SemaDecl.cpp revision 8edea83d4d45d912191eac97b861309af6c74acd
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/Parse/DeclSpec.h"
21#include "clang/Basic/Diagnostic.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Basic/SourceManager.h"
24// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "llvm/ADT/SmallSet.h"
28using namespace clang;
29
30Sema::TypeTy *Sema::isTypeName(IdentifierInfo &II, Scope *S,
31                               const CXXScopeSpec *SS) {
32  DeclContext *DC = 0;
33  if (SS) {
34    if (SS->isInvalid())
35      return 0;
36    DC = static_cast<DeclContext*>(SS->getScopeRep());
37  }
38  Decl *IIDecl = LookupDecl(&II, Decl::IDNS_Ordinary, S, DC, false);
39
40  if (IIDecl && (isa<TypedefDecl>(IIDecl) ||
41                 isa<ObjCInterfaceDecl>(IIDecl) ||
42                 isa<TagDecl>(IIDecl)))
43    return IIDecl;
44  return 0;
45}
46
47DeclContext *Sema::getContainingDC(DeclContext *DC) {
48  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
49    // A C++ out-of-line method will return to the file declaration context.
50    if (MD->isOutOfLineDefinition())
51      return MD->getLexicalDeclContext();
52
53    // A C++ inline method is parsed *after* the topmost class it was declared in
54    // is fully parsed (it's "complete").
55    // The parsing of a C++ inline method happens at the declaration context of
56    // the topmost (non-nested) class it is lexically declared in.
57    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
58    DC = MD->getParent();
59    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
60      DC = RD;
61
62    // Return the declaration context of the topmost class the inline method is
63    // declared in.
64    return DC;
65  }
66
67  if (isa<ObjCMethodDecl>(DC))
68    return Context.getTranslationUnitDecl();
69
70  if (ScopedDecl *SD = dyn_cast<ScopedDecl>(DC))
71    return SD->getLexicalDeclContext();
72
73  return DC->getLexicalParent();
74}
75
76void Sema::PushDeclContext(DeclContext *DC) {
77  assert(getContainingDC(DC) == CurContext &&
78       "The next DeclContext should be lexically contained in the current one.");
79  CurContext = DC;
80}
81
82void Sema::PopDeclContext() {
83  assert(CurContext && "DeclContext imbalance!");
84  CurContext = getContainingDC(CurContext);
85}
86
87/// Add this decl to the scope shadowed decl chains.
88void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
89  S->AddDecl(D);
90
91  // C++ [basic.scope]p4:
92  //   -- exactly one declaration shall declare a class name or
93  //   enumeration name that is not a typedef name and the other
94  //   declarations shall all refer to the same object or
95  //   enumerator, or all refer to functions and function templates;
96  //   in this case the class name or enumeration name is hidden.
97  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
98    // We are pushing the name of a tag (enum or class).
99    IdentifierResolver::iterator
100        I = IdResolver.begin(TD->getIdentifier(),
101                             TD->getDeclContext(), false/*LookInParentCtx*/);
102    if (I != IdResolver.end() && isDeclInScope(*I, TD->getDeclContext(), S)) {
103      // There is already a declaration with the same name in the same
104      // scope. It must be found before we find the new declaration,
105      // so swap the order on the shadowed declaration chain.
106
107      IdResolver.AddShadowedDecl(TD, *I);
108      return;
109    }
110  } else if (getLangOptions().CPlusPlus && isa<FunctionDecl>(D)) {
111    FunctionDecl *FD = cast<FunctionDecl>(D);
112    // We are pushing the name of a function, which might be an
113    // overloaded name.
114    IdentifierResolver::iterator
115        I = IdResolver.begin(FD->getDeclName(),
116                             FD->getDeclContext(), false/*LookInParentCtx*/);
117    if (I != IdResolver.end() &&
118        IdResolver.isDeclInScope(*I, FD->getDeclContext(), S) &&
119        (isa<OverloadedFunctionDecl>(*I) || isa<FunctionDecl>(*I))) {
120      // There is already a declaration with the same name in the same
121      // scope. It must be a function or an overloaded function.
122      OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(*I);
123      if (!Ovl) {
124        // We haven't yet overloaded this function. Take the existing
125        // FunctionDecl and put it into an OverloadedFunctionDecl.
126        Ovl = OverloadedFunctionDecl::Create(Context,
127                                             FD->getDeclContext(),
128                                             FD->getDeclName());
129        Ovl->addOverload(dyn_cast<FunctionDecl>(*I));
130
131        // Remove the name binding to the existing FunctionDecl...
132        IdResolver.RemoveDecl(*I);
133
134        // ... and put the OverloadedFunctionDecl in its place.
135        IdResolver.AddDecl(Ovl);
136      }
137
138      // We have an OverloadedFunctionDecl. Add the new FunctionDecl
139      // to its list of overloads.
140      Ovl->addOverload(FD);
141
142      return;
143    }
144  }
145
146  IdResolver.AddDecl(D);
147}
148
149void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
150  if (S->decl_empty()) return;
151  assert((S->getFlags() & Scope::DeclScope) &&"Scope shouldn't contain decls!");
152
153  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
154       I != E; ++I) {
155    Decl *TmpD = static_cast<Decl*>(*I);
156    assert(TmpD && "This decl didn't get pushed??");
157
158    if (isa<CXXFieldDecl>(TmpD)) continue;
159
160    assert(isa<ScopedDecl>(TmpD) && "Decl isn't ScopedDecl?");
161    ScopedDecl *D = cast<ScopedDecl>(TmpD);
162
163    IdentifierInfo *II = D->getIdentifier();
164    if (!II) continue;
165
166    // We only want to remove the decls from the identifier decl chains for
167    // local scopes, when inside a function/method.
168    if (S->getFnParent() != 0)
169      IdResolver.RemoveDecl(D);
170
171    // Chain this decl to the containing DeclContext.
172    D->setNext(CurContext->getDeclChain());
173    CurContext->setDeclChain(D);
174  }
175}
176
177/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
178/// return 0 if one not found.
179ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
180  // The third "scope" argument is 0 since we aren't enabling lazy built-in
181  // creation from this context.
182  Decl *IDecl = LookupDecl(Id, Decl::IDNS_Ordinary, 0, false);
183
184  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
185}
186
187/// LookupDecl - Look up the inner-most declaration in the specified
188/// namespace.
189Decl *Sema::LookupDecl(DeclarationName Name, unsigned NSI, Scope *S,
190                       const DeclContext *LookupCtx,
191                       bool enableLazyBuiltinCreation) {
192  if (!Name) return 0;
193  unsigned NS = NSI;
194  if (getLangOptions().CPlusPlus && (NS & Decl::IDNS_Ordinary))
195    NS |= Decl::IDNS_Tag;
196
197  IdentifierResolver::iterator
198    I = LookupCtx ? IdResolver.begin(Name, LookupCtx, false/*LookInParentCtx*/)
199                  : IdResolver.begin(Name, CurContext, true/*LookInParentCtx*/);
200  // Scan up the scope chain looking for a decl that matches this identifier
201  // that is in the appropriate namespace.  This search should not take long, as
202  // shadowing of names is uncommon, and deep shadowing is extremely uncommon.
203  for (; I != IdResolver.end(); ++I)
204    if ((*I)->getIdentifierNamespace() & NS)
205      return *I;
206
207  // If we didn't find a use of this identifier, and if the identifier
208  // corresponds to a compiler builtin, create the decl object for the builtin
209  // now, injecting it into translation unit scope, and return it.
210  if (NS & Decl::IDNS_Ordinary) {
211    IdentifierInfo *II = Name.getAsIdentifierInfo();
212    if (enableLazyBuiltinCreation && II &&
213        (LookupCtx == 0 || isa<TranslationUnitDecl>(LookupCtx))) {
214      // If this is a builtin on this (or all) targets, create the decl.
215      if (unsigned BuiltinID = II->getBuiltinID())
216        return LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID, S);
217    }
218    if (getLangOptions().ObjC1 && II) {
219      // @interface and @compatibility_alias introduce typedef-like names.
220      // Unlike typedef's, they can only be introduced at file-scope (and are
221      // therefore not scoped decls). They can, however, be shadowed by
222      // other names in IDNS_Ordinary.
223      ObjCInterfaceDeclsTy::iterator IDI = ObjCInterfaceDecls.find(II);
224      if (IDI != ObjCInterfaceDecls.end())
225        return IDI->second;
226      ObjCAliasTy::iterator I = ObjCAliasDecls.find(II);
227      if (I != ObjCAliasDecls.end())
228        return I->second->getClassInterface();
229    }
230  }
231  return 0;
232}
233
234void Sema::InitBuiltinVaListType() {
235  if (!Context.getBuiltinVaListType().isNull())
236    return;
237
238  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
239  Decl *VaDecl = LookupDecl(VaIdent, Decl::IDNS_Ordinary, TUScope);
240  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
241  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
242}
243
244/// LazilyCreateBuiltin - The specified Builtin-ID was first used at file scope.
245/// lazily create a decl for it.
246ScopedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
247                                      Scope *S) {
248  Builtin::ID BID = (Builtin::ID)bid;
249
250  if (Context.BuiltinInfo.hasVAListUse(BID))
251    InitBuiltinVaListType();
252
253  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context);
254  FunctionDecl *New = FunctionDecl::Create(Context,
255                                           Context.getTranslationUnitDecl(),
256                                           SourceLocation(), II, R,
257                                           FunctionDecl::Extern, false, 0);
258
259  // Create Decl objects for each parameter, adding them to the
260  // FunctionDecl.
261  if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(R)) {
262    llvm::SmallVector<ParmVarDecl*, 16> Params;
263    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
264      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
265                                           FT->getArgType(i), VarDecl::None, 0,
266                                           0));
267    New->setParams(&Params[0], Params.size());
268  }
269
270
271
272  // TUScope is the translation-unit scope to insert this function into.
273  PushOnScopeChains(New, TUScope);
274  return New;
275}
276
277/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
278/// everything from the standard library is defined.
279NamespaceDecl *Sema::GetStdNamespace() {
280  if (!StdNamespace) {
281    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
282    DeclContext *Global = Context.getTranslationUnitDecl();
283    Decl *Std = LookupDecl(StdIdent, Decl::IDNS_Tag | Decl::IDNS_Ordinary,
284                           0, Global, /*enableLazyBuiltinCreation=*/false);
285    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
286  }
287  return StdNamespace;
288}
289
290/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the same name
291/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
292/// situation, merging decls or emitting diagnostics as appropriate.
293///
294TypedefDecl *Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
295  // Allow multiple definitions for ObjC built-in typedefs.
296  // FIXME: Verify the underlying types are equivalent!
297  if (getLangOptions().ObjC1) {
298    const IdentifierInfo *TypeID = New->getIdentifier();
299    switch (TypeID->getLength()) {
300    default: break;
301    case 2:
302      if (!TypeID->isStr("id"))
303        break;
304      Context.setObjCIdType(New);
305      return New;
306    case 5:
307      if (!TypeID->isStr("Class"))
308        break;
309      Context.setObjCClassType(New);
310      return New;
311    case 3:
312      if (!TypeID->isStr("SEL"))
313        break;
314      Context.setObjCSelType(New);
315      return New;
316    case 8:
317      if (!TypeID->isStr("Protocol"))
318        break;
319      Context.setObjCProtoType(New->getUnderlyingType());
320      return New;
321    }
322    // Fall through - the typedef name was not a builtin type.
323  }
324  // Verify the old decl was also a typedef.
325  TypedefDecl *Old = dyn_cast<TypedefDecl>(OldD);
326  if (!Old) {
327    Diag(New->getLocation(), diag::err_redefinition_different_kind,
328         New->getName());
329    Diag(OldD->getLocation(), diag::err_previous_definition);
330    return New;
331  }
332
333  // If the typedef types are not identical, reject them in all languages and
334  // with any extensions enabled.
335  if (Old->getUnderlyingType() != New->getUnderlyingType() &&
336      Context.getCanonicalType(Old->getUnderlyingType()) !=
337      Context.getCanonicalType(New->getUnderlyingType())) {
338    Diag(New->getLocation(), diag::err_redefinition_different_typedef,
339         New->getUnderlyingType().getAsString(),
340         Old->getUnderlyingType().getAsString());
341    Diag(Old->getLocation(), diag::err_previous_definition);
342    return Old;
343  }
344
345  if (getLangOptions().Microsoft) return New;
346
347  // Redeclaration of a type is a constraint violation (6.7.2.3p1).
348  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
349  // *either* declaration is in a system header. The code below implements
350  // this adhoc compatibility rule. FIXME: The following code will not
351  // work properly when compiling ".i" files (containing preprocessed output).
352  if (PP.getDiagnostics().getSuppressSystemWarnings()) {
353    SourceManager &SrcMgr = Context.getSourceManager();
354    if (SrcMgr.isInSystemHeader(Old->getLocation()))
355      return New;
356    if (SrcMgr.isInSystemHeader(New->getLocation()))
357      return New;
358  }
359
360  Diag(New->getLocation(), diag::err_redefinition, New->getName());
361  Diag(Old->getLocation(), diag::err_previous_definition);
362  return New;
363}
364
365/// DeclhasAttr - returns true if decl Declaration already has the target
366/// attribute.
367static bool DeclHasAttr(const Decl *decl, const Attr *target) {
368  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
369    if (attr->getKind() == target->getKind())
370      return true;
371
372  return false;
373}
374
375/// MergeAttributes - append attributes from the Old decl to the New one.
376static void MergeAttributes(Decl *New, Decl *Old) {
377  Attr *attr = const_cast<Attr*>(Old->getAttrs()), *tmp;
378
379  while (attr) {
380     tmp = attr;
381     attr = attr->getNext();
382
383    if (!DeclHasAttr(New, tmp)) {
384       New->addAttr(tmp);
385    } else {
386       tmp->setNext(0);
387       delete(tmp);
388    }
389  }
390
391  Old->invalidateAttrs();
392}
393
394/// MergeFunctionDecl - We just parsed a function 'New' from
395/// declarator D which has the same name and scope as a previous
396/// declaration 'Old'.  Figure out how to resolve this situation,
397/// merging decls or emitting diagnostics as appropriate.
398/// Redeclaration will be set true if this New is a redeclaration OldD.
399///
400/// In C++, New and Old must be declarations that are not
401/// overloaded. Use IsOverload to determine whether New and Old are
402/// overloaded, and to select the Old declaration that New should be
403/// merged with.
404FunctionDecl *
405Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, bool &Redeclaration) {
406  assert(!isa<OverloadedFunctionDecl>(OldD) &&
407         "Cannot merge with an overloaded function declaration");
408
409  Redeclaration = false;
410  // Verify the old decl was also a function.
411  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
412  if (!Old) {
413    Diag(New->getLocation(), diag::err_redefinition_different_kind,
414         New->getName());
415    Diag(OldD->getLocation(), diag::err_previous_definition);
416    return New;
417  }
418
419  // Determine whether the previous declaration was a definition,
420  // implicit declaration, or a declaration.
421  diag::kind PrevDiag;
422  if (Old->isThisDeclarationADefinition())
423    PrevDiag = diag::err_previous_definition;
424  else if (Old->isImplicit())
425    PrevDiag = diag::err_previous_implicit_declaration;
426  else
427    PrevDiag = diag::err_previous_declaration;
428
429  QualType OldQType = Context.getCanonicalType(Old->getType());
430  QualType NewQType = Context.getCanonicalType(New->getType());
431
432  if (getLangOptions().CPlusPlus) {
433    // (C++98 13.1p2):
434    //   Certain function declarations cannot be overloaded:
435    //     -- Function declarations that differ only in the return type
436    //        cannot be overloaded.
437    QualType OldReturnType
438      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
439    QualType NewReturnType
440      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
441    if (OldReturnType != NewReturnType) {
442      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
443      Diag(Old->getLocation(), PrevDiag);
444      return New;
445    }
446
447    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
448    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
449    if (OldMethod && NewMethod) {
450      //    -- Member function declarations with the same name and the
451      //       same parameter types cannot be overloaded if any of them
452      //       is a static member function declaration.
453      if (OldMethod->isStatic() || NewMethod->isStatic()) {
454        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
455        Diag(Old->getLocation(), PrevDiag);
456        return New;
457      }
458    }
459
460    // (C++98 8.3.5p3):
461    //   All declarations for a function shall agree exactly in both the
462    //   return type and the parameter-type-list.
463    if (OldQType == NewQType) {
464      // We have a redeclaration.
465      MergeAttributes(New, Old);
466      Redeclaration = true;
467      return MergeCXXFunctionDecl(New, Old);
468    }
469
470    // Fall through for conflicting redeclarations and redefinitions.
471  }
472
473  // C: Function types need to be compatible, not identical. This handles
474  // duplicate function decls like "void f(int); void f(enum X);" properly.
475  if (!getLangOptions().CPlusPlus &&
476      Context.typesAreCompatible(OldQType, NewQType)) {
477    MergeAttributes(New, Old);
478    Redeclaration = true;
479    return New;
480  }
481
482  // A function that has already been declared has been redeclared or defined
483  // with a different type- show appropriate diagnostic
484
485  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
486  // TODO: This is totally simplistic.  It should handle merging functions
487  // together etc, merging extern int X; int X; ...
488  Diag(New->getLocation(), diag::err_conflicting_types, New->getName());
489  Diag(Old->getLocation(), PrevDiag);
490  return New;
491}
492
493/// Predicate for C "tentative" external object definitions (C99 6.9.2).
494static bool isTentativeDefinition(VarDecl *VD) {
495  if (VD->isFileVarDecl())
496    return (!VD->getInit() &&
497            (VD->getStorageClass() == VarDecl::None ||
498             VD->getStorageClass() == VarDecl::Static));
499  return false;
500}
501
502/// CheckForFileScopedRedefinitions - Make sure we forgo redefinition errors
503/// when dealing with C "tentative" external object definitions (C99 6.9.2).
504void Sema::CheckForFileScopedRedefinitions(Scope *S, VarDecl *VD) {
505  bool VDIsTentative = isTentativeDefinition(VD);
506  bool VDIsIncompleteArray = VD->getType()->isIncompleteArrayType();
507
508  for (IdentifierResolver::iterator
509       I = IdResolver.begin(VD->getIdentifier(),
510                            VD->getDeclContext(), false/*LookInParentCtx*/),
511       E = IdResolver.end(); I != E; ++I) {
512    if (*I != VD && isDeclInScope(*I, VD->getDeclContext(), S)) {
513      VarDecl *OldDecl = dyn_cast<VarDecl>(*I);
514
515      // Handle the following case:
516      //   int a[10];
517      //   int a[];   - the code below makes sure we set the correct type.
518      //   int a[11]; - this is an error, size isn't 10.
519      if (OldDecl && VDIsTentative && VDIsIncompleteArray &&
520          OldDecl->getType()->isConstantArrayType())
521        VD->setType(OldDecl->getType());
522
523      // Check for "tentative" definitions. We can't accomplish this in
524      // MergeVarDecl since the initializer hasn't been attached.
525      if (!OldDecl || isTentativeDefinition(OldDecl) || VDIsTentative)
526        continue;
527
528      // Handle __private_extern__ just like extern.
529      if (OldDecl->getStorageClass() != VarDecl::Extern &&
530          OldDecl->getStorageClass() != VarDecl::PrivateExtern &&
531          VD->getStorageClass() != VarDecl::Extern &&
532          VD->getStorageClass() != VarDecl::PrivateExtern) {
533        Diag(VD->getLocation(), diag::err_redefinition, VD->getName());
534        Diag(OldDecl->getLocation(), diag::err_previous_definition);
535      }
536    }
537  }
538}
539
540/// MergeVarDecl - We just parsed a variable 'New' which has the same name
541/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
542/// situation, merging decls or emitting diagnostics as appropriate.
543///
544/// Tentative definition rules (C99 6.9.2p2) are checked by
545/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
546/// definitions here, since the initializer hasn't been attached.
547///
548VarDecl *Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
549  // Verify the old decl was also a variable.
550  VarDecl *Old = dyn_cast<VarDecl>(OldD);
551  if (!Old) {
552    Diag(New->getLocation(), diag::err_redefinition_different_kind,
553         New->getName());
554    Diag(OldD->getLocation(), diag::err_previous_definition);
555    return New;
556  }
557
558  MergeAttributes(New, Old);
559
560  // Verify the types match.
561  QualType OldCType = Context.getCanonicalType(Old->getType());
562  QualType NewCType = Context.getCanonicalType(New->getType());
563  if (OldCType != NewCType && !Context.typesAreCompatible(OldCType, NewCType)) {
564    Diag(New->getLocation(), diag::err_redefinition, New->getName());
565    Diag(Old->getLocation(), diag::err_previous_definition);
566    return New;
567  }
568  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
569  if (New->getStorageClass() == VarDecl::Static &&
570      (Old->getStorageClass() == VarDecl::None ||
571       Old->getStorageClass() == VarDecl::Extern)) {
572    Diag(New->getLocation(), diag::err_static_non_static, New->getName());
573    Diag(Old->getLocation(), diag::err_previous_definition);
574    return New;
575  }
576  // C99 6.2.2p4: Check if we have a non-static decl followed by a static.
577  if (New->getStorageClass() != VarDecl::Static &&
578      Old->getStorageClass() == VarDecl::Static) {
579    Diag(New->getLocation(), diag::err_non_static_static, New->getName());
580    Diag(Old->getLocation(), diag::err_previous_definition);
581    return New;
582  }
583  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
584  if (New->getStorageClass() != VarDecl::Extern && !New->isFileVarDecl()) {
585    Diag(New->getLocation(), diag::err_redefinition, New->getName());
586    Diag(Old->getLocation(), diag::err_previous_definition);
587  }
588  return New;
589}
590
591/// CheckParmsForFunctionDef - Check that the parameters of the given
592/// function are appropriate for the definition of a function. This
593/// takes care of any checks that cannot be performed on the
594/// declaration itself, e.g., that the types of each of the function
595/// parameters are complete.
596bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
597  bool HasInvalidParm = false;
598  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
599    ParmVarDecl *Param = FD->getParamDecl(p);
600
601    // C99 6.7.5.3p4: the parameters in a parameter type list in a
602    // function declarator that is part of a function definition of
603    // that function shall not have incomplete type.
604    if (Param->getType()->isIncompleteType() &&
605        !Param->isInvalidDecl()) {
606      Diag(Param->getLocation(), diag::err_typecheck_decl_incomplete_type,
607           Param->getType().getAsString());
608      Param->setInvalidDecl();
609      HasInvalidParm = true;
610    }
611  }
612
613  return HasInvalidParm;
614}
615
616/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
617/// no declarator (e.g. "struct foo;") is parsed.
618Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
619  // TODO: emit error on 'int;' or 'const enum foo;'.
620  // TODO: emit error on 'typedef int;'
621  // if (!DS.isMissingDeclaratorOk()) Diag(...);
622
623  return dyn_cast_or_null<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
624}
625
626bool Sema::CheckSingleInitializer(Expr *&Init, QualType DeclType) {
627  // Get the type before calling CheckSingleAssignmentConstraints(), since
628  // it can promote the expression.
629  QualType InitType = Init->getType();
630
631  AssignConvertType ConvTy = CheckSingleAssignmentConstraints(DeclType, Init);
632  return DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType,
633                                  InitType, Init, "initializing");
634}
635
636bool Sema::CheckStringLiteralInit(StringLiteral *strLiteral, QualType &DeclT) {
637  const ArrayType *AT = Context.getAsArrayType(DeclT);
638
639  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
640    // C99 6.7.8p14. We have an array of character type with unknown size
641    // being initialized to a string literal.
642    llvm::APSInt ConstVal(32);
643    ConstVal = strLiteral->getByteLength() + 1;
644    // Return a new array type (C99 6.7.8p22).
645    DeclT = Context.getConstantArrayType(IAT->getElementType(), ConstVal,
646                                         ArrayType::Normal, 0);
647  } else {
648    const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
649    // C99 6.7.8p14. We have an array of character type with known size.
650    // FIXME: Avoid truncation for 64-bit length strings.
651    if (strLiteral->getByteLength() > (unsigned)CAT->getSize().getZExtValue())
652      Diag(strLiteral->getSourceRange().getBegin(),
653           diag::warn_initializer_string_for_char_array_too_long)
654        << strLiteral->getSourceRange();
655  }
656  // Set type from "char *" to "constant array of char".
657  strLiteral->setType(DeclT);
658  // For now, we always return false (meaning success).
659  return false;
660}
661
662StringLiteral *Sema::IsStringLiteralInit(Expr *Init, QualType DeclType) {
663  const ArrayType *AT = Context.getAsArrayType(DeclType);
664  if (AT && AT->getElementType()->isCharType()) {
665    return dyn_cast<StringLiteral>(Init);
666  }
667  return 0;
668}
669
670bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType,
671                                 SourceLocation InitLoc,
672                                 std::string InitEntity) {
673  // C++ [dcl.init.ref]p1:
674  //   A variable declared to be a T&, that is “reference to type T”
675  //   (8.3.2), shall be initialized by an object, or function, of
676  //   type T or by an object that can be converted into a T.
677  if (DeclType->isReferenceType())
678    return CheckReferenceInit(Init, DeclType);
679
680  // C99 6.7.8p3: The type of the entity to be initialized shall be an array
681  // of unknown size ("[]") or an object type that is not a variable array type.
682  if (const VariableArrayType *VAT = Context.getAsVariableArrayType(DeclType))
683    return Diag(InitLoc,  diag::err_variable_object_no_init)
684      << VAT->getSizeExpr()->getSourceRange();
685
686  InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
687  if (!InitList) {
688    // FIXME: Handle wide strings
689    if (StringLiteral *strLiteral = IsStringLiteralInit(Init, DeclType))
690      return CheckStringLiteralInit(strLiteral, DeclType);
691
692    // C++ [dcl.init]p14:
693    //   -- If the destination type is a (possibly cv-qualified) class
694    //      type:
695    if (getLangOptions().CPlusPlus && DeclType->isRecordType()) {
696      QualType DeclTypeC = Context.getCanonicalType(DeclType);
697      QualType InitTypeC = Context.getCanonicalType(Init->getType());
698
699      //   -- If the initialization is direct-initialization, or if it is
700      //      copy-initialization where the cv-unqualified version of the
701      //      source type is the same class as, or a derived class of, the
702      //      class of the destination, constructors are considered.
703      if ((DeclTypeC.getUnqualifiedType() == InitTypeC.getUnqualifiedType()) ||
704          IsDerivedFrom(InitTypeC, DeclTypeC)) {
705        CXXConstructorDecl *Constructor
706          = PerformInitializationByConstructor(DeclType, &Init, 1,
707                                               InitLoc, Init->getSourceRange(),
708                                               InitEntity, IK_Copy);
709        return Constructor == 0;
710      }
711
712      //   -- Otherwise (i.e., for the remaining copy-initialization
713      //      cases), user-defined conversion sequences that can
714      //      convert from the source type to the destination type or
715      //      (when a conversion function is used) to a derived class
716      //      thereof are enumerated as described in 13.3.1.4, and the
717      //      best one is chosen through overload resolution
718      //      (13.3). If the conversion cannot be done or is
719      //      ambiguous, the initialization is ill-formed. The
720      //      function selected is called with the initializer
721      //      expression as its argument; if the function is a
722      //      constructor, the call initializes a temporary of the
723      //      destination type.
724      // FIXME: We're pretending to do copy elision here; return to
725      // this when we have ASTs for such things.
726      if (!PerformImplicitConversion(Init, DeclType))
727        return false;
728
729      return Diag(InitLoc, diag::err_typecheck_convert_incompatible)
730        << DeclType.getAsString() << InitEntity << "initializing"
731        << Init->getSourceRange();
732    }
733
734    // C99 6.7.8p16.
735    if (DeclType->isArrayType())
736      return Diag(Init->getLocStart(), diag::err_array_init_list_required)
737        << Init->getSourceRange();
738
739    return CheckSingleInitializer(Init, DeclType);
740  } else if (getLangOptions().CPlusPlus) {
741    // C++ [dcl.init]p14:
742    //   [...] If the class is an aggregate (8.5.1), and the initializer
743    //   is a brace-enclosed list, see 8.5.1.
744    //
745    // Note: 8.5.1 is handled below; here, we diagnose the case where
746    // we have an initializer list and a destination type that is not
747    // an aggregate.
748    // FIXME: In C++0x, this is yet another form of initialization.
749    if (const RecordType *ClassRec = DeclType->getAsRecordType()) {
750      const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
751      if (!ClassDecl->isAggregate())
752        return Diag(InitLoc, diag::err_init_non_aggr_init_list)
753           << DeclType.getAsString() << Init->getSourceRange();
754    }
755  }
756
757  InitListChecker CheckInitList(this, InitList, DeclType);
758  return CheckInitList.HadError();
759}
760
761/// GetNameForDeclarator - Determine the full declaration name for the
762/// given Declarator.
763DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
764  switch (D.getKind()) {
765  case Declarator::DK_Abstract:
766    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
767    return DeclarationName();
768
769  case Declarator::DK_Normal:
770    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
771    return DeclarationName(D.getIdentifier());
772
773  case Declarator::DK_Constructor: {
774    QualType Ty = Context.getTypeDeclType((TypeDecl *)D.getDeclaratorIdType());
775    Ty = Context.getCanonicalType(Ty);
776    return Context.DeclarationNames.getCXXConstructorName(Ty);
777  }
778
779  case Declarator::DK_Destructor: {
780    QualType Ty = Context.getTypeDeclType((TypeDecl *)D.getDeclaratorIdType());
781    Ty = Context.getCanonicalType(Ty);
782    return Context.DeclarationNames.getCXXDestructorName(Ty);
783  }
784
785  case Declarator::DK_Conversion: {
786    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
787    Ty = Context.getCanonicalType(Ty);
788    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
789  }
790
791  case Declarator::DK_Operator:
792    assert(D.getIdentifier() == 0 && "operator names have no identifier");
793    return Context.DeclarationNames.getCXXOperatorName(
794                                                D.getOverloadedOperator());
795  }
796
797  assert(false && "Unknown name kind");
798  return DeclarationName();
799}
800
801Sema::DeclTy *
802Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl) {
803  ScopedDecl *LastDeclarator = dyn_cast_or_null<ScopedDecl>((Decl *)lastDecl);
804  DeclarationName Name = GetNameForDeclarator(D);
805
806  // All of these full declarators require an identifier.  If it doesn't have
807  // one, the ParsedFreeStandingDeclSpec action should be used.
808  if (!Name) {
809    if (!D.getInvalidType())  // Reject this if we think it is valid.
810      Diag(D.getDeclSpec().getSourceRange().getBegin(),
811           diag::err_declarator_need_ident)
812        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
813    return 0;
814  }
815
816  // The scope passed in may not be a decl scope.  Zip up the scope tree until
817  // we find one that is.
818  while ((S->getFlags() & Scope::DeclScope) == 0)
819    S = S->getParent();
820
821  DeclContext *DC;
822  Decl *PrevDecl;
823  ScopedDecl *New;
824  bool InvalidDecl = false;
825
826  // See if this is a redefinition of a variable in the same scope.
827  if (!D.getCXXScopeSpec().isSet()) {
828    DC = CurContext;
829    PrevDecl = LookupDecl(Name, Decl::IDNS_Ordinary, S);
830  } else { // Something like "int foo::x;"
831    DC = static_cast<DeclContext*>(D.getCXXScopeSpec().getScopeRep());
832    PrevDecl = LookupDecl(Name, Decl::IDNS_Ordinary, S, DC);
833
834    // C++ 7.3.1.2p2:
835    // Members (including explicit specializations of templates) of a named
836    // namespace can also be defined outside that namespace by explicit
837    // qualification of the name being defined, provided that the entity being
838    // defined was already declared in the namespace and the definition appears
839    // after the point of declaration in a namespace that encloses the
840    // declarations namespace.
841    //
842    if (PrevDecl == 0) {
843      // No previous declaration in the qualifying scope.
844      Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member,
845           Name.getAsString(), D.getCXXScopeSpec().getRange());
846    } else if (!CurContext->Encloses(DC)) {
847      // The qualifying scope doesn't enclose the original declaration.
848      // Emit diagnostic based on current scope.
849      SourceLocation L = D.getIdentifierLoc();
850      SourceRange R = D.getCXXScopeSpec().getRange();
851      if (isa<FunctionDecl>(CurContext)) {
852        Diag(L, diag::err_invalid_declarator_in_function, Name.getAsString(),
853             R);
854      } else {
855      Diag(L, diag::err_invalid_declarator_scope)
856          << Name.getAsString() << cast<NamedDecl>(DC)->getName() << R;
857      }
858    }
859  }
860
861  // In C++, the previous declaration we find might be a tag type
862  // (class or enum). In this case, the new declaration will hide the
863  // tag type.
864  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag)
865    PrevDecl = 0;
866
867  QualType R = GetTypeForDeclarator(D, S);
868  assert(!R.isNull() && "GetTypeForDeclarator() returned null type");
869
870  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
871    // Check that there are no default arguments (C++ only).
872    if (getLangOptions().CPlusPlus)
873      CheckExtraCXXDefaultArguments(D);
874
875    TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
876    if (!NewTD) return 0;
877
878    // Handle attributes prior to checking for duplicates in MergeVarDecl
879    ProcessDeclAttributes(NewTD, D);
880    // Merge the decl with the existing one if appropriate. If the decl is
881    // in an outer scope, it isn't the same thing.
882    if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
883      NewTD = MergeTypeDefDecl(NewTD, PrevDecl);
884      if (NewTD == 0) return 0;
885    }
886    New = NewTD;
887    if (S->getFnParent() == 0) {
888      // C99 6.7.7p2: If a typedef name specifies a variably modified type
889      // then it shall have block scope.
890      if (NewTD->getUnderlyingType()->isVariablyModifiedType()) {
891        // FIXME: Diagnostic needs to be fixed.
892        Diag(D.getIdentifierLoc(), diag::err_typecheck_illegal_vla);
893        InvalidDecl = true;
894      }
895    }
896  } else if (R.getTypePtr()->isFunctionType()) {
897    FunctionDecl::StorageClass SC = FunctionDecl::None;
898    switch (D.getDeclSpec().getStorageClassSpec()) {
899      default: assert(0 && "Unknown storage class!");
900      case DeclSpec::SCS_auto:
901      case DeclSpec::SCS_register:
902      case DeclSpec::SCS_mutable:
903        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_func,
904             R.getAsString());
905        InvalidDecl = true;
906        break;
907      case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
908      case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
909      case DeclSpec::SCS_static:      SC = FunctionDecl::Static; break;
910      case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
911    }
912
913    bool isInline = D.getDeclSpec().isInlineSpecified();
914    // bool isVirtual = D.getDeclSpec().isVirtualSpecified();
915    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
916
917    FunctionDecl *NewFD;
918    if (D.getKind() == Declarator::DK_Constructor) {
919      // This is a C++ constructor declaration.
920      assert(DC->isCXXRecord() &&
921             "Constructors can only be declared in a member context");
922
923      bool isInvalidDecl = CheckConstructorDeclarator(D, R, SC);
924
925      // Create the new declaration
926      NewFD = CXXConstructorDecl::Create(Context,
927                                         cast<CXXRecordDecl>(DC),
928                                         D.getIdentifierLoc(), Name, R,
929                                         isExplicit, isInline,
930                                         /*isImplicitlyDeclared=*/false);
931
932      if (isInvalidDecl)
933        NewFD->setInvalidDecl();
934    } else if (D.getKind() == Declarator::DK_Destructor) {
935      // This is a C++ destructor declaration.
936      if (DC->isCXXRecord()) {
937        bool isInvalidDecl = CheckDestructorDeclarator(D, R, SC);
938
939        NewFD = CXXDestructorDecl::Create(Context,
940                                          cast<CXXRecordDecl>(DC),
941                                          D.getIdentifierLoc(), Name, R,
942                                          isInline,
943                                          /*isImplicitlyDeclared=*/false);
944
945        if (isInvalidDecl)
946          NewFD->setInvalidDecl();
947      } else {
948        Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
949        // Create a FunctionDecl to satisfy the function definition parsing
950        // code path.
951        NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
952                                     Name, R, SC, isInline, LastDeclarator,
953                                     // FIXME: Move to DeclGroup...
954                                   D.getDeclSpec().getSourceRange().getBegin());
955        NewFD->setInvalidDecl();
956      }
957    } else if (D.getKind() == Declarator::DK_Conversion) {
958      if (!DC->isCXXRecord()) {
959        Diag(D.getIdentifierLoc(),
960             diag::err_conv_function_not_member);
961        return 0;
962      } else {
963        bool isInvalidDecl = CheckConversionDeclarator(D, R, SC);
964
965        NewFD = CXXConversionDecl::Create(Context,
966                                          cast<CXXRecordDecl>(DC),
967                                          D.getIdentifierLoc(), Name, R,
968                                          isInline, isExplicit);
969
970        if (isInvalidDecl)
971          NewFD->setInvalidDecl();
972      }
973    } else if (DC->isCXXRecord()) {
974      // This is a C++ method declaration.
975      NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
976                                    D.getIdentifierLoc(), Name, R,
977                                    (SC == FunctionDecl::Static), isInline,
978                                    LastDeclarator);
979    } else {
980      NewFD = FunctionDecl::Create(Context, DC,
981                                   D.getIdentifierLoc(),
982                                   Name, R, SC, isInline, LastDeclarator,
983                                   // FIXME: Move to DeclGroup...
984                                   D.getDeclSpec().getSourceRange().getBegin());
985    }
986    // Handle attributes.
987    ProcessDeclAttributes(NewFD, D);
988
989    // Handle GNU asm-label extension (encoded as an attribute).
990    if (Expr *E = (Expr*) D.getAsmLabel()) {
991      // The parser guarantees this is a string.
992      StringLiteral *SE = cast<StringLiteral>(E);
993      NewFD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
994                                                  SE->getByteLength())));
995    }
996
997    // Copy the parameter declarations from the declarator D to
998    // the function declaration NewFD, if they are available.
999    if (D.getNumTypeObjects() > 0) {
1000      DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1001
1002      // Create Decl objects for each parameter, adding them to the
1003      // FunctionDecl.
1004      llvm::SmallVector<ParmVarDecl*, 16> Params;
1005
1006      // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
1007      // function that takes no arguments, not a function that takes a
1008      // single void argument.
1009      // We let through "const void" here because Sema::GetTypeForDeclarator
1010      // already checks for that case.
1011      if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1012          FTI.ArgInfo[0].Param &&
1013          ((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
1014        // empty arg list, don't push any params.
1015        ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
1016
1017        // In C++, the empty parameter-type-list must be spelled "void"; a
1018        // typedef of void is not permitted.
1019        if (getLangOptions().CPlusPlus &&
1020            Param->getType().getUnqualifiedType() != Context.VoidTy) {
1021          Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
1022        }
1023      } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
1024        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
1025          Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
1026      }
1027
1028      NewFD->setParams(&Params[0], Params.size());
1029    } else if (R->getAsTypedefType()) {
1030      // When we're declaring a function with a typedef, as in the
1031      // following example, we'll need to synthesize (unnamed)
1032      // parameters for use in the declaration.
1033      //
1034      // @code
1035      // typedef void fn(int);
1036      // fn f;
1037      // @endcode
1038      const FunctionTypeProto *FT = R->getAsFunctionTypeProto();
1039      if (!FT) {
1040        // This is a typedef of a function with no prototype, so we
1041        // don't need to do anything.
1042      } else if ((FT->getNumArgs() == 0) ||
1043          (FT->getNumArgs() == 1 && !FT->isVariadic() &&
1044           FT->getArgType(0)->isVoidType())) {
1045        // This is a zero-argument function. We don't need to do anything.
1046      } else {
1047        // Synthesize a parameter for each argument type.
1048        llvm::SmallVector<ParmVarDecl*, 16> Params;
1049        for (FunctionTypeProto::arg_type_iterator ArgType = FT->arg_type_begin();
1050             ArgType != FT->arg_type_end(); ++ArgType) {
1051          Params.push_back(ParmVarDecl::Create(Context, DC,
1052                                               SourceLocation(), 0,
1053                                               *ArgType, VarDecl::None,
1054                                               0, 0));
1055        }
1056
1057        NewFD->setParams(&Params[0], Params.size());
1058      }
1059    }
1060
1061    // C++ constructors and destructors are handled by separate
1062    // routines, since they don't require any declaration merging (C++
1063    // [class.mfct]p2) and they aren't ever pushed into scope, because
1064    // they can't be found by name lookup anyway (C++ [class.ctor]p2).
1065    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD))
1066      return ActOnConstructorDeclarator(Constructor);
1067    else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(NewFD))
1068      return ActOnDestructorDeclarator(Destructor);
1069
1070    // Extra checking for conversion functions, including recording
1071    // the conversion function in its class.
1072    if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(NewFD))
1073      ActOnConversionDeclarator(Conversion);
1074
1075    // Extra checking for C++ overloaded operators (C++ [over.oper]).
1076    if (NewFD->isOverloadedOperator() &&
1077        CheckOverloadedOperatorDeclaration(NewFD))
1078      NewFD->setInvalidDecl();
1079
1080    // Merge the decl with the existing one if appropriate. Since C functions
1081    // are in a flat namespace, make sure we consider decls in outer scopes.
1082    if (PrevDecl &&
1083        (!getLangOptions().CPlusPlus||isDeclInScope(PrevDecl, DC, S))) {
1084      bool Redeclaration = false;
1085
1086      // If C++, determine whether NewFD is an overload of PrevDecl or
1087      // a declaration that requires merging. If it's an overload,
1088      // there's no more work to do here; we'll just add the new
1089      // function to the scope.
1090      OverloadedFunctionDecl::function_iterator MatchedDecl;
1091      if (!getLangOptions().CPlusPlus ||
1092          !IsOverload(NewFD, PrevDecl, MatchedDecl)) {
1093        Decl *OldDecl = PrevDecl;
1094
1095        // If PrevDecl was an overloaded function, extract the
1096        // FunctionDecl that matched.
1097        if (isa<OverloadedFunctionDecl>(PrevDecl))
1098          OldDecl = *MatchedDecl;
1099
1100        // NewFD and PrevDecl represent declarations that need to be
1101        // merged.
1102        NewFD = MergeFunctionDecl(NewFD, OldDecl, Redeclaration);
1103
1104        if (NewFD == 0) return 0;
1105        if (Redeclaration) {
1106          NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
1107
1108          if (OldDecl == PrevDecl) {
1109            // Remove the name binding for the previous
1110            // declaration. We'll add the binding back later, but then
1111            // it will refer to the new declaration (which will
1112            // contain more information).
1113            IdResolver.RemoveDecl(cast<NamedDecl>(PrevDecl));
1114          } else {
1115            // We need to update the OverloadedFunctionDecl with the
1116            // latest declaration of this function, so that name
1117            // lookup will always refer to the latest declaration of
1118            // this function.
1119            *MatchedDecl = NewFD;
1120
1121            // Add the redeclaration to the current scope, since we'll
1122            // be skipping PushOnScopeChains.
1123            S->AddDecl(NewFD);
1124
1125            return NewFD;
1126          }
1127        }
1128      }
1129    }
1130    New = NewFD;
1131
1132    // In C++, check default arguments now that we have merged decls.
1133    if (getLangOptions().CPlusPlus)
1134      CheckCXXDefaultArguments(NewFD);
1135  } else {
1136    // Check that there are no default arguments (C++ only).
1137    if (getLangOptions().CPlusPlus)
1138      CheckExtraCXXDefaultArguments(D);
1139
1140    if (R.getTypePtr()->isObjCInterfaceType()) {
1141      Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object)
1142        << D.getIdentifier();
1143      InvalidDecl = true;
1144    }
1145
1146    VarDecl *NewVD;
1147    VarDecl::StorageClass SC;
1148    switch (D.getDeclSpec().getStorageClassSpec()) {
1149    default: assert(0 && "Unknown storage class!");
1150    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1151    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1152    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1153    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1154    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1155    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1156    case DeclSpec::SCS_mutable:
1157      // mutable can only appear on non-static class members, so it's always
1158      // an error here
1159      Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1160      InvalidDecl = true;
1161      break;
1162    }
1163
1164    IdentifierInfo *II = Name.getAsIdentifierInfo();
1165    if (!II) {
1166      Diag(D.getIdentifierLoc(), diag::err_bad_variable_name,
1167           Name.getAsString());
1168      return 0;
1169    }
1170
1171    if (DC->isCXXRecord()) {
1172      assert(SC == VarDecl::Static && "Invalid storage class for member!");
1173      // This is a static data member for a C++ class.
1174      NewVD = CXXClassVarDecl::Create(Context, cast<CXXRecordDecl>(DC),
1175                                      D.getIdentifierLoc(), II,
1176                                      R, LastDeclarator);
1177    } else {
1178      bool ThreadSpecified = D.getDeclSpec().isThreadSpecified();
1179      if (S->getFnParent() == 0) {
1180        // C99 6.9p2: The storage-class specifiers auto and register shall not
1181        // appear in the declaration specifiers in an external declaration.
1182        if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1183          Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope,
1184               R.getAsString());
1185          InvalidDecl = true;
1186        }
1187      }
1188      NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1189                              II, R, SC, LastDeclarator,
1190                              // FIXME: Move to DeclGroup...
1191                              D.getDeclSpec().getSourceRange().getBegin());
1192      NewVD->setThreadSpecified(ThreadSpecified);
1193    }
1194    // Handle attributes prior to checking for duplicates in MergeVarDecl
1195    ProcessDeclAttributes(NewVD, D);
1196
1197    // Handle GNU asm-label extension (encoded as an attribute).
1198    if (Expr *E = (Expr*) D.getAsmLabel()) {
1199      // The parser guarantees this is a string.
1200      StringLiteral *SE = cast<StringLiteral>(E);
1201      NewVD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1202                                                  SE->getByteLength())));
1203    }
1204
1205    // Emit an error if an address space was applied to decl with local storage.
1206    // This includes arrays of objects with address space qualifiers, but not
1207    // automatic variables that point to other address spaces.
1208    // ISO/IEC TR 18037 S5.1.2
1209    if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
1210      Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
1211      InvalidDecl = true;
1212    }
1213    // Merge the decl with the existing one if appropriate. If the decl is
1214    // in an outer scope, it isn't the same thing.
1215    if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1216      NewVD = MergeVarDecl(NewVD, PrevDecl);
1217      if (NewVD == 0) return 0;
1218    }
1219    New = NewVD;
1220  }
1221
1222  // Set the lexical context. If the declarator has a C++ scope specifier, the
1223  // lexical context will be different from the semantic context.
1224  New->setLexicalDeclContext(CurContext);
1225
1226  // If this has an identifier, add it to the scope stack.
1227  if (Name)
1228    PushOnScopeChains(New, S);
1229  // If any semantic error occurred, mark the decl as invalid.
1230  if (D.getInvalidType() || InvalidDecl)
1231    New->setInvalidDecl();
1232
1233  return New;
1234}
1235
1236void Sema::InitializerElementNotConstant(const Expr *Init) {
1237  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
1238    << Init->getSourceRange();
1239}
1240
1241bool Sema::CheckAddressConstantExpressionLValue(const Expr* Init) {
1242  switch (Init->getStmtClass()) {
1243  default:
1244    InitializerElementNotConstant(Init);
1245    return true;
1246  case Expr::ParenExprClass: {
1247    const ParenExpr* PE = cast<ParenExpr>(Init);
1248    return CheckAddressConstantExpressionLValue(PE->getSubExpr());
1249  }
1250  case Expr::CompoundLiteralExprClass:
1251    return cast<CompoundLiteralExpr>(Init)->isFileScope();
1252  case Expr::DeclRefExprClass: {
1253    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
1254    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1255      if (VD->hasGlobalStorage())
1256        return false;
1257      InitializerElementNotConstant(Init);
1258      return true;
1259    }
1260    if (isa<FunctionDecl>(D))
1261      return false;
1262    InitializerElementNotConstant(Init);
1263    return true;
1264  }
1265  case Expr::MemberExprClass: {
1266    const MemberExpr *M = cast<MemberExpr>(Init);
1267    if (M->isArrow())
1268      return CheckAddressConstantExpression(M->getBase());
1269    return CheckAddressConstantExpressionLValue(M->getBase());
1270  }
1271  case Expr::ArraySubscriptExprClass: {
1272    // FIXME: Should we pedwarn for "x[0+0]" (where x is a pointer)?
1273    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(Init);
1274    return CheckAddressConstantExpression(ASE->getBase()) ||
1275           CheckArithmeticConstantExpression(ASE->getIdx());
1276  }
1277  case Expr::StringLiteralClass:
1278  case Expr::PredefinedExprClass:
1279    return false;
1280  case Expr::UnaryOperatorClass: {
1281    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1282
1283    // C99 6.6p9
1284    if (Exp->getOpcode() == UnaryOperator::Deref)
1285      return CheckAddressConstantExpression(Exp->getSubExpr());
1286
1287    InitializerElementNotConstant(Init);
1288    return true;
1289  }
1290  }
1291}
1292
1293bool Sema::CheckAddressConstantExpression(const Expr* Init) {
1294  switch (Init->getStmtClass()) {
1295  default:
1296    InitializerElementNotConstant(Init);
1297    return true;
1298  case Expr::ParenExprClass:
1299    return CheckAddressConstantExpression(cast<ParenExpr>(Init)->getSubExpr());
1300  case Expr::StringLiteralClass:
1301  case Expr::ObjCStringLiteralClass:
1302    return false;
1303  case Expr::CallExprClass:
1304  case Expr::CXXOperatorCallExprClass:
1305    // __builtin___CFStringMakeConstantString is a valid constant l-value.
1306    if (cast<CallExpr>(Init)->isBuiltinCall() ==
1307           Builtin::BI__builtin___CFStringMakeConstantString)
1308      return false;
1309
1310    InitializerElementNotConstant(Init);
1311    return true;
1312
1313  case Expr::UnaryOperatorClass: {
1314    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1315
1316    // C99 6.6p9
1317    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1318      return CheckAddressConstantExpressionLValue(Exp->getSubExpr());
1319
1320    if (Exp->getOpcode() == UnaryOperator::Extension)
1321      return CheckAddressConstantExpression(Exp->getSubExpr());
1322
1323    InitializerElementNotConstant(Init);
1324    return true;
1325  }
1326  case Expr::BinaryOperatorClass: {
1327    // FIXME: Should we pedwarn for expressions like "a + 1 + 2"?
1328    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
1329
1330    Expr *PExp = Exp->getLHS();
1331    Expr *IExp = Exp->getRHS();
1332    if (IExp->getType()->isPointerType())
1333      std::swap(PExp, IExp);
1334
1335    // FIXME: Should we pedwarn if IExp isn't an integer constant expression?
1336    return CheckAddressConstantExpression(PExp) ||
1337           CheckArithmeticConstantExpression(IExp);
1338  }
1339  case Expr::ImplicitCastExprClass:
1340  case Expr::CStyleCastExprClass: {
1341    const Expr* SubExpr = cast<CastExpr>(Init)->getSubExpr();
1342    if (Init->getStmtClass() == Expr::ImplicitCastExprClass) {
1343      // Check for implicit promotion
1344      if (SubExpr->getType()->isFunctionType() ||
1345          SubExpr->getType()->isArrayType())
1346        return CheckAddressConstantExpressionLValue(SubExpr);
1347    }
1348
1349    // Check for pointer->pointer cast
1350    if (SubExpr->getType()->isPointerType())
1351      return CheckAddressConstantExpression(SubExpr);
1352
1353    if (SubExpr->getType()->isIntegralType()) {
1354      // Check for the special-case of a pointer->int->pointer cast;
1355      // this isn't standard, but some code requires it. See
1356      // PR2720 for an example.
1357      if (const CastExpr* SubCast = dyn_cast<CastExpr>(SubExpr)) {
1358        if (SubCast->getSubExpr()->getType()->isPointerType()) {
1359          unsigned IntWidth = Context.getIntWidth(SubCast->getType());
1360          unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
1361          if (IntWidth >= PointerWidth) {
1362            return CheckAddressConstantExpression(SubCast->getSubExpr());
1363          }
1364        }
1365      }
1366    }
1367    if (SubExpr->getType()->isArithmeticType()) {
1368      return CheckArithmeticConstantExpression(SubExpr);
1369    }
1370
1371    InitializerElementNotConstant(Init);
1372    return true;
1373  }
1374  case Expr::ConditionalOperatorClass: {
1375    // FIXME: Should we pedwarn here?
1376    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
1377    if (!Exp->getCond()->getType()->isArithmeticType()) {
1378      InitializerElementNotConstant(Init);
1379      return true;
1380    }
1381    if (CheckArithmeticConstantExpression(Exp->getCond()))
1382      return true;
1383    if (Exp->getLHS() &&
1384        CheckAddressConstantExpression(Exp->getLHS()))
1385      return true;
1386    return CheckAddressConstantExpression(Exp->getRHS());
1387  }
1388  case Expr::AddrLabelExprClass:
1389    return false;
1390  }
1391}
1392
1393static const Expr* FindExpressionBaseAddress(const Expr* E);
1394
1395static const Expr* FindExpressionBaseAddressLValue(const Expr* E) {
1396  switch (E->getStmtClass()) {
1397  default:
1398    return E;
1399  case Expr::ParenExprClass: {
1400    const ParenExpr* PE = cast<ParenExpr>(E);
1401    return FindExpressionBaseAddressLValue(PE->getSubExpr());
1402  }
1403  case Expr::MemberExprClass: {
1404    const MemberExpr *M = cast<MemberExpr>(E);
1405    if (M->isArrow())
1406      return FindExpressionBaseAddress(M->getBase());
1407    return FindExpressionBaseAddressLValue(M->getBase());
1408  }
1409  case Expr::ArraySubscriptExprClass: {
1410    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(E);
1411    return FindExpressionBaseAddress(ASE->getBase());
1412  }
1413  case Expr::UnaryOperatorClass: {
1414    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1415
1416    if (Exp->getOpcode() == UnaryOperator::Deref)
1417      return FindExpressionBaseAddress(Exp->getSubExpr());
1418
1419    return E;
1420  }
1421  }
1422}
1423
1424static const Expr* FindExpressionBaseAddress(const Expr* E) {
1425  switch (E->getStmtClass()) {
1426  default:
1427    return E;
1428  case Expr::ParenExprClass: {
1429    const ParenExpr* PE = cast<ParenExpr>(E);
1430    return FindExpressionBaseAddress(PE->getSubExpr());
1431  }
1432  case Expr::UnaryOperatorClass: {
1433    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1434
1435    // C99 6.6p9
1436    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1437      return FindExpressionBaseAddressLValue(Exp->getSubExpr());
1438
1439    if (Exp->getOpcode() == UnaryOperator::Extension)
1440      return FindExpressionBaseAddress(Exp->getSubExpr());
1441
1442    return E;
1443  }
1444  case Expr::BinaryOperatorClass: {
1445    const BinaryOperator *Exp = cast<BinaryOperator>(E);
1446
1447    Expr *PExp = Exp->getLHS();
1448    Expr *IExp = Exp->getRHS();
1449    if (IExp->getType()->isPointerType())
1450      std::swap(PExp, IExp);
1451
1452    return FindExpressionBaseAddress(PExp);
1453  }
1454  case Expr::ImplicitCastExprClass: {
1455    const Expr* SubExpr = cast<ImplicitCastExpr>(E)->getSubExpr();
1456
1457    // Check for implicit promotion
1458    if (SubExpr->getType()->isFunctionType() ||
1459        SubExpr->getType()->isArrayType())
1460      return FindExpressionBaseAddressLValue(SubExpr);
1461
1462    // Check for pointer->pointer cast
1463    if (SubExpr->getType()->isPointerType())
1464      return FindExpressionBaseAddress(SubExpr);
1465
1466    // We assume that we have an arithmetic expression here;
1467    // if we don't, we'll figure it out later
1468    return 0;
1469  }
1470  case Expr::CStyleCastExprClass: {
1471    const Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
1472
1473    // Check for pointer->pointer cast
1474    if (SubExpr->getType()->isPointerType())
1475      return FindExpressionBaseAddress(SubExpr);
1476
1477    // We assume that we have an arithmetic expression here;
1478    // if we don't, we'll figure it out later
1479    return 0;
1480  }
1481  }
1482}
1483
1484bool Sema::CheckArithmeticConstantExpression(const Expr* Init) {
1485  switch (Init->getStmtClass()) {
1486  default:
1487    InitializerElementNotConstant(Init);
1488    return true;
1489  case Expr::ParenExprClass: {
1490    const ParenExpr* PE = cast<ParenExpr>(Init);
1491    return CheckArithmeticConstantExpression(PE->getSubExpr());
1492  }
1493  case Expr::FloatingLiteralClass:
1494  case Expr::IntegerLiteralClass:
1495  case Expr::CharacterLiteralClass:
1496  case Expr::ImaginaryLiteralClass:
1497  case Expr::TypesCompatibleExprClass:
1498  case Expr::CXXBoolLiteralExprClass:
1499    return false;
1500  case Expr::CallExprClass:
1501  case Expr::CXXOperatorCallExprClass: {
1502    const CallExpr *CE = cast<CallExpr>(Init);
1503
1504    // Allow any constant foldable calls to builtins.
1505    if (CE->isBuiltinCall() && CE->isEvaluatable(Context))
1506      return false;
1507
1508    InitializerElementNotConstant(Init);
1509    return true;
1510  }
1511  case Expr::DeclRefExprClass: {
1512    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
1513    if (isa<EnumConstantDecl>(D))
1514      return false;
1515    InitializerElementNotConstant(Init);
1516    return true;
1517  }
1518  case Expr::CompoundLiteralExprClass:
1519    // Allow "(vector type){2,4}"; normal C constraints don't allow this,
1520    // but vectors are allowed to be magic.
1521    if (Init->getType()->isVectorType())
1522      return false;
1523    InitializerElementNotConstant(Init);
1524    return true;
1525  case Expr::UnaryOperatorClass: {
1526    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1527
1528    switch (Exp->getOpcode()) {
1529    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
1530    // See C99 6.6p3.
1531    default:
1532      InitializerElementNotConstant(Init);
1533      return true;
1534    case UnaryOperator::OffsetOf:
1535      if (Exp->getSubExpr()->getType()->isConstantSizeType())
1536        return false;
1537      InitializerElementNotConstant(Init);
1538      return true;
1539    case UnaryOperator::Extension:
1540    case UnaryOperator::LNot:
1541    case UnaryOperator::Plus:
1542    case UnaryOperator::Minus:
1543    case UnaryOperator::Not:
1544      return CheckArithmeticConstantExpression(Exp->getSubExpr());
1545    }
1546  }
1547  case Expr::SizeOfAlignOfExprClass: {
1548    const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(Init);
1549    // Special check for void types, which are allowed as an extension
1550    if (Exp->getTypeOfArgument()->isVoidType())
1551      return false;
1552    // alignof always evaluates to a constant.
1553    // FIXME: is sizeof(int[3.0]) a constant expression?
1554    if (Exp->isSizeOf() && !Exp->getTypeOfArgument()->isConstantSizeType()) {
1555      InitializerElementNotConstant(Init);
1556      return true;
1557    }
1558    return false;
1559  }
1560  case Expr::BinaryOperatorClass: {
1561    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
1562
1563    if (Exp->getLHS()->getType()->isArithmeticType() &&
1564        Exp->getRHS()->getType()->isArithmeticType()) {
1565      return CheckArithmeticConstantExpression(Exp->getLHS()) ||
1566             CheckArithmeticConstantExpression(Exp->getRHS());
1567    }
1568
1569    if (Exp->getLHS()->getType()->isPointerType() &&
1570        Exp->getRHS()->getType()->isPointerType()) {
1571      const Expr* LHSBase = FindExpressionBaseAddress(Exp->getLHS());
1572      const Expr* RHSBase = FindExpressionBaseAddress(Exp->getRHS());
1573
1574      // Only allow a null (constant integer) base; we could
1575      // allow some additional cases if necessary, but this
1576      // is sufficient to cover offsetof-like constructs.
1577      if (!LHSBase && !RHSBase) {
1578        return CheckAddressConstantExpression(Exp->getLHS()) ||
1579               CheckAddressConstantExpression(Exp->getRHS());
1580      }
1581    }
1582
1583    InitializerElementNotConstant(Init);
1584    return true;
1585  }
1586  case Expr::ImplicitCastExprClass:
1587  case Expr::CStyleCastExprClass: {
1588    const Expr *SubExpr = cast<CastExpr>(Init)->getSubExpr();
1589    if (SubExpr->getType()->isArithmeticType())
1590      return CheckArithmeticConstantExpression(SubExpr);
1591
1592    if (SubExpr->getType()->isPointerType()) {
1593      const Expr* Base = FindExpressionBaseAddress(SubExpr);
1594      // If the pointer has a null base, this is an offsetof-like construct
1595      if (!Base)
1596        return CheckAddressConstantExpression(SubExpr);
1597    }
1598
1599    InitializerElementNotConstant(Init);
1600    return true;
1601  }
1602  case Expr::ConditionalOperatorClass: {
1603    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
1604
1605    // If GNU extensions are disabled, we require all operands to be arithmetic
1606    // constant expressions.
1607    if (getLangOptions().NoExtensions) {
1608      return CheckArithmeticConstantExpression(Exp->getCond()) ||
1609          (Exp->getLHS() && CheckArithmeticConstantExpression(Exp->getLHS())) ||
1610             CheckArithmeticConstantExpression(Exp->getRHS());
1611    }
1612
1613    // Otherwise, we have to emulate some of the behavior of fold here.
1614    // Basically GCC treats things like "4 ? 1 : somefunc()" as a constant
1615    // because it can constant fold things away.  To retain compatibility with
1616    // GCC code, we see if we can fold the condition to a constant (which we
1617    // should always be able to do in theory).  If so, we only require the
1618    // specified arm of the conditional to be a constant.  This is a horrible
1619    // hack, but is require by real world code that uses __builtin_constant_p.
1620    APValue Val;
1621    if (!Exp->getCond()->Evaluate(Val, Context)) {
1622      // If Evaluate couldn't fold it, CheckArithmeticConstantExpression
1623      // won't be able to either.  Use it to emit the diagnostic though.
1624      bool Res = CheckArithmeticConstantExpression(Exp->getCond());
1625      assert(Res && "Evaluate couldn't evaluate this constant?");
1626      return Res;
1627    }
1628
1629    // Verify that the side following the condition is also a constant.
1630    const Expr *TrueSide = Exp->getLHS(), *FalseSide = Exp->getRHS();
1631    if (Val.getInt() == 0)
1632      std::swap(TrueSide, FalseSide);
1633
1634    if (TrueSide && CheckArithmeticConstantExpression(TrueSide))
1635      return true;
1636
1637    // Okay, the evaluated side evaluates to a constant, so we accept this.
1638    // Check to see if the other side is obviously not a constant.  If so,
1639    // emit a warning that this is a GNU extension.
1640    if (FalseSide && !FalseSide->isEvaluatable(Context))
1641      Diag(Init->getExprLoc(),
1642           diag::ext_typecheck_expression_not_constant_but_accepted)
1643        << FalseSide->getSourceRange();
1644    return false;
1645  }
1646  }
1647}
1648
1649bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
1650  Init = Init->IgnoreParens();
1651
1652  // Look through CXXDefaultArgExprs; they have no meaning in this context.
1653  if (CXXDefaultArgExpr* DAE = dyn_cast<CXXDefaultArgExpr>(Init))
1654    return CheckForConstantInitializer(DAE->getExpr(), DclT);
1655
1656  if (CompoundLiteralExpr *e = dyn_cast<CompoundLiteralExpr>(Init))
1657    return CheckForConstantInitializer(e->getInitializer(), DclT);
1658
1659  if (InitListExpr *Exp = dyn_cast<InitListExpr>(Init)) {
1660    unsigned numInits = Exp->getNumInits();
1661    for (unsigned i = 0; i < numInits; i++) {
1662      // FIXME: Need to get the type of the declaration for C++,
1663      // because it could be a reference?
1664      if (CheckForConstantInitializer(Exp->getInit(i),
1665                                      Exp->getInit(i)->getType()))
1666        return true;
1667    }
1668    return false;
1669  }
1670
1671  if (Init->isNullPointerConstant(Context))
1672    return false;
1673  if (Init->getType()->isArithmeticType()) {
1674    QualType InitTy = Context.getCanonicalType(Init->getType())
1675                             .getUnqualifiedType();
1676    if (InitTy == Context.BoolTy) {
1677      // Special handling for pointers implicitly cast to bool;
1678      // (e.g. "_Bool rr = &rr;"). This is only legal at the top level.
1679      if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Init)) {
1680        Expr* SubE = ICE->getSubExpr();
1681        if (SubE->getType()->isPointerType() ||
1682            SubE->getType()->isArrayType() ||
1683            SubE->getType()->isFunctionType()) {
1684          return CheckAddressConstantExpression(Init);
1685        }
1686      }
1687    } else if (InitTy->isIntegralType()) {
1688      Expr* SubE = 0;
1689      if (CastExpr* CE = dyn_cast<CastExpr>(Init))
1690        SubE = CE->getSubExpr();
1691      // Special check for pointer cast to int; we allow as an extension
1692      // an address constant cast to an integer if the integer
1693      // is of an appropriate width (this sort of code is apparently used
1694      // in some places).
1695      // FIXME: Add pedwarn?
1696      // FIXME: Don't allow bitfields here!  Need the FieldDecl for that.
1697      if (SubE && (SubE->getType()->isPointerType() ||
1698                   SubE->getType()->isArrayType() ||
1699                   SubE->getType()->isFunctionType())) {
1700        unsigned IntWidth = Context.getTypeSize(Init->getType());
1701        unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
1702        if (IntWidth >= PointerWidth)
1703          return CheckAddressConstantExpression(Init);
1704      }
1705    }
1706
1707    return CheckArithmeticConstantExpression(Init);
1708  }
1709
1710  if (Init->getType()->isPointerType())
1711    return CheckAddressConstantExpression(Init);
1712
1713  // An array type at the top level that isn't an init-list must
1714  // be a string literal
1715  if (Init->getType()->isArrayType())
1716    return false;
1717
1718  if (Init->getType()->isFunctionType())
1719    return false;
1720
1721  // Allow block exprs at top level.
1722  if (Init->getType()->isBlockPointerType())
1723    return false;
1724
1725  InitializerElementNotConstant(Init);
1726  return true;
1727}
1728
1729void Sema::AddInitializerToDecl(DeclTy *dcl, ExprTy *init) {
1730  Decl *RealDecl = static_cast<Decl *>(dcl);
1731  Expr *Init = static_cast<Expr *>(init);
1732  assert(Init && "missing initializer");
1733
1734  // If there is no declaration, there was an error parsing it.  Just ignore
1735  // the initializer.
1736  if (RealDecl == 0) {
1737    delete Init;
1738    return;
1739  }
1740
1741  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
1742  if (!VDecl) {
1743    Diag(dyn_cast<ScopedDecl>(RealDecl)->getLocation(),
1744         diag::err_illegal_initializer);
1745    RealDecl->setInvalidDecl();
1746    return;
1747  }
1748  // Get the decls type and save a reference for later, since
1749  // CheckInitializerTypes may change it.
1750  QualType DclT = VDecl->getType(), SavT = DclT;
1751  if (VDecl->isBlockVarDecl()) {
1752    VarDecl::StorageClass SC = VDecl->getStorageClass();
1753    if (SC == VarDecl::Extern) { // C99 6.7.8p5
1754      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
1755      VDecl->setInvalidDecl();
1756    } else if (!VDecl->isInvalidDecl()) {
1757      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
1758                                VDecl->getName()))
1759        VDecl->setInvalidDecl();
1760
1761      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
1762      if (!getLangOptions().CPlusPlus) {
1763        if (SC == VarDecl::Static) // C99 6.7.8p4.
1764          CheckForConstantInitializer(Init, DclT);
1765      }
1766    }
1767  } else if (VDecl->isFileVarDecl()) {
1768    if (VDecl->getStorageClass() == VarDecl::Extern)
1769      Diag(VDecl->getLocation(), diag::warn_extern_init);
1770    if (!VDecl->isInvalidDecl())
1771      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
1772                                VDecl->getName()))
1773        VDecl->setInvalidDecl();
1774
1775    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
1776    if (!getLangOptions().CPlusPlus) {
1777      // C99 6.7.8p4. All file scoped initializers need to be constant.
1778      CheckForConstantInitializer(Init, DclT);
1779    }
1780  }
1781  // If the type changed, it means we had an incomplete type that was
1782  // completed by the initializer. For example:
1783  //   int ary[] = { 1, 3, 5 };
1784  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
1785  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
1786    VDecl->setType(DclT);
1787    Init->setType(DclT);
1788  }
1789
1790  // Attach the initializer to the decl.
1791  VDecl->setInit(Init);
1792  return;
1793}
1794
1795void Sema::ActOnUninitializedDecl(DeclTy *dcl) {
1796  Decl *RealDecl = static_cast<Decl *>(dcl);
1797
1798  // If there is no declaration, there was an error parsing it. Just ignore it.
1799  if (RealDecl == 0)
1800    return;
1801
1802  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
1803    QualType Type = Var->getType();
1804    // C++ [dcl.init.ref]p3:
1805    //   The initializer can be omitted for a reference only in a
1806    //   parameter declaration (8.3.5), in the declaration of a
1807    //   function return type, in the declaration of a class member
1808    //   within its class declaration (9.2), and where the extern
1809    //   specifier is explicitly used.
1810    if (Type->isReferenceType() && Var->getStorageClass() != VarDecl::Extern) {
1811      Diag(Var->getLocation(),
1812           diag::err_reference_var_requires_init,
1813           Var->getName(),
1814           SourceRange(Var->getLocation(), Var->getLocation()));
1815      Var->setInvalidDecl();
1816      return;
1817    }
1818
1819    // C++ [dcl.init]p9:
1820    //
1821    //   If no initializer is specified for an object, and the object
1822    //   is of (possibly cv-qualified) non-POD class type (or array
1823    //   thereof), the object shall be default-initialized; if the
1824    //   object is of const-qualified type, the underlying class type
1825    //   shall have a user-declared default constructor.
1826    if (getLangOptions().CPlusPlus) {
1827      QualType InitType = Type;
1828      if (const ArrayType *Array = Context.getAsArrayType(Type))
1829        InitType = Array->getElementType();
1830      if (InitType->isRecordType()) {
1831        const CXXConstructorDecl *Constructor
1832          = PerformInitializationByConstructor(InitType, 0, 0,
1833                                               Var->getLocation(),
1834                                               SourceRange(Var->getLocation(),
1835                                                           Var->getLocation()),
1836                                               Var->getName(),
1837                                               IK_Default);
1838        if (!Constructor)
1839          Var->setInvalidDecl();
1840      }
1841    }
1842
1843#if 0
1844    // FIXME: Temporarily disabled because we are not properly parsing
1845    // linkage specifications on declarations, e.g.,
1846    //
1847    //   extern "C" const CGPoint CGPointerZero;
1848    //
1849    // C++ [dcl.init]p9:
1850    //
1851    //     If no initializer is specified for an object, and the
1852    //     object is of (possibly cv-qualified) non-POD class type (or
1853    //     array thereof), the object shall be default-initialized; if
1854    //     the object is of const-qualified type, the underlying class
1855    //     type shall have a user-declared default
1856    //     constructor. Otherwise, if no initializer is specified for
1857    //     an object, the object and its subobjects, if any, have an
1858    //     indeterminate initial value; if the object or any of its
1859    //     subobjects are of const-qualified type, the program is
1860    //     ill-formed.
1861    //
1862    // This isn't technically an error in C, so we don't diagnose it.
1863    //
1864    // FIXME: Actually perform the POD/user-defined default
1865    // constructor check.
1866    if (getLangOptions().CPlusPlus &&
1867        Context.getCanonicalType(Type).isConstQualified() &&
1868        Var->getStorageClass() != VarDecl::Extern)
1869      Diag(Var->getLocation(),
1870           diag::err_const_var_requires_init,
1871           Var->getName(),
1872           SourceRange(Var->getLocation(), Var->getLocation()));
1873#endif
1874  }
1875}
1876
1877/// The declarators are chained together backwards, reverse the list.
1878Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
1879  // Often we have single declarators, handle them quickly.
1880  Decl *GroupDecl = static_cast<Decl*>(group);
1881  if (GroupDecl == 0)
1882    return 0;
1883
1884  ScopedDecl *Group = dyn_cast<ScopedDecl>(GroupDecl);
1885  ScopedDecl *NewGroup = 0;
1886  if (Group->getNextDeclarator() == 0)
1887    NewGroup = Group;
1888  else { // reverse the list.
1889    while (Group) {
1890      ScopedDecl *Next = Group->getNextDeclarator();
1891      Group->setNextDeclarator(NewGroup);
1892      NewGroup = Group;
1893      Group = Next;
1894    }
1895  }
1896  // Perform semantic analysis that depends on having fully processed both
1897  // the declarator and initializer.
1898  for (ScopedDecl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
1899    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
1900    if (!IDecl)
1901      continue;
1902    QualType T = IDecl->getType();
1903
1904    // C99 6.7.5.2p2: If an identifier is declared to be an object with
1905    // static storage duration, it shall not have a variable length array.
1906    if ((IDecl->isFileVarDecl() || IDecl->isBlockVarDecl()) &&
1907        IDecl->getStorageClass() == VarDecl::Static) {
1908      if (T->isVariableArrayType()) {
1909        Diag(IDecl->getLocation(), diag::err_typecheck_illegal_vla);
1910        IDecl->setInvalidDecl();
1911      }
1912    }
1913    // Block scope. C99 6.7p7: If an identifier for an object is declared with
1914    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
1915    if (IDecl->isBlockVarDecl() &&
1916        IDecl->getStorageClass() != VarDecl::Extern) {
1917      if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
1918        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type,
1919             T.getAsString());
1920        IDecl->setInvalidDecl();
1921      }
1922    }
1923    // File scope. C99 6.9.2p2: A declaration of an identifier for and
1924    // object that has file scope without an initializer, and without a
1925    // storage-class specifier or with the storage-class specifier "static",
1926    // constitutes a tentative definition. Note: A tentative definition with
1927    // external linkage is valid (C99 6.2.2p5).
1928    if (isTentativeDefinition(IDecl)) {
1929      if (T->isIncompleteArrayType()) {
1930        // C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete
1931        // array to be completed. Don't issue a diagnostic.
1932      } else if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
1933        // C99 6.9.2p3: If the declaration of an identifier for an object is
1934        // a tentative definition and has internal linkage (C99 6.2.2p3), the
1935        // declared type shall not be an incomplete type.
1936        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type,
1937             T.getAsString());
1938        IDecl->setInvalidDecl();
1939      }
1940    }
1941    if (IDecl->isFileVarDecl())
1942      CheckForFileScopedRedefinitions(S, IDecl);
1943  }
1944  return NewGroup;
1945}
1946
1947/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
1948/// to introduce parameters into function prototype scope.
1949Sema::DeclTy *
1950Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
1951  // FIXME: disallow CXXScopeSpec for param declarators.
1952  const DeclSpec &DS = D.getDeclSpec();
1953
1954  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
1955  VarDecl::StorageClass StorageClass = VarDecl::None;
1956  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
1957    StorageClass = VarDecl::Register;
1958  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
1959    Diag(DS.getStorageClassSpecLoc(),
1960         diag::err_invalid_storage_class_in_func_decl);
1961    D.getMutableDeclSpec().ClearStorageClassSpecs();
1962  }
1963  if (DS.isThreadSpecified()) {
1964    Diag(DS.getThreadSpecLoc(),
1965         diag::err_invalid_storage_class_in_func_decl);
1966    D.getMutableDeclSpec().ClearStorageClassSpecs();
1967  }
1968
1969  // Check that there are no default arguments inside the type of this
1970  // parameter (C++ only).
1971  if (getLangOptions().CPlusPlus)
1972    CheckExtraCXXDefaultArguments(D);
1973
1974  // In this context, we *do not* check D.getInvalidType(). If the declarator
1975  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
1976  // though it will not reflect the user specified type.
1977  QualType parmDeclType = GetTypeForDeclarator(D, S);
1978
1979  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
1980
1981  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
1982  // Can this happen for params?  We already checked that they don't conflict
1983  // among each other.  Here they can only shadow globals, which is ok.
1984  IdentifierInfo *II = D.getIdentifier();
1985  if (Decl *PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S)) {
1986    if (S->isDeclScope(PrevDecl)) {
1987      Diag(D.getIdentifierLoc(), diag::err_param_redefinition,
1988           dyn_cast<NamedDecl>(PrevDecl)->getName());
1989
1990      // Recover by removing the name
1991      II = 0;
1992      D.SetIdentifier(0, D.getIdentifierLoc());
1993    }
1994  }
1995
1996  // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
1997  // Doing the promotion here has a win and a loss. The win is the type for
1998  // both Decl's and DeclRefExpr's will match (a convenient invariant for the
1999  // code generator). The loss is the orginal type isn't preserved. For example:
2000  //
2001  // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
2002  //    int blockvardecl[5];
2003  //    sizeof(parmvardecl);  // size == 4
2004  //    sizeof(blockvardecl); // size == 20
2005  // }
2006  //
2007  // For expressions, all implicit conversions are captured using the
2008  // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
2009  //
2010  // FIXME: If a source translation tool needs to see the original type, then
2011  // we need to consider storing both types (in ParmVarDecl)...
2012  //
2013  if (parmDeclType->isArrayType()) {
2014    // int x[restrict 4] ->  int *restrict
2015    parmDeclType = Context.getArrayDecayedType(parmDeclType);
2016  } else if (parmDeclType->isFunctionType())
2017    parmDeclType = Context.getPointerType(parmDeclType);
2018
2019  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext,
2020                                         D.getIdentifierLoc(), II,
2021                                         parmDeclType, StorageClass,
2022                                         0, 0);
2023
2024  if (D.getInvalidType())
2025    New->setInvalidDecl();
2026
2027  if (II)
2028    PushOnScopeChains(New, S);
2029
2030  ProcessDeclAttributes(New, D);
2031  return New;
2032
2033}
2034
2035Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
2036  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2037  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2038         "Not a function declarator!");
2039  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2040
2041  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
2042  // for a K&R function.
2043  if (!FTI.hasPrototype) {
2044    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2045      if (FTI.ArgInfo[i].Param == 0) {
2046        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
2047          << FTI.ArgInfo[i].Ident;
2048        // Implicitly declare the argument as type 'int' for lack of a better
2049        // type.
2050        DeclSpec DS;
2051        const char* PrevSpec; // unused
2052        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
2053                           PrevSpec);
2054        Declarator ParamD(DS, Declarator::KNRTypeListContext);
2055        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
2056        FTI.ArgInfo[i].Param = ActOnParamDeclarator(FnBodyScope, ParamD);
2057      }
2058    }
2059  } else {
2060    // FIXME: Diagnose arguments without names in C.
2061  }
2062
2063  Scope *GlobalScope = FnBodyScope->getParent();
2064
2065  return ActOnStartOfFunctionDef(FnBodyScope,
2066                                 ActOnDeclarator(GlobalScope, D, 0));
2067}
2068
2069Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclTy *D) {
2070  Decl *decl = static_cast<Decl*>(D);
2071  FunctionDecl *FD = cast<FunctionDecl>(decl);
2072
2073  // See if this is a redefinition.
2074  const FunctionDecl *Definition;
2075  if (FD->getBody(Definition)) {
2076    Diag(FD->getLocation(), diag::err_redefinition,
2077         FD->getName());
2078    Diag(Definition->getLocation(), diag::err_previous_definition);
2079  }
2080
2081  PushDeclContext(FD);
2082
2083  // Check the validity of our function parameters
2084  CheckParmsForFunctionDef(FD);
2085
2086  // Introduce our parameters into the function scope
2087  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2088    ParmVarDecl *Param = FD->getParamDecl(p);
2089    // If this has an identifier, add it to the scope stack.
2090    if (Param->getIdentifier())
2091      PushOnScopeChains(Param, FnBodyScope);
2092  }
2093
2094  return FD;
2095}
2096
2097Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtTy *Body) {
2098  Decl *dcl = static_cast<Decl *>(D);
2099  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
2100    FD->setBody((Stmt*)Body);
2101    assert(FD == getCurFunctionDecl() && "Function parsing confused");
2102  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
2103    MD->setBody((Stmt*)Body);
2104  } else
2105    return 0;
2106  PopDeclContext();
2107  // Verify and clean out per-function state.
2108
2109  // Check goto/label use.
2110  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
2111       I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
2112    // Verify that we have no forward references left.  If so, there was a goto
2113    // or address of a label taken, but no definition of it.  Label fwd
2114    // definitions are indicated with a null substmt.
2115    if (I->second->getSubStmt() == 0) {
2116      LabelStmt *L = I->second;
2117      // Emit error.
2118      Diag(L->getIdentLoc(), diag::err_undeclared_label_use, L->getName());
2119
2120      // At this point, we have gotos that use the bogus label.  Stitch it into
2121      // the function body so that they aren't leaked and that the AST is well
2122      // formed.
2123      if (Body) {
2124        L->setSubStmt(new NullStmt(L->getIdentLoc()));
2125        cast<CompoundStmt>((Stmt*)Body)->push_back(L);
2126      } else {
2127        // The whole function wasn't parsed correctly, just delete this.
2128        delete L;
2129      }
2130    }
2131  }
2132  LabelMap.clear();
2133
2134  return D;
2135}
2136
2137/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
2138/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
2139ScopedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
2140                                           IdentifierInfo &II, Scope *S) {
2141  // Extension in C99.  Legal in C90, but warn about it.
2142  if (getLangOptions().C99)
2143    Diag(Loc, diag::ext_implicit_function_decl) << &II;
2144  else
2145    Diag(Loc, diag::warn_implicit_function_decl) << &II;
2146
2147  // FIXME: handle stuff like:
2148  // void foo() { extern float X(); }
2149  // void bar() { X(); }  <-- implicit decl for X in another scope.
2150
2151  // Set a Declarator for the implicit definition: int foo();
2152  const char *Dummy;
2153  DeclSpec DS;
2154  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
2155  Error = Error; // Silence warning.
2156  assert(!Error && "Error setting up implicit decl!");
2157  Declarator D(DS, Declarator::BlockContext);
2158  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, 0, 0, 0, Loc));
2159  D.SetIdentifier(&II, Loc);
2160
2161  // Insert this function into translation-unit scope.
2162
2163  DeclContext *PrevDC = CurContext;
2164  CurContext = Context.getTranslationUnitDecl();
2165
2166  FunctionDecl *FD =
2167    dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0)));
2168  FD->setImplicit();
2169
2170  CurContext = PrevDC;
2171
2172  return FD;
2173}
2174
2175
2176TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
2177                                    ScopedDecl *LastDeclarator) {
2178  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
2179  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2180
2181  // Scope manipulation handled by caller.
2182  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
2183                                           D.getIdentifierLoc(),
2184                                           D.getIdentifier(),
2185                                           T, LastDeclarator);
2186  if (D.getInvalidType())
2187    NewTD->setInvalidDecl();
2188  return NewTD;
2189}
2190
2191/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
2192/// former case, Name will be non-null.  In the later case, Name will be null.
2193/// TagType indicates what kind of tag this is. TK indicates whether this is a
2194/// reference/declaration/definition of a tag.
2195Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagType, TagKind TK,
2196                             SourceLocation KWLoc, const CXXScopeSpec &SS,
2197                             IdentifierInfo *Name, SourceLocation NameLoc,
2198                             AttributeList *Attr) {
2199  // If this is a use of an existing tag, it must have a name.
2200  assert((Name != 0 || TK == TK_Definition) &&
2201         "Nameless record must be a definition!");
2202
2203  TagDecl::TagKind Kind;
2204  switch (TagType) {
2205  default: assert(0 && "Unknown tag type!");
2206  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
2207  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
2208  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
2209  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
2210  }
2211
2212  // Two code paths: a new one for structs/unions/classes where we create
2213  //   separate decls for forward declarations, and an old (eventually to
2214  //   be removed) code path for enums.
2215  if (Kind != TagDecl::TK_enum)
2216    return ActOnTagStruct(S, Kind, TK, KWLoc, SS, Name, NameLoc, Attr);
2217
2218  DeclContext *DC = CurContext;
2219  ScopedDecl *PrevDecl = 0;
2220
2221  if (Name && SS.isNotEmpty()) {
2222    // We have a nested-name tag ('struct foo::bar').
2223
2224    // Check for invalid 'foo::'.
2225    if (SS.isInvalid()) {
2226      Name = 0;
2227      goto CreateNewDecl;
2228    }
2229
2230    DC = static_cast<DeclContext*>(SS.getScopeRep());
2231    // Look-up name inside 'foo::'.
2232    PrevDecl = dyn_cast_or_null<TagDecl>(LookupDecl(Name, Decl::IDNS_Tag,S,DC));
2233
2234    // A tag 'foo::bar' must already exist.
2235    if (PrevDecl == 0) {
2236      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
2237      Name = 0;
2238      goto CreateNewDecl;
2239    }
2240  } else {
2241    // If this is a named struct, check to see if there was a previous forward
2242    // declaration or definition.
2243    // Use ScopedDecl instead of TagDecl, because a NamespaceDecl may come up.
2244    PrevDecl = dyn_cast_or_null<ScopedDecl>(LookupDecl(Name, Decl::IDNS_Tag,S));
2245  }
2246
2247  if (PrevDecl) {
2248    assert((isa<TagDecl>(PrevDecl) || isa<NamespaceDecl>(PrevDecl)) &&
2249            "unexpected Decl type");
2250    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
2251      // If this is a use of a previous tag, or if the tag is already declared
2252      // in the same scope (so that the definition/declaration completes or
2253      // rementions the tag), reuse the decl.
2254      if (TK == TK_Reference || isDeclInScope(PrevDecl, DC, S)) {
2255        // Make sure that this wasn't declared as an enum and now used as a
2256        // struct or something similar.
2257        if (PrevTagDecl->getTagKind() != Kind) {
2258          Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
2259          Diag(PrevDecl->getLocation(), diag::err_previous_use);
2260          // Recover by making this an anonymous redefinition.
2261          Name = 0;
2262          PrevDecl = 0;
2263        } else {
2264          // If this is a use or a forward declaration, we're good.
2265          if (TK != TK_Definition)
2266            return PrevDecl;
2267
2268          // Diagnose attempts to redefine a tag.
2269          if (PrevTagDecl->isDefinition()) {
2270            Diag(NameLoc, diag::err_redefinition) << Name;
2271            Diag(PrevDecl->getLocation(), diag::err_previous_definition);
2272            // If this is a redefinition, recover by making this struct be
2273            // anonymous, which will make any later references get the previous
2274            // definition.
2275            Name = 0;
2276          } else {
2277            // Okay, this is definition of a previously declared or referenced
2278            // tag. Move the location of the decl to be the definition site.
2279            PrevDecl->setLocation(NameLoc);
2280            return PrevDecl;
2281          }
2282        }
2283      }
2284      // If we get here, this is a definition of a new struct type in a nested
2285      // scope, e.g. "struct foo; void bar() { struct foo; }", just create a new
2286      // type.
2287    } else {
2288      // PrevDecl is a namespace.
2289      if (isDeclInScope(PrevDecl, DC, S)) {
2290        // The tag name clashes with a namespace name, issue an error and
2291        // recover by making this tag be anonymous.
2292        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
2293        Diag(PrevDecl->getLocation(), diag::err_previous_definition);
2294        Name = 0;
2295      }
2296    }
2297  }
2298
2299  CreateNewDecl:
2300
2301  // If there is an identifier, use the location of the identifier as the
2302  // location of the decl, otherwise use the location of the struct/union
2303  // keyword.
2304  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
2305
2306  // Otherwise, if this is the first time we've seen this tag, create the decl.
2307  TagDecl *New;
2308  if (Kind == TagDecl::TK_enum) {
2309    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
2310    // enum X { A, B, C } D;    D should chain to X.
2311    New = EnumDecl::Create(Context, DC, Loc, Name, 0);
2312    // If this is an undefined enum, warn.
2313    if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum);
2314  } else {
2315    // struct/union/class
2316
2317    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
2318    // struct X { int A; } D;    D should chain to X.
2319    if (getLangOptions().CPlusPlus)
2320      // FIXME: Look for a way to use RecordDecl for simple structs.
2321      New = CXXRecordDecl::Create(Context, Kind, DC, Loc, Name);
2322    else
2323      New = RecordDecl::Create(Context, Kind, DC, Loc, Name);
2324  }
2325
2326  // If this has an identifier, add it to the scope stack.
2327  if (Name) {
2328    // The scope passed in may not be a decl scope.  Zip up the scope tree until
2329    // we find one that is.
2330    while ((S->getFlags() & Scope::DeclScope) == 0)
2331      S = S->getParent();
2332
2333    // Add it to the decl chain.
2334    PushOnScopeChains(New, S);
2335  }
2336
2337  if (Attr)
2338    ProcessDeclAttributeList(New, Attr);
2339
2340  // Set the lexical context. If the tag has a C++ scope specifier, the
2341  // lexical context will be different from the semantic context.
2342  New->setLexicalDeclContext(CurContext);
2343
2344  return New;
2345}
2346
2347/// ActOnTagStruct - New "ActOnTag" logic for structs/unions/classes.  Unlike
2348///  the logic for enums, we create separate decls for forward declarations.
2349///  This is called by ActOnTag, but eventually will replace its logic.
2350Sema::DeclTy *Sema::ActOnTagStruct(Scope *S, TagDecl::TagKind Kind, TagKind TK,
2351                             SourceLocation KWLoc, const CXXScopeSpec &SS,
2352                             IdentifierInfo *Name, SourceLocation NameLoc,
2353                             AttributeList *Attr) {
2354  DeclContext *DC = CurContext;
2355  ScopedDecl *PrevDecl = 0;
2356
2357  if (Name && SS.isNotEmpty()) {
2358    // We have a nested-name tag ('struct foo::bar').
2359
2360    // Check for invalid 'foo::'.
2361    if (SS.isInvalid()) {
2362      Name = 0;
2363      goto CreateNewDecl;
2364    }
2365
2366    DC = static_cast<DeclContext*>(SS.getScopeRep());
2367    // Look-up name inside 'foo::'.
2368    PrevDecl = dyn_cast_or_null<TagDecl>(LookupDecl(Name, Decl::IDNS_Tag,S,DC));
2369
2370    // A tag 'foo::bar' must already exist.
2371    if (PrevDecl == 0) {
2372      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
2373      Name = 0;
2374      goto CreateNewDecl;
2375    }
2376  } else {
2377    // If this is a named struct, check to see if there was a previous forward
2378    // declaration or definition.
2379    // Use ScopedDecl instead of TagDecl, because a NamespaceDecl may come up.
2380    PrevDecl = dyn_cast_or_null<ScopedDecl>(LookupDecl(Name, Decl::IDNS_Tag,S));
2381  }
2382
2383  if (PrevDecl) {
2384    assert((isa<TagDecl>(PrevDecl) || isa<NamespaceDecl>(PrevDecl)) &&
2385           "unexpected Decl type");
2386
2387    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
2388      // If this is a use of a previous tag, or if the tag is already declared
2389      // in the same scope (so that the definition/declaration completes or
2390      // rementions the tag), reuse the decl.
2391      if (TK == TK_Reference || isDeclInScope(PrevDecl, DC, S)) {
2392        // Make sure that this wasn't declared as an enum and now used as a
2393        // struct or something similar.
2394        if (PrevTagDecl->getTagKind() != Kind) {
2395          Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
2396          Diag(PrevDecl->getLocation(), diag::err_previous_use);
2397          // Recover by making this an anonymous redefinition.
2398          Name = 0;
2399          PrevDecl = 0;
2400        } else {
2401          // If this is a use, return the original decl.
2402
2403          // FIXME: In the future, return a variant or some other clue
2404          //  for the consumer of this Decl to know it doesn't own it.
2405          //  For our current ASTs this shouldn't be a problem, but will
2406          //  need to be changed with DeclGroups.
2407          if (TK == TK_Reference)
2408            return PrevDecl;
2409
2410          // The new decl is a definition?
2411          if (TK == TK_Definition) {
2412            // Diagnose attempts to redefine a tag.
2413            if (RecordDecl* DefRecord =
2414                cast<RecordDecl>(PrevTagDecl)->getDefinition(Context)) {
2415              Diag(NameLoc, diag::err_redefinition) << Name;
2416              Diag(DefRecord->getLocation(), diag::err_previous_definition);
2417              // If this is a redefinition, recover by making this struct be
2418              // anonymous, which will make any later references get the previous
2419              // definition.
2420              Name = 0;
2421              PrevDecl = 0;
2422            }
2423            // Okay, this is definition of a previously declared or referenced
2424            // tag.  We're going to create a new Decl.
2425          }
2426        }
2427        // If we get here we have (another) forward declaration.  Just create
2428        // a new decl.
2429      }
2430      else {
2431        // If we get here, this is a definition of a new struct type in a nested
2432        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
2433        // new decl/type.  We set PrevDecl to NULL so that the Records
2434        // have distinct types.
2435        PrevDecl = 0;
2436      }
2437    } else {
2438      // PrevDecl is a namespace.
2439      if (isDeclInScope(PrevDecl, DC, S)) {
2440        // The tag name clashes with a namespace name, issue an error and
2441        // recover by making this tag be anonymous.
2442        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
2443        Diag(PrevDecl->getLocation(), diag::err_previous_definition);
2444        Name = 0;
2445      }
2446    }
2447  }
2448
2449  CreateNewDecl:
2450
2451  // If there is an identifier, use the location of the identifier as the
2452  // location of the decl, otherwise use the location of the struct/union
2453  // keyword.
2454  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
2455
2456  // Otherwise, if this is the first time we've seen this tag, create the decl.
2457  TagDecl *New;
2458
2459  // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
2460  // struct X { int A; } D;    D should chain to X.
2461  if (getLangOptions().CPlusPlus)
2462    // FIXME: Look for a way to use RecordDecl for simple structs.
2463    New = CXXRecordDecl::Create(Context, Kind, DC, Loc, Name,
2464                                dyn_cast_or_null<CXXRecordDecl>(PrevDecl));
2465  else
2466    New = RecordDecl::Create(Context, Kind, DC, Loc, Name,
2467                             dyn_cast_or_null<RecordDecl>(PrevDecl));
2468
2469  // If this has an identifier, add it to the scope stack.
2470  if ((TK == TK_Definition || !PrevDecl) && Name) {
2471    // The scope passed in may not be a decl scope.  Zip up the scope tree until
2472    // we find one that is.
2473    while ((S->getFlags() & Scope::DeclScope) == 0)
2474      S = S->getParent();
2475
2476    // Add it to the decl chain.
2477    PushOnScopeChains(New, S);
2478  }
2479
2480  // Handle #pragma pack: if the #pragma pack stack has non-default
2481  // alignment, make up a packed attribute for this decl. These
2482  // attributes are checked when the ASTContext lays out the
2483  // structure.
2484  //
2485  // It is important for implementing the correct semantics that this
2486  // happen here (in act on tag decl). The #pragma pack stack is
2487  // maintained as a result of parser callbacks which can occur at
2488  // many points during the parsing of a struct declaration (because
2489  // the #pragma tokens are effectively skipped over during the
2490  // parsing of the struct).
2491  if (unsigned Alignment = PackContext.getAlignment())
2492    New->addAttr(new PackedAttr(Alignment * 8));
2493
2494  if (Attr)
2495    ProcessDeclAttributeList(New, Attr);
2496
2497  // Set the lexical context. If the tag has a C++ scope specifier, the
2498  // lexical context will be different from the semantic context.
2499  New->setLexicalDeclContext(CurContext);
2500
2501  return New;
2502}
2503
2504
2505/// Collect the instance variables declared in an Objective-C object.  Used in
2506/// the creation of structures from objects using the @defs directive.
2507static void CollectIvars(ObjCInterfaceDecl *Class, ASTContext& Ctx,
2508                         llvm::SmallVectorImpl<Sema::DeclTy*> &ivars) {
2509  if (Class->getSuperClass())
2510    CollectIvars(Class->getSuperClass(), Ctx, ivars);
2511
2512  // For each ivar, create a fresh ObjCAtDefsFieldDecl.
2513  for (ObjCInterfaceDecl::ivar_iterator
2514        I=Class->ivar_begin(), E=Class->ivar_end(); I!=E; ++I) {
2515
2516    ObjCIvarDecl* ID = *I;
2517    ivars.push_back(ObjCAtDefsFieldDecl::Create(Ctx, ID->getLocation(),
2518                                                ID->getIdentifier(),
2519                                                ID->getType(),
2520                                                ID->getBitWidth()));
2521  }
2522}
2523
2524/// Called whenever @defs(ClassName) is encountered in the source.  Inserts the
2525/// instance variables of ClassName into Decls.
2526void Sema::ActOnDefs(Scope *S, SourceLocation DeclStart,
2527                     IdentifierInfo *ClassName,
2528                     llvm::SmallVectorImpl<DeclTy*> &Decls) {
2529  // Check that ClassName is a valid class
2530  ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName);
2531  if (!Class) {
2532    Diag(DeclStart, diag::err_undef_interface) << ClassName;
2533    return;
2534  }
2535  // Collect the instance variables
2536  CollectIvars(Class, Context, Decls);
2537}
2538
2539/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2540/// types into constant array types in certain situations which would otherwise
2541/// be errors (for GCC compatibility).
2542static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2543                                                    ASTContext &Context) {
2544  // This method tries to turn a variable array into a constant
2545  // array even when the size isn't an ICE.  This is necessary
2546  // for compatibility with code that depends on gcc's buggy
2547  // constant expression folding, like struct {char x[(int)(char*)2];}
2548  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2549  if (!VLATy) return QualType();
2550
2551  APValue Result;
2552  if (!VLATy->getSizeExpr() ||
2553      !VLATy->getSizeExpr()->Evaluate(Result, Context))
2554    return QualType();
2555
2556  assert(Result.isInt() && "Size expressions must be integers!");
2557  llvm::APSInt &Res = Result.getInt();
2558  if (Res > llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
2559    return Context.getConstantArrayType(VLATy->getElementType(),
2560                                        Res, ArrayType::Normal, 0);
2561  return QualType();
2562}
2563
2564/// ActOnField - Each field of a struct/union/class is passed into this in order
2565/// to create a FieldDecl object for it.
2566Sema::DeclTy *Sema::ActOnField(Scope *S,
2567                               SourceLocation DeclStart,
2568                               Declarator &D, ExprTy *BitfieldWidth) {
2569  IdentifierInfo *II = D.getIdentifier();
2570  Expr *BitWidth = (Expr*)BitfieldWidth;
2571  SourceLocation Loc = DeclStart;
2572  if (II) Loc = D.getIdentifierLoc();
2573
2574  // FIXME: Unnamed fields can be handled in various different ways, for
2575  // example, unnamed unions inject all members into the struct namespace!
2576
2577  if (BitWidth) {
2578    // TODO: Validate.
2579    //printf("WARNING: BITFIELDS IGNORED!\n");
2580
2581    // 6.7.2.1p3
2582    // 6.7.2.1p4
2583
2584  } else {
2585    // Not a bitfield.
2586
2587    // validate II.
2588
2589  }
2590
2591  QualType T = GetTypeForDeclarator(D, S);
2592  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2593  bool InvalidDecl = false;
2594
2595  // C99 6.7.2.1p8: A member of a structure or union may have any type other
2596  // than a variably modified type.
2597  if (T->isVariablyModifiedType()) {
2598    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context);
2599    if (!FixedTy.isNull()) {
2600      Diag(Loc, diag::warn_illegal_constant_array_size);
2601      T = FixedTy;
2602    } else {
2603      Diag(Loc, diag::err_typecheck_field_variable_size);
2604      T = Context.IntTy;
2605      InvalidDecl = true;
2606    }
2607  }
2608  // FIXME: Chain fielddecls together.
2609  FieldDecl *NewFD;
2610
2611  if (getLangOptions().CPlusPlus) {
2612    // FIXME: Replace CXXFieldDecls with FieldDecls for simple structs.
2613    NewFD = CXXFieldDecl::Create(Context, cast<CXXRecordDecl>(CurContext),
2614                                 Loc, II, T,
2615                                 D.getDeclSpec().getStorageClassSpec() ==
2616                                   DeclSpec::SCS_mutable, BitWidth);
2617    if (II)
2618      PushOnScopeChains(NewFD, S);
2619  }
2620  else
2621    NewFD = FieldDecl::Create(Context, Loc, II, T, BitWidth);
2622
2623  ProcessDeclAttributes(NewFD, D);
2624
2625  if (D.getInvalidType() || InvalidDecl)
2626    NewFD->setInvalidDecl();
2627  return NewFD;
2628}
2629
2630/// TranslateIvarVisibility - Translate visibility from a token ID to an
2631///  AST enum value.
2632static ObjCIvarDecl::AccessControl
2633TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
2634  switch (ivarVisibility) {
2635  default: assert(0 && "Unknown visitibility kind");
2636  case tok::objc_private: return ObjCIvarDecl::Private;
2637  case tok::objc_public: return ObjCIvarDecl::Public;
2638  case tok::objc_protected: return ObjCIvarDecl::Protected;
2639  case tok::objc_package: return ObjCIvarDecl::Package;
2640  }
2641}
2642
2643/// ActOnIvar - Each ivar field of an objective-c class is passed into this
2644/// in order to create an IvarDecl object for it.
2645Sema::DeclTy *Sema::ActOnIvar(Scope *S,
2646                              SourceLocation DeclStart,
2647                              Declarator &D, ExprTy *BitfieldWidth,
2648                              tok::ObjCKeywordKind Visibility) {
2649  IdentifierInfo *II = D.getIdentifier();
2650  Expr *BitWidth = (Expr*)BitfieldWidth;
2651  SourceLocation Loc = DeclStart;
2652  if (II) Loc = D.getIdentifierLoc();
2653
2654  // FIXME: Unnamed fields can be handled in various different ways, for
2655  // example, unnamed unions inject all members into the struct namespace!
2656
2657
2658  if (BitWidth) {
2659    // TODO: Validate.
2660    //printf("WARNING: BITFIELDS IGNORED!\n");
2661
2662    // 6.7.2.1p3
2663    // 6.7.2.1p4
2664
2665  } else {
2666    // Not a bitfield.
2667
2668    // validate II.
2669
2670  }
2671
2672  QualType T = GetTypeForDeclarator(D, S);
2673  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2674  bool InvalidDecl = false;
2675
2676  // C99 6.7.2.1p8: A member of a structure or union may have any type other
2677  // than a variably modified type.
2678  if (T->isVariablyModifiedType()) {
2679    // FIXME: This diagnostic needs work
2680    Diag(Loc, diag::err_typecheck_illegal_vla) << SourceRange(Loc);
2681    InvalidDecl = true;
2682  }
2683
2684  // Get the visibility (access control) for this ivar.
2685  ObjCIvarDecl::AccessControl ac =
2686    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
2687                                        : ObjCIvarDecl::None;
2688
2689  // Construct the decl.
2690  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, Loc, II, T, ac,
2691                                             (Expr *)BitfieldWidth);
2692
2693  // Process attributes attached to the ivar.
2694  ProcessDeclAttributes(NewID, D);
2695
2696  if (D.getInvalidType() || InvalidDecl)
2697    NewID->setInvalidDecl();
2698
2699  return NewID;
2700}
2701
2702void Sema::ActOnFields(Scope* S,
2703                       SourceLocation RecLoc, DeclTy *RecDecl,
2704                       DeclTy **Fields, unsigned NumFields,
2705                       SourceLocation LBrac, SourceLocation RBrac,
2706                       AttributeList *Attr) {
2707  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
2708  assert(EnclosingDecl && "missing record or interface decl");
2709  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
2710
2711  if (Record)
2712    if (RecordDecl* DefRecord = Record->getDefinition(Context)) {
2713      // Diagnose code like:
2714      //     struct S { struct S {} X; };
2715      // We discover this when we complete the outer S.  Reject and ignore the
2716      // outer S.
2717      Diag(DefRecord->getLocation(), diag::err_nested_redefinition,
2718           DefRecord->getKindName());
2719      Diag(RecLoc, diag::err_previous_definition);
2720      Record->setInvalidDecl();
2721      return;
2722    }
2723
2724  // Verify that all the fields are okay.
2725  unsigned NumNamedMembers = 0;
2726  llvm::SmallVector<FieldDecl*, 32> RecFields;
2727  llvm::SmallSet<const IdentifierInfo*, 32> FieldIDs;
2728
2729  for (unsigned i = 0; i != NumFields; ++i) {
2730
2731    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
2732    assert(FD && "missing field decl");
2733
2734    // Remember all fields.
2735    RecFields.push_back(FD);
2736
2737    // Get the type for the field.
2738    Type *FDTy = FD->getType().getTypePtr();
2739
2740    // C99 6.7.2.1p2 - A field may not be a function type.
2741    if (FDTy->isFunctionType()) {
2742      Diag(FD->getLocation(), diag::err_field_declared_as_function,
2743           FD->getName());
2744      FD->setInvalidDecl();
2745      EnclosingDecl->setInvalidDecl();
2746      continue;
2747    }
2748    // C99 6.7.2.1p2 - A field may not be an incomplete type except...
2749    if (FDTy->isIncompleteType()) {
2750      if (!Record) {  // Incomplete ivar type is always an error.
2751        Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName());
2752        FD->setInvalidDecl();
2753        EnclosingDecl->setInvalidDecl();
2754        continue;
2755      }
2756      if (i != NumFields-1 ||                   // ... that the last member ...
2757          !Record->isStruct() ||  // ... of a structure ...
2758          !FDTy->isArrayType()) {         //... may have incomplete array type.
2759        Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName());
2760        FD->setInvalidDecl();
2761        EnclosingDecl->setInvalidDecl();
2762        continue;
2763      }
2764      if (NumNamedMembers < 1) {  //... must have more than named member ...
2765        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct,
2766             FD->getName());
2767        FD->setInvalidDecl();
2768        EnclosingDecl->setInvalidDecl();
2769        continue;
2770      }
2771      // Okay, we have a legal flexible array member at the end of the struct.
2772      if (Record)
2773        Record->setHasFlexibleArrayMember(true);
2774    }
2775    /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
2776    /// field of another structure or the element of an array.
2777    if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
2778      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
2779        // If this is a member of a union, then entire union becomes "flexible".
2780        if (Record && Record->isUnion()) {
2781          Record->setHasFlexibleArrayMember(true);
2782        } else {
2783          // If this is a struct/class and this is not the last element, reject
2784          // it.  Note that GCC supports variable sized arrays in the middle of
2785          // structures.
2786          if (i != NumFields-1) {
2787            Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct,
2788                 FD->getName());
2789            FD->setInvalidDecl();
2790            EnclosingDecl->setInvalidDecl();
2791            continue;
2792          }
2793          // We support flexible arrays at the end of structs in other structs
2794          // as an extension.
2795          Diag(FD->getLocation(), diag::ext_flexible_array_in_struct,
2796               FD->getName());
2797          if (Record)
2798            Record->setHasFlexibleArrayMember(true);
2799        }
2800      }
2801    }
2802    /// A field cannot be an Objective-c object
2803    if (FDTy->isObjCInterfaceType()) {
2804      Diag(FD->getLocation(), diag::err_statically_allocated_object,
2805           FD->getName());
2806      FD->setInvalidDecl();
2807      EnclosingDecl->setInvalidDecl();
2808      continue;
2809    }
2810    // Keep track of the number of named members.
2811    if (IdentifierInfo *II = FD->getIdentifier()) {
2812      // Detect duplicate member names.
2813      if (!FieldIDs.insert(II)) {
2814        Diag(FD->getLocation(), diag::err_duplicate_member) << II;
2815        // Find the previous decl.
2816        SourceLocation PrevLoc;
2817        for (unsigned i = 0; ; ++i) {
2818          assert(i != RecFields.size() && "Didn't find previous def!");
2819          if (RecFields[i]->getIdentifier() == II) {
2820            PrevLoc = RecFields[i]->getLocation();
2821            break;
2822          }
2823        }
2824        Diag(PrevLoc, diag::err_previous_definition);
2825        FD->setInvalidDecl();
2826        EnclosingDecl->setInvalidDecl();
2827        continue;
2828      }
2829      ++NumNamedMembers;
2830    }
2831  }
2832
2833  // Okay, we successfully defined 'Record'.
2834  if (Record) {
2835    Record->defineBody(Context, &RecFields[0], RecFields.size());
2836    // If this is a C++ record, HandleTagDeclDefinition will be invoked in
2837    // Sema::ActOnFinishCXXClassDef.
2838    if (!isa<CXXRecordDecl>(Record))
2839      Consumer.HandleTagDeclDefinition(Record);
2840  } else {
2841    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
2842    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl))
2843      ID->addInstanceVariablesToClass(ClsFields, RecFields.size(), RBrac);
2844    else if (ObjCImplementationDecl *IMPDecl =
2845               dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
2846      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
2847      IMPDecl->ObjCAddInstanceVariablesToClassImpl(ClsFields, RecFields.size());
2848      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
2849    }
2850  }
2851
2852  if (Attr)
2853    ProcessDeclAttributeList(Record, Attr);
2854}
2855
2856Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
2857                                      DeclTy *lastEnumConst,
2858                                      SourceLocation IdLoc, IdentifierInfo *Id,
2859                                      SourceLocation EqualLoc, ExprTy *val) {
2860  EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
2861  EnumConstantDecl *LastEnumConst =
2862    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
2863  Expr *Val = static_cast<Expr*>(val);
2864
2865  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2866  // we find one that is.
2867  while ((S->getFlags() & Scope::DeclScope) == 0)
2868    S = S->getParent();
2869
2870  // Verify that there isn't already something declared with this name in this
2871  // scope.
2872  if (Decl *PrevDecl = LookupDecl(Id, Decl::IDNS_Ordinary, S)) {
2873    // When in C++, we may get a TagDecl with the same name; in this case the
2874    // enum constant will 'hide' the tag.
2875    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
2876           "Received TagDecl when not in C++!");
2877    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
2878      if (isa<EnumConstantDecl>(PrevDecl))
2879        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
2880      else
2881        Diag(IdLoc, diag::err_redefinition) << Id;
2882      Diag(PrevDecl->getLocation(), diag::err_previous_definition);
2883      delete Val;
2884      return 0;
2885    }
2886  }
2887
2888  llvm::APSInt EnumVal(32);
2889  QualType EltTy;
2890  if (Val) {
2891    // Make sure to promote the operand type to int.
2892    UsualUnaryConversions(Val);
2893
2894    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
2895    SourceLocation ExpLoc;
2896    if (!Val->isIntegerConstantExpr(EnumVal, Context, &ExpLoc)) {
2897      Diag(ExpLoc, diag::err_enum_value_not_integer_constant_expr) << Id;
2898      delete Val;
2899      Val = 0;  // Just forget about it.
2900    } else {
2901      EltTy = Val->getType();
2902    }
2903  }
2904
2905  if (!Val) {
2906    if (LastEnumConst) {
2907      // Assign the last value + 1.
2908      EnumVal = LastEnumConst->getInitVal();
2909      ++EnumVal;
2910
2911      // Check for overflow on increment.
2912      if (EnumVal < LastEnumConst->getInitVal())
2913        Diag(IdLoc, diag::warn_enum_value_overflow);
2914
2915      EltTy = LastEnumConst->getType();
2916    } else {
2917      // First value, set to zero.
2918      EltTy = Context.IntTy;
2919      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
2920    }
2921  }
2922
2923  EnumConstantDecl *New =
2924    EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy,
2925                             Val, EnumVal,
2926                             LastEnumConst);
2927
2928  // Register this decl in the current scope stack.
2929  PushOnScopeChains(New, S);
2930  return New;
2931}
2932
2933// FIXME: For consistency with ActOnFields(), we should have the parser
2934// pass in the source location for the left/right braces.
2935void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
2936                         DeclTy **Elements, unsigned NumElements) {
2937  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
2938
2939  if (Enum && Enum->isDefinition()) {
2940    // Diagnose code like:
2941    //   enum e0 {
2942    //     E0 = sizeof(enum e0 { E1 })
2943    //   };
2944    Diag(Enum->getLocation(), diag::err_nested_redefinition,
2945         Enum->getName());
2946    Diag(EnumLoc, diag::err_previous_definition);
2947    Enum->setInvalidDecl();
2948    return;
2949  }
2950  // TODO: If the result value doesn't fit in an int, it must be a long or long
2951  // long value.  ISO C does not support this, but GCC does as an extension,
2952  // emit a warning.
2953  unsigned IntWidth = Context.Target.getIntWidth();
2954
2955  // Verify that all the values are okay, compute the size of the values, and
2956  // reverse the list.
2957  unsigned NumNegativeBits = 0;
2958  unsigned NumPositiveBits = 0;
2959
2960  // Keep track of whether all elements have type int.
2961  bool AllElementsInt = true;
2962
2963  EnumConstantDecl *EltList = 0;
2964  for (unsigned i = 0; i != NumElements; ++i) {
2965    EnumConstantDecl *ECD =
2966      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
2967    if (!ECD) continue;  // Already issued a diagnostic.
2968
2969    // If the enum value doesn't fit in an int, emit an extension warning.
2970    const llvm::APSInt &InitVal = ECD->getInitVal();
2971    assert(InitVal.getBitWidth() >= IntWidth &&
2972           "Should have promoted value to int");
2973    if (InitVal.getBitWidth() > IntWidth) {
2974      llvm::APSInt V(InitVal);
2975      V.trunc(IntWidth);
2976      V.extend(InitVal.getBitWidth());
2977      if (V != InitVal)
2978        Diag(ECD->getLocation(), diag::ext_enum_value_not_int,
2979             InitVal.toString(10));
2980    }
2981
2982    // Keep track of the size of positive and negative values.
2983    if (InitVal.isUnsigned() || InitVal.isNonNegative())
2984      NumPositiveBits = std::max(NumPositiveBits,
2985                                 (unsigned)InitVal.getActiveBits());
2986    else
2987      NumNegativeBits = std::max(NumNegativeBits,
2988                                 (unsigned)InitVal.getMinSignedBits());
2989
2990    // Keep track of whether every enum element has type int (very commmon).
2991    if (AllElementsInt)
2992      AllElementsInt = ECD->getType() == Context.IntTy;
2993
2994    ECD->setNextDeclarator(EltList);
2995    EltList = ECD;
2996  }
2997
2998  // Figure out the type that should be used for this enum.
2999  // FIXME: Support attribute(packed) on enums and -fshort-enums.
3000  QualType BestType;
3001  unsigned BestWidth;
3002
3003  if (NumNegativeBits) {
3004    // If there is a negative value, figure out the smallest integer type (of
3005    // int/long/longlong) that fits.
3006    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
3007      BestType = Context.IntTy;
3008      BestWidth = IntWidth;
3009    } else {
3010      BestWidth = Context.Target.getLongWidth();
3011
3012      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
3013        BestType = Context.LongTy;
3014      else {
3015        BestWidth = Context.Target.getLongLongWidth();
3016
3017        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
3018          Diag(Enum->getLocation(), diag::warn_enum_too_large);
3019        BestType = Context.LongLongTy;
3020      }
3021    }
3022  } else {
3023    // If there is no negative value, figure out which of uint, ulong, ulonglong
3024    // fits.
3025    if (NumPositiveBits <= IntWidth) {
3026      BestType = Context.UnsignedIntTy;
3027      BestWidth = IntWidth;
3028    } else if (NumPositiveBits <=
3029               (BestWidth = Context.Target.getLongWidth())) {
3030      BestType = Context.UnsignedLongTy;
3031    } else {
3032      BestWidth = Context.Target.getLongLongWidth();
3033      assert(NumPositiveBits <= BestWidth &&
3034             "How could an initializer get larger than ULL?");
3035      BestType = Context.UnsignedLongLongTy;
3036    }
3037  }
3038
3039  // Loop over all of the enumerator constants, changing their types to match
3040  // the type of the enum if needed.
3041  for (unsigned i = 0; i != NumElements; ++i) {
3042    EnumConstantDecl *ECD =
3043      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3044    if (!ECD) continue;  // Already issued a diagnostic.
3045
3046    // Standard C says the enumerators have int type, but we allow, as an
3047    // extension, the enumerators to be larger than int size.  If each
3048    // enumerator value fits in an int, type it as an int, otherwise type it the
3049    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
3050    // that X has type 'int', not 'unsigned'.
3051    if (ECD->getType() == Context.IntTy) {
3052      // Make sure the init value is signed.
3053      llvm::APSInt IV = ECD->getInitVal();
3054      IV.setIsSigned(true);
3055      ECD->setInitVal(IV);
3056      continue;  // Already int type.
3057    }
3058
3059    // Determine whether the value fits into an int.
3060    llvm::APSInt InitVal = ECD->getInitVal();
3061    bool FitsInInt;
3062    if (InitVal.isUnsigned() || !InitVal.isNegative())
3063      FitsInInt = InitVal.getActiveBits() < IntWidth;
3064    else
3065      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
3066
3067    // If it fits into an integer type, force it.  Otherwise force it to match
3068    // the enum decl type.
3069    QualType NewTy;
3070    unsigned NewWidth;
3071    bool NewSign;
3072    if (FitsInInt) {
3073      NewTy = Context.IntTy;
3074      NewWidth = IntWidth;
3075      NewSign = true;
3076    } else if (ECD->getType() == BestType) {
3077      // Already the right type!
3078      continue;
3079    } else {
3080      NewTy = BestType;
3081      NewWidth = BestWidth;
3082      NewSign = BestType->isSignedIntegerType();
3083    }
3084
3085    // Adjust the APSInt value.
3086    InitVal.extOrTrunc(NewWidth);
3087    InitVal.setIsSigned(NewSign);
3088    ECD->setInitVal(InitVal);
3089
3090    // Adjust the Expr initializer and type.
3091    ECD->setInitExpr(new ImplicitCastExpr(NewTy, ECD->getInitExpr(),
3092                                          /*isLvalue=*/false));
3093    ECD->setType(NewTy);
3094  }
3095
3096  Enum->defineElements(EltList, BestType);
3097  Consumer.HandleTagDeclDefinition(Enum);
3098}
3099
3100Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
3101                                          ExprTy *expr) {
3102  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr);
3103
3104  return FileScopeAsmDecl::Create(Context, Loc, AsmString);
3105}
3106
3107Sema::DeclTy* Sema::ActOnLinkageSpec(SourceLocation Loc,
3108                                     SourceLocation LBrace,
3109                                     SourceLocation RBrace,
3110                                     const char *Lang,
3111                                     unsigned StrSize,
3112                                     DeclTy *D) {
3113  LinkageSpecDecl::LanguageIDs Language;
3114  Decl *dcl = static_cast<Decl *>(D);
3115  if (strncmp(Lang, "\"C\"", StrSize) == 0)
3116    Language = LinkageSpecDecl::lang_c;
3117  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
3118    Language = LinkageSpecDecl::lang_cxx;
3119  else {
3120    Diag(Loc, diag::err_bad_language);
3121    return 0;
3122  }
3123
3124  // FIXME: Add all the various semantics of linkage specifications
3125  return LinkageSpecDecl::Create(Context, Loc, Language, dcl);
3126}
3127
3128void Sema::ActOnPragmaPack(PragmaPackKind Kind, IdentifierInfo *Name,
3129                           ExprTy *alignment, SourceLocation PragmaLoc,
3130                           SourceLocation LParenLoc, SourceLocation RParenLoc) {
3131  Expr *Alignment = static_cast<Expr *>(alignment);
3132
3133  // If specified then alignment must be a "small" power of two.
3134  unsigned AlignmentVal = 0;
3135  if (Alignment) {
3136    llvm::APSInt Val;
3137    if (!Alignment->isIntegerConstantExpr(Val, Context) ||
3138        !Val.isPowerOf2() ||
3139        Val.getZExtValue() > 16) {
3140      Diag(PragmaLoc, diag::warn_pragma_pack_invalid_alignment);
3141      delete Alignment;
3142      return; // Ignore
3143    }
3144
3145    AlignmentVal = (unsigned) Val.getZExtValue();
3146  }
3147
3148  switch (Kind) {
3149  case Action::PPK_Default: // pack([n])
3150    PackContext.setAlignment(AlignmentVal);
3151    break;
3152
3153  case Action::PPK_Show: // pack(show)
3154    // Show the current alignment, making sure to show the right value
3155    // for the default.
3156    AlignmentVal = PackContext.getAlignment();
3157    // FIXME: This should come from the target.
3158    if (AlignmentVal == 0)
3159      AlignmentVal = 8;
3160    Diag(PragmaLoc, diag::warn_pragma_pack_show) << AlignmentVal;
3161    break;
3162
3163  case Action::PPK_Push: // pack(push [, id] [, [n])
3164    PackContext.push(Name);
3165    // Set the new alignment if specified.
3166    if (Alignment)
3167      PackContext.setAlignment(AlignmentVal);
3168    break;
3169
3170  case Action::PPK_Pop: // pack(pop [, id] [,  n])
3171    // MSDN, C/C++ Preprocessor Reference > Pragma Directives > pack:
3172    // "#pragma pack(pop, identifier, n) is undefined"
3173    if (Alignment && Name)
3174      Diag(PragmaLoc, diag::warn_pragma_pack_pop_identifer_and_alignment);
3175
3176    // Do the pop.
3177    if (!PackContext.pop(Name)) {
3178      // If a name was specified then failure indicates the name
3179      // wasn't found. Otherwise failure indicates the stack was
3180      // empty.
3181      Diag(PragmaLoc, diag::warn_pragma_pack_pop_failed,
3182           Name ? "no record matching name" : "stack empty");
3183
3184      // FIXME: Warn about popping named records as MSVC does.
3185    } else {
3186      // Pop succeeded, set the new alignment if specified.
3187      if (Alignment)
3188        PackContext.setAlignment(AlignmentVal);
3189    }
3190    break;
3191
3192  default:
3193    assert(0 && "Invalid #pragma pack kind.");
3194  }
3195}
3196
3197bool PragmaPackStack::pop(IdentifierInfo *Name) {
3198  if (Stack.empty())
3199    return false;
3200
3201  // If name is empty just pop top.
3202  if (!Name) {
3203    Alignment = Stack.back().first;
3204    Stack.pop_back();
3205    return true;
3206  }
3207
3208  // Otherwise, find the named record.
3209  for (unsigned i = Stack.size(); i != 0; ) {
3210    --i;
3211    if (Stack[i].second == Name) {
3212      // Found it, pop up to and including this record.
3213      Alignment = Stack[i].first;
3214      Stack.erase(Stack.begin() + i, Stack.end());
3215      return true;
3216    }
3217  }
3218
3219  return false;
3220}
3221