SemaDecl.cpp revision 4c921ae760cbdd9270c16d48417d7d527eb0ceb8
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/Parse/DeclSpec.h"
21#include "clang/Basic/TargetInfo.h"
22#include "clang/Basic/SourceManager.h"
23// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
24#include "clang/Lex/Preprocessor.h"
25#include "clang/Lex/HeaderSearch.h"
26#include "llvm/ADT/SmallSet.h"
27#include "llvm/ADT/STLExtras.h"
28#include <algorithm>
29#include <functional>
30
31using namespace clang;
32
33Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, Scope *S,
34                                const CXXScopeSpec *SS) {
35  Decl *IIDecl = 0;
36  LookupResult Result = LookupParsedName(S, SS, &II, LookupOrdinaryName, false);
37  switch (Result.getKind()) {
38    case LookupResult::NotFound:
39    case LookupResult::FoundOverloaded:
40    case LookupResult::AmbiguousBaseSubobjectTypes:
41    case LookupResult::AmbiguousBaseSubobjects:
42      // FIXME: In the event of an ambiguous lookup, we could visit all of
43      // the entities found to determine whether they are all types. This
44      // might provide better diagnostics.
45      return 0;
46    case LookupResult::Found:
47      IIDecl = Result.getAsDecl();
48      break;
49  }
50
51  if (IIDecl) {
52    if (isa<TypedefDecl>(IIDecl) ||
53        isa<ObjCInterfaceDecl>(IIDecl) ||
54        isa<TagDecl>(IIDecl) ||
55        isa<TemplateTypeParmDecl>(IIDecl))
56      return IIDecl;
57  }
58  return 0;
59}
60
61DeclContext *Sema::getContainingDC(DeclContext *DC) {
62  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
63    // A C++ out-of-line method will return to the file declaration context.
64    if (MD->isOutOfLineDefinition())
65      return MD->getLexicalDeclContext();
66
67    // A C++ inline method is parsed *after* the topmost class it was declared in
68    // is fully parsed (it's "complete").
69    // The parsing of a C++ inline method happens at the declaration context of
70    // the topmost (non-nested) class it is lexically declared in.
71    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
72    DC = MD->getParent();
73    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
74      DC = RD;
75
76    // Return the declaration context of the topmost class the inline method is
77    // declared in.
78    return DC;
79  }
80
81  if (isa<ObjCMethodDecl>(DC))
82    return Context.getTranslationUnitDecl();
83
84  if (Decl *D = dyn_cast<Decl>(DC))
85    return D->getLexicalDeclContext();
86
87  return DC->getLexicalParent();
88}
89
90void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
91  assert(getContainingDC(DC) == CurContext &&
92      "The next DeclContext should be lexically contained in the current one.");
93  CurContext = DC;
94  S->setEntity(DC);
95}
96
97void Sema::PopDeclContext() {
98  assert(CurContext && "DeclContext imbalance!");
99
100  CurContext = getContainingDC(CurContext);
101}
102
103/// Add this decl to the scope shadowed decl chains.
104void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
105  // Move up the scope chain until we find the nearest enclosing
106  // non-transparent context. The declaration will be introduced into this
107  // scope.
108  while (S->getEntity() &&
109         ((DeclContext *)S->getEntity())->isTransparentContext())
110    S = S->getParent();
111
112  S->AddDecl(D);
113
114  // Add scoped declarations into their context, so that they can be
115  // found later. Declarations without a context won't be inserted
116  // into any context.
117  CurContext->addDecl(D);
118
119  // C++ [basic.scope]p4:
120  //   -- exactly one declaration shall declare a class name or
121  //   enumeration name that is not a typedef name and the other
122  //   declarations shall all refer to the same object or
123  //   enumerator, or all refer to functions and function templates;
124  //   in this case the class name or enumeration name is hidden.
125  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
126    // We are pushing the name of a tag (enum or class).
127    if (CurContext->getLookupContext()
128          == TD->getDeclContext()->getLookupContext()) {
129      // We're pushing the tag into the current context, which might
130      // require some reshuffling in the identifier resolver.
131      IdentifierResolver::iterator
132        I = IdResolver.begin(TD->getDeclName()),
133        IEnd = IdResolver.end();
134      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
135        NamedDecl *PrevDecl = *I;
136        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
137             PrevDecl = *I, ++I) {
138          if (TD->declarationReplaces(*I)) {
139            // This is a redeclaration. Remove it from the chain and
140            // break out, so that we'll add in the shadowed
141            // declaration.
142            S->RemoveDecl(*I);
143            if (PrevDecl == *I) {
144              IdResolver.RemoveDecl(*I);
145              IdResolver.AddDecl(TD);
146              return;
147            } else {
148              IdResolver.RemoveDecl(*I);
149              break;
150            }
151          }
152        }
153
154        // There is already a declaration with the same name in the same
155        // scope, which is not a tag declaration. It must be found
156        // before we find the new declaration, so insert the new
157        // declaration at the end of the chain.
158        IdResolver.AddShadowedDecl(TD, PrevDecl);
159
160        return;
161      }
162    }
163  } else if (getLangOptions().CPlusPlus && isa<FunctionDecl>(D)) {
164    // We are pushing the name of a function, which might be an
165    // overloaded name.
166    FunctionDecl *FD = cast<FunctionDecl>(D);
167    IdentifierResolver::iterator Redecl
168      = std::find_if(IdResolver.begin(FD->getDeclName()),
169                     IdResolver.end(),
170                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
171                                  FD));
172    if (Redecl != IdResolver.end()) {
173      // There is already a declaration of a function on our
174      // IdResolver chain. Replace it with this declaration.
175      S->RemoveDecl(*Redecl);
176      IdResolver.RemoveDecl(*Redecl);
177    }
178  }
179
180  IdResolver.AddDecl(D);
181}
182
183void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
184  if (S->decl_empty()) return;
185  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
186	 "Scope shouldn't contain decls!");
187
188  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
189       I != E; ++I) {
190    Decl *TmpD = static_cast<Decl*>(*I);
191    assert(TmpD && "This decl didn't get pushed??");
192
193    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
194    NamedDecl *D = cast<NamedDecl>(TmpD);
195
196    if (!D->getDeclName()) continue;
197
198    // Remove this name from our lexical scope.
199    IdResolver.RemoveDecl(D);
200  }
201}
202
203/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
204/// return 0 if one not found.
205ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
206  // The third "scope" argument is 0 since we aren't enabling lazy built-in
207  // creation from this context.
208  Decl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
209
210  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
211}
212
213/// getNonFieldDeclScope - Retrieves the innermost scope, starting
214/// from S, where a non-field would be declared. This routine copes
215/// with the difference between C and C++ scoping rules in structs and
216/// unions. For example, the following code is well-formed in C but
217/// ill-formed in C++:
218/// @code
219/// struct S6 {
220///   enum { BAR } e;
221/// };
222///
223/// void test_S6() {
224///   struct S6 a;
225///   a.e = BAR;
226/// }
227/// @endcode
228/// For the declaration of BAR, this routine will return a different
229/// scope. The scope S will be the scope of the unnamed enumeration
230/// within S6. In C++, this routine will return the scope associated
231/// with S6, because the enumeration's scope is a transparent
232/// context but structures can contain non-field names. In C, this
233/// routine will return the translation unit scope, since the
234/// enumeration's scope is a transparent context and structures cannot
235/// contain non-field names.
236Scope *Sema::getNonFieldDeclScope(Scope *S) {
237  while (((S->getFlags() & Scope::DeclScope) == 0) ||
238         (S->getEntity() &&
239          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
240         (S->isClassScope() && !getLangOptions().CPlusPlus))
241    S = S->getParent();
242  return S;
243}
244
245void Sema::InitBuiltinVaListType() {
246  if (!Context.getBuiltinVaListType().isNull())
247    return;
248
249  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
250  Decl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
251  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
252  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
253}
254
255/// LazilyCreateBuiltin - The specified Builtin-ID was first used at file scope.
256/// lazily create a decl for it.
257NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
258                                     Scope *S) {
259  Builtin::ID BID = (Builtin::ID)bid;
260
261  if (Context.BuiltinInfo.hasVAListUse(BID))
262    InitBuiltinVaListType();
263
264  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context);
265  FunctionDecl *New = FunctionDecl::Create(Context,
266                                           Context.getTranslationUnitDecl(),
267                                           SourceLocation(), II, R,
268                                           FunctionDecl::Extern, false);
269
270  // Create Decl objects for each parameter, adding them to the
271  // FunctionDecl.
272  if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(R)) {
273    llvm::SmallVector<ParmVarDecl*, 16> Params;
274    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
275      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
276                                           FT->getArgType(i), VarDecl::None, 0));
277    New->setParams(Context, &Params[0], Params.size());
278  }
279
280
281
282  // TUScope is the translation-unit scope to insert this function into.
283  // FIXME: This is hideous. We need to teach PushOnScopeChains to
284  // relate Scopes to DeclContexts, and probably eliminate CurContext
285  // entirely, but we're not there yet.
286  DeclContext *SavedContext = CurContext;
287  CurContext = Context.getTranslationUnitDecl();
288  PushOnScopeChains(New, TUScope);
289  CurContext = SavedContext;
290  return New;
291}
292
293/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
294/// everything from the standard library is defined.
295NamespaceDecl *Sema::GetStdNamespace() {
296  if (!StdNamespace) {
297    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
298    DeclContext *Global = Context.getTranslationUnitDecl();
299    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
300    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
301  }
302  return StdNamespace;
303}
304
305/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the same name
306/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
307/// situation, merging decls or emitting diagnostics as appropriate.
308///
309TypedefDecl *Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
310  bool objc_types = false;
311  // Allow multiple definitions for ObjC built-in typedefs.
312  // FIXME: Verify the underlying types are equivalent!
313  if (getLangOptions().ObjC1) {
314    const IdentifierInfo *TypeID = New->getIdentifier();
315    switch (TypeID->getLength()) {
316    default: break;
317    case 2:
318      if (!TypeID->isStr("id"))
319        break;
320      Context.setObjCIdType(New);
321      objc_types = true;
322      break;
323    case 5:
324      if (!TypeID->isStr("Class"))
325        break;
326      Context.setObjCClassType(New);
327      objc_types = true;
328      return New;
329    case 3:
330      if (!TypeID->isStr("SEL"))
331        break;
332      Context.setObjCSelType(New);
333      objc_types = true;
334      return New;
335    case 8:
336      if (!TypeID->isStr("Protocol"))
337        break;
338      Context.setObjCProtoType(New->getUnderlyingType());
339      objc_types = true;
340      return New;
341    }
342    // Fall through - the typedef name was not a builtin type.
343  }
344  // Verify the old decl was also a type.
345  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
346  if (!Old) {
347    Diag(New->getLocation(), diag::err_redefinition_different_kind)
348      << New->getDeclName();
349    if (!objc_types)
350      Diag(OldD->getLocation(), diag::note_previous_definition);
351    return New;
352  }
353
354  // Determine the "old" type we'll use for checking and diagnostics.
355  QualType OldType;
356  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
357    OldType = OldTypedef->getUnderlyingType();
358  else
359    OldType = Context.getTypeDeclType(Old);
360
361  // If the typedef types are not identical, reject them in all languages and
362  // with any extensions enabled.
363
364  if (OldType != New->getUnderlyingType() &&
365      Context.getCanonicalType(OldType) !=
366      Context.getCanonicalType(New->getUnderlyingType())) {
367    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
368      << New->getUnderlyingType() << OldType;
369    if (!objc_types)
370      Diag(Old->getLocation(), diag::note_previous_definition);
371    return New;
372  }
373  if (objc_types) return New;
374  if (getLangOptions().Microsoft) return New;
375
376  // C++ [dcl.typedef]p2:
377  //   In a given non-class scope, a typedef specifier can be used to
378  //   redefine the name of any type declared in that scope to refer
379  //   to the type to which it already refers.
380  if (getLangOptions().CPlusPlus && !isa<CXXRecordDecl>(CurContext))
381    return New;
382
383  // In C, redeclaration of a type is a constraint violation (6.7.2.3p1).
384  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
385  // *either* declaration is in a system header. The code below implements
386  // this adhoc compatibility rule. FIXME: The following code will not
387  // work properly when compiling ".i" files (containing preprocessed output).
388  if (PP.getDiagnostics().getSuppressSystemWarnings()) {
389    SourceManager &SrcMgr = Context.getSourceManager();
390    if (SrcMgr.isInSystemHeader(Old->getLocation()))
391      return New;
392    if (SrcMgr.isInSystemHeader(New->getLocation()))
393      return New;
394  }
395
396  Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
397  Diag(Old->getLocation(), diag::note_previous_definition);
398  return New;
399}
400
401/// DeclhasAttr - returns true if decl Declaration already has the target
402/// attribute.
403static bool DeclHasAttr(const Decl *decl, const Attr *target) {
404  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
405    if (attr->getKind() == target->getKind())
406      return true;
407
408  return false;
409}
410
411/// MergeAttributes - append attributes from the Old decl to the New one.
412static void MergeAttributes(Decl *New, Decl *Old) {
413  Attr *attr = const_cast<Attr*>(Old->getAttrs()), *tmp;
414
415  while (attr) {
416     tmp = attr;
417     attr = attr->getNext();
418
419    if (!DeclHasAttr(New, tmp)) {
420       tmp->setInherited(true);
421       New->addAttr(tmp);
422    } else {
423       tmp->setNext(0);
424       delete(tmp);
425    }
426  }
427
428  Old->invalidateAttrs();
429}
430
431/// MergeFunctionDecl - We just parsed a function 'New' from
432/// declarator D which has the same name and scope as a previous
433/// declaration 'Old'.  Figure out how to resolve this situation,
434/// merging decls or emitting diagnostics as appropriate.
435/// Redeclaration will be set true if this New is a redeclaration OldD.
436///
437/// In C++, New and Old must be declarations that are not
438/// overloaded. Use IsOverload to determine whether New and Old are
439/// overloaded, and to select the Old declaration that New should be
440/// merged with.
441FunctionDecl *
442Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, bool &Redeclaration) {
443  assert(!isa<OverloadedFunctionDecl>(OldD) &&
444         "Cannot merge with an overloaded function declaration");
445
446  Redeclaration = false;
447  // Verify the old decl was also a function.
448  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
449  if (!Old) {
450    Diag(New->getLocation(), diag::err_redefinition_different_kind)
451      << New->getDeclName();
452    Diag(OldD->getLocation(), diag::note_previous_definition);
453    return New;
454  }
455
456  // Determine whether the previous declaration was a definition,
457  // implicit declaration, or a declaration.
458  diag::kind PrevDiag;
459  if (Old->isThisDeclarationADefinition())
460    PrevDiag = diag::note_previous_definition;
461  else if (Old->isImplicit())
462    PrevDiag = diag::note_previous_implicit_declaration;
463  else
464    PrevDiag = diag::note_previous_declaration;
465
466  QualType OldQType = Context.getCanonicalType(Old->getType());
467  QualType NewQType = Context.getCanonicalType(New->getType());
468
469  if (getLangOptions().CPlusPlus) {
470    // (C++98 13.1p2):
471    //   Certain function declarations cannot be overloaded:
472    //     -- Function declarations that differ only in the return type
473    //        cannot be overloaded.
474    QualType OldReturnType
475      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
476    QualType NewReturnType
477      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
478    if (OldReturnType != NewReturnType) {
479      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
480      Diag(Old->getLocation(), PrevDiag);
481      Redeclaration = true;
482      return New;
483    }
484
485    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
486    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
487    if (OldMethod && NewMethod) {
488      //    -- Member function declarations with the same name and the
489      //       same parameter types cannot be overloaded if any of them
490      //       is a static member function declaration.
491      if (OldMethod->isStatic() || NewMethod->isStatic()) {
492        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
493        Diag(Old->getLocation(), PrevDiag);
494        return New;
495      }
496
497      // C++ [class.mem]p1:
498      //   [...] A member shall not be declared twice in the
499      //   member-specification, except that a nested class or member
500      //   class template can be declared and then later defined.
501      if (OldMethod->getLexicalDeclContext() ==
502            NewMethod->getLexicalDeclContext()) {
503        unsigned NewDiag;
504        if (isa<CXXConstructorDecl>(OldMethod))
505          NewDiag = diag::err_constructor_redeclared;
506        else if (isa<CXXDestructorDecl>(NewMethod))
507          NewDiag = diag::err_destructor_redeclared;
508        else if (isa<CXXConversionDecl>(NewMethod))
509          NewDiag = diag::err_conv_function_redeclared;
510        else
511          NewDiag = diag::err_member_redeclared;
512
513        Diag(New->getLocation(), NewDiag);
514        Diag(Old->getLocation(), PrevDiag);
515      }
516    }
517
518    // (C++98 8.3.5p3):
519    //   All declarations for a function shall agree exactly in both the
520    //   return type and the parameter-type-list.
521    if (OldQType == NewQType) {
522      // We have a redeclaration.
523      MergeAttributes(New, Old);
524      Redeclaration = true;
525      return MergeCXXFunctionDecl(New, Old);
526    }
527
528    // Fall through for conflicting redeclarations and redefinitions.
529  }
530
531  // C: Function types need to be compatible, not identical. This handles
532  // duplicate function decls like "void f(int); void f(enum X);" properly.
533  if (!getLangOptions().CPlusPlus &&
534      Context.typesAreCompatible(OldQType, NewQType)) {
535    MergeAttributes(New, Old);
536    Redeclaration = true;
537    return New;
538  }
539
540  // A function that has already been declared has been redeclared or defined
541  // with a different type- show appropriate diagnostic
542
543  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
544  // TODO: This is totally simplistic.  It should handle merging functions
545  // together etc, merging extern int X; int X; ...
546  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
547  Diag(Old->getLocation(), PrevDiag);
548  return New;
549}
550
551/// Predicate for C "tentative" external object definitions (C99 6.9.2).
552static bool isTentativeDefinition(VarDecl *VD) {
553  if (VD->isFileVarDecl())
554    return (!VD->getInit() &&
555            (VD->getStorageClass() == VarDecl::None ||
556             VD->getStorageClass() == VarDecl::Static));
557  return false;
558}
559
560/// CheckForFileScopedRedefinitions - Make sure we forgo redefinition errors
561/// when dealing with C "tentative" external object definitions (C99 6.9.2).
562void Sema::CheckForFileScopedRedefinitions(Scope *S, VarDecl *VD) {
563  bool VDIsTentative = isTentativeDefinition(VD);
564  bool VDIsIncompleteArray = VD->getType()->isIncompleteArrayType();
565
566  // FIXME: I don't think this will actually see all of the
567  // redefinitions. Can't we check this property on-the-fly?
568  for (IdentifierResolver::iterator I = IdResolver.begin(VD->getIdentifier()),
569                                    E = IdResolver.end();
570       I != E; ++I) {
571    if (*I != VD && isDeclInScope(*I, VD->getDeclContext(), S)) {
572      VarDecl *OldDecl = dyn_cast<VarDecl>(*I);
573
574      // Handle the following case:
575      //   int a[10];
576      //   int a[];   - the code below makes sure we set the correct type.
577      //   int a[11]; - this is an error, size isn't 10.
578      if (OldDecl && VDIsTentative && VDIsIncompleteArray &&
579          OldDecl->getType()->isConstantArrayType())
580        VD->setType(OldDecl->getType());
581
582      // Check for "tentative" definitions. We can't accomplish this in
583      // MergeVarDecl since the initializer hasn't been attached.
584      if (!OldDecl || isTentativeDefinition(OldDecl) || VDIsTentative)
585        continue;
586
587      // Handle __private_extern__ just like extern.
588      if (OldDecl->getStorageClass() != VarDecl::Extern &&
589          OldDecl->getStorageClass() != VarDecl::PrivateExtern &&
590          VD->getStorageClass() != VarDecl::Extern &&
591          VD->getStorageClass() != VarDecl::PrivateExtern) {
592        Diag(VD->getLocation(), diag::err_redefinition) << VD->getDeclName();
593        Diag(OldDecl->getLocation(), diag::note_previous_definition);
594      }
595    }
596  }
597}
598
599/// MergeVarDecl - We just parsed a variable 'New' which has the same name
600/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
601/// situation, merging decls or emitting diagnostics as appropriate.
602///
603/// Tentative definition rules (C99 6.9.2p2) are checked by
604/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
605/// definitions here, since the initializer hasn't been attached.
606///
607VarDecl *Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
608  // Verify the old decl was also a variable.
609  VarDecl *Old = dyn_cast<VarDecl>(OldD);
610  if (!Old) {
611    Diag(New->getLocation(), diag::err_redefinition_different_kind)
612      << New->getDeclName();
613    Diag(OldD->getLocation(), diag::note_previous_definition);
614    return New;
615  }
616
617  MergeAttributes(New, Old);
618
619  // Merge the types
620  QualType MergedT = Context.mergeTypes(New->getType(), Old->getType());
621  if (MergedT.isNull()) {
622    Diag(New->getLocation(), diag::err_redefinition_different_type)
623      << New->getDeclName();
624    Diag(Old->getLocation(), diag::note_previous_definition);
625    return New;
626  }
627  New->setType(MergedT);
628  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
629  if (New->getStorageClass() == VarDecl::Static &&
630      (Old->getStorageClass() == VarDecl::None ||
631       Old->getStorageClass() == VarDecl::Extern)) {
632    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
633    Diag(Old->getLocation(), diag::note_previous_definition);
634    return New;
635  }
636  // C99 6.2.2p4: Check if we have a non-static decl followed by a static.
637  if (New->getStorageClass() != VarDecl::Static &&
638      Old->getStorageClass() == VarDecl::Static) {
639    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
640    Diag(Old->getLocation(), diag::note_previous_definition);
641    return New;
642  }
643  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
644  if (New->getStorageClass() != VarDecl::Extern && !New->isFileVarDecl()) {
645    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
646    Diag(Old->getLocation(), diag::note_previous_definition);
647  }
648  return New;
649}
650
651/// CheckParmsForFunctionDef - Check that the parameters of the given
652/// function are appropriate for the definition of a function. This
653/// takes care of any checks that cannot be performed on the
654/// declaration itself, e.g., that the types of each of the function
655/// parameters are complete.
656bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
657  bool HasInvalidParm = false;
658  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
659    ParmVarDecl *Param = FD->getParamDecl(p);
660
661    // C99 6.7.5.3p4: the parameters in a parameter type list in a
662    // function declarator that is part of a function definition of
663    // that function shall not have incomplete type.
664    if (!Param->isInvalidDecl() &&
665        DiagnoseIncompleteType(Param->getLocation(), Param->getType(),
666                               diag::err_typecheck_decl_incomplete_type)) {
667      Param->setInvalidDecl();
668      HasInvalidParm = true;
669    }
670
671    // C99 6.9.1p5: If the declarator includes a parameter type list, the
672    // declaration of each parameter shall include an identifier.
673    if (Param->getIdentifier() == 0 && !getLangOptions().CPlusPlus)
674      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
675  }
676
677  return HasInvalidParm;
678}
679
680/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
681/// no declarator (e.g. "struct foo;") is parsed.
682Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
683  TagDecl *Tag
684    = dyn_cast_or_null<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
685  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
686    if (!Record->getDeclName() && Record->isDefinition() &&
687        DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
688      return BuildAnonymousStructOrUnion(S, DS, Record);
689
690    // Microsoft allows unnamed struct/union fields. Don't complain
691    // about them.
692    // FIXME: Should we support Microsoft's extensions in this area?
693    if (Record->getDeclName() && getLangOptions().Microsoft)
694      return Tag;
695  }
696
697  if (!DS.isMissingDeclaratorOk()) {
698    // Warn about typedefs of enums without names, since this is an
699    // extension in both Microsoft an GNU.
700    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
701        Tag && isa<EnumDecl>(Tag)) {
702      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
703        << DS.getSourceRange();
704      return Tag;
705    }
706
707    // FIXME: This diagnostic is emitted even when various previous
708    // errors occurred (see e.g. test/Sema/decl-invalid.c). However,
709    // DeclSpec has no means of communicating this information, and the
710    // responsible parser functions are quite far apart.
711    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
712      << DS.getSourceRange();
713    return 0;
714  }
715
716  return Tag;
717}
718
719/// InjectAnonymousStructOrUnionMembers - Inject the members of the
720/// anonymous struct or union AnonRecord into the owning context Owner
721/// and scope S. This routine will be invoked just after we realize
722/// that an unnamed union or struct is actually an anonymous union or
723/// struct, e.g.,
724///
725/// @code
726/// union {
727///   int i;
728///   float f;
729/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
730///    // f into the surrounding scope.x
731/// @endcode
732///
733/// This routine is recursive, injecting the names of nested anonymous
734/// structs/unions into the owning context and scope as well.
735bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
736                                               RecordDecl *AnonRecord) {
737  bool Invalid = false;
738  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
739                               FEnd = AnonRecord->field_end();
740       F != FEnd; ++F) {
741    if ((*F)->getDeclName()) {
742      Decl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
743                                           LookupOrdinaryName, true);
744      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
745        // C++ [class.union]p2:
746        //   The names of the members of an anonymous union shall be
747        //   distinct from the names of any other entity in the
748        //   scope in which the anonymous union is declared.
749        unsigned diagKind
750          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
751                                 : diag::err_anonymous_struct_member_redecl;
752        Diag((*F)->getLocation(), diagKind)
753          << (*F)->getDeclName();
754        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
755        Invalid = true;
756      } else {
757        // C++ [class.union]p2:
758        //   For the purpose of name lookup, after the anonymous union
759        //   definition, the members of the anonymous union are
760        //   considered to have been defined in the scope in which the
761        //   anonymous union is declared.
762        Owner->makeDeclVisibleInContext(*F);
763        S->AddDecl(*F);
764        IdResolver.AddDecl(*F);
765      }
766    } else if (const RecordType *InnerRecordType
767                 = (*F)->getType()->getAsRecordType()) {
768      RecordDecl *InnerRecord = InnerRecordType->getDecl();
769      if (InnerRecord->isAnonymousStructOrUnion())
770        Invalid = Invalid ||
771          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
772    }
773  }
774
775  return Invalid;
776}
777
778/// ActOnAnonymousStructOrUnion - Handle the declaration of an
779/// anonymous structure or union. Anonymous unions are a C++ feature
780/// (C++ [class.union]) and a GNU C extension; anonymous structures
781/// are a GNU C and GNU C++ extension.
782Sema::DeclTy *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
783                                                RecordDecl *Record) {
784  DeclContext *Owner = Record->getDeclContext();
785
786  // Diagnose whether this anonymous struct/union is an extension.
787  if (Record->isUnion() && !getLangOptions().CPlusPlus)
788    Diag(Record->getLocation(), diag::ext_anonymous_union);
789  else if (!Record->isUnion())
790    Diag(Record->getLocation(), diag::ext_anonymous_struct);
791
792  // C and C++ require different kinds of checks for anonymous
793  // structs/unions.
794  bool Invalid = false;
795  if (getLangOptions().CPlusPlus) {
796    const char* PrevSpec = 0;
797    // C++ [class.union]p3:
798    //   Anonymous unions declared in a named namespace or in the
799    //   global namespace shall be declared static.
800    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
801        (isa<TranslationUnitDecl>(Owner) ||
802         (isa<NamespaceDecl>(Owner) &&
803          cast<NamespaceDecl>(Owner)->getDeclName()))) {
804      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
805      Invalid = true;
806
807      // Recover by adding 'static'.
808      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
809    }
810    // C++ [class.union]p3:
811    //   A storage class is not allowed in a declaration of an
812    //   anonymous union in a class scope.
813    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
814             isa<RecordDecl>(Owner)) {
815      Diag(DS.getStorageClassSpecLoc(),
816           diag::err_anonymous_union_with_storage_spec);
817      Invalid = true;
818
819      // Recover by removing the storage specifier.
820      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
821                             PrevSpec);
822    }
823
824    // C++ [class.union]p2:
825    //   The member-specification of an anonymous union shall only
826    //   define non-static data members. [Note: nested types and
827    //   functions cannot be declared within an anonymous union. ]
828    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
829                                 MemEnd = Record->decls_end();
830         Mem != MemEnd; ++Mem) {
831      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
832        // C++ [class.union]p3:
833        //   An anonymous union shall not have private or protected
834        //   members (clause 11).
835        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
836          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
837            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
838          Invalid = true;
839        }
840      } else if ((*Mem)->isImplicit()) {
841        // Any implicit members are fine.
842      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
843        if (!MemRecord->isAnonymousStructOrUnion() &&
844            MemRecord->getDeclName()) {
845          // This is a nested type declaration.
846          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
847            << (int)Record->isUnion();
848          Invalid = true;
849        }
850      } else {
851        // We have something that isn't a non-static data
852        // member. Complain about it.
853        unsigned DK = diag::err_anonymous_record_bad_member;
854        if (isa<TypeDecl>(*Mem))
855          DK = diag::err_anonymous_record_with_type;
856        else if (isa<FunctionDecl>(*Mem))
857          DK = diag::err_anonymous_record_with_function;
858        else if (isa<VarDecl>(*Mem))
859          DK = diag::err_anonymous_record_with_static;
860        Diag((*Mem)->getLocation(), DK)
861            << (int)Record->isUnion();
862          Invalid = true;
863      }
864    }
865  } else {
866    // FIXME: Check GNU C semantics
867    if (Record->isUnion() && !Owner->isRecord()) {
868      Diag(Record->getLocation(), diag::err_anonymous_union_not_member)
869        << (int)getLangOptions().CPlusPlus;
870      Invalid = true;
871    }
872  }
873
874  if (!Record->isUnion() && !Owner->isRecord()) {
875    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
876      << (int)getLangOptions().CPlusPlus;
877    Invalid = true;
878  }
879
880  // Create a declaration for this anonymous struct/union.
881  NamedDecl *Anon = 0;
882  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
883    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
884                             /*IdentifierInfo=*/0,
885                             Context.getTypeDeclType(Record),
886                             /*BitWidth=*/0, /*Mutable=*/false);
887    Anon->setAccess(AS_public);
888    if (getLangOptions().CPlusPlus)
889      FieldCollector->Add(cast<FieldDecl>(Anon));
890  } else {
891    VarDecl::StorageClass SC;
892    switch (DS.getStorageClassSpec()) {
893    default: assert(0 && "Unknown storage class!");
894    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
895    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
896    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
897    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
898    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
899    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
900    case DeclSpec::SCS_mutable:
901      // mutable can only appear on non-static class members, so it's always
902      // an error here
903      Diag(Record->getLocation(), diag::err_mutable_nonmember);
904      Invalid = true;
905      SC = VarDecl::None;
906      break;
907    }
908
909    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
910                           /*IdentifierInfo=*/0,
911                           Context.getTypeDeclType(Record),
912                           SC, DS.getSourceRange().getBegin());
913  }
914  Anon->setImplicit();
915
916  // Add the anonymous struct/union object to the current
917  // context. We'll be referencing this object when we refer to one of
918  // its members.
919  Owner->addDecl(Anon);
920
921  // Inject the members of the anonymous struct/union into the owning
922  // context and into the identifier resolver chain for name lookup
923  // purposes.
924  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
925    Invalid = true;
926
927  // Mark this as an anonymous struct/union type. Note that we do not
928  // do this until after we have already checked and injected the
929  // members of this anonymous struct/union type, because otherwise
930  // the members could be injected twice: once by DeclContext when it
931  // builds its lookup table, and once by
932  // InjectAnonymousStructOrUnionMembers.
933  Record->setAnonymousStructOrUnion(true);
934
935  if (Invalid)
936    Anon->setInvalidDecl();
937
938  return Anon;
939}
940
941bool Sema::CheckSingleInitializer(Expr *&Init, QualType DeclType,
942                                  bool DirectInit) {
943  // Get the type before calling CheckSingleAssignmentConstraints(), since
944  // it can promote the expression.
945  QualType InitType = Init->getType();
946
947  if (getLangOptions().CPlusPlus) {
948    // FIXME: I dislike this error message. A lot.
949    if (PerformImplicitConversion(Init, DeclType, "initializing", DirectInit))
950      return Diag(Init->getSourceRange().getBegin(),
951                  diag::err_typecheck_convert_incompatible)
952        << DeclType << Init->getType() << "initializing"
953        << Init->getSourceRange();
954
955    return false;
956  }
957
958  AssignConvertType ConvTy = CheckSingleAssignmentConstraints(DeclType, Init);
959  return DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType,
960                                  InitType, Init, "initializing");
961}
962
963bool Sema::CheckStringLiteralInit(StringLiteral *strLiteral, QualType &DeclT) {
964  const ArrayType *AT = Context.getAsArrayType(DeclT);
965
966  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
967    // C99 6.7.8p14. We have an array of character type with unknown size
968    // being initialized to a string literal.
969    llvm::APSInt ConstVal(32);
970    ConstVal = strLiteral->getByteLength() + 1;
971    // Return a new array type (C99 6.7.8p22).
972    DeclT = Context.getConstantArrayType(IAT->getElementType(), ConstVal,
973                                         ArrayType::Normal, 0);
974  } else {
975    const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
976    // C99 6.7.8p14. We have an array of character type with known size.
977    // FIXME: Avoid truncation for 64-bit length strings.
978    if (strLiteral->getByteLength() > (unsigned)CAT->getSize().getZExtValue())
979      Diag(strLiteral->getSourceRange().getBegin(),
980           diag::warn_initializer_string_for_char_array_too_long)
981        << strLiteral->getSourceRange();
982  }
983  // Set type from "char *" to "constant array of char".
984  strLiteral->setType(DeclT);
985  // For now, we always return false (meaning success).
986  return false;
987}
988
989StringLiteral *Sema::IsStringLiteralInit(Expr *Init, QualType DeclType) {
990  const ArrayType *AT = Context.getAsArrayType(DeclType);
991  if (AT && AT->getElementType()->isCharType()) {
992    return dyn_cast<StringLiteral>(Init->IgnoreParens());
993  }
994  return 0;
995}
996
997bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType,
998                                 SourceLocation InitLoc,
999                                 DeclarationName InitEntity,
1000                                 bool DirectInit) {
1001  if (DeclType->isDependentType() || Init->isTypeDependent())
1002    return false;
1003
1004  // C++ [dcl.init.ref]p1:
1005  //   A variable declared to be a T&, that is "reference to type T"
1006  //   (8.3.2), shall be initialized by an object, or function, of
1007  //   type T or by an object that can be converted into a T.
1008  if (DeclType->isReferenceType())
1009    return CheckReferenceInit(Init, DeclType, 0, false, DirectInit);
1010
1011  // C99 6.7.8p3: The type of the entity to be initialized shall be an array
1012  // of unknown size ("[]") or an object type that is not a variable array type.
1013  if (const VariableArrayType *VAT = Context.getAsVariableArrayType(DeclType))
1014    return Diag(InitLoc,  diag::err_variable_object_no_init)
1015      << VAT->getSizeExpr()->getSourceRange();
1016
1017  InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
1018  if (!InitList) {
1019    // FIXME: Handle wide strings
1020    if (StringLiteral *strLiteral = IsStringLiteralInit(Init, DeclType))
1021      return CheckStringLiteralInit(strLiteral, DeclType);
1022
1023    // C++ [dcl.init]p14:
1024    //   -- If the destination type is a (possibly cv-qualified) class
1025    //      type:
1026    if (getLangOptions().CPlusPlus && DeclType->isRecordType()) {
1027      QualType DeclTypeC = Context.getCanonicalType(DeclType);
1028      QualType InitTypeC = Context.getCanonicalType(Init->getType());
1029
1030      //   -- If the initialization is direct-initialization, or if it is
1031      //      copy-initialization where the cv-unqualified version of the
1032      //      source type is the same class as, or a derived class of, the
1033      //      class of the destination, constructors are considered.
1034      if ((DeclTypeC.getUnqualifiedType() == InitTypeC.getUnqualifiedType()) ||
1035          IsDerivedFrom(InitTypeC, DeclTypeC)) {
1036        CXXConstructorDecl *Constructor
1037          = PerformInitializationByConstructor(DeclType, &Init, 1,
1038                                               InitLoc, Init->getSourceRange(),
1039                                               InitEntity,
1040                                               DirectInit? IK_Direct : IK_Copy);
1041        return Constructor == 0;
1042      }
1043
1044      //   -- Otherwise (i.e., for the remaining copy-initialization
1045      //      cases), user-defined conversion sequences that can
1046      //      convert from the source type to the destination type or
1047      //      (when a conversion function is used) to a derived class
1048      //      thereof are enumerated as described in 13.3.1.4, and the
1049      //      best one is chosen through overload resolution
1050      //      (13.3). If the conversion cannot be done or is
1051      //      ambiguous, the initialization is ill-formed. The
1052      //      function selected is called with the initializer
1053      //      expression as its argument; if the function is a
1054      //      constructor, the call initializes a temporary of the
1055      //      destination type.
1056      // FIXME: We're pretending to do copy elision here; return to
1057      // this when we have ASTs for such things.
1058      if (!PerformImplicitConversion(Init, DeclType, "initializing"))
1059        return false;
1060
1061      if (InitEntity)
1062        return Diag(InitLoc, diag::err_cannot_initialize_decl)
1063          << InitEntity << (int)(Init->isLvalue(Context) == Expr::LV_Valid)
1064          << Init->getType() << Init->getSourceRange();
1065      else
1066        return Diag(InitLoc, diag::err_cannot_initialize_decl_noname)
1067          << DeclType << (int)(Init->isLvalue(Context) == Expr::LV_Valid)
1068          << Init->getType() << Init->getSourceRange();
1069    }
1070
1071    // C99 6.7.8p16.
1072    if (DeclType->isArrayType())
1073      return Diag(Init->getLocStart(), diag::err_array_init_list_required)
1074        << Init->getSourceRange();
1075
1076    return CheckSingleInitializer(Init, DeclType, DirectInit);
1077  } else if (getLangOptions().CPlusPlus) {
1078    // C++ [dcl.init]p14:
1079    //   [...] If the class is an aggregate (8.5.1), and the initializer
1080    //   is a brace-enclosed list, see 8.5.1.
1081    //
1082    // Note: 8.5.1 is handled below; here, we diagnose the case where
1083    // we have an initializer list and a destination type that is not
1084    // an aggregate.
1085    // FIXME: In C++0x, this is yet another form of initialization.
1086    if (const RecordType *ClassRec = DeclType->getAsRecordType()) {
1087      const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
1088      if (!ClassDecl->isAggregate())
1089        return Diag(InitLoc, diag::err_init_non_aggr_init_list)
1090           << DeclType << Init->getSourceRange();
1091    }
1092  }
1093
1094  bool hadError = CheckInitList(InitList, DeclType);
1095  Init = InitList;
1096  return hadError;
1097}
1098
1099/// GetNameForDeclarator - Determine the full declaration name for the
1100/// given Declarator.
1101DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1102  switch (D.getKind()) {
1103  case Declarator::DK_Abstract:
1104    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1105    return DeclarationName();
1106
1107  case Declarator::DK_Normal:
1108    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1109    return DeclarationName(D.getIdentifier());
1110
1111  case Declarator::DK_Constructor: {
1112    QualType Ty = Context.getTypeDeclType((TypeDecl *)D.getDeclaratorIdType());
1113    Ty = Context.getCanonicalType(Ty);
1114    return Context.DeclarationNames.getCXXConstructorName(Ty);
1115  }
1116
1117  case Declarator::DK_Destructor: {
1118    QualType Ty = Context.getTypeDeclType((TypeDecl *)D.getDeclaratorIdType());
1119    Ty = Context.getCanonicalType(Ty);
1120    return Context.DeclarationNames.getCXXDestructorName(Ty);
1121  }
1122
1123  case Declarator::DK_Conversion: {
1124    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1125    Ty = Context.getCanonicalType(Ty);
1126    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1127  }
1128
1129  case Declarator::DK_Operator:
1130    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1131    return Context.DeclarationNames.getCXXOperatorName(
1132                                                D.getOverloadedOperator());
1133  }
1134
1135  assert(false && "Unknown name kind");
1136  return DeclarationName();
1137}
1138
1139/// isNearlyMatchingMemberFunction - Determine whether the C++ member
1140/// functions Declaration and Definition are "nearly" matching. This
1141/// heuristic is used to improve diagnostics in the case where an
1142/// out-of-line member function definition doesn't match any
1143/// declaration within the class.
1144static bool isNearlyMatchingMemberFunction(ASTContext &Context,
1145                                           FunctionDecl *Declaration,
1146                                           FunctionDecl *Definition) {
1147  if (Declaration->param_size() != Definition->param_size())
1148    return false;
1149  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1150    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1151    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1152
1153    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1154    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1155    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1156      return false;
1157  }
1158
1159  return true;
1160}
1161
1162Sema::DeclTy *
1163Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl,
1164                      bool IsFunctionDefinition) {
1165  NamedDecl *LastDeclarator = dyn_cast_or_null<NamedDecl>((Decl *)lastDecl);
1166  DeclarationName Name = GetNameForDeclarator(D);
1167
1168  // All of these full declarators require an identifier.  If it doesn't have
1169  // one, the ParsedFreeStandingDeclSpec action should be used.
1170  if (!Name) {
1171    if (!D.getInvalidType())  // Reject this if we think it is valid.
1172      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1173           diag::err_declarator_need_ident)
1174        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1175    return 0;
1176  }
1177
1178  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1179  // we find one that is.
1180  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1181        (S->getFlags() & Scope::TemplateParamScope) != 0)
1182    S = S->getParent();
1183
1184  DeclContext *DC;
1185  Decl *PrevDecl;
1186  NamedDecl *New;
1187  bool InvalidDecl = false;
1188
1189  // See if this is a redefinition of a variable in the same scope.
1190  if (!D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid()) {
1191    DC = CurContext;
1192    PrevDecl = LookupName(S, Name, LookupOrdinaryName);
1193  } else { // Something like "int foo::x;"
1194    DC = static_cast<DeclContext*>(D.getCXXScopeSpec().getScopeRep());
1195    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName);
1196
1197    // C++ 7.3.1.2p2:
1198    // Members (including explicit specializations of templates) of a named
1199    // namespace can also be defined outside that namespace by explicit
1200    // qualification of the name being defined, provided that the entity being
1201    // defined was already declared in the namespace and the definition appears
1202    // after the point of declaration in a namespace that encloses the
1203    // declarations namespace.
1204    //
1205    // Note that we only check the context at this point. We don't yet
1206    // have enough information to make sure that PrevDecl is actually
1207    // the declaration we want to match. For example, given:
1208    //
1209    //   class X {
1210    //     void f();
1211    //     void f(float);
1212    //   };
1213    //
1214    //   void X::f(int) { } // ill-formed
1215    //
1216    // In this case, PrevDecl will point to the overload set
1217    // containing the two f's declared in X, but neither of them
1218    // matches.
1219    if (!CurContext->Encloses(DC)) {
1220      // The qualifying scope doesn't enclose the original declaration.
1221      // Emit diagnostic based on current scope.
1222      SourceLocation L = D.getIdentifierLoc();
1223      SourceRange R = D.getCXXScopeSpec().getRange();
1224      if (isa<FunctionDecl>(CurContext)) {
1225        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1226      } else {
1227        Diag(L, diag::err_invalid_declarator_scope)
1228          << Name << cast<NamedDecl>(DC)->getDeclName() << R;
1229      }
1230      InvalidDecl = true;
1231    }
1232  }
1233
1234  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1235    // Maybe we will complain about the shadowed template parameter.
1236    InvalidDecl = InvalidDecl
1237      || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
1238    // Just pretend that we didn't see the previous declaration.
1239    PrevDecl = 0;
1240  }
1241
1242  // In C++, the previous declaration we find might be a tag type
1243  // (class or enum). In this case, the new declaration will hide the
1244  // tag type. Note that this does does not apply if we're declaring a
1245  // typedef (C++ [dcl.typedef]p4).
1246  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1247      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1248    PrevDecl = 0;
1249
1250  QualType R = GetTypeForDeclarator(D, S);
1251  assert(!R.isNull() && "GetTypeForDeclarator() returned null type");
1252
1253  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1254    New = ActOnTypedefDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1255                                 InvalidDecl);
1256  } else if (R.getTypePtr()->isFunctionType()) {
1257    New = ActOnFunctionDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1258                                  IsFunctionDefinition, InvalidDecl);
1259  } else {
1260    New = ActOnVariableDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1261                                  InvalidDecl);
1262  }
1263
1264  if (New == 0)
1265    return 0;
1266
1267  // Set the lexical context. If the declarator has a C++ scope specifier, the
1268  // lexical context will be different from the semantic context.
1269  New->setLexicalDeclContext(CurContext);
1270
1271  // If this has an identifier, add it to the scope stack.
1272  if (Name)
1273    PushOnScopeChains(New, S);
1274  // If any semantic error occurred, mark the decl as invalid.
1275  if (D.getInvalidType() || InvalidDecl)
1276    New->setInvalidDecl();
1277
1278  return New;
1279}
1280
1281NamedDecl*
1282Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1283                             QualType R, Decl* LastDeclarator,
1284                             Decl* PrevDecl, bool& InvalidDecl) {
1285  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1286  if (D.getCXXScopeSpec().isSet()) {
1287    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1288      << D.getCXXScopeSpec().getRange();
1289    InvalidDecl = true;
1290    // Pretend we didn't see the scope specifier.
1291    DC = 0;
1292  }
1293
1294  // Check that there are no default arguments (C++ only).
1295  if (getLangOptions().CPlusPlus)
1296    CheckExtraCXXDefaultArguments(D);
1297
1298  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
1299  if (!NewTD) return 0;
1300
1301  // Handle attributes prior to checking for duplicates in MergeVarDecl
1302  ProcessDeclAttributes(NewTD, D);
1303  // Merge the decl with the existing one if appropriate. If the decl is
1304  // in an outer scope, it isn't the same thing.
1305  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1306    NewTD = MergeTypeDefDecl(NewTD, PrevDecl);
1307    if (NewTD == 0) return 0;
1308  }
1309
1310  if (S->getFnParent() == 0) {
1311    // C99 6.7.7p2: If a typedef name specifies a variably modified type
1312    // then it shall have block scope.
1313    if (NewTD->getUnderlyingType()->isVariablyModifiedType()) {
1314      if (NewTD->getUnderlyingType()->isVariableArrayType())
1315        Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1316      else
1317        Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1318
1319      InvalidDecl = true;
1320    }
1321  }
1322  return NewTD;
1323}
1324
1325NamedDecl*
1326Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1327                              QualType R, Decl* LastDeclarator,
1328                              Decl* PrevDecl, bool& InvalidDecl) {
1329  DeclarationName Name = GetNameForDeclarator(D);
1330
1331  // Check that there are no default arguments (C++ only).
1332  if (getLangOptions().CPlusPlus)
1333    CheckExtraCXXDefaultArguments(D);
1334
1335  if (R.getTypePtr()->isObjCInterfaceType()) {
1336    Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object)
1337      << D.getIdentifier();
1338    InvalidDecl = true;
1339  }
1340
1341  VarDecl *NewVD;
1342  VarDecl::StorageClass SC;
1343  switch (D.getDeclSpec().getStorageClassSpec()) {
1344  default: assert(0 && "Unknown storage class!");
1345  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1346  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1347  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1348  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1349  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1350  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1351  case DeclSpec::SCS_mutable:
1352    // mutable can only appear on non-static class members, so it's always
1353    // an error here
1354    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1355    InvalidDecl = true;
1356    SC = VarDecl::None;
1357    break;
1358  }
1359
1360  IdentifierInfo *II = Name.getAsIdentifierInfo();
1361  if (!II) {
1362    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1363      << Name.getAsString();
1364    return 0;
1365  }
1366
1367  if (DC->isRecord()) {
1368    // This is a static data member for a C++ class.
1369    NewVD = CXXClassVarDecl::Create(Context, cast<CXXRecordDecl>(DC),
1370                                    D.getIdentifierLoc(), II,
1371                                    R);
1372  } else {
1373    bool ThreadSpecified = D.getDeclSpec().isThreadSpecified();
1374    if (S->getFnParent() == 0) {
1375      // C99 6.9p2: The storage-class specifiers auto and register shall not
1376      // appear in the declaration specifiers in an external declaration.
1377      if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1378        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1379        InvalidDecl = true;
1380      }
1381    }
1382    NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1383                            II, R, SC,
1384                            // FIXME: Move to DeclGroup...
1385                            D.getDeclSpec().getSourceRange().getBegin());
1386    NewVD->setThreadSpecified(ThreadSpecified);
1387  }
1388  NewVD->setNextDeclarator(LastDeclarator);
1389
1390  // Handle attributes prior to checking for duplicates in MergeVarDecl
1391  ProcessDeclAttributes(NewVD, D);
1392
1393  // Handle GNU asm-label extension (encoded as an attribute).
1394  if (Expr *E = (Expr*) D.getAsmLabel()) {
1395    // The parser guarantees this is a string.
1396    StringLiteral *SE = cast<StringLiteral>(E);
1397    NewVD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1398                                                SE->getByteLength())));
1399  }
1400
1401  // Emit an error if an address space was applied to decl with local storage.
1402  // This includes arrays of objects with address space qualifiers, but not
1403  // automatic variables that point to other address spaces.
1404  // ISO/IEC TR 18037 S5.1.2
1405  if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
1406    Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
1407    InvalidDecl = true;
1408  }
1409  // Merge the decl with the existing one if appropriate. If the decl is
1410  // in an outer scope, it isn't the same thing.
1411  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1412    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
1413      // The user tried to define a non-static data member
1414      // out-of-line (C++ [dcl.meaning]p1).
1415      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
1416        << D.getCXXScopeSpec().getRange();
1417      NewVD->Destroy(Context);
1418      return 0;
1419    }
1420
1421    NewVD = MergeVarDecl(NewVD, PrevDecl);
1422    if (NewVD == 0) return 0;
1423
1424    if (D.getCXXScopeSpec().isSet()) {
1425      // No previous declaration in the qualifying scope.
1426      Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
1427        << Name << D.getCXXScopeSpec().getRange();
1428      InvalidDecl = true;
1429    }
1430  }
1431  return NewVD;
1432}
1433
1434NamedDecl*
1435Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1436                              QualType R, Decl *LastDeclarator,
1437                              Decl* PrevDecl, bool IsFunctionDefinition,
1438                              bool& InvalidDecl) {
1439  assert(R.getTypePtr()->isFunctionType());
1440
1441  DeclarationName Name = GetNameForDeclarator(D);
1442  FunctionDecl::StorageClass SC = FunctionDecl::None;
1443  switch (D.getDeclSpec().getStorageClassSpec()) {
1444  default: assert(0 && "Unknown storage class!");
1445  case DeclSpec::SCS_auto:
1446  case DeclSpec::SCS_register:
1447  case DeclSpec::SCS_mutable:
1448    Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_func);
1449    InvalidDecl = true;
1450    break;
1451  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
1452  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
1453  case DeclSpec::SCS_static:      SC = FunctionDecl::Static; break;
1454  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
1455  }
1456
1457  bool isInline = D.getDeclSpec().isInlineSpecified();
1458  // bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1459  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
1460
1461  FunctionDecl *NewFD;
1462  if (D.getKind() == Declarator::DK_Constructor) {
1463    // This is a C++ constructor declaration.
1464    assert(DC->isRecord() &&
1465           "Constructors can only be declared in a member context");
1466
1467    InvalidDecl = InvalidDecl || CheckConstructorDeclarator(D, R, SC);
1468
1469    // Create the new declaration
1470    NewFD = CXXConstructorDecl::Create(Context,
1471                                       cast<CXXRecordDecl>(DC),
1472                                       D.getIdentifierLoc(), Name, R,
1473                                       isExplicit, isInline,
1474                                       /*isImplicitlyDeclared=*/false);
1475
1476    if (InvalidDecl)
1477      NewFD->setInvalidDecl();
1478  } else if (D.getKind() == Declarator::DK_Destructor) {
1479    // This is a C++ destructor declaration.
1480    if (DC->isRecord()) {
1481      InvalidDecl = InvalidDecl || CheckDestructorDeclarator(D, R, SC);
1482
1483      NewFD = CXXDestructorDecl::Create(Context,
1484                                        cast<CXXRecordDecl>(DC),
1485                                        D.getIdentifierLoc(), Name, R,
1486                                        isInline,
1487                                        /*isImplicitlyDeclared=*/false);
1488
1489      if (InvalidDecl)
1490        NewFD->setInvalidDecl();
1491    } else {
1492      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
1493
1494      // Create a FunctionDecl to satisfy the function definition parsing
1495      // code path.
1496      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
1497                                   Name, R, SC, isInline,
1498                                   // FIXME: Move to DeclGroup...
1499                                   D.getDeclSpec().getSourceRange().getBegin());
1500      InvalidDecl = true;
1501      NewFD->setInvalidDecl();
1502    }
1503  } else if (D.getKind() == Declarator::DK_Conversion) {
1504    if (!DC->isRecord()) {
1505      Diag(D.getIdentifierLoc(),
1506           diag::err_conv_function_not_member);
1507      return 0;
1508    } else {
1509      InvalidDecl = InvalidDecl || CheckConversionDeclarator(D, R, SC);
1510
1511      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
1512                                        D.getIdentifierLoc(), Name, R,
1513                                        isInline, isExplicit);
1514
1515      if (InvalidDecl)
1516        NewFD->setInvalidDecl();
1517    }
1518  } else if (DC->isRecord()) {
1519    // This is a C++ method declaration.
1520    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
1521                                  D.getIdentifierLoc(), Name, R,
1522                                  (SC == FunctionDecl::Static), isInline);
1523  } else {
1524    NewFD = FunctionDecl::Create(Context, DC,
1525                                 D.getIdentifierLoc(),
1526                                 Name, R, SC, isInline,
1527                                 // FIXME: Move to DeclGroup...
1528                                 D.getDeclSpec().getSourceRange().getBegin());
1529  }
1530  NewFD->setNextDeclarator(LastDeclarator);
1531
1532  // Set the lexical context. If the declarator has a C++
1533  // scope specifier, the lexical context will be different
1534  // from the semantic context.
1535  NewFD->setLexicalDeclContext(CurContext);
1536
1537  // Handle GNU asm-label extension (encoded as an attribute).
1538  if (Expr *E = (Expr*) D.getAsmLabel()) {
1539    // The parser guarantees this is a string.
1540    StringLiteral *SE = cast<StringLiteral>(E);
1541    NewFD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1542                                                SE->getByteLength())));
1543  }
1544
1545  // Copy the parameter declarations from the declarator D to
1546  // the function declaration NewFD, if they are available.
1547  if (D.getNumTypeObjects() > 0) {
1548    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1549
1550    // Create Decl objects for each parameter, adding them to the
1551    // FunctionDecl.
1552    llvm::SmallVector<ParmVarDecl*, 16> Params;
1553
1554    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
1555    // function that takes no arguments, not a function that takes a
1556    // single void argument.
1557    // We let through "const void" here because Sema::GetTypeForDeclarator
1558    // already checks for that case.
1559    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1560        FTI.ArgInfo[0].Param &&
1561        ((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
1562      // empty arg list, don't push any params.
1563      ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
1564
1565      // In C++, the empty parameter-type-list must be spelled "void"; a
1566      // typedef of void is not permitted.
1567      if (getLangOptions().CPlusPlus &&
1568          Param->getType().getUnqualifiedType() != Context.VoidTy) {
1569        Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
1570      }
1571    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
1572      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
1573        Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
1574    }
1575
1576    NewFD->setParams(Context, &Params[0], Params.size());
1577  } else if (R->getAsTypedefType()) {
1578    // When we're declaring a function with a typedef, as in the
1579    // following example, we'll need to synthesize (unnamed)
1580    // parameters for use in the declaration.
1581    //
1582    // @code
1583    // typedef void fn(int);
1584    // fn f;
1585    // @endcode
1586    const FunctionTypeProto *FT = R->getAsFunctionTypeProto();
1587    if (!FT) {
1588      // This is a typedef of a function with no prototype, so we
1589      // don't need to do anything.
1590    } else if ((FT->getNumArgs() == 0) ||
1591               (FT->getNumArgs() == 1 && !FT->isVariadic() &&
1592                FT->getArgType(0)->isVoidType())) {
1593      // This is a zero-argument function. We don't need to do anything.
1594    } else {
1595      // Synthesize a parameter for each argument type.
1596      llvm::SmallVector<ParmVarDecl*, 16> Params;
1597      for (FunctionTypeProto::arg_type_iterator ArgType = FT->arg_type_begin();
1598           ArgType != FT->arg_type_end(); ++ArgType) {
1599        Params.push_back(ParmVarDecl::Create(Context, DC,
1600                                             SourceLocation(), 0,
1601                                             *ArgType, VarDecl::None,
1602                                             0));
1603      }
1604
1605      NewFD->setParams(Context, &Params[0], Params.size());
1606    }
1607  }
1608
1609  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD))
1610    InvalidDecl = InvalidDecl || CheckConstructor(Constructor);
1611  else if (isa<CXXDestructorDecl>(NewFD)) {
1612    CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
1613    Record->setUserDeclaredDestructor(true);
1614    // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
1615    // user-defined destructor.
1616    Record->setPOD(false);
1617  } else if (CXXConversionDecl *Conversion =
1618             dyn_cast<CXXConversionDecl>(NewFD))
1619    ActOnConversionDeclarator(Conversion);
1620
1621  // Extra checking for C++ overloaded operators (C++ [over.oper]).
1622  if (NewFD->isOverloadedOperator() &&
1623      CheckOverloadedOperatorDeclaration(NewFD))
1624    NewFD->setInvalidDecl();
1625
1626  // Merge the decl with the existing one if appropriate. Since C functions
1627  // are in a flat namespace, make sure we consider decls in outer scopes.
1628  if (PrevDecl &&
1629      (!getLangOptions().CPlusPlus||isDeclInScope(PrevDecl, DC, S))) {
1630    bool Redeclaration = false;
1631
1632    // If C++, determine whether NewFD is an overload of PrevDecl or
1633    // a declaration that requires merging. If it's an overload,
1634    // there's no more work to do here; we'll just add the new
1635    // function to the scope.
1636    OverloadedFunctionDecl::function_iterator MatchedDecl;
1637    if (!getLangOptions().CPlusPlus ||
1638        !IsOverload(NewFD, PrevDecl, MatchedDecl)) {
1639      Decl *OldDecl = PrevDecl;
1640
1641      // If PrevDecl was an overloaded function, extract the
1642      // FunctionDecl that matched.
1643      if (isa<OverloadedFunctionDecl>(PrevDecl))
1644        OldDecl = *MatchedDecl;
1645
1646      // NewFD and PrevDecl represent declarations that need to be
1647      // merged.
1648      NewFD = MergeFunctionDecl(NewFD, OldDecl, Redeclaration);
1649
1650      if (NewFD == 0) return 0;
1651      if (Redeclaration) {
1652        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
1653
1654        // An out-of-line member function declaration must also be a
1655        // definition (C++ [dcl.meaning]p1).
1656        if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
1657            !InvalidDecl) {
1658          Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
1659            << D.getCXXScopeSpec().getRange();
1660          NewFD->setInvalidDecl();
1661        }
1662      }
1663    }
1664
1665    if (!Redeclaration && D.getCXXScopeSpec().isSet()) {
1666      // The user tried to provide an out-of-line definition for a
1667      // member function, but there was no such member function
1668      // declared (C++ [class.mfct]p2). For example:
1669      //
1670      // class X {
1671      //   void f() const;
1672      // };
1673      //
1674      // void X::f() { } // ill-formed
1675      //
1676      // Complain about this problem, and attempt to suggest close
1677      // matches (e.g., those that differ only in cv-qualifiers and
1678      // whether the parameter types are references).
1679      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
1680        << cast<CXXRecordDecl>(DC)->getDeclName()
1681        << D.getCXXScopeSpec().getRange();
1682      InvalidDecl = true;
1683
1684      PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName);
1685      if (!PrevDecl) {
1686        // Nothing to suggest.
1687      } else if (OverloadedFunctionDecl *Ovl
1688                 = dyn_cast<OverloadedFunctionDecl>(PrevDecl)) {
1689        for (OverloadedFunctionDecl::function_iterator
1690               Func = Ovl->function_begin(),
1691               FuncEnd = Ovl->function_end();
1692             Func != FuncEnd; ++Func) {
1693          if (isNearlyMatchingMemberFunction(Context, *Func, NewFD))
1694            Diag((*Func)->getLocation(), diag::note_member_def_close_match);
1695
1696        }
1697      } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(PrevDecl)) {
1698        // Suggest this no matter how mismatched it is; it's the only
1699        // thing we have.
1700        unsigned diag;
1701        if (isNearlyMatchingMemberFunction(Context, Method, NewFD))
1702          diag = diag::note_member_def_close_match;
1703        else if (Method->getBody())
1704          diag = diag::note_previous_definition;
1705        else
1706          diag = diag::note_previous_declaration;
1707        Diag(Method->getLocation(), diag);
1708      }
1709
1710      PrevDecl = 0;
1711    }
1712  }
1713  // Handle attributes. We need to have merged decls when handling attributes
1714  // (for example to check for conflicts, etc).
1715  ProcessDeclAttributes(NewFD, D);
1716
1717  if (getLangOptions().CPlusPlus) {
1718    // In C++, check default arguments now that we have merged decls.
1719    CheckCXXDefaultArguments(NewFD);
1720
1721    // An out-of-line member function declaration must also be a
1722    // definition (C++ [dcl.meaning]p1).
1723    if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() && !InvalidDecl) {
1724      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
1725        << D.getCXXScopeSpec().getRange();
1726      InvalidDecl = true;
1727    }
1728  }
1729  return NewFD;
1730}
1731
1732void Sema::InitializerElementNotConstant(const Expr *Init) {
1733  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
1734    << Init->getSourceRange();
1735}
1736
1737bool Sema::CheckAddressConstantExpressionLValue(const Expr* Init) {
1738  switch (Init->getStmtClass()) {
1739  default:
1740    InitializerElementNotConstant(Init);
1741    return true;
1742  case Expr::ParenExprClass: {
1743    const ParenExpr* PE = cast<ParenExpr>(Init);
1744    return CheckAddressConstantExpressionLValue(PE->getSubExpr());
1745  }
1746  case Expr::CompoundLiteralExprClass:
1747    return cast<CompoundLiteralExpr>(Init)->isFileScope();
1748  case Expr::DeclRefExprClass:
1749  case Expr::QualifiedDeclRefExprClass: {
1750    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
1751    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1752      if (VD->hasGlobalStorage())
1753        return false;
1754      InitializerElementNotConstant(Init);
1755      return true;
1756    }
1757    if (isa<FunctionDecl>(D))
1758      return false;
1759    InitializerElementNotConstant(Init);
1760    return true;
1761  }
1762  case Expr::MemberExprClass: {
1763    const MemberExpr *M = cast<MemberExpr>(Init);
1764    if (M->isArrow())
1765      return CheckAddressConstantExpression(M->getBase());
1766    return CheckAddressConstantExpressionLValue(M->getBase());
1767  }
1768  case Expr::ArraySubscriptExprClass: {
1769    // FIXME: Should we pedwarn for "x[0+0]" (where x is a pointer)?
1770    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(Init);
1771    return CheckAddressConstantExpression(ASE->getBase()) ||
1772           CheckArithmeticConstantExpression(ASE->getIdx());
1773  }
1774  case Expr::StringLiteralClass:
1775  case Expr::PredefinedExprClass:
1776    return false;
1777  case Expr::UnaryOperatorClass: {
1778    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1779
1780    // C99 6.6p9
1781    if (Exp->getOpcode() == UnaryOperator::Deref)
1782      return CheckAddressConstantExpression(Exp->getSubExpr());
1783
1784    InitializerElementNotConstant(Init);
1785    return true;
1786  }
1787  }
1788}
1789
1790bool Sema::CheckAddressConstantExpression(const Expr* Init) {
1791  switch (Init->getStmtClass()) {
1792  default:
1793    InitializerElementNotConstant(Init);
1794    return true;
1795  case Expr::ParenExprClass:
1796    return CheckAddressConstantExpression(cast<ParenExpr>(Init)->getSubExpr());
1797  case Expr::StringLiteralClass:
1798  case Expr::ObjCStringLiteralClass:
1799    return false;
1800  case Expr::CallExprClass:
1801  case Expr::CXXOperatorCallExprClass:
1802    // __builtin___CFStringMakeConstantString is a valid constant l-value.
1803    if (cast<CallExpr>(Init)->isBuiltinCall() ==
1804           Builtin::BI__builtin___CFStringMakeConstantString)
1805      return false;
1806
1807    InitializerElementNotConstant(Init);
1808    return true;
1809
1810  case Expr::UnaryOperatorClass: {
1811    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1812
1813    // C99 6.6p9
1814    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1815      return CheckAddressConstantExpressionLValue(Exp->getSubExpr());
1816
1817    if (Exp->getOpcode() == UnaryOperator::Extension)
1818      return CheckAddressConstantExpression(Exp->getSubExpr());
1819
1820    InitializerElementNotConstant(Init);
1821    return true;
1822  }
1823  case Expr::BinaryOperatorClass: {
1824    // FIXME: Should we pedwarn for expressions like "a + 1 + 2"?
1825    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
1826
1827    Expr *PExp = Exp->getLHS();
1828    Expr *IExp = Exp->getRHS();
1829    if (IExp->getType()->isPointerType())
1830      std::swap(PExp, IExp);
1831
1832    // FIXME: Should we pedwarn if IExp isn't an integer constant expression?
1833    return CheckAddressConstantExpression(PExp) ||
1834           CheckArithmeticConstantExpression(IExp);
1835  }
1836  case Expr::ImplicitCastExprClass:
1837  case Expr::CStyleCastExprClass: {
1838    const Expr* SubExpr = cast<CastExpr>(Init)->getSubExpr();
1839    if (Init->getStmtClass() == Expr::ImplicitCastExprClass) {
1840      // Check for implicit promotion
1841      if (SubExpr->getType()->isFunctionType() ||
1842          SubExpr->getType()->isArrayType())
1843        return CheckAddressConstantExpressionLValue(SubExpr);
1844    }
1845
1846    // Check for pointer->pointer cast
1847    if (SubExpr->getType()->isPointerType())
1848      return CheckAddressConstantExpression(SubExpr);
1849
1850    if (SubExpr->getType()->isIntegralType()) {
1851      // Check for the special-case of a pointer->int->pointer cast;
1852      // this isn't standard, but some code requires it. See
1853      // PR2720 for an example.
1854      if (const CastExpr* SubCast = dyn_cast<CastExpr>(SubExpr)) {
1855        if (SubCast->getSubExpr()->getType()->isPointerType()) {
1856          unsigned IntWidth = Context.getIntWidth(SubCast->getType());
1857          unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
1858          if (IntWidth >= PointerWidth) {
1859            return CheckAddressConstantExpression(SubCast->getSubExpr());
1860          }
1861        }
1862      }
1863    }
1864    if (SubExpr->getType()->isArithmeticType()) {
1865      return CheckArithmeticConstantExpression(SubExpr);
1866    }
1867
1868    InitializerElementNotConstant(Init);
1869    return true;
1870  }
1871  case Expr::ConditionalOperatorClass: {
1872    // FIXME: Should we pedwarn here?
1873    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
1874    if (!Exp->getCond()->getType()->isArithmeticType()) {
1875      InitializerElementNotConstant(Init);
1876      return true;
1877    }
1878    if (CheckArithmeticConstantExpression(Exp->getCond()))
1879      return true;
1880    if (Exp->getLHS() &&
1881        CheckAddressConstantExpression(Exp->getLHS()))
1882      return true;
1883    return CheckAddressConstantExpression(Exp->getRHS());
1884  }
1885  case Expr::AddrLabelExprClass:
1886    return false;
1887  }
1888}
1889
1890static const Expr* FindExpressionBaseAddress(const Expr* E);
1891
1892static const Expr* FindExpressionBaseAddressLValue(const Expr* E) {
1893  switch (E->getStmtClass()) {
1894  default:
1895    return E;
1896  case Expr::ParenExprClass: {
1897    const ParenExpr* PE = cast<ParenExpr>(E);
1898    return FindExpressionBaseAddressLValue(PE->getSubExpr());
1899  }
1900  case Expr::MemberExprClass: {
1901    const MemberExpr *M = cast<MemberExpr>(E);
1902    if (M->isArrow())
1903      return FindExpressionBaseAddress(M->getBase());
1904    return FindExpressionBaseAddressLValue(M->getBase());
1905  }
1906  case Expr::ArraySubscriptExprClass: {
1907    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(E);
1908    return FindExpressionBaseAddress(ASE->getBase());
1909  }
1910  case Expr::UnaryOperatorClass: {
1911    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1912
1913    if (Exp->getOpcode() == UnaryOperator::Deref)
1914      return FindExpressionBaseAddress(Exp->getSubExpr());
1915
1916    return E;
1917  }
1918  }
1919}
1920
1921static const Expr* FindExpressionBaseAddress(const Expr* E) {
1922  switch (E->getStmtClass()) {
1923  default:
1924    return E;
1925  case Expr::ParenExprClass: {
1926    const ParenExpr* PE = cast<ParenExpr>(E);
1927    return FindExpressionBaseAddress(PE->getSubExpr());
1928  }
1929  case Expr::UnaryOperatorClass: {
1930    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1931
1932    // C99 6.6p9
1933    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1934      return FindExpressionBaseAddressLValue(Exp->getSubExpr());
1935
1936    if (Exp->getOpcode() == UnaryOperator::Extension)
1937      return FindExpressionBaseAddress(Exp->getSubExpr());
1938
1939    return E;
1940  }
1941  case Expr::BinaryOperatorClass: {
1942    const BinaryOperator *Exp = cast<BinaryOperator>(E);
1943
1944    Expr *PExp = Exp->getLHS();
1945    Expr *IExp = Exp->getRHS();
1946    if (IExp->getType()->isPointerType())
1947      std::swap(PExp, IExp);
1948
1949    return FindExpressionBaseAddress(PExp);
1950  }
1951  case Expr::ImplicitCastExprClass: {
1952    const Expr* SubExpr = cast<ImplicitCastExpr>(E)->getSubExpr();
1953
1954    // Check for implicit promotion
1955    if (SubExpr->getType()->isFunctionType() ||
1956        SubExpr->getType()->isArrayType())
1957      return FindExpressionBaseAddressLValue(SubExpr);
1958
1959    // Check for pointer->pointer cast
1960    if (SubExpr->getType()->isPointerType())
1961      return FindExpressionBaseAddress(SubExpr);
1962
1963    // We assume that we have an arithmetic expression here;
1964    // if we don't, we'll figure it out later
1965    return 0;
1966  }
1967  case Expr::CStyleCastExprClass: {
1968    const Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
1969
1970    // Check for pointer->pointer cast
1971    if (SubExpr->getType()->isPointerType())
1972      return FindExpressionBaseAddress(SubExpr);
1973
1974    // We assume that we have an arithmetic expression here;
1975    // if we don't, we'll figure it out later
1976    return 0;
1977  }
1978  }
1979}
1980
1981bool Sema::CheckArithmeticConstantExpression(const Expr* Init) {
1982  switch (Init->getStmtClass()) {
1983  default:
1984    InitializerElementNotConstant(Init);
1985    return true;
1986  case Expr::ParenExprClass: {
1987    const ParenExpr* PE = cast<ParenExpr>(Init);
1988    return CheckArithmeticConstantExpression(PE->getSubExpr());
1989  }
1990  case Expr::FloatingLiteralClass:
1991  case Expr::IntegerLiteralClass:
1992  case Expr::CharacterLiteralClass:
1993  case Expr::ImaginaryLiteralClass:
1994  case Expr::TypesCompatibleExprClass:
1995  case Expr::CXXBoolLiteralExprClass:
1996    return false;
1997  case Expr::CallExprClass:
1998  case Expr::CXXOperatorCallExprClass: {
1999    const CallExpr *CE = cast<CallExpr>(Init);
2000
2001    // Allow any constant foldable calls to builtins.
2002    if (CE->isBuiltinCall() && CE->isEvaluatable(Context))
2003      return false;
2004
2005    InitializerElementNotConstant(Init);
2006    return true;
2007  }
2008  case Expr::DeclRefExprClass:
2009  case Expr::QualifiedDeclRefExprClass: {
2010    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
2011    if (isa<EnumConstantDecl>(D))
2012      return false;
2013    InitializerElementNotConstant(Init);
2014    return true;
2015  }
2016  case Expr::CompoundLiteralExprClass:
2017    // Allow "(vector type){2,4}"; normal C constraints don't allow this,
2018    // but vectors are allowed to be magic.
2019    if (Init->getType()->isVectorType())
2020      return false;
2021    InitializerElementNotConstant(Init);
2022    return true;
2023  case Expr::UnaryOperatorClass: {
2024    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
2025
2026    switch (Exp->getOpcode()) {
2027    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
2028    // See C99 6.6p3.
2029    default:
2030      InitializerElementNotConstant(Init);
2031      return true;
2032    case UnaryOperator::OffsetOf:
2033      if (Exp->getSubExpr()->getType()->isConstantSizeType())
2034        return false;
2035      InitializerElementNotConstant(Init);
2036      return true;
2037    case UnaryOperator::Extension:
2038    case UnaryOperator::LNot:
2039    case UnaryOperator::Plus:
2040    case UnaryOperator::Minus:
2041    case UnaryOperator::Not:
2042      return CheckArithmeticConstantExpression(Exp->getSubExpr());
2043    }
2044  }
2045  case Expr::SizeOfAlignOfExprClass: {
2046    const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(Init);
2047    // Special check for void types, which are allowed as an extension
2048    if (Exp->getTypeOfArgument()->isVoidType())
2049      return false;
2050    // alignof always evaluates to a constant.
2051    // FIXME: is sizeof(int[3.0]) a constant expression?
2052    if (Exp->isSizeOf() && !Exp->getTypeOfArgument()->isConstantSizeType()) {
2053      InitializerElementNotConstant(Init);
2054      return true;
2055    }
2056    return false;
2057  }
2058  case Expr::BinaryOperatorClass: {
2059    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
2060
2061    if (Exp->getLHS()->getType()->isArithmeticType() &&
2062        Exp->getRHS()->getType()->isArithmeticType()) {
2063      return CheckArithmeticConstantExpression(Exp->getLHS()) ||
2064             CheckArithmeticConstantExpression(Exp->getRHS());
2065    }
2066
2067    if (Exp->getLHS()->getType()->isPointerType() &&
2068        Exp->getRHS()->getType()->isPointerType()) {
2069      const Expr* LHSBase = FindExpressionBaseAddress(Exp->getLHS());
2070      const Expr* RHSBase = FindExpressionBaseAddress(Exp->getRHS());
2071
2072      // Only allow a null (constant integer) base; we could
2073      // allow some additional cases if necessary, but this
2074      // is sufficient to cover offsetof-like constructs.
2075      if (!LHSBase && !RHSBase) {
2076        return CheckAddressConstantExpression(Exp->getLHS()) ||
2077               CheckAddressConstantExpression(Exp->getRHS());
2078      }
2079    }
2080
2081    InitializerElementNotConstant(Init);
2082    return true;
2083  }
2084  case Expr::ImplicitCastExprClass:
2085  case Expr::CStyleCastExprClass: {
2086    const Expr *SubExpr = cast<CastExpr>(Init)->getSubExpr();
2087    if (SubExpr->getType()->isArithmeticType())
2088      return CheckArithmeticConstantExpression(SubExpr);
2089
2090    if (SubExpr->getType()->isPointerType()) {
2091      const Expr* Base = FindExpressionBaseAddress(SubExpr);
2092      // If the pointer has a null base, this is an offsetof-like construct
2093      if (!Base)
2094        return CheckAddressConstantExpression(SubExpr);
2095    }
2096
2097    InitializerElementNotConstant(Init);
2098    return true;
2099  }
2100  case Expr::ConditionalOperatorClass: {
2101    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
2102
2103    // If GNU extensions are disabled, we require all operands to be arithmetic
2104    // constant expressions.
2105    if (getLangOptions().NoExtensions) {
2106      return CheckArithmeticConstantExpression(Exp->getCond()) ||
2107          (Exp->getLHS() && CheckArithmeticConstantExpression(Exp->getLHS())) ||
2108             CheckArithmeticConstantExpression(Exp->getRHS());
2109    }
2110
2111    // Otherwise, we have to emulate some of the behavior of fold here.
2112    // Basically GCC treats things like "4 ? 1 : somefunc()" as a constant
2113    // because it can constant fold things away.  To retain compatibility with
2114    // GCC code, we see if we can fold the condition to a constant (which we
2115    // should always be able to do in theory).  If so, we only require the
2116    // specified arm of the conditional to be a constant.  This is a horrible
2117    // hack, but is require by real world code that uses __builtin_constant_p.
2118    Expr::EvalResult EvalResult;
2119    if (!Exp->getCond()->Evaluate(EvalResult, Context) ||
2120        EvalResult.HasSideEffects) {
2121      // If Evaluate couldn't fold it, CheckArithmeticConstantExpression
2122      // won't be able to either.  Use it to emit the diagnostic though.
2123      bool Res = CheckArithmeticConstantExpression(Exp->getCond());
2124      assert(Res && "Evaluate couldn't evaluate this constant?");
2125      return Res;
2126    }
2127
2128    // Verify that the side following the condition is also a constant.
2129    const Expr *TrueSide = Exp->getLHS(), *FalseSide = Exp->getRHS();
2130    if (EvalResult.Val.getInt() == 0)
2131      std::swap(TrueSide, FalseSide);
2132
2133    if (TrueSide && CheckArithmeticConstantExpression(TrueSide))
2134      return true;
2135
2136    // Okay, the evaluated side evaluates to a constant, so we accept this.
2137    // Check to see if the other side is obviously not a constant.  If so,
2138    // emit a warning that this is a GNU extension.
2139    if (FalseSide && !FalseSide->isEvaluatable(Context))
2140      Diag(Init->getExprLoc(),
2141           diag::ext_typecheck_expression_not_constant_but_accepted)
2142        << FalseSide->getSourceRange();
2143    return false;
2144  }
2145  }
2146}
2147
2148bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2149  if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init))
2150    Init = DIE->getInit();
2151
2152  Init = Init->IgnoreParens();
2153
2154  if (Init->isEvaluatable(Context))
2155    return false;
2156
2157  // Look through CXXDefaultArgExprs; they have no meaning in this context.
2158  if (CXXDefaultArgExpr* DAE = dyn_cast<CXXDefaultArgExpr>(Init))
2159    return CheckForConstantInitializer(DAE->getExpr(), DclT);
2160
2161  if (CompoundLiteralExpr *e = dyn_cast<CompoundLiteralExpr>(Init))
2162    return CheckForConstantInitializer(e->getInitializer(), DclT);
2163
2164  if (isa<ImplicitValueInitExpr>(Init)) {
2165    // FIXME: In C++, check for non-POD types.
2166    return false;
2167  }
2168
2169  if (InitListExpr *Exp = dyn_cast<InitListExpr>(Init)) {
2170    unsigned numInits = Exp->getNumInits();
2171    for (unsigned i = 0; i < numInits; i++) {
2172      // FIXME: Need to get the type of the declaration for C++,
2173      // because it could be a reference?
2174
2175      if (CheckForConstantInitializer(Exp->getInit(i),
2176                                      Exp->getInit(i)->getType()))
2177        return true;
2178    }
2179    return false;
2180  }
2181
2182  // FIXME: We can probably remove some of this code below, now that
2183  // Expr::Evaluate is doing the heavy lifting for scalars.
2184
2185  if (Init->isNullPointerConstant(Context))
2186    return false;
2187  if (Init->getType()->isArithmeticType()) {
2188    QualType InitTy = Context.getCanonicalType(Init->getType())
2189                             .getUnqualifiedType();
2190    if (InitTy == Context.BoolTy) {
2191      // Special handling for pointers implicitly cast to bool;
2192      // (e.g. "_Bool rr = &rr;"). This is only legal at the top level.
2193      if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Init)) {
2194        Expr* SubE = ICE->getSubExpr();
2195        if (SubE->getType()->isPointerType() ||
2196            SubE->getType()->isArrayType() ||
2197            SubE->getType()->isFunctionType()) {
2198          return CheckAddressConstantExpression(Init);
2199        }
2200      }
2201    } else if (InitTy->isIntegralType()) {
2202      Expr* SubE = 0;
2203      if (CastExpr* CE = dyn_cast<CastExpr>(Init))
2204        SubE = CE->getSubExpr();
2205      // Special check for pointer cast to int; we allow as an extension
2206      // an address constant cast to an integer if the integer
2207      // is of an appropriate width (this sort of code is apparently used
2208      // in some places).
2209      // FIXME: Add pedwarn?
2210      // FIXME: Don't allow bitfields here!  Need the FieldDecl for that.
2211      if (SubE && (SubE->getType()->isPointerType() ||
2212                   SubE->getType()->isArrayType() ||
2213                   SubE->getType()->isFunctionType())) {
2214        unsigned IntWidth = Context.getTypeSize(Init->getType());
2215        unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
2216        if (IntWidth >= PointerWidth)
2217          return CheckAddressConstantExpression(Init);
2218      }
2219    }
2220
2221    return CheckArithmeticConstantExpression(Init);
2222  }
2223
2224  if (Init->getType()->isPointerType())
2225    return CheckAddressConstantExpression(Init);
2226
2227  // An array type at the top level that isn't an init-list must
2228  // be a string literal
2229  if (Init->getType()->isArrayType())
2230    return false;
2231
2232  if (Init->getType()->isFunctionType())
2233    return false;
2234
2235  // Allow block exprs at top level.
2236  if (Init->getType()->isBlockPointerType())
2237    return false;
2238
2239  // GCC cast to union extension
2240  // note: the validity of the cast expr is checked by CheckCastTypes()
2241  if (CastExpr *C = dyn_cast<CastExpr>(Init)) {
2242    QualType T = C->getType();
2243    return T->isUnionType() && CheckForConstantInitializer(C->getSubExpr(), T);
2244  }
2245
2246  InitializerElementNotConstant(Init);
2247  return true;
2248}
2249
2250void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init) {
2251  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
2252}
2253
2254/// AddInitializerToDecl - Adds the initializer Init to the
2255/// declaration dcl. If DirectInit is true, this is C++ direct
2256/// initialization rather than copy initialization.
2257void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init, bool DirectInit) {
2258  Decl *RealDecl = static_cast<Decl *>(dcl);
2259  Expr *Init = static_cast<Expr *>(init.release());
2260  assert(Init && "missing initializer");
2261
2262  // If there is no declaration, there was an error parsing it.  Just ignore
2263  // the initializer.
2264  if (RealDecl == 0) {
2265    delete Init;
2266    return;
2267  }
2268
2269  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2270  if (!VDecl) {
2271    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2272    RealDecl->setInvalidDecl();
2273    return;
2274  }
2275  // Get the decls type and save a reference for later, since
2276  // CheckInitializerTypes may change it.
2277  QualType DclT = VDecl->getType(), SavT = DclT;
2278  if (VDecl->isBlockVarDecl()) {
2279    VarDecl::StorageClass SC = VDecl->getStorageClass();
2280    if (SC == VarDecl::Extern) { // C99 6.7.8p5
2281      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2282      VDecl->setInvalidDecl();
2283    } else if (!VDecl->isInvalidDecl()) {
2284      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2285                                VDecl->getDeclName(), DirectInit))
2286        VDecl->setInvalidDecl();
2287
2288      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2289      if (!getLangOptions().CPlusPlus) {
2290        if (SC == VarDecl::Static) // C99 6.7.8p4.
2291          CheckForConstantInitializer(Init, DclT);
2292      }
2293    }
2294  } else if (VDecl->isFileVarDecl()) {
2295    if (VDecl->getStorageClass() == VarDecl::Extern)
2296      Diag(VDecl->getLocation(), diag::warn_extern_init);
2297    if (!VDecl->isInvalidDecl())
2298      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2299                                VDecl->getDeclName(), DirectInit))
2300        VDecl->setInvalidDecl();
2301
2302    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2303    if (!getLangOptions().CPlusPlus) {
2304      // C99 6.7.8p4. All file scoped initializers need to be constant.
2305      CheckForConstantInitializer(Init, DclT);
2306    }
2307  }
2308  // If the type changed, it means we had an incomplete type that was
2309  // completed by the initializer. For example:
2310  //   int ary[] = { 1, 3, 5 };
2311  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2312  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2313    VDecl->setType(DclT);
2314    Init->setType(DclT);
2315  }
2316
2317  // Attach the initializer to the decl.
2318  VDecl->setInit(Init);
2319  return;
2320}
2321
2322void Sema::ActOnUninitializedDecl(DeclTy *dcl) {
2323  Decl *RealDecl = static_cast<Decl *>(dcl);
2324
2325  // If there is no declaration, there was an error parsing it. Just ignore it.
2326  if (RealDecl == 0)
2327    return;
2328
2329  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2330    QualType Type = Var->getType();
2331    // C++ [dcl.init.ref]p3:
2332    //   The initializer can be omitted for a reference only in a
2333    //   parameter declaration (8.3.5), in the declaration of a
2334    //   function return type, in the declaration of a class member
2335    //   within its class declaration (9.2), and where the extern
2336    //   specifier is explicitly used.
2337    if (Type->isReferenceType() &&
2338        Var->getStorageClass() != VarDecl::Extern &&
2339        Var->getStorageClass() != VarDecl::PrivateExtern) {
2340      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2341        << Var->getDeclName()
2342        << SourceRange(Var->getLocation(), Var->getLocation());
2343      Var->setInvalidDecl();
2344      return;
2345    }
2346
2347    // C++ [dcl.init]p9:
2348    //
2349    //   If no initializer is specified for an object, and the object
2350    //   is of (possibly cv-qualified) non-POD class type (or array
2351    //   thereof), the object shall be default-initialized; if the
2352    //   object is of const-qualified type, the underlying class type
2353    //   shall have a user-declared default constructor.
2354    if (getLangOptions().CPlusPlus) {
2355      QualType InitType = Type;
2356      if (const ArrayType *Array = Context.getAsArrayType(Type))
2357        InitType = Array->getElementType();
2358      if (Var->getStorageClass() != VarDecl::Extern &&
2359          Var->getStorageClass() != VarDecl::PrivateExtern &&
2360          InitType->isRecordType()) {
2361        const CXXConstructorDecl *Constructor
2362          = PerformInitializationByConstructor(InitType, 0, 0,
2363                                               Var->getLocation(),
2364                                               SourceRange(Var->getLocation(),
2365                                                           Var->getLocation()),
2366                                               Var->getDeclName(),
2367                                               IK_Default);
2368        if (!Constructor)
2369          Var->setInvalidDecl();
2370      }
2371    }
2372
2373#if 0
2374    // FIXME: Temporarily disabled because we are not properly parsing
2375    // linkage specifications on declarations, e.g.,
2376    //
2377    //   extern "C" const CGPoint CGPointerZero;
2378    //
2379    // C++ [dcl.init]p9:
2380    //
2381    //     If no initializer is specified for an object, and the
2382    //     object is of (possibly cv-qualified) non-POD class type (or
2383    //     array thereof), the object shall be default-initialized; if
2384    //     the object is of const-qualified type, the underlying class
2385    //     type shall have a user-declared default
2386    //     constructor. Otherwise, if no initializer is specified for
2387    //     an object, the object and its subobjects, if any, have an
2388    //     indeterminate initial value; if the object or any of its
2389    //     subobjects are of const-qualified type, the program is
2390    //     ill-formed.
2391    //
2392    // This isn't technically an error in C, so we don't diagnose it.
2393    //
2394    // FIXME: Actually perform the POD/user-defined default
2395    // constructor check.
2396    if (getLangOptions().CPlusPlus &&
2397        Context.getCanonicalType(Type).isConstQualified() &&
2398        Var->getStorageClass() != VarDecl::Extern)
2399      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2400        << Var->getName()
2401        << SourceRange(Var->getLocation(), Var->getLocation());
2402#endif
2403  }
2404}
2405
2406/// The declarators are chained together backwards, reverse the list.
2407Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
2408  // Often we have single declarators, handle them quickly.
2409  Decl *GroupDecl = static_cast<Decl*>(group);
2410  if (GroupDecl == 0)
2411    return 0;
2412
2413  Decl *Group = dyn_cast<Decl>(GroupDecl);
2414  Decl *NewGroup = 0;
2415  if (Group->getNextDeclarator() == 0)
2416    NewGroup = Group;
2417  else { // reverse the list.
2418    while (Group) {
2419      Decl *Next = Group->getNextDeclarator();
2420      Group->setNextDeclarator(NewGroup);
2421      NewGroup = Group;
2422      Group = Next;
2423    }
2424  }
2425  // Perform semantic analysis that depends on having fully processed both
2426  // the declarator and initializer.
2427  for (Decl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
2428    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
2429    if (!IDecl)
2430      continue;
2431    QualType T = IDecl->getType();
2432
2433    if (T->isVariableArrayType()) {
2434      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2435
2436      // FIXME: This won't give the correct result for
2437      // int a[10][n];
2438      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2439      if (IDecl->isFileVarDecl()) {
2440        Diag(IDecl->getLocation(), diag::err_vla_decl_in_file_scope) <<
2441          SizeRange;
2442
2443        IDecl->setInvalidDecl();
2444      } else {
2445        // C99 6.7.5.2p2: If an identifier is declared to be an object with
2446        // static storage duration, it shall not have a variable length array.
2447        if (IDecl->getStorageClass() == VarDecl::Static) {
2448          Diag(IDecl->getLocation(), diag::err_vla_decl_has_static_storage)
2449            << SizeRange;
2450          IDecl->setInvalidDecl();
2451        } else if (IDecl->getStorageClass() == VarDecl::Extern) {
2452          Diag(IDecl->getLocation(), diag::err_vla_decl_has_extern_linkage)
2453            << SizeRange;
2454          IDecl->setInvalidDecl();
2455        }
2456      }
2457    } else if (T->isVariablyModifiedType()) {
2458      if (IDecl->isFileVarDecl()) {
2459        Diag(IDecl->getLocation(), diag::err_vm_decl_in_file_scope);
2460        IDecl->setInvalidDecl();
2461      } else {
2462        if (IDecl->getStorageClass() == VarDecl::Extern) {
2463          Diag(IDecl->getLocation(), diag::err_vm_decl_has_extern_linkage);
2464          IDecl->setInvalidDecl();
2465        }
2466      }
2467    }
2468
2469    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2470    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2471    if (IDecl->isBlockVarDecl() &&
2472        IDecl->getStorageClass() != VarDecl::Extern) {
2473      if (!IDecl->isInvalidDecl() &&
2474          DiagnoseIncompleteType(IDecl->getLocation(), T,
2475                                 diag::err_typecheck_decl_incomplete_type))
2476        IDecl->setInvalidDecl();
2477    }
2478    // File scope. C99 6.9.2p2: A declaration of an identifier for and
2479    // object that has file scope without an initializer, and without a
2480    // storage-class specifier or with the storage-class specifier "static",
2481    // constitutes a tentative definition. Note: A tentative definition with
2482    // external linkage is valid (C99 6.2.2p5).
2483    if (isTentativeDefinition(IDecl)) {
2484      if (T->isIncompleteArrayType()) {
2485        // C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete
2486        // array to be completed. Don't issue a diagnostic.
2487      } else if (!IDecl->isInvalidDecl() &&
2488                 DiagnoseIncompleteType(IDecl->getLocation(), T,
2489                                        diag::err_typecheck_decl_incomplete_type))
2490        // C99 6.9.2p3: If the declaration of an identifier for an object is
2491        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2492        // declared type shall not be an incomplete type.
2493        IDecl->setInvalidDecl();
2494    }
2495    if (IDecl->isFileVarDecl())
2496      CheckForFileScopedRedefinitions(S, IDecl);
2497  }
2498  return NewGroup;
2499}
2500
2501/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2502/// to introduce parameters into function prototype scope.
2503Sema::DeclTy *
2504Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2505  const DeclSpec &DS = D.getDeclSpec();
2506
2507  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2508  VarDecl::StorageClass StorageClass = VarDecl::None;
2509  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2510    StorageClass = VarDecl::Register;
2511  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2512    Diag(DS.getStorageClassSpecLoc(),
2513         diag::err_invalid_storage_class_in_func_decl);
2514    D.getMutableDeclSpec().ClearStorageClassSpecs();
2515  }
2516  if (DS.isThreadSpecified()) {
2517    Diag(DS.getThreadSpecLoc(),
2518         diag::err_invalid_storage_class_in_func_decl);
2519    D.getMutableDeclSpec().ClearStorageClassSpecs();
2520  }
2521
2522  // Check that there are no default arguments inside the type of this
2523  // parameter (C++ only).
2524  if (getLangOptions().CPlusPlus)
2525    CheckExtraCXXDefaultArguments(D);
2526
2527  // In this context, we *do not* check D.getInvalidType(). If the declarator
2528  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
2529  // though it will not reflect the user specified type.
2530  QualType parmDeclType = GetTypeForDeclarator(D, S);
2531
2532  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
2533
2534  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2535  // Can this happen for params?  We already checked that they don't conflict
2536  // among each other.  Here they can only shadow globals, which is ok.
2537  IdentifierInfo *II = D.getIdentifier();
2538  if (II) {
2539    if (Decl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2540      if (PrevDecl->isTemplateParameter()) {
2541        // Maybe we will complain about the shadowed template parameter.
2542        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2543        // Just pretend that we didn't see the previous declaration.
2544        PrevDecl = 0;
2545      } else if (S->isDeclScope(PrevDecl)) {
2546        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2547
2548        // Recover by removing the name
2549        II = 0;
2550        D.SetIdentifier(0, D.getIdentifierLoc());
2551      }
2552    }
2553  }
2554
2555  // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
2556  // Doing the promotion here has a win and a loss. The win is the type for
2557  // both Decl's and DeclRefExpr's will match (a convenient invariant for the
2558  // code generator). The loss is the orginal type isn't preserved. For example:
2559  //
2560  // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
2561  //    int blockvardecl[5];
2562  //    sizeof(parmvardecl);  // size == 4
2563  //    sizeof(blockvardecl); // size == 20
2564  // }
2565  //
2566  // For expressions, all implicit conversions are captured using the
2567  // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
2568  //
2569  // FIXME: If a source translation tool needs to see the original type, then
2570  // we need to consider storing both types (in ParmVarDecl)...
2571  //
2572  if (parmDeclType->isArrayType()) {
2573    // int x[restrict 4] ->  int *restrict
2574    parmDeclType = Context.getArrayDecayedType(parmDeclType);
2575  } else if (parmDeclType->isFunctionType())
2576    parmDeclType = Context.getPointerType(parmDeclType);
2577
2578  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext,
2579                                         D.getIdentifierLoc(), II,
2580                                         parmDeclType, StorageClass,
2581                                         0);
2582
2583  if (D.getInvalidType())
2584    New->setInvalidDecl();
2585
2586  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2587  if (D.getCXXScopeSpec().isSet()) {
2588    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
2589      << D.getCXXScopeSpec().getRange();
2590    New->setInvalidDecl();
2591  }
2592
2593  // Add the parameter declaration into this scope.
2594  S->AddDecl(New);
2595  if (II)
2596    IdResolver.AddDecl(New);
2597
2598  ProcessDeclAttributes(New, D);
2599  return New;
2600
2601}
2602
2603void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D) {
2604  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2605         "Not a function declarator!");
2606  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2607
2608  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
2609  // for a K&R function.
2610  if (!FTI.hasPrototype) {
2611    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2612      if (FTI.ArgInfo[i].Param == 0) {
2613        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
2614          << FTI.ArgInfo[i].Ident;
2615        // Implicitly declare the argument as type 'int' for lack of a better
2616        // type.
2617        DeclSpec DS;
2618        const char* PrevSpec; // unused
2619        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
2620                           PrevSpec);
2621        Declarator ParamD(DS, Declarator::KNRTypeListContext);
2622        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
2623        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
2624      }
2625    }
2626  }
2627}
2628
2629Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
2630  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2631  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2632         "Not a function declarator!");
2633  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2634
2635  if (FTI.hasPrototype) {
2636    // FIXME: Diagnose arguments without names in C.
2637  }
2638
2639  Scope *ParentScope = FnBodyScope->getParent();
2640
2641  return ActOnStartOfFunctionDef(FnBodyScope,
2642                                 ActOnDeclarator(ParentScope, D, 0,
2643                                                 /*IsFunctionDefinition=*/true));
2644}
2645
2646Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclTy *D) {
2647  Decl *decl = static_cast<Decl*>(D);
2648  FunctionDecl *FD = cast<FunctionDecl>(decl);
2649
2650  // See if this is a redefinition.
2651  const FunctionDecl *Definition;
2652  if (FD->getBody(Definition)) {
2653    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
2654    Diag(Definition->getLocation(), diag::note_previous_definition);
2655  }
2656
2657  PushDeclContext(FnBodyScope, FD);
2658
2659  // Check the validity of our function parameters
2660  CheckParmsForFunctionDef(FD);
2661
2662  // Introduce our parameters into the function scope
2663  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2664    ParmVarDecl *Param = FD->getParamDecl(p);
2665    Param->setOwningFunction(FD);
2666
2667    // If this has an identifier, add it to the scope stack.
2668    if (Param->getIdentifier())
2669      PushOnScopeChains(Param, FnBodyScope);
2670  }
2671
2672  // Checking attributes of current function definition
2673  // dllimport attribute.
2674  if (FD->getAttr<DLLImportAttr>() && (!FD->getAttr<DLLExportAttr>())) {
2675    // dllimport attribute cannot be applied to definition.
2676    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
2677      Diag(FD->getLocation(),
2678           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
2679        << "dllimport";
2680      FD->setInvalidDecl();
2681      return FD;
2682    } else {
2683      // If a symbol previously declared dllimport is later defined, the
2684      // attribute is ignored in subsequent references, and a warning is
2685      // emitted.
2686      Diag(FD->getLocation(),
2687           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
2688        << FD->getNameAsCString() << "dllimport";
2689    }
2690  }
2691  return FD;
2692}
2693
2694Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtArg BodyArg) {
2695  Decl *dcl = static_cast<Decl *>(D);
2696  Stmt *Body = static_cast<Stmt*>(BodyArg.release());
2697  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
2698    FD->setBody(Body);
2699    assert(FD == getCurFunctionDecl() && "Function parsing confused");
2700  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
2701    MD->setBody((Stmt*)Body);
2702  } else
2703    return 0;
2704  PopDeclContext();
2705  // Verify and clean out per-function state.
2706
2707  // Check goto/label use.
2708  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
2709       I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
2710    // Verify that we have no forward references left.  If so, there was a goto
2711    // or address of a label taken, but no definition of it.  Label fwd
2712    // definitions are indicated with a null substmt.
2713    if (I->second->getSubStmt() == 0) {
2714      LabelStmt *L = I->second;
2715      // Emit error.
2716      Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
2717
2718      // At this point, we have gotos that use the bogus label.  Stitch it into
2719      // the function body so that they aren't leaked and that the AST is well
2720      // formed.
2721      if (Body) {
2722        L->setSubStmt(new NullStmt(L->getIdentLoc()));
2723        cast<CompoundStmt>(Body)->push_back(L);
2724      } else {
2725        // The whole function wasn't parsed correctly, just delete this.
2726        delete L;
2727      }
2728    }
2729  }
2730  LabelMap.clear();
2731
2732  return D;
2733}
2734
2735/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
2736/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
2737NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
2738                                          IdentifierInfo &II, Scope *S) {
2739  // Extension in C99.  Legal in C90, but warn about it.
2740  if (getLangOptions().C99)
2741    Diag(Loc, diag::ext_implicit_function_decl) << &II;
2742  else
2743    Diag(Loc, diag::warn_implicit_function_decl) << &II;
2744
2745  // FIXME: handle stuff like:
2746  // void foo() { extern float X(); }
2747  // void bar() { X(); }  <-- implicit decl for X in another scope.
2748
2749  // Set a Declarator for the implicit definition: int foo();
2750  const char *Dummy;
2751  DeclSpec DS;
2752  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
2753  Error = Error; // Silence warning.
2754  assert(!Error && "Error setting up implicit decl!");
2755  Declarator D(DS, Declarator::BlockContext);
2756  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, 0, 0, 0, Loc, D));
2757  D.SetIdentifier(&II, Loc);
2758
2759  // Insert this function into translation-unit scope.
2760
2761  DeclContext *PrevDC = CurContext;
2762  CurContext = Context.getTranslationUnitDecl();
2763
2764  FunctionDecl *FD =
2765    dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0)));
2766  FD->setImplicit();
2767
2768  CurContext = PrevDC;
2769
2770  return FD;
2771}
2772
2773
2774TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
2775                                    Decl *LastDeclarator) {
2776  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
2777  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2778
2779  // Scope manipulation handled by caller.
2780  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
2781                                           D.getIdentifierLoc(),
2782                                           D.getIdentifier(),
2783                                           T);
2784  NewTD->setNextDeclarator(LastDeclarator);
2785  if (D.getInvalidType())
2786    NewTD->setInvalidDecl();
2787  return NewTD;
2788}
2789
2790/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
2791/// former case, Name will be non-null.  In the later case, Name will be null.
2792/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
2793/// reference/declaration/definition of a tag.
2794Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
2795                             SourceLocation KWLoc, const CXXScopeSpec &SS,
2796                             IdentifierInfo *Name, SourceLocation NameLoc,
2797                             AttributeList *Attr,
2798                             MultiTemplateParamsArg TemplateParameterLists) {
2799  // If this is not a definition, it must have a name.
2800  assert((Name != 0 || TK == TK_Definition) &&
2801         "Nameless record must be a definition!");
2802
2803  TagDecl::TagKind Kind;
2804  switch (TagSpec) {
2805  default: assert(0 && "Unknown tag type!");
2806  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
2807  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
2808  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
2809  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
2810  }
2811
2812  DeclContext *SearchDC = CurContext;
2813  DeclContext *DC = CurContext;
2814  DeclContext *LexicalContext = CurContext;
2815  Decl *PrevDecl = 0;
2816
2817  bool Invalid = false;
2818
2819  if (Name && SS.isNotEmpty()) {
2820    // We have a nested-name tag ('struct foo::bar').
2821
2822    // Check for invalid 'foo::'.
2823    if (SS.isInvalid()) {
2824      Name = 0;
2825      goto CreateNewDecl;
2826    }
2827
2828    DC = static_cast<DeclContext*>(SS.getScopeRep());
2829    // Look-up name inside 'foo::'.
2830    PrevDecl = dyn_cast_or_null<TagDecl>(
2831                     LookupQualifiedName(DC, Name, LookupTagName).getAsDecl());
2832
2833    // A tag 'foo::bar' must already exist.
2834    if (PrevDecl == 0) {
2835      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
2836      Name = 0;
2837      goto CreateNewDecl;
2838    }
2839  } else if (Name) {
2840    // If this is a named struct, check to see if there was a previous forward
2841    // declaration or definition.
2842    Decl *D = LookupName(S, Name, LookupTagName);
2843    PrevDecl = dyn_cast_or_null<NamedDecl>(D);
2844
2845    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
2846      // FIXME: This makes sure that we ignore the contexts associated
2847      // with C structs, unions, and enums when looking for a matching
2848      // tag declaration or definition. See the similar lookup tweak
2849      // in Sema::LookupName; is there a better way to deal with this?
2850      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
2851        SearchDC = SearchDC->getParent();
2852    }
2853  }
2854
2855  if (PrevDecl && PrevDecl->isTemplateParameter()) {
2856    // Maybe we will complain about the shadowed template parameter.
2857    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
2858    // Just pretend that we didn't see the previous declaration.
2859    PrevDecl = 0;
2860  }
2861
2862  if (PrevDecl) {
2863    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
2864      // If this is a use of a previous tag, or if the tag is already declared
2865      // in the same scope (so that the definition/declaration completes or
2866      // rementions the tag), reuse the decl.
2867      if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
2868        // Make sure that this wasn't declared as an enum and now used as a
2869        // struct or something similar.
2870        if (PrevTagDecl->getTagKind() != Kind) {
2871          Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
2872          Diag(PrevDecl->getLocation(), diag::note_previous_use);
2873          // Recover by making this an anonymous redefinition.
2874          Name = 0;
2875          PrevDecl = 0;
2876          Invalid = true;
2877        } else {
2878          // If this is a use, just return the declaration we found.
2879
2880          // FIXME: In the future, return a variant or some other clue
2881          // for the consumer of this Decl to know it doesn't own it.
2882          // For our current ASTs this shouldn't be a problem, but will
2883          // need to be changed with DeclGroups.
2884          if (TK == TK_Reference)
2885            return PrevDecl;
2886
2887          // Diagnose attempts to redefine a tag.
2888          if (TK == TK_Definition) {
2889            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
2890              Diag(NameLoc, diag::err_redefinition) << Name;
2891              Diag(Def->getLocation(), diag::note_previous_definition);
2892              // If this is a redefinition, recover by making this
2893              // struct be anonymous, which will make any later
2894              // references get the previous definition.
2895              Name = 0;
2896              PrevDecl = 0;
2897              Invalid = true;
2898            } else {
2899              // If the type is currently being defined, complain
2900              // about a nested redefinition.
2901              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
2902              if (Tag->isBeingDefined()) {
2903                Diag(NameLoc, diag::err_nested_redefinition) << Name;
2904                Diag(PrevTagDecl->getLocation(),
2905                     diag::note_previous_definition);
2906                Name = 0;
2907                PrevDecl = 0;
2908                Invalid = true;
2909              }
2910            }
2911
2912            // Okay, this is definition of a previously declared or referenced
2913            // tag PrevDecl. We're going to create a new Decl for it.
2914          }
2915        }
2916        // If we get here we have (another) forward declaration or we
2917        // have a definition.  Just create a new decl.
2918      } else {
2919        // If we get here, this is a definition of a new tag type in a nested
2920        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
2921        // new decl/type.  We set PrevDecl to NULL so that the entities
2922        // have distinct types.
2923        PrevDecl = 0;
2924      }
2925      // If we get here, we're going to create a new Decl. If PrevDecl
2926      // is non-NULL, it's a definition of the tag declared by
2927      // PrevDecl. If it's NULL, we have a new definition.
2928    } else {
2929      // PrevDecl is a namespace, template, or anything else
2930      // that lives in the IDNS_Tag identifier namespace.
2931      if (isDeclInScope(PrevDecl, SearchDC, S)) {
2932        // The tag name clashes with a namespace name, issue an error and
2933        // recover by making this tag be anonymous.
2934        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
2935        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2936        Name = 0;
2937        PrevDecl = 0;
2938        Invalid = true;
2939      } else {
2940        // The existing declaration isn't relevant to us; we're in a
2941        // new scope, so clear out the previous declaration.
2942        PrevDecl = 0;
2943      }
2944    }
2945  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
2946             (Kind != TagDecl::TK_enum))  {
2947    // C++ [basic.scope.pdecl]p5:
2948    //   -- for an elaborated-type-specifier of the form
2949    //
2950    //          class-key identifier
2951    //
2952    //      if the elaborated-type-specifier is used in the
2953    //      decl-specifier-seq or parameter-declaration-clause of a
2954    //      function defined in namespace scope, the identifier is
2955    //      declared as a class-name in the namespace that contains
2956    //      the declaration; otherwise, except as a friend
2957    //      declaration, the identifier is declared in the smallest
2958    //      non-class, non-function-prototype scope that contains the
2959    //      declaration.
2960    //
2961    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
2962    // C structs and unions.
2963
2964    // Find the context where we'll be declaring the tag.
2965    // FIXME: We would like to maintain the current DeclContext as the
2966    // lexical context,
2967    while (DC->isRecord())
2968      DC = DC->getParent();
2969    LexicalContext = DC;
2970
2971    // Find the scope where we'll be declaring the tag.
2972    while (S->isClassScope() ||
2973           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
2974           ((S->getFlags() & Scope::DeclScope) == 0) ||
2975           (S->getEntity() &&
2976            ((DeclContext *)S->getEntity())->isTransparentContext()))
2977      S = S->getParent();
2978  }
2979
2980CreateNewDecl:
2981
2982  // If there is an identifier, use the location of the identifier as the
2983  // location of the decl, otherwise use the location of the struct/union
2984  // keyword.
2985  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
2986
2987  // Otherwise, create a new declaration. If there is a previous
2988  // declaration of the same entity, the two will be linked via
2989  // PrevDecl.
2990  TagDecl *New;
2991
2992  if (Kind == TagDecl::TK_enum) {
2993    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
2994    // enum X { A, B, C } D;    D should chain to X.
2995    New = EnumDecl::Create(Context, DC, Loc, Name,
2996                           cast_or_null<EnumDecl>(PrevDecl));
2997    // If this is an undefined enum, warn.
2998    if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum);
2999  } else {
3000    // struct/union/class
3001
3002    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3003    // struct X { int A; } D;    D should chain to X.
3004    if (getLangOptions().CPlusPlus)
3005      // FIXME: Look for a way to use RecordDecl for simple structs.
3006      New = CXXRecordDecl::Create(Context, Kind, DC, Loc, Name,
3007                                  cast_or_null<CXXRecordDecl>(PrevDecl));
3008    else
3009      New = RecordDecl::Create(Context, Kind, DC, Loc, Name,
3010                               cast_or_null<RecordDecl>(PrevDecl));
3011  }
3012
3013  if (Kind != TagDecl::TK_enum) {
3014    // Handle #pragma pack: if the #pragma pack stack has non-default
3015    // alignment, make up a packed attribute for this decl. These
3016    // attributes are checked when the ASTContext lays out the
3017    // structure.
3018    //
3019    // It is important for implementing the correct semantics that this
3020    // happen here (in act on tag decl). The #pragma pack stack is
3021    // maintained as a result of parser callbacks which can occur at
3022    // many points during the parsing of a struct declaration (because
3023    // the #pragma tokens are effectively skipped over during the
3024    // parsing of the struct).
3025    if (unsigned Alignment = PackContext.getAlignment())
3026      New->addAttr(new PackedAttr(Alignment * 8));
3027  }
3028
3029  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
3030    // C++ [dcl.typedef]p3:
3031    //   [...] Similarly, in a given scope, a class or enumeration
3032    //   shall not be declared with the same name as a typedef-name
3033    //   that is declared in that scope and refers to a type other
3034    //   than the class or enumeration itself.
3035    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
3036    TypedefDecl *PrevTypedef = 0;
3037    if (Lookup.getKind() == LookupResult::Found)
3038      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
3039
3040    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
3041        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
3042          Context.getCanonicalType(Context.getTypeDeclType(New))) {
3043      Diag(Loc, diag::err_tag_definition_of_typedef)
3044        << Context.getTypeDeclType(New)
3045        << PrevTypedef->getUnderlyingType();
3046      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
3047      Invalid = true;
3048    }
3049  }
3050
3051  if (Invalid)
3052    New->setInvalidDecl();
3053
3054  if (Attr)
3055    ProcessDeclAttributeList(New, Attr);
3056
3057  // If we're declaring or defining a tag in function prototype scope
3058  // in C, note that this type can only be used within the function.
3059  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
3060    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
3061
3062  // Set the lexical context. If the tag has a C++ scope specifier, the
3063  // lexical context will be different from the semantic context.
3064  New->setLexicalDeclContext(LexicalContext);
3065
3066  if (TK == TK_Definition)
3067    New->startDefinition();
3068
3069  // If this has an identifier, add it to the scope stack.
3070  if (Name) {
3071    S = getNonFieldDeclScope(S);
3072
3073    // Add it to the decl chain.
3074    if (LexicalContext != CurContext) {
3075      // FIXME: PushOnScopeChains should not rely on CurContext!
3076      DeclContext *OldContext = CurContext;
3077      CurContext = LexicalContext;
3078      PushOnScopeChains(New, S);
3079      CurContext = OldContext;
3080    } else
3081      PushOnScopeChains(New, S);
3082  } else {
3083    LexicalContext->addDecl(New);
3084  }
3085
3086  return New;
3087}
3088
3089void Sema::ActOnTagStartDefinition(Scope *S, DeclTy *TagD) {
3090  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3091
3092  // Enter the tag context.
3093  PushDeclContext(S, Tag);
3094
3095  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
3096    FieldCollector->StartClass();
3097
3098    if (Record->getIdentifier()) {
3099      // C++ [class]p2:
3100      //   [...] The class-name is also inserted into the scope of the
3101      //   class itself; this is known as the injected-class-name. For
3102      //   purposes of access checking, the injected-class-name is treated
3103      //   as if it were a public member name.
3104      RecordDecl *InjectedClassName
3105        = CXXRecordDecl::Create(Context, Record->getTagKind(),
3106                                CurContext, Record->getLocation(),
3107                                Record->getIdentifier(), Record);
3108      InjectedClassName->setImplicit();
3109      PushOnScopeChains(InjectedClassName, S);
3110    }
3111  }
3112}
3113
3114void Sema::ActOnTagFinishDefinition(Scope *S, DeclTy *TagD) {
3115  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3116
3117  if (isa<CXXRecordDecl>(Tag))
3118    FieldCollector->FinishClass();
3119
3120  // Exit this scope of this tag's definition.
3121  PopDeclContext();
3122
3123  // Notify the consumer that we've defined a tag.
3124  Consumer.HandleTagDeclDefinition(Tag);
3125}
3126
3127/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3128/// types into constant array types in certain situations which would otherwise
3129/// be errors (for GCC compatibility).
3130static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3131                                                    ASTContext &Context) {
3132  // This method tries to turn a variable array into a constant
3133  // array even when the size isn't an ICE.  This is necessary
3134  // for compatibility with code that depends on gcc's buggy
3135  // constant expression folding, like struct {char x[(int)(char*)2];}
3136  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3137  if (!VLATy) return QualType();
3138
3139  Expr::EvalResult EvalResult;
3140  if (!VLATy->getSizeExpr() ||
3141      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context))
3142    return QualType();
3143
3144  assert(EvalResult.Val.isInt() && "Size expressions must be integers!");
3145  llvm::APSInt &Res = EvalResult.Val.getInt();
3146  if (Res > llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
3147    return Context.getConstantArrayType(VLATy->getElementType(),
3148                                        Res, ArrayType::Normal, 0);
3149  return QualType();
3150}
3151
3152bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
3153                          QualType FieldTy, const Expr *BitWidth) {
3154  // FIXME: 6.7.2.1p4 - verify the field type.
3155
3156  llvm::APSInt Value;
3157  if (VerifyIntegerConstantExpression(BitWidth, &Value))
3158    return true;
3159
3160  // Zero-width bitfield is ok for anonymous field.
3161  if (Value == 0 && FieldName)
3162    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
3163
3164  if (Value.isNegative())
3165    return Diag(FieldLoc, diag::err_bitfield_has_negative_width) << FieldName;
3166
3167  uint64_t TypeSize = Context.getTypeSize(FieldTy);
3168  // FIXME: We won't need the 0 size once we check that the field type is valid.
3169  if (TypeSize && Value.getZExtValue() > TypeSize)
3170    return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
3171       << FieldName << (unsigned)TypeSize;
3172
3173  return false;
3174}
3175
3176/// ActOnField - Each field of a struct/union/class is passed into this in order
3177/// to create a FieldDecl object for it.
3178Sema::DeclTy *Sema::ActOnField(Scope *S, DeclTy *TagD,
3179                               SourceLocation DeclStart,
3180                               Declarator &D, ExprTy *BitfieldWidth) {
3181  IdentifierInfo *II = D.getIdentifier();
3182  Expr *BitWidth = (Expr*)BitfieldWidth;
3183  SourceLocation Loc = DeclStart;
3184  RecordDecl *Record = (RecordDecl *)TagD;
3185  if (II) Loc = D.getIdentifierLoc();
3186
3187  // FIXME: Unnamed fields can be handled in various different ways, for
3188  // example, unnamed unions inject all members into the struct namespace!
3189
3190  QualType T = GetTypeForDeclarator(D, S);
3191  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3192  bool InvalidDecl = false;
3193
3194  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3195  // than a variably modified type.
3196  if (T->isVariablyModifiedType()) {
3197    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context);
3198    if (!FixedTy.isNull()) {
3199      Diag(Loc, diag::warn_illegal_constant_array_size);
3200      T = FixedTy;
3201    } else {
3202      Diag(Loc, diag::err_typecheck_field_variable_size);
3203      T = Context.IntTy;
3204      InvalidDecl = true;
3205    }
3206  }
3207
3208  if (BitWidth) {
3209    if (VerifyBitField(Loc, II, T, BitWidth))
3210      InvalidDecl = true;
3211  } else {
3212    // Not a bitfield.
3213
3214    // validate II.
3215
3216  }
3217
3218  // FIXME: Chain fielddecls together.
3219  FieldDecl *NewFD;
3220
3221  NewFD = FieldDecl::Create(Context, Record,
3222                            Loc, II, T, BitWidth,
3223                            D.getDeclSpec().getStorageClassSpec() ==
3224                              DeclSpec::SCS_mutable);
3225
3226  if (II) {
3227    Decl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3228    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3229        && !isa<TagDecl>(PrevDecl)) {
3230      Diag(Loc, diag::err_duplicate_member) << II;
3231      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3232      NewFD->setInvalidDecl();
3233      Record->setInvalidDecl();
3234    }
3235  }
3236
3237  if (getLangOptions().CPlusPlus) {
3238    CheckExtraCXXDefaultArguments(D);
3239    if (!T->isPODType())
3240      cast<CXXRecordDecl>(Record)->setPOD(false);
3241  }
3242
3243  ProcessDeclAttributes(NewFD, D);
3244
3245  if (D.getInvalidType() || InvalidDecl)
3246    NewFD->setInvalidDecl();
3247
3248  if (II) {
3249    PushOnScopeChains(NewFD, S);
3250  } else
3251    Record->addDecl(NewFD);
3252
3253  return NewFD;
3254}
3255
3256/// TranslateIvarVisibility - Translate visibility from a token ID to an
3257///  AST enum value.
3258static ObjCIvarDecl::AccessControl
3259TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
3260  switch (ivarVisibility) {
3261  default: assert(0 && "Unknown visitibility kind");
3262  case tok::objc_private: return ObjCIvarDecl::Private;
3263  case tok::objc_public: return ObjCIvarDecl::Public;
3264  case tok::objc_protected: return ObjCIvarDecl::Protected;
3265  case tok::objc_package: return ObjCIvarDecl::Package;
3266  }
3267}
3268
3269/// ActOnIvar - Each ivar field of an objective-c class is passed into this
3270/// in order to create an IvarDecl object for it.
3271Sema::DeclTy *Sema::ActOnIvar(Scope *S,
3272                              SourceLocation DeclStart,
3273                              Declarator &D, ExprTy *BitfieldWidth,
3274                              tok::ObjCKeywordKind Visibility) {
3275
3276  IdentifierInfo *II = D.getIdentifier();
3277  Expr *BitWidth = (Expr*)BitfieldWidth;
3278  SourceLocation Loc = DeclStart;
3279  if (II) Loc = D.getIdentifierLoc();
3280
3281  // FIXME: Unnamed fields can be handled in various different ways, for
3282  // example, unnamed unions inject all members into the struct namespace!
3283
3284  QualType T = GetTypeForDeclarator(D, S);
3285  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3286  bool InvalidDecl = false;
3287
3288  if (BitWidth) {
3289    // TODO: Validate.
3290    //printf("WARNING: BITFIELDS IGNORED!\n");
3291
3292    // 6.7.2.1p3
3293    // 6.7.2.1p4
3294
3295  } else {
3296    // Not a bitfield.
3297
3298    // validate II.
3299
3300  }
3301
3302  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3303  // than a variably modified type.
3304  if (T->isVariablyModifiedType()) {
3305    Diag(Loc, diag::err_typecheck_ivar_variable_size);
3306    InvalidDecl = true;
3307  }
3308
3309  // Get the visibility (access control) for this ivar.
3310  ObjCIvarDecl::AccessControl ac =
3311    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
3312                                        : ObjCIvarDecl::None;
3313
3314  // Construct the decl.
3315  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, Loc, II, T, ac,
3316                                             (Expr *)BitfieldWidth);
3317
3318  if (II) {
3319    Decl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3320    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3321        && !isa<TagDecl>(PrevDecl)) {
3322      Diag(Loc, diag::err_duplicate_member) << II;
3323      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3324      NewID->setInvalidDecl();
3325    }
3326  }
3327
3328  // Process attributes attached to the ivar.
3329  ProcessDeclAttributes(NewID, D);
3330
3331  if (D.getInvalidType() || InvalidDecl)
3332    NewID->setInvalidDecl();
3333
3334  if (II) {
3335    // FIXME: When interfaces are DeclContexts, we'll need to add
3336    // these to the interface.
3337    S->AddDecl(NewID);
3338    IdResolver.AddDecl(NewID);
3339  }
3340
3341  return NewID;
3342}
3343
3344void Sema::ActOnFields(Scope* S,
3345                       SourceLocation RecLoc, DeclTy *RecDecl,
3346                       DeclTy **Fields, unsigned NumFields,
3347                       SourceLocation LBrac, SourceLocation RBrac,
3348                       AttributeList *Attr) {
3349  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
3350  assert(EnclosingDecl && "missing record or interface decl");
3351  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
3352
3353  // Verify that all the fields are okay.
3354  unsigned NumNamedMembers = 0;
3355  llvm::SmallVector<FieldDecl*, 32> RecFields;
3356
3357  for (unsigned i = 0; i != NumFields; ++i) {
3358    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
3359    assert(FD && "missing field decl");
3360
3361    // Get the type for the field.
3362    Type *FDTy = FD->getType().getTypePtr();
3363
3364    if (!FD->isAnonymousStructOrUnion()) {
3365      // Remember all fields written by the user.
3366      RecFields.push_back(FD);
3367    }
3368
3369    // C99 6.7.2.1p2 - A field may not be a function type.
3370    if (FDTy->isFunctionType()) {
3371      Diag(FD->getLocation(), diag::err_field_declared_as_function)
3372        << FD->getDeclName();
3373      FD->setInvalidDecl();
3374      EnclosingDecl->setInvalidDecl();
3375      continue;
3376    }
3377    // C99 6.7.2.1p2 - A field may not be an incomplete type except...
3378    if (FDTy->isIncompleteType()) {
3379      if (!Record) {  // Incomplete ivar type is always an error.
3380        DiagnoseIncompleteType(FD->getLocation(), FD->getType(),
3381                               diag::err_field_incomplete);
3382        FD->setInvalidDecl();
3383        EnclosingDecl->setInvalidDecl();
3384        continue;
3385      }
3386      if (i != NumFields-1 ||                   // ... that the last member ...
3387          !Record->isStruct() ||  // ... of a structure ...
3388          !FDTy->isArrayType()) {         //... may have incomplete array type.
3389        DiagnoseIncompleteType(FD->getLocation(), FD->getType(),
3390                               diag::err_field_incomplete);
3391        FD->setInvalidDecl();
3392        EnclosingDecl->setInvalidDecl();
3393        continue;
3394      }
3395      if (NumNamedMembers < 1) {  //... must have more than named member ...
3396        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
3397          << FD->getDeclName();
3398        FD->setInvalidDecl();
3399        EnclosingDecl->setInvalidDecl();
3400        continue;
3401      }
3402      // Okay, we have a legal flexible array member at the end of the struct.
3403      if (Record)
3404        Record->setHasFlexibleArrayMember(true);
3405    }
3406    /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
3407    /// field of another structure or the element of an array.
3408    if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
3409      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
3410        // If this is a member of a union, then entire union becomes "flexible".
3411        if (Record && Record->isUnion()) {
3412          Record->setHasFlexibleArrayMember(true);
3413        } else {
3414          // If this is a struct/class and this is not the last element, reject
3415          // it.  Note that GCC supports variable sized arrays in the middle of
3416          // structures.
3417          if (i != NumFields-1) {
3418            Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct)
3419              << FD->getDeclName();
3420            FD->setInvalidDecl();
3421            EnclosingDecl->setInvalidDecl();
3422            continue;
3423          }
3424          // We support flexible arrays at the end of structs in other structs
3425          // as an extension.
3426          Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
3427            << FD->getDeclName();
3428          if (Record)
3429            Record->setHasFlexibleArrayMember(true);
3430        }
3431      }
3432    }
3433    /// A field cannot be an Objective-c object
3434    if (FDTy->isObjCInterfaceType()) {
3435      Diag(FD->getLocation(), diag::err_statically_allocated_object)
3436        << FD->getDeclName();
3437      FD->setInvalidDecl();
3438      EnclosingDecl->setInvalidDecl();
3439      continue;
3440    }
3441    // Keep track of the number of named members.
3442    if (FD->getIdentifier())
3443      ++NumNamedMembers;
3444  }
3445
3446  // Okay, we successfully defined 'Record'.
3447  if (Record) {
3448    Record->completeDefinition(Context);
3449  } else {
3450    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
3451    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
3452      ID->addInstanceVariablesToClass(ClsFields, RecFields.size(), RBrac);
3453      // Must enforce the rule that ivars in the base classes may not be
3454      // duplicates.
3455      if (ID->getSuperClass()) {
3456        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
3457             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
3458          ObjCIvarDecl* Ivar = (*IVI);
3459          IdentifierInfo *II = Ivar->getIdentifier();
3460          ObjCIvarDecl* prevIvar = ID->getSuperClass()->FindIvarDeclaration(II);
3461          if (prevIvar) {
3462            Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3463            Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3464          }
3465        }
3466      }
3467    }
3468    else if (ObjCImplementationDecl *IMPDecl =
3469               dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
3470      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
3471      IMPDecl->ObjCAddInstanceVariablesToClassImpl(ClsFields, RecFields.size());
3472      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
3473    }
3474  }
3475
3476  if (Attr)
3477    ProcessDeclAttributeList(Record, Attr);
3478}
3479
3480Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
3481                                      DeclTy *lastEnumConst,
3482                                      SourceLocation IdLoc, IdentifierInfo *Id,
3483                                      SourceLocation EqualLoc, ExprTy *val) {
3484  EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
3485  EnumConstantDecl *LastEnumConst =
3486    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
3487  Expr *Val = static_cast<Expr*>(val);
3488
3489  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3490  // we find one that is.
3491  S = getNonFieldDeclScope(S);
3492
3493  // Verify that there isn't already something declared with this name in this
3494  // scope.
3495  Decl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
3496  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3497    // Maybe we will complain about the shadowed template parameter.
3498    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
3499    // Just pretend that we didn't see the previous declaration.
3500    PrevDecl = 0;
3501  }
3502
3503  if (PrevDecl) {
3504    // When in C++, we may get a TagDecl with the same name; in this case the
3505    // enum constant will 'hide' the tag.
3506    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
3507           "Received TagDecl when not in C++!");
3508    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
3509      if (isa<EnumConstantDecl>(PrevDecl))
3510        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
3511      else
3512        Diag(IdLoc, diag::err_redefinition) << Id;
3513      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3514      delete Val;
3515      return 0;
3516    }
3517  }
3518
3519  llvm::APSInt EnumVal(32);
3520  QualType EltTy;
3521  if (Val) {
3522    // Make sure to promote the operand type to int.
3523    UsualUnaryConversions(Val);
3524
3525    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
3526    SourceLocation ExpLoc;
3527    if (VerifyIntegerConstantExpression(Val, &EnumVal)) {
3528      delete Val;
3529      Val = 0;  // Just forget about it.
3530    } else {
3531      EltTy = Val->getType();
3532    }
3533  }
3534
3535  if (!Val) {
3536    if (LastEnumConst) {
3537      // Assign the last value + 1.
3538      EnumVal = LastEnumConst->getInitVal();
3539      ++EnumVal;
3540
3541      // Check for overflow on increment.
3542      if (EnumVal < LastEnumConst->getInitVal())
3543        Diag(IdLoc, diag::warn_enum_value_overflow);
3544
3545      EltTy = LastEnumConst->getType();
3546    } else {
3547      // First value, set to zero.
3548      EltTy = Context.IntTy;
3549      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
3550    }
3551  }
3552
3553  EnumConstantDecl *New =
3554    EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy,
3555                             Val, EnumVal);
3556
3557  // Register this decl in the current scope stack.
3558  PushOnScopeChains(New, S);
3559
3560  return New;
3561}
3562
3563// FIXME: For consistency with ActOnFields(), we should have the parser
3564// pass in the source location for the left/right braces.
3565void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
3566                         DeclTy **Elements, unsigned NumElements) {
3567  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
3568  QualType EnumType = Context.getTypeDeclType(Enum);
3569
3570  // TODO: If the result value doesn't fit in an int, it must be a long or long
3571  // long value.  ISO C does not support this, but GCC does as an extension,
3572  // emit a warning.
3573  unsigned IntWidth = Context.Target.getIntWidth();
3574
3575  // Verify that all the values are okay, compute the size of the values, and
3576  // reverse the list.
3577  unsigned NumNegativeBits = 0;
3578  unsigned NumPositiveBits = 0;
3579
3580  // Keep track of whether all elements have type int.
3581  bool AllElementsInt = true;
3582
3583  for (unsigned i = 0; i != NumElements; ++i) {
3584    EnumConstantDecl *ECD =
3585      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3586    if (!ECD) continue;  // Already issued a diagnostic.
3587
3588    // If the enum value doesn't fit in an int, emit an extension warning.
3589    const llvm::APSInt &InitVal = ECD->getInitVal();
3590    assert(InitVal.getBitWidth() >= IntWidth &&
3591           "Should have promoted value to int");
3592    if (InitVal.getBitWidth() > IntWidth) {
3593      llvm::APSInt V(InitVal);
3594      V.trunc(IntWidth);
3595      V.extend(InitVal.getBitWidth());
3596      if (V != InitVal)
3597        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
3598          << InitVal.toString(10);
3599    }
3600
3601    // Keep track of the size of positive and negative values.
3602    if (InitVal.isUnsigned() || InitVal.isNonNegative())
3603      NumPositiveBits = std::max(NumPositiveBits,
3604                                 (unsigned)InitVal.getActiveBits());
3605    else
3606      NumNegativeBits = std::max(NumNegativeBits,
3607                                 (unsigned)InitVal.getMinSignedBits());
3608
3609    // Keep track of whether every enum element has type int (very commmon).
3610    if (AllElementsInt)
3611      AllElementsInt = ECD->getType() == Context.IntTy;
3612  }
3613
3614  // Figure out the type that should be used for this enum.
3615  // FIXME: Support attribute(packed) on enums and -fshort-enums.
3616  QualType BestType;
3617  unsigned BestWidth;
3618
3619  if (NumNegativeBits) {
3620    // If there is a negative value, figure out the smallest integer type (of
3621    // int/long/longlong) that fits.
3622    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
3623      BestType = Context.IntTy;
3624      BestWidth = IntWidth;
3625    } else {
3626      BestWidth = Context.Target.getLongWidth();
3627
3628      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
3629        BestType = Context.LongTy;
3630      else {
3631        BestWidth = Context.Target.getLongLongWidth();
3632
3633        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
3634          Diag(Enum->getLocation(), diag::warn_enum_too_large);
3635        BestType = Context.LongLongTy;
3636      }
3637    }
3638  } else {
3639    // If there is no negative value, figure out which of uint, ulong, ulonglong
3640    // fits.
3641    if (NumPositiveBits <= IntWidth) {
3642      BestType = Context.UnsignedIntTy;
3643      BestWidth = IntWidth;
3644    } else if (NumPositiveBits <=
3645               (BestWidth = Context.Target.getLongWidth())) {
3646      BestType = Context.UnsignedLongTy;
3647    } else {
3648      BestWidth = Context.Target.getLongLongWidth();
3649      assert(NumPositiveBits <= BestWidth &&
3650             "How could an initializer get larger than ULL?");
3651      BestType = Context.UnsignedLongLongTy;
3652    }
3653  }
3654
3655  // Loop over all of the enumerator constants, changing their types to match
3656  // the type of the enum if needed.
3657  for (unsigned i = 0; i != NumElements; ++i) {
3658    EnumConstantDecl *ECD =
3659      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3660    if (!ECD) continue;  // Already issued a diagnostic.
3661
3662    // Standard C says the enumerators have int type, but we allow, as an
3663    // extension, the enumerators to be larger than int size.  If each
3664    // enumerator value fits in an int, type it as an int, otherwise type it the
3665    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
3666    // that X has type 'int', not 'unsigned'.
3667    if (ECD->getType() == Context.IntTy) {
3668      // Make sure the init value is signed.
3669      llvm::APSInt IV = ECD->getInitVal();
3670      IV.setIsSigned(true);
3671      ECD->setInitVal(IV);
3672
3673      if (getLangOptions().CPlusPlus)
3674        // C++ [dcl.enum]p4: Following the closing brace of an
3675        // enum-specifier, each enumerator has the type of its
3676        // enumeration.
3677        ECD->setType(EnumType);
3678      continue;  // Already int type.
3679    }
3680
3681    // Determine whether the value fits into an int.
3682    llvm::APSInt InitVal = ECD->getInitVal();
3683    bool FitsInInt;
3684    if (InitVal.isUnsigned() || !InitVal.isNegative())
3685      FitsInInt = InitVal.getActiveBits() < IntWidth;
3686    else
3687      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
3688
3689    // If it fits into an integer type, force it.  Otherwise force it to match
3690    // the enum decl type.
3691    QualType NewTy;
3692    unsigned NewWidth;
3693    bool NewSign;
3694    if (FitsInInt) {
3695      NewTy = Context.IntTy;
3696      NewWidth = IntWidth;
3697      NewSign = true;
3698    } else if (ECD->getType() == BestType) {
3699      // Already the right type!
3700      if (getLangOptions().CPlusPlus)
3701        // C++ [dcl.enum]p4: Following the closing brace of an
3702        // enum-specifier, each enumerator has the type of its
3703        // enumeration.
3704        ECD->setType(EnumType);
3705      continue;
3706    } else {
3707      NewTy = BestType;
3708      NewWidth = BestWidth;
3709      NewSign = BestType->isSignedIntegerType();
3710    }
3711
3712    // Adjust the APSInt value.
3713    InitVal.extOrTrunc(NewWidth);
3714    InitVal.setIsSigned(NewSign);
3715    ECD->setInitVal(InitVal);
3716
3717    // Adjust the Expr initializer and type.
3718    if (ECD->getInitExpr())
3719      ECD->setInitExpr(new ImplicitCastExpr(NewTy, ECD->getInitExpr(),
3720                                            /*isLvalue=*/false));
3721    if (getLangOptions().CPlusPlus)
3722      // C++ [dcl.enum]p4: Following the closing brace of an
3723      // enum-specifier, each enumerator has the type of its
3724      // enumeration.
3725      ECD->setType(EnumType);
3726    else
3727      ECD->setType(NewTy);
3728  }
3729
3730  Enum->completeDefinition(Context, BestType);
3731}
3732
3733Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
3734                                          ExprArg expr) {
3735  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr.release());
3736
3737  return FileScopeAsmDecl::Create(Context, CurContext, Loc, AsmString);
3738}
3739
3740
3741void Sema::ActOnPragmaPack(PragmaPackKind Kind, IdentifierInfo *Name,
3742                           ExprTy *alignment, SourceLocation PragmaLoc,
3743                           SourceLocation LParenLoc, SourceLocation RParenLoc) {
3744  Expr *Alignment = static_cast<Expr *>(alignment);
3745
3746  // If specified then alignment must be a "small" power of two.
3747  unsigned AlignmentVal = 0;
3748  if (Alignment) {
3749    llvm::APSInt Val;
3750    if (!Alignment->isIntegerConstantExpr(Val, Context) ||
3751        !Val.isPowerOf2() ||
3752        Val.getZExtValue() > 16) {
3753      Diag(PragmaLoc, diag::warn_pragma_pack_invalid_alignment);
3754      delete Alignment;
3755      return; // Ignore
3756    }
3757
3758    AlignmentVal = (unsigned) Val.getZExtValue();
3759  }
3760
3761  switch (Kind) {
3762  case Action::PPK_Default: // pack([n])
3763    PackContext.setAlignment(AlignmentVal);
3764    break;
3765
3766  case Action::PPK_Show: // pack(show)
3767    // Show the current alignment, making sure to show the right value
3768    // for the default.
3769    AlignmentVal = PackContext.getAlignment();
3770    // FIXME: This should come from the target.
3771    if (AlignmentVal == 0)
3772      AlignmentVal = 8;
3773    Diag(PragmaLoc, diag::warn_pragma_pack_show) << AlignmentVal;
3774    break;
3775
3776  case Action::PPK_Push: // pack(push [, id] [, [n])
3777    PackContext.push(Name);
3778    // Set the new alignment if specified.
3779    if (Alignment)
3780      PackContext.setAlignment(AlignmentVal);
3781    break;
3782
3783  case Action::PPK_Pop: // pack(pop [, id] [,  n])
3784    // MSDN, C/C++ Preprocessor Reference > Pragma Directives > pack:
3785    // "#pragma pack(pop, identifier, n) is undefined"
3786    if (Alignment && Name)
3787      Diag(PragmaLoc, diag::warn_pragma_pack_pop_identifer_and_alignment);
3788
3789    // Do the pop.
3790    if (!PackContext.pop(Name)) {
3791      // If a name was specified then failure indicates the name
3792      // wasn't found. Otherwise failure indicates the stack was
3793      // empty.
3794      Diag(PragmaLoc, diag::warn_pragma_pack_pop_failed)
3795        << (Name ? "no record matching name" : "stack empty");
3796
3797      // FIXME: Warn about popping named records as MSVC does.
3798    } else {
3799      // Pop succeeded, set the new alignment if specified.
3800      if (Alignment)
3801        PackContext.setAlignment(AlignmentVal);
3802    }
3803    break;
3804
3805  default:
3806    assert(0 && "Invalid #pragma pack kind.");
3807  }
3808}
3809
3810bool PragmaPackStack::pop(IdentifierInfo *Name) {
3811  if (Stack.empty())
3812    return false;
3813
3814  // If name is empty just pop top.
3815  if (!Name) {
3816    Alignment = Stack.back().first;
3817    Stack.pop_back();
3818    return true;
3819  }
3820
3821  // Otherwise, find the named record.
3822  for (unsigned i = Stack.size(); i != 0; ) {
3823    --i;
3824    if (Stack[i].second == Name) {
3825      // Found it, pop up to and including this record.
3826      Alignment = Stack[i].first;
3827      Stack.erase(Stack.begin() + i, Stack.end());
3828      return true;
3829    }
3830  }
3831
3832  return false;
3833}
3834