this is a named struct, check to see if there was a previous forward
5496    // declaration or definition.
5497    // FIXME: We're looking into outer scopes here, even when we
5498    // shouldn't be. Doing so can result in ambiguities that we
5499    // shouldn't be diagnosing.
5500    LookupName(Previous, S);
5501
5502    // Note:  there used to be some attempt at recovery here.
5503    if (Previous.isAmbiguous())
5504      return 0;
5505
5506    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
5507      // FIXME: This makes sure that we ignore the contexts associated
5508      // with C structs, unions, and enums when looking for a matching
5509      // tag declaration or definition. See the similar lookup tweak
5510      // in Sema::LookupName; is there a better way to deal with this?
5511      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
5512        SearchDC = SearchDC->getParent();
5513    }
5514  } else if (S->isFunctionPrototypeScope()) {
5515    // If this is an enum declaration in function prototype scope, set its
5516    // initial context to the translation unit.
5517    SearchDC = Context.getTranslationUnitDecl();
5518  }
5519
5520  if (Previous.isSingleResult() &&
5521      Previous.getFoundDecl()->isTemplateParameter()) {
5522    // Maybe we will complain about the shadowed template parameter.
5523    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
5524    // Just pretend that we didn't see the previous declaration.
5525    Previous.clear();
5526  }
5527
5528  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
5529      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
5530    // This is a declaration of or a reference to "std::bad_alloc".
5531    isStdBadAlloc = true;
5532
5533    if (Previous.empty() && StdBadAlloc) {
5534      // std::bad_alloc has been implicitly declared (but made invisible to
5535      // name lookup). Fill in this implicit declaration as the previous
5536      // declaration, so that the declarations get chained appropriately.
5537      Previous.addDecl(getStdBadAlloc());
5538    }
5539  }
5540
5541  // If we didn't find a previous declaration, and this is a reference
5542  // (or friend reference), move to the correct scope.  In C++, we
5543  // also need to do a redeclaration lookup there, just in case
5544  // there's a shadow friend decl.
5545  if (Name && Previous.empty() &&
5546      (TUK == TUK_Reference || TUK == TUK_Friend)) {
5547    if (Invalid) goto CreateNewDecl;
5548    assert(SS.isEmpty());
5549
5550    if (TUK == TUK_Reference) {
5551      // C++ [basic.scope.pdecl]p5:
5552      //   -- for an elaborated-type-specifier of the form
5553      //
5554      //          class-key identifier
5555      //
5556      //      if the elaborated-type-specifier is used in the
5557      //      decl-specifier-seq or parameter-declaration-clause of a
5558      //      function defined in namespace scope, the identifier is
5559      //      declared as a class-name in the namespace that contains
5560      //      the declaration; otherwise, except as a friend
5561      //      declaration, the identifier is declared in the smallest
5562      //      non-class, non-function-prototype scope that contains the
5563      //      declaration.
5564      //
5565      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
5566      // C structs and unions.
5567      //
5568      // It is an error in C++ to declare (rather than define) an enum
5569      // type, including via an elaborated type specifier.  We'll
5570      // diagnose that later; for now, declare the enum in the same
5571      // scope as we would have picked for any other tag type.
5572      //
5573      // GNU C also supports this behavior as part of its incomplete
5574      // enum types extension, while GNU C++ does not.
5575      //
5576      // Find the context where we'll be declaring the tag.
5577      // FIXME: We would like to maintain the current DeclContext as the
5578      // lexical context,
5579      while (SearchDC->isRecord())
5580        SearchDC = SearchDC->getParent();
5581
5582      // Find the scope where we'll be declaring the tag.
5583      while (S->isClassScope() ||
5584             (getLangOptions().CPlusPlus &&
5585              S->isFunctionPrototypeScope()) ||
5586             ((S->getFlags() & Scope::DeclScope) == 0) ||
5587             (S->getEntity() &&
5588              ((DeclContext *)S->getEntity())->isTransparentContext()))
5589        S = S->getParent();
5590    } else {
5591      assert(TUK == TUK_Friend);
5592      // C++ [namespace.memdef]p3:
5593      //   If a friend declaration in a non-local class first declares a
5594      //   class or function, the friend class or function is a member of
5595      //   the innermost enclosing namespace.
5596      SearchDC = SearchDC->getEnclosingNamespaceContext();
5597    }
5598
5599    // In C++, we need to do a redeclaration lookup to properly
5600    // diagnose some problems.
5601    if (getLangOptions().CPlusPlus) {
5602      Previous.setRedeclarationKind(ForRedeclaration);
5603      LookupQualifiedName(Previous, SearchDC);
5604    }
5605  }
5606
5607  if (!Previous.empty()) {
5608    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
5609
5610    // It's okay to have a tag decl in the same scope as a typedef
5611    // which hides a tag decl in the same scope.  Finding this
5612    // insanity with a redeclaration lookup can only actually happen
5613    // in C++.
5614    //
5615    // This is also okay for elaborated-type-specifiers, which is
5616    // technically forbidden by the current standard but which is
5617    // okay according to the likely resolution of an open issue;
5618    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
5619    if (getLangOptions().CPlusPlus) {
5620      if (TypedefDecl *TD = dyn_cast<TypedefDecl>(PrevDecl)) {
5621        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
5622          TagDecl *Tag = TT->getDecl();
5623          if (Tag->getDeclName() == Name &&
5624              Tag->getDeclContext()->getRedeclContext()
5625                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
5626            PrevDecl = Tag;
5627            Previous.clear();
5628            Previous.addDecl(Tag);
5629            Previous.resolveKind();
5630          }
5631        }
5632      }
5633    }
5634
5635    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
5636      // If this is a use of a previous tag, or if the tag is already declared
5637      // in the same scope (so that the definition/declaration completes or
5638      // rementions the tag), reuse the decl.
5639      if (TUK == TUK_Reference || TUK == TUK_Friend ||
5640          isDeclInScope(PrevDecl, SearchDC, S)) {
5641        // Make sure that this wasn't declared as an enum and now used as a
5642        // struct or something similar.
5643        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
5644          bool SafeToContinue
5645            = (PrevTagDecl->getTagKind() != TTK_Enum &&
5646               Kind != TTK_Enum);
5647          if (SafeToContinue)
5648            Diag(KWLoc, diag::err_use_with_wrong_tag)
5649              << Name
5650              << FixItHint::CreateReplacement(SourceRange(KWLoc),
5651                                              PrevTagDecl->getKindName());
5652          else
5653            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
5654          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
5655
5656          if (SafeToContinue)
5657            Kind = PrevTagDecl->getTagKind();
5658          else {
5659            // Recover by making this an anonymous redefinition.
5660            Name = 0;
5661            Previous.clear();
5662            Invalid = true;
5663          }
5664        }
5665
5666        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
5667          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
5668
5669          // All conflicts with previous declarations are recovered by
5670          // returning the previous declaration.
5671          if (ScopedEnum != PrevEnum->isScoped()) {
5672            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
5673              << PrevEnum->isScoped();
5674            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
5675            return PrevTagDecl;
5676          }
5677          else if (EnumUnderlying && PrevEnum->isFixed()) {
5678            QualType T;
5679            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
5680                T = TI->getType();
5681            else
5682                T = QualType(EnumUnderlying.get<const Type*>(), 0);
5683
5684            if (!Context.hasSameUnqualifiedType(T, PrevEnum->getIntegerType())) {
5685              Diag(KWLoc, diag::err_enum_redeclare_type_mismatch);
5686              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
5687              return PrevTagDecl;
5688            }
5689          }
5690          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
5691            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
5692              << PrevEnum->isFixed();
5693            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
5694            return PrevTagDecl;
5695          }
5696        }
5697
5698        if (!Invalid) {
5699          // If this is a use, just return the declaration we found.
5700
5701          // FIXME: In the future, return a variant or some other clue
5702          // for the consumer of this Decl to know it doesn't own it.
5703          // For our current ASTs this shouldn't be a problem, but will
5704          // need to be changed with DeclGroups.
5705          if ((TUK == TUK_Reference && !PrevTagDecl->getFriendObjectKind()) ||
5706              TUK == TUK_Friend)
5707            return PrevTagDecl;
5708
5709          // Diagnose attempts to redefine a tag.
5710          if (TUK == TUK_Definition) {
5711            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
5712              // If we're defining a specialization and the previous definition
5713              // is from an implicit instantiation, don't emit an error
5714              // here; we'll catch this in the general case below.
5715              if (!isExplicitSpecialization ||
5716                  !isa<CXXRecordDecl>(Def) ||
5717                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
5718                                               == TSK_ExplicitSpecialization) {
5719                Diag(NameLoc, diag::err_redefinition) << Name;
5720                Diag(Def->getLocation(), diag::note_previous_definition);
5721                // If this is a redefinition, recover by making this
5722                // struct be anonymous, which will make any later
5723                // references get the previous definition.
5724                Name = 0;
5725                Previous.clear();
5726                Invalid = true;
5727              }
5728            } else {
5729              // If the type is currently being defined, complain
5730              // about a nested redefinition.
5731              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
5732              if (Tag->isBeingDefined()) {
5733                Diag(NameLoc, diag::err_nested_redefinition) << Name;
5734                Diag(PrevTagDecl->getLocation(),
5735                     diag::note_previous_definition);
5736                Name = 0;
5737                Previous.clear();
5738                Invalid = true;
5739              }
5740            }
5741
5742            // Okay, this is definition of a previously declared or referenced
5743            // tag PrevDecl. We're going to create a new Decl for it.
5744          }
5745        }
5746        // If we get here we have (another) forward declaration or we
5747        // have a definition.  Just create a new decl.
5748
5749      } else {
5750        // If we get here, this is a definition of a new tag type in a nested
5751        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
5752        // new decl/type.  We set PrevDecl to NULL so that the entities
5753        // have distinct types.
5754        Previous.clear();
5755      }
5756      // If we get here, we're going to create a new Decl. If PrevDecl
5757      // is non-NULL, it's a definition of the tag declared by
5758      // PrevDecl. If it's NULL, we have a new definition.
5759
5760
5761    // Otherwise, PrevDecl is not a tag, but was found with tag
5762    // lookup.  This is only actually possible in C++, where a few
5763    // things like templates still live in the tag namespace.
5764    } else {
5765      assert(getLangOptions().CPlusPlus);
5766
5767      // Use a better diagnostic if an elaborated-type-specifier
5768      // found the wrong kind of type on the first
5769      // (non-redeclaration) lookup.
5770      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
5771          !Previous.isForRedeclaration()) {
5772        unsigned Kind = 0;
5773        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
5774        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
5775        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
5776        Diag(PrevDecl->getLocation(), diag::note_declared_at);
5777        Invalid = true;
5778
5779      // Otherwise, only diagnose if the declaration is in scope.
5780      } else if (!isDeclInScope(PrevDecl, SearchDC, S)) {
5781        // do nothing
5782
5783      // Diagnose implicit declarations introduced by elaborated types.
5784      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
5785        unsigned Kind = 0;
5786        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
5787        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
5788        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
5789        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
5790        Invalid = true;
5791
5792      // Otherwise it's a declaration.  Call out a particularly common
5793      // case here.
5794      } else if (isa<TypedefDecl>(PrevDecl)) {
5795        Diag(NameLoc, diag::err_tag_definition_of_typedef)
5796          << Name
5797          << cast<TypedefDecl>(PrevDecl)->getUnderlyingType();
5798        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
5799        Invalid = true;
5800
5801      // Otherwise, diagnose.
5802      } else {
5803        // The tag name clashes with something else in the target scope,
5804        // issue an error and recover by making this tag be anonymous.
5805        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
5806        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5807        Name = 0;
5808        Invalid = true;
5809      }
5810
5811      // The existing declaration isn't relevant to us; we're in a
5812      // new scope, so clear out the previous declaration.
5813      Previous.clear();
5814    }
5815  }
5816
5817CreateNewDecl:
5818
5819  TagDecl *PrevDecl = 0;
5820  if (Previous.isSingleResult())
5821    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
5822
5823  // If there is an identifier, use the location of the identifier as the
5824  // location of the decl, otherwise use the location of the struct/union
5825  // keyword.
5826  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
5827
5828  // Otherwise, create a new declaration. If there is a previous
5829  // declaration of the same entity, the two will be linked via
5830  // PrevDecl.
5831  TagDecl *New;
5832
5833  bool IsForwardReference = false;
5834  if (Kind == TTK_Enum) {
5835    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5836    // enum X { A, B, C } D;    D should chain to X.
5837    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
5838                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
5839                           !EnumUnderlying.isNull());
5840    // If this is an undefined enum, warn.
5841    if (TUK != TUK_Definition && !Invalid) {
5842      TagDecl *Def;
5843      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
5844        // C++0x: 7.2p2: opaque-enum-declaration.
5845        // Conflicts are diagnosed above. Do nothing.
5846      }
5847      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
5848        Diag(Loc, diag::ext_forward_ref_enum_def)
5849          << New;
5850        Diag(Def->getLocation(), diag::note_previous_definition);
5851      } else {
5852        unsigned DiagID = diag::ext_forward_ref_enum;
5853        if (getLangOptions().Microsoft)
5854          DiagID = diag::ext_ms_forward_ref_enum;
5855        else if (getLangOptions().CPlusPlus)
5856          DiagID = diag::err_forward_ref_enum;
5857        Diag(Loc, DiagID);
5858
5859        // If this is a forward-declared reference to an enumeration, make a
5860        // note of it; we won't actually be introducing the declaration into
5861        // the declaration context.
5862        if (TUK == TUK_Reference)
5863          IsForwardReference = true;
5864      }
5865    }
5866
5867    if (EnumUnderlying) {
5868      EnumDecl *ED = cast<EnumDecl>(New);
5869      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
5870        ED->setIntegerTypeSourceInfo(TI);
5871      else
5872        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
5873      ED->setPromotionType(ED->getIntegerType());
5874    }
5875
5876  } else {
5877    // struct/union/class
5878
5879    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5880    // struct X { int A; } D;    D should chain to X.
5881    if (getLangOptions().CPlusPlus) {
5882      // FIXME: Look for a way to use RecordDecl for simple structs.
5883      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5884                                  cast_or_null<CXXRecordDecl>(PrevDecl));
5885
5886      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
5887        StdBadAlloc = cast<CXXRecordDecl>(New);
5888    } else
5889      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5890                               cast_or_null<RecordDecl>(PrevDecl));
5891  }
5892
5893  // Maybe add qualifier info.
5894  if (SS.isNotEmpty()) {
5895    if (SS.isSet()) {
5896      NestedNameSpecifier *NNS
5897        = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
5898      New->setQualifierInfo(NNS, SS.getRange());
5899      if (NumMatchedTemplateParamLists > 0) {
5900        New->setTemplateParameterListsInfo(Context,
5901                                           NumMatchedTemplateParamLists,
5902                    (TemplateParameterList**) TemplateParameterLists.release());
5903      }
5904    }
5905    else
5906      Invalid = true;
5907  }
5908
5909  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
5910    // Add alignment attributes if necessary; these attributes are checked when
5911    // the ASTContext lays out the structure.
5912    //
5913    // It is important for implementing the correct semantics that this
5914    // happen here (in act on tag decl). The #pragma pack stack is
5915    // maintained as a result of parser callbacks which can occur at
5916    // many points during the parsing of a struct declaration (because
5917    // the #pragma tokens are effectively skipped over during the
5918    // parsing of the struct).
5919    AddAlignmentAttributesForRecord(RD);
5920  }
5921
5922  // If this is a specialization of a member class (of a class template),
5923  // check the specialization.
5924  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
5925    Invalid = true;
5926
5927  if (Invalid)
5928    New->setInvalidDecl();
5929
5930  if (Attr)
5931    ProcessDeclAttributeList(S, New, Attr);
5932
5933  // If we're declaring or defining a tag in function prototype scope
5934  // in C, note that this type can only be used within the function.
5935  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
5936    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
5937
5938  // Set the lexical context. If the tag has a C++ scope specifier, the
5939  // lexical context will be different from the semantic context.
5940  New->setLexicalDeclContext(CurContext);
5941
5942  // Mark this as a friend decl if applicable.
5943  if (TUK == TUK_Friend)
5944    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
5945
5946  // Set the access specifier.
5947  if (!Invalid && SearchDC->isRecord())
5948    SetMemberAccessSpecifier(New, PrevDecl, AS);
5949
5950  if (TUK == TUK_Definition)
5951    New->startDefinition();
5952
5953  // If this has an identifier, add it to the scope stack.
5954  if (TUK == TUK_Friend) {
5955    // We might be replacing an existing declaration in the lookup tables;
5956    // if so, borrow its access specifier.
5957    if (PrevDecl)
5958      New->setAccess(PrevDecl->getAccess());
5959
5960    DeclContext *DC = New->getDeclContext()->getRedeclContext();
5961    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
5962    if (Name) // can be null along some error paths
5963      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
5964        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
5965  } else if (Name) {
5966    S = getNonFieldDeclScope(S);
5967    PushOnScopeChains(New, S, !IsForwardReference);
5968    if (IsForwardReference)
5969      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
5970
5971  } else {
5972    CurContext->addDecl(New);
5973  }
5974
5975  // If this is the C FILE type, notify the AST context.
5976  if (IdentifierInfo *II = New->getIdentifier())
5977    if (!New->isInvalidDecl() &&
5978        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
5979        II->isStr("FILE"))
5980      Context.setFILEDecl(New);
5981
5982  OwnedDecl = true;
5983  return New;
5984}
5985
5986void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
5987  AdjustDeclIfTemplate(TagD);
5988  TagDecl *Tag = cast<TagDecl>(TagD);
5989
5990  // Enter the tag context.
5991  PushDeclContext(S, Tag);
5992}
5993
5994void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
5995                                           SourceLocation LBraceLoc) {
5996  AdjustDeclIfTemplate(TagD);
5997  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
5998
5999  FieldCollector->StartClass();
6000
6001  if (!Record->getIdentifier())
6002    return;
6003
6004  // C++ [class]p2:
6005  //   [...] The class-name is also inserted into the scope of the
6006  //   class itself; this is known as the injected-class-name. For
6007  //   purposes of access checking, the injected-class-name is treated
6008  //   as if it were a public member name.
6009  CXXRecordDecl *InjectedClassName
6010    = CXXRecordDecl::Create(Context, Record->getTagKind(),
6011                            CurContext, Record->getLocation(),
6012                            Record->getIdentifier(),
6013                            Record->getTagKeywordLoc(),
6014                            Record);
6015  InjectedClassName->setImplicit();
6016  InjectedClassName->setAccess(AS_public);
6017  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
6018      InjectedClassName->setDescribedClassTemplate(Template);
6019  PushOnScopeChains(InjectedClassName, S);
6020  assert(InjectedClassName->isInjectedClassName() &&
6021         "Broken injected-class-name");
6022}
6023
6024void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
6025                                    SourceLocation RBraceLoc) {
6026  AdjustDeclIfTemplate(TagD);
6027  TagDecl *Tag = cast<TagDecl>(TagD);
6028  Tag->setRBraceLoc(RBraceLoc);
6029
6030  if (isa<CXXRecordDecl>(Tag))
6031    FieldCollector->FinishClass();
6032
6033  // Exit this scope of this tag's definition.
6034  PopDeclContext();
6035
6036  // Notify the consumer that we've defined a tag.
6037  Consumer.HandleTagDeclDefinition(Tag);
6038}
6039
6040void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
6041  AdjustDeclIfTemplate(TagD);
6042  TagDecl *Tag = cast<TagDecl>(TagD);
6043  Tag->setInvalidDecl();
6044
6045  // We're undoing ActOnTagStartDefinition here, not
6046  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
6047  // the FieldCollector.
6048
6049  PopDeclContext();
6050}
6051
6052// Note that FieldName may be null for anonymous bitfields.
6053bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
6054                          QualType FieldTy, const Expr *BitWidth,
6055                          bool *ZeroWidth) {
6056  // Default to true; that shouldn't confuse checks for emptiness
6057  if (ZeroWidth)
6058    *ZeroWidth = true;
6059
6060  // C99 6.7.2.1p4 - verify the field type.
6061  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
6062  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
6063    // Handle incomplete types with specific error.
6064    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
6065      return true;
6066    if (FieldName)
6067      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
6068        << FieldName << FieldTy << BitWidth->getSourceRange();
6069    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
6070      << FieldTy << BitWidth->getSourceRange();
6071  }
6072
6073  // If the bit-width is type- or value-dependent, don't try to check
6074  // it now.
6075  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
6076    return false;
6077
6078  llvm::APSInt Value;
6079  if (VerifyIntegerConstantExpression(BitWidth, &Value))
6080    return true;
6081
6082  if (Value != 0 && ZeroWidth)
6083    *ZeroWidth = false;
6084
6085  // Zero-width bitfield is ok for anonymous field.
6086  if (Value == 0 && FieldName)
6087    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
6088
6089  if (Value.isSigned() && Value.isNegative()) {
6090    if (FieldName)
6091      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
6092               << FieldName << Value.toString(10);
6093    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
6094      << Value.toString(10);
6095  }
6096
6097  if (!FieldTy->isDependentType()) {
6098    uint64_t TypeSize = Context.getTypeSize(FieldTy);
6099    if (Value.getZExtValue() > TypeSize) {
6100      if (!getLangOptions().CPlusPlus) {
6101        if (FieldName)
6102          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
6103            << FieldName << (unsigned)Value.getZExtValue()
6104            << (unsigned)TypeSize;
6105
6106        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
6107          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
6108      }
6109
6110      if (FieldName)
6111        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
6112          << FieldName << (unsigned)Value.getZExtValue()
6113          << (unsigned)TypeSize;
6114      else
6115        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
6116          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
6117    }
6118  }
6119
6120  return false;
6121}
6122
6123/// ActOnField - Each field of a struct/union/class is passed into this in order
6124/// to create a FieldDecl object for it.
6125Decl *Sema::ActOnField(Scope *S, Decl *TagD,
6126                                 SourceLocation DeclStart,
6127                                 Declarator &D, ExprTy *BitfieldWidth) {
6128  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
6129                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
6130                               AS_public);
6131  return Res;
6132}
6133
6134/// HandleField - Analyze a field of a C struct or a C++ data member.
6135///
6136FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
6137                             SourceLocation DeclStart,
6138                             Declarator &D, Expr *BitWidth,
6139                             AccessSpecifier AS) {
6140  IdentifierInfo *II = D.getIdentifier();
6141  SourceLocation Loc = DeclStart;
6142  if (II) Loc = D.getIdentifierLoc();
6143
6144  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6145  QualType T = TInfo->getType();
6146  if (getLangOptions().CPlusPlus)
6147    CheckExtraCXXDefaultArguments(D);
6148
6149  DiagnoseFunctionSpecifiers(D);
6150
6151  if (D.getDeclSpec().isThreadSpecified())
6152    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
6153
6154  // Check to see if this name was declared as a member previously
6155  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
6156  LookupName(Previous, S);
6157  assert((Previous.empty() || Previous.isOverloadedResult() ||
6158          Previous.isSingleResult())
6159    && "Lookup of member name should be either overloaded, single or null");
6160
6161  // If the name is overloaded then get any declaration else get the single result
6162  NamedDecl *PrevDecl = Previous.isOverloadedResult() ?
6163    Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>();
6164
6165  if (PrevDecl && PrevDecl->isTemplateParameter()) {
6166    // Maybe we will complain about the shadowed template parameter.
6167    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6168    // Just pretend that we didn't see the previous declaration.
6169    PrevDecl = 0;
6170  }
6171
6172  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
6173    PrevDecl = 0;
6174
6175  bool Mutable
6176    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
6177  SourceLocation TSSL = D.getSourceRange().getBegin();
6178  FieldDecl *NewFD
6179    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
6180                     AS, PrevDecl, &D);
6181
6182  if (NewFD->isInvalidDecl())
6183    Record->setInvalidDecl();
6184
6185  if (NewFD->isInvalidDecl() && PrevDecl) {
6186    // Don't introduce NewFD into scope; there's already something
6187    // with the same name in the same scope.
6188  } else if (II) {
6189    PushOnScopeChains(NewFD, S);
6190  } else
6191    Record->addDecl(NewFD);
6192
6193  return NewFD;
6194}
6195
6196/// \brief Build a new FieldDecl and check its well-formedness.
6197///
6198/// This routine builds a new FieldDecl given the fields name, type,
6199/// record, etc. \p PrevDecl should refer to any previous declaration
6200/// with the same name and in the same scope as the field to be
6201/// created.
6202///
6203/// \returns a new FieldDecl.
6204///
6205/// \todo The Declarator argument is a hack. It will be removed once
6206FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
6207                                TypeSourceInfo *TInfo,
6208                                RecordDecl *Record, SourceLocation Loc,
6209                                bool Mutable, Expr *BitWidth,
6210                                SourceLocation TSSL,
6211                                AccessSpecifier AS, NamedDecl *PrevDecl,
6212                                Declarator *D) {
6213  IdentifierInfo *II = Name.getAsIdentifierInfo();
6214  bool InvalidDecl = false;
6215  if (D) InvalidDecl = D->isInvalidType();
6216
6217  // If we receive a broken type, recover by assuming 'int' and
6218  // marking this declaration as invalid.
6219  if (T.isNull()) {
6220    InvalidDecl = true;
6221    T = Context.IntTy;
6222  }
6223
6224  QualType EltTy = Context.getBaseElementType(T);
6225  if (!EltTy->isDependentType() &&
6226      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
6227    // Fields of incomplete type force their record to be invalid.
6228    Record->setInvalidDecl();
6229    InvalidDecl = true;
6230  }
6231
6232  // C99 6.7.2.1p8: A member of a structure or union may have any type other
6233  // than a variably modified type.
6234  if (!InvalidDecl && T->isVariablyModifiedType()) {
6235    bool SizeIsNegative;
6236    llvm::APSInt Oversized;
6237    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
6238                                                           SizeIsNegative,
6239                                                           Oversized);
6240    if (!FixedTy.isNull()) {
6241      Diag(Loc, diag::warn_illegal_constant_array_size);
6242      T = FixedTy;
6243    } else {
6244      if (SizeIsNegative)
6245        Diag(Loc, diag::err_typecheck_negative_array_size);
6246      else if (Oversized.getBoolValue())
6247        Diag(Loc, diag::err_array_too_large)
6248          << Oversized.toString(10);
6249      else
6250        Diag(Loc, diag::err_typecheck_field_variable_size);
6251      InvalidDecl = true;
6252    }
6253  }
6254
6255  // Fields can not have abstract class types
6256  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
6257                                             diag::err_abstract_type_in_decl,
6258                                             AbstractFieldType))
6259    InvalidDecl = true;
6260
6261  bool ZeroWidth = false;
6262  // If this is declared as a bit-field, check the bit-field.
6263  if (!InvalidDecl && BitWidth &&
6264      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
6265    InvalidDecl = true;
6266    BitWidth = 0;
6267    ZeroWidth = false;
6268  }
6269
6270  // Check that 'mutable' is consistent with the type of the declaration.
6271  if (!InvalidDecl && Mutable) {
6272    unsigned DiagID = 0;
6273    if (T->isReferenceType())
6274      DiagID = diag::err_mutable_reference;
6275    else if (T.isConstQualified())
6276      DiagID = diag::err_mutable_const;
6277
6278    if (DiagID) {
6279      SourceLocation ErrLoc = Loc;
6280      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
6281        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
6282      Diag(ErrLoc, DiagID);
6283      Mutable = false;
6284      InvalidDecl = true;
6285    }
6286  }
6287
6288  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo,
6289                                       BitWidth, Mutable);
6290  if (InvalidDecl)
6291    NewFD->setInvalidDecl();
6292
6293  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
6294    Diag(Loc, diag::err_duplicate_member) << II;
6295    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6296    NewFD->setInvalidDecl();
6297  }
6298
6299  if (!InvalidDecl && getLangOptions().CPlusPlus) {
6300    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
6301      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
6302      if (RDecl->getDefinition()) {
6303        // C++ 9.5p1: An object of a class with a non-trivial
6304        // constructor, a non-trivial copy constructor, a non-trivial
6305        // destructor, or a non-trivial copy assignment operator
6306        // cannot be a member of a union, nor can an array of such
6307        // objects.
6308        // TODO: C++0x alters this restriction significantly.
6309        if (Record->isUnion() && CheckNontrivialField(NewFD))
6310          NewFD->setInvalidDecl();
6311      }
6312    }
6313  }
6314
6315  // FIXME: We need to pass in the attributes given an AST
6316  // representation, not a parser representation.
6317  if (D)
6318    // FIXME: What to pass instead of TUScope?
6319    ProcessDeclAttributes(TUScope, NewFD, *D);
6320
6321  if (T.isObjCGCWeak())
6322    Diag(Loc, diag::warn_attribute_weak_on_field);
6323
6324  NewFD->setAccess(AS);
6325  return NewFD;
6326}
6327
6328bool Sema::CheckNontrivialField(FieldDecl *FD) {
6329  assert(FD);
6330  assert(getLangOptions().CPlusPlus && "valid check only for C++");
6331
6332  if (FD->isInvalidDecl())
6333    return true;
6334
6335  QualType EltTy = Context.getBaseElementType(FD->getType());
6336  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
6337    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
6338    if (RDecl->getDefinition()) {
6339      // We check for copy constructors before constructors
6340      // because otherwise we'll never get complaints about
6341      // copy constructors.
6342
6343      CXXSpecialMember member = CXXInvalid;
6344      if (!RDecl->hasTrivialCopyConstructor())
6345        member = CXXCopyConstructor;
6346      else if (!RDecl->hasTrivialConstructor())
6347        member = CXXConstructor;
6348      else if (!RDecl->hasTrivialCopyAssignment())
6349        member = CXXCopyAssignment;
6350      else if (!RDecl->hasTrivialDestructor())
6351        member = CXXDestructor;
6352
6353      if (member != CXXInvalid) {
6354        Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
6355              << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
6356        DiagnoseNontrivial(RT, member);
6357        return true;
6358      }
6359    }
6360  }
6361
6362  return false;
6363}
6364
6365/// DiagnoseNontrivial - Given that a class has a non-trivial
6366/// special member, figure out why.
6367void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
6368  QualType QT(T, 0U);
6369  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
6370
6371  // Check whether the member was user-declared.
6372  switch (member) {
6373  case CXXInvalid:
6374    break;
6375
6376  case CXXConstructor:
6377    if (RD->hasUserDeclaredConstructor()) {
6378      typedef CXXRecordDecl::ctor_iterator ctor_iter;
6379      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
6380        const FunctionDecl *body = 0;
6381        ci->hasBody(body);
6382        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
6383          SourceLocation CtorLoc = ci->getLocation();
6384          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6385          return;
6386        }
6387      }
6388
6389      assert(0 && "found no user-declared constructors");
6390      return;
6391    }
6392    break;
6393
6394  case CXXCopyConstructor:
6395    if (RD->hasUserDeclaredCopyConstructor()) {
6396      SourceLocation CtorLoc =
6397        RD->getCopyConstructor(Context, 0)->getLocation();
6398      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6399      return;
6400    }
6401    break;
6402
6403  case CXXCopyAssignment:
6404    if (RD->hasUserDeclaredCopyAssignment()) {
6405      // FIXME: this should use the location of the copy
6406      // assignment, not the type.
6407      SourceLocation TyLoc = RD->getSourceRange().getBegin();
6408      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
6409      return;
6410    }
6411    break;
6412
6413  case CXXDestructor:
6414    if (RD->hasUserDeclaredDestructor()) {
6415      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
6416      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6417      return;
6418    }
6419    break;
6420  }
6421
6422  typedef CXXRecordDecl::base_class_iterator base_iter;
6423
6424  // Virtual bases and members inhibit trivial copying/construction,
6425  // but not trivial destruction.
6426  if (member != CXXDestructor) {
6427    // Check for virtual bases.  vbases includes indirect virtual bases,
6428    // so we just iterate through the direct bases.
6429    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
6430      if (bi->isVirtual()) {
6431        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6432        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
6433        return;
6434      }
6435
6436    // Check for virtual methods.
6437    typedef CXXRecordDecl::method_iterator meth_iter;
6438    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
6439         ++mi) {
6440      if (mi->isVirtual()) {
6441        SourceLocation MLoc = mi->getSourceRange().getBegin();
6442        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
6443        return;
6444      }
6445    }
6446  }
6447
6448  bool (CXXRecordDecl::*hasTrivial)() const;
6449  switch (member) {
6450  case CXXConstructor:
6451    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
6452  case CXXCopyConstructor:
6453    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
6454  case CXXCopyAssignment:
6455    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
6456  case CXXDestructor:
6457    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
6458  default:
6459    assert(0 && "unexpected special member"); return;
6460  }
6461
6462  // Check for nontrivial bases (and recurse).
6463  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
6464    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
6465    assert(BaseRT && "Don't know how to handle dependent bases");
6466    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
6467    if (!(BaseRecTy->*hasTrivial)()) {
6468      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6469      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
6470      DiagnoseNontrivial(BaseRT, member);
6471      return;
6472    }
6473  }
6474
6475  // Check for nontrivial members (and recurse).
6476  typedef RecordDecl::field_iterator field_iter;
6477  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
6478       ++fi) {
6479    QualType EltTy = Context.getBaseElementType((*fi)->getType());
6480    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
6481      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
6482
6483      if (!(EltRD->*hasTrivial)()) {
6484        SourceLocation FLoc = (*fi)->getLocation();
6485        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
6486        DiagnoseNontrivial(EltRT, member);
6487        return;
6488      }
6489    }
6490  }
6491
6492  assert(0 && "found no explanation for non-trivial member");
6493}
6494
6495/// TranslateIvarVisibility - Translate visibility from a token ID to an
6496///  AST enum value.
6497static ObjCIvarDecl::AccessControl
6498TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
6499  switch (ivarVisibility) {
6500  default: assert(0 && "Unknown visitibility kind");
6501  case tok::objc_private: return ObjCIvarDecl::Private;
6502  case tok::objc_public: return ObjCIvarDecl::Public;
6503  case tok::objc_protected: return ObjCIvarDecl::Protected;
6504  case tok::objc_package: return ObjCIvarDecl::Package;
6505  }
6506}
6507
6508/// ActOnIvar - Each ivar field of an objective-c class is passed into this
6509/// in order to create an IvarDecl object for it.
6510Decl *Sema::ActOnIvar(Scope *S,
6511                                SourceLocation DeclStart,
6512                                Decl *IntfDecl,
6513                                Declarator &D, ExprTy *BitfieldWidth,
6514                                tok::ObjCKeywordKind Visibility) {
6515
6516  IdentifierInfo *II = D.getIdentifier();
6517  Expr *BitWidth = (Expr*)BitfieldWidth;
6518  SourceLocation Loc = DeclStart;
6519  if (II) Loc = D.getIdentifierLoc();
6520
6521  // FIXME: Unnamed fields can be handled in various different ways, for
6522  // example, unnamed unions inject all members into the struct namespace!
6523
6524  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6525  QualType T = TInfo->getType();
6526
6527  if (BitWidth) {
6528    // 6.7.2.1p3, 6.7.2.1p4
6529    if (VerifyBitField(Loc, II, T, BitWidth)) {
6530      D.setInvalidType();
6531      BitWidth = 0;
6532    }
6533  } else {
6534    // Not a bitfield.
6535
6536    // validate II.
6537
6538  }
6539  if (T->isReferenceType()) {
6540    Diag(Loc, diag::err_ivar_reference_type);
6541    D.setInvalidType();
6542  }
6543  // C99 6.7.2.1p8: A member of a structure or union may have any type other
6544  // than a variably modified type.
6545  else if (T->isVariablyModifiedType()) {
6546    Diag(Loc, diag::err_typecheck_ivar_variable_size);
6547    D.setInvalidType();
6548  }
6549
6550  // Get the visibility (access control) for this ivar.
6551  ObjCIvarDecl::AccessControl ac =
6552    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
6553                                        : ObjCIvarDecl::None;
6554  // Must set ivar's DeclContext to its enclosing interface.
6555  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(IntfDecl);
6556  ObjCContainerDecl *EnclosingContext;
6557  if (ObjCImplementationDecl *IMPDecl =
6558      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
6559    if (!LangOpts.ObjCNonFragileABI2) {
6560    // Case of ivar declared in an implementation. Context is that of its class.
6561      EnclosingContext = IMPDecl->getClassInterface();
6562      assert(EnclosingContext && "Implementation has no class interface!");
6563    }
6564    else
6565      EnclosingContext = EnclosingDecl;
6566  } else {
6567    if (ObjCCategoryDecl *CDecl =
6568        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6569      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
6570        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
6571        return 0;
6572      }
6573    }
6574    EnclosingContext = EnclosingDecl;
6575  }
6576
6577  // Construct the decl.
6578  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
6579                                             EnclosingContext, Loc, II, T,
6580                                             TInfo, ac, (Expr *)BitfieldWidth);
6581
6582  if (II) {
6583    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
6584                                           ForRedeclaration);
6585    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
6586        && !isa<TagDecl>(PrevDecl)) {
6587      Diag(Loc, diag::err_duplicate_member) << II;
6588      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6589      NewID->setInvalidDecl();
6590    }
6591  }
6592
6593  // Process attributes attached to the ivar.
6594  ProcessDeclAttributes(S, NewID, D);
6595
6596  if (D.isInvalidType())
6597    NewID->setInvalidDecl();
6598
6599  if (II) {
6600    // FIXME: When interfaces are DeclContexts, we'll need to add
6601    // these to the interface.
6602    S->AddDecl(NewID);
6603    IdResolver.AddDecl(NewID);
6604  }
6605
6606  return NewID;
6607}
6608
6609/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
6610/// class and class extensions. For every class @interface and class
6611/// extension @interface, if the last ivar is a bitfield of any type,
6612/// then add an implicit `char :0` ivar to the end of that interface.
6613void Sema::ActOnLastBitfield(SourceLocation DeclLoc, Decl *EnclosingDecl,
6614                             llvm::SmallVectorImpl<Decl *> &AllIvarDecls) {
6615  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
6616    return;
6617
6618  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
6619  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
6620
6621  if (!Ivar->isBitField())
6622    return;
6623  uint64_t BitFieldSize =
6624    Ivar->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
6625  if (BitFieldSize == 0)
6626    return;
6627  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl);
6628  if (!ID) {
6629    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6630      if (!CD->IsClassExtension())
6631        return;
6632    }
6633    // No need to add this to end of @implementation.
6634    else
6635      return;
6636  }
6637  // All conditions are met. Add a new bitfield to the tail end of ivars.
6638  llvm::APInt Zero(Context.getTypeSize(Context.CharTy), 0);
6639  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.CharTy, DeclLoc);
6640
6641  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(EnclosingDecl),
6642                              DeclLoc, 0,
6643                              Context.CharTy,
6644                              Context.CreateTypeSourceInfo(Context.CharTy),
6645                              ObjCIvarDecl::Private, BW,
6646                              true);
6647  AllIvarDecls.push_back(Ivar);
6648}
6649
6650void Sema::ActOnFields(Scope* S,
6651                       SourceLocation RecLoc, Decl *EnclosingDecl,
6652                       Decl **Fields, unsigned NumFields,
6653                       SourceLocation LBrac, SourceLocation RBrac,
6654                       AttributeList *Attr) {
6655  assert(EnclosingDecl && "missing record or interface decl");
6656
6657  // If the decl this is being inserted into is invalid, then it may be a
6658  // redeclaration or some other bogus case.  Don't try to add fields to it.
6659  if (EnclosingDecl->isInvalidDecl()) {
6660    // FIXME: Deallocate fields?
6661    return;
6662  }
6663
6664
6665  // Verify that all the fields are okay.
6666  unsigned NumNamedMembers = 0;
6667  llvm::SmallVector<FieldDecl*, 32> RecFields;
6668
6669  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
6670  for (unsigned i = 0; i != NumFields; ++i) {
6671    FieldDecl *FD = cast<FieldDecl>(Fields[i]);
6672
6673    // Get the type for the field.
6674    Type *FDTy = FD->getType().getTypePtr();
6675
6676    if (!FD->isAnonymousStructOrUnion()) {
6677      // Remember all fields written by the user.
6678      RecFields.push_back(FD);
6679    }
6680
6681    // If the field is already invalid for some reason, don't emit more
6682    // diagnostics about it.
6683    if (FD->isInvalidDecl()) {
6684      EnclosingDecl->setInvalidDecl();
6685      continue;
6686    }
6687
6688    // C99 6.7.2.1p2:
6689    //   A structure or union shall not contain a member with
6690    //   incomplete or function type (hence, a structure shall not
6691    //   contain an instance of itself, but may contain a pointer to
6692    //   an instance of itself), except that the last member of a
6693    //   structure with more than one named member may have incomplete
6694    //   array type; such a structure (and any union containing,
6695    //   possibly recursively, a member that is such a structure)
6696    //   shall not be a member of a structure or an element of an
6697    //   array.
6698    if (FDTy->isFunctionType()) {
6699      // Field declared as a function.
6700      Diag(FD->getLocation(), diag::err_field_declared_as_function)
6701        << FD->getDeclName();
6702      FD->setInvalidDecl();
6703      EnclosingDecl->setInvalidDecl();
6704      continue;
6705    } else if (FDTy->isIncompleteArrayType() && Record &&
6706               ((i == NumFields - 1 && !Record->isUnion()) ||
6707                (getLangOptions().Microsoft &&
6708                 (i == NumFields - 1 || Record->isUnion())))) {
6709      // Flexible array member.
6710      // Microsoft is more permissive regarding flexible array.
6711      // It will accept flexible array in union and also
6712	    // as the sole element of a struct/class.
6713      if (getLangOptions().Microsoft) {
6714        if (Record->isUnion())
6715          Diag(FD->getLocation(), diag::ext_flexible_array_union)
6716            << FD->getDeclName();
6717        else if (NumFields == 1)
6718          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate)
6719            << FD->getDeclName() << Record->getTagKind();
6720      } else  if (NumNamedMembers < 1) {
6721        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
6722          << FD->getDeclName();
6723        FD->setInvalidDecl();
6724        EnclosingDecl->setInvalidDecl();
6725        continue;
6726      }
6727      if (!FD->getType()->isDependentType() &&
6728          !Context.getBaseElementType(FD->getType())->isPODType()) {
6729        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
6730          << FD->getDeclName() << FD->getType();
6731        FD->setInvalidDecl();
6732        EnclosingDecl->setInvalidDecl();
6733        continue;
6734      }
6735      // Okay, we have a legal flexible array member at the end of the struct.
6736      if (Record)
6737        Record->setHasFlexibleArrayMember(true);
6738    } else if (!FDTy->isDependentType() &&
6739               RequireCompleteType(FD->getLocation(), FD->getType(),
6740                                   diag::err_field_incomplete)) {
6741      // Incomplete type
6742      FD->setInvalidDecl();
6743      EnclosingDecl->setInvalidDecl();
6744      continue;
6745    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
6746      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
6747        // If this is a member of a union, then entire union becomes "flexible".
6748        if (Record && Record->isUnion()) {
6749          Record->setHasFlexibleArrayMember(true);
6750        } else {
6751          // If this is a struct/class and this is not the last element, reject
6752          // it.  Note that GCC supports variable sized arrays in the middle of
6753          // structures.
6754          if (i != NumFields-1)
6755            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
6756              << FD->getDeclName() << FD->getType();
6757          else {
6758            // We support flexible arrays at the end of structs in
6759            // other structs as an extension.
6760            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
6761              << FD->getDeclName();
6762            if (Record)
6763              Record->setHasFlexibleArrayMember(true);
6764          }
6765        }
6766      }
6767      if (Record && FDTTy->getDecl()->hasObjectMember())
6768        Record->setHasObjectMember(true);
6769    } else if (FDTy->isObjCObjectType()) {
6770      /// A field cannot be an Objective-c object
6771      Diag(FD->getLocation(), diag::err_statically_allocated_object);
6772      FD->setInvalidDecl();
6773      EnclosingDecl->setInvalidDecl();
6774      continue;
6775    } else if (getLangOptions().ObjC1 &&
6776               getLangOptions().getGCMode() != LangOptions::NonGC &&
6777               Record &&
6778               (FD->getType()->isObjCObjectPointerType() ||
6779                FD->getType().isObjCGCStrong()))
6780      Record->setHasObjectMember(true);
6781    else if (Context.getAsArrayType(FD->getType())) {
6782      QualType BaseType = Context.getBaseElementType(FD->getType());
6783      if (Record && BaseType->isRecordType() &&
6784          BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
6785        Record->setHasObjectMember(true);
6786    }
6787    // Keep track of the number of named members.
6788    if (FD->getIdentifier())
6789      ++NumNamedMembers;
6790  }
6791
6792  // Okay, we successfully defined 'Record'.
6793  if (Record) {
6794    bool Completed = false;
6795    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
6796      if (!CXXRecord->isInvalidDecl()) {
6797        // Set access bits correctly on the directly-declared conversions.
6798        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
6799        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
6800             I != E; ++I)
6801          Convs->setAccess(I, (*I)->getAccess());
6802
6803        if (!CXXRecord->isDependentType()) {
6804          // Add any implicitly-declared members to this class.
6805          AddImplicitlyDeclaredMembersToClass(CXXRecord);
6806
6807          // If we have virtual base classes, we may end up finding multiple
6808          // final overriders for a given virtual function. Check for this
6809          // problem now.
6810          if (CXXRecord->getNumVBases()) {
6811            CXXFinalOverriderMap FinalOverriders;
6812            CXXRecord->getFinalOverriders(FinalOverriders);
6813
6814            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
6815                                             MEnd = FinalOverriders.end();
6816                 M != MEnd; ++M) {
6817              for (OverridingMethods::iterator SO = M->second.begin(),
6818                                            SOEnd = M->second.end();
6819                   SO != SOEnd; ++SO) {
6820                assert(SO->second.size() > 0 &&
6821                       "Virtual function without overridding functions?");
6822                if (SO->second.size() == 1)
6823                  continue;
6824
6825                // C++ [class.virtual]p2:
6826                //   In a derived class, if a virtual member function of a base
6827                //   class subobject has more than one final overrider the
6828                //   program is ill-formed.
6829                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
6830                  << (NamedDecl *)M->first << Record;
6831                Diag(M->first->getLocation(),
6832                     diag::note_overridden_virtual_function);
6833                for (OverridingMethods::overriding_iterator
6834                          OM = SO->second.begin(),
6835                       OMEnd = SO->second.end();
6836                     OM != OMEnd; ++OM)
6837                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
6838                    << (NamedDecl *)M->first << OM->Method->getParent();
6839
6840                Record->setInvalidDecl();
6841              }
6842            }
6843            CXXRecord->completeDefinition(&FinalOverriders);
6844            Completed = true;
6845          }
6846        }
6847      }
6848    }
6849
6850    if (!Completed)
6851      Record->completeDefinition();
6852  } else {
6853    ObjCIvarDecl **ClsFields =
6854      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
6855    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
6856      ID->setLocEnd(RBrac);
6857      // Add ivar's to class's DeclContext.
6858      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
6859        ClsFields[i]->setLexicalDeclContext(ID);
6860        ID->addDecl(ClsFields[i]);
6861      }
6862      // Must enforce the rule that ivars in the base classes may not be
6863      // duplicates.
6864      if (ID->getSuperClass())
6865        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
6866    } else if (ObjCImplementationDecl *IMPDecl =
6867                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
6868      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
6869      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
6870        // Ivar declared in @implementation never belongs to the implementation.
6871        // Only it is in implementation's lexical context.
6872        ClsFields[I]->setLexicalDeclContext(IMPDecl);
6873      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
6874    } else if (ObjCCategoryDecl *CDecl =
6875                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6876      // case of ivars in class extension; all other cases have been
6877      // reported as errors elsewhere.
6878      // FIXME. Class extension does not have a LocEnd field.
6879      // CDecl->setLocEnd(RBrac);
6880      // Add ivar's to class extension's DeclContext.
6881      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
6882        ClsFields[i]->setLexicalDeclContext(CDecl);
6883        CDecl->addDecl(ClsFields[i]);
6884      }
6885    }
6886  }
6887
6888  if (Attr)
6889    ProcessDeclAttributeList(S, Record, Attr);
6890
6891  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
6892  // set the visibility of this record.
6893  if (Record && !Record->getDeclContext()->isRecord())
6894    AddPushedVisibilityAttribute(Record);
6895}
6896
6897/// \brief Determine whether the given integral value is representable within
6898/// the given type T.
6899static bool isRepresentableIntegerValue(ASTContext &Context,
6900                                        llvm::APSInt &Value,
6901                                        QualType T) {
6902  assert(T->isIntegralType(Context) && "Integral type required!");
6903  unsigned BitWidth = Context.getIntWidth(T);
6904
6905  if (Value.isUnsigned() || Value.isNonNegative()) {
6906    if (T->isSignedIntegerType())
6907      --BitWidth;
6908    return Value.getActiveBits() <= BitWidth;
6909  }
6910  return Value.getMinSignedBits() <= BitWidth;
6911}
6912
6913// \brief Given an integral type, return the next larger integral type
6914// (or a NULL type of no such type exists).
6915static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
6916  // FIXME: Int128/UInt128 support, which also needs to be introduced into
6917  // enum checking below.
6918  assert(T->isIntegralType(Context) && "Integral type required!");
6919  const unsigned NumTypes = 4;
6920  QualType SignedIntegralTypes[NumTypes] = {
6921    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
6922  };
6923  QualType UnsignedIntegralTypes[NumTypes] = {
6924    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
6925    Context.UnsignedLongLongTy
6926  };
6927
6928  unsigned BitWidth = Context.getTypeSize(T);
6929  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
6930                                            : UnsignedIntegralTypes;
6931  for (unsigned I = 0; I != NumTypes; ++I)
6932    if (Context.getTypeSize(Types[I]) > BitWidth)
6933      return Types[I];
6934
6935  return QualType();
6936}
6937
6938EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
6939                                          EnumConstantDecl *LastEnumConst,
6940                                          SourceLocation IdLoc,
6941                                          IdentifierInfo *Id,
6942                                          Expr *Val) {
6943  unsigned IntWidth = Context.Target.getIntWidth();
6944  llvm::APSInt EnumVal(IntWidth);
6945  QualType EltTy;
6946  if (Val) {
6947    if (Enum->isDependentType() || Val->isTypeDependent())
6948      EltTy = Context.DependentTy;
6949    else {
6950      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
6951      SourceLocation ExpLoc;
6952      if (!Val->isValueDependent() &&
6953          VerifyIntegerConstantExpression(Val, &EnumVal)) {
6954        Val = 0;
6955      } else {
6956        if (!getLangOptions().CPlusPlus) {
6957          // C99 6.7.2.2p2:
6958          //   The expression that defines the value of an enumeration constant
6959          //   shall be an integer constant expression that has a value
6960          //   representable as an int.
6961
6962          // Complain if the value is not representable in an int.
6963          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
6964            Diag(IdLoc, diag::ext_enum_value_not_int)
6965              << EnumVal.toString(10) << Val->getSourceRange()
6966              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
6967          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
6968            // Force the type of the expression to 'int'.
6969            ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast);
6970          }
6971        }
6972
6973        if (Enum->isFixed()) {
6974          EltTy = Enum->getIntegerType();
6975
6976          // C++0x [dcl.enum]p5:
6977          //   ... if the initializing value of an enumerator cannot be
6978          //   represented by the underlying type, the program is ill-formed.
6979          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy))
6980            Diag(IdLoc, diag::err_enumerator_too_large)
6981              << EltTy;
6982          else
6983            ImpCastExprToType(Val, EltTy, CK_IntegralCast);
6984        }
6985        else {
6986          // C++0x [dcl.enum]p5:
6987          //   If the underlying type is not fixed, the type of each enumerator
6988          //   is the type of its initializing value:
6989          //     - If an initializer is specified for an enumerator, the
6990          //       initializing value has the same type as the expression.
6991          EltTy = Val->getType();
6992        }
6993      }
6994    }
6995  }
6996
6997  if (!Val) {
6998    if (Enum->isDependentType())
6999      EltTy = Context.DependentTy;
7000    else if (!LastEnumConst) {
7001      // C++0x [dcl.enum]p5:
7002      //   If the underlying type is not fixed, the type of each enumerator
7003      //   is the type of its initializing value:
7004      //     - If no initializer is specified for the first enumerator, the
7005      //       initializing value has an unspecified integral type.
7006      //
7007      // GCC uses 'int' for its unspecified integral type, as does
7008      // C99 6.7.2.2p3.
7009      if (Enum->isFixed()) {
7010        EltTy = Enum->getIntegerType();
7011      }
7012      else {
7013        EltTy = Context.IntTy;
7014      }
7015    } else {
7016      // Assign the last value + 1.
7017      EnumVal = LastEnumConst->getInitVal();
7018      ++EnumVal;
7019      EltTy = LastEnumConst->getType();
7020
7021      // Check for overflow on increment.
7022      if (EnumVal < LastEnumConst->getInitVal()) {
7023        // C++0x [dcl.enum]p5:
7024        //   If the underlying type is not fixed, the type of each enumerator
7025        //   is the type of its initializing value:
7026        //
7027        //     - Otherwise the type of the initializing value is the same as
7028        //       the type of the initializing value of the preceding enumerator
7029        //       unless the incremented value is not representable in that type,
7030        //       in which case the type is an unspecified integral type
7031        //       sufficient to contain the incremented value. If no such type
7032        //       exists, the program is ill-formed.
7033        QualType T = getNextLargerIntegralType(Context, EltTy);
7034        if (T.isNull() || Enum->isFixed()) {
7035          // There is no integral type larger enough to represent this
7036          // value. Complain, then allow the value to wrap around.
7037          EnumVal = LastEnumConst->getInitVal();
7038          EnumVal.zext(EnumVal.getBitWidth() * 2);
7039          ++EnumVal;
7040          if (Enum->isFixed())
7041            // When the underlying type is fixed, this is ill-formed.
7042            Diag(IdLoc, diag::err_enumerator_wrapped)
7043              << EnumVal.toString(10)
7044              << EltTy;
7045          else
7046            Diag(IdLoc, diag::warn_enumerator_too_large)
7047              << EnumVal.toString(10);
7048        } else {
7049          EltTy = T;
7050        }
7051
7052        // Retrieve the last enumerator's value, extent that type to the
7053        // type that is supposed to be large enough to represent the incremented
7054        // value, then increment.
7055        EnumVal = LastEnumConst->getInitVal();
7056        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
7057        EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
7058        ++EnumVal;
7059
7060        // If we're not in C++, diagnose the overflow of enumerator values,
7061        // which in C99 means that the enumerator value is not representable in
7062        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
7063        // permits enumerator values that are representable in some larger
7064        // integral type.
7065        if (!getLangOptions().CPlusPlus && !T.isNull())
7066          Diag(IdLoc, diag::warn_enum_value_overflow);
7067      } else if (!getLangOptions().CPlusPlus &&
7068                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
7069        // Enforce C99 6.7.2.2p2 even when we compute the next value.
7070        Diag(IdLoc, diag::ext_enum_value_not_int)
7071          << EnumVal.toString(10) << 1;
7072      }
7073    }
7074  }
7075
7076  if (!EltTy->isDependentType()) {
7077    // Make the enumerator value match the signedness and size of the
7078    // enumerator's type.
7079    EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
7080    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
7081  }
7082
7083  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
7084                                  Val, EnumVal);
7085}
7086
7087
7088Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl,
7089                                        Decl *lastEnumConst,
7090                                        SourceLocation IdLoc,
7091                                        IdentifierInfo *Id,
7092                                        SourceLocation EqualLoc, ExprTy *val) {
7093  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
7094  EnumConstantDecl *LastEnumConst =
7095    cast_or_null<EnumConstantDecl>(lastEnumConst);
7096  Expr *Val = static_cast<Expr*>(val);
7097
7098  // The scope passed in may not be a decl scope.  Zip up the scope tree until
7099  // we find one that is.
7100  S = getNonFieldDeclScope(S);
7101
7102  // Verify that there isn't already something declared with this name in this
7103  // scope.
7104  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
7105                                         ForRedeclaration);
7106  if (PrevDecl && PrevDecl->isTemplateParameter()) {
7107    // Maybe we will complain about the shadowed template parameter.
7108    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
7109    // Just pretend that we didn't see the previous declaration.
7110    PrevDecl = 0;
7111  }
7112
7113  if (PrevDecl) {
7114    // When in C++, we may get a TagDecl with the same name; in this case the
7115    // enum constant will 'hide' the tag.
7116    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
7117           "Received TagDecl when not in C++!");
7118    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
7119      if (isa<EnumConstantDecl>(PrevDecl))
7120        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
7121      else
7122        Diag(IdLoc, diag::err_redefinition) << Id;
7123      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7124      return 0;
7125    }
7126  }
7127
7128  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
7129                                            IdLoc, Id, Val);
7130
7131  // Register this decl in the current scope stack.
7132  if (New) {
7133    New->setAccess(TheEnumDecl->getAccess());
7134    PushOnScopeChains(New, S);
7135  }
7136
7137  return New;
7138}
7139
7140void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
7141                         SourceLocation RBraceLoc, Decl *EnumDeclX,
7142                         Decl **Elements, unsigned NumElements,
7143                         Scope *S, AttributeList *Attr) {
7144  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
7145  QualType EnumType = Context.getTypeDeclType(Enum);
7146
7147  if (Attr)
7148    ProcessDeclAttributeList(S, Enum, Attr);
7149
7150  if (Enum->isDependentType()) {
7151    for (unsigned i = 0; i != NumElements; ++i) {
7152      EnumConstantDecl *ECD =
7153        cast_or_null<EnumConstantDecl>(Elements[i]);
7154      if (!ECD) continue;
7155
7156      ECD->setType(EnumType);
7157    }
7158
7159    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
7160    return;
7161  }
7162
7163  // TODO: If the result value doesn't fit in an int, it must be a long or long
7164  // long value.  ISO C does not support this, but GCC does as an extension,
7165  // emit a warning.
7166  unsigned IntWidth = Context.Target.getIntWidth();
7167  unsigned CharWidth = Context.Target.getCharWidth();
7168  unsigned ShortWidth = Context.Target.getShortWidth();
7169
7170  // Verify that all the values are okay, compute the size of the values, and
7171  // reverse the list.
7172  unsigned NumNegativeBits = 0;
7173  unsigned NumPositiveBits = 0;
7174
7175  // Keep track of whether all elements have type int.
7176  bool AllElementsInt = true;
7177
7178  for (unsigned i = 0; i != NumElements; ++i) {
7179    EnumConstantDecl *ECD =
7180      cast_or_null<EnumConstantDecl>(Elements[i]);
7181    if (!ECD) continue;  // Already issued a diagnostic.
7182
7183    const llvm::APSInt &InitVal = ECD->getInitVal();
7184
7185    // Keep track of the size of positive and negative values.
7186    if (InitVal.isUnsigned() || InitVal.isNonNegative())
7187      NumPositiveBits = std::max(NumPositiveBits,
7188                                 (unsigned)InitVal.getActiveBits());
7189    else
7190      NumNegativeBits = std::max(NumNegativeBits,
7191                                 (unsigned)InitVal.getMinSignedBits());
7192
7193    // Keep track of whether every enum element has type int (very commmon).
7194    if (AllElementsInt)
7195      AllElementsInt = ECD->getType() == Context.IntTy;
7196  }
7197
7198  // Figure out the type that should be used for this enum.
7199  // FIXME: Support -fshort-enums.
7200  QualType BestType;
7201  unsigned BestWidth;
7202
7203  // C++0x N3000 [conv.prom]p3:
7204  //   An rvalue of an unscoped enumeration type whose underlying
7205  //   type is not fixed can be converted to an rvalue of the first
7206  //   of the following types that can represent all the values of
7207  //   the enumeration: int, unsigned int, long int, unsigned long
7208  //   int, long long int, or unsigned long long int.
7209  // C99 6.4.4.3p2:
7210  //   An identifier declared as an enumeration constant has type int.
7211  // The C99 rule is modified by a gcc extension
7212  QualType BestPromotionType;
7213
7214  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
7215  // -fshort-enums is the equivalent to specifying the packed attribute on all
7216  // enum definitions.
7217  if (LangOpts.ShortEnums)
7218    Packed = true;
7219
7220  if (Enum->isFixed()) {
7221    BestType = BestPromotionType = Enum->getIntegerType();
7222    // We don't need to set BestWidth, because BestType is going to be the type
7223    // of the enumerators, but we do anyway because otherwise some compilers
7224    // warn that it might be used uninitialized.
7225    BestWidth = CharWidth;
7226  }
7227  else if (NumNegativeBits) {
7228    // If there is a negative value, figure out the smallest integer type (of
7229    // int/long/longlong) that fits.
7230    // If it's packed, check also if it fits a char or a short.
7231    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
7232      BestType = Context.SignedCharTy;
7233      BestWidth = CharWidth;
7234    } else if (Packed && NumNegativeBits <= ShortWidth &&
7235               NumPositiveBits < ShortWidth) {
7236      BestType = Context.ShortTy;
7237      BestWidth = ShortWidth;
7238    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
7239      BestType = Context.IntTy;
7240      BestWidth = IntWidth;
7241    } else {
7242      BestWidth = Context.Target.getLongWidth();
7243
7244      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
7245        BestType = Context.LongTy;
7246      } else {
7247        BestWidth = Context.Target.getLongLongWidth();
7248
7249        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
7250          Diag(Enum->getLocation(), diag::warn_enum_too_large);
7251        BestType = Context.LongLongTy;
7252      }
7253    }
7254    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
7255  } else {
7256    // If there is no negative value, figure out the smallest type that fits
7257    // all of the enumerator values.
7258    // If it's packed, check also if it fits a char or a short.
7259    if (Packed && NumPositiveBits <= CharWidth) {
7260      BestType = Context.UnsignedCharTy;
7261      BestPromotionType = Context.IntTy;
7262      BestWidth = CharWidth;
7263    } else if (Packed && NumPositiveBits <= ShortWidth) {
7264      BestType = Context.UnsignedShortTy;
7265      BestPromotionType = Context.IntTy;
7266      BestWidth = ShortWidth;
7267    } else if (NumPositiveBits <= IntWidth) {
7268      BestType = Context.UnsignedIntTy;
7269      BestWidth = IntWidth;
7270      BestPromotionType
7271        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7272                           ? Context.UnsignedIntTy : Context.IntTy;
7273    } else if (NumPositiveBits <=
7274               (BestWidth = Context.Target.getLongWidth())) {
7275      BestType = Context.UnsignedLongTy;
7276      BestPromotionType
7277        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7278                           ? Context.UnsignedLongTy : Context.LongTy;
7279    } else {
7280      BestWidth = Context.Target.getLongLongWidth();
7281      assert(NumPositiveBits <= BestWidth &&
7282             "How could an initializer get larger than ULL?");
7283      BestType = Context.UnsignedLongLongTy;
7284      BestPromotionType
7285        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7286                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
7287    }
7288  }
7289
7290  // Loop over all of the enumerator constants, changing their types to match
7291  // the type of the enum if needed.
7292  for (unsigned i = 0; i != NumElements; ++i) {
7293    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
7294    if (!ECD) continue;  // Already issued a diagnostic.
7295
7296    // Standard C says the enumerators have int type, but we allow, as an
7297    // extension, the enumerators to be larger than int size.  If each
7298    // enumerator value fits in an int, type it as an int, otherwise type it the
7299    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
7300    // that X has type 'int', not 'unsigned'.
7301
7302    // Determine whether the value fits into an int.
7303    llvm::APSInt InitVal = ECD->getInitVal();
7304
7305    // If it fits into an integer type, force it.  Otherwise force it to match
7306    // the enum decl type.
7307    QualType NewTy;
7308    unsigned NewWidth;
7309    bool NewSign;
7310    if (!getLangOptions().CPlusPlus &&
7311        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
7312      NewTy = Context.IntTy;
7313      NewWidth = IntWidth;
7314      NewSign = true;
7315    } else if (ECD->getType() == BestType) {
7316      // Already the right type!
7317      if (getLangOptions().CPlusPlus)
7318        // C++ [dcl.enum]p4: Following the closing brace of an
7319        // enum-specifier, each enumerator has the type of its
7320        // enumeration.
7321        ECD->setType(EnumType);
7322      continue;
7323    } else {
7324      NewTy = BestType;
7325      NewWidth = BestWidth;
7326      NewSign = BestType->isSignedIntegerType();
7327    }
7328
7329    // Adjust the APSInt value.
7330    InitVal.extOrTrunc(NewWidth);
7331    InitVal.setIsSigned(NewSign);
7332    ECD->setInitVal(InitVal);
7333
7334    // Adjust the Expr initializer and type.
7335    if (ECD->getInitExpr())
7336      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
7337                                                CK_IntegralCast,
7338                                                ECD->getInitExpr(),
7339                                                /*base paths*/ 0,
7340                                                VK_RValue));
7341    if (getLangOptions().CPlusPlus)
7342      // C++ [dcl.enum]p4: Following the closing brace of an
7343      // enum-specifier, each enumerator has the type of its
7344      // enumeration.
7345      ECD->setType(EnumType);
7346    else
7347      ECD->setType(NewTy);
7348  }
7349
7350  Enum->completeDefinition(BestType, BestPromotionType,
7351                           NumPositiveBits, NumNegativeBits);
7352}
7353
7354Decl *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc, Expr *expr) {
7355  StringLiteral *AsmString = cast<StringLiteral>(expr);
7356
7357  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
7358                                                   Loc, AsmString);
7359  CurContext->addDecl(New);
7360  return New;
7361}
7362
7363void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
7364                             SourceLocation PragmaLoc,
7365                             SourceLocation NameLoc) {
7366  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
7367
7368  if (PrevDecl) {
7369    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
7370  } else {
7371    (void)WeakUndeclaredIdentifiers.insert(
7372      std::pair<IdentifierInfo*,WeakInfo>
7373        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
7374  }
7375}
7376
7377void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
7378                                IdentifierInfo* AliasName,
7379                                SourceLocation PragmaLoc,
7380                                SourceLocation NameLoc,
7381                                SourceLocation AliasNameLoc) {
7382  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
7383                                    LookupOrdinaryName);
7384  WeakInfo W = WeakInfo(Name, NameLoc);
7385
7386  if (PrevDecl) {
7387    if (!PrevDecl->hasAttr<AliasAttr>())
7388      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
7389        DeclApplyPragmaWeak(TUScope, ND, W);
7390  } else {
7391    (void)WeakUndeclaredIdentifiers.insert(
7392      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
7393  }
7394}
7395