SemaDecl.cpp revision 3f9a8a60614b763785d54ad08821745d03a4af70
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/Analysis/CFG.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/AST/StmtObjC.h"
25#include "clang/Parse/DeclSpec.h"
26#include "clang/Basic/TargetInfo.h"
27#include "clang/Basic/SourceManager.h"
28// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
29#include "clang/Lex/Preprocessor.h"
30#include "clang/Lex/HeaderSearch.h"
31#include "llvm/ADT/BitVector.h"
32#include "llvm/ADT/STLExtras.h"
33#include <algorithm>
34#include <functional>
35#include <queue>
36using namespace clang;
37
38/// getDeclName - Return a pretty name for the specified decl if possible, or
39/// an empty string if not.  This is used for pretty crash reporting.
40std::string Sema::getDeclName(DeclPtrTy d) {
41  Decl *D = d.getAs<Decl>();
42  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
43    return DN->getQualifiedNameAsString();
44  return "";
45}
46
47Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
48  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
49}
50
51/// \brief If the identifier refers to a type name within this scope,
52/// return the declaration of that type.
53///
54/// This routine performs ordinary name lookup of the identifier II
55/// within the given scope, with optional C++ scope specifier SS, to
56/// determine whether the name refers to a type. If so, returns an
57/// opaque pointer (actually a QualType) corresponding to that
58/// type. Otherwise, returns NULL.
59///
60/// If name lookup results in an ambiguity, this routine will complain
61/// and then return NULL.
62Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
63                                Scope *S, const CXXScopeSpec *SS) {
64  // C++ [temp.res]p3:
65  //   A qualified-id that refers to a type and in which the
66  //   nested-name-specifier depends on a template-parameter (14.6.2)
67  //   shall be prefixed by the keyword typename to indicate that the
68  //   qualified-id denotes a type, forming an
69  //   elaborated-type-specifier (7.1.5.3).
70  //
71  // We therefore do not perform any name lookup if the result would
72  // refer to a member of an unknown specialization.
73  if (SS && isUnknownSpecialization(*SS))
74    return 0;
75
76  LookupResult Result
77    = LookupParsedName(S, SS, &II, LookupOrdinaryName, false, false);
78
79  NamedDecl *IIDecl = 0;
80  switch (Result.getKind()) {
81  case LookupResult::NotFound:
82  case LookupResult::FoundOverloaded:
83    return 0;
84
85  case LookupResult::AmbiguousBaseSubobjectTypes:
86  case LookupResult::AmbiguousBaseSubobjects:
87  case LookupResult::AmbiguousReference: {
88    // Look to see if we have a type anywhere in the list of results.
89    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
90         Res != ResEnd; ++Res) {
91      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
92        if (!IIDecl ||
93            (*Res)->getLocation().getRawEncoding() <
94              IIDecl->getLocation().getRawEncoding())
95          IIDecl = *Res;
96      }
97    }
98
99    if (!IIDecl) {
100      // None of the entities we found is a type, so there is no way
101      // to even assume that the result is a type. In this case, don't
102      // complain about the ambiguity. The parser will either try to
103      // perform this lookup again (e.g., as an object name), which
104      // will produce the ambiguity, or will complain that it expected
105      // a type name.
106      Result.Destroy();
107      return 0;
108    }
109
110    // We found a type within the ambiguous lookup; diagnose the
111    // ambiguity and then return that type. This might be the right
112    // answer, or it might not be, but it suppresses any attempt to
113    // perform the name lookup again.
114    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
115    break;
116  }
117
118  case LookupResult::Found:
119    IIDecl = Result.getAsDecl();
120    break;
121  }
122
123  if (IIDecl) {
124    QualType T;
125
126    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
127      // Check whether we can use this type
128      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
129
130      if (getLangOptions().CPlusPlus) {
131        // C++ [temp.local]p2:
132        //   Within the scope of a class template specialization or
133        //   partial specialization, when the injected-class-name is
134        //   not followed by a <, it is equivalent to the
135        //   injected-class-name followed by the template-argument s
136        //   of the class template specialization or partial
137        //   specialization enclosed in <>.
138        if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
139          if (RD->isInjectedClassName())
140            if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
141              T = Template->getInjectedClassNameType(Context);
142      }
143
144      if (T.isNull())
145        T = Context.getTypeDeclType(TD);
146    } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
147      // Check whether we can use this interface.
148      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
149
150      T = Context.getObjCInterfaceType(IDecl);
151    } else
152      return 0;
153
154    if (SS)
155      T = getQualifiedNameType(*SS, T);
156
157    return T.getAsOpaquePtr();
158  }
159
160  return 0;
161}
162
163/// isTagName() - This method is called *for error recovery purposes only*
164/// to determine if the specified name is a valid tag name ("struct foo").  If
165/// so, this returns the TST for the tag corresponding to it (TST_enum,
166/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
167/// where the user forgot to specify the tag.
168DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
169  // Do a tag name lookup in this scope.
170  LookupResult R = LookupName(S, &II, LookupTagName, false, false);
171  if (R.getKind() == LookupResult::Found)
172    if (const TagDecl *TD = dyn_cast<TagDecl>(R.getAsDecl())) {
173      switch (TD->getTagKind()) {
174      case TagDecl::TK_struct: return DeclSpec::TST_struct;
175      case TagDecl::TK_union:  return DeclSpec::TST_union;
176      case TagDecl::TK_class:  return DeclSpec::TST_class;
177      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
178      }
179    }
180
181  return DeclSpec::TST_unspecified;
182}
183
184
185
186DeclContext *Sema::getContainingDC(DeclContext *DC) {
187  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
188    // A C++ out-of-line method will return to the file declaration context.
189    if (MD->isOutOfLine())
190      return MD->getLexicalDeclContext();
191
192    // A C++ inline method is parsed *after* the topmost class it was declared
193    // in is fully parsed (it's "complete").
194    // The parsing of a C++ inline method happens at the declaration context of
195    // the topmost (non-nested) class it is lexically declared in.
196    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
197    DC = MD->getParent();
198    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
199      DC = RD;
200
201    // Return the declaration context of the topmost class the inline method is
202    // declared in.
203    return DC;
204  }
205
206  if (isa<ObjCMethodDecl>(DC))
207    return Context.getTranslationUnitDecl();
208
209  return DC->getLexicalParent();
210}
211
212void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
213  assert(getContainingDC(DC) == CurContext &&
214      "The next DeclContext should be lexically contained in the current one.");
215  CurContext = DC;
216  S->setEntity(DC);
217}
218
219void Sema::PopDeclContext() {
220  assert(CurContext && "DeclContext imbalance!");
221
222  CurContext = getContainingDC(CurContext);
223}
224
225/// EnterDeclaratorContext - Used when we must lookup names in the context
226/// of a declarator's nested name specifier.
227void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
228  assert(PreDeclaratorDC == 0 && "Previous declarator context not popped?");
229  PreDeclaratorDC = static_cast<DeclContext*>(S->getEntity());
230  CurContext = DC;
231  assert(CurContext && "No context?");
232  S->setEntity(CurContext);
233}
234
235void Sema::ExitDeclaratorContext(Scope *S) {
236  S->setEntity(PreDeclaratorDC);
237  PreDeclaratorDC = 0;
238
239  // Reset CurContext to the nearest enclosing context.
240  while (!S->getEntity() && S->getParent())
241    S = S->getParent();
242  CurContext = static_cast<DeclContext*>(S->getEntity());
243  assert(CurContext && "No context?");
244}
245
246/// \brief Determine whether we allow overloading of the function
247/// PrevDecl with another declaration.
248///
249/// This routine determines whether overloading is possible, not
250/// whether some new function is actually an overload. It will return
251/// true in C++ (where we can always provide overloads) or, as an
252/// extension, in C when the previous function is already an
253/// overloaded function declaration or has the "overloadable"
254/// attribute.
255static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
256  if (Context.getLangOptions().CPlusPlus)
257    return true;
258
259  if (isa<OverloadedFunctionDecl>(PrevDecl))
260    return true;
261
262  return PrevDecl->getAttr<OverloadableAttr>() != 0;
263}
264
265/// Add this decl to the scope shadowed decl chains.
266void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
267  // Move up the scope chain until we find the nearest enclosing
268  // non-transparent context. The declaration will be introduced into this
269  // scope.
270  while (S->getEntity() &&
271         ((DeclContext *)S->getEntity())->isTransparentContext())
272    S = S->getParent();
273
274  S->AddDecl(DeclPtrTy::make(D));
275
276  // Add scoped declarations into their context, so that they can be
277  // found later. Declarations without a context won't be inserted
278  // into any context.
279  CurContext->addDecl(D);
280
281  // C++ [basic.scope]p4:
282  //   -- exactly one declaration shall declare a class name or
283  //   enumeration name that is not a typedef name and the other
284  //   declarations shall all refer to the same object or
285  //   enumerator, or all refer to functions and function templates;
286  //   in this case the class name or enumeration name is hidden.
287  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
288    // We are pushing the name of a tag (enum or class).
289    if (CurContext->getLookupContext()
290          == TD->getDeclContext()->getLookupContext()) {
291      // We're pushing the tag into the current context, which might
292      // require some reshuffling in the identifier resolver.
293      IdentifierResolver::iterator
294        I = IdResolver.begin(TD->getDeclName()),
295        IEnd = IdResolver.end();
296      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
297        NamedDecl *PrevDecl = *I;
298        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
299             PrevDecl = *I, ++I) {
300          if (TD->declarationReplaces(*I)) {
301            // This is a redeclaration. Remove it from the chain and
302            // break out, so that we'll add in the shadowed
303            // declaration.
304            S->RemoveDecl(DeclPtrTy::make(*I));
305            if (PrevDecl == *I) {
306              IdResolver.RemoveDecl(*I);
307              IdResolver.AddDecl(TD);
308              return;
309            } else {
310              IdResolver.RemoveDecl(*I);
311              break;
312            }
313          }
314        }
315
316        // There is already a declaration with the same name in the same
317        // scope, which is not a tag declaration. It must be found
318        // before we find the new declaration, so insert the new
319        // declaration at the end of the chain.
320        IdResolver.AddShadowedDecl(TD, PrevDecl);
321
322        return;
323      }
324    }
325  } else if ((isa<FunctionDecl>(D) &&
326              AllowOverloadingOfFunction(D, Context)) ||
327             isa<FunctionTemplateDecl>(D)) {
328    // We are pushing the name of a function or function template,
329    // which might be an overloaded name.
330    IdentifierResolver::iterator Redecl
331      = std::find_if(IdResolver.begin(D->getDeclName()),
332                     IdResolver.end(),
333                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
334                                  D));
335    if (Redecl != IdResolver.end() &&
336        S->isDeclScope(DeclPtrTy::make(*Redecl))) {
337      // There is already a declaration of a function on our
338      // IdResolver chain. Replace it with this declaration.
339      S->RemoveDecl(DeclPtrTy::make(*Redecl));
340      IdResolver.RemoveDecl(*Redecl);
341    }
342  } else if (isa<ObjCInterfaceDecl>(D)) {
343    // We're pushing an Objective-C interface into the current
344    // context. If there is already an alias declaration, remove it first.
345    for (IdentifierResolver::iterator
346           I = IdResolver.begin(D->getDeclName()), IEnd = IdResolver.end();
347         I != IEnd; ++I) {
348      if (isa<ObjCCompatibleAliasDecl>(*I)) {
349        S->RemoveDecl(DeclPtrTy::make(*I));
350        IdResolver.RemoveDecl(*I);
351        break;
352      }
353    }
354  }
355
356  IdResolver.AddDecl(D);
357}
358
359void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
360  if (S->decl_empty()) return;
361  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
362	 "Scope shouldn't contain decls!");
363
364  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
365       I != E; ++I) {
366    Decl *TmpD = (*I).getAs<Decl>();
367    assert(TmpD && "This decl didn't get pushed??");
368
369    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
370    NamedDecl *D = cast<NamedDecl>(TmpD);
371
372    if (!D->getDeclName()) continue;
373
374    // Remove this name from our lexical scope.
375    IdResolver.RemoveDecl(D);
376  }
377}
378
379/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
380/// return 0 if one not found.
381ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
382  // The third "scope" argument is 0 since we aren't enabling lazy built-in
383  // creation from this context.
384  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
385
386  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
387}
388
389/// getNonFieldDeclScope - Retrieves the innermost scope, starting
390/// from S, where a non-field would be declared. This routine copes
391/// with the difference between C and C++ scoping rules in structs and
392/// unions. For example, the following code is well-formed in C but
393/// ill-formed in C++:
394/// @code
395/// struct S6 {
396///   enum { BAR } e;
397/// };
398///
399/// void test_S6() {
400///   struct S6 a;
401///   a.e = BAR;
402/// }
403/// @endcode
404/// For the declaration of BAR, this routine will return a different
405/// scope. The scope S will be the scope of the unnamed enumeration
406/// within S6. In C++, this routine will return the scope associated
407/// with S6, because the enumeration's scope is a transparent
408/// context but structures can contain non-field names. In C, this
409/// routine will return the translation unit scope, since the
410/// enumeration's scope is a transparent context and structures cannot
411/// contain non-field names.
412Scope *Sema::getNonFieldDeclScope(Scope *S) {
413  while (((S->getFlags() & Scope::DeclScope) == 0) ||
414         (S->getEntity() &&
415          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
416         (S->isClassScope() && !getLangOptions().CPlusPlus))
417    S = S->getParent();
418  return S;
419}
420
421void Sema::InitBuiltinVaListType() {
422  if (!Context.getBuiltinVaListType().isNull())
423    return;
424
425  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
426  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
427  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
428  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
429}
430
431/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
432/// file scope.  lazily create a decl for it. ForRedeclaration is true
433/// if we're creating this built-in in anticipation of redeclaring the
434/// built-in.
435NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
436                                     Scope *S, bool ForRedeclaration,
437                                     SourceLocation Loc) {
438  Builtin::ID BID = (Builtin::ID)bid;
439
440  if (Context.BuiltinInfo.hasVAListUse(BID))
441    InitBuiltinVaListType();
442
443  ASTContext::GetBuiltinTypeError Error;
444  QualType R = Context.GetBuiltinType(BID, Error);
445  switch (Error) {
446  case ASTContext::GE_None:
447    // Okay
448    break;
449
450  case ASTContext::GE_Missing_stdio:
451    if (ForRedeclaration)
452      Diag(Loc, diag::err_implicit_decl_requires_stdio)
453        << Context.BuiltinInfo.GetName(BID);
454    return 0;
455
456  case ASTContext::GE_Missing_setjmp:
457    if (ForRedeclaration)
458      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
459        << Context.BuiltinInfo.GetName(BID);
460    return 0;
461  }
462
463  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
464    Diag(Loc, diag::ext_implicit_lib_function_decl)
465      << Context.BuiltinInfo.GetName(BID)
466      << R;
467    if (Context.BuiltinInfo.getHeaderName(BID) &&
468        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
469          != Diagnostic::Ignored)
470      Diag(Loc, diag::note_please_include_header)
471        << Context.BuiltinInfo.getHeaderName(BID)
472        << Context.BuiltinInfo.GetName(BID);
473  }
474
475  FunctionDecl *New = FunctionDecl::Create(Context,
476                                           Context.getTranslationUnitDecl(),
477                                           Loc, II, R,
478                                           FunctionDecl::Extern, false,
479                                           /*hasPrototype=*/true);
480  New->setImplicit();
481
482  // Create Decl objects for each parameter, adding them to the
483  // FunctionDecl.
484  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
485    llvm::SmallVector<ParmVarDecl*, 16> Params;
486    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
487      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
488                                           FT->getArgType(i), VarDecl::None, 0));
489    New->setParams(Context, Params.data(), Params.size());
490  }
491
492  AddKnownFunctionAttributes(New);
493
494  // TUScope is the translation-unit scope to insert this function into.
495  // FIXME: This is hideous. We need to teach PushOnScopeChains to
496  // relate Scopes to DeclContexts, and probably eliminate CurContext
497  // entirely, but we're not there yet.
498  DeclContext *SavedContext = CurContext;
499  CurContext = Context.getTranslationUnitDecl();
500  PushOnScopeChains(New, TUScope);
501  CurContext = SavedContext;
502  return New;
503}
504
505/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
506/// everything from the standard library is defined.
507NamespaceDecl *Sema::GetStdNamespace() {
508  if (!StdNamespace) {
509    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
510    DeclContext *Global = Context.getTranslationUnitDecl();
511    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
512    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
513  }
514  return StdNamespace;
515}
516
517/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
518/// same name and scope as a previous declaration 'Old'.  Figure out
519/// how to resolve this situation, merging decls or emitting
520/// diagnostics as appropriate. If there was an error, set New to be invalid.
521///
522void Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
523  // If either decl is known invalid already, set the new one to be invalid and
524  // don't bother doing any merging checks.
525  if (New->isInvalidDecl() || OldD->isInvalidDecl())
526    return New->setInvalidDecl();
527
528  // Allow multiple definitions for ObjC built-in typedefs.
529  // FIXME: Verify the underlying types are equivalent!
530  if (getLangOptions().ObjC1) {
531    const IdentifierInfo *TypeID = New->getIdentifier();
532    switch (TypeID->getLength()) {
533    default: break;
534    case 2:
535      if (!TypeID->isStr("id"))
536        break;
537      // Install the built-in type for 'id', ignoring the current definition.
538      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
539      return;
540    case 5:
541      if (!TypeID->isStr("Class"))
542        break;
543      // Install the built-in type for 'Class', ignoring the current definition.
544      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
545      return;
546    case 3:
547      if (!TypeID->isStr("SEL"))
548        break;
549      Context.setObjCSelType(Context.getTypeDeclType(New));
550      return;
551    case 8:
552      if (!TypeID->isStr("Protocol"))
553        break;
554      Context.setObjCProtoType(New->getUnderlyingType());
555      return;
556    }
557    // Fall through - the typedef name was not a builtin type.
558  }
559  // Verify the old decl was also a type.
560  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
561  if (!Old) {
562    Diag(New->getLocation(), diag::err_redefinition_different_kind)
563      << New->getDeclName();
564    if (OldD->getLocation().isValid())
565      Diag(OldD->getLocation(), diag::note_previous_definition);
566    return New->setInvalidDecl();
567  }
568
569  // Determine the "old" type we'll use for checking and diagnostics.
570  QualType OldType;
571  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
572    OldType = OldTypedef->getUnderlyingType();
573  else
574    OldType = Context.getTypeDeclType(Old);
575
576  // If the typedef types are not identical, reject them in all languages and
577  // with any extensions enabled.
578
579  if (OldType != New->getUnderlyingType() &&
580      Context.getCanonicalType(OldType) !=
581      Context.getCanonicalType(New->getUnderlyingType())) {
582    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
583      << New->getUnderlyingType() << OldType;
584    if (Old->getLocation().isValid())
585      Diag(Old->getLocation(), diag::note_previous_definition);
586    return New->setInvalidDecl();
587  }
588
589  if (getLangOptions().Microsoft)
590    return;
591
592  // C++ [dcl.typedef]p2:
593  //   In a given non-class scope, a typedef specifier can be used to
594  //   redefine the name of any type declared in that scope to refer
595  //   to the type to which it already refers.
596  if (getLangOptions().CPlusPlus) {
597    if (!isa<CXXRecordDecl>(CurContext))
598      return;
599    Diag(New->getLocation(), diag::err_redefinition)
600      << New->getDeclName();
601    Diag(Old->getLocation(), diag::note_previous_definition);
602    return New->setInvalidDecl();
603  }
604
605  // If we have a redefinition of a typedef in C, emit a warning.  This warning
606  // is normally mapped to an error, but can be controlled with
607  // -Wtypedef-redefinition.  If either the original or the redefinition is
608  // in a system header, don't emit this for compatibility with GCC.
609  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
610      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
611       Context.getSourceManager().isInSystemHeader(New->getLocation())))
612    return;
613
614  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
615    << New->getDeclName();
616  Diag(Old->getLocation(), diag::note_previous_definition);
617  return;
618}
619
620/// DeclhasAttr - returns true if decl Declaration already has the target
621/// attribute.
622static bool
623DeclHasAttr(const Decl *decl, const Attr *target) {
624  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
625    if (attr->getKind() == target->getKind())
626      return true;
627
628  return false;
629}
630
631/// MergeAttributes - append attributes from the Old decl to the New one.
632static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
633  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
634    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
635      Attr *NewAttr = attr->clone(C);
636      NewAttr->setInherited(true);
637      New->addAttr(NewAttr);
638    }
639  }
640}
641
642/// Used in MergeFunctionDecl to keep track of function parameters in
643/// C.
644struct GNUCompatibleParamWarning {
645  ParmVarDecl *OldParm;
646  ParmVarDecl *NewParm;
647  QualType PromotedType;
648};
649
650/// MergeFunctionDecl - We just parsed a function 'New' from
651/// declarator D which has the same name and scope as a previous
652/// declaration 'Old'.  Figure out how to resolve this situation,
653/// merging decls or emitting diagnostics as appropriate.
654///
655/// In C++, New and Old must be declarations that are not
656/// overloaded. Use IsOverload to determine whether New and Old are
657/// overloaded, and to select the Old declaration that New should be
658/// merged with.
659///
660/// Returns true if there was an error, false otherwise.
661bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
662  assert(!isa<OverloadedFunctionDecl>(OldD) &&
663         "Cannot merge with an overloaded function declaration");
664
665  // Verify the old decl was also a function.
666  FunctionDecl *Old = 0;
667  if (FunctionTemplateDecl *OldFunctionTemplate
668        = dyn_cast<FunctionTemplateDecl>(OldD))
669    Old = OldFunctionTemplate->getTemplatedDecl();
670  else
671    Old = dyn_cast<FunctionDecl>(OldD);
672  if (!Old) {
673    Diag(New->getLocation(), diag::err_redefinition_different_kind)
674      << New->getDeclName();
675    Diag(OldD->getLocation(), diag::note_previous_definition);
676    return true;
677  }
678
679  // Determine whether the previous declaration was a definition,
680  // implicit declaration, or a declaration.
681  diag::kind PrevDiag;
682  if (Old->isThisDeclarationADefinition())
683    PrevDiag = diag::note_previous_definition;
684  else if (Old->isImplicit())
685    PrevDiag = diag::note_previous_implicit_declaration;
686  else
687    PrevDiag = diag::note_previous_declaration;
688
689  QualType OldQType = Context.getCanonicalType(Old->getType());
690  QualType NewQType = Context.getCanonicalType(New->getType());
691
692  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
693      New->getStorageClass() == FunctionDecl::Static &&
694      Old->getStorageClass() != FunctionDecl::Static) {
695    Diag(New->getLocation(), diag::err_static_non_static)
696      << New;
697    Diag(Old->getLocation(), PrevDiag);
698    return true;
699  }
700
701  if (getLangOptions().CPlusPlus) {
702    // (C++98 13.1p2):
703    //   Certain function declarations cannot be overloaded:
704    //     -- Function declarations that differ only in the return type
705    //        cannot be overloaded.
706    QualType OldReturnType
707      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
708    QualType NewReturnType
709      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
710    if (OldReturnType != NewReturnType) {
711      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
712      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
713      return true;
714    }
715
716    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
717    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
718    if (OldMethod && NewMethod &&
719        NewMethod->getLexicalDeclContext()->isRecord()) {
720      //    -- Member function declarations with the same name and the
721      //       same parameter types cannot be overloaded if any of them
722      //       is a static member function declaration.
723      if (OldMethod->isStatic() || NewMethod->isStatic()) {
724        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
725        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
726        return true;
727      }
728
729      // C++ [class.mem]p1:
730      //   [...] A member shall not be declared twice in the
731      //   member-specification, except that a nested class or member
732      //   class template can be declared and then later defined.
733      unsigned NewDiag;
734      if (isa<CXXConstructorDecl>(OldMethod))
735        NewDiag = diag::err_constructor_redeclared;
736      else if (isa<CXXDestructorDecl>(NewMethod))
737        NewDiag = diag::err_destructor_redeclared;
738      else if (isa<CXXConversionDecl>(NewMethod))
739        NewDiag = diag::err_conv_function_redeclared;
740      else
741        NewDiag = diag::err_member_redeclared;
742
743      Diag(New->getLocation(), NewDiag);
744      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
745    }
746
747    // (C++98 8.3.5p3):
748    //   All declarations for a function shall agree exactly in both the
749    //   return type and the parameter-type-list.
750    if (OldQType == NewQType)
751      return MergeCompatibleFunctionDecls(New, Old);
752
753    // Fall through for conflicting redeclarations and redefinitions.
754  }
755
756  // C: Function types need to be compatible, not identical. This handles
757  // duplicate function decls like "void f(int); void f(enum X);" properly.
758  if (!getLangOptions().CPlusPlus &&
759      Context.typesAreCompatible(OldQType, NewQType)) {
760    const FunctionType *OldFuncType = OldQType->getAsFunctionType();
761    const FunctionType *NewFuncType = NewQType->getAsFunctionType();
762    const FunctionProtoType *OldProto = 0;
763    if (isa<FunctionNoProtoType>(NewFuncType) &&
764        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
765      // The old declaration provided a function prototype, but the
766      // new declaration does not. Merge in the prototype.
767      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
768      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
769                                                 OldProto->arg_type_end());
770      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
771                                         ParamTypes.data(), ParamTypes.size(),
772                                         OldProto->isVariadic(),
773                                         OldProto->getTypeQuals());
774      New->setType(NewQType);
775      New->setHasInheritedPrototype();
776
777      // Synthesize a parameter for each argument type.
778      llvm::SmallVector<ParmVarDecl*, 16> Params;
779      for (FunctionProtoType::arg_type_iterator
780             ParamType = OldProto->arg_type_begin(),
781             ParamEnd = OldProto->arg_type_end();
782           ParamType != ParamEnd; ++ParamType) {
783        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
784                                                 SourceLocation(), 0,
785                                                 *ParamType, VarDecl::None,
786                                                 0);
787        Param->setImplicit();
788        Params.push_back(Param);
789      }
790
791      New->setParams(Context, Params.data(), Params.size());
792    }
793
794    return MergeCompatibleFunctionDecls(New, Old);
795  }
796
797  // GNU C permits a K&R definition to follow a prototype declaration
798  // if the declared types of the parameters in the K&R definition
799  // match the types in the prototype declaration, even when the
800  // promoted types of the parameters from the K&R definition differ
801  // from the types in the prototype. GCC then keeps the types from
802  // the prototype.
803  //
804  // If a variadic prototype is followed by a non-variadic K&R definition,
805  // the K&R definition becomes variadic.  This is sort of an edge case, but
806  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
807  // C99 6.9.1p8.
808  if (!getLangOptions().CPlusPlus &&
809      Old->hasPrototype() && !New->hasPrototype() &&
810      New->getType()->getAsFunctionProtoType() &&
811      Old->getNumParams() == New->getNumParams()) {
812    llvm::SmallVector<QualType, 16> ArgTypes;
813    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
814    const FunctionProtoType *OldProto
815      = Old->getType()->getAsFunctionProtoType();
816    const FunctionProtoType *NewProto
817      = New->getType()->getAsFunctionProtoType();
818
819    // Determine whether this is the GNU C extension.
820    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
821                                               NewProto->getResultType());
822    bool LooseCompatible = !MergedReturn.isNull();
823    for (unsigned Idx = 0, End = Old->getNumParams();
824         LooseCompatible && Idx != End; ++Idx) {
825      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
826      ParmVarDecl *NewParm = New->getParamDecl(Idx);
827      if (Context.typesAreCompatible(OldParm->getType(),
828                                     NewProto->getArgType(Idx))) {
829        ArgTypes.push_back(NewParm->getType());
830      } else if (Context.typesAreCompatible(OldParm->getType(),
831                                            NewParm->getType())) {
832        GNUCompatibleParamWarning Warn
833          = { OldParm, NewParm, NewProto->getArgType(Idx) };
834        Warnings.push_back(Warn);
835        ArgTypes.push_back(NewParm->getType());
836      } else
837        LooseCompatible = false;
838    }
839
840    if (LooseCompatible) {
841      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
842        Diag(Warnings[Warn].NewParm->getLocation(),
843             diag::ext_param_promoted_not_compatible_with_prototype)
844          << Warnings[Warn].PromotedType
845          << Warnings[Warn].OldParm->getType();
846        Diag(Warnings[Warn].OldParm->getLocation(),
847             diag::note_previous_declaration);
848      }
849
850      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
851                                           ArgTypes.size(),
852                                           OldProto->isVariadic(), 0));
853      return MergeCompatibleFunctionDecls(New, Old);
854    }
855
856    // Fall through to diagnose conflicting types.
857  }
858
859  // A function that has already been declared has been redeclared or defined
860  // with a different type- show appropriate diagnostic
861  if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
862    // The user has declared a builtin function with an incompatible
863    // signature.
864    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
865      // The function the user is redeclaring is a library-defined
866      // function like 'malloc' or 'printf'. Warn about the
867      // redeclaration, then pretend that we don't know about this
868      // library built-in.
869      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
870      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
871        << Old << Old->getType();
872      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
873      Old->setInvalidDecl();
874      return false;
875    }
876
877    PrevDiag = diag::note_previous_builtin_declaration;
878  }
879
880  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
881  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
882  return true;
883}
884
885/// \brief Completes the merge of two function declarations that are
886/// known to be compatible.
887///
888/// This routine handles the merging of attributes and other
889/// properties of function declarations form the old declaration to
890/// the new declaration, once we know that New is in fact a
891/// redeclaration of Old.
892///
893/// \returns false
894bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
895  // Merge the attributes
896  MergeAttributes(New, Old, Context);
897
898  // Merge the storage class.
899  if (Old->getStorageClass() != FunctionDecl::Extern)
900    New->setStorageClass(Old->getStorageClass());
901
902  // Merge "inline"
903  if (Old->isInline())
904    New->setInline(true);
905
906  // If this function declaration by itself qualifies as a C99 inline
907  // definition (C99 6.7.4p6), but the previous definition did not,
908  // then the function is not a C99 inline definition.
909  if (New->isC99InlineDefinition() && !Old->isC99InlineDefinition())
910    New->setC99InlineDefinition(false);
911  else if (Old->isC99InlineDefinition() && !New->isC99InlineDefinition()) {
912    // Mark all preceding definitions as not being C99 inline definitions.
913    for (const FunctionDecl *Prev = Old; Prev;
914         Prev = Prev->getPreviousDeclaration())
915      const_cast<FunctionDecl *>(Prev)->setC99InlineDefinition(false);
916  }
917
918  // Merge "pure" flag.
919  if (Old->isPure())
920    New->setPure();
921
922  // Merge the "deleted" flag.
923  if (Old->isDeleted())
924    New->setDeleted();
925
926  if (getLangOptions().CPlusPlus)
927    return MergeCXXFunctionDecl(New, Old);
928
929  return false;
930}
931
932/// MergeVarDecl - We just parsed a variable 'New' which has the same name
933/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
934/// situation, merging decls or emitting diagnostics as appropriate.
935///
936/// Tentative definition rules (C99 6.9.2p2) are checked by
937/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
938/// definitions here, since the initializer hasn't been attached.
939///
940void Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
941  // If either decl is invalid, make sure the new one is marked invalid and
942  // don't do any other checking.
943  if (New->isInvalidDecl() || OldD->isInvalidDecl())
944    return New->setInvalidDecl();
945
946  // Verify the old decl was also a variable.
947  VarDecl *Old = dyn_cast<VarDecl>(OldD);
948  if (!Old) {
949    Diag(New->getLocation(), diag::err_redefinition_different_kind)
950      << New->getDeclName();
951    Diag(OldD->getLocation(), diag::note_previous_definition);
952    return New->setInvalidDecl();
953  }
954
955  MergeAttributes(New, Old, Context);
956
957  // Merge the types
958  QualType MergedT;
959  if (getLangOptions().CPlusPlus) {
960    if (Context.hasSameType(New->getType(), Old->getType()))
961      MergedT = New->getType();
962  } else {
963    MergedT = Context.mergeTypes(New->getType(), Old->getType());
964  }
965  if (MergedT.isNull()) {
966    Diag(New->getLocation(), diag::err_redefinition_different_type)
967      << New->getDeclName();
968    Diag(Old->getLocation(), diag::note_previous_definition);
969    return New->setInvalidDecl();
970  }
971  New->setType(MergedT);
972
973  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
974  if (New->getStorageClass() == VarDecl::Static &&
975      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
976    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
977    Diag(Old->getLocation(), diag::note_previous_definition);
978    return New->setInvalidDecl();
979  }
980  // C99 6.2.2p4:
981  //   For an identifier declared with the storage-class specifier
982  //   extern in a scope in which a prior declaration of that
983  //   identifier is visible,23) if the prior declaration specifies
984  //   internal or external linkage, the linkage of the identifier at
985  //   the later declaration is the same as the linkage specified at
986  //   the prior declaration. If no prior declaration is visible, or
987  //   if the prior declaration specifies no linkage, then the
988  //   identifier has external linkage.
989  if (New->hasExternalStorage() && Old->hasLinkage())
990    /* Okay */;
991  else if (New->getStorageClass() != VarDecl::Static &&
992           Old->getStorageClass() == VarDecl::Static) {
993    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
994    Diag(Old->getLocation(), diag::note_previous_definition);
995    return New->setInvalidDecl();
996  }
997
998  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
999
1000  // FIXME: The test for external storage here seems wrong? We still
1001  // need to check for mismatches.
1002  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1003      // Don't complain about out-of-line definitions of static members.
1004      !(Old->getLexicalDeclContext()->isRecord() &&
1005        !New->getLexicalDeclContext()->isRecord())) {
1006    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1007    Diag(Old->getLocation(), diag::note_previous_definition);
1008    return New->setInvalidDecl();
1009  }
1010
1011  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1012    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1013    Diag(Old->getLocation(), diag::note_previous_definition);
1014  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1015    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1016    Diag(Old->getLocation(), diag::note_previous_definition);
1017  }
1018
1019  // Keep a chain of previous declarations.
1020  New->setPreviousDeclaration(Old);
1021}
1022
1023/// CheckFallThrough - Check that we don't fall off the end of a
1024/// Statement that should return a value.
1025///
1026/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
1027/// MaybeFallThrough iff we might or might not fall off the end and
1028/// NeverFallThrough iff we never fall off the end of the statement.  We assume
1029/// that functions not marked noreturn will return.
1030Sema::ControlFlowKind Sema::CheckFallThrough(Stmt *Root) {
1031  llvm::OwningPtr<CFG> cfg (CFG::buildCFG(Root, &Context));
1032
1033  // FIXME: They should never return 0, fix that, delete this code.
1034  if (cfg == 0)
1035    return NeverFallThrough;
1036  // The CFG leaves in dead things, and we don't want to dead code paths to
1037  // confuse us, so we mark all live things first.
1038  std::queue<CFGBlock*> workq;
1039  llvm::BitVector live(cfg->getNumBlockIDs());
1040  // Prep work queue
1041  workq.push(&cfg->getEntry());
1042  // Solve
1043  while (!workq.empty()) {
1044    CFGBlock *item = workq.front();
1045    workq.pop();
1046    live.set(item->getBlockID());
1047    for (CFGBlock::succ_iterator I=item->succ_begin(),
1048           E=item->succ_end();
1049         I != E;
1050         ++I) {
1051      if ((*I) && !live[(*I)->getBlockID()]) {
1052        live.set((*I)->getBlockID());
1053        workq.push(*I);
1054      }
1055    }
1056  }
1057
1058  // Now we know what is live, we check the live precessors of the exit block
1059  // and look for fall through paths, being careful to ignore normal returns,
1060  // and exceptional paths.
1061  bool HasLiveReturn = false;
1062  bool HasFakeEdge = false;
1063  bool HasPlainEdge = false;
1064  for (CFGBlock::succ_iterator I=cfg->getExit().pred_begin(),
1065         E = cfg->getExit().pred_end();
1066       I != E;
1067       ++I) {
1068    CFGBlock& B = **I;
1069    if (!live[B.getBlockID()])
1070      continue;
1071    if (B.size() == 0) {
1072      // A labeled empty statement, or the entry block...
1073      HasPlainEdge = true;
1074      continue;
1075    }
1076    Stmt *S = B[B.size()-1];
1077    if (isa<ReturnStmt>(S)) {
1078      HasLiveReturn = true;
1079      continue;
1080    }
1081    if (isa<ObjCAtThrowStmt>(S)) {
1082      HasFakeEdge = true;
1083      continue;
1084    }
1085    if (isa<CXXThrowExpr>(S)) {
1086      HasFakeEdge = true;
1087      continue;
1088    }
1089    bool NoReturnEdge = false;
1090    if (CallExpr *C = dyn_cast<CallExpr>(S)) {
1091      Expr *CEE = C->getCallee()->IgnoreParenCasts();
1092      if (CEE->getType().getNoReturnAttr()) {
1093        NoReturnEdge = true;
1094        HasFakeEdge = true;
1095      } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) {
1096        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1097          if (FD->hasAttr<NoReturnAttr>()) {
1098            NoReturnEdge = true;
1099            HasFakeEdge = true;
1100          }
1101        }
1102      }
1103    }
1104    // FIXME: Add noreturn message sends.
1105    if (NoReturnEdge == false)
1106      HasPlainEdge = true;
1107  }
1108  if (!HasPlainEdge)
1109    return NeverFallThrough;
1110  if (HasFakeEdge || HasLiveReturn)
1111    return MaybeFallThrough;
1112  // This says AlwaysFallThrough for calls to functions that are not marked
1113  // noreturn, that don't return.  If people would like this warning to be more
1114  // accurate, such functions should be marked as noreturn.
1115  return AlwaysFallThrough;
1116}
1117
1118/// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
1119/// function that should return a value.  Check that we don't fall off the end
1120/// of a noreturn function.  We assume that functions and blocks not marked
1121/// noreturn will return.
1122void Sema::CheckFallThroughForFunctionDef(Decl *D, Stmt *Body) {
1123  // FIXME: Would be nice if we had a better way to control cascading errors,
1124  // but for now, avoid them.  The problem is that when Parse sees:
1125  //   int foo() { return a; }
1126  // The return is eaten and the Sema code sees just:
1127  //   int foo() { }
1128  // which this code would then warn about.
1129  if (getDiagnostics().hasErrorOccurred())
1130    return;
1131  bool ReturnsVoid = false;
1132  bool HasNoReturn = false;
1133  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1134    if (FD->getResultType()->isVoidType())
1135      ReturnsVoid = true;
1136    if (FD->hasAttr<NoReturnAttr>())
1137      HasNoReturn = true;
1138  } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
1139    if (MD->getResultType()->isVoidType())
1140      ReturnsVoid = true;
1141    if (MD->hasAttr<NoReturnAttr>())
1142      HasNoReturn = true;
1143  }
1144
1145  // Short circuit for compilation speed.
1146  if ((Diags.getDiagnosticLevel(diag::warn_maybe_falloff_nonvoid_function)
1147       == Diagnostic::Ignored || ReturnsVoid)
1148      && (Diags.getDiagnosticLevel(diag::warn_noreturn_function_has_return_expr)
1149          == Diagnostic::Ignored || !HasNoReturn)
1150      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1151          == Diagnostic::Ignored || !ReturnsVoid))
1152    return;
1153  // FIXME: Funtion try block
1154  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1155    switch (CheckFallThrough(Body)) {
1156    case MaybeFallThrough:
1157      if (HasNoReturn)
1158        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1159      else if (!ReturnsVoid)
1160        Diag(Compound->getRBracLoc(),diag::warn_maybe_falloff_nonvoid_function);
1161      break;
1162    case AlwaysFallThrough:
1163      if (HasNoReturn)
1164        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1165      else if (!ReturnsVoid)
1166        Diag(Compound->getRBracLoc(), diag::warn_falloff_nonvoid_function);
1167      break;
1168    case NeverFallThrough:
1169      if (ReturnsVoid)
1170        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_function);
1171      break;
1172    }
1173  }
1174}
1175
1176/// CheckFallThroughForBlock - Check that we don't fall off the end of a block
1177/// that should return a value.  Check that we don't fall off the end of a
1178/// noreturn block.  We assume that functions and blocks not marked noreturn
1179/// will return.
1180void Sema::CheckFallThroughForBlock(QualType BlockTy, Stmt *Body) {
1181  // FIXME: Would be nice if we had a better way to control cascading errors,
1182  // but for now, avoid them.  The problem is that when Parse sees:
1183  //   int foo() { return a; }
1184  // The return is eaten and the Sema code sees just:
1185  //   int foo() { }
1186  // which this code would then warn about.
1187  if (getDiagnostics().hasErrorOccurred())
1188    return;
1189  bool ReturnsVoid = false;
1190  bool HasNoReturn = false;
1191  if (const FunctionType *FT = BlockTy->getPointeeType()->getAsFunctionType()) {
1192    if (FT->getResultType()->isVoidType())
1193      ReturnsVoid = true;
1194    if (FT->getNoReturnAttr())
1195      HasNoReturn = true;
1196  }
1197
1198  // Short circuit for compilation speed.
1199  if (ReturnsVoid
1200      && !HasNoReturn
1201      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1202          == Diagnostic::Ignored || !ReturnsVoid))
1203    return;
1204  // FIXME: Funtion try block
1205  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1206    switch (CheckFallThrough(Body)) {
1207    case MaybeFallThrough:
1208      if (HasNoReturn)
1209        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1210      else if (!ReturnsVoid)
1211        Diag(Compound->getRBracLoc(), diag::err_maybe_falloff_nonvoid_block);
1212      break;
1213    case AlwaysFallThrough:
1214      if (HasNoReturn)
1215        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1216      else if (!ReturnsVoid)
1217        Diag(Compound->getRBracLoc(), diag::err_falloff_nonvoid_block);
1218      break;
1219    case NeverFallThrough:
1220      if (ReturnsVoid)
1221        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_block);
1222      break;
1223    }
1224  }
1225}
1226
1227/// CheckParmsForFunctionDef - Check that the parameters of the given
1228/// function are appropriate for the definition of a function. This
1229/// takes care of any checks that cannot be performed on the
1230/// declaration itself, e.g., that the types of each of the function
1231/// parameters are complete.
1232bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
1233  bool HasInvalidParm = false;
1234  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1235    ParmVarDecl *Param = FD->getParamDecl(p);
1236
1237    // C99 6.7.5.3p4: the parameters in a parameter type list in a
1238    // function declarator that is part of a function definition of
1239    // that function shall not have incomplete type.
1240    //
1241    // This is also C++ [dcl.fct]p6.
1242    if (!Param->isInvalidDecl() &&
1243        RequireCompleteType(Param->getLocation(), Param->getType(),
1244                               diag::err_typecheck_decl_incomplete_type)) {
1245      Param->setInvalidDecl();
1246      HasInvalidParm = true;
1247    }
1248
1249    // C99 6.9.1p5: If the declarator includes a parameter type list, the
1250    // declaration of each parameter shall include an identifier.
1251    if (Param->getIdentifier() == 0 &&
1252        !Param->isImplicit() &&
1253        !getLangOptions().CPlusPlus)
1254      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
1255  }
1256
1257  return HasInvalidParm;
1258}
1259
1260/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1261/// no declarator (e.g. "struct foo;") is parsed.
1262Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1263  // FIXME: Error on auto/register at file scope
1264  // FIXME: Error on inline/virtual/explicit
1265  // FIXME: Error on invalid restrict
1266  // FIXME: Warn on useless __thread
1267  // FIXME: Warn on useless const/volatile
1268  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1269  // FIXME: Warn on useless attributes
1270  TagDecl *Tag = 0;
1271  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1272      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1273      DS.getTypeSpecType() == DeclSpec::TST_union ||
1274      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1275    if (!DS.getTypeRep()) // We probably had an error
1276      return DeclPtrTy();
1277
1278    // Note that the above type specs guarantee that the
1279    // type rep is a Decl, whereas in many of the others
1280    // it's a Type.
1281    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
1282  }
1283
1284  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1285    if (!Record->getDeclName() && Record->isDefinition() &&
1286        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1287      if (getLangOptions().CPlusPlus ||
1288          Record->getDeclContext()->isRecord())
1289        return BuildAnonymousStructOrUnion(S, DS, Record);
1290
1291      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1292        << DS.getSourceRange();
1293    }
1294
1295    // Microsoft allows unnamed struct/union fields. Don't complain
1296    // about them.
1297    // FIXME: Should we support Microsoft's extensions in this area?
1298    if (Record->getDeclName() && getLangOptions().Microsoft)
1299      return DeclPtrTy::make(Tag);
1300  }
1301
1302  if (!DS.isMissingDeclaratorOk() &&
1303      DS.getTypeSpecType() != DeclSpec::TST_error) {
1304    // Warn about typedefs of enums without names, since this is an
1305    // extension in both Microsoft an GNU.
1306    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1307        Tag && isa<EnumDecl>(Tag)) {
1308      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1309        << DS.getSourceRange();
1310      return DeclPtrTy::make(Tag);
1311    }
1312
1313    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1314      << DS.getSourceRange();
1315    return DeclPtrTy();
1316  }
1317
1318  return DeclPtrTy::make(Tag);
1319}
1320
1321/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1322/// anonymous struct or union AnonRecord into the owning context Owner
1323/// and scope S. This routine will be invoked just after we realize
1324/// that an unnamed union or struct is actually an anonymous union or
1325/// struct, e.g.,
1326///
1327/// @code
1328/// union {
1329///   int i;
1330///   float f;
1331/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1332///    // f into the surrounding scope.x
1333/// @endcode
1334///
1335/// This routine is recursive, injecting the names of nested anonymous
1336/// structs/unions into the owning context and scope as well.
1337bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1338                                               RecordDecl *AnonRecord) {
1339  bool Invalid = false;
1340  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1341                               FEnd = AnonRecord->field_end();
1342       F != FEnd; ++F) {
1343    if ((*F)->getDeclName()) {
1344      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
1345                                                LookupOrdinaryName, true);
1346      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
1347        // C++ [class.union]p2:
1348        //   The names of the members of an anonymous union shall be
1349        //   distinct from the names of any other entity in the
1350        //   scope in which the anonymous union is declared.
1351        unsigned diagKind
1352          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
1353                                 : diag::err_anonymous_struct_member_redecl;
1354        Diag((*F)->getLocation(), diagKind)
1355          << (*F)->getDeclName();
1356        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1357        Invalid = true;
1358      } else {
1359        // C++ [class.union]p2:
1360        //   For the purpose of name lookup, after the anonymous union
1361        //   definition, the members of the anonymous union are
1362        //   considered to have been defined in the scope in which the
1363        //   anonymous union is declared.
1364        Owner->makeDeclVisibleInContext(*F);
1365        S->AddDecl(DeclPtrTy::make(*F));
1366        IdResolver.AddDecl(*F);
1367      }
1368    } else if (const RecordType *InnerRecordType
1369                 = (*F)->getType()->getAs<RecordType>()) {
1370      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1371      if (InnerRecord->isAnonymousStructOrUnion())
1372        Invalid = Invalid ||
1373          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1374    }
1375  }
1376
1377  return Invalid;
1378}
1379
1380/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1381/// anonymous structure or union. Anonymous unions are a C++ feature
1382/// (C++ [class.union]) and a GNU C extension; anonymous structures
1383/// are a GNU C and GNU C++ extension.
1384Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1385                                                  RecordDecl *Record) {
1386  DeclContext *Owner = Record->getDeclContext();
1387
1388  // Diagnose whether this anonymous struct/union is an extension.
1389  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1390    Diag(Record->getLocation(), diag::ext_anonymous_union);
1391  else if (!Record->isUnion())
1392    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1393
1394  // C and C++ require different kinds of checks for anonymous
1395  // structs/unions.
1396  bool Invalid = false;
1397  if (getLangOptions().CPlusPlus) {
1398    const char* PrevSpec = 0;
1399    unsigned DiagID;
1400    // C++ [class.union]p3:
1401    //   Anonymous unions declared in a named namespace or in the
1402    //   global namespace shall be declared static.
1403    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1404        (isa<TranslationUnitDecl>(Owner) ||
1405         (isa<NamespaceDecl>(Owner) &&
1406          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1407      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1408      Invalid = true;
1409
1410      // Recover by adding 'static'.
1411      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1412                             PrevSpec, DiagID);
1413    }
1414    // C++ [class.union]p3:
1415    //   A storage class is not allowed in a declaration of an
1416    //   anonymous union in a class scope.
1417    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1418             isa<RecordDecl>(Owner)) {
1419      Diag(DS.getStorageClassSpecLoc(),
1420           diag::err_anonymous_union_with_storage_spec);
1421      Invalid = true;
1422
1423      // Recover by removing the storage specifier.
1424      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1425                             PrevSpec, DiagID);
1426    }
1427
1428    // C++ [class.union]p2:
1429    //   The member-specification of an anonymous union shall only
1430    //   define non-static data members. [Note: nested types and
1431    //   functions cannot be declared within an anonymous union. ]
1432    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1433                                 MemEnd = Record->decls_end();
1434         Mem != MemEnd; ++Mem) {
1435      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1436        // C++ [class.union]p3:
1437        //   An anonymous union shall not have private or protected
1438        //   members (clause 11).
1439        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1440          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1441            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1442          Invalid = true;
1443        }
1444      } else if ((*Mem)->isImplicit()) {
1445        // Any implicit members are fine.
1446      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1447        // This is a type that showed up in an
1448        // elaborated-type-specifier inside the anonymous struct or
1449        // union, but which actually declares a type outside of the
1450        // anonymous struct or union. It's okay.
1451      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1452        if (!MemRecord->isAnonymousStructOrUnion() &&
1453            MemRecord->getDeclName()) {
1454          // This is a nested type declaration.
1455          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1456            << (int)Record->isUnion();
1457          Invalid = true;
1458        }
1459      } else {
1460        // We have something that isn't a non-static data
1461        // member. Complain about it.
1462        unsigned DK = diag::err_anonymous_record_bad_member;
1463        if (isa<TypeDecl>(*Mem))
1464          DK = diag::err_anonymous_record_with_type;
1465        else if (isa<FunctionDecl>(*Mem))
1466          DK = diag::err_anonymous_record_with_function;
1467        else if (isa<VarDecl>(*Mem))
1468          DK = diag::err_anonymous_record_with_static;
1469        Diag((*Mem)->getLocation(), DK)
1470            << (int)Record->isUnion();
1471          Invalid = true;
1472      }
1473    }
1474  }
1475
1476  if (!Record->isUnion() && !Owner->isRecord()) {
1477    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1478      << (int)getLangOptions().CPlusPlus;
1479    Invalid = true;
1480  }
1481
1482  // Create a declaration for this anonymous struct/union.
1483  NamedDecl *Anon = 0;
1484  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1485    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1486                             /*IdentifierInfo=*/0,
1487                             Context.getTypeDeclType(Record),
1488                             /*BitWidth=*/0, /*Mutable=*/false,
1489                             DS.getSourceRange().getBegin());
1490    Anon->setAccess(AS_public);
1491    if (getLangOptions().CPlusPlus)
1492      FieldCollector->Add(cast<FieldDecl>(Anon));
1493  } else {
1494    VarDecl::StorageClass SC;
1495    switch (DS.getStorageClassSpec()) {
1496    default: assert(0 && "Unknown storage class!");
1497    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1498    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1499    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1500    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1501    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1502    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1503    case DeclSpec::SCS_mutable:
1504      // mutable can only appear on non-static class members, so it's always
1505      // an error here
1506      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1507      Invalid = true;
1508      SC = VarDecl::None;
1509      break;
1510    }
1511
1512    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1513                           /*IdentifierInfo=*/0,
1514                           Context.getTypeDeclType(Record),
1515                           SC, DS.getSourceRange().getBegin());
1516  }
1517  Anon->setImplicit();
1518
1519  // Add the anonymous struct/union object to the current
1520  // context. We'll be referencing this object when we refer to one of
1521  // its members.
1522  Owner->addDecl(Anon);
1523
1524  // Inject the members of the anonymous struct/union into the owning
1525  // context and into the identifier resolver chain for name lookup
1526  // purposes.
1527  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1528    Invalid = true;
1529
1530  // Mark this as an anonymous struct/union type. Note that we do not
1531  // do this until after we have already checked and injected the
1532  // members of this anonymous struct/union type, because otherwise
1533  // the members could be injected twice: once by DeclContext when it
1534  // builds its lookup table, and once by
1535  // InjectAnonymousStructOrUnionMembers.
1536  Record->setAnonymousStructOrUnion(true);
1537
1538  if (Invalid)
1539    Anon->setInvalidDecl();
1540
1541  return DeclPtrTy::make(Anon);
1542}
1543
1544
1545/// GetNameForDeclarator - Determine the full declaration name for the
1546/// given Declarator.
1547DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1548  switch (D.getKind()) {
1549  case Declarator::DK_Abstract:
1550    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1551    return DeclarationName();
1552
1553  case Declarator::DK_Normal:
1554    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1555    return DeclarationName(D.getIdentifier());
1556
1557  case Declarator::DK_Constructor: {
1558    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1559    return Context.DeclarationNames.getCXXConstructorName(
1560                                                Context.getCanonicalType(Ty));
1561  }
1562
1563  case Declarator::DK_Destructor: {
1564    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1565    return Context.DeclarationNames.getCXXDestructorName(
1566                                                Context.getCanonicalType(Ty));
1567  }
1568
1569  case Declarator::DK_Conversion: {
1570    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1571    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1572    return Context.DeclarationNames.getCXXConversionFunctionName(
1573                                                Context.getCanonicalType(Ty));
1574  }
1575
1576  case Declarator::DK_Operator:
1577    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1578    return Context.DeclarationNames.getCXXOperatorName(
1579                                                D.getOverloadedOperator());
1580  }
1581
1582  assert(false && "Unknown name kind");
1583  return DeclarationName();
1584}
1585
1586/// isNearlyMatchingFunction - Determine whether the C++ functions
1587/// Declaration and Definition are "nearly" matching. This heuristic
1588/// is used to improve diagnostics in the case where an out-of-line
1589/// function definition doesn't match any declaration within
1590/// the class or namespace.
1591static bool isNearlyMatchingFunction(ASTContext &Context,
1592                                     FunctionDecl *Declaration,
1593                                     FunctionDecl *Definition) {
1594  if (Declaration->param_size() != Definition->param_size())
1595    return false;
1596  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1597    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1598    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1599
1600    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1601    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1602    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1603      return false;
1604  }
1605
1606  return true;
1607}
1608
1609Sema::DeclPtrTy
1610Sema::HandleDeclarator(Scope *S, Declarator &D,
1611                       MultiTemplateParamsArg TemplateParamLists,
1612                       bool IsFunctionDefinition) {
1613  DeclarationName Name = GetNameForDeclarator(D);
1614
1615  // All of these full declarators require an identifier.  If it doesn't have
1616  // one, the ParsedFreeStandingDeclSpec action should be used.
1617  if (!Name) {
1618    if (!D.isInvalidType())  // Reject this if we think it is valid.
1619      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1620           diag::err_declarator_need_ident)
1621        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1622    return DeclPtrTy();
1623  }
1624
1625  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1626  // we find one that is.
1627  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1628         (S->getFlags() & Scope::TemplateParamScope) != 0)
1629    S = S->getParent();
1630
1631  // If this is an out-of-line definition of a member of a class template
1632  // or class template partial specialization, we may need to rebuild the
1633  // type specifier in the declarator. See RebuildTypeInCurrentInstantiation()
1634  // for more information.
1635  // FIXME: cope with decltype(expr) and typeof(expr) once the rebuilder can
1636  // handle expressions properly.
1637  DeclSpec &DS = const_cast<DeclSpec&>(D.getDeclSpec());
1638  if (D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid() &&
1639      isDependentScopeSpecifier(D.getCXXScopeSpec()) &&
1640      (DS.getTypeSpecType() == DeclSpec::TST_typename ||
1641       DS.getTypeSpecType() == DeclSpec::TST_typeofType ||
1642       DS.getTypeSpecType() == DeclSpec::TST_typeofExpr ||
1643       DS.getTypeSpecType() == DeclSpec::TST_decltype)) {
1644    if (DeclContext *DC = computeDeclContext(D.getCXXScopeSpec(), true)) {
1645      QualType T = QualType::getFromOpaquePtr(DS.getTypeRep());
1646      EnterDeclaratorContext(S, DC);
1647      T = RebuildTypeInCurrentInstantiation(T, D.getIdentifierLoc(), Name);
1648      ExitDeclaratorContext(S);
1649      if (T.isNull())
1650        return DeclPtrTy();
1651      DS.UpdateTypeRep(T.getAsOpaquePtr());
1652    }
1653  }
1654
1655  DeclContext *DC;
1656  NamedDecl *PrevDecl;
1657  NamedDecl *New;
1658
1659  QualType R = GetTypeForDeclarator(D, S);
1660
1661  // See if this is a redefinition of a variable in the same scope.
1662  if (D.getCXXScopeSpec().isInvalid()) {
1663    DC = CurContext;
1664    PrevDecl = 0;
1665    D.setInvalidType();
1666  } else if (!D.getCXXScopeSpec().isSet()) {
1667    LookupNameKind NameKind = LookupOrdinaryName;
1668
1669    // If the declaration we're planning to build will be a function
1670    // or object with linkage, then look for another declaration with
1671    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1672    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1673      /* Do nothing*/;
1674    else if (R->isFunctionType()) {
1675      if (CurContext->isFunctionOrMethod() ||
1676          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1677        NameKind = LookupRedeclarationWithLinkage;
1678    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1679      NameKind = LookupRedeclarationWithLinkage;
1680    else if (CurContext->getLookupContext()->isTranslationUnit() &&
1681             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1682      NameKind = LookupRedeclarationWithLinkage;
1683
1684    DC = CurContext;
1685    PrevDecl = LookupName(S, Name, NameKind, true,
1686                          NameKind == LookupRedeclarationWithLinkage,
1687                          D.getIdentifierLoc());
1688  } else { // Something like "int foo::x;"
1689    DC = computeDeclContext(D.getCXXScopeSpec(), true);
1690    // FIXME: RequireCompleteDeclContext(D.getCXXScopeSpec()); ?
1691    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1692
1693    // C++ 7.3.1.2p2:
1694    // Members (including explicit specializations of templates) of a named
1695    // namespace can also be defined outside that namespace by explicit
1696    // qualification of the name being defined, provided that the entity being
1697    // defined was already declared in the namespace and the definition appears
1698    // after the point of declaration in a namespace that encloses the
1699    // declarations namespace.
1700    //
1701    // Note that we only check the context at this point. We don't yet
1702    // have enough information to make sure that PrevDecl is actually
1703    // the declaration we want to match. For example, given:
1704    //
1705    //   class X {
1706    //     void f();
1707    //     void f(float);
1708    //   };
1709    //
1710    //   void X::f(int) { } // ill-formed
1711    //
1712    // In this case, PrevDecl will point to the overload set
1713    // containing the two f's declared in X, but neither of them
1714    // matches.
1715
1716    // First check whether we named the global scope.
1717    if (isa<TranslationUnitDecl>(DC)) {
1718      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1719        << Name << D.getCXXScopeSpec().getRange();
1720    } else if (!CurContext->Encloses(DC)) {
1721      // The qualifying scope doesn't enclose the original declaration.
1722      // Emit diagnostic based on current scope.
1723      SourceLocation L = D.getIdentifierLoc();
1724      SourceRange R = D.getCXXScopeSpec().getRange();
1725      if (isa<FunctionDecl>(CurContext))
1726        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1727      else
1728        Diag(L, diag::err_invalid_declarator_scope)
1729          << Name << cast<NamedDecl>(DC) << R;
1730      D.setInvalidType();
1731    }
1732  }
1733
1734  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1735    // Maybe we will complain about the shadowed template parameter.
1736    if (!D.isInvalidType())
1737      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl))
1738        D.setInvalidType();
1739
1740    // Just pretend that we didn't see the previous declaration.
1741    PrevDecl = 0;
1742  }
1743
1744  // In C++, the previous declaration we find might be a tag type
1745  // (class or enum). In this case, the new declaration will hide the
1746  // tag type. Note that this does does not apply if we're declaring a
1747  // typedef (C++ [dcl.typedef]p4).
1748  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1749      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1750    PrevDecl = 0;
1751
1752  bool Redeclaration = false;
1753  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1754    if (TemplateParamLists.size()) {
1755      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
1756      return DeclPtrTy();
1757    }
1758
1759    New = ActOnTypedefDeclarator(S, D, DC, R, PrevDecl, Redeclaration);
1760  } else if (R->isFunctionType()) {
1761    New = ActOnFunctionDeclarator(S, D, DC, R, PrevDecl,
1762                                  move(TemplateParamLists),
1763                                  IsFunctionDefinition, Redeclaration);
1764  } else {
1765    New = ActOnVariableDeclarator(S, D, DC, R, PrevDecl,
1766                                  move(TemplateParamLists),
1767                                  Redeclaration);
1768  }
1769
1770  if (New == 0)
1771    return DeclPtrTy();
1772
1773  // If this has an identifier and is not an invalid redeclaration,
1774  // add it to the scope stack.
1775  if (Name && !(Redeclaration && New->isInvalidDecl()))
1776    PushOnScopeChains(New, S);
1777
1778  return DeclPtrTy::make(New);
1779}
1780
1781/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1782/// types into constant array types in certain situations which would otherwise
1783/// be errors (for GCC compatibility).
1784static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1785                                                    ASTContext &Context,
1786                                                    bool &SizeIsNegative) {
1787  // This method tries to turn a variable array into a constant
1788  // array even when the size isn't an ICE.  This is necessary
1789  // for compatibility with code that depends on gcc's buggy
1790  // constant expression folding, like struct {char x[(int)(char*)2];}
1791  SizeIsNegative = false;
1792
1793  if (const PointerType* PTy = dyn_cast<PointerType>(T)) {
1794    QualType Pointee = PTy->getPointeeType();
1795    QualType FixedType =
1796        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1797    if (FixedType.isNull()) return FixedType;
1798    FixedType = Context.getPointerType(FixedType);
1799    FixedType.setCVRQualifiers(T.getCVRQualifiers());
1800    return FixedType;
1801  }
1802
1803  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1804  if (!VLATy)
1805    return QualType();
1806  // FIXME: We should probably handle this case
1807  if (VLATy->getElementType()->isVariablyModifiedType())
1808    return QualType();
1809
1810  Expr::EvalResult EvalResult;
1811  if (!VLATy->getSizeExpr() ||
1812      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1813      !EvalResult.Val.isInt())
1814    return QualType();
1815
1816  llvm::APSInt &Res = EvalResult.Val.getInt();
1817  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
1818    Expr* ArySizeExpr = VLATy->getSizeExpr();
1819    // FIXME: here we could "steal" (how?) ArySizeExpr from the VLA,
1820    // so as to transfer ownership to the ConstantArrayWithExpr.
1821    // Alternatively, we could "clone" it (how?).
1822    // Since we don't know how to do things above, we just use the
1823    // very same Expr*.
1824    return Context.getConstantArrayWithExprType(VLATy->getElementType(),
1825                                                Res, ArySizeExpr,
1826                                                ArrayType::Normal, 0,
1827                                                VLATy->getBracketsRange());
1828  }
1829
1830  SizeIsNegative = true;
1831  return QualType();
1832}
1833
1834/// \brief Register the given locally-scoped external C declaration so
1835/// that it can be found later for redeclarations
1836void
1837Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1838                                       Scope *S) {
1839  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1840         "Decl is not a locally-scoped decl!");
1841  // Note that we have a locally-scoped external with this name.
1842  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1843
1844  if (!PrevDecl)
1845    return;
1846
1847  // If there was a previous declaration of this variable, it may be
1848  // in our identifier chain. Update the identifier chain with the new
1849  // declaration.
1850  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
1851    // The previous declaration was found on the identifer resolver
1852    // chain, so remove it from its scope.
1853    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
1854      S = S->getParent();
1855
1856    if (S)
1857      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
1858  }
1859}
1860
1861/// \brief Diagnose function specifiers on a declaration of an identifier that
1862/// does not identify a function.
1863void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
1864  // FIXME: We should probably indicate the identifier in question to avoid
1865  // confusion for constructs like "inline int a(), b;"
1866  if (D.getDeclSpec().isInlineSpecified())
1867    Diag(D.getDeclSpec().getInlineSpecLoc(),
1868         diag::err_inline_non_function);
1869
1870  if (D.getDeclSpec().isVirtualSpecified())
1871    Diag(D.getDeclSpec().getVirtualSpecLoc(),
1872         diag::err_virtual_non_function);
1873
1874  if (D.getDeclSpec().isExplicitSpecified())
1875    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1876         diag::err_explicit_non_function);
1877}
1878
1879NamedDecl*
1880Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1881                             QualType R, Decl* PrevDecl, bool &Redeclaration) {
1882  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1883  if (D.getCXXScopeSpec().isSet()) {
1884    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1885      << D.getCXXScopeSpec().getRange();
1886    D.setInvalidType();
1887    // Pretend we didn't see the scope specifier.
1888    DC = 0;
1889  }
1890
1891  if (getLangOptions().CPlusPlus) {
1892    // Check that there are no default arguments (C++ only).
1893    CheckExtraCXXDefaultArguments(D);
1894  }
1895
1896  DiagnoseFunctionSpecifiers(D);
1897
1898  if (D.getDeclSpec().isThreadSpecified())
1899    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
1900
1901  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R);
1902  if (!NewTD) return 0;
1903
1904  if (D.isInvalidType())
1905    NewTD->setInvalidDecl();
1906
1907  // Handle attributes prior to checking for duplicates in MergeVarDecl
1908  ProcessDeclAttributes(S, NewTD, D);
1909  // Merge the decl with the existing one if appropriate. If the decl is
1910  // in an outer scope, it isn't the same thing.
1911  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1912    Redeclaration = true;
1913    MergeTypeDefDecl(NewTD, PrevDecl);
1914  }
1915
1916  // C99 6.7.7p2: If a typedef name specifies a variably modified type
1917  // then it shall have block scope.
1918  QualType T = NewTD->getUnderlyingType();
1919  if (T->isVariablyModifiedType()) {
1920    CurFunctionNeedsScopeChecking = true;
1921
1922    if (S->getFnParent() == 0) {
1923      bool SizeIsNegative;
1924      QualType FixedTy =
1925          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1926      if (!FixedTy.isNull()) {
1927        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
1928        NewTD->setUnderlyingType(FixedTy);
1929      } else {
1930        if (SizeIsNegative)
1931          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
1932        else if (T->isVariableArrayType())
1933          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1934        else
1935          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1936        NewTD->setInvalidDecl();
1937      }
1938    }
1939  }
1940
1941  // If this is the C FILE type, notify the AST context.
1942  if (IdentifierInfo *II = NewTD->getIdentifier())
1943    if (!NewTD->isInvalidDecl() &&
1944        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
1945      if (II->isStr("FILE"))
1946        Context.setFILEDecl(NewTD);
1947      else if (II->isStr("jmp_buf"))
1948        Context.setjmp_bufDecl(NewTD);
1949      else if (II->isStr("sigjmp_buf"))
1950        Context.setsigjmp_bufDecl(NewTD);
1951    }
1952
1953  return NewTD;
1954}
1955
1956/// \brief Determines whether the given declaration is an out-of-scope
1957/// previous declaration.
1958///
1959/// This routine should be invoked when name lookup has found a
1960/// previous declaration (PrevDecl) that is not in the scope where a
1961/// new declaration by the same name is being introduced. If the new
1962/// declaration occurs in a local scope, previous declarations with
1963/// linkage may still be considered previous declarations (C99
1964/// 6.2.2p4-5, C++ [basic.link]p6).
1965///
1966/// \param PrevDecl the previous declaration found by name
1967/// lookup
1968///
1969/// \param DC the context in which the new declaration is being
1970/// declared.
1971///
1972/// \returns true if PrevDecl is an out-of-scope previous declaration
1973/// for a new delcaration with the same name.
1974static bool
1975isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
1976                                ASTContext &Context) {
1977  if (!PrevDecl)
1978    return 0;
1979
1980  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
1981  // case we need to check each of the overloaded functions.
1982  if (!PrevDecl->hasLinkage())
1983    return false;
1984
1985  if (Context.getLangOptions().CPlusPlus) {
1986    // C++ [basic.link]p6:
1987    //   If there is a visible declaration of an entity with linkage
1988    //   having the same name and type, ignoring entities declared
1989    //   outside the innermost enclosing namespace scope, the block
1990    //   scope declaration declares that same entity and receives the
1991    //   linkage of the previous declaration.
1992    DeclContext *OuterContext = DC->getLookupContext();
1993    if (!OuterContext->isFunctionOrMethod())
1994      // This rule only applies to block-scope declarations.
1995      return false;
1996    else {
1997      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
1998      if (PrevOuterContext->isRecord())
1999        // We found a member function: ignore it.
2000        return false;
2001      else {
2002        // Find the innermost enclosing namespace for the new and
2003        // previous declarations.
2004        while (!OuterContext->isFileContext())
2005          OuterContext = OuterContext->getParent();
2006        while (!PrevOuterContext->isFileContext())
2007          PrevOuterContext = PrevOuterContext->getParent();
2008
2009        // The previous declaration is in a different namespace, so it
2010        // isn't the same function.
2011        if (OuterContext->getPrimaryContext() !=
2012            PrevOuterContext->getPrimaryContext())
2013          return false;
2014      }
2015    }
2016  }
2017
2018  return true;
2019}
2020
2021NamedDecl*
2022Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2023                              QualType R,NamedDecl* PrevDecl,
2024                              MultiTemplateParamsArg TemplateParamLists,
2025                              bool &Redeclaration) {
2026  DeclarationName Name = GetNameForDeclarator(D);
2027
2028  // Check that there are no default arguments (C++ only).
2029  if (getLangOptions().CPlusPlus)
2030    CheckExtraCXXDefaultArguments(D);
2031
2032  VarDecl *NewVD;
2033  VarDecl::StorageClass SC;
2034  switch (D.getDeclSpec().getStorageClassSpec()) {
2035  default: assert(0 && "Unknown storage class!");
2036  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
2037  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
2038  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
2039  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
2040  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
2041  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
2042  case DeclSpec::SCS_mutable:
2043    // mutable can only appear on non-static class members, so it's always
2044    // an error here
2045    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2046    D.setInvalidType();
2047    SC = VarDecl::None;
2048    break;
2049  }
2050
2051  IdentifierInfo *II = Name.getAsIdentifierInfo();
2052  if (!II) {
2053    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2054      << Name.getAsString();
2055    return 0;
2056  }
2057
2058  DiagnoseFunctionSpecifiers(D);
2059
2060  if (!DC->isRecord() && S->getFnParent() == 0) {
2061    // C99 6.9p2: The storage-class specifiers auto and register shall not
2062    // appear in the declaration specifiers in an external declaration.
2063    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2064
2065      // If this is a register variable with an asm label specified, then this
2066      // is a GNU extension.
2067      if (SC == VarDecl::Register && D.getAsmLabel())
2068        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2069      else
2070        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2071      D.setInvalidType();
2072    }
2073  }
2074  if (DC->isRecord() && !CurContext->isRecord()) {
2075    // This is an out-of-line definition of a static data member.
2076    if (SC == VarDecl::Static) {
2077      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2078           diag::err_static_out_of_line)
2079        << CodeModificationHint::CreateRemoval(
2080                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2081    } else if (SC == VarDecl::None)
2082      SC = VarDecl::Static;
2083  }
2084  if (SC == VarDecl::Static) {
2085    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2086      if (RD->isLocalClass())
2087        Diag(D.getIdentifierLoc(),
2088             diag::err_static_data_member_not_allowed_in_local_class)
2089          << Name << RD->getDeclName();
2090    }
2091  }
2092
2093  // Check that we can declare a template here.
2094  if (TemplateParamLists.size() &&
2095      CheckTemplateDeclScope(S, TemplateParamLists))
2096    return 0;
2097
2098  // Match up the template parameter lists with the scope specifier, then
2099  // determine whether we have a template or a template specialization.
2100  if (TemplateParameterList *TemplateParams
2101      = MatchTemplateParametersToScopeSpecifier(
2102                                  D.getDeclSpec().getSourceRange().getBegin(),
2103                                                D.getCXXScopeSpec(),
2104                        (TemplateParameterList**)TemplateParamLists.get(),
2105                                                 TemplateParamLists.size())) {
2106    if (TemplateParams->size() > 0) {
2107      // There is no such thing as a variable template.
2108      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2109        << II
2110        << SourceRange(TemplateParams->getTemplateLoc(),
2111                       TemplateParams->getRAngleLoc());
2112      return 0;
2113    } else {
2114      // There is an extraneous 'template<>' for this variable. Complain
2115      // about it, but allow the declaration of the variable.
2116      Diag(TemplateParams->getTemplateLoc(),
2117           diag::err_template_variable_noparams)
2118        << II
2119        << SourceRange(TemplateParams->getTemplateLoc(),
2120                       TemplateParams->getRAngleLoc());
2121    }
2122  }
2123
2124  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2125                          II, R, SC,
2126                          // FIXME: Move to DeclGroup...
2127                          D.getDeclSpec().getSourceRange().getBegin());
2128
2129  if (D.isInvalidType())
2130    NewVD->setInvalidDecl();
2131
2132  if (D.getDeclSpec().isThreadSpecified()) {
2133    if (NewVD->hasLocalStorage())
2134      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2135    else if (!Context.Target.isTLSSupported())
2136      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2137    else
2138      NewVD->setThreadSpecified(true);
2139  }
2140
2141  // Set the lexical context. If the declarator has a C++ scope specifier, the
2142  // lexical context will be different from the semantic context.
2143  NewVD->setLexicalDeclContext(CurContext);
2144
2145  // Handle attributes prior to checking for duplicates in MergeVarDecl
2146  ProcessDeclAttributes(S, NewVD, D);
2147
2148  // Handle GNU asm-label extension (encoded as an attribute).
2149  if (Expr *E = (Expr*) D.getAsmLabel()) {
2150    // The parser guarantees this is a string.
2151    StringLiteral *SE = cast<StringLiteral>(E);
2152    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2153                                                        SE->getByteLength())));
2154  }
2155
2156  // If name lookup finds a previous declaration that is not in the
2157  // same scope as the new declaration, this may still be an
2158  // acceptable redeclaration.
2159  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2160      !(NewVD->hasLinkage() &&
2161        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2162    PrevDecl = 0;
2163
2164  // Merge the decl with the existing one if appropriate.
2165  if (PrevDecl) {
2166    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
2167      // The user tried to define a non-static data member
2168      // out-of-line (C++ [dcl.meaning]p1).
2169      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2170        << D.getCXXScopeSpec().getRange();
2171      PrevDecl = 0;
2172      NewVD->setInvalidDecl();
2173    }
2174  } else if (D.getCXXScopeSpec().isSet()) {
2175    // No previous declaration in the qualifying scope.
2176    Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
2177      << Name << D.getCXXScopeSpec().getRange();
2178    NewVD->setInvalidDecl();
2179  }
2180
2181  CheckVariableDeclaration(NewVD, PrevDecl, Redeclaration);
2182
2183  // attributes declared post-definition are currently ignored
2184  if (PrevDecl) {
2185    const VarDecl *Def = 0, *PrevVD = dyn_cast<VarDecl>(PrevDecl);
2186    if (PrevVD->getDefinition(Def) && D.hasAttributes()) {
2187      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2188      Diag(Def->getLocation(), diag::note_previous_definition);
2189    }
2190  }
2191
2192  // If this is a locally-scoped extern C variable, update the map of
2193  // such variables.
2194  if (CurContext->isFunctionOrMethod() && NewVD->isExternC(Context) &&
2195      !NewVD->isInvalidDecl())
2196    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
2197
2198  return NewVD;
2199}
2200
2201/// \brief Perform semantic checking on a newly-created variable
2202/// declaration.
2203///
2204/// This routine performs all of the type-checking required for a
2205/// variable declaration once it has been built. It is used both to
2206/// check variables after they have been parsed and their declarators
2207/// have been translated into a declaration, and to check variables
2208/// that have been instantiated from a template.
2209///
2210/// Sets NewVD->isInvalidDecl() if an error was encountered.
2211void Sema::CheckVariableDeclaration(VarDecl *NewVD, NamedDecl *PrevDecl,
2212                                    bool &Redeclaration) {
2213  // If the decl is already known invalid, don't check it.
2214  if (NewVD->isInvalidDecl())
2215    return;
2216
2217  QualType T = NewVD->getType();
2218
2219  if (T->isObjCInterfaceType()) {
2220    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2221    return NewVD->setInvalidDecl();
2222  }
2223
2224  // The variable can not have an abstract class type.
2225  if (RequireNonAbstractType(NewVD->getLocation(), T,
2226                             diag::err_abstract_type_in_decl,
2227                             AbstractVariableType))
2228    return NewVD->setInvalidDecl();
2229
2230  // Emit an error if an address space was applied to decl with local storage.
2231  // This includes arrays of objects with address space qualifiers, but not
2232  // automatic variables that point to other address spaces.
2233  // ISO/IEC TR 18037 S5.1.2
2234  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2235    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2236    return NewVD->setInvalidDecl();
2237  }
2238
2239  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2240      && !NewVD->hasAttr<BlocksAttr>())
2241    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2242
2243  bool isVM = T->isVariablyModifiedType();
2244  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2245      NewVD->hasAttr<BlocksAttr>())
2246    CurFunctionNeedsScopeChecking = true;
2247
2248  if ((isVM && NewVD->hasLinkage()) ||
2249      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2250    bool SizeIsNegative;
2251    QualType FixedTy =
2252        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2253
2254    if (FixedTy.isNull() && T->isVariableArrayType()) {
2255      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2256      // FIXME: This won't give the correct result for
2257      // int a[10][n];
2258      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2259
2260      if (NewVD->isFileVarDecl())
2261        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2262        << SizeRange;
2263      else if (NewVD->getStorageClass() == VarDecl::Static)
2264        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2265        << SizeRange;
2266      else
2267        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2268        << SizeRange;
2269      return NewVD->setInvalidDecl();
2270    }
2271
2272    if (FixedTy.isNull()) {
2273      if (NewVD->isFileVarDecl())
2274        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2275      else
2276        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2277      return NewVD->setInvalidDecl();
2278    }
2279
2280    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2281    NewVD->setType(FixedTy);
2282  }
2283
2284  if (!PrevDecl && NewVD->isExternC(Context)) {
2285    // Since we did not find anything by this name and we're declaring
2286    // an extern "C" variable, look for a non-visible extern "C"
2287    // declaration with the same name.
2288    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2289      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2290    if (Pos != LocallyScopedExternalDecls.end())
2291      PrevDecl = Pos->second;
2292  }
2293
2294  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2295    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2296      << T;
2297    return NewVD->setInvalidDecl();
2298  }
2299
2300  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2301    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2302    return NewVD->setInvalidDecl();
2303  }
2304
2305  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2306    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2307    return NewVD->setInvalidDecl();
2308  }
2309
2310  if (PrevDecl) {
2311    Redeclaration = true;
2312    MergeVarDecl(NewVD, PrevDecl);
2313  }
2314}
2315
2316NamedDecl*
2317Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2318                              QualType R, NamedDecl* PrevDecl,
2319                              MultiTemplateParamsArg TemplateParamLists,
2320                              bool IsFunctionDefinition, bool &Redeclaration) {
2321  assert(R.getTypePtr()->isFunctionType());
2322
2323  DeclarationName Name = GetNameForDeclarator(D);
2324  FunctionDecl::StorageClass SC = FunctionDecl::None;
2325  switch (D.getDeclSpec().getStorageClassSpec()) {
2326  default: assert(0 && "Unknown storage class!");
2327  case DeclSpec::SCS_auto:
2328  case DeclSpec::SCS_register:
2329  case DeclSpec::SCS_mutable:
2330    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2331         diag::err_typecheck_sclass_func);
2332    D.setInvalidType();
2333    break;
2334  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2335  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2336  case DeclSpec::SCS_static: {
2337    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2338      // C99 6.7.1p5:
2339      //   The declaration of an identifier for a function that has
2340      //   block scope shall have no explicit storage-class specifier
2341      //   other than extern
2342      // See also (C++ [dcl.stc]p4).
2343      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2344           diag::err_static_block_func);
2345      SC = FunctionDecl::None;
2346    } else
2347      SC = FunctionDecl::Static;
2348    break;
2349  }
2350  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2351  }
2352
2353  if (D.getDeclSpec().isThreadSpecified())
2354    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2355
2356  bool isFriend = D.getDeclSpec().isFriendSpecified();
2357  bool isInline = D.getDeclSpec().isInlineSpecified();
2358  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2359  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2360
2361  // Check that the return type is not an abstract class type.
2362  // For record types, this is done by the AbstractClassUsageDiagnoser once
2363  // the class has been completely parsed.
2364  if (!DC->isRecord() &&
2365      RequireNonAbstractType(D.getIdentifierLoc(),
2366                             R->getAsFunctionType()->getResultType(),
2367                             diag::err_abstract_type_in_decl,
2368                             AbstractReturnType))
2369    D.setInvalidType();
2370
2371  // Do not allow returning a objc interface by-value.
2372  if (R->getAsFunctionType()->getResultType()->isObjCInterfaceType()) {
2373    Diag(D.getIdentifierLoc(),
2374         diag::err_object_cannot_be_passed_returned_by_value) << 0
2375      << R->getAsFunctionType()->getResultType();
2376    D.setInvalidType();
2377  }
2378
2379  // Check that we can declare a template here.
2380  if (TemplateParamLists.size() &&
2381      CheckTemplateDeclScope(S, TemplateParamLists))
2382    return 0;
2383
2384  bool isVirtualOkay = false;
2385  FunctionDecl *NewFD;
2386  if (isFriend) {
2387    // DC is the namespace in which the function is being declared.
2388    assert(DC->isFileContext() || PrevDecl);
2389
2390    // C++ [class.friend]p5
2391    //   A function can be defined in a friend declaration of a
2392    //   class . . . . Such a function is implicitly inline.
2393    isInline |= IsFunctionDefinition;
2394
2395    NewFD = FriendFunctionDecl::Create(Context, DC,
2396                                       D.getIdentifierLoc(), Name, R,
2397                                       isInline,
2398                                       D.getDeclSpec().getFriendSpecLoc());
2399  } else if (D.getKind() == Declarator::DK_Constructor) {
2400    // This is a C++ constructor declaration.
2401    assert(DC->isRecord() &&
2402           "Constructors can only be declared in a member context");
2403
2404    R = CheckConstructorDeclarator(D, R, SC);
2405
2406    // Create the new declaration
2407    NewFD = CXXConstructorDecl::Create(Context,
2408                                       cast<CXXRecordDecl>(DC),
2409                                       D.getIdentifierLoc(), Name, R,
2410                                       isExplicit, isInline,
2411                                       /*isImplicitlyDeclared=*/false);
2412  } else if (D.getKind() == Declarator::DK_Destructor) {
2413    // This is a C++ destructor declaration.
2414    if (DC->isRecord()) {
2415      R = CheckDestructorDeclarator(D, SC);
2416
2417      NewFD = CXXDestructorDecl::Create(Context,
2418                                        cast<CXXRecordDecl>(DC),
2419                                        D.getIdentifierLoc(), Name, R,
2420                                        isInline,
2421                                        /*isImplicitlyDeclared=*/false);
2422
2423      isVirtualOkay = true;
2424    } else {
2425      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2426
2427      // Create a FunctionDecl to satisfy the function definition parsing
2428      // code path.
2429      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2430                                   Name, R, SC, isInline,
2431                                   /*hasPrototype=*/true,
2432                                   // FIXME: Move to DeclGroup...
2433                                   D.getDeclSpec().getSourceRange().getBegin());
2434      D.setInvalidType();
2435    }
2436  } else if (D.getKind() == Declarator::DK_Conversion) {
2437    if (!DC->isRecord()) {
2438      Diag(D.getIdentifierLoc(),
2439           diag::err_conv_function_not_member);
2440      return 0;
2441    }
2442
2443    CheckConversionDeclarator(D, R, SC);
2444    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2445                                      D.getIdentifierLoc(), Name, R,
2446                                      isInline, isExplicit);
2447
2448    isVirtualOkay = true;
2449  } else if (DC->isRecord()) {
2450    // If the of the function is the same as the name of the record, then this
2451    // must be an invalid constructor that has a return type.
2452    // (The parser checks for a return type and makes the declarator a
2453    // constructor if it has no return type).
2454    // must have an invalid constructor that has a return type
2455    if (Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2456      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2457        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2458        << SourceRange(D.getIdentifierLoc());
2459      return 0;
2460    }
2461
2462    // This is a C++ method declaration.
2463    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2464                                  D.getIdentifierLoc(), Name, R,
2465                                  (SC == FunctionDecl::Static), isInline);
2466
2467    isVirtualOkay = (SC != FunctionDecl::Static);
2468  } else {
2469    // Determine whether the function was written with a
2470    // prototype. This true when:
2471    //   - we're in C++ (where every function has a prototype),
2472    //   - there is a prototype in the declarator, or
2473    //   - the type R of the function is some kind of typedef or other reference
2474    //     to a type name (which eventually refers to a function type).
2475    bool HasPrototype =
2476       getLangOptions().CPlusPlus ||
2477       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2478       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2479
2480    NewFD = FunctionDecl::Create(Context, DC,
2481                                 D.getIdentifierLoc(),
2482                                 Name, R, SC, isInline, HasPrototype,
2483                                 // FIXME: Move to DeclGroup...
2484                                 D.getDeclSpec().getSourceRange().getBegin());
2485  }
2486
2487  if (D.isInvalidType())
2488    NewFD->setInvalidDecl();
2489
2490  // Set the lexical context. If the declarator has a C++
2491  // scope specifier, the lexical context will be different
2492  // from the semantic context.
2493  NewFD->setLexicalDeclContext(CurContext);
2494
2495  // Match up the template parameter lists with the scope specifier, then
2496  // determine whether we have a template or a template specialization.
2497  FunctionTemplateDecl *FunctionTemplate = 0;
2498  if (TemplateParameterList *TemplateParams
2499        = MatchTemplateParametersToScopeSpecifier(
2500                                  D.getDeclSpec().getSourceRange().getBegin(),
2501                                  D.getCXXScopeSpec(),
2502                           (TemplateParameterList**)TemplateParamLists.get(),
2503                                                  TemplateParamLists.size())) {
2504    if (TemplateParams->size() > 0) {
2505      // This is a function template
2506      FunctionTemplate = FunctionTemplateDecl::Create(Context, CurContext,
2507                                                      NewFD->getLocation(),
2508                                                      Name, TemplateParams,
2509                                                      NewFD);
2510      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
2511    } else {
2512      // FIXME: Handle function template specializations
2513    }
2514
2515    // FIXME: Free this memory properly.
2516    TemplateParamLists.release();
2517  }
2518
2519  // C++ [dcl.fct.spec]p5:
2520  //   The virtual specifier shall only be used in declarations of
2521  //   nonstatic class member functions that appear within a
2522  //   member-specification of a class declaration; see 10.3.
2523  //
2524  if (isVirtual && !NewFD->isInvalidDecl()) {
2525    if (!isVirtualOkay) {
2526       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2527           diag::err_virtual_non_function);
2528    } else if (!CurContext->isRecord()) {
2529      // 'virtual' was specified outside of the class.
2530      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2531        << CodeModificationHint::CreateRemoval(
2532                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
2533    } else {
2534      // Okay: Add virtual to the method.
2535      cast<CXXMethodDecl>(NewFD)->setVirtualAsWritten(true);
2536      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2537      CurClass->setAggregate(false);
2538      CurClass->setPOD(false);
2539      CurClass->setPolymorphic(true);
2540      CurClass->setHasTrivialConstructor(false);
2541      CurClass->setHasTrivialCopyConstructor(false);
2542      CurClass->setHasTrivialCopyAssignment(false);
2543    }
2544  }
2545
2546  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD)) {
2547    // Look for virtual methods in base classes that this method might override.
2548
2549    BasePaths Paths;
2550    if (LookupInBases(cast<CXXRecordDecl>(DC),
2551                      MemberLookupCriteria(NewMD), Paths)) {
2552      for (BasePaths::decl_iterator I = Paths.found_decls_begin(),
2553           E = Paths.found_decls_end(); I != E; ++I) {
2554        if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2555          if (!CheckOverridingFunctionReturnType(NewMD, OldMD) &&
2556              !CheckOverridingFunctionExceptionSpec(NewMD, OldMD))
2557            NewMD->addOverriddenMethod(OldMD);
2558        }
2559      }
2560    }
2561  }
2562
2563  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2564      !CurContext->isRecord()) {
2565    // C++ [class.static]p1:
2566    //   A data or function member of a class may be declared static
2567    //   in a class definition, in which case it is a static member of
2568    //   the class.
2569
2570    // Complain about the 'static' specifier if it's on an out-of-line
2571    // member function definition.
2572    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2573         diag::err_static_out_of_line)
2574      << CodeModificationHint::CreateRemoval(
2575                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2576  }
2577
2578  // Handle GNU asm-label extension (encoded as an attribute).
2579  if (Expr *E = (Expr*) D.getAsmLabel()) {
2580    // The parser guarantees this is a string.
2581    StringLiteral *SE = cast<StringLiteral>(E);
2582    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2583                                                        SE->getByteLength())));
2584  }
2585
2586  // Copy the parameter declarations from the declarator D to the function
2587  // declaration NewFD, if they are available.  First scavenge them into Params.
2588  llvm::SmallVector<ParmVarDecl*, 16> Params;
2589  if (D.getNumTypeObjects() > 0) {
2590    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2591
2592    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2593    // function that takes no arguments, not a function that takes a
2594    // single void argument.
2595    // We let through "const void" here because Sema::GetTypeForDeclarator
2596    // already checks for that case.
2597    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2598        FTI.ArgInfo[0].Param &&
2599        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2600      // Empty arg list, don't push any params.
2601      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2602
2603      // In C++, the empty parameter-type-list must be spelled "void"; a
2604      // typedef of void is not permitted.
2605      if (getLangOptions().CPlusPlus &&
2606          Param->getType().getUnqualifiedType() != Context.VoidTy)
2607        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2608      // FIXME: Leaks decl?
2609    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2610      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2611        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
2612        assert(Param->getDeclContext() != NewFD && "Was set before ?");
2613        Param->setDeclContext(NewFD);
2614        Params.push_back(Param);
2615      }
2616    }
2617
2618  } else if (const FunctionProtoType *FT = R->getAsFunctionProtoType()) {
2619    // When we're declaring a function with a typedef, typeof, etc as in the
2620    // following example, we'll need to synthesize (unnamed)
2621    // parameters for use in the declaration.
2622    //
2623    // @code
2624    // typedef void fn(int);
2625    // fn f;
2626    // @endcode
2627
2628    // Synthesize a parameter for each argument type.
2629    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2630         AE = FT->arg_type_end(); AI != AE; ++AI) {
2631      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2632                                               SourceLocation(), 0,
2633                                               *AI, VarDecl::None, 0);
2634      Param->setImplicit();
2635      Params.push_back(Param);
2636    }
2637  } else {
2638    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
2639           "Should not need args for typedef of non-prototype fn");
2640  }
2641  // Finally, we know we have the right number of parameters, install them.
2642  NewFD->setParams(Context, Params.data(), Params.size());
2643
2644  // If name lookup finds a previous declaration that is not in the
2645  // same scope as the new declaration, this may still be an
2646  // acceptable redeclaration.
2647  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2648      !(NewFD->hasLinkage() &&
2649        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2650    PrevDecl = 0;
2651
2652  // Perform semantic checking on the function declaration.
2653  bool OverloadableAttrRequired = false; // FIXME: HACK!
2654  CheckFunctionDeclaration(NewFD, PrevDecl, Redeclaration,
2655                           /*FIXME:*/OverloadableAttrRequired);
2656
2657  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
2658    // An out-of-line member function declaration must also be a
2659    // definition (C++ [dcl.meaning]p1).
2660    if (!IsFunctionDefinition && !isFriend) {
2661      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2662        << D.getCXXScopeSpec().getRange();
2663      NewFD->setInvalidDecl();
2664    } else if (!Redeclaration && (!PrevDecl || !isa<UsingDecl>(PrevDecl))) {
2665      // The user tried to provide an out-of-line definition for a
2666      // function that is a member of a class or namespace, but there
2667      // was no such member function declared (C++ [class.mfct]p2,
2668      // C++ [namespace.memdef]p2). For example:
2669      //
2670      // class X {
2671      //   void f() const;
2672      // };
2673      //
2674      // void X::f() { } // ill-formed
2675      //
2676      // Complain about this problem, and attempt to suggest close
2677      // matches (e.g., those that differ only in cv-qualifiers and
2678      // whether the parameter types are references).
2679      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2680        << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
2681      NewFD->setInvalidDecl();
2682
2683      LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
2684                                              true);
2685      assert(!Prev.isAmbiguous() &&
2686             "Cannot have an ambiguity in previous-declaration lookup");
2687      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2688           Func != FuncEnd; ++Func) {
2689        if (isa<FunctionDecl>(*Func) &&
2690            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2691          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2692      }
2693
2694      PrevDecl = 0;
2695    }
2696  }
2697
2698  // Handle attributes. We need to have merged decls when handling attributes
2699  // (for example to check for conflicts, etc).
2700  // FIXME: This needs to happen before we merge declarations. Then,
2701  // let attribute merging cope with attribute conflicts.
2702  ProcessDeclAttributes(S, NewFD, D);
2703
2704  // attributes declared post-definition are currently ignored
2705  if (PrevDecl) {
2706    const FunctionDecl *Def, *PrevFD = dyn_cast<FunctionDecl>(PrevDecl);
2707    if (PrevFD && PrevFD->getBody(Def) && D.hasAttributes()) {
2708      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
2709      Diag(Def->getLocation(), diag::note_previous_definition);
2710    }
2711  }
2712
2713  AddKnownFunctionAttributes(NewFD);
2714
2715  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2716    // If a function name is overloadable in C, then every function
2717    // with that name must be marked "overloadable".
2718    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2719      << Redeclaration << NewFD;
2720    if (PrevDecl)
2721      Diag(PrevDecl->getLocation(),
2722           diag::note_attribute_overloadable_prev_overload);
2723    NewFD->addAttr(::new (Context) OverloadableAttr());
2724  }
2725
2726  // If this is a locally-scoped extern C function, update the
2727  // map of such names.
2728  if (CurContext->isFunctionOrMethod() && NewFD->isExternC(Context)
2729      && !NewFD->isInvalidDecl())
2730    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2731
2732  // Set this FunctionDecl's range up to the right paren.
2733  NewFD->setLocEnd(D.getSourceRange().getEnd());
2734
2735  if (FunctionTemplate && NewFD->isInvalidDecl())
2736    FunctionTemplate->setInvalidDecl();
2737
2738  if (FunctionTemplate)
2739    return FunctionTemplate;
2740
2741  return NewFD;
2742}
2743
2744/// \brief Perform semantic checking of a new function declaration.
2745///
2746/// Performs semantic analysis of the new function declaration
2747/// NewFD. This routine performs all semantic checking that does not
2748/// require the actual declarator involved in the declaration, and is
2749/// used both for the declaration of functions as they are parsed
2750/// (called via ActOnDeclarator) and for the declaration of functions
2751/// that have been instantiated via C++ template instantiation (called
2752/// via InstantiateDecl).
2753///
2754/// This sets NewFD->isInvalidDecl() to true if there was an error.
2755void Sema::CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl,
2756                                    bool &Redeclaration,
2757                                    bool &OverloadableAttrRequired) {
2758  // If NewFD is already known erroneous, don't do any of this checking.
2759  if (NewFD->isInvalidDecl())
2760    return;
2761
2762  if (NewFD->getResultType()->isVariablyModifiedType()) {
2763    // Functions returning a variably modified type violate C99 6.7.5.2p2
2764    // because all functions have linkage.
2765    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
2766    return NewFD->setInvalidDecl();
2767  }
2768
2769  if (NewFD->isMain()) CheckMain(NewFD);
2770
2771  // Semantic checking for this function declaration (in isolation).
2772  if (getLangOptions().CPlusPlus) {
2773    // C++-specific checks.
2774    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
2775      CheckConstructor(Constructor);
2776    } else if (isa<CXXDestructorDecl>(NewFD)) {
2777      CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
2778      QualType ClassType = Context.getTypeDeclType(Record);
2779      if (!ClassType->isDependentType()) {
2780        DeclarationName Name
2781          = Context.DeclarationNames.getCXXDestructorName(
2782                                        Context.getCanonicalType(ClassType));
2783        if (NewFD->getDeclName() != Name) {
2784          Diag(NewFD->getLocation(), diag::err_destructor_name);
2785          return NewFD->setInvalidDecl();
2786        }
2787      }
2788      Record->setUserDeclaredDestructor(true);
2789      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
2790      // user-defined destructor.
2791      Record->setPOD(false);
2792
2793      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
2794      // declared destructor.
2795      // FIXME: C++0x: don't do this for "= default" destructors
2796      Record->setHasTrivialDestructor(false);
2797    } else if (CXXConversionDecl *Conversion
2798               = dyn_cast<CXXConversionDecl>(NewFD))
2799      ActOnConversionDeclarator(Conversion);
2800
2801    // Extra checking for C++ overloaded operators (C++ [over.oper]).
2802    if (NewFD->isOverloadedOperator() &&
2803        CheckOverloadedOperatorDeclaration(NewFD))
2804      return NewFD->setInvalidDecl();
2805  }
2806
2807  // C99 6.7.4p6:
2808  //   [... ] For a function with external linkage, the following
2809  //   restrictions apply: [...] If all of the file scope declarations
2810  //   for a function in a translation unit include the inline
2811  //   function specifier without extern, then the definition in that
2812  //   translation unit is an inline definition. An inline definition
2813  //   does not provide an external definition for the function, and
2814  //   does not forbid an external definition in another translation
2815  //   unit.
2816  //
2817  // Here we determine whether this function, in isolation, would be a
2818  // C99 inline definition. MergeCompatibleFunctionDecls looks at
2819  // previous declarations.
2820  if (NewFD->isInline() && getLangOptions().C99 &&
2821      NewFD->getStorageClass() == FunctionDecl::None &&
2822      NewFD->getDeclContext()->getLookupContext()->isTranslationUnit())
2823    NewFD->setC99InlineDefinition(true);
2824
2825  // Check for a previous declaration of this name.
2826  if (!PrevDecl && NewFD->isExternC(Context)) {
2827    // Since we did not find anything by this name and we're declaring
2828    // an extern "C" function, look for a non-visible extern "C"
2829    // declaration with the same name.
2830    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2831      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
2832    if (Pos != LocallyScopedExternalDecls.end())
2833      PrevDecl = Pos->second;
2834  }
2835
2836  // Merge or overload the declaration with an existing declaration of
2837  // the same name, if appropriate.
2838  if (PrevDecl) {
2839    // Determine whether NewFD is an overload of PrevDecl or
2840    // a declaration that requires merging. If it's an overload,
2841    // there's no more work to do here; we'll just add the new
2842    // function to the scope.
2843    OverloadedFunctionDecl::function_iterator MatchedDecl;
2844
2845    if (!getLangOptions().CPlusPlus &&
2846        AllowOverloadingOfFunction(PrevDecl, Context)) {
2847      OverloadableAttrRequired = true;
2848
2849      // Functions marked "overloadable" must have a prototype (that
2850      // we can't get through declaration merging).
2851      if (!NewFD->getType()->getAsFunctionProtoType()) {
2852        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
2853          << NewFD;
2854        Redeclaration = true;
2855
2856        // Turn this into a variadic function with no parameters.
2857        QualType R = Context.getFunctionType(
2858                       NewFD->getType()->getAsFunctionType()->getResultType(),
2859                       0, 0, true, 0);
2860        NewFD->setType(R);
2861        return NewFD->setInvalidDecl();
2862      }
2863    }
2864
2865    if (PrevDecl &&
2866        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
2867         !IsOverload(NewFD, PrevDecl, MatchedDecl)) &&
2868        !isa<UsingDecl>(PrevDecl)) {
2869      Redeclaration = true;
2870      Decl *OldDecl = PrevDecl;
2871
2872      // If PrevDecl was an overloaded function, extract the
2873      // FunctionDecl that matched.
2874      if (isa<OverloadedFunctionDecl>(PrevDecl))
2875        OldDecl = *MatchedDecl;
2876
2877      // NewFD and OldDecl represent declarations that need to be
2878      // merged.
2879      if (MergeFunctionDecl(NewFD, OldDecl))
2880        return NewFD->setInvalidDecl();
2881
2882      if (FunctionTemplateDecl *OldTemplateDecl
2883            = dyn_cast<FunctionTemplateDecl>(OldDecl))
2884        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
2885      else {
2886        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
2887          NewFD->setAccess(OldDecl->getAccess());
2888        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
2889      }
2890    }
2891  }
2892
2893  // In C++, check default arguments now that we have merged decls. Unless
2894  // the lexical context is the class, because in this case this is done
2895  // during delayed parsing anyway.
2896  if (getLangOptions().CPlusPlus && !CurContext->isRecord())
2897    CheckCXXDefaultArguments(NewFD);
2898}
2899
2900void Sema::CheckMain(FunctionDecl* FD) {
2901  // C++ [basic.start.main]p3:  A program that declares main to be inline
2902  //   or static is ill-formed.
2903  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
2904  //   shall not appear in a declaration of main.
2905  // static main is not an error under C99, but we should warn about it.
2906  bool isInline = FD->isInline();
2907  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
2908  if (isInline || isStatic) {
2909    unsigned diagID = diag::warn_unusual_main_decl;
2910    if (isInline || getLangOptions().CPlusPlus)
2911      diagID = diag::err_unusual_main_decl;
2912
2913    int which = isStatic + (isInline << 1) - 1;
2914    Diag(FD->getLocation(), diagID) << which;
2915  }
2916
2917  QualType T = FD->getType();
2918  assert(T->isFunctionType() && "function decl is not of function type");
2919  const FunctionType* FT = T->getAsFunctionType();
2920
2921  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
2922    // TODO: add a replacement fixit to turn the return type into 'int'.
2923    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
2924    FD->setInvalidDecl(true);
2925  }
2926
2927  // Treat protoless main() as nullary.
2928  if (isa<FunctionNoProtoType>(FT)) return;
2929
2930  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
2931  unsigned nparams = FTP->getNumArgs();
2932  assert(FD->getNumParams() == nparams);
2933
2934  if (nparams > 3) {
2935    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
2936    FD->setInvalidDecl(true);
2937    nparams = 3;
2938  }
2939
2940  // FIXME: a lot of the following diagnostics would be improved
2941  // if we had some location information about types.
2942
2943  QualType CharPP =
2944    Context.getPointerType(Context.getPointerType(Context.CharTy));
2945  QualType Expected[] = { Context.IntTy, CharPP, CharPP };
2946
2947  for (unsigned i = 0; i < nparams; ++i) {
2948    QualType AT = FTP->getArgType(i);
2949
2950    bool mismatch = true;
2951
2952    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
2953      mismatch = false;
2954    else if (Expected[i] == CharPP) {
2955      // As an extension, the following forms are okay:
2956      //   char const **
2957      //   char const * const *
2958      //   char * const *
2959
2960      QualifierSet qs;
2961      const PointerType* PT;
2962      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
2963          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
2964          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
2965        qs.removeConst();
2966        mismatch = !qs.empty();
2967      }
2968    }
2969
2970    if (mismatch) {
2971      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
2972      // TODO: suggest replacing given type with expected type
2973      FD->setInvalidDecl(true);
2974    }
2975  }
2976
2977  if (nparams == 1 && !FD->isInvalidDecl()) {
2978    Diag(FD->getLocation(), diag::warn_main_one_arg);
2979  }
2980}
2981
2982bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2983  // FIXME: Need strict checking.  In C89, we need to check for
2984  // any assignment, increment, decrement, function-calls, or
2985  // commas outside of a sizeof.  In C99, it's the same list,
2986  // except that the aforementioned are allowed in unevaluated
2987  // expressions.  Everything else falls under the
2988  // "may accept other forms of constant expressions" exception.
2989  // (We never end up here for C++, so the constant expression
2990  // rules there don't matter.)
2991  if (Init->isConstantInitializer(Context))
2992    return false;
2993  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
2994    << Init->getSourceRange();
2995  return true;
2996}
2997
2998void Sema::AddInitializerToDecl(DeclPtrTy dcl, FullExprArg init) {
2999  AddInitializerToDecl(dcl, init.release(), /*DirectInit=*/false);
3000}
3001
3002/// AddInitializerToDecl - Adds the initializer Init to the
3003/// declaration dcl. If DirectInit is true, this is C++ direct
3004/// initialization rather than copy initialization.
3005void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
3006  Decl *RealDecl = dcl.getAs<Decl>();
3007  // If there is no declaration, there was an error parsing it.  Just ignore
3008  // the initializer.
3009  if (RealDecl == 0)
3010    return;
3011
3012  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
3013    // With declarators parsed the way they are, the parser cannot
3014    // distinguish between a normal initializer and a pure-specifier.
3015    // Thus this grotesque test.
3016    IntegerLiteral *IL;
3017    Expr *Init = static_cast<Expr *>(init.get());
3018    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
3019        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
3020      if (Method->isVirtualAsWritten()) {
3021        Method->setPure();
3022
3023        // A class is abstract if at least one function is pure virtual.
3024        cast<CXXRecordDecl>(CurContext)->setAbstract(true);
3025      } else if (!Method->isInvalidDecl()) {
3026        Diag(Method->getLocation(), diag::err_non_virtual_pure)
3027          << Method->getDeclName() << Init->getSourceRange();
3028        Method->setInvalidDecl();
3029      }
3030    } else {
3031      Diag(Method->getLocation(), diag::err_member_function_initialization)
3032        << Method->getDeclName() << Init->getSourceRange();
3033      Method->setInvalidDecl();
3034    }
3035    return;
3036  }
3037
3038  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3039  if (!VDecl) {
3040    if (getLangOptions().CPlusPlus &&
3041        RealDecl->getLexicalDeclContext()->isRecord() &&
3042        isa<NamedDecl>(RealDecl))
3043      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3044        << cast<NamedDecl>(RealDecl)->getDeclName();
3045    else
3046      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3047    RealDecl->setInvalidDecl();
3048    return;
3049  }
3050
3051  if (!VDecl->getType()->isArrayType() &&
3052      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
3053                          diag::err_typecheck_decl_incomplete_type)) {
3054    RealDecl->setInvalidDecl();
3055    return;
3056  }
3057
3058  const VarDecl *Def = 0;
3059  if (VDecl->getDefinition(Def)) {
3060    Diag(VDecl->getLocation(), diag::err_redefinition)
3061      << VDecl->getDeclName();
3062    Diag(Def->getLocation(), diag::note_previous_definition);
3063    VDecl->setInvalidDecl();
3064    return;
3065  }
3066
3067  // Take ownership of the expression, now that we're sure we have somewhere
3068  // to put it.
3069  Expr *Init = init.takeAs<Expr>();
3070  assert(Init && "missing initializer");
3071
3072  // Get the decls type and save a reference for later, since
3073  // CheckInitializerTypes may change it.
3074  QualType DclT = VDecl->getType(), SavT = DclT;
3075  if (VDecl->isBlockVarDecl()) {
3076    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
3077      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
3078      VDecl->setInvalidDecl();
3079    } else if (!VDecl->isInvalidDecl()) {
3080      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3081                                VDecl->getDeclName(), DirectInit))
3082        VDecl->setInvalidDecl();
3083
3084      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3085      // Don't check invalid declarations to avoid emitting useless diagnostics.
3086      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3087        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
3088          CheckForConstantInitializer(Init, DclT);
3089      }
3090    }
3091  } else if (VDecl->isStaticDataMember() &&
3092             VDecl->getLexicalDeclContext()->isRecord()) {
3093    // This is an in-class initialization for a static data member, e.g.,
3094    //
3095    // struct S {
3096    //   static const int value = 17;
3097    // };
3098
3099    // Attach the initializer
3100    VDecl->setInit(Context, Init);
3101
3102    // C++ [class.mem]p4:
3103    //   A member-declarator can contain a constant-initializer only
3104    //   if it declares a static member (9.4) of const integral or
3105    //   const enumeration type, see 9.4.2.
3106    QualType T = VDecl->getType();
3107    if (!T->isDependentType() &&
3108        (!Context.getCanonicalType(T).isConstQualified() ||
3109         !T->isIntegralType())) {
3110      Diag(VDecl->getLocation(), diag::err_member_initialization)
3111        << VDecl->getDeclName() << Init->getSourceRange();
3112      VDecl->setInvalidDecl();
3113    } else {
3114      // C++ [class.static.data]p4:
3115      //   If a static data member is of const integral or const
3116      //   enumeration type, its declaration in the class definition
3117      //   can specify a constant-initializer which shall be an
3118      //   integral constant expression (5.19).
3119      if (!Init->isTypeDependent() &&
3120          !Init->getType()->isIntegralType()) {
3121        // We have a non-dependent, non-integral or enumeration type.
3122        Diag(Init->getSourceRange().getBegin(),
3123             diag::err_in_class_initializer_non_integral_type)
3124          << Init->getType() << Init->getSourceRange();
3125        VDecl->setInvalidDecl();
3126      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
3127        // Check whether the expression is a constant expression.
3128        llvm::APSInt Value;
3129        SourceLocation Loc;
3130        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
3131          Diag(Loc, diag::err_in_class_initializer_non_constant)
3132            << Init->getSourceRange();
3133          VDecl->setInvalidDecl();
3134        } else if (!VDecl->getType()->isDependentType())
3135          ImpCastExprToType(Init, VDecl->getType());
3136      }
3137    }
3138  } else if (VDecl->isFileVarDecl()) {
3139    if (VDecl->getStorageClass() == VarDecl::Extern)
3140      Diag(VDecl->getLocation(), diag::warn_extern_init);
3141    if (!VDecl->isInvalidDecl())
3142      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3143                                VDecl->getDeclName(), DirectInit))
3144        VDecl->setInvalidDecl();
3145
3146    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3147    // Don't check invalid declarations to avoid emitting useless diagnostics.
3148    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3149      // C99 6.7.8p4. All file scoped initializers need to be constant.
3150      CheckForConstantInitializer(Init, DclT);
3151    }
3152  }
3153  // If the type changed, it means we had an incomplete type that was
3154  // completed by the initializer. For example:
3155  //   int ary[] = { 1, 3, 5 };
3156  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
3157  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
3158    VDecl->setType(DclT);
3159    Init->setType(DclT);
3160  }
3161
3162  // Attach the initializer to the decl.
3163  VDecl->setInit(Context, Init);
3164
3165  // If the previous declaration of VDecl was a tentative definition,
3166  // remove it from the set of tentative definitions.
3167  if (VDecl->getPreviousDeclaration() &&
3168      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
3169    llvm::DenseMap<DeclarationName, VarDecl *>::iterator Pos
3170      = TentativeDefinitions.find(VDecl->getDeclName());
3171    assert(Pos != TentativeDefinitions.end() &&
3172           "Unrecorded tentative definition?");
3173    TentativeDefinitions.erase(Pos);
3174  }
3175
3176  return;
3177}
3178
3179void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
3180                                  bool TypeContainsUndeducedAuto) {
3181  Decl *RealDecl = dcl.getAs<Decl>();
3182
3183  // If there is no declaration, there was an error parsing it. Just ignore it.
3184  if (RealDecl == 0)
3185    return;
3186
3187  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
3188    QualType Type = Var->getType();
3189
3190    // Record tentative definitions.
3191    if (Var->isTentativeDefinition(Context))
3192      TentativeDefinitions[Var->getDeclName()] = Var;
3193
3194    // C++ [dcl.init.ref]p3:
3195    //   The initializer can be omitted for a reference only in a
3196    //   parameter declaration (8.3.5), in the declaration of a
3197    //   function return type, in the declaration of a class member
3198    //   within its class declaration (9.2), and where the extern
3199    //   specifier is explicitly used.
3200    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
3201      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
3202        << Var->getDeclName()
3203        << SourceRange(Var->getLocation(), Var->getLocation());
3204      Var->setInvalidDecl();
3205      return;
3206    }
3207
3208    // C++0x [dcl.spec.auto]p3
3209    if (TypeContainsUndeducedAuto) {
3210      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
3211        << Var->getDeclName() << Type;
3212      Var->setInvalidDecl();
3213      return;
3214    }
3215
3216    // C++ [dcl.init]p9:
3217    //
3218    //   If no initializer is specified for an object, and the object
3219    //   is of (possibly cv-qualified) non-POD class type (or array
3220    //   thereof), the object shall be default-initialized; if the
3221    //   object is of const-qualified type, the underlying class type
3222    //   shall have a user-declared default constructor.
3223    if (getLangOptions().CPlusPlus) {
3224      QualType InitType = Type;
3225      if (const ArrayType *Array = Context.getAsArrayType(Type))
3226        InitType = Array->getElementType();
3227      if ((!Var->hasExternalStorage() && !Var->isExternC(Context)) &&
3228          InitType->isRecordType() && !InitType->isDependentType()) {
3229        CXXRecordDecl *RD =
3230          cast<CXXRecordDecl>(InitType->getAs<RecordType>()->getDecl());
3231        CXXConstructorDecl *Constructor = 0;
3232        if (!RequireCompleteType(Var->getLocation(), InitType,
3233                                    diag::err_invalid_incomplete_type_use))
3234          Constructor
3235            = PerformInitializationByConstructor(InitType, 0, 0,
3236                                                 Var->getLocation(),
3237                                               SourceRange(Var->getLocation(),
3238                                                           Var->getLocation()),
3239                                                 Var->getDeclName(),
3240                                                 IK_Default);
3241        if (!Constructor)
3242          Var->setInvalidDecl();
3243        else {
3244          if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor())
3245            InitializeVarWithConstructor(Var, Constructor, InitType, 0, 0);
3246          FinalizeVarWithDestructor(Var, InitType);
3247        }
3248      }
3249    }
3250
3251#if 0
3252    // FIXME: Temporarily disabled because we are not properly parsing
3253    // linkage specifications on declarations, e.g.,
3254    //
3255    //   extern "C" const CGPoint CGPointerZero;
3256    //
3257    // C++ [dcl.init]p9:
3258    //
3259    //     If no initializer is specified for an object, and the
3260    //     object is of (possibly cv-qualified) non-POD class type (or
3261    //     array thereof), the object shall be default-initialized; if
3262    //     the object is of const-qualified type, the underlying class
3263    //     type shall have a user-declared default
3264    //     constructor. Otherwise, if no initializer is specified for
3265    //     an object, the object and its subobjects, if any, have an
3266    //     indeterminate initial value; if the object or any of its
3267    //     subobjects are of const-qualified type, the program is
3268    //     ill-formed.
3269    //
3270    // This isn't technically an error in C, so we don't diagnose it.
3271    //
3272    // FIXME: Actually perform the POD/user-defined default
3273    // constructor check.
3274    if (getLangOptions().CPlusPlus &&
3275        Context.getCanonicalType(Type).isConstQualified() &&
3276        !Var->hasExternalStorage())
3277      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
3278        << Var->getName()
3279        << SourceRange(Var->getLocation(), Var->getLocation());
3280#endif
3281  }
3282}
3283
3284Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
3285                                                   DeclPtrTy *Group,
3286                                                   unsigned NumDecls) {
3287  llvm::SmallVector<Decl*, 8> Decls;
3288
3289  if (DS.isTypeSpecOwned())
3290    Decls.push_back((Decl*)DS.getTypeRep());
3291
3292  for (unsigned i = 0; i != NumDecls; ++i)
3293    if (Decl *D = Group[i].getAs<Decl>())
3294      Decls.push_back(D);
3295
3296  // Perform semantic analysis that depends on having fully processed both
3297  // the declarator and initializer.
3298  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
3299    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
3300    if (!IDecl)
3301      continue;
3302    QualType T = IDecl->getType();
3303
3304    // Block scope. C99 6.7p7: If an identifier for an object is declared with
3305    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
3306    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
3307      if (!IDecl->isInvalidDecl() &&
3308          RequireCompleteType(IDecl->getLocation(), T,
3309                              diag::err_typecheck_decl_incomplete_type))
3310        IDecl->setInvalidDecl();
3311    }
3312    // File scope. C99 6.9.2p2: A declaration of an identifier for an
3313    // object that has file scope without an initializer, and without a
3314    // storage-class specifier or with the storage-class specifier "static",
3315    // constitutes a tentative definition. Note: A tentative definition with
3316    // external linkage is valid (C99 6.2.2p5).
3317    if (IDecl->isTentativeDefinition(Context) && !IDecl->isInvalidDecl()) {
3318      if (const IncompleteArrayType *ArrayT
3319          = Context.getAsIncompleteArrayType(T)) {
3320        if (RequireCompleteType(IDecl->getLocation(),
3321                                ArrayT->getElementType(),
3322                                diag::err_illegal_decl_array_incomplete_type))
3323          IDecl->setInvalidDecl();
3324      } else if (IDecl->getStorageClass() == VarDecl::Static) {
3325        // C99 6.9.2p3: If the declaration of an identifier for an object is
3326        // a tentative definition and has internal linkage (C99 6.2.2p3), the
3327        // declared type shall not be an incomplete type.
3328        // NOTE: code such as the following
3329        //     static struct s;
3330        //     struct s { int a; };
3331        // is accepted by gcc. Hence here we issue a warning instead of
3332        // an error and we do not invalidate the static declaration.
3333        // NOTE: to avoid multiple warnings, only check the first declaration.
3334        if (IDecl->getPreviousDeclaration() == 0)
3335          RequireCompleteType(IDecl->getLocation(), T,
3336                              diag::ext_typecheck_decl_incomplete_type);
3337      }
3338    }
3339  }
3340  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
3341                                                   Decls.data(), Decls.size()));
3342}
3343
3344
3345/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
3346/// to introduce parameters into function prototype scope.
3347Sema::DeclPtrTy
3348Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
3349  const DeclSpec &DS = D.getDeclSpec();
3350
3351  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
3352  VarDecl::StorageClass StorageClass = VarDecl::None;
3353  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
3354    StorageClass = VarDecl::Register;
3355  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
3356    Diag(DS.getStorageClassSpecLoc(),
3357         diag::err_invalid_storage_class_in_func_decl);
3358    D.getMutableDeclSpec().ClearStorageClassSpecs();
3359  }
3360
3361  if (D.getDeclSpec().isThreadSpecified())
3362    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3363
3364  DiagnoseFunctionSpecifiers(D);
3365
3366  // Check that there are no default arguments inside the type of this
3367  // parameter (C++ only).
3368  if (getLangOptions().CPlusPlus)
3369    CheckExtraCXXDefaultArguments(D);
3370
3371  TagDecl *OwnedDecl = 0;
3372  QualType parmDeclType = GetTypeForDeclarator(D, S, /*Skip=*/0, &OwnedDecl);
3373
3374  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
3375    // C++ [dcl.fct]p6:
3376    //   Types shall not be defined in return or parameter types.
3377    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
3378      << Context.getTypeDeclType(OwnedDecl);
3379  }
3380
3381  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
3382  // Can this happen for params?  We already checked that they don't conflict
3383  // among each other.  Here they can only shadow globals, which is ok.
3384  IdentifierInfo *II = D.getIdentifier();
3385  if (II) {
3386    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
3387      if (PrevDecl->isTemplateParameter()) {
3388        // Maybe we will complain about the shadowed template parameter.
3389        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3390        // Just pretend that we didn't see the previous declaration.
3391        PrevDecl = 0;
3392      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
3393        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
3394
3395        // Recover by removing the name
3396        II = 0;
3397        D.SetIdentifier(0, D.getIdentifierLoc());
3398      }
3399    }
3400  }
3401
3402  // Parameters can not be abstract class types.
3403  // For record types, this is done by the AbstractClassUsageDiagnoser once
3404  // the class has been completely parsed.
3405  if (!CurContext->isRecord() &&
3406      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
3407                             diag::err_abstract_type_in_decl,
3408                             AbstractParamType))
3409    D.setInvalidType(true);
3410
3411  QualType T = adjustParameterType(parmDeclType);
3412
3413  ParmVarDecl *New;
3414  if (T == parmDeclType) // parameter type did not need adjustment
3415    New = ParmVarDecl::Create(Context, CurContext,
3416                              D.getIdentifierLoc(), II,
3417                              parmDeclType, StorageClass,
3418                              0);
3419  else // keep track of both the adjusted and unadjusted types
3420    New = OriginalParmVarDecl::Create(Context, CurContext,
3421                                      D.getIdentifierLoc(), II, T,
3422                                      parmDeclType, StorageClass, 0);
3423
3424  if (D.isInvalidType())
3425    New->setInvalidDecl();
3426
3427  // Parameter declarators cannot be interface types. All ObjC objects are
3428  // passed by reference.
3429  if (T->isObjCInterfaceType()) {
3430    Diag(D.getIdentifierLoc(),
3431         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
3432    New->setInvalidDecl();
3433  }
3434
3435  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
3436  if (D.getCXXScopeSpec().isSet()) {
3437    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
3438      << D.getCXXScopeSpec().getRange();
3439    New->setInvalidDecl();
3440  }
3441
3442  // Add the parameter declaration into this scope.
3443  S->AddDecl(DeclPtrTy::make(New));
3444  if (II)
3445    IdResolver.AddDecl(New);
3446
3447  ProcessDeclAttributes(S, New, D);
3448
3449  if (New->hasAttr<BlocksAttr>()) {
3450    Diag(New->getLocation(), diag::err_block_on_nonlocal);
3451  }
3452  return DeclPtrTy::make(New);
3453}
3454
3455void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
3456                                           SourceLocation LocAfterDecls) {
3457  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3458         "Not a function declarator!");
3459  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3460
3461  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
3462  // for a K&R function.
3463  if (!FTI.hasPrototype) {
3464    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
3465      --i;
3466      if (FTI.ArgInfo[i].Param == 0) {
3467        std::string Code = "  int ";
3468        Code += FTI.ArgInfo[i].Ident->getName();
3469        Code += ";\n";
3470        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
3471          << FTI.ArgInfo[i].Ident
3472          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code);
3473
3474        // Implicitly declare the argument as type 'int' for lack of a better
3475        // type.
3476        DeclSpec DS;
3477        const char* PrevSpec; // unused
3478        unsigned DiagID; // unused
3479        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
3480                           PrevSpec, DiagID);
3481        Declarator ParamD(DS, Declarator::KNRTypeListContext);
3482        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
3483        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
3484      }
3485    }
3486  }
3487}
3488
3489Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
3490                                              Declarator &D) {
3491  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
3492  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3493         "Not a function declarator!");
3494  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3495
3496  if (FTI.hasPrototype) {
3497    // FIXME: Diagnose arguments without names in C.
3498  }
3499
3500  Scope *ParentScope = FnBodyScope->getParent();
3501
3502  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
3503                                  MultiTemplateParamsArg(*this),
3504                                  /*IsFunctionDefinition=*/true);
3505  return ActOnStartOfFunctionDef(FnBodyScope, DP);
3506}
3507
3508Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
3509  if (!D)
3510    return D;
3511  FunctionDecl *FD = cast<FunctionDecl>(D.getAs<Decl>());
3512
3513  CurFunctionNeedsScopeChecking = false;
3514
3515  // See if this is a redefinition.
3516  const FunctionDecl *Definition;
3517  if (FD->getBody(Definition)) {
3518    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
3519    Diag(Definition->getLocation(), diag::note_previous_definition);
3520  }
3521
3522  // Builtin functions cannot be defined.
3523  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3524    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3525      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
3526      FD->setInvalidDecl();
3527    }
3528  }
3529
3530  // The return type of a function definition must be complete
3531  // (C99 6.9.1p3, C++ [dcl.fct]p6).
3532  QualType ResultType = FD->getResultType();
3533  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
3534      !FD->isInvalidDecl() &&
3535      RequireCompleteType(FD->getLocation(), ResultType,
3536                          diag::err_func_def_incomplete_result))
3537    FD->setInvalidDecl();
3538
3539  // GNU warning -Wmissing-prototypes:
3540  //   Warn if a global function is defined without a previous
3541  //   prototype declaration. This warning is issued even if the
3542  //   definition itself provides a prototype. The aim is to detect
3543  //   global functions that fail to be declared in header files.
3544  if (!FD->isInvalidDecl() && FD->isGlobal() && !isa<CXXMethodDecl>(FD) &&
3545      !FD->isMain()) {
3546    bool MissingPrototype = true;
3547    for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
3548         Prev; Prev = Prev->getPreviousDeclaration()) {
3549      // Ignore any declarations that occur in function or method
3550      // scope, because they aren't visible from the header.
3551      if (Prev->getDeclContext()->isFunctionOrMethod())
3552        continue;
3553
3554      MissingPrototype = !Prev->getType()->isFunctionProtoType();
3555      break;
3556    }
3557
3558    if (MissingPrototype)
3559      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
3560  }
3561
3562  if (FnBodyScope)
3563    PushDeclContext(FnBodyScope, FD);
3564
3565  // Check the validity of our function parameters
3566  CheckParmsForFunctionDef(FD);
3567
3568  // Introduce our parameters into the function scope
3569  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
3570    ParmVarDecl *Param = FD->getParamDecl(p);
3571    Param->setOwningFunction(FD);
3572
3573    // If this has an identifier, add it to the scope stack.
3574    if (Param->getIdentifier() && FnBodyScope)
3575      PushOnScopeChains(Param, FnBodyScope);
3576  }
3577
3578  // Checking attributes of current function definition
3579  // dllimport attribute.
3580  if (FD->getAttr<DLLImportAttr>() &&
3581      (!FD->getAttr<DLLExportAttr>())) {
3582    // dllimport attribute cannot be applied to definition.
3583    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
3584      Diag(FD->getLocation(),
3585           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
3586        << "dllimport";
3587      FD->setInvalidDecl();
3588      return DeclPtrTy::make(FD);
3589    } else {
3590      // If a symbol previously declared dllimport is later defined, the
3591      // attribute is ignored in subsequent references, and a warning is
3592      // emitted.
3593      Diag(FD->getLocation(),
3594           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
3595        << FD->getNameAsCString() << "dllimport";
3596    }
3597  }
3598  return DeclPtrTy::make(FD);
3599}
3600
3601Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
3602  return ActOnFinishFunctionBody(D, move(BodyArg), false);
3603}
3604
3605Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
3606                                              bool IsInstantiation) {
3607  Decl *dcl = D.getAs<Decl>();
3608  Stmt *Body = BodyArg.takeAs<Stmt>();
3609  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
3610    FD->setBody(Body);
3611    if (FD->isMain())
3612      // C and C++ allow for main to automagically return 0.
3613      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
3614      FD->setHasImplicitReturnZero(true);
3615    else
3616      CheckFallThroughForFunctionDef(FD, Body);
3617
3618    if (!FD->isInvalidDecl())
3619      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
3620
3621    // C++ [basic.def.odr]p2:
3622    //   [...] A virtual member function is used if it is not pure. [...]
3623    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
3624      if (Method->isVirtual() && !Method->isPure())
3625        MarkDeclarationReferenced(Method->getLocation(), Method);
3626
3627    assert(FD == getCurFunctionDecl() && "Function parsing confused");
3628  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
3629    assert(MD == getCurMethodDecl() && "Method parsing confused");
3630    MD->setBody(Body);
3631    CheckFallThroughForFunctionDef(MD, Body);
3632    MD->setEndLoc(Body->getLocEnd());
3633
3634    if (!MD->isInvalidDecl())
3635      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
3636  } else {
3637    Body->Destroy(Context);
3638    return DeclPtrTy();
3639  }
3640  if (!IsInstantiation)
3641    PopDeclContext();
3642
3643  // Verify and clean out per-function state.
3644
3645  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
3646
3647  // Check goto/label use.
3648  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
3649       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
3650    LabelStmt *L = I->second;
3651
3652    // Verify that we have no forward references left.  If so, there was a goto
3653    // or address of a label taken, but no definition of it.  Label fwd
3654    // definitions are indicated with a null substmt.
3655    if (L->getSubStmt() != 0)
3656      continue;
3657
3658    // Emit error.
3659    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
3660
3661    // At this point, we have gotos that use the bogus label.  Stitch it into
3662    // the function body so that they aren't leaked and that the AST is well
3663    // formed.
3664    if (Body == 0) {
3665      // The whole function wasn't parsed correctly, just delete this.
3666      L->Destroy(Context);
3667      continue;
3668    }
3669
3670    // Otherwise, the body is valid: we want to stitch the label decl into the
3671    // function somewhere so that it is properly owned and so that the goto
3672    // has a valid target.  Do this by creating a new compound stmt with the
3673    // label in it.
3674
3675    // Give the label a sub-statement.
3676    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
3677
3678    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
3679                               cast<CXXTryStmt>(Body)->getTryBlock() :
3680                               cast<CompoundStmt>(Body);
3681    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
3682    Elements.push_back(L);
3683    Compound->setStmts(Context, &Elements[0], Elements.size());
3684  }
3685  FunctionLabelMap.clear();
3686
3687  if (!Body) return D;
3688
3689  // Verify that that gotos and switch cases don't jump into scopes illegally.
3690  if (CurFunctionNeedsScopeChecking)
3691    DiagnoseInvalidJumps(Body);
3692
3693  // C++ constructors that have function-try-blocks can't have return
3694  // statements in the handlers of that block. (C++ [except.handle]p14)
3695  // Verify this.
3696  if (isa<CXXConstructorDecl>(dcl) && isa<CXXTryStmt>(Body))
3697    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
3698
3699  if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
3700    Destructor->computeBaseOrMembersToDestroy(Context);
3701  return D;
3702}
3703
3704/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
3705/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
3706NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
3707                                          IdentifierInfo &II, Scope *S) {
3708  // Before we produce a declaration for an implicitly defined
3709  // function, see whether there was a locally-scoped declaration of
3710  // this name as a function or variable. If so, use that
3711  // (non-visible) declaration, and complain about it.
3712  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3713    = LocallyScopedExternalDecls.find(&II);
3714  if (Pos != LocallyScopedExternalDecls.end()) {
3715    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
3716    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
3717    return Pos->second;
3718  }
3719
3720  // Extension in C99.  Legal in C90, but warn about it.
3721  if (getLangOptions().C99)
3722    Diag(Loc, diag::ext_implicit_function_decl) << &II;
3723  else
3724    Diag(Loc, diag::warn_implicit_function_decl) << &II;
3725
3726  // FIXME: handle stuff like:
3727  // void foo() { extern float X(); }
3728  // void bar() { X(); }  <-- implicit decl for X in another scope.
3729
3730  // Set a Declarator for the implicit definition: int foo();
3731  const char *Dummy;
3732  DeclSpec DS;
3733  unsigned DiagID;
3734  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
3735  Error = Error; // Silence warning.
3736  assert(!Error && "Error setting up implicit decl!");
3737  Declarator D(DS, Declarator::BlockContext);
3738  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
3739                                             0, 0, false, SourceLocation(),
3740                                             false, 0,0,0, Loc, D),
3741                SourceLocation());
3742  D.SetIdentifier(&II, Loc);
3743
3744  // Insert this function into translation-unit scope.
3745
3746  DeclContext *PrevDC = CurContext;
3747  CurContext = Context.getTranslationUnitDecl();
3748
3749  FunctionDecl *FD =
3750 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
3751  FD->setImplicit();
3752
3753  CurContext = PrevDC;
3754
3755  AddKnownFunctionAttributes(FD);
3756
3757  return FD;
3758}
3759
3760/// \brief Adds any function attributes that we know a priori based on
3761/// the declaration of this function.
3762///
3763/// These attributes can apply both to implicitly-declared builtins
3764/// (like __builtin___printf_chk) or to library-declared functions
3765/// like NSLog or printf.
3766void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
3767  if (FD->isInvalidDecl())
3768    return;
3769
3770  // If this is a built-in function, map its builtin attributes to
3771  // actual attributes.
3772  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3773    // Handle printf-formatting attributes.
3774    unsigned FormatIdx;
3775    bool HasVAListArg;
3776    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
3777      if (!FD->getAttr<FormatAttr>())
3778        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
3779                                             HasVAListArg ? 0 : FormatIdx + 2));
3780    }
3781
3782    // Mark const if we don't care about errno and that is the only
3783    // thing preventing the function from being const. This allows
3784    // IRgen to use LLVM intrinsics for such functions.
3785    if (!getLangOptions().MathErrno &&
3786        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
3787      if (!FD->getAttr<ConstAttr>())
3788        FD->addAttr(::new (Context) ConstAttr());
3789    }
3790
3791    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
3792      FD->addAttr(::new (Context) NoReturnAttr());
3793  }
3794
3795  IdentifierInfo *Name = FD->getIdentifier();
3796  if (!Name)
3797    return;
3798  if ((!getLangOptions().CPlusPlus &&
3799       FD->getDeclContext()->isTranslationUnit()) ||
3800      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
3801       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
3802       LinkageSpecDecl::lang_c)) {
3803    // Okay: this could be a libc/libm/Objective-C function we know
3804    // about.
3805  } else
3806    return;
3807
3808  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
3809    // FIXME: NSLog and NSLogv should be target specific
3810    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
3811      // FIXME: We known better than our headers.
3812      const_cast<FormatAttr *>(Format)->setType("printf");
3813    } else
3814      FD->addAttr(::new (Context) FormatAttr("printf", 1,
3815                                             Name->isStr("NSLogv") ? 0 : 2));
3816  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
3817    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
3818    // target-specific builtins, perhaps?
3819    if (!FD->getAttr<FormatAttr>())
3820      FD->addAttr(::new (Context) FormatAttr("printf", 2,
3821                                             Name->isStr("vasprintf") ? 0 : 3));
3822  }
3823}
3824
3825TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T) {
3826  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
3827  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3828
3829  // Scope manipulation handled by caller.
3830  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
3831                                           D.getIdentifierLoc(),
3832                                           D.getIdentifier(),
3833                                           T);
3834
3835  if (TagType *TT = dyn_cast<TagType>(T)) {
3836    TagDecl *TD = TT->getDecl();
3837
3838    // If the TagDecl that the TypedefDecl points to is an anonymous decl
3839    // keep track of the TypedefDecl.
3840    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
3841      TD->setTypedefForAnonDecl(NewTD);
3842  }
3843
3844  if (D.isInvalidType())
3845    NewTD->setInvalidDecl();
3846  return NewTD;
3847}
3848
3849
3850/// \brief Determine whether a tag with a given kind is acceptable
3851/// as a redeclaration of the given tag declaration.
3852///
3853/// \returns true if the new tag kind is acceptable, false otherwise.
3854bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
3855                                        TagDecl::TagKind NewTag,
3856                                        SourceLocation NewTagLoc,
3857                                        const IdentifierInfo &Name) {
3858  // C++ [dcl.type.elab]p3:
3859  //   The class-key or enum keyword present in the
3860  //   elaborated-type-specifier shall agree in kind with the
3861  //   declaration to which the name in theelaborated-type-specifier
3862  //   refers. This rule also applies to the form of
3863  //   elaborated-type-specifier that declares a class-name or
3864  //   friend class since it can be construed as referring to the
3865  //   definition of the class. Thus, in any
3866  //   elaborated-type-specifier, the enum keyword shall be used to
3867  //   refer to an enumeration (7.2), the union class-keyshall be
3868  //   used to refer to a union (clause 9), and either the class or
3869  //   struct class-key shall be used to refer to a class (clause 9)
3870  //   declared using the class or struct class-key.
3871  TagDecl::TagKind OldTag = Previous->getTagKind();
3872  if (OldTag == NewTag)
3873    return true;
3874
3875  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
3876      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
3877    // Warn about the struct/class tag mismatch.
3878    bool isTemplate = false;
3879    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
3880      isTemplate = Record->getDescribedClassTemplate();
3881
3882    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
3883      << (NewTag == TagDecl::TK_class)
3884      << isTemplate << &Name
3885      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
3886                              OldTag == TagDecl::TK_class? "class" : "struct");
3887    Diag(Previous->getLocation(), diag::note_previous_use);
3888    return true;
3889  }
3890  return false;
3891}
3892
3893/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
3894/// former case, Name will be non-null.  In the later case, Name will be null.
3895/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
3896/// reference/declaration/definition of a tag.
3897Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
3898                               SourceLocation KWLoc, const CXXScopeSpec &SS,
3899                               IdentifierInfo *Name, SourceLocation NameLoc,
3900                               AttributeList *Attr, AccessSpecifier AS,
3901                               MultiTemplateParamsArg TemplateParameterLists,
3902                               bool &OwnedDecl) {
3903  // If this is not a definition, it must have a name.
3904  assert((Name != 0 || TUK == TUK_Definition) &&
3905         "Nameless record must be a definition!");
3906
3907  OwnedDecl = false;
3908  TagDecl::TagKind Kind;
3909  switch (TagSpec) {
3910  default: assert(0 && "Unknown tag type!");
3911  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3912  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3913  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3914  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
3915  }
3916
3917  if (TUK != TUK_Reference) {
3918    if (TemplateParameterList *TemplateParams
3919          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
3920                        (TemplateParameterList**)TemplateParameterLists.get(),
3921                                              TemplateParameterLists.size())) {
3922      if (TemplateParams->size() > 0) {
3923        // This is a declaration or definition of a class template (which may
3924        // be a member of another template).
3925        OwnedDecl = false;
3926        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
3927                                               SS, Name, NameLoc, Attr,
3928                                               move(TemplateParameterLists),
3929                                               AS);
3930        return Result.get();
3931      } else {
3932        // FIXME: diagnose the extraneous 'template<>', once we recover
3933        // slightly better in ParseTemplate.cpp from bogus template
3934        // parameters.
3935      }
3936    }
3937  }
3938
3939  DeclContext *SearchDC = CurContext;
3940  DeclContext *DC = CurContext;
3941  NamedDecl *PrevDecl = 0;
3942
3943  bool Invalid = false;
3944
3945  if (Name && SS.isNotEmpty()) {
3946    // We have a nested-name tag ('struct foo::bar').
3947
3948    // Check for invalid 'foo::'.
3949    if (SS.isInvalid()) {
3950      Name = 0;
3951      goto CreateNewDecl;
3952    }
3953
3954    if (RequireCompleteDeclContext(SS))
3955      return DeclPtrTy::make((Decl *)0);
3956
3957    DC = computeDeclContext(SS, true);
3958    SearchDC = DC;
3959    // Look-up name inside 'foo::'.
3960    PrevDecl
3961      = dyn_cast_or_null<TagDecl>(
3962               LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
3963
3964    // A tag 'foo::bar' must already exist.
3965    if (PrevDecl == 0) {
3966      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
3967      Name = 0;
3968      Invalid = true;
3969      goto CreateNewDecl;
3970    }
3971  } else if (Name) {
3972    // If this is a named struct, check to see if there was a previous forward
3973    // declaration or definition.
3974    // FIXME: We're looking into outer scopes here, even when we
3975    // shouldn't be. Doing so can result in ambiguities that we
3976    // shouldn't be diagnosing.
3977    LookupResult R = LookupName(S, Name, LookupTagName,
3978                                /*RedeclarationOnly=*/(TUK != TUK_Reference));
3979    if (R.isAmbiguous()) {
3980      DiagnoseAmbiguousLookup(R, Name, NameLoc);
3981      // FIXME: This is not best way to recover from case like:
3982      //
3983      // struct S s;
3984      //
3985      // causes needless "incomplete type" error later.
3986      Name = 0;
3987      PrevDecl = 0;
3988      Invalid = true;
3989    } else
3990      PrevDecl = R;
3991
3992    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
3993      // FIXME: This makes sure that we ignore the contexts associated
3994      // with C structs, unions, and enums when looking for a matching
3995      // tag declaration or definition. See the similar lookup tweak
3996      // in Sema::LookupName; is there a better way to deal with this?
3997      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
3998        SearchDC = SearchDC->getParent();
3999    }
4000  }
4001
4002  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4003    // Maybe we will complain about the shadowed template parameter.
4004    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
4005    // Just pretend that we didn't see the previous declaration.
4006    PrevDecl = 0;
4007  }
4008
4009  if (PrevDecl) {
4010    // Check whether the previous declaration is usable.
4011    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
4012
4013    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
4014      // If this is a use of a previous tag, or if the tag is already declared
4015      // in the same scope (so that the definition/declaration completes or
4016      // rementions the tag), reuse the decl.
4017      if (TUK == TUK_Reference || TUK == TUK_Friend ||
4018          isDeclInScope(PrevDecl, SearchDC, S)) {
4019        // Make sure that this wasn't declared as an enum and now used as a
4020        // struct or something similar.
4021        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
4022          bool SafeToContinue
4023            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
4024               Kind != TagDecl::TK_enum);
4025          if (SafeToContinue)
4026            Diag(KWLoc, diag::err_use_with_wrong_tag)
4027              << Name
4028              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
4029                                                  PrevTagDecl->getKindName());
4030          else
4031            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
4032          Diag(PrevDecl->getLocation(), diag::note_previous_use);
4033
4034          if (SafeToContinue)
4035            Kind = PrevTagDecl->getTagKind();
4036          else {
4037            // Recover by making this an anonymous redefinition.
4038            Name = 0;
4039            PrevDecl = 0;
4040            Invalid = true;
4041          }
4042        }
4043
4044        if (!Invalid) {
4045          // If this is a use, just return the declaration we found.
4046
4047          // FIXME: In the future, return a variant or some other clue
4048          // for the consumer of this Decl to know it doesn't own it.
4049          // For our current ASTs this shouldn't be a problem, but will
4050          // need to be changed with DeclGroups.
4051          if (TUK == TUK_Reference)
4052            return DeclPtrTy::make(PrevDecl);
4053
4054          // If this is a friend, make sure we create the new
4055          // declaration in the appropriate semantic context.
4056          if (TUK == TUK_Friend)
4057            SearchDC = PrevDecl->getDeclContext();
4058
4059          // Diagnose attempts to redefine a tag.
4060          if (TUK == TUK_Definition) {
4061            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
4062              Diag(NameLoc, diag::err_redefinition) << Name;
4063              Diag(Def->getLocation(), diag::note_previous_definition);
4064              // If this is a redefinition, recover by making this
4065              // struct be anonymous, which will make any later
4066              // references get the previous definition.
4067              Name = 0;
4068              PrevDecl = 0;
4069              Invalid = true;
4070            } else {
4071              // If the type is currently being defined, complain
4072              // about a nested redefinition.
4073              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
4074              if (Tag->isBeingDefined()) {
4075                Diag(NameLoc, diag::err_nested_redefinition) << Name;
4076                Diag(PrevTagDecl->getLocation(),
4077                     diag::note_previous_definition);
4078                Name = 0;
4079                PrevDecl = 0;
4080                Invalid = true;
4081              }
4082            }
4083
4084            // Okay, this is definition of a previously declared or referenced
4085            // tag PrevDecl. We're going to create a new Decl for it.
4086          }
4087        }
4088        // If we get here we have (another) forward declaration or we
4089        // have a definition.  Just create a new decl.
4090
4091      } else {
4092        // If we get here, this is a definition of a new tag type in a nested
4093        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
4094        // new decl/type.  We set PrevDecl to NULL so that the entities
4095        // have distinct types.
4096        PrevDecl = 0;
4097      }
4098      // If we get here, we're going to create a new Decl. If PrevDecl
4099      // is non-NULL, it's a definition of the tag declared by
4100      // PrevDecl. If it's NULL, we have a new definition.
4101    } else {
4102      // PrevDecl is a namespace, template, or anything else
4103      // that lives in the IDNS_Tag identifier namespace.
4104      if (isDeclInScope(PrevDecl, SearchDC, S)) {
4105        // The tag name clashes with a namespace name, issue an error and
4106        // recover by making this tag be anonymous.
4107        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
4108        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4109        Name = 0;
4110        PrevDecl = 0;
4111        Invalid = true;
4112      } else {
4113        // The existing declaration isn't relevant to us; we're in a
4114        // new scope, so clear out the previous declaration.
4115        PrevDecl = 0;
4116      }
4117    }
4118  } else if (TUK == TUK_Reference && SS.isEmpty() && Name &&
4119             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
4120    // C++ [basic.scope.pdecl]p5:
4121    //   -- for an elaborated-type-specifier of the form
4122    //
4123    //          class-key identifier
4124    //
4125    //      if the elaborated-type-specifier is used in the
4126    //      decl-specifier-seq or parameter-declaration-clause of a
4127    //      function defined in namespace scope, the identifier is
4128    //      declared as a class-name in the namespace that contains
4129    //      the declaration; otherwise, except as a friend
4130    //      declaration, the identifier is declared in the smallest
4131    //      non-class, non-function-prototype scope that contains the
4132    //      declaration.
4133    //
4134    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
4135    // C structs and unions.
4136    //
4137    // GNU C also supports this behavior as part of its incomplete
4138    // enum types extension, while GNU C++ does not.
4139    //
4140    // Find the context where we'll be declaring the tag.
4141    // FIXME: We would like to maintain the current DeclContext as the
4142    // lexical context,
4143    while (SearchDC->isRecord())
4144      SearchDC = SearchDC->getParent();
4145
4146    // Find the scope where we'll be declaring the tag.
4147    while (S->isClassScope() ||
4148           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
4149           ((S->getFlags() & Scope::DeclScope) == 0) ||
4150           (S->getEntity() &&
4151            ((DeclContext *)S->getEntity())->isTransparentContext()))
4152      S = S->getParent();
4153
4154  } else if (TUK == TUK_Friend && SS.isEmpty() && Name) {
4155    // C++ [namespace.memdef]p3:
4156    //   If a friend declaration in a non-local class first declares a
4157    //   class or function, the friend class or function is a member of
4158    //   the innermost enclosing namespace.
4159    while (!SearchDC->isFileContext())
4160      SearchDC = SearchDC->getParent();
4161
4162    // The entity of a decl scope is a DeclContext; see PushDeclContext.
4163    while (S->getEntity() != SearchDC)
4164      S = S->getParent();
4165  }
4166
4167CreateNewDecl:
4168
4169  // If there is an identifier, use the location of the identifier as the
4170  // location of the decl, otherwise use the location of the struct/union
4171  // keyword.
4172  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
4173
4174  // Otherwise, create a new declaration. If there is a previous
4175  // declaration of the same entity, the two will be linked via
4176  // PrevDecl.
4177  TagDecl *New;
4178
4179  if (Kind == TagDecl::TK_enum) {
4180    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4181    // enum X { A, B, C } D;    D should chain to X.
4182    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
4183                           cast_or_null<EnumDecl>(PrevDecl));
4184    // If this is an undefined enum, warn.
4185    if (TUK != TUK_Definition && !Invalid)  {
4186      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
4187                                              : diag::ext_forward_ref_enum;
4188      Diag(Loc, DK);
4189    }
4190  } else {
4191    // struct/union/class
4192
4193    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4194    // struct X { int A; } D;    D should chain to X.
4195    if (getLangOptions().CPlusPlus)
4196      // FIXME: Look for a way to use RecordDecl for simple structs.
4197      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4198                                  cast_or_null<CXXRecordDecl>(PrevDecl));
4199    else
4200      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4201                               cast_or_null<RecordDecl>(PrevDecl));
4202  }
4203
4204  if (Kind != TagDecl::TK_enum) {
4205    // Handle #pragma pack: if the #pragma pack stack has non-default
4206    // alignment, make up a packed attribute for this decl. These
4207    // attributes are checked when the ASTContext lays out the
4208    // structure.
4209    //
4210    // It is important for implementing the correct semantics that this
4211    // happen here (in act on tag decl). The #pragma pack stack is
4212    // maintained as a result of parser callbacks which can occur at
4213    // many points during the parsing of a struct declaration (because
4214    // the #pragma tokens are effectively skipped over during the
4215    // parsing of the struct).
4216    if (unsigned Alignment = getPragmaPackAlignment())
4217      New->addAttr(::new (Context) PragmaPackAttr(Alignment * 8));
4218  }
4219
4220  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
4221    // C++ [dcl.typedef]p3:
4222    //   [...] Similarly, in a given scope, a class or enumeration
4223    //   shall not be declared with the same name as a typedef-name
4224    //   that is declared in that scope and refers to a type other
4225    //   than the class or enumeration itself.
4226    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
4227    TypedefDecl *PrevTypedef = 0;
4228    if (Lookup.getKind() == LookupResult::Found)
4229      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
4230
4231    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
4232        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
4233          Context.getCanonicalType(Context.getTypeDeclType(New))) {
4234      Diag(Loc, diag::err_tag_definition_of_typedef)
4235        << Context.getTypeDeclType(New)
4236        << PrevTypedef->getUnderlyingType();
4237      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
4238      Invalid = true;
4239    }
4240  }
4241
4242  if (Invalid)
4243    New->setInvalidDecl();
4244
4245  if (Attr)
4246    ProcessDeclAttributeList(S, New, Attr);
4247
4248  // If we're declaring or defining a tag in function prototype scope
4249  // in C, note that this type can only be used within the function.
4250  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
4251    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
4252
4253  // Set the lexical context. If the tag has a C++ scope specifier, the
4254  // lexical context will be different from the semantic context.
4255  New->setLexicalDeclContext(CurContext);
4256
4257  // Set the access specifier.
4258  if (!Invalid && TUK != TUK_Friend)
4259    SetMemberAccessSpecifier(New, PrevDecl, AS);
4260
4261  if (TUK == TUK_Definition)
4262    New->startDefinition();
4263
4264  // If this has an identifier, add it to the scope stack.
4265  if (Name && TUK != TUK_Friend) {
4266    S = getNonFieldDeclScope(S);
4267    PushOnScopeChains(New, S);
4268  } else {
4269    CurContext->addDecl(New);
4270  }
4271
4272  // If this is the C FILE type, notify the AST context.
4273  if (IdentifierInfo *II = New->getIdentifier())
4274    if (!New->isInvalidDecl() &&
4275        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
4276        II->isStr("FILE"))
4277      Context.setFILEDecl(New);
4278
4279  OwnedDecl = true;
4280  return DeclPtrTy::make(New);
4281}
4282
4283void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
4284  AdjustDeclIfTemplate(TagD);
4285  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4286
4287  // Enter the tag context.
4288  PushDeclContext(S, Tag);
4289
4290  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
4291    FieldCollector->StartClass();
4292
4293    if (Record->getIdentifier()) {
4294      // C++ [class]p2:
4295      //   [...] The class-name is also inserted into the scope of the
4296      //   class itself; this is known as the injected-class-name. For
4297      //   purposes of access checking, the injected-class-name is treated
4298      //   as if it were a public member name.
4299      CXXRecordDecl *InjectedClassName
4300        = CXXRecordDecl::Create(Context, Record->getTagKind(),
4301                                CurContext, Record->getLocation(),
4302                                Record->getIdentifier(),
4303                                Record->getTagKeywordLoc(),
4304                                Record);
4305      InjectedClassName->setImplicit();
4306      InjectedClassName->setAccess(AS_public);
4307      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
4308        InjectedClassName->setDescribedClassTemplate(Template);
4309      PushOnScopeChains(InjectedClassName, S);
4310      assert(InjectedClassName->isInjectedClassName() &&
4311             "Broken injected-class-name");
4312    }
4313  }
4314}
4315
4316void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
4317                                    SourceLocation RBraceLoc) {
4318  AdjustDeclIfTemplate(TagD);
4319  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4320  Tag->setRBraceLoc(RBraceLoc);
4321
4322  if (isa<CXXRecordDecl>(Tag))
4323    FieldCollector->FinishClass();
4324
4325  // Exit this scope of this tag's definition.
4326  PopDeclContext();
4327
4328  // Notify the consumer that we've defined a tag.
4329  Consumer.HandleTagDeclDefinition(Tag);
4330}
4331
4332// Note that FieldName may be null for anonymous bitfields.
4333bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
4334                          QualType FieldTy, const Expr *BitWidth) {
4335
4336  // C99 6.7.2.1p4 - verify the field type.
4337  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
4338  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
4339    // Handle incomplete types with specific error.
4340    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
4341      return true;
4342    if (FieldName)
4343      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
4344        << FieldName << FieldTy << BitWidth->getSourceRange();
4345    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
4346      << FieldTy << BitWidth->getSourceRange();
4347  }
4348
4349  // If the bit-width is type- or value-dependent, don't try to check
4350  // it now.
4351  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
4352    return false;
4353
4354  llvm::APSInt Value;
4355  if (VerifyIntegerConstantExpression(BitWidth, &Value))
4356    return true;
4357
4358  // Zero-width bitfield is ok for anonymous field.
4359  if (Value == 0 && FieldName)
4360    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
4361
4362  if (Value.isSigned() && Value.isNegative()) {
4363    if (FieldName)
4364      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
4365               << FieldName << Value.toString(10);
4366    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
4367      << Value.toString(10);
4368  }
4369
4370  if (!FieldTy->isDependentType()) {
4371    uint64_t TypeSize = Context.getTypeSize(FieldTy);
4372    if (Value.getZExtValue() > TypeSize) {
4373      if (FieldName)
4374        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
4375          << FieldName << (unsigned)TypeSize;
4376      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
4377        << (unsigned)TypeSize;
4378    }
4379  }
4380
4381  return false;
4382}
4383
4384/// ActOnField - Each field of a struct/union/class is passed into this in order
4385/// to create a FieldDecl object for it.
4386Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
4387                                 SourceLocation DeclStart,
4388                                 Declarator &D, ExprTy *BitfieldWidth) {
4389  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
4390                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
4391                               AS_public);
4392  return DeclPtrTy::make(Res);
4393}
4394
4395/// HandleField - Analyze a field of a C struct or a C++ data member.
4396///
4397FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
4398                             SourceLocation DeclStart,
4399                             Declarator &D, Expr *BitWidth,
4400                             AccessSpecifier AS) {
4401  IdentifierInfo *II = D.getIdentifier();
4402  SourceLocation Loc = DeclStart;
4403  if (II) Loc = D.getIdentifierLoc();
4404
4405  QualType T = GetTypeForDeclarator(D, S);
4406  if (getLangOptions().CPlusPlus)
4407    CheckExtraCXXDefaultArguments(D);
4408
4409  DiagnoseFunctionSpecifiers(D);
4410
4411  if (D.getDeclSpec().isThreadSpecified())
4412    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4413
4414  NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
4415
4416  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4417    // Maybe we will complain about the shadowed template parameter.
4418    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4419    // Just pretend that we didn't see the previous declaration.
4420    PrevDecl = 0;
4421  }
4422
4423  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
4424    PrevDecl = 0;
4425
4426  bool Mutable
4427    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
4428  SourceLocation TSSL = D.getSourceRange().getBegin();
4429  FieldDecl *NewFD
4430    = CheckFieldDecl(II, T, Record, Loc, Mutable, BitWidth, TSSL,
4431                     AS, PrevDecl, &D);
4432  if (NewFD->isInvalidDecl() && PrevDecl) {
4433    // Don't introduce NewFD into scope; there's already something
4434    // with the same name in the same scope.
4435  } else if (II) {
4436    PushOnScopeChains(NewFD, S);
4437  } else
4438    Record->addDecl(NewFD);
4439
4440  return NewFD;
4441}
4442
4443/// \brief Build a new FieldDecl and check its well-formedness.
4444///
4445/// This routine builds a new FieldDecl given the fields name, type,
4446/// record, etc. \p PrevDecl should refer to any previous declaration
4447/// with the same name and in the same scope as the field to be
4448/// created.
4449///
4450/// \returns a new FieldDecl.
4451///
4452/// \todo The Declarator argument is a hack. It will be removed once
4453FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
4454                                RecordDecl *Record, SourceLocation Loc,
4455                                bool Mutable, Expr *BitWidth,
4456                                SourceLocation TSSL,
4457                                AccessSpecifier AS, NamedDecl *PrevDecl,
4458                                Declarator *D) {
4459  IdentifierInfo *II = Name.getAsIdentifierInfo();
4460  bool InvalidDecl = false;
4461  if (D) InvalidDecl = D->isInvalidType();
4462
4463  // If we receive a broken type, recover by assuming 'int' and
4464  // marking this declaration as invalid.
4465  if (T.isNull()) {
4466    InvalidDecl = true;
4467    T = Context.IntTy;
4468  }
4469
4470  // C99 6.7.2.1p8: A member of a structure or union may have any type other
4471  // than a variably modified type.
4472  if (T->isVariablyModifiedType()) {
4473    bool SizeIsNegative;
4474    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
4475                                                           SizeIsNegative);
4476    if (!FixedTy.isNull()) {
4477      Diag(Loc, diag::warn_illegal_constant_array_size);
4478      T = FixedTy;
4479    } else {
4480      if (SizeIsNegative)
4481        Diag(Loc, diag::err_typecheck_negative_array_size);
4482      else
4483        Diag(Loc, diag::err_typecheck_field_variable_size);
4484      InvalidDecl = true;
4485    }
4486  }
4487
4488  // Fields can not have abstract class types
4489  if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl,
4490                             AbstractFieldType))
4491    InvalidDecl = true;
4492
4493  // If this is declared as a bit-field, check the bit-field.
4494  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth)) {
4495    InvalidDecl = true;
4496    DeleteExpr(BitWidth);
4497    BitWidth = 0;
4498  }
4499
4500  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, BitWidth,
4501                                       Mutable, TSSL);
4502  if (InvalidDecl)
4503    NewFD->setInvalidDecl();
4504
4505  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
4506    Diag(Loc, diag::err_duplicate_member) << II;
4507    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4508    NewFD->setInvalidDecl();
4509  }
4510
4511  if (getLangOptions().CPlusPlus) {
4512    QualType EltTy = Context.getBaseElementType(T);
4513
4514    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
4515      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
4516
4517      if (!RDecl->hasTrivialConstructor())
4518        cast<CXXRecordDecl>(Record)->setHasTrivialConstructor(false);
4519      if (!RDecl->hasTrivialCopyConstructor())
4520        cast<CXXRecordDecl>(Record)->setHasTrivialCopyConstructor(false);
4521      if (!RDecl->hasTrivialCopyAssignment())
4522        cast<CXXRecordDecl>(Record)->setHasTrivialCopyAssignment(false);
4523      if (!RDecl->hasTrivialDestructor())
4524        cast<CXXRecordDecl>(Record)->setHasTrivialDestructor(false);
4525
4526      // C++ 9.5p1: An object of a class with a non-trivial
4527      // constructor, a non-trivial copy constructor, a non-trivial
4528      // destructor, or a non-trivial copy assignment operator
4529      // cannot be a member of a union, nor can an array of such
4530      // objects.
4531      // TODO: C++0x alters this restriction significantly.
4532      if (Record->isUnion()) {
4533        // We check for copy constructors before constructors
4534        // because otherwise we'll never get complaints about
4535        // copy constructors.
4536
4537        const CXXSpecialMember invalid = (CXXSpecialMember) -1;
4538
4539        CXXSpecialMember member;
4540        if (!RDecl->hasTrivialCopyConstructor())
4541          member = CXXCopyConstructor;
4542        else if (!RDecl->hasTrivialConstructor())
4543          member = CXXDefaultConstructor;
4544        else if (!RDecl->hasTrivialCopyAssignment())
4545          member = CXXCopyAssignment;
4546        else if (!RDecl->hasTrivialDestructor())
4547          member = CXXDestructor;
4548        else
4549          member = invalid;
4550
4551        if (member != invalid) {
4552          Diag(Loc, diag::err_illegal_union_member) << Name << member;
4553          DiagnoseNontrivial(RT, member);
4554          NewFD->setInvalidDecl();
4555        }
4556      }
4557    }
4558  }
4559
4560  if (getLangOptions().CPlusPlus && !T->isPODType())
4561    cast<CXXRecordDecl>(Record)->setPOD(false);
4562
4563  // FIXME: We need to pass in the attributes given an AST
4564  // representation, not a parser representation.
4565  if (D)
4566    // FIXME: What to pass instead of TUScope?
4567    ProcessDeclAttributes(TUScope, NewFD, *D);
4568
4569  if (T.isObjCGCWeak())
4570    Diag(Loc, diag::warn_attribute_weak_on_field);
4571
4572  NewFD->setAccess(AS);
4573
4574  // C++ [dcl.init.aggr]p1:
4575  //   An aggregate is an array or a class (clause 9) with [...] no
4576  //   private or protected non-static data members (clause 11).
4577  // A POD must be an aggregate.
4578  if (getLangOptions().CPlusPlus &&
4579      (AS == AS_private || AS == AS_protected)) {
4580    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
4581    CXXRecord->setAggregate(false);
4582    CXXRecord->setPOD(false);
4583  }
4584
4585  return NewFD;
4586}
4587
4588/// DiagnoseNontrivial - Given that a class has a non-trivial
4589/// special member, figure out why.
4590void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
4591  QualType QT(T, 0U);
4592  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
4593
4594  // Check whether the member was user-declared.
4595  switch (member) {
4596  case CXXDefaultConstructor:
4597    if (RD->hasUserDeclaredConstructor()) {
4598      typedef CXXRecordDecl::ctor_iterator ctor_iter;
4599      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce; ++ci)
4600        if (!ci->isImplicitlyDefined(Context)) {
4601          SourceLocation CtorLoc = ci->getLocation();
4602          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4603          return;
4604        }
4605
4606      assert(0 && "found no user-declared constructors");
4607      return;
4608    }
4609    break;
4610
4611  case CXXCopyConstructor:
4612    if (RD->hasUserDeclaredCopyConstructor()) {
4613      SourceLocation CtorLoc =
4614        RD->getCopyConstructor(Context, 0)->getLocation();
4615      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4616      return;
4617    }
4618    break;
4619
4620  case CXXCopyAssignment:
4621    if (RD->hasUserDeclaredCopyAssignment()) {
4622      // FIXME: this should use the location of the copy
4623      // assignment, not the type.
4624      SourceLocation TyLoc = RD->getSourceRange().getBegin();
4625      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
4626      return;
4627    }
4628    break;
4629
4630  case CXXDestructor:
4631    if (RD->hasUserDeclaredDestructor()) {
4632      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
4633      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4634      return;
4635    }
4636    break;
4637  }
4638
4639  typedef CXXRecordDecl::base_class_iterator base_iter;
4640
4641  // Virtual bases and members inhibit trivial copying/construction,
4642  // but not trivial destruction.
4643  if (member != CXXDestructor) {
4644    // Check for virtual bases.  vbases includes indirect virtual bases,
4645    // so we just iterate through the direct bases.
4646    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
4647      if (bi->isVirtual()) {
4648        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
4649        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
4650        return;
4651      }
4652
4653    // Check for virtual methods.
4654    typedef CXXRecordDecl::method_iterator meth_iter;
4655    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
4656         ++mi) {
4657      if (mi->isVirtual()) {
4658        SourceLocation MLoc = mi->getSourceRange().getBegin();
4659        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
4660        return;
4661      }
4662    }
4663  }
4664
4665  bool (CXXRecordDecl::*hasTrivial)() const;
4666  switch (member) {
4667  case CXXDefaultConstructor:
4668    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
4669  case CXXCopyConstructor:
4670    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
4671  case CXXCopyAssignment:
4672    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
4673  case CXXDestructor:
4674    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
4675  default:
4676    assert(0 && "unexpected special member"); return;
4677  }
4678
4679  // Check for nontrivial bases (and recurse).
4680  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
4681    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
4682    assert(BaseRT);
4683    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
4684    if (!(BaseRecTy->*hasTrivial)()) {
4685      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
4686      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
4687      DiagnoseNontrivial(BaseRT, member);
4688      return;
4689    }
4690  }
4691
4692  // Check for nontrivial members (and recurse).
4693  typedef RecordDecl::field_iterator field_iter;
4694  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
4695       ++fi) {
4696    QualType EltTy = Context.getBaseElementType((*fi)->getType());
4697    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
4698      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
4699
4700      if (!(EltRD->*hasTrivial)()) {
4701        SourceLocation FLoc = (*fi)->getLocation();
4702        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
4703        DiagnoseNontrivial(EltRT, member);
4704        return;
4705      }
4706    }
4707  }
4708
4709  assert(0 && "found no explanation for non-trivial member");
4710}
4711
4712/// TranslateIvarVisibility - Translate visibility from a token ID to an
4713///  AST enum value.
4714static ObjCIvarDecl::AccessControl
4715TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
4716  switch (ivarVisibility) {
4717  default: assert(0 && "Unknown visitibility kind");
4718  case tok::objc_private: return ObjCIvarDecl::Private;
4719  case tok::objc_public: return ObjCIvarDecl::Public;
4720  case tok::objc_protected: return ObjCIvarDecl::Protected;
4721  case tok::objc_package: return ObjCIvarDecl::Package;
4722  }
4723}
4724
4725/// ActOnIvar - Each ivar field of an objective-c class is passed into this
4726/// in order to create an IvarDecl object for it.
4727Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
4728                                SourceLocation DeclStart,
4729                                DeclPtrTy IntfDecl,
4730                                Declarator &D, ExprTy *BitfieldWidth,
4731                                tok::ObjCKeywordKind Visibility) {
4732
4733  IdentifierInfo *II = D.getIdentifier();
4734  Expr *BitWidth = (Expr*)BitfieldWidth;
4735  SourceLocation Loc = DeclStart;
4736  if (II) Loc = D.getIdentifierLoc();
4737
4738  // FIXME: Unnamed fields can be handled in various different ways, for
4739  // example, unnamed unions inject all members into the struct namespace!
4740
4741  QualType T = GetTypeForDeclarator(D, S);
4742
4743  if (BitWidth) {
4744    // 6.7.2.1p3, 6.7.2.1p4
4745    if (VerifyBitField(Loc, II, T, BitWidth)) {
4746      D.setInvalidType();
4747      DeleteExpr(BitWidth);
4748      BitWidth = 0;
4749    }
4750  } else {
4751    // Not a bitfield.
4752
4753    // validate II.
4754
4755  }
4756
4757  // C99 6.7.2.1p8: A member of a structure or union may have any type other
4758  // than a variably modified type.
4759  if (T->isVariablyModifiedType()) {
4760    Diag(Loc, diag::err_typecheck_ivar_variable_size);
4761    D.setInvalidType();
4762  }
4763
4764  // Get the visibility (access control) for this ivar.
4765  ObjCIvarDecl::AccessControl ac =
4766    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
4767                                        : ObjCIvarDecl::None;
4768  // Must set ivar's DeclContext to its enclosing interface.
4769  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
4770  DeclContext *EnclosingContext;
4771  if (ObjCImplementationDecl *IMPDecl =
4772      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
4773    // Case of ivar declared in an implementation. Context is that of its class.
4774    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
4775    assert(IDecl && "No class- ActOnIvar");
4776    EnclosingContext = cast_or_null<DeclContext>(IDecl);
4777  } else
4778    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
4779  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
4780
4781  // Construct the decl.
4782  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
4783                                             EnclosingContext, Loc, II, T,ac,
4784                                             (Expr *)BitfieldWidth);
4785
4786  if (II) {
4787    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
4788    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
4789        && !isa<TagDecl>(PrevDecl)) {
4790      Diag(Loc, diag::err_duplicate_member) << II;
4791      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4792      NewID->setInvalidDecl();
4793    }
4794  }
4795
4796  // Process attributes attached to the ivar.
4797  ProcessDeclAttributes(S, NewID, D);
4798
4799  if (D.isInvalidType())
4800    NewID->setInvalidDecl();
4801
4802  if (II) {
4803    // FIXME: When interfaces are DeclContexts, we'll need to add
4804    // these to the interface.
4805    S->AddDecl(DeclPtrTy::make(NewID));
4806    IdResolver.AddDecl(NewID);
4807  }
4808
4809  return DeclPtrTy::make(NewID);
4810}
4811
4812void Sema::ActOnFields(Scope* S,
4813                       SourceLocation RecLoc, DeclPtrTy RecDecl,
4814                       DeclPtrTy *Fields, unsigned NumFields,
4815                       SourceLocation LBrac, SourceLocation RBrac,
4816                       AttributeList *Attr) {
4817  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
4818  assert(EnclosingDecl && "missing record or interface decl");
4819
4820  // If the decl this is being inserted into is invalid, then it may be a
4821  // redeclaration or some other bogus case.  Don't try to add fields to it.
4822  if (EnclosingDecl->isInvalidDecl()) {
4823    // FIXME: Deallocate fields?
4824    return;
4825  }
4826
4827
4828  // Verify that all the fields are okay.
4829  unsigned NumNamedMembers = 0;
4830  llvm::SmallVector<FieldDecl*, 32> RecFields;
4831
4832  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
4833  for (unsigned i = 0; i != NumFields; ++i) {
4834    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
4835
4836    // Get the type for the field.
4837    Type *FDTy = FD->getType().getTypePtr();
4838
4839    if (!FD->isAnonymousStructOrUnion()) {
4840      // Remember all fields written by the user.
4841      RecFields.push_back(FD);
4842    }
4843
4844    // If the field is already invalid for some reason, don't emit more
4845    // diagnostics about it.
4846    if (FD->isInvalidDecl())
4847      continue;
4848
4849    // C99 6.7.2.1p2:
4850    //   A structure or union shall not contain a member with
4851    //   incomplete or function type (hence, a structure shall not
4852    //   contain an instance of itself, but may contain a pointer to
4853    //   an instance of itself), except that the last member of a
4854    //   structure with more than one named member may have incomplete
4855    //   array type; such a structure (and any union containing,
4856    //   possibly recursively, a member that is such a structure)
4857    //   shall not be a member of a structure or an element of an
4858    //   array.
4859    if (FDTy->isFunctionType()) {
4860      // Field declared as a function.
4861      Diag(FD->getLocation(), diag::err_field_declared_as_function)
4862        << FD->getDeclName();
4863      FD->setInvalidDecl();
4864      EnclosingDecl->setInvalidDecl();
4865      continue;
4866    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
4867               Record && Record->isStruct()) {
4868      // Flexible array member.
4869      if (NumNamedMembers < 1) {
4870        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
4871          << FD->getDeclName();
4872        FD->setInvalidDecl();
4873        EnclosingDecl->setInvalidDecl();
4874        continue;
4875      }
4876      // Okay, we have a legal flexible array member at the end of the struct.
4877      if (Record)
4878        Record->setHasFlexibleArrayMember(true);
4879    } else if (!FDTy->isDependentType() &&
4880               RequireCompleteType(FD->getLocation(), FD->getType(),
4881                                   diag::err_field_incomplete)) {
4882      // Incomplete type
4883      FD->setInvalidDecl();
4884      EnclosingDecl->setInvalidDecl();
4885      continue;
4886    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
4887      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
4888        // If this is a member of a union, then entire union becomes "flexible".
4889        if (Record && Record->isUnion()) {
4890          Record->setHasFlexibleArrayMember(true);
4891        } else {
4892          // If this is a struct/class and this is not the last element, reject
4893          // it.  Note that GCC supports variable sized arrays in the middle of
4894          // structures.
4895          if (i != NumFields-1)
4896            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
4897              << FD->getDeclName() << FD->getType();
4898          else {
4899            // We support flexible arrays at the end of structs in
4900            // other structs as an extension.
4901            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
4902              << FD->getDeclName();
4903            if (Record)
4904              Record->setHasFlexibleArrayMember(true);
4905          }
4906        }
4907      }
4908      if (Record && FDTTy->getDecl()->hasObjectMember())
4909        Record->setHasObjectMember(true);
4910    } else if (FDTy->isObjCInterfaceType()) {
4911      /// A field cannot be an Objective-c object
4912      Diag(FD->getLocation(), diag::err_statically_allocated_object);
4913      FD->setInvalidDecl();
4914      EnclosingDecl->setInvalidDecl();
4915      continue;
4916    } else if (getLangOptions().ObjC1 &&
4917               getLangOptions().getGCMode() != LangOptions::NonGC &&
4918               Record &&
4919               (FD->getType()->isObjCObjectPointerType() ||
4920                FD->getType().isObjCGCStrong()))
4921      Record->setHasObjectMember(true);
4922    // Keep track of the number of named members.
4923    if (FD->getIdentifier())
4924      ++NumNamedMembers;
4925  }
4926
4927  // Okay, we successfully defined 'Record'.
4928  if (Record) {
4929    Record->completeDefinition(Context);
4930  } else {
4931    ObjCIvarDecl **ClsFields =
4932      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
4933    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
4934      ID->setIVarList(ClsFields, RecFields.size(), Context);
4935      ID->setLocEnd(RBrac);
4936      // Add ivar's to class's DeclContext.
4937      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
4938        ClsFields[i]->setLexicalDeclContext(ID);
4939        ID->addDecl(ClsFields[i]);
4940      }
4941      // Must enforce the rule that ivars in the base classes may not be
4942      // duplicates.
4943      if (ID->getSuperClass()) {
4944        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
4945             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
4946          ObjCIvarDecl* Ivar = (*IVI);
4947
4948          if (IdentifierInfo *II = Ivar->getIdentifier()) {
4949            ObjCIvarDecl* prevIvar =
4950              ID->getSuperClass()->lookupInstanceVariable(II);
4951            if (prevIvar) {
4952              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
4953              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
4954            }
4955          }
4956        }
4957      }
4958    } else if (ObjCImplementationDecl *IMPDecl =
4959                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
4960      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
4961      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
4962        // Ivar declared in @implementation never belongs to the implementation.
4963        // Only it is in implementation's lexical context.
4964        ClsFields[I]->setLexicalDeclContext(IMPDecl);
4965      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
4966    }
4967  }
4968
4969  if (Attr)
4970    ProcessDeclAttributeList(S, Record, Attr);
4971}
4972
4973EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
4974                                          EnumConstantDecl *LastEnumConst,
4975                                          SourceLocation IdLoc,
4976                                          IdentifierInfo *Id,
4977                                          ExprArg val) {
4978  Expr *Val = (Expr *)val.get();
4979
4980  llvm::APSInt EnumVal(32);
4981  QualType EltTy;
4982  if (Val && !Val->isTypeDependent()) {
4983    // Make sure to promote the operand type to int.
4984    UsualUnaryConversions(Val);
4985    if (Val != val.get()) {
4986      val.release();
4987      val = Val;
4988    }
4989
4990    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
4991    SourceLocation ExpLoc;
4992    if (!Val->isValueDependent() &&
4993        VerifyIntegerConstantExpression(Val, &EnumVal)) {
4994      Val = 0;
4995    } else {
4996      EltTy = Val->getType();
4997    }
4998  }
4999
5000  if (!Val) {
5001    if (LastEnumConst) {
5002      // Assign the last value + 1.
5003      EnumVal = LastEnumConst->getInitVal();
5004      ++EnumVal;
5005
5006      // Check for overflow on increment.
5007      if (EnumVal < LastEnumConst->getInitVal())
5008        Diag(IdLoc, diag::warn_enum_value_overflow);
5009
5010      EltTy = LastEnumConst->getType();
5011    } else {
5012      // First value, set to zero.
5013      EltTy = Context.IntTy;
5014      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
5015    }
5016  }
5017
5018  val.release();
5019  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
5020                                  Val, EnumVal);
5021}
5022
5023
5024Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
5025                                        DeclPtrTy lastEnumConst,
5026                                        SourceLocation IdLoc,
5027                                        IdentifierInfo *Id,
5028                                        SourceLocation EqualLoc, ExprTy *val) {
5029  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
5030  EnumConstantDecl *LastEnumConst =
5031    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
5032  Expr *Val = static_cast<Expr*>(val);
5033
5034  // The scope passed in may not be a decl scope.  Zip up the scope tree until
5035  // we find one that is.
5036  S = getNonFieldDeclScope(S);
5037
5038  // Verify that there isn't already something declared with this name in this
5039  // scope.
5040  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
5041  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5042    // Maybe we will complain about the shadowed template parameter.
5043    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
5044    // Just pretend that we didn't see the previous declaration.
5045    PrevDecl = 0;
5046  }
5047
5048  if (PrevDecl) {
5049    // When in C++, we may get a TagDecl with the same name; in this case the
5050    // enum constant will 'hide' the tag.
5051    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
5052           "Received TagDecl when not in C++!");
5053    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
5054      if (isa<EnumConstantDecl>(PrevDecl))
5055        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
5056      else
5057        Diag(IdLoc, diag::err_redefinition) << Id;
5058      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5059      if (Val) Val->Destroy(Context);
5060      return DeclPtrTy();
5061    }
5062  }
5063
5064  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
5065                                            IdLoc, Id, Owned(Val));
5066
5067  // Register this decl in the current scope stack.
5068  if (New)
5069    PushOnScopeChains(New, S);
5070
5071  return DeclPtrTy::make(New);
5072}
5073
5074void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
5075                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
5076                         DeclPtrTy *Elements, unsigned NumElements,
5077                         Scope *S, AttributeList *Attr) {
5078  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
5079  QualType EnumType = Context.getTypeDeclType(Enum);
5080
5081  if (Attr)
5082    ProcessDeclAttributeList(S, Enum, Attr);
5083
5084  // TODO: If the result value doesn't fit in an int, it must be a long or long
5085  // long value.  ISO C does not support this, but GCC does as an extension,
5086  // emit a warning.
5087  unsigned IntWidth = Context.Target.getIntWidth();
5088  unsigned CharWidth = Context.Target.getCharWidth();
5089  unsigned ShortWidth = Context.Target.getShortWidth();
5090
5091  // Verify that all the values are okay, compute the size of the values, and
5092  // reverse the list.
5093  unsigned NumNegativeBits = 0;
5094  unsigned NumPositiveBits = 0;
5095
5096  // Keep track of whether all elements have type int.
5097  bool AllElementsInt = true;
5098
5099  for (unsigned i = 0; i != NumElements; ++i) {
5100    EnumConstantDecl *ECD =
5101      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5102    if (!ECD) continue;  // Already issued a diagnostic.
5103
5104    // If the enum value doesn't fit in an int, emit an extension warning.
5105    const llvm::APSInt &InitVal = ECD->getInitVal();
5106    assert(InitVal.getBitWidth() >= IntWidth &&
5107           "Should have promoted value to int");
5108    if (InitVal.getBitWidth() > IntWidth) {
5109      llvm::APSInt V(InitVal);
5110      V.trunc(IntWidth);
5111      V.extend(InitVal.getBitWidth());
5112      if (V != InitVal)
5113        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
5114          << InitVal.toString(10);
5115    }
5116
5117    // Keep track of the size of positive and negative values.
5118    if (InitVal.isUnsigned() || InitVal.isNonNegative())
5119      NumPositiveBits = std::max(NumPositiveBits,
5120                                 (unsigned)InitVal.getActiveBits());
5121    else
5122      NumNegativeBits = std::max(NumNegativeBits,
5123                                 (unsigned)InitVal.getMinSignedBits());
5124
5125    // Keep track of whether every enum element has type int (very commmon).
5126    if (AllElementsInt)
5127      AllElementsInt = ECD->getType() == Context.IntTy;
5128  }
5129
5130  // Figure out the type that should be used for this enum.
5131  // FIXME: Support -fshort-enums.
5132  QualType BestType;
5133  unsigned BestWidth;
5134
5135  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
5136
5137  if (NumNegativeBits) {
5138    // If there is a negative value, figure out the smallest integer type (of
5139    // int/long/longlong) that fits.
5140    // If it's packed, check also if it fits a char or a short.
5141    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
5142        BestType = Context.SignedCharTy;
5143        BestWidth = CharWidth;
5144    } else if (Packed && NumNegativeBits <= ShortWidth &&
5145               NumPositiveBits < ShortWidth) {
5146        BestType = Context.ShortTy;
5147        BestWidth = ShortWidth;
5148    }
5149    else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
5150      BestType = Context.IntTy;
5151      BestWidth = IntWidth;
5152    } else {
5153      BestWidth = Context.Target.getLongWidth();
5154
5155      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
5156        BestType = Context.LongTy;
5157      else {
5158        BestWidth = Context.Target.getLongLongWidth();
5159
5160        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
5161          Diag(Enum->getLocation(), diag::warn_enum_too_large);
5162        BestType = Context.LongLongTy;
5163      }
5164    }
5165  } else {
5166    // If there is no negative value, figure out which of uint, ulong, ulonglong
5167    // fits.
5168    // If it's packed, check also if it fits a char or a short.
5169    if (Packed && NumPositiveBits <= CharWidth) {
5170        BestType = Context.UnsignedCharTy;
5171        BestWidth = CharWidth;
5172    } else if (Packed && NumPositiveBits <= ShortWidth) {
5173        BestType = Context.UnsignedShortTy;
5174        BestWidth = ShortWidth;
5175    }
5176    else if (NumPositiveBits <= IntWidth) {
5177      BestType = Context.UnsignedIntTy;
5178      BestWidth = IntWidth;
5179    } else if (NumPositiveBits <=
5180               (BestWidth = Context.Target.getLongWidth())) {
5181      BestType = Context.UnsignedLongTy;
5182    } else {
5183      BestWidth = Context.Target.getLongLongWidth();
5184      assert(NumPositiveBits <= BestWidth &&
5185             "How could an initializer get larger than ULL?");
5186      BestType = Context.UnsignedLongLongTy;
5187    }
5188  }
5189
5190  // Loop over all of the enumerator constants, changing their types to match
5191  // the type of the enum if needed.
5192  for (unsigned i = 0; i != NumElements; ++i) {
5193    EnumConstantDecl *ECD =
5194      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5195    if (!ECD) continue;  // Already issued a diagnostic.
5196
5197    // Standard C says the enumerators have int type, but we allow, as an
5198    // extension, the enumerators to be larger than int size.  If each
5199    // enumerator value fits in an int, type it as an int, otherwise type it the
5200    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
5201    // that X has type 'int', not 'unsigned'.
5202    if (ECD->getType() == Context.IntTy) {
5203      // Make sure the init value is signed.
5204      llvm::APSInt IV = ECD->getInitVal();
5205      IV.setIsSigned(true);
5206      ECD->setInitVal(IV);
5207
5208      if (getLangOptions().CPlusPlus)
5209        // C++ [dcl.enum]p4: Following the closing brace of an
5210        // enum-specifier, each enumerator has the type of its
5211        // enumeration.
5212        ECD->setType(EnumType);
5213      continue;  // Already int type.
5214    }
5215
5216    // Determine whether the value fits into an int.
5217    llvm::APSInt InitVal = ECD->getInitVal();
5218    bool FitsInInt;
5219    if (InitVal.isUnsigned() || !InitVal.isNegative())
5220      FitsInInt = InitVal.getActiveBits() < IntWidth;
5221    else
5222      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
5223
5224    // If it fits into an integer type, force it.  Otherwise force it to match
5225    // the enum decl type.
5226    QualType NewTy;
5227    unsigned NewWidth;
5228    bool NewSign;
5229    if (FitsInInt) {
5230      NewTy = Context.IntTy;
5231      NewWidth = IntWidth;
5232      NewSign = true;
5233    } else if (ECD->getType() == BestType) {
5234      // Already the right type!
5235      if (getLangOptions().CPlusPlus)
5236        // C++ [dcl.enum]p4: Following the closing brace of an
5237        // enum-specifier, each enumerator has the type of its
5238        // enumeration.
5239        ECD->setType(EnumType);
5240      continue;
5241    } else {
5242      NewTy = BestType;
5243      NewWidth = BestWidth;
5244      NewSign = BestType->isSignedIntegerType();
5245    }
5246
5247    // Adjust the APSInt value.
5248    InitVal.extOrTrunc(NewWidth);
5249    InitVal.setIsSigned(NewSign);
5250    ECD->setInitVal(InitVal);
5251
5252    // Adjust the Expr initializer and type.
5253    if (ECD->getInitExpr())
5254      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
5255                                                      CastExpr::CK_Unknown,
5256                                                      ECD->getInitExpr(),
5257                                                      /*isLvalue=*/false));
5258    if (getLangOptions().CPlusPlus)
5259      // C++ [dcl.enum]p4: Following the closing brace of an
5260      // enum-specifier, each enumerator has the type of its
5261      // enumeration.
5262      ECD->setType(EnumType);
5263    else
5264      ECD->setType(NewTy);
5265  }
5266
5267  Enum->completeDefinition(Context, BestType);
5268}
5269
5270Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
5271                                            ExprArg expr) {
5272  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
5273
5274  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
5275                                                   Loc, AsmString);
5276  CurContext->addDecl(New);
5277  return DeclPtrTy::make(New);
5278}
5279
5280void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
5281                             SourceLocation PragmaLoc,
5282                             SourceLocation NameLoc) {
5283  Decl *PrevDecl = LookupName(TUScope, Name, LookupOrdinaryName);
5284
5285  if (PrevDecl) {
5286    PrevDecl->addAttr(::new (Context) WeakAttr());
5287  } else {
5288    (void)WeakUndeclaredIdentifiers.insert(
5289      std::pair<IdentifierInfo*,WeakInfo>
5290        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
5291  }
5292}
5293
5294void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
5295                                IdentifierInfo* AliasName,
5296                                SourceLocation PragmaLoc,
5297                                SourceLocation NameLoc,
5298                                SourceLocation AliasNameLoc) {
5299  Decl *PrevDecl = LookupName(TUScope, AliasName, LookupOrdinaryName);
5300  WeakInfo W = WeakInfo(Name, NameLoc);
5301
5302  if (PrevDecl) {
5303    if (!PrevDecl->hasAttr<AliasAttr>())
5304      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
5305        DeclApplyPragmaWeak(TUScope, ND, W);
5306  } else {
5307    (void)WeakUndeclaredIdentifiers.insert(
5308      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
5309  }
5310}
5311