SemaDecl.cpp revision 85a5319ea4b5c916d7dd665e84af61e4a8a0b9c2
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/Parse/DeclSpec.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Basic/SourceManager.h"
24// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "llvm/ADT/SmallSet.h"
28#include "llvm/ADT/STLExtras.h"
29#include <algorithm>
30#include <functional>
31using namespace clang;
32
33/// getDeclName - Return a pretty name for the specified decl if possible, or
34/// an empty string if not.  This is used for pretty crash reporting.
35std::string Sema::getDeclName(DeclPtrTy d) {
36  Decl *D = d.getAs<Decl>();
37  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
38    return DN->getQualifiedNameAsString();
39  return "";
40}
41
42Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
43  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
44}
45
46/// \brief If the identifier refers to a type name within this scope,
47/// return the declaration of that type.
48///
49/// This routine performs ordinary name lookup of the identifier II
50/// within the given scope, with optional C++ scope specifier SS, to
51/// determine whether the name refers to a type. If so, returns an
52/// opaque pointer (actually a QualType) corresponding to that
53/// type. Otherwise, returns NULL.
54///
55/// If name lookup results in an ambiguity, this routine will complain
56/// and then return NULL.
57Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
58                                Scope *S, const CXXScopeSpec *SS) {
59  // C++ [temp.res]p3:
60  //   A qualified-id that refers to a type and in which the
61  //   nested-name-specifier depends on a template-parameter (14.6.2)
62  //   shall be prefixed by the keyword typename to indicate that the
63  //   qualified-id denotes a type, forming an
64  //   elaborated-type-specifier (7.1.5.3).
65  //
66  // We therefore do not perform any name lookup up SS is a dependent
67  // scope name. FIXME: we will need to perform a special kind of
68  // lookup if the scope specifier names a member of the current
69  // instantiation.
70  if (SS && isDependentScopeSpecifier(*SS))
71    return 0;
72
73  NamedDecl *IIDecl = 0;
74  LookupResult Result = LookupParsedName(S, SS, &II, LookupOrdinaryName,
75                                         false, false);
76  switch (Result.getKind()) {
77  case LookupResult::NotFound:
78  case LookupResult::FoundOverloaded:
79    return 0;
80
81  case LookupResult::AmbiguousBaseSubobjectTypes:
82  case LookupResult::AmbiguousBaseSubobjects:
83  case LookupResult::AmbiguousReference: {
84    // Look to see if we have a type anywhere in the list of results.
85    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
86         Res != ResEnd; ++Res) {
87      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
88        IIDecl = *Res;
89        break;
90      }
91    }
92
93    if (!IIDecl) {
94      // None of the entities we found is a type, so there is no way
95      // to even assume that the result is a type. In this case, don't
96      // complain about the ambiguity. The parser will either try to
97      // perform this lookup again (e.g., as an object name), which
98      // will produce the ambiguity, or will complain that it expected
99      // a type name.
100      Result.Destroy();
101      return 0;
102    }
103
104    // We found a type within the ambiguous lookup; diagnose the
105    // ambiguity and then return that type. This might be the right
106    // answer, or it might not be, but it suppresses any attempt to
107    // perform the name lookup again.
108    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
109    break;
110  }
111
112  case LookupResult::Found:
113    IIDecl = Result.getAsDecl();
114    break;
115  }
116
117  if (IIDecl) {
118    QualType T;
119
120    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
121      // Check whether we can use this type
122      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
123
124      T = Context.getTypeDeclType(TD);
125    } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
126      // Check whether we can use this interface.
127      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
128
129      T = Context.getObjCInterfaceType(IDecl);
130    } else
131      return 0;
132
133    if (SS)
134      T = getQualifiedNameType(*SS, T);
135
136    return T.getAsOpaquePtr();
137  }
138
139  return 0;
140}
141
142DeclContext *Sema::getContainingDC(DeclContext *DC) {
143  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
144    // A C++ out-of-line method will return to the file declaration context.
145    if (MD->isOutOfLineDefinition())
146      return MD->getLexicalDeclContext();
147
148    // A C++ inline method is parsed *after* the topmost class it was declared
149    // in is fully parsed (it's "complete").
150    // The parsing of a C++ inline method happens at the declaration context of
151    // the topmost (non-nested) class it is lexically declared in.
152    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
153    DC = MD->getParent();
154    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
155      DC = RD;
156
157    // Return the declaration context of the topmost class the inline method is
158    // declared in.
159    return DC;
160  }
161
162  if (isa<ObjCMethodDecl>(DC))
163    return Context.getTranslationUnitDecl();
164
165  return DC->getLexicalParent();
166}
167
168void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
169  assert(getContainingDC(DC) == CurContext &&
170      "The next DeclContext should be lexically contained in the current one.");
171  CurContext = DC;
172  S->setEntity(DC);
173}
174
175void Sema::PopDeclContext() {
176  assert(CurContext && "DeclContext imbalance!");
177
178  CurContext = getContainingDC(CurContext);
179}
180
181/// \brief Determine whether we allow overloading of the function
182/// PrevDecl with another declaration.
183///
184/// This routine determines whether overloading is possible, not
185/// whether some new function is actually an overload. It will return
186/// true in C++ (where we can always provide overloads) or, as an
187/// extension, in C when the previous function is already an
188/// overloaded function declaration or has the "overloadable"
189/// attribute.
190static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
191  if (Context.getLangOptions().CPlusPlus)
192    return true;
193
194  if (isa<OverloadedFunctionDecl>(PrevDecl))
195    return true;
196
197  return PrevDecl->getAttr<OverloadableAttr>() != 0;
198}
199
200/// Add this decl to the scope shadowed decl chains.
201void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
202  // Move up the scope chain until we find the nearest enclosing
203  // non-transparent context. The declaration will be introduced into this
204  // scope.
205  while (S->getEntity() &&
206         ((DeclContext *)S->getEntity())->isTransparentContext())
207    S = S->getParent();
208
209  S->AddDecl(DeclPtrTy::make(D));
210
211  // Add scoped declarations into their context, so that they can be
212  // found later. Declarations without a context won't be inserted
213  // into any context.
214  CurContext->addDecl(D);
215
216  // C++ [basic.scope]p4:
217  //   -- exactly one declaration shall declare a class name or
218  //   enumeration name that is not a typedef name and the other
219  //   declarations shall all refer to the same object or
220  //   enumerator, or all refer to functions and function templates;
221  //   in this case the class name or enumeration name is hidden.
222  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
223    // We are pushing the name of a tag (enum or class).
224    if (CurContext->getLookupContext()
225          == TD->getDeclContext()->getLookupContext()) {
226      // We're pushing the tag into the current context, which might
227      // require some reshuffling in the identifier resolver.
228      IdentifierResolver::iterator
229        I = IdResolver.begin(TD->getDeclName()),
230        IEnd = IdResolver.end();
231      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
232        NamedDecl *PrevDecl = *I;
233        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
234             PrevDecl = *I, ++I) {
235          if (TD->declarationReplaces(*I)) {
236            // This is a redeclaration. Remove it from the chain and
237            // break out, so that we'll add in the shadowed
238            // declaration.
239            S->RemoveDecl(DeclPtrTy::make(*I));
240            if (PrevDecl == *I) {
241              IdResolver.RemoveDecl(*I);
242              IdResolver.AddDecl(TD);
243              return;
244            } else {
245              IdResolver.RemoveDecl(*I);
246              break;
247            }
248          }
249        }
250
251        // There is already a declaration with the same name in the same
252        // scope, which is not a tag declaration. It must be found
253        // before we find the new declaration, so insert the new
254        // declaration at the end of the chain.
255        IdResolver.AddShadowedDecl(TD, PrevDecl);
256
257        return;
258      }
259    }
260  } else if (isa<FunctionDecl>(D) &&
261             AllowOverloadingOfFunction(D, Context)) {
262    // We are pushing the name of a function, which might be an
263    // overloaded name.
264    FunctionDecl *FD = cast<FunctionDecl>(D);
265    IdentifierResolver::iterator Redecl
266      = std::find_if(IdResolver.begin(FD->getDeclName()),
267                     IdResolver.end(),
268                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
269                                  FD));
270    if (Redecl != IdResolver.end() &&
271        S->isDeclScope(DeclPtrTy::make(*Redecl))) {
272      // There is already a declaration of a function on our
273      // IdResolver chain. Replace it with this declaration.
274      S->RemoveDecl(DeclPtrTy::make(*Redecl));
275      IdResolver.RemoveDecl(*Redecl);
276    }
277  }
278
279  IdResolver.AddDecl(D);
280}
281
282void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
283  if (S->decl_empty()) return;
284  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
285	 "Scope shouldn't contain decls!");
286
287  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
288       I != E; ++I) {
289    Decl *TmpD = (*I).getAs<Decl>();
290    assert(TmpD && "This decl didn't get pushed??");
291
292    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
293    NamedDecl *D = cast<NamedDecl>(TmpD);
294
295    if (!D->getDeclName()) continue;
296
297    // Remove this name from our lexical scope.
298    IdResolver.RemoveDecl(D);
299  }
300}
301
302/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
303/// return 0 if one not found.
304ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
305  // The third "scope" argument is 0 since we aren't enabling lazy built-in
306  // creation from this context.
307  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
308
309  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
310}
311
312/// getNonFieldDeclScope - Retrieves the innermost scope, starting
313/// from S, where a non-field would be declared. This routine copes
314/// with the difference between C and C++ scoping rules in structs and
315/// unions. For example, the following code is well-formed in C but
316/// ill-formed in C++:
317/// @code
318/// struct S6 {
319///   enum { BAR } e;
320/// };
321///
322/// void test_S6() {
323///   struct S6 a;
324///   a.e = BAR;
325/// }
326/// @endcode
327/// For the declaration of BAR, this routine will return a different
328/// scope. The scope S will be the scope of the unnamed enumeration
329/// within S6. In C++, this routine will return the scope associated
330/// with S6, because the enumeration's scope is a transparent
331/// context but structures can contain non-field names. In C, this
332/// routine will return the translation unit scope, since the
333/// enumeration's scope is a transparent context and structures cannot
334/// contain non-field names.
335Scope *Sema::getNonFieldDeclScope(Scope *S) {
336  while (((S->getFlags() & Scope::DeclScope) == 0) ||
337         (S->getEntity() &&
338          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
339         (S->isClassScope() && !getLangOptions().CPlusPlus))
340    S = S->getParent();
341  return S;
342}
343
344void Sema::InitBuiltinVaListType() {
345  if (!Context.getBuiltinVaListType().isNull())
346    return;
347
348  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
349  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
350  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
351  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
352}
353
354/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
355/// file scope.  lazily create a decl for it. ForRedeclaration is true
356/// if we're creating this built-in in anticipation of redeclaring the
357/// built-in.
358NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
359                                     Scope *S, bool ForRedeclaration,
360                                     SourceLocation Loc) {
361  Builtin::ID BID = (Builtin::ID)bid;
362
363  if (Context.BuiltinInfo.hasVAListUse(BID))
364    InitBuiltinVaListType();
365
366  Builtin::Context::GetBuiltinTypeError Error;
367  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context, Error);
368  switch (Error) {
369  case Builtin::Context::GE_None:
370    // Okay
371    break;
372
373  case Builtin::Context::GE_Missing_FILE:
374    if (ForRedeclaration)
375      Diag(Loc, diag::err_implicit_decl_requires_stdio)
376        << Context.BuiltinInfo.GetName(BID);
377    return 0;
378  }
379
380  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
381    Diag(Loc, diag::ext_implicit_lib_function_decl)
382      << Context.BuiltinInfo.GetName(BID)
383      << R;
384    if (Context.BuiltinInfo.getHeaderName(BID) &&
385        Diags.getDiagnosticMapping(diag::ext_implicit_lib_function_decl)
386          != diag::MAP_IGNORE)
387      Diag(Loc, diag::note_please_include_header)
388        << Context.BuiltinInfo.getHeaderName(BID)
389        << Context.BuiltinInfo.GetName(BID);
390  }
391
392  FunctionDecl *New = FunctionDecl::Create(Context,
393                                           Context.getTranslationUnitDecl(),
394                                           Loc, II, R,
395                                           FunctionDecl::Extern, false,
396                                           /*hasPrototype=*/true);
397  New->setImplicit();
398
399  // Create Decl objects for each parameter, adding them to the
400  // FunctionDecl.
401  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
402    llvm::SmallVector<ParmVarDecl*, 16> Params;
403    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
404      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
405                                           FT->getArgType(i), VarDecl::None, 0));
406    New->setParams(Context, &Params[0], Params.size());
407  }
408
409  AddKnownFunctionAttributes(New);
410
411  // TUScope is the translation-unit scope to insert this function into.
412  // FIXME: This is hideous. We need to teach PushOnScopeChains to
413  // relate Scopes to DeclContexts, and probably eliminate CurContext
414  // entirely, but we're not there yet.
415  DeclContext *SavedContext = CurContext;
416  CurContext = Context.getTranslationUnitDecl();
417  PushOnScopeChains(New, TUScope);
418  CurContext = SavedContext;
419  return New;
420}
421
422/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
423/// everything from the standard library is defined.
424NamespaceDecl *Sema::GetStdNamespace() {
425  if (!StdNamespace) {
426    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
427    DeclContext *Global = Context.getTranslationUnitDecl();
428    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
429    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
430  }
431  return StdNamespace;
432}
433
434/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
435/// same name and scope as a previous declaration 'Old'.  Figure out
436/// how to resolve this situation, merging decls or emitting
437/// diagnostics as appropriate. Returns true if there was an error,
438/// false otherwise.
439///
440bool Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
441  bool objc_types = false;
442  // Allow multiple definitions for ObjC built-in typedefs.
443  // FIXME: Verify the underlying types are equivalent!
444  if (getLangOptions().ObjC1) {
445    const IdentifierInfo *TypeID = New->getIdentifier();
446    switch (TypeID->getLength()) {
447    default: break;
448    case 2:
449      if (!TypeID->isStr("id"))
450        break;
451      Context.setObjCIdType(New);
452      objc_types = true;
453      break;
454    case 5:
455      if (!TypeID->isStr("Class"))
456        break;
457      Context.setObjCClassType(New);
458      objc_types = true;
459      return false;
460    case 3:
461      if (!TypeID->isStr("SEL"))
462        break;
463      Context.setObjCSelType(New);
464      objc_types = true;
465      return false;
466    case 8:
467      if (!TypeID->isStr("Protocol"))
468        break;
469      Context.setObjCProtoType(New->getUnderlyingType());
470      objc_types = true;
471      return false;
472    }
473    // Fall through - the typedef name was not a builtin type.
474  }
475  // Verify the old decl was also a type.
476  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
477  if (!Old) {
478    Diag(New->getLocation(), diag::err_redefinition_different_kind)
479      << New->getDeclName();
480    if (!objc_types)
481      Diag(OldD->getLocation(), diag::note_previous_definition);
482    return true;
483  }
484
485  // Determine the "old" type we'll use for checking and diagnostics.
486  QualType OldType;
487  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
488    OldType = OldTypedef->getUnderlyingType();
489  else
490    OldType = Context.getTypeDeclType(Old);
491
492  // If the typedef types are not identical, reject them in all languages and
493  // with any extensions enabled.
494
495  if (OldType != New->getUnderlyingType() &&
496      Context.getCanonicalType(OldType) !=
497      Context.getCanonicalType(New->getUnderlyingType())) {
498    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
499      << New->getUnderlyingType() << OldType;
500    if (!objc_types)
501      Diag(Old->getLocation(), diag::note_previous_definition);
502    return true;
503  }
504  if (objc_types) return false;
505  if (getLangOptions().Microsoft) return false;
506
507  // C++ [dcl.typedef]p2:
508  //   In a given non-class scope, a typedef specifier can be used to
509  //   redefine the name of any type declared in that scope to refer
510  //   to the type to which it already refers.
511  if (getLangOptions().CPlusPlus && !isa<CXXRecordDecl>(CurContext))
512    return false;
513
514  // In C, redeclaration of a type is a constraint violation (6.7.2.3p1).
515  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
516  // *either* declaration is in a system header. The code below implements
517  // this adhoc compatibility rule. FIXME: The following code will not
518  // work properly when compiling ".i" files (containing preprocessed output).
519  if (PP.getDiagnostics().getSuppressSystemWarnings()) {
520    SourceManager &SrcMgr = Context.getSourceManager();
521    if (SrcMgr.isInSystemHeader(Old->getLocation()))
522      return false;
523    if (SrcMgr.isInSystemHeader(New->getLocation()))
524      return false;
525  }
526
527  Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
528  Diag(Old->getLocation(), diag::note_previous_definition);
529  return true;
530}
531
532/// DeclhasAttr - returns true if decl Declaration already has the target
533/// attribute.
534static bool DeclHasAttr(const Decl *decl, const Attr *target) {
535  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
536    if (attr->getKind() == target->getKind())
537      return true;
538
539  return false;
540}
541
542/// MergeAttributes - append attributes from the Old decl to the New one.
543static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
544  Attr *attr = const_cast<Attr*>(Old->getAttrs());
545
546  while (attr) {
547    Attr *tmp = attr;
548    attr = attr->getNext();
549
550    if (!DeclHasAttr(New, tmp) && tmp->isMerged()) {
551      tmp->setInherited(true);
552      New->addAttr(tmp);
553    } else {
554      tmp->setNext(0);
555      tmp->Destroy(C);
556    }
557  }
558
559  Old->invalidateAttrs();
560}
561
562/// Used in MergeFunctionDecl to keep track of function parameters in
563/// C.
564struct GNUCompatibleParamWarning {
565  ParmVarDecl *OldParm;
566  ParmVarDecl *NewParm;
567  QualType PromotedType;
568};
569
570/// MergeFunctionDecl - We just parsed a function 'New' from
571/// declarator D which has the same name and scope as a previous
572/// declaration 'Old'.  Figure out how to resolve this situation,
573/// merging decls or emitting diagnostics as appropriate.
574///
575/// In C++, New and Old must be declarations that are not
576/// overloaded. Use IsOverload to determine whether New and Old are
577/// overloaded, and to select the Old declaration that New should be
578/// merged with.
579///
580/// Returns true if there was an error, false otherwise.
581bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
582  assert(!isa<OverloadedFunctionDecl>(OldD) &&
583         "Cannot merge with an overloaded function declaration");
584
585  // Verify the old decl was also a function.
586  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
587  if (!Old) {
588    Diag(New->getLocation(), diag::err_redefinition_different_kind)
589      << New->getDeclName();
590    Diag(OldD->getLocation(), diag::note_previous_definition);
591    return true;
592  }
593
594  // Determine whether the previous declaration was a definition,
595  // implicit declaration, or a declaration.
596  diag::kind PrevDiag;
597  if (Old->isThisDeclarationADefinition())
598    PrevDiag = diag::note_previous_definition;
599  else if (Old->isImplicit())
600    PrevDiag = diag::note_previous_implicit_declaration;
601  else
602    PrevDiag = diag::note_previous_declaration;
603
604  QualType OldQType = Context.getCanonicalType(Old->getType());
605  QualType NewQType = Context.getCanonicalType(New->getType());
606
607  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
608      New->getStorageClass() == FunctionDecl::Static &&
609      Old->getStorageClass() != FunctionDecl::Static) {
610    Diag(New->getLocation(), diag::err_static_non_static)
611      << New;
612    Diag(Old->getLocation(), PrevDiag);
613    return true;
614  }
615
616  if (getLangOptions().CPlusPlus) {
617    // (C++98 13.1p2):
618    //   Certain function declarations cannot be overloaded:
619    //     -- Function declarations that differ only in the return type
620    //        cannot be overloaded.
621    QualType OldReturnType
622      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
623    QualType NewReturnType
624      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
625    if (OldReturnType != NewReturnType) {
626      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
627      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
628      return true;
629    }
630
631    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
632    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
633    if (OldMethod && NewMethod &&
634        OldMethod->getLexicalDeclContext() ==
635          NewMethod->getLexicalDeclContext()) {
636      //    -- Member function declarations with the same name and the
637      //       same parameter types cannot be overloaded if any of them
638      //       is a static member function declaration.
639      if (OldMethod->isStatic() || NewMethod->isStatic()) {
640        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
641        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
642        return true;
643      }
644
645      // C++ [class.mem]p1:
646      //   [...] A member shall not be declared twice in the
647      //   member-specification, except that a nested class or member
648      //   class template can be declared and then later defined.
649      unsigned NewDiag;
650      if (isa<CXXConstructorDecl>(OldMethod))
651        NewDiag = diag::err_constructor_redeclared;
652      else if (isa<CXXDestructorDecl>(NewMethod))
653        NewDiag = diag::err_destructor_redeclared;
654      else if (isa<CXXConversionDecl>(NewMethod))
655        NewDiag = diag::err_conv_function_redeclared;
656      else
657        NewDiag = diag::err_member_redeclared;
658
659      Diag(New->getLocation(), NewDiag);
660      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
661    }
662
663    // (C++98 8.3.5p3):
664    //   All declarations for a function shall agree exactly in both the
665    //   return type and the parameter-type-list.
666    if (OldQType == NewQType)
667      return MergeCompatibleFunctionDecls(New, Old);
668
669    // Fall through for conflicting redeclarations and redefinitions.
670  }
671
672  // C: Function types need to be compatible, not identical. This handles
673  // duplicate function decls like "void f(int); void f(enum X);" properly.
674  if (!getLangOptions().CPlusPlus &&
675      Context.typesAreCompatible(OldQType, NewQType)) {
676    const FunctionType *OldFuncType = OldQType->getAsFunctionType();
677    const FunctionType *NewFuncType = NewQType->getAsFunctionType();
678    const FunctionProtoType *OldProto = 0;
679    if (isa<FunctionNoProtoType>(NewFuncType) &&
680        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
681      // The old declaration provided a function prototype, but the
682      // new declaration does not. Merge in the prototype.
683      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
684                                                 OldProto->arg_type_end());
685      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
686                                         &ParamTypes[0], ParamTypes.size(),
687                                         OldProto->isVariadic(),
688                                         OldProto->getTypeQuals());
689      New->setType(NewQType);
690      New->setInheritedPrototype();
691
692      // Synthesize a parameter for each argument type.
693      llvm::SmallVector<ParmVarDecl*, 16> Params;
694      for (FunctionProtoType::arg_type_iterator
695             ParamType = OldProto->arg_type_begin(),
696             ParamEnd = OldProto->arg_type_end();
697           ParamType != ParamEnd; ++ParamType) {
698        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
699                                                 SourceLocation(), 0,
700                                                 *ParamType, VarDecl::None,
701                                                 0);
702        Param->setImplicit();
703        Params.push_back(Param);
704      }
705
706      New->setParams(Context, &Params[0], Params.size());
707    }
708
709    return MergeCompatibleFunctionDecls(New, Old);
710  }
711
712  // GNU C permits a K&R definition to follow a prototype declaration
713  // if the declared types of the parameters in the K&R definition
714  // match the types in the prototype declaration, even when the
715  // promoted types of the parameters from the K&R definition differ
716  // from the types in the prototype. GCC then keeps the types from
717  // the prototype.
718  if (!getLangOptions().CPlusPlus &&
719      !getLangOptions().NoExtensions &&
720      Old->hasPrototype() && !New->hasPrototype() &&
721      New->getType()->getAsFunctionProtoType() &&
722      Old->getNumParams() == New->getNumParams()) {
723    llvm::SmallVector<QualType, 16> ArgTypes;
724    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
725    const FunctionProtoType *OldProto
726      = Old->getType()->getAsFunctionProtoType();
727    const FunctionProtoType *NewProto
728      = New->getType()->getAsFunctionProtoType();
729
730    // Determine whether this is the GNU C extension.
731    bool GNUCompatible =
732      Context.typesAreCompatible(OldProto->getResultType(),
733                                 NewProto->getResultType()) &&
734      (OldProto->isVariadic() == NewProto->isVariadic());
735    for (unsigned Idx = 0, End = Old->getNumParams();
736         GNUCompatible && Idx != End; ++Idx) {
737      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
738      ParmVarDecl *NewParm = New->getParamDecl(Idx);
739      if (Context.typesAreCompatible(OldParm->getType(),
740                                     NewProto->getArgType(Idx))) {
741        ArgTypes.push_back(NewParm->getType());
742      } else if (Context.typesAreCompatible(OldParm->getType(),
743                                            NewParm->getType())) {
744        GNUCompatibleParamWarning Warn
745          = { OldParm, NewParm, NewProto->getArgType(Idx) };
746        Warnings.push_back(Warn);
747        ArgTypes.push_back(NewParm->getType());
748      } else
749        GNUCompatible = false;
750    }
751
752    if (GNUCompatible) {
753      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
754        Diag(Warnings[Warn].NewParm->getLocation(),
755             diag::ext_param_promoted_not_compatible_with_prototype)
756          << Warnings[Warn].PromotedType
757          << Warnings[Warn].OldParm->getType();
758        Diag(Warnings[Warn].OldParm->getLocation(),
759             diag::note_previous_declaration);
760      }
761
762      New->setType(Context.getFunctionType(NewProto->getResultType(),
763                                           &ArgTypes[0], ArgTypes.size(),
764                                           NewProto->isVariadic(),
765                                           NewProto->getTypeQuals()));
766      return MergeCompatibleFunctionDecls(New, Old);
767    }
768
769    // Fall through to diagnose conflicting types.
770  }
771
772  // A function that has already been declared has been redeclared or defined
773  // with a different type- show appropriate diagnostic
774  if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
775    // The user has declared a builtin function with an incompatible
776    // signature.
777    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
778      // The function the user is redeclaring is a library-defined
779      // function like 'malloc' or 'printf'. Warn about the
780      // redeclaration, then pretend that we don't know about this
781      // library built-in.
782      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
783      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
784        << Old << Old->getType();
785      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
786      Old->setInvalidDecl();
787      return false;
788    }
789
790    PrevDiag = diag::note_previous_builtin_declaration;
791  }
792
793  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
794  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
795  return true;
796}
797
798/// \brief Completes the merge of two function declarations that are
799/// known to be compatible.
800///
801/// This routine handles the merging of attributes and other
802/// properties of function declarations form the old declaration to
803/// the new declaration, once we know that New is in fact a
804/// redeclaration of Old.
805///
806/// \returns false
807bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
808  // Merge the attributes
809  MergeAttributes(New, Old, Context);
810
811  // Merge the storage class.
812  New->setStorageClass(Old->getStorageClass());
813
814  // FIXME: need to implement inline semantics
815
816  // Merge "pure" flag.
817  if (Old->isPure())
818    New->setPure();
819
820  // Merge the "deleted" flag.
821  if (Old->isDeleted())
822    New->setDeleted();
823
824  if (getLangOptions().CPlusPlus)
825    return MergeCXXFunctionDecl(New, Old);
826
827  return false;
828}
829
830/// MergeVarDecl - We just parsed a variable 'New' which has the same name
831/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
832/// situation, merging decls or emitting diagnostics as appropriate.
833///
834/// Tentative definition rules (C99 6.9.2p2) are checked by
835/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
836/// definitions here, since the initializer hasn't been attached.
837///
838bool Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
839  // Verify the old decl was also a variable.
840  VarDecl *Old = dyn_cast<VarDecl>(OldD);
841  if (!Old) {
842    Diag(New->getLocation(), diag::err_redefinition_different_kind)
843      << New->getDeclName();
844    Diag(OldD->getLocation(), diag::note_previous_definition);
845    return true;
846  }
847
848  MergeAttributes(New, Old, Context);
849
850  // Merge the types
851  QualType MergedT = Context.mergeTypes(New->getType(), Old->getType());
852  if (MergedT.isNull()) {
853    Diag(New->getLocation(), diag::err_redefinition_different_type)
854      << New->getDeclName();
855    Diag(Old->getLocation(), diag::note_previous_definition);
856    return true;
857  }
858  New->setType(MergedT);
859
860  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
861  if (New->getStorageClass() == VarDecl::Static &&
862      (Old->getStorageClass() == VarDecl::None ||
863       Old->getStorageClass() == VarDecl::Extern)) {
864    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
865    Diag(Old->getLocation(), diag::note_previous_definition);
866    return true;
867  }
868  // C99 6.2.2p4:
869  //   For an identifier declared with the storage-class specifier
870  //   extern in a scope in which a prior declaration of that
871  //   identifier is visible,23) if the prior declaration specifies
872  //   internal or external linkage, the linkage of the identifier at
873  //   the later declaration is the same as the linkage specified at
874  //   the prior declaration. If no prior declaration is visible, or
875  //   if the prior declaration specifies no linkage, then the
876  //   identifier has external linkage.
877  if (New->hasExternalStorage() && Old->hasLinkage())
878    /* Okay */;
879  else if (New->getStorageClass() != VarDecl::Static &&
880           Old->getStorageClass() == VarDecl::Static) {
881    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
882    Diag(Old->getLocation(), diag::note_previous_definition);
883    return true;
884  }
885  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
886  if (New->getStorageClass() != VarDecl::Extern && !New->isFileVarDecl() &&
887      // Don't complain about out-of-line definitions of static members.
888      !(Old->getLexicalDeclContext()->isRecord() &&
889        !New->getLexicalDeclContext()->isRecord())) {
890    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
891    Diag(Old->getLocation(), diag::note_previous_definition);
892    return true;
893  }
894
895  // Keep a chain of previous declarations.
896  New->setPreviousDeclaration(Old);
897
898  return false;
899}
900
901/// CheckParmsForFunctionDef - Check that the parameters of the given
902/// function are appropriate for the definition of a function. This
903/// takes care of any checks that cannot be performed on the
904/// declaration itself, e.g., that the types of each of the function
905/// parameters are complete.
906bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
907  bool HasInvalidParm = false;
908  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
909    ParmVarDecl *Param = FD->getParamDecl(p);
910
911    // C99 6.7.5.3p4: the parameters in a parameter type list in a
912    // function declarator that is part of a function definition of
913    // that function shall not have incomplete type.
914    //
915    // This is also C++ [dcl.fct]p6.
916    if (!Param->isInvalidDecl() &&
917        RequireCompleteType(Param->getLocation(), Param->getType(),
918                               diag::err_typecheck_decl_incomplete_type)) {
919      Param->setInvalidDecl();
920      HasInvalidParm = true;
921    }
922
923    // C99 6.9.1p5: If the declarator includes a parameter type list, the
924    // declaration of each parameter shall include an identifier.
925    if (Param->getIdentifier() == 0 &&
926        !Param->isImplicit() &&
927        !getLangOptions().CPlusPlus)
928      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
929  }
930
931  return HasInvalidParm;
932}
933
934/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
935/// no declarator (e.g. "struct foo;") is parsed.
936Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
937  TagDecl *Tag = 0;
938  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
939      DS.getTypeSpecType() == DeclSpec::TST_struct ||
940      DS.getTypeSpecType() == DeclSpec::TST_union ||
941      DS.getTypeSpecType() == DeclSpec::TST_enum)
942    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
943
944  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
945    if (!Record->getDeclName() && Record->isDefinition() &&
946        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
947      if (getLangOptions().CPlusPlus ||
948          Record->getDeclContext()->isRecord())
949        return BuildAnonymousStructOrUnion(S, DS, Record);
950
951      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
952        << DS.getSourceRange();
953    }
954
955    // Microsoft allows unnamed struct/union fields. Don't complain
956    // about them.
957    // FIXME: Should we support Microsoft's extensions in this area?
958    if (Record->getDeclName() && getLangOptions().Microsoft)
959      return DeclPtrTy::make(Tag);
960  }
961
962  if (!DS.isMissingDeclaratorOk() &&
963      DS.getTypeSpecType() != DeclSpec::TST_error) {
964    // Warn about typedefs of enums without names, since this is an
965    // extension in both Microsoft an GNU.
966    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
967        Tag && isa<EnumDecl>(Tag)) {
968      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
969        << DS.getSourceRange();
970      return DeclPtrTy::make(Tag);
971    }
972
973    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
974      << DS.getSourceRange();
975    return DeclPtrTy();
976  }
977
978  return DeclPtrTy::make(Tag);
979}
980
981/// InjectAnonymousStructOrUnionMembers - Inject the members of the
982/// anonymous struct or union AnonRecord into the owning context Owner
983/// and scope S. This routine will be invoked just after we realize
984/// that an unnamed union or struct is actually an anonymous union or
985/// struct, e.g.,
986///
987/// @code
988/// union {
989///   int i;
990///   float f;
991/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
992///    // f into the surrounding scope.x
993/// @endcode
994///
995/// This routine is recursive, injecting the names of nested anonymous
996/// structs/unions into the owning context and scope as well.
997bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
998                                               RecordDecl *AnonRecord) {
999  bool Invalid = false;
1000  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1001                               FEnd = AnonRecord->field_end();
1002       F != FEnd; ++F) {
1003    if ((*F)->getDeclName()) {
1004      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
1005                                                LookupOrdinaryName, true);
1006      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
1007        // C++ [class.union]p2:
1008        //   The names of the members of an anonymous union shall be
1009        //   distinct from the names of any other entity in the
1010        //   scope in which the anonymous union is declared.
1011        unsigned diagKind
1012          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
1013                                 : diag::err_anonymous_struct_member_redecl;
1014        Diag((*F)->getLocation(), diagKind)
1015          << (*F)->getDeclName();
1016        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1017        Invalid = true;
1018      } else {
1019        // C++ [class.union]p2:
1020        //   For the purpose of name lookup, after the anonymous union
1021        //   definition, the members of the anonymous union are
1022        //   considered to have been defined in the scope in which the
1023        //   anonymous union is declared.
1024        Owner->makeDeclVisibleInContext(*F);
1025        S->AddDecl(DeclPtrTy::make(*F));
1026        IdResolver.AddDecl(*F);
1027      }
1028    } else if (const RecordType *InnerRecordType
1029                 = (*F)->getType()->getAsRecordType()) {
1030      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1031      if (InnerRecord->isAnonymousStructOrUnion())
1032        Invalid = Invalid ||
1033          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1034    }
1035  }
1036
1037  return Invalid;
1038}
1039
1040/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1041/// anonymous structure or union. Anonymous unions are a C++ feature
1042/// (C++ [class.union]) and a GNU C extension; anonymous structures
1043/// are a GNU C and GNU C++ extension.
1044Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1045                                                  RecordDecl *Record) {
1046  DeclContext *Owner = Record->getDeclContext();
1047
1048  // Diagnose whether this anonymous struct/union is an extension.
1049  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1050    Diag(Record->getLocation(), diag::ext_anonymous_union);
1051  else if (!Record->isUnion())
1052    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1053
1054  // C and C++ require different kinds of checks for anonymous
1055  // structs/unions.
1056  bool Invalid = false;
1057  if (getLangOptions().CPlusPlus) {
1058    const char* PrevSpec = 0;
1059    // C++ [class.union]p3:
1060    //   Anonymous unions declared in a named namespace or in the
1061    //   global namespace shall be declared static.
1062    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1063        (isa<TranslationUnitDecl>(Owner) ||
1064         (isa<NamespaceDecl>(Owner) &&
1065          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1066      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1067      Invalid = true;
1068
1069      // Recover by adding 'static'.
1070      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
1071    }
1072    // C++ [class.union]p3:
1073    //   A storage class is not allowed in a declaration of an
1074    //   anonymous union in a class scope.
1075    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1076             isa<RecordDecl>(Owner)) {
1077      Diag(DS.getStorageClassSpecLoc(),
1078           diag::err_anonymous_union_with_storage_spec);
1079      Invalid = true;
1080
1081      // Recover by removing the storage specifier.
1082      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1083                             PrevSpec);
1084    }
1085
1086    // C++ [class.union]p2:
1087    //   The member-specification of an anonymous union shall only
1088    //   define non-static data members. [Note: nested types and
1089    //   functions cannot be declared within an anonymous union. ]
1090    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1091                                 MemEnd = Record->decls_end();
1092         Mem != MemEnd; ++Mem) {
1093      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1094        // C++ [class.union]p3:
1095        //   An anonymous union shall not have private or protected
1096        //   members (clause 11).
1097        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1098          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1099            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1100          Invalid = true;
1101        }
1102      } else if ((*Mem)->isImplicit()) {
1103        // Any implicit members are fine.
1104      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1105        // This is a type that showed up in an
1106        // elaborated-type-specifier inside the anonymous struct or
1107        // union, but which actually declares a type outside of the
1108        // anonymous struct or union. It's okay.
1109      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1110        if (!MemRecord->isAnonymousStructOrUnion() &&
1111            MemRecord->getDeclName()) {
1112          // This is a nested type declaration.
1113          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1114            << (int)Record->isUnion();
1115          Invalid = true;
1116        }
1117      } else {
1118        // We have something that isn't a non-static data
1119        // member. Complain about it.
1120        unsigned DK = diag::err_anonymous_record_bad_member;
1121        if (isa<TypeDecl>(*Mem))
1122          DK = diag::err_anonymous_record_with_type;
1123        else if (isa<FunctionDecl>(*Mem))
1124          DK = diag::err_anonymous_record_with_function;
1125        else if (isa<VarDecl>(*Mem))
1126          DK = diag::err_anonymous_record_with_static;
1127        Diag((*Mem)->getLocation(), DK)
1128            << (int)Record->isUnion();
1129          Invalid = true;
1130      }
1131    }
1132  }
1133
1134  if (!Record->isUnion() && !Owner->isRecord()) {
1135    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1136      << (int)getLangOptions().CPlusPlus;
1137    Invalid = true;
1138  }
1139
1140  // Create a declaration for this anonymous struct/union.
1141  NamedDecl *Anon = 0;
1142  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1143    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1144                             /*IdentifierInfo=*/0,
1145                             Context.getTypeDeclType(Record),
1146                             /*BitWidth=*/0, /*Mutable=*/false);
1147    Anon->setAccess(AS_public);
1148    if (getLangOptions().CPlusPlus)
1149      FieldCollector->Add(cast<FieldDecl>(Anon));
1150  } else {
1151    VarDecl::StorageClass SC;
1152    switch (DS.getStorageClassSpec()) {
1153    default: assert(0 && "Unknown storage class!");
1154    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1155    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1156    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1157    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1158    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1159    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1160    case DeclSpec::SCS_mutable:
1161      // mutable can only appear on non-static class members, so it's always
1162      // an error here
1163      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1164      Invalid = true;
1165      SC = VarDecl::None;
1166      break;
1167    }
1168
1169    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1170                           /*IdentifierInfo=*/0,
1171                           Context.getTypeDeclType(Record),
1172                           SC, DS.getSourceRange().getBegin());
1173  }
1174  Anon->setImplicit();
1175
1176  // Add the anonymous struct/union object to the current
1177  // context. We'll be referencing this object when we refer to one of
1178  // its members.
1179  Owner->addDecl(Anon);
1180
1181  // Inject the members of the anonymous struct/union into the owning
1182  // context and into the identifier resolver chain for name lookup
1183  // purposes.
1184  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1185    Invalid = true;
1186
1187  // Mark this as an anonymous struct/union type. Note that we do not
1188  // do this until after we have already checked and injected the
1189  // members of this anonymous struct/union type, because otherwise
1190  // the members could be injected twice: once by DeclContext when it
1191  // builds its lookup table, and once by
1192  // InjectAnonymousStructOrUnionMembers.
1193  Record->setAnonymousStructOrUnion(true);
1194
1195  if (Invalid)
1196    Anon->setInvalidDecl();
1197
1198  return DeclPtrTy::make(Anon);
1199}
1200
1201
1202/// GetNameForDeclarator - Determine the full declaration name for the
1203/// given Declarator.
1204DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1205  switch (D.getKind()) {
1206  case Declarator::DK_Abstract:
1207    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1208    return DeclarationName();
1209
1210  case Declarator::DK_Normal:
1211    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1212    return DeclarationName(D.getIdentifier());
1213
1214  case Declarator::DK_Constructor: {
1215    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1216    Ty = Context.getCanonicalType(Ty);
1217    return Context.DeclarationNames.getCXXConstructorName(Ty);
1218  }
1219
1220  case Declarator::DK_Destructor: {
1221    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1222    Ty = Context.getCanonicalType(Ty);
1223    return Context.DeclarationNames.getCXXDestructorName(Ty);
1224  }
1225
1226  case Declarator::DK_Conversion: {
1227    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1228    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1229    Ty = Context.getCanonicalType(Ty);
1230    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1231  }
1232
1233  case Declarator::DK_Operator:
1234    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1235    return Context.DeclarationNames.getCXXOperatorName(
1236                                                D.getOverloadedOperator());
1237  }
1238
1239  assert(false && "Unknown name kind");
1240  return DeclarationName();
1241}
1242
1243/// isNearlyMatchingFunction - Determine whether the C++ functions
1244/// Declaration and Definition are "nearly" matching. This heuristic
1245/// is used to improve diagnostics in the case where an out-of-line
1246/// function definition doesn't match any declaration within
1247/// the class or namespace.
1248static bool isNearlyMatchingFunction(ASTContext &Context,
1249                                     FunctionDecl *Declaration,
1250                                     FunctionDecl *Definition) {
1251  if (Declaration->param_size() != Definition->param_size())
1252    return false;
1253  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1254    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1255    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1256
1257    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1258    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1259    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1260      return false;
1261  }
1262
1263  return true;
1264}
1265
1266Sema::DeclPtrTy
1267Sema::ActOnDeclarator(Scope *S, Declarator &D, bool IsFunctionDefinition) {
1268  DeclarationName Name = GetNameForDeclarator(D);
1269
1270  // All of these full declarators require an identifier.  If it doesn't have
1271  // one, the ParsedFreeStandingDeclSpec action should be used.
1272  if (!Name) {
1273    if (!D.getInvalidType())  // Reject this if we think it is valid.
1274      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1275           diag::err_declarator_need_ident)
1276        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1277    return DeclPtrTy();
1278  }
1279
1280  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1281  // we find one that is.
1282  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1283         (S->getFlags() & Scope::TemplateParamScope) != 0)
1284    S = S->getParent();
1285
1286  DeclContext *DC;
1287  NamedDecl *PrevDecl;
1288  NamedDecl *New;
1289  bool InvalidDecl = false;
1290
1291  QualType R = GetTypeForDeclarator(D, S);
1292  if (R.isNull()) {
1293    InvalidDecl = true;
1294    R = Context.IntTy;
1295  }
1296
1297  // See if this is a redefinition of a variable in the same scope.
1298  if (D.getCXXScopeSpec().isInvalid()) {
1299    DC = CurContext;
1300    PrevDecl = 0;
1301    InvalidDecl = true;
1302  } else if (!D.getCXXScopeSpec().isSet()) {
1303    LookupNameKind NameKind = LookupOrdinaryName;
1304
1305    // If the declaration we're planning to build will be a function
1306    // or object with linkage, then look for another declaration with
1307    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1308    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1309      /* Do nothing*/;
1310    else if (R->isFunctionType()) {
1311      if (CurContext->isFunctionOrMethod())
1312        NameKind = LookupRedeclarationWithLinkage;
1313    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1314      NameKind = LookupRedeclarationWithLinkage;
1315
1316    DC = CurContext;
1317    PrevDecl = LookupName(S, Name, NameKind, true,
1318                          D.getDeclSpec().getStorageClassSpec() !=
1319                            DeclSpec::SCS_static,
1320                          D.getIdentifierLoc());
1321  } else { // Something like "int foo::x;"
1322    DC = computeDeclContext(D.getCXXScopeSpec());
1323    // FIXME: RequireCompleteDeclContext(D.getCXXScopeSpec()); ?
1324    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1325
1326    // C++ 7.3.1.2p2:
1327    // Members (including explicit specializations of templates) of a named
1328    // namespace can also be defined outside that namespace by explicit
1329    // qualification of the name being defined, provided that the entity being
1330    // defined was already declared in the namespace and the definition appears
1331    // after the point of declaration in a namespace that encloses the
1332    // declarations namespace.
1333    //
1334    // Note that we only check the context at this point. We don't yet
1335    // have enough information to make sure that PrevDecl is actually
1336    // the declaration we want to match. For example, given:
1337    //
1338    //   class X {
1339    //     void f();
1340    //     void f(float);
1341    //   };
1342    //
1343    //   void X::f(int) { } // ill-formed
1344    //
1345    // In this case, PrevDecl will point to the overload set
1346    // containing the two f's declared in X, but neither of them
1347    // matches.
1348
1349    // First check whether we named the global scope.
1350    if (isa<TranslationUnitDecl>(DC)) {
1351      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1352        << Name << D.getCXXScopeSpec().getRange();
1353    } else if (!CurContext->Encloses(DC)) {
1354      // The qualifying scope doesn't enclose the original declaration.
1355      // Emit diagnostic based on current scope.
1356      SourceLocation L = D.getIdentifierLoc();
1357      SourceRange R = D.getCXXScopeSpec().getRange();
1358      if (isa<FunctionDecl>(CurContext))
1359        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1360      else
1361        Diag(L, diag::err_invalid_declarator_scope)
1362          << Name << cast<NamedDecl>(DC) << R;
1363      InvalidDecl = true;
1364    }
1365  }
1366
1367  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1368    // Maybe we will complain about the shadowed template parameter.
1369    InvalidDecl = InvalidDecl
1370      || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
1371    // Just pretend that we didn't see the previous declaration.
1372    PrevDecl = 0;
1373  }
1374
1375  // In C++, the previous declaration we find might be a tag type
1376  // (class or enum). In this case, the new declaration will hide the
1377  // tag type. Note that this does does not apply if we're declaring a
1378  // typedef (C++ [dcl.typedef]p4).
1379  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1380      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1381    PrevDecl = 0;
1382
1383  bool Redeclaration = false;
1384  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1385    New = ActOnTypedefDeclarator(S, D, DC, R, PrevDecl,
1386                                 InvalidDecl, Redeclaration);
1387  } else if (R->isFunctionType()) {
1388    New = ActOnFunctionDeclarator(S, D, DC, R, PrevDecl,
1389                                  IsFunctionDefinition, InvalidDecl,
1390                                  Redeclaration);
1391  } else {
1392    New = ActOnVariableDeclarator(S, D, DC, R, PrevDecl,
1393                                  InvalidDecl, Redeclaration);
1394  }
1395
1396  if (New == 0)
1397    return DeclPtrTy();
1398
1399  // If this has an identifier and is not an invalid redeclaration,
1400  // add it to the scope stack.
1401  if (Name && !(Redeclaration && InvalidDecl))
1402    PushOnScopeChains(New, S);
1403  // If any semantic error occurred, mark the decl as invalid.
1404  if (D.getInvalidType() || InvalidDecl)
1405    New->setInvalidDecl();
1406
1407  return DeclPtrTy::make(New);
1408}
1409
1410/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1411/// types into constant array types in certain situations which would otherwise
1412/// be errors (for GCC compatibility).
1413static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1414                                                    ASTContext &Context,
1415                                                    bool &SizeIsNegative) {
1416  // This method tries to turn a variable array into a constant
1417  // array even when the size isn't an ICE.  This is necessary
1418  // for compatibility with code that depends on gcc's buggy
1419  // constant expression folding, like struct {char x[(int)(char*)2];}
1420  SizeIsNegative = false;
1421
1422  if (const PointerType* PTy = dyn_cast<PointerType>(T)) {
1423    QualType Pointee = PTy->getPointeeType();
1424    QualType FixedType =
1425        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1426    if (FixedType.isNull()) return FixedType;
1427    FixedType = Context.getPointerType(FixedType);
1428    FixedType.setCVRQualifiers(T.getCVRQualifiers());
1429    return FixedType;
1430  }
1431
1432  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1433  if (!VLATy)
1434    return QualType();
1435  // FIXME: We should probably handle this case
1436  if (VLATy->getElementType()->isVariablyModifiedType())
1437    return QualType();
1438
1439  Expr::EvalResult EvalResult;
1440  if (!VLATy->getSizeExpr() ||
1441      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1442      !EvalResult.Val.isInt())
1443    return QualType();
1444
1445  llvm::APSInt &Res = EvalResult.Val.getInt();
1446  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
1447    return Context.getConstantArrayType(VLATy->getElementType(),
1448                                        Res, ArrayType::Normal, 0);
1449
1450  SizeIsNegative = true;
1451  return QualType();
1452}
1453
1454/// \brief Register the given locally-scoped external C declaration so
1455/// that it can be found later for redeclarations
1456void
1457Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1458                                       Scope *S) {
1459  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1460         "Decl is not a locally-scoped decl!");
1461  // Note that we have a locally-scoped external with this name.
1462  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1463
1464  if (!PrevDecl)
1465    return;
1466
1467  // If there was a previous declaration of this variable, it may be
1468  // in our identifier chain. Update the identifier chain with the new
1469  // declaration.
1470  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
1471    // The previous declaration was found on the identifer resolver
1472    // chain, so remove it from its scope.
1473    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
1474      S = S->getParent();
1475
1476    if (S)
1477      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
1478  }
1479}
1480
1481/// \brief Diagnose function specifiers on a declaration of an identifier that
1482/// does not identify a function.
1483void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
1484  // FIXME: We should probably indicate the identifier in question to avoid
1485  // confusion for constructs like "inline int a(), b;"
1486  if (D.getDeclSpec().isInlineSpecified())
1487    Diag(D.getDeclSpec().getInlineSpecLoc(),
1488         diag::err_inline_non_function);
1489
1490  if (D.getDeclSpec().isVirtualSpecified())
1491    Diag(D.getDeclSpec().getVirtualSpecLoc(),
1492         diag::err_virtual_non_function);
1493
1494  if (D.getDeclSpec().isExplicitSpecified())
1495    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1496         diag::err_explicit_non_function);
1497}
1498
1499NamedDecl*
1500Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1501                             QualType R, Decl* PrevDecl, bool& InvalidDecl,
1502                             bool &Redeclaration) {
1503  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1504  if (D.getCXXScopeSpec().isSet()) {
1505    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1506      << D.getCXXScopeSpec().getRange();
1507    InvalidDecl = true;
1508    // Pretend we didn't see the scope specifier.
1509    DC = 0;
1510  }
1511
1512  if (getLangOptions().CPlusPlus) {
1513    // Check that there are no default arguments (C++ only).
1514    CheckExtraCXXDefaultArguments(D);
1515  }
1516
1517  DiagnoseFunctionSpecifiers(D);
1518
1519  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R);
1520  if (!NewTD) return 0;
1521
1522  // Handle attributes prior to checking for duplicates in MergeVarDecl
1523  ProcessDeclAttributes(NewTD, D);
1524  // Merge the decl with the existing one if appropriate. If the decl is
1525  // in an outer scope, it isn't the same thing.
1526  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1527    Redeclaration = true;
1528    if (MergeTypeDefDecl(NewTD, PrevDecl))
1529      InvalidDecl = true;
1530  }
1531
1532  if (S->getFnParent() == 0) {
1533    QualType T = NewTD->getUnderlyingType();
1534    // C99 6.7.7p2: If a typedef name specifies a variably modified type
1535    // then it shall have block scope.
1536    if (T->isVariablyModifiedType()) {
1537      bool SizeIsNegative;
1538      QualType FixedTy =
1539          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1540      if (!FixedTy.isNull()) {
1541        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
1542        NewTD->setUnderlyingType(FixedTy);
1543      } else {
1544        if (SizeIsNegative)
1545          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
1546        else if (T->isVariableArrayType())
1547          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1548        else
1549          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1550        InvalidDecl = true;
1551      }
1552    }
1553  }
1554  return NewTD;
1555}
1556
1557/// \brief Determines whether the given declaration is an out-of-scope
1558/// previous declaration.
1559///
1560/// This routine should be invoked when name lookup has found a
1561/// previous declaration (PrevDecl) that is not in the scope where a
1562/// new declaration by the same name is being introduced. If the new
1563/// declaration occurs in a local scope, previous declarations with
1564/// linkage may still be considered previous declarations (C99
1565/// 6.2.2p4-5, C++ [basic.link]p6).
1566///
1567/// \param PrevDecl the previous declaration found by name
1568/// lookup
1569///
1570/// \param DC the context in which the new declaration is being
1571/// declared.
1572///
1573/// \returns true if PrevDecl is an out-of-scope previous declaration
1574/// for a new delcaration with the same name.
1575static bool
1576isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
1577                                ASTContext &Context) {
1578  if (!PrevDecl)
1579    return 0;
1580
1581  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
1582  // case we need to check each of the overloaded functions.
1583  if (!PrevDecl->hasLinkage())
1584    return false;
1585
1586  if (Context.getLangOptions().CPlusPlus) {
1587    // C++ [basic.link]p6:
1588    //   If there is a visible declaration of an entity with linkage
1589    //   having the same name and type, ignoring entities declared
1590    //   outside the innermost enclosing namespace scope, the block
1591    //   scope declaration declares that same entity and receives the
1592    //   linkage of the previous declaration.
1593    DeclContext *OuterContext = DC->getLookupContext();
1594    if (!OuterContext->isFunctionOrMethod())
1595      // This rule only applies to block-scope declarations.
1596      return false;
1597    else {
1598      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
1599      if (PrevOuterContext->isRecord())
1600        // We found a member function: ignore it.
1601        return false;
1602      else {
1603        // Find the innermost enclosing namespace for the new and
1604        // previous declarations.
1605        while (!OuterContext->isFileContext())
1606          OuterContext = OuterContext->getParent();
1607        while (!PrevOuterContext->isFileContext())
1608          PrevOuterContext = PrevOuterContext->getParent();
1609
1610        // The previous declaration is in a different namespace, so it
1611        // isn't the same function.
1612        if (OuterContext->getPrimaryContext() !=
1613            PrevOuterContext->getPrimaryContext())
1614          return false;
1615      }
1616    }
1617  }
1618
1619  return true;
1620}
1621
1622NamedDecl*
1623Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1624                              QualType R,NamedDecl* PrevDecl, bool& InvalidDecl,
1625                              bool &Redeclaration) {
1626  DeclarationName Name = GetNameForDeclarator(D);
1627
1628  // Check that there are no default arguments (C++ only).
1629  if (getLangOptions().CPlusPlus)
1630    CheckExtraCXXDefaultArguments(D);
1631
1632  VarDecl *NewVD;
1633  VarDecl::StorageClass SC;
1634  switch (D.getDeclSpec().getStorageClassSpec()) {
1635  default: assert(0 && "Unknown storage class!");
1636  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1637  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1638  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1639  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1640  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1641  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1642  case DeclSpec::SCS_mutable:
1643    // mutable can only appear on non-static class members, so it's always
1644    // an error here
1645    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1646    InvalidDecl = true;
1647    SC = VarDecl::None;
1648    break;
1649  }
1650
1651  IdentifierInfo *II = Name.getAsIdentifierInfo();
1652  if (!II) {
1653    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1654      << Name.getAsString();
1655    return 0;
1656  }
1657
1658  DiagnoseFunctionSpecifiers(D);
1659
1660  bool ThreadSpecified = D.getDeclSpec().isThreadSpecified();
1661  if (!DC->isRecord() && S->getFnParent() == 0) {
1662    // C99 6.9p2: The storage-class specifiers auto and register shall not
1663    // appear in the declaration specifiers in an external declaration.
1664    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1665      Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1666      InvalidDecl = true;
1667    }
1668  }
1669  if (DC->isRecord() && !CurContext->isRecord()) {
1670    // This is an out-of-line definition of a static data member.
1671    if (SC == VarDecl::Static) {
1672      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1673           diag::err_static_out_of_line)
1674        << CodeModificationHint::CreateRemoval(
1675                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
1676    } else if (SC == VarDecl::None)
1677      SC = VarDecl::Static;
1678  }
1679
1680  // The variable can not
1681  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1682                          II, R, SC,
1683                          // FIXME: Move to DeclGroup...
1684                          D.getDeclSpec().getSourceRange().getBegin());
1685  NewVD->setThreadSpecified(ThreadSpecified);
1686
1687  // Set the lexical context. If the declarator has a C++ scope specifier, the
1688  // lexical context will be different from the semantic context.
1689  NewVD->setLexicalDeclContext(CurContext);
1690
1691  // Handle attributes prior to checking for duplicates in MergeVarDecl
1692  ProcessDeclAttributes(NewVD, D);
1693
1694  // Handle GNU asm-label extension (encoded as an attribute).
1695  if (Expr *E = (Expr*) D.getAsmLabel()) {
1696    // The parser guarantees this is a string.
1697    StringLiteral *SE = cast<StringLiteral>(E);
1698    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
1699                                                        SE->getByteLength())));
1700  }
1701
1702  // If name lookup finds a previous declaration that is not in the
1703  // same scope as the new declaration, this may still be an
1704  // acceptable redeclaration.
1705  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
1706      !(NewVD->hasLinkage() &&
1707        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
1708    PrevDecl = 0;
1709
1710  // Merge the decl with the existing one if appropriate.
1711  if (PrevDecl) {
1712    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
1713      // The user tried to define a non-static data member
1714      // out-of-line (C++ [dcl.meaning]p1).
1715      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
1716        << D.getCXXScopeSpec().getRange();
1717      PrevDecl = 0;
1718      InvalidDecl = true;
1719    }
1720  } else if (D.getCXXScopeSpec().isSet()) {
1721    // No previous declaration in the qualifying scope.
1722    Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
1723      << Name << D.getCXXScopeSpec().getRange();
1724    InvalidDecl = true;
1725  }
1726
1727  if (CheckVariableDeclaration(NewVD, PrevDecl, Redeclaration))
1728    InvalidDecl = true;
1729
1730  // If this is a locally-scoped extern C variable, update the map of
1731  // such variables.
1732  if (CurContext->isFunctionOrMethod() && NewVD->isExternC(Context) &&
1733      !InvalidDecl)
1734    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
1735
1736  return NewVD;
1737}
1738
1739/// \brief Perform semantic checking on a newly-created variable
1740/// declaration.
1741///
1742/// This routine performs all of the type-checking required for a
1743/// variable declaration once it has been build. It is used both to
1744/// check variables after they have been parsed and their declarators
1745/// have been translated into a declaration, and to check
1746///
1747/// \returns true if an error was encountered, false otherwise.
1748bool Sema::CheckVariableDeclaration(VarDecl *NewVD, NamedDecl *PrevDecl,
1749                                    bool &Redeclaration) {
1750  bool Invalid = false;
1751
1752  QualType T = NewVD->getType();
1753
1754  if (T->isObjCInterfaceType()) {
1755    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
1756    Invalid = true;
1757  }
1758
1759  // The variable can not have an abstract class type.
1760  if (RequireNonAbstractType(NewVD->getLocation(), T,
1761                             diag::err_abstract_type_in_decl,
1762                             AbstractVariableType))
1763    Invalid = true;
1764
1765  // Emit an error if an address space was applied to decl with local storage.
1766  // This includes arrays of objects with address space qualifiers, but not
1767  // automatic variables that point to other address spaces.
1768  // ISO/IEC TR 18037 S5.1.2
1769  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
1770    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
1771    Invalid = true;
1772  }
1773
1774  if (NewVD->hasLocalStorage() && T.isObjCGCWeak())
1775    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
1776
1777  bool isIllegalVLA = T->isVariableArrayType() && NewVD->hasGlobalStorage();
1778  bool isIllegalVM = T->isVariablyModifiedType() && NewVD->hasLinkage();
1779  if (isIllegalVLA || isIllegalVM) {
1780    bool SizeIsNegative;
1781    QualType FixedTy =
1782        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1783    if (!FixedTy.isNull()) {
1784      Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
1785      NewVD->setType(FixedTy);
1786    } else if (T->isVariableArrayType()) {
1787      Invalid = true;
1788
1789      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
1790      // FIXME: This won't give the correct result for
1791      // int a[10][n];
1792      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
1793
1794      if (NewVD->isFileVarDecl())
1795        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
1796          << SizeRange;
1797      else if (NewVD->getStorageClass() == VarDecl::Static)
1798        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
1799          << SizeRange;
1800      else
1801        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
1802            << SizeRange;
1803    } else {
1804      Invalid = true;
1805
1806      if (NewVD->isFileVarDecl())
1807        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
1808      else
1809        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
1810    }
1811  }
1812
1813  if (!PrevDecl && NewVD->isExternC(Context)) {
1814    // Since we did not find anything by this name and we're declaring
1815    // an extern "C" variable, look for a non-visible extern "C"
1816    // declaration with the same name.
1817    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
1818      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
1819    if (Pos != LocallyScopedExternalDecls.end())
1820      PrevDecl = Pos->second;
1821  }
1822
1823  if (!Invalid && T->isVoidType() && !NewVD->hasExternalStorage()) {
1824    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
1825      << T;
1826    Invalid = true;
1827  }
1828
1829  if (PrevDecl) {
1830    Redeclaration = true;
1831    if (MergeVarDecl(NewVD, PrevDecl))
1832      Invalid = true;
1833  }
1834
1835  return NewVD->isInvalidDecl() || Invalid;
1836}
1837
1838NamedDecl*
1839Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1840                              QualType R, NamedDecl* PrevDecl,
1841                              bool IsFunctionDefinition,
1842                              bool& InvalidDecl, bool &Redeclaration) {
1843  assert(R.getTypePtr()->isFunctionType());
1844
1845  DeclarationName Name = GetNameForDeclarator(D);
1846  FunctionDecl::StorageClass SC = FunctionDecl::None;
1847  switch (D.getDeclSpec().getStorageClassSpec()) {
1848  default: assert(0 && "Unknown storage class!");
1849  case DeclSpec::SCS_auto:
1850  case DeclSpec::SCS_register:
1851  case DeclSpec::SCS_mutable:
1852    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1853         diag::err_typecheck_sclass_func);
1854    InvalidDecl = true;
1855    break;
1856  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
1857  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
1858  case DeclSpec::SCS_static: {
1859    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
1860      // C99 6.7.1p5:
1861      //   The declaration of an identifier for a function that has
1862      //   block scope shall have no explicit storage-class specifier
1863      //   other than extern
1864      // See also (C++ [dcl.stc]p4).
1865      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1866           diag::err_static_block_func);
1867      SC = FunctionDecl::None;
1868    } else
1869      SC = FunctionDecl::Static;
1870    break;
1871  }
1872  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
1873  }
1874
1875  bool isInline = D.getDeclSpec().isInlineSpecified();
1876  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1877  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
1878
1879  // Check that the return type is not an abstract class type.
1880  // For record types, this is done by the AbstractClassUsageDiagnoser once
1881  // the class has been completely parsed.
1882  if (!DC->isRecord() &&
1883      RequireNonAbstractType(D.getIdentifierLoc(),
1884                             R->getAsFunctionType()->getResultType(),
1885                             diag::err_abstract_type_in_decl,
1886                             AbstractReturnType))
1887        InvalidDecl = true;
1888
1889  bool isVirtualOkay = false;
1890  FunctionDecl *NewFD;
1891  if (D.getKind() == Declarator::DK_Constructor) {
1892    // This is a C++ constructor declaration.
1893    assert(DC->isRecord() &&
1894           "Constructors can only be declared in a member context");
1895
1896    InvalidDecl = InvalidDecl || CheckConstructorDeclarator(D, R, SC);
1897
1898    // Create the new declaration
1899    NewFD = CXXConstructorDecl::Create(Context,
1900                                       cast<CXXRecordDecl>(DC),
1901                                       D.getIdentifierLoc(), Name, R,
1902                                       isExplicit, isInline,
1903                                       /*isImplicitlyDeclared=*/false);
1904
1905    if (InvalidDecl)
1906      NewFD->setInvalidDecl();
1907  } else if (D.getKind() == Declarator::DK_Destructor) {
1908    // This is a C++ destructor declaration.
1909    if (DC->isRecord()) {
1910      InvalidDecl = InvalidDecl || CheckDestructorDeclarator(D, R, SC);
1911
1912      NewFD = CXXDestructorDecl::Create(Context,
1913                                        cast<CXXRecordDecl>(DC),
1914                                        D.getIdentifierLoc(), Name, R,
1915                                        isInline,
1916                                        /*isImplicitlyDeclared=*/false);
1917
1918      if (InvalidDecl)
1919        NewFD->setInvalidDecl();
1920
1921      isVirtualOkay = true;
1922    } else {
1923      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
1924
1925      // Create a FunctionDecl to satisfy the function definition parsing
1926      // code path.
1927      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
1928                                   Name, R, SC, isInline,
1929                                   /*hasPrototype=*/true,
1930                                   // FIXME: Move to DeclGroup...
1931                                   D.getDeclSpec().getSourceRange().getBegin());
1932      InvalidDecl = true;
1933      NewFD->setInvalidDecl();
1934    }
1935  } else if (D.getKind() == Declarator::DK_Conversion) {
1936    if (!DC->isRecord()) {
1937      Diag(D.getIdentifierLoc(),
1938           diag::err_conv_function_not_member);
1939      return 0;
1940    } else {
1941      InvalidDecl = InvalidDecl || CheckConversionDeclarator(D, R, SC);
1942
1943      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
1944                                        D.getIdentifierLoc(), Name, R,
1945                                        isInline, isExplicit);
1946
1947      if (InvalidDecl)
1948        NewFD->setInvalidDecl();
1949
1950      isVirtualOkay = true;
1951    }
1952  } else if (DC->isRecord()) {
1953    // This is a C++ method declaration.
1954    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
1955                                  D.getIdentifierLoc(), Name, R,
1956                                  (SC == FunctionDecl::Static), isInline);
1957
1958    isVirtualOkay = (SC != FunctionDecl::Static);
1959  } else {
1960    // Determine whether the function was written with a
1961    // prototype. This true when:
1962    //   - we're in C++ (where every function has a prototype),
1963    //   - there is a prototype in the declarator, or
1964    //   - the type R of the function is some kind of typedef or other reference
1965    //     to a type name (which eventually refers to a function type).
1966    bool HasPrototype =
1967       getLangOptions().CPlusPlus ||
1968       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
1969       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
1970
1971    NewFD = FunctionDecl::Create(Context, DC,
1972                                 D.getIdentifierLoc(),
1973                                 Name, R, SC, isInline, HasPrototype,
1974                                 // FIXME: Move to DeclGroup...
1975                                 D.getDeclSpec().getSourceRange().getBegin());
1976  }
1977
1978  // Set the lexical context. If the declarator has a C++
1979  // scope specifier, the lexical context will be different
1980  // from the semantic context.
1981  NewFD->setLexicalDeclContext(CurContext);
1982
1983  // C++ [dcl.fct.spec]p5:
1984  //   The virtual specifier shall only be used in declarations of
1985  //   nonstatic class member functions that appear within a
1986  //   member-specification of a class declaration; see 10.3.
1987  //
1988  // FIXME: Checking the 'virtual' specifier is not sufficient. A
1989  // function is also virtual if it overrides an already virtual
1990  // function. This is important to do here because it's part of the
1991  // declaration.
1992  if (isVirtual && !InvalidDecl) {
1993    if (!isVirtualOkay) {
1994       Diag(D.getDeclSpec().getVirtualSpecLoc(),
1995           diag::err_virtual_non_function);
1996    } else if (!CurContext->isRecord()) {
1997      // 'virtual' was specified outside of the class.
1998      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
1999        << CodeModificationHint::CreateRemoval(
2000                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
2001    } else {
2002      // Okay: Add virtual to the method.
2003      cast<CXXMethodDecl>(NewFD)->setVirtual();
2004      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2005      CurClass->setAggregate(false);
2006      CurClass->setPOD(false);
2007      CurClass->setPolymorphic(true);
2008    }
2009  }
2010
2011  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2012      !CurContext->isRecord()) {
2013    // C++ [class.static]p1:
2014    //   A data or function member of a class may be declared static
2015    //   in a class definition, in which case it is a static member of
2016    //   the class.
2017
2018    // Complain about the 'static' specifier if it's on an out-of-line
2019    // member function definition.
2020    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2021         diag::err_static_out_of_line)
2022      << CodeModificationHint::CreateRemoval(
2023                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2024  }
2025
2026  // Handle GNU asm-label extension (encoded as an attribute).
2027  if (Expr *E = (Expr*) D.getAsmLabel()) {
2028    // The parser guarantees this is a string.
2029    StringLiteral *SE = cast<StringLiteral>(E);
2030    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2031                                                        SE->getByteLength())));
2032  }
2033
2034  // Copy the parameter declarations from the declarator D to
2035  // the function declaration NewFD, if they are available.
2036  if (D.getNumTypeObjects() > 0) {
2037    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2038
2039    // Create Decl objects for each parameter, adding them to the
2040    // FunctionDecl.
2041    llvm::SmallVector<ParmVarDecl*, 16> Params;
2042
2043    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2044    // function that takes no arguments, not a function that takes a
2045    // single void argument.
2046    // We let through "const void" here because Sema::GetTypeForDeclarator
2047    // already checks for that case.
2048    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2049        FTI.ArgInfo[0].Param &&
2050        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2051      // empty arg list, don't push any params.
2052      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2053
2054      // In C++, the empty parameter-type-list must be spelled "void"; a
2055      // typedef of void is not permitted.
2056      if (getLangOptions().CPlusPlus &&
2057          Param->getType().getUnqualifiedType() != Context.VoidTy) {
2058        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2059      }
2060    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2061      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
2062        Params.push_back(FTI.ArgInfo[i].Param.getAs<ParmVarDecl>());
2063    }
2064
2065    NewFD->setParams(Context, &Params[0], Params.size());
2066  } else if (R->getAsTypedefType()) {
2067    // When we're declaring a function with a typedef, as in the
2068    // following example, we'll need to synthesize (unnamed)
2069    // parameters for use in the declaration.
2070    //
2071    // @code
2072    // typedef void fn(int);
2073    // fn f;
2074    // @endcode
2075    const FunctionProtoType *FT = R->getAsFunctionProtoType();
2076    if (!FT) {
2077      // This is a typedef of a function with no prototype, so we
2078      // don't need to do anything.
2079    } else if ((FT->getNumArgs() == 0) ||
2080               (FT->getNumArgs() == 1 && !FT->isVariadic() &&
2081                FT->getArgType(0)->isVoidType())) {
2082      // This is a zero-argument function. We don't need to do anything.
2083    } else {
2084      // Synthesize a parameter for each argument type.
2085      llvm::SmallVector<ParmVarDecl*, 16> Params;
2086      for (FunctionProtoType::arg_type_iterator ArgType = FT->arg_type_begin();
2087           ArgType != FT->arg_type_end(); ++ArgType) {
2088        ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2089                                                 SourceLocation(), 0,
2090                                                 *ArgType, VarDecl::None,
2091                                                 0);
2092        Param->setImplicit();
2093        Params.push_back(Param);
2094      }
2095
2096      NewFD->setParams(Context, &Params[0], Params.size());
2097    }
2098  }
2099
2100  // If name lookup finds a previous declaration that is not in the
2101  // same scope as the new declaration, this may still be an
2102  // acceptable redeclaration.
2103  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2104      !(NewFD->hasLinkage() &&
2105        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2106    PrevDecl = 0;
2107
2108  // Perform semantic checking on the function declaration.
2109  bool OverloadableAttrRequired = false; // FIXME: HACK!
2110  if (CheckFunctionDeclaration(NewFD, PrevDecl, Redeclaration,
2111                               /*FIXME:*/OverloadableAttrRequired))
2112    InvalidDecl = true;
2113
2114  if (D.getCXXScopeSpec().isSet() && !InvalidDecl) {
2115    // An out-of-line member function declaration must also be a
2116    // definition (C++ [dcl.meaning]p1).
2117    if (!IsFunctionDefinition) {
2118      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2119        << D.getCXXScopeSpec().getRange();
2120      InvalidDecl = true;
2121    } else if (!Redeclaration) {
2122      // The user tried to provide an out-of-line definition for a
2123      // function that is a member of a class or namespace, but there
2124      // was no such member function declared (C++ [class.mfct]p2,
2125      // C++ [namespace.memdef]p2). For example:
2126      //
2127      // class X {
2128      //   void f() const;
2129      // };
2130      //
2131      // void X::f() { } // ill-formed
2132      //
2133      // Complain about this problem, and attempt to suggest close
2134      // matches (e.g., those that differ only in cv-qualifiers and
2135      // whether the parameter types are references).
2136      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2137        << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
2138      InvalidDecl = true;
2139
2140      LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
2141                                              true);
2142      assert(!Prev.isAmbiguous() &&
2143             "Cannot have an ambiguity in previous-declaration lookup");
2144      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2145           Func != FuncEnd; ++Func) {
2146        if (isa<FunctionDecl>(*Func) &&
2147            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2148          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2149      }
2150
2151      PrevDecl = 0;
2152    }
2153  }
2154
2155  // Handle attributes. We need to have merged decls when handling attributes
2156  // (for example to check for conflicts, etc).
2157  // FIXME: This needs to happen before we merge declarations. Then,
2158  // let attribute merging cope with attribute conflicts.
2159  ProcessDeclAttributes(NewFD, D);
2160  AddKnownFunctionAttributes(NewFD);
2161
2162  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2163    // If a function name is overloadable in C, then every function
2164    // with that name must be marked "overloadable".
2165    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2166      << Redeclaration << NewFD;
2167    if (PrevDecl)
2168      Diag(PrevDecl->getLocation(),
2169           diag::note_attribute_overloadable_prev_overload);
2170    NewFD->addAttr(::new (Context) OverloadableAttr());
2171  }
2172
2173  // If this is a locally-scoped extern C function, update the
2174  // map of such names.
2175  if (CurContext->isFunctionOrMethod() && NewFD->isExternC(Context)
2176      && !InvalidDecl)
2177    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2178
2179  return NewFD;
2180}
2181
2182/// \brief Perform semantic checking of a new function declaration.
2183///
2184/// Performs semantic analysis of the new function declaration
2185/// NewFD. This routine performs all semantic checking that does not
2186/// require the actual declarator involved in the declaration, and is
2187/// used both for the declaration of functions as they are parsed
2188/// (called via ActOnDeclarator) and for the declaration of functions
2189/// that have been instantiated via C++ template instantiation (called
2190/// via InstantiateDecl).
2191///
2192/// \returns true if there was an error, false otherwise.
2193bool Sema::CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl,
2194                                    bool &Redeclaration,
2195                                    bool &OverloadableAttrRequired) {
2196  bool InvalidDecl = false;
2197
2198  // Semantic checking for this function declaration (in isolation).
2199  if (getLangOptions().CPlusPlus) {
2200    // C++-specific checks.
2201    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD))
2202      InvalidDecl = InvalidDecl || CheckConstructor(Constructor);
2203    else if (isa<CXXDestructorDecl>(NewFD)) {
2204      CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
2205      Record->setUserDeclaredDestructor(true);
2206      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
2207      // user-defined destructor.
2208      Record->setPOD(false);
2209    } else if (CXXConversionDecl *Conversion
2210               = dyn_cast<CXXConversionDecl>(NewFD))
2211      ActOnConversionDeclarator(Conversion);
2212
2213    // Extra checking for C++ overloaded operators (C++ [over.oper]).
2214    if (NewFD->isOverloadedOperator() &&
2215        CheckOverloadedOperatorDeclaration(NewFD))
2216      InvalidDecl = true;
2217  }
2218
2219  // Check for a previous declaration of this name.
2220  if (!PrevDecl && NewFD->isExternC(Context)) {
2221    // Since we did not find anything by this name and we're declaring
2222    // an extern "C" function, look for a non-visible extern "C"
2223    // declaration with the same name.
2224    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2225      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
2226    if (Pos != LocallyScopedExternalDecls.end())
2227      PrevDecl = Pos->second;
2228  }
2229
2230  // Merge or overload the declaration with an existing declaration of
2231  // the same name, if appropriate.
2232  if (PrevDecl) {
2233    // Determine whether NewFD is an overload of PrevDecl or
2234    // a declaration that requires merging. If it's an overload,
2235    // there's no more work to do here; we'll just add the new
2236    // function to the scope.
2237    OverloadedFunctionDecl::function_iterator MatchedDecl;
2238
2239    if (!getLangOptions().CPlusPlus &&
2240        AllowOverloadingOfFunction(PrevDecl, Context)) {
2241      OverloadableAttrRequired = true;
2242
2243      // Functions marked "overloadable" must have a prototype (that
2244      // we can't get through declaration merging).
2245      if (!NewFD->getType()->getAsFunctionProtoType()) {
2246        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
2247          << NewFD;
2248        InvalidDecl = true;
2249        Redeclaration = true;
2250
2251        // Turn this into a variadic function with no parameters.
2252        QualType R = Context.getFunctionType(
2253                       NewFD->getType()->getAsFunctionType()->getResultType(),
2254                       0, 0, true, 0);
2255        NewFD->setType(R);
2256      }
2257    }
2258
2259    if (PrevDecl &&
2260        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
2261         !IsOverload(NewFD, PrevDecl, MatchedDecl))) {
2262      Redeclaration = true;
2263      Decl *OldDecl = PrevDecl;
2264
2265      // If PrevDecl was an overloaded function, extract the
2266      // FunctionDecl that matched.
2267      if (isa<OverloadedFunctionDecl>(PrevDecl))
2268        OldDecl = *MatchedDecl;
2269
2270      // NewFD and OldDecl represent declarations that need to be
2271      // merged.
2272      if (MergeFunctionDecl(NewFD, OldDecl))
2273        InvalidDecl = true;
2274
2275      if (!InvalidDecl)
2276        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
2277    }
2278  }
2279
2280  if (getLangOptions().CPlusPlus && !CurContext->isRecord()) {
2281    // In C++, check default arguments now that we have merged decls. Unless
2282    // the lexical context is the class, because in this case this is done
2283    // during delayed parsing anyway.
2284    CheckCXXDefaultArguments(NewFD);
2285  }
2286
2287  return InvalidDecl || NewFD->isInvalidDecl();
2288}
2289
2290bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2291  // FIXME: Need strict checking.  In C89, we need to check for
2292  // any assignment, increment, decrement, function-calls, or
2293  // commas outside of a sizeof.  In C99, it's the same list,
2294  // except that the aforementioned are allowed in unevaluated
2295  // expressions.  Everything else falls under the
2296  // "may accept other forms of constant expressions" exception.
2297  // (We never end up here for C++, so the constant expression
2298  // rules there don't matter.)
2299  if (Init->isConstantInitializer(Context))
2300    return false;
2301  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
2302    << Init->getSourceRange();
2303  return true;
2304}
2305
2306void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
2307  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
2308}
2309
2310/// AddInitializerToDecl - Adds the initializer Init to the
2311/// declaration dcl. If DirectInit is true, this is C++ direct
2312/// initialization rather than copy initialization.
2313void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
2314  Decl *RealDecl = dcl.getAs<Decl>();
2315  // If there is no declaration, there was an error parsing it.  Just ignore
2316  // the initializer.
2317  if (RealDecl == 0)
2318    return;
2319
2320  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
2321    // With declarators parsed the way they are, the parser cannot
2322    // distinguish between a normal initializer and a pure-specifier.
2323    // Thus this grotesque test.
2324    IntegerLiteral *IL;
2325    Expr *Init = static_cast<Expr *>(init.get());
2326    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
2327        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
2328      if (Method->isVirtual()) {
2329        Method->setPure();
2330
2331        // A class is abstract if at least one function is pure virtual.
2332        cast<CXXRecordDecl>(CurContext)->setAbstract(true);
2333      } else if (!Method->isInvalidDecl()) {
2334        Diag(Method->getLocation(), diag::err_non_virtual_pure)
2335          << Method->getDeclName() << Init->getSourceRange();
2336        Method->setInvalidDecl();
2337      }
2338    } else {
2339      Diag(Method->getLocation(), diag::err_member_function_initialization)
2340        << Method->getDeclName() << Init->getSourceRange();
2341      Method->setInvalidDecl();
2342    }
2343    return;
2344  }
2345
2346  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2347  if (!VDecl) {
2348    if (getLangOptions().CPlusPlus &&
2349        RealDecl->getLexicalDeclContext()->isRecord() &&
2350        isa<NamedDecl>(RealDecl))
2351      Diag(RealDecl->getLocation(), diag::err_member_initialization)
2352        << cast<NamedDecl>(RealDecl)->getDeclName();
2353    else
2354      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2355    RealDecl->setInvalidDecl();
2356    return;
2357  }
2358
2359  const VarDecl *Def = 0;
2360  if (VDecl->getDefinition(Def)) {
2361    Diag(VDecl->getLocation(), diag::err_redefinition)
2362      << VDecl->getDeclName();
2363    Diag(Def->getLocation(), diag::note_previous_definition);
2364    VDecl->setInvalidDecl();
2365    return;
2366  }
2367
2368  // Take ownership of the expression, now that we're sure we have somewhere
2369  // to put it.
2370  Expr *Init = static_cast<Expr *>(init.release());
2371  assert(Init && "missing initializer");
2372
2373  // Get the decls type and save a reference for later, since
2374  // CheckInitializerTypes may change it.
2375  QualType DclT = VDecl->getType(), SavT = DclT;
2376  if (VDecl->isBlockVarDecl()) {
2377    VarDecl::StorageClass SC = VDecl->getStorageClass();
2378    if (SC == VarDecl::Extern) { // C99 6.7.8p5
2379      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2380      VDecl->setInvalidDecl();
2381    } else if (!VDecl->isInvalidDecl()) {
2382      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2383                                VDecl->getDeclName(), DirectInit))
2384        VDecl->setInvalidDecl();
2385
2386      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2387      // Don't check invalid declarations to avoid emitting useless diagnostics.
2388      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2389        if (SC == VarDecl::Static) // C99 6.7.8p4.
2390          CheckForConstantInitializer(Init, DclT);
2391      }
2392    }
2393  } else if (VDecl->isStaticDataMember() &&
2394             VDecl->getLexicalDeclContext()->isRecord()) {
2395    // This is an in-class initialization for a static data member, e.g.,
2396    //
2397    // struct S {
2398    //   static const int value = 17;
2399    // };
2400
2401    // Attach the initializer
2402    VDecl->setInit(Init);
2403
2404    // C++ [class.mem]p4:
2405    //   A member-declarator can contain a constant-initializer only
2406    //   if it declares a static member (9.4) of const integral or
2407    //   const enumeration type, see 9.4.2.
2408    QualType T = VDecl->getType();
2409    if (!T->isDependentType() &&
2410        (!Context.getCanonicalType(T).isConstQualified() ||
2411         !T->isIntegralType())) {
2412      Diag(VDecl->getLocation(), diag::err_member_initialization)
2413        << VDecl->getDeclName() << Init->getSourceRange();
2414      VDecl->setInvalidDecl();
2415    } else {
2416      // C++ [class.static.data]p4:
2417      //   If a static data member is of const integral or const
2418      //   enumeration type, its declaration in the class definition
2419      //   can specify a constant-initializer which shall be an
2420      //   integral constant expression (5.19).
2421      if (!Init->isTypeDependent() &&
2422          !Init->getType()->isIntegralType()) {
2423        // We have a non-dependent, non-integral or enumeration type.
2424        Diag(Init->getSourceRange().getBegin(),
2425             diag::err_in_class_initializer_non_integral_type)
2426          << Init->getType() << Init->getSourceRange();
2427        VDecl->setInvalidDecl();
2428      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
2429        // Check whether the expression is a constant expression.
2430        llvm::APSInt Value;
2431        SourceLocation Loc;
2432        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
2433          Diag(Loc, diag::err_in_class_initializer_non_constant)
2434            << Init->getSourceRange();
2435          VDecl->setInvalidDecl();
2436        } else if (!VDecl->getType()->isDependentType())
2437          ImpCastExprToType(Init, VDecl->getType());
2438      }
2439    }
2440  } else if (VDecl->isFileVarDecl()) {
2441    if (VDecl->getStorageClass() == VarDecl::Extern)
2442      Diag(VDecl->getLocation(), diag::warn_extern_init);
2443    if (!VDecl->isInvalidDecl())
2444      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2445                                VDecl->getDeclName(), DirectInit))
2446        VDecl->setInvalidDecl();
2447
2448    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2449    // Don't check invalid declarations to avoid emitting useless diagnostics.
2450    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2451      // C99 6.7.8p4. All file scoped initializers need to be constant.
2452      CheckForConstantInitializer(Init, DclT);
2453    }
2454  }
2455  // If the type changed, it means we had an incomplete type that was
2456  // completed by the initializer. For example:
2457  //   int ary[] = { 1, 3, 5 };
2458  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2459  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2460    VDecl->setType(DclT);
2461    Init->setType(DclT);
2462  }
2463
2464  // Attach the initializer to the decl.
2465  VDecl->setInit(Init);
2466  return;
2467}
2468
2469void Sema::ActOnUninitializedDecl(DeclPtrTy dcl) {
2470  Decl *RealDecl = dcl.getAs<Decl>();
2471
2472  // If there is no declaration, there was an error parsing it. Just ignore it.
2473  if (RealDecl == 0)
2474    return;
2475
2476  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2477    QualType Type = Var->getType();
2478    // C++ [dcl.init.ref]p3:
2479    //   The initializer can be omitted for a reference only in a
2480    //   parameter declaration (8.3.5), in the declaration of a
2481    //   function return type, in the declaration of a class member
2482    //   within its class declaration (9.2), and where the extern
2483    //   specifier is explicitly used.
2484    if (Type->isReferenceType() &&
2485        Var->getStorageClass() != VarDecl::Extern &&
2486        Var->getStorageClass() != VarDecl::PrivateExtern) {
2487      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2488        << Var->getDeclName()
2489        << SourceRange(Var->getLocation(), Var->getLocation());
2490      Var->setInvalidDecl();
2491      return;
2492    }
2493
2494    // C++ [dcl.init]p9:
2495    //
2496    //   If no initializer is specified for an object, and the object
2497    //   is of (possibly cv-qualified) non-POD class type (or array
2498    //   thereof), the object shall be default-initialized; if the
2499    //   object is of const-qualified type, the underlying class type
2500    //   shall have a user-declared default constructor.
2501    if (getLangOptions().CPlusPlus) {
2502      QualType InitType = Type;
2503      if (const ArrayType *Array = Context.getAsArrayType(Type))
2504        InitType = Array->getElementType();
2505      if (Var->getStorageClass() != VarDecl::Extern &&
2506          Var->getStorageClass() != VarDecl::PrivateExtern &&
2507          InitType->isRecordType()) {
2508        const CXXConstructorDecl *Constructor = 0;
2509        if (!RequireCompleteType(Var->getLocation(), InitType,
2510                                    diag::err_invalid_incomplete_type_use))
2511          Constructor
2512            = PerformInitializationByConstructor(InitType, 0, 0,
2513                                                 Var->getLocation(),
2514                                               SourceRange(Var->getLocation(),
2515                                                           Var->getLocation()),
2516                                                 Var->getDeclName(),
2517                                                 IK_Default);
2518        if (!Constructor)
2519          Var->setInvalidDecl();
2520      }
2521    }
2522
2523#if 0
2524    // FIXME: Temporarily disabled because we are not properly parsing
2525    // linkage specifications on declarations, e.g.,
2526    //
2527    //   extern "C" const CGPoint CGPointerZero;
2528    //
2529    // C++ [dcl.init]p9:
2530    //
2531    //     If no initializer is specified for an object, and the
2532    //     object is of (possibly cv-qualified) non-POD class type (or
2533    //     array thereof), the object shall be default-initialized; if
2534    //     the object is of const-qualified type, the underlying class
2535    //     type shall have a user-declared default
2536    //     constructor. Otherwise, if no initializer is specified for
2537    //     an object, the object and its subobjects, if any, have an
2538    //     indeterminate initial value; if the object or any of its
2539    //     subobjects are of const-qualified type, the program is
2540    //     ill-formed.
2541    //
2542    // This isn't technically an error in C, so we don't diagnose it.
2543    //
2544    // FIXME: Actually perform the POD/user-defined default
2545    // constructor check.
2546    if (getLangOptions().CPlusPlus &&
2547        Context.getCanonicalType(Type).isConstQualified() &&
2548        Var->getStorageClass() != VarDecl::Extern)
2549      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2550        << Var->getName()
2551        << SourceRange(Var->getLocation(), Var->getLocation());
2552#endif
2553  }
2554}
2555
2556Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, DeclPtrTy *Group,
2557                                                   unsigned NumDecls) {
2558  llvm::SmallVector<Decl*, 8> Decls;
2559
2560  for (unsigned i = 0; i != NumDecls; ++i)
2561    if (Decl *D = Group[i].getAs<Decl>())
2562      Decls.push_back(D);
2563
2564  // Perform semantic analysis that depends on having fully processed both
2565  // the declarator and initializer.
2566  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
2567    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
2568    if (!IDecl)
2569      continue;
2570    QualType T = IDecl->getType();
2571
2572    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2573    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2574    if (IDecl->isBlockVarDecl() &&
2575        IDecl->getStorageClass() != VarDecl::Extern) {
2576      if (!IDecl->isInvalidDecl() &&
2577          RequireCompleteType(IDecl->getLocation(), T,
2578                              diag::err_typecheck_decl_incomplete_type))
2579        IDecl->setInvalidDecl();
2580    }
2581    // File scope. C99 6.9.2p2: A declaration of an identifier for and
2582    // object that has file scope without an initializer, and without a
2583    // storage-class specifier or with the storage-class specifier "static",
2584    // constitutes a tentative definition. Note: A tentative definition with
2585    // external linkage is valid (C99 6.2.2p5).
2586    if (IDecl->isTentativeDefinition(Context)) {
2587      QualType CheckType = T;
2588      unsigned DiagID = diag::err_typecheck_decl_incomplete_type;
2589
2590      const IncompleteArrayType *ArrayT = Context.getAsIncompleteArrayType(T);
2591      if (ArrayT) {
2592        CheckType = ArrayT->getElementType();
2593        DiagID = diag::err_illegal_decl_array_incomplete_type;
2594      }
2595
2596      if (IDecl->isInvalidDecl()) {
2597        // Do nothing with invalid declarations
2598      } else if ((ArrayT || IDecl->getStorageClass() == VarDecl::Static) &&
2599                 RequireCompleteType(IDecl->getLocation(), CheckType, DiagID)) {
2600        // C99 6.9.2p3: If the declaration of an identifier for an object is
2601        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2602        // declared type shall not be an incomplete type.
2603        IDecl->setInvalidDecl();
2604      }
2605    }
2606  }
2607  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
2608                                                   &Decls[0], NumDecls));
2609}
2610
2611
2612/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2613/// to introduce parameters into function prototype scope.
2614Sema::DeclPtrTy
2615Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2616  const DeclSpec &DS = D.getDeclSpec();
2617
2618  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2619  VarDecl::StorageClass StorageClass = VarDecl::None;
2620  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2621    StorageClass = VarDecl::Register;
2622  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2623    Diag(DS.getStorageClassSpecLoc(),
2624         diag::err_invalid_storage_class_in_func_decl);
2625    D.getMutableDeclSpec().ClearStorageClassSpecs();
2626  }
2627  if (DS.isThreadSpecified()) {
2628    Diag(DS.getThreadSpecLoc(),
2629         diag::err_invalid_storage_class_in_func_decl);
2630    D.getMutableDeclSpec().ClearStorageClassSpecs();
2631  }
2632  DiagnoseFunctionSpecifiers(D);
2633
2634  // Check that there are no default arguments inside the type of this
2635  // parameter (C++ only).
2636  if (getLangOptions().CPlusPlus)
2637    CheckExtraCXXDefaultArguments(D);
2638
2639  // In this context, we *do not* check D.getInvalidType(). If the declarator
2640  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
2641  // though it will not reflect the user specified type.
2642  QualType parmDeclType = GetTypeForDeclarator(D, S);
2643
2644  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
2645
2646  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2647  // Can this happen for params?  We already checked that they don't conflict
2648  // among each other.  Here they can only shadow globals, which is ok.
2649  IdentifierInfo *II = D.getIdentifier();
2650  if (II) {
2651    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2652      if (PrevDecl->isTemplateParameter()) {
2653        // Maybe we will complain about the shadowed template parameter.
2654        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2655        // Just pretend that we didn't see the previous declaration.
2656        PrevDecl = 0;
2657      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
2658        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2659
2660        // Recover by removing the name
2661        II = 0;
2662        D.SetIdentifier(0, D.getIdentifierLoc());
2663      }
2664    }
2665  }
2666
2667  // Parameters can not be abstract class types.
2668  // For record types, this is done by the AbstractClassUsageDiagnoser once
2669  // the class has been completely parsed.
2670  if (!CurContext->isRecord() &&
2671      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
2672                             diag::err_abstract_type_in_decl,
2673                             AbstractParamType))
2674    D.setInvalidType(true);
2675
2676  QualType T = adjustParameterType(parmDeclType);
2677
2678  ParmVarDecl *New;
2679  if (T == parmDeclType) // parameter type did not need adjustment
2680    New = ParmVarDecl::Create(Context, CurContext,
2681                              D.getIdentifierLoc(), II,
2682                              parmDeclType, StorageClass,
2683                              0);
2684  else // keep track of both the adjusted and unadjusted types
2685    New = OriginalParmVarDecl::Create(Context, CurContext,
2686                                      D.getIdentifierLoc(), II, T,
2687                                      parmDeclType, StorageClass, 0);
2688
2689  if (D.getInvalidType())
2690    New->setInvalidDecl();
2691
2692  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2693  if (D.getCXXScopeSpec().isSet()) {
2694    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
2695      << D.getCXXScopeSpec().getRange();
2696    New->setInvalidDecl();
2697  }
2698  // Parameter declarators cannot be interface types. All ObjC objects are
2699  // passed by reference.
2700  if (T->isObjCInterfaceType()) {
2701    Diag(D.getIdentifierLoc(), diag::err_object_cannot_be_by_value)
2702         << "passed";
2703    New->setInvalidDecl();
2704  }
2705
2706  // Add the parameter declaration into this scope.
2707  S->AddDecl(DeclPtrTy::make(New));
2708  if (II)
2709    IdResolver.AddDecl(New);
2710
2711  ProcessDeclAttributes(New, D);
2712  return DeclPtrTy::make(New);
2713}
2714
2715void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
2716                                           SourceLocation LocAfterDecls) {
2717  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2718         "Not a function declarator!");
2719  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2720
2721  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
2722  // for a K&R function.
2723  if (!FTI.hasPrototype) {
2724    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
2725      --i;
2726      if (FTI.ArgInfo[i].Param == 0) {
2727        std::string Code = "  int ";
2728        Code += FTI.ArgInfo[i].Ident->getName();
2729        Code += ";\n";
2730        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
2731          << FTI.ArgInfo[i].Ident
2732          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code);
2733
2734        // Implicitly declare the argument as type 'int' for lack of a better
2735        // type.
2736        DeclSpec DS;
2737        const char* PrevSpec; // unused
2738        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
2739                           PrevSpec);
2740        Declarator ParamD(DS, Declarator::KNRTypeListContext);
2741        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
2742        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
2743      }
2744    }
2745  }
2746}
2747
2748Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
2749                                              Declarator &D) {
2750  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2751  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2752         "Not a function declarator!");
2753  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2754
2755  if (FTI.hasPrototype) {
2756    // FIXME: Diagnose arguments without names in C.
2757  }
2758
2759  Scope *ParentScope = FnBodyScope->getParent();
2760
2761  DeclPtrTy DP = ActOnDeclarator(ParentScope, D, /*IsFunctionDefinition=*/true);
2762  return ActOnStartOfFunctionDef(FnBodyScope, DP);
2763}
2764
2765Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
2766  FunctionDecl *FD = cast<FunctionDecl>(D.getAs<Decl>());
2767
2768  // See if this is a redefinition.
2769  const FunctionDecl *Definition;
2770  if (FD->getBody(Definition)) {
2771    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
2772    Diag(Definition->getLocation(), diag::note_previous_definition);
2773  }
2774
2775  // Builtin functions cannot be defined.
2776  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
2777    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2778      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
2779      FD->setInvalidDecl();
2780    }
2781  }
2782
2783  // The return type of a function definition must be complete
2784  // (C99 6.9.1p3, C++ [dcl.fct]p6).
2785  QualType ResultType = FD->getResultType();
2786  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
2787      RequireCompleteType(FD->getLocation(), ResultType,
2788                          diag::err_func_def_incomplete_result))
2789    FD->setInvalidDecl();
2790
2791  // GNU warning -Wmissing-prototypes:
2792  //   Warn if a global function is defined without a previous
2793  //   prototype declaration. This warning is issued even if the
2794  //   definition itself provides a prototype. The aim is to detect
2795  //   global functions that fail to be declared in header files.
2796  if (!FD->isInvalidDecl() && FD->isGlobal() && !isa<CXXMethodDecl>(FD)) {
2797    bool MissingPrototype = true;
2798    for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
2799         Prev; Prev = Prev->getPreviousDeclaration()) {
2800      // Ignore any declarations that occur in function or method
2801      // scope, because they aren't visible from the header.
2802      if (Prev->getDeclContext()->isFunctionOrMethod())
2803        continue;
2804
2805      MissingPrototype = !Prev->getType()->isFunctionProtoType();
2806      break;
2807    }
2808
2809    if (MissingPrototype)
2810      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
2811  }
2812
2813  PushDeclContext(FnBodyScope, FD);
2814
2815  // Check the validity of our function parameters
2816  CheckParmsForFunctionDef(FD);
2817
2818  // Introduce our parameters into the function scope
2819  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2820    ParmVarDecl *Param = FD->getParamDecl(p);
2821    Param->setOwningFunction(FD);
2822
2823    // If this has an identifier, add it to the scope stack.
2824    if (Param->getIdentifier())
2825      PushOnScopeChains(Param, FnBodyScope);
2826  }
2827
2828  // Checking attributes of current function definition
2829  // dllimport attribute.
2830  if (FD->getAttr<DLLImportAttr>() && (!FD->getAttr<DLLExportAttr>())) {
2831    // dllimport attribute cannot be applied to definition.
2832    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
2833      Diag(FD->getLocation(),
2834           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
2835        << "dllimport";
2836      FD->setInvalidDecl();
2837      return DeclPtrTy::make(FD);
2838    } else {
2839      // If a symbol previously declared dllimport is later defined, the
2840      // attribute is ignored in subsequent references, and a warning is
2841      // emitted.
2842      Diag(FD->getLocation(),
2843           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
2844        << FD->getNameAsCString() << "dllimport";
2845    }
2846  }
2847  return DeclPtrTy::make(FD);
2848}
2849
2850static bool StatementCreatesScope(Stmt* S) {
2851  bool result = false;
2852  if (DeclStmt* DS = dyn_cast<DeclStmt>(S)) {
2853    for (DeclStmt::decl_iterator i = DS->decl_begin();
2854         i != DS->decl_end(); ++i) {
2855      if (VarDecl* D = dyn_cast<VarDecl>(*i)) {
2856        result |= D->getType()->isVariablyModifiedType();
2857        result |= !!D->getAttr<CleanupAttr>();
2858      } else if (TypedefDecl* D = dyn_cast<TypedefDecl>(*i)) {
2859        result |= D->getUnderlyingType()->isVariablyModifiedType();
2860      }
2861    }
2862  }
2863
2864  return result;
2865}
2866
2867void Sema::RecursiveCalcLabelScopes(llvm::DenseMap<Stmt*, void*>& LabelScopeMap,
2868                                    llvm::DenseMap<void*, Stmt*>& PopScopeMap,
2869                                    std::vector<void*>& ScopeStack,
2870                                    Stmt* CurStmt,
2871                                    Stmt* ParentCompoundStmt) {
2872  for (Stmt::child_iterator i = CurStmt->child_begin();
2873       i != CurStmt->child_end(); ++i) {
2874    if (!*i) continue;
2875    if (StatementCreatesScope(*i))  {
2876      ScopeStack.push_back(*i);
2877      PopScopeMap[*i] = ParentCompoundStmt;
2878    } else if (isa<LabelStmt>(CurStmt)) {
2879      LabelScopeMap[CurStmt] = ScopeStack.size() ? ScopeStack.back() : 0;
2880    }
2881    if (isa<DeclStmt>(*i)) continue;
2882    Stmt* CurCompound = isa<CompoundStmt>(*i) ? *i : ParentCompoundStmt;
2883    RecursiveCalcLabelScopes(LabelScopeMap, PopScopeMap, ScopeStack,
2884                             *i, CurCompound);
2885  }
2886
2887  while (ScopeStack.size() && PopScopeMap[ScopeStack.back()] == CurStmt) {
2888    ScopeStack.pop_back();
2889  }
2890}
2891
2892void Sema::RecursiveCalcJumpScopes(llvm::DenseMap<Stmt*, void*>& LabelScopeMap,
2893                                   llvm::DenseMap<void*, Stmt*>& PopScopeMap,
2894                                   llvm::DenseMap<Stmt*, void*>& GotoScopeMap,
2895                                   std::vector<void*>& ScopeStack,
2896                                   Stmt* CurStmt) {
2897  for (Stmt::child_iterator i = CurStmt->child_begin();
2898       i != CurStmt->child_end(); ++i) {
2899    if (!*i) continue;
2900    if (StatementCreatesScope(*i))  {
2901      ScopeStack.push_back(*i);
2902    } else if (GotoStmt* GS = dyn_cast<GotoStmt>(*i)) {
2903      void* LScope = LabelScopeMap[GS->getLabel()];
2904      if (LScope) {
2905        bool foundScopeInStack = false;
2906        for (unsigned i = ScopeStack.size(); i > 0; --i) {
2907          if (LScope == ScopeStack[i-1]) {
2908            foundScopeInStack = true;
2909            break;
2910          }
2911        }
2912        if (!foundScopeInStack) {
2913          Diag(GS->getSourceRange().getBegin(), diag::err_goto_into_scope);
2914        }
2915      }
2916    }
2917    if (isa<DeclStmt>(*i)) continue;
2918    RecursiveCalcJumpScopes(LabelScopeMap, PopScopeMap, GotoScopeMap,
2919                            ScopeStack, *i);
2920  }
2921
2922  while (ScopeStack.size() && PopScopeMap[ScopeStack.back()] == CurStmt) {
2923    ScopeStack.pop_back();
2924  }
2925}
2926
2927Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
2928  Decl *dcl = D.getAs<Decl>();
2929  Stmt *Body = static_cast<Stmt*>(BodyArg.release());
2930  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
2931    FD->setBody(cast<CompoundStmt>(Body));
2932    assert(FD == getCurFunctionDecl() && "Function parsing confused");
2933  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
2934    assert(MD == getCurMethodDecl() && "Method parsing confused");
2935    MD->setBody(cast<CompoundStmt>(Body));
2936  } else {
2937    Body->Destroy(Context);
2938    return DeclPtrTy();
2939  }
2940  PopDeclContext();
2941  // Verify and clean out per-function state.
2942
2943  bool HaveLabels = !LabelMap.empty();
2944  // Check goto/label use.
2945  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
2946       I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
2947    // Verify that we have no forward references left.  If so, there was a goto
2948    // or address of a label taken, but no definition of it.  Label fwd
2949    // definitions are indicated with a null substmt.
2950    if (I->second->getSubStmt() == 0) {
2951      LabelStmt *L = I->second;
2952      // Emit error.
2953      Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
2954
2955      // At this point, we have gotos that use the bogus label.  Stitch it into
2956      // the function body so that they aren't leaked and that the AST is well
2957      // formed.
2958      if (Body) {
2959#if 0
2960        // FIXME: Why do this?  Having a 'push_back' in CompoundStmt is ugly,
2961        // and the AST is malformed anyway.  We should just blow away 'L'.
2962        L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
2963        cast<CompoundStmt>(Body)->push_back(L);
2964#else
2965        L->Destroy(Context);
2966#endif
2967      } else {
2968        // The whole function wasn't parsed correctly, just delete this.
2969        L->Destroy(Context);
2970      }
2971    }
2972  }
2973  LabelMap.clear();
2974
2975  if (!Body) return D;
2976
2977  if (HaveLabels) {
2978    llvm::DenseMap<Stmt*, void*> LabelScopeMap;
2979    llvm::DenseMap<void*, Stmt*> PopScopeMap;
2980    llvm::DenseMap<Stmt*, void*> GotoScopeMap;
2981    std::vector<void*> ScopeStack;
2982    RecursiveCalcLabelScopes(LabelScopeMap, PopScopeMap, ScopeStack, Body, Body);
2983    RecursiveCalcJumpScopes(LabelScopeMap, PopScopeMap, GotoScopeMap, ScopeStack, Body);
2984  }
2985
2986  return D;
2987}
2988
2989/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
2990/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
2991NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
2992                                          IdentifierInfo &II, Scope *S) {
2993  // Before we produce a declaration for an implicitly defined
2994  // function, see whether there was a locally-scoped declaration of
2995  // this name as a function or variable. If so, use that
2996  // (non-visible) declaration, and complain about it.
2997  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2998    = LocallyScopedExternalDecls.find(&II);
2999  if (Pos != LocallyScopedExternalDecls.end()) {
3000    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
3001    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
3002    return Pos->second;
3003  }
3004
3005  // Extension in C99.  Legal in C90, but warn about it.
3006  if (getLangOptions().C99)
3007    Diag(Loc, diag::ext_implicit_function_decl) << &II;
3008  else
3009    Diag(Loc, diag::warn_implicit_function_decl) << &II;
3010
3011  // FIXME: handle stuff like:
3012  // void foo() { extern float X(); }
3013  // void bar() { X(); }  <-- implicit decl for X in another scope.
3014
3015  // Set a Declarator for the implicit definition: int foo();
3016  const char *Dummy;
3017  DeclSpec DS;
3018  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
3019  Error = Error; // Silence warning.
3020  assert(!Error && "Error setting up implicit decl!");
3021  Declarator D(DS, Declarator::BlockContext);
3022  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(),
3023                                             0, 0, 0, Loc, D),
3024                SourceLocation());
3025  D.SetIdentifier(&II, Loc);
3026
3027  // Insert this function into translation-unit scope.
3028
3029  DeclContext *PrevDC = CurContext;
3030  CurContext = Context.getTranslationUnitDecl();
3031
3032  FunctionDecl *FD =
3033 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D, DeclPtrTy()).getAs<Decl>());
3034  FD->setImplicit();
3035
3036  CurContext = PrevDC;
3037
3038  AddKnownFunctionAttributes(FD);
3039
3040  return FD;
3041}
3042
3043/// \brief Adds any function attributes that we know a priori based on
3044/// the declaration of this function.
3045///
3046/// These attributes can apply both to implicitly-declared builtins
3047/// (like __builtin___printf_chk) or to library-declared functions
3048/// like NSLog or printf.
3049void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
3050  if (FD->isInvalidDecl())
3051    return;
3052
3053  // If this is a built-in function, map its builtin attributes to
3054  // actual attributes.
3055  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3056    // Handle printf-formatting attributes.
3057    unsigned FormatIdx;
3058    bool HasVAListArg;
3059    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
3060      if (!FD->getAttr<FormatAttr>())
3061        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
3062                                               FormatIdx + 2));
3063    }
3064
3065    // Mark const if we don't care about errno and that is the only
3066    // thing preventing the function from being const. This allows
3067    // IRgen to use LLVM intrinsics for such functions.
3068    if (!getLangOptions().MathErrno &&
3069        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
3070      if (!FD->getAttr<ConstAttr>())
3071        FD->addAttr(::new (Context) ConstAttr());
3072    }
3073  }
3074
3075  IdentifierInfo *Name = FD->getIdentifier();
3076  if (!Name)
3077    return;
3078  if ((!getLangOptions().CPlusPlus &&
3079       FD->getDeclContext()->isTranslationUnit()) ||
3080      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
3081       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
3082       LinkageSpecDecl::lang_c)) {
3083    // Okay: this could be a libc/libm/Objective-C function we know
3084    // about.
3085  } else
3086    return;
3087
3088  unsigned KnownID;
3089  for (KnownID = 0; KnownID != id_num_known_functions; ++KnownID)
3090    if (KnownFunctionIDs[KnownID] == Name)
3091      break;
3092
3093  switch (KnownID) {
3094  case id_NSLog:
3095  case id_NSLogv:
3096    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
3097      // FIXME: We known better than our headers.
3098      const_cast<FormatAttr *>(Format)->setType("printf");
3099    } else
3100      FD->addAttr(::new (Context) FormatAttr("printf", 1, 2));
3101    break;
3102
3103  case id_asprintf:
3104  case id_vasprintf:
3105    if (!FD->getAttr<FormatAttr>())
3106      FD->addAttr(::new (Context) FormatAttr("printf", 2, 3));
3107    break;
3108
3109  default:
3110    // Unknown function or known function without any attributes to
3111    // add. Do nothing.
3112    break;
3113  }
3114}
3115
3116TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T) {
3117  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
3118  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3119
3120  // Scope manipulation handled by caller.
3121  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
3122                                           D.getIdentifierLoc(),
3123                                           D.getIdentifier(),
3124                                           T);
3125
3126  if (TagType *TT = dyn_cast<TagType>(T)) {
3127    TagDecl *TD = TT->getDecl();
3128
3129    // If the TagDecl that the TypedefDecl points to is an anonymous decl
3130    // keep track of the TypedefDecl.
3131    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
3132      TD->setTypedefForAnonDecl(NewTD);
3133  }
3134
3135  if (D.getInvalidType())
3136    NewTD->setInvalidDecl();
3137  return NewTD;
3138}
3139
3140/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
3141/// former case, Name will be non-null.  In the later case, Name will be null.
3142/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
3143/// reference/declaration/definition of a tag.
3144Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
3145                               SourceLocation KWLoc, const CXXScopeSpec &SS,
3146                               IdentifierInfo *Name, SourceLocation NameLoc,
3147                               AttributeList *Attr, AccessSpecifier AS) {
3148  // If this is not a definition, it must have a name.
3149  assert((Name != 0 || TK == TK_Definition) &&
3150         "Nameless record must be a definition!");
3151
3152  TagDecl::TagKind Kind;
3153  switch (TagSpec) {
3154  default: assert(0 && "Unknown tag type!");
3155  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3156  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3157  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3158  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
3159  }
3160
3161  DeclContext *SearchDC = CurContext;
3162  DeclContext *DC = CurContext;
3163  NamedDecl *PrevDecl = 0;
3164
3165  bool Invalid = false;
3166
3167  if (Name && SS.isNotEmpty()) {
3168    // We have a nested-name tag ('struct foo::bar').
3169
3170    // Check for invalid 'foo::'.
3171    if (SS.isInvalid()) {
3172      Name = 0;
3173      goto CreateNewDecl;
3174    }
3175
3176    // FIXME: RequireCompleteDeclContext(SS)?
3177    DC = computeDeclContext(SS);
3178    SearchDC = DC;
3179    // Look-up name inside 'foo::'.
3180    PrevDecl = dyn_cast_or_null<TagDecl>(
3181                 LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
3182
3183    // A tag 'foo::bar' must already exist.
3184    if (PrevDecl == 0) {
3185      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
3186      Name = 0;
3187      goto CreateNewDecl;
3188    }
3189  } else if (Name) {
3190    // If this is a named struct, check to see if there was a previous forward
3191    // declaration or definition.
3192    // FIXME: We're looking into outer scopes here, even when we
3193    // shouldn't be. Doing so can result in ambiguities that we
3194    // shouldn't be diagnosing.
3195    LookupResult R = LookupName(S, Name, LookupTagName,
3196                                /*RedeclarationOnly=*/(TK != TK_Reference));
3197    if (R.isAmbiguous()) {
3198      DiagnoseAmbiguousLookup(R, Name, NameLoc);
3199      // FIXME: This is not best way to recover from case like:
3200      //
3201      // struct S s;
3202      //
3203      // causes needless "incomplete type" error later.
3204      Name = 0;
3205      PrevDecl = 0;
3206      Invalid = true;
3207    }
3208    else
3209      PrevDecl = R;
3210
3211    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
3212      // FIXME: This makes sure that we ignore the contexts associated
3213      // with C structs, unions, and enums when looking for a matching
3214      // tag declaration or definition. See the similar lookup tweak
3215      // in Sema::LookupName; is there a better way to deal with this?
3216      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
3217        SearchDC = SearchDC->getParent();
3218    }
3219  }
3220
3221  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3222    // Maybe we will complain about the shadowed template parameter.
3223    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
3224    // Just pretend that we didn't see the previous declaration.
3225    PrevDecl = 0;
3226  }
3227
3228  if (PrevDecl) {
3229    // Check whether the previous declaration is usable.
3230    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
3231
3232    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
3233      // If this is a use of a previous tag, or if the tag is already declared
3234      // in the same scope (so that the definition/declaration completes or
3235      // rementions the tag), reuse the decl.
3236      if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
3237        // Make sure that this wasn't declared as an enum and now used as a
3238        // struct or something similar.
3239        if (PrevTagDecl->getTagKind() != Kind) {
3240          bool SafeToContinue
3241            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
3242               Kind != TagDecl::TK_enum);
3243          if (SafeToContinue)
3244            Diag(KWLoc, diag::err_use_with_wrong_tag)
3245              << Name
3246              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
3247                                                  PrevTagDecl->getKindName());
3248          else
3249            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
3250          Diag(PrevDecl->getLocation(), diag::note_previous_use);
3251
3252          if (SafeToContinue)
3253            Kind = PrevTagDecl->getTagKind();
3254          else {
3255            // Recover by making this an anonymous redefinition.
3256            Name = 0;
3257            PrevDecl = 0;
3258            Invalid = true;
3259          }
3260        }
3261
3262        if (!Invalid) {
3263          // If this is a use, just return the declaration we found.
3264
3265          // FIXME: In the future, return a variant or some other clue
3266          // for the consumer of this Decl to know it doesn't own it.
3267          // For our current ASTs this shouldn't be a problem, but will
3268          // need to be changed with DeclGroups.
3269          if (TK == TK_Reference)
3270            return DeclPtrTy::make(PrevDecl);
3271
3272          // Diagnose attempts to redefine a tag.
3273          if (TK == TK_Definition) {
3274            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
3275              Diag(NameLoc, diag::err_redefinition) << Name;
3276              Diag(Def->getLocation(), diag::note_previous_definition);
3277              // If this is a redefinition, recover by making this
3278              // struct be anonymous, which will make any later
3279              // references get the previous definition.
3280              Name = 0;
3281              PrevDecl = 0;
3282              Invalid = true;
3283            } else {
3284              // If the type is currently being defined, complain
3285              // about a nested redefinition.
3286              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
3287              if (Tag->isBeingDefined()) {
3288                Diag(NameLoc, diag::err_nested_redefinition) << Name;
3289                Diag(PrevTagDecl->getLocation(),
3290                     diag::note_previous_definition);
3291                Name = 0;
3292                PrevDecl = 0;
3293                Invalid = true;
3294              }
3295            }
3296
3297            // Okay, this is definition of a previously declared or referenced
3298            // tag PrevDecl. We're going to create a new Decl for it.
3299          }
3300        }
3301        // If we get here we have (another) forward declaration or we
3302        // have a definition.  Just create a new decl.
3303      } else {
3304        // If we get here, this is a definition of a new tag type in a nested
3305        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
3306        // new decl/type.  We set PrevDecl to NULL so that the entities
3307        // have distinct types.
3308        PrevDecl = 0;
3309      }
3310      // If we get here, we're going to create a new Decl. If PrevDecl
3311      // is non-NULL, it's a definition of the tag declared by
3312      // PrevDecl. If it's NULL, we have a new definition.
3313    } else {
3314      // PrevDecl is a namespace, template, or anything else
3315      // that lives in the IDNS_Tag identifier namespace.
3316      if (isDeclInScope(PrevDecl, SearchDC, S)) {
3317        // The tag name clashes with a namespace name, issue an error and
3318        // recover by making this tag be anonymous.
3319        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
3320        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3321        Name = 0;
3322        PrevDecl = 0;
3323        Invalid = true;
3324      } else {
3325        // The existing declaration isn't relevant to us; we're in a
3326        // new scope, so clear out the previous declaration.
3327        PrevDecl = 0;
3328      }
3329    }
3330  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
3331             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
3332    // C.scope.pdecl]p5:
3333    //   -- for an elaborated-type-specifier of the form
3334    //
3335    //          class-key identifier
3336    //
3337    //      if the elaborated-type-specifier is used in the
3338    //      decl-specifier-seq or parameter-declaration-clause of a
3339    //      function defined in namespace scope, the identifier is
3340    //      declared as a class-name in the namespace that contains
3341    //      the declaration; otherwise, except as a friend
3342    //      declaration, the identifier is declared in the smallest
3343    //      non-class, non-function-prototype scope that contains the
3344    //      declaration.
3345    //
3346    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
3347    // C structs and unions.
3348    //
3349    // GNU C also supports this behavior as part of its incomplete
3350    // enum types extension, while GNU C++ does not.
3351    //
3352    // Find the context where we'll be declaring the tag.
3353    // FIXME: We would like to maintain the current DeclContext as the
3354    // lexical context,
3355    while (SearchDC->isRecord())
3356      SearchDC = SearchDC->getParent();
3357
3358    // Find the scope where we'll be declaring the tag.
3359    while (S->isClassScope() ||
3360           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
3361           ((S->getFlags() & Scope::DeclScope) == 0) ||
3362           (S->getEntity() &&
3363            ((DeclContext *)S->getEntity())->isTransparentContext()))
3364      S = S->getParent();
3365  }
3366
3367CreateNewDecl:
3368
3369  // If there is an identifier, use the location of the identifier as the
3370  // location of the decl, otherwise use the location of the struct/union
3371  // keyword.
3372  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
3373
3374  // Otherwise, create a new declaration. If there is a previous
3375  // declaration of the same entity, the two will be linked via
3376  // PrevDecl.
3377  TagDecl *New;
3378
3379  if (Kind == TagDecl::TK_enum) {
3380    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3381    // enum X { A, B, C } D;    D should chain to X.
3382    New = EnumDecl::Create(Context, SearchDC, Loc, Name,
3383                           cast_or_null<EnumDecl>(PrevDecl));
3384    // If this is an undefined enum, warn.
3385    if (TK != TK_Definition && !Invalid)  {
3386      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
3387                                              : diag::ext_forward_ref_enum;
3388      Diag(Loc, DK);
3389    }
3390  } else {
3391    // struct/union/class
3392
3393    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3394    // struct X { int A; } D;    D should chain to X.
3395    if (getLangOptions().CPlusPlus)
3396      // FIXME: Look for a way to use RecordDecl for simple structs.
3397      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3398                                  cast_or_null<CXXRecordDecl>(PrevDecl));
3399    else
3400      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3401                               cast_or_null<RecordDecl>(PrevDecl));
3402  }
3403
3404  if (Kind != TagDecl::TK_enum) {
3405    // Handle #pragma pack: if the #pragma pack stack has non-default
3406    // alignment, make up a packed attribute for this decl. These
3407    // attributes are checked when the ASTContext lays out the
3408    // structure.
3409    //
3410    // It is important for implementing the correct semantics that this
3411    // happen here (in act on tag decl). The #pragma pack stack is
3412    // maintained as a result of parser callbacks which can occur at
3413    // many points during the parsing of a struct declaration (because
3414    // the #pragma tokens are effectively skipped over during the
3415    // parsing of the struct).
3416    if (unsigned Alignment = getPragmaPackAlignment())
3417      New->addAttr(::new (Context) PackedAttr(Alignment * 8));
3418  }
3419
3420  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
3421    // C++ [dcl.typedef]p3:
3422    //   [...] Similarly, in a given scope, a class or enumeration
3423    //   shall not be declared with the same name as a typedef-name
3424    //   that is declared in that scope and refers to a type other
3425    //   than the class or enumeration itself.
3426    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
3427    TypedefDecl *PrevTypedef = 0;
3428    if (Lookup.getKind() == LookupResult::Found)
3429      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
3430
3431    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
3432        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
3433          Context.getCanonicalType(Context.getTypeDeclType(New))) {
3434      Diag(Loc, diag::err_tag_definition_of_typedef)
3435        << Context.getTypeDeclType(New)
3436        << PrevTypedef->getUnderlyingType();
3437      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
3438      Invalid = true;
3439    }
3440  }
3441
3442  if (Invalid)
3443    New->setInvalidDecl();
3444
3445  if (Attr)
3446    ProcessDeclAttributeList(New, Attr);
3447
3448  // If we're declaring or defining a tag in function prototype scope
3449  // in C, note that this type can only be used within the function.
3450  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
3451    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
3452
3453  // Set the lexical context. If the tag has a C++ scope specifier, the
3454  // lexical context will be different from the semantic context.
3455  New->setLexicalDeclContext(CurContext);
3456
3457  // Set the access specifier.
3458  SetMemberAccessSpecifier(New, PrevDecl, AS);
3459
3460  if (TK == TK_Definition)
3461    New->startDefinition();
3462
3463  // If this has an identifier, add it to the scope stack.
3464  if (Name) {
3465    S = getNonFieldDeclScope(S);
3466    PushOnScopeChains(New, S);
3467  } else {
3468    CurContext->addDecl(New);
3469  }
3470
3471  return DeclPtrTy::make(New);
3472}
3473
3474void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
3475  AdjustDeclIfTemplate(TagD);
3476  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
3477
3478  // Enter the tag context.
3479  PushDeclContext(S, Tag);
3480
3481  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
3482    FieldCollector->StartClass();
3483
3484    if (Record->getIdentifier()) {
3485      // C++ [class]p2:
3486      //   [...] The class-name is also inserted into the scope of the
3487      //   class itself; this is known as the injected-class-name. For
3488      //   purposes of access checking, the injected-class-name is treated
3489      //   as if it were a public member name.
3490      CXXRecordDecl *InjectedClassName
3491        = CXXRecordDecl::Create(Context, Record->getTagKind(),
3492                                CurContext, Record->getLocation(),
3493                                Record->getIdentifier(), Record);
3494      InjectedClassName->setImplicit();
3495      InjectedClassName->setAccess(AS_public);
3496      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
3497        InjectedClassName->setDescribedClassTemplate(Template);
3498      PushOnScopeChains(InjectedClassName, S);
3499      assert(InjectedClassName->isInjectedClassName() &&
3500             "Broken injected-class-name");
3501    }
3502  }
3503}
3504
3505void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD) {
3506  AdjustDeclIfTemplate(TagD);
3507  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
3508
3509  if (isa<CXXRecordDecl>(Tag))
3510    FieldCollector->FinishClass();
3511
3512  // Exit this scope of this tag's definition.
3513  PopDeclContext();
3514
3515  // Notify the consumer that we've defined a tag.
3516  Consumer.HandleTagDeclDefinition(Tag);
3517}
3518
3519bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
3520                          QualType FieldTy, const Expr *BitWidth) {
3521  // C99 6.7.2.1p4 - verify the field type.
3522  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
3523  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
3524    // Handle incomplete types with specific error.
3525    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
3526      return true;
3527    return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
3528      << FieldName << FieldTy << BitWidth->getSourceRange();
3529  }
3530
3531  // If the bit-width is type- or value-dependent, don't try to check
3532  // it now.
3533  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
3534    return false;
3535
3536  llvm::APSInt Value;
3537  if (VerifyIntegerConstantExpression(BitWidth, &Value))
3538    return true;
3539
3540  // Zero-width bitfield is ok for anonymous field.
3541  if (Value == 0 && FieldName)
3542    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
3543
3544  if (Value.isSigned() && Value.isNegative())
3545    return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
3546             << FieldName << Value.toString(10);
3547
3548  if (!FieldTy->isDependentType()) {
3549    uint64_t TypeSize = Context.getTypeSize(FieldTy);
3550    // FIXME: We won't need the 0 size once we check that the field type is valid.
3551    if (TypeSize && Value.getZExtValue() > TypeSize)
3552      return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
3553        << FieldName << (unsigned)TypeSize;
3554  }
3555
3556  return false;
3557}
3558
3559/// ActOnField - Each field of a struct/union/class is passed into this in order
3560/// to create a FieldDecl object for it.
3561Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
3562                                 SourceLocation DeclStart,
3563                                 Declarator &D, ExprTy *BitfieldWidth) {
3564  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
3565                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
3566                               AS_public);
3567  return DeclPtrTy::make(Res);
3568}
3569
3570/// HandleField - Analyze a field of a C struct or a C++ data member.
3571///
3572FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
3573                             SourceLocation DeclStart,
3574                             Declarator &D, Expr *BitWidth,
3575                             AccessSpecifier AS) {
3576  IdentifierInfo *II = D.getIdentifier();
3577  SourceLocation Loc = DeclStart;
3578  if (II) Loc = D.getIdentifierLoc();
3579
3580  QualType T = GetTypeForDeclarator(D, S);
3581
3582  if (getLangOptions().CPlusPlus) {
3583    CheckExtraCXXDefaultArguments(D);
3584  }
3585
3586  DiagnoseFunctionSpecifiers(D);
3587
3588  NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3589  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
3590    PrevDecl = 0;
3591
3592  FieldDecl *NewFD
3593    = CheckFieldDecl(II, T, Record, Loc,
3594               D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable,
3595                     BitWidth, AS, PrevDecl, &D);
3596  if (NewFD->isInvalidDecl() && PrevDecl) {
3597    // Don't introduce NewFD into scope; there's already something
3598    // with the same name in the same scope.
3599  } else if (II) {
3600    PushOnScopeChains(NewFD, S);
3601  } else
3602    Record->addDecl(NewFD);
3603
3604  return NewFD;
3605}
3606
3607/// \brief Build a new FieldDecl and check its well-formedness.
3608///
3609/// This routine builds a new FieldDecl given the fields name, type,
3610/// record, etc. \p PrevDecl should refer to any previous declaration
3611/// with the same name and in the same scope as the field to be
3612/// created.
3613///
3614/// \returns a new FieldDecl.
3615///
3616/// \todo The Declarator argument is a hack. It will be removed once
3617FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
3618                                RecordDecl *Record, SourceLocation Loc,
3619                                bool Mutable, Expr *BitWidth,
3620                                AccessSpecifier AS, NamedDecl *PrevDecl,
3621                                Declarator *D) {
3622  IdentifierInfo *II = Name.getAsIdentifierInfo();
3623  bool InvalidDecl = false;
3624
3625  // If we receive a broken type, recover by assuming 'int' and
3626  // marking this declaration as invalid.
3627  if (T.isNull()) {
3628    InvalidDecl = true;
3629    T = Context.IntTy;
3630  }
3631
3632  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3633  // than a variably modified type.
3634  if (T->isVariablyModifiedType()) {
3635    bool SizeIsNegative;
3636    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
3637                                                           SizeIsNegative);
3638    if (!FixedTy.isNull()) {
3639      Diag(Loc, diag::warn_illegal_constant_array_size);
3640      T = FixedTy;
3641    } else {
3642      if (SizeIsNegative)
3643        Diag(Loc, diag::err_typecheck_negative_array_size);
3644      else
3645        Diag(Loc, diag::err_typecheck_field_variable_size);
3646      T = Context.IntTy;
3647      InvalidDecl = true;
3648    }
3649  }
3650
3651  // Fields can not have abstract class types
3652  if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl,
3653                             AbstractFieldType))
3654    InvalidDecl = true;
3655
3656  // If this is declared as a bit-field, check the bit-field.
3657  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth)) {
3658    InvalidDecl = true;
3659    DeleteExpr(BitWidth);
3660    BitWidth = 0;
3661  }
3662
3663  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, BitWidth,
3664                                       Mutable);
3665
3666  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
3667    Diag(Loc, diag::err_duplicate_member) << II;
3668    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3669    NewFD->setInvalidDecl();
3670    Record->setInvalidDecl();
3671  }
3672
3673  if (getLangOptions().CPlusPlus && !T->isPODType())
3674    cast<CXXRecordDecl>(Record)->setPOD(false);
3675
3676  // FIXME: We need to pass in the attributes given an AST
3677  // representation, not a parser representation.
3678  if (D)
3679    ProcessDeclAttributes(NewFD, *D);
3680
3681  if (T.isObjCGCWeak())
3682    Diag(Loc, diag::warn_attribute_weak_on_field);
3683
3684  if (InvalidDecl)
3685    NewFD->setInvalidDecl();
3686
3687  NewFD->setAccess(AS);
3688
3689  // C++ [dcl.init.aggr]p1:
3690  //   An aggregate is an array or a class (clause 9) with [...] no
3691  //   private or protected non-static data members (clause 11).
3692  // A POD must be an aggregate.
3693  if (getLangOptions().CPlusPlus &&
3694      (AS == AS_private || AS == AS_protected)) {
3695    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
3696    CXXRecord->setAggregate(false);
3697    CXXRecord->setPOD(false);
3698  }
3699
3700  return NewFD;
3701}
3702
3703/// TranslateIvarVisibility - Translate visibility from a token ID to an
3704///  AST enum value.
3705static ObjCIvarDecl::AccessControl
3706TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
3707  switch (ivarVisibility) {
3708  default: assert(0 && "Unknown visitibility kind");
3709  case tok::objc_private: return ObjCIvarDecl::Private;
3710  case tok::objc_public: return ObjCIvarDecl::Public;
3711  case tok::objc_protected: return ObjCIvarDecl::Protected;
3712  case tok::objc_package: return ObjCIvarDecl::Package;
3713  }
3714}
3715
3716/// ActOnIvar - Each ivar field of an objective-c class is passed into this
3717/// in order to create an IvarDecl object for it.
3718Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
3719                                SourceLocation DeclStart,
3720                                Declarator &D, ExprTy *BitfieldWidth,
3721                                tok::ObjCKeywordKind Visibility) {
3722
3723  IdentifierInfo *II = D.getIdentifier();
3724  Expr *BitWidth = (Expr*)BitfieldWidth;
3725  SourceLocation Loc = DeclStart;
3726  if (II) Loc = D.getIdentifierLoc();
3727
3728  // FIXME: Unnamed fields can be handled in various different ways, for
3729  // example, unnamed unions inject all members into the struct namespace!
3730
3731  QualType T = GetTypeForDeclarator(D, S);
3732  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3733  bool InvalidDecl = false;
3734
3735  if (BitWidth) {
3736    // 6.7.2.1p3, 6.7.2.1p4
3737    if (VerifyBitField(Loc, II, T, BitWidth)) {
3738      InvalidDecl = true;
3739      DeleteExpr(BitWidth);
3740      BitWidth = 0;
3741    }
3742  } else {
3743    // Not a bitfield.
3744
3745    // validate II.
3746
3747  }
3748
3749  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3750  // than a variably modified type.
3751  if (T->isVariablyModifiedType()) {
3752    Diag(Loc, diag::err_typecheck_ivar_variable_size);
3753    InvalidDecl = true;
3754  }
3755
3756  // Get the visibility (access control) for this ivar.
3757  ObjCIvarDecl::AccessControl ac =
3758    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
3759                                        : ObjCIvarDecl::None;
3760
3761  // Construct the decl.
3762  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, CurContext, Loc, II, T,ac,
3763                                             (Expr *)BitfieldWidth);
3764
3765  if (II) {
3766    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3767    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3768        && !isa<TagDecl>(PrevDecl)) {
3769      Diag(Loc, diag::err_duplicate_member) << II;
3770      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3771      NewID->setInvalidDecl();
3772    }
3773  }
3774
3775  // Process attributes attached to the ivar.
3776  ProcessDeclAttributes(NewID, D);
3777
3778  if (D.getInvalidType() || InvalidDecl)
3779    NewID->setInvalidDecl();
3780
3781  if (II) {
3782    // FIXME: When interfaces are DeclContexts, we'll need to add
3783    // these to the interface.
3784    S->AddDecl(DeclPtrTy::make(NewID));
3785    IdResolver.AddDecl(NewID);
3786  }
3787
3788  return DeclPtrTy::make(NewID);
3789}
3790
3791void Sema::ActOnFields(Scope* S,
3792                       SourceLocation RecLoc, DeclPtrTy RecDecl,
3793                       DeclPtrTy *Fields, unsigned NumFields,
3794                       SourceLocation LBrac, SourceLocation RBrac,
3795                       AttributeList *Attr) {
3796  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
3797  assert(EnclosingDecl && "missing record or interface decl");
3798
3799  // If the decl this is being inserted into is invalid, then it may be a
3800  // redeclaration or some other bogus case.  Don't try to add fields to it.
3801  if (EnclosingDecl->isInvalidDecl()) {
3802    // FIXME: Deallocate fields?
3803    return;
3804  }
3805
3806
3807  // Verify that all the fields are okay.
3808  unsigned NumNamedMembers = 0;
3809  llvm::SmallVector<FieldDecl*, 32> RecFields;
3810
3811  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
3812  for (unsigned i = 0; i != NumFields; ++i) {
3813    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
3814
3815    // Get the type for the field.
3816    Type *FDTy = FD->getType().getTypePtr();
3817
3818    if (!FD->isAnonymousStructOrUnion()) {
3819      // Remember all fields written by the user.
3820      RecFields.push_back(FD);
3821    }
3822
3823    // If the field is already invalid for some reason, don't emit more
3824    // diagnostics about it.
3825    if (FD->isInvalidDecl())
3826      continue;
3827
3828    // C99 6.7.2.1p2:
3829    //   A structure or union shall not contain a member with
3830    //   incomplete or function type (hence, a structure shall not
3831    //   contain an instance of itself, but may contain a pointer to
3832    //   an instance of itself), except that the last member of a
3833    //   structure with more than one named member may have incomplete
3834    //   array type; such a structure (and any union containing,
3835    //   possibly recursively, a member that is such a structure)
3836    //   shall not be a member of a structure or an element of an
3837    //   array.
3838    if (FDTy->isFunctionType()) {
3839      // Field declared as a function.
3840      Diag(FD->getLocation(), diag::err_field_declared_as_function)
3841        << FD->getDeclName();
3842      FD->setInvalidDecl();
3843      EnclosingDecl->setInvalidDecl();
3844      continue;
3845    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
3846               Record && Record->isStruct()) {
3847      // Flexible array member.
3848      if (NumNamedMembers < 1) {
3849        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
3850          << FD->getDeclName();
3851        FD->setInvalidDecl();
3852        EnclosingDecl->setInvalidDecl();
3853        continue;
3854      }
3855      // Okay, we have a legal flexible array member at the end of the struct.
3856      if (Record)
3857        Record->setHasFlexibleArrayMember(true);
3858    } else if (!FDTy->isDependentType() &&
3859               RequireCompleteType(FD->getLocation(), FD->getType(),
3860                                   diag::err_field_incomplete)) {
3861      // Incomplete type
3862      FD->setInvalidDecl();
3863      EnclosingDecl->setInvalidDecl();
3864      continue;
3865    } else if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
3866      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
3867        // If this is a member of a union, then entire union becomes "flexible".
3868        if (Record && Record->isUnion()) {
3869          Record->setHasFlexibleArrayMember(true);
3870        } else {
3871          // If this is a struct/class and this is not the last element, reject
3872          // it.  Note that GCC supports variable sized arrays in the middle of
3873          // structures.
3874          if (i != NumFields-1)
3875            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
3876              << FD->getDeclName();
3877          else {
3878            // We support flexible arrays at the end of structs in
3879            // other structs as an extension.
3880            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
3881              << FD->getDeclName();
3882            if (Record)
3883              Record->setHasFlexibleArrayMember(true);
3884          }
3885        }
3886      }
3887    } else if (FDTy->isObjCInterfaceType()) {
3888      /// A field cannot be an Objective-c object
3889      Diag(FD->getLocation(), diag::err_statically_allocated_object);
3890      FD->setInvalidDecl();
3891      EnclosingDecl->setInvalidDecl();
3892      continue;
3893    }
3894    // Keep track of the number of named members.
3895    if (FD->getIdentifier())
3896      ++NumNamedMembers;
3897  }
3898
3899  // Okay, we successfully defined 'Record'.
3900  if (Record) {
3901    Record->completeDefinition(Context);
3902  } else {
3903    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
3904    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
3905      ID->setIVarList(ClsFields, RecFields.size(), Context);
3906      ID->setLocEnd(RBrac);
3907
3908      // Must enforce the rule that ivars in the base classes may not be
3909      // duplicates.
3910      if (ID->getSuperClass()) {
3911        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
3912             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
3913          ObjCIvarDecl* Ivar = (*IVI);
3914          IdentifierInfo *II = Ivar->getIdentifier();
3915          ObjCIvarDecl* prevIvar =
3916            ID->getSuperClass()->lookupInstanceVariable(II);
3917          if (prevIvar) {
3918            Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3919            Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3920          }
3921        }
3922      }
3923    } else if (ObjCImplementationDecl *IMPDecl =
3924                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
3925      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
3926      IMPDecl->setIVarList(ClsFields, RecFields.size(), Context);
3927      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
3928    }
3929  }
3930
3931  if (Attr)
3932    ProcessDeclAttributeList(Record, Attr);
3933}
3934
3935EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
3936                                          EnumConstantDecl *LastEnumConst,
3937                                          SourceLocation IdLoc,
3938                                          IdentifierInfo *Id,
3939                                          ExprArg val) {
3940  Expr *Val = (Expr *)val.get();
3941
3942  llvm::APSInt EnumVal(32);
3943  QualType EltTy;
3944  if (Val && !Val->isTypeDependent()) {
3945    // Make sure to promote the operand type to int.
3946    UsualUnaryConversions(Val);
3947    if (Val != val.get()) {
3948      val.release();
3949      val = Val;
3950    }
3951
3952    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
3953    SourceLocation ExpLoc;
3954    if (!Val->isValueDependent() &&
3955        VerifyIntegerConstantExpression(Val, &EnumVal)) {
3956      Val = 0;
3957    } else {
3958      EltTy = Val->getType();
3959    }
3960  }
3961
3962  if (!Val) {
3963    if (LastEnumConst) {
3964      // Assign the last value + 1.
3965      EnumVal = LastEnumConst->getInitVal();
3966      ++EnumVal;
3967
3968      // Check for overflow on increment.
3969      if (EnumVal < LastEnumConst->getInitVal())
3970        Diag(IdLoc, diag::warn_enum_value_overflow);
3971
3972      EltTy = LastEnumConst->getType();
3973    } else {
3974      // First value, set to zero.
3975      EltTy = Context.IntTy;
3976      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
3977    }
3978  }
3979
3980  val.release();
3981  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
3982                                  Val, EnumVal);
3983}
3984
3985
3986Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
3987                                        DeclPtrTy lastEnumConst,
3988                                        SourceLocation IdLoc,
3989                                        IdentifierInfo *Id,
3990                                        SourceLocation EqualLoc, ExprTy *val) {
3991  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
3992  EnumConstantDecl *LastEnumConst =
3993    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
3994  Expr *Val = static_cast<Expr*>(val);
3995
3996  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3997  // we find one that is.
3998  S = getNonFieldDeclScope(S);
3999
4000  // Verify that there isn't already something declared with this name in this
4001  // scope.
4002  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
4003  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4004    // Maybe we will complain about the shadowed template parameter.
4005    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
4006    // Just pretend that we didn't see the previous declaration.
4007    PrevDecl = 0;
4008  }
4009
4010  if (PrevDecl) {
4011    // When in C++, we may get a TagDecl with the same name; in this case the
4012    // enum constant will 'hide' the tag.
4013    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
4014           "Received TagDecl when not in C++!");
4015    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
4016      if (isa<EnumConstantDecl>(PrevDecl))
4017        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
4018      else
4019        Diag(IdLoc, diag::err_redefinition) << Id;
4020      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4021      if (Val) Val->Destroy(Context);
4022      return DeclPtrTy();
4023    }
4024  }
4025
4026  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
4027                                            IdLoc, Id, Owned(Val));
4028
4029  // Register this decl in the current scope stack.
4030  if (New)
4031    PushOnScopeChains(New, S);
4032
4033  return DeclPtrTy::make(New);
4034}
4035
4036// FIXME: For consistency with ActOnFields(), we should have the parser
4037// pass in the source location for the left/right braces.
4038void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclPtrTy EnumDeclX,
4039                         DeclPtrTy *Elements, unsigned NumElements) {
4040  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
4041  QualType EnumType = Context.getTypeDeclType(Enum);
4042
4043  // TODO: If the result value doesn't fit in an int, it must be a long or long
4044  // long value.  ISO C does not support this, but GCC does as an extension,
4045  // emit a warning.
4046  unsigned IntWidth = Context.Target.getIntWidth();
4047
4048  // Verify that all the values are okay, compute the size of the values, and
4049  // reverse the list.
4050  unsigned NumNegativeBits = 0;
4051  unsigned NumPositiveBits = 0;
4052
4053  // Keep track of whether all elements have type int.
4054  bool AllElementsInt = true;
4055
4056  for (unsigned i = 0; i != NumElements; ++i) {
4057    EnumConstantDecl *ECD =
4058      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
4059    if (!ECD) continue;  // Already issued a diagnostic.
4060
4061    // If the enum value doesn't fit in an int, emit an extension warning.
4062    const llvm::APSInt &InitVal = ECD->getInitVal();
4063    assert(InitVal.getBitWidth() >= IntWidth &&
4064           "Should have promoted value to int");
4065    if (InitVal.getBitWidth() > IntWidth) {
4066      llvm::APSInt V(InitVal);
4067      V.trunc(IntWidth);
4068      V.extend(InitVal.getBitWidth());
4069      if (V != InitVal)
4070        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
4071          << InitVal.toString(10);
4072    }
4073
4074    // Keep track of the size of positive and negative values.
4075    if (InitVal.isUnsigned() || InitVal.isNonNegative())
4076      NumPositiveBits = std::max(NumPositiveBits,
4077                                 (unsigned)InitVal.getActiveBits());
4078    else
4079      NumNegativeBits = std::max(NumNegativeBits,
4080                                 (unsigned)InitVal.getMinSignedBits());
4081
4082    // Keep track of whether every enum element has type int (very commmon).
4083    if (AllElementsInt)
4084      AllElementsInt = ECD->getType() == Context.IntTy;
4085  }
4086
4087  // Figure out the type that should be used for this enum.
4088  // FIXME: Support attribute(packed) on enums and -fshort-enums.
4089  QualType BestType;
4090  unsigned BestWidth;
4091
4092  if (NumNegativeBits) {
4093    // If there is a negative value, figure out the smallest integer type (of
4094    // int/long/longlong) that fits.
4095    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
4096      BestType = Context.IntTy;
4097      BestWidth = IntWidth;
4098    } else {
4099      BestWidth = Context.Target.getLongWidth();
4100
4101      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
4102        BestType = Context.LongTy;
4103      else {
4104        BestWidth = Context.Target.getLongLongWidth();
4105
4106        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
4107          Diag(Enum->getLocation(), diag::warn_enum_too_large);
4108        BestType = Context.LongLongTy;
4109      }
4110    }
4111  } else {
4112    // If there is no negative value, figure out which of uint, ulong, ulonglong
4113    // fits.
4114    if (NumPositiveBits <= IntWidth) {
4115      BestType = Context.UnsignedIntTy;
4116      BestWidth = IntWidth;
4117    } else if (NumPositiveBits <=
4118               (BestWidth = Context.Target.getLongWidth())) {
4119      BestType = Context.UnsignedLongTy;
4120    } else {
4121      BestWidth = Context.Target.getLongLongWidth();
4122      assert(NumPositiveBits <= BestWidth &&
4123             "How could an initializer get larger than ULL?");
4124      BestType = Context.UnsignedLongLongTy;
4125    }
4126  }
4127
4128  // Loop over all of the enumerator constants, changing their types to match
4129  // the type of the enum if needed.
4130  for (unsigned i = 0; i != NumElements; ++i) {
4131    EnumConstantDecl *ECD =
4132      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
4133    if (!ECD) continue;  // Already issued a diagnostic.
4134
4135    // Standard C says the enumerators have int type, but we allow, as an
4136    // extension, the enumerators to be larger than int size.  If each
4137    // enumerator value fits in an int, type it as an int, otherwise type it the
4138    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
4139    // that X has type 'int', not 'unsigned'.
4140    if (ECD->getType() == Context.IntTy) {
4141      // Make sure the init value is signed.
4142      llvm::APSInt IV = ECD->getInitVal();
4143      IV.setIsSigned(true);
4144      ECD->setInitVal(IV);
4145
4146      if (getLangOptions().CPlusPlus)
4147        // C++ [dcl.enum]p4: Following the closing brace of an
4148        // enum-specifier, each enumerator has the type of its
4149        // enumeration.
4150        ECD->setType(EnumType);
4151      continue;  // Already int type.
4152    }
4153
4154    // Determine whether the value fits into an int.
4155    llvm::APSInt InitVal = ECD->getInitVal();
4156    bool FitsInInt;
4157    if (InitVal.isUnsigned() || !InitVal.isNegative())
4158      FitsInInt = InitVal.getActiveBits() < IntWidth;
4159    else
4160      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
4161
4162    // If it fits into an integer type, force it.  Otherwise force it to match
4163    // the enum decl type.
4164    QualType NewTy;
4165    unsigned NewWidth;
4166    bool NewSign;
4167    if (FitsInInt) {
4168      NewTy = Context.IntTy;
4169      NewWidth = IntWidth;
4170      NewSign = true;
4171    } else if (ECD->getType() == BestType) {
4172      // Already the right type!
4173      if (getLangOptions().CPlusPlus)
4174        // C++ [dcl.enum]p4: Following the closing brace of an
4175        // enum-specifier, each enumerator has the type of its
4176        // enumeration.
4177        ECD->setType(EnumType);
4178      continue;
4179    } else {
4180      NewTy = BestType;
4181      NewWidth = BestWidth;
4182      NewSign = BestType->isSignedIntegerType();
4183    }
4184
4185    // Adjust the APSInt value.
4186    InitVal.extOrTrunc(NewWidth);
4187    InitVal.setIsSigned(NewSign);
4188    ECD->setInitVal(InitVal);
4189
4190    // Adjust the Expr initializer and type.
4191    if (ECD->getInitExpr())
4192      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy, ECD->getInitExpr(),
4193                                                      /*isLvalue=*/false));
4194    if (getLangOptions().CPlusPlus)
4195      // C++ [dcl.enum]p4: Following the closing brace of an
4196      // enum-specifier, each enumerator has the type of its
4197      // enumeration.
4198      ECD->setType(EnumType);
4199    else
4200      ECD->setType(NewTy);
4201  }
4202
4203  Enum->completeDefinition(Context, BestType);
4204}
4205
4206Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
4207                                            ExprArg expr) {
4208  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr.release());
4209
4210  return DeclPtrTy::make(FileScopeAsmDecl::Create(Context, CurContext,
4211                                                  Loc, AsmString));
4212}
4213
4214