SemaDecl.cpp revision 42c39f39184c5ce9d7f489e5dcb7eec770728a9a
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/Analysis/CFG.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/AST/StmtObjC.h"
25#include "clang/Parse/DeclSpec.h"
26#include "clang/Basic/TargetInfo.h"
27#include "clang/Basic/SourceManager.h"
28// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
29#include "clang/Lex/Preprocessor.h"
30#include "clang/Lex/HeaderSearch.h"
31#include "llvm/ADT/BitVector.h"
32#include "llvm/ADT/STLExtras.h"
33#include <algorithm>
34#include <functional>
35#include <queue>
36using namespace clang;
37
38/// getDeclName - Return a pretty name for the specified decl if possible, or
39/// an empty string if not.  This is used for pretty crash reporting.
40std::string Sema::getDeclName(DeclPtrTy d) {
41  Decl *D = d.getAs<Decl>();
42  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
43    return DN->getQualifiedNameAsString();
44  return "";
45}
46
47Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
48  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
49}
50
51/// \brief If the identifier refers to a type name within this scope,
52/// return the declaration of that type.
53///
54/// This routine performs ordinary name lookup of the identifier II
55/// within the given scope, with optional C++ scope specifier SS, to
56/// determine whether the name refers to a type. If so, returns an
57/// opaque pointer (actually a QualType) corresponding to that
58/// type. Otherwise, returns NULL.
59///
60/// If name lookup results in an ambiguity, this routine will complain
61/// and then return NULL.
62Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
63                                Scope *S, const CXXScopeSpec *SS,
64                                bool isClassName) {
65  // C++ [temp.res]p3:
66  //   A qualified-id that refers to a type and in which the
67  //   nested-name-specifier depends on a template-parameter (14.6.2)
68  //   shall be prefixed by the keyword typename to indicate that the
69  //   qualified-id denotes a type, forming an
70  //   elaborated-type-specifier (7.1.5.3).
71  //
72  // We therefore do not perform any name lookup if the result would
73  // refer to a member of an unknown specialization.
74  if (SS && isUnknownSpecialization(*SS)) {
75    if (!isClassName)
76      return 0;
77
78    // We know from the grammar that this name refers to a type, so build a
79    // TypenameType node to describe the type.
80    // FIXME: Record somewhere that this TypenameType node has no "typename"
81    // keyword associated with it.
82    return CheckTypenameType((NestedNameSpecifier *)SS->getScopeRep(),
83                             II, SS->getRange()).getAsOpaquePtr();
84  }
85
86  LookupResult Result
87    = LookupParsedName(S, SS, &II, LookupOrdinaryName, false, false);
88
89  NamedDecl *IIDecl = 0;
90  switch (Result.getKind()) {
91  case LookupResult::NotFound:
92  case LookupResult::FoundOverloaded:
93    return 0;
94
95  case LookupResult::AmbiguousBaseSubobjectTypes:
96  case LookupResult::AmbiguousBaseSubobjects:
97  case LookupResult::AmbiguousReference: {
98    // Look to see if we have a type anywhere in the list of results.
99    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
100         Res != ResEnd; ++Res) {
101      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
102        if (!IIDecl ||
103            (*Res)->getLocation().getRawEncoding() <
104              IIDecl->getLocation().getRawEncoding())
105          IIDecl = *Res;
106      }
107    }
108
109    if (!IIDecl) {
110      // None of the entities we found is a type, so there is no way
111      // to even assume that the result is a type. In this case, don't
112      // complain about the ambiguity. The parser will either try to
113      // perform this lookup again (e.g., as an object name), which
114      // will produce the ambiguity, or will complain that it expected
115      // a type name.
116      Result.Destroy();
117      return 0;
118    }
119
120    // We found a type within the ambiguous lookup; diagnose the
121    // ambiguity and then return that type. This might be the right
122    // answer, or it might not be, but it suppresses any attempt to
123    // perform the name lookup again.
124    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
125    break;
126  }
127
128  case LookupResult::Found:
129    IIDecl = Result.getAsDecl();
130    break;
131  }
132
133  if (IIDecl) {
134    QualType T;
135
136    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
137      // Check whether we can use this type
138      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
139
140      if (getLangOptions().CPlusPlus) {
141        // C++ [temp.local]p2:
142        //   Within the scope of a class template specialization or
143        //   partial specialization, when the injected-class-name is
144        //   not followed by a <, it is equivalent to the
145        //   injected-class-name followed by the template-argument s
146        //   of the class template specialization or partial
147        //   specialization enclosed in <>.
148        if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
149          if (RD->isInjectedClassName())
150            if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
151              T = Template->getInjectedClassNameType(Context);
152      }
153
154      if (T.isNull())
155        T = Context.getTypeDeclType(TD);
156    } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
157      // Check whether we can use this interface.
158      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
159
160      T = Context.getObjCInterfaceType(IDecl);
161    } else
162      return 0;
163
164    if (SS)
165      T = getQualifiedNameType(*SS, T);
166
167    return T.getAsOpaquePtr();
168  }
169
170  return 0;
171}
172
173/// isTagName() - This method is called *for error recovery purposes only*
174/// to determine if the specified name is a valid tag name ("struct foo").  If
175/// so, this returns the TST for the tag corresponding to it (TST_enum,
176/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
177/// where the user forgot to specify the tag.
178DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
179  // Do a tag name lookup in this scope.
180  LookupResult R = LookupName(S, &II, LookupTagName, false, false);
181  if (R.getKind() == LookupResult::Found)
182    if (const TagDecl *TD = dyn_cast<TagDecl>(R.getAsDecl())) {
183      switch (TD->getTagKind()) {
184      case TagDecl::TK_struct: return DeclSpec::TST_struct;
185      case TagDecl::TK_union:  return DeclSpec::TST_union;
186      case TagDecl::TK_class:  return DeclSpec::TST_class;
187      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
188      }
189    }
190
191  return DeclSpec::TST_unspecified;
192}
193
194
195// Determines the context to return to after temporarily entering a
196// context.  This depends in an unnecessarily complicated way on the
197// exact ordering of callbacks from the parser.
198DeclContext *Sema::getContainingDC(DeclContext *DC) {
199
200  // Functions defined inline within classes aren't parsed until we've
201  // finished parsing the top-level class, so the top-level class is
202  // the context we'll need to return to.
203  if (isa<FunctionDecl>(DC)) {
204    DC = DC->getLexicalParent();
205
206    // A function not defined within a class will always return to its
207    // lexical context.
208    if (!isa<CXXRecordDecl>(DC))
209      return DC;
210
211    // A C++ inline method/friend is parsed *after* the topmost class
212    // it was declared in is fully parsed ("complete");  the topmost
213    // class is the context we need to return to.
214    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
215      DC = RD;
216
217    // Return the declaration context of the topmost class the inline method is
218    // declared in.
219    return DC;
220  }
221
222  if (isa<ObjCMethodDecl>(DC))
223    return Context.getTranslationUnitDecl();
224
225  return DC->getLexicalParent();
226}
227
228void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
229  assert(getContainingDC(DC) == CurContext &&
230      "The next DeclContext should be lexically contained in the current one.");
231  CurContext = DC;
232  S->setEntity(DC);
233}
234
235void Sema::PopDeclContext() {
236  assert(CurContext && "DeclContext imbalance!");
237
238  CurContext = getContainingDC(CurContext);
239}
240
241/// EnterDeclaratorContext - Used when we must lookup names in the context
242/// of a declarator's nested name specifier.
243void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
244  assert(PreDeclaratorDC == 0 && "Previous declarator context not popped?");
245  PreDeclaratorDC = static_cast<DeclContext*>(S->getEntity());
246  CurContext = DC;
247  assert(CurContext && "No context?");
248  S->setEntity(CurContext);
249}
250
251void Sema::ExitDeclaratorContext(Scope *S) {
252  S->setEntity(PreDeclaratorDC);
253  PreDeclaratorDC = 0;
254
255  // Reset CurContext to the nearest enclosing context.
256  while (!S->getEntity() && S->getParent())
257    S = S->getParent();
258  CurContext = static_cast<DeclContext*>(S->getEntity());
259  assert(CurContext && "No context?");
260}
261
262/// \brief Determine whether we allow overloading of the function
263/// PrevDecl with another declaration.
264///
265/// This routine determines whether overloading is possible, not
266/// whether some new function is actually an overload. It will return
267/// true in C++ (where we can always provide overloads) or, as an
268/// extension, in C when the previous function is already an
269/// overloaded function declaration or has the "overloadable"
270/// attribute.
271static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
272  if (Context.getLangOptions().CPlusPlus)
273    return true;
274
275  if (isa<OverloadedFunctionDecl>(PrevDecl))
276    return true;
277
278  return PrevDecl->getAttr<OverloadableAttr>() != 0;
279}
280
281/// Add this decl to the scope shadowed decl chains.
282void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
283  // Move up the scope chain until we find the nearest enclosing
284  // non-transparent context. The declaration will be introduced into this
285  // scope.
286  while (S->getEntity() &&
287         ((DeclContext *)S->getEntity())->isTransparentContext())
288    S = S->getParent();
289
290  S->AddDecl(DeclPtrTy::make(D));
291
292  // Add scoped declarations into their context, so that they can be
293  // found later. Declarations without a context won't be inserted
294  // into any context.
295  CurContext->addDecl(D);
296
297  // C++ [basic.scope]p4:
298  //   -- exactly one declaration shall declare a class name or
299  //   enumeration name that is not a typedef name and the other
300  //   declarations shall all refer to the same object or
301  //   enumerator, or all refer to functions and function templates;
302  //   in this case the class name or enumeration name is hidden.
303  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
304    // We are pushing the name of a tag (enum or class).
305    if (CurContext->getLookupContext()
306          == TD->getDeclContext()->getLookupContext()) {
307      // We're pushing the tag into the current context, which might
308      // require some reshuffling in the identifier resolver.
309      IdentifierResolver::iterator
310        I = IdResolver.begin(TD->getDeclName()),
311        IEnd = IdResolver.end();
312      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
313        NamedDecl *PrevDecl = *I;
314        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
315             PrevDecl = *I, ++I) {
316          if (TD->declarationReplaces(*I)) {
317            // This is a redeclaration. Remove it from the chain and
318            // break out, so that we'll add in the shadowed
319            // declaration.
320            S->RemoveDecl(DeclPtrTy::make(*I));
321            if (PrevDecl == *I) {
322              IdResolver.RemoveDecl(*I);
323              IdResolver.AddDecl(TD);
324              return;
325            } else {
326              IdResolver.RemoveDecl(*I);
327              break;
328            }
329          }
330        }
331
332        // There is already a declaration with the same name in the same
333        // scope, which is not a tag declaration. It must be found
334        // before we find the new declaration, so insert the new
335        // declaration at the end of the chain.
336        IdResolver.AddShadowedDecl(TD, PrevDecl);
337
338        return;
339      }
340    }
341  } else if ((isa<FunctionDecl>(D) &&
342              AllowOverloadingOfFunction(D, Context)) ||
343             isa<FunctionTemplateDecl>(D)) {
344    // We are pushing the name of a function or function template,
345    // which might be an overloaded name.
346    IdentifierResolver::iterator Redecl
347      = std::find_if(IdResolver.begin(D->getDeclName()),
348                     IdResolver.end(),
349                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
350                                  D));
351    if (Redecl != IdResolver.end() &&
352        S->isDeclScope(DeclPtrTy::make(*Redecl))) {
353      // There is already a declaration of a function on our
354      // IdResolver chain. Replace it with this declaration.
355      S->RemoveDecl(DeclPtrTy::make(*Redecl));
356      IdResolver.RemoveDecl(*Redecl);
357    }
358  } else if (isa<ObjCInterfaceDecl>(D)) {
359    // We're pushing an Objective-C interface into the current
360    // context. If there is already an alias declaration, remove it first.
361    for (IdentifierResolver::iterator
362           I = IdResolver.begin(D->getDeclName()), IEnd = IdResolver.end();
363         I != IEnd; ++I) {
364      if (isa<ObjCCompatibleAliasDecl>(*I)) {
365        S->RemoveDecl(DeclPtrTy::make(*I));
366        IdResolver.RemoveDecl(*I);
367        break;
368      }
369    }
370  }
371
372  IdResolver.AddDecl(D);
373}
374
375void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
376  if (S->decl_empty()) return;
377  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
378	 "Scope shouldn't contain decls!");
379
380  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
381       I != E; ++I) {
382    Decl *TmpD = (*I).getAs<Decl>();
383    assert(TmpD && "This decl didn't get pushed??");
384
385    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
386    NamedDecl *D = cast<NamedDecl>(TmpD);
387
388    if (!D->getDeclName()) continue;
389
390    // Remove this name from our lexical scope.
391    IdResolver.RemoveDecl(D);
392  }
393}
394
395/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
396/// return 0 if one not found.
397ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
398  // The third "scope" argument is 0 since we aren't enabling lazy built-in
399  // creation from this context.
400  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
401
402  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
403}
404
405/// getNonFieldDeclScope - Retrieves the innermost scope, starting
406/// from S, where a non-field would be declared. This routine copes
407/// with the difference between C and C++ scoping rules in structs and
408/// unions. For example, the following code is well-formed in C but
409/// ill-formed in C++:
410/// @code
411/// struct S6 {
412///   enum { BAR } e;
413/// };
414///
415/// void test_S6() {
416///   struct S6 a;
417///   a.e = BAR;
418/// }
419/// @endcode
420/// For the declaration of BAR, this routine will return a different
421/// scope. The scope S will be the scope of the unnamed enumeration
422/// within S6. In C++, this routine will return the scope associated
423/// with S6, because the enumeration's scope is a transparent
424/// context but structures can contain non-field names. In C, this
425/// routine will return the translation unit scope, since the
426/// enumeration's scope is a transparent context and structures cannot
427/// contain non-field names.
428Scope *Sema::getNonFieldDeclScope(Scope *S) {
429  while (((S->getFlags() & Scope::DeclScope) == 0) ||
430         (S->getEntity() &&
431          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
432         (S->isClassScope() && !getLangOptions().CPlusPlus))
433    S = S->getParent();
434  return S;
435}
436
437void Sema::InitBuiltinVaListType() {
438  if (!Context.getBuiltinVaListType().isNull())
439    return;
440
441  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
442  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
443  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
444  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
445}
446
447/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
448/// file scope.  lazily create a decl for it. ForRedeclaration is true
449/// if we're creating this built-in in anticipation of redeclaring the
450/// built-in.
451NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
452                                     Scope *S, bool ForRedeclaration,
453                                     SourceLocation Loc) {
454  Builtin::ID BID = (Builtin::ID)bid;
455
456  if (Context.BuiltinInfo.hasVAListUse(BID))
457    InitBuiltinVaListType();
458
459  ASTContext::GetBuiltinTypeError Error;
460  QualType R = Context.GetBuiltinType(BID, Error);
461  switch (Error) {
462  case ASTContext::GE_None:
463    // Okay
464    break;
465
466  case ASTContext::GE_Missing_stdio:
467    if (ForRedeclaration)
468      Diag(Loc, diag::err_implicit_decl_requires_stdio)
469        << Context.BuiltinInfo.GetName(BID);
470    return 0;
471
472  case ASTContext::GE_Missing_setjmp:
473    if (ForRedeclaration)
474      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
475        << Context.BuiltinInfo.GetName(BID);
476    return 0;
477  }
478
479  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
480    Diag(Loc, diag::ext_implicit_lib_function_decl)
481      << Context.BuiltinInfo.GetName(BID)
482      << R;
483    if (Context.BuiltinInfo.getHeaderName(BID) &&
484        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
485          != Diagnostic::Ignored)
486      Diag(Loc, diag::note_please_include_header)
487        << Context.BuiltinInfo.getHeaderName(BID)
488        << Context.BuiltinInfo.GetName(BID);
489  }
490
491  FunctionDecl *New = FunctionDecl::Create(Context,
492                                           Context.getTranslationUnitDecl(),
493                                           Loc, II, R, /*DInfo=*/0,
494                                           FunctionDecl::Extern, false,
495                                           /*hasPrototype=*/true);
496  New->setImplicit();
497
498  // Create Decl objects for each parameter, adding them to the
499  // FunctionDecl.
500  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
501    llvm::SmallVector<ParmVarDecl*, 16> Params;
502    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
503      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
504                                           FT->getArgType(i), /*DInfo=*/0,
505                                           VarDecl::None, 0));
506    New->setParams(Context, Params.data(), Params.size());
507  }
508
509  AddKnownFunctionAttributes(New);
510
511  // TUScope is the translation-unit scope to insert this function into.
512  // FIXME: This is hideous. We need to teach PushOnScopeChains to
513  // relate Scopes to DeclContexts, and probably eliminate CurContext
514  // entirely, but we're not there yet.
515  DeclContext *SavedContext = CurContext;
516  CurContext = Context.getTranslationUnitDecl();
517  PushOnScopeChains(New, TUScope);
518  CurContext = SavedContext;
519  return New;
520}
521
522/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
523/// everything from the standard library is defined.
524NamespaceDecl *Sema::GetStdNamespace() {
525  if (!StdNamespace) {
526    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
527    DeclContext *Global = Context.getTranslationUnitDecl();
528    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
529    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
530  }
531  return StdNamespace;
532}
533
534/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
535/// same name and scope as a previous declaration 'Old'.  Figure out
536/// how to resolve this situation, merging decls or emitting
537/// diagnostics as appropriate. If there was an error, set New to be invalid.
538///
539void Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
540  // If either decl is known invalid already, set the new one to be invalid and
541  // don't bother doing any merging checks.
542  if (New->isInvalidDecl() || OldD->isInvalidDecl())
543    return New->setInvalidDecl();
544
545  // Allow multiple definitions for ObjC built-in typedefs.
546  // FIXME: Verify the underlying types are equivalent!
547  if (getLangOptions().ObjC1) {
548    const IdentifierInfo *TypeID = New->getIdentifier();
549    switch (TypeID->getLength()) {
550    default: break;
551    case 2:
552      if (!TypeID->isStr("id"))
553        break;
554      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
555      // Install the built-in type for 'id', ignoring the current definition.
556      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
557      return;
558    case 5:
559      if (!TypeID->isStr("Class"))
560        break;
561      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
562      // Install the built-in type for 'Class', ignoring the current definition.
563      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
564      return;
565    case 3:
566      if (!TypeID->isStr("SEL"))
567        break;
568      Context.setObjCSelType(Context.getTypeDeclType(New));
569      return;
570    case 8:
571      if (!TypeID->isStr("Protocol"))
572        break;
573      Context.setObjCProtoType(New->getUnderlyingType());
574      return;
575    }
576    // Fall through - the typedef name was not a builtin type.
577  }
578  // Verify the old decl was also a type.
579  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
580  if (!Old) {
581    Diag(New->getLocation(), diag::err_redefinition_different_kind)
582      << New->getDeclName();
583    if (OldD->getLocation().isValid())
584      Diag(OldD->getLocation(), diag::note_previous_definition);
585    return New->setInvalidDecl();
586  }
587
588  // Determine the "old" type we'll use for checking and diagnostics.
589  QualType OldType;
590  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
591    OldType = OldTypedef->getUnderlyingType();
592  else
593    OldType = Context.getTypeDeclType(Old);
594
595  // If the typedef types are not identical, reject them in all languages and
596  // with any extensions enabled.
597
598  if (OldType != New->getUnderlyingType() &&
599      Context.getCanonicalType(OldType) !=
600      Context.getCanonicalType(New->getUnderlyingType())) {
601    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
602      << New->getUnderlyingType() << OldType;
603    if (Old->getLocation().isValid())
604      Diag(Old->getLocation(), diag::note_previous_definition);
605    return New->setInvalidDecl();
606  }
607
608  if (getLangOptions().Microsoft)
609    return;
610
611  // C++ [dcl.typedef]p2:
612  //   In a given non-class scope, a typedef specifier can be used to
613  //   redefine the name of any type declared in that scope to refer
614  //   to the type to which it already refers.
615  if (getLangOptions().CPlusPlus) {
616    if (!isa<CXXRecordDecl>(CurContext))
617      return;
618    Diag(New->getLocation(), diag::err_redefinition)
619      << New->getDeclName();
620    Diag(Old->getLocation(), diag::note_previous_definition);
621    return New->setInvalidDecl();
622  }
623
624  // If we have a redefinition of a typedef in C, emit a warning.  This warning
625  // is normally mapped to an error, but can be controlled with
626  // -Wtypedef-redefinition.  If either the original or the redefinition is
627  // in a system header, don't emit this for compatibility with GCC.
628  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
629      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
630       Context.getSourceManager().isInSystemHeader(New->getLocation())))
631    return;
632
633  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
634    << New->getDeclName();
635  Diag(Old->getLocation(), diag::note_previous_definition);
636  return;
637}
638
639/// DeclhasAttr - returns true if decl Declaration already has the target
640/// attribute.
641static bool
642DeclHasAttr(const Decl *decl, const Attr *target) {
643  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
644    if (attr->getKind() == target->getKind())
645      return true;
646
647  return false;
648}
649
650/// MergeAttributes - append attributes from the Old decl to the New one.
651static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
652  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
653    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
654      Attr *NewAttr = attr->clone(C);
655      NewAttr->setInherited(true);
656      New->addAttr(NewAttr);
657    }
658  }
659}
660
661/// Used in MergeFunctionDecl to keep track of function parameters in
662/// C.
663struct GNUCompatibleParamWarning {
664  ParmVarDecl *OldParm;
665  ParmVarDecl *NewParm;
666  QualType PromotedType;
667};
668
669/// MergeFunctionDecl - We just parsed a function 'New' from
670/// declarator D which has the same name and scope as a previous
671/// declaration 'Old'.  Figure out how to resolve this situation,
672/// merging decls or emitting diagnostics as appropriate.
673///
674/// In C++, New and Old must be declarations that are not
675/// overloaded. Use IsOverload to determine whether New and Old are
676/// overloaded, and to select the Old declaration that New should be
677/// merged with.
678///
679/// Returns true if there was an error, false otherwise.
680bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
681  assert(!isa<OverloadedFunctionDecl>(OldD) &&
682         "Cannot merge with an overloaded function declaration");
683
684  // Verify the old decl was also a function.
685  FunctionDecl *Old = 0;
686  if (FunctionTemplateDecl *OldFunctionTemplate
687        = dyn_cast<FunctionTemplateDecl>(OldD))
688    Old = OldFunctionTemplate->getTemplatedDecl();
689  else
690    Old = dyn_cast<FunctionDecl>(OldD);
691  if (!Old) {
692    Diag(New->getLocation(), diag::err_redefinition_different_kind)
693      << New->getDeclName();
694    Diag(OldD->getLocation(), diag::note_previous_definition);
695    return true;
696  }
697
698  // Determine whether the previous declaration was a definition,
699  // implicit declaration, or a declaration.
700  diag::kind PrevDiag;
701  if (Old->isThisDeclarationADefinition())
702    PrevDiag = diag::note_previous_definition;
703  else if (Old->isImplicit())
704    PrevDiag = diag::note_previous_implicit_declaration;
705  else
706    PrevDiag = diag::note_previous_declaration;
707
708  QualType OldQType = Context.getCanonicalType(Old->getType());
709  QualType NewQType = Context.getCanonicalType(New->getType());
710
711  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
712      New->getStorageClass() == FunctionDecl::Static &&
713      Old->getStorageClass() != FunctionDecl::Static) {
714    Diag(New->getLocation(), diag::err_static_non_static)
715      << New;
716    Diag(Old->getLocation(), PrevDiag);
717    return true;
718  }
719
720  if (getLangOptions().CPlusPlus) {
721    // (C++98 13.1p2):
722    //   Certain function declarations cannot be overloaded:
723    //     -- Function declarations that differ only in the return type
724    //        cannot be overloaded.
725    QualType OldReturnType
726      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
727    QualType NewReturnType
728      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
729    if (OldReturnType != NewReturnType) {
730      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
731      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
732      return true;
733    }
734
735    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
736    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
737    if (OldMethod && NewMethod &&
738        NewMethod->getLexicalDeclContext()->isRecord()) {
739      //    -- Member function declarations with the same name and the
740      //       same parameter types cannot be overloaded if any of them
741      //       is a static member function declaration.
742      if (OldMethod->isStatic() || NewMethod->isStatic()) {
743        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
744        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
745        return true;
746      }
747
748      // C++ [class.mem]p1:
749      //   [...] A member shall not be declared twice in the
750      //   member-specification, except that a nested class or member
751      //   class template can be declared and then later defined.
752      unsigned NewDiag;
753      if (isa<CXXConstructorDecl>(OldMethod))
754        NewDiag = diag::err_constructor_redeclared;
755      else if (isa<CXXDestructorDecl>(NewMethod))
756        NewDiag = diag::err_destructor_redeclared;
757      else if (isa<CXXConversionDecl>(NewMethod))
758        NewDiag = diag::err_conv_function_redeclared;
759      else
760        NewDiag = diag::err_member_redeclared;
761
762      Diag(New->getLocation(), NewDiag);
763      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
764    }
765
766    // (C++98 8.3.5p3):
767    //   All declarations for a function shall agree exactly in both the
768    //   return type and the parameter-type-list.
769    if (OldQType == NewQType)
770      return MergeCompatibleFunctionDecls(New, Old);
771
772    // Fall through for conflicting redeclarations and redefinitions.
773  }
774
775  // C: Function types need to be compatible, not identical. This handles
776  // duplicate function decls like "void f(int); void f(enum X);" properly.
777  if (!getLangOptions().CPlusPlus &&
778      Context.typesAreCompatible(OldQType, NewQType)) {
779    const FunctionType *OldFuncType = OldQType->getAsFunctionType();
780    const FunctionType *NewFuncType = NewQType->getAsFunctionType();
781    const FunctionProtoType *OldProto = 0;
782    if (isa<FunctionNoProtoType>(NewFuncType) &&
783        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
784      // The old declaration provided a function prototype, but the
785      // new declaration does not. Merge in the prototype.
786      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
787      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
788                                                 OldProto->arg_type_end());
789      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
790                                         ParamTypes.data(), ParamTypes.size(),
791                                         OldProto->isVariadic(),
792                                         OldProto->getTypeQuals());
793      New->setType(NewQType);
794      New->setHasInheritedPrototype();
795
796      // Synthesize a parameter for each argument type.
797      llvm::SmallVector<ParmVarDecl*, 16> Params;
798      for (FunctionProtoType::arg_type_iterator
799             ParamType = OldProto->arg_type_begin(),
800             ParamEnd = OldProto->arg_type_end();
801           ParamType != ParamEnd; ++ParamType) {
802        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
803                                                 SourceLocation(), 0,
804                                                 *ParamType, /*DInfo=*/0,
805                                                 VarDecl::None, 0);
806        Param->setImplicit();
807        Params.push_back(Param);
808      }
809
810      New->setParams(Context, Params.data(), Params.size());
811    }
812
813    return MergeCompatibleFunctionDecls(New, Old);
814  }
815
816  // GNU C permits a K&R definition to follow a prototype declaration
817  // if the declared types of the parameters in the K&R definition
818  // match the types in the prototype declaration, even when the
819  // promoted types of the parameters from the K&R definition differ
820  // from the types in the prototype. GCC then keeps the types from
821  // the prototype.
822  //
823  // If a variadic prototype is followed by a non-variadic K&R definition,
824  // the K&R definition becomes variadic.  This is sort of an edge case, but
825  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
826  // C99 6.9.1p8.
827  if (!getLangOptions().CPlusPlus &&
828      Old->hasPrototype() && !New->hasPrototype() &&
829      New->getType()->getAsFunctionProtoType() &&
830      Old->getNumParams() == New->getNumParams()) {
831    llvm::SmallVector<QualType, 16> ArgTypes;
832    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
833    const FunctionProtoType *OldProto
834      = Old->getType()->getAsFunctionProtoType();
835    const FunctionProtoType *NewProto
836      = New->getType()->getAsFunctionProtoType();
837
838    // Determine whether this is the GNU C extension.
839    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
840                                               NewProto->getResultType());
841    bool LooseCompatible = !MergedReturn.isNull();
842    for (unsigned Idx = 0, End = Old->getNumParams();
843         LooseCompatible && Idx != End; ++Idx) {
844      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
845      ParmVarDecl *NewParm = New->getParamDecl(Idx);
846      if (Context.typesAreCompatible(OldParm->getType(),
847                                     NewProto->getArgType(Idx))) {
848        ArgTypes.push_back(NewParm->getType());
849      } else if (Context.typesAreCompatible(OldParm->getType(),
850                                            NewParm->getType())) {
851        GNUCompatibleParamWarning Warn
852          = { OldParm, NewParm, NewProto->getArgType(Idx) };
853        Warnings.push_back(Warn);
854        ArgTypes.push_back(NewParm->getType());
855      } else
856        LooseCompatible = false;
857    }
858
859    if (LooseCompatible) {
860      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
861        Diag(Warnings[Warn].NewParm->getLocation(),
862             diag::ext_param_promoted_not_compatible_with_prototype)
863          << Warnings[Warn].PromotedType
864          << Warnings[Warn].OldParm->getType();
865        Diag(Warnings[Warn].OldParm->getLocation(),
866             diag::note_previous_declaration);
867      }
868
869      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
870                                           ArgTypes.size(),
871                                           OldProto->isVariadic(), 0));
872      return MergeCompatibleFunctionDecls(New, Old);
873    }
874
875    // Fall through to diagnose conflicting types.
876  }
877
878  // A function that has already been declared has been redeclared or defined
879  // with a different type- show appropriate diagnostic
880  if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
881    // The user has declared a builtin function with an incompatible
882    // signature.
883    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
884      // The function the user is redeclaring is a library-defined
885      // function like 'malloc' or 'printf'. Warn about the
886      // redeclaration, then pretend that we don't know about this
887      // library built-in.
888      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
889      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
890        << Old << Old->getType();
891      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
892      Old->setInvalidDecl();
893      return false;
894    }
895
896    PrevDiag = diag::note_previous_builtin_declaration;
897  }
898
899  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
900  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
901  return true;
902}
903
904/// \brief Completes the merge of two function declarations that are
905/// known to be compatible.
906///
907/// This routine handles the merging of attributes and other
908/// properties of function declarations form the old declaration to
909/// the new declaration, once we know that New is in fact a
910/// redeclaration of Old.
911///
912/// \returns false
913bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
914  // Merge the attributes
915  MergeAttributes(New, Old, Context);
916
917  // Merge the storage class.
918  if (Old->getStorageClass() != FunctionDecl::Extern)
919    New->setStorageClass(Old->getStorageClass());
920
921  // Merge "inline"
922  if (Old->isInline())
923    New->setInline(true);
924
925  // If this function declaration by itself qualifies as a C99 inline
926  // definition (C99 6.7.4p6), but the previous definition did not,
927  // then the function is not a C99 inline definition.
928  if (New->isC99InlineDefinition() && !Old->isC99InlineDefinition())
929    New->setC99InlineDefinition(false);
930  else if (Old->isC99InlineDefinition() && !New->isC99InlineDefinition()) {
931    // Mark all preceding definitions as not being C99 inline definitions.
932    for (const FunctionDecl *Prev = Old; Prev;
933         Prev = Prev->getPreviousDeclaration())
934      const_cast<FunctionDecl *>(Prev)->setC99InlineDefinition(false);
935  }
936
937  // Merge "pure" flag.
938  if (Old->isPure())
939    New->setPure();
940
941  // Merge the "deleted" flag.
942  if (Old->isDeleted())
943    New->setDeleted();
944
945  if (getLangOptions().CPlusPlus)
946    return MergeCXXFunctionDecl(New, Old);
947
948  return false;
949}
950
951/// MergeVarDecl - We just parsed a variable 'New' which has the same name
952/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
953/// situation, merging decls or emitting diagnostics as appropriate.
954///
955/// Tentative definition rules (C99 6.9.2p2) are checked by
956/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
957/// definitions here, since the initializer hasn't been attached.
958///
959void Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
960  // If either decl is invalid, make sure the new one is marked invalid and
961  // don't do any other checking.
962  if (New->isInvalidDecl() || OldD->isInvalidDecl())
963    return New->setInvalidDecl();
964
965  // Verify the old decl was also a variable.
966  VarDecl *Old = dyn_cast<VarDecl>(OldD);
967  if (!Old) {
968    Diag(New->getLocation(), diag::err_redefinition_different_kind)
969      << New->getDeclName();
970    Diag(OldD->getLocation(), diag::note_previous_definition);
971    return New->setInvalidDecl();
972  }
973
974  MergeAttributes(New, Old, Context);
975
976  // Merge the types
977  QualType MergedT;
978  if (getLangOptions().CPlusPlus) {
979    if (Context.hasSameType(New->getType(), Old->getType()))
980      MergedT = New->getType();
981  } else {
982    MergedT = Context.mergeTypes(New->getType(), Old->getType());
983  }
984  if (MergedT.isNull()) {
985    Diag(New->getLocation(), diag::err_redefinition_different_type)
986      << New->getDeclName();
987    Diag(Old->getLocation(), diag::note_previous_definition);
988    return New->setInvalidDecl();
989  }
990  New->setType(MergedT);
991
992  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
993  if (New->getStorageClass() == VarDecl::Static &&
994      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
995    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
996    Diag(Old->getLocation(), diag::note_previous_definition);
997    return New->setInvalidDecl();
998  }
999  // C99 6.2.2p4:
1000  //   For an identifier declared with the storage-class specifier
1001  //   extern in a scope in which a prior declaration of that
1002  //   identifier is visible,23) if the prior declaration specifies
1003  //   internal or external linkage, the linkage of the identifier at
1004  //   the later declaration is the same as the linkage specified at
1005  //   the prior declaration. If no prior declaration is visible, or
1006  //   if the prior declaration specifies no linkage, then the
1007  //   identifier has external linkage.
1008  if (New->hasExternalStorage() && Old->hasLinkage())
1009    /* Okay */;
1010  else if (New->getStorageClass() != VarDecl::Static &&
1011           Old->getStorageClass() == VarDecl::Static) {
1012    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1013    Diag(Old->getLocation(), diag::note_previous_definition);
1014    return New->setInvalidDecl();
1015  }
1016
1017  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1018
1019  // FIXME: The test for external storage here seems wrong? We still
1020  // need to check for mismatches.
1021  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1022      // Don't complain about out-of-line definitions of static members.
1023      !(Old->getLexicalDeclContext()->isRecord() &&
1024        !New->getLexicalDeclContext()->isRecord())) {
1025    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1026    Diag(Old->getLocation(), diag::note_previous_definition);
1027    return New->setInvalidDecl();
1028  }
1029
1030  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1031    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1032    Diag(Old->getLocation(), diag::note_previous_definition);
1033  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1034    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1035    Diag(Old->getLocation(), diag::note_previous_definition);
1036  }
1037
1038  // Keep a chain of previous declarations.
1039  New->setPreviousDeclaration(Old);
1040}
1041
1042/// CheckFallThrough - Check that we don't fall off the end of a
1043/// Statement that should return a value.
1044///
1045/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
1046/// MaybeFallThrough iff we might or might not fall off the end and
1047/// NeverFallThrough iff we never fall off the end of the statement.  We assume
1048/// that functions not marked noreturn will return.
1049Sema::ControlFlowKind Sema::CheckFallThrough(Stmt *Root) {
1050  llvm::OwningPtr<CFG> cfg (CFG::buildCFG(Root, &Context));
1051
1052  // FIXME: They should never return 0, fix that, delete this code.
1053  if (cfg == 0)
1054    return NeverFallThrough;
1055  // The CFG leaves in dead things, and we don't want to dead code paths to
1056  // confuse us, so we mark all live things first.
1057  std::queue<CFGBlock*> workq;
1058  llvm::BitVector live(cfg->getNumBlockIDs());
1059  // Prep work queue
1060  workq.push(&cfg->getEntry());
1061  // Solve
1062  while (!workq.empty()) {
1063    CFGBlock *item = workq.front();
1064    workq.pop();
1065    live.set(item->getBlockID());
1066    for (CFGBlock::succ_iterator I=item->succ_begin(),
1067           E=item->succ_end();
1068         I != E;
1069         ++I) {
1070      if ((*I) && !live[(*I)->getBlockID()]) {
1071        live.set((*I)->getBlockID());
1072        workq.push(*I);
1073      }
1074    }
1075  }
1076
1077  // Now we know what is live, we check the live precessors of the exit block
1078  // and look for fall through paths, being careful to ignore normal returns,
1079  // and exceptional paths.
1080  bool HasLiveReturn = false;
1081  bool HasFakeEdge = false;
1082  bool HasPlainEdge = false;
1083  for (CFGBlock::succ_iterator I=cfg->getExit().pred_begin(),
1084         E = cfg->getExit().pred_end();
1085       I != E;
1086       ++I) {
1087    CFGBlock& B = **I;
1088    if (!live[B.getBlockID()])
1089      continue;
1090    if (B.size() == 0) {
1091      // A labeled empty statement, or the entry block...
1092      HasPlainEdge = true;
1093      continue;
1094    }
1095    Stmt *S = B[B.size()-1];
1096    if (isa<ReturnStmt>(S)) {
1097      HasLiveReturn = true;
1098      continue;
1099    }
1100    if (isa<ObjCAtThrowStmt>(S)) {
1101      HasFakeEdge = true;
1102      continue;
1103    }
1104    if (isa<CXXThrowExpr>(S)) {
1105      HasFakeEdge = true;
1106      continue;
1107    }
1108    bool NoReturnEdge = false;
1109    if (CallExpr *C = dyn_cast<CallExpr>(S)) {
1110      Expr *CEE = C->getCallee()->IgnoreParenCasts();
1111      if (CEE->getType().getNoReturnAttr()) {
1112        NoReturnEdge = true;
1113        HasFakeEdge = true;
1114      } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) {
1115        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1116          if (FD->hasAttr<NoReturnAttr>()) {
1117            NoReturnEdge = true;
1118            HasFakeEdge = true;
1119          }
1120        }
1121      }
1122    }
1123    // FIXME: Add noreturn message sends.
1124    if (NoReturnEdge == false)
1125      HasPlainEdge = true;
1126  }
1127  if (!HasPlainEdge)
1128    return NeverFallThrough;
1129  if (HasFakeEdge || HasLiveReturn)
1130    return MaybeFallThrough;
1131  // This says AlwaysFallThrough for calls to functions that are not marked
1132  // noreturn, that don't return.  If people would like this warning to be more
1133  // accurate, such functions should be marked as noreturn.
1134  return AlwaysFallThrough;
1135}
1136
1137/// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
1138/// function that should return a value.  Check that we don't fall off the end
1139/// of a noreturn function.  We assume that functions and blocks not marked
1140/// noreturn will return.
1141void Sema::CheckFallThroughForFunctionDef(Decl *D, Stmt *Body) {
1142  // FIXME: Would be nice if we had a better way to control cascading errors,
1143  // but for now, avoid them.  The problem is that when Parse sees:
1144  //   int foo() { return a; }
1145  // The return is eaten and the Sema code sees just:
1146  //   int foo() { }
1147  // which this code would then warn about.
1148  if (getDiagnostics().hasErrorOccurred())
1149    return;
1150  bool ReturnsVoid = false;
1151  bool HasNoReturn = false;
1152  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1153    if (FD->getResultType()->isVoidType())
1154      ReturnsVoid = true;
1155    if (FD->hasAttr<NoReturnAttr>())
1156      HasNoReturn = true;
1157  } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
1158    if (MD->getResultType()->isVoidType())
1159      ReturnsVoid = true;
1160    if (MD->hasAttr<NoReturnAttr>())
1161      HasNoReturn = true;
1162  }
1163
1164  // Short circuit for compilation speed.
1165  if ((Diags.getDiagnosticLevel(diag::warn_maybe_falloff_nonvoid_function)
1166       == Diagnostic::Ignored || ReturnsVoid)
1167      && (Diags.getDiagnosticLevel(diag::warn_noreturn_function_has_return_expr)
1168          == Diagnostic::Ignored || !HasNoReturn)
1169      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1170          == Diagnostic::Ignored || !ReturnsVoid))
1171    return;
1172  // FIXME: Funtion try block
1173  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1174    switch (CheckFallThrough(Body)) {
1175    case MaybeFallThrough:
1176      if (HasNoReturn)
1177        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1178      else if (!ReturnsVoid)
1179        Diag(Compound->getRBracLoc(),diag::warn_maybe_falloff_nonvoid_function);
1180      break;
1181    case AlwaysFallThrough:
1182      if (HasNoReturn)
1183        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1184      else if (!ReturnsVoid)
1185        Diag(Compound->getRBracLoc(), diag::warn_falloff_nonvoid_function);
1186      break;
1187    case NeverFallThrough:
1188      if (ReturnsVoid)
1189        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_function);
1190      break;
1191    }
1192  }
1193}
1194
1195/// CheckFallThroughForBlock - Check that we don't fall off the end of a block
1196/// that should return a value.  Check that we don't fall off the end of a
1197/// noreturn block.  We assume that functions and blocks not marked noreturn
1198/// will return.
1199void Sema::CheckFallThroughForBlock(QualType BlockTy, Stmt *Body) {
1200  // FIXME: Would be nice if we had a better way to control cascading errors,
1201  // but for now, avoid them.  The problem is that when Parse sees:
1202  //   int foo() { return a; }
1203  // The return is eaten and the Sema code sees just:
1204  //   int foo() { }
1205  // which this code would then warn about.
1206  if (getDiagnostics().hasErrorOccurred())
1207    return;
1208  bool ReturnsVoid = false;
1209  bool HasNoReturn = false;
1210  if (const FunctionType *FT = BlockTy->getPointeeType()->getAsFunctionType()) {
1211    if (FT->getResultType()->isVoidType())
1212      ReturnsVoid = true;
1213    if (FT->getNoReturnAttr())
1214      HasNoReturn = true;
1215  }
1216
1217  // Short circuit for compilation speed.
1218  if (ReturnsVoid
1219      && !HasNoReturn
1220      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1221          == Diagnostic::Ignored || !ReturnsVoid))
1222    return;
1223  // FIXME: Funtion try block
1224  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1225    switch (CheckFallThrough(Body)) {
1226    case MaybeFallThrough:
1227      if (HasNoReturn)
1228        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1229      else if (!ReturnsVoid)
1230        Diag(Compound->getRBracLoc(), diag::err_maybe_falloff_nonvoid_block);
1231      break;
1232    case AlwaysFallThrough:
1233      if (HasNoReturn)
1234        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1235      else if (!ReturnsVoid)
1236        Diag(Compound->getRBracLoc(), diag::err_falloff_nonvoid_block);
1237      break;
1238    case NeverFallThrough:
1239      if (ReturnsVoid)
1240        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_block);
1241      break;
1242    }
1243  }
1244}
1245
1246/// CheckParmsForFunctionDef - Check that the parameters of the given
1247/// function are appropriate for the definition of a function. This
1248/// takes care of any checks that cannot be performed on the
1249/// declaration itself, e.g., that the types of each of the function
1250/// parameters are complete.
1251bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
1252  bool HasInvalidParm = false;
1253  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1254    ParmVarDecl *Param = FD->getParamDecl(p);
1255
1256    // C99 6.7.5.3p4: the parameters in a parameter type list in a
1257    // function declarator that is part of a function definition of
1258    // that function shall not have incomplete type.
1259    //
1260    // This is also C++ [dcl.fct]p6.
1261    if (!Param->isInvalidDecl() &&
1262        RequireCompleteType(Param->getLocation(), Param->getType(),
1263                               diag::err_typecheck_decl_incomplete_type)) {
1264      Param->setInvalidDecl();
1265      HasInvalidParm = true;
1266    }
1267
1268    // C99 6.9.1p5: If the declarator includes a parameter type list, the
1269    // declaration of each parameter shall include an identifier.
1270    if (Param->getIdentifier() == 0 &&
1271        !Param->isImplicit() &&
1272        !getLangOptions().CPlusPlus)
1273      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
1274  }
1275
1276  return HasInvalidParm;
1277}
1278
1279/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1280/// no declarator (e.g. "struct foo;") is parsed.
1281Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1282  // FIXME: Error on auto/register at file scope
1283  // FIXME: Error on inline/virtual/explicit
1284  // FIXME: Error on invalid restrict
1285  // FIXME: Warn on useless __thread
1286  // FIXME: Warn on useless const/volatile
1287  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1288  // FIXME: Warn on useless attributes
1289  TagDecl *Tag = 0;
1290  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1291      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1292      DS.getTypeSpecType() == DeclSpec::TST_union ||
1293      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1294    if (!DS.getTypeRep()) // We probably had an error
1295      return DeclPtrTy();
1296
1297    // Note that the above type specs guarantee that the
1298    // type rep is a Decl, whereas in many of the others
1299    // it's a Type.
1300    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
1301  }
1302
1303  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1304    if (!Record->getDeclName() && Record->isDefinition() &&
1305        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1306      if (getLangOptions().CPlusPlus ||
1307          Record->getDeclContext()->isRecord())
1308        return BuildAnonymousStructOrUnion(S, DS, Record);
1309
1310      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1311        << DS.getSourceRange();
1312    }
1313
1314    // Microsoft allows unnamed struct/union fields. Don't complain
1315    // about them.
1316    // FIXME: Should we support Microsoft's extensions in this area?
1317    if (Record->getDeclName() && getLangOptions().Microsoft)
1318      return DeclPtrTy::make(Tag);
1319  }
1320
1321  if (!DS.isMissingDeclaratorOk() &&
1322      DS.getTypeSpecType() != DeclSpec::TST_error) {
1323    // Warn about typedefs of enums without names, since this is an
1324    // extension in both Microsoft an GNU.
1325    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1326        Tag && isa<EnumDecl>(Tag)) {
1327      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1328        << DS.getSourceRange();
1329      return DeclPtrTy::make(Tag);
1330    }
1331
1332    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1333      << DS.getSourceRange();
1334    return DeclPtrTy();
1335  }
1336
1337  return DeclPtrTy::make(Tag);
1338}
1339
1340/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1341/// anonymous struct or union AnonRecord into the owning context Owner
1342/// and scope S. This routine will be invoked just after we realize
1343/// that an unnamed union or struct is actually an anonymous union or
1344/// struct, e.g.,
1345///
1346/// @code
1347/// union {
1348///   int i;
1349///   float f;
1350/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1351///    // f into the surrounding scope.x
1352/// @endcode
1353///
1354/// This routine is recursive, injecting the names of nested anonymous
1355/// structs/unions into the owning context and scope as well.
1356bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1357                                               RecordDecl *AnonRecord) {
1358  bool Invalid = false;
1359  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1360                               FEnd = AnonRecord->field_end();
1361       F != FEnd; ++F) {
1362    if ((*F)->getDeclName()) {
1363      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
1364                                                LookupOrdinaryName, true);
1365      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
1366        // C++ [class.union]p2:
1367        //   The names of the members of an anonymous union shall be
1368        //   distinct from the names of any other entity in the
1369        //   scope in which the anonymous union is declared.
1370        unsigned diagKind
1371          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
1372                                 : diag::err_anonymous_struct_member_redecl;
1373        Diag((*F)->getLocation(), diagKind)
1374          << (*F)->getDeclName();
1375        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1376        Invalid = true;
1377      } else {
1378        // C++ [class.union]p2:
1379        //   For the purpose of name lookup, after the anonymous union
1380        //   definition, the members of the anonymous union are
1381        //   considered to have been defined in the scope in which the
1382        //   anonymous union is declared.
1383        Owner->makeDeclVisibleInContext(*F);
1384        S->AddDecl(DeclPtrTy::make(*F));
1385        IdResolver.AddDecl(*F);
1386      }
1387    } else if (const RecordType *InnerRecordType
1388                 = (*F)->getType()->getAs<RecordType>()) {
1389      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1390      if (InnerRecord->isAnonymousStructOrUnion())
1391        Invalid = Invalid ||
1392          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1393    }
1394  }
1395
1396  return Invalid;
1397}
1398
1399/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1400/// anonymous structure or union. Anonymous unions are a C++ feature
1401/// (C++ [class.union]) and a GNU C extension; anonymous structures
1402/// are a GNU C and GNU C++ extension.
1403Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1404                                                  RecordDecl *Record) {
1405  DeclContext *Owner = Record->getDeclContext();
1406
1407  // Diagnose whether this anonymous struct/union is an extension.
1408  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1409    Diag(Record->getLocation(), diag::ext_anonymous_union);
1410  else if (!Record->isUnion())
1411    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1412
1413  // C and C++ require different kinds of checks for anonymous
1414  // structs/unions.
1415  bool Invalid = false;
1416  if (getLangOptions().CPlusPlus) {
1417    const char* PrevSpec = 0;
1418    unsigned DiagID;
1419    // C++ [class.union]p3:
1420    //   Anonymous unions declared in a named namespace or in the
1421    //   global namespace shall be declared static.
1422    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1423        (isa<TranslationUnitDecl>(Owner) ||
1424         (isa<NamespaceDecl>(Owner) &&
1425          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1426      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1427      Invalid = true;
1428
1429      // Recover by adding 'static'.
1430      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1431                             PrevSpec, DiagID);
1432    }
1433    // C++ [class.union]p3:
1434    //   A storage class is not allowed in a declaration of an
1435    //   anonymous union in a class scope.
1436    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1437             isa<RecordDecl>(Owner)) {
1438      Diag(DS.getStorageClassSpecLoc(),
1439           diag::err_anonymous_union_with_storage_spec);
1440      Invalid = true;
1441
1442      // Recover by removing the storage specifier.
1443      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1444                             PrevSpec, DiagID);
1445    }
1446
1447    // C++ [class.union]p2:
1448    //   The member-specification of an anonymous union shall only
1449    //   define non-static data members. [Note: nested types and
1450    //   functions cannot be declared within an anonymous union. ]
1451    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1452                                 MemEnd = Record->decls_end();
1453         Mem != MemEnd; ++Mem) {
1454      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1455        // C++ [class.union]p3:
1456        //   An anonymous union shall not have private or protected
1457        //   members (clause 11).
1458        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1459          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1460            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1461          Invalid = true;
1462        }
1463      } else if ((*Mem)->isImplicit()) {
1464        // Any implicit members are fine.
1465      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1466        // This is a type that showed up in an
1467        // elaborated-type-specifier inside the anonymous struct or
1468        // union, but which actually declares a type outside of the
1469        // anonymous struct or union. It's okay.
1470      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1471        if (!MemRecord->isAnonymousStructOrUnion() &&
1472            MemRecord->getDeclName()) {
1473          // This is a nested type declaration.
1474          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1475            << (int)Record->isUnion();
1476          Invalid = true;
1477        }
1478      } else {
1479        // We have something that isn't a non-static data
1480        // member. Complain about it.
1481        unsigned DK = diag::err_anonymous_record_bad_member;
1482        if (isa<TypeDecl>(*Mem))
1483          DK = diag::err_anonymous_record_with_type;
1484        else if (isa<FunctionDecl>(*Mem))
1485          DK = diag::err_anonymous_record_with_function;
1486        else if (isa<VarDecl>(*Mem))
1487          DK = diag::err_anonymous_record_with_static;
1488        Diag((*Mem)->getLocation(), DK)
1489            << (int)Record->isUnion();
1490          Invalid = true;
1491      }
1492    }
1493  }
1494
1495  if (!Record->isUnion() && !Owner->isRecord()) {
1496    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1497      << (int)getLangOptions().CPlusPlus;
1498    Invalid = true;
1499  }
1500
1501  // Create a declaration for this anonymous struct/union.
1502  NamedDecl *Anon = 0;
1503  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1504    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1505                             /*IdentifierInfo=*/0,
1506                             Context.getTypeDeclType(Record),
1507                             // FIXME: Type source info.
1508                             /*DInfo=*/0,
1509                             /*BitWidth=*/0, /*Mutable=*/false);
1510    Anon->setAccess(AS_public);
1511    if (getLangOptions().CPlusPlus)
1512      FieldCollector->Add(cast<FieldDecl>(Anon));
1513  } else {
1514    VarDecl::StorageClass SC;
1515    switch (DS.getStorageClassSpec()) {
1516    default: assert(0 && "Unknown storage class!");
1517    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1518    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1519    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1520    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1521    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1522    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1523    case DeclSpec::SCS_mutable:
1524      // mutable can only appear on non-static class members, so it's always
1525      // an error here
1526      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1527      Invalid = true;
1528      SC = VarDecl::None;
1529      break;
1530    }
1531
1532    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1533                           /*IdentifierInfo=*/0,
1534                           Context.getTypeDeclType(Record),
1535                           // FIXME: Type source info.
1536                           /*DInfo=*/0,
1537                           SC);
1538  }
1539  Anon->setImplicit();
1540
1541  // Add the anonymous struct/union object to the current
1542  // context. We'll be referencing this object when we refer to one of
1543  // its members.
1544  Owner->addDecl(Anon);
1545
1546  // Inject the members of the anonymous struct/union into the owning
1547  // context and into the identifier resolver chain for name lookup
1548  // purposes.
1549  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1550    Invalid = true;
1551
1552  // Mark this as an anonymous struct/union type. Note that we do not
1553  // do this until after we have already checked and injected the
1554  // members of this anonymous struct/union type, because otherwise
1555  // the members could be injected twice: once by DeclContext when it
1556  // builds its lookup table, and once by
1557  // InjectAnonymousStructOrUnionMembers.
1558  Record->setAnonymousStructOrUnion(true);
1559
1560  if (Invalid)
1561    Anon->setInvalidDecl();
1562
1563  return DeclPtrTy::make(Anon);
1564}
1565
1566
1567/// GetNameForDeclarator - Determine the full declaration name for the
1568/// given Declarator.
1569DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1570  switch (D.getKind()) {
1571  case Declarator::DK_Abstract:
1572    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1573    return DeclarationName();
1574
1575  case Declarator::DK_Normal:
1576    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1577    return DeclarationName(D.getIdentifier());
1578
1579  case Declarator::DK_Constructor: {
1580    QualType Ty = GetTypeFromParser(D.getDeclaratorIdType());
1581    return Context.DeclarationNames.getCXXConstructorName(
1582                                                Context.getCanonicalType(Ty));
1583  }
1584
1585  case Declarator::DK_Destructor: {
1586    QualType Ty = GetTypeFromParser(D.getDeclaratorIdType());
1587    return Context.DeclarationNames.getCXXDestructorName(
1588                                                Context.getCanonicalType(Ty));
1589  }
1590
1591  case Declarator::DK_Conversion: {
1592    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1593    QualType Ty = GetTypeFromParser(D.getDeclaratorIdType());
1594    return Context.DeclarationNames.getCXXConversionFunctionName(
1595                                                Context.getCanonicalType(Ty));
1596  }
1597
1598  case Declarator::DK_Operator:
1599    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1600    return Context.DeclarationNames.getCXXOperatorName(
1601                                                D.getOverloadedOperator());
1602  }
1603
1604  assert(false && "Unknown name kind");
1605  return DeclarationName();
1606}
1607
1608/// isNearlyMatchingFunction - Determine whether the C++ functions
1609/// Declaration and Definition are "nearly" matching. This heuristic
1610/// is used to improve diagnostics in the case where an out-of-line
1611/// function definition doesn't match any declaration within
1612/// the class or namespace.
1613static bool isNearlyMatchingFunction(ASTContext &Context,
1614                                     FunctionDecl *Declaration,
1615                                     FunctionDecl *Definition) {
1616  if (Declaration->param_size() != Definition->param_size())
1617    return false;
1618  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1619    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1620    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1621
1622    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1623    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1624    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1625      return false;
1626  }
1627
1628  return true;
1629}
1630
1631Sema::DeclPtrTy
1632Sema::HandleDeclarator(Scope *S, Declarator &D,
1633                       MultiTemplateParamsArg TemplateParamLists,
1634                       bool IsFunctionDefinition) {
1635  DeclarationName Name = GetNameForDeclarator(D);
1636
1637  // All of these full declarators require an identifier.  If it doesn't have
1638  // one, the ParsedFreeStandingDeclSpec action should be used.
1639  if (!Name) {
1640    if (!D.isInvalidType())  // Reject this if we think it is valid.
1641      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1642           diag::err_declarator_need_ident)
1643        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1644    return DeclPtrTy();
1645  }
1646
1647  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1648  // we find one that is.
1649  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1650         (S->getFlags() & Scope::TemplateParamScope) != 0)
1651    S = S->getParent();
1652
1653  // If this is an out-of-line definition of a member of a class template
1654  // or class template partial specialization, we may need to rebuild the
1655  // type specifier in the declarator. See RebuildTypeInCurrentInstantiation()
1656  // for more information.
1657  // FIXME: cope with decltype(expr) and typeof(expr) once the rebuilder can
1658  // handle expressions properly.
1659  DeclSpec &DS = const_cast<DeclSpec&>(D.getDeclSpec());
1660  if (D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid() &&
1661      isDependentScopeSpecifier(D.getCXXScopeSpec()) &&
1662      (DS.getTypeSpecType() == DeclSpec::TST_typename ||
1663       DS.getTypeSpecType() == DeclSpec::TST_typeofType ||
1664       DS.getTypeSpecType() == DeclSpec::TST_typeofExpr ||
1665       DS.getTypeSpecType() == DeclSpec::TST_decltype)) {
1666    if (DeclContext *DC = computeDeclContext(D.getCXXScopeSpec(), true)) {
1667      // FIXME: Preserve type source info.
1668      QualType T = GetTypeFromParser(DS.getTypeRep());
1669      EnterDeclaratorContext(S, DC);
1670      T = RebuildTypeInCurrentInstantiation(T, D.getIdentifierLoc(), Name);
1671      ExitDeclaratorContext(S);
1672      if (T.isNull())
1673        return DeclPtrTy();
1674      DS.UpdateTypeRep(T.getAsOpaquePtr());
1675    }
1676  }
1677
1678  DeclContext *DC;
1679  NamedDecl *PrevDecl;
1680  NamedDecl *New;
1681
1682  DeclaratorInfo *DInfo = 0;
1683  QualType R = GetTypeForDeclarator(D, S, &DInfo);
1684
1685  // See if this is a redefinition of a variable in the same scope.
1686  if (D.getCXXScopeSpec().isInvalid()) {
1687    DC = CurContext;
1688    PrevDecl = 0;
1689    D.setInvalidType();
1690  } else if (!D.getCXXScopeSpec().isSet()) {
1691    LookupNameKind NameKind = LookupOrdinaryName;
1692
1693    // If the declaration we're planning to build will be a function
1694    // or object with linkage, then look for another declaration with
1695    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1696    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1697      /* Do nothing*/;
1698    else if (R->isFunctionType()) {
1699      if (CurContext->isFunctionOrMethod() ||
1700          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1701        NameKind = LookupRedeclarationWithLinkage;
1702    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1703      NameKind = LookupRedeclarationWithLinkage;
1704    else if (CurContext->getLookupContext()->isTranslationUnit() &&
1705             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1706      NameKind = LookupRedeclarationWithLinkage;
1707
1708    DC = CurContext;
1709    PrevDecl = LookupName(S, Name, NameKind, true,
1710                          NameKind == LookupRedeclarationWithLinkage,
1711                          D.getIdentifierLoc());
1712  } else { // Something like "int foo::x;"
1713    DC = computeDeclContext(D.getCXXScopeSpec(), true);
1714
1715    if (!DC) {
1716      // If we could not compute the declaration context, it's because the
1717      // declaration context is dependent but does not refer to a class,
1718      // class template, or class template partial specialization. Complain
1719      // and return early, to avoid the coming semantic disaster.
1720      Diag(D.getIdentifierLoc(),
1721           diag::err_template_qualified_declarator_no_match)
1722        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
1723        << D.getCXXScopeSpec().getRange();
1724      return DeclPtrTy();
1725    }
1726
1727    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1728
1729    // C++ 7.3.1.2p2:
1730    // Members (including explicit specializations of templates) of a named
1731    // namespace can also be defined outside that namespace by explicit
1732    // qualification of the name being defined, provided that the entity being
1733    // defined was already declared in the namespace and the definition appears
1734    // after the point of declaration in a namespace that encloses the
1735    // declarations namespace.
1736    //
1737    // Note that we only check the context at this point. We don't yet
1738    // have enough information to make sure that PrevDecl is actually
1739    // the declaration we want to match. For example, given:
1740    //
1741    //   class X {
1742    //     void f();
1743    //     void f(float);
1744    //   };
1745    //
1746    //   void X::f(int) { } // ill-formed
1747    //
1748    // In this case, PrevDecl will point to the overload set
1749    // containing the two f's declared in X, but neither of them
1750    // matches.
1751
1752    // First check whether we named the global scope.
1753    if (isa<TranslationUnitDecl>(DC)) {
1754      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1755        << Name << D.getCXXScopeSpec().getRange();
1756    } else if (!CurContext->Encloses(DC)) {
1757      // The qualifying scope doesn't enclose the original declaration.
1758      // Emit diagnostic based on current scope.
1759      SourceLocation L = D.getIdentifierLoc();
1760      SourceRange R = D.getCXXScopeSpec().getRange();
1761      if (isa<FunctionDecl>(CurContext))
1762        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1763      else
1764        Diag(L, diag::err_invalid_declarator_scope)
1765          << Name << cast<NamedDecl>(DC) << R;
1766      D.setInvalidType();
1767    }
1768  }
1769
1770  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1771    // Maybe we will complain about the shadowed template parameter.
1772    if (!D.isInvalidType())
1773      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl))
1774        D.setInvalidType();
1775
1776    // Just pretend that we didn't see the previous declaration.
1777    PrevDecl = 0;
1778  }
1779
1780  // In C++, the previous declaration we find might be a tag type
1781  // (class or enum). In this case, the new declaration will hide the
1782  // tag type. Note that this does does not apply if we're declaring a
1783  // typedef (C++ [dcl.typedef]p4).
1784  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1785      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1786    PrevDecl = 0;
1787
1788  bool Redeclaration = false;
1789  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1790    if (TemplateParamLists.size()) {
1791      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
1792      return DeclPtrTy();
1793    }
1794
1795    New = ActOnTypedefDeclarator(S, D, DC, R, DInfo, PrevDecl, Redeclaration);
1796  } else if (R->isFunctionType()) {
1797    New = ActOnFunctionDeclarator(S, D, DC, R, DInfo, PrevDecl,
1798                                  move(TemplateParamLists),
1799                                  IsFunctionDefinition, Redeclaration);
1800  } else {
1801    New = ActOnVariableDeclarator(S, D, DC, R, DInfo, PrevDecl,
1802                                  move(TemplateParamLists),
1803                                  Redeclaration);
1804  }
1805
1806  if (New == 0)
1807    return DeclPtrTy();
1808
1809  // If this has an identifier and is not an invalid redeclaration,
1810  // add it to the scope stack.
1811  if (Name && !(Redeclaration && New->isInvalidDecl()))
1812    PushOnScopeChains(New, S);
1813
1814  return DeclPtrTy::make(New);
1815}
1816
1817/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1818/// types into constant array types in certain situations which would otherwise
1819/// be errors (for GCC compatibility).
1820static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1821                                                    ASTContext &Context,
1822                                                    bool &SizeIsNegative) {
1823  // This method tries to turn a variable array into a constant
1824  // array even when the size isn't an ICE.  This is necessary
1825  // for compatibility with code that depends on gcc's buggy
1826  // constant expression folding, like struct {char x[(int)(char*)2];}
1827  SizeIsNegative = false;
1828
1829  if (const PointerType* PTy = dyn_cast<PointerType>(T)) {
1830    QualType Pointee = PTy->getPointeeType();
1831    QualType FixedType =
1832        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1833    if (FixedType.isNull()) return FixedType;
1834    FixedType = Context.getPointerType(FixedType);
1835    FixedType.setCVRQualifiers(T.getCVRQualifiers());
1836    return FixedType;
1837  }
1838
1839  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1840  if (!VLATy)
1841    return QualType();
1842  // FIXME: We should probably handle this case
1843  if (VLATy->getElementType()->isVariablyModifiedType())
1844    return QualType();
1845
1846  Expr::EvalResult EvalResult;
1847  if (!VLATy->getSizeExpr() ||
1848      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1849      !EvalResult.Val.isInt())
1850    return QualType();
1851
1852  llvm::APSInt &Res = EvalResult.Val.getInt();
1853  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
1854    Expr* ArySizeExpr = VLATy->getSizeExpr();
1855    // FIXME: here we could "steal" (how?) ArySizeExpr from the VLA,
1856    // so as to transfer ownership to the ConstantArrayWithExpr.
1857    // Alternatively, we could "clone" it (how?).
1858    // Since we don't know how to do things above, we just use the
1859    // very same Expr*.
1860    return Context.getConstantArrayWithExprType(VLATy->getElementType(),
1861                                                Res, ArySizeExpr,
1862                                                ArrayType::Normal, 0,
1863                                                VLATy->getBracketsRange());
1864  }
1865
1866  SizeIsNegative = true;
1867  return QualType();
1868}
1869
1870/// \brief Register the given locally-scoped external C declaration so
1871/// that it can be found later for redeclarations
1872void
1873Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1874                                       Scope *S) {
1875  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1876         "Decl is not a locally-scoped decl!");
1877  // Note that we have a locally-scoped external with this name.
1878  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1879
1880  if (!PrevDecl)
1881    return;
1882
1883  // If there was a previous declaration of this variable, it may be
1884  // in our identifier chain. Update the identifier chain with the new
1885  // declaration.
1886  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
1887    // The previous declaration was found on the identifer resolver
1888    // chain, so remove it from its scope.
1889    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
1890      S = S->getParent();
1891
1892    if (S)
1893      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
1894  }
1895}
1896
1897/// \brief Diagnose function specifiers on a declaration of an identifier that
1898/// does not identify a function.
1899void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
1900  // FIXME: We should probably indicate the identifier in question to avoid
1901  // confusion for constructs like "inline int a(), b;"
1902  if (D.getDeclSpec().isInlineSpecified())
1903    Diag(D.getDeclSpec().getInlineSpecLoc(),
1904         diag::err_inline_non_function);
1905
1906  if (D.getDeclSpec().isVirtualSpecified())
1907    Diag(D.getDeclSpec().getVirtualSpecLoc(),
1908         diag::err_virtual_non_function);
1909
1910  if (D.getDeclSpec().isExplicitSpecified())
1911    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1912         diag::err_explicit_non_function);
1913}
1914
1915NamedDecl*
1916Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1917                             QualType R,  DeclaratorInfo *DInfo,
1918                             Decl* PrevDecl, bool &Redeclaration) {
1919  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1920  if (D.getCXXScopeSpec().isSet()) {
1921    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1922      << D.getCXXScopeSpec().getRange();
1923    D.setInvalidType();
1924    // Pretend we didn't see the scope specifier.
1925    DC = 0;
1926  }
1927
1928  if (getLangOptions().CPlusPlus) {
1929    // Check that there are no default arguments (C++ only).
1930    CheckExtraCXXDefaultArguments(D);
1931  }
1932
1933  DiagnoseFunctionSpecifiers(D);
1934
1935  if (D.getDeclSpec().isThreadSpecified())
1936    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
1937
1938  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R);
1939  if (!NewTD) return 0;
1940
1941  if (D.isInvalidType())
1942    NewTD->setInvalidDecl();
1943
1944  // Handle attributes prior to checking for duplicates in MergeVarDecl
1945  ProcessDeclAttributes(S, NewTD, D);
1946  // Merge the decl with the existing one if appropriate. If the decl is
1947  // in an outer scope, it isn't the same thing.
1948  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1949    Redeclaration = true;
1950    MergeTypeDefDecl(NewTD, PrevDecl);
1951  }
1952
1953  // C99 6.7.7p2: If a typedef name specifies a variably modified type
1954  // then it shall have block scope.
1955  QualType T = NewTD->getUnderlyingType();
1956  if (T->isVariablyModifiedType()) {
1957    CurFunctionNeedsScopeChecking = true;
1958
1959    if (S->getFnParent() == 0) {
1960      bool SizeIsNegative;
1961      QualType FixedTy =
1962          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1963      if (!FixedTy.isNull()) {
1964        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
1965        NewTD->setUnderlyingType(FixedTy);
1966      } else {
1967        if (SizeIsNegative)
1968          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
1969        else if (T->isVariableArrayType())
1970          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1971        else
1972          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1973        NewTD->setInvalidDecl();
1974      }
1975    }
1976  }
1977
1978  // If this is the C FILE type, notify the AST context.
1979  if (IdentifierInfo *II = NewTD->getIdentifier())
1980    if (!NewTD->isInvalidDecl() &&
1981        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
1982      if (II->isStr("FILE"))
1983        Context.setFILEDecl(NewTD);
1984      else if (II->isStr("jmp_buf"))
1985        Context.setjmp_bufDecl(NewTD);
1986      else if (II->isStr("sigjmp_buf"))
1987        Context.setsigjmp_bufDecl(NewTD);
1988    }
1989
1990  return NewTD;
1991}
1992
1993/// \brief Determines whether the given declaration is an out-of-scope
1994/// previous declaration.
1995///
1996/// This routine should be invoked when name lookup has found a
1997/// previous declaration (PrevDecl) that is not in the scope where a
1998/// new declaration by the same name is being introduced. If the new
1999/// declaration occurs in a local scope, previous declarations with
2000/// linkage may still be considered previous declarations (C99
2001/// 6.2.2p4-5, C++ [basic.link]p6).
2002///
2003/// \param PrevDecl the previous declaration found by name
2004/// lookup
2005///
2006/// \param DC the context in which the new declaration is being
2007/// declared.
2008///
2009/// \returns true if PrevDecl is an out-of-scope previous declaration
2010/// for a new delcaration with the same name.
2011static bool
2012isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2013                                ASTContext &Context) {
2014  if (!PrevDecl)
2015    return 0;
2016
2017  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
2018  // case we need to check each of the overloaded functions.
2019  if (!PrevDecl->hasLinkage())
2020    return false;
2021
2022  if (Context.getLangOptions().CPlusPlus) {
2023    // C++ [basic.link]p6:
2024    //   If there is a visible declaration of an entity with linkage
2025    //   having the same name and type, ignoring entities declared
2026    //   outside the innermost enclosing namespace scope, the block
2027    //   scope declaration declares that same entity and receives the
2028    //   linkage of the previous declaration.
2029    DeclContext *OuterContext = DC->getLookupContext();
2030    if (!OuterContext->isFunctionOrMethod())
2031      // This rule only applies to block-scope declarations.
2032      return false;
2033    else {
2034      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2035      if (PrevOuterContext->isRecord())
2036        // We found a member function: ignore it.
2037        return false;
2038      else {
2039        // Find the innermost enclosing namespace for the new and
2040        // previous declarations.
2041        while (!OuterContext->isFileContext())
2042          OuterContext = OuterContext->getParent();
2043        while (!PrevOuterContext->isFileContext())
2044          PrevOuterContext = PrevOuterContext->getParent();
2045
2046        // The previous declaration is in a different namespace, so it
2047        // isn't the same function.
2048        if (OuterContext->getPrimaryContext() !=
2049            PrevOuterContext->getPrimaryContext())
2050          return false;
2051      }
2052    }
2053  }
2054
2055  return true;
2056}
2057
2058NamedDecl*
2059Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2060                              QualType R, DeclaratorInfo *DInfo,
2061                              NamedDecl* PrevDecl,
2062                              MultiTemplateParamsArg TemplateParamLists,
2063                              bool &Redeclaration) {
2064  DeclarationName Name = GetNameForDeclarator(D);
2065
2066  // Check that there are no default arguments (C++ only).
2067  if (getLangOptions().CPlusPlus)
2068    CheckExtraCXXDefaultArguments(D);
2069
2070  VarDecl *NewVD;
2071  VarDecl::StorageClass SC;
2072  switch (D.getDeclSpec().getStorageClassSpec()) {
2073  default: assert(0 && "Unknown storage class!");
2074  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
2075  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
2076  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
2077  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
2078  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
2079  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
2080  case DeclSpec::SCS_mutable:
2081    // mutable can only appear on non-static class members, so it's always
2082    // an error here
2083    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2084    D.setInvalidType();
2085    SC = VarDecl::None;
2086    break;
2087  }
2088
2089  IdentifierInfo *II = Name.getAsIdentifierInfo();
2090  if (!II) {
2091    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2092      << Name.getAsString();
2093    return 0;
2094  }
2095
2096  DiagnoseFunctionSpecifiers(D);
2097
2098  if (!DC->isRecord() && S->getFnParent() == 0) {
2099    // C99 6.9p2: The storage-class specifiers auto and register shall not
2100    // appear in the declaration specifiers in an external declaration.
2101    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2102
2103      // If this is a register variable with an asm label specified, then this
2104      // is a GNU extension.
2105      if (SC == VarDecl::Register && D.getAsmLabel())
2106        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2107      else
2108        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2109      D.setInvalidType();
2110    }
2111  }
2112  if (DC->isRecord() && !CurContext->isRecord()) {
2113    // This is an out-of-line definition of a static data member.
2114    if (SC == VarDecl::Static) {
2115      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2116           diag::err_static_out_of_line)
2117        << CodeModificationHint::CreateRemoval(
2118                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2119    } else if (SC == VarDecl::None)
2120      SC = VarDecl::Static;
2121  }
2122  if (SC == VarDecl::Static) {
2123    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2124      if (RD->isLocalClass())
2125        Diag(D.getIdentifierLoc(),
2126             diag::err_static_data_member_not_allowed_in_local_class)
2127          << Name << RD->getDeclName();
2128    }
2129  }
2130
2131  // Match up the template parameter lists with the scope specifier, then
2132  // determine whether we have a template or a template specialization.
2133  if (TemplateParameterList *TemplateParams
2134      = MatchTemplateParametersToScopeSpecifier(
2135                                  D.getDeclSpec().getSourceRange().getBegin(),
2136                                                D.getCXXScopeSpec(),
2137                        (TemplateParameterList**)TemplateParamLists.get(),
2138                                                 TemplateParamLists.size())) {
2139    if (TemplateParams->size() > 0) {
2140      // There is no such thing as a variable template.
2141      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2142        << II
2143        << SourceRange(TemplateParams->getTemplateLoc(),
2144                       TemplateParams->getRAngleLoc());
2145      return 0;
2146    } else {
2147      // There is an extraneous 'template<>' for this variable. Complain
2148      // about it, but allow the declaration of the variable.
2149      Diag(TemplateParams->getTemplateLoc(),
2150           diag::err_template_variable_noparams)
2151        << II
2152        << SourceRange(TemplateParams->getTemplateLoc(),
2153                       TemplateParams->getRAngleLoc());
2154    }
2155  }
2156
2157  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2158                          II, R, DInfo, SC);
2159
2160  if (D.isInvalidType())
2161    NewVD->setInvalidDecl();
2162
2163  if (D.getDeclSpec().isThreadSpecified()) {
2164    if (NewVD->hasLocalStorage())
2165      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2166    else if (!Context.Target.isTLSSupported())
2167      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2168    else
2169      NewVD->setThreadSpecified(true);
2170  }
2171
2172  // Set the lexical context. If the declarator has a C++ scope specifier, the
2173  // lexical context will be different from the semantic context.
2174  NewVD->setLexicalDeclContext(CurContext);
2175
2176  // Handle attributes prior to checking for duplicates in MergeVarDecl
2177  ProcessDeclAttributes(S, NewVD, D);
2178
2179  // Handle GNU asm-label extension (encoded as an attribute).
2180  if (Expr *E = (Expr*) D.getAsmLabel()) {
2181    // The parser guarantees this is a string.
2182    StringLiteral *SE = cast<StringLiteral>(E);
2183    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2184                                                        SE->getByteLength())));
2185  }
2186
2187  // If name lookup finds a previous declaration that is not in the
2188  // same scope as the new declaration, this may still be an
2189  // acceptable redeclaration.
2190  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2191      !(NewVD->hasLinkage() &&
2192        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2193    PrevDecl = 0;
2194
2195  // Merge the decl with the existing one if appropriate.
2196  if (PrevDecl) {
2197    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
2198      // The user tried to define a non-static data member
2199      // out-of-line (C++ [dcl.meaning]p1).
2200      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2201        << D.getCXXScopeSpec().getRange();
2202      PrevDecl = 0;
2203      NewVD->setInvalidDecl();
2204    }
2205  } else if (D.getCXXScopeSpec().isSet()) {
2206    // No previous declaration in the qualifying scope.
2207    Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
2208      << Name << D.getCXXScopeSpec().getRange();
2209    NewVD->setInvalidDecl();
2210  }
2211
2212  CheckVariableDeclaration(NewVD, PrevDecl, Redeclaration);
2213
2214  // attributes declared post-definition are currently ignored
2215  if (PrevDecl) {
2216    const VarDecl *Def = 0, *PrevVD = dyn_cast<VarDecl>(PrevDecl);
2217    if (PrevVD->getDefinition(Def) && D.hasAttributes()) {
2218      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2219      Diag(Def->getLocation(), diag::note_previous_definition);
2220    }
2221  }
2222
2223  // If this is a locally-scoped extern C variable, update the map of
2224  // such variables.
2225  if (CurContext->isFunctionOrMethod() && NewVD->isExternC(Context) &&
2226      !NewVD->isInvalidDecl())
2227    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
2228
2229  return NewVD;
2230}
2231
2232/// \brief Perform semantic checking on a newly-created variable
2233/// declaration.
2234///
2235/// This routine performs all of the type-checking required for a
2236/// variable declaration once it has been built. It is used both to
2237/// check variables after they have been parsed and their declarators
2238/// have been translated into a declaration, and to check variables
2239/// that have been instantiated from a template.
2240///
2241/// Sets NewVD->isInvalidDecl() if an error was encountered.
2242void Sema::CheckVariableDeclaration(VarDecl *NewVD, NamedDecl *PrevDecl,
2243                                    bool &Redeclaration) {
2244  // If the decl is already known invalid, don't check it.
2245  if (NewVD->isInvalidDecl())
2246    return;
2247
2248  QualType T = NewVD->getType();
2249
2250  if (T->isObjCInterfaceType()) {
2251    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2252    return NewVD->setInvalidDecl();
2253  }
2254
2255  // The variable can not have an abstract class type.
2256  if (RequireNonAbstractType(NewVD->getLocation(), T,
2257                             diag::err_abstract_type_in_decl,
2258                             AbstractVariableType))
2259    return NewVD->setInvalidDecl();
2260
2261  // Emit an error if an address space was applied to decl with local storage.
2262  // This includes arrays of objects with address space qualifiers, but not
2263  // automatic variables that point to other address spaces.
2264  // ISO/IEC TR 18037 S5.1.2
2265  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2266    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2267    return NewVD->setInvalidDecl();
2268  }
2269
2270  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2271      && !NewVD->hasAttr<BlocksAttr>())
2272    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2273
2274  bool isVM = T->isVariablyModifiedType();
2275  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2276      NewVD->hasAttr<BlocksAttr>())
2277    CurFunctionNeedsScopeChecking = true;
2278
2279  if ((isVM && NewVD->hasLinkage()) ||
2280      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2281    bool SizeIsNegative;
2282    QualType FixedTy =
2283        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2284
2285    if (FixedTy.isNull() && T->isVariableArrayType()) {
2286      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2287      // FIXME: This won't give the correct result for
2288      // int a[10][n];
2289      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2290
2291      if (NewVD->isFileVarDecl())
2292        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2293        << SizeRange;
2294      else if (NewVD->getStorageClass() == VarDecl::Static)
2295        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2296        << SizeRange;
2297      else
2298        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2299        << SizeRange;
2300      return NewVD->setInvalidDecl();
2301    }
2302
2303    if (FixedTy.isNull()) {
2304      if (NewVD->isFileVarDecl())
2305        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2306      else
2307        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2308      return NewVD->setInvalidDecl();
2309    }
2310
2311    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2312    NewVD->setType(FixedTy);
2313  }
2314
2315  if (!PrevDecl && NewVD->isExternC(Context)) {
2316    // Since we did not find anything by this name and we're declaring
2317    // an extern "C" variable, look for a non-visible extern "C"
2318    // declaration with the same name.
2319    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2320      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2321    if (Pos != LocallyScopedExternalDecls.end())
2322      PrevDecl = Pos->second;
2323  }
2324
2325  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2326    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2327      << T;
2328    return NewVD->setInvalidDecl();
2329  }
2330
2331  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2332    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2333    return NewVD->setInvalidDecl();
2334  }
2335
2336  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2337    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2338    return NewVD->setInvalidDecl();
2339  }
2340
2341  if (PrevDecl) {
2342    Redeclaration = true;
2343    MergeVarDecl(NewVD, PrevDecl);
2344  }
2345}
2346
2347NamedDecl*
2348Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2349                              QualType R, DeclaratorInfo *DInfo,
2350                              NamedDecl* PrevDecl,
2351                              MultiTemplateParamsArg TemplateParamLists,
2352                              bool IsFunctionDefinition, bool &Redeclaration) {
2353  assert(R.getTypePtr()->isFunctionType());
2354
2355  DeclarationName Name = GetNameForDeclarator(D);
2356  FunctionDecl::StorageClass SC = FunctionDecl::None;
2357  switch (D.getDeclSpec().getStorageClassSpec()) {
2358  default: assert(0 && "Unknown storage class!");
2359  case DeclSpec::SCS_auto:
2360  case DeclSpec::SCS_register:
2361  case DeclSpec::SCS_mutable:
2362    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2363         diag::err_typecheck_sclass_func);
2364    D.setInvalidType();
2365    break;
2366  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2367  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2368  case DeclSpec::SCS_static: {
2369    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2370      // C99 6.7.1p5:
2371      //   The declaration of an identifier for a function that has
2372      //   block scope shall have no explicit storage-class specifier
2373      //   other than extern
2374      // See also (C++ [dcl.stc]p4).
2375      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2376           diag::err_static_block_func);
2377      SC = FunctionDecl::None;
2378    } else
2379      SC = FunctionDecl::Static;
2380    break;
2381  }
2382  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2383  }
2384
2385  if (D.getDeclSpec().isThreadSpecified())
2386    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2387
2388  bool isFriend = D.getDeclSpec().isFriendSpecified();
2389  bool isInline = D.getDeclSpec().isInlineSpecified();
2390  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2391  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2392
2393  // Check that the return type is not an abstract class type.
2394  // For record types, this is done by the AbstractClassUsageDiagnoser once
2395  // the class has been completely parsed.
2396  if (!DC->isRecord() &&
2397      RequireNonAbstractType(D.getIdentifierLoc(),
2398                             R->getAsFunctionType()->getResultType(),
2399                             diag::err_abstract_type_in_decl,
2400                             AbstractReturnType))
2401    D.setInvalidType();
2402
2403  // Do not allow returning a objc interface by-value.
2404  if (R->getAsFunctionType()->getResultType()->isObjCInterfaceType()) {
2405    Diag(D.getIdentifierLoc(),
2406         diag::err_object_cannot_be_passed_returned_by_value) << 0
2407      << R->getAsFunctionType()->getResultType();
2408    D.setInvalidType();
2409  }
2410
2411  bool isVirtualOkay = false;
2412  FunctionDecl *NewFD;
2413  if (isFriend) {
2414    // DC is the namespace in which the function is being declared.
2415    assert((DC->isFileContext() || PrevDecl) && "previously-undeclared "
2416           "friend function being created in a non-namespace context");
2417
2418    // C++ [class.friend]p5
2419    //   A function can be defined in a friend declaration of a
2420    //   class . . . . Such a function is implicitly inline.
2421    isInline |= IsFunctionDefinition;
2422
2423    NewFD = FriendFunctionDecl::Create(Context, DC,
2424                                       D.getIdentifierLoc(), Name, R, DInfo,
2425                                       isInline,
2426                                       D.getDeclSpec().getFriendSpecLoc());
2427
2428  } else if (D.getKind() == Declarator::DK_Constructor) {
2429    // This is a C++ constructor declaration.
2430    assert(DC->isRecord() &&
2431           "Constructors can only be declared in a member context");
2432
2433    R = CheckConstructorDeclarator(D, R, SC);
2434
2435    // Create the new declaration
2436    NewFD = CXXConstructorDecl::Create(Context,
2437                                       cast<CXXRecordDecl>(DC),
2438                                       D.getIdentifierLoc(), Name, R, DInfo,
2439                                       isExplicit, isInline,
2440                                       /*isImplicitlyDeclared=*/false);
2441  } else if (D.getKind() == Declarator::DK_Destructor) {
2442    // This is a C++ destructor declaration.
2443    if (DC->isRecord()) {
2444      R = CheckDestructorDeclarator(D, SC);
2445
2446      NewFD = CXXDestructorDecl::Create(Context,
2447                                        cast<CXXRecordDecl>(DC),
2448                                        D.getIdentifierLoc(), Name, R,
2449                                        isInline,
2450                                        /*isImplicitlyDeclared=*/false);
2451
2452      isVirtualOkay = true;
2453    } else {
2454      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2455
2456      // Create a FunctionDecl to satisfy the function definition parsing
2457      // code path.
2458      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2459                                   Name, R, DInfo, SC, isInline,
2460                                   /*hasPrototype=*/true);
2461      D.setInvalidType();
2462    }
2463  } else if (D.getKind() == Declarator::DK_Conversion) {
2464    if (!DC->isRecord()) {
2465      Diag(D.getIdentifierLoc(),
2466           diag::err_conv_function_not_member);
2467      return 0;
2468    }
2469
2470    CheckConversionDeclarator(D, R, SC);
2471    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2472                                      D.getIdentifierLoc(), Name, R, DInfo,
2473                                      isInline, isExplicit);
2474
2475    isVirtualOkay = true;
2476  } else if (DC->isRecord()) {
2477    // If the of the function is the same as the name of the record, then this
2478    // must be an invalid constructor that has a return type.
2479    // (The parser checks for a return type and makes the declarator a
2480    // constructor if it has no return type).
2481    // must have an invalid constructor that has a return type
2482    if (Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2483      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2484        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2485        << SourceRange(D.getIdentifierLoc());
2486      return 0;
2487    }
2488
2489    // This is a C++ method declaration.
2490    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2491                                  D.getIdentifierLoc(), Name, R, DInfo,
2492                                  (SC == FunctionDecl::Static), isInline);
2493
2494    isVirtualOkay = (SC != FunctionDecl::Static);
2495  } else {
2496    // Determine whether the function was written with a
2497    // prototype. This true when:
2498    //   - we're in C++ (where every function has a prototype),
2499    //   - there is a prototype in the declarator, or
2500    //   - the type R of the function is some kind of typedef or other reference
2501    //     to a type name (which eventually refers to a function type).
2502    bool HasPrototype =
2503       getLangOptions().CPlusPlus ||
2504       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2505       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2506
2507    NewFD = FunctionDecl::Create(Context, DC,
2508                                 D.getIdentifierLoc(),
2509                                 Name, R, DInfo, SC, isInline, HasPrototype);
2510  }
2511
2512  if (D.isInvalidType())
2513    NewFD->setInvalidDecl();
2514
2515  // Set the lexical context. If the declarator has a C++
2516  // scope specifier, the lexical context will be different
2517  // from the semantic context.
2518  NewFD->setLexicalDeclContext(CurContext);
2519
2520  // Match up the template parameter lists with the scope specifier, then
2521  // determine whether we have a template or a template specialization.
2522  FunctionTemplateDecl *FunctionTemplate = 0;
2523  if (TemplateParameterList *TemplateParams
2524        = MatchTemplateParametersToScopeSpecifier(
2525                                  D.getDeclSpec().getSourceRange().getBegin(),
2526                                  D.getCXXScopeSpec(),
2527                           (TemplateParameterList**)TemplateParamLists.get(),
2528                                                  TemplateParamLists.size())) {
2529    if (TemplateParams->size() > 0) {
2530      // This is a function template
2531
2532      // Check that we can declare a template here.
2533      if (CheckTemplateDeclScope(S, TemplateParams))
2534        return 0;
2535
2536      FunctionTemplate = FunctionTemplateDecl::Create(Context, CurContext,
2537                                                      NewFD->getLocation(),
2538                                                      Name, TemplateParams,
2539                                                      NewFD);
2540      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
2541    } else {
2542      // FIXME: Handle function template specializations
2543    }
2544
2545    // FIXME: Free this memory properly.
2546    TemplateParamLists.release();
2547  }
2548
2549  // C++ [dcl.fct.spec]p5:
2550  //   The virtual specifier shall only be used in declarations of
2551  //   nonstatic class member functions that appear within a
2552  //   member-specification of a class declaration; see 10.3.
2553  //
2554  if (isVirtual && !NewFD->isInvalidDecl()) {
2555    if (!isVirtualOkay) {
2556       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2557           diag::err_virtual_non_function);
2558    } else if (!CurContext->isRecord()) {
2559      // 'virtual' was specified outside of the class.
2560      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2561        << CodeModificationHint::CreateRemoval(
2562                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
2563    } else {
2564      // Okay: Add virtual to the method.
2565      cast<CXXMethodDecl>(NewFD)->setVirtualAsWritten(true);
2566      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2567      CurClass->setAggregate(false);
2568      CurClass->setPOD(false);
2569      CurClass->setEmpty(false);
2570      CurClass->setPolymorphic(true);
2571      CurClass->setHasTrivialConstructor(false);
2572      CurClass->setHasTrivialCopyConstructor(false);
2573      CurClass->setHasTrivialCopyAssignment(false);
2574    }
2575  }
2576
2577  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD)) {
2578    // Look for virtual methods in base classes that this method might override.
2579
2580    BasePaths Paths;
2581    if (LookupInBases(cast<CXXRecordDecl>(DC),
2582                      MemberLookupCriteria(NewMD), Paths)) {
2583      for (BasePaths::decl_iterator I = Paths.found_decls_begin(),
2584           E = Paths.found_decls_end(); I != E; ++I) {
2585        if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2586          if (!CheckOverridingFunctionReturnType(NewMD, OldMD) &&
2587              !CheckOverridingFunctionExceptionSpec(NewMD, OldMD))
2588            NewMD->addOverriddenMethod(OldMD);
2589        }
2590      }
2591    }
2592  }
2593
2594  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2595      !CurContext->isRecord()) {
2596    // C++ [class.static]p1:
2597    //   A data or function member of a class may be declared static
2598    //   in a class definition, in which case it is a static member of
2599    //   the class.
2600
2601    // Complain about the 'static' specifier if it's on an out-of-line
2602    // member function definition.
2603    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2604         diag::err_static_out_of_line)
2605      << CodeModificationHint::CreateRemoval(
2606                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2607  }
2608
2609  // Handle GNU asm-label extension (encoded as an attribute).
2610  if (Expr *E = (Expr*) D.getAsmLabel()) {
2611    // The parser guarantees this is a string.
2612    StringLiteral *SE = cast<StringLiteral>(E);
2613    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2614                                                        SE->getByteLength())));
2615  }
2616
2617  // Copy the parameter declarations from the declarator D to the function
2618  // declaration NewFD, if they are available.  First scavenge them into Params.
2619  llvm::SmallVector<ParmVarDecl*, 16> Params;
2620  if (D.getNumTypeObjects() > 0) {
2621    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2622
2623    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2624    // function that takes no arguments, not a function that takes a
2625    // single void argument.
2626    // We let through "const void" here because Sema::GetTypeForDeclarator
2627    // already checks for that case.
2628    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2629        FTI.ArgInfo[0].Param &&
2630        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2631      // Empty arg list, don't push any params.
2632      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2633
2634      // In C++, the empty parameter-type-list must be spelled "void"; a
2635      // typedef of void is not permitted.
2636      if (getLangOptions().CPlusPlus &&
2637          Param->getType().getUnqualifiedType() != Context.VoidTy)
2638        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2639      // FIXME: Leaks decl?
2640    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2641      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2642        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
2643        assert(Param->getDeclContext() != NewFD && "Was set before ?");
2644        Param->setDeclContext(NewFD);
2645        Params.push_back(Param);
2646      }
2647    }
2648
2649  } else if (const FunctionProtoType *FT = R->getAsFunctionProtoType()) {
2650    // When we're declaring a function with a typedef, typeof, etc as in the
2651    // following example, we'll need to synthesize (unnamed)
2652    // parameters for use in the declaration.
2653    //
2654    // @code
2655    // typedef void fn(int);
2656    // fn f;
2657    // @endcode
2658
2659    // Synthesize a parameter for each argument type.
2660    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2661         AE = FT->arg_type_end(); AI != AE; ++AI) {
2662      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2663                                               SourceLocation(), 0,
2664                                               *AI, /*DInfo=*/0,
2665                                               VarDecl::None, 0);
2666      Param->setImplicit();
2667      Params.push_back(Param);
2668    }
2669  } else {
2670    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
2671           "Should not need args for typedef of non-prototype fn");
2672  }
2673  // Finally, we know we have the right number of parameters, install them.
2674  NewFD->setParams(Context, Params.data(), Params.size());
2675
2676  // If name lookup finds a previous declaration that is not in the
2677  // same scope as the new declaration, this may still be an
2678  // acceptable redeclaration.
2679  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2680      !(NewFD->hasLinkage() &&
2681        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2682    PrevDecl = 0;
2683
2684  // Perform semantic checking on the function declaration.
2685  bool OverloadableAttrRequired = false; // FIXME: HACK!
2686  CheckFunctionDeclaration(NewFD, PrevDecl, Redeclaration,
2687                           /*FIXME:*/OverloadableAttrRequired);
2688
2689  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
2690    // An out-of-line member function declaration must also be a
2691    // definition (C++ [dcl.meaning]p1).
2692    if (!IsFunctionDefinition && !isFriend) {
2693      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2694        << D.getCXXScopeSpec().getRange();
2695      NewFD->setInvalidDecl();
2696    } else if (!Redeclaration && (!PrevDecl || !isa<UsingDecl>(PrevDecl))) {
2697      // The user tried to provide an out-of-line definition for a
2698      // function that is a member of a class or namespace, but there
2699      // was no such member function declared (C++ [class.mfct]p2,
2700      // C++ [namespace.memdef]p2). For example:
2701      //
2702      // class X {
2703      //   void f() const;
2704      // };
2705      //
2706      // void X::f() { } // ill-formed
2707      //
2708      // Complain about this problem, and attempt to suggest close
2709      // matches (e.g., those that differ only in cv-qualifiers and
2710      // whether the parameter types are references).
2711      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2712        << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
2713      NewFD->setInvalidDecl();
2714
2715      LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
2716                                              true);
2717      assert(!Prev.isAmbiguous() &&
2718             "Cannot have an ambiguity in previous-declaration lookup");
2719      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2720           Func != FuncEnd; ++Func) {
2721        if (isa<FunctionDecl>(*Func) &&
2722            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2723          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2724      }
2725
2726      PrevDecl = 0;
2727    }
2728  }
2729
2730  // Handle attributes. We need to have merged decls when handling attributes
2731  // (for example to check for conflicts, etc).
2732  // FIXME: This needs to happen before we merge declarations. Then,
2733  // let attribute merging cope with attribute conflicts.
2734  ProcessDeclAttributes(S, NewFD, D);
2735
2736  // attributes declared post-definition are currently ignored
2737  if (PrevDecl) {
2738    const FunctionDecl *Def, *PrevFD = dyn_cast<FunctionDecl>(PrevDecl);
2739    if (PrevFD && PrevFD->getBody(Def) && D.hasAttributes()) {
2740      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
2741      Diag(Def->getLocation(), diag::note_previous_definition);
2742    }
2743  }
2744
2745  AddKnownFunctionAttributes(NewFD);
2746
2747  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2748    // If a function name is overloadable in C, then every function
2749    // with that name must be marked "overloadable".
2750    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2751      << Redeclaration << NewFD;
2752    if (PrevDecl)
2753      Diag(PrevDecl->getLocation(),
2754           diag::note_attribute_overloadable_prev_overload);
2755    NewFD->addAttr(::new (Context) OverloadableAttr());
2756  }
2757
2758  // If this is a locally-scoped extern C function, update the
2759  // map of such names.
2760  if (CurContext->isFunctionOrMethod() && NewFD->isExternC(Context)
2761      && !NewFD->isInvalidDecl())
2762    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2763
2764  // Set this FunctionDecl's range up to the right paren.
2765  NewFD->setLocEnd(D.getSourceRange().getEnd());
2766
2767  if (FunctionTemplate && NewFD->isInvalidDecl())
2768    FunctionTemplate->setInvalidDecl();
2769
2770  if (FunctionTemplate)
2771    return FunctionTemplate;
2772
2773  return NewFD;
2774}
2775
2776/// \brief Perform semantic checking of a new function declaration.
2777///
2778/// Performs semantic analysis of the new function declaration
2779/// NewFD. This routine performs all semantic checking that does not
2780/// require the actual declarator involved in the declaration, and is
2781/// used both for the declaration of functions as they are parsed
2782/// (called via ActOnDeclarator) and for the declaration of functions
2783/// that have been instantiated via C++ template instantiation (called
2784/// via InstantiateDecl).
2785///
2786/// This sets NewFD->isInvalidDecl() to true if there was an error.
2787void Sema::CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl,
2788                                    bool &Redeclaration,
2789                                    bool &OverloadableAttrRequired) {
2790  // If NewFD is already known erroneous, don't do any of this checking.
2791  if (NewFD->isInvalidDecl())
2792    return;
2793
2794  if (NewFD->getResultType()->isVariablyModifiedType()) {
2795    // Functions returning a variably modified type violate C99 6.7.5.2p2
2796    // because all functions have linkage.
2797    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
2798    return NewFD->setInvalidDecl();
2799  }
2800
2801  if (NewFD->isMain(Context)) CheckMain(NewFD);
2802
2803  // Semantic checking for this function declaration (in isolation).
2804  if (getLangOptions().CPlusPlus) {
2805    // C++-specific checks.
2806    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
2807      CheckConstructor(Constructor);
2808    } else if (isa<CXXDestructorDecl>(NewFD)) {
2809      CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
2810      QualType ClassType = Context.getTypeDeclType(Record);
2811      if (!ClassType->isDependentType()) {
2812        DeclarationName Name
2813          = Context.DeclarationNames.getCXXDestructorName(
2814                                        Context.getCanonicalType(ClassType));
2815        if (NewFD->getDeclName() != Name) {
2816          Diag(NewFD->getLocation(), diag::err_destructor_name);
2817          return NewFD->setInvalidDecl();
2818        }
2819      }
2820      Record->setUserDeclaredDestructor(true);
2821      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
2822      // user-defined destructor.
2823      Record->setPOD(false);
2824
2825      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
2826      // declared destructor.
2827      // FIXME: C++0x: don't do this for "= default" destructors
2828      Record->setHasTrivialDestructor(false);
2829    } else if (CXXConversionDecl *Conversion
2830               = dyn_cast<CXXConversionDecl>(NewFD))
2831      ActOnConversionDeclarator(Conversion);
2832
2833    // Extra checking for C++ overloaded operators (C++ [over.oper]).
2834    if (NewFD->isOverloadedOperator() &&
2835        CheckOverloadedOperatorDeclaration(NewFD))
2836      return NewFD->setInvalidDecl();
2837  }
2838
2839  // C99 6.7.4p6:
2840  //   [... ] For a function with external linkage, the following
2841  //   restrictions apply: [...] If all of the file scope declarations
2842  //   for a function in a translation unit include the inline
2843  //   function specifier without extern, then the definition in that
2844  //   translation unit is an inline definition. An inline definition
2845  //   does not provide an external definition for the function, and
2846  //   does not forbid an external definition in another translation
2847  //   unit.
2848  //
2849  // Here we determine whether this function, in isolation, would be a
2850  // C99 inline definition. MergeCompatibleFunctionDecls looks at
2851  // previous declarations.
2852  if (NewFD->isInline() && getLangOptions().C99 &&
2853      NewFD->getStorageClass() == FunctionDecl::None &&
2854      NewFD->getDeclContext()->getLookupContext()->isTranslationUnit())
2855    NewFD->setC99InlineDefinition(true);
2856
2857  // Check for a previous declaration of this name.
2858  if (!PrevDecl && NewFD->isExternC(Context)) {
2859    // Since we did not find anything by this name and we're declaring
2860    // an extern "C" function, look for a non-visible extern "C"
2861    // declaration with the same name.
2862    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2863      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
2864    if (Pos != LocallyScopedExternalDecls.end())
2865      PrevDecl = Pos->second;
2866  }
2867
2868  // Merge or overload the declaration with an existing declaration of
2869  // the same name, if appropriate.
2870  if (PrevDecl) {
2871    // Determine whether NewFD is an overload of PrevDecl or
2872    // a declaration that requires merging. If it's an overload,
2873    // there's no more work to do here; we'll just add the new
2874    // function to the scope.
2875    OverloadedFunctionDecl::function_iterator MatchedDecl;
2876
2877    if (!getLangOptions().CPlusPlus &&
2878        AllowOverloadingOfFunction(PrevDecl, Context)) {
2879      OverloadableAttrRequired = true;
2880
2881      // Functions marked "overloadable" must have a prototype (that
2882      // we can't get through declaration merging).
2883      if (!NewFD->getType()->getAsFunctionProtoType()) {
2884        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
2885          << NewFD;
2886        Redeclaration = true;
2887
2888        // Turn this into a variadic function with no parameters.
2889        QualType R = Context.getFunctionType(
2890                       NewFD->getType()->getAsFunctionType()->getResultType(),
2891                       0, 0, true, 0);
2892        NewFD->setType(R);
2893        return NewFD->setInvalidDecl();
2894      }
2895    }
2896
2897    if (PrevDecl &&
2898        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
2899         !IsOverload(NewFD, PrevDecl, MatchedDecl)) &&
2900        !isa<UsingDecl>(PrevDecl)) {
2901      Redeclaration = true;
2902      Decl *OldDecl = PrevDecl;
2903
2904      // If PrevDecl was an overloaded function, extract the
2905      // FunctionDecl that matched.
2906      if (isa<OverloadedFunctionDecl>(PrevDecl))
2907        OldDecl = *MatchedDecl;
2908
2909      // NewFD and OldDecl represent declarations that need to be
2910      // merged.
2911      if (MergeFunctionDecl(NewFD, OldDecl))
2912        return NewFD->setInvalidDecl();
2913
2914      if (FunctionTemplateDecl *OldTemplateDecl
2915            = dyn_cast<FunctionTemplateDecl>(OldDecl))
2916        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
2917      else {
2918        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
2919          NewFD->setAccess(OldDecl->getAccess());
2920        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
2921      }
2922    }
2923  }
2924
2925  // In C++, check default arguments now that we have merged decls. Unless
2926  // the lexical context is the class, because in this case this is done
2927  // during delayed parsing anyway.
2928  if (getLangOptions().CPlusPlus && !CurContext->isRecord())
2929    CheckCXXDefaultArguments(NewFD);
2930}
2931
2932void Sema::CheckMain(FunctionDecl* FD) {
2933  // C++ [basic.start.main]p3:  A program that declares main to be inline
2934  //   or static is ill-formed.
2935  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
2936  //   shall not appear in a declaration of main.
2937  // static main is not an error under C99, but we should warn about it.
2938  bool isInline = FD->isInline();
2939  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
2940  if (isInline || isStatic) {
2941    unsigned diagID = diag::warn_unusual_main_decl;
2942    if (isInline || getLangOptions().CPlusPlus)
2943      diagID = diag::err_unusual_main_decl;
2944
2945    int which = isStatic + (isInline << 1) - 1;
2946    Diag(FD->getLocation(), diagID) << which;
2947  }
2948
2949  QualType T = FD->getType();
2950  assert(T->isFunctionType() && "function decl is not of function type");
2951  const FunctionType* FT = T->getAsFunctionType();
2952
2953  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
2954    // TODO: add a replacement fixit to turn the return type into 'int'.
2955    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
2956    FD->setInvalidDecl(true);
2957  }
2958
2959  // Treat protoless main() as nullary.
2960  if (isa<FunctionNoProtoType>(FT)) return;
2961
2962  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
2963  unsigned nparams = FTP->getNumArgs();
2964  assert(FD->getNumParams() == nparams);
2965
2966  if (nparams > 3) {
2967    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
2968    FD->setInvalidDecl(true);
2969    nparams = 3;
2970  }
2971
2972  // FIXME: a lot of the following diagnostics would be improved
2973  // if we had some location information about types.
2974
2975  QualType CharPP =
2976    Context.getPointerType(Context.getPointerType(Context.CharTy));
2977  QualType Expected[] = { Context.IntTy, CharPP, CharPP };
2978
2979  for (unsigned i = 0; i < nparams; ++i) {
2980    QualType AT = FTP->getArgType(i);
2981
2982    bool mismatch = true;
2983
2984    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
2985      mismatch = false;
2986    else if (Expected[i] == CharPP) {
2987      // As an extension, the following forms are okay:
2988      //   char const **
2989      //   char const * const *
2990      //   char * const *
2991
2992      QualifierSet qs;
2993      const PointerType* PT;
2994      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
2995          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
2996          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
2997        qs.removeConst();
2998        mismatch = !qs.empty();
2999      }
3000    }
3001
3002    if (mismatch) {
3003      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
3004      // TODO: suggest replacing given type with expected type
3005      FD->setInvalidDecl(true);
3006    }
3007  }
3008
3009  if (nparams == 1 && !FD->isInvalidDecl()) {
3010    Diag(FD->getLocation(), diag::warn_main_one_arg);
3011  }
3012}
3013
3014bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
3015  // FIXME: Need strict checking.  In C89, we need to check for
3016  // any assignment, increment, decrement, function-calls, or
3017  // commas outside of a sizeof.  In C99, it's the same list,
3018  // except that the aforementioned are allowed in unevaluated
3019  // expressions.  Everything else falls under the
3020  // "may accept other forms of constant expressions" exception.
3021  // (We never end up here for C++, so the constant expression
3022  // rules there don't matter.)
3023  if (Init->isConstantInitializer(Context))
3024    return false;
3025  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
3026    << Init->getSourceRange();
3027  return true;
3028}
3029
3030void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
3031  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
3032}
3033
3034/// AddInitializerToDecl - Adds the initializer Init to the
3035/// declaration dcl. If DirectInit is true, this is C++ direct
3036/// initialization rather than copy initialization.
3037void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
3038  Decl *RealDecl = dcl.getAs<Decl>();
3039  // If there is no declaration, there was an error parsing it.  Just ignore
3040  // the initializer.
3041  if (RealDecl == 0)
3042    return;
3043
3044  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
3045    // With declarators parsed the way they are, the parser cannot
3046    // distinguish between a normal initializer and a pure-specifier.
3047    // Thus this grotesque test.
3048    IntegerLiteral *IL;
3049    Expr *Init = static_cast<Expr *>(init.get());
3050    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
3051        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
3052      if (Method->isVirtualAsWritten()) {
3053        Method->setPure();
3054
3055        // A class is abstract if at least one function is pure virtual.
3056        cast<CXXRecordDecl>(CurContext)->setAbstract(true);
3057      } else if (!Method->isInvalidDecl()) {
3058        Diag(Method->getLocation(), diag::err_non_virtual_pure)
3059          << Method->getDeclName() << Init->getSourceRange();
3060        Method->setInvalidDecl();
3061      }
3062    } else {
3063      Diag(Method->getLocation(), diag::err_member_function_initialization)
3064        << Method->getDeclName() << Init->getSourceRange();
3065      Method->setInvalidDecl();
3066    }
3067    return;
3068  }
3069
3070  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3071  if (!VDecl) {
3072    if (getLangOptions().CPlusPlus &&
3073        RealDecl->getLexicalDeclContext()->isRecord() &&
3074        isa<NamedDecl>(RealDecl))
3075      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3076        << cast<NamedDecl>(RealDecl)->getDeclName();
3077    else
3078      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3079    RealDecl->setInvalidDecl();
3080    return;
3081  }
3082
3083  if (!VDecl->getType()->isArrayType() &&
3084      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
3085                          diag::err_typecheck_decl_incomplete_type)) {
3086    RealDecl->setInvalidDecl();
3087    return;
3088  }
3089
3090  const VarDecl *Def = 0;
3091  if (VDecl->getDefinition(Def)) {
3092    Diag(VDecl->getLocation(), diag::err_redefinition)
3093      << VDecl->getDeclName();
3094    Diag(Def->getLocation(), diag::note_previous_definition);
3095    VDecl->setInvalidDecl();
3096    return;
3097  }
3098
3099  // Take ownership of the expression, now that we're sure we have somewhere
3100  // to put it.
3101  Expr *Init = init.takeAs<Expr>();
3102  assert(Init && "missing initializer");
3103
3104  // Get the decls type and save a reference for later, since
3105  // CheckInitializerTypes may change it.
3106  QualType DclT = VDecl->getType(), SavT = DclT;
3107  if (VDecl->isBlockVarDecl()) {
3108    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
3109      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
3110      VDecl->setInvalidDecl();
3111    } else if (!VDecl->isInvalidDecl()) {
3112      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3113                                VDecl->getDeclName(), DirectInit))
3114        VDecl->setInvalidDecl();
3115
3116      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3117      // Don't check invalid declarations to avoid emitting useless diagnostics.
3118      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3119        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
3120          CheckForConstantInitializer(Init, DclT);
3121      }
3122    }
3123  } else if (VDecl->isStaticDataMember() &&
3124             VDecl->getLexicalDeclContext()->isRecord()) {
3125    // This is an in-class initialization for a static data member, e.g.,
3126    //
3127    // struct S {
3128    //   static const int value = 17;
3129    // };
3130
3131    // Attach the initializer
3132    VDecl->setInit(Context, Init);
3133
3134    // C++ [class.mem]p4:
3135    //   A member-declarator can contain a constant-initializer only
3136    //   if it declares a static member (9.4) of const integral or
3137    //   const enumeration type, see 9.4.2.
3138    QualType T = VDecl->getType();
3139    if (!T->isDependentType() &&
3140        (!Context.getCanonicalType(T).isConstQualified() ||
3141         !T->isIntegralType())) {
3142      Diag(VDecl->getLocation(), diag::err_member_initialization)
3143        << VDecl->getDeclName() << Init->getSourceRange();
3144      VDecl->setInvalidDecl();
3145    } else {
3146      // C++ [class.static.data]p4:
3147      //   If a static data member is of const integral or const
3148      //   enumeration type, its declaration in the class definition
3149      //   can specify a constant-initializer which shall be an
3150      //   integral constant expression (5.19).
3151      if (!Init->isTypeDependent() &&
3152          !Init->getType()->isIntegralType()) {
3153        // We have a non-dependent, non-integral or enumeration type.
3154        Diag(Init->getSourceRange().getBegin(),
3155             diag::err_in_class_initializer_non_integral_type)
3156          << Init->getType() << Init->getSourceRange();
3157        VDecl->setInvalidDecl();
3158      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
3159        // Check whether the expression is a constant expression.
3160        llvm::APSInt Value;
3161        SourceLocation Loc;
3162        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
3163          Diag(Loc, diag::err_in_class_initializer_non_constant)
3164            << Init->getSourceRange();
3165          VDecl->setInvalidDecl();
3166        } else if (!VDecl->getType()->isDependentType())
3167          ImpCastExprToType(Init, VDecl->getType());
3168      }
3169    }
3170  } else if (VDecl->isFileVarDecl()) {
3171    if (VDecl->getStorageClass() == VarDecl::Extern)
3172      Diag(VDecl->getLocation(), diag::warn_extern_init);
3173    if (!VDecl->isInvalidDecl())
3174      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3175                                VDecl->getDeclName(), DirectInit))
3176        VDecl->setInvalidDecl();
3177
3178    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3179    // Don't check invalid declarations to avoid emitting useless diagnostics.
3180    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3181      // C99 6.7.8p4. All file scoped initializers need to be constant.
3182      CheckForConstantInitializer(Init, DclT);
3183    }
3184  }
3185  // If the type changed, it means we had an incomplete type that was
3186  // completed by the initializer. For example:
3187  //   int ary[] = { 1, 3, 5 };
3188  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
3189  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
3190    VDecl->setType(DclT);
3191    Init->setType(DclT);
3192  }
3193
3194  Init = MaybeCreateCXXExprWithTemporaries(Init,
3195                                           /*ShouldDestroyTemporaries=*/true);
3196  // Attach the initializer to the decl.
3197  VDecl->setInit(Context, Init);
3198
3199  // If the previous declaration of VDecl was a tentative definition,
3200  // remove it from the set of tentative definitions.
3201  if (VDecl->getPreviousDeclaration() &&
3202      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
3203    llvm::DenseMap<DeclarationName, VarDecl *>::iterator Pos
3204      = TentativeDefinitions.find(VDecl->getDeclName());
3205    assert(Pos != TentativeDefinitions.end() &&
3206           "Unrecorded tentative definition?");
3207    TentativeDefinitions.erase(Pos);
3208  }
3209
3210  return;
3211}
3212
3213void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
3214                                  bool TypeContainsUndeducedAuto) {
3215  Decl *RealDecl = dcl.getAs<Decl>();
3216
3217  // If there is no declaration, there was an error parsing it. Just ignore it.
3218  if (RealDecl == 0)
3219    return;
3220
3221  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
3222    QualType Type = Var->getType();
3223
3224    // Record tentative definitions.
3225    if (Var->isTentativeDefinition(Context))
3226      TentativeDefinitions[Var->getDeclName()] = Var;
3227
3228    // C++ [dcl.init.ref]p3:
3229    //   The initializer can be omitted for a reference only in a
3230    //   parameter declaration (8.3.5), in the declaration of a
3231    //   function return type, in the declaration of a class member
3232    //   within its class declaration (9.2), and where the extern
3233    //   specifier is explicitly used.
3234    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
3235      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
3236        << Var->getDeclName()
3237        << SourceRange(Var->getLocation(), Var->getLocation());
3238      Var->setInvalidDecl();
3239      return;
3240    }
3241
3242    // C++0x [dcl.spec.auto]p3
3243    if (TypeContainsUndeducedAuto) {
3244      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
3245        << Var->getDeclName() << Type;
3246      Var->setInvalidDecl();
3247      return;
3248    }
3249
3250    // C++ [dcl.init]p9:
3251    //
3252    //   If no initializer is specified for an object, and the object
3253    //   is of (possibly cv-qualified) non-POD class type (or array
3254    //   thereof), the object shall be default-initialized; if the
3255    //   object is of const-qualified type, the underlying class type
3256    //   shall have a user-declared default constructor.
3257    if (getLangOptions().CPlusPlus) {
3258      QualType InitType = Type;
3259      if (const ArrayType *Array = Context.getAsArrayType(Type))
3260        InitType = Array->getElementType();
3261      if ((!Var->hasExternalStorage() && !Var->isExternC(Context)) &&
3262          InitType->isRecordType() && !InitType->isDependentType()) {
3263        CXXRecordDecl *RD =
3264          cast<CXXRecordDecl>(InitType->getAs<RecordType>()->getDecl());
3265        CXXConstructorDecl *Constructor = 0;
3266        if (!RequireCompleteType(Var->getLocation(), InitType,
3267                                    diag::err_invalid_incomplete_type_use))
3268          Constructor
3269            = PerformInitializationByConstructor(InitType, 0, 0,
3270                                                 Var->getLocation(),
3271                                               SourceRange(Var->getLocation(),
3272                                                           Var->getLocation()),
3273                                                 Var->getDeclName(),
3274                                                 IK_Default);
3275        if (!Constructor)
3276          Var->setInvalidDecl();
3277        else {
3278          if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor()) {
3279            if (InitializeVarWithConstructor(Var, Constructor, InitType, 0, 0))
3280              Var->setInvalidDecl();
3281          }
3282
3283          FinalizeVarWithDestructor(Var, InitType);
3284        }
3285      }
3286    }
3287
3288#if 0
3289    // FIXME: Temporarily disabled because we are not properly parsing
3290    // linkage specifications on declarations, e.g.,
3291    //
3292    //   extern "C" const CGPoint CGPointerZero;
3293    //
3294    // C++ [dcl.init]p9:
3295    //
3296    //     If no initializer is specified for an object, and the
3297    //     object is of (possibly cv-qualified) non-POD class type (or
3298    //     array thereof), the object shall be default-initialized; if
3299    //     the object is of const-qualified type, the underlying class
3300    //     type shall have a user-declared default
3301    //     constructor. Otherwise, if no initializer is specified for
3302    //     an object, the object and its subobjects, if any, have an
3303    //     indeterminate initial value; if the object or any of its
3304    //     subobjects are of const-qualified type, the program is
3305    //     ill-formed.
3306    //
3307    // This isn't technically an error in C, so we don't diagnose it.
3308    //
3309    // FIXME: Actually perform the POD/user-defined default
3310    // constructor check.
3311    if (getLangOptions().CPlusPlus &&
3312        Context.getCanonicalType(Type).isConstQualified() &&
3313        !Var->hasExternalStorage())
3314      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
3315        << Var->getName()
3316        << SourceRange(Var->getLocation(), Var->getLocation());
3317#endif
3318  }
3319}
3320
3321Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
3322                                                   DeclPtrTy *Group,
3323                                                   unsigned NumDecls) {
3324  llvm::SmallVector<Decl*, 8> Decls;
3325
3326  if (DS.isTypeSpecOwned())
3327    Decls.push_back((Decl*)DS.getTypeRep());
3328
3329  for (unsigned i = 0; i != NumDecls; ++i)
3330    if (Decl *D = Group[i].getAs<Decl>())
3331      Decls.push_back(D);
3332
3333  // Perform semantic analysis that depends on having fully processed both
3334  // the declarator and initializer.
3335  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
3336    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
3337    if (!IDecl)
3338      continue;
3339    QualType T = IDecl->getType();
3340
3341    // Block scope. C99 6.7p7: If an identifier for an object is declared with
3342    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
3343    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
3344      if (!IDecl->isInvalidDecl() &&
3345          RequireCompleteType(IDecl->getLocation(), T,
3346                              diag::err_typecheck_decl_incomplete_type))
3347        IDecl->setInvalidDecl();
3348    }
3349    // File scope. C99 6.9.2p2: A declaration of an identifier for an
3350    // object that has file scope without an initializer, and without a
3351    // storage-class specifier or with the storage-class specifier "static",
3352    // constitutes a tentative definition. Note: A tentative definition with
3353    // external linkage is valid (C99 6.2.2p5).
3354    if (IDecl->isTentativeDefinition(Context) && !IDecl->isInvalidDecl()) {
3355      if (const IncompleteArrayType *ArrayT
3356          = Context.getAsIncompleteArrayType(T)) {
3357        if (RequireCompleteType(IDecl->getLocation(),
3358                                ArrayT->getElementType(),
3359                                diag::err_illegal_decl_array_incomplete_type))
3360          IDecl->setInvalidDecl();
3361      } else if (IDecl->getStorageClass() == VarDecl::Static) {
3362        // C99 6.9.2p3: If the declaration of an identifier for an object is
3363        // a tentative definition and has internal linkage (C99 6.2.2p3), the
3364        // declared type shall not be an incomplete type.
3365        // NOTE: code such as the following
3366        //     static struct s;
3367        //     struct s { int a; };
3368        // is accepted by gcc. Hence here we issue a warning instead of
3369        // an error and we do not invalidate the static declaration.
3370        // NOTE: to avoid multiple warnings, only check the first declaration.
3371        if (IDecl->getPreviousDeclaration() == 0)
3372          RequireCompleteType(IDecl->getLocation(), T,
3373                              diag::ext_typecheck_decl_incomplete_type);
3374      }
3375    }
3376  }
3377  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
3378                                                   Decls.data(), Decls.size()));
3379}
3380
3381
3382/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
3383/// to introduce parameters into function prototype scope.
3384Sema::DeclPtrTy
3385Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
3386  const DeclSpec &DS = D.getDeclSpec();
3387
3388  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
3389  VarDecl::StorageClass StorageClass = VarDecl::None;
3390  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
3391    StorageClass = VarDecl::Register;
3392  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
3393    Diag(DS.getStorageClassSpecLoc(),
3394         diag::err_invalid_storage_class_in_func_decl);
3395    D.getMutableDeclSpec().ClearStorageClassSpecs();
3396  }
3397
3398  if (D.getDeclSpec().isThreadSpecified())
3399    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3400
3401  DiagnoseFunctionSpecifiers(D);
3402
3403  // Check that there are no default arguments inside the type of this
3404  // parameter (C++ only).
3405  if (getLangOptions().CPlusPlus)
3406    CheckExtraCXXDefaultArguments(D);
3407
3408  DeclaratorInfo *DInfo = 0;
3409  TagDecl *OwnedDecl = 0;
3410  QualType parmDeclType = GetTypeForDeclarator(D, S, &DInfo, /*Skip=*/0,
3411                                               &OwnedDecl);
3412
3413  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
3414    // C++ [dcl.fct]p6:
3415    //   Types shall not be defined in return or parameter types.
3416    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
3417      << Context.getTypeDeclType(OwnedDecl);
3418  }
3419
3420  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
3421  // Can this happen for params?  We already checked that they don't conflict
3422  // among each other.  Here they can only shadow globals, which is ok.
3423  IdentifierInfo *II = D.getIdentifier();
3424  if (II) {
3425    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
3426      if (PrevDecl->isTemplateParameter()) {
3427        // Maybe we will complain about the shadowed template parameter.
3428        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3429        // Just pretend that we didn't see the previous declaration.
3430        PrevDecl = 0;
3431      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
3432        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
3433
3434        // Recover by removing the name
3435        II = 0;
3436        D.SetIdentifier(0, D.getIdentifierLoc());
3437      }
3438    }
3439  }
3440
3441  // Parameters can not be abstract class types.
3442  // For record types, this is done by the AbstractClassUsageDiagnoser once
3443  // the class has been completely parsed.
3444  if (!CurContext->isRecord() &&
3445      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
3446                             diag::err_abstract_type_in_decl,
3447                             AbstractParamType))
3448    D.setInvalidType(true);
3449
3450  QualType T = adjustParameterType(parmDeclType);
3451
3452  ParmVarDecl *New;
3453  if (T == parmDeclType) // parameter type did not need adjustment
3454    New = ParmVarDecl::Create(Context, CurContext,
3455                              D.getIdentifierLoc(), II,
3456                              parmDeclType, DInfo, StorageClass,
3457                              0);
3458  else // keep track of both the adjusted and unadjusted types
3459    New = OriginalParmVarDecl::Create(Context, CurContext,
3460                                      D.getIdentifierLoc(), II, T, DInfo,
3461                                      parmDeclType, StorageClass, 0);
3462
3463  if (D.isInvalidType())
3464    New->setInvalidDecl();
3465
3466  // Parameter declarators cannot be interface types. All ObjC objects are
3467  // passed by reference.
3468  if (T->isObjCInterfaceType()) {
3469    Diag(D.getIdentifierLoc(),
3470         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
3471    New->setInvalidDecl();
3472  }
3473
3474  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
3475  if (D.getCXXScopeSpec().isSet()) {
3476    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
3477      << D.getCXXScopeSpec().getRange();
3478    New->setInvalidDecl();
3479  }
3480
3481  // Add the parameter declaration into this scope.
3482  S->AddDecl(DeclPtrTy::make(New));
3483  if (II)
3484    IdResolver.AddDecl(New);
3485
3486  ProcessDeclAttributes(S, New, D);
3487
3488  if (New->hasAttr<BlocksAttr>()) {
3489    Diag(New->getLocation(), diag::err_block_on_nonlocal);
3490  }
3491  return DeclPtrTy::make(New);
3492}
3493
3494void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
3495                                           SourceLocation LocAfterDecls) {
3496  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3497         "Not a function declarator!");
3498  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3499
3500  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
3501  // for a K&R function.
3502  if (!FTI.hasPrototype) {
3503    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
3504      --i;
3505      if (FTI.ArgInfo[i].Param == 0) {
3506        std::string Code = "  int ";
3507        Code += FTI.ArgInfo[i].Ident->getName();
3508        Code += ";\n";
3509        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
3510          << FTI.ArgInfo[i].Ident
3511          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code);
3512
3513        // Implicitly declare the argument as type 'int' for lack of a better
3514        // type.
3515        DeclSpec DS;
3516        const char* PrevSpec; // unused
3517        unsigned DiagID; // unused
3518        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
3519                           PrevSpec, DiagID);
3520        Declarator ParamD(DS, Declarator::KNRTypeListContext);
3521        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
3522        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
3523      }
3524    }
3525  }
3526}
3527
3528Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
3529                                              Declarator &D) {
3530  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
3531  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3532         "Not a function declarator!");
3533  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3534
3535  if (FTI.hasPrototype) {
3536    // FIXME: Diagnose arguments without names in C.
3537  }
3538
3539  Scope *ParentScope = FnBodyScope->getParent();
3540
3541  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
3542                                  MultiTemplateParamsArg(*this),
3543                                  /*IsFunctionDefinition=*/true);
3544  return ActOnStartOfFunctionDef(FnBodyScope, DP);
3545}
3546
3547Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
3548  if (!D)
3549    return D;
3550  FunctionDecl *FD = 0;
3551
3552  if (FunctionTemplateDecl *FunTmpl
3553        = dyn_cast<FunctionTemplateDecl>(D.getAs<Decl>()))
3554    FD = FunTmpl->getTemplatedDecl();
3555  else
3556    FD = cast<FunctionDecl>(D.getAs<Decl>());
3557
3558  CurFunctionNeedsScopeChecking = false;
3559
3560  // See if this is a redefinition.
3561  const FunctionDecl *Definition;
3562  if (FD->getBody(Definition)) {
3563    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
3564    Diag(Definition->getLocation(), diag::note_previous_definition);
3565  }
3566
3567  // Builtin functions cannot be defined.
3568  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3569    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3570      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
3571      FD->setInvalidDecl();
3572    }
3573  }
3574
3575  // The return type of a function definition must be complete
3576  // (C99 6.9.1p3, C++ [dcl.fct]p6).
3577  QualType ResultType = FD->getResultType();
3578  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
3579      !FD->isInvalidDecl() &&
3580      RequireCompleteType(FD->getLocation(), ResultType,
3581                          diag::err_func_def_incomplete_result))
3582    FD->setInvalidDecl();
3583
3584  // GNU warning -Wmissing-prototypes:
3585  //   Warn if a global function is defined without a previous
3586  //   prototype declaration. This warning is issued even if the
3587  //   definition itself provides a prototype. The aim is to detect
3588  //   global functions that fail to be declared in header files.
3589  if (!FD->isInvalidDecl() && FD->isGlobal() && !isa<CXXMethodDecl>(FD) &&
3590      !FD->isMain(Context)) {
3591    bool MissingPrototype = true;
3592    for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
3593         Prev; Prev = Prev->getPreviousDeclaration()) {
3594      // Ignore any declarations that occur in function or method
3595      // scope, because they aren't visible from the header.
3596      if (Prev->getDeclContext()->isFunctionOrMethod())
3597        continue;
3598
3599      MissingPrototype = !Prev->getType()->isFunctionProtoType();
3600      break;
3601    }
3602
3603    if (MissingPrototype)
3604      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
3605  }
3606
3607  if (FnBodyScope)
3608    PushDeclContext(FnBodyScope, FD);
3609
3610  // Check the validity of our function parameters
3611  CheckParmsForFunctionDef(FD);
3612
3613  // Introduce our parameters into the function scope
3614  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
3615    ParmVarDecl *Param = FD->getParamDecl(p);
3616    Param->setOwningFunction(FD);
3617
3618    // If this has an identifier, add it to the scope stack.
3619    if (Param->getIdentifier() && FnBodyScope)
3620      PushOnScopeChains(Param, FnBodyScope);
3621  }
3622
3623  // Checking attributes of current function definition
3624  // dllimport attribute.
3625  if (FD->getAttr<DLLImportAttr>() &&
3626      (!FD->getAttr<DLLExportAttr>())) {
3627    // dllimport attribute cannot be applied to definition.
3628    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
3629      Diag(FD->getLocation(),
3630           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
3631        << "dllimport";
3632      FD->setInvalidDecl();
3633      return DeclPtrTy::make(FD);
3634    } else {
3635      // If a symbol previously declared dllimport is later defined, the
3636      // attribute is ignored in subsequent references, and a warning is
3637      // emitted.
3638      Diag(FD->getLocation(),
3639           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
3640        << FD->getNameAsCString() << "dllimport";
3641    }
3642  }
3643  return DeclPtrTy::make(FD);
3644}
3645
3646Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
3647  return ActOnFinishFunctionBody(D, move(BodyArg), false);
3648}
3649
3650Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
3651                                              bool IsInstantiation) {
3652  Decl *dcl = D.getAs<Decl>();
3653  Stmt *Body = BodyArg.takeAs<Stmt>();
3654
3655  FunctionDecl *FD = 0;
3656  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
3657  if (FunTmpl)
3658    FD = FunTmpl->getTemplatedDecl();
3659  else
3660    FD = dyn_cast_or_null<FunctionDecl>(dcl);
3661
3662  if (FD) {
3663    FD->setBody(Body);
3664    if (FD->isMain(Context))
3665      // C and C++ allow for main to automagically return 0.
3666      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
3667      FD->setHasImplicitReturnZero(true);
3668    else
3669      CheckFallThroughForFunctionDef(FD, Body);
3670
3671    if (!FD->isInvalidDecl())
3672      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
3673
3674    // C++ [basic.def.odr]p2:
3675    //   [...] A virtual member function is used if it is not pure. [...]
3676    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
3677      if (Method->isVirtual() && !Method->isPure())
3678        MarkDeclarationReferenced(Method->getLocation(), Method);
3679
3680    assert(FD == getCurFunctionDecl() && "Function parsing confused");
3681  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
3682    assert(MD == getCurMethodDecl() && "Method parsing confused");
3683    MD->setBody(Body);
3684    CheckFallThroughForFunctionDef(MD, Body);
3685    MD->setEndLoc(Body->getLocEnd());
3686
3687    if (!MD->isInvalidDecl())
3688      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
3689  } else {
3690    Body->Destroy(Context);
3691    return DeclPtrTy();
3692  }
3693  if (!IsInstantiation)
3694    PopDeclContext();
3695
3696  // Verify and clean out per-function state.
3697
3698  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
3699
3700  // Check goto/label use.
3701  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
3702       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
3703    LabelStmt *L = I->second;
3704
3705    // Verify that we have no forward references left.  If so, there was a goto
3706    // or address of a label taken, but no definition of it.  Label fwd
3707    // definitions are indicated with a null substmt.
3708    if (L->getSubStmt() != 0)
3709      continue;
3710
3711    // Emit error.
3712    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
3713
3714    // At this point, we have gotos that use the bogus label.  Stitch it into
3715    // the function body so that they aren't leaked and that the AST is well
3716    // formed.
3717    if (Body == 0) {
3718      // The whole function wasn't parsed correctly, just delete this.
3719      L->Destroy(Context);
3720      continue;
3721    }
3722
3723    // Otherwise, the body is valid: we want to stitch the label decl into the
3724    // function somewhere so that it is properly owned and so that the goto
3725    // has a valid target.  Do this by creating a new compound stmt with the
3726    // label in it.
3727
3728    // Give the label a sub-statement.
3729    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
3730
3731    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
3732                               cast<CXXTryStmt>(Body)->getTryBlock() :
3733                               cast<CompoundStmt>(Body);
3734    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
3735    Elements.push_back(L);
3736    Compound->setStmts(Context, &Elements[0], Elements.size());
3737  }
3738  FunctionLabelMap.clear();
3739
3740  if (!Body) return D;
3741
3742  // Verify that that gotos and switch cases don't jump into scopes illegally.
3743  if (CurFunctionNeedsScopeChecking)
3744    DiagnoseInvalidJumps(Body);
3745
3746  // C++ constructors that have function-try-blocks can't have return
3747  // statements in the handlers of that block. (C++ [except.handle]p14)
3748  // Verify this.
3749  if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
3750    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
3751
3752  if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
3753    Destructor->computeBaseOrMembersToDestroy(Context);
3754  return D;
3755}
3756
3757/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
3758/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
3759NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
3760                                          IdentifierInfo &II, Scope *S) {
3761  // Before we produce a declaration for an implicitly defined
3762  // function, see whether there was a locally-scoped declaration of
3763  // this name as a function or variable. If so, use that
3764  // (non-visible) declaration, and complain about it.
3765  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3766    = LocallyScopedExternalDecls.find(&II);
3767  if (Pos != LocallyScopedExternalDecls.end()) {
3768    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
3769    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
3770    return Pos->second;
3771  }
3772
3773  // Extension in C99.  Legal in C90, but warn about it.
3774  if (getLangOptions().C99)
3775    Diag(Loc, diag::ext_implicit_function_decl) << &II;
3776  else
3777    Diag(Loc, diag::warn_implicit_function_decl) << &II;
3778
3779  // FIXME: handle stuff like:
3780  // void foo() { extern float X(); }
3781  // void bar() { X(); }  <-- implicit decl for X in another scope.
3782
3783  // Set a Declarator for the implicit definition: int foo();
3784  const char *Dummy;
3785  DeclSpec DS;
3786  unsigned DiagID;
3787  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
3788  Error = Error; // Silence warning.
3789  assert(!Error && "Error setting up implicit decl!");
3790  Declarator D(DS, Declarator::BlockContext);
3791  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
3792                                             0, 0, false, SourceLocation(),
3793                                             false, 0,0,0, Loc, Loc, D),
3794                SourceLocation());
3795  D.SetIdentifier(&II, Loc);
3796
3797  // Insert this function into translation-unit scope.
3798
3799  DeclContext *PrevDC = CurContext;
3800  CurContext = Context.getTranslationUnitDecl();
3801
3802  FunctionDecl *FD =
3803 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
3804  FD->setImplicit();
3805
3806  CurContext = PrevDC;
3807
3808  AddKnownFunctionAttributes(FD);
3809
3810  return FD;
3811}
3812
3813/// \brief Adds any function attributes that we know a priori based on
3814/// the declaration of this function.
3815///
3816/// These attributes can apply both to implicitly-declared builtins
3817/// (like __builtin___printf_chk) or to library-declared functions
3818/// like NSLog or printf.
3819void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
3820  if (FD->isInvalidDecl())
3821    return;
3822
3823  // If this is a built-in function, map its builtin attributes to
3824  // actual attributes.
3825  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3826    // Handle printf-formatting attributes.
3827    unsigned FormatIdx;
3828    bool HasVAListArg;
3829    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
3830      if (!FD->getAttr<FormatAttr>())
3831        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
3832                                             HasVAListArg ? 0 : FormatIdx + 2));
3833    }
3834
3835    // Mark const if we don't care about errno and that is the only
3836    // thing preventing the function from being const. This allows
3837    // IRgen to use LLVM intrinsics for such functions.
3838    if (!getLangOptions().MathErrno &&
3839        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
3840      if (!FD->getAttr<ConstAttr>())
3841        FD->addAttr(::new (Context) ConstAttr());
3842    }
3843
3844    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
3845      FD->addAttr(::new (Context) NoReturnAttr());
3846  }
3847
3848  IdentifierInfo *Name = FD->getIdentifier();
3849  if (!Name)
3850    return;
3851  if ((!getLangOptions().CPlusPlus &&
3852       FD->getDeclContext()->isTranslationUnit()) ||
3853      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
3854       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
3855       LinkageSpecDecl::lang_c)) {
3856    // Okay: this could be a libc/libm/Objective-C function we know
3857    // about.
3858  } else
3859    return;
3860
3861  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
3862    // FIXME: NSLog and NSLogv should be target specific
3863    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
3864      // FIXME: We known better than our headers.
3865      const_cast<FormatAttr *>(Format)->setType("printf");
3866    } else
3867      FD->addAttr(::new (Context) FormatAttr("printf", 1,
3868                                             Name->isStr("NSLogv") ? 0 : 2));
3869  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
3870    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
3871    // target-specific builtins, perhaps?
3872    if (!FD->getAttr<FormatAttr>())
3873      FD->addAttr(::new (Context) FormatAttr("printf", 2,
3874                                             Name->isStr("vasprintf") ? 0 : 3));
3875  }
3876}
3877
3878TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T) {
3879  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
3880  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3881
3882  // Scope manipulation handled by caller.
3883  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
3884                                           D.getIdentifierLoc(),
3885                                           D.getIdentifier(),
3886                                           T);
3887
3888  if (TagType *TT = dyn_cast<TagType>(T)) {
3889    TagDecl *TD = TT->getDecl();
3890
3891    // If the TagDecl that the TypedefDecl points to is an anonymous decl
3892    // keep track of the TypedefDecl.
3893    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
3894      TD->setTypedefForAnonDecl(NewTD);
3895  }
3896
3897  if (D.isInvalidType())
3898    NewTD->setInvalidDecl();
3899  return NewTD;
3900}
3901
3902
3903/// \brief Determine whether a tag with a given kind is acceptable
3904/// as a redeclaration of the given tag declaration.
3905///
3906/// \returns true if the new tag kind is acceptable, false otherwise.
3907bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
3908                                        TagDecl::TagKind NewTag,
3909                                        SourceLocation NewTagLoc,
3910                                        const IdentifierInfo &Name) {
3911  // C++ [dcl.type.elab]p3:
3912  //   The class-key or enum keyword present in the
3913  //   elaborated-type-specifier shall agree in kind with the
3914  //   declaration to which the name in theelaborated-type-specifier
3915  //   refers. This rule also applies to the form of
3916  //   elaborated-type-specifier that declares a class-name or
3917  //   friend class since it can be construed as referring to the
3918  //   definition of the class. Thus, in any
3919  //   elaborated-type-specifier, the enum keyword shall be used to
3920  //   refer to an enumeration (7.2), the union class-keyshall be
3921  //   used to refer to a union (clause 9), and either the class or
3922  //   struct class-key shall be used to refer to a class (clause 9)
3923  //   declared using the class or struct class-key.
3924  TagDecl::TagKind OldTag = Previous->getTagKind();
3925  if (OldTag == NewTag)
3926    return true;
3927
3928  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
3929      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
3930    // Warn about the struct/class tag mismatch.
3931    bool isTemplate = false;
3932    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
3933      isTemplate = Record->getDescribedClassTemplate();
3934
3935    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
3936      << (NewTag == TagDecl::TK_class)
3937      << isTemplate << &Name
3938      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
3939                              OldTag == TagDecl::TK_class? "class" : "struct");
3940    Diag(Previous->getLocation(), diag::note_previous_use);
3941    return true;
3942  }
3943  return false;
3944}
3945
3946/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
3947/// former case, Name will be non-null.  In the later case, Name will be null.
3948/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
3949/// reference/declaration/definition of a tag.
3950Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
3951                               SourceLocation KWLoc, const CXXScopeSpec &SS,
3952                               IdentifierInfo *Name, SourceLocation NameLoc,
3953                               AttributeList *Attr, AccessSpecifier AS,
3954                               MultiTemplateParamsArg TemplateParameterLists,
3955                               bool &OwnedDecl) {
3956  // If this is not a definition, it must have a name.
3957  assert((Name != 0 || TUK == TUK_Definition) &&
3958         "Nameless record must be a definition!");
3959
3960  OwnedDecl = false;
3961  TagDecl::TagKind Kind;
3962  switch (TagSpec) {
3963  default: assert(0 && "Unknown tag type!");
3964  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3965  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3966  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3967  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
3968  }
3969
3970  if (TUK != TUK_Reference) {
3971    if (TemplateParameterList *TemplateParams
3972          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
3973                        (TemplateParameterList**)TemplateParameterLists.get(),
3974                                              TemplateParameterLists.size())) {
3975      if (TemplateParams->size() > 0) {
3976        // This is a declaration or definition of a class template (which may
3977        // be a member of another template).
3978        OwnedDecl = false;
3979        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
3980                                               SS, Name, NameLoc, Attr,
3981                                               TemplateParams,
3982                                               AS);
3983        TemplateParameterLists.release();
3984        return Result.get();
3985      } else {
3986        // FIXME: diagnose the extraneous 'template<>', once we recover
3987        // slightly better in ParseTemplate.cpp from bogus template
3988        // parameters.
3989      }
3990    }
3991  }
3992
3993  DeclContext *SearchDC = CurContext;
3994  DeclContext *DC = CurContext;
3995  NamedDecl *PrevDecl = 0;
3996
3997  bool Invalid = false;
3998
3999  if (Name && SS.isNotEmpty()) {
4000    // We have a nested-name tag ('struct foo::bar').
4001
4002    // Check for invalid 'foo::'.
4003    if (SS.isInvalid()) {
4004      Name = 0;
4005      goto CreateNewDecl;
4006    }
4007
4008    if (RequireCompleteDeclContext(SS))
4009      return DeclPtrTy::make((Decl *)0);
4010
4011    DC = computeDeclContext(SS, true);
4012    SearchDC = DC;
4013    // Look-up name inside 'foo::'.
4014    PrevDecl
4015      = dyn_cast_or_null<TagDecl>(
4016               LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
4017
4018    // A tag 'foo::bar' must already exist.
4019    if (PrevDecl == 0) {
4020      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
4021      Name = 0;
4022      Invalid = true;
4023      goto CreateNewDecl;
4024    }
4025  } else if (Name) {
4026    // If this is a named struct, check to see if there was a previous forward
4027    // declaration or definition.
4028    // FIXME: We're looking into outer scopes here, even when we
4029    // shouldn't be. Doing so can result in ambiguities that we
4030    // shouldn't be diagnosing.
4031    LookupResult R = LookupName(S, Name, LookupTagName,
4032                                /*RedeclarationOnly=*/(TUK != TUK_Reference));
4033    if (R.isAmbiguous()) {
4034      DiagnoseAmbiguousLookup(R, Name, NameLoc);
4035      // FIXME: This is not best way to recover from case like:
4036      //
4037      // struct S s;
4038      //
4039      // causes needless "incomplete type" error later.
4040      Name = 0;
4041      PrevDecl = 0;
4042      Invalid = true;
4043    } else
4044      PrevDecl = R;
4045
4046    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
4047      // FIXME: This makes sure that we ignore the contexts associated
4048      // with C structs, unions, and enums when looking for a matching
4049      // tag declaration or definition. See the similar lookup tweak
4050      // in Sema::LookupName; is there a better way to deal with this?
4051      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
4052        SearchDC = SearchDC->getParent();
4053    }
4054  }
4055
4056  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4057    // Maybe we will complain about the shadowed template parameter.
4058    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
4059    // Just pretend that we didn't see the previous declaration.
4060    PrevDecl = 0;
4061  }
4062
4063  if (PrevDecl) {
4064    // Check whether the previous declaration is usable.
4065    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
4066
4067    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
4068      // If this is a use of a previous tag, or if the tag is already declared
4069      // in the same scope (so that the definition/declaration completes or
4070      // rementions the tag), reuse the decl.
4071      if (TUK == TUK_Reference || TUK == TUK_Friend ||
4072          isDeclInScope(PrevDecl, SearchDC, S)) {
4073        // Make sure that this wasn't declared as an enum and now used as a
4074        // struct or something similar.
4075        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
4076          bool SafeToContinue
4077            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
4078               Kind != TagDecl::TK_enum);
4079          if (SafeToContinue)
4080            Diag(KWLoc, diag::err_use_with_wrong_tag)
4081              << Name
4082              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
4083                                                  PrevTagDecl->getKindName());
4084          else
4085            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
4086          Diag(PrevDecl->getLocation(), diag::note_previous_use);
4087
4088          if (SafeToContinue)
4089            Kind = PrevTagDecl->getTagKind();
4090          else {
4091            // Recover by making this an anonymous redefinition.
4092            Name = 0;
4093            PrevDecl = 0;
4094            Invalid = true;
4095          }
4096        }
4097
4098        if (!Invalid) {
4099          // If this is a use, just return the declaration we found.
4100
4101          // FIXME: In the future, return a variant or some other clue
4102          // for the consumer of this Decl to know it doesn't own it.
4103          // For our current ASTs this shouldn't be a problem, but will
4104          // need to be changed with DeclGroups.
4105          if (TUK == TUK_Reference)
4106            return DeclPtrTy::make(PrevDecl);
4107
4108          // If this is a friend, make sure we create the new
4109          // declaration in the appropriate semantic context.
4110          if (TUK == TUK_Friend)
4111            SearchDC = PrevDecl->getDeclContext();
4112
4113          // Diagnose attempts to redefine a tag.
4114          if (TUK == TUK_Definition) {
4115            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
4116              Diag(NameLoc, diag::err_redefinition) << Name;
4117              Diag(Def->getLocation(), diag::note_previous_definition);
4118              // If this is a redefinition, recover by making this
4119              // struct be anonymous, which will make any later
4120              // references get the previous definition.
4121              Name = 0;
4122              PrevDecl = 0;
4123              Invalid = true;
4124            } else {
4125              // If the type is currently being defined, complain
4126              // about a nested redefinition.
4127              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
4128              if (Tag->isBeingDefined()) {
4129                Diag(NameLoc, diag::err_nested_redefinition) << Name;
4130                Diag(PrevTagDecl->getLocation(),
4131                     diag::note_previous_definition);
4132                Name = 0;
4133                PrevDecl = 0;
4134                Invalid = true;
4135              }
4136            }
4137
4138            // Okay, this is definition of a previously declared or referenced
4139            // tag PrevDecl. We're going to create a new Decl for it.
4140          }
4141        }
4142        // If we get here we have (another) forward declaration or we
4143        // have a definition.  Just create a new decl.
4144
4145      } else {
4146        // If we get here, this is a definition of a new tag type in a nested
4147        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
4148        // new decl/type.  We set PrevDecl to NULL so that the entities
4149        // have distinct types.
4150        PrevDecl = 0;
4151      }
4152      // If we get here, we're going to create a new Decl. If PrevDecl
4153      // is non-NULL, it's a definition of the tag declared by
4154      // PrevDecl. If it's NULL, we have a new definition.
4155    } else {
4156      // PrevDecl is a namespace, template, or anything else
4157      // that lives in the IDNS_Tag identifier namespace.
4158      if (isDeclInScope(PrevDecl, SearchDC, S)) {
4159        // The tag name clashes with a namespace name, issue an error and
4160        // recover by making this tag be anonymous.
4161        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
4162        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4163        Name = 0;
4164        PrevDecl = 0;
4165        Invalid = true;
4166      } else {
4167        // The existing declaration isn't relevant to us; we're in a
4168        // new scope, so clear out the previous declaration.
4169        PrevDecl = 0;
4170      }
4171    }
4172  } else if (TUK == TUK_Reference && SS.isEmpty() && Name &&
4173             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
4174    // C++ [basic.scope.pdecl]p5:
4175    //   -- for an elaborated-type-specifier of the form
4176    //
4177    //          class-key identifier
4178    //
4179    //      if the elaborated-type-specifier is used in the
4180    //      decl-specifier-seq or parameter-declaration-clause of a
4181    //      function defined in namespace scope, the identifier is
4182    //      declared as a class-name in the namespace that contains
4183    //      the declaration; otherwise, except as a friend
4184    //      declaration, the identifier is declared in the smallest
4185    //      non-class, non-function-prototype scope that contains the
4186    //      declaration.
4187    //
4188    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
4189    // C structs and unions.
4190    //
4191    // GNU C also supports this behavior as part of its incomplete
4192    // enum types extension, while GNU C++ does not.
4193    //
4194    // Find the context where we'll be declaring the tag.
4195    // FIXME: We would like to maintain the current DeclContext as the
4196    // lexical context,
4197    while (SearchDC->isRecord())
4198      SearchDC = SearchDC->getParent();
4199
4200    // Find the scope where we'll be declaring the tag.
4201    while (S->isClassScope() ||
4202           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
4203           ((S->getFlags() & Scope::DeclScope) == 0) ||
4204           (S->getEntity() &&
4205            ((DeclContext *)S->getEntity())->isTransparentContext()))
4206      S = S->getParent();
4207
4208  } else if (TUK == TUK_Friend && SS.isEmpty() && Name) {
4209    // C++ [namespace.memdef]p3:
4210    //   If a friend declaration in a non-local class first declares a
4211    //   class or function, the friend class or function is a member of
4212    //   the innermost enclosing namespace.
4213    while (!SearchDC->isFileContext())
4214      SearchDC = SearchDC->getParent();
4215
4216    // The entity of a decl scope is a DeclContext; see PushDeclContext.
4217    while (S->getEntity() != SearchDC)
4218      S = S->getParent();
4219  }
4220
4221CreateNewDecl:
4222
4223  // If there is an identifier, use the location of the identifier as the
4224  // location of the decl, otherwise use the location of the struct/union
4225  // keyword.
4226  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
4227
4228  // Otherwise, create a new declaration. If there is a previous
4229  // declaration of the same entity, the two will be linked via
4230  // PrevDecl.
4231  TagDecl *New;
4232
4233  if (Kind == TagDecl::TK_enum) {
4234    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4235    // enum X { A, B, C } D;    D should chain to X.
4236    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
4237                           cast_or_null<EnumDecl>(PrevDecl));
4238    // If this is an undefined enum, warn.
4239    if (TUK != TUK_Definition && !Invalid)  {
4240      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
4241                                              : diag::ext_forward_ref_enum;
4242      Diag(Loc, DK);
4243    }
4244  } else {
4245    // struct/union/class
4246
4247    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4248    // struct X { int A; } D;    D should chain to X.
4249    if (getLangOptions().CPlusPlus)
4250      // FIXME: Look for a way to use RecordDecl for simple structs.
4251      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4252                                  cast_or_null<CXXRecordDecl>(PrevDecl));
4253    else
4254      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4255                               cast_or_null<RecordDecl>(PrevDecl));
4256  }
4257
4258  if (Kind != TagDecl::TK_enum) {
4259    // Handle #pragma pack: if the #pragma pack stack has non-default
4260    // alignment, make up a packed attribute for this decl. These
4261    // attributes are checked when the ASTContext lays out the
4262    // structure.
4263    //
4264    // It is important for implementing the correct semantics that this
4265    // happen here (in act on tag decl). The #pragma pack stack is
4266    // maintained as a result of parser callbacks which can occur at
4267    // many points during the parsing of a struct declaration (because
4268    // the #pragma tokens are effectively skipped over during the
4269    // parsing of the struct).
4270    if (unsigned Alignment = getPragmaPackAlignment())
4271      New->addAttr(::new (Context) PragmaPackAttr(Alignment * 8));
4272  }
4273
4274  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
4275    // C++ [dcl.typedef]p3:
4276    //   [...] Similarly, in a given scope, a class or enumeration
4277    //   shall not be declared with the same name as a typedef-name
4278    //   that is declared in that scope and refers to a type other
4279    //   than the class or enumeration itself.
4280    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
4281    TypedefDecl *PrevTypedef = 0;
4282    if (Lookup.getKind() == LookupResult::Found)
4283      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
4284
4285    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
4286        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
4287          Context.getCanonicalType(Context.getTypeDeclType(New))) {
4288      Diag(Loc, diag::err_tag_definition_of_typedef)
4289        << Context.getTypeDeclType(New)
4290        << PrevTypedef->getUnderlyingType();
4291      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
4292      Invalid = true;
4293    }
4294  }
4295
4296  if (Invalid)
4297    New->setInvalidDecl();
4298
4299  if (Attr)
4300    ProcessDeclAttributeList(S, New, Attr);
4301
4302  // If we're declaring or defining a tag in function prototype scope
4303  // in C, note that this type can only be used within the function.
4304  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
4305    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
4306
4307  // Set the lexical context. If the tag has a C++ scope specifier, the
4308  // lexical context will be different from the semantic context.
4309  New->setLexicalDeclContext(CurContext);
4310
4311  // Set the access specifier.
4312  if (!Invalid && TUK != TUK_Friend)
4313    SetMemberAccessSpecifier(New, PrevDecl, AS);
4314
4315  if (TUK == TUK_Definition)
4316    New->startDefinition();
4317
4318  // If this has an identifier, add it to the scope stack.
4319  if (Name && TUK != TUK_Friend) {
4320    S = getNonFieldDeclScope(S);
4321    PushOnScopeChains(New, S);
4322  } else {
4323    CurContext->addDecl(New);
4324  }
4325
4326  // If this is the C FILE type, notify the AST context.
4327  if (IdentifierInfo *II = New->getIdentifier())
4328    if (!New->isInvalidDecl() &&
4329        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
4330        II->isStr("FILE"))
4331      Context.setFILEDecl(New);
4332
4333  OwnedDecl = true;
4334  return DeclPtrTy::make(New);
4335}
4336
4337void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
4338  AdjustDeclIfTemplate(TagD);
4339  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4340
4341  // Enter the tag context.
4342  PushDeclContext(S, Tag);
4343
4344  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
4345    FieldCollector->StartClass();
4346
4347    if (Record->getIdentifier()) {
4348      // C++ [class]p2:
4349      //   [...] The class-name is also inserted into the scope of the
4350      //   class itself; this is known as the injected-class-name. For
4351      //   purposes of access checking, the injected-class-name is treated
4352      //   as if it were a public member name.
4353      CXXRecordDecl *InjectedClassName
4354        = CXXRecordDecl::Create(Context, Record->getTagKind(),
4355                                CurContext, Record->getLocation(),
4356                                Record->getIdentifier(),
4357                                Record->getTagKeywordLoc(),
4358                                Record);
4359      InjectedClassName->setImplicit();
4360      InjectedClassName->setAccess(AS_public);
4361      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
4362        InjectedClassName->setDescribedClassTemplate(Template);
4363      PushOnScopeChains(InjectedClassName, S);
4364      assert(InjectedClassName->isInjectedClassName() &&
4365             "Broken injected-class-name");
4366    }
4367  }
4368}
4369
4370void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
4371                                    SourceLocation RBraceLoc) {
4372  AdjustDeclIfTemplate(TagD);
4373  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4374  Tag->setRBraceLoc(RBraceLoc);
4375
4376  if (isa<CXXRecordDecl>(Tag))
4377    FieldCollector->FinishClass();
4378
4379  // Exit this scope of this tag's definition.
4380  PopDeclContext();
4381
4382  // Notify the consumer that we've defined a tag.
4383  Consumer.HandleTagDeclDefinition(Tag);
4384}
4385
4386// Note that FieldName may be null for anonymous bitfields.
4387bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
4388                          QualType FieldTy, const Expr *BitWidth,
4389                          bool *ZeroWidth) {
4390  // Default to true; that shouldn't confuse checks for emptiness
4391  if (ZeroWidth)
4392    *ZeroWidth = true;
4393
4394  // C99 6.7.2.1p4 - verify the field type.
4395  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
4396  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
4397    // Handle incomplete types with specific error.
4398    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
4399      return true;
4400    if (FieldName)
4401      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
4402        << FieldName << FieldTy << BitWidth->getSourceRange();
4403    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
4404      << FieldTy << BitWidth->getSourceRange();
4405  }
4406
4407  // If the bit-width is type- or value-dependent, don't try to check
4408  // it now.
4409  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
4410    return false;
4411
4412  llvm::APSInt Value;
4413  if (VerifyIntegerConstantExpression(BitWidth, &Value))
4414    return true;
4415
4416  if (Value != 0 && ZeroWidth)
4417    *ZeroWidth = false;
4418
4419  // Zero-width bitfield is ok for anonymous field.
4420  if (Value == 0 && FieldName)
4421    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
4422
4423  if (Value.isSigned() && Value.isNegative()) {
4424    if (FieldName)
4425      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
4426               << FieldName << Value.toString(10);
4427    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
4428      << Value.toString(10);
4429  }
4430
4431  if (!FieldTy->isDependentType()) {
4432    uint64_t TypeSize = Context.getTypeSize(FieldTy);
4433    if (Value.getZExtValue() > TypeSize) {
4434      if (FieldName)
4435        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
4436          << FieldName << (unsigned)TypeSize;
4437      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
4438        << (unsigned)TypeSize;
4439    }
4440  }
4441
4442  return false;
4443}
4444
4445/// ActOnField - Each field of a struct/union/class is passed into this in order
4446/// to create a FieldDecl object for it.
4447Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
4448                                 SourceLocation DeclStart,
4449                                 Declarator &D, ExprTy *BitfieldWidth) {
4450  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
4451                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
4452                               AS_public);
4453  return DeclPtrTy::make(Res);
4454}
4455
4456/// HandleField - Analyze a field of a C struct or a C++ data member.
4457///
4458FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
4459                             SourceLocation DeclStart,
4460                             Declarator &D, Expr *BitWidth,
4461                             AccessSpecifier AS) {
4462  IdentifierInfo *II = D.getIdentifier();
4463  SourceLocation Loc = DeclStart;
4464  if (II) Loc = D.getIdentifierLoc();
4465
4466  DeclaratorInfo *DInfo = 0;
4467  QualType T = GetTypeForDeclarator(D, S, &DInfo);
4468  if (getLangOptions().CPlusPlus)
4469    CheckExtraCXXDefaultArguments(D);
4470
4471  DiagnoseFunctionSpecifiers(D);
4472
4473  if (D.getDeclSpec().isThreadSpecified())
4474    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4475
4476  NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
4477
4478  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4479    // Maybe we will complain about the shadowed template parameter.
4480    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4481    // Just pretend that we didn't see the previous declaration.
4482    PrevDecl = 0;
4483  }
4484
4485  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
4486    PrevDecl = 0;
4487
4488  bool Mutable
4489    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
4490  SourceLocation TSSL = D.getSourceRange().getBegin();
4491  FieldDecl *NewFD
4492    = CheckFieldDecl(II, T, DInfo, Record, Loc, Mutable, BitWidth, TSSL,
4493                     AS, PrevDecl, &D);
4494  if (NewFD->isInvalidDecl() && PrevDecl) {
4495    // Don't introduce NewFD into scope; there's already something
4496    // with the same name in the same scope.
4497  } else if (II) {
4498    PushOnScopeChains(NewFD, S);
4499  } else
4500    Record->addDecl(NewFD);
4501
4502  return NewFD;
4503}
4504
4505/// \brief Build a new FieldDecl and check its well-formedness.
4506///
4507/// This routine builds a new FieldDecl given the fields name, type,
4508/// record, etc. \p PrevDecl should refer to any previous declaration
4509/// with the same name and in the same scope as the field to be
4510/// created.
4511///
4512/// \returns a new FieldDecl.
4513///
4514/// \todo The Declarator argument is a hack. It will be removed once
4515FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
4516                                DeclaratorInfo *DInfo,
4517                                RecordDecl *Record, SourceLocation Loc,
4518                                bool Mutable, Expr *BitWidth,
4519                                SourceLocation TSSL,
4520                                AccessSpecifier AS, NamedDecl *PrevDecl,
4521                                Declarator *D) {
4522  IdentifierInfo *II = Name.getAsIdentifierInfo();
4523  bool InvalidDecl = false;
4524  if (D) InvalidDecl = D->isInvalidType();
4525
4526  // If we receive a broken type, recover by assuming 'int' and
4527  // marking this declaration as invalid.
4528  if (T.isNull()) {
4529    InvalidDecl = true;
4530    T = Context.IntTy;
4531  }
4532
4533  // C99 6.7.2.1p8: A member of a structure or union may have any type other
4534  // than a variably modified type.
4535  if (T->isVariablyModifiedType()) {
4536    bool SizeIsNegative;
4537    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
4538                                                           SizeIsNegative);
4539    if (!FixedTy.isNull()) {
4540      Diag(Loc, diag::warn_illegal_constant_array_size);
4541      T = FixedTy;
4542    } else {
4543      if (SizeIsNegative)
4544        Diag(Loc, diag::err_typecheck_negative_array_size);
4545      else
4546        Diag(Loc, diag::err_typecheck_field_variable_size);
4547      InvalidDecl = true;
4548    }
4549  }
4550
4551  // Fields can not have abstract class types
4552  if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl,
4553                             AbstractFieldType))
4554    InvalidDecl = true;
4555
4556  bool ZeroWidth = false;
4557  // If this is declared as a bit-field, check the bit-field.
4558  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
4559    InvalidDecl = true;
4560    DeleteExpr(BitWidth);
4561    BitWidth = 0;
4562    ZeroWidth = false;
4563  }
4564
4565  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, DInfo,
4566                                       BitWidth, Mutable);
4567  if (InvalidDecl)
4568    NewFD->setInvalidDecl();
4569
4570  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
4571    Diag(Loc, diag::err_duplicate_member) << II;
4572    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4573    NewFD->setInvalidDecl();
4574  }
4575
4576  if (getLangOptions().CPlusPlus) {
4577    QualType EltTy = Context.getBaseElementType(T);
4578
4579    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
4580
4581    if (!T->isPODType())
4582      CXXRecord->setPOD(false);
4583    if (!ZeroWidth)
4584      CXXRecord->setEmpty(false);
4585
4586    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
4587      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
4588
4589      if (!RDecl->hasTrivialConstructor())
4590        CXXRecord->setHasTrivialConstructor(false);
4591      if (!RDecl->hasTrivialCopyConstructor())
4592        CXXRecord->setHasTrivialCopyConstructor(false);
4593      if (!RDecl->hasTrivialCopyAssignment())
4594        CXXRecord->setHasTrivialCopyAssignment(false);
4595      if (!RDecl->hasTrivialDestructor())
4596        CXXRecord->setHasTrivialDestructor(false);
4597
4598      // C++ 9.5p1: An object of a class with a non-trivial
4599      // constructor, a non-trivial copy constructor, a non-trivial
4600      // destructor, or a non-trivial copy assignment operator
4601      // cannot be a member of a union, nor can an array of such
4602      // objects.
4603      // TODO: C++0x alters this restriction significantly.
4604      if (Record->isUnion()) {
4605        // We check for copy constructors before constructors
4606        // because otherwise we'll never get complaints about
4607        // copy constructors.
4608
4609        const CXXSpecialMember invalid = (CXXSpecialMember) -1;
4610
4611        CXXSpecialMember member;
4612        if (!RDecl->hasTrivialCopyConstructor())
4613          member = CXXCopyConstructor;
4614        else if (!RDecl->hasTrivialConstructor())
4615          member = CXXDefaultConstructor;
4616        else if (!RDecl->hasTrivialCopyAssignment())
4617          member = CXXCopyAssignment;
4618        else if (!RDecl->hasTrivialDestructor())
4619          member = CXXDestructor;
4620        else
4621          member = invalid;
4622
4623        if (member != invalid) {
4624          Diag(Loc, diag::err_illegal_union_member) << Name << member;
4625          DiagnoseNontrivial(RT, member);
4626          NewFD->setInvalidDecl();
4627        }
4628      }
4629    }
4630  }
4631
4632  // FIXME: We need to pass in the attributes given an AST
4633  // representation, not a parser representation.
4634  if (D)
4635    // FIXME: What to pass instead of TUScope?
4636    ProcessDeclAttributes(TUScope, NewFD, *D);
4637
4638  if (T.isObjCGCWeak())
4639    Diag(Loc, diag::warn_attribute_weak_on_field);
4640
4641  NewFD->setAccess(AS);
4642
4643  // C++ [dcl.init.aggr]p1:
4644  //   An aggregate is an array or a class (clause 9) with [...] no
4645  //   private or protected non-static data members (clause 11).
4646  // A POD must be an aggregate.
4647  if (getLangOptions().CPlusPlus &&
4648      (AS == AS_private || AS == AS_protected)) {
4649    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
4650    CXXRecord->setAggregate(false);
4651    CXXRecord->setPOD(false);
4652  }
4653
4654  return NewFD;
4655}
4656
4657/// DiagnoseNontrivial - Given that a class has a non-trivial
4658/// special member, figure out why.
4659void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
4660  QualType QT(T, 0U);
4661  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
4662
4663  // Check whether the member was user-declared.
4664  switch (member) {
4665  case CXXDefaultConstructor:
4666    if (RD->hasUserDeclaredConstructor()) {
4667      typedef CXXRecordDecl::ctor_iterator ctor_iter;
4668      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce; ++ci)
4669        if (!ci->isImplicitlyDefined(Context)) {
4670          SourceLocation CtorLoc = ci->getLocation();
4671          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4672          return;
4673        }
4674
4675      assert(0 && "found no user-declared constructors");
4676      return;
4677    }
4678    break;
4679
4680  case CXXCopyConstructor:
4681    if (RD->hasUserDeclaredCopyConstructor()) {
4682      SourceLocation CtorLoc =
4683        RD->getCopyConstructor(Context, 0)->getLocation();
4684      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4685      return;
4686    }
4687    break;
4688
4689  case CXXCopyAssignment:
4690    if (RD->hasUserDeclaredCopyAssignment()) {
4691      // FIXME: this should use the location of the copy
4692      // assignment, not the type.
4693      SourceLocation TyLoc = RD->getSourceRange().getBegin();
4694      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
4695      return;
4696    }
4697    break;
4698
4699  case CXXDestructor:
4700    if (RD->hasUserDeclaredDestructor()) {
4701      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
4702      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4703      return;
4704    }
4705    break;
4706  }
4707
4708  typedef CXXRecordDecl::base_class_iterator base_iter;
4709
4710  // Virtual bases and members inhibit trivial copying/construction,
4711  // but not trivial destruction.
4712  if (member != CXXDestructor) {
4713    // Check for virtual bases.  vbases includes indirect virtual bases,
4714    // so we just iterate through the direct bases.
4715    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
4716      if (bi->isVirtual()) {
4717        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
4718        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
4719        return;
4720      }
4721
4722    // Check for virtual methods.
4723    typedef CXXRecordDecl::method_iterator meth_iter;
4724    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
4725         ++mi) {
4726      if (mi->isVirtual()) {
4727        SourceLocation MLoc = mi->getSourceRange().getBegin();
4728        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
4729        return;
4730      }
4731    }
4732  }
4733
4734  bool (CXXRecordDecl::*hasTrivial)() const;
4735  switch (member) {
4736  case CXXDefaultConstructor:
4737    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
4738  case CXXCopyConstructor:
4739    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
4740  case CXXCopyAssignment:
4741    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
4742  case CXXDestructor:
4743    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
4744  default:
4745    assert(0 && "unexpected special member"); return;
4746  }
4747
4748  // Check for nontrivial bases (and recurse).
4749  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
4750    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
4751    assert(BaseRT);
4752    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
4753    if (!(BaseRecTy->*hasTrivial)()) {
4754      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
4755      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
4756      DiagnoseNontrivial(BaseRT, member);
4757      return;
4758    }
4759  }
4760
4761  // Check for nontrivial members (and recurse).
4762  typedef RecordDecl::field_iterator field_iter;
4763  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
4764       ++fi) {
4765    QualType EltTy = Context.getBaseElementType((*fi)->getType());
4766    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
4767      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
4768
4769      if (!(EltRD->*hasTrivial)()) {
4770        SourceLocation FLoc = (*fi)->getLocation();
4771        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
4772        DiagnoseNontrivial(EltRT, member);
4773        return;
4774      }
4775    }
4776  }
4777
4778  assert(0 && "found no explanation for non-trivial member");
4779}
4780
4781/// TranslateIvarVisibility - Translate visibility from a token ID to an
4782///  AST enum value.
4783static ObjCIvarDecl::AccessControl
4784TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
4785  switch (ivarVisibility) {
4786  default: assert(0 && "Unknown visitibility kind");
4787  case tok::objc_private: return ObjCIvarDecl::Private;
4788  case tok::objc_public: return ObjCIvarDecl::Public;
4789  case tok::objc_protected: return ObjCIvarDecl::Protected;
4790  case tok::objc_package: return ObjCIvarDecl::Package;
4791  }
4792}
4793
4794/// ActOnIvar - Each ivar field of an objective-c class is passed into this
4795/// in order to create an IvarDecl object for it.
4796Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
4797                                SourceLocation DeclStart,
4798                                DeclPtrTy IntfDecl,
4799                                Declarator &D, ExprTy *BitfieldWidth,
4800                                tok::ObjCKeywordKind Visibility) {
4801
4802  IdentifierInfo *II = D.getIdentifier();
4803  Expr *BitWidth = (Expr*)BitfieldWidth;
4804  SourceLocation Loc = DeclStart;
4805  if (II) Loc = D.getIdentifierLoc();
4806
4807  // FIXME: Unnamed fields can be handled in various different ways, for
4808  // example, unnamed unions inject all members into the struct namespace!
4809
4810  DeclaratorInfo *DInfo = 0;
4811  QualType T = GetTypeForDeclarator(D, S, &DInfo);
4812
4813  if (BitWidth) {
4814    // 6.7.2.1p3, 6.7.2.1p4
4815    if (VerifyBitField(Loc, II, T, BitWidth)) {
4816      D.setInvalidType();
4817      DeleteExpr(BitWidth);
4818      BitWidth = 0;
4819    }
4820  } else {
4821    // Not a bitfield.
4822
4823    // validate II.
4824
4825  }
4826
4827  // C99 6.7.2.1p8: A member of a structure or union may have any type other
4828  // than a variably modified type.
4829  if (T->isVariablyModifiedType()) {
4830    Diag(Loc, diag::err_typecheck_ivar_variable_size);
4831    D.setInvalidType();
4832  }
4833
4834  // Get the visibility (access control) for this ivar.
4835  ObjCIvarDecl::AccessControl ac =
4836    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
4837                                        : ObjCIvarDecl::None;
4838  // Must set ivar's DeclContext to its enclosing interface.
4839  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
4840  DeclContext *EnclosingContext;
4841  if (ObjCImplementationDecl *IMPDecl =
4842      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
4843    // Case of ivar declared in an implementation. Context is that of its class.
4844    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
4845    assert(IDecl && "No class- ActOnIvar");
4846    EnclosingContext = cast_or_null<DeclContext>(IDecl);
4847  } else
4848    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
4849  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
4850
4851  // Construct the decl.
4852  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
4853                                             EnclosingContext, Loc, II, T,
4854                                             DInfo, ac, (Expr *)BitfieldWidth);
4855
4856  if (II) {
4857    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
4858    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
4859        && !isa<TagDecl>(PrevDecl)) {
4860      Diag(Loc, diag::err_duplicate_member) << II;
4861      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4862      NewID->setInvalidDecl();
4863    }
4864  }
4865
4866  // Process attributes attached to the ivar.
4867  ProcessDeclAttributes(S, NewID, D);
4868
4869  if (D.isInvalidType())
4870    NewID->setInvalidDecl();
4871
4872  if (II) {
4873    // FIXME: When interfaces are DeclContexts, we'll need to add
4874    // these to the interface.
4875    S->AddDecl(DeclPtrTy::make(NewID));
4876    IdResolver.AddDecl(NewID);
4877  }
4878
4879  return DeclPtrTy::make(NewID);
4880}
4881
4882void Sema::ActOnFields(Scope* S,
4883                       SourceLocation RecLoc, DeclPtrTy RecDecl,
4884                       DeclPtrTy *Fields, unsigned NumFields,
4885                       SourceLocation LBrac, SourceLocation RBrac,
4886                       AttributeList *Attr) {
4887  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
4888  assert(EnclosingDecl && "missing record or interface decl");
4889
4890  // If the decl this is being inserted into is invalid, then it may be a
4891  // redeclaration or some other bogus case.  Don't try to add fields to it.
4892  if (EnclosingDecl->isInvalidDecl()) {
4893    // FIXME: Deallocate fields?
4894    return;
4895  }
4896
4897
4898  // Verify that all the fields are okay.
4899  unsigned NumNamedMembers = 0;
4900  llvm::SmallVector<FieldDecl*, 32> RecFields;
4901
4902  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
4903  for (unsigned i = 0; i != NumFields; ++i) {
4904    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
4905
4906    // Get the type for the field.
4907    Type *FDTy = FD->getType().getTypePtr();
4908
4909    if (!FD->isAnonymousStructOrUnion()) {
4910      // Remember all fields written by the user.
4911      RecFields.push_back(FD);
4912    }
4913
4914    // If the field is already invalid for some reason, don't emit more
4915    // diagnostics about it.
4916    if (FD->isInvalidDecl())
4917      continue;
4918
4919    // C99 6.7.2.1p2:
4920    //   A structure or union shall not contain a member with
4921    //   incomplete or function type (hence, a structure shall not
4922    //   contain an instance of itself, but may contain a pointer to
4923    //   an instance of itself), except that the last member of a
4924    //   structure with more than one named member may have incomplete
4925    //   array type; such a structure (and any union containing,
4926    //   possibly recursively, a member that is such a structure)
4927    //   shall not be a member of a structure or an element of an
4928    //   array.
4929    if (FDTy->isFunctionType()) {
4930      // Field declared as a function.
4931      Diag(FD->getLocation(), diag::err_field_declared_as_function)
4932        << FD->getDeclName();
4933      FD->setInvalidDecl();
4934      EnclosingDecl->setInvalidDecl();
4935      continue;
4936    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
4937               Record && Record->isStruct()) {
4938      // Flexible array member.
4939      if (NumNamedMembers < 1) {
4940        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
4941          << FD->getDeclName();
4942        FD->setInvalidDecl();
4943        EnclosingDecl->setInvalidDecl();
4944        continue;
4945      }
4946      // Okay, we have a legal flexible array member at the end of the struct.
4947      if (Record)
4948        Record->setHasFlexibleArrayMember(true);
4949    } else if (!FDTy->isDependentType() &&
4950               RequireCompleteType(FD->getLocation(), FD->getType(),
4951                                   diag::err_field_incomplete)) {
4952      // Incomplete type
4953      FD->setInvalidDecl();
4954      EnclosingDecl->setInvalidDecl();
4955      continue;
4956    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
4957      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
4958        // If this is a member of a union, then entire union becomes "flexible".
4959        if (Record && Record->isUnion()) {
4960          Record->setHasFlexibleArrayMember(true);
4961        } else {
4962          // If this is a struct/class and this is not the last element, reject
4963          // it.  Note that GCC supports variable sized arrays in the middle of
4964          // structures.
4965          if (i != NumFields-1)
4966            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
4967              << FD->getDeclName() << FD->getType();
4968          else {
4969            // We support flexible arrays at the end of structs in
4970            // other structs as an extension.
4971            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
4972              << FD->getDeclName();
4973            if (Record)
4974              Record->setHasFlexibleArrayMember(true);
4975          }
4976        }
4977      }
4978      if (Record && FDTTy->getDecl()->hasObjectMember())
4979        Record->setHasObjectMember(true);
4980    } else if (FDTy->isObjCInterfaceType()) {
4981      /// A field cannot be an Objective-c object
4982      Diag(FD->getLocation(), diag::err_statically_allocated_object);
4983      FD->setInvalidDecl();
4984      EnclosingDecl->setInvalidDecl();
4985      continue;
4986    } else if (getLangOptions().ObjC1 &&
4987               getLangOptions().getGCMode() != LangOptions::NonGC &&
4988               Record &&
4989               (FD->getType()->isObjCObjectPointerType() ||
4990                FD->getType().isObjCGCStrong()))
4991      Record->setHasObjectMember(true);
4992    // Keep track of the number of named members.
4993    if (FD->getIdentifier())
4994      ++NumNamedMembers;
4995  }
4996
4997  // Okay, we successfully defined 'Record'.
4998  if (Record) {
4999    Record->completeDefinition(Context);
5000  } else {
5001    ObjCIvarDecl **ClsFields =
5002      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
5003    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
5004      ID->setIVarList(ClsFields, RecFields.size(), Context);
5005      ID->setLocEnd(RBrac);
5006      // Add ivar's to class's DeclContext.
5007      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
5008        ClsFields[i]->setLexicalDeclContext(ID);
5009        ID->addDecl(ClsFields[i]);
5010      }
5011      // Must enforce the rule that ivars in the base classes may not be
5012      // duplicates.
5013      if (ID->getSuperClass()) {
5014        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
5015             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
5016          ObjCIvarDecl* Ivar = (*IVI);
5017
5018          if (IdentifierInfo *II = Ivar->getIdentifier()) {
5019            ObjCIvarDecl* prevIvar =
5020              ID->getSuperClass()->lookupInstanceVariable(II);
5021            if (prevIvar) {
5022              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
5023              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
5024            }
5025          }
5026        }
5027      }
5028    } else if (ObjCImplementationDecl *IMPDecl =
5029                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5030      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
5031      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
5032        // Ivar declared in @implementation never belongs to the implementation.
5033        // Only it is in implementation's lexical context.
5034        ClsFields[I]->setLexicalDeclContext(IMPDecl);
5035      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
5036    }
5037  }
5038
5039  if (Attr)
5040    ProcessDeclAttributeList(S, Record, Attr);
5041}
5042
5043EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
5044                                          EnumConstantDecl *LastEnumConst,
5045                                          SourceLocation IdLoc,
5046                                          IdentifierInfo *Id,
5047                                          ExprArg val) {
5048  Expr *Val = (Expr *)val.get();
5049
5050  llvm::APSInt EnumVal(32);
5051  QualType EltTy;
5052  if (Val && !Val->isTypeDependent()) {
5053    // Make sure to promote the operand type to int.
5054    UsualUnaryConversions(Val);
5055    if (Val != val.get()) {
5056      val.release();
5057      val = Val;
5058    }
5059
5060    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
5061    SourceLocation ExpLoc;
5062    if (!Val->isValueDependent() &&
5063        VerifyIntegerConstantExpression(Val, &EnumVal)) {
5064      Val = 0;
5065    } else {
5066      EltTy = Val->getType();
5067    }
5068  }
5069
5070  if (!Val) {
5071    if (LastEnumConst) {
5072      // Assign the last value + 1.
5073      EnumVal = LastEnumConst->getInitVal();
5074      ++EnumVal;
5075
5076      // Check for overflow on increment.
5077      if (EnumVal < LastEnumConst->getInitVal())
5078        Diag(IdLoc, diag::warn_enum_value_overflow);
5079
5080      EltTy = LastEnumConst->getType();
5081    } else {
5082      // First value, set to zero.
5083      EltTy = Context.IntTy;
5084      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
5085    }
5086  }
5087
5088  val.release();
5089  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
5090                                  Val, EnumVal);
5091}
5092
5093
5094Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
5095                                        DeclPtrTy lastEnumConst,
5096                                        SourceLocation IdLoc,
5097                                        IdentifierInfo *Id,
5098                                        SourceLocation EqualLoc, ExprTy *val) {
5099  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
5100  EnumConstantDecl *LastEnumConst =
5101    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
5102  Expr *Val = static_cast<Expr*>(val);
5103
5104  // The scope passed in may not be a decl scope.  Zip up the scope tree until
5105  // we find one that is.
5106  S = getNonFieldDeclScope(S);
5107
5108  // Verify that there isn't already something declared with this name in this
5109  // scope.
5110  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
5111  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5112    // Maybe we will complain about the shadowed template parameter.
5113    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
5114    // Just pretend that we didn't see the previous declaration.
5115    PrevDecl = 0;
5116  }
5117
5118  if (PrevDecl) {
5119    // When in C++, we may get a TagDecl with the same name; in this case the
5120    // enum constant will 'hide' the tag.
5121    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
5122           "Received TagDecl when not in C++!");
5123    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
5124      if (isa<EnumConstantDecl>(PrevDecl))
5125        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
5126      else
5127        Diag(IdLoc, diag::err_redefinition) << Id;
5128      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5129      if (Val) Val->Destroy(Context);
5130      return DeclPtrTy();
5131    }
5132  }
5133
5134  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
5135                                            IdLoc, Id, Owned(Val));
5136
5137  // Register this decl in the current scope stack.
5138  if (New)
5139    PushOnScopeChains(New, S);
5140
5141  return DeclPtrTy::make(New);
5142}
5143
5144void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
5145                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
5146                         DeclPtrTy *Elements, unsigned NumElements,
5147                         Scope *S, AttributeList *Attr) {
5148  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
5149  QualType EnumType = Context.getTypeDeclType(Enum);
5150
5151  if (Attr)
5152    ProcessDeclAttributeList(S, Enum, Attr);
5153
5154  // TODO: If the result value doesn't fit in an int, it must be a long or long
5155  // long value.  ISO C does not support this, but GCC does as an extension,
5156  // emit a warning.
5157  unsigned IntWidth = Context.Target.getIntWidth();
5158  unsigned CharWidth = Context.Target.getCharWidth();
5159  unsigned ShortWidth = Context.Target.getShortWidth();
5160
5161  // Verify that all the values are okay, compute the size of the values, and
5162  // reverse the list.
5163  unsigned NumNegativeBits = 0;
5164  unsigned NumPositiveBits = 0;
5165
5166  // Keep track of whether all elements have type int.
5167  bool AllElementsInt = true;
5168
5169  for (unsigned i = 0; i != NumElements; ++i) {
5170    EnumConstantDecl *ECD =
5171      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5172    if (!ECD) continue;  // Already issued a diagnostic.
5173
5174    // If the enum value doesn't fit in an int, emit an extension warning.
5175    const llvm::APSInt &InitVal = ECD->getInitVal();
5176    assert(InitVal.getBitWidth() >= IntWidth &&
5177           "Should have promoted value to int");
5178    if (InitVal.getBitWidth() > IntWidth) {
5179      llvm::APSInt V(InitVal);
5180      V.trunc(IntWidth);
5181      V.extend(InitVal.getBitWidth());
5182      if (V != InitVal)
5183        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
5184          << InitVal.toString(10);
5185    }
5186
5187    // Keep track of the size of positive and negative values.
5188    if (InitVal.isUnsigned() || InitVal.isNonNegative())
5189      NumPositiveBits = std::max(NumPositiveBits,
5190                                 (unsigned)InitVal.getActiveBits());
5191    else
5192      NumNegativeBits = std::max(NumNegativeBits,
5193                                 (unsigned)InitVal.getMinSignedBits());
5194
5195    // Keep track of whether every enum element has type int (very commmon).
5196    if (AllElementsInt)
5197      AllElementsInt = ECD->getType() == Context.IntTy;
5198  }
5199
5200  // Figure out the type that should be used for this enum.
5201  // FIXME: Support -fshort-enums.
5202  QualType BestType;
5203  unsigned BestWidth;
5204
5205  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
5206
5207  if (NumNegativeBits) {
5208    // If there is a negative value, figure out the smallest integer type (of
5209    // int/long/longlong) that fits.
5210    // If it's packed, check also if it fits a char or a short.
5211    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
5212        BestType = Context.SignedCharTy;
5213        BestWidth = CharWidth;
5214    } else if (Packed && NumNegativeBits <= ShortWidth &&
5215               NumPositiveBits < ShortWidth) {
5216        BestType = Context.ShortTy;
5217        BestWidth = ShortWidth;
5218    }
5219    else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
5220      BestType = Context.IntTy;
5221      BestWidth = IntWidth;
5222    } else {
5223      BestWidth = Context.Target.getLongWidth();
5224
5225      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
5226        BestType = Context.LongTy;
5227      else {
5228        BestWidth = Context.Target.getLongLongWidth();
5229
5230        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
5231          Diag(Enum->getLocation(), diag::warn_enum_too_large);
5232        BestType = Context.LongLongTy;
5233      }
5234    }
5235  } else {
5236    // If there is no negative value, figure out which of uint, ulong, ulonglong
5237    // fits.
5238    // If it's packed, check also if it fits a char or a short.
5239    if (Packed && NumPositiveBits <= CharWidth) {
5240        BestType = Context.UnsignedCharTy;
5241        BestWidth = CharWidth;
5242    } else if (Packed && NumPositiveBits <= ShortWidth) {
5243        BestType = Context.UnsignedShortTy;
5244        BestWidth = ShortWidth;
5245    }
5246    else if (NumPositiveBits <= IntWidth) {
5247      BestType = Context.UnsignedIntTy;
5248      BestWidth = IntWidth;
5249    } else if (NumPositiveBits <=
5250               (BestWidth = Context.Target.getLongWidth())) {
5251      BestType = Context.UnsignedLongTy;
5252    } else {
5253      BestWidth = Context.Target.getLongLongWidth();
5254      assert(NumPositiveBits <= BestWidth &&
5255             "How could an initializer get larger than ULL?");
5256      BestType = Context.UnsignedLongLongTy;
5257    }
5258  }
5259
5260  // Loop over all of the enumerator constants, changing their types to match
5261  // the type of the enum if needed.
5262  for (unsigned i = 0; i != NumElements; ++i) {
5263    EnumConstantDecl *ECD =
5264      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5265    if (!ECD) continue;  // Already issued a diagnostic.
5266
5267    // Standard C says the enumerators have int type, but we allow, as an
5268    // extension, the enumerators to be larger than int size.  If each
5269    // enumerator value fits in an int, type it as an int, otherwise type it the
5270    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
5271    // that X has type 'int', not 'unsigned'.
5272    if (ECD->getType() == Context.IntTy) {
5273      // Make sure the init value is signed.
5274      llvm::APSInt IV = ECD->getInitVal();
5275      IV.setIsSigned(true);
5276      ECD->setInitVal(IV);
5277
5278      if (getLangOptions().CPlusPlus)
5279        // C++ [dcl.enum]p4: Following the closing brace of an
5280        // enum-specifier, each enumerator has the type of its
5281        // enumeration.
5282        ECD->setType(EnumType);
5283      continue;  // Already int type.
5284    }
5285
5286    // Determine whether the value fits into an int.
5287    llvm::APSInt InitVal = ECD->getInitVal();
5288    bool FitsInInt;
5289    if (InitVal.isUnsigned() || !InitVal.isNegative())
5290      FitsInInt = InitVal.getActiveBits() < IntWidth;
5291    else
5292      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
5293
5294    // If it fits into an integer type, force it.  Otherwise force it to match
5295    // the enum decl type.
5296    QualType NewTy;
5297    unsigned NewWidth;
5298    bool NewSign;
5299    if (FitsInInt) {
5300      NewTy = Context.IntTy;
5301      NewWidth = IntWidth;
5302      NewSign = true;
5303    } else if (ECD->getType() == BestType) {
5304      // Already the right type!
5305      if (getLangOptions().CPlusPlus)
5306        // C++ [dcl.enum]p4: Following the closing brace of an
5307        // enum-specifier, each enumerator has the type of its
5308        // enumeration.
5309        ECD->setType(EnumType);
5310      continue;
5311    } else {
5312      NewTy = BestType;
5313      NewWidth = BestWidth;
5314      NewSign = BestType->isSignedIntegerType();
5315    }
5316
5317    // Adjust the APSInt value.
5318    InitVal.extOrTrunc(NewWidth);
5319    InitVal.setIsSigned(NewSign);
5320    ECD->setInitVal(InitVal);
5321
5322    // Adjust the Expr initializer and type.
5323    if (ECD->getInitExpr())
5324      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
5325                                                      CastExpr::CK_Unknown,
5326                                                      ECD->getInitExpr(),
5327                                                      /*isLvalue=*/false));
5328    if (getLangOptions().CPlusPlus)
5329      // C++ [dcl.enum]p4: Following the closing brace of an
5330      // enum-specifier, each enumerator has the type of its
5331      // enumeration.
5332      ECD->setType(EnumType);
5333    else
5334      ECD->setType(NewTy);
5335  }
5336
5337  Enum->completeDefinition(Context, BestType);
5338}
5339
5340Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
5341                                            ExprArg expr) {
5342  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
5343
5344  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
5345                                                   Loc, AsmString);
5346  CurContext->addDecl(New);
5347  return DeclPtrTy::make(New);
5348}
5349
5350void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
5351                             SourceLocation PragmaLoc,
5352                             SourceLocation NameLoc) {
5353  Decl *PrevDecl = LookupName(TUScope, Name, LookupOrdinaryName);
5354
5355  if (PrevDecl) {
5356    PrevDecl->addAttr(::new (Context) WeakAttr());
5357  } else {
5358    (void)WeakUndeclaredIdentifiers.insert(
5359      std::pair<IdentifierInfo*,WeakInfo>
5360        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
5361  }
5362}
5363
5364void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
5365                                IdentifierInfo* AliasName,
5366                                SourceLocation PragmaLoc,
5367                                SourceLocation NameLoc,
5368                                SourceLocation AliasNameLoc) {
5369  Decl *PrevDecl = LookupName(TUScope, AliasName, LookupOrdinaryName);
5370  WeakInfo W = WeakInfo(Name, NameLoc);
5371
5372  if (PrevDecl) {
5373    if (!PrevDecl->hasAttr<AliasAttr>())
5374      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
5375        DeclApplyPragmaWeak(TUScope, ND, W);
5376  } else {
5377    (void)WeakUndeclaredIdentifiers.insert(
5378      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
5379  }
5380}
5381