SemaDecl.cpp revision 49badde06e066d058d6c7fcf4e628a72999b65a9
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/Parse/DeclSpec.h"
21#include "clang/Basic/Diagnostic.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Basic/SourceManager.h"
24// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "llvm/ADT/SmallSet.h"
28#include "llvm/ADT/StringExtras.h"
29using namespace clang;
30
31Sema::TypeTy *Sema::isTypeName(const IdentifierInfo &II, Scope *S) {
32  Decl *IIDecl = LookupDecl(&II, Decl::IDNS_Ordinary, S, false);
33
34  if (IIDecl && (isa<TypedefDecl>(IIDecl) ||
35                 isa<ObjCInterfaceDecl>(IIDecl) ||
36                 isa<TagDecl>(IIDecl)))
37    return IIDecl;
38  return 0;
39}
40
41DeclContext *Sema::getDCParent(DeclContext *DC) {
42  // If CurContext is a ObjC method, getParent() will return NULL.
43  if (isa<ObjCMethodDecl>(DC))
44    return Context.getTranslationUnitDecl();
45
46  // A C++ inline method is parsed *after* the topmost class it was declared in
47  // is fully parsed (it's "complete").
48  // The parsing of a C++ inline method happens at the declaration context of
49  // the topmost (non-nested) class it is declared in.
50  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
51    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
52    DC = MD->getParent();
53    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getParent()))
54      DC = RD;
55
56    // Return the declaration context of the topmost class the inline method is
57    // declared in.
58    return DC;
59  }
60
61  return DC->getParent();
62}
63
64void Sema::PushDeclContext(DeclContext *DC) {
65  assert(getDCParent(DC) == CurContext &&
66       "The next DeclContext should be directly contained in the current one.");
67  CurContext = DC;
68}
69
70void Sema::PopDeclContext() {
71  assert(CurContext && "DeclContext imbalance!");
72  CurContext = getDCParent(CurContext);
73}
74
75/// Add this decl to the scope shadowed decl chains.
76void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
77  S->AddDecl(D);
78
79  // C++ [basic.scope]p4:
80  //   -- exactly one declaration shall declare a class name or
81  //   enumeration name that is not a typedef name and the other
82  //   declarations shall all refer to the same object or
83  //   enumerator, or all refer to functions and function templates;
84  //   in this case the class name or enumeration name is hidden.
85  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
86    // We are pushing the name of a tag (enum or class).
87    IdentifierResolver::iterator
88        I = IdResolver.begin(TD->getIdentifier(),
89                             TD->getDeclContext(), false/*LookInParentCtx*/);
90    if (I != IdResolver.end() && isDeclInScope(*I, TD->getDeclContext(), S)) {
91      // There is already a declaration with the same name in the same
92      // scope. It must be found before we find the new declaration,
93      // so swap the order on the shadowed declaration chain.
94
95      IdResolver.AddShadowedDecl(TD, *I);
96      return;
97    }
98  } else if (getLangOptions().CPlusPlus && isa<FunctionDecl>(D)) {
99    FunctionDecl *FD = cast<FunctionDecl>(D);
100    // We are pushing the name of a function, which might be an
101    // overloaded name.
102    IdentifierResolver::iterator
103        I = IdResolver.begin(FD->getIdentifier(),
104                             FD->getDeclContext(), false/*LookInParentCtx*/);
105    if (I != IdResolver.end() &&
106        IdResolver.isDeclInScope(*I, FD->getDeclContext(), S) &&
107        (isa<OverloadedFunctionDecl>(*I) || isa<FunctionDecl>(*I))) {
108      // There is already a declaration with the same name in the same
109      // scope. It must be a function or an overloaded function.
110      OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(*I);
111      if (!Ovl) {
112        // We haven't yet overloaded this function. Take the existing
113        // FunctionDecl and put it into an OverloadedFunctionDecl.
114        Ovl = OverloadedFunctionDecl::Create(Context,
115                                             FD->getDeclContext(),
116                                             FD->getIdentifier());
117        Ovl->addOverload(dyn_cast<FunctionDecl>(*I));
118
119        // Remove the name binding to the existing FunctionDecl...
120        IdResolver.RemoveDecl(*I);
121
122        // ... and put the OverloadedFunctionDecl in its place.
123        IdResolver.AddDecl(Ovl);
124      }
125
126      // We have an OverloadedFunctionDecl. Add the new FunctionDecl
127      // to its list of overloads.
128      Ovl->addOverload(FD);
129
130      return;
131    }
132  }
133
134  IdResolver.AddDecl(D);
135}
136
137void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
138  if (S->decl_empty()) return;
139  assert((S->getFlags() & Scope::DeclScope) &&"Scope shouldn't contain decls!");
140
141  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
142       I != E; ++I) {
143    Decl *TmpD = static_cast<Decl*>(*I);
144    assert(TmpD && "This decl didn't get pushed??");
145
146    if (isa<CXXFieldDecl>(TmpD)) continue;
147
148    assert(isa<ScopedDecl>(TmpD) && "Decl isn't ScopedDecl?");
149    ScopedDecl *D = cast<ScopedDecl>(TmpD);
150
151    IdentifierInfo *II = D->getIdentifier();
152    if (!II) continue;
153
154    // We only want to remove the decls from the identifier decl chains for
155    // local scopes, when inside a function/method.
156    if (S->getFnParent() != 0)
157      IdResolver.RemoveDecl(D);
158
159    // Chain this decl to the containing DeclContext.
160    D->setNext(CurContext->getDeclChain());
161    CurContext->setDeclChain(D);
162  }
163}
164
165/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
166/// return 0 if one not found.
167ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
168  // The third "scope" argument is 0 since we aren't enabling lazy built-in
169  // creation from this context.
170  Decl *IDecl = LookupDecl(Id, Decl::IDNS_Ordinary, 0, false);
171
172  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
173}
174
175/// LookupDecl - Look up the inner-most declaration in the specified
176/// namespace.
177Decl *Sema::LookupDecl(const IdentifierInfo *II, unsigned NSI,
178                       Scope *S, bool enableLazyBuiltinCreation) {
179  if (II == 0) return 0;
180  unsigned NS = NSI;
181  if (getLangOptions().CPlusPlus && (NS & Decl::IDNS_Ordinary))
182    NS |= Decl::IDNS_Tag;
183
184  // Scan up the scope chain looking for a decl that matches this identifier
185  // that is in the appropriate namespace.  This search should not take long, as
186  // shadowing of names is uncommon, and deep shadowing is extremely uncommon.
187  for (IdentifierResolver::iterator
188       I = IdResolver.begin(II, CurContext), E = IdResolver.end(); I != E; ++I)
189    if ((*I)->getIdentifierNamespace() & NS)
190      return *I;
191
192  // If we didn't find a use of this identifier, and if the identifier
193  // corresponds to a compiler builtin, create the decl object for the builtin
194  // now, injecting it into translation unit scope, and return it.
195  if (NS & Decl::IDNS_Ordinary) {
196    if (enableLazyBuiltinCreation) {
197      // If this is a builtin on this (or all) targets, create the decl.
198      if (unsigned BuiltinID = II->getBuiltinID())
199        return LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID, S);
200    }
201    if (getLangOptions().ObjC1) {
202      // @interface and @compatibility_alias introduce typedef-like names.
203      // Unlike typedef's, they can only be introduced at file-scope (and are
204      // therefore not scoped decls). They can, however, be shadowed by
205      // other names in IDNS_Ordinary.
206      ObjCInterfaceDeclsTy::iterator IDI = ObjCInterfaceDecls.find(II);
207      if (IDI != ObjCInterfaceDecls.end())
208        return IDI->second;
209      ObjCAliasTy::iterator I = ObjCAliasDecls.find(II);
210      if (I != ObjCAliasDecls.end())
211        return I->second->getClassInterface();
212    }
213  }
214  return 0;
215}
216
217void Sema::InitBuiltinVaListType() {
218  if (!Context.getBuiltinVaListType().isNull())
219    return;
220
221  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
222  Decl *VaDecl = LookupDecl(VaIdent, Decl::IDNS_Ordinary, TUScope);
223  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
224  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
225}
226
227/// LazilyCreateBuiltin - The specified Builtin-ID was first used at file scope.
228/// lazily create a decl for it.
229ScopedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
230                                      Scope *S) {
231  Builtin::ID BID = (Builtin::ID)bid;
232
233  if (Context.BuiltinInfo.hasVAListUse(BID))
234    InitBuiltinVaListType();
235
236  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context);
237  FunctionDecl *New = FunctionDecl::Create(Context,
238                                           Context.getTranslationUnitDecl(),
239                                           SourceLocation(), II, R,
240                                           FunctionDecl::Extern, false, 0);
241
242  // Create Decl objects for each parameter, adding them to the
243  // FunctionDecl.
244  if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(R)) {
245    llvm::SmallVector<ParmVarDecl*, 16> Params;
246    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
247      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
248                                           FT->getArgType(i), VarDecl::None, 0,
249                                           0));
250    New->setParams(&Params[0], Params.size());
251  }
252
253
254
255  // TUScope is the translation-unit scope to insert this function into.
256  PushOnScopeChains(New, TUScope);
257  return New;
258}
259
260/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the same name
261/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
262/// situation, merging decls or emitting diagnostics as appropriate.
263///
264TypedefDecl *Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
265  // Allow multiple definitions for ObjC built-in typedefs.
266  // FIXME: Verify the underlying types are equivalent!
267  if (getLangOptions().ObjC1) {
268    const IdentifierInfo *typeIdent = New->getIdentifier();
269    if (typeIdent == Ident_id) {
270      Context.setObjCIdType(New);
271      return New;
272    } else if (typeIdent == Ident_Class) {
273      Context.setObjCClassType(New);
274      return New;
275    } else if (typeIdent == Ident_SEL) {
276      Context.setObjCSelType(New);
277      return New;
278    } else if (typeIdent == Ident_Protocol) {
279      Context.setObjCProtoType(New->getUnderlyingType());
280      return New;
281    }
282    // Fall through - the typedef name was not a builtin type.
283  }
284  // Verify the old decl was also a typedef.
285  TypedefDecl *Old = dyn_cast<TypedefDecl>(OldD);
286  if (!Old) {
287    Diag(New->getLocation(), diag::err_redefinition_different_kind,
288         New->getName());
289    Diag(OldD->getLocation(), diag::err_previous_definition);
290    return New;
291  }
292
293  // If the typedef types are not identical, reject them in all languages and
294  // with any extensions enabled.
295  if (Old->getUnderlyingType() != New->getUnderlyingType() &&
296      Context.getCanonicalType(Old->getUnderlyingType()) !=
297      Context.getCanonicalType(New->getUnderlyingType())) {
298    Diag(New->getLocation(), diag::err_redefinition_different_typedef,
299         New->getUnderlyingType().getAsString(),
300         Old->getUnderlyingType().getAsString());
301    Diag(Old->getLocation(), diag::err_previous_definition);
302    return Old;
303  }
304
305  if (getLangOptions().Microsoft) return New;
306
307  // Redeclaration of a type is a constraint violation (6.7.2.3p1).
308  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
309  // *either* declaration is in a system header. The code below implements
310  // this adhoc compatibility rule. FIXME: The following code will not
311  // work properly when compiling ".i" files (containing preprocessed output).
312  if (PP.getDiagnostics().getSuppressSystemWarnings()) {
313    SourceManager &SrcMgr = Context.getSourceManager();
314    if (SrcMgr.isInSystemHeader(Old->getLocation()))
315      return New;
316    if (SrcMgr.isInSystemHeader(New->getLocation()))
317      return New;
318  }
319
320  Diag(New->getLocation(), diag::err_redefinition, New->getName());
321  Diag(Old->getLocation(), diag::err_previous_definition);
322  return New;
323}
324
325/// DeclhasAttr - returns true if decl Declaration already has the target
326/// attribute.
327static bool DeclHasAttr(const Decl *decl, const Attr *target) {
328  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
329    if (attr->getKind() == target->getKind())
330      return true;
331
332  return false;
333}
334
335/// MergeAttributes - append attributes from the Old decl to the New one.
336static void MergeAttributes(Decl *New, Decl *Old) {
337  Attr *attr = const_cast<Attr*>(Old->getAttrs()), *tmp;
338
339  while (attr) {
340     tmp = attr;
341     attr = attr->getNext();
342
343    if (!DeclHasAttr(New, tmp)) {
344       New->addAttr(tmp);
345    } else {
346       tmp->setNext(0);
347       delete(tmp);
348    }
349  }
350
351  Old->invalidateAttrs();
352}
353
354/// MergeFunctionDecl - We just parsed a function 'New' from
355/// declarator D which has the same name and scope as a previous
356/// declaration 'Old'.  Figure out how to resolve this situation,
357/// merging decls or emitting diagnostics as appropriate.
358/// Redeclaration will be set true if this New is a redeclaration OldD.
359///
360/// In C++, New and Old must be declarations that are not
361/// overloaded. Use IsOverload to determine whether New and Old are
362/// overloaded, and to select the Old declaration that New should be
363/// merged with.
364FunctionDecl *
365Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, bool &Redeclaration) {
366  assert(!isa<OverloadedFunctionDecl>(OldD) &&
367         "Cannot merge with an overloaded function declaration");
368
369  Redeclaration = false;
370  // Verify the old decl was also a function.
371  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
372  if (!Old) {
373    Diag(New->getLocation(), diag::err_redefinition_different_kind,
374         New->getName());
375    Diag(OldD->getLocation(), diag::err_previous_definition);
376    return New;
377  }
378
379  // Determine whether the previous declaration was a definition,
380  // implicit declaration, or a declaration.
381  diag::kind PrevDiag;
382  if (Old->isThisDeclarationADefinition())
383    PrevDiag = diag::err_previous_definition;
384  else if (Old->isImplicit())
385    PrevDiag = diag::err_previous_implicit_declaration;
386  else
387    PrevDiag = diag::err_previous_declaration;
388
389  QualType OldQType = Context.getCanonicalType(Old->getType());
390  QualType NewQType = Context.getCanonicalType(New->getType());
391
392  if (getLangOptions().CPlusPlus) {
393    // (C++98 13.1p2):
394    //   Certain function declarations cannot be overloaded:
395    //     -- Function declarations that differ only in the return type
396    //        cannot be overloaded.
397    QualType OldReturnType
398      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
399    QualType NewReturnType
400      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
401    if (OldReturnType != NewReturnType) {
402      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
403      Diag(Old->getLocation(), PrevDiag);
404      return New;
405    }
406
407    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
408    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
409    if (OldMethod && NewMethod) {
410      //    -- Member function declarations with the same name and the
411      //       same parameter types cannot be overloaded if any of them
412      //       is a static member function declaration.
413      if (OldMethod->isStatic() || NewMethod->isStatic()) {
414        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
415        Diag(Old->getLocation(), PrevDiag);
416        return New;
417      }
418    }
419
420    // (C++98 8.3.5p3):
421    //   All declarations for a function shall agree exactly in both the
422    //   return type and the parameter-type-list.
423    if (OldQType == NewQType) {
424      // We have a redeclaration.
425      MergeAttributes(New, Old);
426      Redeclaration = true;
427      return MergeCXXFunctionDecl(New, Old);
428    }
429
430    // Fall through for conflicting redeclarations and redefinitions.
431  }
432
433  // C: Function types need to be compatible, not identical. This handles
434  // duplicate function decls like "void f(int); void f(enum X);" properly.
435  if (!getLangOptions().CPlusPlus &&
436      Context.typesAreCompatible(OldQType, NewQType)) {
437    MergeAttributes(New, Old);
438    Redeclaration = true;
439    return New;
440  }
441
442  // A function that has already been declared has been redeclared or defined
443  // with a different type- show appropriate diagnostic
444
445  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
446  // TODO: This is totally simplistic.  It should handle merging functions
447  // together etc, merging extern int X; int X; ...
448  Diag(New->getLocation(), diag::err_conflicting_types, New->getName());
449  Diag(Old->getLocation(), PrevDiag);
450  return New;
451}
452
453/// Predicate for C "tentative" external object definitions (C99 6.9.2).
454static bool isTentativeDefinition(VarDecl *VD) {
455  if (VD->isFileVarDecl())
456    return (!VD->getInit() &&
457            (VD->getStorageClass() == VarDecl::None ||
458             VD->getStorageClass() == VarDecl::Static));
459  return false;
460}
461
462/// CheckForFileScopedRedefinitions - Make sure we forgo redefinition errors
463/// when dealing with C "tentative" external object definitions (C99 6.9.2).
464void Sema::CheckForFileScopedRedefinitions(Scope *S, VarDecl *VD) {
465  bool VDIsTentative = isTentativeDefinition(VD);
466  bool VDIsIncompleteArray = VD->getType()->isIncompleteArrayType();
467
468  for (IdentifierResolver::iterator
469       I = IdResolver.begin(VD->getIdentifier(),
470                            VD->getDeclContext(), false/*LookInParentCtx*/),
471       E = IdResolver.end(); I != E; ++I) {
472    if (*I != VD && isDeclInScope(*I, VD->getDeclContext(), S)) {
473      VarDecl *OldDecl = dyn_cast<VarDecl>(*I);
474
475      // Handle the following case:
476      //   int a[10];
477      //   int a[];   - the code below makes sure we set the correct type.
478      //   int a[11]; - this is an error, size isn't 10.
479      if (OldDecl && VDIsTentative && VDIsIncompleteArray &&
480          OldDecl->getType()->isConstantArrayType())
481        VD->setType(OldDecl->getType());
482
483      // Check for "tentative" definitions. We can't accomplish this in
484      // MergeVarDecl since the initializer hasn't been attached.
485      if (!OldDecl || isTentativeDefinition(OldDecl) || VDIsTentative)
486        continue;
487
488      // Handle __private_extern__ just like extern.
489      if (OldDecl->getStorageClass() != VarDecl::Extern &&
490          OldDecl->getStorageClass() != VarDecl::PrivateExtern &&
491          VD->getStorageClass() != VarDecl::Extern &&
492          VD->getStorageClass() != VarDecl::PrivateExtern) {
493        Diag(VD->getLocation(), diag::err_redefinition, VD->getName());
494        Diag(OldDecl->getLocation(), diag::err_previous_definition);
495      }
496    }
497  }
498}
499
500/// MergeVarDecl - We just parsed a variable 'New' which has the same name
501/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
502/// situation, merging decls or emitting diagnostics as appropriate.
503///
504/// Tentative definition rules (C99 6.9.2p2) are checked by
505/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
506/// definitions here, since the initializer hasn't been attached.
507///
508VarDecl *Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
509  // Verify the old decl was also a variable.
510  VarDecl *Old = dyn_cast<VarDecl>(OldD);
511  if (!Old) {
512    Diag(New->getLocation(), diag::err_redefinition_different_kind,
513         New->getName());
514    Diag(OldD->getLocation(), diag::err_previous_definition);
515    return New;
516  }
517
518  MergeAttributes(New, Old);
519
520  // Verify the types match.
521  QualType OldCType = Context.getCanonicalType(Old->getType());
522  QualType NewCType = Context.getCanonicalType(New->getType());
523  if (OldCType != NewCType && !Context.typesAreCompatible(OldCType, NewCType)) {
524    Diag(New->getLocation(), diag::err_redefinition, New->getName());
525    Diag(Old->getLocation(), diag::err_previous_definition);
526    return New;
527  }
528  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
529  if (New->getStorageClass() == VarDecl::Static &&
530      (Old->getStorageClass() == VarDecl::None ||
531       Old->getStorageClass() == VarDecl::Extern)) {
532    Diag(New->getLocation(), diag::err_static_non_static, New->getName());
533    Diag(Old->getLocation(), diag::err_previous_definition);
534    return New;
535  }
536  // C99 6.2.2p4: Check if we have a non-static decl followed by a static.
537  if (New->getStorageClass() != VarDecl::Static &&
538      Old->getStorageClass() == VarDecl::Static) {
539    Diag(New->getLocation(), diag::err_non_static_static, New->getName());
540    Diag(Old->getLocation(), diag::err_previous_definition);
541    return New;
542  }
543  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
544  if (New->getStorageClass() != VarDecl::Extern && !New->isFileVarDecl()) {
545    Diag(New->getLocation(), diag::err_redefinition, New->getName());
546    Diag(Old->getLocation(), diag::err_previous_definition);
547  }
548  return New;
549}
550
551/// CheckParmsForFunctionDef - Check that the parameters of the given
552/// function are appropriate for the definition of a function. This
553/// takes care of any checks that cannot be performed on the
554/// declaration itself, e.g., that the types of each of the function
555/// parameters are complete.
556bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
557  bool HasInvalidParm = false;
558  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
559    ParmVarDecl *Param = FD->getParamDecl(p);
560
561    // C99 6.7.5.3p4: the parameters in a parameter type list in a
562    // function declarator that is part of a function definition of
563    // that function shall not have incomplete type.
564    if (Param->getType()->isIncompleteType() &&
565        !Param->isInvalidDecl()) {
566      Diag(Param->getLocation(), diag::err_typecheck_decl_incomplete_type,
567           Param->getType().getAsString());
568      Param->setInvalidDecl();
569      HasInvalidParm = true;
570    }
571  }
572
573  return HasInvalidParm;
574}
575
576/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
577/// no declarator (e.g. "struct foo;") is parsed.
578Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
579  // TODO: emit error on 'int;' or 'const enum foo;'.
580  // TODO: emit error on 'typedef int;'
581  // if (!DS.isMissingDeclaratorOk()) Diag(...);
582
583  return dyn_cast_or_null<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
584}
585
586bool Sema::CheckSingleInitializer(Expr *&Init, QualType DeclType) {
587  // Get the type before calling CheckSingleAssignmentConstraints(), since
588  // it can promote the expression.
589  QualType InitType = Init->getType();
590
591  AssignConvertType ConvTy = CheckSingleAssignmentConstraints(DeclType, Init);
592  return DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType,
593                                  InitType, Init, "initializing");
594}
595
596bool Sema::CheckStringLiteralInit(StringLiteral *strLiteral, QualType &DeclT) {
597  const ArrayType *AT = Context.getAsArrayType(DeclT);
598
599  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
600    // C99 6.7.8p14. We have an array of character type with unknown size
601    // being initialized to a string literal.
602    llvm::APSInt ConstVal(32);
603    ConstVal = strLiteral->getByteLength() + 1;
604    // Return a new array type (C99 6.7.8p22).
605    DeclT = Context.getConstantArrayType(IAT->getElementType(), ConstVal,
606                                         ArrayType::Normal, 0);
607  } else {
608    const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
609    // C99 6.7.8p14. We have an array of character type with known size.
610    // FIXME: Avoid truncation for 64-bit length strings.
611    if (strLiteral->getByteLength() > (unsigned)CAT->getSize().getZExtValue())
612      Diag(strLiteral->getSourceRange().getBegin(),
613           diag::warn_initializer_string_for_char_array_too_long,
614           strLiteral->getSourceRange());
615  }
616  // Set type from "char *" to "constant array of char".
617  strLiteral->setType(DeclT);
618  // For now, we always return false (meaning success).
619  return false;
620}
621
622StringLiteral *Sema::IsStringLiteralInit(Expr *Init, QualType DeclType) {
623  const ArrayType *AT = Context.getAsArrayType(DeclType);
624  if (AT && AT->getElementType()->isCharType()) {
625    return dyn_cast<StringLiteral>(Init);
626  }
627  return 0;
628}
629
630bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType) {
631  // C99 6.7.8p3: The type of the entity to be initialized shall be an array
632  // of unknown size ("[]") or an object type that is not a variable array type.
633  if (const VariableArrayType *VAT = Context.getAsVariableArrayType(DeclType))
634    return Diag(VAT->getSizeExpr()->getLocStart(),
635                diag::err_variable_object_no_init,
636                VAT->getSizeExpr()->getSourceRange());
637
638  InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
639  if (!InitList) {
640    // FIXME: Handle wide strings
641    if (StringLiteral *strLiteral = IsStringLiteralInit(Init, DeclType))
642      return CheckStringLiteralInit(strLiteral, DeclType);
643
644    // C99 6.7.8p16.
645    if (DeclType->isArrayType())
646      return Diag(Init->getLocStart(),
647                  diag::err_array_init_list_required,
648                  Init->getSourceRange());
649
650    return CheckSingleInitializer(Init, DeclType);
651  }
652
653  InitListChecker CheckInitList(this, InitList, DeclType);
654  return CheckInitList.HadError();
655}
656
657Sema::DeclTy *
658Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl) {
659  ScopedDecl *LastDeclarator = dyn_cast_or_null<ScopedDecl>((Decl *)lastDecl);
660  IdentifierInfo *II = D.getIdentifier();
661
662  // All of these full declarators require an identifier.  If it doesn't have
663  // one, the ParsedFreeStandingDeclSpec action should be used.
664  if (II == 0) {
665    Diag(D.getDeclSpec().getSourceRange().getBegin(),
666         diag::err_declarator_need_ident,
667         D.getDeclSpec().getSourceRange(), D.getSourceRange());
668    return 0;
669  }
670
671  // The scope passed in may not be a decl scope.  Zip up the scope tree until
672  // we find one that is.
673  while ((S->getFlags() & Scope::DeclScope) == 0)
674    S = S->getParent();
675
676  // See if this is a redefinition of a variable in the same scope.
677  Decl *PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S);
678  ScopedDecl *New;
679  bool InvalidDecl = false;
680
681  // In C++, the previous declaration we find might be a tag type
682  // (class or enum). In this case, the new declaration will hide the
683  // tag type.
684  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag)
685    PrevDecl = 0;
686
687  QualType R = GetTypeForDeclarator(D, S);
688  assert(!R.isNull() && "GetTypeForDeclarator() returned null type");
689
690  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
691    // Check that there are no default arguments (C++ only).
692    if (getLangOptions().CPlusPlus)
693      CheckExtraCXXDefaultArguments(D);
694
695    TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
696    if (!NewTD) return 0;
697
698    // Handle attributes prior to checking for duplicates in MergeVarDecl
699    ProcessDeclAttributes(NewTD, D);
700    // Merge the decl with the existing one if appropriate. If the decl is
701    // in an outer scope, it isn't the same thing.
702    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)) {
703      NewTD = MergeTypeDefDecl(NewTD, PrevDecl);
704      if (NewTD == 0) return 0;
705    }
706    New = NewTD;
707    if (S->getFnParent() == 0) {
708      // C99 6.7.7p2: If a typedef name specifies a variably modified type
709      // then it shall have block scope.
710      if (NewTD->getUnderlyingType()->isVariablyModifiedType()) {
711        // FIXME: Diagnostic needs to be fixed.
712        Diag(D.getIdentifierLoc(), diag::err_typecheck_illegal_vla);
713        InvalidDecl = true;
714      }
715    }
716  } else if (R.getTypePtr()->isFunctionType()) {
717    FunctionDecl::StorageClass SC = FunctionDecl::None;
718    switch (D.getDeclSpec().getStorageClassSpec()) {
719      default: assert(0 && "Unknown storage class!");
720      case DeclSpec::SCS_auto:
721      case DeclSpec::SCS_register:
722        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_func,
723             R.getAsString());
724        InvalidDecl = true;
725        break;
726      case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
727      case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
728      case DeclSpec::SCS_static:      SC = FunctionDecl::Static; break;
729      case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
730    }
731
732    bool isInline = D.getDeclSpec().isInlineSpecified();
733    FunctionDecl *NewFD;
734    if (D.getContext() == Declarator::MemberContext) {
735      // This is a C++ method declaration.
736      NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(CurContext),
737                                    D.getIdentifierLoc(), II, R,
738                                    (SC == FunctionDecl::Static), isInline,
739                                    LastDeclarator);
740    } else {
741      NewFD = FunctionDecl::Create(Context, CurContext,
742                                   D.getIdentifierLoc(),
743                                   II, R, SC, isInline, LastDeclarator,
744                                   // FIXME: Move to DeclGroup...
745                                   D.getDeclSpec().getSourceRange().getBegin());
746    }
747    // Handle attributes.
748    ProcessDeclAttributes(NewFD, D);
749
750    // Handle GNU asm-label extension (encoded as an attribute).
751    if (Expr *E = (Expr*) D.getAsmLabel()) {
752      // The parser guarantees this is a string.
753      StringLiteral *SE = cast<StringLiteral>(E);
754      NewFD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
755                                                  SE->getByteLength())));
756    }
757
758    // Copy the parameter declarations from the declarator D to
759    // the function declaration NewFD, if they are available.
760    if (D.getNumTypeObjects() > 0) {
761      DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
762
763      // Create Decl objects for each parameter, adding them to the
764      // FunctionDecl.
765      llvm::SmallVector<ParmVarDecl*, 16> Params;
766
767      // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
768      // function that takes no arguments, not a function that takes a
769      // single void argument.
770      // We let through "const void" here because Sema::GetTypeForDeclarator
771      // already checks for that case.
772      if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
773          FTI.ArgInfo[0].Param &&
774          ((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
775        // empty arg list, don't push any params.
776        ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
777
778        // In C++, the empty parameter-type-list must be spelled "void"; a
779        // typedef of void is not permitted.
780        if (getLangOptions().CPlusPlus &&
781            Param->getType().getUnqualifiedType() != Context.VoidTy) {
782          Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
783        }
784      } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
785        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
786          Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
787      }
788
789      NewFD->setParams(&Params[0], Params.size());
790    } else if (R->getAsTypedefType()) {
791      // When we're declaring a function with a typedef, as in the
792      // following example, we'll need to synthesize (unnamed)
793      // parameters for use in the declaration.
794      //
795      // @code
796      // typedef void fn(int);
797      // fn f;
798      // @endcode
799      const FunctionTypeProto *FT = R->getAsFunctionTypeProto();
800      if (!FT) {
801        // This is a typedef of a function with no prototype, so we
802        // don't need to do anything.
803      } else if ((FT->getNumArgs() == 0) ||
804          (FT->getNumArgs() == 1 && !FT->isVariadic() &&
805           FT->getArgType(0)->isVoidType())) {
806        // This is a zero-argument function. We don't need to do anything.
807      } else {
808        // Synthesize a parameter for each argument type.
809        llvm::SmallVector<ParmVarDecl*, 16> Params;
810        for (FunctionTypeProto::arg_type_iterator ArgType = FT->arg_type_begin();
811             ArgType != FT->arg_type_end(); ++ArgType) {
812          Params.push_back(ParmVarDecl::Create(Context, CurContext,
813                                               SourceLocation(), 0,
814                                               *ArgType, VarDecl::None,
815                                               0, 0));
816        }
817
818        NewFD->setParams(&Params[0], Params.size());
819      }
820    }
821
822    // Merge the decl with the existing one if appropriate. Since C functions
823    // are in a flat namespace, make sure we consider decls in outer scopes.
824    if (PrevDecl &&
825        (!getLangOptions().CPlusPlus||isDeclInScope(PrevDecl, CurContext, S))) {
826      bool Redeclaration = false;
827
828      // If C++, determine whether NewFD is an overload of PrevDecl or
829      // a declaration that requires merging. If it's an overload,
830      // there's no more work to do here; we'll just add the new
831      // function to the scope.
832      OverloadedFunctionDecl::function_iterator MatchedDecl;
833      if (!getLangOptions().CPlusPlus ||
834          !IsOverload(NewFD, PrevDecl, MatchedDecl)) {
835        Decl *OldDecl = PrevDecl;
836
837        // If PrevDecl was an overloaded function, extract the
838        // FunctionDecl that matched.
839        if (isa<OverloadedFunctionDecl>(PrevDecl))
840          OldDecl = *MatchedDecl;
841
842        // NewFD and PrevDecl represent declarations that need to be
843        // merged.
844        NewFD = MergeFunctionDecl(NewFD, OldDecl, Redeclaration);
845
846        if (NewFD == 0) return 0;
847        if (Redeclaration) {
848          NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
849
850          if (OldDecl == PrevDecl) {
851            // Remove the name binding for the previous
852            // declaration. We'll add the binding back later, but then
853            // it will refer to the new declaration (which will
854            // contain more information).
855            IdResolver.RemoveDecl(cast<NamedDecl>(PrevDecl));
856          } else {
857            // We need to update the OverloadedFunctionDecl with the
858            // latest declaration of this function, so that name
859            // lookup will always refer to the latest declaration of
860            // this function.
861            *MatchedDecl = NewFD;
862
863            // Add the redeclaration to the current scope, since we'll
864            // be skipping PushOnScopeChains.
865            S->AddDecl(NewFD);
866
867            return NewFD;
868          }
869        }
870      }
871    }
872    New = NewFD;
873
874    // In C++, check default arguments now that we have merged decls.
875    if (getLangOptions().CPlusPlus)
876      CheckCXXDefaultArguments(NewFD);
877  } else {
878    // Check that there are no default arguments (C++ only).
879    if (getLangOptions().CPlusPlus)
880      CheckExtraCXXDefaultArguments(D);
881
882    if (R.getTypePtr()->isObjCInterfaceType()) {
883      Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object,
884           D.getIdentifier()->getName());
885      InvalidDecl = true;
886    }
887
888    VarDecl *NewVD;
889    VarDecl::StorageClass SC;
890    switch (D.getDeclSpec().getStorageClassSpec()) {
891    default: assert(0 && "Unknown storage class!");
892    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
893    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
894    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
895    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
896    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
897    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
898    }
899    if (D.getContext() == Declarator::MemberContext) {
900      assert(SC == VarDecl::Static && "Invalid storage class for member!");
901      // This is a static data member for a C++ class.
902      NewVD = CXXClassVarDecl::Create(Context, cast<CXXRecordDecl>(CurContext),
903                                      D.getIdentifierLoc(), II,
904                                      R, LastDeclarator);
905    } else {
906      bool ThreadSpecified = D.getDeclSpec().isThreadSpecified();
907      if (S->getFnParent() == 0) {
908        // C99 6.9p2: The storage-class specifiers auto and register shall not
909        // appear in the declaration specifiers in an external declaration.
910        if (SC == VarDecl::Auto || SC == VarDecl::Register) {
911          Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope,
912               R.getAsString());
913          InvalidDecl = true;
914        }
915      }
916        NewVD = VarDecl::Create(Context, CurContext, D.getIdentifierLoc(),
917                                II, R, SC, LastDeclarator,
918                                // FIXME: Move to DeclGroup...
919                                D.getDeclSpec().getSourceRange().getBegin());
920        NewVD->setThreadSpecified(ThreadSpecified);
921    }
922    // Handle attributes prior to checking for duplicates in MergeVarDecl
923    ProcessDeclAttributes(NewVD, D);
924
925    // Handle GNU asm-label extension (encoded as an attribute).
926    if (Expr *E = (Expr*) D.getAsmLabel()) {
927      // The parser guarantees this is a string.
928      StringLiteral *SE = cast<StringLiteral>(E);
929      NewVD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
930                                                  SE->getByteLength())));
931    }
932
933    // Emit an error if an address space was applied to decl with local storage.
934    // This includes arrays of objects with address space qualifiers, but not
935    // automatic variables that point to other address spaces.
936    // ISO/IEC TR 18037 S5.1.2
937    if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
938      Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
939      InvalidDecl = true;
940    }
941    // Merge the decl with the existing one if appropriate. If the decl is
942    // in an outer scope, it isn't the same thing.
943    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)) {
944      NewVD = MergeVarDecl(NewVD, PrevDecl);
945      if (NewVD == 0) return 0;
946    }
947    New = NewVD;
948  }
949
950  // If this has an identifier, add it to the scope stack.
951  if (II)
952    PushOnScopeChains(New, S);
953  // If any semantic error occurred, mark the decl as invalid.
954  if (D.getInvalidType() || InvalidDecl)
955    New->setInvalidDecl();
956
957  return New;
958}
959
960void Sema::InitializerElementNotConstant(const Expr *Init) {
961  Diag(Init->getExprLoc(),
962       diag::err_init_element_not_constant, Init->getSourceRange());
963}
964
965bool Sema::CheckAddressConstantExpressionLValue(const Expr* Init) {
966  switch (Init->getStmtClass()) {
967  default:
968    InitializerElementNotConstant(Init);
969    return true;
970  case Expr::ParenExprClass: {
971    const ParenExpr* PE = cast<ParenExpr>(Init);
972    return CheckAddressConstantExpressionLValue(PE->getSubExpr());
973  }
974  case Expr::CompoundLiteralExprClass:
975    return cast<CompoundLiteralExpr>(Init)->isFileScope();
976  case Expr::DeclRefExprClass: {
977    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
978    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
979      if (VD->hasGlobalStorage())
980        return false;
981      InitializerElementNotConstant(Init);
982      return true;
983    }
984    if (isa<FunctionDecl>(D))
985      return false;
986    InitializerElementNotConstant(Init);
987    return true;
988  }
989  case Expr::MemberExprClass: {
990    const MemberExpr *M = cast<MemberExpr>(Init);
991    if (M->isArrow())
992      return CheckAddressConstantExpression(M->getBase());
993    return CheckAddressConstantExpressionLValue(M->getBase());
994  }
995  case Expr::ArraySubscriptExprClass: {
996    // FIXME: Should we pedwarn for "x[0+0]" (where x is a pointer)?
997    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(Init);
998    return CheckAddressConstantExpression(ASE->getBase()) ||
999           CheckArithmeticConstantExpression(ASE->getIdx());
1000  }
1001  case Expr::StringLiteralClass:
1002  case Expr::PredefinedExprClass:
1003    return false;
1004  case Expr::UnaryOperatorClass: {
1005    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1006
1007    // C99 6.6p9
1008    if (Exp->getOpcode() == UnaryOperator::Deref)
1009      return CheckAddressConstantExpression(Exp->getSubExpr());
1010
1011    InitializerElementNotConstant(Init);
1012    return true;
1013  }
1014  }
1015}
1016
1017bool Sema::CheckAddressConstantExpression(const Expr* Init) {
1018  switch (Init->getStmtClass()) {
1019  default:
1020    InitializerElementNotConstant(Init);
1021    return true;
1022  case Expr::ParenExprClass:
1023    return CheckAddressConstantExpression(cast<ParenExpr>(Init)->getSubExpr());
1024  case Expr::StringLiteralClass:
1025  case Expr::ObjCStringLiteralClass:
1026    return false;
1027  case Expr::CallExprClass:
1028    // __builtin___CFStringMakeConstantString is a valid constant l-value.
1029    if (cast<CallExpr>(Init)->isBuiltinCall() ==
1030           Builtin::BI__builtin___CFStringMakeConstantString)
1031      return false;
1032
1033    InitializerElementNotConstant(Init);
1034    return true;
1035
1036  case Expr::UnaryOperatorClass: {
1037    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1038
1039    // C99 6.6p9
1040    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1041      return CheckAddressConstantExpressionLValue(Exp->getSubExpr());
1042
1043    if (Exp->getOpcode() == UnaryOperator::Extension)
1044      return CheckAddressConstantExpression(Exp->getSubExpr());
1045
1046    InitializerElementNotConstant(Init);
1047    return true;
1048  }
1049  case Expr::BinaryOperatorClass: {
1050    // FIXME: Should we pedwarn for expressions like "a + 1 + 2"?
1051    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
1052
1053    Expr *PExp = Exp->getLHS();
1054    Expr *IExp = Exp->getRHS();
1055    if (IExp->getType()->isPointerType())
1056      std::swap(PExp, IExp);
1057
1058    // FIXME: Should we pedwarn if IExp isn't an integer constant expression?
1059    return CheckAddressConstantExpression(PExp) ||
1060           CheckArithmeticConstantExpression(IExp);
1061  }
1062  case Expr::ImplicitCastExprClass:
1063  case Expr::ExplicitCCastExprClass: {
1064    const Expr* SubExpr = cast<CastExpr>(Init)->getSubExpr();
1065    if (Init->getStmtClass() == Expr::ImplicitCastExprClass) {
1066      // Check for implicit promotion
1067      if (SubExpr->getType()->isFunctionType() ||
1068          SubExpr->getType()->isArrayType())
1069        return CheckAddressConstantExpressionLValue(SubExpr);
1070    }
1071
1072    // Check for pointer->pointer cast
1073    if (SubExpr->getType()->isPointerType())
1074      return CheckAddressConstantExpression(SubExpr);
1075
1076    if (SubExpr->getType()->isIntegralType()) {
1077      // Check for the special-case of a pointer->int->pointer cast;
1078      // this isn't standard, but some code requires it. See
1079      // PR2720 for an example.
1080      if (const CastExpr* SubCast = dyn_cast<CastExpr>(SubExpr)) {
1081        if (SubCast->getSubExpr()->getType()->isPointerType()) {
1082          unsigned IntWidth = Context.getIntWidth(SubCast->getType());
1083          unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
1084          if (IntWidth >= PointerWidth) {
1085            return CheckAddressConstantExpression(SubCast->getSubExpr());
1086          }
1087        }
1088      }
1089    }
1090    if (SubExpr->getType()->isArithmeticType()) {
1091      return CheckArithmeticConstantExpression(SubExpr);
1092    }
1093
1094    InitializerElementNotConstant(Init);
1095    return true;
1096  }
1097  case Expr::ConditionalOperatorClass: {
1098    // FIXME: Should we pedwarn here?
1099    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
1100    if (!Exp->getCond()->getType()->isArithmeticType()) {
1101      InitializerElementNotConstant(Init);
1102      return true;
1103    }
1104    if (CheckArithmeticConstantExpression(Exp->getCond()))
1105      return true;
1106    if (Exp->getLHS() &&
1107        CheckAddressConstantExpression(Exp->getLHS()))
1108      return true;
1109    return CheckAddressConstantExpression(Exp->getRHS());
1110  }
1111  case Expr::AddrLabelExprClass:
1112    return false;
1113  }
1114}
1115
1116static const Expr* FindExpressionBaseAddress(const Expr* E);
1117
1118static const Expr* FindExpressionBaseAddressLValue(const Expr* E) {
1119  switch (E->getStmtClass()) {
1120  default:
1121    return E;
1122  case Expr::ParenExprClass: {
1123    const ParenExpr* PE = cast<ParenExpr>(E);
1124    return FindExpressionBaseAddressLValue(PE->getSubExpr());
1125  }
1126  case Expr::MemberExprClass: {
1127    const MemberExpr *M = cast<MemberExpr>(E);
1128    if (M->isArrow())
1129      return FindExpressionBaseAddress(M->getBase());
1130    return FindExpressionBaseAddressLValue(M->getBase());
1131  }
1132  case Expr::ArraySubscriptExprClass: {
1133    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(E);
1134    return FindExpressionBaseAddress(ASE->getBase());
1135  }
1136  case Expr::UnaryOperatorClass: {
1137    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1138
1139    if (Exp->getOpcode() == UnaryOperator::Deref)
1140      return FindExpressionBaseAddress(Exp->getSubExpr());
1141
1142    return E;
1143  }
1144  }
1145}
1146
1147static const Expr* FindExpressionBaseAddress(const Expr* E) {
1148  switch (E->getStmtClass()) {
1149  default:
1150    return E;
1151  case Expr::ParenExprClass: {
1152    const ParenExpr* PE = cast<ParenExpr>(E);
1153    return FindExpressionBaseAddress(PE->getSubExpr());
1154  }
1155  case Expr::UnaryOperatorClass: {
1156    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1157
1158    // C99 6.6p9
1159    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1160      return FindExpressionBaseAddressLValue(Exp->getSubExpr());
1161
1162    if (Exp->getOpcode() == UnaryOperator::Extension)
1163      return FindExpressionBaseAddress(Exp->getSubExpr());
1164
1165    return E;
1166  }
1167  case Expr::BinaryOperatorClass: {
1168    const BinaryOperator *Exp = cast<BinaryOperator>(E);
1169
1170    Expr *PExp = Exp->getLHS();
1171    Expr *IExp = Exp->getRHS();
1172    if (IExp->getType()->isPointerType())
1173      std::swap(PExp, IExp);
1174
1175    return FindExpressionBaseAddress(PExp);
1176  }
1177  case Expr::ImplicitCastExprClass: {
1178    const Expr* SubExpr = cast<ImplicitCastExpr>(E)->getSubExpr();
1179
1180    // Check for implicit promotion
1181    if (SubExpr->getType()->isFunctionType() ||
1182        SubExpr->getType()->isArrayType())
1183      return FindExpressionBaseAddressLValue(SubExpr);
1184
1185    // Check for pointer->pointer cast
1186    if (SubExpr->getType()->isPointerType())
1187      return FindExpressionBaseAddress(SubExpr);
1188
1189    // We assume that we have an arithmetic expression here;
1190    // if we don't, we'll figure it out later
1191    return 0;
1192  }
1193  case Expr::ExplicitCCastExprClass: {
1194    const Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
1195
1196    // Check for pointer->pointer cast
1197    if (SubExpr->getType()->isPointerType())
1198      return FindExpressionBaseAddress(SubExpr);
1199
1200    // We assume that we have an arithmetic expression here;
1201    // if we don't, we'll figure it out later
1202    return 0;
1203  }
1204  }
1205}
1206
1207bool Sema::CheckArithmeticConstantExpression(const Expr* Init) {
1208  switch (Init->getStmtClass()) {
1209  default:
1210    InitializerElementNotConstant(Init);
1211    return true;
1212  case Expr::ParenExprClass: {
1213    const ParenExpr* PE = cast<ParenExpr>(Init);
1214    return CheckArithmeticConstantExpression(PE->getSubExpr());
1215  }
1216  case Expr::FloatingLiteralClass:
1217  case Expr::IntegerLiteralClass:
1218  case Expr::CharacterLiteralClass:
1219  case Expr::ImaginaryLiteralClass:
1220  case Expr::TypesCompatibleExprClass:
1221  case Expr::CXXBoolLiteralExprClass:
1222    return false;
1223  case Expr::CallExprClass: {
1224    const CallExpr *CE = cast<CallExpr>(Init);
1225
1226    // Allow any constant foldable calls to builtins.
1227    if (CE->isBuiltinCall() && CE->isEvaluatable(Context))
1228      return false;
1229
1230    InitializerElementNotConstant(Init);
1231    return true;
1232  }
1233  case Expr::DeclRefExprClass: {
1234    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
1235    if (isa<EnumConstantDecl>(D))
1236      return false;
1237    InitializerElementNotConstant(Init);
1238    return true;
1239  }
1240  case Expr::CompoundLiteralExprClass:
1241    // Allow "(vector type){2,4}"; normal C constraints don't allow this,
1242    // but vectors are allowed to be magic.
1243    if (Init->getType()->isVectorType())
1244      return false;
1245    InitializerElementNotConstant(Init);
1246    return true;
1247  case Expr::UnaryOperatorClass: {
1248    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1249
1250    switch (Exp->getOpcode()) {
1251    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
1252    // See C99 6.6p3.
1253    default:
1254      InitializerElementNotConstant(Init);
1255      return true;
1256    case UnaryOperator::SizeOf:
1257    case UnaryOperator::AlignOf:
1258    case UnaryOperator::OffsetOf:
1259      // sizeof(E) is a constantexpr if and only if E is not evaluted.
1260      // See C99 6.5.3.4p2 and 6.6p3.
1261      if (Exp->getSubExpr()->getType()->isConstantSizeType())
1262        return false;
1263      InitializerElementNotConstant(Init);
1264      return true;
1265    case UnaryOperator::Extension:
1266    case UnaryOperator::LNot:
1267    case UnaryOperator::Plus:
1268    case UnaryOperator::Minus:
1269    case UnaryOperator::Not:
1270      return CheckArithmeticConstantExpression(Exp->getSubExpr());
1271    }
1272  }
1273  case Expr::SizeOfAlignOfTypeExprClass: {
1274    const SizeOfAlignOfTypeExpr *Exp = cast<SizeOfAlignOfTypeExpr>(Init);
1275    // Special check for void types, which are allowed as an extension
1276    if (Exp->getArgumentType()->isVoidType())
1277      return false;
1278    // alignof always evaluates to a constant.
1279    // FIXME: is sizeof(int[3.0]) a constant expression?
1280    if (Exp->isSizeOf() && !Exp->getArgumentType()->isConstantSizeType()) {
1281      InitializerElementNotConstant(Init);
1282      return true;
1283    }
1284    return false;
1285  }
1286  case Expr::BinaryOperatorClass: {
1287    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
1288
1289    if (Exp->getLHS()->getType()->isArithmeticType() &&
1290        Exp->getRHS()->getType()->isArithmeticType()) {
1291      return CheckArithmeticConstantExpression(Exp->getLHS()) ||
1292             CheckArithmeticConstantExpression(Exp->getRHS());
1293    }
1294
1295    if (Exp->getLHS()->getType()->isPointerType() &&
1296        Exp->getRHS()->getType()->isPointerType()) {
1297      const Expr* LHSBase = FindExpressionBaseAddress(Exp->getLHS());
1298      const Expr* RHSBase = FindExpressionBaseAddress(Exp->getRHS());
1299
1300      // Only allow a null (constant integer) base; we could
1301      // allow some additional cases if necessary, but this
1302      // is sufficient to cover offsetof-like constructs.
1303      if (!LHSBase && !RHSBase) {
1304        return CheckAddressConstantExpression(Exp->getLHS()) ||
1305               CheckAddressConstantExpression(Exp->getRHS());
1306      }
1307    }
1308
1309    InitializerElementNotConstant(Init);
1310    return true;
1311  }
1312  case Expr::ImplicitCastExprClass:
1313  case Expr::ExplicitCCastExprClass: {
1314    const Expr *SubExpr = cast<CastExpr>(Init)->getSubExpr();
1315    if (SubExpr->getType()->isArithmeticType())
1316      return CheckArithmeticConstantExpression(SubExpr);
1317
1318    if (SubExpr->getType()->isPointerType()) {
1319      const Expr* Base = FindExpressionBaseAddress(SubExpr);
1320      // If the pointer has a null base, this is an offsetof-like construct
1321      if (!Base)
1322        return CheckAddressConstantExpression(SubExpr);
1323    }
1324
1325    InitializerElementNotConstant(Init);
1326    return true;
1327  }
1328  case Expr::ConditionalOperatorClass: {
1329    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
1330
1331    // If GNU extensions are disabled, we require all operands to be arithmetic
1332    // constant expressions.
1333    if (getLangOptions().NoExtensions) {
1334      return CheckArithmeticConstantExpression(Exp->getCond()) ||
1335          (Exp->getLHS() && CheckArithmeticConstantExpression(Exp->getLHS())) ||
1336             CheckArithmeticConstantExpression(Exp->getRHS());
1337    }
1338
1339    // Otherwise, we have to emulate some of the behavior of fold here.
1340    // Basically GCC treats things like "4 ? 1 : somefunc()" as a constant
1341    // because it can constant fold things away.  To retain compatibility with
1342    // GCC code, we see if we can fold the condition to a constant (which we
1343    // should always be able to do in theory).  If so, we only require the
1344    // specified arm of the conditional to be a constant.  This is a horrible
1345    // hack, but is require by real world code that uses __builtin_constant_p.
1346    APValue Val;
1347    if (!Exp->getCond()->tryEvaluate(Val, Context)) {
1348      // If the tryEvaluate couldn't fold it, CheckArithmeticConstantExpression
1349      // won't be able to either.  Use it to emit the diagnostic though.
1350      bool Res = CheckArithmeticConstantExpression(Exp->getCond());
1351      assert(Res && "tryEvaluate couldn't evaluate this constant?");
1352      return Res;
1353    }
1354
1355    // Verify that the side following the condition is also a constant.
1356    const Expr *TrueSide = Exp->getLHS(), *FalseSide = Exp->getRHS();
1357    if (Val.getInt() == 0)
1358      std::swap(TrueSide, FalseSide);
1359
1360    if (TrueSide && CheckArithmeticConstantExpression(TrueSide))
1361      return true;
1362
1363    // Okay, the evaluated side evaluates to a constant, so we accept this.
1364    // Check to see if the other side is obviously not a constant.  If so,
1365    // emit a warning that this is a GNU extension.
1366    if (FalseSide && !FalseSide->isEvaluatable(Context))
1367      Diag(Init->getExprLoc(),
1368           diag::ext_typecheck_expression_not_constant_but_accepted,
1369           FalseSide->getSourceRange());
1370    return false;
1371  }
1372  }
1373}
1374
1375bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
1376  Init = Init->IgnoreParens();
1377
1378  // Look through CXXDefaultArgExprs; they have no meaning in this context.
1379  if (CXXDefaultArgExpr* DAE = dyn_cast<CXXDefaultArgExpr>(Init))
1380    return CheckForConstantInitializer(DAE->getExpr(), DclT);
1381
1382  if (CompoundLiteralExpr *e = dyn_cast<CompoundLiteralExpr>(Init))
1383    return CheckForConstantInitializer(e->getInitializer(), DclT);
1384
1385  if (Init->getType()->isReferenceType()) {
1386    // FIXME: Work out how the heck references work.
1387    return false;
1388  }
1389
1390  if (InitListExpr *Exp = dyn_cast<InitListExpr>(Init)) {
1391    unsigned numInits = Exp->getNumInits();
1392    for (unsigned i = 0; i < numInits; i++) {
1393      // FIXME: Need to get the type of the declaration for C++,
1394      // because it could be a reference?
1395      if (CheckForConstantInitializer(Exp->getInit(i),
1396                                      Exp->getInit(i)->getType()))
1397        return true;
1398    }
1399    return false;
1400  }
1401
1402  if (Init->isNullPointerConstant(Context))
1403    return false;
1404  if (Init->getType()->isArithmeticType()) {
1405    QualType InitTy = Context.getCanonicalType(Init->getType())
1406                             .getUnqualifiedType();
1407    if (InitTy == Context.BoolTy) {
1408      // Special handling for pointers implicitly cast to bool;
1409      // (e.g. "_Bool rr = &rr;"). This is only legal at the top level.
1410      if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Init)) {
1411        Expr* SubE = ICE->getSubExpr();
1412        if (SubE->getType()->isPointerType() ||
1413            SubE->getType()->isArrayType() ||
1414            SubE->getType()->isFunctionType()) {
1415          return CheckAddressConstantExpression(Init);
1416        }
1417      }
1418    } else if (InitTy->isIntegralType()) {
1419      Expr* SubE = 0;
1420      if (CastExpr* CE = dyn_cast<CastExpr>(Init))
1421        SubE = CE->getSubExpr();
1422      // Special check for pointer cast to int; we allow as an extension
1423      // an address constant cast to an integer if the integer
1424      // is of an appropriate width (this sort of code is apparently used
1425      // in some places).
1426      // FIXME: Add pedwarn?
1427      // FIXME: Don't allow bitfields here!  Need the FieldDecl for that.
1428      if (SubE && (SubE->getType()->isPointerType() ||
1429                   SubE->getType()->isArrayType() ||
1430                   SubE->getType()->isFunctionType())) {
1431        unsigned IntWidth = Context.getTypeSize(Init->getType());
1432        unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
1433        if (IntWidth >= PointerWidth)
1434          return CheckAddressConstantExpression(Init);
1435      }
1436    }
1437
1438    return CheckArithmeticConstantExpression(Init);
1439  }
1440
1441  if (Init->getType()->isPointerType())
1442    return CheckAddressConstantExpression(Init);
1443
1444  // An array type at the top level that isn't an init-list must
1445  // be a string literal
1446  if (Init->getType()->isArrayType())
1447    return false;
1448
1449  if (Init->getType()->isFunctionType())
1450    return false;
1451
1452  // Allow block exprs at top level.
1453  if (Init->getType()->isBlockPointerType())
1454    return false;
1455
1456  InitializerElementNotConstant(Init);
1457  return true;
1458}
1459
1460void Sema::AddInitializerToDecl(DeclTy *dcl, ExprTy *init) {
1461  Decl *RealDecl = static_cast<Decl *>(dcl);
1462  Expr *Init = static_cast<Expr *>(init);
1463  assert(Init && "missing initializer");
1464
1465  // If there is no declaration, there was an error parsing it.  Just ignore
1466  // the initializer.
1467  if (RealDecl == 0) {
1468    delete Init;
1469    return;
1470  }
1471
1472  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
1473  if (!VDecl) {
1474    Diag(dyn_cast<ScopedDecl>(RealDecl)->getLocation(),
1475         diag::err_illegal_initializer);
1476    RealDecl->setInvalidDecl();
1477    return;
1478  }
1479  // Get the decls type and save a reference for later, since
1480  // CheckInitializerTypes may change it.
1481  QualType DclT = VDecl->getType(), SavT = DclT;
1482  if (VDecl->isBlockVarDecl()) {
1483    VarDecl::StorageClass SC = VDecl->getStorageClass();
1484    if (SC == VarDecl::Extern) { // C99 6.7.8p5
1485      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
1486      VDecl->setInvalidDecl();
1487    } else if (!VDecl->isInvalidDecl()) {
1488      if (CheckInitializerTypes(Init, DclT))
1489        VDecl->setInvalidDecl();
1490
1491      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
1492      if (!getLangOptions().CPlusPlus) {
1493        if (SC == VarDecl::Static) // C99 6.7.8p4.
1494          CheckForConstantInitializer(Init, DclT);
1495      }
1496    }
1497  } else if (VDecl->isFileVarDecl()) {
1498    if (VDecl->getStorageClass() == VarDecl::Extern)
1499      Diag(VDecl->getLocation(), diag::warn_extern_init);
1500    if (!VDecl->isInvalidDecl())
1501      if (CheckInitializerTypes(Init, DclT))
1502        VDecl->setInvalidDecl();
1503
1504    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
1505    if (!getLangOptions().CPlusPlus) {
1506      // C99 6.7.8p4. All file scoped initializers need to be constant.
1507      CheckForConstantInitializer(Init, DclT);
1508    }
1509  }
1510  // If the type changed, it means we had an incomplete type that was
1511  // completed by the initializer. For example:
1512  //   int ary[] = { 1, 3, 5 };
1513  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
1514  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
1515    VDecl->setType(DclT);
1516    Init->setType(DclT);
1517  }
1518
1519  // Attach the initializer to the decl.
1520  VDecl->setInit(Init);
1521  return;
1522}
1523
1524/// The declarators are chained together backwards, reverse the list.
1525Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
1526  // Often we have single declarators, handle them quickly.
1527  Decl *GroupDecl = static_cast<Decl*>(group);
1528  if (GroupDecl == 0)
1529    return 0;
1530
1531  ScopedDecl *Group = dyn_cast<ScopedDecl>(GroupDecl);
1532  ScopedDecl *NewGroup = 0;
1533  if (Group->getNextDeclarator() == 0)
1534    NewGroup = Group;
1535  else { // reverse the list.
1536    while (Group) {
1537      ScopedDecl *Next = Group->getNextDeclarator();
1538      Group->setNextDeclarator(NewGroup);
1539      NewGroup = Group;
1540      Group = Next;
1541    }
1542  }
1543  // Perform semantic analysis that depends on having fully processed both
1544  // the declarator and initializer.
1545  for (ScopedDecl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
1546    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
1547    if (!IDecl)
1548      continue;
1549    QualType T = IDecl->getType();
1550
1551    // C99 6.7.5.2p2: If an identifier is declared to be an object with
1552    // static storage duration, it shall not have a variable length array.
1553    if ((IDecl->isFileVarDecl() || IDecl->isBlockVarDecl()) &&
1554        IDecl->getStorageClass() == VarDecl::Static) {
1555      if (T->isVariableArrayType()) {
1556        Diag(IDecl->getLocation(), diag::err_typecheck_illegal_vla);
1557        IDecl->setInvalidDecl();
1558      }
1559    }
1560    // Block scope. C99 6.7p7: If an identifier for an object is declared with
1561    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
1562    if (IDecl->isBlockVarDecl() &&
1563        IDecl->getStorageClass() != VarDecl::Extern) {
1564      if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
1565        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type,
1566             T.getAsString());
1567        IDecl->setInvalidDecl();
1568      }
1569    }
1570    // File scope. C99 6.9.2p2: A declaration of an identifier for and
1571    // object that has file scope without an initializer, and without a
1572    // storage-class specifier or with the storage-class specifier "static",
1573    // constitutes a tentative definition. Note: A tentative definition with
1574    // external linkage is valid (C99 6.2.2p5).
1575    if (isTentativeDefinition(IDecl)) {
1576      if (T->isIncompleteArrayType()) {
1577        // C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete
1578        // array to be completed. Don't issue a diagnostic.
1579      } else if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
1580        // C99 6.9.2p3: If the declaration of an identifier for an object is
1581        // a tentative definition and has internal linkage (C99 6.2.2p3), the
1582        // declared type shall not be an incomplete type.
1583        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type,
1584             T.getAsString());
1585        IDecl->setInvalidDecl();
1586      }
1587    }
1588    if (IDecl->isFileVarDecl())
1589      CheckForFileScopedRedefinitions(S, IDecl);
1590  }
1591  return NewGroup;
1592}
1593
1594/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
1595/// to introduce parameters into function prototype scope.
1596Sema::DeclTy *
1597Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
1598  const DeclSpec &DS = D.getDeclSpec();
1599
1600  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
1601  VarDecl::StorageClass StorageClass = VarDecl::None;
1602  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
1603    StorageClass = VarDecl::Register;
1604  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
1605    Diag(DS.getStorageClassSpecLoc(),
1606         diag::err_invalid_storage_class_in_func_decl);
1607    D.getMutableDeclSpec().ClearStorageClassSpecs();
1608  }
1609  if (DS.isThreadSpecified()) {
1610    Diag(DS.getThreadSpecLoc(),
1611         diag::err_invalid_storage_class_in_func_decl);
1612    D.getMutableDeclSpec().ClearStorageClassSpecs();
1613  }
1614
1615  // Check that there are no default arguments inside the type of this
1616  // parameter (C++ only).
1617  if (getLangOptions().CPlusPlus)
1618    CheckExtraCXXDefaultArguments(D);
1619
1620  // In this context, we *do not* check D.getInvalidType(). If the declarator
1621  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
1622  // though it will not reflect the user specified type.
1623  QualType parmDeclType = GetTypeForDeclarator(D, S);
1624
1625  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
1626
1627  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
1628  // Can this happen for params?  We already checked that they don't conflict
1629  // among each other.  Here they can only shadow globals, which is ok.
1630  IdentifierInfo *II = D.getIdentifier();
1631  if (Decl *PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S)) {
1632    if (S->isDeclScope(PrevDecl)) {
1633      Diag(D.getIdentifierLoc(), diag::err_param_redefinition,
1634           dyn_cast<NamedDecl>(PrevDecl)->getName());
1635
1636      // Recover by removing the name
1637      II = 0;
1638      D.SetIdentifier(0, D.getIdentifierLoc());
1639    }
1640  }
1641
1642  // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
1643  // Doing the promotion here has a win and a loss. The win is the type for
1644  // both Decl's and DeclRefExpr's will match (a convenient invariant for the
1645  // code generator). The loss is the orginal type isn't preserved. For example:
1646  //
1647  // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
1648  //    int blockvardecl[5];
1649  //    sizeof(parmvardecl);  // size == 4
1650  //    sizeof(blockvardecl); // size == 20
1651  // }
1652  //
1653  // For expressions, all implicit conversions are captured using the
1654  // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
1655  //
1656  // FIXME: If a source translation tool needs to see the original type, then
1657  // we need to consider storing both types (in ParmVarDecl)...
1658  //
1659  if (parmDeclType->isArrayType()) {
1660    // int x[restrict 4] ->  int *restrict
1661    parmDeclType = Context.getArrayDecayedType(parmDeclType);
1662  } else if (parmDeclType->isFunctionType())
1663    parmDeclType = Context.getPointerType(parmDeclType);
1664
1665  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext,
1666                                         D.getIdentifierLoc(), II,
1667                                         parmDeclType, StorageClass,
1668                                         0, 0);
1669
1670  if (D.getInvalidType())
1671    New->setInvalidDecl();
1672
1673  if (II)
1674    PushOnScopeChains(New, S);
1675
1676  ProcessDeclAttributes(New, D);
1677  return New;
1678
1679}
1680
1681Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
1682  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
1683  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
1684         "Not a function declarator!");
1685  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1686
1687  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
1688  // for a K&R function.
1689  if (!FTI.hasPrototype) {
1690    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
1691      if (FTI.ArgInfo[i].Param == 0) {
1692        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared,
1693             FTI.ArgInfo[i].Ident->getName());
1694        // Implicitly declare the argument as type 'int' for lack of a better
1695        // type.
1696        DeclSpec DS;
1697        const char* PrevSpec; // unused
1698        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
1699                           PrevSpec);
1700        Declarator ParamD(DS, Declarator::KNRTypeListContext);
1701        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
1702        FTI.ArgInfo[i].Param = ActOnParamDeclarator(FnBodyScope, ParamD);
1703      }
1704    }
1705  } else {
1706    // FIXME: Diagnose arguments without names in C.
1707  }
1708
1709  Scope *GlobalScope = FnBodyScope->getParent();
1710
1711  // See if this is a redefinition.
1712  Decl *PrevDcl = LookupDecl(D.getIdentifier(), Decl::IDNS_Ordinary,
1713                             GlobalScope);
1714  if (PrevDcl && isDeclInScope(PrevDcl, CurContext)) {
1715    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(PrevDcl)) {
1716      const FunctionDecl *Definition;
1717      if (FD->getBody(Definition)) {
1718        Diag(D.getIdentifierLoc(), diag::err_redefinition,
1719             D.getIdentifier()->getName());
1720        Diag(Definition->getLocation(), diag::err_previous_definition);
1721      }
1722    }
1723  }
1724
1725  return ActOnStartOfFunctionDef(FnBodyScope,
1726                                 ActOnDeclarator(GlobalScope, D, 0));
1727}
1728
1729Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclTy *D) {
1730  Decl *decl = static_cast<Decl*>(D);
1731  FunctionDecl *FD = cast<FunctionDecl>(decl);
1732  PushDeclContext(FD);
1733
1734  // Check the validity of our function parameters
1735  CheckParmsForFunctionDef(FD);
1736
1737  // Introduce our parameters into the function scope
1738  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1739    ParmVarDecl *Param = FD->getParamDecl(p);
1740    // If this has an identifier, add it to the scope stack.
1741    if (Param->getIdentifier())
1742      PushOnScopeChains(Param, FnBodyScope);
1743  }
1744
1745  return FD;
1746}
1747
1748Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtTy *Body) {
1749  Decl *dcl = static_cast<Decl *>(D);
1750  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
1751    FD->setBody((Stmt*)Body);
1752    assert(FD == getCurFunctionDecl() && "Function parsing confused");
1753  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
1754    MD->setBody((Stmt*)Body);
1755  } else
1756    return 0;
1757  PopDeclContext();
1758  // Verify and clean out per-function state.
1759
1760  // Check goto/label use.
1761  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
1762       I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
1763    // Verify that we have no forward references left.  If so, there was a goto
1764    // or address of a label taken, but no definition of it.  Label fwd
1765    // definitions are indicated with a null substmt.
1766    if (I->second->getSubStmt() == 0) {
1767      LabelStmt *L = I->second;
1768      // Emit error.
1769      Diag(L->getIdentLoc(), diag::err_undeclared_label_use, L->getName());
1770
1771      // At this point, we have gotos that use the bogus label.  Stitch it into
1772      // the function body so that they aren't leaked and that the AST is well
1773      // formed.
1774      if (Body) {
1775        L->setSubStmt(new NullStmt(L->getIdentLoc()));
1776        cast<CompoundStmt>((Stmt*)Body)->push_back(L);
1777      } else {
1778        // The whole function wasn't parsed correctly, just delete this.
1779        delete L;
1780      }
1781    }
1782  }
1783  LabelMap.clear();
1784
1785  return D;
1786}
1787
1788/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
1789/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
1790ScopedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
1791                                           IdentifierInfo &II, Scope *S) {
1792  // Extension in C99.  Legal in C90, but warn about it.
1793  if (getLangOptions().C99)
1794    Diag(Loc, diag::ext_implicit_function_decl, II.getName());
1795  else
1796    Diag(Loc, diag::warn_implicit_function_decl, II.getName());
1797
1798  // FIXME: handle stuff like:
1799  // void foo() { extern float X(); }
1800  // void bar() { X(); }  <-- implicit decl for X in another scope.
1801
1802  // Set a Declarator for the implicit definition: int foo();
1803  const char *Dummy;
1804  DeclSpec DS;
1805  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
1806  Error = Error; // Silence warning.
1807  assert(!Error && "Error setting up implicit decl!");
1808  Declarator D(DS, Declarator::BlockContext);
1809  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, 0, 0, 0, Loc));
1810  D.SetIdentifier(&II, Loc);
1811
1812  // Insert this function into translation-unit scope.
1813
1814  DeclContext *PrevDC = CurContext;
1815  CurContext = Context.getTranslationUnitDecl();
1816
1817  FunctionDecl *FD =
1818    dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0)));
1819  FD->setImplicit();
1820
1821  CurContext = PrevDC;
1822
1823  return FD;
1824}
1825
1826
1827TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
1828                                    ScopedDecl *LastDeclarator) {
1829  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
1830  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
1831
1832  // Scope manipulation handled by caller.
1833  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
1834                                           D.getIdentifierLoc(),
1835                                           D.getIdentifier(),
1836                                           T, LastDeclarator);
1837  if (D.getInvalidType())
1838    NewTD->setInvalidDecl();
1839  return NewTD;
1840}
1841
1842/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
1843/// former case, Name will be non-null.  In the later case, Name will be null.
1844/// TagType indicates what kind of tag this is. TK indicates whether this is a
1845/// reference/declaration/definition of a tag.
1846Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagType, TagKind TK,
1847                             SourceLocation KWLoc, IdentifierInfo *Name,
1848                             SourceLocation NameLoc, AttributeList *Attr) {
1849  // If this is a use of an existing tag, it must have a name.
1850  assert((Name != 0 || TK == TK_Definition) &&
1851         "Nameless record must be a definition!");
1852
1853  TagDecl::TagKind Kind;
1854  switch (TagType) {
1855  default: assert(0 && "Unknown tag type!");
1856  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
1857  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
1858  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
1859  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
1860  }
1861
1862  // Two code paths: a new one for structs/unions/classes where we create
1863  //   separate decls for forward declarations, and an old (eventually to
1864  //   be removed) code path for enums.
1865  if (Kind != TagDecl::TK_enum)
1866    return ActOnTagStruct(S, Kind, TK, KWLoc, Name, NameLoc, Attr);
1867
1868  // If this is a named struct, check to see if there was a previous forward
1869  // declaration or definition.
1870  // Use ScopedDecl instead of TagDecl, because a NamespaceDecl may come up.
1871  ScopedDecl *PrevDecl =
1872    dyn_cast_or_null<ScopedDecl>(LookupDecl(Name, Decl::IDNS_Tag, S));
1873
1874  if (PrevDecl) {
1875    assert((isa<TagDecl>(PrevDecl) || isa<NamespaceDecl>(PrevDecl)) &&
1876            "unexpected Decl type");
1877    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
1878      // If this is a use of a previous tag, or if the tag is already declared
1879      // in the same scope (so that the definition/declaration completes or
1880      // rementions the tag), reuse the decl.
1881      if (TK == TK_Reference || isDeclInScope(PrevDecl, CurContext, S)) {
1882        // Make sure that this wasn't declared as an enum and now used as a
1883        // struct or something similar.
1884        if (PrevTagDecl->getTagKind() != Kind) {
1885          Diag(KWLoc, diag::err_use_with_wrong_tag, Name->getName());
1886          Diag(PrevDecl->getLocation(), diag::err_previous_use);
1887          // Recover by making this an anonymous redefinition.
1888          Name = 0;
1889          PrevDecl = 0;
1890        } else {
1891          // If this is a use or a forward declaration, we're good.
1892          if (TK != TK_Definition)
1893            return PrevDecl;
1894
1895          // Diagnose attempts to redefine a tag.
1896          if (PrevTagDecl->isDefinition()) {
1897            Diag(NameLoc, diag::err_redefinition, Name->getName());
1898            Diag(PrevDecl->getLocation(), diag::err_previous_definition);
1899            // If this is a redefinition, recover by making this struct be
1900            // anonymous, which will make any later references get the previous
1901            // definition.
1902            Name = 0;
1903          } else {
1904            // Okay, this is definition of a previously declared or referenced
1905            // tag. Move the location of the decl to be the definition site.
1906            PrevDecl->setLocation(NameLoc);
1907            return PrevDecl;
1908          }
1909        }
1910      }
1911      // If we get here, this is a definition of a new struct type in a nested
1912      // scope, e.g. "struct foo; void bar() { struct foo; }", just create a new
1913      // type.
1914    } else {
1915      // PrevDecl is a namespace.
1916      if (isDeclInScope(PrevDecl, CurContext, S)) {
1917        // The tag name clashes with a namespace name, issue an error and
1918        // recover by making this tag be anonymous.
1919        Diag(NameLoc, diag::err_redefinition_different_kind, Name->getName());
1920        Diag(PrevDecl->getLocation(), diag::err_previous_definition);
1921        Name = 0;
1922      }
1923    }
1924  }
1925
1926  // If there is an identifier, use the location of the identifier as the
1927  // location of the decl, otherwise use the location of the struct/union
1928  // keyword.
1929  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
1930
1931  // Otherwise, if this is the first time we've seen this tag, create the decl.
1932  TagDecl *New;
1933  if (Kind == TagDecl::TK_enum) {
1934    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
1935    // enum X { A, B, C } D;    D should chain to X.
1936    New = EnumDecl::Create(Context, CurContext, Loc, Name, 0);
1937    // If this is an undefined enum, warn.
1938    if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum);
1939  } else {
1940    // struct/union/class
1941
1942    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
1943    // struct X { int A; } D;    D should chain to X.
1944    if (getLangOptions().CPlusPlus)
1945      // FIXME: Look for a way to use RecordDecl for simple structs.
1946      New = CXXRecordDecl::Create(Context, Kind, CurContext, Loc, Name);
1947    else
1948      New = RecordDecl::Create(Context, Kind, CurContext, Loc, Name);
1949  }
1950
1951  // If this has an identifier, add it to the scope stack.
1952  if (Name) {
1953    // The scope passed in may not be a decl scope.  Zip up the scope tree until
1954    // we find one that is.
1955    while ((S->getFlags() & Scope::DeclScope) == 0)
1956      S = S->getParent();
1957
1958    // Add it to the decl chain.
1959    PushOnScopeChains(New, S);
1960  }
1961
1962  if (Attr)
1963    ProcessDeclAttributeList(New, Attr);
1964  return New;
1965}
1966
1967/// ActOnTagStruct - New "ActOnTag" logic for structs/unions/classes.  Unlike
1968///  the logic for enums, we create separate decls for forward declarations.
1969///  This is called by ActOnTag, but eventually will replace its logic.
1970Sema::DeclTy *Sema::ActOnTagStruct(Scope *S, TagDecl::TagKind Kind, TagKind TK,
1971                             SourceLocation KWLoc, IdentifierInfo *Name,
1972                             SourceLocation NameLoc, AttributeList *Attr) {
1973
1974  // If this is a named struct, check to see if there was a previous forward
1975  // declaration or definition.
1976  // Use ScopedDecl instead of TagDecl, because a NamespaceDecl may come up.
1977  ScopedDecl *PrevDecl =
1978    dyn_cast_or_null<ScopedDecl>(LookupDecl(Name, Decl::IDNS_Tag, S));
1979
1980  if (PrevDecl) {
1981    assert((isa<TagDecl>(PrevDecl) || isa<NamespaceDecl>(PrevDecl)) &&
1982           "unexpected Decl type");
1983
1984    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
1985      // If this is a use of a previous tag, or if the tag is already declared
1986      // in the same scope (so that the definition/declaration completes or
1987      // rementions the tag), reuse the decl.
1988      if (TK == TK_Reference || isDeclInScope(PrevDecl, CurContext, S)) {
1989        // Make sure that this wasn't declared as an enum and now used as a
1990        // struct or something similar.
1991        if (PrevTagDecl->getTagKind() != Kind) {
1992          Diag(KWLoc, diag::err_use_with_wrong_tag, Name->getName());
1993          Diag(PrevDecl->getLocation(), diag::err_previous_use);
1994          // Recover by making this an anonymous redefinition.
1995          Name = 0;
1996          PrevDecl = 0;
1997        } else {
1998          // If this is a use, return the original decl.
1999
2000          // FIXME: In the future, return a variant or some other clue
2001          //  for the consumer of this Decl to know it doesn't own it.
2002          //  For our current ASTs this shouldn't be a problem, but will
2003          //  need to be changed with DeclGroups.
2004          if (TK == TK_Reference)
2005            return PrevDecl;
2006
2007          // The new decl is a definition?
2008          if (TK == TK_Definition) {
2009            // Diagnose attempts to redefine a tag.
2010            if (RecordDecl* DefRecord =
2011                cast<RecordDecl>(PrevTagDecl)->getDefinition(Context)) {
2012              Diag(NameLoc, diag::err_redefinition, Name->getName());
2013              Diag(DefRecord->getLocation(), diag::err_previous_definition);
2014              // If this is a redefinition, recover by making this struct be
2015              // anonymous, which will make any later references get the previous
2016              // definition.
2017              Name = 0;
2018              PrevDecl = 0;
2019            }
2020            // Okay, this is definition of a previously declared or referenced
2021            // tag.  We're going to create a new Decl.
2022          }
2023        }
2024        // If we get here we have (another) forward declaration.  Just create
2025        // a new decl.
2026      }
2027      else {
2028        // If we get here, this is a definition of a new struct type in a nested
2029        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
2030        // new decl/type.  We set PrevDecl to NULL so that the Records
2031        // have distinct types.
2032        PrevDecl = 0;
2033      }
2034    } else {
2035      // PrevDecl is a namespace.
2036      if (isDeclInScope(PrevDecl, CurContext, S)) {
2037        // The tag name clashes with a namespace name, issue an error and
2038        // recover by making this tag be anonymous.
2039        Diag(NameLoc, diag::err_redefinition_different_kind, Name->getName());
2040        Diag(PrevDecl->getLocation(), diag::err_previous_definition);
2041        Name = 0;
2042      }
2043    }
2044  }
2045
2046  // If there is an identifier, use the location of the identifier as the
2047  // location of the decl, otherwise use the location of the struct/union
2048  // keyword.
2049  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
2050
2051  // Otherwise, if this is the first time we've seen this tag, create the decl.
2052  TagDecl *New;
2053
2054  // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
2055  // struct X { int A; } D;    D should chain to X.
2056  if (getLangOptions().CPlusPlus)
2057    // FIXME: Look for a way to use RecordDecl for simple structs.
2058    New = CXXRecordDecl::Create(Context, Kind, CurContext, Loc, Name,
2059                                dyn_cast_or_null<CXXRecordDecl>(PrevDecl));
2060  else
2061    New = RecordDecl::Create(Context, Kind, CurContext, Loc, Name,
2062                             dyn_cast_or_null<RecordDecl>(PrevDecl));
2063
2064  // If this has an identifier, add it to the scope stack.
2065  if ((TK == TK_Definition || !PrevDecl) && Name) {
2066    // The scope passed in may not be a decl scope.  Zip up the scope tree until
2067    // we find one that is.
2068    while ((S->getFlags() & Scope::DeclScope) == 0)
2069      S = S->getParent();
2070
2071    // Add it to the decl chain.
2072    PushOnScopeChains(New, S);
2073  }
2074
2075  // Handle #pragma pack: if the #pragma pack stack has non-default
2076  // alignment, make up a packed attribute for this decl. These
2077  // attributes are checked when the ASTContext lays out the
2078  // structure.
2079  //
2080  // It is important for implementing the correct semantics that this
2081  // happen here (in act on tag decl). The #pragma pack stack is
2082  // maintained as a result of parser callbacks which can occur at
2083  // many points during the parsing of a struct declaration (because
2084  // the #pragma tokens are effectively skipped over during the
2085  // parsing of the struct).
2086  if (unsigned Alignment = PackContext.getAlignment())
2087    New->addAttr(new PackedAttr(Alignment * 8));
2088
2089  if (Attr)
2090    ProcessDeclAttributeList(New, Attr);
2091
2092  return New;
2093}
2094
2095
2096/// Collect the instance variables declared in an Objective-C object.  Used in
2097/// the creation of structures from objects using the @defs directive.
2098static void CollectIvars(ObjCInterfaceDecl *Class, ASTContext& Ctx,
2099                         llvm::SmallVectorImpl<Sema::DeclTy*> &ivars) {
2100  if (Class->getSuperClass())
2101    CollectIvars(Class->getSuperClass(), Ctx, ivars);
2102
2103  // For each ivar, create a fresh ObjCAtDefsFieldDecl.
2104  for (ObjCInterfaceDecl::ivar_iterator
2105        I=Class->ivar_begin(), E=Class->ivar_end(); I!=E; ++I) {
2106
2107    ObjCIvarDecl* ID = *I;
2108    ivars.push_back(ObjCAtDefsFieldDecl::Create(Ctx, ID->getLocation(),
2109                                                ID->getIdentifier(),
2110                                                ID->getType(),
2111                                                ID->getBitWidth()));
2112  }
2113}
2114
2115/// Called whenever @defs(ClassName) is encountered in the source.  Inserts the
2116/// instance variables of ClassName into Decls.
2117void Sema::ActOnDefs(Scope *S, SourceLocation DeclStart,
2118                     IdentifierInfo *ClassName,
2119                     llvm::SmallVectorImpl<DeclTy*> &Decls) {
2120  // Check that ClassName is a valid class
2121  ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName);
2122  if (!Class) {
2123    Diag(DeclStart, diag::err_undef_interface, ClassName->getName());
2124    return;
2125  }
2126  // Collect the instance variables
2127  CollectIvars(Class, Context, Decls);
2128}
2129
2130QualType Sema::TryFixInvalidVariablyModifiedType(QualType T) {
2131  // This method tries to turn a variable array into a constant
2132  // array even when the size isn't an ICE.  This is necessary
2133  // for compatibility with code that depends on gcc's buggy
2134  // constant expression folding, like struct {char x[(int)(char*)2];}
2135  if (const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T)) {
2136    APValue Result;
2137    if (VLATy->getSizeExpr() &&
2138        VLATy->getSizeExpr()->tryEvaluate(Result, Context) && Result.isInt()) {
2139      llvm::APSInt &Res = Result.getInt();
2140      if (Res > llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
2141        return Context.getConstantArrayType(VLATy->getElementType(),
2142                                            Res, ArrayType::Normal, 0);
2143    }
2144  }
2145  return QualType();
2146}
2147
2148/// ActOnField - Each field of a struct/union/class is passed into this in order
2149/// to create a FieldDecl object for it.
2150Sema::DeclTy *Sema::ActOnField(Scope *S,
2151                               SourceLocation DeclStart,
2152                               Declarator &D, ExprTy *BitfieldWidth) {
2153  IdentifierInfo *II = D.getIdentifier();
2154  Expr *BitWidth = (Expr*)BitfieldWidth;
2155  SourceLocation Loc = DeclStart;
2156  if (II) Loc = D.getIdentifierLoc();
2157
2158  // FIXME: Unnamed fields can be handled in various different ways, for
2159  // example, unnamed unions inject all members into the struct namespace!
2160
2161  if (BitWidth) {
2162    // TODO: Validate.
2163    //printf("WARNING: BITFIELDS IGNORED!\n");
2164
2165    // 6.7.2.1p3
2166    // 6.7.2.1p4
2167
2168  } else {
2169    // Not a bitfield.
2170
2171    // validate II.
2172
2173  }
2174
2175  QualType T = GetTypeForDeclarator(D, S);
2176  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2177  bool InvalidDecl = false;
2178
2179  // C99 6.7.2.1p8: A member of a structure or union may have any type other
2180  // than a variably modified type.
2181  if (T->isVariablyModifiedType()) {
2182    QualType FixedTy = TryFixInvalidVariablyModifiedType(T);
2183    if (!FixedTy.isNull()) {
2184      Diag(Loc, diag::warn_illegal_constant_array_size, Loc);
2185      T = FixedTy;
2186    } else {
2187      // FIXME: This diagnostic needs work
2188      Diag(Loc, diag::err_typecheck_illegal_vla, Loc);
2189      InvalidDecl = true;
2190    }
2191  }
2192  // FIXME: Chain fielddecls together.
2193  FieldDecl *NewFD;
2194
2195  if (getLangOptions().CPlusPlus) {
2196    // FIXME: Replace CXXFieldDecls with FieldDecls for simple structs.
2197    NewFD = CXXFieldDecl::Create(Context, cast<CXXRecordDecl>(CurContext),
2198                                 Loc, II, T, BitWidth);
2199    if (II)
2200      PushOnScopeChains(NewFD, S);
2201  }
2202  else
2203    NewFD = FieldDecl::Create(Context, Loc, II, T, BitWidth);
2204
2205  ProcessDeclAttributes(NewFD, D);
2206
2207  if (D.getInvalidType() || InvalidDecl)
2208    NewFD->setInvalidDecl();
2209  return NewFD;
2210}
2211
2212/// TranslateIvarVisibility - Translate visibility from a token ID to an
2213///  AST enum value.
2214static ObjCIvarDecl::AccessControl
2215TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
2216  switch (ivarVisibility) {
2217  default: assert(0 && "Unknown visitibility kind");
2218  case tok::objc_private: return ObjCIvarDecl::Private;
2219  case tok::objc_public: return ObjCIvarDecl::Public;
2220  case tok::objc_protected: return ObjCIvarDecl::Protected;
2221  case tok::objc_package: return ObjCIvarDecl::Package;
2222  }
2223}
2224
2225/// ActOnIvar - Each ivar field of an objective-c class is passed into this
2226/// in order to create an IvarDecl object for it.
2227Sema::DeclTy *Sema::ActOnIvar(Scope *S,
2228                              SourceLocation DeclStart,
2229                              Declarator &D, ExprTy *BitfieldWidth,
2230                              tok::ObjCKeywordKind Visibility) {
2231  IdentifierInfo *II = D.getIdentifier();
2232  Expr *BitWidth = (Expr*)BitfieldWidth;
2233  SourceLocation Loc = DeclStart;
2234  if (II) Loc = D.getIdentifierLoc();
2235
2236  // FIXME: Unnamed fields can be handled in various different ways, for
2237  // example, unnamed unions inject all members into the struct namespace!
2238
2239
2240  if (BitWidth) {
2241    // TODO: Validate.
2242    //printf("WARNING: BITFIELDS IGNORED!\n");
2243
2244    // 6.7.2.1p3
2245    // 6.7.2.1p4
2246
2247  } else {
2248    // Not a bitfield.
2249
2250    // validate II.
2251
2252  }
2253
2254  QualType T = GetTypeForDeclarator(D, S);
2255  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2256  bool InvalidDecl = false;
2257
2258  // C99 6.7.2.1p8: A member of a structure or union may have any type other
2259  // than a variably modified type.
2260  if (T->isVariablyModifiedType()) {
2261    // FIXME: This diagnostic needs work
2262    Diag(Loc, diag::err_typecheck_illegal_vla, Loc);
2263    InvalidDecl = true;
2264  }
2265
2266  // Get the visibility (access control) for this ivar.
2267  ObjCIvarDecl::AccessControl ac =
2268    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
2269                                        : ObjCIvarDecl::None;
2270
2271  // Construct the decl.
2272  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, Loc, II, T, ac,
2273                                             (Expr *)BitfieldWidth);
2274
2275  // Process attributes attached to the ivar.
2276  ProcessDeclAttributes(NewID, D);
2277
2278  if (D.getInvalidType() || InvalidDecl)
2279    NewID->setInvalidDecl();
2280
2281  return NewID;
2282}
2283
2284void Sema::ActOnFields(Scope* S,
2285                       SourceLocation RecLoc, DeclTy *RecDecl,
2286                       DeclTy **Fields, unsigned NumFields,
2287                       SourceLocation LBrac, SourceLocation RBrac,
2288                       AttributeList *Attr) {
2289  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
2290  assert(EnclosingDecl && "missing record or interface decl");
2291  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
2292
2293  if (Record)
2294    if (RecordDecl* DefRecord = Record->getDefinition(Context)) {
2295      // Diagnose code like:
2296      //     struct S { struct S {} X; };
2297      // We discover this when we complete the outer S.  Reject and ignore the
2298      // outer S.
2299      Diag(DefRecord->getLocation(), diag::err_nested_redefinition,
2300           DefRecord->getKindName());
2301      Diag(RecLoc, diag::err_previous_definition);
2302      Record->setInvalidDecl();
2303      return;
2304    }
2305
2306  // Verify that all the fields are okay.
2307  unsigned NumNamedMembers = 0;
2308  llvm::SmallVector<FieldDecl*, 32> RecFields;
2309  llvm::SmallSet<const IdentifierInfo*, 32> FieldIDs;
2310
2311  for (unsigned i = 0; i != NumFields; ++i) {
2312
2313    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
2314    assert(FD && "missing field decl");
2315
2316    // Remember all fields.
2317    RecFields.push_back(FD);
2318
2319    // Get the type for the field.
2320    Type *FDTy = FD->getType().getTypePtr();
2321
2322    // C99 6.7.2.1p2 - A field may not be a function type.
2323    if (FDTy->isFunctionType()) {
2324      Diag(FD->getLocation(), diag::err_field_declared_as_function,
2325           FD->getName());
2326      FD->setInvalidDecl();
2327      EnclosingDecl->setInvalidDecl();
2328      continue;
2329    }
2330    // C99 6.7.2.1p2 - A field may not be an incomplete type except...
2331    if (FDTy->isIncompleteType()) {
2332      if (!Record) {  // Incomplete ivar type is always an error.
2333        Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName());
2334        FD->setInvalidDecl();
2335        EnclosingDecl->setInvalidDecl();
2336        continue;
2337      }
2338      if (i != NumFields-1 ||                   // ... that the last member ...
2339          !Record->isStruct() ||  // ... of a structure ...
2340          !FDTy->isArrayType()) {         //... may have incomplete array type.
2341        Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName());
2342        FD->setInvalidDecl();
2343        EnclosingDecl->setInvalidDecl();
2344        continue;
2345      }
2346      if (NumNamedMembers < 1) {  //... must have more than named member ...
2347        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct,
2348             FD->getName());
2349        FD->setInvalidDecl();
2350        EnclosingDecl->setInvalidDecl();
2351        continue;
2352      }
2353      // Okay, we have a legal flexible array member at the end of the struct.
2354      if (Record)
2355        Record->setHasFlexibleArrayMember(true);
2356    }
2357    /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
2358    /// field of another structure or the element of an array.
2359    if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
2360      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
2361        // If this is a member of a union, then entire union becomes "flexible".
2362        if (Record && Record->isUnion()) {
2363          Record->setHasFlexibleArrayMember(true);
2364        } else {
2365          // If this is a struct/class and this is not the last element, reject
2366          // it.  Note that GCC supports variable sized arrays in the middle of
2367          // structures.
2368          if (i != NumFields-1) {
2369            Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct,
2370                 FD->getName());
2371            FD->setInvalidDecl();
2372            EnclosingDecl->setInvalidDecl();
2373            continue;
2374          }
2375          // We support flexible arrays at the end of structs in other structs
2376          // as an extension.
2377          Diag(FD->getLocation(), diag::ext_flexible_array_in_struct,
2378               FD->getName());
2379          if (Record)
2380            Record->setHasFlexibleArrayMember(true);
2381        }
2382      }
2383    }
2384    /// A field cannot be an Objective-c object
2385    if (FDTy->isObjCInterfaceType()) {
2386      Diag(FD->getLocation(), diag::err_statically_allocated_object,
2387           FD->getName());
2388      FD->setInvalidDecl();
2389      EnclosingDecl->setInvalidDecl();
2390      continue;
2391    }
2392    // Keep track of the number of named members.
2393    if (IdentifierInfo *II = FD->getIdentifier()) {
2394      // Detect duplicate member names.
2395      if (!FieldIDs.insert(II)) {
2396        Diag(FD->getLocation(), diag::err_duplicate_member, II->getName());
2397        // Find the previous decl.
2398        SourceLocation PrevLoc;
2399        for (unsigned i = 0; ; ++i) {
2400          assert(i != RecFields.size() && "Didn't find previous def!");
2401          if (RecFields[i]->getIdentifier() == II) {
2402            PrevLoc = RecFields[i]->getLocation();
2403            break;
2404          }
2405        }
2406        Diag(PrevLoc, diag::err_previous_definition);
2407        FD->setInvalidDecl();
2408        EnclosingDecl->setInvalidDecl();
2409        continue;
2410      }
2411      ++NumNamedMembers;
2412    }
2413  }
2414
2415  // Okay, we successfully defined 'Record'.
2416  if (Record) {
2417    Record->defineBody(Context, &RecFields[0], RecFields.size());
2418    // If this is a C++ record, HandleTagDeclDefinition will be invoked in
2419    // Sema::ActOnFinishCXXClassDef.
2420    if (!isa<CXXRecordDecl>(Record))
2421      Consumer.HandleTagDeclDefinition(Record);
2422  } else {
2423    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
2424    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl))
2425      ID->addInstanceVariablesToClass(ClsFields, RecFields.size(), RBrac);
2426    else if (ObjCImplementationDecl *IMPDecl =
2427               dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
2428      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
2429      IMPDecl->ObjCAddInstanceVariablesToClassImpl(ClsFields, RecFields.size());
2430      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
2431    }
2432  }
2433
2434  if (Attr)
2435    ProcessDeclAttributeList(Record, Attr);
2436}
2437
2438Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
2439                                      DeclTy *lastEnumConst,
2440                                      SourceLocation IdLoc, IdentifierInfo *Id,
2441                                      SourceLocation EqualLoc, ExprTy *val) {
2442  EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
2443  EnumConstantDecl *LastEnumConst =
2444    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
2445  Expr *Val = static_cast<Expr*>(val);
2446
2447  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2448  // we find one that is.
2449  while ((S->getFlags() & Scope::DeclScope) == 0)
2450    S = S->getParent();
2451
2452  // Verify that there isn't already something declared with this name in this
2453  // scope.
2454  if (Decl *PrevDecl = LookupDecl(Id, Decl::IDNS_Ordinary, S)) {
2455    // When in C++, we may get a TagDecl with the same name; in this case the
2456    // enum constant will 'hide' the tag.
2457    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
2458           "Received TagDecl when not in C++!");
2459    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
2460      if (isa<EnumConstantDecl>(PrevDecl))
2461        Diag(IdLoc, diag::err_redefinition_of_enumerator, Id->getName());
2462      else
2463        Diag(IdLoc, diag::err_redefinition, Id->getName());
2464      Diag(PrevDecl->getLocation(), diag::err_previous_definition);
2465      delete Val;
2466      return 0;
2467    }
2468  }
2469
2470  llvm::APSInt EnumVal(32);
2471  QualType EltTy;
2472  if (Val) {
2473    // Make sure to promote the operand type to int.
2474    UsualUnaryConversions(Val);
2475
2476    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
2477    SourceLocation ExpLoc;
2478    if (!Val->isIntegerConstantExpr(EnumVal, Context, &ExpLoc)) {
2479      Diag(ExpLoc, diag::err_enum_value_not_integer_constant_expr,
2480           Id->getName());
2481      delete Val;
2482      Val = 0;  // Just forget about it.
2483    } else {
2484      EltTy = Val->getType();
2485    }
2486  }
2487
2488  if (!Val) {
2489    if (LastEnumConst) {
2490      // Assign the last value + 1.
2491      EnumVal = LastEnumConst->getInitVal();
2492      ++EnumVal;
2493
2494      // Check for overflow on increment.
2495      if (EnumVal < LastEnumConst->getInitVal())
2496        Diag(IdLoc, diag::warn_enum_value_overflow);
2497
2498      EltTy = LastEnumConst->getType();
2499    } else {
2500      // First value, set to zero.
2501      EltTy = Context.IntTy;
2502      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
2503    }
2504  }
2505
2506  EnumConstantDecl *New =
2507    EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy,
2508                             Val, EnumVal,
2509                             LastEnumConst);
2510
2511  // Register this decl in the current scope stack.
2512  PushOnScopeChains(New, S);
2513  return New;
2514}
2515
2516// FIXME: For consistency with ActOnFields(), we should have the parser
2517// pass in the source location for the left/right braces.
2518void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
2519                         DeclTy **Elements, unsigned NumElements) {
2520  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
2521
2522  if (Enum && Enum->isDefinition()) {
2523    // Diagnose code like:
2524    //   enum e0 {
2525    //     E0 = sizeof(enum e0 { E1 })
2526    //   };
2527    Diag(Enum->getLocation(), diag::err_nested_redefinition,
2528         Enum->getName());
2529    Diag(EnumLoc, diag::err_previous_definition);
2530    Enum->setInvalidDecl();
2531    return;
2532  }
2533  // TODO: If the result value doesn't fit in an int, it must be a long or long
2534  // long value.  ISO C does not support this, but GCC does as an extension,
2535  // emit a warning.
2536  unsigned IntWidth = Context.Target.getIntWidth();
2537
2538  // Verify that all the values are okay, compute the size of the values, and
2539  // reverse the list.
2540  unsigned NumNegativeBits = 0;
2541  unsigned NumPositiveBits = 0;
2542
2543  // Keep track of whether all elements have type int.
2544  bool AllElementsInt = true;
2545
2546  EnumConstantDecl *EltList = 0;
2547  for (unsigned i = 0; i != NumElements; ++i) {
2548    EnumConstantDecl *ECD =
2549      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
2550    if (!ECD) continue;  // Already issued a diagnostic.
2551
2552    // If the enum value doesn't fit in an int, emit an extension warning.
2553    const llvm::APSInt &InitVal = ECD->getInitVal();
2554    assert(InitVal.getBitWidth() >= IntWidth &&
2555           "Should have promoted value to int");
2556    if (InitVal.getBitWidth() > IntWidth) {
2557      llvm::APSInt V(InitVal);
2558      V.trunc(IntWidth);
2559      V.extend(InitVal.getBitWidth());
2560      if (V != InitVal)
2561        Diag(ECD->getLocation(), diag::ext_enum_value_not_int,
2562             InitVal.toString(10));
2563    }
2564
2565    // Keep track of the size of positive and negative values.
2566    if (InitVal.isUnsigned() || InitVal.isNonNegative())
2567      NumPositiveBits = std::max(NumPositiveBits,
2568                                 (unsigned)InitVal.getActiveBits());
2569    else
2570      NumNegativeBits = std::max(NumNegativeBits,
2571                                 (unsigned)InitVal.getMinSignedBits());
2572
2573    // Keep track of whether every enum element has type int (very commmon).
2574    if (AllElementsInt)
2575      AllElementsInt = ECD->getType() == Context.IntTy;
2576
2577    ECD->setNextDeclarator(EltList);
2578    EltList = ECD;
2579  }
2580
2581  // Figure out the type that should be used for this enum.
2582  // FIXME: Support attribute(packed) on enums and -fshort-enums.
2583  QualType BestType;
2584  unsigned BestWidth;
2585
2586  if (NumNegativeBits) {
2587    // If there is a negative value, figure out the smallest integer type (of
2588    // int/long/longlong) that fits.
2589    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
2590      BestType = Context.IntTy;
2591      BestWidth = IntWidth;
2592    } else {
2593      BestWidth = Context.Target.getLongWidth();
2594
2595      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
2596        BestType = Context.LongTy;
2597      else {
2598        BestWidth = Context.Target.getLongLongWidth();
2599
2600        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
2601          Diag(Enum->getLocation(), diag::warn_enum_too_large);
2602        BestType = Context.LongLongTy;
2603      }
2604    }
2605  } else {
2606    // If there is no negative value, figure out which of uint, ulong, ulonglong
2607    // fits.
2608    if (NumPositiveBits <= IntWidth) {
2609      BestType = Context.UnsignedIntTy;
2610      BestWidth = IntWidth;
2611    } else if (NumPositiveBits <=
2612               (BestWidth = Context.Target.getLongWidth())) {
2613      BestType = Context.UnsignedLongTy;
2614    } else {
2615      BestWidth = Context.Target.getLongLongWidth();
2616      assert(NumPositiveBits <= BestWidth &&
2617             "How could an initializer get larger than ULL?");
2618      BestType = Context.UnsignedLongLongTy;
2619    }
2620  }
2621
2622  // Loop over all of the enumerator constants, changing their types to match
2623  // the type of the enum if needed.
2624  for (unsigned i = 0; i != NumElements; ++i) {
2625    EnumConstantDecl *ECD =
2626      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
2627    if (!ECD) continue;  // Already issued a diagnostic.
2628
2629    // Standard C says the enumerators have int type, but we allow, as an
2630    // extension, the enumerators to be larger than int size.  If each
2631    // enumerator value fits in an int, type it as an int, otherwise type it the
2632    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
2633    // that X has type 'int', not 'unsigned'.
2634    if (ECD->getType() == Context.IntTy) {
2635      // Make sure the init value is signed.
2636      llvm::APSInt IV = ECD->getInitVal();
2637      IV.setIsSigned(true);
2638      ECD->setInitVal(IV);
2639      continue;  // Already int type.
2640    }
2641
2642    // Determine whether the value fits into an int.
2643    llvm::APSInt InitVal = ECD->getInitVal();
2644    bool FitsInInt;
2645    if (InitVal.isUnsigned() || !InitVal.isNegative())
2646      FitsInInt = InitVal.getActiveBits() < IntWidth;
2647    else
2648      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
2649
2650    // If it fits into an integer type, force it.  Otherwise force it to match
2651    // the enum decl type.
2652    QualType NewTy;
2653    unsigned NewWidth;
2654    bool NewSign;
2655    if (FitsInInt) {
2656      NewTy = Context.IntTy;
2657      NewWidth = IntWidth;
2658      NewSign = true;
2659    } else if (ECD->getType() == BestType) {
2660      // Already the right type!
2661      continue;
2662    } else {
2663      NewTy = BestType;
2664      NewWidth = BestWidth;
2665      NewSign = BestType->isSignedIntegerType();
2666    }
2667
2668    // Adjust the APSInt value.
2669    InitVal.extOrTrunc(NewWidth);
2670    InitVal.setIsSigned(NewSign);
2671    ECD->setInitVal(InitVal);
2672
2673    // Adjust the Expr initializer and type.
2674    ECD->setInitExpr(new ImplicitCastExpr(NewTy, ECD->getInitExpr()));
2675    ECD->setType(NewTy);
2676  }
2677
2678  Enum->defineElements(EltList, BestType);
2679  Consumer.HandleTagDeclDefinition(Enum);
2680}
2681
2682Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
2683                                          ExprTy *expr) {
2684  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr);
2685
2686  return FileScopeAsmDecl::Create(Context, Loc, AsmString);
2687}
2688
2689Sema::DeclTy* Sema::ActOnLinkageSpec(SourceLocation Loc,
2690                                     SourceLocation LBrace,
2691                                     SourceLocation RBrace,
2692                                     const char *Lang,
2693                                     unsigned StrSize,
2694                                     DeclTy *D) {
2695  LinkageSpecDecl::LanguageIDs Language;
2696  Decl *dcl = static_cast<Decl *>(D);
2697  if (strncmp(Lang, "\"C\"", StrSize) == 0)
2698    Language = LinkageSpecDecl::lang_c;
2699  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
2700    Language = LinkageSpecDecl::lang_cxx;
2701  else {
2702    Diag(Loc, diag::err_bad_language);
2703    return 0;
2704  }
2705
2706  // FIXME: Add all the various semantics of linkage specifications
2707  return LinkageSpecDecl::Create(Context, Loc, Language, dcl);
2708}
2709
2710void Sema::ActOnPragmaPack(PragmaPackKind Kind, IdentifierInfo *Name,
2711                           ExprTy *alignment, SourceLocation PragmaLoc,
2712                           SourceLocation LParenLoc, SourceLocation RParenLoc) {
2713  Expr *Alignment = static_cast<Expr *>(alignment);
2714
2715  // If specified then alignment must be a "small" power of two.
2716  unsigned AlignmentVal = 0;
2717  if (Alignment) {
2718    llvm::APSInt Val;
2719    if (!Alignment->isIntegerConstantExpr(Val, Context) ||
2720        !Val.isPowerOf2() ||
2721        Val.getZExtValue() > 16) {
2722      Diag(PragmaLoc, diag::warn_pragma_pack_invalid_alignment);
2723      delete Alignment;
2724      return; // Ignore
2725    }
2726
2727    AlignmentVal = (unsigned) Val.getZExtValue();
2728  }
2729
2730  switch (Kind) {
2731  case Action::PPK_Default: // pack([n])
2732    PackContext.setAlignment(AlignmentVal);
2733    break;
2734
2735  case Action::PPK_Show: // pack(show)
2736    // Show the current alignment, making sure to show the right value
2737    // for the default.
2738    AlignmentVal = PackContext.getAlignment();
2739    // FIXME: This should come from the target.
2740    if (AlignmentVal == 0)
2741      AlignmentVal = 8;
2742    Diag(PragmaLoc, diag::warn_pragma_pack_show, llvm::utostr(AlignmentVal));
2743    break;
2744
2745  case Action::PPK_Push: // pack(push [, id] [, [n])
2746    PackContext.push(Name);
2747    // Set the new alignment if specified.
2748    if (Alignment)
2749      PackContext.setAlignment(AlignmentVal);
2750    break;
2751
2752  case Action::PPK_Pop: // pack(pop [, id] [,  n])
2753    // MSDN, C/C++ Preprocessor Reference > Pragma Directives > pack:
2754    // "#pragma pack(pop, identifier, n) is undefined"
2755    if (Alignment && Name)
2756      Diag(PragmaLoc, diag::warn_pragma_pack_pop_identifer_and_alignment);
2757
2758    // Do the pop.
2759    if (!PackContext.pop(Name)) {
2760      // If a name was specified then failure indicates the name
2761      // wasn't found. Otherwise failure indicates the stack was
2762      // empty.
2763      Diag(PragmaLoc, diag::warn_pragma_pack_pop_failed,
2764           Name ? "no record matching name" : "stack empty");
2765
2766      // FIXME: Warn about popping named records as MSVC does.
2767    } else {
2768      // Pop succeeded, set the new alignment if specified.
2769      if (Alignment)
2770        PackContext.setAlignment(AlignmentVal);
2771    }
2772    break;
2773
2774  default:
2775    assert(0 && "Invalid #pragma pack kind.");
2776  }
2777}
2778
2779bool PragmaPackStack::pop(IdentifierInfo *Name) {
2780  if (Stack.empty())
2781    return false;
2782
2783  // If name is empty just pop top.
2784  if (!Name) {
2785    Alignment = Stack.back().first;
2786    Stack.pop_back();
2787    return true;
2788  }
2789
2790  // Otherwise, find the named record.
2791  for (unsigned i = Stack.size(); i != 0; ) {
2792    --i;
2793    if (strcmp(Stack[i].second.c_str(), Name->getName()) == 0) {
2794      // Found it, pop up to and including this record.
2795      Alignment = Stack[i].first;
2796      Stack.erase(Stack.begin() + i, Stack.end());
2797      return true;
2798    }
2799  }
2800
2801  return false;
2802}
2803