SemaDecl.cpp revision 7cbc558ffda5877ec4d2e432534e3d3d4ac10050
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "TypeLocBuilder.h"
21#include "clang/AST/APValue.h"
22#include "clang/AST/ASTConsumer.h"
23#include "clang/AST/ASTContext.h"
24#include "clang/AST/CXXInheritance.h"
25#include "clang/AST/DeclCXX.h"
26#include "clang/AST/DeclObjC.h"
27#include "clang/AST/DeclTemplate.h"
28#include "clang/AST/ExprCXX.h"
29#include "clang/AST/StmtCXX.h"
30#include "clang/AST/CharUnits.h"
31#include "clang/Sema/DeclSpec.h"
32#include "clang/Sema/ParsedTemplate.h"
33#include "clang/Parse/ParseDiagnostic.h"
34#include "clang/Basic/PartialDiagnostic.h"
35#include "clang/Basic/SourceManager.h"
36#include "clang/Basic/TargetInfo.h"
37// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
38#include "clang/Lex/Preprocessor.h"
39#include "clang/Lex/HeaderSearch.h"
40#include "llvm/ADT/Triple.h"
41#include <algorithm>
42#include <cstring>
43#include <functional>
44using namespace clang;
45using namespace sema;
46
47Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr) {
48  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
49}
50
51/// \brief If the identifier refers to a type name within this scope,
52/// return the declaration of that type.
53///
54/// This routine performs ordinary name lookup of the identifier II
55/// within the given scope, with optional C++ scope specifier SS, to
56/// determine whether the name refers to a type. If so, returns an
57/// opaque pointer (actually a QualType) corresponding to that
58/// type. Otherwise, returns NULL.
59///
60/// If name lookup results in an ambiguity, this routine will complain
61/// and then return NULL.
62ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
63                             Scope *S, CXXScopeSpec *SS,
64                             bool isClassName, bool HasTrailingDot,
65                             ParsedType ObjectTypePtr,
66                             bool WantNontrivialTypeSourceInfo) {
67  // Determine where we will perform name lookup.
68  DeclContext *LookupCtx = 0;
69  if (ObjectTypePtr) {
70    QualType ObjectType = ObjectTypePtr.get();
71    if (ObjectType->isRecordType())
72      LookupCtx = computeDeclContext(ObjectType);
73  } else if (SS && SS->isNotEmpty()) {
74    LookupCtx = computeDeclContext(*SS, false);
75
76    if (!LookupCtx) {
77      if (isDependentScopeSpecifier(*SS)) {
78        // C++ [temp.res]p3:
79        //   A qualified-id that refers to a type and in which the
80        //   nested-name-specifier depends on a template-parameter (14.6.2)
81        //   shall be prefixed by the keyword typename to indicate that the
82        //   qualified-id denotes a type, forming an
83        //   elaborated-type-specifier (7.1.5.3).
84        //
85        // We therefore do not perform any name lookup if the result would
86        // refer to a member of an unknown specialization.
87        if (!isClassName)
88          return ParsedType();
89
90        // We know from the grammar that this name refers to a type,
91        // so build a dependent node to describe the type.
92        if (WantNontrivialTypeSourceInfo)
93          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
94
95        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
96        QualType T =
97          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
98                            II, NameLoc);
99
100          return ParsedType::make(T);
101      }
102
103      return ParsedType();
104    }
105
106    if (!LookupCtx->isDependentContext() &&
107        RequireCompleteDeclContext(*SS, LookupCtx))
108      return ParsedType();
109  }
110
111  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
112  // lookup for class-names.
113  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
114                                      LookupOrdinaryName;
115  LookupResult Result(*this, &II, NameLoc, Kind);
116  if (LookupCtx) {
117    // Perform "qualified" name lookup into the declaration context we
118    // computed, which is either the type of the base of a member access
119    // expression or the declaration context associated with a prior
120    // nested-name-specifier.
121    LookupQualifiedName(Result, LookupCtx);
122
123    if (ObjectTypePtr && Result.empty()) {
124      // C++ [basic.lookup.classref]p3:
125      //   If the unqualified-id is ~type-name, the type-name is looked up
126      //   in the context of the entire postfix-expression. If the type T of
127      //   the object expression is of a class type C, the type-name is also
128      //   looked up in the scope of class C. At least one of the lookups shall
129      //   find a name that refers to (possibly cv-qualified) T.
130      LookupName(Result, S);
131    }
132  } else {
133    // Perform unqualified name lookup.
134    LookupName(Result, S);
135  }
136
137  NamedDecl *IIDecl = 0;
138  switch (Result.getResultKind()) {
139  case LookupResult::NotFound:
140  case LookupResult::NotFoundInCurrentInstantiation:
141  case LookupResult::FoundOverloaded:
142  case LookupResult::FoundUnresolvedValue:
143    Result.suppressDiagnostics();
144    return ParsedType();
145
146  case LookupResult::Ambiguous:
147    // Recover from type-hiding ambiguities by hiding the type.  We'll
148    // do the lookup again when looking for an object, and we can
149    // diagnose the error then.  If we don't do this, then the error
150    // about hiding the type will be immediately followed by an error
151    // that only makes sense if the identifier was treated like a type.
152    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
153      Result.suppressDiagnostics();
154      return ParsedType();
155    }
156
157    // Look to see if we have a type anywhere in the list of results.
158    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
159         Res != ResEnd; ++Res) {
160      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
161        if (!IIDecl ||
162            (*Res)->getLocation().getRawEncoding() <
163              IIDecl->getLocation().getRawEncoding())
164          IIDecl = *Res;
165      }
166    }
167
168    if (!IIDecl) {
169      // None of the entities we found is a type, so there is no way
170      // to even assume that the result is a type. In this case, don't
171      // complain about the ambiguity. The parser will either try to
172      // perform this lookup again (e.g., as an object name), which
173      // will produce the ambiguity, or will complain that it expected
174      // a type name.
175      Result.suppressDiagnostics();
176      return ParsedType();
177    }
178
179    // We found a type within the ambiguous lookup; diagnose the
180    // ambiguity and then return that type. This might be the right
181    // answer, or it might not be, but it suppresses any attempt to
182    // perform the name lookup again.
183    break;
184
185  case LookupResult::Found:
186    IIDecl = Result.getFoundDecl();
187    break;
188  }
189
190  assert(IIDecl && "Didn't find decl");
191
192  QualType T;
193  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
194    DiagnoseUseOfDecl(IIDecl, NameLoc);
195
196    if (T.isNull())
197      T = Context.getTypeDeclType(TD);
198
199    if (SS && SS->isNotEmpty()) {
200      if (WantNontrivialTypeSourceInfo) {
201        // Construct a type with type-source information.
202        TypeLocBuilder Builder;
203        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
204
205        T = getElaboratedType(ETK_None, *SS, T);
206        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
207        ElabTL.setKeywordLoc(SourceLocation());
208        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
209        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
210      } else {
211        T = getElaboratedType(ETK_None, *SS, T);
212      }
213    }
214  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
215    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
216    if (!HasTrailingDot)
217      T = Context.getObjCInterfaceType(IDecl);
218  }
219
220  if (T.isNull()) {
221    // If it's not plausibly a type, suppress diagnostics.
222    Result.suppressDiagnostics();
223    return ParsedType();
224  }
225  return ParsedType::make(T);
226}
227
228/// isTagName() - This method is called *for error recovery purposes only*
229/// to determine if the specified name is a valid tag name ("struct foo").  If
230/// so, this returns the TST for the tag corresponding to it (TST_enum,
231/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
232/// where the user forgot to specify the tag.
233DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
234  // Do a tag name lookup in this scope.
235  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
236  LookupName(R, S, false);
237  R.suppressDiagnostics();
238  if (R.getResultKind() == LookupResult::Found)
239    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
240      switch (TD->getTagKind()) {
241      default:         return DeclSpec::TST_unspecified;
242      case TTK_Struct: return DeclSpec::TST_struct;
243      case TTK_Union:  return DeclSpec::TST_union;
244      case TTK_Class:  return DeclSpec::TST_class;
245      case TTK_Enum:   return DeclSpec::TST_enum;
246      }
247    }
248
249  return DeclSpec::TST_unspecified;
250}
251
252bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
253                                   SourceLocation IILoc,
254                                   Scope *S,
255                                   CXXScopeSpec *SS,
256                                   ParsedType &SuggestedType) {
257  // We don't have anything to suggest (yet).
258  SuggestedType = ParsedType();
259
260  // There may have been a typo in the name of the type. Look up typo
261  // results, in case we have something that we can suggest.
262  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
263                      NotForRedeclaration);
264
265  if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
266    if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
267      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
268          !Result->isInvalidDecl()) {
269        // We found a similarly-named type or interface; suggest that.
270        if (!SS || !SS->isSet())
271          Diag(IILoc, diag::err_unknown_typename_suggest)
272            << &II << Lookup.getLookupName()
273            << FixItHint::CreateReplacement(SourceRange(IILoc),
274                                            Result->getNameAsString());
275        else if (DeclContext *DC = computeDeclContext(*SS, false))
276          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
277            << &II << DC << Lookup.getLookupName() << SS->getRange()
278            << FixItHint::CreateReplacement(SourceRange(IILoc),
279                                            Result->getNameAsString());
280        else
281          llvm_unreachable("could not have corrected a typo here");
282
283        Diag(Result->getLocation(), diag::note_previous_decl)
284          << Result->getDeclName();
285
286        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
287                                    false, false, ParsedType(),
288                                    /*NonTrivialTypeSourceInfo=*/true);
289        return true;
290      }
291    } else if (Lookup.empty()) {
292      // We corrected to a keyword.
293      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
294      Diag(IILoc, diag::err_unknown_typename_suggest)
295        << &II << Corrected;
296      return true;
297    }
298  }
299
300  if (getLangOptions().CPlusPlus) {
301    // See if II is a class template that the user forgot to pass arguments to.
302    UnqualifiedId Name;
303    Name.setIdentifier(&II, IILoc);
304    CXXScopeSpec EmptySS;
305    TemplateTy TemplateResult;
306    bool MemberOfUnknownSpecialization;
307    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
308                       Name, ParsedType(), true, TemplateResult,
309                       MemberOfUnknownSpecialization) == TNK_Type_template) {
310      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
311      Diag(IILoc, diag::err_template_missing_args) << TplName;
312      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
313        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
314          << TplDecl->getTemplateParameters()->getSourceRange();
315      }
316      return true;
317    }
318  }
319
320  // FIXME: Should we move the logic that tries to recover from a missing tag
321  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
322
323  if (!SS || (!SS->isSet() && !SS->isInvalid()))
324    Diag(IILoc, diag::err_unknown_typename) << &II;
325  else if (DeclContext *DC = computeDeclContext(*SS, false))
326    Diag(IILoc, diag::err_typename_nested_not_found)
327      << &II << DC << SS->getRange();
328  else if (isDependentScopeSpecifier(*SS)) {
329    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
330      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
331      << SourceRange(SS->getRange().getBegin(), IILoc)
332      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
333    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
334  } else {
335    assert(SS && SS->isInvalid() &&
336           "Invalid scope specifier has already been diagnosed");
337  }
338
339  return true;
340}
341
342// Determines the context to return to after temporarily entering a
343// context.  This depends in an unnecessarily complicated way on the
344// exact ordering of callbacks from the parser.
345DeclContext *Sema::getContainingDC(DeclContext *DC) {
346
347  // Functions defined inline within classes aren't parsed until we've
348  // finished parsing the top-level class, so the top-level class is
349  // the context we'll need to return to.
350  if (isa<FunctionDecl>(DC)) {
351    DC = DC->getLexicalParent();
352
353    // A function not defined within a class will always return to its
354    // lexical context.
355    if (!isa<CXXRecordDecl>(DC))
356      return DC;
357
358    // A C++ inline method/friend is parsed *after* the topmost class
359    // it was declared in is fully parsed ("complete");  the topmost
360    // class is the context we need to return to.
361    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
362      DC = RD;
363
364    // Return the declaration context of the topmost class the inline method is
365    // declared in.
366    return DC;
367  }
368
369  // ObjCMethodDecls are parsed (for some reason) outside the context
370  // of the class.
371  if (isa<ObjCMethodDecl>(DC))
372    return DC->getLexicalParent()->getLexicalParent();
373
374  return DC->getLexicalParent();
375}
376
377void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
378  assert(getContainingDC(DC) == CurContext &&
379      "The next DeclContext should be lexically contained in the current one.");
380  CurContext = DC;
381  S->setEntity(DC);
382}
383
384void Sema::PopDeclContext() {
385  assert(CurContext && "DeclContext imbalance!");
386
387  CurContext = getContainingDC(CurContext);
388  assert(CurContext && "Popped translation unit!");
389}
390
391/// EnterDeclaratorContext - Used when we must lookup names in the context
392/// of a declarator's nested name specifier.
393///
394void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
395  // C++0x [basic.lookup.unqual]p13:
396  //   A name used in the definition of a static data member of class
397  //   X (after the qualified-id of the static member) is looked up as
398  //   if the name was used in a member function of X.
399  // C++0x [basic.lookup.unqual]p14:
400  //   If a variable member of a namespace is defined outside of the
401  //   scope of its namespace then any name used in the definition of
402  //   the variable member (after the declarator-id) is looked up as
403  //   if the definition of the variable member occurred in its
404  //   namespace.
405  // Both of these imply that we should push a scope whose context
406  // is the semantic context of the declaration.  We can't use
407  // PushDeclContext here because that context is not necessarily
408  // lexically contained in the current context.  Fortunately,
409  // the containing scope should have the appropriate information.
410
411  assert(!S->getEntity() && "scope already has entity");
412
413#ifndef NDEBUG
414  Scope *Ancestor = S->getParent();
415  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
416  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
417#endif
418
419  CurContext = DC;
420  S->setEntity(DC);
421}
422
423void Sema::ExitDeclaratorContext(Scope *S) {
424  assert(S->getEntity() == CurContext && "Context imbalance!");
425
426  // Switch back to the lexical context.  The safety of this is
427  // enforced by an assert in EnterDeclaratorContext.
428  Scope *Ancestor = S->getParent();
429  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
430  CurContext = (DeclContext*) Ancestor->getEntity();
431
432  // We don't need to do anything with the scope, which is going to
433  // disappear.
434}
435
436/// \brief Determine whether we allow overloading of the function
437/// PrevDecl with another declaration.
438///
439/// This routine determines whether overloading is possible, not
440/// whether some new function is actually an overload. It will return
441/// true in C++ (where we can always provide overloads) or, as an
442/// extension, in C when the previous function is already an
443/// overloaded function declaration or has the "overloadable"
444/// attribute.
445static bool AllowOverloadingOfFunction(LookupResult &Previous,
446                                       ASTContext &Context) {
447  if (Context.getLangOptions().CPlusPlus)
448    return true;
449
450  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
451    return true;
452
453  return (Previous.getResultKind() == LookupResult::Found
454          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
455}
456
457/// Add this decl to the scope shadowed decl chains.
458void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
459  // Move up the scope chain until we find the nearest enclosing
460  // non-transparent context. The declaration will be introduced into this
461  // scope.
462  while (S->getEntity() &&
463         ((DeclContext *)S->getEntity())->isTransparentContext())
464    S = S->getParent();
465
466  // Add scoped declarations into their context, so that they can be
467  // found later. Declarations without a context won't be inserted
468  // into any context.
469  if (AddToContext)
470    CurContext->addDecl(D);
471
472  // Out-of-line definitions shouldn't be pushed into scope in C++.
473  // Out-of-line variable and function definitions shouldn't even in C.
474  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
475      D->isOutOfLine())
476    return;
477
478  // Template instantiations should also not be pushed into scope.
479  if (isa<FunctionDecl>(D) &&
480      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
481    return;
482
483  // If this replaces anything in the current scope,
484  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
485                               IEnd = IdResolver.end();
486  for (; I != IEnd; ++I) {
487    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
488      S->RemoveDecl(*I);
489      IdResolver.RemoveDecl(*I);
490
491      // Should only need to replace one decl.
492      break;
493    }
494  }
495
496  S->AddDecl(D);
497
498  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
499    // Implicitly-generated labels may end up getting generated in an order that
500    // isn't strictly lexical, which breaks name lookup. Be careful to insert
501    // the label at the appropriate place in the identifier chain.
502    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
503      if ((*I)->getLexicalDeclContext()->Encloses(CurContext))
504        break;
505    }
506
507    IdResolver.InsertDecl(I, D);
508  } else {
509    IdResolver.AddDecl(D);
510  }
511}
512
513bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
514                         bool ExplicitInstantiationOrSpecialization) {
515  return IdResolver.isDeclInScope(D, Ctx, Context, S,
516                                  ExplicitInstantiationOrSpecialization);
517}
518
519Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
520  DeclContext *TargetDC = DC->getPrimaryContext();
521  do {
522    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
523      if (ScopeDC->getPrimaryContext() == TargetDC)
524        return S;
525  } while ((S = S->getParent()));
526
527  return 0;
528}
529
530static bool isOutOfScopePreviousDeclaration(NamedDecl *,
531                                            DeclContext*,
532                                            ASTContext&);
533
534/// Filters out lookup results that don't fall within the given scope
535/// as determined by isDeclInScope.
536static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
537                                 DeclContext *Ctx, Scope *S,
538                                 bool ConsiderLinkage,
539                                 bool ExplicitInstantiationOrSpecialization) {
540  LookupResult::Filter F = R.makeFilter();
541  while (F.hasNext()) {
542    NamedDecl *D = F.next();
543
544    if (SemaRef.isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
545      continue;
546
547    if (ConsiderLinkage &&
548        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
549      continue;
550
551    F.erase();
552  }
553
554  F.done();
555}
556
557static bool isUsingDecl(NamedDecl *D) {
558  return isa<UsingShadowDecl>(D) ||
559         isa<UnresolvedUsingTypenameDecl>(D) ||
560         isa<UnresolvedUsingValueDecl>(D);
561}
562
563/// Removes using shadow declarations from the lookup results.
564static void RemoveUsingDecls(LookupResult &R) {
565  LookupResult::Filter F = R.makeFilter();
566  while (F.hasNext())
567    if (isUsingDecl(F.next()))
568      F.erase();
569
570  F.done();
571}
572
573/// \brief Check for this common pattern:
574/// @code
575/// class S {
576///   S(const S&); // DO NOT IMPLEMENT
577///   void operator=(const S&); // DO NOT IMPLEMENT
578/// };
579/// @endcode
580static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
581  // FIXME: Should check for private access too but access is set after we get
582  // the decl here.
583  if (D->isThisDeclarationADefinition())
584    return false;
585
586  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
587    return CD->isCopyConstructor();
588  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
589    return Method->isCopyAssignmentOperator();
590  return false;
591}
592
593bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
594  assert(D);
595
596  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
597    return false;
598
599  // Ignore class templates.
600  if (D->getDeclContext()->isDependentContext() ||
601      D->getLexicalDeclContext()->isDependentContext())
602    return false;
603
604  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
605    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
606      return false;
607
608    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
609      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
610        return false;
611    } else {
612      // 'static inline' functions are used in headers; don't warn.
613      if (FD->getStorageClass() == SC_Static &&
614          FD->isInlineSpecified())
615        return false;
616    }
617
618    if (FD->isThisDeclarationADefinition() &&
619        Context.DeclMustBeEmitted(FD))
620      return false;
621
622  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
623    if (!VD->isFileVarDecl() ||
624        VD->getType().isConstant(Context) ||
625        Context.DeclMustBeEmitted(VD))
626      return false;
627
628    if (VD->isStaticDataMember() &&
629        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
630      return false;
631
632  } else {
633    return false;
634  }
635
636  // Only warn for unused decls internal to the translation unit.
637  if (D->getLinkage() == ExternalLinkage)
638    return false;
639
640  return true;
641}
642
643void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
644  if (!D)
645    return;
646
647  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
648    const FunctionDecl *First = FD->getFirstDeclaration();
649    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
650      return; // First should already be in the vector.
651  }
652
653  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
654    const VarDecl *First = VD->getFirstDeclaration();
655    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
656      return; // First should already be in the vector.
657  }
658
659   if (ShouldWarnIfUnusedFileScopedDecl(D))
660     UnusedFileScopedDecls.push_back(D);
661 }
662
663static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
664  if (D->isInvalidDecl())
665    return false;
666
667  if (D->isUsed() || D->hasAttr<UnusedAttr>())
668    return false;
669
670  if (isa<LabelDecl>(D))
671    return true;
672
673  // White-list anything that isn't a local variable.
674  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
675      !D->getDeclContext()->isFunctionOrMethod())
676    return false;
677
678  // Types of valid local variables should be complete, so this should succeed.
679  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
680
681    // White-list anything with an __attribute__((unused)) type.
682    QualType Ty = VD->getType();
683
684    // Only look at the outermost level of typedef.
685    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
686      if (TT->getDecl()->hasAttr<UnusedAttr>())
687        return false;
688    }
689
690    // If we failed to complete the type for some reason, or if the type is
691    // dependent, don't diagnose the variable.
692    if (Ty->isIncompleteType() || Ty->isDependentType())
693      return false;
694
695    if (const TagType *TT = Ty->getAs<TagType>()) {
696      const TagDecl *Tag = TT->getDecl();
697      if (Tag->hasAttr<UnusedAttr>())
698        return false;
699
700      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
701        // FIXME: Checking for the presence of a user-declared constructor
702        // isn't completely accurate; we'd prefer to check that the initializer
703        // has no side effects.
704        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
705          return false;
706      }
707    }
708
709    // TODO: __attribute__((unused)) templates?
710  }
711
712  return true;
713}
714
715/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
716/// unless they are marked attr(unused).
717void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
718  if (!ShouldDiagnoseUnusedDecl(D))
719    return;
720
721  unsigned DiagID;
722  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
723    DiagID = diag::warn_unused_exception_param;
724  else if (isa<LabelDecl>(D))
725    DiagID = diag::warn_unused_label;
726  else
727    DiagID = diag::warn_unused_variable;
728
729  Diag(D->getLocation(), DiagID) << D->getDeclName();
730}
731
732static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
733  // Verify that we have no forward references left.  If so, there was a goto
734  // or address of a label taken, but no definition of it.  Label fwd
735  // definitions are indicated with a null substmt.
736  if (L->getStmt() == 0)
737    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
738}
739
740void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
741  if (S->decl_empty()) return;
742  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
743         "Scope shouldn't contain decls!");
744
745  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
746       I != E; ++I) {
747    Decl *TmpD = (*I);
748    assert(TmpD && "This decl didn't get pushed??");
749
750    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
751    NamedDecl *D = cast<NamedDecl>(TmpD);
752
753    if (!D->getDeclName()) continue;
754
755    // Diagnose unused variables in this scope.
756    if (!S->hasErrorOccurred())
757      DiagnoseUnusedDecl(D);
758
759    // If this was a forward reference to a label, verify it was defined.
760    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
761      CheckPoppedLabel(LD, *this);
762
763    // Remove this name from our lexical scope.
764    IdResolver.RemoveDecl(D);
765  }
766}
767
768/// \brief Look for an Objective-C class in the translation unit.
769///
770/// \param Id The name of the Objective-C class we're looking for. If
771/// typo-correction fixes this name, the Id will be updated
772/// to the fixed name.
773///
774/// \param IdLoc The location of the name in the translation unit.
775///
776/// \param TypoCorrection If true, this routine will attempt typo correction
777/// if there is no class with the given name.
778///
779/// \returns The declaration of the named Objective-C class, or NULL if the
780/// class could not be found.
781ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
782                                              SourceLocation IdLoc,
783                                              bool TypoCorrection) {
784  // The third "scope" argument is 0 since we aren't enabling lazy built-in
785  // creation from this context.
786  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
787
788  if (!IDecl && TypoCorrection) {
789    // Perform typo correction at the given location, but only if we
790    // find an Objective-C class name.
791    LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
792    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
793        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
794      Diag(IdLoc, diag::err_undef_interface_suggest)
795        << Id << IDecl->getDeclName()
796        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
797      Diag(IDecl->getLocation(), diag::note_previous_decl)
798        << IDecl->getDeclName();
799
800      Id = IDecl->getIdentifier();
801    }
802  }
803
804  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
805}
806
807/// getNonFieldDeclScope - Retrieves the innermost scope, starting
808/// from S, where a non-field would be declared. This routine copes
809/// with the difference between C and C++ scoping rules in structs and
810/// unions. For example, the following code is well-formed in C but
811/// ill-formed in C++:
812/// @code
813/// struct S6 {
814///   enum { BAR } e;
815/// };
816///
817/// void test_S6() {
818///   struct S6 a;
819///   a.e = BAR;
820/// }
821/// @endcode
822/// For the declaration of BAR, this routine will return a different
823/// scope. The scope S will be the scope of the unnamed enumeration
824/// within S6. In C++, this routine will return the scope associated
825/// with S6, because the enumeration's scope is a transparent
826/// context but structures can contain non-field names. In C, this
827/// routine will return the translation unit scope, since the
828/// enumeration's scope is a transparent context and structures cannot
829/// contain non-field names.
830Scope *Sema::getNonFieldDeclScope(Scope *S) {
831  while (((S->getFlags() & Scope::DeclScope) == 0) ||
832         (S->getEntity() &&
833          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
834         (S->isClassScope() && !getLangOptions().CPlusPlus))
835    S = S->getParent();
836  return S;
837}
838
839/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
840/// file scope.  lazily create a decl for it. ForRedeclaration is true
841/// if we're creating this built-in in anticipation of redeclaring the
842/// built-in.
843NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
844                                     Scope *S, bool ForRedeclaration,
845                                     SourceLocation Loc) {
846  Builtin::ID BID = (Builtin::ID)bid;
847
848  ASTContext::GetBuiltinTypeError Error;
849  QualType R = Context.GetBuiltinType(BID, Error);
850  switch (Error) {
851  case ASTContext::GE_None:
852    // Okay
853    break;
854
855  case ASTContext::GE_Missing_stdio:
856    if (ForRedeclaration)
857      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
858        << Context.BuiltinInfo.GetName(BID);
859    return 0;
860
861  case ASTContext::GE_Missing_setjmp:
862    if (ForRedeclaration)
863      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
864        << Context.BuiltinInfo.GetName(BID);
865    return 0;
866  }
867
868  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
869    Diag(Loc, diag::ext_implicit_lib_function_decl)
870      << Context.BuiltinInfo.GetName(BID)
871      << R;
872    if (Context.BuiltinInfo.getHeaderName(BID) &&
873        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
874          != Diagnostic::Ignored)
875      Diag(Loc, diag::note_please_include_header)
876        << Context.BuiltinInfo.getHeaderName(BID)
877        << Context.BuiltinInfo.GetName(BID);
878  }
879
880  FunctionDecl *New = FunctionDecl::Create(Context,
881                                           Context.getTranslationUnitDecl(),
882                                           Loc, Loc, II, R, /*TInfo=*/0,
883                                           SC_Extern,
884                                           SC_None, false,
885                                           /*hasPrototype=*/true);
886  New->setImplicit();
887
888  // Create Decl objects for each parameter, adding them to the
889  // FunctionDecl.
890  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
891    llvm::SmallVector<ParmVarDecl*, 16> Params;
892    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
893      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(),
894                                           SourceLocation(), 0,
895                                           FT->getArgType(i), /*TInfo=*/0,
896                                           SC_None, SC_None, 0));
897    New->setParams(Params.data(), Params.size());
898  }
899
900  AddKnownFunctionAttributes(New);
901
902  // TUScope is the translation-unit scope to insert this function into.
903  // FIXME: This is hideous. We need to teach PushOnScopeChains to
904  // relate Scopes to DeclContexts, and probably eliminate CurContext
905  // entirely, but we're not there yet.
906  DeclContext *SavedContext = CurContext;
907  CurContext = Context.getTranslationUnitDecl();
908  PushOnScopeChains(New, TUScope);
909  CurContext = SavedContext;
910  return New;
911}
912
913/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
914/// same name and scope as a previous declaration 'Old'.  Figure out
915/// how to resolve this situation, merging decls or emitting
916/// diagnostics as appropriate. If there was an error, set New to be invalid.
917///
918void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
919  // If the new decl is known invalid already, don't bother doing any
920  // merging checks.
921  if (New->isInvalidDecl()) return;
922
923  // Allow multiple definitions for ObjC built-in typedefs.
924  // FIXME: Verify the underlying types are equivalent!
925  if (getLangOptions().ObjC1) {
926    const IdentifierInfo *TypeID = New->getIdentifier();
927    switch (TypeID->getLength()) {
928    default: break;
929    case 2:
930      if (!TypeID->isStr("id"))
931        break;
932      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
933      // Install the built-in type for 'id', ignoring the current definition.
934      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
935      return;
936    case 5:
937      if (!TypeID->isStr("Class"))
938        break;
939      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
940      // Install the built-in type for 'Class', ignoring the current definition.
941      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
942      return;
943    case 3:
944      if (!TypeID->isStr("SEL"))
945        break;
946      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
947      // Install the built-in type for 'SEL', ignoring the current definition.
948      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
949      return;
950    case 8:
951      if (!TypeID->isStr("Protocol"))
952        break;
953      Context.setObjCProtoType(New->getUnderlyingType());
954      return;
955    }
956    // Fall through - the typedef name was not a builtin type.
957  }
958
959  // Verify the old decl was also a type.
960  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
961  if (!Old) {
962    Diag(New->getLocation(), diag::err_redefinition_different_kind)
963      << New->getDeclName();
964
965    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
966    if (OldD->getLocation().isValid())
967      Diag(OldD->getLocation(), diag::note_previous_definition);
968
969    return New->setInvalidDecl();
970  }
971
972  // If the old declaration is invalid, just give up here.
973  if (Old->isInvalidDecl())
974    return New->setInvalidDecl();
975
976  // Determine the "old" type we'll use for checking and diagnostics.
977  QualType OldType;
978  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
979    OldType = OldTypedef->getUnderlyingType();
980  else
981    OldType = Context.getTypeDeclType(Old);
982
983  // If the typedef types are not identical, reject them in all languages and
984  // with any extensions enabled.
985
986  if (OldType != New->getUnderlyingType() &&
987      Context.getCanonicalType(OldType) !=
988      Context.getCanonicalType(New->getUnderlyingType())) {
989    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
990      << New->getUnderlyingType() << OldType;
991    if (Old->getLocation().isValid())
992      Diag(Old->getLocation(), diag::note_previous_definition);
993    return New->setInvalidDecl();
994  }
995
996  // The types match.  Link up the redeclaration chain if the old
997  // declaration was a typedef.
998  // FIXME: this is a potential source of wierdness if the type
999  // spellings don't match exactly.
1000  if (isa<TypedefDecl>(Old))
1001    New->setPreviousDeclaration(cast<TypedefDecl>(Old));
1002
1003  if (getLangOptions().Microsoft)
1004    return;
1005
1006  if (getLangOptions().CPlusPlus) {
1007    // C++ [dcl.typedef]p2:
1008    //   In a given non-class scope, a typedef specifier can be used to
1009    //   redefine the name of any type declared in that scope to refer
1010    //   to the type to which it already refers.
1011    if (!isa<CXXRecordDecl>(CurContext))
1012      return;
1013
1014    // C++0x [dcl.typedef]p4:
1015    //   In a given class scope, a typedef specifier can be used to redefine
1016    //   any class-name declared in that scope that is not also a typedef-name
1017    //   to refer to the type to which it already refers.
1018    //
1019    // This wording came in via DR424, which was a correction to the
1020    // wording in DR56, which accidentally banned code like:
1021    //
1022    //   struct S {
1023    //     typedef struct A { } A;
1024    //   };
1025    //
1026    // in the C++03 standard. We implement the C++0x semantics, which
1027    // allow the above but disallow
1028    //
1029    //   struct S {
1030    //     typedef int I;
1031    //     typedef int I;
1032    //   };
1033    //
1034    // since that was the intent of DR56.
1035    if (!isa<TypedefDecl >(Old))
1036      return;
1037
1038    Diag(New->getLocation(), diag::err_redefinition)
1039      << New->getDeclName();
1040    Diag(Old->getLocation(), diag::note_previous_definition);
1041    return New->setInvalidDecl();
1042  }
1043
1044  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1045  // is normally mapped to an error, but can be controlled with
1046  // -Wtypedef-redefinition.  If either the original or the redefinition is
1047  // in a system header, don't emit this for compatibility with GCC.
1048  if (getDiagnostics().getSuppressSystemWarnings() &&
1049      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1050       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1051    return;
1052
1053  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1054    << New->getDeclName();
1055  Diag(Old->getLocation(), diag::note_previous_definition);
1056  return;
1057}
1058
1059/// DeclhasAttr - returns true if decl Declaration already has the target
1060/// attribute.
1061static bool
1062DeclHasAttr(const Decl *D, const Attr *A) {
1063  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1064  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1065    if ((*i)->getKind() == A->getKind()) {
1066      // FIXME: Don't hardcode this check
1067      if (OA && isa<OwnershipAttr>(*i))
1068        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1069      return true;
1070    }
1071
1072  return false;
1073}
1074
1075/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1076static void mergeDeclAttributes(Decl *newDecl, const Decl *oldDecl,
1077                                ASTContext &C) {
1078  if (!oldDecl->hasAttrs())
1079    return;
1080
1081  bool foundAny = newDecl->hasAttrs();
1082
1083  // Ensure that any moving of objects within the allocated map is done before
1084  // we process them.
1085  if (!foundAny) newDecl->setAttrs(AttrVec());
1086
1087  for (specific_attr_iterator<InheritableAttr>
1088       i = oldDecl->specific_attr_begin<InheritableAttr>(),
1089       e = oldDecl->specific_attr_end<InheritableAttr>(); i != e; ++i) {
1090    if (!DeclHasAttr(newDecl, *i)) {
1091      InheritableAttr *newAttr = cast<InheritableAttr>((*i)->clone(C));
1092      newAttr->setInherited(true);
1093      newDecl->addAttr(newAttr);
1094      foundAny = true;
1095    }
1096  }
1097
1098  if (!foundAny) newDecl->dropAttrs();
1099}
1100
1101/// mergeParamDeclAttributes - Copy attributes from the old parameter
1102/// to the new one.
1103static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1104                                     const ParmVarDecl *oldDecl,
1105                                     ASTContext &C) {
1106  if (!oldDecl->hasAttrs())
1107    return;
1108
1109  bool foundAny = newDecl->hasAttrs();
1110
1111  // Ensure that any moving of objects within the allocated map is
1112  // done before we process them.
1113  if (!foundAny) newDecl->setAttrs(AttrVec());
1114
1115  for (specific_attr_iterator<InheritableParamAttr>
1116       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1117       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1118    if (!DeclHasAttr(newDecl, *i)) {
1119      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1120      newAttr->setInherited(true);
1121      newDecl->addAttr(newAttr);
1122      foundAny = true;
1123    }
1124  }
1125
1126  if (!foundAny) newDecl->dropAttrs();
1127}
1128
1129namespace {
1130
1131/// Used in MergeFunctionDecl to keep track of function parameters in
1132/// C.
1133struct GNUCompatibleParamWarning {
1134  ParmVarDecl *OldParm;
1135  ParmVarDecl *NewParm;
1136  QualType PromotedType;
1137};
1138
1139}
1140
1141/// getSpecialMember - get the special member enum for a method.
1142Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1143  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1144    if (Ctor->isCopyConstructor())
1145      return Sema::CXXCopyConstructor;
1146
1147    return Sema::CXXConstructor;
1148  }
1149
1150  if (isa<CXXDestructorDecl>(MD))
1151    return Sema::CXXDestructor;
1152
1153  assert(MD->isCopyAssignmentOperator() &&
1154         "Must have copy assignment operator");
1155  return Sema::CXXCopyAssignment;
1156}
1157
1158/// canRedefineFunction - checks if a function can be redefined. Currently,
1159/// only extern inline functions can be redefined, and even then only in
1160/// GNU89 mode.
1161static bool canRedefineFunction(const FunctionDecl *FD,
1162                                const LangOptions& LangOpts) {
1163  return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
1164          FD->isInlineSpecified() &&
1165          FD->getStorageClass() == SC_Extern);
1166}
1167
1168/// MergeFunctionDecl - We just parsed a function 'New' from
1169/// declarator D which has the same name and scope as a previous
1170/// declaration 'Old'.  Figure out how to resolve this situation,
1171/// merging decls or emitting diagnostics as appropriate.
1172///
1173/// In C++, New and Old must be declarations that are not
1174/// overloaded. Use IsOverload to determine whether New and Old are
1175/// overloaded, and to select the Old declaration that New should be
1176/// merged with.
1177///
1178/// Returns true if there was an error, false otherwise.
1179bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1180  // Verify the old decl was also a function.
1181  FunctionDecl *Old = 0;
1182  if (FunctionTemplateDecl *OldFunctionTemplate
1183        = dyn_cast<FunctionTemplateDecl>(OldD))
1184    Old = OldFunctionTemplate->getTemplatedDecl();
1185  else
1186    Old = dyn_cast<FunctionDecl>(OldD);
1187  if (!Old) {
1188    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1189      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1190      Diag(Shadow->getTargetDecl()->getLocation(),
1191           diag::note_using_decl_target);
1192      Diag(Shadow->getUsingDecl()->getLocation(),
1193           diag::note_using_decl) << 0;
1194      return true;
1195    }
1196
1197    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1198      << New->getDeclName();
1199    Diag(OldD->getLocation(), diag::note_previous_definition);
1200    return true;
1201  }
1202
1203  // Determine whether the previous declaration was a definition,
1204  // implicit declaration, or a declaration.
1205  diag::kind PrevDiag;
1206  if (Old->isThisDeclarationADefinition())
1207    PrevDiag = diag::note_previous_definition;
1208  else if (Old->isImplicit())
1209    PrevDiag = diag::note_previous_implicit_declaration;
1210  else
1211    PrevDiag = diag::note_previous_declaration;
1212
1213  QualType OldQType = Context.getCanonicalType(Old->getType());
1214  QualType NewQType = Context.getCanonicalType(New->getType());
1215
1216  // Don't complain about this if we're in GNU89 mode and the old function
1217  // is an extern inline function.
1218  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1219      New->getStorageClass() == SC_Static &&
1220      Old->getStorageClass() != SC_Static &&
1221      !canRedefineFunction(Old, getLangOptions())) {
1222    Diag(New->getLocation(), diag::err_static_non_static)
1223      << New;
1224    Diag(Old->getLocation(), PrevDiag);
1225    return true;
1226  }
1227
1228  // If a function is first declared with a calling convention, but is
1229  // later declared or defined without one, the second decl assumes the
1230  // calling convention of the first.
1231  //
1232  // For the new decl, we have to look at the NON-canonical type to tell the
1233  // difference between a function that really doesn't have a calling
1234  // convention and one that is declared cdecl. That's because in
1235  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1236  // because it is the default calling convention.
1237  //
1238  // Note also that we DO NOT return at this point, because we still have
1239  // other tests to run.
1240  const FunctionType *OldType = cast<FunctionType>(OldQType);
1241  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1242  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1243  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1244  bool RequiresAdjustment = false;
1245  if (OldTypeInfo.getCC() != CC_Default &&
1246      NewTypeInfo.getCC() == CC_Default) {
1247    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1248    RequiresAdjustment = true;
1249  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1250                                     NewTypeInfo.getCC())) {
1251    // Calling conventions really aren't compatible, so complain.
1252    Diag(New->getLocation(), diag::err_cconv_change)
1253      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1254      << (OldTypeInfo.getCC() == CC_Default)
1255      << (OldTypeInfo.getCC() == CC_Default ? "" :
1256          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1257    Diag(Old->getLocation(), diag::note_previous_declaration);
1258    return true;
1259  }
1260
1261  // FIXME: diagnose the other way around?
1262  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1263    NewTypeInfo = NewTypeInfo.withNoReturn(true);
1264    RequiresAdjustment = true;
1265  }
1266
1267  // Merge regparm attribute.
1268  if (OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1269    if (NewTypeInfo.getRegParm()) {
1270      Diag(New->getLocation(), diag::err_regparm_mismatch)
1271        << NewType->getRegParmType()
1272        << OldType->getRegParmType();
1273      Diag(Old->getLocation(), diag::note_previous_declaration);
1274      return true;
1275    }
1276
1277    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1278    RequiresAdjustment = true;
1279  }
1280
1281  if (RequiresAdjustment) {
1282    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1283    New->setType(QualType(NewType, 0));
1284    NewQType = Context.getCanonicalType(New->getType());
1285  }
1286
1287  if (getLangOptions().CPlusPlus) {
1288    // (C++98 13.1p2):
1289    //   Certain function declarations cannot be overloaded:
1290    //     -- Function declarations that differ only in the return type
1291    //        cannot be overloaded.
1292    QualType OldReturnType = OldType->getResultType();
1293    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1294    QualType ResQT;
1295    if (OldReturnType != NewReturnType) {
1296      if (NewReturnType->isObjCObjectPointerType()
1297          && OldReturnType->isObjCObjectPointerType())
1298        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1299      if (ResQT.isNull()) {
1300        if (New->isCXXClassMember() && New->isOutOfLine())
1301          Diag(New->getLocation(),
1302               diag::err_member_def_does_not_match_ret_type) << New;
1303        else
1304          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1305        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1306        return true;
1307      }
1308      else
1309        NewQType = ResQT;
1310    }
1311
1312    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1313    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1314    if (OldMethod && NewMethod) {
1315      // Preserve triviality.
1316      NewMethod->setTrivial(OldMethod->isTrivial());
1317
1318      bool isFriend = NewMethod->getFriendObjectKind();
1319
1320      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1321        //    -- Member function declarations with the same name and the
1322        //       same parameter types cannot be overloaded if any of them
1323        //       is a static member function declaration.
1324        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1325          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1326          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1327          return true;
1328        }
1329
1330        // C++ [class.mem]p1:
1331        //   [...] A member shall not be declared twice in the
1332        //   member-specification, except that a nested class or member
1333        //   class template can be declared and then later defined.
1334        unsigned NewDiag;
1335        if (isa<CXXConstructorDecl>(OldMethod))
1336          NewDiag = diag::err_constructor_redeclared;
1337        else if (isa<CXXDestructorDecl>(NewMethod))
1338          NewDiag = diag::err_destructor_redeclared;
1339        else if (isa<CXXConversionDecl>(NewMethod))
1340          NewDiag = diag::err_conv_function_redeclared;
1341        else
1342          NewDiag = diag::err_member_redeclared;
1343
1344        Diag(New->getLocation(), NewDiag);
1345        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1346
1347      // Complain if this is an explicit declaration of a special
1348      // member that was initially declared implicitly.
1349      //
1350      // As an exception, it's okay to befriend such methods in order
1351      // to permit the implicit constructor/destructor/operator calls.
1352      } else if (OldMethod->isImplicit()) {
1353        if (isFriend) {
1354          NewMethod->setImplicit();
1355        } else {
1356          Diag(NewMethod->getLocation(),
1357               diag::err_definition_of_implicitly_declared_member)
1358            << New << getSpecialMember(OldMethod);
1359          return true;
1360        }
1361      }
1362    }
1363
1364    // (C++98 8.3.5p3):
1365    //   All declarations for a function shall agree exactly in both the
1366    //   return type and the parameter-type-list.
1367    // We also want to respect all the extended bits except noreturn.
1368
1369    // noreturn should now match unless the old type info didn't have it.
1370    QualType OldQTypeForComparison = OldQType;
1371    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
1372      assert(OldQType == QualType(OldType, 0));
1373      const FunctionType *OldTypeForComparison
1374        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
1375      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
1376      assert(OldQTypeForComparison.isCanonical());
1377    }
1378
1379    if (OldQTypeForComparison == NewQType)
1380      return MergeCompatibleFunctionDecls(New, Old);
1381
1382    // Fall through for conflicting redeclarations and redefinitions.
1383  }
1384
1385  // C: Function types need to be compatible, not identical. This handles
1386  // duplicate function decls like "void f(int); void f(enum X);" properly.
1387  if (!getLangOptions().CPlusPlus &&
1388      Context.typesAreCompatible(OldQType, NewQType)) {
1389    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1390    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1391    const FunctionProtoType *OldProto = 0;
1392    if (isa<FunctionNoProtoType>(NewFuncType) &&
1393        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1394      // The old declaration provided a function prototype, but the
1395      // new declaration does not. Merge in the prototype.
1396      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1397      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1398                                                 OldProto->arg_type_end());
1399      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1400                                         ParamTypes.data(), ParamTypes.size(),
1401                                         OldProto->getExtProtoInfo());
1402      New->setType(NewQType);
1403      New->setHasInheritedPrototype();
1404
1405      // Synthesize a parameter for each argument type.
1406      llvm::SmallVector<ParmVarDecl*, 16> Params;
1407      for (FunctionProtoType::arg_type_iterator
1408             ParamType = OldProto->arg_type_begin(),
1409             ParamEnd = OldProto->arg_type_end();
1410           ParamType != ParamEnd; ++ParamType) {
1411        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1412                                                 SourceLocation(),
1413                                                 SourceLocation(), 0,
1414                                                 *ParamType, /*TInfo=*/0,
1415                                                 SC_None, SC_None,
1416                                                 0);
1417        Param->setImplicit();
1418        Params.push_back(Param);
1419      }
1420
1421      New->setParams(Params.data(), Params.size());
1422    }
1423
1424    return MergeCompatibleFunctionDecls(New, Old);
1425  }
1426
1427  // GNU C permits a K&R definition to follow a prototype declaration
1428  // if the declared types of the parameters in the K&R definition
1429  // match the types in the prototype declaration, even when the
1430  // promoted types of the parameters from the K&R definition differ
1431  // from the types in the prototype. GCC then keeps the types from
1432  // the prototype.
1433  //
1434  // If a variadic prototype is followed by a non-variadic K&R definition,
1435  // the K&R definition becomes variadic.  This is sort of an edge case, but
1436  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1437  // C99 6.9.1p8.
1438  if (!getLangOptions().CPlusPlus &&
1439      Old->hasPrototype() && !New->hasPrototype() &&
1440      New->getType()->getAs<FunctionProtoType>() &&
1441      Old->getNumParams() == New->getNumParams()) {
1442    llvm::SmallVector<QualType, 16> ArgTypes;
1443    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1444    const FunctionProtoType *OldProto
1445      = Old->getType()->getAs<FunctionProtoType>();
1446    const FunctionProtoType *NewProto
1447      = New->getType()->getAs<FunctionProtoType>();
1448
1449    // Determine whether this is the GNU C extension.
1450    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1451                                               NewProto->getResultType());
1452    bool LooseCompatible = !MergedReturn.isNull();
1453    for (unsigned Idx = 0, End = Old->getNumParams();
1454         LooseCompatible && Idx != End; ++Idx) {
1455      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1456      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1457      if (Context.typesAreCompatible(OldParm->getType(),
1458                                     NewProto->getArgType(Idx))) {
1459        ArgTypes.push_back(NewParm->getType());
1460      } else if (Context.typesAreCompatible(OldParm->getType(),
1461                                            NewParm->getType(),
1462                                            /*CompareUnqualified=*/true)) {
1463        GNUCompatibleParamWarning Warn
1464          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1465        Warnings.push_back(Warn);
1466        ArgTypes.push_back(NewParm->getType());
1467      } else
1468        LooseCompatible = false;
1469    }
1470
1471    if (LooseCompatible) {
1472      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1473        Diag(Warnings[Warn].NewParm->getLocation(),
1474             diag::ext_param_promoted_not_compatible_with_prototype)
1475          << Warnings[Warn].PromotedType
1476          << Warnings[Warn].OldParm->getType();
1477        if (Warnings[Warn].OldParm->getLocation().isValid())
1478          Diag(Warnings[Warn].OldParm->getLocation(),
1479               diag::note_previous_declaration);
1480      }
1481
1482      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1483                                           ArgTypes.size(),
1484                                           OldProto->getExtProtoInfo()));
1485      return MergeCompatibleFunctionDecls(New, Old);
1486    }
1487
1488    // Fall through to diagnose conflicting types.
1489  }
1490
1491  // A function that has already been declared has been redeclared or defined
1492  // with a different type- show appropriate diagnostic
1493  if (unsigned BuiltinID = Old->getBuiltinID()) {
1494    // The user has declared a builtin function with an incompatible
1495    // signature.
1496    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1497      // The function the user is redeclaring is a library-defined
1498      // function like 'malloc' or 'printf'. Warn about the
1499      // redeclaration, then pretend that we don't know about this
1500      // library built-in.
1501      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1502      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1503        << Old << Old->getType();
1504      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1505      Old->setInvalidDecl();
1506      return false;
1507    }
1508
1509    PrevDiag = diag::note_previous_builtin_declaration;
1510  }
1511
1512  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1513  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1514  return true;
1515}
1516
1517/// \brief Completes the merge of two function declarations that are
1518/// known to be compatible.
1519///
1520/// This routine handles the merging of attributes and other
1521/// properties of function declarations form the old declaration to
1522/// the new declaration, once we know that New is in fact a
1523/// redeclaration of Old.
1524///
1525/// \returns false
1526bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1527  // Merge the attributes
1528  mergeDeclAttributes(New, Old, Context);
1529
1530  // Merge the storage class.
1531  if (Old->getStorageClass() != SC_Extern &&
1532      Old->getStorageClass() != SC_None)
1533    New->setStorageClass(Old->getStorageClass());
1534
1535  // Merge "pure" flag.
1536  if (Old->isPure())
1537    New->setPure();
1538
1539  // Merge the "deleted" flag.
1540  if (Old->isDeleted())
1541    New->setDeleted();
1542
1543  // Merge attributes from the parameters.  These can mismatch with K&R
1544  // declarations.
1545  if (New->getNumParams() == Old->getNumParams())
1546    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
1547      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
1548                               Context);
1549
1550  if (getLangOptions().CPlusPlus)
1551    return MergeCXXFunctionDecl(New, Old);
1552
1553  return false;
1554}
1555
1556void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
1557                                const ObjCMethodDecl *oldMethod) {
1558  // Merge the attributes.
1559  mergeDeclAttributes(newMethod, oldMethod, Context);
1560
1561  // Merge attributes from the parameters.
1562  for (ObjCMethodDecl::param_iterator oi = oldMethod->param_begin(),
1563         ni = newMethod->param_begin(), ne = newMethod->param_end();
1564       ni != ne; ++ni, ++oi)
1565    mergeParamDeclAttributes(*ni, *oi, Context);
1566}
1567
1568/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
1569/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
1570/// emitting diagnostics as appropriate.
1571///
1572/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
1573/// to here in AddInitializerToDecl and AddCXXDirectInitializerToDecl. We can't
1574/// check them before the initializer is attached.
1575///
1576void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
1577  if (New->isInvalidDecl() || Old->isInvalidDecl())
1578    return;
1579
1580  QualType MergedT;
1581  if (getLangOptions().CPlusPlus) {
1582    AutoType *AT = New->getType()->getContainedAutoType();
1583    if (AT && !AT->isDeduced()) {
1584      // We don't know what the new type is until the initializer is attached.
1585      return;
1586    } else if (Context.hasSameType(New->getType(), Old->getType())) {
1587      // These could still be something that needs exception specs checked.
1588      return MergeVarDeclExceptionSpecs(New, Old);
1589    }
1590    // C++ [basic.link]p10:
1591    //   [...] the types specified by all declarations referring to a given
1592    //   object or function shall be identical, except that declarations for an
1593    //   array object can specify array types that differ by the presence or
1594    //   absence of a major array bound (8.3.4).
1595    else if (Old->getType()->isIncompleteArrayType() &&
1596             New->getType()->isArrayType()) {
1597      CanQual<ArrayType> OldArray
1598        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1599      CanQual<ArrayType> NewArray
1600        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1601      if (OldArray->getElementType() == NewArray->getElementType())
1602        MergedT = New->getType();
1603    } else if (Old->getType()->isArrayType() &&
1604             New->getType()->isIncompleteArrayType()) {
1605      CanQual<ArrayType> OldArray
1606        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1607      CanQual<ArrayType> NewArray
1608        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1609      if (OldArray->getElementType() == NewArray->getElementType())
1610        MergedT = Old->getType();
1611    } else if (New->getType()->isObjCObjectPointerType()
1612               && Old->getType()->isObjCObjectPointerType()) {
1613        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
1614                                                        Old->getType());
1615    }
1616  } else {
1617    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1618  }
1619  if (MergedT.isNull()) {
1620    Diag(New->getLocation(), diag::err_redefinition_different_type)
1621      << New->getDeclName();
1622    Diag(Old->getLocation(), diag::note_previous_definition);
1623    return New->setInvalidDecl();
1624  }
1625  New->setType(MergedT);
1626}
1627
1628/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1629/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1630/// situation, merging decls or emitting diagnostics as appropriate.
1631///
1632/// Tentative definition rules (C99 6.9.2p2) are checked by
1633/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1634/// definitions here, since the initializer hasn't been attached.
1635///
1636void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1637  // If the new decl is already invalid, don't do any other checking.
1638  if (New->isInvalidDecl())
1639    return;
1640
1641  // Verify the old decl was also a variable.
1642  VarDecl *Old = 0;
1643  if (!Previous.isSingleResult() ||
1644      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1645    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1646      << New->getDeclName();
1647    Diag(Previous.getRepresentativeDecl()->getLocation(),
1648         diag::note_previous_definition);
1649    return New->setInvalidDecl();
1650  }
1651
1652  // C++ [class.mem]p1:
1653  //   A member shall not be declared twice in the member-specification [...]
1654  //
1655  // Here, we need only consider static data members.
1656  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
1657    Diag(New->getLocation(), diag::err_duplicate_member)
1658      << New->getIdentifier();
1659    Diag(Old->getLocation(), diag::note_previous_declaration);
1660    New->setInvalidDecl();
1661  }
1662
1663  mergeDeclAttributes(New, Old, Context);
1664
1665  // Merge the types.
1666  MergeVarDeclTypes(New, Old);
1667  if (New->isInvalidDecl())
1668    return;
1669
1670  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1671  if (New->getStorageClass() == SC_Static &&
1672      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
1673    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1674    Diag(Old->getLocation(), diag::note_previous_definition);
1675    return New->setInvalidDecl();
1676  }
1677  // C99 6.2.2p4:
1678  //   For an identifier declared with the storage-class specifier
1679  //   extern in a scope in which a prior declaration of that
1680  //   identifier is visible,23) if the prior declaration specifies
1681  //   internal or external linkage, the linkage of the identifier at
1682  //   the later declaration is the same as the linkage specified at
1683  //   the prior declaration. If no prior declaration is visible, or
1684  //   if the prior declaration specifies no linkage, then the
1685  //   identifier has external linkage.
1686  if (New->hasExternalStorage() && Old->hasLinkage())
1687    /* Okay */;
1688  else if (New->getStorageClass() != SC_Static &&
1689           Old->getStorageClass() == SC_Static) {
1690    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1691    Diag(Old->getLocation(), diag::note_previous_definition);
1692    return New->setInvalidDecl();
1693  }
1694
1695  // Check if extern is followed by non-extern and vice-versa.
1696  if (New->hasExternalStorage() &&
1697      !Old->hasLinkage() && Old->isLocalVarDecl()) {
1698    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
1699    Diag(Old->getLocation(), diag::note_previous_definition);
1700    return New->setInvalidDecl();
1701  }
1702  if (Old->hasExternalStorage() &&
1703      !New->hasLinkage() && New->isLocalVarDecl()) {
1704    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
1705    Diag(Old->getLocation(), diag::note_previous_definition);
1706    return New->setInvalidDecl();
1707  }
1708
1709  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1710
1711  // FIXME: The test for external storage here seems wrong? We still
1712  // need to check for mismatches.
1713  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1714      // Don't complain about out-of-line definitions of static members.
1715      !(Old->getLexicalDeclContext()->isRecord() &&
1716        !New->getLexicalDeclContext()->isRecord())) {
1717    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1718    Diag(Old->getLocation(), diag::note_previous_definition);
1719    return New->setInvalidDecl();
1720  }
1721
1722  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1723    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1724    Diag(Old->getLocation(), diag::note_previous_definition);
1725  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1726    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1727    Diag(Old->getLocation(), diag::note_previous_definition);
1728  }
1729
1730  // C++ doesn't have tentative definitions, so go right ahead and check here.
1731  const VarDecl *Def;
1732  if (getLangOptions().CPlusPlus &&
1733      New->isThisDeclarationADefinition() == VarDecl::Definition &&
1734      (Def = Old->getDefinition())) {
1735    Diag(New->getLocation(), diag::err_redefinition)
1736      << New->getDeclName();
1737    Diag(Def->getLocation(), diag::note_previous_definition);
1738    New->setInvalidDecl();
1739    return;
1740  }
1741  // c99 6.2.2 P4.
1742  // For an identifier declared with the storage-class specifier extern in a
1743  // scope in which a prior declaration of that identifier is visible, if
1744  // the prior declaration specifies internal or external linkage, the linkage
1745  // of the identifier at the later declaration is the same as the linkage
1746  // specified at the prior declaration.
1747  // FIXME. revisit this code.
1748  if (New->hasExternalStorage() &&
1749      Old->getLinkage() == InternalLinkage &&
1750      New->getDeclContext() == Old->getDeclContext())
1751    New->setStorageClass(Old->getStorageClass());
1752
1753  // Keep a chain of previous declarations.
1754  New->setPreviousDeclaration(Old);
1755
1756  // Inherit access appropriately.
1757  New->setAccess(Old->getAccess());
1758}
1759
1760/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1761/// no declarator (e.g. "struct foo;") is parsed.
1762Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
1763                                            DeclSpec &DS) {
1764  // FIXME: Error on inline/virtual/explicit
1765  // FIXME: Warn on useless __thread
1766  // FIXME: Warn on useless const/volatile
1767  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1768  // FIXME: Warn on useless attributes
1769  Decl *TagD = 0;
1770  TagDecl *Tag = 0;
1771  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1772      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1773      DS.getTypeSpecType() == DeclSpec::TST_union ||
1774      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1775    TagD = DS.getRepAsDecl();
1776
1777    if (!TagD) // We probably had an error
1778      return 0;
1779
1780    // Note that the above type specs guarantee that the
1781    // type rep is a Decl, whereas in many of the others
1782    // it's a Type.
1783    Tag = dyn_cast<TagDecl>(TagD);
1784  }
1785
1786  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1787    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1788    // or incomplete types shall not be restrict-qualified."
1789    if (TypeQuals & DeclSpec::TQ_restrict)
1790      Diag(DS.getRestrictSpecLoc(),
1791           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1792           << DS.getSourceRange();
1793  }
1794
1795  if (DS.isFriendSpecified()) {
1796    // If we're dealing with a decl but not a TagDecl, assume that
1797    // whatever routines created it handled the friendship aspect.
1798    if (TagD && !Tag)
1799      return 0;
1800    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1801  }
1802
1803  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1804    ProcessDeclAttributeList(S, Record, DS.getAttributes().getList());
1805
1806    if (!Record->getDeclName() && Record->isDefinition() &&
1807        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1808      if (getLangOptions().CPlusPlus ||
1809          Record->getDeclContext()->isRecord())
1810        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
1811
1812      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1813        << DS.getSourceRange();
1814    }
1815  }
1816
1817  // Check for Microsoft C extension: anonymous struct.
1818  if (getLangOptions().Microsoft && !getLangOptions().CPlusPlus &&
1819      CurContext->isRecord() &&
1820      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
1821    // Handle 2 kinds of anonymous struct:
1822    //   struct STRUCT;
1823    // and
1824    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
1825    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
1826    if ((Record && Record->getDeclName() && !Record->isDefinition()) ||
1827        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
1828         DS.getRepAsType().get()->isStructureType())) {
1829      Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
1830        << DS.getSourceRange();
1831      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
1832    }
1833  }
1834
1835  if (getLangOptions().CPlusPlus &&
1836      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
1837    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
1838      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
1839          !Enum->getIdentifier() && !Enum->isInvalidDecl())
1840        Diag(Enum->getLocation(), diag::ext_no_declarators)
1841          << DS.getSourceRange();
1842
1843  if (!DS.isMissingDeclaratorOk() &&
1844      DS.getTypeSpecType() != DeclSpec::TST_error) {
1845    // Warn about typedefs of enums without names, since this is an
1846    // extension in both Microsoft and GNU.
1847    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1848        Tag && isa<EnumDecl>(Tag)) {
1849      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1850        << DS.getSourceRange();
1851      return Tag;
1852    }
1853
1854    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1855      << DS.getSourceRange();
1856  }
1857
1858  return TagD;
1859}
1860
1861/// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec.
1862/// builds a statement for it and returns it so it is evaluated.
1863StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) {
1864  StmtResult R;
1865  if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) {
1866    Expr *Exp = DS.getRepAsExpr();
1867    QualType Ty = Exp->getType();
1868    if (Ty->isPointerType()) {
1869      do
1870        Ty = Ty->getAs<PointerType>()->getPointeeType();
1871      while (Ty->isPointerType());
1872    }
1873    if (Ty->isVariableArrayType()) {
1874      R = ActOnExprStmt(MakeFullExpr(Exp));
1875    }
1876  }
1877  return R;
1878}
1879
1880/// We are trying to inject an anonymous member into the given scope;
1881/// check if there's an existing declaration that can't be overloaded.
1882///
1883/// \return true if this is a forbidden redeclaration
1884static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1885                                         Scope *S,
1886                                         DeclContext *Owner,
1887                                         DeclarationName Name,
1888                                         SourceLocation NameLoc,
1889                                         unsigned diagnostic) {
1890  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1891                 Sema::ForRedeclaration);
1892  if (!SemaRef.LookupName(R, S)) return false;
1893
1894  if (R.getAsSingle<TagDecl>())
1895    return false;
1896
1897  // Pick a representative declaration.
1898  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1899  assert(PrevDecl && "Expected a non-null Decl");
1900
1901  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
1902    return false;
1903
1904  SemaRef.Diag(NameLoc, diagnostic) << Name;
1905  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1906
1907  return true;
1908}
1909
1910/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1911/// anonymous struct or union AnonRecord into the owning context Owner
1912/// and scope S. This routine will be invoked just after we realize
1913/// that an unnamed union or struct is actually an anonymous union or
1914/// struct, e.g.,
1915///
1916/// @code
1917/// union {
1918///   int i;
1919///   float f;
1920/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1921///    // f into the surrounding scope.x
1922/// @endcode
1923///
1924/// This routine is recursive, injecting the names of nested anonymous
1925/// structs/unions into the owning context and scope as well.
1926static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
1927                                                DeclContext *Owner,
1928                                                RecordDecl *AnonRecord,
1929                                                AccessSpecifier AS,
1930                              llvm::SmallVector<NamedDecl*, 2> &Chaining,
1931                                                      bool MSAnonStruct) {
1932  unsigned diagKind
1933    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1934                            : diag::err_anonymous_struct_member_redecl;
1935
1936  bool Invalid = false;
1937
1938  // Look every FieldDecl and IndirectFieldDecl with a name.
1939  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
1940                               DEnd = AnonRecord->decls_end();
1941       D != DEnd; ++D) {
1942    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
1943        cast<NamedDecl>(*D)->getDeclName()) {
1944      ValueDecl *VD = cast<ValueDecl>(*D);
1945      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
1946                                       VD->getLocation(), diagKind)) {
1947        // C++ [class.union]p2:
1948        //   The names of the members of an anonymous union shall be
1949        //   distinct from the names of any other entity in the
1950        //   scope in which the anonymous union is declared.
1951        Invalid = true;
1952      } else {
1953        // C++ [class.union]p2:
1954        //   For the purpose of name lookup, after the anonymous union
1955        //   definition, the members of the anonymous union are
1956        //   considered to have been defined in the scope in which the
1957        //   anonymous union is declared.
1958        unsigned OldChainingSize = Chaining.size();
1959        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
1960          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
1961               PE = IF->chain_end(); PI != PE; ++PI)
1962            Chaining.push_back(*PI);
1963        else
1964          Chaining.push_back(VD);
1965
1966        assert(Chaining.size() >= 2);
1967        NamedDecl **NamedChain =
1968          new (SemaRef.Context)NamedDecl*[Chaining.size()];
1969        for (unsigned i = 0; i < Chaining.size(); i++)
1970          NamedChain[i] = Chaining[i];
1971
1972        IndirectFieldDecl* IndirectField =
1973          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
1974                                    VD->getIdentifier(), VD->getType(),
1975                                    NamedChain, Chaining.size());
1976
1977        IndirectField->setAccess(AS);
1978        IndirectField->setImplicit();
1979        SemaRef.PushOnScopeChains(IndirectField, S);
1980
1981        // That includes picking up the appropriate access specifier.
1982        if (AS != AS_none) IndirectField->setAccess(AS);
1983
1984        Chaining.resize(OldChainingSize);
1985      }
1986    }
1987  }
1988
1989  return Invalid;
1990}
1991
1992/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
1993/// a VarDecl::StorageClass. Any error reporting is up to the caller:
1994/// illegal input values are mapped to SC_None.
1995static StorageClass
1996StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1997  switch (StorageClassSpec) {
1998  case DeclSpec::SCS_unspecified:    return SC_None;
1999  case DeclSpec::SCS_extern:         return SC_Extern;
2000  case DeclSpec::SCS_static:         return SC_Static;
2001  case DeclSpec::SCS_auto:           return SC_Auto;
2002  case DeclSpec::SCS_register:       return SC_Register;
2003  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2004    // Illegal SCSs map to None: error reporting is up to the caller.
2005  case DeclSpec::SCS_mutable:        // Fall through.
2006  case DeclSpec::SCS_typedef:        return SC_None;
2007  }
2008  llvm_unreachable("unknown storage class specifier");
2009}
2010
2011/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2012/// a StorageClass. Any error reporting is up to the caller:
2013/// illegal input values are mapped to SC_None.
2014static StorageClass
2015StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2016  switch (StorageClassSpec) {
2017  case DeclSpec::SCS_unspecified:    return SC_None;
2018  case DeclSpec::SCS_extern:         return SC_Extern;
2019  case DeclSpec::SCS_static:         return SC_Static;
2020  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2021    // Illegal SCSs map to None: error reporting is up to the caller.
2022  case DeclSpec::SCS_auto:           // Fall through.
2023  case DeclSpec::SCS_mutable:        // Fall through.
2024  case DeclSpec::SCS_register:       // Fall through.
2025  case DeclSpec::SCS_typedef:        return SC_None;
2026  }
2027  llvm_unreachable("unknown storage class specifier");
2028}
2029
2030/// BuildAnonymousStructOrUnion - Handle the declaration of an
2031/// anonymous structure or union. Anonymous unions are a C++ feature
2032/// (C++ [class.union]) and a GNU C extension; anonymous structures
2033/// are a GNU C and GNU C++ extension.
2034Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2035                                             AccessSpecifier AS,
2036                                             RecordDecl *Record) {
2037  DeclContext *Owner = Record->getDeclContext();
2038
2039  // Diagnose whether this anonymous struct/union is an extension.
2040  if (Record->isUnion() && !getLangOptions().CPlusPlus)
2041    Diag(Record->getLocation(), diag::ext_anonymous_union);
2042  else if (!Record->isUnion())
2043    Diag(Record->getLocation(), diag::ext_anonymous_struct);
2044
2045  // C and C++ require different kinds of checks for anonymous
2046  // structs/unions.
2047  bool Invalid = false;
2048  if (getLangOptions().CPlusPlus) {
2049    const char* PrevSpec = 0;
2050    unsigned DiagID;
2051    // C++ [class.union]p3:
2052    //   Anonymous unions declared in a named namespace or in the
2053    //   global namespace shall be declared static.
2054    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2055        (isa<TranslationUnitDecl>(Owner) ||
2056         (isa<NamespaceDecl>(Owner) &&
2057          cast<NamespaceDecl>(Owner)->getDeclName()))) {
2058      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
2059      Invalid = true;
2060
2061      // Recover by adding 'static'.
2062      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
2063                             PrevSpec, DiagID, getLangOptions());
2064    }
2065    // C++ [class.union]p3:
2066    //   A storage class is not allowed in a declaration of an
2067    //   anonymous union in a class scope.
2068    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2069             isa<RecordDecl>(Owner)) {
2070      Diag(DS.getStorageClassSpecLoc(),
2071           diag::err_anonymous_union_with_storage_spec);
2072      Invalid = true;
2073
2074      // Recover by removing the storage specifier.
2075      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
2076                             PrevSpec, DiagID, getLangOptions());
2077    }
2078
2079    // C++ [class.union]p2:
2080    //   The member-specification of an anonymous union shall only
2081    //   define non-static data members. [Note: nested types and
2082    //   functions cannot be declared within an anonymous union. ]
2083    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
2084                                 MemEnd = Record->decls_end();
2085         Mem != MemEnd; ++Mem) {
2086      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
2087        // C++ [class.union]p3:
2088        //   An anonymous union shall not have private or protected
2089        //   members (clause 11).
2090        assert(FD->getAccess() != AS_none);
2091        if (FD->getAccess() != AS_public) {
2092          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
2093            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
2094          Invalid = true;
2095        }
2096
2097        if (CheckNontrivialField(FD))
2098          Invalid = true;
2099      } else if ((*Mem)->isImplicit()) {
2100        // Any implicit members are fine.
2101      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
2102        // This is a type that showed up in an
2103        // elaborated-type-specifier inside the anonymous struct or
2104        // union, but which actually declares a type outside of the
2105        // anonymous struct or union. It's okay.
2106      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
2107        if (!MemRecord->isAnonymousStructOrUnion() &&
2108            MemRecord->getDeclName()) {
2109          // Visual C++ allows type definition in anonymous struct or union.
2110          if (getLangOptions().Microsoft)
2111            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
2112              << (int)Record->isUnion();
2113          else {
2114            // This is a nested type declaration.
2115            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
2116              << (int)Record->isUnion();
2117            Invalid = true;
2118          }
2119        }
2120      } else if (isa<AccessSpecDecl>(*Mem)) {
2121        // Any access specifier is fine.
2122      } else {
2123        // We have something that isn't a non-static data
2124        // member. Complain about it.
2125        unsigned DK = diag::err_anonymous_record_bad_member;
2126        if (isa<TypeDecl>(*Mem))
2127          DK = diag::err_anonymous_record_with_type;
2128        else if (isa<FunctionDecl>(*Mem))
2129          DK = diag::err_anonymous_record_with_function;
2130        else if (isa<VarDecl>(*Mem))
2131          DK = diag::err_anonymous_record_with_static;
2132
2133        // Visual C++ allows type definition in anonymous struct or union.
2134        if (getLangOptions().Microsoft &&
2135            DK == diag::err_anonymous_record_with_type)
2136          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
2137            << (int)Record->isUnion();
2138        else {
2139          Diag((*Mem)->getLocation(), DK)
2140              << (int)Record->isUnion();
2141          Invalid = true;
2142        }
2143      }
2144    }
2145  }
2146
2147  if (!Record->isUnion() && !Owner->isRecord()) {
2148    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
2149      << (int)getLangOptions().CPlusPlus;
2150    Invalid = true;
2151  }
2152
2153  // Mock up a declarator.
2154  Declarator Dc(DS, Declarator::TypeNameContext);
2155  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2156  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
2157
2158  // Create a declaration for this anonymous struct/union.
2159  NamedDecl *Anon = 0;
2160  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2161    Anon = FieldDecl::Create(Context, OwningClass,
2162                             DS.getSourceRange().getBegin(),
2163                             Record->getLocation(),
2164                             /*IdentifierInfo=*/0,
2165                             Context.getTypeDeclType(Record),
2166                             TInfo,
2167                             /*BitWidth=*/0, /*Mutable=*/false);
2168    Anon->setAccess(AS);
2169    if (getLangOptions().CPlusPlus)
2170      FieldCollector->Add(cast<FieldDecl>(Anon));
2171  } else {
2172    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2173    assert(SCSpec != DeclSpec::SCS_typedef &&
2174           "Parser allowed 'typedef' as storage class VarDecl.");
2175    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2176    if (SCSpec == DeclSpec::SCS_mutable) {
2177      // mutable can only appear on non-static class members, so it's always
2178      // an error here
2179      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2180      Invalid = true;
2181      SC = SC_None;
2182    }
2183    SCSpec = DS.getStorageClassSpecAsWritten();
2184    VarDecl::StorageClass SCAsWritten
2185      = StorageClassSpecToVarDeclStorageClass(SCSpec);
2186
2187    Anon = VarDecl::Create(Context, Owner,
2188                           DS.getSourceRange().getBegin(),
2189                           Record->getLocation(), /*IdentifierInfo=*/0,
2190                           Context.getTypeDeclType(Record),
2191                           TInfo, SC, SCAsWritten);
2192  }
2193  Anon->setImplicit();
2194
2195  // Add the anonymous struct/union object to the current
2196  // context. We'll be referencing this object when we refer to one of
2197  // its members.
2198  Owner->addDecl(Anon);
2199
2200  // Inject the members of the anonymous struct/union into the owning
2201  // context and into the identifier resolver chain for name lookup
2202  // purposes.
2203  llvm::SmallVector<NamedDecl*, 2> Chain;
2204  Chain.push_back(Anon);
2205
2206  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2207                                          Chain, false))
2208    Invalid = true;
2209
2210  // Mark this as an anonymous struct/union type. Note that we do not
2211  // do this until after we have already checked and injected the
2212  // members of this anonymous struct/union type, because otherwise
2213  // the members could be injected twice: once by DeclContext when it
2214  // builds its lookup table, and once by
2215  // InjectAnonymousStructOrUnionMembers.
2216  Record->setAnonymousStructOrUnion(true);
2217
2218  if (Invalid)
2219    Anon->setInvalidDecl();
2220
2221  return Anon;
2222}
2223
2224/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2225/// Microsoft C anonymous structure.
2226/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2227/// Example:
2228///
2229/// struct A { int a; };
2230/// struct B { struct A; int b; };
2231///
2232/// void foo() {
2233///   B var;
2234///   var.a = 3;
2235/// }
2236///
2237Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2238                                           RecordDecl *Record) {
2239
2240  // If there is no Record, get the record via the typedef.
2241  if (!Record)
2242    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2243
2244  // Mock up a declarator.
2245  Declarator Dc(DS, Declarator::TypeNameContext);
2246  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2247  assert(TInfo && "couldn't build declarator info for anonymous struct");
2248
2249  // Create a declaration for this anonymous struct.
2250  NamedDecl* Anon = FieldDecl::Create(Context,
2251                             cast<RecordDecl>(CurContext),
2252                             DS.getSourceRange().getBegin(),
2253                             DS.getSourceRange().getBegin(),
2254                             /*IdentifierInfo=*/0,
2255                             Context.getTypeDeclType(Record),
2256                             TInfo,
2257                             /*BitWidth=*/0, /*Mutable=*/false);
2258  Anon->setImplicit();
2259
2260  // Add the anonymous struct object to the current context.
2261  CurContext->addDecl(Anon);
2262
2263  // Inject the members of the anonymous struct into the current
2264  // context and into the identifier resolver chain for name lookup
2265  // purposes.
2266  llvm::SmallVector<NamedDecl*, 2> Chain;
2267  Chain.push_back(Anon);
2268
2269  if (InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2270                                          Record->getDefinition(),
2271                                          AS_none, Chain, true))
2272    Anon->setInvalidDecl();
2273
2274  return Anon;
2275}
2276
2277/// GetNameForDeclarator - Determine the full declaration name for the
2278/// given Declarator.
2279DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2280  return GetNameFromUnqualifiedId(D.getName());
2281}
2282
2283/// \brief Retrieves the declaration name from a parsed unqualified-id.
2284DeclarationNameInfo
2285Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2286  DeclarationNameInfo NameInfo;
2287  NameInfo.setLoc(Name.StartLocation);
2288
2289  switch (Name.getKind()) {
2290
2291  case UnqualifiedId::IK_Identifier:
2292    NameInfo.setName(Name.Identifier);
2293    NameInfo.setLoc(Name.StartLocation);
2294    return NameInfo;
2295
2296  case UnqualifiedId::IK_OperatorFunctionId:
2297    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2298                                           Name.OperatorFunctionId.Operator));
2299    NameInfo.setLoc(Name.StartLocation);
2300    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2301      = Name.OperatorFunctionId.SymbolLocations[0];
2302    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2303      = Name.EndLocation.getRawEncoding();
2304    return NameInfo;
2305
2306  case UnqualifiedId::IK_LiteralOperatorId:
2307    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2308                                                           Name.Identifier));
2309    NameInfo.setLoc(Name.StartLocation);
2310    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2311    return NameInfo;
2312
2313  case UnqualifiedId::IK_ConversionFunctionId: {
2314    TypeSourceInfo *TInfo;
2315    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2316    if (Ty.isNull())
2317      return DeclarationNameInfo();
2318    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2319                                               Context.getCanonicalType(Ty)));
2320    NameInfo.setLoc(Name.StartLocation);
2321    NameInfo.setNamedTypeInfo(TInfo);
2322    return NameInfo;
2323  }
2324
2325  case UnqualifiedId::IK_ConstructorName: {
2326    TypeSourceInfo *TInfo;
2327    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2328    if (Ty.isNull())
2329      return DeclarationNameInfo();
2330    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2331                                              Context.getCanonicalType(Ty)));
2332    NameInfo.setLoc(Name.StartLocation);
2333    NameInfo.setNamedTypeInfo(TInfo);
2334    return NameInfo;
2335  }
2336
2337  case UnqualifiedId::IK_ConstructorTemplateId: {
2338    // In well-formed code, we can only have a constructor
2339    // template-id that refers to the current context, so go there
2340    // to find the actual type being constructed.
2341    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2342    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2343      return DeclarationNameInfo();
2344
2345    // Determine the type of the class being constructed.
2346    QualType CurClassType = Context.getTypeDeclType(CurClass);
2347
2348    // FIXME: Check two things: that the template-id names the same type as
2349    // CurClassType, and that the template-id does not occur when the name
2350    // was qualified.
2351
2352    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2353                                    Context.getCanonicalType(CurClassType)));
2354    NameInfo.setLoc(Name.StartLocation);
2355    // FIXME: should we retrieve TypeSourceInfo?
2356    NameInfo.setNamedTypeInfo(0);
2357    return NameInfo;
2358  }
2359
2360  case UnqualifiedId::IK_DestructorName: {
2361    TypeSourceInfo *TInfo;
2362    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2363    if (Ty.isNull())
2364      return DeclarationNameInfo();
2365    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2366                                              Context.getCanonicalType(Ty)));
2367    NameInfo.setLoc(Name.StartLocation);
2368    NameInfo.setNamedTypeInfo(TInfo);
2369    return NameInfo;
2370  }
2371
2372  case UnqualifiedId::IK_TemplateId: {
2373    TemplateName TName = Name.TemplateId->Template.get();
2374    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
2375    return Context.getNameForTemplate(TName, TNameLoc);
2376  }
2377
2378  } // switch (Name.getKind())
2379
2380  assert(false && "Unknown name kind");
2381  return DeclarationNameInfo();
2382}
2383
2384/// isNearlyMatchingFunction - Determine whether the C++ functions
2385/// Declaration and Definition are "nearly" matching. This heuristic
2386/// is used to improve diagnostics in the case where an out-of-line
2387/// function definition doesn't match any declaration within
2388/// the class or namespace.
2389static bool isNearlyMatchingFunction(ASTContext &Context,
2390                                     FunctionDecl *Declaration,
2391                                     FunctionDecl *Definition) {
2392  if (Declaration->param_size() != Definition->param_size())
2393    return false;
2394  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2395    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2396    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2397
2398    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
2399                                        DefParamTy.getNonReferenceType()))
2400      return false;
2401  }
2402
2403  return true;
2404}
2405
2406/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
2407/// declarator needs to be rebuilt in the current instantiation.
2408/// Any bits of declarator which appear before the name are valid for
2409/// consideration here.  That's specifically the type in the decl spec
2410/// and the base type in any member-pointer chunks.
2411static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
2412                                                    DeclarationName Name) {
2413  // The types we specifically need to rebuild are:
2414  //   - typenames, typeofs, and decltypes
2415  //   - types which will become injected class names
2416  // Of course, we also need to rebuild any type referencing such a
2417  // type.  It's safest to just say "dependent", but we call out a
2418  // few cases here.
2419
2420  DeclSpec &DS = D.getMutableDeclSpec();
2421  switch (DS.getTypeSpecType()) {
2422  case DeclSpec::TST_typename:
2423  case DeclSpec::TST_typeofType:
2424  case DeclSpec::TST_decltype: {
2425    // Grab the type from the parser.
2426    TypeSourceInfo *TSI = 0;
2427    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
2428    if (T.isNull() || !T->isDependentType()) break;
2429
2430    // Make sure there's a type source info.  This isn't really much
2431    // of a waste; most dependent types should have type source info
2432    // attached already.
2433    if (!TSI)
2434      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
2435
2436    // Rebuild the type in the current instantiation.
2437    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
2438    if (!TSI) return true;
2439
2440    // Store the new type back in the decl spec.
2441    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
2442    DS.UpdateTypeRep(LocType);
2443    break;
2444  }
2445
2446  case DeclSpec::TST_typeofExpr: {
2447    Expr *E = DS.getRepAsExpr();
2448    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
2449    if (Result.isInvalid()) return true;
2450    DS.UpdateExprRep(Result.get());
2451    break;
2452  }
2453
2454  default:
2455    // Nothing to do for these decl specs.
2456    break;
2457  }
2458
2459  // It doesn't matter what order we do this in.
2460  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2461    DeclaratorChunk &Chunk = D.getTypeObject(I);
2462
2463    // The only type information in the declarator which can come
2464    // before the declaration name is the base type of a member
2465    // pointer.
2466    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
2467      continue;
2468
2469    // Rebuild the scope specifier in-place.
2470    CXXScopeSpec &SS = Chunk.Mem.Scope();
2471    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2472      return true;
2473  }
2474
2475  return false;
2476}
2477
2478Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
2479  return HandleDeclarator(S, D, MultiTemplateParamsArg(*this), false);
2480}
2481
2482Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
2483                             MultiTemplateParamsArg TemplateParamLists,
2484                             bool IsFunctionDefinition) {
2485  // TODO: consider using NameInfo for diagnostic.
2486  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2487  DeclarationName Name = NameInfo.getName();
2488
2489  // All of these full declarators require an identifier.  If it doesn't have
2490  // one, the ParsedFreeStandingDeclSpec action should be used.
2491  if (!Name) {
2492    if (!D.isInvalidType())  // Reject this if we think it is valid.
2493      Diag(D.getDeclSpec().getSourceRange().getBegin(),
2494           diag::err_declarator_need_ident)
2495        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2496    return 0;
2497  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
2498    return 0;
2499
2500  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2501  // we find one that is.
2502  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2503         (S->getFlags() & Scope::TemplateParamScope) != 0)
2504    S = S->getParent();
2505
2506  DeclContext *DC = CurContext;
2507  if (D.getCXXScopeSpec().isInvalid())
2508    D.setInvalidType();
2509  else if (D.getCXXScopeSpec().isSet()) {
2510    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
2511                                        UPPC_DeclarationQualifier))
2512      return 0;
2513
2514    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
2515    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
2516    if (!DC) {
2517      // If we could not compute the declaration context, it's because the
2518      // declaration context is dependent but does not refer to a class,
2519      // class template, or class template partial specialization. Complain
2520      // and return early, to avoid the coming semantic disaster.
2521      Diag(D.getIdentifierLoc(),
2522           diag::err_template_qualified_declarator_no_match)
2523        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2524        << D.getCXXScopeSpec().getRange();
2525      return 0;
2526    }
2527
2528    bool IsDependentContext = DC->isDependentContext();
2529
2530    if (!IsDependentContext &&
2531        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
2532      return 0;
2533
2534    if (isa<CXXRecordDecl>(DC)) {
2535      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
2536        Diag(D.getIdentifierLoc(),
2537             diag::err_member_def_undefined_record)
2538          << Name << DC << D.getCXXScopeSpec().getRange();
2539        D.setInvalidType();
2540      } else if (isa<CXXRecordDecl>(CurContext) &&
2541                 !D.getDeclSpec().isFriendSpecified()) {
2542        // The user provided a superfluous scope specifier inside a class
2543        // definition:
2544        //
2545        // class X {
2546        //   void X::f();
2547        // };
2548        if (CurContext->Equals(DC))
2549          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
2550            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
2551        else
2552          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
2553            << Name << D.getCXXScopeSpec().getRange();
2554
2555        // Pretend that this qualifier was not here.
2556        D.getCXXScopeSpec().clear();
2557      }
2558    }
2559
2560    // Check whether we need to rebuild the type of the given
2561    // declaration in the current instantiation.
2562    if (EnteringContext && IsDependentContext &&
2563        TemplateParamLists.size() != 0) {
2564      ContextRAII SavedContext(*this, DC);
2565      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
2566        D.setInvalidType();
2567    }
2568  }
2569
2570  // C++ [class.mem]p13:
2571  //   If T is the name of a class, then each of the following shall have a
2572  //   name different from T:
2573  //     - every static data member of class T;
2574  //     - every member function of class T
2575  //     - every member of class T that is itself a type;
2576  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
2577    if (Record->getIdentifier() && Record->getDeclName() == Name) {
2578      Diag(D.getIdentifierLoc(), diag::err_member_name_of_class)
2579        << Name;
2580
2581      // If this is a typedef, we'll end up spewing multiple diagnostics.
2582      // Just return early; it's safer.
2583      if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2584        return 0;
2585    }
2586
2587  NamedDecl *New;
2588
2589  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
2590  QualType R = TInfo->getType();
2591
2592  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
2593                                      UPPC_DeclarationType))
2594    D.setInvalidType();
2595
2596  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
2597                        ForRedeclaration);
2598
2599  // See if this is a redefinition of a variable in the same scope.
2600  if (!D.getCXXScopeSpec().isSet()) {
2601    bool IsLinkageLookup = false;
2602
2603    // If the declaration we're planning to build will be a function
2604    // or object with linkage, then look for another declaration with
2605    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
2606    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2607      /* Do nothing*/;
2608    else if (R->isFunctionType()) {
2609      if (CurContext->isFunctionOrMethod() ||
2610          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2611        IsLinkageLookup = true;
2612    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
2613      IsLinkageLookup = true;
2614    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
2615             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2616      IsLinkageLookup = true;
2617
2618    if (IsLinkageLookup)
2619      Previous.clear(LookupRedeclarationWithLinkage);
2620
2621    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
2622  } else { // Something like "int foo::x;"
2623    LookupQualifiedName(Previous, DC);
2624
2625    // Don't consider using declarations as previous declarations for
2626    // out-of-line members.
2627    RemoveUsingDecls(Previous);
2628
2629    // C++ 7.3.1.2p2:
2630    // Members (including explicit specializations of templates) of a named
2631    // namespace can also be defined outside that namespace by explicit
2632    // qualification of the name being defined, provided that the entity being
2633    // defined was already declared in the namespace and the definition appears
2634    // after the point of declaration in a namespace that encloses the
2635    // declarations namespace.
2636    //
2637    // Note that we only check the context at this point. We don't yet
2638    // have enough information to make sure that PrevDecl is actually
2639    // the declaration we want to match. For example, given:
2640    //
2641    //   class X {
2642    //     void f();
2643    //     void f(float);
2644    //   };
2645    //
2646    //   void X::f(int) { } // ill-formed
2647    //
2648    // In this case, PrevDecl will point to the overload set
2649    // containing the two f's declared in X, but neither of them
2650    // matches.
2651
2652    // First check whether we named the global scope.
2653    if (isa<TranslationUnitDecl>(DC)) {
2654      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
2655        << Name << D.getCXXScopeSpec().getRange();
2656    } else {
2657      DeclContext *Cur = CurContext;
2658      while (isa<LinkageSpecDecl>(Cur))
2659        Cur = Cur->getParent();
2660      if (!Cur->Encloses(DC)) {
2661        // The qualifying scope doesn't enclose the original declaration.
2662        // Emit diagnostic based on current scope.
2663        SourceLocation L = D.getIdentifierLoc();
2664        SourceRange R = D.getCXXScopeSpec().getRange();
2665        if (isa<FunctionDecl>(Cur))
2666          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
2667        else
2668          Diag(L, diag::err_invalid_declarator_scope)
2669            << Name << cast<NamedDecl>(DC) << R;
2670        D.setInvalidType();
2671      }
2672    }
2673  }
2674
2675  if (Previous.isSingleResult() &&
2676      Previous.getFoundDecl()->isTemplateParameter()) {
2677    // Maybe we will complain about the shadowed template parameter.
2678    if (!D.isInvalidType())
2679      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
2680                                          Previous.getFoundDecl()))
2681        D.setInvalidType();
2682
2683    // Just pretend that we didn't see the previous declaration.
2684    Previous.clear();
2685  }
2686
2687  // In C++, the previous declaration we find might be a tag type
2688  // (class or enum). In this case, the new declaration will hide the
2689  // tag type. Note that this does does not apply if we're declaring a
2690  // typedef (C++ [dcl.typedef]p4).
2691  if (Previous.isSingleTagDecl() &&
2692      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2693    Previous.clear();
2694
2695  bool Redeclaration = false;
2696  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2697    if (TemplateParamLists.size()) {
2698      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2699      return 0;
2700    }
2701
2702    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2703  } else if (R->isFunctionType()) {
2704    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2705                                  move(TemplateParamLists),
2706                                  IsFunctionDefinition, Redeclaration);
2707  } else {
2708    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2709                                  move(TemplateParamLists),
2710                                  Redeclaration);
2711  }
2712
2713  if (New == 0)
2714    return 0;
2715
2716  // If this has an identifier and is not an invalid redeclaration or
2717  // function template specialization, add it to the scope stack.
2718  if (New->getDeclName() && !(Redeclaration && New->isInvalidDecl()))
2719    PushOnScopeChains(New, S);
2720
2721  return New;
2722}
2723
2724/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2725/// types into constant array types in certain situations which would otherwise
2726/// be errors (for GCC compatibility).
2727static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2728                                                    ASTContext &Context,
2729                                                    bool &SizeIsNegative,
2730                                                    llvm::APSInt &Oversized) {
2731  // This method tries to turn a variable array into a constant
2732  // array even when the size isn't an ICE.  This is necessary
2733  // for compatibility with code that depends on gcc's buggy
2734  // constant expression folding, like struct {char x[(int)(char*)2];}
2735  SizeIsNegative = false;
2736  Oversized = 0;
2737
2738  if (T->isDependentType())
2739    return QualType();
2740
2741  QualifierCollector Qs;
2742  const Type *Ty = Qs.strip(T);
2743
2744  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2745    QualType Pointee = PTy->getPointeeType();
2746    QualType FixedType =
2747        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
2748                                            Oversized);
2749    if (FixedType.isNull()) return FixedType;
2750    FixedType = Context.getPointerType(FixedType);
2751    return Qs.apply(Context, FixedType);
2752  }
2753  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
2754    QualType Inner = PTy->getInnerType();
2755    QualType FixedType =
2756        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
2757                                            Oversized);
2758    if (FixedType.isNull()) return FixedType;
2759    FixedType = Context.getParenType(FixedType);
2760    return Qs.apply(Context, FixedType);
2761  }
2762
2763  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2764  if (!VLATy)
2765    return QualType();
2766  // FIXME: We should probably handle this case
2767  if (VLATy->getElementType()->isVariablyModifiedType())
2768    return QualType();
2769
2770  Expr::EvalResult EvalResult;
2771  if (!VLATy->getSizeExpr() ||
2772      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2773      !EvalResult.Val.isInt())
2774    return QualType();
2775
2776  // Check whether the array size is negative.
2777  llvm::APSInt &Res = EvalResult.Val.getInt();
2778  if (Res.isSigned() && Res.isNegative()) {
2779    SizeIsNegative = true;
2780    return QualType();
2781  }
2782
2783  // Check whether the array is too large to be addressed.
2784  unsigned ActiveSizeBits
2785    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
2786                                              Res);
2787  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
2788    Oversized = Res;
2789    return QualType();
2790  }
2791
2792  return Context.getConstantArrayType(VLATy->getElementType(),
2793                                      Res, ArrayType::Normal, 0);
2794}
2795
2796/// \brief Register the given locally-scoped external C declaration so
2797/// that it can be found later for redeclarations
2798void
2799Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2800                                       const LookupResult &Previous,
2801                                       Scope *S) {
2802  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2803         "Decl is not a locally-scoped decl!");
2804  // Note that we have a locally-scoped external with this name.
2805  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2806
2807  if (!Previous.isSingleResult())
2808    return;
2809
2810  NamedDecl *PrevDecl = Previous.getFoundDecl();
2811
2812  // If there was a previous declaration of this variable, it may be
2813  // in our identifier chain. Update the identifier chain with the new
2814  // declaration.
2815  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2816    // The previous declaration was found on the identifer resolver
2817    // chain, so remove it from its scope.
2818    while (S && !S->isDeclScope(PrevDecl))
2819      S = S->getParent();
2820
2821    if (S)
2822      S->RemoveDecl(PrevDecl);
2823  }
2824}
2825
2826/// \brief Diagnose function specifiers on a declaration of an identifier that
2827/// does not identify a function.
2828void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2829  // FIXME: We should probably indicate the identifier in question to avoid
2830  // confusion for constructs like "inline int a(), b;"
2831  if (D.getDeclSpec().isInlineSpecified())
2832    Diag(D.getDeclSpec().getInlineSpecLoc(),
2833         diag::err_inline_non_function);
2834
2835  if (D.getDeclSpec().isVirtualSpecified())
2836    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2837         diag::err_virtual_non_function);
2838
2839  if (D.getDeclSpec().isExplicitSpecified())
2840    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2841         diag::err_explicit_non_function);
2842}
2843
2844NamedDecl*
2845Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2846                             QualType R,  TypeSourceInfo *TInfo,
2847                             LookupResult &Previous, bool &Redeclaration) {
2848  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2849  if (D.getCXXScopeSpec().isSet()) {
2850    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2851      << D.getCXXScopeSpec().getRange();
2852    D.setInvalidType();
2853    // Pretend we didn't see the scope specifier.
2854    DC = CurContext;
2855    Previous.clear();
2856  }
2857
2858  if (getLangOptions().CPlusPlus) {
2859    // Check that there are no default arguments (C++ only).
2860    CheckExtraCXXDefaultArguments(D);
2861  }
2862
2863  DiagnoseFunctionSpecifiers(D);
2864
2865  if (D.getDeclSpec().isThreadSpecified())
2866    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2867
2868  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
2869    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
2870      << D.getName().getSourceRange();
2871    return 0;
2872  }
2873
2874  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2875  if (!NewTD) return 0;
2876
2877  // Handle attributes prior to checking for duplicates in MergeVarDecl
2878  ProcessDeclAttributes(S, NewTD, D);
2879
2880  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2881  // then it shall have block scope.
2882  // Note that variably modified types must be fixed before merging the decl so
2883  // that redeclarations will match.
2884  QualType T = NewTD->getUnderlyingType();
2885  if (T->isVariablyModifiedType()) {
2886    getCurFunction()->setHasBranchProtectedScope();
2887
2888    if (S->getFnParent() == 0) {
2889      bool SizeIsNegative;
2890      llvm::APSInt Oversized;
2891      QualType FixedTy =
2892          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
2893                                              Oversized);
2894      if (!FixedTy.isNull()) {
2895        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2896        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2897      } else {
2898        if (SizeIsNegative)
2899          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2900        else if (T->isVariableArrayType())
2901          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2902        else if (Oversized.getBoolValue())
2903          Diag(D.getIdentifierLoc(), diag::err_array_too_large)
2904            << Oversized.toString(10);
2905        else
2906          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2907        NewTD->setInvalidDecl();
2908      }
2909    }
2910  }
2911
2912  // Merge the decl with the existing one if appropriate. If the decl is
2913  // in an outer scope, it isn't the same thing.
2914  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false,
2915                       /*ExplicitInstantiationOrSpecialization=*/false);
2916  if (!Previous.empty()) {
2917    Redeclaration = true;
2918    MergeTypeDefDecl(NewTD, Previous);
2919  }
2920
2921  // If this is the C FILE type, notify the AST context.
2922  if (IdentifierInfo *II = NewTD->getIdentifier())
2923    if (!NewTD->isInvalidDecl() &&
2924        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
2925      if (II->isStr("FILE"))
2926        Context.setFILEDecl(NewTD);
2927      else if (II->isStr("jmp_buf"))
2928        Context.setjmp_bufDecl(NewTD);
2929      else if (II->isStr("sigjmp_buf"))
2930        Context.setsigjmp_bufDecl(NewTD);
2931      else if (II->isStr("__builtin_va_list"))
2932        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
2933    }
2934
2935  return NewTD;
2936}
2937
2938/// \brief Determines whether the given declaration is an out-of-scope
2939/// previous declaration.
2940///
2941/// This routine should be invoked when name lookup has found a
2942/// previous declaration (PrevDecl) that is not in the scope where a
2943/// new declaration by the same name is being introduced. If the new
2944/// declaration occurs in a local scope, previous declarations with
2945/// linkage may still be considered previous declarations (C99
2946/// 6.2.2p4-5, C++ [basic.link]p6).
2947///
2948/// \param PrevDecl the previous declaration found by name
2949/// lookup
2950///
2951/// \param DC the context in which the new declaration is being
2952/// declared.
2953///
2954/// \returns true if PrevDecl is an out-of-scope previous declaration
2955/// for a new delcaration with the same name.
2956static bool
2957isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2958                                ASTContext &Context) {
2959  if (!PrevDecl)
2960    return false;
2961
2962  if (!PrevDecl->hasLinkage())
2963    return false;
2964
2965  if (Context.getLangOptions().CPlusPlus) {
2966    // C++ [basic.link]p6:
2967    //   If there is a visible declaration of an entity with linkage
2968    //   having the same name and type, ignoring entities declared
2969    //   outside the innermost enclosing namespace scope, the block
2970    //   scope declaration declares that same entity and receives the
2971    //   linkage of the previous declaration.
2972    DeclContext *OuterContext = DC->getRedeclContext();
2973    if (!OuterContext->isFunctionOrMethod())
2974      // This rule only applies to block-scope declarations.
2975      return false;
2976
2977    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2978    if (PrevOuterContext->isRecord())
2979      // We found a member function: ignore it.
2980      return false;
2981
2982    // Find the innermost enclosing namespace for the new and
2983    // previous declarations.
2984    OuterContext = OuterContext->getEnclosingNamespaceContext();
2985    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
2986
2987    // The previous declaration is in a different namespace, so it
2988    // isn't the same function.
2989    if (!OuterContext->Equals(PrevOuterContext))
2990      return false;
2991  }
2992
2993  return true;
2994}
2995
2996static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
2997  CXXScopeSpec &SS = D.getCXXScopeSpec();
2998  if (!SS.isSet()) return;
2999  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
3000}
3001
3002NamedDecl*
3003Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
3004                              QualType R, TypeSourceInfo *TInfo,
3005                              LookupResult &Previous,
3006                              MultiTemplateParamsArg TemplateParamLists,
3007                              bool &Redeclaration) {
3008  DeclarationName Name = GetNameForDeclarator(D).getName();
3009
3010  // Check that there are no default arguments (C++ only).
3011  if (getLangOptions().CPlusPlus)
3012    CheckExtraCXXDefaultArguments(D);
3013
3014  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
3015  assert(SCSpec != DeclSpec::SCS_typedef &&
3016         "Parser allowed 'typedef' as storage class VarDecl.");
3017  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3018  if (SCSpec == DeclSpec::SCS_mutable) {
3019    // mutable can only appear on non-static class members, so it's always
3020    // an error here
3021    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
3022    D.setInvalidType();
3023    SC = SC_None;
3024  }
3025  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3026  VarDecl::StorageClass SCAsWritten
3027    = StorageClassSpecToVarDeclStorageClass(SCSpec);
3028
3029  IdentifierInfo *II = Name.getAsIdentifierInfo();
3030  if (!II) {
3031    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
3032      << Name.getAsString();
3033    return 0;
3034  }
3035
3036  DiagnoseFunctionSpecifiers(D);
3037
3038  if (!DC->isRecord() && S->getFnParent() == 0) {
3039    // C99 6.9p2: The storage-class specifiers auto and register shall not
3040    // appear in the declaration specifiers in an external declaration.
3041    if (SC == SC_Auto || SC == SC_Register) {
3042
3043      // If this is a register variable with an asm label specified, then this
3044      // is a GNU extension.
3045      if (SC == SC_Register && D.getAsmLabel())
3046        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
3047      else
3048        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
3049      D.setInvalidType();
3050    }
3051  }
3052
3053  bool isExplicitSpecialization = false;
3054  VarDecl *NewVD;
3055  if (!getLangOptions().CPlusPlus) {
3056    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3057                            D.getIdentifierLoc(), II,
3058                            R, TInfo, SC, SCAsWritten);
3059
3060    if (D.isInvalidType())
3061      NewVD->setInvalidDecl();
3062  } else {
3063    if (DC->isRecord() && !CurContext->isRecord()) {
3064      // This is an out-of-line definition of a static data member.
3065      if (SC == SC_Static) {
3066        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3067             diag::err_static_out_of_line)
3068          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3069      } else if (SC == SC_None)
3070        SC = SC_Static;
3071    }
3072    if (SC == SC_Static) {
3073      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
3074        if (RD->isLocalClass())
3075          Diag(D.getIdentifierLoc(),
3076               diag::err_static_data_member_not_allowed_in_local_class)
3077            << Name << RD->getDeclName();
3078
3079        // C++ [class.union]p1: If a union contains a static data member,
3080        // the program is ill-formed.
3081        //
3082        // We also disallow static data members in anonymous structs.
3083        if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
3084          Diag(D.getIdentifierLoc(),
3085               diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
3086            << Name << RD->isUnion();
3087      }
3088    }
3089
3090    // Match up the template parameter lists with the scope specifier, then
3091    // determine whether we have a template or a template specialization.
3092    isExplicitSpecialization = false;
3093    unsigned NumMatchedTemplateParamLists = TemplateParamLists.size();
3094    bool Invalid = false;
3095    if (TemplateParameterList *TemplateParams
3096        = MatchTemplateParametersToScopeSpecifier(
3097                                                  D.getDeclSpec().getSourceRange().getBegin(),
3098                                                  D.getCXXScopeSpec(),
3099                                                  TemplateParamLists.get(),
3100                                                  TemplateParamLists.size(),
3101                                                  /*never a friend*/ false,
3102                                                  isExplicitSpecialization,
3103                                                  Invalid)) {
3104      // All but one template parameter lists have been matching.
3105      --NumMatchedTemplateParamLists;
3106
3107      if (TemplateParams->size() > 0) {
3108        // There is no such thing as a variable template.
3109        Diag(D.getIdentifierLoc(), diag::err_template_variable)
3110          << II
3111          << SourceRange(TemplateParams->getTemplateLoc(),
3112                         TemplateParams->getRAngleLoc());
3113        return 0;
3114      } else {
3115        // There is an extraneous 'template<>' for this variable. Complain
3116        // about it, but allow the declaration of the variable.
3117        Diag(TemplateParams->getTemplateLoc(),
3118             diag::err_template_variable_noparams)
3119          << II
3120          << SourceRange(TemplateParams->getTemplateLoc(),
3121                         TemplateParams->getRAngleLoc());
3122
3123        isExplicitSpecialization = true;
3124      }
3125    }
3126
3127    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3128                            D.getIdentifierLoc(), II,
3129                            R, TInfo, SC, SCAsWritten);
3130
3131    // If this decl has an auto type in need of deduction, make a note of the
3132    // Decl so we can diagnose uses of it in its own initializer.
3133    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
3134        R->getContainedAutoType())
3135      ParsingInitForAutoVars.insert(NewVD);
3136
3137    if (D.isInvalidType() || Invalid)
3138      NewVD->setInvalidDecl();
3139
3140    SetNestedNameSpecifier(NewVD, D);
3141
3142    if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
3143      NewVD->setTemplateParameterListsInfo(Context,
3144                                           NumMatchedTemplateParamLists,
3145                                           TemplateParamLists.release());
3146    }
3147  }
3148
3149  if (D.getDeclSpec().isThreadSpecified()) {
3150    if (NewVD->hasLocalStorage())
3151      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
3152    else if (!Context.Target.isTLSSupported())
3153      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
3154    else
3155      NewVD->setThreadSpecified(true);
3156  }
3157
3158  // Set the lexical context. If the declarator has a C++ scope specifier, the
3159  // lexical context will be different from the semantic context.
3160  NewVD->setLexicalDeclContext(CurContext);
3161
3162  // Handle attributes prior to checking for duplicates in MergeVarDecl
3163  ProcessDeclAttributes(S, NewVD, D);
3164
3165  // Handle GNU asm-label extension (encoded as an attribute).
3166  if (Expr *E = (Expr*)D.getAsmLabel()) {
3167    // The parser guarantees this is a string.
3168    StringLiteral *SE = cast<StringLiteral>(E);
3169    llvm::StringRef Label = SE->getString();
3170    if (S->getFnParent() != 0) {
3171      switch (SC) {
3172      case SC_None:
3173      case SC_Auto:
3174        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
3175        break;
3176      case SC_Register:
3177        if (!Context.Target.isValidGCCRegisterName(Label))
3178          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
3179        break;
3180      case SC_Static:
3181      case SC_Extern:
3182      case SC_PrivateExtern:
3183        break;
3184      }
3185    }
3186
3187    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
3188                                                Context, Label));
3189  }
3190
3191  // Diagnose shadowed variables before filtering for scope.
3192  if (!D.getCXXScopeSpec().isSet())
3193    CheckShadow(S, NewVD, Previous);
3194
3195  // Don't consider existing declarations that are in a different
3196  // scope and are out-of-semantic-context declarations (if the new
3197  // declaration has linkage).
3198  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage(),
3199                       isExplicitSpecialization);
3200
3201  if (!getLangOptions().CPlusPlus)
3202    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3203  else {
3204    // Merge the decl with the existing one if appropriate.
3205    if (!Previous.empty()) {
3206      if (Previous.isSingleResult() &&
3207          isa<FieldDecl>(Previous.getFoundDecl()) &&
3208          D.getCXXScopeSpec().isSet()) {
3209        // The user tried to define a non-static data member
3210        // out-of-line (C++ [dcl.meaning]p1).
3211        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
3212          << D.getCXXScopeSpec().getRange();
3213        Previous.clear();
3214        NewVD->setInvalidDecl();
3215      }
3216    } else if (D.getCXXScopeSpec().isSet()) {
3217      // No previous declaration in the qualifying scope.
3218      Diag(D.getIdentifierLoc(), diag::err_no_member)
3219        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
3220        << D.getCXXScopeSpec().getRange();
3221      NewVD->setInvalidDecl();
3222    }
3223
3224    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3225
3226    // This is an explicit specialization of a static data member. Check it.
3227    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
3228        CheckMemberSpecialization(NewVD, Previous))
3229      NewVD->setInvalidDecl();
3230  }
3231
3232  // attributes declared post-definition are currently ignored
3233  // FIXME: This should be handled in attribute merging, not
3234  // here.
3235  if (Previous.isSingleResult()) {
3236    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
3237    if (Def && (Def = Def->getDefinition()) &&
3238        Def != NewVD && D.hasAttributes()) {
3239      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
3240      Diag(Def->getLocation(), diag::note_previous_definition);
3241    }
3242  }
3243
3244  // If this is a locally-scoped extern C variable, update the map of
3245  // such variables.
3246  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
3247      !NewVD->isInvalidDecl())
3248    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
3249
3250  // If there's a #pragma GCC visibility in scope, and this isn't a class
3251  // member, set the visibility of this variable.
3252  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
3253    AddPushedVisibilityAttribute(NewVD);
3254
3255  MarkUnusedFileScopedDecl(NewVD);
3256
3257  return NewVD;
3258}
3259
3260/// \brief Diagnose variable or built-in function shadowing.  Implements
3261/// -Wshadow.
3262///
3263/// This method is called whenever a VarDecl is added to a "useful"
3264/// scope.
3265///
3266/// \param S the scope in which the shadowing name is being declared
3267/// \param R the lookup of the name
3268///
3269void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
3270  // Return if warning is ignored.
3271  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
3272        Diagnostic::Ignored)
3273    return;
3274
3275  // Don't diagnose declarations at file scope.
3276  DeclContext *NewDC = D->getDeclContext();
3277  if (NewDC->isFileContext())
3278    return;
3279
3280  // Only diagnose if we're shadowing an unambiguous field or variable.
3281  if (R.getResultKind() != LookupResult::Found)
3282    return;
3283
3284  NamedDecl* ShadowedDecl = R.getFoundDecl();
3285  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
3286    return;
3287
3288  // Fields are not shadowed by variables in C++ static methods.
3289  if (isa<FieldDecl>(ShadowedDecl))
3290    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
3291      if (MD->isStatic())
3292        return;
3293
3294  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
3295    if (shadowedVar->isExternC()) {
3296      // Don't warn for this case:
3297      //
3298      // @code
3299      // extern int bob;
3300      // void f() {
3301      //   extern int bob;
3302      // }
3303      // @endcode
3304      if (D->isExternC())
3305        return;
3306
3307      // For shadowing external vars, make sure that we point to the global
3308      // declaration, not a locally scoped extern declaration.
3309      for (VarDecl::redecl_iterator
3310             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
3311           I != E; ++I)
3312        if (I->isFileVarDecl()) {
3313          ShadowedDecl = *I;
3314          break;
3315        }
3316    }
3317
3318  DeclContext *OldDC = ShadowedDecl->getDeclContext();
3319
3320  // Only warn about certain kinds of shadowing for class members.
3321  if (NewDC && NewDC->isRecord()) {
3322    // In particular, don't warn about shadowing non-class members.
3323    if (!OldDC->isRecord())
3324      return;
3325
3326    // TODO: should we warn about static data members shadowing
3327    // static data members from base classes?
3328
3329    // TODO: don't diagnose for inaccessible shadowed members.
3330    // This is hard to do perfectly because we might friend the
3331    // shadowing context, but that's just a false negative.
3332  }
3333
3334  // Determine what kind of declaration we're shadowing.
3335  unsigned Kind;
3336  if (isa<RecordDecl>(OldDC)) {
3337    if (isa<FieldDecl>(ShadowedDecl))
3338      Kind = 3; // field
3339    else
3340      Kind = 2; // static data member
3341  } else if (OldDC->isFileContext())
3342    Kind = 1; // global
3343  else
3344    Kind = 0; // local
3345
3346  DeclarationName Name = R.getLookupName();
3347
3348  // Emit warning and note.
3349  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
3350  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
3351}
3352
3353/// \brief Check -Wshadow without the advantage of a previous lookup.
3354void Sema::CheckShadow(Scope *S, VarDecl *D) {
3355  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
3356        Diagnostic::Ignored)
3357    return;
3358
3359  LookupResult R(*this, D->getDeclName(), D->getLocation(),
3360                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3361  LookupName(R, S);
3362  CheckShadow(S, D, R);
3363}
3364
3365/// \brief Perform semantic checking on a newly-created variable
3366/// declaration.
3367///
3368/// This routine performs all of the type-checking required for a
3369/// variable declaration once it has been built. It is used both to
3370/// check variables after they have been parsed and their declarators
3371/// have been translated into a declaration, and to check variables
3372/// that have been instantiated from a template.
3373///
3374/// Sets NewVD->isInvalidDecl() if an error was encountered.
3375void Sema::CheckVariableDeclaration(VarDecl *NewVD,
3376                                    LookupResult &Previous,
3377                                    bool &Redeclaration) {
3378  // If the decl is already known invalid, don't check it.
3379  if (NewVD->isInvalidDecl())
3380    return;
3381
3382  QualType T = NewVD->getType();
3383
3384  if (T->isObjCObjectType()) {
3385    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
3386    return NewVD->setInvalidDecl();
3387  }
3388
3389  // Emit an error if an address space was applied to decl with local storage.
3390  // This includes arrays of objects with address space qualifiers, but not
3391  // automatic variables that point to other address spaces.
3392  // ISO/IEC TR 18037 S5.1.2
3393  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
3394    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
3395    return NewVD->setInvalidDecl();
3396  }
3397
3398  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
3399      && !NewVD->hasAttr<BlocksAttr>())
3400    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
3401
3402  bool isVM = T->isVariablyModifiedType();
3403  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
3404      NewVD->hasAttr<BlocksAttr>())
3405    getCurFunction()->setHasBranchProtectedScope();
3406
3407  if ((isVM && NewVD->hasLinkage()) ||
3408      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
3409    bool SizeIsNegative;
3410    llvm::APSInt Oversized;
3411    QualType FixedTy =
3412        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3413                                            Oversized);
3414
3415    if (FixedTy.isNull() && T->isVariableArrayType()) {
3416      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
3417      // FIXME: This won't give the correct result for
3418      // int a[10][n];
3419      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
3420
3421      if (NewVD->isFileVarDecl())
3422        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
3423        << SizeRange;
3424      else if (NewVD->getStorageClass() == SC_Static)
3425        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
3426        << SizeRange;
3427      else
3428        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
3429        << SizeRange;
3430      return NewVD->setInvalidDecl();
3431    }
3432
3433    if (FixedTy.isNull()) {
3434      if (NewVD->isFileVarDecl())
3435        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
3436      else
3437        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
3438      return NewVD->setInvalidDecl();
3439    }
3440
3441    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
3442    NewVD->setType(FixedTy);
3443  }
3444
3445  if (Previous.empty() && NewVD->isExternC()) {
3446    // Since we did not find anything by this name and we're declaring
3447    // an extern "C" variable, look for a non-visible extern "C"
3448    // declaration with the same name.
3449    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3450      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
3451    if (Pos != LocallyScopedExternalDecls.end())
3452      Previous.addDecl(Pos->second);
3453  }
3454
3455  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
3456    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
3457      << T;
3458    return NewVD->setInvalidDecl();
3459  }
3460
3461  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
3462    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
3463    return NewVD->setInvalidDecl();
3464  }
3465
3466  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
3467    Diag(NewVD->getLocation(), diag::err_block_on_vm);
3468    return NewVD->setInvalidDecl();
3469  }
3470
3471  // Function pointers and references cannot have qualified function type, only
3472  // function pointer-to-members can do that.
3473  QualType Pointee;
3474  unsigned PtrOrRef = 0;
3475  if (const PointerType *Ptr = T->getAs<PointerType>())
3476    Pointee = Ptr->getPointeeType();
3477  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
3478    Pointee = Ref->getPointeeType();
3479    PtrOrRef = 1;
3480  }
3481  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
3482      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
3483    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
3484        << PtrOrRef;
3485    return NewVD->setInvalidDecl();
3486  }
3487
3488  if (!Previous.empty()) {
3489    Redeclaration = true;
3490    MergeVarDecl(NewVD, Previous);
3491  }
3492}
3493
3494/// \brief Data used with FindOverriddenMethod
3495struct FindOverriddenMethodData {
3496  Sema *S;
3497  CXXMethodDecl *Method;
3498};
3499
3500/// \brief Member lookup function that determines whether a given C++
3501/// method overrides a method in a base class, to be used with
3502/// CXXRecordDecl::lookupInBases().
3503static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
3504                                 CXXBasePath &Path,
3505                                 void *UserData) {
3506  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
3507
3508  FindOverriddenMethodData *Data
3509    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
3510
3511  DeclarationName Name = Data->Method->getDeclName();
3512
3513  // FIXME: Do we care about other names here too?
3514  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3515    // We really want to find the base class destructor here.
3516    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
3517    CanQualType CT = Data->S->Context.getCanonicalType(T);
3518
3519    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
3520  }
3521
3522  for (Path.Decls = BaseRecord->lookup(Name);
3523       Path.Decls.first != Path.Decls.second;
3524       ++Path.Decls.first) {
3525    NamedDecl *D = *Path.Decls.first;
3526    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
3527      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
3528        return true;
3529    }
3530  }
3531
3532  return false;
3533}
3534
3535/// AddOverriddenMethods - See if a method overrides any in the base classes,
3536/// and if so, check that it's a valid override and remember it.
3537bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
3538  // Look for virtual methods in base classes that this method might override.
3539  CXXBasePaths Paths;
3540  FindOverriddenMethodData Data;
3541  Data.Method = MD;
3542  Data.S = this;
3543  bool AddedAny = false;
3544  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
3545    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
3546         E = Paths.found_decls_end(); I != E; ++I) {
3547      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
3548        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
3549            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
3550            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
3551          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
3552          AddedAny = true;
3553        }
3554      }
3555    }
3556  }
3557
3558  return AddedAny;
3559}
3560
3561static void DiagnoseInvalidRedeclaration(Sema &S, FunctionDecl *NewFD) {
3562  LookupResult Prev(S, NewFD->getDeclName(), NewFD->getLocation(),
3563                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3564  S.LookupQualifiedName(Prev, NewFD->getDeclContext());
3565  assert(!Prev.isAmbiguous() &&
3566         "Cannot have an ambiguity in previous-declaration lookup");
3567  for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3568       Func != FuncEnd; ++Func) {
3569    if (isa<FunctionDecl>(*Func) &&
3570        isNearlyMatchingFunction(S.Context, cast<FunctionDecl>(*Func), NewFD))
3571      S.Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3572  }
3573}
3574
3575NamedDecl*
3576Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3577                              QualType R, TypeSourceInfo *TInfo,
3578                              LookupResult &Previous,
3579                              MultiTemplateParamsArg TemplateParamLists,
3580                              bool IsFunctionDefinition, bool &Redeclaration) {
3581  assert(R.getTypePtr()->isFunctionType());
3582
3583  // TODO: consider using NameInfo for diagnostic.
3584  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3585  DeclarationName Name = NameInfo.getName();
3586  FunctionDecl::StorageClass SC = SC_None;
3587  switch (D.getDeclSpec().getStorageClassSpec()) {
3588  default: assert(0 && "Unknown storage class!");
3589  case DeclSpec::SCS_auto:
3590  case DeclSpec::SCS_register:
3591  case DeclSpec::SCS_mutable:
3592    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3593         diag::err_typecheck_sclass_func);
3594    D.setInvalidType();
3595    break;
3596  case DeclSpec::SCS_unspecified: SC = SC_None; break;
3597  case DeclSpec::SCS_extern:      SC = SC_Extern; break;
3598  case DeclSpec::SCS_static: {
3599    if (CurContext->getRedeclContext()->isFunctionOrMethod()) {
3600      // C99 6.7.1p5:
3601      //   The declaration of an identifier for a function that has
3602      //   block scope shall have no explicit storage-class specifier
3603      //   other than extern
3604      // See also (C++ [dcl.stc]p4).
3605      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3606           diag::err_static_block_func);
3607      SC = SC_None;
3608    } else
3609      SC = SC_Static;
3610    break;
3611  }
3612  case DeclSpec::SCS_private_extern: SC = SC_PrivateExtern; break;
3613  }
3614
3615  if (D.getDeclSpec().isThreadSpecified())
3616    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3617
3618  // Do not allow returning a objc interface by-value.
3619  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
3620    Diag(D.getIdentifierLoc(),
3621         diag::err_object_cannot_be_passed_returned_by_value) << 0
3622    << R->getAs<FunctionType>()->getResultType();
3623    D.setInvalidType();
3624  }
3625
3626  FunctionDecl *NewFD;
3627  bool isInline = D.getDeclSpec().isInlineSpecified();
3628  bool isFriend = false;
3629  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3630  FunctionDecl::StorageClass SCAsWritten
3631    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
3632  FunctionTemplateDecl *FunctionTemplate = 0;
3633  bool isExplicitSpecialization = false;
3634  bool isFunctionTemplateSpecialization = false;
3635  unsigned NumMatchedTemplateParamLists = 0;
3636
3637  if (!getLangOptions().CPlusPlus) {
3638    // Determine whether the function was written with a
3639    // prototype. This true when:
3640    //   - there is a prototype in the declarator, or
3641    //   - the type R of the function is some kind of typedef or other reference
3642    //     to a type name (which eventually refers to a function type).
3643    bool HasPrototype =
3644    (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
3645    (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
3646
3647    NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3648                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
3649                                 HasPrototype);
3650    if (D.isInvalidType())
3651      NewFD->setInvalidDecl();
3652
3653    // Set the lexical context.
3654    NewFD->setLexicalDeclContext(CurContext);
3655    // Filter out previous declarations that don't match the scope.
3656    FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage(),
3657                         /*ExplicitInstantiationOrSpecialization=*/false);
3658  } else {
3659    isFriend = D.getDeclSpec().isFriendSpecified();
3660    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
3661    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
3662    bool isVirtualOkay = false;
3663
3664    // Check that the return type is not an abstract class type.
3665    // For record types, this is done by the AbstractClassUsageDiagnoser once
3666    // the class has been completely parsed.
3667    if (!DC->isRecord() &&
3668      RequireNonAbstractType(D.getIdentifierLoc(),
3669                             R->getAs<FunctionType>()->getResultType(),
3670                             diag::err_abstract_type_in_decl,
3671                             AbstractReturnType))
3672      D.setInvalidType();
3673
3674
3675    if (isFriend) {
3676      // C++ [class.friend]p5
3677      //   A function can be defined in a friend declaration of a
3678      //   class . . . . Such a function is implicitly inline.
3679      isInline |= IsFunctionDefinition;
3680    }
3681
3682    if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
3683      // This is a C++ constructor declaration.
3684      assert(DC->isRecord() &&
3685             "Constructors can only be declared in a member context");
3686
3687      R = CheckConstructorDeclarator(D, R, SC);
3688
3689      // Create the new declaration
3690      NewFD = CXXConstructorDecl::Create(Context,
3691                                         cast<CXXRecordDecl>(DC),
3692                                         D.getSourceRange().getBegin(),
3693                                         NameInfo, R, TInfo,
3694                                         isExplicit, isInline,
3695                                         /*isImplicitlyDeclared=*/false);
3696    } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3697      // This is a C++ destructor declaration.
3698      if (DC->isRecord()) {
3699        R = CheckDestructorDeclarator(D, R, SC);
3700
3701        NewFD = CXXDestructorDecl::Create(Context,
3702                                          cast<CXXRecordDecl>(DC),
3703                                          D.getSourceRange().getBegin(),
3704                                          NameInfo, R, TInfo,
3705                                          isInline,
3706                                          /*isImplicitlyDeclared=*/false);
3707        isVirtualOkay = true;
3708      } else {
3709        Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
3710
3711        // Create a FunctionDecl to satisfy the function definition parsing
3712        // code path.
3713        NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3714                                     D.getIdentifierLoc(), Name, R, TInfo,
3715                                     SC, SCAsWritten, isInline,
3716                                     /*hasPrototype=*/true);
3717        D.setInvalidType();
3718      }
3719    } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
3720      if (!DC->isRecord()) {
3721        Diag(D.getIdentifierLoc(),
3722             diag::err_conv_function_not_member);
3723        return 0;
3724      }
3725
3726      CheckConversionDeclarator(D, R, SC);
3727      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
3728                                        D.getSourceRange().getBegin(),
3729                                        NameInfo, R, TInfo,
3730                                        isInline, isExplicit,
3731                                        SourceLocation());
3732
3733      isVirtualOkay = true;
3734    } else if (DC->isRecord()) {
3735      // If the of the function is the same as the name of the record, then this
3736      // must be an invalid constructor that has a return type.
3737      // (The parser checks for a return type and makes the declarator a
3738      // constructor if it has no return type).
3739      // must have an invalid constructor that has a return type
3740      if (Name.getAsIdentifierInfo() &&
3741          Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
3742        Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
3743          << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3744          << SourceRange(D.getIdentifierLoc());
3745        return 0;
3746      }
3747
3748      bool isStatic = SC == SC_Static;
3749
3750      // [class.free]p1:
3751      // Any allocation function for a class T is a static member
3752      // (even if not explicitly declared static).
3753      if (Name.getCXXOverloadedOperator() == OO_New ||
3754          Name.getCXXOverloadedOperator() == OO_Array_New)
3755        isStatic = true;
3756
3757      // [class.free]p6 Any deallocation function for a class X is a static member
3758      // (even if not explicitly declared static).
3759      if (Name.getCXXOverloadedOperator() == OO_Delete ||
3760          Name.getCXXOverloadedOperator() == OO_Array_Delete)
3761        isStatic = true;
3762
3763      // This is a C++ method declaration.
3764      NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
3765                                    D.getSourceRange().getBegin(),
3766                                    NameInfo, R, TInfo,
3767                                    isStatic, SCAsWritten, isInline,
3768                                    SourceLocation());
3769
3770      isVirtualOkay = !isStatic;
3771    } else {
3772      // Determine whether the function was written with a
3773      // prototype. This true when:
3774      //   - we're in C++ (where every function has a prototype),
3775      NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3776                                   NameInfo, R, TInfo, SC, SCAsWritten, isInline,
3777                                   true/*HasPrototype*/);
3778    }
3779    SetNestedNameSpecifier(NewFD, D);
3780    isExplicitSpecialization = false;
3781    isFunctionTemplateSpecialization = false;
3782    NumMatchedTemplateParamLists = TemplateParamLists.size();
3783    if (D.isInvalidType())
3784      NewFD->setInvalidDecl();
3785
3786    // Set the lexical context. If the declarator has a C++
3787    // scope specifier, or is the object of a friend declaration, the
3788    // lexical context will be different from the semantic context.
3789    NewFD->setLexicalDeclContext(CurContext);
3790
3791    // Match up the template parameter lists with the scope specifier, then
3792    // determine whether we have a template or a template specialization.
3793    bool Invalid = false;
3794    if (TemplateParameterList *TemplateParams
3795          = MatchTemplateParametersToScopeSpecifier(
3796                                  D.getDeclSpec().getSourceRange().getBegin(),
3797                                  D.getCXXScopeSpec(),
3798                                  TemplateParamLists.get(),
3799                                  TemplateParamLists.size(),
3800                                  isFriend,
3801                                  isExplicitSpecialization,
3802                                  Invalid)) {
3803          // All but one template parameter lists have been matching.
3804          --NumMatchedTemplateParamLists;
3805
3806          if (TemplateParams->size() > 0) {
3807            // This is a function template
3808
3809            // Check that we can declare a template here.
3810            if (CheckTemplateDeclScope(S, TemplateParams))
3811              return 0;
3812
3813            // A destructor cannot be a template.
3814            if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3815              Diag(NewFD->getLocation(), diag::err_destructor_template);
3816              return 0;
3817            }
3818
3819
3820            FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
3821                                                      NewFD->getLocation(),
3822                                                      Name, TemplateParams,
3823                                                      NewFD);
3824            FunctionTemplate->setLexicalDeclContext(CurContext);
3825            NewFD->setDescribedFunctionTemplate(FunctionTemplate);
3826          } else {
3827            // This is a function template specialization.
3828            isFunctionTemplateSpecialization = true;
3829
3830            // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
3831            if (isFriend && isFunctionTemplateSpecialization) {
3832              // We want to remove the "template<>", found here.
3833              SourceRange RemoveRange = TemplateParams->getSourceRange();
3834
3835              // If we remove the template<> and the name is not a
3836              // template-id, we're actually silently creating a problem:
3837              // the friend declaration will refer to an untemplated decl,
3838              // and clearly the user wants a template specialization.  So
3839              // we need to insert '<>' after the name.
3840              SourceLocation InsertLoc;
3841              if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
3842                InsertLoc = D.getName().getSourceRange().getEnd();
3843                InsertLoc = PP.getLocForEndOfToken(InsertLoc);
3844              }
3845
3846              Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
3847              << Name << RemoveRange
3848              << FixItHint::CreateRemoval(RemoveRange)
3849              << FixItHint::CreateInsertion(InsertLoc, "<>");
3850            }
3851          }
3852        }
3853
3854    if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
3855      NewFD->setTemplateParameterListsInfo(Context,
3856                                           NumMatchedTemplateParamLists,
3857                                           TemplateParamLists.release());
3858    }
3859
3860    if (Invalid) {
3861      NewFD->setInvalidDecl();
3862      if (FunctionTemplate)
3863        FunctionTemplate->setInvalidDecl();
3864    }
3865
3866    // C++ [dcl.fct.spec]p5:
3867    //   The virtual specifier shall only be used in declarations of
3868    //   nonstatic class member functions that appear within a
3869    //   member-specification of a class declaration; see 10.3.
3870    //
3871    if (isVirtual && !NewFD->isInvalidDecl()) {
3872      if (!isVirtualOkay) {
3873        Diag(D.getDeclSpec().getVirtualSpecLoc(),
3874             diag::err_virtual_non_function);
3875      } else if (!CurContext->isRecord()) {
3876        // 'virtual' was specified outside of the class.
3877        Diag(D.getDeclSpec().getVirtualSpecLoc(),
3878             diag::err_virtual_out_of_class)
3879          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
3880      } else if (NewFD->getDescribedFunctionTemplate()) {
3881        // C++ [temp.mem]p3:
3882        //  A member function template shall not be virtual.
3883        Diag(D.getDeclSpec().getVirtualSpecLoc(),
3884             diag::err_virtual_member_function_template)
3885          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
3886      } else {
3887        // Okay: Add virtual to the method.
3888        NewFD->setVirtualAsWritten(true);
3889      }
3890    }
3891
3892    // C++ [dcl.fct.spec]p3:
3893    //  The inline specifier shall not appear on a block scope function declaration.
3894    if (isInline && !NewFD->isInvalidDecl()) {
3895      if (CurContext->isFunctionOrMethod()) {
3896        // 'inline' is not allowed on block scope function declaration.
3897        Diag(D.getDeclSpec().getInlineSpecLoc(),
3898             diag::err_inline_declaration_block_scope) << Name
3899          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
3900      }
3901    }
3902
3903    // C++ [dcl.fct.spec]p6:
3904    //  The explicit specifier shall be used only in the declaration of a
3905    //  constructor or conversion function within its class definition; see 12.3.1
3906    //  and 12.3.2.
3907    if (isExplicit && !NewFD->isInvalidDecl()) {
3908      if (!CurContext->isRecord()) {
3909        // 'explicit' was specified outside of the class.
3910        Diag(D.getDeclSpec().getExplicitSpecLoc(),
3911             diag::err_explicit_out_of_class)
3912          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3913      } else if (!isa<CXXConstructorDecl>(NewFD) &&
3914                 !isa<CXXConversionDecl>(NewFD)) {
3915        // 'explicit' was specified on a function that wasn't a constructor
3916        // or conversion function.
3917        Diag(D.getDeclSpec().getExplicitSpecLoc(),
3918             diag::err_explicit_non_ctor_or_conv_function)
3919          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3920      }
3921    }
3922
3923    // Filter out previous declarations that don't match the scope.
3924    FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage(),
3925                         isExplicitSpecialization ||
3926                         isFunctionTemplateSpecialization);
3927
3928    if (isFriend) {
3929      // For now, claim that the objects have no previous declaration.
3930      if (FunctionTemplate) {
3931        FunctionTemplate->setObjectOfFriendDecl(false);
3932        FunctionTemplate->setAccess(AS_public);
3933      }
3934      NewFD->setObjectOfFriendDecl(false);
3935      NewFD->setAccess(AS_public);
3936    }
3937
3938    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext && IsFunctionDefinition) {
3939      // A method is implicitly inline if it's defined in its class
3940      // definition.
3941      NewFD->setImplicitlyInline();
3942    }
3943
3944    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
3945        !CurContext->isRecord()) {
3946      // C++ [class.static]p1:
3947      //   A data or function member of a class may be declared static
3948      //   in a class definition, in which case it is a static member of
3949      //   the class.
3950
3951      // Complain about the 'static' specifier if it's on an out-of-line
3952      // member function definition.
3953      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3954           diag::err_static_out_of_line)
3955        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3956    }
3957  }
3958
3959  // Handle GNU asm-label extension (encoded as an attribute).
3960  if (Expr *E = (Expr*) D.getAsmLabel()) {
3961    // The parser guarantees this is a string.
3962    StringLiteral *SE = cast<StringLiteral>(E);
3963    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
3964                                                SE->getString()));
3965  }
3966
3967  // Copy the parameter declarations from the declarator D to the function
3968  // declaration NewFD, if they are available.  First scavenge them into Params.
3969  llvm::SmallVector<ParmVarDecl*, 16> Params;
3970  if (D.isFunctionDeclarator()) {
3971    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
3972
3973    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
3974    // function that takes no arguments, not a function that takes a
3975    // single void argument.
3976    // We let through "const void" here because Sema::GetTypeForDeclarator
3977    // already checks for that case.
3978    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3979        FTI.ArgInfo[0].Param &&
3980        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
3981      // Empty arg list, don't push any params.
3982      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
3983
3984      // In C++, the empty parameter-type-list must be spelled "void"; a
3985      // typedef of void is not permitted.
3986      if (getLangOptions().CPlusPlus &&
3987          Param->getType().getUnqualifiedType() != Context.VoidTy)
3988        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
3989    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
3990      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
3991        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
3992        assert(Param->getDeclContext() != NewFD && "Was set before ?");
3993        Param->setDeclContext(NewFD);
3994        Params.push_back(Param);
3995
3996        if (Param->isInvalidDecl())
3997          NewFD->setInvalidDecl();
3998      }
3999    }
4000
4001  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
4002    // When we're declaring a function with a typedef, typeof, etc as in the
4003    // following example, we'll need to synthesize (unnamed)
4004    // parameters for use in the declaration.
4005    //
4006    // @code
4007    // typedef void fn(int);
4008    // fn f;
4009    // @endcode
4010
4011    // Synthesize a parameter for each argument type.
4012    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
4013         AE = FT->arg_type_end(); AI != AE; ++AI) {
4014      ParmVarDecl *Param =
4015        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
4016      Params.push_back(Param);
4017    }
4018  } else {
4019    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
4020           "Should not need args for typedef of non-prototype fn");
4021  }
4022  // Finally, we know we have the right number of parameters, install them.
4023  NewFD->setParams(Params.data(), Params.size());
4024
4025  // Process the non-inheritable attributes on this declaration.
4026  ProcessDeclAttributes(S, NewFD, D,
4027                        /*NonInheritable=*/true, /*Inheritable=*/false);
4028
4029  if (!getLangOptions().CPlusPlus) {
4030    // Perform semantic checking on the function declaration.
4031    bool isExplctSpecialization=false;
4032    CheckFunctionDeclaration(S, NewFD, Previous, isExplctSpecialization,
4033                             Redeclaration);
4034    assert((NewFD->isInvalidDecl() || !Redeclaration ||
4035            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
4036           "previous declaration set still overloaded");
4037  } else {
4038    // If the declarator is a template-id, translate the parser's template
4039    // argument list into our AST format.
4040    bool HasExplicitTemplateArgs = false;
4041    TemplateArgumentListInfo TemplateArgs;
4042    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
4043      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
4044      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
4045      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
4046      ASTTemplateArgsPtr TemplateArgsPtr(*this,
4047                                         TemplateId->getTemplateArgs(),
4048                                         TemplateId->NumArgs);
4049      translateTemplateArguments(TemplateArgsPtr,
4050                                 TemplateArgs);
4051      TemplateArgsPtr.release();
4052
4053      HasExplicitTemplateArgs = true;
4054
4055      if (FunctionTemplate) {
4056        // Function template with explicit template arguments.
4057        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
4058          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
4059
4060        HasExplicitTemplateArgs = false;
4061      } else if (!isFunctionTemplateSpecialization &&
4062                 !D.getDeclSpec().isFriendSpecified()) {
4063        // We have encountered something that the user meant to be a
4064        // specialization (because it has explicitly-specified template
4065        // arguments) but that was not introduced with a "template<>" (or had
4066        // too few of them).
4067        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
4068          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
4069          << FixItHint::CreateInsertion(
4070                                        D.getDeclSpec().getSourceRange().getBegin(),
4071                                                  "template<> ");
4072        isFunctionTemplateSpecialization = true;
4073      } else {
4074        // "friend void foo<>(int);" is an implicit specialization decl.
4075        isFunctionTemplateSpecialization = true;
4076      }
4077    } else if (isFriend && isFunctionTemplateSpecialization) {
4078      // This combination is only possible in a recovery case;  the user
4079      // wrote something like:
4080      //   template <> friend void foo(int);
4081      // which we're recovering from as if the user had written:
4082      //   friend void foo<>(int);
4083      // Go ahead and fake up a template id.
4084      HasExplicitTemplateArgs = true;
4085        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
4086      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
4087    }
4088
4089    // If it's a friend (and only if it's a friend), it's possible
4090    // that either the specialized function type or the specialized
4091    // template is dependent, and therefore matching will fail.  In
4092    // this case, don't check the specialization yet.
4093    if (isFunctionTemplateSpecialization && isFriend &&
4094        (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
4095      assert(HasExplicitTemplateArgs &&
4096             "friend function specialization without template args");
4097      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
4098                                                       Previous))
4099        NewFD->setInvalidDecl();
4100    } else if (isFunctionTemplateSpecialization) {
4101      if (CheckFunctionTemplateSpecialization(NewFD,
4102                                              (HasExplicitTemplateArgs ? &TemplateArgs : 0),
4103                                              Previous))
4104        NewFD->setInvalidDecl();
4105    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
4106      if (CheckMemberSpecialization(NewFD, Previous))
4107          NewFD->setInvalidDecl();
4108    }
4109
4110    // Perform semantic checking on the function declaration.
4111    CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
4112                             Redeclaration);
4113
4114    assert((NewFD->isInvalidDecl() || !Redeclaration ||
4115            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
4116           "previous declaration set still overloaded");
4117
4118    NamedDecl *PrincipalDecl = (FunctionTemplate
4119                                ? cast<NamedDecl>(FunctionTemplate)
4120                                : NewFD);
4121
4122    if (isFriend && Redeclaration) {
4123      AccessSpecifier Access = AS_public;
4124      if (!NewFD->isInvalidDecl())
4125        Access = NewFD->getPreviousDeclaration()->getAccess();
4126
4127      NewFD->setAccess(Access);
4128      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
4129
4130      PrincipalDecl->setObjectOfFriendDecl(true);
4131    }
4132
4133    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
4134        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
4135      PrincipalDecl->setNonMemberOperator();
4136
4137    // If we have a function template, check the template parameter
4138    // list. This will check and merge default template arguments.
4139    if (FunctionTemplate) {
4140      FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
4141      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
4142                                 PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
4143                            D.getDeclSpec().isFriendSpecified()
4144                              ? (IsFunctionDefinition
4145                                   ? TPC_FriendFunctionTemplateDefinition
4146                                   : TPC_FriendFunctionTemplate)
4147                              : (D.getCXXScopeSpec().isSet() &&
4148                                 DC && DC->isRecord() &&
4149                                 DC->isDependentContext())
4150                                  ? TPC_ClassTemplateMember
4151                                  : TPC_FunctionTemplate);
4152    }
4153
4154    if (NewFD->isInvalidDecl()) {
4155      // Ignore all the rest of this.
4156    } else if (!Redeclaration) {
4157      // Fake up an access specifier if it's supposed to be a class member.
4158      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
4159        NewFD->setAccess(AS_public);
4160
4161      // Qualified decls generally require a previous declaration.
4162      if (D.getCXXScopeSpec().isSet()) {
4163        // ...with the major exception of templated-scope or
4164        // dependent-scope friend declarations.
4165
4166        // TODO: we currently also suppress this check in dependent
4167        // contexts because (1) the parameter depth will be off when
4168        // matching friend templates and (2) we might actually be
4169        // selecting a friend based on a dependent factor.  But there
4170        // are situations where these conditions don't apply and we
4171        // can actually do this check immediately.
4172        if (isFriend &&
4173            (NumMatchedTemplateParamLists ||
4174             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
4175             CurContext->isDependentContext())) {
4176              // ignore these
4177            } else {
4178              // The user tried to provide an out-of-line definition for a
4179              // function that is a member of a class or namespace, but there
4180              // was no such member function declared (C++ [class.mfct]p2,
4181              // C++ [namespace.memdef]p2). For example:
4182              //
4183              // class X {
4184              //   void f() const;
4185              // };
4186              //
4187              // void X::f() { } // ill-formed
4188              //
4189              // Complain about this problem, and attempt to suggest close
4190              // matches (e.g., those that differ only in cv-qualifiers and
4191              // whether the parameter types are references).
4192              Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
4193              << Name << DC << D.getCXXScopeSpec().getRange();
4194              NewFD->setInvalidDecl();
4195
4196              DiagnoseInvalidRedeclaration(*this, NewFD);
4197            }
4198
4199        // Unqualified local friend declarations are required to resolve
4200        // to something.
4201        } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
4202          Diag(D.getIdentifierLoc(), diag::err_no_matching_local_friend);
4203          NewFD->setInvalidDecl();
4204          DiagnoseInvalidRedeclaration(*this, NewFD);
4205        }
4206
4207    } else if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
4208               !isFriend && !isFunctionTemplateSpecialization &&
4209               !isExplicitSpecialization) {
4210      // An out-of-line member function declaration must also be a
4211      // definition (C++ [dcl.meaning]p1).
4212      // Note that this is not the case for explicit specializations of
4213      // function templates or member functions of class templates, per
4214      // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
4215      // for compatibility with old SWIG code which likes to generate them.
4216      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
4217        << D.getCXXScopeSpec().getRange();
4218    }
4219  }
4220
4221
4222  // Handle attributes. We need to have merged decls when handling attributes
4223  // (for example to check for conflicts, etc).
4224  // FIXME: This needs to happen before we merge declarations. Then,
4225  // let attribute merging cope with attribute conflicts.
4226  ProcessDeclAttributes(S, NewFD, D,
4227                        /*NonInheritable=*/false, /*Inheritable=*/true);
4228
4229  // attributes declared post-definition are currently ignored
4230  // FIXME: This should happen during attribute merging
4231  if (Redeclaration && Previous.isSingleResult()) {
4232    const FunctionDecl *Def;
4233    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
4234    if (PrevFD && PrevFD->hasBody(Def) && D.hasAttributes()) {
4235      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
4236      Diag(Def->getLocation(), diag::note_previous_definition);
4237    }
4238  }
4239
4240  AddKnownFunctionAttributes(NewFD);
4241
4242  if (NewFD->hasAttr<OverloadableAttr>() &&
4243      !NewFD->getType()->getAs<FunctionProtoType>()) {
4244    Diag(NewFD->getLocation(),
4245         diag::err_attribute_overloadable_no_prototype)
4246      << NewFD;
4247
4248    // Turn this into a variadic function with no parameters.
4249    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
4250    FunctionProtoType::ExtProtoInfo EPI;
4251    EPI.Variadic = true;
4252    EPI.ExtInfo = FT->getExtInfo();
4253
4254    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
4255    NewFD->setType(R);
4256  }
4257
4258  // If there's a #pragma GCC visibility in scope, and this isn't a class
4259  // member, set the visibility of this function.
4260  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
4261    AddPushedVisibilityAttribute(NewFD);
4262
4263  // If this is a locally-scoped extern C function, update the
4264  // map of such names.
4265  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
4266      && !NewFD->isInvalidDecl())
4267    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
4268
4269  // Set this FunctionDecl's range up to the right paren.
4270  NewFD->setRangeEnd(D.getSourceRange().getEnd());
4271
4272  if (getLangOptions().CPlusPlus) {
4273    if (FunctionTemplate) {
4274      if (NewFD->isInvalidDecl())
4275        FunctionTemplate->setInvalidDecl();
4276      return FunctionTemplate;
4277    }
4278  }
4279
4280  MarkUnusedFileScopedDecl(NewFD);
4281
4282  if (getLangOptions().CUDA)
4283    if (IdentifierInfo *II = NewFD->getIdentifier())
4284      if (!NewFD->isInvalidDecl() &&
4285          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
4286        if (II->isStr("cudaConfigureCall")) {
4287          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
4288            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
4289
4290          Context.setcudaConfigureCallDecl(NewFD);
4291        }
4292      }
4293
4294  return NewFD;
4295}
4296
4297/// \brief Perform semantic checking of a new function declaration.
4298///
4299/// Performs semantic analysis of the new function declaration
4300/// NewFD. This routine performs all semantic checking that does not
4301/// require the actual declarator involved in the declaration, and is
4302/// used both for the declaration of functions as they are parsed
4303/// (called via ActOnDeclarator) and for the declaration of functions
4304/// that have been instantiated via C++ template instantiation (called
4305/// via InstantiateDecl).
4306///
4307/// \param IsExplicitSpecialiation whether this new function declaration is
4308/// an explicit specialization of the previous declaration.
4309///
4310/// This sets NewFD->isInvalidDecl() to true if there was an error.
4311void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
4312                                    LookupResult &Previous,
4313                                    bool IsExplicitSpecialization,
4314                                    bool &Redeclaration) {
4315  // If NewFD is already known erroneous, don't do any of this checking.
4316  if (NewFD->isInvalidDecl()) {
4317    // If this is a class member, mark the class invalid immediately.
4318    // This avoids some consistency errors later.
4319    if (isa<CXXMethodDecl>(NewFD))
4320      cast<CXXMethodDecl>(NewFD)->getParent()->setInvalidDecl();
4321
4322    return;
4323  }
4324
4325  if (NewFD->getResultType()->isVariablyModifiedType()) {
4326    // Functions returning a variably modified type violate C99 6.7.5.2p2
4327    // because all functions have linkage.
4328    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
4329    return NewFD->setInvalidDecl();
4330  }
4331
4332  if (NewFD->isMain())
4333    CheckMain(NewFD);
4334
4335  // Check for a previous declaration of this name.
4336  if (Previous.empty() && NewFD->isExternC()) {
4337    // Since we did not find anything by this name and we're declaring
4338    // an extern "C" function, look for a non-visible extern "C"
4339    // declaration with the same name.
4340    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4341      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
4342    if (Pos != LocallyScopedExternalDecls.end())
4343      Previous.addDecl(Pos->second);
4344  }
4345
4346  // Merge or overload the declaration with an existing declaration of
4347  // the same name, if appropriate.
4348  if (!Previous.empty()) {
4349    // Determine whether NewFD is an overload of PrevDecl or
4350    // a declaration that requires merging. If it's an overload,
4351    // there's no more work to do here; we'll just add the new
4352    // function to the scope.
4353
4354    NamedDecl *OldDecl = 0;
4355    if (!AllowOverloadingOfFunction(Previous, Context)) {
4356      Redeclaration = true;
4357      OldDecl = Previous.getFoundDecl();
4358    } else {
4359      switch (CheckOverload(S, NewFD, Previous, OldDecl,
4360                            /*NewIsUsingDecl*/ false)) {
4361      case Ovl_Match:
4362        Redeclaration = true;
4363        break;
4364
4365      case Ovl_NonFunction:
4366        Redeclaration = true;
4367        break;
4368
4369      case Ovl_Overload:
4370        Redeclaration = false;
4371        break;
4372      }
4373
4374      if (!getLangOptions().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
4375        // If a function name is overloadable in C, then every function
4376        // with that name must be marked "overloadable".
4377        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
4378          << Redeclaration << NewFD;
4379        NamedDecl *OverloadedDecl = 0;
4380        if (Redeclaration)
4381          OverloadedDecl = OldDecl;
4382        else if (!Previous.empty())
4383          OverloadedDecl = Previous.getRepresentativeDecl();
4384        if (OverloadedDecl)
4385          Diag(OverloadedDecl->getLocation(),
4386               diag::note_attribute_overloadable_prev_overload);
4387        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
4388                                                        Context));
4389      }
4390    }
4391
4392    if (Redeclaration) {
4393      // NewFD and OldDecl represent declarations that need to be
4394      // merged.
4395      if (MergeFunctionDecl(NewFD, OldDecl))
4396        return NewFD->setInvalidDecl();
4397
4398      Previous.clear();
4399      Previous.addDecl(OldDecl);
4400
4401      if (FunctionTemplateDecl *OldTemplateDecl
4402                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
4403        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
4404        FunctionTemplateDecl *NewTemplateDecl
4405          = NewFD->getDescribedFunctionTemplate();
4406        assert(NewTemplateDecl && "Template/non-template mismatch");
4407        if (CXXMethodDecl *Method
4408              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
4409          Method->setAccess(OldTemplateDecl->getAccess());
4410          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
4411        }
4412
4413        // If this is an explicit specialization of a member that is a function
4414        // template, mark it as a member specialization.
4415        if (IsExplicitSpecialization &&
4416            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
4417          NewTemplateDecl->setMemberSpecialization();
4418          assert(OldTemplateDecl->isMemberSpecialization());
4419        }
4420      } else {
4421        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
4422          NewFD->setAccess(OldDecl->getAccess());
4423        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
4424      }
4425    }
4426  }
4427
4428  // Semantic checking for this function declaration (in isolation).
4429  if (getLangOptions().CPlusPlus) {
4430    // C++-specific checks.
4431    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
4432      CheckConstructor(Constructor);
4433    } else if (CXXDestructorDecl *Destructor =
4434                dyn_cast<CXXDestructorDecl>(NewFD)) {
4435      CXXRecordDecl *Record = Destructor->getParent();
4436      QualType ClassType = Context.getTypeDeclType(Record);
4437
4438      // FIXME: Shouldn't we be able to perform this check even when the class
4439      // type is dependent? Both gcc and edg can handle that.
4440      if (!ClassType->isDependentType()) {
4441        DeclarationName Name
4442          = Context.DeclarationNames.getCXXDestructorName(
4443                                        Context.getCanonicalType(ClassType));
4444        if (NewFD->getDeclName() != Name) {
4445          Diag(NewFD->getLocation(), diag::err_destructor_name);
4446          return NewFD->setInvalidDecl();
4447        }
4448      }
4449    } else if (CXXConversionDecl *Conversion
4450               = dyn_cast<CXXConversionDecl>(NewFD)) {
4451      ActOnConversionDeclarator(Conversion);
4452    }
4453
4454    // Find any virtual functions that this function overrides.
4455    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
4456      if (!Method->isFunctionTemplateSpecialization() &&
4457          !Method->getDescribedFunctionTemplate()) {
4458        if (AddOverriddenMethods(Method->getParent(), Method)) {
4459          // If the function was marked as "static", we have a problem.
4460          if (NewFD->getStorageClass() == SC_Static) {
4461            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
4462              << NewFD->getDeclName();
4463            for (CXXMethodDecl::method_iterator
4464                      Overridden = Method->begin_overridden_methods(),
4465                   OverriddenEnd = Method->end_overridden_methods();
4466                 Overridden != OverriddenEnd;
4467                 ++Overridden) {
4468              Diag((*Overridden)->getLocation(),
4469                   diag::note_overridden_virtual_function);
4470            }
4471          }
4472        }
4473      }
4474    }
4475
4476    // Extra checking for C++ overloaded operators (C++ [over.oper]).
4477    if (NewFD->isOverloadedOperator() &&
4478        CheckOverloadedOperatorDeclaration(NewFD))
4479      return NewFD->setInvalidDecl();
4480
4481    // Extra checking for C++0x literal operators (C++0x [over.literal]).
4482    if (NewFD->getLiteralIdentifier() &&
4483        CheckLiteralOperatorDeclaration(NewFD))
4484      return NewFD->setInvalidDecl();
4485
4486    // In C++, check default arguments now that we have merged decls. Unless
4487    // the lexical context is the class, because in this case this is done
4488    // during delayed parsing anyway.
4489    if (!CurContext->isRecord())
4490      CheckCXXDefaultArguments(NewFD);
4491
4492    // If this function declares a builtin function, check the type of this
4493    // declaration against the expected type for the builtin.
4494    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
4495      ASTContext::GetBuiltinTypeError Error;
4496      QualType T = Context.GetBuiltinType(BuiltinID, Error);
4497      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
4498        // The type of this function differs from the type of the builtin,
4499        // so forget about the builtin entirely.
4500        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
4501      }
4502    }
4503  }
4504}
4505
4506void Sema::CheckMain(FunctionDecl* FD) {
4507  // C++ [basic.start.main]p3:  A program that declares main to be inline
4508  //   or static is ill-formed.
4509  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
4510  //   shall not appear in a declaration of main.
4511  // static main is not an error under C99, but we should warn about it.
4512  bool isInline = FD->isInlineSpecified();
4513  bool isStatic = FD->getStorageClass() == SC_Static;
4514  if (isInline || isStatic) {
4515    unsigned diagID = diag::warn_unusual_main_decl;
4516    if (isInline || getLangOptions().CPlusPlus)
4517      diagID = diag::err_unusual_main_decl;
4518
4519    int which = isStatic + (isInline << 1) - 1;
4520    Diag(FD->getLocation(), diagID) << which;
4521  }
4522
4523  QualType T = FD->getType();
4524  assert(T->isFunctionType() && "function decl is not of function type");
4525  const FunctionType* FT = T->getAs<FunctionType>();
4526
4527  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
4528    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
4529    FD->setInvalidDecl(true);
4530  }
4531
4532  // Treat protoless main() as nullary.
4533  if (isa<FunctionNoProtoType>(FT)) return;
4534
4535  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
4536  unsigned nparams = FTP->getNumArgs();
4537  assert(FD->getNumParams() == nparams);
4538
4539  bool HasExtraParameters = (nparams > 3);
4540
4541  // Darwin passes an undocumented fourth argument of type char**.  If
4542  // other platforms start sprouting these, the logic below will start
4543  // getting shifty.
4544  if (nparams == 4 &&
4545      Context.Target.getTriple().getOS() == llvm::Triple::Darwin)
4546    HasExtraParameters = false;
4547
4548  if (HasExtraParameters) {
4549    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
4550    FD->setInvalidDecl(true);
4551    nparams = 3;
4552  }
4553
4554  // FIXME: a lot of the following diagnostics would be improved
4555  // if we had some location information about types.
4556
4557  QualType CharPP =
4558    Context.getPointerType(Context.getPointerType(Context.CharTy));
4559  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
4560
4561  for (unsigned i = 0; i < nparams; ++i) {
4562    QualType AT = FTP->getArgType(i);
4563
4564    bool mismatch = true;
4565
4566    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
4567      mismatch = false;
4568    else if (Expected[i] == CharPP) {
4569      // As an extension, the following forms are okay:
4570      //   char const **
4571      //   char const * const *
4572      //   char * const *
4573
4574      QualifierCollector qs;
4575      const PointerType* PT;
4576      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
4577          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
4578          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
4579        qs.removeConst();
4580        mismatch = !qs.empty();
4581      }
4582    }
4583
4584    if (mismatch) {
4585      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
4586      // TODO: suggest replacing given type with expected type
4587      FD->setInvalidDecl(true);
4588    }
4589  }
4590
4591  if (nparams == 1 && !FD->isInvalidDecl()) {
4592    Diag(FD->getLocation(), diag::warn_main_one_arg);
4593  }
4594
4595  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
4596    Diag(FD->getLocation(), diag::err_main_template_decl);
4597    FD->setInvalidDecl();
4598  }
4599}
4600
4601bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
4602  // FIXME: Need strict checking.  In C89, we need to check for
4603  // any assignment, increment, decrement, function-calls, or
4604  // commas outside of a sizeof.  In C99, it's the same list,
4605  // except that the aforementioned are allowed in unevaluated
4606  // expressions.  Everything else falls under the
4607  // "may accept other forms of constant expressions" exception.
4608  // (We never end up here for C++, so the constant expression
4609  // rules there don't matter.)
4610  if (Init->isConstantInitializer(Context, false))
4611    return false;
4612  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
4613    << Init->getSourceRange();
4614  return true;
4615}
4616
4617/// AddInitializerToDecl - Adds the initializer Init to the
4618/// declaration dcl. If DirectInit is true, this is C++ direct
4619/// initialization rather than copy initialization.
4620void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
4621                                bool DirectInit, bool TypeMayContainAuto) {
4622  // If there is no declaration, there was an error parsing it.  Just ignore
4623  // the initializer.
4624  if (RealDecl == 0 || RealDecl->isInvalidDecl())
4625    return;
4626
4627  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
4628    // With declarators parsed the way they are, the parser cannot
4629    // distinguish between a normal initializer and a pure-specifier.
4630    // Thus this grotesque test.
4631    IntegerLiteral *IL;
4632    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
4633        Context.getCanonicalType(IL->getType()) == Context.IntTy)
4634      CheckPureMethod(Method, Init->getSourceRange());
4635    else {
4636      Diag(Method->getLocation(), diag::err_member_function_initialization)
4637        << Method->getDeclName() << Init->getSourceRange();
4638      Method->setInvalidDecl();
4639    }
4640    return;
4641  }
4642
4643  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
4644  if (!VDecl) {
4645    if (getLangOptions().CPlusPlus &&
4646        RealDecl->getLexicalDeclContext()->isRecord() &&
4647        isa<NamedDecl>(RealDecl))
4648      Diag(RealDecl->getLocation(), diag::err_member_initialization);
4649    else
4650      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
4651    RealDecl->setInvalidDecl();
4652    return;
4653  }
4654
4655  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
4656  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
4657    QualType DeducedType;
4658    if (!DeduceAutoType(VDecl->getType(), Init, DeducedType)) {
4659      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
4660        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
4661        << Init->getSourceRange();
4662      RealDecl->setInvalidDecl();
4663      return;
4664    }
4665    VDecl->setType(DeducedType);
4666
4667    // If this is a redeclaration, check that the type we just deduced matches
4668    // the previously declared type.
4669    if (VarDecl *Old = VDecl->getPreviousDeclaration())
4670      MergeVarDeclTypes(VDecl, Old);
4671  }
4672
4673
4674  // A definition must end up with a complete type, which means it must be
4675  // complete with the restriction that an array type might be completed by the
4676  // initializer; note that later code assumes this restriction.
4677  QualType BaseDeclType = VDecl->getType();
4678  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
4679    BaseDeclType = Array->getElementType();
4680  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
4681                          diag::err_typecheck_decl_incomplete_type)) {
4682    RealDecl->setInvalidDecl();
4683    return;
4684  }
4685
4686  // The variable can not have an abstract class type.
4687  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
4688                             diag::err_abstract_type_in_decl,
4689                             AbstractVariableType))
4690    VDecl->setInvalidDecl();
4691
4692  const VarDecl *Def;
4693  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
4694    Diag(VDecl->getLocation(), diag::err_redefinition)
4695      << VDecl->getDeclName();
4696    Diag(Def->getLocation(), diag::note_previous_definition);
4697    VDecl->setInvalidDecl();
4698    return;
4699  }
4700
4701  const VarDecl* PrevInit = 0;
4702  if (getLangOptions().CPlusPlus) {
4703    // C++ [class.static.data]p4
4704    //   If a static data member is of const integral or const
4705    //   enumeration type, its declaration in the class definition can
4706    //   specify a constant-initializer which shall be an integral
4707    //   constant expression (5.19). In that case, the member can appear
4708    //   in integral constant expressions. The member shall still be
4709    //   defined in a namespace scope if it is used in the program and the
4710    //   namespace scope definition shall not contain an initializer.
4711    //
4712    // We already performed a redefinition check above, but for static
4713    // data members we also need to check whether there was an in-class
4714    // declaration with an initializer.
4715    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
4716      Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
4717      Diag(PrevInit->getLocation(), diag::note_previous_definition);
4718      return;
4719    }
4720
4721    if (VDecl->hasLocalStorage())
4722      getCurFunction()->setHasBranchProtectedScope();
4723
4724    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
4725      VDecl->setInvalidDecl();
4726      return;
4727    }
4728  }
4729
4730  // Capture the variable that is being initialized and the style of
4731  // initialization.
4732  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
4733
4734  // FIXME: Poor source location information.
4735  InitializationKind Kind
4736    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
4737                                                   Init->getLocStart(),
4738                                                   Init->getLocEnd())
4739                : InitializationKind::CreateCopy(VDecl->getLocation(),
4740                                                 Init->getLocStart());
4741
4742  // Get the decls type and save a reference for later, since
4743  // CheckInitializerTypes may change it.
4744  QualType DclT = VDecl->getType(), SavT = DclT;
4745  if (VDecl->isLocalVarDecl()) {
4746    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
4747      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
4748      VDecl->setInvalidDecl();
4749    } else if (!VDecl->isInvalidDecl()) {
4750      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4751      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4752                                                MultiExprArg(*this, &Init, 1),
4753                                                &DclT);
4754      if (Result.isInvalid()) {
4755        VDecl->setInvalidDecl();
4756        return;
4757      }
4758
4759      Init = Result.takeAs<Expr>();
4760
4761      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4762      // Don't check invalid declarations to avoid emitting useless diagnostics.
4763      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4764        if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
4765          CheckForConstantInitializer(Init, DclT);
4766      }
4767    }
4768  } else if (VDecl->isStaticDataMember() &&
4769             VDecl->getLexicalDeclContext()->isRecord()) {
4770    // This is an in-class initialization for a static data member, e.g.,
4771    //
4772    // struct S {
4773    //   static const int value = 17;
4774    // };
4775
4776    // Try to perform the initialization regardless.
4777    if (!VDecl->isInvalidDecl()) {
4778      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4779      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4780                                          MultiExprArg(*this, &Init, 1),
4781                                          &DclT);
4782      if (Result.isInvalid()) {
4783        VDecl->setInvalidDecl();
4784        return;
4785      }
4786
4787      Init = Result.takeAs<Expr>();
4788    }
4789
4790    // C++ [class.mem]p4:
4791    //   A member-declarator can contain a constant-initializer only
4792    //   if it declares a static member (9.4) of const integral or
4793    //   const enumeration type, see 9.4.2.
4794    QualType T = VDecl->getType();
4795
4796    // Do nothing on dependent types.
4797    if (T->isDependentType()) {
4798
4799    // Require constness.
4800    } else if (!T.isConstQualified()) {
4801      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
4802        << Init->getSourceRange();
4803      VDecl->setInvalidDecl();
4804
4805    // We allow integer constant expressions in all cases.
4806    } else if (T->isIntegralOrEnumerationType()) {
4807      if (!Init->isValueDependent()) {
4808        // Check whether the expression is a constant expression.
4809        llvm::APSInt Value;
4810        SourceLocation Loc;
4811        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
4812          Diag(Loc, diag::err_in_class_initializer_non_constant)
4813            << Init->getSourceRange();
4814          VDecl->setInvalidDecl();
4815        }
4816      }
4817
4818    // We allow floating-point constants as an extension in C++03, and
4819    // C++0x has far more complicated rules that we don't really
4820    // implement fully.
4821    } else {
4822      bool Allowed = false;
4823      if (getLangOptions().CPlusPlus0x) {
4824        Allowed = T->isLiteralType();
4825      } else if (T->isFloatingType()) { // also permits complex, which is ok
4826        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
4827          << T << Init->getSourceRange();
4828        Allowed = true;
4829      }
4830
4831      if (!Allowed) {
4832        Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
4833          << T << Init->getSourceRange();
4834        VDecl->setInvalidDecl();
4835
4836      // TODO: there are probably expressions that pass here that shouldn't.
4837      } else if (!Init->isValueDependent() &&
4838                 !Init->isConstantInitializer(Context, false)) {
4839        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
4840          << Init->getSourceRange();
4841        VDecl->setInvalidDecl();
4842      }
4843    }
4844  } else if (VDecl->isFileVarDecl()) {
4845    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
4846        (!getLangOptions().CPlusPlus ||
4847         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
4848      Diag(VDecl->getLocation(), diag::warn_extern_init);
4849    if (!VDecl->isInvalidDecl()) {
4850      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4851      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4852                                                MultiExprArg(*this, &Init, 1),
4853                                                &DclT);
4854      if (Result.isInvalid()) {
4855        VDecl->setInvalidDecl();
4856        return;
4857      }
4858
4859      Init = Result.takeAs<Expr>();
4860    }
4861
4862    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4863    // Don't check invalid declarations to avoid emitting useless diagnostics.
4864    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4865      // C99 6.7.8p4. All file scoped initializers need to be constant.
4866      CheckForConstantInitializer(Init, DclT);
4867    }
4868  }
4869  // If the type changed, it means we had an incomplete type that was
4870  // completed by the initializer. For example:
4871  //   int ary[] = { 1, 3, 5 };
4872  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
4873  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
4874    VDecl->setType(DclT);
4875    Init->setType(DclT);
4876  }
4877
4878
4879  // If this variable is a local declaration with record type, make sure it
4880  // doesn't have a flexible member initialization.  We only support this as a
4881  // global/static definition.
4882  if (VDecl->hasLocalStorage())
4883    if (const RecordType *RT = VDecl->getType()->getAs<RecordType>())
4884      if (RT->getDecl()->hasFlexibleArrayMember()) {
4885        // Check whether the initializer tries to initialize the flexible
4886        // array member itself to anything other than an empty initializer list.
4887        if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
4888          unsigned Index = std::distance(RT->getDecl()->field_begin(),
4889                                         RT->getDecl()->field_end()) - 1;
4890          if (Index < ILE->getNumInits() &&
4891              !(isa<InitListExpr>(ILE->getInit(Index)) &&
4892                cast<InitListExpr>(ILE->getInit(Index))->getNumInits() == 0)) {
4893            Diag(VDecl->getLocation(), diag::err_nonstatic_flexible_variable);
4894            VDecl->setInvalidDecl();
4895          }
4896        }
4897      }
4898
4899  // Check any implicit conversions within the expression.
4900  CheckImplicitConversions(Init, VDecl->getLocation());
4901
4902  Init = MaybeCreateExprWithCleanups(Init);
4903  // Attach the initializer to the decl.
4904  VDecl->setInit(Init);
4905
4906  CheckCompleteVariableDeclaration(VDecl);
4907}
4908
4909/// ActOnInitializerError - Given that there was an error parsing an
4910/// initializer for the given declaration, try to return to some form
4911/// of sanity.
4912void Sema::ActOnInitializerError(Decl *D) {
4913  // Our main concern here is re-establishing invariants like "a
4914  // variable's type is either dependent or complete".
4915  if (!D || D->isInvalidDecl()) return;
4916
4917  VarDecl *VD = dyn_cast<VarDecl>(D);
4918  if (!VD) return;
4919
4920  // Auto types are meaningless if we can't make sense of the initializer.
4921  if (ParsingInitForAutoVars.count(D)) {
4922    D->setInvalidDecl();
4923    return;
4924  }
4925
4926  QualType Ty = VD->getType();
4927  if (Ty->isDependentType()) return;
4928
4929  // Require a complete type.
4930  if (RequireCompleteType(VD->getLocation(),
4931                          Context.getBaseElementType(Ty),
4932                          diag::err_typecheck_decl_incomplete_type)) {
4933    VD->setInvalidDecl();
4934    return;
4935  }
4936
4937  // Require an abstract type.
4938  if (RequireNonAbstractType(VD->getLocation(), Ty,
4939                             diag::err_abstract_type_in_decl,
4940                             AbstractVariableType)) {
4941    VD->setInvalidDecl();
4942    return;
4943  }
4944
4945  // Don't bother complaining about constructors or destructors,
4946  // though.
4947}
4948
4949void Sema::ActOnUninitializedDecl(Decl *RealDecl,
4950                                  bool TypeMayContainAuto) {
4951  // If there is no declaration, there was an error parsing it. Just ignore it.
4952  if (RealDecl == 0)
4953    return;
4954
4955  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
4956    QualType Type = Var->getType();
4957
4958    // C++0x [dcl.spec.auto]p3
4959    if (TypeMayContainAuto && Type->getContainedAutoType()) {
4960      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
4961        << Var->getDeclName() << Type;
4962      Var->setInvalidDecl();
4963      return;
4964    }
4965
4966    switch (Var->isThisDeclarationADefinition()) {
4967    case VarDecl::Definition:
4968      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
4969        break;
4970
4971      // We have an out-of-line definition of a static data member
4972      // that has an in-class initializer, so we type-check this like
4973      // a declaration.
4974      //
4975      // Fall through
4976
4977    case VarDecl::DeclarationOnly:
4978      // It's only a declaration.
4979
4980      // Block scope. C99 6.7p7: If an identifier for an object is
4981      // declared with no linkage (C99 6.2.2p6), the type for the
4982      // object shall be complete.
4983      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
4984          !Var->getLinkage() && !Var->isInvalidDecl() &&
4985          RequireCompleteType(Var->getLocation(), Type,
4986                              diag::err_typecheck_decl_incomplete_type))
4987        Var->setInvalidDecl();
4988
4989      // Make sure that the type is not abstract.
4990      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
4991          RequireNonAbstractType(Var->getLocation(), Type,
4992                                 diag::err_abstract_type_in_decl,
4993                                 AbstractVariableType))
4994        Var->setInvalidDecl();
4995      return;
4996
4997    case VarDecl::TentativeDefinition:
4998      // File scope. C99 6.9.2p2: A declaration of an identifier for an
4999      // object that has file scope without an initializer, and without a
5000      // storage-class specifier or with the storage-class specifier "static",
5001      // constitutes a tentative definition. Note: A tentative definition with
5002      // external linkage is valid (C99 6.2.2p5).
5003      if (!Var->isInvalidDecl()) {
5004        if (const IncompleteArrayType *ArrayT
5005                                    = Context.getAsIncompleteArrayType(Type)) {
5006          if (RequireCompleteType(Var->getLocation(),
5007                                  ArrayT->getElementType(),
5008                                  diag::err_illegal_decl_array_incomplete_type))
5009            Var->setInvalidDecl();
5010        } else if (Var->getStorageClass() == SC_Static) {
5011          // C99 6.9.2p3: If the declaration of an identifier for an object is
5012          // a tentative definition and has internal linkage (C99 6.2.2p3), the
5013          // declared type shall not be an incomplete type.
5014          // NOTE: code such as the following
5015          //     static struct s;
5016          //     struct s { int a; };
5017          // is accepted by gcc. Hence here we issue a warning instead of
5018          // an error and we do not invalidate the static declaration.
5019          // NOTE: to avoid multiple warnings, only check the first declaration.
5020          if (Var->getPreviousDeclaration() == 0)
5021            RequireCompleteType(Var->getLocation(), Type,
5022                                diag::ext_typecheck_decl_incomplete_type);
5023        }
5024      }
5025
5026      // Record the tentative definition; we're done.
5027      if (!Var->isInvalidDecl())
5028        TentativeDefinitions.push_back(Var);
5029      return;
5030    }
5031
5032    // Provide a specific diagnostic for uninitialized variable
5033    // definitions with incomplete array type.
5034    if (Type->isIncompleteArrayType()) {
5035      Diag(Var->getLocation(),
5036           diag::err_typecheck_incomplete_array_needs_initializer);
5037      Var->setInvalidDecl();
5038      return;
5039    }
5040
5041    // Provide a specific diagnostic for uninitialized variable
5042    // definitions with reference type.
5043    if (Type->isReferenceType()) {
5044      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
5045        << Var->getDeclName()
5046        << SourceRange(Var->getLocation(), Var->getLocation());
5047      Var->setInvalidDecl();
5048      return;
5049    }
5050
5051    // Do not attempt to type-check the default initializer for a
5052    // variable with dependent type.
5053    if (Type->isDependentType())
5054      return;
5055
5056    if (Var->isInvalidDecl())
5057      return;
5058
5059    if (RequireCompleteType(Var->getLocation(),
5060                            Context.getBaseElementType(Type),
5061                            diag::err_typecheck_decl_incomplete_type)) {
5062      Var->setInvalidDecl();
5063      return;
5064    }
5065
5066    // The variable can not have an abstract class type.
5067    if (RequireNonAbstractType(Var->getLocation(), Type,
5068                               diag::err_abstract_type_in_decl,
5069                               AbstractVariableType)) {
5070      Var->setInvalidDecl();
5071      return;
5072    }
5073
5074    const RecordType *Record
5075      = Context.getBaseElementType(Type)->getAs<RecordType>();
5076    if (Record && getLangOptions().CPlusPlus && !getLangOptions().CPlusPlus0x &&
5077        cast<CXXRecordDecl>(Record->getDecl())->isPOD()) {
5078      // C++03 [dcl.init]p9:
5079      //   If no initializer is specified for an object, and the
5080      //   object is of (possibly cv-qualified) non-POD class type (or
5081      //   array thereof), the object shall be default-initialized; if
5082      //   the object is of const-qualified type, the underlying class
5083      //   type shall have a user-declared default
5084      //   constructor. Otherwise, if no initializer is specified for
5085      //   a non- static object, the object and its subobjects, if
5086      //   any, have an indeterminate initial value); if the object
5087      //   or any of its subobjects are of const-qualified type, the
5088      //   program is ill-formed.
5089      // FIXME: DPG thinks it is very fishy that C++0x disables this.
5090    } else {
5091      // Check for jumps past the implicit initializer.  C++0x
5092      // clarifies that this applies to a "variable with automatic
5093      // storage duration", not a "local variable".
5094      if (getLangOptions().CPlusPlus && Var->hasLocalStorage())
5095        getCurFunction()->setHasBranchProtectedScope();
5096
5097      InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
5098      InitializationKind Kind
5099        = InitializationKind::CreateDefault(Var->getLocation());
5100
5101      InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
5102      ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
5103                                        MultiExprArg(*this, 0, 0));
5104      if (Init.isInvalid())
5105        Var->setInvalidDecl();
5106      else if (Init.get())
5107        Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
5108    }
5109
5110    CheckCompleteVariableDeclaration(Var);
5111  }
5112}
5113
5114void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
5115  if (var->isInvalidDecl()) return;
5116
5117  // All the following checks are C++ only.
5118  if (!getLangOptions().CPlusPlus) return;
5119
5120  QualType baseType = Context.getBaseElementType(var->getType());
5121  if (baseType->isDependentType()) return;
5122
5123  // __block variables might require us to capture a copy-initializer.
5124  if (var->hasAttr<BlocksAttr>()) {
5125    // It's currently invalid to ever have a __block variable with an
5126    // array type; should we diagnose that here?
5127
5128    // Regardless, we don't want to ignore array nesting when
5129    // constructing this copy.
5130    QualType type = var->getType();
5131
5132    if (type->isStructureOrClassType()) {
5133      SourceLocation poi = var->getLocation();
5134      Expr *varRef = new (Context) DeclRefExpr(var, type, VK_LValue, poi);
5135      ExprResult result =
5136        PerformCopyInitialization(
5137                        InitializedEntity::InitializeBlock(poi, type, false),
5138                                  poi, Owned(varRef));
5139      if (!result.isInvalid()) {
5140        result = MaybeCreateExprWithCleanups(result);
5141        Expr *init = result.takeAs<Expr>();
5142        Context.setBlockVarCopyInits(var, init);
5143      }
5144    }
5145  }
5146
5147  // Check for global constructors.
5148  if (!var->getDeclContext()->isDependentContext() &&
5149      var->hasGlobalStorage() &&
5150      !var->isStaticLocal() &&
5151      var->getInit() &&
5152      !var->getInit()->isConstantInitializer(Context,
5153                                             baseType->isReferenceType()))
5154    Diag(var->getLocation(), diag::warn_global_constructor)
5155      << var->getInit()->getSourceRange();
5156
5157  // Require the destructor.
5158  if (const RecordType *recordType = baseType->getAs<RecordType>())
5159    FinalizeVarWithDestructor(var, recordType);
5160}
5161
5162/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
5163/// any semantic actions necessary after any initializer has been attached.
5164void
5165Sema::FinalizeDeclaration(Decl *ThisDecl) {
5166  // Note that we are no longer parsing the initializer for this declaration.
5167  ParsingInitForAutoVars.erase(ThisDecl);
5168}
5169
5170Sema::DeclGroupPtrTy
5171Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
5172                              Decl **Group, unsigned NumDecls) {
5173  llvm::SmallVector<Decl*, 8> Decls;
5174
5175  if (DS.isTypeSpecOwned())
5176    Decls.push_back(DS.getRepAsDecl());
5177
5178  for (unsigned i = 0; i != NumDecls; ++i)
5179    if (Decl *D = Group[i])
5180      Decls.push_back(D);
5181
5182  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
5183                              DS.getTypeSpecType() == DeclSpec::TST_auto);
5184}
5185
5186/// BuildDeclaratorGroup - convert a list of declarations into a declaration
5187/// group, performing any necessary semantic checking.
5188Sema::DeclGroupPtrTy
5189Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
5190                           bool TypeMayContainAuto) {
5191  // C++0x [dcl.spec.auto]p7:
5192  //   If the type deduced for the template parameter U is not the same in each
5193  //   deduction, the program is ill-formed.
5194  // FIXME: When initializer-list support is added, a distinction is needed
5195  // between the deduced type U and the deduced type which 'auto' stands for.
5196  //   auto a = 0, b = { 1, 2, 3 };
5197  // is legal because the deduced type U is 'int' in both cases.
5198  if (TypeMayContainAuto && NumDecls > 1) {
5199    QualType Deduced;
5200    CanQualType DeducedCanon;
5201    VarDecl *DeducedDecl = 0;
5202    for (unsigned i = 0; i != NumDecls; ++i) {
5203      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
5204        AutoType *AT = D->getType()->getContainedAutoType();
5205        // Don't reissue diagnostics when instantiating a template.
5206        if (AT && D->isInvalidDecl())
5207          break;
5208        if (AT && AT->isDeduced()) {
5209          QualType U = AT->getDeducedType();
5210          CanQualType UCanon = Context.getCanonicalType(U);
5211          if (Deduced.isNull()) {
5212            Deduced = U;
5213            DeducedCanon = UCanon;
5214            DeducedDecl = D;
5215          } else if (DeducedCanon != UCanon) {
5216            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
5217                 diag::err_auto_different_deductions)
5218              << Deduced << DeducedDecl->getDeclName()
5219              << U << D->getDeclName()
5220              << DeducedDecl->getInit()->getSourceRange()
5221              << D->getInit()->getSourceRange();
5222            D->setInvalidDecl();
5223            break;
5224          }
5225        }
5226      }
5227    }
5228  }
5229
5230  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
5231}
5232
5233
5234/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
5235/// to introduce parameters into function prototype scope.
5236Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
5237  const DeclSpec &DS = D.getDeclSpec();
5238
5239  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
5240  VarDecl::StorageClass StorageClass = SC_None;
5241  VarDecl::StorageClass StorageClassAsWritten = SC_None;
5242  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
5243    StorageClass = SC_Register;
5244    StorageClassAsWritten = SC_Register;
5245  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
5246    Diag(DS.getStorageClassSpecLoc(),
5247         diag::err_invalid_storage_class_in_func_decl);
5248    D.getMutableDeclSpec().ClearStorageClassSpecs();
5249  }
5250
5251  if (D.getDeclSpec().isThreadSpecified())
5252    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5253
5254  DiagnoseFunctionSpecifiers(D);
5255
5256  TagDecl *OwnedDecl = 0;
5257  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
5258  QualType parmDeclType = TInfo->getType();
5259
5260  if (getLangOptions().CPlusPlus) {
5261    // Check that there are no default arguments inside the type of this
5262    // parameter.
5263    CheckExtraCXXDefaultArguments(D);
5264
5265    if (OwnedDecl && OwnedDecl->isDefinition()) {
5266      // C++ [dcl.fct]p6:
5267      //   Types shall not be defined in return or parameter types.
5268      Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
5269        << Context.getTypeDeclType(OwnedDecl);
5270    }
5271
5272    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
5273    if (D.getCXXScopeSpec().isSet()) {
5274      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
5275        << D.getCXXScopeSpec().getRange();
5276      D.getCXXScopeSpec().clear();
5277    }
5278  }
5279
5280  // Ensure we have a valid name
5281  IdentifierInfo *II = 0;
5282  if (D.hasName()) {
5283    II = D.getIdentifier();
5284    if (!II) {
5285      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
5286        << GetNameForDeclarator(D).getName().getAsString();
5287      D.setInvalidType(true);
5288    }
5289  }
5290
5291  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
5292  if (II) {
5293    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
5294                   ForRedeclaration);
5295    LookupName(R, S);
5296    if (R.isSingleResult()) {
5297      NamedDecl *PrevDecl = R.getFoundDecl();
5298      if (PrevDecl->isTemplateParameter()) {
5299        // Maybe we will complain about the shadowed template parameter.
5300        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5301        // Just pretend that we didn't see the previous declaration.
5302        PrevDecl = 0;
5303      } else if (S->isDeclScope(PrevDecl)) {
5304        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
5305        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5306
5307        // Recover by removing the name
5308        II = 0;
5309        D.SetIdentifier(0, D.getIdentifierLoc());
5310        D.setInvalidType(true);
5311      }
5312    }
5313  }
5314
5315  // Temporarily put parameter variables in the translation unit, not
5316  // the enclosing context.  This prevents them from accidentally
5317  // looking like class members in C++.
5318  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
5319                                    D.getSourceRange().getBegin(),
5320                                    D.getIdentifierLoc(), II,
5321                                    parmDeclType, TInfo,
5322                                    StorageClass, StorageClassAsWritten);
5323
5324  if (D.isInvalidType())
5325    New->setInvalidDecl();
5326
5327  // Add the parameter declaration into this scope.
5328  S->AddDecl(New);
5329  if (II)
5330    IdResolver.AddDecl(New);
5331
5332  ProcessDeclAttributes(S, New, D);
5333
5334  if (New->hasAttr<BlocksAttr>()) {
5335    Diag(New->getLocation(), diag::err_block_on_nonlocal);
5336  }
5337  return New;
5338}
5339
5340/// \brief Synthesizes a variable for a parameter arising from a
5341/// typedef.
5342ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
5343                                              SourceLocation Loc,
5344                                              QualType T) {
5345  /* FIXME: setting StartLoc == Loc.
5346     Would it be worth to modify callers so as to provide proper source
5347     location for the unnamed parameters, embedding the parameter's type? */
5348  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
5349                                T, Context.getTrivialTypeSourceInfo(T, Loc),
5350                                           SC_None, SC_None, 0);
5351  Param->setImplicit();
5352  return Param;
5353}
5354
5355void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
5356                                    ParmVarDecl * const *ParamEnd) {
5357  // Don't diagnose unused-parameter errors in template instantiations; we
5358  // will already have done so in the template itself.
5359  if (!ActiveTemplateInstantiations.empty())
5360    return;
5361
5362  for (; Param != ParamEnd; ++Param) {
5363    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
5364        !(*Param)->hasAttr<UnusedAttr>()) {
5365      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
5366        << (*Param)->getDeclName();
5367    }
5368  }
5369}
5370
5371void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
5372                                                  ParmVarDecl * const *ParamEnd,
5373                                                  QualType ReturnTy,
5374                                                  NamedDecl *D) {
5375  if (LangOpts.NumLargeByValueCopy == 0) // No check.
5376    return;
5377
5378  // Warn if the return value is pass-by-value and larger than the specified
5379  // threshold.
5380  if (ReturnTy->isPODType()) {
5381    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
5382    if (Size > LangOpts.NumLargeByValueCopy)
5383      Diag(D->getLocation(), diag::warn_return_value_size)
5384          << D->getDeclName() << Size;
5385  }
5386
5387  // Warn if any parameter is pass-by-value and larger than the specified
5388  // threshold.
5389  for (; Param != ParamEnd; ++Param) {
5390    QualType T = (*Param)->getType();
5391    if (!T->isPODType())
5392      continue;
5393    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
5394    if (Size > LangOpts.NumLargeByValueCopy)
5395      Diag((*Param)->getLocation(), diag::warn_parameter_size)
5396          << (*Param)->getDeclName() << Size;
5397  }
5398}
5399
5400ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
5401                                  SourceLocation NameLoc, IdentifierInfo *Name,
5402                                  QualType T, TypeSourceInfo *TSInfo,
5403                                  VarDecl::StorageClass StorageClass,
5404                                  VarDecl::StorageClass StorageClassAsWritten) {
5405  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
5406                                         adjustParameterType(T), TSInfo,
5407                                         StorageClass, StorageClassAsWritten,
5408                                         0);
5409
5410  // Parameters can not be abstract class types.
5411  // For record types, this is done by the AbstractClassUsageDiagnoser once
5412  // the class has been completely parsed.
5413  if (!CurContext->isRecord() &&
5414      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
5415                             AbstractParamType))
5416    New->setInvalidDecl();
5417
5418  // Parameter declarators cannot be interface types. All ObjC objects are
5419  // passed by reference.
5420  if (T->isObjCObjectType()) {
5421    Diag(NameLoc,
5422         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
5423    New->setInvalidDecl();
5424  }
5425
5426  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
5427  // duration shall not be qualified by an address-space qualifier."
5428  // Since all parameters have automatic store duration, they can not have
5429  // an address space.
5430  if (T.getAddressSpace() != 0) {
5431    Diag(NameLoc, diag::err_arg_with_address_space);
5432    New->setInvalidDecl();
5433  }
5434
5435  return New;
5436}
5437
5438void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
5439                                           SourceLocation LocAfterDecls) {
5440  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5441
5442  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
5443  // for a K&R function.
5444  if (!FTI.hasPrototype) {
5445    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
5446      --i;
5447      if (FTI.ArgInfo[i].Param == 0) {
5448        llvm::SmallString<256> Code;
5449        llvm::raw_svector_ostream(Code) << "  int "
5450                                        << FTI.ArgInfo[i].Ident->getName()
5451                                        << ";\n";
5452        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
5453          << FTI.ArgInfo[i].Ident
5454          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
5455
5456        // Implicitly declare the argument as type 'int' for lack of a better
5457        // type.
5458        DeclSpec DS;
5459        const char* PrevSpec; // unused
5460        unsigned DiagID; // unused
5461        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
5462                           PrevSpec, DiagID);
5463        Declarator ParamD(DS, Declarator::KNRTypeListContext);
5464        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
5465        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
5466      }
5467    }
5468  }
5469}
5470
5471Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
5472                                         Declarator &D) {
5473  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
5474  assert(D.isFunctionDeclarator() && "Not a function declarator!");
5475  Scope *ParentScope = FnBodyScope->getParent();
5476
5477  Decl *DP = HandleDeclarator(ParentScope, D,
5478                              MultiTemplateParamsArg(*this),
5479                              /*IsFunctionDefinition=*/true);
5480  return ActOnStartOfFunctionDef(FnBodyScope, DP);
5481}
5482
5483static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
5484  // Don't warn about invalid declarations.
5485  if (FD->isInvalidDecl())
5486    return false;
5487
5488  // Or declarations that aren't global.
5489  if (!FD->isGlobal())
5490    return false;
5491
5492  // Don't warn about C++ member functions.
5493  if (isa<CXXMethodDecl>(FD))
5494    return false;
5495
5496  // Don't warn about 'main'.
5497  if (FD->isMain())
5498    return false;
5499
5500  // Don't warn about inline functions.
5501  if (FD->isInlineSpecified())
5502    return false;
5503
5504  // Don't warn about function templates.
5505  if (FD->getDescribedFunctionTemplate())
5506    return false;
5507
5508  // Don't warn about function template specializations.
5509  if (FD->isFunctionTemplateSpecialization())
5510    return false;
5511
5512  bool MissingPrototype = true;
5513  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
5514       Prev; Prev = Prev->getPreviousDeclaration()) {
5515    // Ignore any declarations that occur in function or method
5516    // scope, because they aren't visible from the header.
5517    if (Prev->getDeclContext()->isFunctionOrMethod())
5518      continue;
5519
5520    MissingPrototype = !Prev->getType()->isFunctionProtoType();
5521    break;
5522  }
5523
5524  return MissingPrototype;
5525}
5526
5527Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
5528  // Clear the last template instantiation error context.
5529  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
5530
5531  if (!D)
5532    return D;
5533  FunctionDecl *FD = 0;
5534
5535  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
5536    FD = FunTmpl->getTemplatedDecl();
5537  else
5538    FD = cast<FunctionDecl>(D);
5539
5540  // Enter a new function scope
5541  PushFunctionScope();
5542
5543  // See if this is a redefinition.
5544  // But don't complain if we're in GNU89 mode and the previous definition
5545  // was an extern inline function.
5546  const FunctionDecl *Definition;
5547  if (FD->hasBody(Definition) &&
5548      !canRedefineFunction(Definition, getLangOptions())) {
5549    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
5550        Definition->getStorageClass() == SC_Extern)
5551      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
5552        << FD->getDeclName() << getLangOptions().CPlusPlus;
5553    else
5554      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
5555    Diag(Definition->getLocation(), diag::note_previous_definition);
5556  }
5557
5558  // Builtin functions cannot be defined.
5559  if (unsigned BuiltinID = FD->getBuiltinID()) {
5560    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
5561      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
5562      FD->setInvalidDecl();
5563    }
5564  }
5565
5566  // The return type of a function definition must be complete
5567  // (C99 6.9.1p3, C++ [dcl.fct]p6).
5568  QualType ResultType = FD->getResultType();
5569  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
5570      !FD->isInvalidDecl() &&
5571      RequireCompleteType(FD->getLocation(), ResultType,
5572                          diag::err_func_def_incomplete_result))
5573    FD->setInvalidDecl();
5574
5575  // GNU warning -Wmissing-prototypes:
5576  //   Warn if a global function is defined without a previous
5577  //   prototype declaration. This warning is issued even if the
5578  //   definition itself provides a prototype. The aim is to detect
5579  //   global functions that fail to be declared in header files.
5580  if (ShouldWarnAboutMissingPrototype(FD))
5581    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
5582
5583  if (FnBodyScope)
5584    PushDeclContext(FnBodyScope, FD);
5585
5586  // Check the validity of our function parameters
5587  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
5588                           /*CheckParameterNames=*/true);
5589
5590  // Introduce our parameters into the function scope
5591  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
5592    ParmVarDecl *Param = FD->getParamDecl(p);
5593    Param->setOwningFunction(FD);
5594
5595    // If this has an identifier, add it to the scope stack.
5596    if (Param->getIdentifier() && FnBodyScope) {
5597      CheckShadow(FnBodyScope, Param);
5598
5599      PushOnScopeChains(Param, FnBodyScope);
5600    }
5601  }
5602
5603  // Checking attributes of current function definition
5604  // dllimport attribute.
5605  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
5606  if (DA && (!FD->getAttr<DLLExportAttr>())) {
5607    // dllimport attribute cannot be directly applied to definition.
5608    if (!DA->isInherited()) {
5609      Diag(FD->getLocation(),
5610           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
5611        << "dllimport";
5612      FD->setInvalidDecl();
5613      return FD;
5614    }
5615
5616    // Visual C++ appears to not think this is an issue, so only issue
5617    // a warning when Microsoft extensions are disabled.
5618    if (!LangOpts.Microsoft) {
5619      // If a symbol previously declared dllimport is later defined, the
5620      // attribute is ignored in subsequent references, and a warning is
5621      // emitted.
5622      Diag(FD->getLocation(),
5623           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
5624        << FD->getName() << "dllimport";
5625    }
5626  }
5627  return FD;
5628}
5629
5630/// \brief Given the set of return statements within a function body,
5631/// compute the variables that are subject to the named return value
5632/// optimization.
5633///
5634/// Each of the variables that is subject to the named return value
5635/// optimization will be marked as NRVO variables in the AST, and any
5636/// return statement that has a marked NRVO variable as its NRVO candidate can
5637/// use the named return value optimization.
5638///
5639/// This function applies a very simplistic algorithm for NRVO: if every return
5640/// statement in the function has the same NRVO candidate, that candidate is
5641/// the NRVO variable.
5642///
5643/// FIXME: Employ a smarter algorithm that accounts for multiple return
5644/// statements and the lifetimes of the NRVO candidates. We should be able to
5645/// find a maximal set of NRVO variables.
5646static void ComputeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
5647  ReturnStmt **Returns = Scope->Returns.data();
5648
5649  const VarDecl *NRVOCandidate = 0;
5650  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
5651    if (!Returns[I]->getNRVOCandidate())
5652      return;
5653
5654    if (!NRVOCandidate)
5655      NRVOCandidate = Returns[I]->getNRVOCandidate();
5656    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
5657      return;
5658  }
5659
5660  if (NRVOCandidate)
5661    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
5662}
5663
5664Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
5665  return ActOnFinishFunctionBody(D, move(BodyArg), false);
5666}
5667
5668Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
5669                                    bool IsInstantiation) {
5670  FunctionDecl *FD = 0;
5671  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
5672  if (FunTmpl)
5673    FD = FunTmpl->getTemplatedDecl();
5674  else
5675    FD = dyn_cast_or_null<FunctionDecl>(dcl);
5676
5677  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
5678  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
5679
5680  if (FD) {
5681    FD->setBody(Body);
5682    if (FD->isMain()) {
5683      // C and C++ allow for main to automagically return 0.
5684      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
5685      FD->setHasImplicitReturnZero(true);
5686      WP.disableCheckFallThrough();
5687    }
5688
5689    if (!FD->isInvalidDecl()) {
5690      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
5691      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
5692                                             FD->getResultType(), FD);
5693
5694      // If this is a constructor, we need a vtable.
5695      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
5696        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
5697
5698      ComputeNRVO(Body, getCurFunction());
5699    }
5700
5701    assert(FD == getCurFunctionDecl() && "Function parsing confused");
5702  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
5703    assert(MD == getCurMethodDecl() && "Method parsing confused");
5704    MD->setBody(Body);
5705    if (Body)
5706      MD->setEndLoc(Body->getLocEnd());
5707    if (!MD->isInvalidDecl()) {
5708      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
5709      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
5710                                             MD->getResultType(), MD);
5711    }
5712  } else {
5713    return 0;
5714  }
5715
5716  // Verify and clean out per-function state.
5717  if (Body) {
5718    // C++ constructors that have function-try-blocks can't have return
5719    // statements in the handlers of that block. (C++ [except.handle]p14)
5720    // Verify this.
5721    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
5722      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
5723
5724    // Verify that that gotos and switch cases don't jump into scopes illegally.
5725    // Verify that that gotos and switch cases don't jump into scopes illegally.
5726    if (getCurFunction()->NeedsScopeChecking() &&
5727        !dcl->isInvalidDecl() &&
5728        !hasAnyErrorsInThisFunction())
5729      DiagnoseInvalidJumps(Body);
5730
5731    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
5732      if (!Destructor->getParent()->isDependentType())
5733        CheckDestructor(Destructor);
5734
5735      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
5736                                             Destructor->getParent());
5737    }
5738
5739    // If any errors have occurred, clear out any temporaries that may have
5740    // been leftover. This ensures that these temporaries won't be picked up for
5741    // deletion in some later function.
5742    if (PP.getDiagnostics().hasErrorOccurred() ||
5743        PP.getDiagnostics().getSuppressAllDiagnostics())
5744      ExprTemporaries.clear();
5745    else if (!isa<FunctionTemplateDecl>(dcl)) {
5746      // Since the body is valid, issue any analysis-based warnings that are
5747      // enabled.
5748      ActivePolicy = &WP;
5749    }
5750
5751    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
5752  }
5753
5754  if (!IsInstantiation)
5755    PopDeclContext();
5756
5757  PopFunctionOrBlockScope(ActivePolicy, dcl);
5758
5759  // If any errors have occurred, clear out any temporaries that may have
5760  // been leftover. This ensures that these temporaries won't be picked up for
5761  // deletion in some later function.
5762  if (getDiagnostics().hasErrorOccurred())
5763    ExprTemporaries.clear();
5764
5765  return dcl;
5766}
5767
5768/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
5769/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
5770NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
5771                                          IdentifierInfo &II, Scope *S) {
5772  // Before we produce a declaration for an implicitly defined
5773  // function, see whether there was a locally-scoped declaration of
5774  // this name as a function or variable. If so, use that
5775  // (non-visible) declaration, and complain about it.
5776  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5777    = LocallyScopedExternalDecls.find(&II);
5778  if (Pos != LocallyScopedExternalDecls.end()) {
5779    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
5780    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
5781    return Pos->second;
5782  }
5783
5784  // Extension in C99.  Legal in C90, but warn about it.
5785  if (II.getName().startswith("__builtin_"))
5786    Diag(Loc, diag::warn_builtin_unknown) << &II;
5787  else if (getLangOptions().C99)
5788    Diag(Loc, diag::ext_implicit_function_decl) << &II;
5789  else
5790    Diag(Loc, diag::warn_implicit_function_decl) << &II;
5791
5792  // Set a Declarator for the implicit definition: int foo();
5793  const char *Dummy;
5794  DeclSpec DS;
5795  unsigned DiagID;
5796  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
5797  (void)Error; // Silence warning.
5798  assert(!Error && "Error setting up implicit decl!");
5799  Declarator D(DS, Declarator::BlockContext);
5800  D.AddTypeInfo(DeclaratorChunk::getFunction(ParsedAttributes(),
5801                                             false, false, SourceLocation(), 0,
5802                                             0, 0, true, SourceLocation(),
5803                                             EST_None, SourceLocation(),
5804                                             0, 0, 0, 0, Loc, Loc, D),
5805                SourceLocation());
5806  D.SetIdentifier(&II, Loc);
5807
5808  // Insert this function into translation-unit scope.
5809
5810  DeclContext *PrevDC = CurContext;
5811  CurContext = Context.getTranslationUnitDecl();
5812
5813  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
5814  FD->setImplicit();
5815
5816  CurContext = PrevDC;
5817
5818  AddKnownFunctionAttributes(FD);
5819
5820  return FD;
5821}
5822
5823/// \brief Adds any function attributes that we know a priori based on
5824/// the declaration of this function.
5825///
5826/// These attributes can apply both to implicitly-declared builtins
5827/// (like __builtin___printf_chk) or to library-declared functions
5828/// like NSLog or printf.
5829void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
5830  if (FD->isInvalidDecl())
5831    return;
5832
5833  // If this is a built-in function, map its builtin attributes to
5834  // actual attributes.
5835  if (unsigned BuiltinID = FD->getBuiltinID()) {
5836    // Handle printf-formatting attributes.
5837    unsigned FormatIdx;
5838    bool HasVAListArg;
5839    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
5840      if (!FD->getAttr<FormatAttr>())
5841        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5842                                                "printf", FormatIdx+1,
5843                                               HasVAListArg ? 0 : FormatIdx+2));
5844    }
5845    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
5846                                             HasVAListArg)) {
5847     if (!FD->getAttr<FormatAttr>())
5848       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5849                                              "scanf", FormatIdx+1,
5850                                              HasVAListArg ? 0 : FormatIdx+2));
5851    }
5852
5853    // Mark const if we don't care about errno and that is the only
5854    // thing preventing the function from being const. This allows
5855    // IRgen to use LLVM intrinsics for such functions.
5856    if (!getLangOptions().MathErrno &&
5857        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
5858      if (!FD->getAttr<ConstAttr>())
5859        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
5860    }
5861
5862    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
5863      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
5864    if (Context.BuiltinInfo.isConst(BuiltinID))
5865      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
5866  }
5867
5868  IdentifierInfo *Name = FD->getIdentifier();
5869  if (!Name)
5870    return;
5871  if ((!getLangOptions().CPlusPlus &&
5872       FD->getDeclContext()->isTranslationUnit()) ||
5873      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
5874       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
5875       LinkageSpecDecl::lang_c)) {
5876    // Okay: this could be a libc/libm/Objective-C function we know
5877    // about.
5878  } else
5879    return;
5880
5881  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
5882    // FIXME: NSLog and NSLogv should be target specific
5883    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
5884      // FIXME: We known better than our headers.
5885      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
5886    } else
5887      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5888                                             "printf", 1,
5889                                             Name->isStr("NSLogv") ? 0 : 2));
5890  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
5891    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
5892    // target-specific builtins, perhaps?
5893    if (!FD->getAttr<FormatAttr>())
5894      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5895                                             "printf", 2,
5896                                             Name->isStr("vasprintf") ? 0 : 3));
5897  }
5898}
5899
5900TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
5901                                    TypeSourceInfo *TInfo) {
5902  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
5903  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
5904
5905  if (!TInfo) {
5906    assert(D.isInvalidType() && "no declarator info for valid type");
5907    TInfo = Context.getTrivialTypeSourceInfo(T);
5908  }
5909
5910  // Scope manipulation handled by caller.
5911  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
5912                                           D.getSourceRange().getBegin(),
5913                                           D.getIdentifierLoc(),
5914                                           D.getIdentifier(),
5915                                           TInfo);
5916
5917  // Bail out immediately if we have an invalid declaration.
5918  if (D.isInvalidType()) {
5919    NewTD->setInvalidDecl();
5920    return NewTD;
5921  }
5922
5923  // C++ [dcl.typedef]p8:
5924  //   If the typedef declaration defines an unnamed class (or
5925  //   enum), the first typedef-name declared by the declaration
5926  //   to be that class type (or enum type) is used to denote the
5927  //   class type (or enum type) for linkage purposes only.
5928  // We need to check whether the type was declared in the declaration.
5929  switch (D.getDeclSpec().getTypeSpecType()) {
5930  case TST_enum:
5931  case TST_struct:
5932  case TST_union:
5933  case TST_class: {
5934    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
5935
5936    // Do nothing if the tag is not anonymous or already has an
5937    // associated typedef (from an earlier typedef in this decl group).
5938    if (tagFromDeclSpec->getIdentifier()) break;
5939    if (tagFromDeclSpec->getTypedefForAnonDecl()) break;
5940
5941    // A well-formed anonymous tag must always be a TUK_Definition.
5942    assert(tagFromDeclSpec->isThisDeclarationADefinition());
5943
5944    // The type must match the tag exactly;  no qualifiers allowed.
5945    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
5946      break;
5947
5948    // Otherwise, set this is the anon-decl typedef for the tag.
5949    tagFromDeclSpec->setTypedefForAnonDecl(NewTD);
5950    break;
5951  }
5952
5953  default:
5954    break;
5955  }
5956
5957  return NewTD;
5958}
5959
5960
5961/// \brief Determine whether a tag with a given kind is acceptable
5962/// as a redeclaration of the given tag declaration.
5963///
5964/// \returns true if the new tag kind is acceptable, false otherwise.
5965bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
5966                                        TagTypeKind NewTag,
5967                                        SourceLocation NewTagLoc,
5968                                        const IdentifierInfo &Name) {
5969  // C++ [dcl.type.elab]p3:
5970  //   The class-key or enum keyword present in the
5971  //   elaborated-type-specifier shall agree in kind with the
5972  //   declaration to which the name in the elaborated-type-specifier
5973  //   refers. This rule also applies to the form of
5974  //   elaborated-type-specifier that declares a class-name or
5975  //   friend class since it can be construed as referring to the
5976  //   definition of the class. Thus, in any
5977  //   elaborated-type-specifier, the enum keyword shall be used to
5978  //   refer to an enumeration (7.2), the union class-key shall be
5979  //   used to refer to a union (clause 9), and either the class or
5980  //   struct class-key shall be used to refer to a class (clause 9)
5981  //   declared using the class or struct class-key.
5982  TagTypeKind OldTag = Previous->getTagKind();
5983  if (OldTag == NewTag)
5984    return true;
5985
5986  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
5987      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
5988    // Warn about the struct/class tag mismatch.
5989    bool isTemplate = false;
5990    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
5991      isTemplate = Record->getDescribedClassTemplate();
5992
5993    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
5994      << (NewTag == TTK_Class)
5995      << isTemplate << &Name
5996      << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
5997                              OldTag == TTK_Class? "class" : "struct");
5998    Diag(Previous->getLocation(), diag::note_previous_use);
5999    return true;
6000  }
6001  return false;
6002}
6003
6004/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
6005/// former case, Name will be non-null.  In the later case, Name will be null.
6006/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
6007/// reference/declaration/definition of a tag.
6008Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
6009                     SourceLocation KWLoc, CXXScopeSpec &SS,
6010                     IdentifierInfo *Name, SourceLocation NameLoc,
6011                     AttributeList *Attr, AccessSpecifier AS,
6012                     MultiTemplateParamsArg TemplateParameterLists,
6013                     bool &OwnedDecl, bool &IsDependent,
6014                     bool ScopedEnum, bool ScopedEnumUsesClassTag,
6015                     TypeResult UnderlyingType) {
6016  // If this is not a definition, it must have a name.
6017  assert((Name != 0 || TUK == TUK_Definition) &&
6018         "Nameless record must be a definition!");
6019  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
6020
6021  OwnedDecl = false;
6022  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6023
6024  // FIXME: Check explicit specializations more carefully.
6025  bool isExplicitSpecialization = false;
6026  unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size();
6027  bool Invalid = false;
6028
6029  // We only need to do this matching if we have template parameters
6030  // or a scope specifier, which also conveniently avoids this work
6031  // for non-C++ cases.
6032  if (NumMatchedTemplateParamLists ||
6033      (SS.isNotEmpty() && TUK != TUK_Reference)) {
6034    if (TemplateParameterList *TemplateParams
6035          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
6036                                                TemplateParameterLists.get(),
6037                                               TemplateParameterLists.size(),
6038                                                    TUK == TUK_Friend,
6039                                                    isExplicitSpecialization,
6040                                                    Invalid)) {
6041      // All but one template parameter lists have been matching.
6042      --NumMatchedTemplateParamLists;
6043
6044      if (TemplateParams->size() > 0) {
6045        // This is a declaration or definition of a class template (which may
6046        // be a member of another template).
6047        if (Invalid)
6048          return 0;
6049
6050        OwnedDecl = false;
6051        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
6052                                               SS, Name, NameLoc, Attr,
6053                                               TemplateParams, AS,
6054                                               NumMatchedTemplateParamLists,
6055                 (TemplateParameterList**) TemplateParameterLists.release());
6056        return Result.get();
6057      } else {
6058        // The "template<>" header is extraneous.
6059        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
6060          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
6061        isExplicitSpecialization = true;
6062      }
6063    }
6064  }
6065
6066  // Figure out the underlying type if this a enum declaration. We need to do
6067  // this early, because it's needed to detect if this is an incompatible
6068  // redeclaration.
6069  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
6070
6071  if (Kind == TTK_Enum) {
6072    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
6073      // No underlying type explicitly specified, or we failed to parse the
6074      // type, default to int.
6075      EnumUnderlying = Context.IntTy.getTypePtr();
6076    else if (UnderlyingType.get()) {
6077      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
6078      // integral type; any cv-qualification is ignored.
6079      TypeSourceInfo *TI = 0;
6080      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
6081      EnumUnderlying = TI;
6082
6083      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
6084
6085      if (!T->isDependentType() && !T->isIntegralType(Context)) {
6086        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
6087          << T;
6088        // Recover by falling back to int.
6089        EnumUnderlying = Context.IntTy.getTypePtr();
6090      }
6091
6092      if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI,
6093                                          UPPC_FixedUnderlyingType))
6094        EnumUnderlying = Context.IntTy.getTypePtr();
6095
6096    } else if (getLangOptions().Microsoft)
6097      // Microsoft enums are always of int type.
6098      EnumUnderlying = Context.IntTy.getTypePtr();
6099  }
6100
6101  DeclContext *SearchDC = CurContext;
6102  DeclContext *DC = CurContext;
6103  bool isStdBadAlloc = false;
6104
6105  RedeclarationKind Redecl = ForRedeclaration;
6106  if (TUK == TUK_Friend || TUK == TUK_Reference)
6107    Redecl = NotForRedeclaration;
6108
6109  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
6110
6111  if (Name && SS.isNotEmpty()) {
6112    // We have a nested-name tag ('struct foo::bar').
6113
6114    // Check for invalid 'foo::'.
6115    if (SS.isInvalid()) {
6116      Name = 0;
6117      goto CreateNewDecl;
6118    }
6119
6120    // If this is a friend or a reference to a class in a dependent
6121    // context, don't try to make a decl for it.
6122    if (TUK == TUK_Friend || TUK == TUK_Reference) {
6123      DC = computeDeclContext(SS, false);
6124      if (!DC) {
6125        IsDependent = true;
6126        return 0;
6127      }
6128    } else {
6129      DC = computeDeclContext(SS, true);
6130      if (!DC) {
6131        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
6132          << SS.getRange();
6133        return 0;
6134      }
6135    }
6136
6137    if (RequireCompleteDeclContext(SS, DC))
6138      return 0;
6139
6140    SearchDC = DC;
6141    // Look-up name inside 'foo::'.
6142    LookupQualifiedName(Previous, DC);
6143
6144    if (Previous.isAmbiguous())
6145      return 0;
6146
6147    if (Previous.empty()) {
6148      // Name lookup did not find anything. However, if the
6149      // nested-name-specifier refers to the current instantiation,
6150      // and that current instantiation has any dependent base
6151      // classes, we might find something at instantiation time: treat
6152      // this as a dependent elaborated-type-specifier.
6153      // But this only makes any sense for reference-like lookups.
6154      if (Previous.wasNotFoundInCurrentInstantiation() &&
6155          (TUK == TUK_Reference || TUK == TUK_Friend)) {
6156        IsDependent = true;
6157        return 0;
6158      }
6159
6160      // A tag 'foo::bar' must already exist.
6161      Diag(NameLoc, diag::err_not_tag_in_scope)
6162        << Kind << Name << DC << SS.getRange();
6163      Name = 0;
6164      Invalid = true;
6165      goto CreateNewDecl;
6166    }
6167  } else if (Name) {
6168    // If this is a named struct, check to see if there was a previous forward
6169    // declaration or definition.
6170    // FIXME: We're looking into outer scopes here, even when we
6171    // shouldn't be. Doing so can result in ambiguities that we
6172    // shouldn't be diagnosing.
6173    LookupName(Previous, S);
6174
6175    // Note:  there used to be some attempt at recovery here.
6176    if (Previous.isAmbiguous())
6177      return 0;
6178
6179    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
6180      // FIXME: This makes sure that we ignore the contexts associated
6181      // with C structs, unions, and enums when looking for a matching
6182      // tag declaration or definition. See the similar lookup tweak
6183      // in Sema::LookupName; is there a better way to deal with this?
6184      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
6185        SearchDC = SearchDC->getParent();
6186    }
6187  } else if (S->isFunctionPrototypeScope()) {
6188    // If this is an enum declaration in function prototype scope, set its
6189    // initial context to the translation unit.
6190    SearchDC = Context.getTranslationUnitDecl();
6191  }
6192
6193  if (Previous.isSingleResult() &&
6194      Previous.getFoundDecl()->isTemplateParameter()) {
6195    // Maybe we will complain about the shadowed template parameter.
6196    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
6197    // Just pretend that we didn't see the previous declaration.
6198    Previous.clear();
6199  }
6200
6201  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
6202      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
6203    // This is a declaration of or a reference to "std::bad_alloc".
6204    isStdBadAlloc = true;
6205
6206    if (Previous.empty() && StdBadAlloc) {
6207      // std::bad_alloc has been implicitly declared (but made invisible to
6208      // name lookup). Fill in this implicit declaration as the previous
6209      // declaration, so that the declarations get chained appropriately.
6210      Previous.addDecl(getStdBadAlloc());
6211    }
6212  }
6213
6214  // If we didn't find a previous declaration, and this is a reference
6215  // (or friend reference), move to the correct scope.  In C++, we
6216  // also need to do a redeclaration lookup there, just in case
6217  // there's a shadow friend decl.
6218  if (Name && Previous.empty() &&
6219      (TUK == TUK_Reference || TUK == TUK_Friend)) {
6220    if (Invalid) goto CreateNewDecl;
6221    assert(SS.isEmpty());
6222
6223    if (TUK == TUK_Reference) {
6224      // C++ [basic.scope.pdecl]p5:
6225      //   -- for an elaborated-type-specifier of the form
6226      //
6227      //          class-key identifier
6228      //
6229      //      if the elaborated-type-specifier is used in the
6230      //      decl-specifier-seq or parameter-declaration-clause of a
6231      //      function defined in namespace scope, the identifier is
6232      //      declared as a class-name in the namespace that contains
6233      //      the declaration; otherwise, except as a friend
6234      //      declaration, the identifier is declared in the smallest
6235      //      non-class, non-function-prototype scope that contains the
6236      //      declaration.
6237      //
6238      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
6239      // C structs and unions.
6240      //
6241      // It is an error in C++ to declare (rather than define) an enum
6242      // type, including via an elaborated type specifier.  We'll
6243      // diagnose that later; for now, declare the enum in the same
6244      // scope as we would have picked for any other tag type.
6245      //
6246      // GNU C also supports this behavior as part of its incomplete
6247      // enum types extension, while GNU C++ does not.
6248      //
6249      // Find the context where we'll be declaring the tag.
6250      // FIXME: We would like to maintain the current DeclContext as the
6251      // lexical context,
6252      while (SearchDC->isRecord() || SearchDC->isTransparentContext())
6253        SearchDC = SearchDC->getParent();
6254
6255      // Find the scope where we'll be declaring the tag.
6256      while (S->isClassScope() ||
6257             (getLangOptions().CPlusPlus &&
6258              S->isFunctionPrototypeScope()) ||
6259             ((S->getFlags() & Scope::DeclScope) == 0) ||
6260             (S->getEntity() &&
6261              ((DeclContext *)S->getEntity())->isTransparentContext()))
6262        S = S->getParent();
6263    } else {
6264      assert(TUK == TUK_Friend);
6265      // C++ [namespace.memdef]p3:
6266      //   If a friend declaration in a non-local class first declares a
6267      //   class or function, the friend class or function is a member of
6268      //   the innermost enclosing namespace.
6269      SearchDC = SearchDC->getEnclosingNamespaceContext();
6270    }
6271
6272    // In C++, we need to do a redeclaration lookup to properly
6273    // diagnose some problems.
6274    if (getLangOptions().CPlusPlus) {
6275      Previous.setRedeclarationKind(ForRedeclaration);
6276      LookupQualifiedName(Previous, SearchDC);
6277    }
6278  }
6279
6280  if (!Previous.empty()) {
6281    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
6282
6283    // It's okay to have a tag decl in the same scope as a typedef
6284    // which hides a tag decl in the same scope.  Finding this
6285    // insanity with a redeclaration lookup can only actually happen
6286    // in C++.
6287    //
6288    // This is also okay for elaborated-type-specifiers, which is
6289    // technically forbidden by the current standard but which is
6290    // okay according to the likely resolution of an open issue;
6291    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
6292    if (getLangOptions().CPlusPlus) {
6293      if (TypedefDecl *TD = dyn_cast<TypedefDecl>(PrevDecl)) {
6294        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
6295          TagDecl *Tag = TT->getDecl();
6296          if (Tag->getDeclName() == Name &&
6297              Tag->getDeclContext()->getRedeclContext()
6298                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
6299            PrevDecl = Tag;
6300            Previous.clear();
6301            Previous.addDecl(Tag);
6302            Previous.resolveKind();
6303          }
6304        }
6305      }
6306    }
6307
6308    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
6309      // If this is a use of a previous tag, or if the tag is already declared
6310      // in the same scope (so that the definition/declaration completes or
6311      // rementions the tag), reuse the decl.
6312      if (TUK == TUK_Reference || TUK == TUK_Friend ||
6313          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
6314        // Make sure that this wasn't declared as an enum and now used as a
6315        // struct or something similar.
6316        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
6317          bool SafeToContinue
6318            = (PrevTagDecl->getTagKind() != TTK_Enum &&
6319               Kind != TTK_Enum);
6320          if (SafeToContinue)
6321            Diag(KWLoc, diag::err_use_with_wrong_tag)
6322              << Name
6323              << FixItHint::CreateReplacement(SourceRange(KWLoc),
6324                                              PrevTagDecl->getKindName());
6325          else
6326            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
6327          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6328
6329          if (SafeToContinue)
6330            Kind = PrevTagDecl->getTagKind();
6331          else {
6332            // Recover by making this an anonymous redefinition.
6333            Name = 0;
6334            Previous.clear();
6335            Invalid = true;
6336          }
6337        }
6338
6339        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
6340          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
6341
6342          // All conflicts with previous declarations are recovered by
6343          // returning the previous declaration.
6344          if (ScopedEnum != PrevEnum->isScoped()) {
6345            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
6346              << PrevEnum->isScoped();
6347            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6348            return PrevTagDecl;
6349          }
6350          else if (EnumUnderlying && PrevEnum->isFixed()) {
6351            QualType T;
6352            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
6353                T = TI->getType();
6354            else
6355                T = QualType(EnumUnderlying.get<const Type*>(), 0);
6356
6357            if (!Context.hasSameUnqualifiedType(T, PrevEnum->getIntegerType())) {
6358              Diag(NameLoc.isValid() ? NameLoc : KWLoc,
6359                   diag::err_enum_redeclare_type_mismatch)
6360                << T
6361                << PrevEnum->getIntegerType();
6362              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6363              return PrevTagDecl;
6364            }
6365          }
6366          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
6367            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
6368              << PrevEnum->isFixed();
6369            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6370            return PrevTagDecl;
6371          }
6372        }
6373
6374        if (!Invalid) {
6375          // If this is a use, just return the declaration we found.
6376
6377          // FIXME: In the future, return a variant or some other clue
6378          // for the consumer of this Decl to know it doesn't own it.
6379          // For our current ASTs this shouldn't be a problem, but will
6380          // need to be changed with DeclGroups.
6381          if ((TUK == TUK_Reference && !PrevTagDecl->getFriendObjectKind()) ||
6382              TUK == TUK_Friend)
6383            return PrevTagDecl;
6384
6385          // Diagnose attempts to redefine a tag.
6386          if (TUK == TUK_Definition) {
6387            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
6388              // If we're defining a specialization and the previous definition
6389              // is from an implicit instantiation, don't emit an error
6390              // here; we'll catch this in the general case below.
6391              if (!isExplicitSpecialization ||
6392                  !isa<CXXRecordDecl>(Def) ||
6393                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
6394                                               == TSK_ExplicitSpecialization) {
6395                Diag(NameLoc, diag::err_redefinition) << Name;
6396                Diag(Def->getLocation(), diag::note_previous_definition);
6397                // If this is a redefinition, recover by making this
6398                // struct be anonymous, which will make any later
6399                // references get the previous definition.
6400                Name = 0;
6401                Previous.clear();
6402                Invalid = true;
6403              }
6404            } else {
6405              // If the type is currently being defined, complain
6406              // about a nested redefinition.
6407              const TagType *Tag
6408                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
6409              if (Tag->isBeingDefined()) {
6410                Diag(NameLoc, diag::err_nested_redefinition) << Name;
6411                Diag(PrevTagDecl->getLocation(),
6412                     diag::note_previous_definition);
6413                Name = 0;
6414                Previous.clear();
6415                Invalid = true;
6416              }
6417            }
6418
6419            // Okay, this is definition of a previously declared or referenced
6420            // tag PrevDecl. We're going to create a new Decl for it.
6421          }
6422        }
6423        // If we get here we have (another) forward declaration or we
6424        // have a definition.  Just create a new decl.
6425
6426      } else {
6427        // If we get here, this is a definition of a new tag type in a nested
6428        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
6429        // new decl/type.  We set PrevDecl to NULL so that the entities
6430        // have distinct types.
6431        Previous.clear();
6432      }
6433      // If we get here, we're going to create a new Decl. If PrevDecl
6434      // is non-NULL, it's a definition of the tag declared by
6435      // PrevDecl. If it's NULL, we have a new definition.
6436
6437
6438    // Otherwise, PrevDecl is not a tag, but was found with tag
6439    // lookup.  This is only actually possible in C++, where a few
6440    // things like templates still live in the tag namespace.
6441    } else {
6442      assert(getLangOptions().CPlusPlus);
6443
6444      // Use a better diagnostic if an elaborated-type-specifier
6445      // found the wrong kind of type on the first
6446      // (non-redeclaration) lookup.
6447      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
6448          !Previous.isForRedeclaration()) {
6449        unsigned Kind = 0;
6450        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
6451        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
6452        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
6453        Diag(PrevDecl->getLocation(), diag::note_declared_at);
6454        Invalid = true;
6455
6456      // Otherwise, only diagnose if the declaration is in scope.
6457      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
6458                                isExplicitSpecialization)) {
6459        // do nothing
6460
6461      // Diagnose implicit declarations introduced by elaborated types.
6462      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
6463        unsigned Kind = 0;
6464        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
6465        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
6466        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
6467        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
6468        Invalid = true;
6469
6470      // Otherwise it's a declaration.  Call out a particularly common
6471      // case here.
6472      } else if (isa<TypedefDecl>(PrevDecl)) {
6473        Diag(NameLoc, diag::err_tag_definition_of_typedef)
6474          << Name
6475          << cast<TypedefDecl>(PrevDecl)->getUnderlyingType();
6476        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
6477        Invalid = true;
6478
6479      // Otherwise, diagnose.
6480      } else {
6481        // The tag name clashes with something else in the target scope,
6482        // issue an error and recover by making this tag be anonymous.
6483        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
6484        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6485        Name = 0;
6486        Invalid = true;
6487      }
6488
6489      // The existing declaration isn't relevant to us; we're in a
6490      // new scope, so clear out the previous declaration.
6491      Previous.clear();
6492    }
6493  }
6494
6495CreateNewDecl:
6496
6497  TagDecl *PrevDecl = 0;
6498  if (Previous.isSingleResult())
6499    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
6500
6501  // If there is an identifier, use the location of the identifier as the
6502  // location of the decl, otherwise use the location of the struct/union
6503  // keyword.
6504  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
6505
6506  // Otherwise, create a new declaration. If there is a previous
6507  // declaration of the same entity, the two will be linked via
6508  // PrevDecl.
6509  TagDecl *New;
6510
6511  bool IsForwardReference = false;
6512  if (Kind == TTK_Enum) {
6513    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
6514    // enum X { A, B, C } D;    D should chain to X.
6515    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
6516                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
6517                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
6518    // If this is an undefined enum, warn.
6519    if (TUK != TUK_Definition && !Invalid) {
6520      TagDecl *Def;
6521      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
6522        // C++0x: 7.2p2: opaque-enum-declaration.
6523        // Conflicts are diagnosed above. Do nothing.
6524      }
6525      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
6526        Diag(Loc, diag::ext_forward_ref_enum_def)
6527          << New;
6528        Diag(Def->getLocation(), diag::note_previous_definition);
6529      } else {
6530        unsigned DiagID = diag::ext_forward_ref_enum;
6531        if (getLangOptions().Microsoft)
6532          DiagID = diag::ext_ms_forward_ref_enum;
6533        else if (getLangOptions().CPlusPlus)
6534          DiagID = diag::err_forward_ref_enum;
6535        Diag(Loc, DiagID);
6536
6537        // If this is a forward-declared reference to an enumeration, make a
6538        // note of it; we won't actually be introducing the declaration into
6539        // the declaration context.
6540        if (TUK == TUK_Reference)
6541          IsForwardReference = true;
6542      }
6543    }
6544
6545    if (EnumUnderlying) {
6546      EnumDecl *ED = cast<EnumDecl>(New);
6547      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
6548        ED->setIntegerTypeSourceInfo(TI);
6549      else
6550        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
6551      ED->setPromotionType(ED->getIntegerType());
6552    }
6553
6554  } else {
6555    // struct/union/class
6556
6557    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
6558    // struct X { int A; } D;    D should chain to X.
6559    if (getLangOptions().CPlusPlus) {
6560      // FIXME: Look for a way to use RecordDecl for simple structs.
6561      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
6562                                  cast_or_null<CXXRecordDecl>(PrevDecl));
6563
6564      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
6565        StdBadAlloc = cast<CXXRecordDecl>(New);
6566    } else
6567      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
6568                               cast_or_null<RecordDecl>(PrevDecl));
6569  }
6570
6571  // Maybe add qualifier info.
6572  if (SS.isNotEmpty()) {
6573    if (SS.isSet()) {
6574      New->setQualifierInfo(SS.getWithLocInContext(Context));
6575      if (NumMatchedTemplateParamLists > 0) {
6576        New->setTemplateParameterListsInfo(Context,
6577                                           NumMatchedTemplateParamLists,
6578                    (TemplateParameterList**) TemplateParameterLists.release());
6579      }
6580    }
6581    else
6582      Invalid = true;
6583  }
6584
6585  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
6586    // Add alignment attributes if necessary; these attributes are checked when
6587    // the ASTContext lays out the structure.
6588    //
6589    // It is important for implementing the correct semantics that this
6590    // happen here (in act on tag decl). The #pragma pack stack is
6591    // maintained as a result of parser callbacks which can occur at
6592    // many points during the parsing of a struct declaration (because
6593    // the #pragma tokens are effectively skipped over during the
6594    // parsing of the struct).
6595    AddAlignmentAttributesForRecord(RD);
6596  }
6597
6598  // If this is a specialization of a member class (of a class template),
6599  // check the specialization.
6600  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
6601    Invalid = true;
6602
6603  if (Invalid)
6604    New->setInvalidDecl();
6605
6606  if (Attr)
6607    ProcessDeclAttributeList(S, New, Attr);
6608
6609  // If we're declaring or defining a tag in function prototype scope
6610  // in C, note that this type can only be used within the function.
6611  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
6612    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
6613
6614  // Set the lexical context. If the tag has a C++ scope specifier, the
6615  // lexical context will be different from the semantic context.
6616  New->setLexicalDeclContext(CurContext);
6617
6618  // Mark this as a friend decl if applicable.
6619  if (TUK == TUK_Friend)
6620    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
6621
6622  // Set the access specifier.
6623  if (!Invalid && SearchDC->isRecord())
6624    SetMemberAccessSpecifier(New, PrevDecl, AS);
6625
6626  if (TUK == TUK_Definition)
6627    New->startDefinition();
6628
6629  // If this has an identifier, add it to the scope stack.
6630  if (TUK == TUK_Friend) {
6631    // We might be replacing an existing declaration in the lookup tables;
6632    // if so, borrow its access specifier.
6633    if (PrevDecl)
6634      New->setAccess(PrevDecl->getAccess());
6635
6636    DeclContext *DC = New->getDeclContext()->getRedeclContext();
6637    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
6638    if (Name) // can be null along some error paths
6639      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
6640        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
6641  } else if (Name) {
6642    S = getNonFieldDeclScope(S);
6643    PushOnScopeChains(New, S, !IsForwardReference);
6644    if (IsForwardReference)
6645      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
6646
6647  } else {
6648    CurContext->addDecl(New);
6649  }
6650
6651  // If this is the C FILE type, notify the AST context.
6652  if (IdentifierInfo *II = New->getIdentifier())
6653    if (!New->isInvalidDecl() &&
6654        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
6655        II->isStr("FILE"))
6656      Context.setFILEDecl(New);
6657
6658  OwnedDecl = true;
6659  return New;
6660}
6661
6662void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
6663  AdjustDeclIfTemplate(TagD);
6664  TagDecl *Tag = cast<TagDecl>(TagD);
6665
6666  // Enter the tag context.
6667  PushDeclContext(S, Tag);
6668}
6669
6670void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
6671                                           ClassVirtSpecifiers &CVS,
6672                                           SourceLocation LBraceLoc) {
6673  AdjustDeclIfTemplate(TagD);
6674  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
6675
6676  FieldCollector->StartClass();
6677
6678  if (!Record->getIdentifier())
6679    return;
6680
6681  if (CVS.isFinalSpecified())
6682    Record->addAttr(new (Context) FinalAttr(CVS.getFinalLoc(), Context));
6683  if (CVS.isExplicitSpecified())
6684    Record->addAttr(new (Context) ExplicitAttr(CVS.getExplicitLoc(), Context));
6685
6686  // C++ [class]p2:
6687  //   [...] The class-name is also inserted into the scope of the
6688  //   class itself; this is known as the injected-class-name. For
6689  //   purposes of access checking, the injected-class-name is treated
6690  //   as if it were a public member name.
6691  CXXRecordDecl *InjectedClassName
6692    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
6693                            Record->getLocStart(), Record->getLocation(),
6694                            Record->getIdentifier(),
6695                            /*PrevDecl=*/0,
6696                            /*DelayTypeCreation=*/true);
6697  Context.getTypeDeclType(InjectedClassName, Record);
6698  InjectedClassName->setImplicit();
6699  InjectedClassName->setAccess(AS_public);
6700  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
6701      InjectedClassName->setDescribedClassTemplate(Template);
6702  PushOnScopeChains(InjectedClassName, S);
6703  assert(InjectedClassName->isInjectedClassName() &&
6704         "Broken injected-class-name");
6705}
6706
6707void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
6708                                    SourceLocation RBraceLoc) {
6709  AdjustDeclIfTemplate(TagD);
6710  TagDecl *Tag = cast<TagDecl>(TagD);
6711  Tag->setRBraceLoc(RBraceLoc);
6712
6713  if (isa<CXXRecordDecl>(Tag))
6714    FieldCollector->FinishClass();
6715
6716  // Exit this scope of this tag's definition.
6717  PopDeclContext();
6718
6719  // Notify the consumer that we've defined a tag.
6720  Consumer.HandleTagDeclDefinition(Tag);
6721}
6722
6723void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
6724  AdjustDeclIfTemplate(TagD);
6725  TagDecl *Tag = cast<TagDecl>(TagD);
6726  Tag->setInvalidDecl();
6727
6728  // We're undoing ActOnTagStartDefinition here, not
6729  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
6730  // the FieldCollector.
6731
6732  PopDeclContext();
6733}
6734
6735// Note that FieldName may be null for anonymous bitfields.
6736bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
6737                          QualType FieldTy, const Expr *BitWidth,
6738                          bool *ZeroWidth) {
6739  // Default to true; that shouldn't confuse checks for emptiness
6740  if (ZeroWidth)
6741    *ZeroWidth = true;
6742
6743  // C99 6.7.2.1p4 - verify the field type.
6744  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
6745  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
6746    // Handle incomplete types with specific error.
6747    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
6748      return true;
6749    if (FieldName)
6750      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
6751        << FieldName << FieldTy << BitWidth->getSourceRange();
6752    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
6753      << FieldTy << BitWidth->getSourceRange();
6754  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
6755                                             UPPC_BitFieldWidth))
6756    return true;
6757
6758  // If the bit-width is type- or value-dependent, don't try to check
6759  // it now.
6760  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
6761    return false;
6762
6763  llvm::APSInt Value;
6764  if (VerifyIntegerConstantExpression(BitWidth, &Value))
6765    return true;
6766
6767  if (Value != 0 && ZeroWidth)
6768    *ZeroWidth = false;
6769
6770  // Zero-width bitfield is ok for anonymous field.
6771  if (Value == 0 && FieldName)
6772    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
6773
6774  if (Value.isSigned() && Value.isNegative()) {
6775    if (FieldName)
6776      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
6777               << FieldName << Value.toString(10);
6778    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
6779      << Value.toString(10);
6780  }
6781
6782  if (!FieldTy->isDependentType()) {
6783    uint64_t TypeSize = Context.getTypeSize(FieldTy);
6784    if (Value.getZExtValue() > TypeSize) {
6785      if (!getLangOptions().CPlusPlus) {
6786        if (FieldName)
6787          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
6788            << FieldName << (unsigned)Value.getZExtValue()
6789            << (unsigned)TypeSize;
6790
6791        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
6792          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
6793      }
6794
6795      if (FieldName)
6796        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
6797          << FieldName << (unsigned)Value.getZExtValue()
6798          << (unsigned)TypeSize;
6799      else
6800        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
6801          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
6802    }
6803  }
6804
6805  return false;
6806}
6807
6808/// ActOnField - Each field of a struct/union/class is passed into this in order
6809/// to create a FieldDecl object for it.
6810Decl *Sema::ActOnField(Scope *S, Decl *TagD,
6811                                 SourceLocation DeclStart,
6812                                 Declarator &D, ExprTy *BitfieldWidth) {
6813  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
6814                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
6815                               AS_public);
6816  return Res;
6817}
6818
6819/// HandleField - Analyze a field of a C struct or a C++ data member.
6820///
6821FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
6822                             SourceLocation DeclStart,
6823                             Declarator &D, Expr *BitWidth,
6824                             AccessSpecifier AS) {
6825  IdentifierInfo *II = D.getIdentifier();
6826  SourceLocation Loc = DeclStart;
6827  if (II) Loc = D.getIdentifierLoc();
6828
6829  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6830  QualType T = TInfo->getType();
6831  if (getLangOptions().CPlusPlus) {
6832    CheckExtraCXXDefaultArguments(D);
6833
6834    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
6835                                        UPPC_DataMemberType)) {
6836      D.setInvalidType();
6837      T = Context.IntTy;
6838      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
6839    }
6840  }
6841
6842  DiagnoseFunctionSpecifiers(D);
6843
6844  if (D.getDeclSpec().isThreadSpecified())
6845    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
6846
6847  // Check to see if this name was declared as a member previously
6848  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
6849  LookupName(Previous, S);
6850  assert((Previous.empty() || Previous.isOverloadedResult() ||
6851          Previous.isSingleResult())
6852    && "Lookup of member name should be either overloaded, single or null");
6853
6854  // If the name is overloaded then get any declaration else get the single result
6855  NamedDecl *PrevDecl = Previous.isOverloadedResult() ?
6856    Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>();
6857
6858  if (PrevDecl && PrevDecl->isTemplateParameter()) {
6859    // Maybe we will complain about the shadowed template parameter.
6860    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6861    // Just pretend that we didn't see the previous declaration.
6862    PrevDecl = 0;
6863  }
6864
6865  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
6866    PrevDecl = 0;
6867
6868  bool Mutable
6869    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
6870  SourceLocation TSSL = D.getSourceRange().getBegin();
6871  FieldDecl *NewFD
6872    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
6873                     AS, PrevDecl, &D);
6874
6875  if (NewFD->isInvalidDecl())
6876    Record->setInvalidDecl();
6877
6878  if (NewFD->isInvalidDecl() && PrevDecl) {
6879    // Don't introduce NewFD into scope; there's already something
6880    // with the same name in the same scope.
6881  } else if (II) {
6882    PushOnScopeChains(NewFD, S);
6883  } else
6884    Record->addDecl(NewFD);
6885
6886  return NewFD;
6887}
6888
6889/// \brief Build a new FieldDecl and check its well-formedness.
6890///
6891/// This routine builds a new FieldDecl given the fields name, type,
6892/// record, etc. \p PrevDecl should refer to any previous declaration
6893/// with the same name and in the same scope as the field to be
6894/// created.
6895///
6896/// \returns a new FieldDecl.
6897///
6898/// \todo The Declarator argument is a hack. It will be removed once
6899FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
6900                                TypeSourceInfo *TInfo,
6901                                RecordDecl *Record, SourceLocation Loc,
6902                                bool Mutable, Expr *BitWidth,
6903                                SourceLocation TSSL,
6904                                AccessSpecifier AS, NamedDecl *PrevDecl,
6905                                Declarator *D) {
6906  IdentifierInfo *II = Name.getAsIdentifierInfo();
6907  bool InvalidDecl = false;
6908  if (D) InvalidDecl = D->isInvalidType();
6909
6910  // If we receive a broken type, recover by assuming 'int' and
6911  // marking this declaration as invalid.
6912  if (T.isNull()) {
6913    InvalidDecl = true;
6914    T = Context.IntTy;
6915  }
6916
6917  QualType EltTy = Context.getBaseElementType(T);
6918  if (!EltTy->isDependentType() &&
6919      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
6920    // Fields of incomplete type force their record to be invalid.
6921    Record->setInvalidDecl();
6922    InvalidDecl = true;
6923  }
6924
6925  // C99 6.7.2.1p8: A member of a structure or union may have any type other
6926  // than a variably modified type.
6927  if (!InvalidDecl && T->isVariablyModifiedType()) {
6928    bool SizeIsNegative;
6929    llvm::APSInt Oversized;
6930    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
6931                                                           SizeIsNegative,
6932                                                           Oversized);
6933    if (!FixedTy.isNull()) {
6934      Diag(Loc, diag::warn_illegal_constant_array_size);
6935      T = FixedTy;
6936    } else {
6937      if (SizeIsNegative)
6938        Diag(Loc, diag::err_typecheck_negative_array_size);
6939      else if (Oversized.getBoolValue())
6940        Diag(Loc, diag::err_array_too_large)
6941          << Oversized.toString(10);
6942      else
6943        Diag(Loc, diag::err_typecheck_field_variable_size);
6944      InvalidDecl = true;
6945    }
6946  }
6947
6948  // Fields can not have abstract class types
6949  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
6950                                             diag::err_abstract_type_in_decl,
6951                                             AbstractFieldType))
6952    InvalidDecl = true;
6953
6954  bool ZeroWidth = false;
6955  // If this is declared as a bit-field, check the bit-field.
6956  if (!InvalidDecl && BitWidth &&
6957      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
6958    InvalidDecl = true;
6959    BitWidth = 0;
6960    ZeroWidth = false;
6961  }
6962
6963  // Check that 'mutable' is consistent with the type of the declaration.
6964  if (!InvalidDecl && Mutable) {
6965    unsigned DiagID = 0;
6966    if (T->isReferenceType())
6967      DiagID = diag::err_mutable_reference;
6968    else if (T.isConstQualified())
6969      DiagID = diag::err_mutable_const;
6970
6971    if (DiagID) {
6972      SourceLocation ErrLoc = Loc;
6973      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
6974        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
6975      Diag(ErrLoc, DiagID);
6976      Mutable = false;
6977      InvalidDecl = true;
6978    }
6979  }
6980
6981  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
6982                                       BitWidth, Mutable);
6983  if (InvalidDecl)
6984    NewFD->setInvalidDecl();
6985
6986  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
6987    Diag(Loc, diag::err_duplicate_member) << II;
6988    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6989    NewFD->setInvalidDecl();
6990  }
6991
6992  if (!InvalidDecl && getLangOptions().CPlusPlus) {
6993    if (Record->isUnion()) {
6994      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
6995        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
6996        if (RDecl->getDefinition()) {
6997          // C++ [class.union]p1: An object of a class with a non-trivial
6998          // constructor, a non-trivial copy constructor, a non-trivial
6999          // destructor, or a non-trivial copy assignment operator
7000          // cannot be a member of a union, nor can an array of such
7001          // objects.
7002          // TODO: C++0x alters this restriction significantly.
7003          if (CheckNontrivialField(NewFD))
7004            NewFD->setInvalidDecl();
7005        }
7006      }
7007
7008      // C++ [class.union]p1: If a union contains a member of reference type,
7009      // the program is ill-formed.
7010      if (EltTy->isReferenceType()) {
7011        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
7012          << NewFD->getDeclName() << EltTy;
7013        NewFD->setInvalidDecl();
7014      }
7015    }
7016  }
7017
7018  // FIXME: We need to pass in the attributes given an AST
7019  // representation, not a parser representation.
7020  if (D)
7021    // FIXME: What to pass instead of TUScope?
7022    ProcessDeclAttributes(TUScope, NewFD, *D);
7023
7024  if (T.isObjCGCWeak())
7025    Diag(Loc, diag::warn_attribute_weak_on_field);
7026
7027  NewFD->setAccess(AS);
7028  return NewFD;
7029}
7030
7031bool Sema::CheckNontrivialField(FieldDecl *FD) {
7032  assert(FD);
7033  assert(getLangOptions().CPlusPlus && "valid check only for C++");
7034
7035  if (FD->isInvalidDecl())
7036    return true;
7037
7038  QualType EltTy = Context.getBaseElementType(FD->getType());
7039  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
7040    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
7041    if (RDecl->getDefinition()) {
7042      // We check for copy constructors before constructors
7043      // because otherwise we'll never get complaints about
7044      // copy constructors.
7045
7046      CXXSpecialMember member = CXXInvalid;
7047      if (!RDecl->hasTrivialCopyConstructor())
7048        member = CXXCopyConstructor;
7049      else if (!RDecl->hasTrivialConstructor())
7050        member = CXXConstructor;
7051      else if (!RDecl->hasTrivialCopyAssignment())
7052        member = CXXCopyAssignment;
7053      else if (!RDecl->hasTrivialDestructor())
7054        member = CXXDestructor;
7055
7056      if (member != CXXInvalid) {
7057        Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
7058              << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
7059        DiagnoseNontrivial(RT, member);
7060        return true;
7061      }
7062    }
7063  }
7064
7065  return false;
7066}
7067
7068/// DiagnoseNontrivial - Given that a class has a non-trivial
7069/// special member, figure out why.
7070void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
7071  QualType QT(T, 0U);
7072  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
7073
7074  // Check whether the member was user-declared.
7075  switch (member) {
7076  case CXXInvalid:
7077    break;
7078
7079  case CXXConstructor:
7080    if (RD->hasUserDeclaredConstructor()) {
7081      typedef CXXRecordDecl::ctor_iterator ctor_iter;
7082      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
7083        const FunctionDecl *body = 0;
7084        ci->hasBody(body);
7085        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
7086          SourceLocation CtorLoc = ci->getLocation();
7087          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7088          return;
7089        }
7090      }
7091
7092      assert(0 && "found no user-declared constructors");
7093      return;
7094    }
7095    break;
7096
7097  case CXXCopyConstructor:
7098    if (RD->hasUserDeclaredCopyConstructor()) {
7099      SourceLocation CtorLoc =
7100        RD->getCopyConstructor(Context, 0)->getLocation();
7101      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7102      return;
7103    }
7104    break;
7105
7106  case CXXCopyAssignment:
7107    if (RD->hasUserDeclaredCopyAssignment()) {
7108      // FIXME: this should use the location of the copy
7109      // assignment, not the type.
7110      SourceLocation TyLoc = RD->getSourceRange().getBegin();
7111      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
7112      return;
7113    }
7114    break;
7115
7116  case CXXDestructor:
7117    if (RD->hasUserDeclaredDestructor()) {
7118      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
7119      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7120      return;
7121    }
7122    break;
7123  }
7124
7125  typedef CXXRecordDecl::base_class_iterator base_iter;
7126
7127  // Virtual bases and members inhibit trivial copying/construction,
7128  // but not trivial destruction.
7129  if (member != CXXDestructor) {
7130    // Check for virtual bases.  vbases includes indirect virtual bases,
7131    // so we just iterate through the direct bases.
7132    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
7133      if (bi->isVirtual()) {
7134        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
7135        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
7136        return;
7137      }
7138
7139    // Check for virtual methods.
7140    typedef CXXRecordDecl::method_iterator meth_iter;
7141    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
7142         ++mi) {
7143      if (mi->isVirtual()) {
7144        SourceLocation MLoc = mi->getSourceRange().getBegin();
7145        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
7146        return;
7147      }
7148    }
7149  }
7150
7151  bool (CXXRecordDecl::*hasTrivial)() const;
7152  switch (member) {
7153  case CXXConstructor:
7154    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
7155  case CXXCopyConstructor:
7156    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
7157  case CXXCopyAssignment:
7158    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
7159  case CXXDestructor:
7160    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
7161  default:
7162    assert(0 && "unexpected special member"); return;
7163  }
7164
7165  // Check for nontrivial bases (and recurse).
7166  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
7167    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
7168    assert(BaseRT && "Don't know how to handle dependent bases");
7169    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
7170    if (!(BaseRecTy->*hasTrivial)()) {
7171      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
7172      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
7173      DiagnoseNontrivial(BaseRT, member);
7174      return;
7175    }
7176  }
7177
7178  // Check for nontrivial members (and recurse).
7179  typedef RecordDecl::field_iterator field_iter;
7180  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
7181       ++fi) {
7182    QualType EltTy = Context.getBaseElementType((*fi)->getType());
7183    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
7184      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
7185
7186      if (!(EltRD->*hasTrivial)()) {
7187        SourceLocation FLoc = (*fi)->getLocation();
7188        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
7189        DiagnoseNontrivial(EltRT, member);
7190        return;
7191      }
7192    }
7193  }
7194
7195  assert(0 && "found no explanation for non-trivial member");
7196}
7197
7198/// TranslateIvarVisibility - Translate visibility from a token ID to an
7199///  AST enum value.
7200static ObjCIvarDecl::AccessControl
7201TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
7202  switch (ivarVisibility) {
7203  default: assert(0 && "Unknown visitibility kind");
7204  case tok::objc_private: return ObjCIvarDecl::Private;
7205  case tok::objc_public: return ObjCIvarDecl::Public;
7206  case tok::objc_protected: return ObjCIvarDecl::Protected;
7207  case tok::objc_package: return ObjCIvarDecl::Package;
7208  }
7209}
7210
7211/// ActOnIvar - Each ivar field of an objective-c class is passed into this
7212/// in order to create an IvarDecl object for it.
7213Decl *Sema::ActOnIvar(Scope *S,
7214                                SourceLocation DeclStart,
7215                                Decl *IntfDecl,
7216                                Declarator &D, ExprTy *BitfieldWidth,
7217                                tok::ObjCKeywordKind Visibility) {
7218
7219  IdentifierInfo *II = D.getIdentifier();
7220  Expr *BitWidth = (Expr*)BitfieldWidth;
7221  SourceLocation Loc = DeclStart;
7222  if (II) Loc = D.getIdentifierLoc();
7223
7224  // FIXME: Unnamed fields can be handled in various different ways, for
7225  // example, unnamed unions inject all members into the struct namespace!
7226
7227  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7228  QualType T = TInfo->getType();
7229
7230  if (BitWidth) {
7231    // 6.7.2.1p3, 6.7.2.1p4
7232    if (VerifyBitField(Loc, II, T, BitWidth)) {
7233      D.setInvalidType();
7234      BitWidth = 0;
7235    }
7236  } else {
7237    // Not a bitfield.
7238
7239    // validate II.
7240
7241  }
7242  if (T->isReferenceType()) {
7243    Diag(Loc, diag::err_ivar_reference_type);
7244    D.setInvalidType();
7245  }
7246  // C99 6.7.2.1p8: A member of a structure or union may have any type other
7247  // than a variably modified type.
7248  else if (T->isVariablyModifiedType()) {
7249    Diag(Loc, diag::err_typecheck_ivar_variable_size);
7250    D.setInvalidType();
7251  }
7252
7253  // Get the visibility (access control) for this ivar.
7254  ObjCIvarDecl::AccessControl ac =
7255    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
7256                                        : ObjCIvarDecl::None;
7257  // Must set ivar's DeclContext to its enclosing interface.
7258  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(IntfDecl);
7259  ObjCContainerDecl *EnclosingContext;
7260  if (ObjCImplementationDecl *IMPDecl =
7261      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
7262    if (!LangOpts.ObjCNonFragileABI2) {
7263    // Case of ivar declared in an implementation. Context is that of its class.
7264      EnclosingContext = IMPDecl->getClassInterface();
7265      assert(EnclosingContext && "Implementation has no class interface!");
7266    }
7267    else
7268      EnclosingContext = EnclosingDecl;
7269  } else {
7270    if (ObjCCategoryDecl *CDecl =
7271        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7272      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
7273        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
7274        return 0;
7275      }
7276    }
7277    EnclosingContext = EnclosingDecl;
7278  }
7279
7280  // Construct the decl.
7281  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
7282                                             DeclStart, Loc, II, T,
7283                                             TInfo, ac, (Expr *)BitfieldWidth);
7284
7285  if (II) {
7286    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
7287                                           ForRedeclaration);
7288    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
7289        && !isa<TagDecl>(PrevDecl)) {
7290      Diag(Loc, diag::err_duplicate_member) << II;
7291      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7292      NewID->setInvalidDecl();
7293    }
7294  }
7295
7296  // Process attributes attached to the ivar.
7297  ProcessDeclAttributes(S, NewID, D);
7298
7299  if (D.isInvalidType())
7300    NewID->setInvalidDecl();
7301
7302  if (II) {
7303    // FIXME: When interfaces are DeclContexts, we'll need to add
7304    // these to the interface.
7305    S->AddDecl(NewID);
7306    IdResolver.AddDecl(NewID);
7307  }
7308
7309  return NewID;
7310}
7311
7312/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
7313/// class and class extensions. For every class @interface and class
7314/// extension @interface, if the last ivar is a bitfield of any type,
7315/// then add an implicit `char :0` ivar to the end of that interface.
7316void Sema::ActOnLastBitfield(SourceLocation DeclLoc, Decl *EnclosingDecl,
7317                             llvm::SmallVectorImpl<Decl *> &AllIvarDecls) {
7318  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
7319    return;
7320
7321  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
7322  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
7323
7324  if (!Ivar->isBitField())
7325    return;
7326  uint64_t BitFieldSize =
7327    Ivar->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
7328  if (BitFieldSize == 0)
7329    return;
7330  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl);
7331  if (!ID) {
7332    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7333      if (!CD->IsClassExtension())
7334        return;
7335    }
7336    // No need to add this to end of @implementation.
7337    else
7338      return;
7339  }
7340  // All conditions are met. Add a new bitfield to the tail end of ivars.
7341  llvm::APInt Zero(Context.getTypeSize(Context.CharTy), 0);
7342  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.CharTy, DeclLoc);
7343
7344  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(EnclosingDecl),
7345                              DeclLoc, DeclLoc, 0,
7346                              Context.CharTy,
7347                              Context.CreateTypeSourceInfo(Context.CharTy),
7348                              ObjCIvarDecl::Private, BW,
7349                              true);
7350  AllIvarDecls.push_back(Ivar);
7351}
7352
7353void Sema::ActOnFields(Scope* S,
7354                       SourceLocation RecLoc, Decl *EnclosingDecl,
7355                       Decl **Fields, unsigned NumFields,
7356                       SourceLocation LBrac, SourceLocation RBrac,
7357                       AttributeList *Attr) {
7358  assert(EnclosingDecl && "missing record or interface decl");
7359
7360  // If the decl this is being inserted into is invalid, then it may be a
7361  // redeclaration or some other bogus case.  Don't try to add fields to it.
7362  if (EnclosingDecl->isInvalidDecl()) {
7363    // FIXME: Deallocate fields?
7364    return;
7365  }
7366
7367
7368  // Verify that all the fields are okay.
7369  unsigned NumNamedMembers = 0;
7370  llvm::SmallVector<FieldDecl*, 32> RecFields;
7371
7372  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
7373  for (unsigned i = 0; i != NumFields; ++i) {
7374    FieldDecl *FD = cast<FieldDecl>(Fields[i]);
7375
7376    // Get the type for the field.
7377    const Type *FDTy = FD->getType().getTypePtr();
7378
7379    if (!FD->isAnonymousStructOrUnion()) {
7380      // Remember all fields written by the user.
7381      RecFields.push_back(FD);
7382    }
7383
7384    // If the field is already invalid for some reason, don't emit more
7385    // diagnostics about it.
7386    if (FD->isInvalidDecl()) {
7387      EnclosingDecl->setInvalidDecl();
7388      continue;
7389    }
7390
7391    // C99 6.7.2.1p2:
7392    //   A structure or union shall not contain a member with
7393    //   incomplete or function type (hence, a structure shall not
7394    //   contain an instance of itself, but may contain a pointer to
7395    //   an instance of itself), except that the last member of a
7396    //   structure with more than one named member may have incomplete
7397    //   array type; such a structure (and any union containing,
7398    //   possibly recursively, a member that is such a structure)
7399    //   shall not be a member of a structure or an element of an
7400    //   array.
7401    if (FDTy->isFunctionType()) {
7402      // Field declared as a function.
7403      Diag(FD->getLocation(), diag::err_field_declared_as_function)
7404        << FD->getDeclName();
7405      FD->setInvalidDecl();
7406      EnclosingDecl->setInvalidDecl();
7407      continue;
7408    } else if (FDTy->isIncompleteArrayType() && Record &&
7409               ((i == NumFields - 1 && !Record->isUnion()) ||
7410                ((getLangOptions().Microsoft || getLangOptions().CPlusPlus) &&
7411                 (i == NumFields - 1 || Record->isUnion())))) {
7412      // Flexible array member.
7413      // Microsoft and g++ is more permissive regarding flexible array.
7414      // It will accept flexible array in union and also
7415      // as the sole element of a struct/class.
7416      if (getLangOptions().Microsoft) {
7417        if (Record->isUnion())
7418          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
7419            << FD->getDeclName();
7420        else if (NumFields == 1)
7421          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
7422            << FD->getDeclName() << Record->getTagKind();
7423      } else if (getLangOptions().CPlusPlus) {
7424        if (Record->isUnion())
7425          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
7426            << FD->getDeclName();
7427        else if (NumFields == 1)
7428          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
7429            << FD->getDeclName() << Record->getTagKind();
7430      } else if (NumNamedMembers < 1) {
7431        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
7432          << FD->getDeclName();
7433        FD->setInvalidDecl();
7434        EnclosingDecl->setInvalidDecl();
7435        continue;
7436      }
7437      if (!FD->getType()->isDependentType() &&
7438          !Context.getBaseElementType(FD->getType())->isPODType()) {
7439        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
7440          << FD->getDeclName() << FD->getType();
7441        FD->setInvalidDecl();
7442        EnclosingDecl->setInvalidDecl();
7443        continue;
7444      }
7445      // Okay, we have a legal flexible array member at the end of the struct.
7446      if (Record)
7447        Record->setHasFlexibleArrayMember(true);
7448    } else if (!FDTy->isDependentType() &&
7449               RequireCompleteType(FD->getLocation(), FD->getType(),
7450                                   diag::err_field_incomplete)) {
7451      // Incomplete type
7452      FD->setInvalidDecl();
7453      EnclosingDecl->setInvalidDecl();
7454      continue;
7455    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
7456      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
7457        // If this is a member of a union, then entire union becomes "flexible".
7458        if (Record && Record->isUnion()) {
7459          Record->setHasFlexibleArrayMember(true);
7460        } else {
7461          // If this is a struct/class and this is not the last element, reject
7462          // it.  Note that GCC supports variable sized arrays in the middle of
7463          // structures.
7464          if (i != NumFields-1)
7465            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
7466              << FD->getDeclName() << FD->getType();
7467          else {
7468            // We support flexible arrays at the end of structs in
7469            // other structs as an extension.
7470            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
7471              << FD->getDeclName();
7472            if (Record)
7473              Record->setHasFlexibleArrayMember(true);
7474          }
7475        }
7476      }
7477      if (Record && FDTTy->getDecl()->hasObjectMember())
7478        Record->setHasObjectMember(true);
7479    } else if (FDTy->isObjCObjectType()) {
7480      /// A field cannot be an Objective-c object
7481      Diag(FD->getLocation(), diag::err_statically_allocated_object);
7482      FD->setInvalidDecl();
7483      EnclosingDecl->setInvalidDecl();
7484      continue;
7485    } else if (getLangOptions().ObjC1 &&
7486               getLangOptions().getGCMode() != LangOptions::NonGC &&
7487               Record &&
7488               (FD->getType()->isObjCObjectPointerType() ||
7489                FD->getType().isObjCGCStrong()))
7490      Record->setHasObjectMember(true);
7491    else if (Context.getAsArrayType(FD->getType())) {
7492      QualType BaseType = Context.getBaseElementType(FD->getType());
7493      if (Record && BaseType->isRecordType() &&
7494          BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
7495        Record->setHasObjectMember(true);
7496    }
7497    // Keep track of the number of named members.
7498    if (FD->getIdentifier())
7499      ++NumNamedMembers;
7500  }
7501
7502  // Okay, we successfully defined 'Record'.
7503  if (Record) {
7504    bool Completed = false;
7505    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
7506      if (!CXXRecord->isInvalidDecl()) {
7507        // Set access bits correctly on the directly-declared conversions.
7508        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
7509        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
7510             I != E; ++I)
7511          Convs->setAccess(I, (*I)->getAccess());
7512
7513        if (!CXXRecord->isDependentType()) {
7514          // Add any implicitly-declared members to this class.
7515          AddImplicitlyDeclaredMembersToClass(CXXRecord);
7516
7517          // If we have virtual base classes, we may end up finding multiple
7518          // final overriders for a given virtual function. Check for this
7519          // problem now.
7520          if (CXXRecord->getNumVBases()) {
7521            CXXFinalOverriderMap FinalOverriders;
7522            CXXRecord->getFinalOverriders(FinalOverriders);
7523
7524            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
7525                                             MEnd = FinalOverriders.end();
7526                 M != MEnd; ++M) {
7527              for (OverridingMethods::iterator SO = M->second.begin(),
7528                                            SOEnd = M->second.end();
7529                   SO != SOEnd; ++SO) {
7530                assert(SO->second.size() > 0 &&
7531                       "Virtual function without overridding functions?");
7532                if (SO->second.size() == 1)
7533                  continue;
7534
7535                // C++ [class.virtual]p2:
7536                //   In a derived class, if a virtual member function of a base
7537                //   class subobject has more than one final overrider the
7538                //   program is ill-formed.
7539                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
7540                  << (NamedDecl *)M->first << Record;
7541                Diag(M->first->getLocation(),
7542                     diag::note_overridden_virtual_function);
7543                for (OverridingMethods::overriding_iterator
7544                          OM = SO->second.begin(),
7545                       OMEnd = SO->second.end();
7546                     OM != OMEnd; ++OM)
7547                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
7548                    << (NamedDecl *)M->first << OM->Method->getParent();
7549
7550                Record->setInvalidDecl();
7551              }
7552            }
7553            CXXRecord->completeDefinition(&FinalOverriders);
7554            Completed = true;
7555          }
7556        }
7557      }
7558    }
7559
7560    if (!Completed)
7561      Record->completeDefinition();
7562  } else {
7563    ObjCIvarDecl **ClsFields =
7564      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
7565    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
7566      ID->setLocEnd(RBrac);
7567      // Add ivar's to class's DeclContext.
7568      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
7569        ClsFields[i]->setLexicalDeclContext(ID);
7570        ID->addDecl(ClsFields[i]);
7571      }
7572      // Must enforce the rule that ivars in the base classes may not be
7573      // duplicates.
7574      if (ID->getSuperClass())
7575        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
7576    } else if (ObjCImplementationDecl *IMPDecl =
7577                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
7578      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
7579      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
7580        // Ivar declared in @implementation never belongs to the implementation.
7581        // Only it is in implementation's lexical context.
7582        ClsFields[I]->setLexicalDeclContext(IMPDecl);
7583      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
7584    } else if (ObjCCategoryDecl *CDecl =
7585                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7586      // case of ivars in class extension; all other cases have been
7587      // reported as errors elsewhere.
7588      // FIXME. Class extension does not have a LocEnd field.
7589      // CDecl->setLocEnd(RBrac);
7590      // Add ivar's to class extension's DeclContext.
7591      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
7592        ClsFields[i]->setLexicalDeclContext(CDecl);
7593        CDecl->addDecl(ClsFields[i]);
7594      }
7595    }
7596  }
7597
7598  if (Attr)
7599    ProcessDeclAttributeList(S, Record, Attr);
7600
7601  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
7602  // set the visibility of this record.
7603  if (Record && !Record->getDeclContext()->isRecord())
7604    AddPushedVisibilityAttribute(Record);
7605}
7606
7607/// \brief Determine whether the given integral value is representable within
7608/// the given type T.
7609static bool isRepresentableIntegerValue(ASTContext &Context,
7610                                        llvm::APSInt &Value,
7611                                        QualType T) {
7612  assert(T->isIntegralType(Context) && "Integral type required!");
7613  unsigned BitWidth = Context.getIntWidth(T);
7614
7615  if (Value.isUnsigned() || Value.isNonNegative()) {
7616    if (T->isSignedIntegerType())
7617      --BitWidth;
7618    return Value.getActiveBits() <= BitWidth;
7619  }
7620  return Value.getMinSignedBits() <= BitWidth;
7621}
7622
7623// \brief Given an integral type, return the next larger integral type
7624// (or a NULL type of no such type exists).
7625static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
7626  // FIXME: Int128/UInt128 support, which also needs to be introduced into
7627  // enum checking below.
7628  assert(T->isIntegralType(Context) && "Integral type required!");
7629  const unsigned NumTypes = 4;
7630  QualType SignedIntegralTypes[NumTypes] = {
7631    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
7632  };
7633  QualType UnsignedIntegralTypes[NumTypes] = {
7634    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
7635    Context.UnsignedLongLongTy
7636  };
7637
7638  unsigned BitWidth = Context.getTypeSize(T);
7639  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
7640                                            : UnsignedIntegralTypes;
7641  for (unsigned I = 0; I != NumTypes; ++I)
7642    if (Context.getTypeSize(Types[I]) > BitWidth)
7643      return Types[I];
7644
7645  return QualType();
7646}
7647
7648EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
7649                                          EnumConstantDecl *LastEnumConst,
7650                                          SourceLocation IdLoc,
7651                                          IdentifierInfo *Id,
7652                                          Expr *Val) {
7653  unsigned IntWidth = Context.Target.getIntWidth();
7654  llvm::APSInt EnumVal(IntWidth);
7655  QualType EltTy;
7656
7657  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
7658    Val = 0;
7659
7660  if (Val) {
7661    if (Enum->isDependentType() || Val->isTypeDependent())
7662      EltTy = Context.DependentTy;
7663    else {
7664      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
7665      SourceLocation ExpLoc;
7666      if (!Val->isValueDependent() &&
7667          VerifyIntegerConstantExpression(Val, &EnumVal)) {
7668        Val = 0;
7669      } else {
7670        if (!getLangOptions().CPlusPlus) {
7671          // C99 6.7.2.2p2:
7672          //   The expression that defines the value of an enumeration constant
7673          //   shall be an integer constant expression that has a value
7674          //   representable as an int.
7675
7676          // Complain if the value is not representable in an int.
7677          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
7678            Diag(IdLoc, diag::ext_enum_value_not_int)
7679              << EnumVal.toString(10) << Val->getSourceRange()
7680              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
7681          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
7682            // Force the type of the expression to 'int'.
7683            ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast);
7684          }
7685        }
7686
7687        if (Enum->isFixed()) {
7688          EltTy = Enum->getIntegerType();
7689
7690          // C++0x [dcl.enum]p5:
7691          //   ... if the initializing value of an enumerator cannot be
7692          //   represented by the underlying type, the program is ill-formed.
7693          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
7694            if (getLangOptions().Microsoft) {
7695              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
7696              ImpCastExprToType(Val, EltTy, CK_IntegralCast);
7697            } else
7698              Diag(IdLoc, diag::err_enumerator_too_large)
7699                << EltTy;
7700          } else
7701            ImpCastExprToType(Val, EltTy, CK_IntegralCast);
7702        }
7703        else {
7704          // C++0x [dcl.enum]p5:
7705          //   If the underlying type is not fixed, the type of each enumerator
7706          //   is the type of its initializing value:
7707          //     - If an initializer is specified for an enumerator, the
7708          //       initializing value has the same type as the expression.
7709          EltTy = Val->getType();
7710        }
7711      }
7712    }
7713  }
7714
7715  if (!Val) {
7716    if (Enum->isDependentType())
7717      EltTy = Context.DependentTy;
7718    else if (!LastEnumConst) {
7719      // C++0x [dcl.enum]p5:
7720      //   If the underlying type is not fixed, the type of each enumerator
7721      //   is the type of its initializing value:
7722      //     - If no initializer is specified for the first enumerator, the
7723      //       initializing value has an unspecified integral type.
7724      //
7725      // GCC uses 'int' for its unspecified integral type, as does
7726      // C99 6.7.2.2p3.
7727      if (Enum->isFixed()) {
7728        EltTy = Enum->getIntegerType();
7729      }
7730      else {
7731        EltTy = Context.IntTy;
7732      }
7733    } else {
7734      // Assign the last value + 1.
7735      EnumVal = LastEnumConst->getInitVal();
7736      ++EnumVal;
7737      EltTy = LastEnumConst->getType();
7738
7739      // Check for overflow on increment.
7740      if (EnumVal < LastEnumConst->getInitVal()) {
7741        // C++0x [dcl.enum]p5:
7742        //   If the underlying type is not fixed, the type of each enumerator
7743        //   is the type of its initializing value:
7744        //
7745        //     - Otherwise the type of the initializing value is the same as
7746        //       the type of the initializing value of the preceding enumerator
7747        //       unless the incremented value is not representable in that type,
7748        //       in which case the type is an unspecified integral type
7749        //       sufficient to contain the incremented value. If no such type
7750        //       exists, the program is ill-formed.
7751        QualType T = getNextLargerIntegralType(Context, EltTy);
7752        if (T.isNull() || Enum->isFixed()) {
7753          // There is no integral type larger enough to represent this
7754          // value. Complain, then allow the value to wrap around.
7755          EnumVal = LastEnumConst->getInitVal();
7756          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
7757          ++EnumVal;
7758          if (Enum->isFixed())
7759            // When the underlying type is fixed, this is ill-formed.
7760            Diag(IdLoc, diag::err_enumerator_wrapped)
7761              << EnumVal.toString(10)
7762              << EltTy;
7763          else
7764            Diag(IdLoc, diag::warn_enumerator_too_large)
7765              << EnumVal.toString(10);
7766        } else {
7767          EltTy = T;
7768        }
7769
7770        // Retrieve the last enumerator's value, extent that type to the
7771        // type that is supposed to be large enough to represent the incremented
7772        // value, then increment.
7773        EnumVal = LastEnumConst->getInitVal();
7774        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
7775        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
7776        ++EnumVal;
7777
7778        // If we're not in C++, diagnose the overflow of enumerator values,
7779        // which in C99 means that the enumerator value is not representable in
7780        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
7781        // permits enumerator values that are representable in some larger
7782        // integral type.
7783        if (!getLangOptions().CPlusPlus && !T.isNull())
7784          Diag(IdLoc, diag::warn_enum_value_overflow);
7785      } else if (!getLangOptions().CPlusPlus &&
7786                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
7787        // Enforce C99 6.7.2.2p2 even when we compute the next value.
7788        Diag(IdLoc, diag::ext_enum_value_not_int)
7789          << EnumVal.toString(10) << 1;
7790      }
7791    }
7792  }
7793
7794  if (!EltTy->isDependentType()) {
7795    // Make the enumerator value match the signedness and size of the
7796    // enumerator's type.
7797    EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
7798    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
7799  }
7800
7801  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
7802                                  Val, EnumVal);
7803}
7804
7805
7806Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
7807                              SourceLocation IdLoc, IdentifierInfo *Id,
7808                              AttributeList *Attr,
7809                              SourceLocation EqualLoc, ExprTy *val) {
7810  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
7811  EnumConstantDecl *LastEnumConst =
7812    cast_or_null<EnumConstantDecl>(lastEnumConst);
7813  Expr *Val = static_cast<Expr*>(val);
7814
7815  // The scope passed in may not be a decl scope.  Zip up the scope tree until
7816  // we find one that is.
7817  S = getNonFieldDeclScope(S);
7818
7819  // Verify that there isn't already something declared with this name in this
7820  // scope.
7821  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
7822                                         ForRedeclaration);
7823  if (PrevDecl && PrevDecl->isTemplateParameter()) {
7824    // Maybe we will complain about the shadowed template parameter.
7825    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
7826    // Just pretend that we didn't see the previous declaration.
7827    PrevDecl = 0;
7828  }
7829
7830  if (PrevDecl) {
7831    // When in C++, we may get a TagDecl with the same name; in this case the
7832    // enum constant will 'hide' the tag.
7833    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
7834           "Received TagDecl when not in C++!");
7835    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
7836      if (isa<EnumConstantDecl>(PrevDecl))
7837        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
7838      else
7839        Diag(IdLoc, diag::err_redefinition) << Id;
7840      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7841      return 0;
7842    }
7843  }
7844
7845  // C++ [class.mem]p13:
7846  //   If T is the name of a class, then each of the following shall have a
7847  //   name different from T:
7848  //     - every enumerator of every member of class T that is an enumerated
7849  //       type
7850  if (CXXRecordDecl *Record
7851                      = dyn_cast<CXXRecordDecl>(
7852                             TheEnumDecl->getDeclContext()->getRedeclContext()))
7853    if (Record->getIdentifier() && Record->getIdentifier() == Id)
7854      Diag(IdLoc, diag::err_member_name_of_class) << Id;
7855
7856  EnumConstantDecl *New =
7857    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
7858
7859  if (New) {
7860    // Process attributes.
7861    if (Attr) ProcessDeclAttributeList(S, New, Attr);
7862
7863    // Register this decl in the current scope stack.
7864    New->setAccess(TheEnumDecl->getAccess());
7865    PushOnScopeChains(New, S);
7866  }
7867
7868  return New;
7869}
7870
7871void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
7872                         SourceLocation RBraceLoc, Decl *EnumDeclX,
7873                         Decl **Elements, unsigned NumElements,
7874                         Scope *S, AttributeList *Attr) {
7875  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
7876  QualType EnumType = Context.getTypeDeclType(Enum);
7877
7878  if (Attr)
7879    ProcessDeclAttributeList(S, Enum, Attr);
7880
7881  if (Enum->isDependentType()) {
7882    for (unsigned i = 0; i != NumElements; ++i) {
7883      EnumConstantDecl *ECD =
7884        cast_or_null<EnumConstantDecl>(Elements[i]);
7885      if (!ECD) continue;
7886
7887      ECD->setType(EnumType);
7888    }
7889
7890    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
7891    return;
7892  }
7893
7894  // TODO: If the result value doesn't fit in an int, it must be a long or long
7895  // long value.  ISO C does not support this, but GCC does as an extension,
7896  // emit a warning.
7897  unsigned IntWidth = Context.Target.getIntWidth();
7898  unsigned CharWidth = Context.Target.getCharWidth();
7899  unsigned ShortWidth = Context.Target.getShortWidth();
7900
7901  // Verify that all the values are okay, compute the size of the values, and
7902  // reverse the list.
7903  unsigned NumNegativeBits = 0;
7904  unsigned NumPositiveBits = 0;
7905
7906  // Keep track of whether all elements have type int.
7907  bool AllElementsInt = true;
7908
7909  for (unsigned i = 0; i != NumElements; ++i) {
7910    EnumConstantDecl *ECD =
7911      cast_or_null<EnumConstantDecl>(Elements[i]);
7912    if (!ECD) continue;  // Already issued a diagnostic.
7913
7914    const llvm::APSInt &InitVal = ECD->getInitVal();
7915
7916    // Keep track of the size of positive and negative values.
7917    if (InitVal.isUnsigned() || InitVal.isNonNegative())
7918      NumPositiveBits = std::max(NumPositiveBits,
7919                                 (unsigned)InitVal.getActiveBits());
7920    else
7921      NumNegativeBits = std::max(NumNegativeBits,
7922                                 (unsigned)InitVal.getMinSignedBits());
7923
7924    // Keep track of whether every enum element has type int (very commmon).
7925    if (AllElementsInt)
7926      AllElementsInt = ECD->getType() == Context.IntTy;
7927  }
7928
7929  // Figure out the type that should be used for this enum.
7930  QualType BestType;
7931  unsigned BestWidth;
7932
7933  // C++0x N3000 [conv.prom]p3:
7934  //   An rvalue of an unscoped enumeration type whose underlying
7935  //   type is not fixed can be converted to an rvalue of the first
7936  //   of the following types that can represent all the values of
7937  //   the enumeration: int, unsigned int, long int, unsigned long
7938  //   int, long long int, or unsigned long long int.
7939  // C99 6.4.4.3p2:
7940  //   An identifier declared as an enumeration constant has type int.
7941  // The C99 rule is modified by a gcc extension
7942  QualType BestPromotionType;
7943
7944  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
7945  // -fshort-enums is the equivalent to specifying the packed attribute on all
7946  // enum definitions.
7947  if (LangOpts.ShortEnums)
7948    Packed = true;
7949
7950  if (Enum->isFixed()) {
7951    BestType = BestPromotionType = Enum->getIntegerType();
7952    // We don't need to set BestWidth, because BestType is going to be the type
7953    // of the enumerators, but we do anyway because otherwise some compilers
7954    // warn that it might be used uninitialized.
7955    BestWidth = CharWidth;
7956  }
7957  else if (NumNegativeBits) {
7958    // If there is a negative value, figure out the smallest integer type (of
7959    // int/long/longlong) that fits.
7960    // If it's packed, check also if it fits a char or a short.
7961    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
7962      BestType = Context.SignedCharTy;
7963      BestWidth = CharWidth;
7964    } else if (Packed && NumNegativeBits <= ShortWidth &&
7965               NumPositiveBits < ShortWidth) {
7966      BestType = Context.ShortTy;
7967      BestWidth = ShortWidth;
7968    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
7969      BestType = Context.IntTy;
7970      BestWidth = IntWidth;
7971    } else {
7972      BestWidth = Context.Target.getLongWidth();
7973
7974      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
7975        BestType = Context.LongTy;
7976      } else {
7977        BestWidth = Context.Target.getLongLongWidth();
7978
7979        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
7980          Diag(Enum->getLocation(), diag::warn_enum_too_large);
7981        BestType = Context.LongLongTy;
7982      }
7983    }
7984    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
7985  } else {
7986    // If there is no negative value, figure out the smallest type that fits
7987    // all of the enumerator values.
7988    // If it's packed, check also if it fits a char or a short.
7989    if (Packed && NumPositiveBits <= CharWidth) {
7990      BestType = Context.UnsignedCharTy;
7991      BestPromotionType = Context.IntTy;
7992      BestWidth = CharWidth;
7993    } else if (Packed && NumPositiveBits <= ShortWidth) {
7994      BestType = Context.UnsignedShortTy;
7995      BestPromotionType = Context.IntTy;
7996      BestWidth = ShortWidth;
7997    } else if (NumPositiveBits <= IntWidth) {
7998      BestType = Context.UnsignedIntTy;
7999      BestWidth = IntWidth;
8000      BestPromotionType
8001        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8002                           ? Context.UnsignedIntTy : Context.IntTy;
8003    } else if (NumPositiveBits <=
8004               (BestWidth = Context.Target.getLongWidth())) {
8005      BestType = Context.UnsignedLongTy;
8006      BestPromotionType
8007        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8008                           ? Context.UnsignedLongTy : Context.LongTy;
8009    } else {
8010      BestWidth = Context.Target.getLongLongWidth();
8011      assert(NumPositiveBits <= BestWidth &&
8012             "How could an initializer get larger than ULL?");
8013      BestType = Context.UnsignedLongLongTy;
8014      BestPromotionType
8015        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8016                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
8017    }
8018  }
8019
8020  // Loop over all of the enumerator constants, changing their types to match
8021  // the type of the enum if needed.
8022  for (unsigned i = 0; i != NumElements; ++i) {
8023    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
8024    if (!ECD) continue;  // Already issued a diagnostic.
8025
8026    // Standard C says the enumerators have int type, but we allow, as an
8027    // extension, the enumerators to be larger than int size.  If each
8028    // enumerator value fits in an int, type it as an int, otherwise type it the
8029    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
8030    // that X has type 'int', not 'unsigned'.
8031
8032    // Determine whether the value fits into an int.
8033    llvm::APSInt InitVal = ECD->getInitVal();
8034
8035    // If it fits into an integer type, force it.  Otherwise force it to match
8036    // the enum decl type.
8037    QualType NewTy;
8038    unsigned NewWidth;
8039    bool NewSign;
8040    if (!getLangOptions().CPlusPlus &&
8041        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
8042      NewTy = Context.IntTy;
8043      NewWidth = IntWidth;
8044      NewSign = true;
8045    } else if (ECD->getType() == BestType) {
8046      // Already the right type!
8047      if (getLangOptions().CPlusPlus)
8048        // C++ [dcl.enum]p4: Following the closing brace of an
8049        // enum-specifier, each enumerator has the type of its
8050        // enumeration.
8051        ECD->setType(EnumType);
8052      continue;
8053    } else {
8054      NewTy = BestType;
8055      NewWidth = BestWidth;
8056      NewSign = BestType->isSignedIntegerType();
8057    }
8058
8059    // Adjust the APSInt value.
8060    InitVal = InitVal.extOrTrunc(NewWidth);
8061    InitVal.setIsSigned(NewSign);
8062    ECD->setInitVal(InitVal);
8063
8064    // Adjust the Expr initializer and type.
8065    if (ECD->getInitExpr() &&
8066	!Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
8067      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
8068                                                CK_IntegralCast,
8069                                                ECD->getInitExpr(),
8070                                                /*base paths*/ 0,
8071                                                VK_RValue));
8072    if (getLangOptions().CPlusPlus)
8073      // C++ [dcl.enum]p4: Following the closing brace of an
8074      // enum-specifier, each enumerator has the type of its
8075      // enumeration.
8076      ECD->setType(EnumType);
8077    else
8078      ECD->setType(NewTy);
8079  }
8080
8081  Enum->completeDefinition(BestType, BestPromotionType,
8082                           NumPositiveBits, NumNegativeBits);
8083}
8084
8085Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
8086                                  SourceLocation StartLoc,
8087                                  SourceLocation EndLoc) {
8088  StringLiteral *AsmString = cast<StringLiteral>(expr);
8089
8090  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
8091                                                   AsmString, StartLoc,
8092                                                   EndLoc);
8093  CurContext->addDecl(New);
8094  return New;
8095}
8096
8097void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
8098                             SourceLocation PragmaLoc,
8099                             SourceLocation NameLoc) {
8100  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
8101
8102  if (PrevDecl) {
8103    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
8104  } else {
8105    (void)WeakUndeclaredIdentifiers.insert(
8106      std::pair<IdentifierInfo*,WeakInfo>
8107        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
8108  }
8109}
8110
8111void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
8112                                IdentifierInfo* AliasName,
8113                                SourceLocation PragmaLoc,
8114                                SourceLocation NameLoc,
8115                                SourceLocation AliasNameLoc) {
8116  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
8117                                    LookupOrdinaryName);
8118  WeakInfo W = WeakInfo(Name, NameLoc);
8119
8120  if (PrevDecl) {
8121    if (!PrevDecl->hasAttr<AliasAttr>())
8122      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
8123        DeclApplyPragmaWeak(TUScope, ND, W);
8124  } else {
8125    (void)WeakUndeclaredIdentifiers.insert(
8126      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
8127  }
8128}
8129