SemaDecl.cpp revision 93476ddd9ce490f9c08d78b640efad812cb019d1
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "TypeLocBuilder.h"
21#include "clang/AST/APValue.h"
22#include "clang/AST/ASTConsumer.h"
23#include "clang/AST/ASTContext.h"
24#include "clang/AST/CXXInheritance.h"
25#include "clang/AST/DeclCXX.h"
26#include "clang/AST/DeclObjC.h"
27#include "clang/AST/DeclTemplate.h"
28#include "clang/AST/EvaluatedExprVisitor.h"
29#include "clang/AST/ExprCXX.h"
30#include "clang/AST/StmtCXX.h"
31#include "clang/AST/CharUnits.h"
32#include "clang/Sema/DeclSpec.h"
33#include "clang/Sema/ParsedTemplate.h"
34#include "clang/Parse/ParseDiagnostic.h"
35#include "clang/Basic/PartialDiagnostic.h"
36#include "clang/Basic/SourceManager.h"
37#include "clang/Basic/TargetInfo.h"
38// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
39#include "clang/Lex/Preprocessor.h"
40#include "clang/Lex/HeaderSearch.h"
41#include "clang/Lex/ModuleLoader.h"
42#include "llvm/ADT/Triple.h"
43#include <algorithm>
44#include <cstring>
45#include <functional>
46using namespace clang;
47using namespace sema;
48
49Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
50  if (OwnedType) {
51    Decl *Group[2] = { OwnedType, Ptr };
52    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
53  }
54
55  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
56}
57
58/// \brief If the identifier refers to a type name within this scope,
59/// return the declaration of that type.
60///
61/// This routine performs ordinary name lookup of the identifier II
62/// within the given scope, with optional C++ scope specifier SS, to
63/// determine whether the name refers to a type. If so, returns an
64/// opaque pointer (actually a QualType) corresponding to that
65/// type. Otherwise, returns NULL.
66///
67/// If name lookup results in an ambiguity, this routine will complain
68/// and then return NULL.
69ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
70                             Scope *S, CXXScopeSpec *SS,
71                             bool isClassName, bool HasTrailingDot,
72                             ParsedType ObjectTypePtr,
73                             bool WantNontrivialTypeSourceInfo,
74                             IdentifierInfo **CorrectedII) {
75  // Determine where we will perform name lookup.
76  DeclContext *LookupCtx = 0;
77  if (ObjectTypePtr) {
78    QualType ObjectType = ObjectTypePtr.get();
79    if (ObjectType->isRecordType())
80      LookupCtx = computeDeclContext(ObjectType);
81  } else if (SS && SS->isNotEmpty()) {
82    LookupCtx = computeDeclContext(*SS, false);
83
84    if (!LookupCtx) {
85      if (isDependentScopeSpecifier(*SS)) {
86        // C++ [temp.res]p3:
87        //   A qualified-id that refers to a type and in which the
88        //   nested-name-specifier depends on a template-parameter (14.6.2)
89        //   shall be prefixed by the keyword typename to indicate that the
90        //   qualified-id denotes a type, forming an
91        //   elaborated-type-specifier (7.1.5.3).
92        //
93        // We therefore do not perform any name lookup if the result would
94        // refer to a member of an unknown specialization.
95        if (!isClassName)
96          return ParsedType();
97
98        // We know from the grammar that this name refers to a type,
99        // so build a dependent node to describe the type.
100        if (WantNontrivialTypeSourceInfo)
101          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
102
103        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
104        QualType T =
105          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
106                            II, NameLoc);
107
108          return ParsedType::make(T);
109      }
110
111      return ParsedType();
112    }
113
114    if (!LookupCtx->isDependentContext() &&
115        RequireCompleteDeclContext(*SS, LookupCtx))
116      return ParsedType();
117  }
118
119  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
120  // lookup for class-names.
121  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
122                                      LookupOrdinaryName;
123  LookupResult Result(*this, &II, NameLoc, Kind);
124  if (LookupCtx) {
125    // Perform "qualified" name lookup into the declaration context we
126    // computed, which is either the type of the base of a member access
127    // expression or the declaration context associated with a prior
128    // nested-name-specifier.
129    LookupQualifiedName(Result, LookupCtx);
130
131    if (ObjectTypePtr && Result.empty()) {
132      // C++ [basic.lookup.classref]p3:
133      //   If the unqualified-id is ~type-name, the type-name is looked up
134      //   in the context of the entire postfix-expression. If the type T of
135      //   the object expression is of a class type C, the type-name is also
136      //   looked up in the scope of class C. At least one of the lookups shall
137      //   find a name that refers to (possibly cv-qualified) T.
138      LookupName(Result, S);
139    }
140  } else {
141    // Perform unqualified name lookup.
142    LookupName(Result, S);
143  }
144
145  NamedDecl *IIDecl = 0;
146  switch (Result.getResultKind()) {
147  case LookupResult::NotFound:
148  case LookupResult::NotFoundInCurrentInstantiation:
149    if (CorrectedII) {
150      TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
151                                              Kind, S, SS, 0, false,
152                                              Sema::CTC_Type);
153      IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
154      TemplateTy Template;
155      bool MemberOfUnknownSpecialization;
156      UnqualifiedId TemplateName;
157      TemplateName.setIdentifier(NewII, NameLoc);
158      NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
159      CXXScopeSpec NewSS, *NewSSPtr = SS;
160      if (SS && NNS) {
161        NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
162        NewSSPtr = &NewSS;
163      }
164      if (Correction && (NNS || NewII != &II) &&
165          // Ignore a correction to a template type as the to-be-corrected
166          // identifier is not a template (typo correction for template names
167          // is handled elsewhere).
168          !(getLangOptions().CPlusPlus && NewSSPtr &&
169            isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
170                           false, Template, MemberOfUnknownSpecialization))) {
171        ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
172                                    isClassName, HasTrailingDot, ObjectTypePtr,
173                                    WantNontrivialTypeSourceInfo);
174        if (Ty) {
175          std::string CorrectedStr(Correction.getAsString(getLangOptions()));
176          std::string CorrectedQuotedStr(
177              Correction.getQuoted(getLangOptions()));
178          Diag(NameLoc, diag::err_unknown_typename_suggest)
179              << Result.getLookupName() << CorrectedQuotedStr
180              << FixItHint::CreateReplacement(SourceRange(NameLoc),
181                                              CorrectedStr);
182          if (NamedDecl *FirstDecl = Correction.getCorrectionDecl())
183            Diag(FirstDecl->getLocation(), diag::note_previous_decl)
184              << CorrectedQuotedStr;
185
186          if (SS && NNS)
187            SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
188          *CorrectedII = NewII;
189          return Ty;
190        }
191      }
192    }
193    // If typo correction failed or was not performed, fall through
194  case LookupResult::FoundOverloaded:
195  case LookupResult::FoundUnresolvedValue:
196    Result.suppressDiagnostics();
197    return ParsedType();
198
199  case LookupResult::Ambiguous:
200    // Recover from type-hiding ambiguities by hiding the type.  We'll
201    // do the lookup again when looking for an object, and we can
202    // diagnose the error then.  If we don't do this, then the error
203    // about hiding the type will be immediately followed by an error
204    // that only makes sense if the identifier was treated like a type.
205    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
206      Result.suppressDiagnostics();
207      return ParsedType();
208    }
209
210    // Look to see if we have a type anywhere in the list of results.
211    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
212         Res != ResEnd; ++Res) {
213      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
214        if (!IIDecl ||
215            (*Res)->getLocation().getRawEncoding() <
216              IIDecl->getLocation().getRawEncoding())
217          IIDecl = *Res;
218      }
219    }
220
221    if (!IIDecl) {
222      // None of the entities we found is a type, so there is no way
223      // to even assume that the result is a type. In this case, don't
224      // complain about the ambiguity. The parser will either try to
225      // perform this lookup again (e.g., as an object name), which
226      // will produce the ambiguity, or will complain that it expected
227      // a type name.
228      Result.suppressDiagnostics();
229      return ParsedType();
230    }
231
232    // We found a type within the ambiguous lookup; diagnose the
233    // ambiguity and then return that type. This might be the right
234    // answer, or it might not be, but it suppresses any attempt to
235    // perform the name lookup again.
236    break;
237
238  case LookupResult::Found:
239    IIDecl = Result.getFoundDecl();
240    break;
241  }
242
243  assert(IIDecl && "Didn't find decl");
244
245  QualType T;
246  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
247    DiagnoseUseOfDecl(IIDecl, NameLoc);
248
249    if (T.isNull())
250      T = Context.getTypeDeclType(TD);
251
252    if (SS && SS->isNotEmpty()) {
253      if (WantNontrivialTypeSourceInfo) {
254        // Construct a type with type-source information.
255        TypeLocBuilder Builder;
256        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
257
258        T = getElaboratedType(ETK_None, *SS, T);
259        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
260        ElabTL.setKeywordLoc(SourceLocation());
261        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
262        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
263      } else {
264        T = getElaboratedType(ETK_None, *SS, T);
265      }
266    }
267  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
268    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
269    if (!HasTrailingDot)
270      T = Context.getObjCInterfaceType(IDecl);
271  }
272
273  if (T.isNull()) {
274    // If it's not plausibly a type, suppress diagnostics.
275    Result.suppressDiagnostics();
276    return ParsedType();
277  }
278  return ParsedType::make(T);
279}
280
281/// isTagName() - This method is called *for error recovery purposes only*
282/// to determine if the specified name is a valid tag name ("struct foo").  If
283/// so, this returns the TST for the tag corresponding to it (TST_enum,
284/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
285/// where the user forgot to specify the tag.
286DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
287  // Do a tag name lookup in this scope.
288  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
289  LookupName(R, S, false);
290  R.suppressDiagnostics();
291  if (R.getResultKind() == LookupResult::Found)
292    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
293      switch (TD->getTagKind()) {
294      default:         return DeclSpec::TST_unspecified;
295      case TTK_Struct: return DeclSpec::TST_struct;
296      case TTK_Union:  return DeclSpec::TST_union;
297      case TTK_Class:  return DeclSpec::TST_class;
298      case TTK_Enum:   return DeclSpec::TST_enum;
299      }
300    }
301
302  return DeclSpec::TST_unspecified;
303}
304
305/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
306/// if a CXXScopeSpec's type is equal to the type of one of the base classes
307/// then downgrade the missing typename error to a warning.
308/// This is needed for MSVC compatibility; Example:
309/// @code
310/// template<class T> class A {
311/// public:
312///   typedef int TYPE;
313/// };
314/// template<class T> class B : public A<T> {
315/// public:
316///   A<T>::TYPE a; // no typename required because A<T> is a base class.
317/// };
318/// @endcode
319bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS) {
320  if (CurContext->isRecord()) {
321    const Type *Ty = SS->getScopeRep()->getAsType();
322
323    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
324    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
325          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
326      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
327        return true;
328  }
329  return CurContext->isFunctionOrMethod();
330}
331
332bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
333                                   SourceLocation IILoc,
334                                   Scope *S,
335                                   CXXScopeSpec *SS,
336                                   ParsedType &SuggestedType) {
337  // We don't have anything to suggest (yet).
338  SuggestedType = ParsedType();
339
340  // There may have been a typo in the name of the type. Look up typo
341  // results, in case we have something that we can suggest.
342  if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(&II, IILoc),
343                                             LookupOrdinaryName, S, SS, NULL,
344                                             false, CTC_Type)) {
345    std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
346    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
347
348    if (Corrected.isKeyword()) {
349      // We corrected to a keyword.
350      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
351      Diag(IILoc, diag::err_unknown_typename_suggest)
352        << &II << CorrectedQuotedStr;
353      return true;
354    } else {
355      NamedDecl *Result = Corrected.getCorrectionDecl();
356      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
357          !Result->isInvalidDecl()) {
358        // We found a similarly-named type or interface; suggest that.
359        if (!SS || !SS->isSet())
360          Diag(IILoc, diag::err_unknown_typename_suggest)
361            << &II << CorrectedQuotedStr
362            << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
363        else if (DeclContext *DC = computeDeclContext(*SS, false))
364          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
365            << &II << DC << CorrectedQuotedStr << SS->getRange()
366            << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
367        else
368          llvm_unreachable("could not have corrected a typo here");
369
370        Diag(Result->getLocation(), diag::note_previous_decl)
371          << CorrectedQuotedStr;
372
373        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
374                                    false, false, ParsedType(),
375                                    /*NonTrivialTypeSourceInfo=*/true);
376        return true;
377      }
378    }
379  }
380
381  if (getLangOptions().CPlusPlus) {
382    // See if II is a class template that the user forgot to pass arguments to.
383    UnqualifiedId Name;
384    Name.setIdentifier(&II, IILoc);
385    CXXScopeSpec EmptySS;
386    TemplateTy TemplateResult;
387    bool MemberOfUnknownSpecialization;
388    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
389                       Name, ParsedType(), true, TemplateResult,
390                       MemberOfUnknownSpecialization) == TNK_Type_template) {
391      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
392      Diag(IILoc, diag::err_template_missing_args) << TplName;
393      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
394        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
395          << TplDecl->getTemplateParameters()->getSourceRange();
396      }
397      return true;
398    }
399  }
400
401  // FIXME: Should we move the logic that tries to recover from a missing tag
402  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
403
404  if (!SS || (!SS->isSet() && !SS->isInvalid()))
405    Diag(IILoc, diag::err_unknown_typename) << &II;
406  else if (DeclContext *DC = computeDeclContext(*SS, false))
407    Diag(IILoc, diag::err_typename_nested_not_found)
408      << &II << DC << SS->getRange();
409  else if (isDependentScopeSpecifier(*SS)) {
410    unsigned DiagID = diag::err_typename_missing;
411    if (getLangOptions().MicrosoftMode && isMicrosoftMissingTypename(SS))
412      DiagID = diag::warn_typename_missing;
413
414    Diag(SS->getRange().getBegin(), DiagID)
415      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
416      << SourceRange(SS->getRange().getBegin(), IILoc)
417      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
418    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
419  } else {
420    assert(SS && SS->isInvalid() &&
421           "Invalid scope specifier has already been diagnosed");
422  }
423
424  return true;
425}
426
427/// \brief Determine whether the given result set contains either a type name
428/// or
429static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
430  bool CheckTemplate = R.getSema().getLangOptions().CPlusPlus &&
431                       NextToken.is(tok::less);
432
433  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
434    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
435      return true;
436
437    if (CheckTemplate && isa<TemplateDecl>(*I))
438      return true;
439  }
440
441  return false;
442}
443
444Sema::NameClassification Sema::ClassifyName(Scope *S,
445                                            CXXScopeSpec &SS,
446                                            IdentifierInfo *&Name,
447                                            SourceLocation NameLoc,
448                                            const Token &NextToken) {
449  DeclarationNameInfo NameInfo(Name, NameLoc);
450  ObjCMethodDecl *CurMethod = getCurMethodDecl();
451
452  if (NextToken.is(tok::coloncolon)) {
453    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
454                                QualType(), false, SS, 0, false);
455
456  }
457
458  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
459  LookupParsedName(Result, S, &SS, !CurMethod);
460
461  // Perform lookup for Objective-C instance variables (including automatically
462  // synthesized instance variables), if we're in an Objective-C method.
463  // FIXME: This lookup really, really needs to be folded in to the normal
464  // unqualified lookup mechanism.
465  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
466    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
467    if (E.get() || E.isInvalid())
468      return E;
469  }
470
471  bool SecondTry = false;
472  bool IsFilteredTemplateName = false;
473
474Corrected:
475  switch (Result.getResultKind()) {
476  case LookupResult::NotFound:
477    // If an unqualified-id is followed by a '(', then we have a function
478    // call.
479    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
480      // In C++, this is an ADL-only call.
481      // FIXME: Reference?
482      if (getLangOptions().CPlusPlus)
483        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
484
485      // C90 6.3.2.2:
486      //   If the expression that precedes the parenthesized argument list in a
487      //   function call consists solely of an identifier, and if no
488      //   declaration is visible for this identifier, the identifier is
489      //   implicitly declared exactly as if, in the innermost block containing
490      //   the function call, the declaration
491      //
492      //     extern int identifier ();
493      //
494      //   appeared.
495      //
496      // We also allow this in C99 as an extension.
497      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
498        Result.addDecl(D);
499        Result.resolveKind();
500        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
501      }
502    }
503
504    // In C, we first see whether there is a tag type by the same name, in
505    // which case it's likely that the user just forget to write "enum",
506    // "struct", or "union".
507    if (!getLangOptions().CPlusPlus && !SecondTry) {
508      Result.clear(LookupTagName);
509      LookupParsedName(Result, S, &SS);
510      if (TagDecl *Tag = Result.getAsSingle<TagDecl>()) {
511        const char *TagName = 0;
512        const char *FixItTagName = 0;
513        switch (Tag->getTagKind()) {
514          case TTK_Class:
515            TagName = "class";
516            FixItTagName = "class ";
517            break;
518
519          case TTK_Enum:
520            TagName = "enum";
521            FixItTagName = "enum ";
522            break;
523
524          case TTK_Struct:
525            TagName = "struct";
526            FixItTagName = "struct ";
527            break;
528
529          case TTK_Union:
530            TagName = "union";
531            FixItTagName = "union ";
532            break;
533        }
534
535        Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
536          << Name << TagName << getLangOptions().CPlusPlus
537          << FixItHint::CreateInsertion(NameLoc, FixItTagName);
538        break;
539      }
540
541      Result.clear(LookupOrdinaryName);
542    }
543
544    // Perform typo correction to determine if there is another name that is
545    // close to this name.
546    if (!SecondTry) {
547      SecondTry = true;
548      if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
549                                                 Result.getLookupKind(), S, &SS)) {
550        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
551        unsigned QualifiedDiag = diag::err_no_member_suggest;
552        std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
553        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
554
555        NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
556        NamedDecl *UnderlyingFirstDecl
557          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
558        if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
559            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
560          UnqualifiedDiag = diag::err_no_template_suggest;
561          QualifiedDiag = diag::err_no_member_template_suggest;
562        } else if (UnderlyingFirstDecl &&
563                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
564                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
565                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
566           UnqualifiedDiag = diag::err_unknown_typename_suggest;
567           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
568         }
569
570        if (SS.isEmpty())
571          Diag(NameLoc, UnqualifiedDiag)
572            << Name << CorrectedQuotedStr
573            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
574        else
575          Diag(NameLoc, QualifiedDiag)
576            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
577            << SS.getRange()
578            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
579
580        // Update the name, so that the caller has the new name.
581        Name = Corrected.getCorrectionAsIdentifierInfo();
582
583        // Also update the LookupResult...
584        // FIXME: This should probably go away at some point
585        Result.clear();
586        Result.setLookupName(Corrected.getCorrection());
587        if (FirstDecl) Result.addDecl(FirstDecl);
588
589        // Typo correction corrected to a keyword.
590        if (Corrected.isKeyword())
591          return Corrected.getCorrectionAsIdentifierInfo();
592
593        if (FirstDecl)
594          Diag(FirstDecl->getLocation(), diag::note_previous_decl)
595            << CorrectedQuotedStr;
596
597        // If we found an Objective-C instance variable, let
598        // LookupInObjCMethod build the appropriate expression to
599        // reference the ivar.
600        // FIXME: This is a gross hack.
601        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
602          Result.clear();
603          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
604          return move(E);
605        }
606
607        goto Corrected;
608      }
609    }
610
611    // We failed to correct; just fall through and let the parser deal with it.
612    Result.suppressDiagnostics();
613    return NameClassification::Unknown();
614
615  case LookupResult::NotFoundInCurrentInstantiation:
616    // We performed name lookup into the current instantiation, and there were
617    // dependent bases, so we treat this result the same way as any other
618    // dependent nested-name-specifier.
619
620    // C++ [temp.res]p2:
621    //   A name used in a template declaration or definition and that is
622    //   dependent on a template-parameter is assumed not to name a type
623    //   unless the applicable name lookup finds a type name or the name is
624    //   qualified by the keyword typename.
625    //
626    // FIXME: If the next token is '<', we might want to ask the parser to
627    // perform some heroics to see if we actually have a
628    // template-argument-list, which would indicate a missing 'template'
629    // keyword here.
630    return BuildDependentDeclRefExpr(SS, NameInfo, /*TemplateArgs=*/0);
631
632  case LookupResult::Found:
633  case LookupResult::FoundOverloaded:
634  case LookupResult::FoundUnresolvedValue:
635    break;
636
637  case LookupResult::Ambiguous:
638    if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
639        hasAnyAcceptableTemplateNames(Result)) {
640      // C++ [temp.local]p3:
641      //   A lookup that finds an injected-class-name (10.2) can result in an
642      //   ambiguity in certain cases (for example, if it is found in more than
643      //   one base class). If all of the injected-class-names that are found
644      //   refer to specializations of the same class template, and if the name
645      //   is followed by a template-argument-list, the reference refers to the
646      //   class template itself and not a specialization thereof, and is not
647      //   ambiguous.
648      //
649      // This filtering can make an ambiguous result into an unambiguous one,
650      // so try again after filtering out template names.
651      FilterAcceptableTemplateNames(Result);
652      if (!Result.isAmbiguous()) {
653        IsFilteredTemplateName = true;
654        break;
655      }
656    }
657
658    // Diagnose the ambiguity and return an error.
659    return NameClassification::Error();
660  }
661
662  if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
663      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
664    // C++ [temp.names]p3:
665    //   After name lookup (3.4) finds that a name is a template-name or that
666    //   an operator-function-id or a literal- operator-id refers to a set of
667    //   overloaded functions any member of which is a function template if
668    //   this is followed by a <, the < is always taken as the delimiter of a
669    //   template-argument-list and never as the less-than operator.
670    if (!IsFilteredTemplateName)
671      FilterAcceptableTemplateNames(Result);
672
673    if (!Result.empty()) {
674      bool IsFunctionTemplate;
675      TemplateName Template;
676      if (Result.end() - Result.begin() > 1) {
677        IsFunctionTemplate = true;
678        Template = Context.getOverloadedTemplateName(Result.begin(),
679                                                     Result.end());
680      } else {
681        TemplateDecl *TD
682          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
683        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
684
685        if (SS.isSet() && !SS.isInvalid())
686          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
687                                                    /*TemplateKeyword=*/false,
688                                                      TD);
689        else
690          Template = TemplateName(TD);
691      }
692
693      if (IsFunctionTemplate) {
694        // Function templates always go through overload resolution, at which
695        // point we'll perform the various checks (e.g., accessibility) we need
696        // to based on which function we selected.
697        Result.suppressDiagnostics();
698
699        return NameClassification::FunctionTemplate(Template);
700      }
701
702      return NameClassification::TypeTemplate(Template);
703    }
704  }
705
706  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
707  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
708    DiagnoseUseOfDecl(Type, NameLoc);
709    QualType T = Context.getTypeDeclType(Type);
710    return ParsedType::make(T);
711  }
712
713  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
714  if (!Class) {
715    // FIXME: It's unfortunate that we don't have a Type node for handling this.
716    if (ObjCCompatibleAliasDecl *Alias
717                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
718      Class = Alias->getClassInterface();
719  }
720
721  if (Class) {
722    DiagnoseUseOfDecl(Class, NameLoc);
723
724    if (NextToken.is(tok::period)) {
725      // Interface. <something> is parsed as a property reference expression.
726      // Just return "unknown" as a fall-through for now.
727      Result.suppressDiagnostics();
728      return NameClassification::Unknown();
729    }
730
731    QualType T = Context.getObjCInterfaceType(Class);
732    return ParsedType::make(T);
733  }
734
735  if (!Result.empty() && (*Result.begin())->isCXXClassMember())
736    return BuildPossibleImplicitMemberExpr(SS, Result, 0);
737
738  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
739  return BuildDeclarationNameExpr(SS, Result, ADL);
740}
741
742// Determines the context to return to after temporarily entering a
743// context.  This depends in an unnecessarily complicated way on the
744// exact ordering of callbacks from the parser.
745DeclContext *Sema::getContainingDC(DeclContext *DC) {
746
747  // Functions defined inline within classes aren't parsed until we've
748  // finished parsing the top-level class, so the top-level class is
749  // the context we'll need to return to.
750  if (isa<FunctionDecl>(DC)) {
751    DC = DC->getLexicalParent();
752
753    // A function not defined within a class will always return to its
754    // lexical context.
755    if (!isa<CXXRecordDecl>(DC))
756      return DC;
757
758    // A C++ inline method/friend is parsed *after* the topmost class
759    // it was declared in is fully parsed ("complete");  the topmost
760    // class is the context we need to return to.
761    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
762      DC = RD;
763
764    // Return the declaration context of the topmost class the inline method is
765    // declared in.
766    return DC;
767  }
768
769  return DC->getLexicalParent();
770}
771
772void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
773  assert(getContainingDC(DC) == CurContext &&
774      "The next DeclContext should be lexically contained in the current one.");
775  CurContext = DC;
776  S->setEntity(DC);
777}
778
779void Sema::PopDeclContext() {
780  assert(CurContext && "DeclContext imbalance!");
781
782  CurContext = getContainingDC(CurContext);
783  assert(CurContext && "Popped translation unit!");
784}
785
786/// EnterDeclaratorContext - Used when we must lookup names in the context
787/// of a declarator's nested name specifier.
788///
789void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
790  // C++0x [basic.lookup.unqual]p13:
791  //   A name used in the definition of a static data member of class
792  //   X (after the qualified-id of the static member) is looked up as
793  //   if the name was used in a member function of X.
794  // C++0x [basic.lookup.unqual]p14:
795  //   If a variable member of a namespace is defined outside of the
796  //   scope of its namespace then any name used in the definition of
797  //   the variable member (after the declarator-id) is looked up as
798  //   if the definition of the variable member occurred in its
799  //   namespace.
800  // Both of these imply that we should push a scope whose context
801  // is the semantic context of the declaration.  We can't use
802  // PushDeclContext here because that context is not necessarily
803  // lexically contained in the current context.  Fortunately,
804  // the containing scope should have the appropriate information.
805
806  assert(!S->getEntity() && "scope already has entity");
807
808#ifndef NDEBUG
809  Scope *Ancestor = S->getParent();
810  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
811  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
812#endif
813
814  CurContext = DC;
815  S->setEntity(DC);
816}
817
818void Sema::ExitDeclaratorContext(Scope *S) {
819  assert(S->getEntity() == CurContext && "Context imbalance!");
820
821  // Switch back to the lexical context.  The safety of this is
822  // enforced by an assert in EnterDeclaratorContext.
823  Scope *Ancestor = S->getParent();
824  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
825  CurContext = (DeclContext*) Ancestor->getEntity();
826
827  // We don't need to do anything with the scope, which is going to
828  // disappear.
829}
830
831
832void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
833  FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
834  if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
835    // We assume that the caller has already called
836    // ActOnReenterTemplateScope
837    FD = TFD->getTemplatedDecl();
838  }
839  if (!FD)
840    return;
841
842  PushDeclContext(S, FD);
843  for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
844    ParmVarDecl *Param = FD->getParamDecl(P);
845    // If the parameter has an identifier, then add it to the scope
846    if (Param->getIdentifier()) {
847      S->AddDecl(Param);
848      IdResolver.AddDecl(Param);
849    }
850  }
851}
852
853
854/// \brief Determine whether we allow overloading of the function
855/// PrevDecl with another declaration.
856///
857/// This routine determines whether overloading is possible, not
858/// whether some new function is actually an overload. It will return
859/// true in C++ (where we can always provide overloads) or, as an
860/// extension, in C when the previous function is already an
861/// overloaded function declaration or has the "overloadable"
862/// attribute.
863static bool AllowOverloadingOfFunction(LookupResult &Previous,
864                                       ASTContext &Context) {
865  if (Context.getLangOptions().CPlusPlus)
866    return true;
867
868  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
869    return true;
870
871  return (Previous.getResultKind() == LookupResult::Found
872          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
873}
874
875/// Add this decl to the scope shadowed decl chains.
876void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
877  // Move up the scope chain until we find the nearest enclosing
878  // non-transparent context. The declaration will be introduced into this
879  // scope.
880  while (S->getEntity() &&
881         ((DeclContext *)S->getEntity())->isTransparentContext())
882    S = S->getParent();
883
884  // Add scoped declarations into their context, so that they can be
885  // found later. Declarations without a context won't be inserted
886  // into any context.
887  if (AddToContext)
888    CurContext->addDecl(D);
889
890  // Out-of-line definitions shouldn't be pushed into scope in C++.
891  // Out-of-line variable and function definitions shouldn't even in C.
892  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
893      D->isOutOfLine())
894    return;
895
896  // Template instantiations should also not be pushed into scope.
897  if (isa<FunctionDecl>(D) &&
898      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
899    return;
900
901  // If this replaces anything in the current scope,
902  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
903                               IEnd = IdResolver.end();
904  for (; I != IEnd; ++I) {
905    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
906      S->RemoveDecl(*I);
907      IdResolver.RemoveDecl(*I);
908
909      // Should only need to replace one decl.
910      break;
911    }
912  }
913
914  S->AddDecl(D);
915
916  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
917    // Implicitly-generated labels may end up getting generated in an order that
918    // isn't strictly lexical, which breaks name lookup. Be careful to insert
919    // the label at the appropriate place in the identifier chain.
920    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
921      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
922      if (IDC == CurContext) {
923        if (!S->isDeclScope(*I))
924          continue;
925      } else if (IDC->Encloses(CurContext))
926        break;
927    }
928
929    IdResolver.InsertDeclAfter(I, D);
930  } else {
931    IdResolver.AddDecl(D);
932  }
933}
934
935bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
936                         bool ExplicitInstantiationOrSpecialization) {
937  return IdResolver.isDeclInScope(D, Ctx, Context, S,
938                                  ExplicitInstantiationOrSpecialization);
939}
940
941Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
942  DeclContext *TargetDC = DC->getPrimaryContext();
943  do {
944    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
945      if (ScopeDC->getPrimaryContext() == TargetDC)
946        return S;
947  } while ((S = S->getParent()));
948
949  return 0;
950}
951
952static bool isOutOfScopePreviousDeclaration(NamedDecl *,
953                                            DeclContext*,
954                                            ASTContext&);
955
956/// Filters out lookup results that don't fall within the given scope
957/// as determined by isDeclInScope.
958void Sema::FilterLookupForScope(LookupResult &R,
959                                DeclContext *Ctx, Scope *S,
960                                bool ConsiderLinkage,
961                                bool ExplicitInstantiationOrSpecialization) {
962  LookupResult::Filter F = R.makeFilter();
963  while (F.hasNext()) {
964    NamedDecl *D = F.next();
965
966    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
967      continue;
968
969    if (ConsiderLinkage &&
970        isOutOfScopePreviousDeclaration(D, Ctx, Context))
971      continue;
972
973    F.erase();
974  }
975
976  F.done();
977}
978
979static bool isUsingDecl(NamedDecl *D) {
980  return isa<UsingShadowDecl>(D) ||
981         isa<UnresolvedUsingTypenameDecl>(D) ||
982         isa<UnresolvedUsingValueDecl>(D);
983}
984
985/// Removes using shadow declarations from the lookup results.
986static void RemoveUsingDecls(LookupResult &R) {
987  LookupResult::Filter F = R.makeFilter();
988  while (F.hasNext())
989    if (isUsingDecl(F.next()))
990      F.erase();
991
992  F.done();
993}
994
995/// \brief Check for this common pattern:
996/// @code
997/// class S {
998///   S(const S&); // DO NOT IMPLEMENT
999///   void operator=(const S&); // DO NOT IMPLEMENT
1000/// };
1001/// @endcode
1002static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1003  // FIXME: Should check for private access too but access is set after we get
1004  // the decl here.
1005  if (D->doesThisDeclarationHaveABody())
1006    return false;
1007
1008  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1009    return CD->isCopyConstructor();
1010  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1011    return Method->isCopyAssignmentOperator();
1012  return false;
1013}
1014
1015bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1016  assert(D);
1017
1018  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1019    return false;
1020
1021  // Ignore class templates.
1022  if (D->getDeclContext()->isDependentContext() ||
1023      D->getLexicalDeclContext()->isDependentContext())
1024    return false;
1025
1026  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1027    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1028      return false;
1029
1030    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1031      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1032        return false;
1033    } else {
1034      // 'static inline' functions are used in headers; don't warn.
1035      if (FD->getStorageClass() == SC_Static &&
1036          FD->isInlineSpecified())
1037        return false;
1038    }
1039
1040    if (FD->doesThisDeclarationHaveABody() &&
1041        Context.DeclMustBeEmitted(FD))
1042      return false;
1043  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1044    if (!VD->isFileVarDecl() ||
1045        VD->getType().isConstant(Context) ||
1046        Context.DeclMustBeEmitted(VD))
1047      return false;
1048
1049    if (VD->isStaticDataMember() &&
1050        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1051      return false;
1052
1053  } else {
1054    return false;
1055  }
1056
1057  // Only warn for unused decls internal to the translation unit.
1058  if (D->getLinkage() == ExternalLinkage)
1059    return false;
1060
1061  return true;
1062}
1063
1064void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1065  if (!D)
1066    return;
1067
1068  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1069    const FunctionDecl *First = FD->getFirstDeclaration();
1070    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1071      return; // First should already be in the vector.
1072  }
1073
1074  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1075    const VarDecl *First = VD->getFirstDeclaration();
1076    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1077      return; // First should already be in the vector.
1078  }
1079
1080   if (ShouldWarnIfUnusedFileScopedDecl(D))
1081     UnusedFileScopedDecls.push_back(D);
1082 }
1083
1084static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1085  if (D->isInvalidDecl())
1086    return false;
1087
1088  if (D->isUsed() || D->hasAttr<UnusedAttr>())
1089    return false;
1090
1091  if (isa<LabelDecl>(D))
1092    return true;
1093
1094  // White-list anything that isn't a local variable.
1095  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1096      !D->getDeclContext()->isFunctionOrMethod())
1097    return false;
1098
1099  // Types of valid local variables should be complete, so this should succeed.
1100  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1101
1102    // White-list anything with an __attribute__((unused)) type.
1103    QualType Ty = VD->getType();
1104
1105    // Only look at the outermost level of typedef.
1106    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
1107      if (TT->getDecl()->hasAttr<UnusedAttr>())
1108        return false;
1109    }
1110
1111    // If we failed to complete the type for some reason, or if the type is
1112    // dependent, don't diagnose the variable.
1113    if (Ty->isIncompleteType() || Ty->isDependentType())
1114      return false;
1115
1116    if (const TagType *TT = Ty->getAs<TagType>()) {
1117      const TagDecl *Tag = TT->getDecl();
1118      if (Tag->hasAttr<UnusedAttr>())
1119        return false;
1120
1121      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1122        // FIXME: Checking for the presence of a user-declared constructor
1123        // isn't completely accurate; we'd prefer to check that the initializer
1124        // has no side effects.
1125        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
1126          return false;
1127      }
1128    }
1129
1130    // TODO: __attribute__((unused)) templates?
1131  }
1132
1133  return true;
1134}
1135
1136static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1137                                     FixItHint &Hint) {
1138  if (isa<LabelDecl>(D)) {
1139    SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1140                tok::colon, Ctx.getSourceManager(), Ctx.getLangOptions(), true);
1141    if (AfterColon.isInvalid())
1142      return;
1143    Hint = FixItHint::CreateRemoval(CharSourceRange::
1144                                    getCharRange(D->getLocStart(), AfterColon));
1145  }
1146  return;
1147}
1148
1149/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1150/// unless they are marked attr(unused).
1151void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1152  FixItHint Hint;
1153  if (!ShouldDiagnoseUnusedDecl(D))
1154    return;
1155
1156  GenerateFixForUnusedDecl(D, Context, Hint);
1157
1158  unsigned DiagID;
1159  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1160    DiagID = diag::warn_unused_exception_param;
1161  else if (isa<LabelDecl>(D))
1162    DiagID = diag::warn_unused_label;
1163  else
1164    DiagID = diag::warn_unused_variable;
1165
1166  Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1167}
1168
1169static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1170  // Verify that we have no forward references left.  If so, there was a goto
1171  // or address of a label taken, but no definition of it.  Label fwd
1172  // definitions are indicated with a null substmt.
1173  if (L->getStmt() == 0)
1174    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1175}
1176
1177void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1178  if (S->decl_empty()) return;
1179  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1180         "Scope shouldn't contain decls!");
1181
1182  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1183       I != E; ++I) {
1184    Decl *TmpD = (*I);
1185    assert(TmpD && "This decl didn't get pushed??");
1186
1187    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1188    NamedDecl *D = cast<NamedDecl>(TmpD);
1189
1190    if (!D->getDeclName()) continue;
1191
1192    // Diagnose unused variables in this scope.
1193    if (!S->hasErrorOccurred())
1194      DiagnoseUnusedDecl(D);
1195
1196    // If this was a forward reference to a label, verify it was defined.
1197    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1198      CheckPoppedLabel(LD, *this);
1199
1200    // Remove this name from our lexical scope.
1201    IdResolver.RemoveDecl(D);
1202  }
1203}
1204
1205/// \brief Look for an Objective-C class in the translation unit.
1206///
1207/// \param Id The name of the Objective-C class we're looking for. If
1208/// typo-correction fixes this name, the Id will be updated
1209/// to the fixed name.
1210///
1211/// \param IdLoc The location of the name in the translation unit.
1212///
1213/// \param TypoCorrection If true, this routine will attempt typo correction
1214/// if there is no class with the given name.
1215///
1216/// \returns The declaration of the named Objective-C class, or NULL if the
1217/// class could not be found.
1218ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1219                                              SourceLocation IdLoc,
1220                                              bool DoTypoCorrection) {
1221  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1222  // creation from this context.
1223  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1224
1225  if (!IDecl && DoTypoCorrection) {
1226    // Perform typo correction at the given location, but only if we
1227    // find an Objective-C class name.
1228    TypoCorrection C;
1229    if ((C = CorrectTypo(DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName,
1230                         TUScope, NULL, NULL, false, CTC_NoKeywords)) &&
1231        (IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>())) {
1232      Diag(IdLoc, diag::err_undef_interface_suggest)
1233        << Id << IDecl->getDeclName()
1234        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1235      Diag(IDecl->getLocation(), diag::note_previous_decl)
1236        << IDecl->getDeclName();
1237
1238      Id = IDecl->getIdentifier();
1239    }
1240  }
1241
1242  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1243}
1244
1245/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1246/// from S, where a non-field would be declared. This routine copes
1247/// with the difference between C and C++ scoping rules in structs and
1248/// unions. For example, the following code is well-formed in C but
1249/// ill-formed in C++:
1250/// @code
1251/// struct S6 {
1252///   enum { BAR } e;
1253/// };
1254///
1255/// void test_S6() {
1256///   struct S6 a;
1257///   a.e = BAR;
1258/// }
1259/// @endcode
1260/// For the declaration of BAR, this routine will return a different
1261/// scope. The scope S will be the scope of the unnamed enumeration
1262/// within S6. In C++, this routine will return the scope associated
1263/// with S6, because the enumeration's scope is a transparent
1264/// context but structures can contain non-field names. In C, this
1265/// routine will return the translation unit scope, since the
1266/// enumeration's scope is a transparent context and structures cannot
1267/// contain non-field names.
1268Scope *Sema::getNonFieldDeclScope(Scope *S) {
1269  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1270         (S->getEntity() &&
1271          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1272         (S->isClassScope() && !getLangOptions().CPlusPlus))
1273    S = S->getParent();
1274  return S;
1275}
1276
1277/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1278/// file scope.  lazily create a decl for it. ForRedeclaration is true
1279/// if we're creating this built-in in anticipation of redeclaring the
1280/// built-in.
1281NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1282                                     Scope *S, bool ForRedeclaration,
1283                                     SourceLocation Loc) {
1284  Builtin::ID BID = (Builtin::ID)bid;
1285
1286  ASTContext::GetBuiltinTypeError Error;
1287  QualType R = Context.GetBuiltinType(BID, Error);
1288  switch (Error) {
1289  case ASTContext::GE_None:
1290    // Okay
1291    break;
1292
1293  case ASTContext::GE_Missing_stdio:
1294    if (ForRedeclaration)
1295      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1296        << Context.BuiltinInfo.GetName(BID);
1297    return 0;
1298
1299  case ASTContext::GE_Missing_setjmp:
1300    if (ForRedeclaration)
1301      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1302        << Context.BuiltinInfo.GetName(BID);
1303    return 0;
1304  }
1305
1306  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1307    Diag(Loc, diag::ext_implicit_lib_function_decl)
1308      << Context.BuiltinInfo.GetName(BID)
1309      << R;
1310    if (Context.BuiltinInfo.getHeaderName(BID) &&
1311        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1312          != DiagnosticsEngine::Ignored)
1313      Diag(Loc, diag::note_please_include_header)
1314        << Context.BuiltinInfo.getHeaderName(BID)
1315        << Context.BuiltinInfo.GetName(BID);
1316  }
1317
1318  FunctionDecl *New = FunctionDecl::Create(Context,
1319                                           Context.getTranslationUnitDecl(),
1320                                           Loc, Loc, II, R, /*TInfo=*/0,
1321                                           SC_Extern,
1322                                           SC_None, false,
1323                                           /*hasPrototype=*/true);
1324  New->setImplicit();
1325
1326  // Create Decl objects for each parameter, adding them to the
1327  // FunctionDecl.
1328  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1329    SmallVector<ParmVarDecl*, 16> Params;
1330    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1331      ParmVarDecl *parm =
1332        ParmVarDecl::Create(Context, New, SourceLocation(),
1333                            SourceLocation(), 0,
1334                            FT->getArgType(i), /*TInfo=*/0,
1335                            SC_None, SC_None, 0);
1336      parm->setScopeInfo(0, i);
1337      Params.push_back(parm);
1338    }
1339    New->setParams(Params);
1340  }
1341
1342  AddKnownFunctionAttributes(New);
1343
1344  // TUScope is the translation-unit scope to insert this function into.
1345  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1346  // relate Scopes to DeclContexts, and probably eliminate CurContext
1347  // entirely, but we're not there yet.
1348  DeclContext *SavedContext = CurContext;
1349  CurContext = Context.getTranslationUnitDecl();
1350  PushOnScopeChains(New, TUScope);
1351  CurContext = SavedContext;
1352  return New;
1353}
1354
1355/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1356/// same name and scope as a previous declaration 'Old'.  Figure out
1357/// how to resolve this situation, merging decls or emitting
1358/// diagnostics as appropriate. If there was an error, set New to be invalid.
1359///
1360void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1361  // If the new decl is known invalid already, don't bother doing any
1362  // merging checks.
1363  if (New->isInvalidDecl()) return;
1364
1365  // Allow multiple definitions for ObjC built-in typedefs.
1366  // FIXME: Verify the underlying types are equivalent!
1367  if (getLangOptions().ObjC1) {
1368    const IdentifierInfo *TypeID = New->getIdentifier();
1369    switch (TypeID->getLength()) {
1370    default: break;
1371    case 2:
1372      if (!TypeID->isStr("id"))
1373        break;
1374      Context.setObjCIdRedefinitionType(New->getUnderlyingType());
1375      // Install the built-in type for 'id', ignoring the current definition.
1376      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1377      return;
1378    case 5:
1379      if (!TypeID->isStr("Class"))
1380        break;
1381      Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1382      // Install the built-in type for 'Class', ignoring the current definition.
1383      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1384      return;
1385    case 3:
1386      if (!TypeID->isStr("SEL"))
1387        break;
1388      Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1389      // Install the built-in type for 'SEL', ignoring the current definition.
1390      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1391      return;
1392    }
1393    // Fall through - the typedef name was not a builtin type.
1394  }
1395
1396  // Verify the old decl was also a type.
1397  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1398  if (!Old) {
1399    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1400      << New->getDeclName();
1401
1402    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1403    if (OldD->getLocation().isValid())
1404      Diag(OldD->getLocation(), diag::note_previous_definition);
1405
1406    return New->setInvalidDecl();
1407  }
1408
1409  // If the old declaration is invalid, just give up here.
1410  if (Old->isInvalidDecl())
1411    return New->setInvalidDecl();
1412
1413  // Determine the "old" type we'll use for checking and diagnostics.
1414  QualType OldType;
1415  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1416    OldType = OldTypedef->getUnderlyingType();
1417  else
1418    OldType = Context.getTypeDeclType(Old);
1419
1420  // If the typedef types are not identical, reject them in all languages and
1421  // with any extensions enabled.
1422
1423  if (OldType != New->getUnderlyingType() &&
1424      Context.getCanonicalType(OldType) !=
1425      Context.getCanonicalType(New->getUnderlyingType())) {
1426    int Kind = 0;
1427    if (isa<TypeAliasDecl>(Old))
1428      Kind = 1;
1429    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1430      << Kind << New->getUnderlyingType() << OldType;
1431    if (Old->getLocation().isValid())
1432      Diag(Old->getLocation(), diag::note_previous_definition);
1433    return New->setInvalidDecl();
1434  }
1435
1436  // The types match.  Link up the redeclaration chain if the old
1437  // declaration was a typedef.
1438  // FIXME: this is a potential source of weirdness if the type
1439  // spellings don't match exactly.
1440  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1441    New->setPreviousDeclaration(Typedef);
1442
1443  // __module_private__ is propagated to later declarations.
1444  if (Old->isModulePrivate())
1445    New->setModulePrivate();
1446  else if (New->isModulePrivate())
1447    diagnoseModulePrivateRedeclaration(New, Old);
1448
1449  if (getLangOptions().MicrosoftExt)
1450    return;
1451
1452  if (getLangOptions().CPlusPlus) {
1453    // C++ [dcl.typedef]p2:
1454    //   In a given non-class scope, a typedef specifier can be used to
1455    //   redefine the name of any type declared in that scope to refer
1456    //   to the type to which it already refers.
1457    if (!isa<CXXRecordDecl>(CurContext))
1458      return;
1459
1460    // C++0x [dcl.typedef]p4:
1461    //   In a given class scope, a typedef specifier can be used to redefine
1462    //   any class-name declared in that scope that is not also a typedef-name
1463    //   to refer to the type to which it already refers.
1464    //
1465    // This wording came in via DR424, which was a correction to the
1466    // wording in DR56, which accidentally banned code like:
1467    //
1468    //   struct S {
1469    //     typedef struct A { } A;
1470    //   };
1471    //
1472    // in the C++03 standard. We implement the C++0x semantics, which
1473    // allow the above but disallow
1474    //
1475    //   struct S {
1476    //     typedef int I;
1477    //     typedef int I;
1478    //   };
1479    //
1480    // since that was the intent of DR56.
1481    if (!isa<TypedefNameDecl>(Old))
1482      return;
1483
1484    Diag(New->getLocation(), diag::err_redefinition)
1485      << New->getDeclName();
1486    Diag(Old->getLocation(), diag::note_previous_definition);
1487    return New->setInvalidDecl();
1488  }
1489
1490  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1491  // is normally mapped to an error, but can be controlled with
1492  // -Wtypedef-redefinition.  If either the original or the redefinition is
1493  // in a system header, don't emit this for compatibility with GCC.
1494  if (getDiagnostics().getSuppressSystemWarnings() &&
1495      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1496       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1497    return;
1498
1499  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1500    << New->getDeclName();
1501  Diag(Old->getLocation(), diag::note_previous_definition);
1502  return;
1503}
1504
1505/// DeclhasAttr - returns true if decl Declaration already has the target
1506/// attribute.
1507static bool
1508DeclHasAttr(const Decl *D, const Attr *A) {
1509  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1510  const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1511  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1512    if ((*i)->getKind() == A->getKind()) {
1513      if (Ann) {
1514        if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
1515          return true;
1516        continue;
1517      }
1518      // FIXME: Don't hardcode this check
1519      if (OA && isa<OwnershipAttr>(*i))
1520        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1521      return true;
1522    }
1523
1524  return false;
1525}
1526
1527/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1528static void mergeDeclAttributes(Decl *newDecl, const Decl *oldDecl,
1529                                ASTContext &C, bool mergeDeprecation = true) {
1530  if (!oldDecl->hasAttrs())
1531    return;
1532
1533  bool foundAny = newDecl->hasAttrs();
1534
1535  // Ensure that any moving of objects within the allocated map is done before
1536  // we process them.
1537  if (!foundAny) newDecl->setAttrs(AttrVec());
1538
1539  for (specific_attr_iterator<InheritableAttr>
1540       i = oldDecl->specific_attr_begin<InheritableAttr>(),
1541       e = oldDecl->specific_attr_end<InheritableAttr>(); i != e; ++i) {
1542    // Ignore deprecated/unavailable/availability attributes if requested.
1543    if (!mergeDeprecation &&
1544        (isa<DeprecatedAttr>(*i) ||
1545         isa<UnavailableAttr>(*i) ||
1546         isa<AvailabilityAttr>(*i)))
1547      continue;
1548
1549    if (!DeclHasAttr(newDecl, *i)) {
1550      InheritableAttr *newAttr = cast<InheritableAttr>((*i)->clone(C));
1551      newAttr->setInherited(true);
1552      newDecl->addAttr(newAttr);
1553      foundAny = true;
1554    }
1555  }
1556
1557  if (!foundAny) newDecl->dropAttrs();
1558}
1559
1560/// mergeParamDeclAttributes - Copy attributes from the old parameter
1561/// to the new one.
1562static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1563                                     const ParmVarDecl *oldDecl,
1564                                     ASTContext &C) {
1565  if (!oldDecl->hasAttrs())
1566    return;
1567
1568  bool foundAny = newDecl->hasAttrs();
1569
1570  // Ensure that any moving of objects within the allocated map is
1571  // done before we process them.
1572  if (!foundAny) newDecl->setAttrs(AttrVec());
1573
1574  for (specific_attr_iterator<InheritableParamAttr>
1575       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1576       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1577    if (!DeclHasAttr(newDecl, *i)) {
1578      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1579      newAttr->setInherited(true);
1580      newDecl->addAttr(newAttr);
1581      foundAny = true;
1582    }
1583  }
1584
1585  if (!foundAny) newDecl->dropAttrs();
1586}
1587
1588namespace {
1589
1590/// Used in MergeFunctionDecl to keep track of function parameters in
1591/// C.
1592struct GNUCompatibleParamWarning {
1593  ParmVarDecl *OldParm;
1594  ParmVarDecl *NewParm;
1595  QualType PromotedType;
1596};
1597
1598}
1599
1600/// getSpecialMember - get the special member enum for a method.
1601Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1602  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1603    if (Ctor->isDefaultConstructor())
1604      return Sema::CXXDefaultConstructor;
1605
1606    if (Ctor->isCopyConstructor())
1607      return Sema::CXXCopyConstructor;
1608
1609    if (Ctor->isMoveConstructor())
1610      return Sema::CXXMoveConstructor;
1611  } else if (isa<CXXDestructorDecl>(MD)) {
1612    return Sema::CXXDestructor;
1613  } else if (MD->isCopyAssignmentOperator()) {
1614    return Sema::CXXCopyAssignment;
1615  } else if (MD->isMoveAssignmentOperator()) {
1616    return Sema::CXXMoveAssignment;
1617  }
1618
1619  return Sema::CXXInvalid;
1620}
1621
1622/// canRedefineFunction - checks if a function can be redefined. Currently,
1623/// only extern inline functions can be redefined, and even then only in
1624/// GNU89 mode.
1625static bool canRedefineFunction(const FunctionDecl *FD,
1626                                const LangOptions& LangOpts) {
1627  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
1628          !LangOpts.CPlusPlus &&
1629          FD->isInlineSpecified() &&
1630          FD->getStorageClass() == SC_Extern);
1631}
1632
1633/// MergeFunctionDecl - We just parsed a function 'New' from
1634/// declarator D which has the same name and scope as a previous
1635/// declaration 'Old'.  Figure out how to resolve this situation,
1636/// merging decls or emitting diagnostics as appropriate.
1637///
1638/// In C++, New and Old must be declarations that are not
1639/// overloaded. Use IsOverload to determine whether New and Old are
1640/// overloaded, and to select the Old declaration that New should be
1641/// merged with.
1642///
1643/// Returns true if there was an error, false otherwise.
1644bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1645  // Verify the old decl was also a function.
1646  FunctionDecl *Old = 0;
1647  if (FunctionTemplateDecl *OldFunctionTemplate
1648        = dyn_cast<FunctionTemplateDecl>(OldD))
1649    Old = OldFunctionTemplate->getTemplatedDecl();
1650  else
1651    Old = dyn_cast<FunctionDecl>(OldD);
1652  if (!Old) {
1653    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1654      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1655      Diag(Shadow->getTargetDecl()->getLocation(),
1656           diag::note_using_decl_target);
1657      Diag(Shadow->getUsingDecl()->getLocation(),
1658           diag::note_using_decl) << 0;
1659      return true;
1660    }
1661
1662    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1663      << New->getDeclName();
1664    Diag(OldD->getLocation(), diag::note_previous_definition);
1665    return true;
1666  }
1667
1668  // Determine whether the previous declaration was a definition,
1669  // implicit declaration, or a declaration.
1670  diag::kind PrevDiag;
1671  if (Old->isThisDeclarationADefinition())
1672    PrevDiag = diag::note_previous_definition;
1673  else if (Old->isImplicit())
1674    PrevDiag = diag::note_previous_implicit_declaration;
1675  else
1676    PrevDiag = diag::note_previous_declaration;
1677
1678  QualType OldQType = Context.getCanonicalType(Old->getType());
1679  QualType NewQType = Context.getCanonicalType(New->getType());
1680
1681  // Don't complain about this if we're in GNU89 mode and the old function
1682  // is an extern inline function.
1683  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1684      New->getStorageClass() == SC_Static &&
1685      Old->getStorageClass() != SC_Static &&
1686      !canRedefineFunction(Old, getLangOptions())) {
1687    if (getLangOptions().MicrosoftExt) {
1688      Diag(New->getLocation(), diag::warn_static_non_static) << New;
1689      Diag(Old->getLocation(), PrevDiag);
1690    } else {
1691      Diag(New->getLocation(), diag::err_static_non_static) << New;
1692      Diag(Old->getLocation(), PrevDiag);
1693      return true;
1694    }
1695  }
1696
1697  // If a function is first declared with a calling convention, but is
1698  // later declared or defined without one, the second decl assumes the
1699  // calling convention of the first.
1700  //
1701  // For the new decl, we have to look at the NON-canonical type to tell the
1702  // difference between a function that really doesn't have a calling
1703  // convention and one that is declared cdecl. That's because in
1704  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1705  // because it is the default calling convention.
1706  //
1707  // Note also that we DO NOT return at this point, because we still have
1708  // other tests to run.
1709  const FunctionType *OldType = cast<FunctionType>(OldQType);
1710  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1711  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1712  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1713  bool RequiresAdjustment = false;
1714  if (OldTypeInfo.getCC() != CC_Default &&
1715      NewTypeInfo.getCC() == CC_Default) {
1716    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1717    RequiresAdjustment = true;
1718  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1719                                     NewTypeInfo.getCC())) {
1720    // Calling conventions really aren't compatible, so complain.
1721    Diag(New->getLocation(), diag::err_cconv_change)
1722      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1723      << (OldTypeInfo.getCC() == CC_Default)
1724      << (OldTypeInfo.getCC() == CC_Default ? "" :
1725          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1726    Diag(Old->getLocation(), diag::note_previous_declaration);
1727    return true;
1728  }
1729
1730  // FIXME: diagnose the other way around?
1731  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1732    NewTypeInfo = NewTypeInfo.withNoReturn(true);
1733    RequiresAdjustment = true;
1734  }
1735
1736  // Merge regparm attribute.
1737  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
1738      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1739    if (NewTypeInfo.getHasRegParm()) {
1740      Diag(New->getLocation(), diag::err_regparm_mismatch)
1741        << NewType->getRegParmType()
1742        << OldType->getRegParmType();
1743      Diag(Old->getLocation(), diag::note_previous_declaration);
1744      return true;
1745    }
1746
1747    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1748    RequiresAdjustment = true;
1749  }
1750
1751  if (RequiresAdjustment) {
1752    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1753    New->setType(QualType(NewType, 0));
1754    NewQType = Context.getCanonicalType(New->getType());
1755  }
1756
1757  if (getLangOptions().CPlusPlus) {
1758    // (C++98 13.1p2):
1759    //   Certain function declarations cannot be overloaded:
1760    //     -- Function declarations that differ only in the return type
1761    //        cannot be overloaded.
1762    QualType OldReturnType = OldType->getResultType();
1763    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1764    QualType ResQT;
1765    if (OldReturnType != NewReturnType) {
1766      if (NewReturnType->isObjCObjectPointerType()
1767          && OldReturnType->isObjCObjectPointerType())
1768        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1769      if (ResQT.isNull()) {
1770        if (New->isCXXClassMember() && New->isOutOfLine())
1771          Diag(New->getLocation(),
1772               diag::err_member_def_does_not_match_ret_type) << New;
1773        else
1774          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1775        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1776        return true;
1777      }
1778      else
1779        NewQType = ResQT;
1780    }
1781
1782    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1783    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1784    if (OldMethod && NewMethod) {
1785      // Preserve triviality.
1786      NewMethod->setTrivial(OldMethod->isTrivial());
1787
1788      // MSVC allows explicit template specialization at class scope:
1789      // 2 CXMethodDecls referring to the same function will be injected.
1790      // We don't want a redeclartion error.
1791      bool IsClassScopeExplicitSpecialization =
1792                              OldMethod->isFunctionTemplateSpecialization() &&
1793                              NewMethod->isFunctionTemplateSpecialization();
1794      bool isFriend = NewMethod->getFriendObjectKind();
1795
1796      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
1797          !IsClassScopeExplicitSpecialization) {
1798        //    -- Member function declarations with the same name and the
1799        //       same parameter types cannot be overloaded if any of them
1800        //       is a static member function declaration.
1801        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1802          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1803          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1804          return true;
1805        }
1806
1807        // C++ [class.mem]p1:
1808        //   [...] A member shall not be declared twice in the
1809        //   member-specification, except that a nested class or member
1810        //   class template can be declared and then later defined.
1811        unsigned NewDiag;
1812        if (isa<CXXConstructorDecl>(OldMethod))
1813          NewDiag = diag::err_constructor_redeclared;
1814        else if (isa<CXXDestructorDecl>(NewMethod))
1815          NewDiag = diag::err_destructor_redeclared;
1816        else if (isa<CXXConversionDecl>(NewMethod))
1817          NewDiag = diag::err_conv_function_redeclared;
1818        else
1819          NewDiag = diag::err_member_redeclared;
1820
1821        Diag(New->getLocation(), NewDiag);
1822        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1823
1824      // Complain if this is an explicit declaration of a special
1825      // member that was initially declared implicitly.
1826      //
1827      // As an exception, it's okay to befriend such methods in order
1828      // to permit the implicit constructor/destructor/operator calls.
1829      } else if (OldMethod->isImplicit()) {
1830        if (isFriend) {
1831          NewMethod->setImplicit();
1832        } else {
1833          Diag(NewMethod->getLocation(),
1834               diag::err_definition_of_implicitly_declared_member)
1835            << New << getSpecialMember(OldMethod);
1836          return true;
1837        }
1838      } else if (OldMethod->isExplicitlyDefaulted()) {
1839        Diag(NewMethod->getLocation(),
1840             diag::err_definition_of_explicitly_defaulted_member)
1841          << getSpecialMember(OldMethod);
1842        return true;
1843      }
1844    }
1845
1846    // (C++98 8.3.5p3):
1847    //   All declarations for a function shall agree exactly in both the
1848    //   return type and the parameter-type-list.
1849    // We also want to respect all the extended bits except noreturn.
1850
1851    // noreturn should now match unless the old type info didn't have it.
1852    QualType OldQTypeForComparison = OldQType;
1853    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
1854      assert(OldQType == QualType(OldType, 0));
1855      const FunctionType *OldTypeForComparison
1856        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
1857      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
1858      assert(OldQTypeForComparison.isCanonical());
1859    }
1860
1861    if (OldQTypeForComparison == NewQType)
1862      return MergeCompatibleFunctionDecls(New, Old);
1863
1864    // Fall through for conflicting redeclarations and redefinitions.
1865  }
1866
1867  // C: Function types need to be compatible, not identical. This handles
1868  // duplicate function decls like "void f(int); void f(enum X);" properly.
1869  if (!getLangOptions().CPlusPlus &&
1870      Context.typesAreCompatible(OldQType, NewQType)) {
1871    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1872    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1873    const FunctionProtoType *OldProto = 0;
1874    if (isa<FunctionNoProtoType>(NewFuncType) &&
1875        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1876      // The old declaration provided a function prototype, but the
1877      // new declaration does not. Merge in the prototype.
1878      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1879      SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1880                                                 OldProto->arg_type_end());
1881      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1882                                         ParamTypes.data(), ParamTypes.size(),
1883                                         OldProto->getExtProtoInfo());
1884      New->setType(NewQType);
1885      New->setHasInheritedPrototype();
1886
1887      // Synthesize a parameter for each argument type.
1888      SmallVector<ParmVarDecl*, 16> Params;
1889      for (FunctionProtoType::arg_type_iterator
1890             ParamType = OldProto->arg_type_begin(),
1891             ParamEnd = OldProto->arg_type_end();
1892           ParamType != ParamEnd; ++ParamType) {
1893        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1894                                                 SourceLocation(),
1895                                                 SourceLocation(), 0,
1896                                                 *ParamType, /*TInfo=*/0,
1897                                                 SC_None, SC_None,
1898                                                 0);
1899        Param->setScopeInfo(0, Params.size());
1900        Param->setImplicit();
1901        Params.push_back(Param);
1902      }
1903
1904      New->setParams(Params);
1905    }
1906
1907    return MergeCompatibleFunctionDecls(New, Old);
1908  }
1909
1910  // GNU C permits a K&R definition to follow a prototype declaration
1911  // if the declared types of the parameters in the K&R definition
1912  // match the types in the prototype declaration, even when the
1913  // promoted types of the parameters from the K&R definition differ
1914  // from the types in the prototype. GCC then keeps the types from
1915  // the prototype.
1916  //
1917  // If a variadic prototype is followed by a non-variadic K&R definition,
1918  // the K&R definition becomes variadic.  This is sort of an edge case, but
1919  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1920  // C99 6.9.1p8.
1921  if (!getLangOptions().CPlusPlus &&
1922      Old->hasPrototype() && !New->hasPrototype() &&
1923      New->getType()->getAs<FunctionProtoType>() &&
1924      Old->getNumParams() == New->getNumParams()) {
1925    SmallVector<QualType, 16> ArgTypes;
1926    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1927    const FunctionProtoType *OldProto
1928      = Old->getType()->getAs<FunctionProtoType>();
1929    const FunctionProtoType *NewProto
1930      = New->getType()->getAs<FunctionProtoType>();
1931
1932    // Determine whether this is the GNU C extension.
1933    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1934                                               NewProto->getResultType());
1935    bool LooseCompatible = !MergedReturn.isNull();
1936    for (unsigned Idx = 0, End = Old->getNumParams();
1937         LooseCompatible && Idx != End; ++Idx) {
1938      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1939      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1940      if (Context.typesAreCompatible(OldParm->getType(),
1941                                     NewProto->getArgType(Idx))) {
1942        ArgTypes.push_back(NewParm->getType());
1943      } else if (Context.typesAreCompatible(OldParm->getType(),
1944                                            NewParm->getType(),
1945                                            /*CompareUnqualified=*/true)) {
1946        GNUCompatibleParamWarning Warn
1947          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1948        Warnings.push_back(Warn);
1949        ArgTypes.push_back(NewParm->getType());
1950      } else
1951        LooseCompatible = false;
1952    }
1953
1954    if (LooseCompatible) {
1955      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1956        Diag(Warnings[Warn].NewParm->getLocation(),
1957             diag::ext_param_promoted_not_compatible_with_prototype)
1958          << Warnings[Warn].PromotedType
1959          << Warnings[Warn].OldParm->getType();
1960        if (Warnings[Warn].OldParm->getLocation().isValid())
1961          Diag(Warnings[Warn].OldParm->getLocation(),
1962               diag::note_previous_declaration);
1963      }
1964
1965      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1966                                           ArgTypes.size(),
1967                                           OldProto->getExtProtoInfo()));
1968      return MergeCompatibleFunctionDecls(New, Old);
1969    }
1970
1971    // Fall through to diagnose conflicting types.
1972  }
1973
1974  // A function that has already been declared has been redeclared or defined
1975  // with a different type- show appropriate diagnostic
1976  if (unsigned BuiltinID = Old->getBuiltinID()) {
1977    // The user has declared a builtin function with an incompatible
1978    // signature.
1979    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1980      // The function the user is redeclaring is a library-defined
1981      // function like 'malloc' or 'printf'. Warn about the
1982      // redeclaration, then pretend that we don't know about this
1983      // library built-in.
1984      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1985      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1986        << Old << Old->getType();
1987      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1988      Old->setInvalidDecl();
1989      return false;
1990    }
1991
1992    PrevDiag = diag::note_previous_builtin_declaration;
1993  }
1994
1995  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1996  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1997  return true;
1998}
1999
2000/// \brief Completes the merge of two function declarations that are
2001/// known to be compatible.
2002///
2003/// This routine handles the merging of attributes and other
2004/// properties of function declarations form the old declaration to
2005/// the new declaration, once we know that New is in fact a
2006/// redeclaration of Old.
2007///
2008/// \returns false
2009bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
2010  // Merge the attributes
2011  mergeDeclAttributes(New, Old, Context);
2012
2013  // Merge the storage class.
2014  if (Old->getStorageClass() != SC_Extern &&
2015      Old->getStorageClass() != SC_None)
2016    New->setStorageClass(Old->getStorageClass());
2017
2018  // Merge "pure" flag.
2019  if (Old->isPure())
2020    New->setPure();
2021
2022  // __module_private__ is propagated to later declarations.
2023  if (Old->isModulePrivate())
2024    New->setModulePrivate();
2025  else if (New->isModulePrivate())
2026    diagnoseModulePrivateRedeclaration(New, Old);
2027
2028  // Merge attributes from the parameters.  These can mismatch with K&R
2029  // declarations.
2030  if (New->getNumParams() == Old->getNumParams())
2031    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
2032      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
2033                               Context);
2034
2035  if (getLangOptions().CPlusPlus)
2036    return MergeCXXFunctionDecl(New, Old);
2037
2038  return false;
2039}
2040
2041
2042void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
2043                                const ObjCMethodDecl *oldMethod) {
2044  // We don't want to merge unavailable and deprecated attributes
2045  // except from interface to implementation.
2046  bool mergeDeprecation = isa<ObjCImplDecl>(newMethod->getDeclContext());
2047
2048  // Merge the attributes.
2049  mergeDeclAttributes(newMethod, oldMethod, Context, mergeDeprecation);
2050
2051  // Merge attributes from the parameters.
2052  for (ObjCMethodDecl::param_iterator oi = oldMethod->param_begin(),
2053         ni = newMethod->param_begin(), ne = newMethod->param_end();
2054       ni != ne; ++ni, ++oi)
2055    mergeParamDeclAttributes(*ni, *oi, Context);
2056
2057  CheckObjCMethodOverride(newMethod, oldMethod, true);
2058}
2059
2060/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2061/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
2062/// emitting diagnostics as appropriate.
2063///
2064/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2065/// to here in AddInitializerToDecl and AddCXXDirectInitializerToDecl. We can't
2066/// check them before the initializer is attached.
2067///
2068void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
2069  if (New->isInvalidDecl() || Old->isInvalidDecl())
2070    return;
2071
2072  QualType MergedT;
2073  if (getLangOptions().CPlusPlus) {
2074    AutoType *AT = New->getType()->getContainedAutoType();
2075    if (AT && !AT->isDeduced()) {
2076      // We don't know what the new type is until the initializer is attached.
2077      return;
2078    } else if (Context.hasSameType(New->getType(), Old->getType())) {
2079      // These could still be something that needs exception specs checked.
2080      return MergeVarDeclExceptionSpecs(New, Old);
2081    }
2082    // C++ [basic.link]p10:
2083    //   [...] the types specified by all declarations referring to a given
2084    //   object or function shall be identical, except that declarations for an
2085    //   array object can specify array types that differ by the presence or
2086    //   absence of a major array bound (8.3.4).
2087    else if (Old->getType()->isIncompleteArrayType() &&
2088             New->getType()->isArrayType()) {
2089      CanQual<ArrayType> OldArray
2090        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2091      CanQual<ArrayType> NewArray
2092        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2093      if (OldArray->getElementType() == NewArray->getElementType())
2094        MergedT = New->getType();
2095    } else if (Old->getType()->isArrayType() &&
2096             New->getType()->isIncompleteArrayType()) {
2097      CanQual<ArrayType> OldArray
2098        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2099      CanQual<ArrayType> NewArray
2100        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2101      if (OldArray->getElementType() == NewArray->getElementType())
2102        MergedT = Old->getType();
2103    } else if (New->getType()->isObjCObjectPointerType()
2104               && Old->getType()->isObjCObjectPointerType()) {
2105        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2106                                                        Old->getType());
2107    }
2108  } else {
2109    MergedT = Context.mergeTypes(New->getType(), Old->getType());
2110  }
2111  if (MergedT.isNull()) {
2112    Diag(New->getLocation(), diag::err_redefinition_different_type)
2113      << New->getDeclName();
2114    Diag(Old->getLocation(), diag::note_previous_definition);
2115    return New->setInvalidDecl();
2116  }
2117  New->setType(MergedT);
2118}
2119
2120/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2121/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2122/// situation, merging decls or emitting diagnostics as appropriate.
2123///
2124/// Tentative definition rules (C99 6.9.2p2) are checked by
2125/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2126/// definitions here, since the initializer hasn't been attached.
2127///
2128void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2129  // If the new decl is already invalid, don't do any other checking.
2130  if (New->isInvalidDecl())
2131    return;
2132
2133  // Verify the old decl was also a variable.
2134  VarDecl *Old = 0;
2135  if (!Previous.isSingleResult() ||
2136      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2137    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2138      << New->getDeclName();
2139    Diag(Previous.getRepresentativeDecl()->getLocation(),
2140         diag::note_previous_definition);
2141    return New->setInvalidDecl();
2142  }
2143
2144  // C++ [class.mem]p1:
2145  //   A member shall not be declared twice in the member-specification [...]
2146  //
2147  // Here, we need only consider static data members.
2148  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2149    Diag(New->getLocation(), diag::err_duplicate_member)
2150      << New->getIdentifier();
2151    Diag(Old->getLocation(), diag::note_previous_declaration);
2152    New->setInvalidDecl();
2153  }
2154
2155  mergeDeclAttributes(New, Old, Context);
2156  // Warn if an already-declared variable is made a weak_import in a subsequent declaration
2157  if (New->getAttr<WeakImportAttr>() &&
2158      Old->getStorageClass() == SC_None &&
2159      !Old->getAttr<WeakImportAttr>()) {
2160    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2161    Diag(Old->getLocation(), diag::note_previous_definition);
2162    // Remove weak_import attribute on new declaration.
2163    New->dropAttr<WeakImportAttr>();
2164  }
2165
2166  // Merge the types.
2167  MergeVarDeclTypes(New, Old);
2168  if (New->isInvalidDecl())
2169    return;
2170
2171  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2172  if (New->getStorageClass() == SC_Static &&
2173      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2174    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2175    Diag(Old->getLocation(), diag::note_previous_definition);
2176    return New->setInvalidDecl();
2177  }
2178  // C99 6.2.2p4:
2179  //   For an identifier declared with the storage-class specifier
2180  //   extern in a scope in which a prior declaration of that
2181  //   identifier is visible,23) if the prior declaration specifies
2182  //   internal or external linkage, the linkage of the identifier at
2183  //   the later declaration is the same as the linkage specified at
2184  //   the prior declaration. If no prior declaration is visible, or
2185  //   if the prior declaration specifies no linkage, then the
2186  //   identifier has external linkage.
2187  if (New->hasExternalStorage() && Old->hasLinkage())
2188    /* Okay */;
2189  else if (New->getStorageClass() != SC_Static &&
2190           Old->getStorageClass() == SC_Static) {
2191    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2192    Diag(Old->getLocation(), diag::note_previous_definition);
2193    return New->setInvalidDecl();
2194  }
2195
2196  // Check if extern is followed by non-extern and vice-versa.
2197  if (New->hasExternalStorage() &&
2198      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2199    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2200    Diag(Old->getLocation(), diag::note_previous_definition);
2201    return New->setInvalidDecl();
2202  }
2203  if (Old->hasExternalStorage() &&
2204      !New->hasLinkage() && New->isLocalVarDecl()) {
2205    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2206    Diag(Old->getLocation(), diag::note_previous_definition);
2207    return New->setInvalidDecl();
2208  }
2209
2210  // __module_private__ is propagated to later declarations.
2211  if (Old->isModulePrivate())
2212    New->setModulePrivate();
2213  else if (New->isModulePrivate())
2214    diagnoseModulePrivateRedeclaration(New, Old);
2215
2216  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2217
2218  // FIXME: The test for external storage here seems wrong? We still
2219  // need to check for mismatches.
2220  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2221      // Don't complain about out-of-line definitions of static members.
2222      !(Old->getLexicalDeclContext()->isRecord() &&
2223        !New->getLexicalDeclContext()->isRecord())) {
2224    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2225    Diag(Old->getLocation(), diag::note_previous_definition);
2226    return New->setInvalidDecl();
2227  }
2228
2229  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2230    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2231    Diag(Old->getLocation(), diag::note_previous_definition);
2232  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2233    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2234    Diag(Old->getLocation(), diag::note_previous_definition);
2235  }
2236
2237  // C++ doesn't have tentative definitions, so go right ahead and check here.
2238  const VarDecl *Def;
2239  if (getLangOptions().CPlusPlus &&
2240      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2241      (Def = Old->getDefinition())) {
2242    Diag(New->getLocation(), diag::err_redefinition)
2243      << New->getDeclName();
2244    Diag(Def->getLocation(), diag::note_previous_definition);
2245    New->setInvalidDecl();
2246    return;
2247  }
2248  // c99 6.2.2 P4.
2249  // For an identifier declared with the storage-class specifier extern in a
2250  // scope in which a prior declaration of that identifier is visible, if
2251  // the prior declaration specifies internal or external linkage, the linkage
2252  // of the identifier at the later declaration is the same as the linkage
2253  // specified at the prior declaration.
2254  // FIXME. revisit this code.
2255  if (New->hasExternalStorage() &&
2256      Old->getLinkage() == InternalLinkage &&
2257      New->getDeclContext() == Old->getDeclContext())
2258    New->setStorageClass(Old->getStorageClass());
2259
2260  // Keep a chain of previous declarations.
2261  New->setPreviousDeclaration(Old);
2262
2263  // Inherit access appropriately.
2264  New->setAccess(Old->getAccess());
2265}
2266
2267/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2268/// no declarator (e.g. "struct foo;") is parsed.
2269Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2270                                       DeclSpec &DS) {
2271  return ParsedFreeStandingDeclSpec(S, AS, DS,
2272                                    MultiTemplateParamsArg(*this, 0, 0));
2273}
2274
2275/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2276/// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2277/// parameters to cope with template friend declarations.
2278Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2279                                       DeclSpec &DS,
2280                                       MultiTemplateParamsArg TemplateParams) {
2281  Decl *TagD = 0;
2282  TagDecl *Tag = 0;
2283  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2284      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2285      DS.getTypeSpecType() == DeclSpec::TST_union ||
2286      DS.getTypeSpecType() == DeclSpec::TST_enum) {
2287    TagD = DS.getRepAsDecl();
2288
2289    if (!TagD) // We probably had an error
2290      return 0;
2291
2292    // Note that the above type specs guarantee that the
2293    // type rep is a Decl, whereas in many of the others
2294    // it's a Type.
2295    Tag = dyn_cast<TagDecl>(TagD);
2296  }
2297
2298  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2299    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2300    // or incomplete types shall not be restrict-qualified."
2301    if (TypeQuals & DeclSpec::TQ_restrict)
2302      Diag(DS.getRestrictSpecLoc(),
2303           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2304           << DS.getSourceRange();
2305  }
2306
2307  if (DS.isConstexprSpecified()) {
2308    // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
2309    // and definitions of functions and variables.
2310    if (Tag)
2311      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
2312        << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
2313            DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
2314            DS.getTypeSpecType() == DeclSpec::TST_union ? 2 : 3);
2315    else
2316      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
2317    // Don't emit warnings after this error.
2318    return TagD;
2319  }
2320
2321  if (DS.isFriendSpecified()) {
2322    // If we're dealing with a decl but not a TagDecl, assume that
2323    // whatever routines created it handled the friendship aspect.
2324    if (TagD && !Tag)
2325      return 0;
2326    return ActOnFriendTypeDecl(S, DS, TemplateParams);
2327  }
2328
2329  // Track whether we warned about the fact that there aren't any
2330  // declarators.
2331  bool emittedWarning = false;
2332
2333  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2334    ProcessDeclAttributeList(S, Record, DS.getAttributes().getList());
2335
2336    if (!Record->getDeclName() && Record->isDefinition() &&
2337        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2338      if (getLangOptions().CPlusPlus ||
2339          Record->getDeclContext()->isRecord())
2340        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2341
2342      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2343        << DS.getSourceRange();
2344      emittedWarning = true;
2345    }
2346  }
2347
2348  // Check for Microsoft C extension: anonymous struct.
2349  if (getLangOptions().MicrosoftExt && !getLangOptions().CPlusPlus &&
2350      CurContext->isRecord() &&
2351      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2352    // Handle 2 kinds of anonymous struct:
2353    //   struct STRUCT;
2354    // and
2355    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
2356    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2357    if ((Record && Record->getDeclName() && !Record->isDefinition()) ||
2358        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2359         DS.getRepAsType().get()->isStructureType())) {
2360      Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
2361        << DS.getSourceRange();
2362      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2363    }
2364  }
2365
2366  if (getLangOptions().CPlusPlus &&
2367      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2368    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2369      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2370          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2371        Diag(Enum->getLocation(), diag::ext_no_declarators)
2372          << DS.getSourceRange();
2373        emittedWarning = true;
2374      }
2375
2376  // Skip all the checks below if we have a type error.
2377  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2378
2379  if (!DS.isMissingDeclaratorOk()) {
2380    // Warn about typedefs of enums without names, since this is an
2381    // extension in both Microsoft and GNU.
2382    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2383        Tag && isa<EnumDecl>(Tag)) {
2384      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
2385        << DS.getSourceRange();
2386      return Tag;
2387    }
2388
2389    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2390      << DS.getSourceRange();
2391    emittedWarning = true;
2392  }
2393
2394  // We're going to complain about a bunch of spurious specifiers;
2395  // only do this if we're declaring a tag, because otherwise we
2396  // should be getting diag::ext_no_declarators.
2397  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2398    return TagD;
2399
2400  // Note that a linkage-specification sets a storage class, but
2401  // 'extern "C" struct foo;' is actually valid and not theoretically
2402  // useless.
2403  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2404    if (!DS.isExternInLinkageSpec())
2405      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2406        << DeclSpec::getSpecifierName(scs);
2407
2408  if (DS.isThreadSpecified())
2409    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2410  if (DS.getTypeQualifiers()) {
2411    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2412      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2413    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2414      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2415    // Restrict is covered above.
2416  }
2417  if (DS.isInlineSpecified())
2418    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2419  if (DS.isVirtualSpecified())
2420    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2421  if (DS.isExplicitSpecified())
2422    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2423
2424  if (DS.isModulePrivateSpecified() &&
2425      Tag && Tag->getDeclContext()->isFunctionOrMethod())
2426    Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
2427      << Tag->getTagKind()
2428      << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
2429
2430  // FIXME: Warn on useless attributes
2431
2432  return TagD;
2433}
2434
2435/// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec.
2436/// builds a statement for it and returns it so it is evaluated.
2437StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) {
2438  StmtResult R;
2439  if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) {
2440    Expr *Exp = DS.getRepAsExpr();
2441    QualType Ty = Exp->getType();
2442    if (Ty->isPointerType()) {
2443      do
2444        Ty = Ty->getAs<PointerType>()->getPointeeType();
2445      while (Ty->isPointerType());
2446    }
2447    if (Ty->isVariableArrayType()) {
2448      R = ActOnExprStmt(MakeFullExpr(Exp));
2449    }
2450  }
2451  return R;
2452}
2453
2454/// We are trying to inject an anonymous member into the given scope;
2455/// check if there's an existing declaration that can't be overloaded.
2456///
2457/// \return true if this is a forbidden redeclaration
2458static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2459                                         Scope *S,
2460                                         DeclContext *Owner,
2461                                         DeclarationName Name,
2462                                         SourceLocation NameLoc,
2463                                         unsigned diagnostic) {
2464  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2465                 Sema::ForRedeclaration);
2466  if (!SemaRef.LookupName(R, S)) return false;
2467
2468  if (R.getAsSingle<TagDecl>())
2469    return false;
2470
2471  // Pick a representative declaration.
2472  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2473  assert(PrevDecl && "Expected a non-null Decl");
2474
2475  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2476    return false;
2477
2478  SemaRef.Diag(NameLoc, diagnostic) << Name;
2479  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2480
2481  return true;
2482}
2483
2484/// InjectAnonymousStructOrUnionMembers - Inject the members of the
2485/// anonymous struct or union AnonRecord into the owning context Owner
2486/// and scope S. This routine will be invoked just after we realize
2487/// that an unnamed union or struct is actually an anonymous union or
2488/// struct, e.g.,
2489///
2490/// @code
2491/// union {
2492///   int i;
2493///   float f;
2494/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
2495///    // f into the surrounding scope.x
2496/// @endcode
2497///
2498/// This routine is recursive, injecting the names of nested anonymous
2499/// structs/unions into the owning context and scope as well.
2500static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2501                                                DeclContext *Owner,
2502                                                RecordDecl *AnonRecord,
2503                                                AccessSpecifier AS,
2504                              SmallVector<NamedDecl*, 2> &Chaining,
2505                                                      bool MSAnonStruct) {
2506  unsigned diagKind
2507    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2508                            : diag::err_anonymous_struct_member_redecl;
2509
2510  bool Invalid = false;
2511
2512  // Look every FieldDecl and IndirectFieldDecl with a name.
2513  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2514                               DEnd = AnonRecord->decls_end();
2515       D != DEnd; ++D) {
2516    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2517        cast<NamedDecl>(*D)->getDeclName()) {
2518      ValueDecl *VD = cast<ValueDecl>(*D);
2519      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2520                                       VD->getLocation(), diagKind)) {
2521        // C++ [class.union]p2:
2522        //   The names of the members of an anonymous union shall be
2523        //   distinct from the names of any other entity in the
2524        //   scope in which the anonymous union is declared.
2525        Invalid = true;
2526      } else {
2527        // C++ [class.union]p2:
2528        //   For the purpose of name lookup, after the anonymous union
2529        //   definition, the members of the anonymous union are
2530        //   considered to have been defined in the scope in which the
2531        //   anonymous union is declared.
2532        unsigned OldChainingSize = Chaining.size();
2533        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2534          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2535               PE = IF->chain_end(); PI != PE; ++PI)
2536            Chaining.push_back(*PI);
2537        else
2538          Chaining.push_back(VD);
2539
2540        assert(Chaining.size() >= 2);
2541        NamedDecl **NamedChain =
2542          new (SemaRef.Context)NamedDecl*[Chaining.size()];
2543        for (unsigned i = 0; i < Chaining.size(); i++)
2544          NamedChain[i] = Chaining[i];
2545
2546        IndirectFieldDecl* IndirectField =
2547          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2548                                    VD->getIdentifier(), VD->getType(),
2549                                    NamedChain, Chaining.size());
2550
2551        IndirectField->setAccess(AS);
2552        IndirectField->setImplicit();
2553        SemaRef.PushOnScopeChains(IndirectField, S);
2554
2555        // That includes picking up the appropriate access specifier.
2556        if (AS != AS_none) IndirectField->setAccess(AS);
2557
2558        Chaining.resize(OldChainingSize);
2559      }
2560    }
2561  }
2562
2563  return Invalid;
2564}
2565
2566/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2567/// a VarDecl::StorageClass. Any error reporting is up to the caller:
2568/// illegal input values are mapped to SC_None.
2569static StorageClass
2570StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2571  switch (StorageClassSpec) {
2572  case DeclSpec::SCS_unspecified:    return SC_None;
2573  case DeclSpec::SCS_extern:         return SC_Extern;
2574  case DeclSpec::SCS_static:         return SC_Static;
2575  case DeclSpec::SCS_auto:           return SC_Auto;
2576  case DeclSpec::SCS_register:       return SC_Register;
2577  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2578    // Illegal SCSs map to None: error reporting is up to the caller.
2579  case DeclSpec::SCS_mutable:        // Fall through.
2580  case DeclSpec::SCS_typedef:        return SC_None;
2581  }
2582  llvm_unreachable("unknown storage class specifier");
2583}
2584
2585/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2586/// a StorageClass. Any error reporting is up to the caller:
2587/// illegal input values are mapped to SC_None.
2588static StorageClass
2589StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2590  switch (StorageClassSpec) {
2591  case DeclSpec::SCS_unspecified:    return SC_None;
2592  case DeclSpec::SCS_extern:         return SC_Extern;
2593  case DeclSpec::SCS_static:         return SC_Static;
2594  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2595    // Illegal SCSs map to None: error reporting is up to the caller.
2596  case DeclSpec::SCS_auto:           // Fall through.
2597  case DeclSpec::SCS_mutable:        // Fall through.
2598  case DeclSpec::SCS_register:       // Fall through.
2599  case DeclSpec::SCS_typedef:        return SC_None;
2600  }
2601  llvm_unreachable("unknown storage class specifier");
2602}
2603
2604/// BuildAnonymousStructOrUnion - Handle the declaration of an
2605/// anonymous structure or union. Anonymous unions are a C++ feature
2606/// (C++ [class.union]) and a GNU C extension; anonymous structures
2607/// are a GNU C and GNU C++ extension.
2608Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2609                                             AccessSpecifier AS,
2610                                             RecordDecl *Record) {
2611  DeclContext *Owner = Record->getDeclContext();
2612
2613  // Diagnose whether this anonymous struct/union is an extension.
2614  if (Record->isUnion() && !getLangOptions().CPlusPlus)
2615    Diag(Record->getLocation(), diag::ext_anonymous_union);
2616  else if (!Record->isUnion())
2617    Diag(Record->getLocation(), diag::ext_anonymous_struct);
2618
2619  // C and C++ require different kinds of checks for anonymous
2620  // structs/unions.
2621  bool Invalid = false;
2622  if (getLangOptions().CPlusPlus) {
2623    const char* PrevSpec = 0;
2624    unsigned DiagID;
2625    // C++ [class.union]p3:
2626    //   Anonymous unions declared in a named namespace or in the
2627    //   global namespace shall be declared static.
2628    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2629        (isa<TranslationUnitDecl>(Owner) ||
2630         (isa<NamespaceDecl>(Owner) &&
2631          cast<NamespaceDecl>(Owner)->getDeclName()))) {
2632      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
2633      Invalid = true;
2634
2635      // Recover by adding 'static'.
2636      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
2637                             PrevSpec, DiagID, getLangOptions());
2638    }
2639    // C++ [class.union]p3:
2640    //   A storage class is not allowed in a declaration of an
2641    //   anonymous union in a class scope.
2642    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2643             isa<RecordDecl>(Owner)) {
2644      Diag(DS.getStorageClassSpecLoc(),
2645           diag::err_anonymous_union_with_storage_spec);
2646      Invalid = true;
2647
2648      // Recover by removing the storage specifier.
2649      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
2650                             PrevSpec, DiagID, getLangOptions());
2651    }
2652
2653    // Ignore const/volatile/restrict qualifiers.
2654    if (DS.getTypeQualifiers()) {
2655      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2656        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2657          << Record->isUnion() << 0
2658          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
2659      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2660        Diag(DS.getVolatileSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2661          << Record->isUnion() << 1
2662          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
2663      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
2664        Diag(DS.getRestrictSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2665          << Record->isUnion() << 2
2666          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
2667
2668      DS.ClearTypeQualifiers();
2669    }
2670
2671    // C++ [class.union]p2:
2672    //   The member-specification of an anonymous union shall only
2673    //   define non-static data members. [Note: nested types and
2674    //   functions cannot be declared within an anonymous union. ]
2675    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
2676                                 MemEnd = Record->decls_end();
2677         Mem != MemEnd; ++Mem) {
2678      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
2679        // C++ [class.union]p3:
2680        //   An anonymous union shall not have private or protected
2681        //   members (clause 11).
2682        assert(FD->getAccess() != AS_none);
2683        if (FD->getAccess() != AS_public) {
2684          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
2685            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
2686          Invalid = true;
2687        }
2688
2689        // C++ [class.union]p1
2690        //   An object of a class with a non-trivial constructor, a non-trivial
2691        //   copy constructor, a non-trivial destructor, or a non-trivial copy
2692        //   assignment operator cannot be a member of a union, nor can an
2693        //   array of such objects.
2694        if (!getLangOptions().CPlusPlus0x && CheckNontrivialField(FD))
2695          Invalid = true;
2696      } else if ((*Mem)->isImplicit()) {
2697        // Any implicit members are fine.
2698      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
2699        // This is a type that showed up in an
2700        // elaborated-type-specifier inside the anonymous struct or
2701        // union, but which actually declares a type outside of the
2702        // anonymous struct or union. It's okay.
2703      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
2704        if (!MemRecord->isAnonymousStructOrUnion() &&
2705            MemRecord->getDeclName()) {
2706          // Visual C++ allows type definition in anonymous struct or union.
2707          if (getLangOptions().MicrosoftExt)
2708            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
2709              << (int)Record->isUnion();
2710          else {
2711            // This is a nested type declaration.
2712            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
2713              << (int)Record->isUnion();
2714            Invalid = true;
2715          }
2716        }
2717      } else if (isa<AccessSpecDecl>(*Mem)) {
2718        // Any access specifier is fine.
2719      } else {
2720        // We have something that isn't a non-static data
2721        // member. Complain about it.
2722        unsigned DK = diag::err_anonymous_record_bad_member;
2723        if (isa<TypeDecl>(*Mem))
2724          DK = diag::err_anonymous_record_with_type;
2725        else if (isa<FunctionDecl>(*Mem))
2726          DK = diag::err_anonymous_record_with_function;
2727        else if (isa<VarDecl>(*Mem))
2728          DK = diag::err_anonymous_record_with_static;
2729
2730        // Visual C++ allows type definition in anonymous struct or union.
2731        if (getLangOptions().MicrosoftExt &&
2732            DK == diag::err_anonymous_record_with_type)
2733          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
2734            << (int)Record->isUnion();
2735        else {
2736          Diag((*Mem)->getLocation(), DK)
2737              << (int)Record->isUnion();
2738          Invalid = true;
2739        }
2740      }
2741    }
2742  }
2743
2744  if (!Record->isUnion() && !Owner->isRecord()) {
2745    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
2746      << (int)getLangOptions().CPlusPlus;
2747    Invalid = true;
2748  }
2749
2750  // Mock up a declarator.
2751  Declarator Dc(DS, Declarator::MemberContext);
2752  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2753  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
2754
2755  // Create a declaration for this anonymous struct/union.
2756  NamedDecl *Anon = 0;
2757  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2758    Anon = FieldDecl::Create(Context, OwningClass,
2759                             DS.getSourceRange().getBegin(),
2760                             Record->getLocation(),
2761                             /*IdentifierInfo=*/0,
2762                             Context.getTypeDeclType(Record),
2763                             TInfo,
2764                             /*BitWidth=*/0, /*Mutable=*/false,
2765                             /*HasInit=*/false);
2766    Anon->setAccess(AS);
2767    if (getLangOptions().CPlusPlus)
2768      FieldCollector->Add(cast<FieldDecl>(Anon));
2769  } else {
2770    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2771    assert(SCSpec != DeclSpec::SCS_typedef &&
2772           "Parser allowed 'typedef' as storage class VarDecl.");
2773    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2774    if (SCSpec == DeclSpec::SCS_mutable) {
2775      // mutable can only appear on non-static class members, so it's always
2776      // an error here
2777      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2778      Invalid = true;
2779      SC = SC_None;
2780    }
2781    SCSpec = DS.getStorageClassSpecAsWritten();
2782    VarDecl::StorageClass SCAsWritten
2783      = StorageClassSpecToVarDeclStorageClass(SCSpec);
2784
2785    Anon = VarDecl::Create(Context, Owner,
2786                           DS.getSourceRange().getBegin(),
2787                           Record->getLocation(), /*IdentifierInfo=*/0,
2788                           Context.getTypeDeclType(Record),
2789                           TInfo, SC, SCAsWritten);
2790
2791    // Default-initialize the implicit variable. This initialization will be
2792    // trivial in almost all cases, except if a union member has an in-class
2793    // initializer:
2794    //   union { int n = 0; };
2795    ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
2796  }
2797  Anon->setImplicit();
2798
2799  // Add the anonymous struct/union object to the current
2800  // context. We'll be referencing this object when we refer to one of
2801  // its members.
2802  Owner->addDecl(Anon);
2803
2804  // Inject the members of the anonymous struct/union into the owning
2805  // context and into the identifier resolver chain for name lookup
2806  // purposes.
2807  SmallVector<NamedDecl*, 2> Chain;
2808  Chain.push_back(Anon);
2809
2810  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2811                                          Chain, false))
2812    Invalid = true;
2813
2814  // Mark this as an anonymous struct/union type. Note that we do not
2815  // do this until after we have already checked and injected the
2816  // members of this anonymous struct/union type, because otherwise
2817  // the members could be injected twice: once by DeclContext when it
2818  // builds its lookup table, and once by
2819  // InjectAnonymousStructOrUnionMembers.
2820  Record->setAnonymousStructOrUnion(true);
2821
2822  if (Invalid)
2823    Anon->setInvalidDecl();
2824
2825  return Anon;
2826}
2827
2828/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2829/// Microsoft C anonymous structure.
2830/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2831/// Example:
2832///
2833/// struct A { int a; };
2834/// struct B { struct A; int b; };
2835///
2836/// void foo() {
2837///   B var;
2838///   var.a = 3;
2839/// }
2840///
2841Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2842                                           RecordDecl *Record) {
2843
2844  // If there is no Record, get the record via the typedef.
2845  if (!Record)
2846    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2847
2848  // Mock up a declarator.
2849  Declarator Dc(DS, Declarator::TypeNameContext);
2850  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2851  assert(TInfo && "couldn't build declarator info for anonymous struct");
2852
2853  // Create a declaration for this anonymous struct.
2854  NamedDecl* Anon = FieldDecl::Create(Context,
2855                             cast<RecordDecl>(CurContext),
2856                             DS.getSourceRange().getBegin(),
2857                             DS.getSourceRange().getBegin(),
2858                             /*IdentifierInfo=*/0,
2859                             Context.getTypeDeclType(Record),
2860                             TInfo,
2861                             /*BitWidth=*/0, /*Mutable=*/false,
2862                             /*HasInit=*/false);
2863  Anon->setImplicit();
2864
2865  // Add the anonymous struct object to the current context.
2866  CurContext->addDecl(Anon);
2867
2868  // Inject the members of the anonymous struct into the current
2869  // context and into the identifier resolver chain for name lookup
2870  // purposes.
2871  SmallVector<NamedDecl*, 2> Chain;
2872  Chain.push_back(Anon);
2873
2874  if (InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2875                                          Record->getDefinition(),
2876                                          AS_none, Chain, true))
2877    Anon->setInvalidDecl();
2878
2879  return Anon;
2880}
2881
2882/// GetNameForDeclarator - Determine the full declaration name for the
2883/// given Declarator.
2884DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2885  return GetNameFromUnqualifiedId(D.getName());
2886}
2887
2888/// \brief Retrieves the declaration name from a parsed unqualified-id.
2889DeclarationNameInfo
2890Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2891  DeclarationNameInfo NameInfo;
2892  NameInfo.setLoc(Name.StartLocation);
2893
2894  switch (Name.getKind()) {
2895
2896  case UnqualifiedId::IK_ImplicitSelfParam:
2897  case UnqualifiedId::IK_Identifier:
2898    NameInfo.setName(Name.Identifier);
2899    NameInfo.setLoc(Name.StartLocation);
2900    return NameInfo;
2901
2902  case UnqualifiedId::IK_OperatorFunctionId:
2903    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2904                                           Name.OperatorFunctionId.Operator));
2905    NameInfo.setLoc(Name.StartLocation);
2906    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2907      = Name.OperatorFunctionId.SymbolLocations[0];
2908    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2909      = Name.EndLocation.getRawEncoding();
2910    return NameInfo;
2911
2912  case UnqualifiedId::IK_LiteralOperatorId:
2913    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2914                                                           Name.Identifier));
2915    NameInfo.setLoc(Name.StartLocation);
2916    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2917    return NameInfo;
2918
2919  case UnqualifiedId::IK_ConversionFunctionId: {
2920    TypeSourceInfo *TInfo;
2921    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2922    if (Ty.isNull())
2923      return DeclarationNameInfo();
2924    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2925                                               Context.getCanonicalType(Ty)));
2926    NameInfo.setLoc(Name.StartLocation);
2927    NameInfo.setNamedTypeInfo(TInfo);
2928    return NameInfo;
2929  }
2930
2931  case UnqualifiedId::IK_ConstructorName: {
2932    TypeSourceInfo *TInfo;
2933    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2934    if (Ty.isNull())
2935      return DeclarationNameInfo();
2936    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2937                                              Context.getCanonicalType(Ty)));
2938    NameInfo.setLoc(Name.StartLocation);
2939    NameInfo.setNamedTypeInfo(TInfo);
2940    return NameInfo;
2941  }
2942
2943  case UnqualifiedId::IK_ConstructorTemplateId: {
2944    // In well-formed code, we can only have a constructor
2945    // template-id that refers to the current context, so go there
2946    // to find the actual type being constructed.
2947    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2948    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2949      return DeclarationNameInfo();
2950
2951    // Determine the type of the class being constructed.
2952    QualType CurClassType = Context.getTypeDeclType(CurClass);
2953
2954    // FIXME: Check two things: that the template-id names the same type as
2955    // CurClassType, and that the template-id does not occur when the name
2956    // was qualified.
2957
2958    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2959                                    Context.getCanonicalType(CurClassType)));
2960    NameInfo.setLoc(Name.StartLocation);
2961    // FIXME: should we retrieve TypeSourceInfo?
2962    NameInfo.setNamedTypeInfo(0);
2963    return NameInfo;
2964  }
2965
2966  case UnqualifiedId::IK_DestructorName: {
2967    TypeSourceInfo *TInfo;
2968    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2969    if (Ty.isNull())
2970      return DeclarationNameInfo();
2971    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2972                                              Context.getCanonicalType(Ty)));
2973    NameInfo.setLoc(Name.StartLocation);
2974    NameInfo.setNamedTypeInfo(TInfo);
2975    return NameInfo;
2976  }
2977
2978  case UnqualifiedId::IK_TemplateId: {
2979    TemplateName TName = Name.TemplateId->Template.get();
2980    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
2981    return Context.getNameForTemplate(TName, TNameLoc);
2982  }
2983
2984  } // switch (Name.getKind())
2985
2986  llvm_unreachable("Unknown name kind");
2987}
2988
2989static QualType getCoreType(QualType Ty) {
2990  do {
2991    if (Ty->isPointerType() || Ty->isReferenceType())
2992      Ty = Ty->getPointeeType();
2993    else if (Ty->isArrayType())
2994      Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
2995    else
2996      return Ty.withoutLocalFastQualifiers();
2997  } while (true);
2998}
2999
3000/// isNearlyMatchingFunction - Determine whether the C++ functions
3001/// Declaration and Definition are "nearly" matching. This heuristic
3002/// is used to improve diagnostics in the case where an out-of-line
3003/// function definition doesn't match any declaration within the class
3004/// or namespace. Also sets Params to the list of indices to the
3005/// parameters that differ between the declaration and the definition.
3006static bool isNearlyMatchingFunction(ASTContext &Context,
3007                                     FunctionDecl *Declaration,
3008                                     FunctionDecl *Definition,
3009                                     llvm::SmallVectorImpl<unsigned> &Params) {
3010  Params.clear();
3011  if (Declaration->param_size() != Definition->param_size())
3012    return false;
3013  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
3014    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
3015    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
3016
3017    // The parameter types are identical
3018    if (Context.hasSameType(DefParamTy, DeclParamTy))
3019      continue;
3020
3021    QualType DeclParamBaseTy = getCoreType(DeclParamTy);
3022    QualType DefParamBaseTy = getCoreType(DefParamTy);
3023    const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
3024    const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
3025
3026    if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
3027        (DeclTyName && DeclTyName == DefTyName))
3028      Params.push_back(Idx);
3029    else  // The two parameters aren't even close
3030      return false;
3031  }
3032
3033  return true;
3034}
3035
3036/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
3037/// declarator needs to be rebuilt in the current instantiation.
3038/// Any bits of declarator which appear before the name are valid for
3039/// consideration here.  That's specifically the type in the decl spec
3040/// and the base type in any member-pointer chunks.
3041static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
3042                                                    DeclarationName Name) {
3043  // The types we specifically need to rebuild are:
3044  //   - typenames, typeofs, and decltypes
3045  //   - types which will become injected class names
3046  // Of course, we also need to rebuild any type referencing such a
3047  // type.  It's safest to just say "dependent", but we call out a
3048  // few cases here.
3049
3050  DeclSpec &DS = D.getMutableDeclSpec();
3051  switch (DS.getTypeSpecType()) {
3052  case DeclSpec::TST_typename:
3053  case DeclSpec::TST_typeofType:
3054  case DeclSpec::TST_decltype:
3055  case DeclSpec::TST_underlyingType: {
3056    // Grab the type from the parser.
3057    TypeSourceInfo *TSI = 0;
3058    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
3059    if (T.isNull() || !T->isDependentType()) break;
3060
3061    // Make sure there's a type source info.  This isn't really much
3062    // of a waste; most dependent types should have type source info
3063    // attached already.
3064    if (!TSI)
3065      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
3066
3067    // Rebuild the type in the current instantiation.
3068    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
3069    if (!TSI) return true;
3070
3071    // Store the new type back in the decl spec.
3072    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
3073    DS.UpdateTypeRep(LocType);
3074    break;
3075  }
3076
3077  case DeclSpec::TST_typeofExpr: {
3078    Expr *E = DS.getRepAsExpr();
3079    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
3080    if (Result.isInvalid()) return true;
3081    DS.UpdateExprRep(Result.get());
3082    break;
3083  }
3084
3085  default:
3086    // Nothing to do for these decl specs.
3087    break;
3088  }
3089
3090  // It doesn't matter what order we do this in.
3091  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3092    DeclaratorChunk &Chunk = D.getTypeObject(I);
3093
3094    // The only type information in the declarator which can come
3095    // before the declaration name is the base type of a member
3096    // pointer.
3097    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
3098      continue;
3099
3100    // Rebuild the scope specifier in-place.
3101    CXXScopeSpec &SS = Chunk.Mem.Scope();
3102    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
3103      return true;
3104  }
3105
3106  return false;
3107}
3108
3109Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
3110  return HandleDeclarator(S, D, MultiTemplateParamsArg(*this),
3111                          /*IsFunctionDefinition=*/false);
3112}
3113
3114/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
3115///   If T is the name of a class, then each of the following shall have a
3116///   name different from T:
3117///     - every static data member of class T;
3118///     - every member function of class T
3119///     - every member of class T that is itself a type;
3120/// \returns true if the declaration name violates these rules.
3121bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
3122                                   DeclarationNameInfo NameInfo) {
3123  DeclarationName Name = NameInfo.getName();
3124
3125  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
3126    if (Record->getIdentifier() && Record->getDeclName() == Name) {
3127      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
3128      return true;
3129    }
3130
3131  return false;
3132}
3133
3134Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
3135                             MultiTemplateParamsArg TemplateParamLists,
3136                             bool IsFunctionDefinition) {
3137  // TODO: consider using NameInfo for diagnostic.
3138  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3139  DeclarationName Name = NameInfo.getName();
3140
3141  // All of these full declarators require an identifier.  If it doesn't have
3142  // one, the ParsedFreeStandingDeclSpec action should be used.
3143  if (!Name) {
3144    if (!D.isInvalidType())  // Reject this if we think it is valid.
3145      Diag(D.getDeclSpec().getSourceRange().getBegin(),
3146           diag::err_declarator_need_ident)
3147        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
3148    return 0;
3149  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
3150    return 0;
3151
3152  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3153  // we find one that is.
3154  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3155         (S->getFlags() & Scope::TemplateParamScope) != 0)
3156    S = S->getParent();
3157
3158  DeclContext *DC = CurContext;
3159  if (D.getCXXScopeSpec().isInvalid())
3160    D.setInvalidType();
3161  else if (D.getCXXScopeSpec().isSet()) {
3162    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
3163                                        UPPC_DeclarationQualifier))
3164      return 0;
3165
3166    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
3167    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
3168    if (!DC) {
3169      // If we could not compute the declaration context, it's because the
3170      // declaration context is dependent but does not refer to a class,
3171      // class template, or class template partial specialization. Complain
3172      // and return early, to avoid the coming semantic disaster.
3173      Diag(D.getIdentifierLoc(),
3174           diag::err_template_qualified_declarator_no_match)
3175        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
3176        << D.getCXXScopeSpec().getRange();
3177      return 0;
3178    }
3179    bool IsDependentContext = DC->isDependentContext();
3180
3181    if (!IsDependentContext &&
3182        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
3183      return 0;
3184
3185    if (isa<CXXRecordDecl>(DC)) {
3186      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
3187        Diag(D.getIdentifierLoc(),
3188             diag::err_member_def_undefined_record)
3189          << Name << DC << D.getCXXScopeSpec().getRange();
3190        D.setInvalidType();
3191      } else if (isa<CXXRecordDecl>(CurContext) &&
3192                 !D.getDeclSpec().isFriendSpecified()) {
3193        // The user provided a superfluous scope specifier inside a class
3194        // definition:
3195        //
3196        // class X {
3197        //   void X::f();
3198        // };
3199        if (CurContext->Equals(DC))
3200          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
3201            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
3202        else
3203          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
3204            << Name << D.getCXXScopeSpec().getRange();
3205
3206        // Pretend that this qualifier was not here.
3207        D.getCXXScopeSpec().clear();
3208      }
3209    }
3210
3211    // Check whether we need to rebuild the type of the given
3212    // declaration in the current instantiation.
3213    if (EnteringContext && IsDependentContext &&
3214        TemplateParamLists.size() != 0) {
3215      ContextRAII SavedContext(*this, DC);
3216      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
3217        D.setInvalidType();
3218    }
3219  }
3220
3221  if (DiagnoseClassNameShadow(DC, NameInfo))
3222    // If this is a typedef, we'll end up spewing multiple diagnostics.
3223    // Just return early; it's safer.
3224    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3225      return 0;
3226
3227  NamedDecl *New;
3228
3229  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3230  QualType R = TInfo->getType();
3231
3232  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
3233                                      UPPC_DeclarationType))
3234    D.setInvalidType();
3235
3236  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
3237                        ForRedeclaration);
3238
3239  // See if this is a redefinition of a variable in the same scope.
3240  if (!D.getCXXScopeSpec().isSet()) {
3241    bool IsLinkageLookup = false;
3242
3243    // If the declaration we're planning to build will be a function
3244    // or object with linkage, then look for another declaration with
3245    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3246    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3247      /* Do nothing*/;
3248    else if (R->isFunctionType()) {
3249      if (CurContext->isFunctionOrMethod() ||
3250          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3251        IsLinkageLookup = true;
3252    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3253      IsLinkageLookup = true;
3254    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3255             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3256      IsLinkageLookup = true;
3257
3258    if (IsLinkageLookup)
3259      Previous.clear(LookupRedeclarationWithLinkage);
3260
3261    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3262  } else { // Something like "int foo::x;"
3263    LookupQualifiedName(Previous, DC);
3264
3265    // Don't consider using declarations as previous declarations for
3266    // out-of-line members.
3267    RemoveUsingDecls(Previous);
3268
3269    // C++ 7.3.1.2p2:
3270    // Members (including explicit specializations of templates) of a named
3271    // namespace can also be defined outside that namespace by explicit
3272    // qualification of the name being defined, provided that the entity being
3273    // defined was already declared in the namespace and the definition appears
3274    // after the point of declaration in a namespace that encloses the
3275    // declarations namespace.
3276    //
3277    // Note that we only check the context at this point. We don't yet
3278    // have enough information to make sure that PrevDecl is actually
3279    // the declaration we want to match. For example, given:
3280    //
3281    //   class X {
3282    //     void f();
3283    //     void f(float);
3284    //   };
3285    //
3286    //   void X::f(int) { } // ill-formed
3287    //
3288    // In this case, PrevDecl will point to the overload set
3289    // containing the two f's declared in X, but neither of them
3290    // matches.
3291
3292    // First check whether we named the global scope.
3293    if (isa<TranslationUnitDecl>(DC)) {
3294      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
3295        << Name << D.getCXXScopeSpec().getRange();
3296    } else {
3297      DeclContext *Cur = CurContext;
3298      while (isa<LinkageSpecDecl>(Cur))
3299        Cur = Cur->getParent();
3300      if (!Cur->Encloses(DC)) {
3301        // The qualifying scope doesn't enclose the original declaration.
3302        // Emit diagnostic based on current scope.
3303        SourceLocation L = D.getIdentifierLoc();
3304        SourceRange R = D.getCXXScopeSpec().getRange();
3305        if (isa<FunctionDecl>(Cur))
3306          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
3307        else
3308          Diag(L, diag::err_invalid_declarator_scope)
3309            << Name << cast<NamedDecl>(DC) << R;
3310        D.setInvalidType();
3311      }
3312    }
3313  }
3314
3315  if (Previous.isSingleResult() &&
3316      Previous.getFoundDecl()->isTemplateParameter()) {
3317    // Maybe we will complain about the shadowed template parameter.
3318    if (!D.isInvalidType())
3319      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3320                                          Previous.getFoundDecl()))
3321        D.setInvalidType();
3322
3323    // Just pretend that we didn't see the previous declaration.
3324    Previous.clear();
3325  }
3326
3327  // In C++, the previous declaration we find might be a tag type
3328  // (class or enum). In this case, the new declaration will hide the
3329  // tag type. Note that this does does not apply if we're declaring a
3330  // typedef (C++ [dcl.typedef]p4).
3331  if (Previous.isSingleTagDecl() &&
3332      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3333    Previous.clear();
3334
3335  bool Redeclaration = false;
3336  bool AddToScope = true;
3337  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3338    if (TemplateParamLists.size()) {
3339      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3340      return 0;
3341    }
3342
3343    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
3344  } else if (R->isFunctionType()) {
3345    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
3346                                  move(TemplateParamLists),
3347                                  IsFunctionDefinition, Redeclaration,
3348                                  AddToScope);
3349  } else {
3350    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
3351                                  move(TemplateParamLists),
3352                                  Redeclaration);
3353  }
3354
3355  if (New == 0)
3356    return 0;
3357
3358  // If this has an identifier and is not an invalid redeclaration or
3359  // function template specialization, add it to the scope stack.
3360  if (New->getDeclName() && AddToScope &&
3361       !(Redeclaration && New->isInvalidDecl()))
3362    PushOnScopeChains(New, S);
3363
3364  return New;
3365}
3366
3367/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3368/// types into constant array types in certain situations which would otherwise
3369/// be errors (for GCC compatibility).
3370static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3371                                                    ASTContext &Context,
3372                                                    bool &SizeIsNegative,
3373                                                    llvm::APSInt &Oversized) {
3374  // This method tries to turn a variable array into a constant
3375  // array even when the size isn't an ICE.  This is necessary
3376  // for compatibility with code that depends on gcc's buggy
3377  // constant expression folding, like struct {char x[(int)(char*)2];}
3378  SizeIsNegative = false;
3379  Oversized = 0;
3380
3381  if (T->isDependentType())
3382    return QualType();
3383
3384  QualifierCollector Qs;
3385  const Type *Ty = Qs.strip(T);
3386
3387  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3388    QualType Pointee = PTy->getPointeeType();
3389    QualType FixedType =
3390        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3391                                            Oversized);
3392    if (FixedType.isNull()) return FixedType;
3393    FixedType = Context.getPointerType(FixedType);
3394    return Qs.apply(Context, FixedType);
3395  }
3396  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3397    QualType Inner = PTy->getInnerType();
3398    QualType FixedType =
3399        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3400                                            Oversized);
3401    if (FixedType.isNull()) return FixedType;
3402    FixedType = Context.getParenType(FixedType);
3403    return Qs.apply(Context, FixedType);
3404  }
3405
3406  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3407  if (!VLATy)
3408    return QualType();
3409  // FIXME: We should probably handle this case
3410  if (VLATy->getElementType()->isVariablyModifiedType())
3411    return QualType();
3412
3413  Expr::EvalResult EvalResult;
3414  if (!VLATy->getSizeExpr() ||
3415      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
3416      !EvalResult.Val.isInt())
3417    return QualType();
3418
3419  // Check whether the array size is negative.
3420  llvm::APSInt &Res = EvalResult.Val.getInt();
3421  if (Res.isSigned() && Res.isNegative()) {
3422    SizeIsNegative = true;
3423    return QualType();
3424  }
3425
3426  // Check whether the array is too large to be addressed.
3427  unsigned ActiveSizeBits
3428    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
3429                                              Res);
3430  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
3431    Oversized = Res;
3432    return QualType();
3433  }
3434
3435  return Context.getConstantArrayType(VLATy->getElementType(),
3436                                      Res, ArrayType::Normal, 0);
3437}
3438
3439/// \brief Register the given locally-scoped external C declaration so
3440/// that it can be found later for redeclarations
3441void
3442Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
3443                                       const LookupResult &Previous,
3444                                       Scope *S) {
3445  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
3446         "Decl is not a locally-scoped decl!");
3447  // Note that we have a locally-scoped external with this name.
3448  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
3449
3450  if (!Previous.isSingleResult())
3451    return;
3452
3453  NamedDecl *PrevDecl = Previous.getFoundDecl();
3454
3455  // If there was a previous declaration of this variable, it may be
3456  // in our identifier chain. Update the identifier chain with the new
3457  // declaration.
3458  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
3459    // The previous declaration was found on the identifer resolver
3460    // chain, so remove it from its scope.
3461
3462    if (S->isDeclScope(PrevDecl)) {
3463      // Special case for redeclarations in the SAME scope.
3464      // Because this declaration is going to be added to the identifier chain
3465      // later, we should temporarily take it OFF the chain.
3466      IdResolver.RemoveDecl(ND);
3467
3468    } else {
3469      // Find the scope for the original declaration.
3470      while (S && !S->isDeclScope(PrevDecl))
3471        S = S->getParent();
3472    }
3473
3474    if (S)
3475      S->RemoveDecl(PrevDecl);
3476  }
3477}
3478
3479llvm::DenseMap<DeclarationName, NamedDecl *>::iterator
3480Sema::findLocallyScopedExternalDecl(DeclarationName Name) {
3481  if (ExternalSource) {
3482    // Load locally-scoped external decls from the external source.
3483    SmallVector<NamedDecl *, 4> Decls;
3484    ExternalSource->ReadLocallyScopedExternalDecls(Decls);
3485    for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
3486      llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3487        = LocallyScopedExternalDecls.find(Decls[I]->getDeclName());
3488      if (Pos == LocallyScopedExternalDecls.end())
3489        LocallyScopedExternalDecls[Decls[I]->getDeclName()] = Decls[I];
3490    }
3491  }
3492
3493  return LocallyScopedExternalDecls.find(Name);
3494}
3495
3496/// \brief Diagnose function specifiers on a declaration of an identifier that
3497/// does not identify a function.
3498void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
3499  // FIXME: We should probably indicate the identifier in question to avoid
3500  // confusion for constructs like "inline int a(), b;"
3501  if (D.getDeclSpec().isInlineSpecified())
3502    Diag(D.getDeclSpec().getInlineSpecLoc(),
3503         diag::err_inline_non_function);
3504
3505  if (D.getDeclSpec().isVirtualSpecified())
3506    Diag(D.getDeclSpec().getVirtualSpecLoc(),
3507         diag::err_virtual_non_function);
3508
3509  if (D.getDeclSpec().isExplicitSpecified())
3510    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3511         diag::err_explicit_non_function);
3512}
3513
3514NamedDecl*
3515Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3516                             QualType R,  TypeSourceInfo *TInfo,
3517                             LookupResult &Previous, bool &Redeclaration) {
3518  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
3519  if (D.getCXXScopeSpec().isSet()) {
3520    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
3521      << D.getCXXScopeSpec().getRange();
3522    D.setInvalidType();
3523    // Pretend we didn't see the scope specifier.
3524    DC = CurContext;
3525    Previous.clear();
3526  }
3527
3528  if (getLangOptions().CPlusPlus) {
3529    // Check that there are no default arguments (C++ only).
3530    CheckExtraCXXDefaultArguments(D);
3531  }
3532
3533  DiagnoseFunctionSpecifiers(D);
3534
3535  if (D.getDeclSpec().isThreadSpecified())
3536    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3537  if (D.getDeclSpec().isConstexprSpecified())
3538    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
3539      << 1;
3540
3541  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
3542    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
3543      << D.getName().getSourceRange();
3544    return 0;
3545  }
3546
3547  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
3548  if (!NewTD) return 0;
3549
3550  // Handle attributes prior to checking for duplicates in MergeVarDecl
3551  ProcessDeclAttributes(S, NewTD, D);
3552
3553  CheckTypedefForVariablyModifiedType(S, NewTD);
3554
3555  return ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
3556}
3557
3558void
3559Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
3560  // C99 6.7.7p2: If a typedef name specifies a variably modified type
3561  // then it shall have block scope.
3562  // Note that variably modified types must be fixed before merging the decl so
3563  // that redeclarations will match.
3564  QualType T = NewTD->getUnderlyingType();
3565  if (T->isVariablyModifiedType()) {
3566    getCurFunction()->setHasBranchProtectedScope();
3567
3568    if (S->getFnParent() == 0) {
3569      bool SizeIsNegative;
3570      llvm::APSInt Oversized;
3571      QualType FixedTy =
3572          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3573                                              Oversized);
3574      if (!FixedTy.isNull()) {
3575        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
3576        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
3577      } else {
3578        if (SizeIsNegative)
3579          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
3580        else if (T->isVariableArrayType())
3581          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
3582        else if (Oversized.getBoolValue())
3583          Diag(NewTD->getLocation(), diag::err_array_too_large) << Oversized.toString(10);
3584        else
3585          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
3586        NewTD->setInvalidDecl();
3587      }
3588    }
3589  }
3590}
3591
3592
3593/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
3594/// declares a typedef-name, either using the 'typedef' type specifier or via
3595/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
3596NamedDecl*
3597Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
3598                           LookupResult &Previous, bool &Redeclaration) {
3599  // Merge the decl with the existing one if appropriate. If the decl is
3600  // in an outer scope, it isn't the same thing.
3601  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
3602                       /*ExplicitInstantiationOrSpecialization=*/false);
3603  if (!Previous.empty()) {
3604    Redeclaration = true;
3605    MergeTypedefNameDecl(NewTD, Previous);
3606  }
3607
3608  // If this is the C FILE type, notify the AST context.
3609  if (IdentifierInfo *II = NewTD->getIdentifier())
3610    if (!NewTD->isInvalidDecl() &&
3611        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
3612      if (II->isStr("FILE"))
3613        Context.setFILEDecl(NewTD);
3614      else if (II->isStr("jmp_buf"))
3615        Context.setjmp_bufDecl(NewTD);
3616      else if (II->isStr("sigjmp_buf"))
3617        Context.setsigjmp_bufDecl(NewTD);
3618      else if (II->isStr("__builtin_va_list"))
3619        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
3620    }
3621
3622  return NewTD;
3623}
3624
3625/// \brief Determines whether the given declaration is an out-of-scope
3626/// previous declaration.
3627///
3628/// This routine should be invoked when name lookup has found a
3629/// previous declaration (PrevDecl) that is not in the scope where a
3630/// new declaration by the same name is being introduced. If the new
3631/// declaration occurs in a local scope, previous declarations with
3632/// linkage may still be considered previous declarations (C99
3633/// 6.2.2p4-5, C++ [basic.link]p6).
3634///
3635/// \param PrevDecl the previous declaration found by name
3636/// lookup
3637///
3638/// \param DC the context in which the new declaration is being
3639/// declared.
3640///
3641/// \returns true if PrevDecl is an out-of-scope previous declaration
3642/// for a new delcaration with the same name.
3643static bool
3644isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
3645                                ASTContext &Context) {
3646  if (!PrevDecl)
3647    return false;
3648
3649  if (!PrevDecl->hasLinkage())
3650    return false;
3651
3652  if (Context.getLangOptions().CPlusPlus) {
3653    // C++ [basic.link]p6:
3654    //   If there is a visible declaration of an entity with linkage
3655    //   having the same name and type, ignoring entities declared
3656    //   outside the innermost enclosing namespace scope, the block
3657    //   scope declaration declares that same entity and receives the
3658    //   linkage of the previous declaration.
3659    DeclContext *OuterContext = DC->getRedeclContext();
3660    if (!OuterContext->isFunctionOrMethod())
3661      // This rule only applies to block-scope declarations.
3662      return false;
3663
3664    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
3665    if (PrevOuterContext->isRecord())
3666      // We found a member function: ignore it.
3667      return false;
3668
3669    // Find the innermost enclosing namespace for the new and
3670    // previous declarations.
3671    OuterContext = OuterContext->getEnclosingNamespaceContext();
3672    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
3673
3674    // The previous declaration is in a different namespace, so it
3675    // isn't the same function.
3676    if (!OuterContext->Equals(PrevOuterContext))
3677      return false;
3678  }
3679
3680  return true;
3681}
3682
3683static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
3684  CXXScopeSpec &SS = D.getCXXScopeSpec();
3685  if (!SS.isSet()) return;
3686  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
3687}
3688
3689bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
3690  QualType type = decl->getType();
3691  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
3692  if (lifetime == Qualifiers::OCL_Autoreleasing) {
3693    // Various kinds of declaration aren't allowed to be __autoreleasing.
3694    unsigned kind = -1U;
3695    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3696      if (var->hasAttr<BlocksAttr>())
3697        kind = 0; // __block
3698      else if (!var->hasLocalStorage())
3699        kind = 1; // global
3700    } else if (isa<ObjCIvarDecl>(decl)) {
3701      kind = 3; // ivar
3702    } else if (isa<FieldDecl>(decl)) {
3703      kind = 2; // field
3704    }
3705
3706    if (kind != -1U) {
3707      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
3708        << kind;
3709    }
3710  } else if (lifetime == Qualifiers::OCL_None) {
3711    // Try to infer lifetime.
3712    if (!type->isObjCLifetimeType())
3713      return false;
3714
3715    lifetime = type->getObjCARCImplicitLifetime();
3716    type = Context.getLifetimeQualifiedType(type, lifetime);
3717    decl->setType(type);
3718  }
3719
3720  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3721    // Thread-local variables cannot have lifetime.
3722    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
3723        var->isThreadSpecified()) {
3724      Diag(var->getLocation(), diag::err_arc_thread_ownership)
3725        << var->getType();
3726      return true;
3727    }
3728  }
3729
3730  return false;
3731}
3732
3733NamedDecl*
3734Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
3735                              QualType R, TypeSourceInfo *TInfo,
3736                              LookupResult &Previous,
3737                              MultiTemplateParamsArg TemplateParamLists,
3738                              bool &Redeclaration) {
3739  DeclarationName Name = GetNameForDeclarator(D).getName();
3740
3741  // Check that there are no default arguments (C++ only).
3742  if (getLangOptions().CPlusPlus)
3743    CheckExtraCXXDefaultArguments(D);
3744
3745  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
3746  assert(SCSpec != DeclSpec::SCS_typedef &&
3747         "Parser allowed 'typedef' as storage class VarDecl.");
3748  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3749  if (SCSpec == DeclSpec::SCS_mutable) {
3750    // mutable can only appear on non-static class members, so it's always
3751    // an error here
3752    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
3753    D.setInvalidType();
3754    SC = SC_None;
3755  }
3756  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3757  VarDecl::StorageClass SCAsWritten
3758    = StorageClassSpecToVarDeclStorageClass(SCSpec);
3759
3760  IdentifierInfo *II = Name.getAsIdentifierInfo();
3761  if (!II) {
3762    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
3763      << Name.getAsString();
3764    return 0;
3765  }
3766
3767  DiagnoseFunctionSpecifiers(D);
3768
3769  if (!DC->isRecord() && S->getFnParent() == 0) {
3770    // C99 6.9p2: The storage-class specifiers auto and register shall not
3771    // appear in the declaration specifiers in an external declaration.
3772    if (SC == SC_Auto || SC == SC_Register) {
3773
3774      // If this is a register variable with an asm label specified, then this
3775      // is a GNU extension.
3776      if (SC == SC_Register && D.getAsmLabel())
3777        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
3778      else
3779        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
3780      D.setInvalidType();
3781    }
3782  }
3783
3784  if (getLangOptions().OpenCL) {
3785    // Set up the special work-group-local storage class for variables in the
3786    // OpenCL __local address space.
3787    if (R.getAddressSpace() == LangAS::opencl_local)
3788      SC = SC_OpenCLWorkGroupLocal;
3789  }
3790
3791  bool isExplicitSpecialization = false;
3792  VarDecl *NewVD;
3793  if (!getLangOptions().CPlusPlus) {
3794    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3795                            D.getIdentifierLoc(), II,
3796                            R, TInfo, SC, SCAsWritten);
3797
3798    if (D.isInvalidType())
3799      NewVD->setInvalidDecl();
3800  } else {
3801    if (DC->isRecord() && !CurContext->isRecord()) {
3802      // This is an out-of-line definition of a static data member.
3803      if (SC == SC_Static) {
3804        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3805             diag::err_static_out_of_line)
3806          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3807      } else if (SC == SC_None)
3808        SC = SC_Static;
3809    }
3810    if (SC == SC_Static) {
3811      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
3812        if (RD->isLocalClass())
3813          Diag(D.getIdentifierLoc(),
3814               diag::err_static_data_member_not_allowed_in_local_class)
3815            << Name << RD->getDeclName();
3816
3817        // C++ [class.union]p1: If a union contains a static data member,
3818        // the program is ill-formed.
3819        //
3820        // We also disallow static data members in anonymous structs.
3821        if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
3822          Diag(D.getIdentifierLoc(),
3823               diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
3824            << Name << RD->isUnion();
3825      }
3826    }
3827
3828    // Match up the template parameter lists with the scope specifier, then
3829    // determine whether we have a template or a template specialization.
3830    isExplicitSpecialization = false;
3831    bool Invalid = false;
3832    if (TemplateParameterList *TemplateParams
3833        = MatchTemplateParametersToScopeSpecifier(
3834                                  D.getDeclSpec().getSourceRange().getBegin(),
3835                                                  D.getIdentifierLoc(),
3836                                                  D.getCXXScopeSpec(),
3837                                                  TemplateParamLists.get(),
3838                                                  TemplateParamLists.size(),
3839                                                  /*never a friend*/ false,
3840                                                  isExplicitSpecialization,
3841                                                  Invalid)) {
3842      if (TemplateParams->size() > 0) {
3843        // There is no such thing as a variable template.
3844        Diag(D.getIdentifierLoc(), diag::err_template_variable)
3845          << II
3846          << SourceRange(TemplateParams->getTemplateLoc(),
3847                         TemplateParams->getRAngleLoc());
3848        return 0;
3849      } else {
3850        // There is an extraneous 'template<>' for this variable. Complain
3851        // about it, but allow the declaration of the variable.
3852        Diag(TemplateParams->getTemplateLoc(),
3853             diag::err_template_variable_noparams)
3854          << II
3855          << SourceRange(TemplateParams->getTemplateLoc(),
3856                         TemplateParams->getRAngleLoc());
3857      }
3858    }
3859
3860    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3861                            D.getIdentifierLoc(), II,
3862                            R, TInfo, SC, SCAsWritten);
3863
3864    // If this decl has an auto type in need of deduction, make a note of the
3865    // Decl so we can diagnose uses of it in its own initializer.
3866    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
3867        R->getContainedAutoType())
3868      ParsingInitForAutoVars.insert(NewVD);
3869
3870    if (D.isInvalidType() || Invalid)
3871      NewVD->setInvalidDecl();
3872
3873    SetNestedNameSpecifier(NewVD, D);
3874
3875    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
3876      NewVD->setTemplateParameterListsInfo(Context,
3877                                           TemplateParamLists.size(),
3878                                           TemplateParamLists.release());
3879    }
3880
3881    if (D.getDeclSpec().isConstexprSpecified()) {
3882      // FIXME: check this is a valid use of constexpr.
3883      NewVD->setConstexpr(true);
3884    }
3885  }
3886
3887  // Set the lexical context. If the declarator has a C++ scope specifier, the
3888  // lexical context will be different from the semantic context.
3889  NewVD->setLexicalDeclContext(CurContext);
3890
3891  if (D.getDeclSpec().isThreadSpecified()) {
3892    if (NewVD->hasLocalStorage())
3893      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
3894    else if (!Context.getTargetInfo().isTLSSupported())
3895      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
3896    else
3897      NewVD->setThreadSpecified(true);
3898  }
3899
3900  if (D.getDeclSpec().isModulePrivateSpecified()) {
3901    if (isExplicitSpecialization)
3902      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
3903        << 2
3904        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
3905    else if (NewVD->hasLocalStorage())
3906      Diag(NewVD->getLocation(), diag::err_module_private_local)
3907        << 0 << NewVD->getDeclName()
3908        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
3909        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
3910    else
3911      NewVD->setModulePrivate();
3912  }
3913
3914  // Handle attributes prior to checking for duplicates in MergeVarDecl
3915  ProcessDeclAttributes(S, NewVD, D);
3916
3917  // In auto-retain/release, infer strong retension for variables of
3918  // retainable type.
3919  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
3920    NewVD->setInvalidDecl();
3921
3922  // Handle GNU asm-label extension (encoded as an attribute).
3923  if (Expr *E = (Expr*)D.getAsmLabel()) {
3924    // The parser guarantees this is a string.
3925    StringLiteral *SE = cast<StringLiteral>(E);
3926    StringRef Label = SE->getString();
3927    if (S->getFnParent() != 0) {
3928      switch (SC) {
3929      case SC_None:
3930      case SC_Auto:
3931        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
3932        break;
3933      case SC_Register:
3934        if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
3935          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
3936        break;
3937      case SC_Static:
3938      case SC_Extern:
3939      case SC_PrivateExtern:
3940      case SC_OpenCLWorkGroupLocal:
3941        break;
3942      }
3943    }
3944
3945    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
3946                                                Context, Label));
3947  }
3948
3949  // Diagnose shadowed variables before filtering for scope.
3950  if (!D.getCXXScopeSpec().isSet())
3951    CheckShadow(S, NewVD, Previous);
3952
3953  // Don't consider existing declarations that are in a different
3954  // scope and are out-of-semantic-context declarations (if the new
3955  // declaration has linkage).
3956  FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
3957                       isExplicitSpecialization);
3958
3959  if (!getLangOptions().CPlusPlus)
3960    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3961  else {
3962    // Merge the decl with the existing one if appropriate.
3963    if (!Previous.empty()) {
3964      if (Previous.isSingleResult() &&
3965          isa<FieldDecl>(Previous.getFoundDecl()) &&
3966          D.getCXXScopeSpec().isSet()) {
3967        // The user tried to define a non-static data member
3968        // out-of-line (C++ [dcl.meaning]p1).
3969        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
3970          << D.getCXXScopeSpec().getRange();
3971        Previous.clear();
3972        NewVD->setInvalidDecl();
3973      }
3974    } else if (D.getCXXScopeSpec().isSet()) {
3975      // No previous declaration in the qualifying scope.
3976      Diag(D.getIdentifierLoc(), diag::err_no_member)
3977        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
3978        << D.getCXXScopeSpec().getRange();
3979      NewVD->setInvalidDecl();
3980    }
3981
3982    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3983
3984    // This is an explicit specialization of a static data member. Check it.
3985    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
3986        CheckMemberSpecialization(NewVD, Previous))
3987      NewVD->setInvalidDecl();
3988  }
3989
3990  // attributes declared post-definition are currently ignored
3991  // FIXME: This should be handled in attribute merging, not
3992  // here.
3993  if (Previous.isSingleResult()) {
3994    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
3995    if (Def && (Def = Def->getDefinition()) &&
3996        Def != NewVD && D.hasAttributes()) {
3997      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
3998      Diag(Def->getLocation(), diag::note_previous_definition);
3999    }
4000  }
4001
4002  // If this is a locally-scoped extern C variable, update the map of
4003  // such variables.
4004  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
4005      !NewVD->isInvalidDecl())
4006    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
4007
4008  // If there's a #pragma GCC visibility in scope, and this isn't a class
4009  // member, set the visibility of this variable.
4010  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
4011    AddPushedVisibilityAttribute(NewVD);
4012
4013  MarkUnusedFileScopedDecl(NewVD);
4014
4015  return NewVD;
4016}
4017
4018/// \brief Diagnose variable or built-in function shadowing.  Implements
4019/// -Wshadow.
4020///
4021/// This method is called whenever a VarDecl is added to a "useful"
4022/// scope.
4023///
4024/// \param S the scope in which the shadowing name is being declared
4025/// \param R the lookup of the name
4026///
4027void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
4028  // Return if warning is ignored.
4029  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
4030        DiagnosticsEngine::Ignored)
4031    return;
4032
4033  // Don't diagnose declarations at file scope.
4034  if (D->hasGlobalStorage())
4035    return;
4036
4037  DeclContext *NewDC = D->getDeclContext();
4038
4039  // Only diagnose if we're shadowing an unambiguous field or variable.
4040  if (R.getResultKind() != LookupResult::Found)
4041    return;
4042
4043  NamedDecl* ShadowedDecl = R.getFoundDecl();
4044  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
4045    return;
4046
4047  // Fields are not shadowed by variables in C++ static methods.
4048  if (isa<FieldDecl>(ShadowedDecl))
4049    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
4050      if (MD->isStatic())
4051        return;
4052
4053  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
4054    if (shadowedVar->isExternC()) {
4055      // For shadowing external vars, make sure that we point to the global
4056      // declaration, not a locally scoped extern declaration.
4057      for (VarDecl::redecl_iterator
4058             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
4059           I != E; ++I)
4060        if (I->isFileVarDecl()) {
4061          ShadowedDecl = *I;
4062          break;
4063        }
4064    }
4065
4066  DeclContext *OldDC = ShadowedDecl->getDeclContext();
4067
4068  // Only warn about certain kinds of shadowing for class members.
4069  if (NewDC && NewDC->isRecord()) {
4070    // In particular, don't warn about shadowing non-class members.
4071    if (!OldDC->isRecord())
4072      return;
4073
4074    // TODO: should we warn about static data members shadowing
4075    // static data members from base classes?
4076
4077    // TODO: don't diagnose for inaccessible shadowed members.
4078    // This is hard to do perfectly because we might friend the
4079    // shadowing context, but that's just a false negative.
4080  }
4081
4082  // Determine what kind of declaration we're shadowing.
4083  unsigned Kind;
4084  if (isa<RecordDecl>(OldDC)) {
4085    if (isa<FieldDecl>(ShadowedDecl))
4086      Kind = 3; // field
4087    else
4088      Kind = 2; // static data member
4089  } else if (OldDC->isFileContext())
4090    Kind = 1; // global
4091  else
4092    Kind = 0; // local
4093
4094  DeclarationName Name = R.getLookupName();
4095
4096  // Emit warning and note.
4097  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
4098  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
4099}
4100
4101/// \brief Check -Wshadow without the advantage of a previous lookup.
4102void Sema::CheckShadow(Scope *S, VarDecl *D) {
4103  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
4104        DiagnosticsEngine::Ignored)
4105    return;
4106
4107  LookupResult R(*this, D->getDeclName(), D->getLocation(),
4108                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4109  LookupName(R, S);
4110  CheckShadow(S, D, R);
4111}
4112
4113/// \brief Perform semantic checking on a newly-created variable
4114/// declaration.
4115///
4116/// This routine performs all of the type-checking required for a
4117/// variable declaration once it has been built. It is used both to
4118/// check variables after they have been parsed and their declarators
4119/// have been translated into a declaration, and to check variables
4120/// that have been instantiated from a template.
4121///
4122/// Sets NewVD->isInvalidDecl() if an error was encountered.
4123void Sema::CheckVariableDeclaration(VarDecl *NewVD,
4124                                    LookupResult &Previous,
4125                                    bool &Redeclaration) {
4126  // If the decl is already known invalid, don't check it.
4127  if (NewVD->isInvalidDecl())
4128    return;
4129
4130  QualType T = NewVD->getType();
4131
4132  if (T->isObjCObjectType()) {
4133    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
4134      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
4135    T = Context.getObjCObjectPointerType(T);
4136    NewVD->setType(T);
4137  }
4138
4139  // Emit an error if an address space was applied to decl with local storage.
4140  // This includes arrays of objects with address space qualifiers, but not
4141  // automatic variables that point to other address spaces.
4142  // ISO/IEC TR 18037 S5.1.2
4143  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
4144    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
4145    return NewVD->setInvalidDecl();
4146  }
4147
4148  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
4149      && !NewVD->hasAttr<BlocksAttr>()) {
4150    if (getLangOptions().getGC() != LangOptions::NonGC)
4151      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
4152    else
4153      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
4154  }
4155
4156  bool isVM = T->isVariablyModifiedType();
4157  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
4158      NewVD->hasAttr<BlocksAttr>())
4159    getCurFunction()->setHasBranchProtectedScope();
4160
4161  if ((isVM && NewVD->hasLinkage()) ||
4162      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
4163    bool SizeIsNegative;
4164    llvm::APSInt Oversized;
4165    QualType FixedTy =
4166        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
4167                                            Oversized);
4168
4169    if (FixedTy.isNull() && T->isVariableArrayType()) {
4170      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
4171      // FIXME: This won't give the correct result for
4172      // int a[10][n];
4173      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
4174
4175      if (NewVD->isFileVarDecl())
4176        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
4177        << SizeRange;
4178      else if (NewVD->getStorageClass() == SC_Static)
4179        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
4180        << SizeRange;
4181      else
4182        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
4183        << SizeRange;
4184      return NewVD->setInvalidDecl();
4185    }
4186
4187    if (FixedTy.isNull()) {
4188      if (NewVD->isFileVarDecl())
4189        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
4190      else
4191        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
4192      return NewVD->setInvalidDecl();
4193    }
4194
4195    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
4196    NewVD->setType(FixedTy);
4197  }
4198
4199  if (Previous.empty() && NewVD->isExternC()) {
4200    // Since we did not find anything by this name and we're declaring
4201    // an extern "C" variable, look for a non-visible extern "C"
4202    // declaration with the same name.
4203    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4204      = findLocallyScopedExternalDecl(NewVD->getDeclName());
4205    if (Pos != LocallyScopedExternalDecls.end())
4206      Previous.addDecl(Pos->second);
4207  }
4208
4209  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
4210    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
4211      << T;
4212    return NewVD->setInvalidDecl();
4213  }
4214
4215  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
4216    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
4217    return NewVD->setInvalidDecl();
4218  }
4219
4220  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
4221    Diag(NewVD->getLocation(), diag::err_block_on_vm);
4222    return NewVD->setInvalidDecl();
4223  }
4224
4225  // Function pointers and references cannot have qualified function type, only
4226  // function pointer-to-members can do that.
4227  QualType Pointee;
4228  unsigned PtrOrRef = 0;
4229  if (const PointerType *Ptr = T->getAs<PointerType>())
4230    Pointee = Ptr->getPointeeType();
4231  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
4232    Pointee = Ref->getPointeeType();
4233    PtrOrRef = 1;
4234  }
4235  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
4236      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
4237    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
4238        << PtrOrRef;
4239    return NewVD->setInvalidDecl();
4240  }
4241
4242  if (!Previous.empty()) {
4243    Redeclaration = true;
4244    MergeVarDecl(NewVD, Previous);
4245  }
4246}
4247
4248/// \brief Data used with FindOverriddenMethod
4249struct FindOverriddenMethodData {
4250  Sema *S;
4251  CXXMethodDecl *Method;
4252};
4253
4254/// \brief Member lookup function that determines whether a given C++
4255/// method overrides a method in a base class, to be used with
4256/// CXXRecordDecl::lookupInBases().
4257static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
4258                                 CXXBasePath &Path,
4259                                 void *UserData) {
4260  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4261
4262  FindOverriddenMethodData *Data
4263    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
4264
4265  DeclarationName Name = Data->Method->getDeclName();
4266
4267  // FIXME: Do we care about other names here too?
4268  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4269    // We really want to find the base class destructor here.
4270    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
4271    CanQualType CT = Data->S->Context.getCanonicalType(T);
4272
4273    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
4274  }
4275
4276  for (Path.Decls = BaseRecord->lookup(Name);
4277       Path.Decls.first != Path.Decls.second;
4278       ++Path.Decls.first) {
4279    NamedDecl *D = *Path.Decls.first;
4280    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4281      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
4282        return true;
4283    }
4284  }
4285
4286  return false;
4287}
4288
4289/// AddOverriddenMethods - See if a method overrides any in the base classes,
4290/// and if so, check that it's a valid override and remember it.
4291bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4292  // Look for virtual methods in base classes that this method might override.
4293  CXXBasePaths Paths;
4294  FindOverriddenMethodData Data;
4295  Data.Method = MD;
4296  Data.S = this;
4297  bool AddedAny = false;
4298  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
4299    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
4300         E = Paths.found_decls_end(); I != E; ++I) {
4301      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
4302        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
4303        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
4304            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
4305            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
4306          AddedAny = true;
4307        }
4308      }
4309    }
4310  }
4311
4312  return AddedAny;
4313}
4314
4315static void DiagnoseInvalidRedeclaration(Sema &S, FunctionDecl *NewFD,
4316                                         bool isFriendDecl) {
4317  DeclarationName Name = NewFD->getDeclName();
4318  DeclContext *DC = NewFD->getDeclContext();
4319  LookupResult Prev(S, Name, NewFD->getLocation(),
4320                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4321  llvm::SmallVector<unsigned, 1> MismatchedParams;
4322  llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1> NearMatches;
4323  TypoCorrection Correction;
4324  unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
4325                                  : diag::err_member_def_does_not_match;
4326
4327  NewFD->setInvalidDecl();
4328  S.LookupQualifiedName(Prev, DC);
4329  assert(!Prev.isAmbiguous() &&
4330         "Cannot have an ambiguity in previous-declaration lookup");
4331  if (!Prev.empty()) {
4332    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
4333         Func != FuncEnd; ++Func) {
4334      FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
4335      if (FD && isNearlyMatchingFunction(S.Context, FD, NewFD,
4336                                         MismatchedParams)) {
4337        // Add 1 to the index so that 0 can mean the mismatch didn't
4338        // involve a parameter
4339        unsigned ParamNum =
4340            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
4341        NearMatches.push_back(std::make_pair(FD, ParamNum));
4342      }
4343    }
4344  // If the qualified name lookup yielded nothing, try typo correction
4345  } else if ((Correction = S.CorrectTypo(Prev.getLookupNameInfo(),
4346                                         Prev.getLookupKind(), 0, 0, DC)) &&
4347             Correction.getCorrection() != Name) {
4348    for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
4349                                    CDeclEnd = Correction.end();
4350         CDecl != CDeclEnd; ++CDecl) {
4351      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
4352      if (FD && isNearlyMatchingFunction(S.Context, FD, NewFD,
4353                                         MismatchedParams)) {
4354        // Add 1 to the index so that 0 can mean the mismatch didn't
4355        // involve a parameter
4356        unsigned ParamNum =
4357            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
4358        NearMatches.push_back(std::make_pair(FD, ParamNum));
4359      }
4360    }
4361    if (!NearMatches.empty())
4362      DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
4363                             : diag::err_member_def_does_not_match_suggest;
4364  }
4365
4366  // Ignore the correction if it didn't yield any close FunctionDecl matches
4367  if (Correction && NearMatches.empty())
4368    Correction = TypoCorrection();
4369
4370  if (Correction)
4371    S.Diag(NewFD->getLocation(), DiagMsg)
4372        << Name << DC << Correction.getQuoted(S.getLangOptions())
4373        << FixItHint::CreateReplacement(
4374            NewFD->getLocation(), Correction.getAsString(S.getLangOptions()));
4375  else
4376    S.Diag(NewFD->getLocation(), DiagMsg) << Name << DC << NewFD->getLocation();
4377
4378  for (llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1>::iterator
4379       NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
4380       NearMatch != NearMatchEnd; ++NearMatch) {
4381    FunctionDecl *FD = NearMatch->first;
4382
4383    if (unsigned Idx = NearMatch->second) {
4384      ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
4385      S.Diag(FDParam->getTypeSpecStartLoc(),
4386             diag::note_member_def_close_param_match)
4387          << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
4388    } else if (Correction) {
4389      S.Diag(FD->getLocation(), diag::note_previous_decl)
4390        << Correction.getQuoted(S.getLangOptions());
4391    } else
4392      S.Diag(FD->getLocation(), diag::note_member_def_close_match);
4393  }
4394}
4395
4396NamedDecl*
4397Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4398                              QualType R, TypeSourceInfo *TInfo,
4399                              LookupResult &Previous,
4400                              MultiTemplateParamsArg TemplateParamLists,
4401                              bool IsFunctionDefinition, bool &Redeclaration,
4402                              bool &AddToScope) {
4403  assert(R.getTypePtr()->isFunctionType());
4404
4405  // TODO: consider using NameInfo for diagnostic.
4406  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4407  DeclarationName Name = NameInfo.getName();
4408  FunctionDecl::StorageClass SC = SC_None;
4409  switch (D.getDeclSpec().getStorageClassSpec()) {
4410  default: llvm_unreachable("Unknown storage class!");
4411  case DeclSpec::SCS_auto:
4412  case DeclSpec::SCS_register:
4413  case DeclSpec::SCS_mutable:
4414    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4415         diag::err_typecheck_sclass_func);
4416    D.setInvalidType();
4417    break;
4418  case DeclSpec::SCS_unspecified: SC = SC_None; break;
4419  case DeclSpec::SCS_extern:      SC = SC_Extern; break;
4420  case DeclSpec::SCS_static: {
4421    if (CurContext->getRedeclContext()->isFunctionOrMethod()) {
4422      // C99 6.7.1p5:
4423      //   The declaration of an identifier for a function that has
4424      //   block scope shall have no explicit storage-class specifier
4425      //   other than extern
4426      // See also (C++ [dcl.stc]p4).
4427      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4428           diag::err_static_block_func);
4429      SC = SC_None;
4430    } else
4431      SC = SC_Static;
4432    break;
4433  }
4434  case DeclSpec::SCS_private_extern: SC = SC_PrivateExtern; break;
4435  }
4436
4437  if (D.getDeclSpec().isThreadSpecified())
4438    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4439
4440  // Do not allow returning a objc interface by-value.
4441  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
4442    Diag(D.getIdentifierLoc(),
4443         diag::err_object_cannot_be_passed_returned_by_value) << 0
4444    << R->getAs<FunctionType>()->getResultType()
4445    << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
4446
4447    QualType T = R->getAs<FunctionType>()->getResultType();
4448    T = Context.getObjCObjectPointerType(T);
4449    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(R)) {
4450      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
4451      R = Context.getFunctionType(T, FPT->arg_type_begin(),
4452                                  FPT->getNumArgs(), EPI);
4453    }
4454    else if (isa<FunctionNoProtoType>(R))
4455      R = Context.getFunctionNoProtoType(T);
4456  }
4457
4458  FunctionDecl *NewFD;
4459  bool isInline = D.getDeclSpec().isInlineSpecified();
4460  bool isFriend = false;
4461  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4462  FunctionDecl::StorageClass SCAsWritten
4463    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
4464  FunctionTemplateDecl *FunctionTemplate = 0;
4465  bool isExplicitSpecialization = false;
4466  bool isFunctionTemplateSpecialization = false;
4467  bool isDependentClassScopeExplicitSpecialization = false;
4468
4469  if (!getLangOptions().CPlusPlus) {
4470    // Determine whether the function was written with a
4471    // prototype. This true when:
4472    //   - there is a prototype in the declarator, or
4473    //   - the type R of the function is some kind of typedef or other reference
4474    //     to a type name (which eventually refers to a function type).
4475    bool HasPrototype =
4476    (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
4477    (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
4478
4479    NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4480                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4481                                 HasPrototype);
4482    if (D.isInvalidType())
4483      NewFD->setInvalidDecl();
4484
4485    // Set the lexical context.
4486    NewFD->setLexicalDeclContext(CurContext);
4487    // Filter out previous declarations that don't match the scope.
4488    FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
4489                         /*ExplicitInstantiationOrSpecialization=*/false);
4490  } else {
4491    isFriend = D.getDeclSpec().isFriendSpecified();
4492    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4493    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4494    bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
4495    bool isVirtualOkay = false;
4496
4497    // Check that the return type is not an abstract class type.
4498    // For record types, this is done by the AbstractClassUsageDiagnoser once
4499    // the class has been completely parsed.
4500    if (!DC->isRecord() &&
4501      RequireNonAbstractType(D.getIdentifierLoc(),
4502                             R->getAs<FunctionType>()->getResultType(),
4503                             diag::err_abstract_type_in_decl,
4504                             AbstractReturnType))
4505      D.setInvalidType();
4506
4507    if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
4508      // This is a C++ constructor declaration.
4509      assert(DC->isRecord() &&
4510             "Constructors can only be declared in a member context");
4511
4512      R = CheckConstructorDeclarator(D, R, SC);
4513
4514      // Create the new declaration
4515      CXXConstructorDecl *NewCD = CXXConstructorDecl::Create(
4516                                         Context,
4517                                         cast<CXXRecordDecl>(DC),
4518                                         D.getSourceRange().getBegin(),
4519                                         NameInfo, R, TInfo,
4520                                         isExplicit, isInline,
4521                                         /*isImplicitlyDeclared=*/false,
4522                                         isConstexpr);
4523
4524      NewFD = NewCD;
4525    } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4526      // This is a C++ destructor declaration.
4527      if (DC->isRecord()) {
4528        R = CheckDestructorDeclarator(D, R, SC);
4529        CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
4530
4531        CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(Context, Record,
4532                                          D.getSourceRange().getBegin(),
4533                                          NameInfo, R, TInfo,
4534                                          isInline,
4535                                          /*isImplicitlyDeclared=*/false);
4536        NewFD = NewDD;
4537        isVirtualOkay = true;
4538
4539        // If the class is complete, then we now create the implicit exception
4540        // specification. If the class is incomplete or dependent, we can't do
4541        // it yet.
4542        if (getLangOptions().CPlusPlus0x && !Record->isDependentType() &&
4543            Record->getDefinition() && !Record->isBeingDefined() &&
4544            R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
4545          AdjustDestructorExceptionSpec(Record, NewDD);
4546        }
4547
4548      } else {
4549        Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
4550
4551        // Create a FunctionDecl to satisfy the function definition parsing
4552        // code path.
4553        NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4554                                     D.getIdentifierLoc(), Name, R, TInfo,
4555                                     SC, SCAsWritten, isInline,
4556                                     /*hasPrototype=*/true, isConstexpr);
4557        D.setInvalidType();
4558      }
4559    } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
4560      if (!DC->isRecord()) {
4561        Diag(D.getIdentifierLoc(),
4562             diag::err_conv_function_not_member);
4563        return 0;
4564      }
4565
4566      CheckConversionDeclarator(D, R, SC);
4567      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
4568                                        D.getSourceRange().getBegin(),
4569                                        NameInfo, R, TInfo,
4570                                        isInline, isExplicit, isConstexpr,
4571                                        SourceLocation());
4572
4573      isVirtualOkay = true;
4574    } else if (DC->isRecord()) {
4575      // If the name of the function is the same as the name of the record,
4576      // then this must be an invalid constructor that has a return type.
4577      // (The parser checks for a return type and makes the declarator a
4578      // constructor if it has no return type).
4579      if (Name.getAsIdentifierInfo() &&
4580          Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
4581        Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
4582          << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4583          << SourceRange(D.getIdentifierLoc());
4584        return 0;
4585      }
4586
4587      bool isStatic = SC == SC_Static;
4588
4589      // [class.free]p1:
4590      // Any allocation function for a class T is a static member
4591      // (even if not explicitly declared static).
4592      if (Name.getCXXOverloadedOperator() == OO_New ||
4593          Name.getCXXOverloadedOperator() == OO_Array_New)
4594        isStatic = true;
4595
4596      // [class.free]p6 Any deallocation function for a class X is a static member
4597      // (even if not explicitly declared static).
4598      if (Name.getCXXOverloadedOperator() == OO_Delete ||
4599          Name.getCXXOverloadedOperator() == OO_Array_Delete)
4600        isStatic = true;
4601
4602      // This is a C++ method declaration.
4603      CXXMethodDecl *NewMD = CXXMethodDecl::Create(
4604                                               Context, cast<CXXRecordDecl>(DC),
4605                                               D.getSourceRange().getBegin(),
4606                                               NameInfo, R, TInfo,
4607                                               isStatic, SCAsWritten, isInline,
4608                                               isConstexpr,
4609                                               SourceLocation());
4610      NewFD = NewMD;
4611
4612      isVirtualOkay = !isStatic;
4613    } else {
4614      // Determine whether the function was written with a
4615      // prototype. This true when:
4616      //   - we're in C++ (where every function has a prototype),
4617      NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4618                                   NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4619                                   true/*HasPrototype*/, isConstexpr);
4620    }
4621
4622    if (isFriend && !isInline && IsFunctionDefinition) {
4623      // C++ [class.friend]p5
4624      //   A function can be defined in a friend declaration of a
4625      //   class . . . . Such a function is implicitly inline.
4626      NewFD->setImplicitlyInline();
4627    }
4628
4629    SetNestedNameSpecifier(NewFD, D);
4630    isExplicitSpecialization = false;
4631    isFunctionTemplateSpecialization = false;
4632    if (D.isInvalidType())
4633      NewFD->setInvalidDecl();
4634
4635    // Set the lexical context. If the declarator has a C++
4636    // scope specifier, or is the object of a friend declaration, the
4637    // lexical context will be different from the semantic context.
4638    NewFD->setLexicalDeclContext(CurContext);
4639
4640    // Match up the template parameter lists with the scope specifier, then
4641    // determine whether we have a template or a template specialization.
4642    bool Invalid = false;
4643    if (TemplateParameterList *TemplateParams
4644          = MatchTemplateParametersToScopeSpecifier(
4645                                  D.getDeclSpec().getSourceRange().getBegin(),
4646                                  D.getIdentifierLoc(),
4647                                  D.getCXXScopeSpec(),
4648                                  TemplateParamLists.get(),
4649                                  TemplateParamLists.size(),
4650                                  isFriend,
4651                                  isExplicitSpecialization,
4652                                  Invalid)) {
4653      if (TemplateParams->size() > 0) {
4654        // This is a function template
4655
4656        // Check that we can declare a template here.
4657        if (CheckTemplateDeclScope(S, TemplateParams))
4658          return 0;
4659
4660        // A destructor cannot be a template.
4661        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4662          Diag(NewFD->getLocation(), diag::err_destructor_template);
4663          return 0;
4664        }
4665
4666        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
4667                                                        NewFD->getLocation(),
4668                                                        Name, TemplateParams,
4669                                                        NewFD);
4670        FunctionTemplate->setLexicalDeclContext(CurContext);
4671        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
4672
4673        // For source fidelity, store the other template param lists.
4674        if (TemplateParamLists.size() > 1) {
4675          NewFD->setTemplateParameterListsInfo(Context,
4676                                               TemplateParamLists.size() - 1,
4677                                               TemplateParamLists.release());
4678        }
4679      } else {
4680        // This is a function template specialization.
4681        isFunctionTemplateSpecialization = true;
4682        // For source fidelity, store all the template param lists.
4683        NewFD->setTemplateParameterListsInfo(Context,
4684                                             TemplateParamLists.size(),
4685                                             TemplateParamLists.release());
4686
4687        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
4688        if (isFriend) {
4689          // We want to remove the "template<>", found here.
4690          SourceRange RemoveRange = TemplateParams->getSourceRange();
4691
4692          // If we remove the template<> and the name is not a
4693          // template-id, we're actually silently creating a problem:
4694          // the friend declaration will refer to an untemplated decl,
4695          // and clearly the user wants a template specialization.  So
4696          // we need to insert '<>' after the name.
4697          SourceLocation InsertLoc;
4698          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
4699            InsertLoc = D.getName().getSourceRange().getEnd();
4700            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
4701          }
4702
4703          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
4704            << Name << RemoveRange
4705            << FixItHint::CreateRemoval(RemoveRange)
4706            << FixItHint::CreateInsertion(InsertLoc, "<>");
4707        }
4708      }
4709    }
4710    else {
4711      // All template param lists were matched against the scope specifier:
4712      // this is NOT (an explicit specialization of) a template.
4713      if (TemplateParamLists.size() > 0)
4714        // For source fidelity, store all the template param lists.
4715        NewFD->setTemplateParameterListsInfo(Context,
4716                                             TemplateParamLists.size(),
4717                                             TemplateParamLists.release());
4718    }
4719
4720    if (Invalid) {
4721      NewFD->setInvalidDecl();
4722      if (FunctionTemplate)
4723        FunctionTemplate->setInvalidDecl();
4724    }
4725
4726    // C++ [dcl.fct.spec]p5:
4727    //   The virtual specifier shall only be used in declarations of
4728    //   nonstatic class member functions that appear within a
4729    //   member-specification of a class declaration; see 10.3.
4730    //
4731    if (isVirtual && !NewFD->isInvalidDecl()) {
4732      if (!isVirtualOkay) {
4733        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4734             diag::err_virtual_non_function);
4735      } else if (!CurContext->isRecord()) {
4736        // 'virtual' was specified outside of the class.
4737        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4738             diag::err_virtual_out_of_class)
4739          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4740      } else if (NewFD->getDescribedFunctionTemplate()) {
4741        // C++ [temp.mem]p3:
4742        //  A member function template shall not be virtual.
4743        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4744             diag::err_virtual_member_function_template)
4745          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4746      } else {
4747        // Okay: Add virtual to the method.
4748        NewFD->setVirtualAsWritten(true);
4749      }
4750    }
4751
4752    // C++ [dcl.fct.spec]p3:
4753    //  The inline specifier shall not appear on a block scope function declaration.
4754    if (isInline && !NewFD->isInvalidDecl()) {
4755      if (CurContext->isFunctionOrMethod()) {
4756        // 'inline' is not allowed on block scope function declaration.
4757        Diag(D.getDeclSpec().getInlineSpecLoc(),
4758             diag::err_inline_declaration_block_scope) << Name
4759          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
4760      }
4761    }
4762
4763    // C++ [dcl.fct.spec]p6:
4764    //  The explicit specifier shall be used only in the declaration of a
4765    //  constructor or conversion function within its class definition; see 12.3.1
4766    //  and 12.3.2.
4767    if (isExplicit && !NewFD->isInvalidDecl()) {
4768      if (!CurContext->isRecord()) {
4769        // 'explicit' was specified outside of the class.
4770        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4771             diag::err_explicit_out_of_class)
4772          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4773      } else if (!isa<CXXConstructorDecl>(NewFD) &&
4774                 !isa<CXXConversionDecl>(NewFD)) {
4775        // 'explicit' was specified on a function that wasn't a constructor
4776        // or conversion function.
4777        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4778             diag::err_explicit_non_ctor_or_conv_function)
4779          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4780      }
4781    }
4782
4783    if (isConstexpr) {
4784      // C++0x [dcl.constexpr]p2: constexpr functions and constexpr constructors
4785      // are implicitly inline.
4786      NewFD->setImplicitlyInline();
4787
4788      // FIXME: If this is a redeclaration, check the original declaration was
4789      // marked constepr.
4790
4791      // C++0x [dcl.constexpr]p3: functions declared constexpr are required to
4792      // be either constructors or to return a literal type. Therefore,
4793      // destructors cannot be declared constexpr.
4794      if (isa<CXXDestructorDecl>(NewFD))
4795        Diag(D.getDeclSpec().getConstexprSpecLoc(),
4796             diag::err_constexpr_dtor);
4797    }
4798
4799    // If __module_private__ was specified, mark the function accordingly.
4800    if (D.getDeclSpec().isModulePrivateSpecified()) {
4801      if (isFunctionTemplateSpecialization) {
4802        SourceLocation ModulePrivateLoc
4803          = D.getDeclSpec().getModulePrivateSpecLoc();
4804        Diag(ModulePrivateLoc, diag::err_module_private_specialization)
4805          << 0
4806          << FixItHint::CreateRemoval(ModulePrivateLoc);
4807      } else {
4808        NewFD->setModulePrivate();
4809        if (FunctionTemplate)
4810          FunctionTemplate->setModulePrivate();
4811      }
4812    }
4813
4814    // Filter out previous declarations that don't match the scope.
4815    FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
4816                         isExplicitSpecialization ||
4817                         isFunctionTemplateSpecialization);
4818
4819    if (isFriend) {
4820      // For now, claim that the objects have no previous declaration.
4821      if (FunctionTemplate) {
4822        FunctionTemplate->setObjectOfFriendDecl(false);
4823        FunctionTemplate->setAccess(AS_public);
4824      }
4825      NewFD->setObjectOfFriendDecl(false);
4826      NewFD->setAccess(AS_public);
4827    }
4828
4829    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext && IsFunctionDefinition) {
4830      // A method is implicitly inline if it's defined in its class
4831      // definition.
4832      NewFD->setImplicitlyInline();
4833    }
4834
4835    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
4836        !CurContext->isRecord()) {
4837      // C++ [class.static]p1:
4838      //   A data or function member of a class may be declared static
4839      //   in a class definition, in which case it is a static member of
4840      //   the class.
4841
4842      // Complain about the 'static' specifier if it's on an out-of-line
4843      // member function definition.
4844      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4845           diag::err_static_out_of_line)
4846        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4847    }
4848  }
4849
4850  // Handle GNU asm-label extension (encoded as an attribute).
4851  if (Expr *E = (Expr*) D.getAsmLabel()) {
4852    // The parser guarantees this is a string.
4853    StringLiteral *SE = cast<StringLiteral>(E);
4854    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
4855                                                SE->getString()));
4856  }
4857
4858  // Copy the parameter declarations from the declarator D to the function
4859  // declaration NewFD, if they are available.  First scavenge them into Params.
4860  SmallVector<ParmVarDecl*, 16> Params;
4861  if (D.isFunctionDeclarator()) {
4862    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4863
4864    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
4865    // function that takes no arguments, not a function that takes a
4866    // single void argument.
4867    // We let through "const void" here because Sema::GetTypeForDeclarator
4868    // already checks for that case.
4869    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
4870        FTI.ArgInfo[0].Param &&
4871        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
4872      // Empty arg list, don't push any params.
4873      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
4874
4875      // In C++, the empty parameter-type-list must be spelled "void"; a
4876      // typedef of void is not permitted.
4877      if (getLangOptions().CPlusPlus &&
4878          Param->getType().getUnqualifiedType() != Context.VoidTy) {
4879        bool IsTypeAlias = false;
4880        if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
4881          IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
4882        else if (const TemplateSpecializationType *TST =
4883                   Param->getType()->getAs<TemplateSpecializationType>())
4884          IsTypeAlias = TST->isTypeAlias();
4885        Diag(Param->getLocation(), diag::err_param_typedef_of_void)
4886          << IsTypeAlias;
4887      }
4888    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
4889      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
4890        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
4891        assert(Param->getDeclContext() != NewFD && "Was set before ?");
4892        Param->setDeclContext(NewFD);
4893        Params.push_back(Param);
4894
4895        if (Param->isInvalidDecl())
4896          NewFD->setInvalidDecl();
4897      }
4898    }
4899
4900  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
4901    // When we're declaring a function with a typedef, typeof, etc as in the
4902    // following example, we'll need to synthesize (unnamed)
4903    // parameters for use in the declaration.
4904    //
4905    // @code
4906    // typedef void fn(int);
4907    // fn f;
4908    // @endcode
4909
4910    // Synthesize a parameter for each argument type.
4911    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
4912         AE = FT->arg_type_end(); AI != AE; ++AI) {
4913      ParmVarDecl *Param =
4914        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
4915      Param->setScopeInfo(0, Params.size());
4916      Params.push_back(Param);
4917    }
4918  } else {
4919    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
4920           "Should not need args for typedef of non-prototype fn");
4921  }
4922  // Finally, we know we have the right number of parameters, install them.
4923  NewFD->setParams(Params);
4924
4925  // Process the non-inheritable attributes on this declaration.
4926  ProcessDeclAttributes(S, NewFD, D,
4927                        /*NonInheritable=*/true, /*Inheritable=*/false);
4928
4929  if (!getLangOptions().CPlusPlus) {
4930    // Perform semantic checking on the function declaration.
4931    bool isExplicitSpecialization=false;
4932    if (!NewFD->isInvalidDecl()) {
4933      if (NewFD->getResultType()->isVariablyModifiedType()) {
4934        // Functions returning a variably modified type violate C99 6.7.5.2p2
4935        // because all functions have linkage.
4936        Diag(NewFD->getLocation(), diag::err_vm_func_decl);
4937        NewFD->setInvalidDecl();
4938      } else {
4939        if (NewFD->isMain())
4940          CheckMain(NewFD, D.getDeclSpec());
4941        CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
4942                                 Redeclaration);
4943      }
4944    }
4945    assert((NewFD->isInvalidDecl() || !Redeclaration ||
4946            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
4947           "previous declaration set still overloaded");
4948  } else {
4949    // If the declarator is a template-id, translate the parser's template
4950    // argument list into our AST format.
4951    bool HasExplicitTemplateArgs = false;
4952    TemplateArgumentListInfo TemplateArgs;
4953    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
4954      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
4955      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
4956      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
4957      ASTTemplateArgsPtr TemplateArgsPtr(*this,
4958                                         TemplateId->getTemplateArgs(),
4959                                         TemplateId->NumArgs);
4960      translateTemplateArguments(TemplateArgsPtr,
4961                                 TemplateArgs);
4962      TemplateArgsPtr.release();
4963
4964      HasExplicitTemplateArgs = true;
4965
4966      if (NewFD->isInvalidDecl()) {
4967        HasExplicitTemplateArgs = false;
4968      } else if (FunctionTemplate) {
4969        // Function template with explicit template arguments.
4970        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
4971          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
4972
4973        HasExplicitTemplateArgs = false;
4974      } else if (!isFunctionTemplateSpecialization &&
4975                 !D.getDeclSpec().isFriendSpecified()) {
4976        // We have encountered something that the user meant to be a
4977        // specialization (because it has explicitly-specified template
4978        // arguments) but that was not introduced with a "template<>" (or had
4979        // too few of them).
4980        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
4981          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
4982          << FixItHint::CreateInsertion(
4983                                        D.getDeclSpec().getSourceRange().getBegin(),
4984                                                  "template<> ");
4985        isFunctionTemplateSpecialization = true;
4986      } else {
4987        // "friend void foo<>(int);" is an implicit specialization decl.
4988        isFunctionTemplateSpecialization = true;
4989      }
4990    } else if (isFriend && isFunctionTemplateSpecialization) {
4991      // This combination is only possible in a recovery case;  the user
4992      // wrote something like:
4993      //   template <> friend void foo(int);
4994      // which we're recovering from as if the user had written:
4995      //   friend void foo<>(int);
4996      // Go ahead and fake up a template id.
4997      HasExplicitTemplateArgs = true;
4998        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
4999      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
5000    }
5001
5002    // If it's a friend (and only if it's a friend), it's possible
5003    // that either the specialized function type or the specialized
5004    // template is dependent, and therefore matching will fail.  In
5005    // this case, don't check the specialization yet.
5006    if (isFunctionTemplateSpecialization && isFriend &&
5007        (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
5008      assert(HasExplicitTemplateArgs &&
5009             "friend function specialization without template args");
5010      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
5011                                                       Previous))
5012        NewFD->setInvalidDecl();
5013    } else if (isFunctionTemplateSpecialization) {
5014      if (CurContext->isDependentContext() && CurContext->isRecord()
5015          && !isFriend) {
5016        isDependentClassScopeExplicitSpecialization = true;
5017        Diag(NewFD->getLocation(), getLangOptions().MicrosoftExt ?
5018          diag::ext_function_specialization_in_class :
5019          diag::err_function_specialization_in_class)
5020          << NewFD->getDeclName();
5021      } else if (CheckFunctionTemplateSpecialization(NewFD,
5022                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5023                                                     Previous))
5024        NewFD->setInvalidDecl();
5025
5026      // C++ [dcl.stc]p1:
5027      //   A storage-class-specifier shall not be specified in an explicit
5028      //   specialization (14.7.3)
5029      if (SC != SC_None) {
5030        if (SC != NewFD->getStorageClass())
5031          Diag(NewFD->getLocation(),
5032               diag::err_explicit_specialization_inconsistent_storage_class)
5033            << SC
5034            << FixItHint::CreateRemoval(
5035                                      D.getDeclSpec().getStorageClassSpecLoc());
5036
5037        else
5038          Diag(NewFD->getLocation(),
5039               diag::ext_explicit_specialization_storage_class)
5040            << FixItHint::CreateRemoval(
5041                                      D.getDeclSpec().getStorageClassSpecLoc());
5042      }
5043
5044    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
5045      if (CheckMemberSpecialization(NewFD, Previous))
5046          NewFD->setInvalidDecl();
5047    }
5048
5049    // Perform semantic checking on the function declaration.
5050    if (!isDependentClassScopeExplicitSpecialization) {
5051      if (NewFD->isInvalidDecl()) {
5052        // If this is a class member, mark the class invalid immediately.
5053        // This avoids some consistency errors later.
5054        if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
5055          methodDecl->getParent()->setInvalidDecl();
5056      } else {
5057        if (NewFD->isMain())
5058          CheckMain(NewFD, D.getDeclSpec());
5059        CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
5060                                 Redeclaration);
5061      }
5062    }
5063
5064    assert((NewFD->isInvalidDecl() || !Redeclaration ||
5065            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5066           "previous declaration set still overloaded");
5067
5068    NamedDecl *PrincipalDecl = (FunctionTemplate
5069                                ? cast<NamedDecl>(FunctionTemplate)
5070                                : NewFD);
5071
5072    if (isFriend && Redeclaration) {
5073      AccessSpecifier Access = AS_public;
5074      if (!NewFD->isInvalidDecl())
5075        Access = NewFD->getPreviousDeclaration()->getAccess();
5076
5077      NewFD->setAccess(Access);
5078      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
5079
5080      PrincipalDecl->setObjectOfFriendDecl(true);
5081    }
5082
5083    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
5084        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
5085      PrincipalDecl->setNonMemberOperator();
5086
5087    // If we have a function template, check the template parameter
5088    // list. This will check and merge default template arguments.
5089    if (FunctionTemplate) {
5090      FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
5091      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
5092                                 PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
5093                            D.getDeclSpec().isFriendSpecified()
5094                              ? (IsFunctionDefinition
5095                                   ? TPC_FriendFunctionTemplateDefinition
5096                                   : TPC_FriendFunctionTemplate)
5097                              : (D.getCXXScopeSpec().isSet() &&
5098                                 DC && DC->isRecord() &&
5099                                 DC->isDependentContext())
5100                                  ? TPC_ClassTemplateMember
5101                                  : TPC_FunctionTemplate);
5102    }
5103
5104    if (NewFD->isInvalidDecl()) {
5105      // Ignore all the rest of this.
5106    } else if (!Redeclaration) {
5107      // Fake up an access specifier if it's supposed to be a class member.
5108      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
5109        NewFD->setAccess(AS_public);
5110
5111      // Qualified decls generally require a previous declaration.
5112      if (D.getCXXScopeSpec().isSet()) {
5113        // ...with the major exception of templated-scope or
5114        // dependent-scope friend declarations.
5115
5116        // TODO: we currently also suppress this check in dependent
5117        // contexts because (1) the parameter depth will be off when
5118        // matching friend templates and (2) we might actually be
5119        // selecting a friend based on a dependent factor.  But there
5120        // are situations where these conditions don't apply and we
5121        // can actually do this check immediately.
5122        if (isFriend &&
5123            (TemplateParamLists.size() ||
5124             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
5125             CurContext->isDependentContext())) {
5126          // ignore these
5127        } else {
5128          // The user tried to provide an out-of-line definition for a
5129          // function that is a member of a class or namespace, but there
5130          // was no such member function declared (C++ [class.mfct]p2,
5131          // C++ [namespace.memdef]p2). For example:
5132          //
5133          // class X {
5134          //   void f() const;
5135          // };
5136          //
5137          // void X::f() { } // ill-formed
5138          //
5139          // Complain about this problem, and attempt to suggest close
5140          // matches (e.g., those that differ only in cv-qualifiers and
5141          // whether the parameter types are references).
5142
5143          DiagnoseInvalidRedeclaration(*this, NewFD, false);
5144        }
5145
5146        // Unqualified local friend declarations are required to resolve
5147        // to something.
5148      } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
5149        DiagnoseInvalidRedeclaration(*this, NewFD, true);
5150      }
5151
5152    } else if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
5153               !isFriend && !isFunctionTemplateSpecialization &&
5154               !isExplicitSpecialization) {
5155      // An out-of-line member function declaration must also be a
5156      // definition (C++ [dcl.meaning]p1).
5157      // Note that this is not the case for explicit specializations of
5158      // function templates or member functions of class templates, per
5159      // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
5160      // for compatibility with old SWIG code which likes to generate them.
5161      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
5162        << D.getCXXScopeSpec().getRange();
5163    }
5164  }
5165
5166
5167  // Handle attributes. We need to have merged decls when handling attributes
5168  // (for example to check for conflicts, etc).
5169  // FIXME: This needs to happen before we merge declarations. Then,
5170  // let attribute merging cope with attribute conflicts.
5171  ProcessDeclAttributes(S, NewFD, D,
5172                        /*NonInheritable=*/false, /*Inheritable=*/true);
5173
5174  // attributes declared post-definition are currently ignored
5175  // FIXME: This should happen during attribute merging
5176  if (Redeclaration && Previous.isSingleResult()) {
5177    const FunctionDecl *Def;
5178    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
5179    if (PrevFD && PrevFD->isDefined(Def) && D.hasAttributes()) {
5180      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
5181      Diag(Def->getLocation(), diag::note_previous_definition);
5182    }
5183  }
5184
5185  AddKnownFunctionAttributes(NewFD);
5186
5187  if (NewFD->hasAttr<OverloadableAttr>() &&
5188      !NewFD->getType()->getAs<FunctionProtoType>()) {
5189    Diag(NewFD->getLocation(),
5190         diag::err_attribute_overloadable_no_prototype)
5191      << NewFD;
5192
5193    // Turn this into a variadic function with no parameters.
5194    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
5195    FunctionProtoType::ExtProtoInfo EPI;
5196    EPI.Variadic = true;
5197    EPI.ExtInfo = FT->getExtInfo();
5198
5199    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
5200    NewFD->setType(R);
5201  }
5202
5203  // If there's a #pragma GCC visibility in scope, and this isn't a class
5204  // member, set the visibility of this function.
5205  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
5206    AddPushedVisibilityAttribute(NewFD);
5207
5208  // If this is a locally-scoped extern C function, update the
5209  // map of such names.
5210  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
5211      && !NewFD->isInvalidDecl())
5212    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
5213
5214  // Set this FunctionDecl's range up to the right paren.
5215  NewFD->setRangeEnd(D.getSourceRange().getEnd());
5216
5217  if (getLangOptions().CPlusPlus) {
5218    if (FunctionTemplate) {
5219      if (NewFD->isInvalidDecl())
5220        FunctionTemplate->setInvalidDecl();
5221      return FunctionTemplate;
5222    }
5223  }
5224
5225  MarkUnusedFileScopedDecl(NewFD);
5226
5227  if (getLangOptions().CUDA)
5228    if (IdentifierInfo *II = NewFD->getIdentifier())
5229      if (!NewFD->isInvalidDecl() &&
5230          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5231        if (II->isStr("cudaConfigureCall")) {
5232          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
5233            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
5234
5235          Context.setcudaConfigureCallDecl(NewFD);
5236        }
5237      }
5238
5239  // Here we have an function template explicit specialization at class scope.
5240  // The actually specialization will be postponed to template instatiation
5241  // time via the ClassScopeFunctionSpecializationDecl node.
5242  if (isDependentClassScopeExplicitSpecialization) {
5243    ClassScopeFunctionSpecializationDecl *NewSpec =
5244                         ClassScopeFunctionSpecializationDecl::Create(
5245                                Context, CurContext,  SourceLocation(),
5246                                cast<CXXMethodDecl>(NewFD));
5247    CurContext->addDecl(NewSpec);
5248    AddToScope = false;
5249  }
5250
5251  return NewFD;
5252}
5253
5254/// \brief Perform semantic checking of a new function declaration.
5255///
5256/// Performs semantic analysis of the new function declaration
5257/// NewFD. This routine performs all semantic checking that does not
5258/// require the actual declarator involved in the declaration, and is
5259/// used both for the declaration of functions as they are parsed
5260/// (called via ActOnDeclarator) and for the declaration of functions
5261/// that have been instantiated via C++ template instantiation (called
5262/// via InstantiateDecl).
5263///
5264/// \param IsExplicitSpecialiation whether this new function declaration is
5265/// an explicit specialization of the previous declaration.
5266///
5267/// This sets NewFD->isInvalidDecl() to true if there was an error.
5268void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
5269                                    LookupResult &Previous,
5270                                    bool IsExplicitSpecialization,
5271                                    bool &Redeclaration) {
5272  assert(!NewFD->getResultType()->isVariablyModifiedType()
5273         && "Variably modified return types are not handled here");
5274
5275  // Check for a previous declaration of this name.
5276  if (Previous.empty() && NewFD->isExternC()) {
5277    // Since we did not find anything by this name and we're declaring
5278    // an extern "C" function, look for a non-visible extern "C"
5279    // declaration with the same name.
5280    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5281      = findLocallyScopedExternalDecl(NewFD->getDeclName());
5282    if (Pos != LocallyScopedExternalDecls.end())
5283      Previous.addDecl(Pos->second);
5284  }
5285
5286  // Merge or overload the declaration with an existing declaration of
5287  // the same name, if appropriate.
5288  if (!Previous.empty()) {
5289    // Determine whether NewFD is an overload of PrevDecl or
5290    // a declaration that requires merging. If it's an overload,
5291    // there's no more work to do here; we'll just add the new
5292    // function to the scope.
5293
5294    NamedDecl *OldDecl = 0;
5295    if (!AllowOverloadingOfFunction(Previous, Context)) {
5296      Redeclaration = true;
5297      OldDecl = Previous.getFoundDecl();
5298    } else {
5299      switch (CheckOverload(S, NewFD, Previous, OldDecl,
5300                            /*NewIsUsingDecl*/ false)) {
5301      case Ovl_Match:
5302        Redeclaration = true;
5303        break;
5304
5305      case Ovl_NonFunction:
5306        Redeclaration = true;
5307        break;
5308
5309      case Ovl_Overload:
5310        Redeclaration = false;
5311        break;
5312      }
5313
5314      if (!getLangOptions().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
5315        // If a function name is overloadable in C, then every function
5316        // with that name must be marked "overloadable".
5317        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
5318          << Redeclaration << NewFD;
5319        NamedDecl *OverloadedDecl = 0;
5320        if (Redeclaration)
5321          OverloadedDecl = OldDecl;
5322        else if (!Previous.empty())
5323          OverloadedDecl = Previous.getRepresentativeDecl();
5324        if (OverloadedDecl)
5325          Diag(OverloadedDecl->getLocation(),
5326               diag::note_attribute_overloadable_prev_overload);
5327        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
5328                                                        Context));
5329      }
5330    }
5331
5332    if (Redeclaration) {
5333      // NewFD and OldDecl represent declarations that need to be
5334      // merged.
5335      if (MergeFunctionDecl(NewFD, OldDecl))
5336        return NewFD->setInvalidDecl();
5337
5338      Previous.clear();
5339      Previous.addDecl(OldDecl);
5340
5341      if (FunctionTemplateDecl *OldTemplateDecl
5342                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
5343        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
5344        FunctionTemplateDecl *NewTemplateDecl
5345          = NewFD->getDescribedFunctionTemplate();
5346        assert(NewTemplateDecl && "Template/non-template mismatch");
5347        if (CXXMethodDecl *Method
5348              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
5349          Method->setAccess(OldTemplateDecl->getAccess());
5350          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
5351        }
5352
5353        // If this is an explicit specialization of a member that is a function
5354        // template, mark it as a member specialization.
5355        if (IsExplicitSpecialization &&
5356            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
5357          NewTemplateDecl->setMemberSpecialization();
5358          assert(OldTemplateDecl->isMemberSpecialization());
5359        }
5360
5361        if (OldTemplateDecl->isModulePrivate())
5362          NewTemplateDecl->setModulePrivate();
5363
5364      } else {
5365        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
5366          NewFD->setAccess(OldDecl->getAccess());
5367        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
5368      }
5369    }
5370  }
5371
5372  // Semantic checking for this function declaration (in isolation).
5373  if (getLangOptions().CPlusPlus) {
5374    // C++-specific checks.
5375    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
5376      CheckConstructor(Constructor);
5377    } else if (CXXDestructorDecl *Destructor =
5378                dyn_cast<CXXDestructorDecl>(NewFD)) {
5379      CXXRecordDecl *Record = Destructor->getParent();
5380      QualType ClassType = Context.getTypeDeclType(Record);
5381
5382      // FIXME: Shouldn't we be able to perform this check even when the class
5383      // type is dependent? Both gcc and edg can handle that.
5384      if (!ClassType->isDependentType()) {
5385        DeclarationName Name
5386          = Context.DeclarationNames.getCXXDestructorName(
5387                                        Context.getCanonicalType(ClassType));
5388        if (NewFD->getDeclName() != Name) {
5389          Diag(NewFD->getLocation(), diag::err_destructor_name);
5390          return NewFD->setInvalidDecl();
5391        }
5392      }
5393    } else if (CXXConversionDecl *Conversion
5394               = dyn_cast<CXXConversionDecl>(NewFD)) {
5395      ActOnConversionDeclarator(Conversion);
5396    }
5397
5398    // Find any virtual functions that this function overrides.
5399    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
5400      if (!Method->isFunctionTemplateSpecialization() &&
5401          !Method->getDescribedFunctionTemplate()) {
5402        if (AddOverriddenMethods(Method->getParent(), Method)) {
5403          // If the function was marked as "static", we have a problem.
5404          if (NewFD->getStorageClass() == SC_Static) {
5405            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
5406              << NewFD->getDeclName();
5407            for (CXXMethodDecl::method_iterator
5408                      Overridden = Method->begin_overridden_methods(),
5409                   OverriddenEnd = Method->end_overridden_methods();
5410                 Overridden != OverriddenEnd;
5411                 ++Overridden) {
5412              Diag((*Overridden)->getLocation(),
5413                   diag::note_overridden_virtual_function);
5414            }
5415          }
5416        }
5417      }
5418    }
5419
5420    // Extra checking for C++ overloaded operators (C++ [over.oper]).
5421    if (NewFD->isOverloadedOperator() &&
5422        CheckOverloadedOperatorDeclaration(NewFD))
5423      return NewFD->setInvalidDecl();
5424
5425    // Extra checking for C++0x literal operators (C++0x [over.literal]).
5426    if (NewFD->getLiteralIdentifier() &&
5427        CheckLiteralOperatorDeclaration(NewFD))
5428      return NewFD->setInvalidDecl();
5429
5430    // In C++, check default arguments now that we have merged decls. Unless
5431    // the lexical context is the class, because in this case this is done
5432    // during delayed parsing anyway.
5433    if (!CurContext->isRecord())
5434      CheckCXXDefaultArguments(NewFD);
5435
5436    // If this function declares a builtin function, check the type of this
5437    // declaration against the expected type for the builtin.
5438    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
5439      ASTContext::GetBuiltinTypeError Error;
5440      QualType T = Context.GetBuiltinType(BuiltinID, Error);
5441      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
5442        // The type of this function differs from the type of the builtin,
5443        // so forget about the builtin entirely.
5444        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
5445      }
5446    }
5447  }
5448}
5449
5450void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
5451  // C++ [basic.start.main]p3:  A program that declares main to be inline
5452  //   or static is ill-formed.
5453  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
5454  //   shall not appear in a declaration of main.
5455  // static main is not an error under C99, but we should warn about it.
5456  if (FD->getStorageClass() == SC_Static)
5457    Diag(DS.getStorageClassSpecLoc(), getLangOptions().CPlusPlus
5458         ? diag::err_static_main : diag::warn_static_main)
5459      << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
5460  if (FD->isInlineSpecified())
5461    Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
5462      << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
5463
5464  QualType T = FD->getType();
5465  assert(T->isFunctionType() && "function decl is not of function type");
5466  const FunctionType* FT = T->getAs<FunctionType>();
5467
5468  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
5469    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
5470    FD->setInvalidDecl(true);
5471  }
5472
5473  // Treat protoless main() as nullary.
5474  if (isa<FunctionNoProtoType>(FT)) return;
5475
5476  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
5477  unsigned nparams = FTP->getNumArgs();
5478  assert(FD->getNumParams() == nparams);
5479
5480  bool HasExtraParameters = (nparams > 3);
5481
5482  // Darwin passes an undocumented fourth argument of type char**.  If
5483  // other platforms start sprouting these, the logic below will start
5484  // getting shifty.
5485  if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
5486    HasExtraParameters = false;
5487
5488  if (HasExtraParameters) {
5489    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
5490    FD->setInvalidDecl(true);
5491    nparams = 3;
5492  }
5493
5494  // FIXME: a lot of the following diagnostics would be improved
5495  // if we had some location information about types.
5496
5497  QualType CharPP =
5498    Context.getPointerType(Context.getPointerType(Context.CharTy));
5499  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
5500
5501  for (unsigned i = 0; i < nparams; ++i) {
5502    QualType AT = FTP->getArgType(i);
5503
5504    bool mismatch = true;
5505
5506    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
5507      mismatch = false;
5508    else if (Expected[i] == CharPP) {
5509      // As an extension, the following forms are okay:
5510      //   char const **
5511      //   char const * const *
5512      //   char * const *
5513
5514      QualifierCollector qs;
5515      const PointerType* PT;
5516      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
5517          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
5518          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
5519        qs.removeConst();
5520        mismatch = !qs.empty();
5521      }
5522    }
5523
5524    if (mismatch) {
5525      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
5526      // TODO: suggest replacing given type with expected type
5527      FD->setInvalidDecl(true);
5528    }
5529  }
5530
5531  if (nparams == 1 && !FD->isInvalidDecl()) {
5532    Diag(FD->getLocation(), diag::warn_main_one_arg);
5533  }
5534
5535  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
5536    Diag(FD->getLocation(), diag::err_main_template_decl);
5537    FD->setInvalidDecl();
5538  }
5539}
5540
5541bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
5542  // FIXME: Need strict checking.  In C89, we need to check for
5543  // any assignment, increment, decrement, function-calls, or
5544  // commas outside of a sizeof.  In C99, it's the same list,
5545  // except that the aforementioned are allowed in unevaluated
5546  // expressions.  Everything else falls under the
5547  // "may accept other forms of constant expressions" exception.
5548  // (We never end up here for C++, so the constant expression
5549  // rules there don't matter.)
5550  if (Init->isConstantInitializer(Context, false))
5551    return false;
5552  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
5553    << Init->getSourceRange();
5554  return true;
5555}
5556
5557namespace {
5558  // Visits an initialization expression to see if OrigDecl is evaluated in
5559  // its own initialization and throws a warning if it does.
5560  class SelfReferenceChecker
5561      : public EvaluatedExprVisitor<SelfReferenceChecker> {
5562    Sema &S;
5563    Decl *OrigDecl;
5564    bool isRecordType;
5565    bool isPODType;
5566
5567  public:
5568    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
5569
5570    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
5571                                                    S(S), OrigDecl(OrigDecl) {
5572      isPODType = false;
5573      isRecordType = false;
5574      if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
5575        isPODType = VD->getType().isPODType(S.Context);
5576        isRecordType = VD->getType()->isRecordType();
5577      }
5578    }
5579
5580    void VisitExpr(Expr *E) {
5581      if (isa<ObjCMessageExpr>(*E)) return;
5582      if (isRecordType) {
5583        Expr *expr = E;
5584        if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
5585          ValueDecl *VD = ME->getMemberDecl();
5586          if (isa<EnumConstantDecl>(VD) || isa<VarDecl>(VD)) return;
5587          expr = ME->getBase();
5588        }
5589        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(expr)) {
5590          HandleDeclRefExpr(DRE);
5591          return;
5592        }
5593      }
5594      Inherited::VisitExpr(E);
5595    }
5596
5597    void VisitMemberExpr(MemberExpr *E) {
5598      if (E->getType()->canDecayToPointerType()) return;
5599      if (isa<FieldDecl>(E->getMemberDecl()))
5600        if (DeclRefExpr *DRE
5601              = dyn_cast<DeclRefExpr>(E->getBase()->IgnoreParenImpCasts())) {
5602          HandleDeclRefExpr(DRE);
5603          return;
5604        }
5605      Inherited::VisitMemberExpr(E);
5606    }
5607
5608    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
5609      if ((!isRecordType &&E->getCastKind() == CK_LValueToRValue) ||
5610          (isRecordType && E->getCastKind() == CK_NoOp)) {
5611        Expr* SubExpr = E->getSubExpr()->IgnoreParenImpCasts();
5612        if (MemberExpr *ME = dyn_cast<MemberExpr>(SubExpr))
5613          SubExpr = ME->getBase()->IgnoreParenImpCasts();
5614        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SubExpr)) {
5615          HandleDeclRefExpr(DRE);
5616          return;
5617        }
5618      }
5619      Inherited::VisitImplicitCastExpr(E);
5620    }
5621
5622    void VisitUnaryOperator(UnaryOperator *E) {
5623      // For POD record types, addresses of its own members are well-defined.
5624      if (isRecordType && isPODType) return;
5625      Inherited::VisitUnaryOperator(E);
5626    }
5627
5628    void HandleDeclRefExpr(DeclRefExpr *DRE) {
5629      Decl* ReferenceDecl = DRE->getDecl();
5630      if (OrigDecl != ReferenceDecl) return;
5631      LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
5632                          Sema::NotForRedeclaration);
5633      S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
5634                            S.PDiag(diag::warn_uninit_self_reference_in_init)
5635                              << Result.getLookupName()
5636                              << OrigDecl->getLocation()
5637                              << DRE->getSourceRange());
5638    }
5639  };
5640}
5641
5642/// CheckSelfReference - Warns if OrigDecl is used in expression E.
5643void Sema::CheckSelfReference(Decl* OrigDecl, Expr *E) {
5644  SelfReferenceChecker(*this, OrigDecl).VisitExpr(E);
5645}
5646
5647/// AddInitializerToDecl - Adds the initializer Init to the
5648/// declaration dcl. If DirectInit is true, this is C++ direct
5649/// initialization rather than copy initialization.
5650void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
5651                                bool DirectInit, bool TypeMayContainAuto) {
5652  // If there is no declaration, there was an error parsing it.  Just ignore
5653  // the initializer.
5654  if (RealDecl == 0 || RealDecl->isInvalidDecl())
5655    return;
5656
5657  // Check for self-references within variable initializers.
5658  if (VarDecl *vd = dyn_cast<VarDecl>(RealDecl)) {
5659    // Variables declared within a function/method body are handled
5660    // by a dataflow analysis.
5661    if (!vd->hasLocalStorage() && !vd->isStaticLocal())
5662      CheckSelfReference(RealDecl, Init);
5663  }
5664  else {
5665    CheckSelfReference(RealDecl, Init);
5666  }
5667
5668  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
5669    // With declarators parsed the way they are, the parser cannot
5670    // distinguish between a normal initializer and a pure-specifier.
5671    // Thus this grotesque test.
5672    IntegerLiteral *IL;
5673    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
5674        Context.getCanonicalType(IL->getType()) == Context.IntTy)
5675      CheckPureMethod(Method, Init->getSourceRange());
5676    else {
5677      Diag(Method->getLocation(), diag::err_member_function_initialization)
5678        << Method->getDeclName() << Init->getSourceRange();
5679      Method->setInvalidDecl();
5680    }
5681    return;
5682  }
5683
5684  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
5685  if (!VDecl) {
5686    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
5687    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
5688    RealDecl->setInvalidDecl();
5689    return;
5690  }
5691
5692  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
5693  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
5694    TypeSourceInfo *DeducedType = 0;
5695    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
5696      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
5697        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
5698        << Init->getSourceRange();
5699    if (!DeducedType) {
5700      RealDecl->setInvalidDecl();
5701      return;
5702    }
5703    VDecl->setTypeSourceInfo(DeducedType);
5704    VDecl->setType(DeducedType->getType());
5705
5706    // In ARC, infer lifetime.
5707    if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
5708      VDecl->setInvalidDecl();
5709
5710    // If this is a redeclaration, check that the type we just deduced matches
5711    // the previously declared type.
5712    if (VarDecl *Old = VDecl->getPreviousDeclaration())
5713      MergeVarDeclTypes(VDecl, Old);
5714  }
5715
5716
5717  // A definition must end up with a complete type, which means it must be
5718  // complete with the restriction that an array type might be completed by the
5719  // initializer; note that later code assumes this restriction.
5720  QualType BaseDeclType = VDecl->getType();
5721  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
5722    BaseDeclType = Array->getElementType();
5723  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
5724                          diag::err_typecheck_decl_incomplete_type)) {
5725    RealDecl->setInvalidDecl();
5726    return;
5727  }
5728
5729  // The variable can not have an abstract class type.
5730  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
5731                             diag::err_abstract_type_in_decl,
5732                             AbstractVariableType))
5733    VDecl->setInvalidDecl();
5734
5735  const VarDecl *Def;
5736  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
5737    Diag(VDecl->getLocation(), diag::err_redefinition)
5738      << VDecl->getDeclName();
5739    Diag(Def->getLocation(), diag::note_previous_definition);
5740    VDecl->setInvalidDecl();
5741    return;
5742  }
5743
5744  const VarDecl* PrevInit = 0;
5745  if (getLangOptions().CPlusPlus) {
5746    // C++ [class.static.data]p4
5747    //   If a static data member is of const integral or const
5748    //   enumeration type, its declaration in the class definition can
5749    //   specify a constant-initializer which shall be an integral
5750    //   constant expression (5.19). In that case, the member can appear
5751    //   in integral constant expressions. The member shall still be
5752    //   defined in a namespace scope if it is used in the program and the
5753    //   namespace scope definition shall not contain an initializer.
5754    //
5755    // We already performed a redefinition check above, but for static
5756    // data members we also need to check whether there was an in-class
5757    // declaration with an initializer.
5758    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
5759      Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
5760      Diag(PrevInit->getLocation(), diag::note_previous_definition);
5761      return;
5762    }
5763
5764    if (VDecl->hasLocalStorage())
5765      getCurFunction()->setHasBranchProtectedScope();
5766
5767    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
5768      VDecl->setInvalidDecl();
5769      return;
5770    }
5771  }
5772
5773  // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
5774  // a kernel function cannot be initialized."
5775  if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
5776    Diag(VDecl->getLocation(), diag::err_local_cant_init);
5777    VDecl->setInvalidDecl();
5778    return;
5779  }
5780
5781  // Capture the variable that is being initialized and the style of
5782  // initialization.
5783  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
5784
5785  // FIXME: Poor source location information.
5786  InitializationKind Kind
5787    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
5788                                                   Init->getLocStart(),
5789                                                   Init->getLocEnd())
5790                : InitializationKind::CreateCopy(VDecl->getLocation(),
5791                                                 Init->getLocStart());
5792
5793  // Get the decls type and save a reference for later, since
5794  // CheckInitializerTypes may change it.
5795  QualType DclT = VDecl->getType(), SavT = DclT;
5796  if (VDecl->isLocalVarDecl()) {
5797    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
5798      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
5799      VDecl->setInvalidDecl();
5800    } else if (!VDecl->isInvalidDecl()) {
5801      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5802      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5803                                                MultiExprArg(*this, &Init, 1),
5804                                                &DclT);
5805      if (Result.isInvalid()) {
5806        VDecl->setInvalidDecl();
5807        return;
5808      }
5809
5810      Init = Result.takeAs<Expr>();
5811
5812      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
5813      // Don't check invalid declarations to avoid emitting useless diagnostics.
5814      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
5815        if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
5816          CheckForConstantInitializer(Init, DclT);
5817      }
5818    }
5819  } else if (VDecl->isStaticDataMember() &&
5820             VDecl->getLexicalDeclContext()->isRecord()) {
5821    // This is an in-class initialization for a static data member, e.g.,
5822    //
5823    // struct S {
5824    //   static const int value = 17;
5825    // };
5826
5827    // Try to perform the initialization regardless.
5828    if (!VDecl->isInvalidDecl()) {
5829      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5830      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5831                                          MultiExprArg(*this, &Init, 1),
5832                                          &DclT);
5833      if (Result.isInvalid()) {
5834        VDecl->setInvalidDecl();
5835        return;
5836      }
5837
5838      Init = Result.takeAs<Expr>();
5839    }
5840
5841    // C++ [class.mem]p4:
5842    //   A member-declarator can contain a constant-initializer only
5843    //   if it declares a static member (9.4) of const integral or
5844    //   const enumeration type, see 9.4.2.
5845    QualType T = VDecl->getType();
5846
5847    // Do nothing on dependent types.
5848    if (T->isDependentType()) {
5849
5850    // Require constness.
5851    } else if (!T.isConstQualified()) {
5852      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
5853        << Init->getSourceRange();
5854      VDecl->setInvalidDecl();
5855
5856    // We allow integer constant expressions in all cases.
5857    } else if (T->isIntegralOrEnumerationType()) {
5858      // Check whether the expression is a constant expression.
5859      SourceLocation Loc;
5860      if (Init->isValueDependent())
5861        ; // Nothing to check.
5862      else if (Init->isIntegerConstantExpr(Context, &Loc))
5863        ; // Ok, it's an ICE!
5864      else if (Init->isEvaluatable(Context)) {
5865        // If we can constant fold the initializer through heroics, accept it,
5866        // but report this as a use of an extension for -pedantic.
5867        Diag(Loc, diag::ext_in_class_initializer_non_constant)
5868          << Init->getSourceRange();
5869      } else {
5870        // Otherwise, this is some crazy unknown case.  Report the issue at the
5871        // location provided by the isIntegerConstantExpr failed check.
5872        Diag(Loc, diag::err_in_class_initializer_non_constant)
5873          << Init->getSourceRange();
5874        VDecl->setInvalidDecl();
5875      }
5876
5877    // We allow floating-point constants as an extension in C++03, and
5878    // C++0x has far more complicated rules that we don't really
5879    // implement fully.
5880    } else {
5881      bool Allowed = false;
5882      if (getLangOptions().CPlusPlus0x) {
5883        Allowed = T->isLiteralType();
5884      } else if (T->isFloatingType()) { // also permits complex, which is ok
5885        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
5886          << T << Init->getSourceRange();
5887        Allowed = true;
5888      }
5889
5890      if (!Allowed) {
5891        Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
5892          << T << Init->getSourceRange();
5893        VDecl->setInvalidDecl();
5894
5895      // TODO: there are probably expressions that pass here that shouldn't.
5896      } else if (!Init->isValueDependent() &&
5897                 !Init->isConstantInitializer(Context, false)) {
5898        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
5899          << Init->getSourceRange();
5900        VDecl->setInvalidDecl();
5901      }
5902    }
5903  } else if (VDecl->isFileVarDecl()) {
5904    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
5905        (!getLangOptions().CPlusPlus ||
5906         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
5907      Diag(VDecl->getLocation(), diag::warn_extern_init);
5908    if (!VDecl->isInvalidDecl()) {
5909      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5910      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5911                                                MultiExprArg(*this, &Init, 1),
5912                                                &DclT);
5913      if (Result.isInvalid()) {
5914        VDecl->setInvalidDecl();
5915        return;
5916      }
5917
5918      Init = Result.takeAs<Expr>();
5919    }
5920
5921    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
5922    // Don't check invalid declarations to avoid emitting useless diagnostics.
5923    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
5924      // C99 6.7.8p4. All file scoped initializers need to be constant.
5925      CheckForConstantInitializer(Init, DclT);
5926    }
5927  }
5928  // If the type changed, it means we had an incomplete type that was
5929  // completed by the initializer. For example:
5930  //   int ary[] = { 1, 3, 5 };
5931  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
5932  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
5933    VDecl->setType(DclT);
5934    Init->setType(DclT);
5935  }
5936
5937  // Check any implicit conversions within the expression.
5938  CheckImplicitConversions(Init, VDecl->getLocation());
5939
5940  if (!VDecl->isInvalidDecl())
5941    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
5942
5943  Init = MaybeCreateExprWithCleanups(Init);
5944  // Attach the initializer to the decl.
5945  VDecl->setInit(Init);
5946
5947  CheckCompleteVariableDeclaration(VDecl);
5948}
5949
5950/// ActOnInitializerError - Given that there was an error parsing an
5951/// initializer for the given declaration, try to return to some form
5952/// of sanity.
5953void Sema::ActOnInitializerError(Decl *D) {
5954  // Our main concern here is re-establishing invariants like "a
5955  // variable's type is either dependent or complete".
5956  if (!D || D->isInvalidDecl()) return;
5957
5958  VarDecl *VD = dyn_cast<VarDecl>(D);
5959  if (!VD) return;
5960
5961  // Auto types are meaningless if we can't make sense of the initializer.
5962  if (ParsingInitForAutoVars.count(D)) {
5963    D->setInvalidDecl();
5964    return;
5965  }
5966
5967  QualType Ty = VD->getType();
5968  if (Ty->isDependentType()) return;
5969
5970  // Require a complete type.
5971  if (RequireCompleteType(VD->getLocation(),
5972                          Context.getBaseElementType(Ty),
5973                          diag::err_typecheck_decl_incomplete_type)) {
5974    VD->setInvalidDecl();
5975    return;
5976  }
5977
5978  // Require an abstract type.
5979  if (RequireNonAbstractType(VD->getLocation(), Ty,
5980                             diag::err_abstract_type_in_decl,
5981                             AbstractVariableType)) {
5982    VD->setInvalidDecl();
5983    return;
5984  }
5985
5986  // Don't bother complaining about constructors or destructors,
5987  // though.
5988}
5989
5990void Sema::ActOnUninitializedDecl(Decl *RealDecl,
5991                                  bool TypeMayContainAuto) {
5992  // If there is no declaration, there was an error parsing it. Just ignore it.
5993  if (RealDecl == 0)
5994    return;
5995
5996  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
5997    QualType Type = Var->getType();
5998
5999    // C++0x [dcl.spec.auto]p3
6000    if (TypeMayContainAuto && Type->getContainedAutoType()) {
6001      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
6002        << Var->getDeclName() << Type;
6003      Var->setInvalidDecl();
6004      return;
6005    }
6006
6007    switch (Var->isThisDeclarationADefinition()) {
6008    case VarDecl::Definition:
6009      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
6010        break;
6011
6012      // We have an out-of-line definition of a static data member
6013      // that has an in-class initializer, so we type-check this like
6014      // a declaration.
6015      //
6016      // Fall through
6017
6018    case VarDecl::DeclarationOnly:
6019      // It's only a declaration.
6020
6021      // Block scope. C99 6.7p7: If an identifier for an object is
6022      // declared with no linkage (C99 6.2.2p6), the type for the
6023      // object shall be complete.
6024      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
6025          !Var->getLinkage() && !Var->isInvalidDecl() &&
6026          RequireCompleteType(Var->getLocation(), Type,
6027                              diag::err_typecheck_decl_incomplete_type))
6028        Var->setInvalidDecl();
6029
6030      // Make sure that the type is not abstract.
6031      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
6032          RequireNonAbstractType(Var->getLocation(), Type,
6033                                 diag::err_abstract_type_in_decl,
6034                                 AbstractVariableType))
6035        Var->setInvalidDecl();
6036      return;
6037
6038    case VarDecl::TentativeDefinition:
6039      // File scope. C99 6.9.2p2: A declaration of an identifier for an
6040      // object that has file scope without an initializer, and without a
6041      // storage-class specifier or with the storage-class specifier "static",
6042      // constitutes a tentative definition. Note: A tentative definition with
6043      // external linkage is valid (C99 6.2.2p5).
6044      if (!Var->isInvalidDecl()) {
6045        if (const IncompleteArrayType *ArrayT
6046                                    = Context.getAsIncompleteArrayType(Type)) {
6047          if (RequireCompleteType(Var->getLocation(),
6048                                  ArrayT->getElementType(),
6049                                  diag::err_illegal_decl_array_incomplete_type))
6050            Var->setInvalidDecl();
6051        } else if (Var->getStorageClass() == SC_Static) {
6052          // C99 6.9.2p3: If the declaration of an identifier for an object is
6053          // a tentative definition and has internal linkage (C99 6.2.2p3), the
6054          // declared type shall not be an incomplete type.
6055          // NOTE: code such as the following
6056          //     static struct s;
6057          //     struct s { int a; };
6058          // is accepted by gcc. Hence here we issue a warning instead of
6059          // an error and we do not invalidate the static declaration.
6060          // NOTE: to avoid multiple warnings, only check the first declaration.
6061          if (Var->getPreviousDeclaration() == 0)
6062            RequireCompleteType(Var->getLocation(), Type,
6063                                diag::ext_typecheck_decl_incomplete_type);
6064        }
6065      }
6066
6067      // Record the tentative definition; we're done.
6068      if (!Var->isInvalidDecl())
6069        TentativeDefinitions.push_back(Var);
6070      return;
6071    }
6072
6073    // Provide a specific diagnostic for uninitialized variable
6074    // definitions with incomplete array type.
6075    if (Type->isIncompleteArrayType()) {
6076      Diag(Var->getLocation(),
6077           diag::err_typecheck_incomplete_array_needs_initializer);
6078      Var->setInvalidDecl();
6079      return;
6080    }
6081
6082    // Provide a specific diagnostic for uninitialized variable
6083    // definitions with reference type.
6084    if (Type->isReferenceType()) {
6085      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
6086        << Var->getDeclName()
6087        << SourceRange(Var->getLocation(), Var->getLocation());
6088      Var->setInvalidDecl();
6089      return;
6090    }
6091
6092    // Do not attempt to type-check the default initializer for a
6093    // variable with dependent type.
6094    if (Type->isDependentType())
6095      return;
6096
6097    if (Var->isInvalidDecl())
6098      return;
6099
6100    if (RequireCompleteType(Var->getLocation(),
6101                            Context.getBaseElementType(Type),
6102                            diag::err_typecheck_decl_incomplete_type)) {
6103      Var->setInvalidDecl();
6104      return;
6105    }
6106
6107    // The variable can not have an abstract class type.
6108    if (RequireNonAbstractType(Var->getLocation(), Type,
6109                               diag::err_abstract_type_in_decl,
6110                               AbstractVariableType)) {
6111      Var->setInvalidDecl();
6112      return;
6113    }
6114
6115    // Check for jumps past the implicit initializer.  C++0x
6116    // clarifies that this applies to a "variable with automatic
6117    // storage duration", not a "local variable".
6118    // C++0x [stmt.dcl]p3
6119    //   A program that jumps from a point where a variable with automatic
6120    //   storage duration is not in scope to a point where it is in scope is
6121    //   ill-formed unless the variable has scalar type, class type with a
6122    //   trivial default constructor and a trivial destructor, a cv-qualified
6123    //   version of one of these types, or an array of one of the preceding
6124    //   types and is declared without an initializer.
6125    if (getLangOptions().CPlusPlus && Var->hasLocalStorage()) {
6126      if (const RecordType *Record
6127            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
6128        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
6129        if ((!getLangOptions().CPlusPlus0x && !CXXRecord->isPOD()) ||
6130            (getLangOptions().CPlusPlus0x &&
6131             (!CXXRecord->hasTrivialDefaultConstructor() ||
6132              !CXXRecord->hasTrivialDestructor())))
6133          getCurFunction()->setHasBranchProtectedScope();
6134      }
6135    }
6136
6137    // C++03 [dcl.init]p9:
6138    //   If no initializer is specified for an object, and the
6139    //   object is of (possibly cv-qualified) non-POD class type (or
6140    //   array thereof), the object shall be default-initialized; if
6141    //   the object is of const-qualified type, the underlying class
6142    //   type shall have a user-declared default
6143    //   constructor. Otherwise, if no initializer is specified for
6144    //   a non- static object, the object and its subobjects, if
6145    //   any, have an indeterminate initial value); if the object
6146    //   or any of its subobjects are of const-qualified type, the
6147    //   program is ill-formed.
6148    // C++0x [dcl.init]p11:
6149    //   If no initializer is specified for an object, the object is
6150    //   default-initialized; [...].
6151    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
6152    InitializationKind Kind
6153      = InitializationKind::CreateDefault(Var->getLocation());
6154
6155    InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
6156    ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
6157                                      MultiExprArg(*this, 0, 0));
6158    if (Init.isInvalid())
6159      Var->setInvalidDecl();
6160    else if (Init.get())
6161      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
6162
6163    CheckCompleteVariableDeclaration(Var);
6164  }
6165}
6166
6167void Sema::ActOnCXXForRangeDecl(Decl *D) {
6168  VarDecl *VD = dyn_cast<VarDecl>(D);
6169  if (!VD) {
6170    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
6171    D->setInvalidDecl();
6172    return;
6173  }
6174
6175  VD->setCXXForRangeDecl(true);
6176
6177  // for-range-declaration cannot be given a storage class specifier.
6178  int Error = -1;
6179  switch (VD->getStorageClassAsWritten()) {
6180  case SC_None:
6181    break;
6182  case SC_Extern:
6183    Error = 0;
6184    break;
6185  case SC_Static:
6186    Error = 1;
6187    break;
6188  case SC_PrivateExtern:
6189    Error = 2;
6190    break;
6191  case SC_Auto:
6192    Error = 3;
6193    break;
6194  case SC_Register:
6195    Error = 4;
6196    break;
6197  case SC_OpenCLWorkGroupLocal:
6198    llvm_unreachable("Unexpected storage class");
6199  }
6200  // FIXME: constexpr isn't allowed here.
6201  //if (DS.isConstexprSpecified())
6202  //  Error = 5;
6203  if (Error != -1) {
6204    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
6205      << VD->getDeclName() << Error;
6206    D->setInvalidDecl();
6207  }
6208}
6209
6210void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
6211  if (var->isInvalidDecl()) return;
6212
6213  // In ARC, don't allow jumps past the implicit initialization of a
6214  // local retaining variable.
6215  if (getLangOptions().ObjCAutoRefCount &&
6216      var->hasLocalStorage()) {
6217    switch (var->getType().getObjCLifetime()) {
6218    case Qualifiers::OCL_None:
6219    case Qualifiers::OCL_ExplicitNone:
6220    case Qualifiers::OCL_Autoreleasing:
6221      break;
6222
6223    case Qualifiers::OCL_Weak:
6224    case Qualifiers::OCL_Strong:
6225      getCurFunction()->setHasBranchProtectedScope();
6226      break;
6227    }
6228  }
6229
6230  // All the following checks are C++ only.
6231  if (!getLangOptions().CPlusPlus) return;
6232
6233  QualType baseType = Context.getBaseElementType(var->getType());
6234  if (baseType->isDependentType()) return;
6235
6236  // __block variables might require us to capture a copy-initializer.
6237  if (var->hasAttr<BlocksAttr>()) {
6238    // It's currently invalid to ever have a __block variable with an
6239    // array type; should we diagnose that here?
6240
6241    // Regardless, we don't want to ignore array nesting when
6242    // constructing this copy.
6243    QualType type = var->getType();
6244
6245    if (type->isStructureOrClassType()) {
6246      SourceLocation poi = var->getLocation();
6247      Expr *varRef = new (Context) DeclRefExpr(var, type, VK_LValue, poi);
6248      ExprResult result =
6249        PerformCopyInitialization(
6250                        InitializedEntity::InitializeBlock(poi, type, false),
6251                                  poi, Owned(varRef));
6252      if (!result.isInvalid()) {
6253        result = MaybeCreateExprWithCleanups(result);
6254        Expr *init = result.takeAs<Expr>();
6255        Context.setBlockVarCopyInits(var, init);
6256      }
6257    }
6258  }
6259
6260  // Check for global constructors.
6261  if (!var->getDeclContext()->isDependentContext() &&
6262      var->hasGlobalStorage() &&
6263      !var->isStaticLocal() &&
6264      var->getInit() &&
6265      !var->getInit()->isConstantInitializer(Context,
6266                                             baseType->isReferenceType()))
6267    Diag(var->getLocation(), diag::warn_global_constructor)
6268      << var->getInit()->getSourceRange();
6269
6270  // Require the destructor.
6271  if (const RecordType *recordType = baseType->getAs<RecordType>())
6272    FinalizeVarWithDestructor(var, recordType);
6273}
6274
6275/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
6276/// any semantic actions necessary after any initializer has been attached.
6277void
6278Sema::FinalizeDeclaration(Decl *ThisDecl) {
6279  // Note that we are no longer parsing the initializer for this declaration.
6280  ParsingInitForAutoVars.erase(ThisDecl);
6281}
6282
6283Sema::DeclGroupPtrTy
6284Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
6285                              Decl **Group, unsigned NumDecls) {
6286  SmallVector<Decl*, 8> Decls;
6287
6288  if (DS.isTypeSpecOwned())
6289    Decls.push_back(DS.getRepAsDecl());
6290
6291  for (unsigned i = 0; i != NumDecls; ++i)
6292    if (Decl *D = Group[i])
6293      Decls.push_back(D);
6294
6295  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
6296                              DS.getTypeSpecType() == DeclSpec::TST_auto);
6297}
6298
6299/// BuildDeclaratorGroup - convert a list of declarations into a declaration
6300/// group, performing any necessary semantic checking.
6301Sema::DeclGroupPtrTy
6302Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
6303                           bool TypeMayContainAuto) {
6304  // C++0x [dcl.spec.auto]p7:
6305  //   If the type deduced for the template parameter U is not the same in each
6306  //   deduction, the program is ill-formed.
6307  // FIXME: When initializer-list support is added, a distinction is needed
6308  // between the deduced type U and the deduced type which 'auto' stands for.
6309  //   auto a = 0, b = { 1, 2, 3 };
6310  // is legal because the deduced type U is 'int' in both cases.
6311  if (TypeMayContainAuto && NumDecls > 1) {
6312    QualType Deduced;
6313    CanQualType DeducedCanon;
6314    VarDecl *DeducedDecl = 0;
6315    for (unsigned i = 0; i != NumDecls; ++i) {
6316      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
6317        AutoType *AT = D->getType()->getContainedAutoType();
6318        // Don't reissue diagnostics when instantiating a template.
6319        if (AT && D->isInvalidDecl())
6320          break;
6321        if (AT && AT->isDeduced()) {
6322          QualType U = AT->getDeducedType();
6323          CanQualType UCanon = Context.getCanonicalType(U);
6324          if (Deduced.isNull()) {
6325            Deduced = U;
6326            DeducedCanon = UCanon;
6327            DeducedDecl = D;
6328          } else if (DeducedCanon != UCanon) {
6329            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
6330                 diag::err_auto_different_deductions)
6331              << Deduced << DeducedDecl->getDeclName()
6332              << U << D->getDeclName()
6333              << DeducedDecl->getInit()->getSourceRange()
6334              << D->getInit()->getSourceRange();
6335            D->setInvalidDecl();
6336            break;
6337          }
6338        }
6339      }
6340    }
6341  }
6342
6343  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
6344}
6345
6346
6347/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
6348/// to introduce parameters into function prototype scope.
6349Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
6350  const DeclSpec &DS = D.getDeclSpec();
6351
6352  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
6353  VarDecl::StorageClass StorageClass = SC_None;
6354  VarDecl::StorageClass StorageClassAsWritten = SC_None;
6355  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
6356    StorageClass = SC_Register;
6357    StorageClassAsWritten = SC_Register;
6358  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
6359    Diag(DS.getStorageClassSpecLoc(),
6360         diag::err_invalid_storage_class_in_func_decl);
6361    D.getMutableDeclSpec().ClearStorageClassSpecs();
6362  }
6363
6364  if (D.getDeclSpec().isThreadSpecified())
6365    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
6366  if (D.getDeclSpec().isConstexprSpecified())
6367    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
6368      << 0;
6369
6370  DiagnoseFunctionSpecifiers(D);
6371
6372  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6373  QualType parmDeclType = TInfo->getType();
6374
6375  if (getLangOptions().CPlusPlus) {
6376    // Check that there are no default arguments inside the type of this
6377    // parameter.
6378    CheckExtraCXXDefaultArguments(D);
6379
6380    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
6381    if (D.getCXXScopeSpec().isSet()) {
6382      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
6383        << D.getCXXScopeSpec().getRange();
6384      D.getCXXScopeSpec().clear();
6385    }
6386  }
6387
6388  // Ensure we have a valid name
6389  IdentifierInfo *II = 0;
6390  if (D.hasName()) {
6391    II = D.getIdentifier();
6392    if (!II) {
6393      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
6394        << GetNameForDeclarator(D).getName().getAsString();
6395      D.setInvalidType(true);
6396    }
6397  }
6398
6399  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
6400  if (II) {
6401    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
6402                   ForRedeclaration);
6403    LookupName(R, S);
6404    if (R.isSingleResult()) {
6405      NamedDecl *PrevDecl = R.getFoundDecl();
6406      if (PrevDecl->isTemplateParameter()) {
6407        // Maybe we will complain about the shadowed template parameter.
6408        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6409        // Just pretend that we didn't see the previous declaration.
6410        PrevDecl = 0;
6411      } else if (S->isDeclScope(PrevDecl)) {
6412        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
6413        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6414
6415        // Recover by removing the name
6416        II = 0;
6417        D.SetIdentifier(0, D.getIdentifierLoc());
6418        D.setInvalidType(true);
6419      }
6420    }
6421  }
6422
6423  // Temporarily put parameter variables in the translation unit, not
6424  // the enclosing context.  This prevents them from accidentally
6425  // looking like class members in C++.
6426  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
6427                                    D.getSourceRange().getBegin(),
6428                                    D.getIdentifierLoc(), II,
6429                                    parmDeclType, TInfo,
6430                                    StorageClass, StorageClassAsWritten);
6431
6432  if (D.isInvalidType())
6433    New->setInvalidDecl();
6434
6435  assert(S->isFunctionPrototypeScope());
6436  assert(S->getFunctionPrototypeDepth() >= 1);
6437  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
6438                    S->getNextFunctionPrototypeIndex());
6439
6440  // Add the parameter declaration into this scope.
6441  S->AddDecl(New);
6442  if (II)
6443    IdResolver.AddDecl(New);
6444
6445  ProcessDeclAttributes(S, New, D);
6446
6447  if (D.getDeclSpec().isModulePrivateSpecified())
6448    Diag(New->getLocation(), diag::err_module_private_local)
6449      << 1 << New->getDeclName()
6450      << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
6451      << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
6452
6453  if (New->hasAttr<BlocksAttr>()) {
6454    Diag(New->getLocation(), diag::err_block_on_nonlocal);
6455  }
6456  return New;
6457}
6458
6459/// \brief Synthesizes a variable for a parameter arising from a
6460/// typedef.
6461ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
6462                                              SourceLocation Loc,
6463                                              QualType T) {
6464  /* FIXME: setting StartLoc == Loc.
6465     Would it be worth to modify callers so as to provide proper source
6466     location for the unnamed parameters, embedding the parameter's type? */
6467  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
6468                                T, Context.getTrivialTypeSourceInfo(T, Loc),
6469                                           SC_None, SC_None, 0);
6470  Param->setImplicit();
6471  return Param;
6472}
6473
6474void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
6475                                    ParmVarDecl * const *ParamEnd) {
6476  // Don't diagnose unused-parameter errors in template instantiations; we
6477  // will already have done so in the template itself.
6478  if (!ActiveTemplateInstantiations.empty())
6479    return;
6480
6481  for (; Param != ParamEnd; ++Param) {
6482    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
6483        !(*Param)->hasAttr<UnusedAttr>()) {
6484      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
6485        << (*Param)->getDeclName();
6486    }
6487  }
6488}
6489
6490void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
6491                                                  ParmVarDecl * const *ParamEnd,
6492                                                  QualType ReturnTy,
6493                                                  NamedDecl *D) {
6494  if (LangOpts.NumLargeByValueCopy == 0) // No check.
6495    return;
6496
6497  // Warn if the return value is pass-by-value and larger than the specified
6498  // threshold.
6499  if (ReturnTy.isPODType(Context)) {
6500    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
6501    if (Size > LangOpts.NumLargeByValueCopy)
6502      Diag(D->getLocation(), diag::warn_return_value_size)
6503          << D->getDeclName() << Size;
6504  }
6505
6506  // Warn if any parameter is pass-by-value and larger than the specified
6507  // threshold.
6508  for (; Param != ParamEnd; ++Param) {
6509    QualType T = (*Param)->getType();
6510    if (!T.isPODType(Context))
6511      continue;
6512    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
6513    if (Size > LangOpts.NumLargeByValueCopy)
6514      Diag((*Param)->getLocation(), diag::warn_parameter_size)
6515          << (*Param)->getDeclName() << Size;
6516  }
6517}
6518
6519ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
6520                                  SourceLocation NameLoc, IdentifierInfo *Name,
6521                                  QualType T, TypeSourceInfo *TSInfo,
6522                                  VarDecl::StorageClass StorageClass,
6523                                  VarDecl::StorageClass StorageClassAsWritten) {
6524  // In ARC, infer a lifetime qualifier for appropriate parameter types.
6525  if (getLangOptions().ObjCAutoRefCount &&
6526      T.getObjCLifetime() == Qualifiers::OCL_None &&
6527      T->isObjCLifetimeType()) {
6528
6529    Qualifiers::ObjCLifetime lifetime;
6530
6531    // Special cases for arrays:
6532    //   - if it's const, use __unsafe_unretained
6533    //   - otherwise, it's an error
6534    if (T->isArrayType()) {
6535      if (!T.isConstQualified()) {
6536        Diag(NameLoc, diag::err_arc_array_param_no_ownership)
6537          << TSInfo->getTypeLoc().getSourceRange();
6538      }
6539      lifetime = Qualifiers::OCL_ExplicitNone;
6540    } else {
6541      lifetime = T->getObjCARCImplicitLifetime();
6542    }
6543    T = Context.getLifetimeQualifiedType(T, lifetime);
6544  }
6545
6546  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
6547                                         Context.getAdjustedParameterType(T),
6548                                         TSInfo,
6549                                         StorageClass, StorageClassAsWritten,
6550                                         0);
6551
6552  // Parameters can not be abstract class types.
6553  // For record types, this is done by the AbstractClassUsageDiagnoser once
6554  // the class has been completely parsed.
6555  if (!CurContext->isRecord() &&
6556      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
6557                             AbstractParamType))
6558    New->setInvalidDecl();
6559
6560  // Parameter declarators cannot be interface types. All ObjC objects are
6561  // passed by reference.
6562  if (T->isObjCObjectType()) {
6563    Diag(NameLoc,
6564         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
6565      << FixItHint::CreateInsertion(NameLoc, "*");
6566    T = Context.getObjCObjectPointerType(T);
6567    New->setType(T);
6568  }
6569
6570  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
6571  // duration shall not be qualified by an address-space qualifier."
6572  // Since all parameters have automatic store duration, they can not have
6573  // an address space.
6574  if (T.getAddressSpace() != 0) {
6575    Diag(NameLoc, diag::err_arg_with_address_space);
6576    New->setInvalidDecl();
6577  }
6578
6579  return New;
6580}
6581
6582void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
6583                                           SourceLocation LocAfterDecls) {
6584  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6585
6586  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
6587  // for a K&R function.
6588  if (!FTI.hasPrototype) {
6589    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
6590      --i;
6591      if (FTI.ArgInfo[i].Param == 0) {
6592        llvm::SmallString<256> Code;
6593        llvm::raw_svector_ostream(Code) << "  int "
6594                                        << FTI.ArgInfo[i].Ident->getName()
6595                                        << ";\n";
6596        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
6597          << FTI.ArgInfo[i].Ident
6598          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
6599
6600        // Implicitly declare the argument as type 'int' for lack of a better
6601        // type.
6602        AttributeFactory attrs;
6603        DeclSpec DS(attrs);
6604        const char* PrevSpec; // unused
6605        unsigned DiagID; // unused
6606        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
6607                           PrevSpec, DiagID);
6608        Declarator ParamD(DS, Declarator::KNRTypeListContext);
6609        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
6610        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
6611      }
6612    }
6613  }
6614}
6615
6616Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
6617                                         Declarator &D) {
6618  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
6619  assert(D.isFunctionDeclarator() && "Not a function declarator!");
6620  Scope *ParentScope = FnBodyScope->getParent();
6621
6622  Decl *DP = HandleDeclarator(ParentScope, D,
6623                              MultiTemplateParamsArg(*this),
6624                              /*IsFunctionDefinition=*/true);
6625  return ActOnStartOfFunctionDef(FnBodyScope, DP);
6626}
6627
6628static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
6629  // Don't warn about invalid declarations.
6630  if (FD->isInvalidDecl())
6631    return false;
6632
6633  // Or declarations that aren't global.
6634  if (!FD->isGlobal())
6635    return false;
6636
6637  // Don't warn about C++ member functions.
6638  if (isa<CXXMethodDecl>(FD))
6639    return false;
6640
6641  // Don't warn about 'main'.
6642  if (FD->isMain())
6643    return false;
6644
6645  // Don't warn about inline functions.
6646  if (FD->isInlined())
6647    return false;
6648
6649  // Don't warn about function templates.
6650  if (FD->getDescribedFunctionTemplate())
6651    return false;
6652
6653  // Don't warn about function template specializations.
6654  if (FD->isFunctionTemplateSpecialization())
6655    return false;
6656
6657  bool MissingPrototype = true;
6658  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
6659       Prev; Prev = Prev->getPreviousDeclaration()) {
6660    // Ignore any declarations that occur in function or method
6661    // scope, because they aren't visible from the header.
6662    if (Prev->getDeclContext()->isFunctionOrMethod())
6663      continue;
6664
6665    MissingPrototype = !Prev->getType()->isFunctionProtoType();
6666    break;
6667  }
6668
6669  return MissingPrototype;
6670}
6671
6672void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
6673  // Don't complain if we're in GNU89 mode and the previous definition
6674  // was an extern inline function.
6675  const FunctionDecl *Definition;
6676  if (FD->isDefined(Definition) &&
6677      !canRedefineFunction(Definition, getLangOptions())) {
6678    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
6679        Definition->getStorageClass() == SC_Extern)
6680      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
6681        << FD->getDeclName() << getLangOptions().CPlusPlus;
6682    else
6683      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
6684    Diag(Definition->getLocation(), diag::note_previous_definition);
6685  }
6686}
6687
6688Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
6689  // Clear the last template instantiation error context.
6690  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
6691
6692  if (!D)
6693    return D;
6694  FunctionDecl *FD = 0;
6695
6696  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
6697    FD = FunTmpl->getTemplatedDecl();
6698  else
6699    FD = cast<FunctionDecl>(D);
6700
6701  // Enter a new function scope
6702  PushFunctionScope();
6703
6704  // See if this is a redefinition.
6705  if (!FD->isLateTemplateParsed())
6706    CheckForFunctionRedefinition(FD);
6707
6708  // Builtin functions cannot be defined.
6709  if (unsigned BuiltinID = FD->getBuiltinID()) {
6710    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
6711      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
6712      FD->setInvalidDecl();
6713    }
6714  }
6715
6716  // The return type of a function definition must be complete
6717  // (C99 6.9.1p3, C++ [dcl.fct]p6).
6718  QualType ResultType = FD->getResultType();
6719  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
6720      !FD->isInvalidDecl() &&
6721      RequireCompleteType(FD->getLocation(), ResultType,
6722                          diag::err_func_def_incomplete_result))
6723    FD->setInvalidDecl();
6724
6725  // GNU warning -Wmissing-prototypes:
6726  //   Warn if a global function is defined without a previous
6727  //   prototype declaration. This warning is issued even if the
6728  //   definition itself provides a prototype. The aim is to detect
6729  //   global functions that fail to be declared in header files.
6730  if (ShouldWarnAboutMissingPrototype(FD))
6731    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
6732
6733  if (FnBodyScope)
6734    PushDeclContext(FnBodyScope, FD);
6735
6736  // Check the validity of our function parameters
6737  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
6738                           /*CheckParameterNames=*/true);
6739
6740  // Introduce our parameters into the function scope
6741  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
6742    ParmVarDecl *Param = FD->getParamDecl(p);
6743    Param->setOwningFunction(FD);
6744
6745    // If this has an identifier, add it to the scope stack.
6746    if (Param->getIdentifier() && FnBodyScope) {
6747      CheckShadow(FnBodyScope, Param);
6748
6749      PushOnScopeChains(Param, FnBodyScope);
6750    }
6751  }
6752
6753  // Checking attributes of current function definition
6754  // dllimport attribute.
6755  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
6756  if (DA && (!FD->getAttr<DLLExportAttr>())) {
6757    // dllimport attribute cannot be directly applied to definition.
6758    // Microsoft accepts dllimport for functions defined within class scope.
6759    if (!DA->isInherited() &&
6760        !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
6761      Diag(FD->getLocation(),
6762           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
6763        << "dllimport";
6764      FD->setInvalidDecl();
6765      return FD;
6766    }
6767
6768    // Visual C++ appears to not think this is an issue, so only issue
6769    // a warning when Microsoft extensions are disabled.
6770    if (!LangOpts.MicrosoftExt) {
6771      // If a symbol previously declared dllimport is later defined, the
6772      // attribute is ignored in subsequent references, and a warning is
6773      // emitted.
6774      Diag(FD->getLocation(),
6775           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
6776        << FD->getName() << "dllimport";
6777    }
6778  }
6779  return FD;
6780}
6781
6782/// \brief Given the set of return statements within a function body,
6783/// compute the variables that are subject to the named return value
6784/// optimization.
6785///
6786/// Each of the variables that is subject to the named return value
6787/// optimization will be marked as NRVO variables in the AST, and any
6788/// return statement that has a marked NRVO variable as its NRVO candidate can
6789/// use the named return value optimization.
6790///
6791/// This function applies a very simplistic algorithm for NRVO: if every return
6792/// statement in the function has the same NRVO candidate, that candidate is
6793/// the NRVO variable.
6794///
6795/// FIXME: Employ a smarter algorithm that accounts for multiple return
6796/// statements and the lifetimes of the NRVO candidates. We should be able to
6797/// find a maximal set of NRVO variables.
6798void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
6799  ReturnStmt **Returns = Scope->Returns.data();
6800
6801  const VarDecl *NRVOCandidate = 0;
6802  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
6803    if (!Returns[I]->getNRVOCandidate())
6804      return;
6805
6806    if (!NRVOCandidate)
6807      NRVOCandidate = Returns[I]->getNRVOCandidate();
6808    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
6809      return;
6810  }
6811
6812  if (NRVOCandidate)
6813    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
6814}
6815
6816Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
6817  return ActOnFinishFunctionBody(D, move(BodyArg), false);
6818}
6819
6820Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
6821                                    bool IsInstantiation) {
6822  FunctionDecl *FD = 0;
6823  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
6824  if (FunTmpl)
6825    FD = FunTmpl->getTemplatedDecl();
6826  else
6827    FD = dyn_cast_or_null<FunctionDecl>(dcl);
6828
6829  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
6830  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
6831
6832  if (FD) {
6833    FD->setBody(Body);
6834    if (FD->isMain()) {
6835      // C and C++ allow for main to automagically return 0.
6836      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
6837      FD->setHasImplicitReturnZero(true);
6838      WP.disableCheckFallThrough();
6839    } else if (FD->hasAttr<NakedAttr>()) {
6840      // If the function is marked 'naked', don't complain about missing return
6841      // statements.
6842      WP.disableCheckFallThrough();
6843    }
6844
6845    // MSVC permits the use of pure specifier (=0) on function definition,
6846    // defined at class scope, warn about this non standard construct.
6847    if (getLangOptions().MicrosoftExt && FD->isPure())
6848      Diag(FD->getLocation(), diag::warn_pure_function_definition);
6849
6850    if (!FD->isInvalidDecl()) {
6851      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
6852      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
6853                                             FD->getResultType(), FD);
6854
6855      // If this is a constructor, we need a vtable.
6856      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
6857        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
6858
6859      computeNRVO(Body, getCurFunction());
6860    }
6861
6862    assert(FD == getCurFunctionDecl() && "Function parsing confused");
6863  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
6864    assert(MD == getCurMethodDecl() && "Method parsing confused");
6865    MD->setBody(Body);
6866    if (Body)
6867      MD->setEndLoc(Body->getLocEnd());
6868    if (!MD->isInvalidDecl()) {
6869      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
6870      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
6871                                             MD->getResultType(), MD);
6872
6873      if (Body)
6874        computeNRVO(Body, getCurFunction());
6875    }
6876    if (ObjCShouldCallSuperDealloc) {
6877      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_dealloc);
6878      ObjCShouldCallSuperDealloc = false;
6879    }
6880    if (ObjCShouldCallSuperFinalize) {
6881      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_finalize);
6882      ObjCShouldCallSuperFinalize = false;
6883    }
6884  } else {
6885    return 0;
6886  }
6887
6888  assert(!ObjCShouldCallSuperDealloc && "This should only be set for "
6889         "ObjC methods, which should have been handled in the block above.");
6890  assert(!ObjCShouldCallSuperFinalize && "This should only be set for "
6891         "ObjC methods, which should have been handled in the block above.");
6892
6893  // Verify and clean out per-function state.
6894  if (Body) {
6895    // C++ constructors that have function-try-blocks can't have return
6896    // statements in the handlers of that block. (C++ [except.handle]p14)
6897    // Verify this.
6898    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
6899      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
6900
6901    // Verify that gotos and switch cases don't jump into scopes illegally.
6902    if (getCurFunction()->NeedsScopeChecking() &&
6903        !dcl->isInvalidDecl() &&
6904        !hasAnyUnrecoverableErrorsInThisFunction())
6905      DiagnoseInvalidJumps(Body);
6906
6907    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
6908      if (!Destructor->getParent()->isDependentType())
6909        CheckDestructor(Destructor);
6910
6911      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
6912                                             Destructor->getParent());
6913    }
6914
6915    // If any errors have occurred, clear out any temporaries that may have
6916    // been leftover. This ensures that these temporaries won't be picked up for
6917    // deletion in some later function.
6918    if (PP.getDiagnostics().hasErrorOccurred() ||
6919        PP.getDiagnostics().getSuppressAllDiagnostics()) {
6920      ExprTemporaries.clear();
6921      ExprNeedsCleanups = false;
6922    } else if (!isa<FunctionTemplateDecl>(dcl)) {
6923      // Since the body is valid, issue any analysis-based warnings that are
6924      // enabled.
6925      ActivePolicy = &WP;
6926    }
6927
6928    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
6929    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
6930  }
6931
6932  if (!IsInstantiation)
6933    PopDeclContext();
6934
6935  PopFunctionOrBlockScope(ActivePolicy, dcl);
6936
6937  // If any errors have occurred, clear out any temporaries that may have
6938  // been leftover. This ensures that these temporaries won't be picked up for
6939  // deletion in some later function.
6940  if (getDiagnostics().hasErrorOccurred()) {
6941    ExprTemporaries.clear();
6942    ExprNeedsCleanups = false;
6943  }
6944
6945  return dcl;
6946}
6947
6948
6949/// When we finish delayed parsing of an attribute, we must attach it to the
6950/// relevant Decl.
6951void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
6952                                       ParsedAttributes &Attrs) {
6953  ProcessDeclAttributeList(S, D, Attrs.getList());
6954}
6955
6956
6957/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
6958/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
6959NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
6960                                          IdentifierInfo &II, Scope *S) {
6961  // Before we produce a declaration for an implicitly defined
6962  // function, see whether there was a locally-scoped declaration of
6963  // this name as a function or variable. If so, use that
6964  // (non-visible) declaration, and complain about it.
6965  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
6966    = findLocallyScopedExternalDecl(&II);
6967  if (Pos != LocallyScopedExternalDecls.end()) {
6968    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
6969    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
6970    return Pos->second;
6971  }
6972
6973  // Extension in C99.  Legal in C90, but warn about it.
6974  if (II.getName().startswith("__builtin_"))
6975    Diag(Loc, diag::warn_builtin_unknown) << &II;
6976  else if (getLangOptions().C99)
6977    Diag(Loc, diag::ext_implicit_function_decl) << &II;
6978  else
6979    Diag(Loc, diag::warn_implicit_function_decl) << &II;
6980
6981  // Set a Declarator for the implicit definition: int foo();
6982  const char *Dummy;
6983  AttributeFactory attrFactory;
6984  DeclSpec DS(attrFactory);
6985  unsigned DiagID;
6986  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
6987  (void)Error; // Silence warning.
6988  assert(!Error && "Error setting up implicit decl!");
6989  Declarator D(DS, Declarator::BlockContext);
6990  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
6991                                             0, 0, true, SourceLocation(),
6992                                             SourceLocation(),
6993                                             EST_None, SourceLocation(),
6994                                             0, 0, 0, 0, Loc, Loc, D),
6995                DS.getAttributes(),
6996                SourceLocation());
6997  D.SetIdentifier(&II, Loc);
6998
6999  // Insert this function into translation-unit scope.
7000
7001  DeclContext *PrevDC = CurContext;
7002  CurContext = Context.getTranslationUnitDecl();
7003
7004  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
7005  FD->setImplicit();
7006
7007  CurContext = PrevDC;
7008
7009  AddKnownFunctionAttributes(FD);
7010
7011  return FD;
7012}
7013
7014/// \brief Adds any function attributes that we know a priori based on
7015/// the declaration of this function.
7016///
7017/// These attributes can apply both to implicitly-declared builtins
7018/// (like __builtin___printf_chk) or to library-declared functions
7019/// like NSLog or printf.
7020///
7021/// We need to check for duplicate attributes both here and where user-written
7022/// attributes are applied to declarations.
7023void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
7024  if (FD->isInvalidDecl())
7025    return;
7026
7027  // If this is a built-in function, map its builtin attributes to
7028  // actual attributes.
7029  if (unsigned BuiltinID = FD->getBuiltinID()) {
7030    // Handle printf-formatting attributes.
7031    unsigned FormatIdx;
7032    bool HasVAListArg;
7033    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
7034      if (!FD->getAttr<FormatAttr>())
7035        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7036                                                "printf", FormatIdx+1,
7037                                               HasVAListArg ? 0 : FormatIdx+2));
7038    }
7039    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
7040                                             HasVAListArg)) {
7041     if (!FD->getAttr<FormatAttr>())
7042       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7043                                              "scanf", FormatIdx+1,
7044                                              HasVAListArg ? 0 : FormatIdx+2));
7045    }
7046
7047    // Mark const if we don't care about errno and that is the only
7048    // thing preventing the function from being const. This allows
7049    // IRgen to use LLVM intrinsics for such functions.
7050    if (!getLangOptions().MathErrno &&
7051        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
7052      if (!FD->getAttr<ConstAttr>())
7053        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
7054    }
7055
7056    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
7057      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
7058    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
7059      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
7060  }
7061
7062  IdentifierInfo *Name = FD->getIdentifier();
7063  if (!Name)
7064    return;
7065  if ((!getLangOptions().CPlusPlus &&
7066       FD->getDeclContext()->isTranslationUnit()) ||
7067      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
7068       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
7069       LinkageSpecDecl::lang_c)) {
7070    // Okay: this could be a libc/libm/Objective-C function we know
7071    // about.
7072  } else
7073    return;
7074
7075  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
7076    // FIXME: NSLog and NSLogv should be target specific
7077    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
7078      // FIXME: We known better than our headers.
7079      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
7080    } else
7081      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7082                                             "printf", 1,
7083                                             Name->isStr("NSLogv") ? 0 : 2));
7084  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
7085    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
7086    // target-specific builtins, perhaps?
7087    if (!FD->getAttr<FormatAttr>())
7088      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7089                                             "printf", 2,
7090                                             Name->isStr("vasprintf") ? 0 : 3));
7091  }
7092}
7093
7094TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
7095                                    TypeSourceInfo *TInfo) {
7096  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
7097  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
7098
7099  if (!TInfo) {
7100    assert(D.isInvalidType() && "no declarator info for valid type");
7101    TInfo = Context.getTrivialTypeSourceInfo(T);
7102  }
7103
7104  // Scope manipulation handled by caller.
7105  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
7106                                           D.getSourceRange().getBegin(),
7107                                           D.getIdentifierLoc(),
7108                                           D.getIdentifier(),
7109                                           TInfo);
7110
7111  // Bail out immediately if we have an invalid declaration.
7112  if (D.isInvalidType()) {
7113    NewTD->setInvalidDecl();
7114    return NewTD;
7115  }
7116
7117  if (D.getDeclSpec().isModulePrivateSpecified()) {
7118    if (CurContext->isFunctionOrMethod())
7119      Diag(NewTD->getLocation(), diag::err_module_private_local)
7120        << 2 << NewTD->getDeclName()
7121        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
7122        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7123    else
7124      NewTD->setModulePrivate();
7125  }
7126
7127  // C++ [dcl.typedef]p8:
7128  //   If the typedef declaration defines an unnamed class (or
7129  //   enum), the first typedef-name declared by the declaration
7130  //   to be that class type (or enum type) is used to denote the
7131  //   class type (or enum type) for linkage purposes only.
7132  // We need to check whether the type was declared in the declaration.
7133  switch (D.getDeclSpec().getTypeSpecType()) {
7134  case TST_enum:
7135  case TST_struct:
7136  case TST_union:
7137  case TST_class: {
7138    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
7139
7140    // Do nothing if the tag is not anonymous or already has an
7141    // associated typedef (from an earlier typedef in this decl group).
7142    if (tagFromDeclSpec->getIdentifier()) break;
7143    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
7144
7145    // A well-formed anonymous tag must always be a TUK_Definition.
7146    assert(tagFromDeclSpec->isThisDeclarationADefinition());
7147
7148    // The type must match the tag exactly;  no qualifiers allowed.
7149    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
7150      break;
7151
7152    // Otherwise, set this is the anon-decl typedef for the tag.
7153    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
7154    break;
7155  }
7156
7157  default:
7158    break;
7159  }
7160
7161  return NewTD;
7162}
7163
7164
7165/// \brief Determine whether a tag with a given kind is acceptable
7166/// as a redeclaration of the given tag declaration.
7167///
7168/// \returns true if the new tag kind is acceptable, false otherwise.
7169bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
7170                                        TagTypeKind NewTag, bool isDefinition,
7171                                        SourceLocation NewTagLoc,
7172                                        const IdentifierInfo &Name) {
7173  // C++ [dcl.type.elab]p3:
7174  //   The class-key or enum keyword present in the
7175  //   elaborated-type-specifier shall agree in kind with the
7176  //   declaration to which the name in the elaborated-type-specifier
7177  //   refers. This rule also applies to the form of
7178  //   elaborated-type-specifier that declares a class-name or
7179  //   friend class since it can be construed as referring to the
7180  //   definition of the class. Thus, in any
7181  //   elaborated-type-specifier, the enum keyword shall be used to
7182  //   refer to an enumeration (7.2), the union class-key shall be
7183  //   used to refer to a union (clause 9), and either the class or
7184  //   struct class-key shall be used to refer to a class (clause 9)
7185  //   declared using the class or struct class-key.
7186  TagTypeKind OldTag = Previous->getTagKind();
7187  if (!isDefinition || (NewTag != TTK_Class && NewTag != TTK_Struct))
7188    if (OldTag == NewTag)
7189      return true;
7190
7191  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
7192      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
7193    // Warn about the struct/class tag mismatch.
7194    bool isTemplate = false;
7195    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
7196      isTemplate = Record->getDescribedClassTemplate();
7197
7198    if (!ActiveTemplateInstantiations.empty()) {
7199      // In a template instantiation, do not offer fix-its for tag mismatches
7200      // since they usually mess up the template instead of fixing the problem.
7201      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
7202        << (NewTag == TTK_Class) << isTemplate << &Name;
7203      return true;
7204    }
7205
7206    if (isDefinition) {
7207      // On definitions, check previous tags and issue a fix-it for each
7208      // one that doesn't match the current tag.
7209      if (Previous->getDefinition()) {
7210        // Don't suggest fix-its for redefinitions.
7211        return true;
7212      }
7213
7214      bool previousMismatch = false;
7215      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
7216           E(Previous->redecls_end()); I != E; ++I) {
7217        if (I->getTagKind() != NewTag) {
7218          if (!previousMismatch) {
7219            previousMismatch = true;
7220            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
7221              << (NewTag == TTK_Class) << isTemplate << &Name;
7222          }
7223          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
7224            << (NewTag == TTK_Class)
7225            << FixItHint::CreateReplacement(I->getInnerLocStart(),
7226                                            NewTag == TTK_Class?
7227                                            "class" : "struct");
7228        }
7229      }
7230      return true;
7231    }
7232
7233    // Check for a previous definition.  If current tag and definition
7234    // are same type, do nothing.  If no definition, but disagree with
7235    // with previous tag type, give a warning, but no fix-it.
7236    const TagDecl *Redecl = Previous->getDefinition() ?
7237                            Previous->getDefinition() : Previous;
7238    if (Redecl->getTagKind() == NewTag) {
7239      return true;
7240    }
7241
7242    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
7243      << (NewTag == TTK_Class)
7244      << isTemplate << &Name;
7245    Diag(Redecl->getLocation(), diag::note_previous_use);
7246
7247    // If there is a previous defintion, suggest a fix-it.
7248    if (Previous->getDefinition()) {
7249        Diag(NewTagLoc, diag::note_struct_class_suggestion)
7250          << (Redecl->getTagKind() == TTK_Class)
7251          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
7252                        Redecl->getTagKind() == TTK_Class? "class" : "struct");
7253    }
7254
7255    return true;
7256  }
7257  return false;
7258}
7259
7260/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
7261/// former case, Name will be non-null.  In the later case, Name will be null.
7262/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
7263/// reference/declaration/definition of a tag.
7264Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
7265                     SourceLocation KWLoc, CXXScopeSpec &SS,
7266                     IdentifierInfo *Name, SourceLocation NameLoc,
7267                     AttributeList *Attr, AccessSpecifier AS,
7268                     SourceLocation ModulePrivateLoc,
7269                     MultiTemplateParamsArg TemplateParameterLists,
7270                     bool &OwnedDecl, bool &IsDependent,
7271                     bool ScopedEnum, bool ScopedEnumUsesClassTag,
7272                     TypeResult UnderlyingType) {
7273  // If this is not a definition, it must have a name.
7274  assert((Name != 0 || TUK == TUK_Definition) &&
7275         "Nameless record must be a definition!");
7276  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
7277
7278  OwnedDecl = false;
7279  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
7280
7281  // FIXME: Check explicit specializations more carefully.
7282  bool isExplicitSpecialization = false;
7283  bool Invalid = false;
7284
7285  // We only need to do this matching if we have template parameters
7286  // or a scope specifier, which also conveniently avoids this work
7287  // for non-C++ cases.
7288  if (TemplateParameterLists.size() > 0 ||
7289      (SS.isNotEmpty() && TUK != TUK_Reference)) {
7290    if (TemplateParameterList *TemplateParams
7291          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
7292                                                TemplateParameterLists.get(),
7293                                                TemplateParameterLists.size(),
7294                                                    TUK == TUK_Friend,
7295                                                    isExplicitSpecialization,
7296                                                    Invalid)) {
7297      if (TemplateParams->size() > 0) {
7298        // This is a declaration or definition of a class template (which may
7299        // be a member of another template).
7300
7301        if (Invalid)
7302          return 0;
7303
7304        OwnedDecl = false;
7305        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
7306                                               SS, Name, NameLoc, Attr,
7307                                               TemplateParams, AS,
7308                                               ModulePrivateLoc,
7309                                           TemplateParameterLists.size() - 1,
7310                 (TemplateParameterList**) TemplateParameterLists.release());
7311        return Result.get();
7312      } else {
7313        // The "template<>" header is extraneous.
7314        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
7315          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
7316        isExplicitSpecialization = true;
7317      }
7318    }
7319  }
7320
7321  // Figure out the underlying type if this a enum declaration. We need to do
7322  // this early, because it's needed to detect if this is an incompatible
7323  // redeclaration.
7324  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
7325
7326  if (Kind == TTK_Enum) {
7327    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
7328      // No underlying type explicitly specified, or we failed to parse the
7329      // type, default to int.
7330      EnumUnderlying = Context.IntTy.getTypePtr();
7331    else if (UnderlyingType.get()) {
7332      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
7333      // integral type; any cv-qualification is ignored.
7334      TypeSourceInfo *TI = 0;
7335      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
7336      EnumUnderlying = TI;
7337
7338      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
7339
7340      if (!T->isDependentType() && !T->isIntegralType(Context)) {
7341        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
7342          << T;
7343        // Recover by falling back to int.
7344        EnumUnderlying = Context.IntTy.getTypePtr();
7345      }
7346
7347      if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI,
7348                                          UPPC_FixedUnderlyingType))
7349        EnumUnderlying = Context.IntTy.getTypePtr();
7350
7351    } else if (getLangOptions().MicrosoftExt)
7352      // Microsoft enums are always of int type.
7353      EnumUnderlying = Context.IntTy.getTypePtr();
7354  }
7355
7356  DeclContext *SearchDC = CurContext;
7357  DeclContext *DC = CurContext;
7358  bool isStdBadAlloc = false;
7359
7360  RedeclarationKind Redecl = ForRedeclaration;
7361  if (TUK == TUK_Friend || TUK == TUK_Reference)
7362    Redecl = NotForRedeclaration;
7363
7364  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
7365
7366  if (Name && SS.isNotEmpty()) {
7367    // We have a nested-name tag ('struct foo::bar').
7368
7369    // Check for invalid 'foo::'.
7370    if (SS.isInvalid()) {
7371      Name = 0;
7372      goto CreateNewDecl;
7373    }
7374
7375    // If this is a friend or a reference to a class in a dependent
7376    // context, don't try to make a decl for it.
7377    if (TUK == TUK_Friend || TUK == TUK_Reference) {
7378      DC = computeDeclContext(SS, false);
7379      if (!DC) {
7380        IsDependent = true;
7381        return 0;
7382      }
7383    } else {
7384      DC = computeDeclContext(SS, true);
7385      if (!DC) {
7386        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
7387          << SS.getRange();
7388        return 0;
7389      }
7390    }
7391
7392    if (RequireCompleteDeclContext(SS, DC))
7393      return 0;
7394
7395    SearchDC = DC;
7396    // Look-up name inside 'foo::'.
7397    LookupQualifiedName(Previous, DC);
7398
7399    if (Previous.isAmbiguous())
7400      return 0;
7401
7402    if (Previous.empty()) {
7403      // Name lookup did not find anything. However, if the
7404      // nested-name-specifier refers to the current instantiation,
7405      // and that current instantiation has any dependent base
7406      // classes, we might find something at instantiation time: treat
7407      // this as a dependent elaborated-type-specifier.
7408      // But this only makes any sense for reference-like lookups.
7409      if (Previous.wasNotFoundInCurrentInstantiation() &&
7410          (TUK == TUK_Reference || TUK == TUK_Friend)) {
7411        IsDependent = true;
7412        return 0;
7413      }
7414
7415      // A tag 'foo::bar' must already exist.
7416      Diag(NameLoc, diag::err_not_tag_in_scope)
7417        << Kind << Name << DC << SS.getRange();
7418      Name = 0;
7419      Invalid = true;
7420      goto CreateNewDecl;
7421    }
7422  } else if (Name) {
7423    // If this is a named struct, check to see if there was a previous forward
7424    // declaration or definition.
7425    // FIXME: We're looking into outer scopes here, even when we
7426    // shouldn't be. Doing so can result in ambiguities that we
7427    // shouldn't be diagnosing.
7428    LookupName(Previous, S);
7429
7430    if (Previous.isAmbiguous() &&
7431        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
7432      LookupResult::Filter F = Previous.makeFilter();
7433      while (F.hasNext()) {
7434        NamedDecl *ND = F.next();
7435        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
7436          F.erase();
7437      }
7438      F.done();
7439    }
7440
7441    // Note:  there used to be some attempt at recovery here.
7442    if (Previous.isAmbiguous())
7443      return 0;
7444
7445    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
7446      // FIXME: This makes sure that we ignore the contexts associated
7447      // with C structs, unions, and enums when looking for a matching
7448      // tag declaration or definition. See the similar lookup tweak
7449      // in Sema::LookupName; is there a better way to deal with this?
7450      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
7451        SearchDC = SearchDC->getParent();
7452    }
7453  } else if (S->isFunctionPrototypeScope()) {
7454    // If this is an enum declaration in function prototype scope, set its
7455    // initial context to the translation unit.
7456    SearchDC = Context.getTranslationUnitDecl();
7457  }
7458
7459  if (Previous.isSingleResult() &&
7460      Previous.getFoundDecl()->isTemplateParameter()) {
7461    // Maybe we will complain about the shadowed template parameter.
7462    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
7463    // Just pretend that we didn't see the previous declaration.
7464    Previous.clear();
7465  }
7466
7467  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
7468      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
7469    // This is a declaration of or a reference to "std::bad_alloc".
7470    isStdBadAlloc = true;
7471
7472    if (Previous.empty() && StdBadAlloc) {
7473      // std::bad_alloc has been implicitly declared (but made invisible to
7474      // name lookup). Fill in this implicit declaration as the previous
7475      // declaration, so that the declarations get chained appropriately.
7476      Previous.addDecl(getStdBadAlloc());
7477    }
7478  }
7479
7480  // If we didn't find a previous declaration, and this is a reference
7481  // (or friend reference), move to the correct scope.  In C++, we
7482  // also need to do a redeclaration lookup there, just in case
7483  // there's a shadow friend decl.
7484  if (Name && Previous.empty() &&
7485      (TUK == TUK_Reference || TUK == TUK_Friend)) {
7486    if (Invalid) goto CreateNewDecl;
7487    assert(SS.isEmpty());
7488
7489    if (TUK == TUK_Reference) {
7490      // C++ [basic.scope.pdecl]p5:
7491      //   -- for an elaborated-type-specifier of the form
7492      //
7493      //          class-key identifier
7494      //
7495      //      if the elaborated-type-specifier is used in the
7496      //      decl-specifier-seq or parameter-declaration-clause of a
7497      //      function defined in namespace scope, the identifier is
7498      //      declared as a class-name in the namespace that contains
7499      //      the declaration; otherwise, except as a friend
7500      //      declaration, the identifier is declared in the smallest
7501      //      non-class, non-function-prototype scope that contains the
7502      //      declaration.
7503      //
7504      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
7505      // C structs and unions.
7506      //
7507      // It is an error in C++ to declare (rather than define) an enum
7508      // type, including via an elaborated type specifier.  We'll
7509      // diagnose that later; for now, declare the enum in the same
7510      // scope as we would have picked for any other tag type.
7511      //
7512      // GNU C also supports this behavior as part of its incomplete
7513      // enum types extension, while GNU C++ does not.
7514      //
7515      // Find the context where we'll be declaring the tag.
7516      // FIXME: We would like to maintain the current DeclContext as the
7517      // lexical context,
7518      while (SearchDC->isRecord() || SearchDC->isTransparentContext())
7519        SearchDC = SearchDC->getParent();
7520
7521      // Find the scope where we'll be declaring the tag.
7522      while (S->isClassScope() ||
7523             (getLangOptions().CPlusPlus &&
7524              S->isFunctionPrototypeScope()) ||
7525             ((S->getFlags() & Scope::DeclScope) == 0) ||
7526             (S->getEntity() &&
7527              ((DeclContext *)S->getEntity())->isTransparentContext()))
7528        S = S->getParent();
7529    } else {
7530      assert(TUK == TUK_Friend);
7531      // C++ [namespace.memdef]p3:
7532      //   If a friend declaration in a non-local class first declares a
7533      //   class or function, the friend class or function is a member of
7534      //   the innermost enclosing namespace.
7535      SearchDC = SearchDC->getEnclosingNamespaceContext();
7536    }
7537
7538    // In C++, we need to do a redeclaration lookup to properly
7539    // diagnose some problems.
7540    if (getLangOptions().CPlusPlus) {
7541      Previous.setRedeclarationKind(ForRedeclaration);
7542      LookupQualifiedName(Previous, SearchDC);
7543    }
7544  }
7545
7546  if (!Previous.empty()) {
7547    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
7548
7549    // It's okay to have a tag decl in the same scope as a typedef
7550    // which hides a tag decl in the same scope.  Finding this
7551    // insanity with a redeclaration lookup can only actually happen
7552    // in C++.
7553    //
7554    // This is also okay for elaborated-type-specifiers, which is
7555    // technically forbidden by the current standard but which is
7556    // okay according to the likely resolution of an open issue;
7557    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
7558    if (getLangOptions().CPlusPlus) {
7559      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
7560        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
7561          TagDecl *Tag = TT->getDecl();
7562          if (Tag->getDeclName() == Name &&
7563              Tag->getDeclContext()->getRedeclContext()
7564                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
7565            PrevDecl = Tag;
7566            Previous.clear();
7567            Previous.addDecl(Tag);
7568            Previous.resolveKind();
7569          }
7570        }
7571      }
7572    }
7573
7574    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
7575      // If this is a use of a previous tag, or if the tag is already declared
7576      // in the same scope (so that the definition/declaration completes or
7577      // rementions the tag), reuse the decl.
7578      if (TUK == TUK_Reference || TUK == TUK_Friend ||
7579          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
7580        // Make sure that this wasn't declared as an enum and now used as a
7581        // struct or something similar.
7582        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
7583                                          TUK == TUK_Definition, KWLoc,
7584                                          *Name)) {
7585          bool SafeToContinue
7586            = (PrevTagDecl->getTagKind() != TTK_Enum &&
7587               Kind != TTK_Enum);
7588          if (SafeToContinue)
7589            Diag(KWLoc, diag::err_use_with_wrong_tag)
7590              << Name
7591              << FixItHint::CreateReplacement(SourceRange(KWLoc),
7592                                              PrevTagDecl->getKindName());
7593          else
7594            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
7595          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7596
7597          if (SafeToContinue)
7598            Kind = PrevTagDecl->getTagKind();
7599          else {
7600            // Recover by making this an anonymous redefinition.
7601            Name = 0;
7602            Previous.clear();
7603            Invalid = true;
7604          }
7605        }
7606
7607        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
7608          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
7609
7610          // All conflicts with previous declarations are recovered by
7611          // returning the previous declaration.
7612          if (ScopedEnum != PrevEnum->isScoped()) {
7613            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
7614              << PrevEnum->isScoped();
7615            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7616            return PrevTagDecl;
7617          }
7618          else if (EnumUnderlying && PrevEnum->isFixed()) {
7619            QualType T;
7620            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
7621                T = TI->getType();
7622            else
7623                T = QualType(EnumUnderlying.get<const Type*>(), 0);
7624
7625            if (!Context.hasSameUnqualifiedType(T, PrevEnum->getIntegerType())) {
7626              Diag(NameLoc.isValid() ? NameLoc : KWLoc,
7627                   diag::err_enum_redeclare_type_mismatch)
7628                << T
7629                << PrevEnum->getIntegerType();
7630              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7631              return PrevTagDecl;
7632            }
7633          }
7634          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
7635            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
7636              << PrevEnum->isFixed();
7637            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7638            return PrevTagDecl;
7639          }
7640        }
7641
7642        if (!Invalid) {
7643          // If this is a use, just return the declaration we found.
7644
7645          // FIXME: In the future, return a variant or some other clue
7646          // for the consumer of this Decl to know it doesn't own it.
7647          // For our current ASTs this shouldn't be a problem, but will
7648          // need to be changed with DeclGroups.
7649          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
7650               getLangOptions().MicrosoftExt)) || TUK == TUK_Friend)
7651            return PrevTagDecl;
7652
7653          // Diagnose attempts to redefine a tag.
7654          if (TUK == TUK_Definition) {
7655            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
7656              // If we're defining a specialization and the previous definition
7657              // is from an implicit instantiation, don't emit an error
7658              // here; we'll catch this in the general case below.
7659              if (!isExplicitSpecialization ||
7660                  !isa<CXXRecordDecl>(Def) ||
7661                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
7662                                               == TSK_ExplicitSpecialization) {
7663                Diag(NameLoc, diag::err_redefinition) << Name;
7664                Diag(Def->getLocation(), diag::note_previous_definition);
7665                // If this is a redefinition, recover by making this
7666                // struct be anonymous, which will make any later
7667                // references get the previous definition.
7668                Name = 0;
7669                Previous.clear();
7670                Invalid = true;
7671              }
7672            } else {
7673              // If the type is currently being defined, complain
7674              // about a nested redefinition.
7675              const TagType *Tag
7676                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
7677              if (Tag->isBeingDefined()) {
7678                Diag(NameLoc, diag::err_nested_redefinition) << Name;
7679                Diag(PrevTagDecl->getLocation(),
7680                     diag::note_previous_definition);
7681                Name = 0;
7682                Previous.clear();
7683                Invalid = true;
7684              }
7685            }
7686
7687            // Okay, this is definition of a previously declared or referenced
7688            // tag PrevDecl. We're going to create a new Decl for it.
7689          }
7690        }
7691        // If we get here we have (another) forward declaration or we
7692        // have a definition.  Just create a new decl.
7693
7694      } else {
7695        // If we get here, this is a definition of a new tag type in a nested
7696        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
7697        // new decl/type.  We set PrevDecl to NULL so that the entities
7698        // have distinct types.
7699        Previous.clear();
7700      }
7701      // If we get here, we're going to create a new Decl. If PrevDecl
7702      // is non-NULL, it's a definition of the tag declared by
7703      // PrevDecl. If it's NULL, we have a new definition.
7704
7705
7706    // Otherwise, PrevDecl is not a tag, but was found with tag
7707    // lookup.  This is only actually possible in C++, where a few
7708    // things like templates still live in the tag namespace.
7709    } else {
7710      assert(getLangOptions().CPlusPlus);
7711
7712      // Use a better diagnostic if an elaborated-type-specifier
7713      // found the wrong kind of type on the first
7714      // (non-redeclaration) lookup.
7715      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
7716          !Previous.isForRedeclaration()) {
7717        unsigned Kind = 0;
7718        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
7719        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
7720        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
7721        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
7722        Diag(PrevDecl->getLocation(), diag::note_declared_at);
7723        Invalid = true;
7724
7725      // Otherwise, only diagnose if the declaration is in scope.
7726      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
7727                                isExplicitSpecialization)) {
7728        // do nothing
7729
7730      // Diagnose implicit declarations introduced by elaborated types.
7731      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
7732        unsigned Kind = 0;
7733        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
7734        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
7735        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
7736        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
7737        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
7738        Invalid = true;
7739
7740      // Otherwise it's a declaration.  Call out a particularly common
7741      // case here.
7742      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
7743        unsigned Kind = 0;
7744        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
7745        Diag(NameLoc, diag::err_tag_definition_of_typedef)
7746          << Name << Kind << TND->getUnderlyingType();
7747        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
7748        Invalid = true;
7749
7750      // Otherwise, diagnose.
7751      } else {
7752        // The tag name clashes with something else in the target scope,
7753        // issue an error and recover by making this tag be anonymous.
7754        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
7755        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7756        Name = 0;
7757        Invalid = true;
7758      }
7759
7760      // The existing declaration isn't relevant to us; we're in a
7761      // new scope, so clear out the previous declaration.
7762      Previous.clear();
7763    }
7764  }
7765
7766CreateNewDecl:
7767
7768  TagDecl *PrevDecl = 0;
7769  if (Previous.isSingleResult())
7770    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
7771
7772  // If there is an identifier, use the location of the identifier as the
7773  // location of the decl, otherwise use the location of the struct/union
7774  // keyword.
7775  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
7776
7777  // Otherwise, create a new declaration. If there is a previous
7778  // declaration of the same entity, the two will be linked via
7779  // PrevDecl.
7780  TagDecl *New;
7781
7782  bool IsForwardReference = false;
7783  if (Kind == TTK_Enum) {
7784    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
7785    // enum X { A, B, C } D;    D should chain to X.
7786    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
7787                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
7788                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
7789    // If this is an undefined enum, warn.
7790    if (TUK != TUK_Definition && !Invalid) {
7791      TagDecl *Def;
7792      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
7793        // C++0x: 7.2p2: opaque-enum-declaration.
7794        // Conflicts are diagnosed above. Do nothing.
7795      }
7796      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
7797        Diag(Loc, diag::ext_forward_ref_enum_def)
7798          << New;
7799        Diag(Def->getLocation(), diag::note_previous_definition);
7800      } else {
7801        unsigned DiagID = diag::ext_forward_ref_enum;
7802        if (getLangOptions().MicrosoftExt)
7803          DiagID = diag::ext_ms_forward_ref_enum;
7804        else if (getLangOptions().CPlusPlus)
7805          DiagID = diag::err_forward_ref_enum;
7806        Diag(Loc, DiagID);
7807
7808        // If this is a forward-declared reference to an enumeration, make a
7809        // note of it; we won't actually be introducing the declaration into
7810        // the declaration context.
7811        if (TUK == TUK_Reference)
7812          IsForwardReference = true;
7813      }
7814    }
7815
7816    if (EnumUnderlying) {
7817      EnumDecl *ED = cast<EnumDecl>(New);
7818      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
7819        ED->setIntegerTypeSourceInfo(TI);
7820      else
7821        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
7822      ED->setPromotionType(ED->getIntegerType());
7823    }
7824
7825  } else {
7826    // struct/union/class
7827
7828    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
7829    // struct X { int A; } D;    D should chain to X.
7830    if (getLangOptions().CPlusPlus) {
7831      // FIXME: Look for a way to use RecordDecl for simple structs.
7832      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
7833                                  cast_or_null<CXXRecordDecl>(PrevDecl));
7834
7835      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
7836        StdBadAlloc = cast<CXXRecordDecl>(New);
7837    } else
7838      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
7839                               cast_or_null<RecordDecl>(PrevDecl));
7840  }
7841
7842  // Maybe add qualifier info.
7843  if (SS.isNotEmpty()) {
7844    if (SS.isSet()) {
7845      New->setQualifierInfo(SS.getWithLocInContext(Context));
7846      if (TemplateParameterLists.size() > 0) {
7847        New->setTemplateParameterListsInfo(Context,
7848                                           TemplateParameterLists.size(),
7849                    (TemplateParameterList**) TemplateParameterLists.release());
7850      }
7851    }
7852    else
7853      Invalid = true;
7854  }
7855
7856  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
7857    // Add alignment attributes if necessary; these attributes are checked when
7858    // the ASTContext lays out the structure.
7859    //
7860    // It is important for implementing the correct semantics that this
7861    // happen here (in act on tag decl). The #pragma pack stack is
7862    // maintained as a result of parser callbacks which can occur at
7863    // many points during the parsing of a struct declaration (because
7864    // the #pragma tokens are effectively skipped over during the
7865    // parsing of the struct).
7866    AddAlignmentAttributesForRecord(RD);
7867
7868    AddMsStructLayoutForRecord(RD);
7869  }
7870
7871  if (PrevDecl && PrevDecl->isModulePrivate())
7872    New->setModulePrivate();
7873  else if (ModulePrivateLoc.isValid()) {
7874    if (isExplicitSpecialization)
7875      Diag(New->getLocation(), diag::err_module_private_specialization)
7876        << 2
7877        << FixItHint::CreateRemoval(ModulePrivateLoc);
7878    else if (PrevDecl && !PrevDecl->isModulePrivate())
7879      diagnoseModulePrivateRedeclaration(New, PrevDecl, ModulePrivateLoc);
7880    // __module_private__ does not apply to local classes. However, we only
7881    // diagnose this as an error when the declaration specifiers are
7882    // freestanding. Here, we just ignore the __module_private__.
7883    // foobar
7884    else if (!SearchDC->isFunctionOrMethod())
7885      New->setModulePrivate();
7886  }
7887
7888  // If this is a specialization of a member class (of a class template),
7889  // check the specialization.
7890  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
7891    Invalid = true;
7892
7893  if (Invalid)
7894    New->setInvalidDecl();
7895
7896  if (Attr)
7897    ProcessDeclAttributeList(S, New, Attr);
7898
7899  // If we're declaring or defining a tag in function prototype scope
7900  // in C, note that this type can only be used within the function.
7901  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
7902    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
7903
7904  // Set the lexical context. If the tag has a C++ scope specifier, the
7905  // lexical context will be different from the semantic context.
7906  New->setLexicalDeclContext(CurContext);
7907
7908  // Mark this as a friend decl if applicable.
7909  // In Microsoft mode, a friend declaration also acts as a forward
7910  // declaration so we always pass true to setObjectOfFriendDecl to make
7911  // the tag name visible.
7912  if (TUK == TUK_Friend)
7913    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
7914                               getLangOptions().MicrosoftExt);
7915
7916  // Set the access specifier.
7917  if (!Invalid && SearchDC->isRecord())
7918    SetMemberAccessSpecifier(New, PrevDecl, AS);
7919
7920  if (TUK == TUK_Definition)
7921    New->startDefinition();
7922
7923  // If this has an identifier, add it to the scope stack.
7924  if (TUK == TUK_Friend) {
7925    // We might be replacing an existing declaration in the lookup tables;
7926    // if so, borrow its access specifier.
7927    if (PrevDecl)
7928      New->setAccess(PrevDecl->getAccess());
7929
7930    DeclContext *DC = New->getDeclContext()->getRedeclContext();
7931    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
7932    if (Name) // can be null along some error paths
7933      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
7934        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
7935  } else if (Name) {
7936    S = getNonFieldDeclScope(S);
7937    PushOnScopeChains(New, S, !IsForwardReference);
7938    if (IsForwardReference)
7939      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
7940
7941  } else {
7942    CurContext->addDecl(New);
7943  }
7944
7945  // If this is the C FILE type, notify the AST context.
7946  if (IdentifierInfo *II = New->getIdentifier())
7947    if (!New->isInvalidDecl() &&
7948        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
7949        II->isStr("FILE"))
7950      Context.setFILEDecl(New);
7951
7952  OwnedDecl = true;
7953  return New;
7954}
7955
7956void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
7957  AdjustDeclIfTemplate(TagD);
7958  TagDecl *Tag = cast<TagDecl>(TagD);
7959
7960  // Enter the tag context.
7961  PushDeclContext(S, Tag);
7962}
7963
7964void Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
7965  assert(isa<ObjCContainerDecl>(IDecl) &&
7966         "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
7967  DeclContext *OCD = cast<DeclContext>(IDecl);
7968  assert(getContainingDC(OCD) == CurContext &&
7969      "The next DeclContext should be lexically contained in the current one.");
7970  CurContext = OCD;
7971}
7972
7973void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
7974                                           SourceLocation FinalLoc,
7975                                           SourceLocation LBraceLoc) {
7976  AdjustDeclIfTemplate(TagD);
7977  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
7978
7979  FieldCollector->StartClass();
7980
7981  if (!Record->getIdentifier())
7982    return;
7983
7984  if (FinalLoc.isValid())
7985    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
7986
7987  // C++ [class]p2:
7988  //   [...] The class-name is also inserted into the scope of the
7989  //   class itself; this is known as the injected-class-name. For
7990  //   purposes of access checking, the injected-class-name is treated
7991  //   as if it were a public member name.
7992  CXXRecordDecl *InjectedClassName
7993    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
7994                            Record->getLocStart(), Record->getLocation(),
7995                            Record->getIdentifier(),
7996                            /*PrevDecl=*/0,
7997                            /*DelayTypeCreation=*/true);
7998  Context.getTypeDeclType(InjectedClassName, Record);
7999  InjectedClassName->setImplicit();
8000  InjectedClassName->setAccess(AS_public);
8001  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
8002      InjectedClassName->setDescribedClassTemplate(Template);
8003  PushOnScopeChains(InjectedClassName, S);
8004  assert(InjectedClassName->isInjectedClassName() &&
8005         "Broken injected-class-name");
8006}
8007
8008void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
8009                                    SourceLocation RBraceLoc) {
8010  AdjustDeclIfTemplate(TagD);
8011  TagDecl *Tag = cast<TagDecl>(TagD);
8012  Tag->setRBraceLoc(RBraceLoc);
8013
8014  if (isa<CXXRecordDecl>(Tag))
8015    FieldCollector->FinishClass();
8016
8017  // Exit this scope of this tag's definition.
8018  PopDeclContext();
8019
8020  // Notify the consumer that we've defined a tag.
8021  Consumer.HandleTagDeclDefinition(Tag);
8022}
8023
8024void Sema::ActOnObjCContainerFinishDefinition() {
8025  // Exit this scope of this interface definition.
8026  PopDeclContext();
8027}
8028
8029void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
8030  AdjustDeclIfTemplate(TagD);
8031  TagDecl *Tag = cast<TagDecl>(TagD);
8032  Tag->setInvalidDecl();
8033
8034  // We're undoing ActOnTagStartDefinition here, not
8035  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
8036  // the FieldCollector.
8037
8038  PopDeclContext();
8039}
8040
8041// Note that FieldName may be null for anonymous bitfields.
8042bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
8043                          QualType FieldTy, const Expr *BitWidth,
8044                          bool *ZeroWidth) {
8045  // Default to true; that shouldn't confuse checks for emptiness
8046  if (ZeroWidth)
8047    *ZeroWidth = true;
8048
8049  // C99 6.7.2.1p4 - verify the field type.
8050  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
8051  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
8052    // Handle incomplete types with specific error.
8053    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
8054      return true;
8055    if (FieldName)
8056      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
8057        << FieldName << FieldTy << BitWidth->getSourceRange();
8058    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
8059      << FieldTy << BitWidth->getSourceRange();
8060  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
8061                                             UPPC_BitFieldWidth))
8062    return true;
8063
8064  // If the bit-width is type- or value-dependent, don't try to check
8065  // it now.
8066  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
8067    return false;
8068
8069  llvm::APSInt Value;
8070  if (VerifyIntegerConstantExpression(BitWidth, &Value))
8071    return true;
8072
8073  if (Value != 0 && ZeroWidth)
8074    *ZeroWidth = false;
8075
8076  // Zero-width bitfield is ok for anonymous field.
8077  if (Value == 0 && FieldName)
8078    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
8079
8080  if (Value.isSigned() && Value.isNegative()) {
8081    if (FieldName)
8082      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
8083               << FieldName << Value.toString(10);
8084    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
8085      << Value.toString(10);
8086  }
8087
8088  if (!FieldTy->isDependentType()) {
8089    uint64_t TypeSize = Context.getTypeSize(FieldTy);
8090    if (Value.getZExtValue() > TypeSize) {
8091      if (!getLangOptions().CPlusPlus) {
8092        if (FieldName)
8093          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
8094            << FieldName << (unsigned)Value.getZExtValue()
8095            << (unsigned)TypeSize;
8096
8097        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
8098          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
8099      }
8100
8101      if (FieldName)
8102        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
8103          << FieldName << (unsigned)Value.getZExtValue()
8104          << (unsigned)TypeSize;
8105      else
8106        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
8107          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
8108    }
8109  }
8110
8111  return false;
8112}
8113
8114/// ActOnField - Each field of a C struct/union is passed into this in order
8115/// to create a FieldDecl object for it.
8116Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
8117                       Declarator &D, Expr *BitfieldWidth) {
8118  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
8119                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
8120                               /*HasInit=*/false, AS_public);
8121  return Res;
8122}
8123
8124/// HandleField - Analyze a field of a C struct or a C++ data member.
8125///
8126FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
8127                             SourceLocation DeclStart,
8128                             Declarator &D, Expr *BitWidth, bool HasInit,
8129                             AccessSpecifier AS) {
8130  IdentifierInfo *II = D.getIdentifier();
8131  SourceLocation Loc = DeclStart;
8132  if (II) Loc = D.getIdentifierLoc();
8133
8134  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8135  QualType T = TInfo->getType();
8136  if (getLangOptions().CPlusPlus) {
8137    CheckExtraCXXDefaultArguments(D);
8138
8139    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
8140                                        UPPC_DataMemberType)) {
8141      D.setInvalidType();
8142      T = Context.IntTy;
8143      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
8144    }
8145  }
8146
8147  DiagnoseFunctionSpecifiers(D);
8148
8149  if (D.getDeclSpec().isThreadSpecified())
8150    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
8151  if (D.getDeclSpec().isConstexprSpecified())
8152    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
8153      << 2;
8154
8155  // Check to see if this name was declared as a member previously
8156  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
8157  LookupName(Previous, S);
8158  assert((Previous.empty() || Previous.isOverloadedResult() ||
8159          Previous.isSingleResult())
8160    && "Lookup of member name should be either overloaded, single or null");
8161
8162  // If the name is overloaded then get any declaration else get the single result
8163  NamedDecl *PrevDecl = Previous.isOverloadedResult() ?
8164    Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>();
8165
8166  if (PrevDecl && PrevDecl->isTemplateParameter()) {
8167    // Maybe we will complain about the shadowed template parameter.
8168    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
8169    // Just pretend that we didn't see the previous declaration.
8170    PrevDecl = 0;
8171  }
8172
8173  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
8174    PrevDecl = 0;
8175
8176  bool Mutable
8177    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
8178  SourceLocation TSSL = D.getSourceRange().getBegin();
8179  FieldDecl *NewFD
8180    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, HasInit,
8181                     TSSL, AS, PrevDecl, &D);
8182
8183  if (NewFD->isInvalidDecl())
8184    Record->setInvalidDecl();
8185
8186  if (D.getDeclSpec().isModulePrivateSpecified())
8187    NewFD->setModulePrivate();
8188
8189  if (NewFD->isInvalidDecl() && PrevDecl) {
8190    // Don't introduce NewFD into scope; there's already something
8191    // with the same name in the same scope.
8192  } else if (II) {
8193    PushOnScopeChains(NewFD, S);
8194  } else
8195    Record->addDecl(NewFD);
8196
8197  return NewFD;
8198}
8199
8200/// \brief Build a new FieldDecl and check its well-formedness.
8201///
8202/// This routine builds a new FieldDecl given the fields name, type,
8203/// record, etc. \p PrevDecl should refer to any previous declaration
8204/// with the same name and in the same scope as the field to be
8205/// created.
8206///
8207/// \returns a new FieldDecl.
8208///
8209/// \todo The Declarator argument is a hack. It will be removed once
8210FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
8211                                TypeSourceInfo *TInfo,
8212                                RecordDecl *Record, SourceLocation Loc,
8213                                bool Mutable, Expr *BitWidth, bool HasInit,
8214                                SourceLocation TSSL,
8215                                AccessSpecifier AS, NamedDecl *PrevDecl,
8216                                Declarator *D) {
8217  IdentifierInfo *II = Name.getAsIdentifierInfo();
8218  bool InvalidDecl = false;
8219  if (D) InvalidDecl = D->isInvalidType();
8220
8221  // If we receive a broken type, recover by assuming 'int' and
8222  // marking this declaration as invalid.
8223  if (T.isNull()) {
8224    InvalidDecl = true;
8225    T = Context.IntTy;
8226  }
8227
8228  QualType EltTy = Context.getBaseElementType(T);
8229  if (!EltTy->isDependentType() &&
8230      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
8231    // Fields of incomplete type force their record to be invalid.
8232    Record->setInvalidDecl();
8233    InvalidDecl = true;
8234  }
8235
8236  // C99 6.7.2.1p8: A member of a structure or union may have any type other
8237  // than a variably modified type.
8238  if (!InvalidDecl && T->isVariablyModifiedType()) {
8239    bool SizeIsNegative;
8240    llvm::APSInt Oversized;
8241    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
8242                                                           SizeIsNegative,
8243                                                           Oversized);
8244    if (!FixedTy.isNull()) {
8245      Diag(Loc, diag::warn_illegal_constant_array_size);
8246      T = FixedTy;
8247    } else {
8248      if (SizeIsNegative)
8249        Diag(Loc, diag::err_typecheck_negative_array_size);
8250      else if (Oversized.getBoolValue())
8251        Diag(Loc, diag::err_array_too_large)
8252          << Oversized.toString(10);
8253      else
8254        Diag(Loc, diag::err_typecheck_field_variable_size);
8255      InvalidDecl = true;
8256    }
8257  }
8258
8259  // Fields can not have abstract class types
8260  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
8261                                             diag::err_abstract_type_in_decl,
8262                                             AbstractFieldType))
8263    InvalidDecl = true;
8264
8265  bool ZeroWidth = false;
8266  // If this is declared as a bit-field, check the bit-field.
8267  if (!InvalidDecl && BitWidth &&
8268      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
8269    InvalidDecl = true;
8270    BitWidth = 0;
8271    ZeroWidth = false;
8272  }
8273
8274  // Check that 'mutable' is consistent with the type of the declaration.
8275  if (!InvalidDecl && Mutable) {
8276    unsigned DiagID = 0;
8277    if (T->isReferenceType())
8278      DiagID = diag::err_mutable_reference;
8279    else if (T.isConstQualified())
8280      DiagID = diag::err_mutable_const;
8281
8282    if (DiagID) {
8283      SourceLocation ErrLoc = Loc;
8284      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
8285        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
8286      Diag(ErrLoc, DiagID);
8287      Mutable = false;
8288      InvalidDecl = true;
8289    }
8290  }
8291
8292  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
8293                                       BitWidth, Mutable, HasInit);
8294  if (InvalidDecl)
8295    NewFD->setInvalidDecl();
8296
8297  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
8298    Diag(Loc, diag::err_duplicate_member) << II;
8299    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8300    NewFD->setInvalidDecl();
8301  }
8302
8303  if (!InvalidDecl && getLangOptions().CPlusPlus) {
8304    if (Record->isUnion()) {
8305      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
8306        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
8307        if (RDecl->getDefinition()) {
8308          // C++ [class.union]p1: An object of a class with a non-trivial
8309          // constructor, a non-trivial copy constructor, a non-trivial
8310          // destructor, or a non-trivial copy assignment operator
8311          // cannot be a member of a union, nor can an array of such
8312          // objects.
8313          if (!getLangOptions().CPlusPlus0x && CheckNontrivialField(NewFD))
8314            NewFD->setInvalidDecl();
8315        }
8316      }
8317
8318      // C++ [class.union]p1: If a union contains a member of reference type,
8319      // the program is ill-formed.
8320      if (EltTy->isReferenceType()) {
8321        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
8322          << NewFD->getDeclName() << EltTy;
8323        NewFD->setInvalidDecl();
8324      }
8325    }
8326  }
8327
8328  // FIXME: We need to pass in the attributes given an AST
8329  // representation, not a parser representation.
8330  if (D)
8331    // FIXME: What to pass instead of TUScope?
8332    ProcessDeclAttributes(TUScope, NewFD, *D);
8333
8334  // In auto-retain/release, infer strong retension for fields of
8335  // retainable type.
8336  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
8337    NewFD->setInvalidDecl();
8338
8339  if (T.isObjCGCWeak())
8340    Diag(Loc, diag::warn_attribute_weak_on_field);
8341
8342  NewFD->setAccess(AS);
8343  return NewFD;
8344}
8345
8346bool Sema::CheckNontrivialField(FieldDecl *FD) {
8347  assert(FD);
8348  assert(getLangOptions().CPlusPlus && "valid check only for C++");
8349
8350  if (FD->isInvalidDecl())
8351    return true;
8352
8353  QualType EltTy = Context.getBaseElementType(FD->getType());
8354  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
8355    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
8356    if (RDecl->getDefinition()) {
8357      // We check for copy constructors before constructors
8358      // because otherwise we'll never get complaints about
8359      // copy constructors.
8360
8361      CXXSpecialMember member = CXXInvalid;
8362      if (!RDecl->hasTrivialCopyConstructor())
8363        member = CXXCopyConstructor;
8364      else if (!RDecl->hasTrivialDefaultConstructor())
8365        member = CXXDefaultConstructor;
8366      else if (!RDecl->hasTrivialCopyAssignment())
8367        member = CXXCopyAssignment;
8368      else if (!RDecl->hasTrivialDestructor())
8369        member = CXXDestructor;
8370
8371      if (member != CXXInvalid) {
8372        if (getLangOptions().ObjCAutoRefCount && RDecl->hasObjectMember()) {
8373          // Objective-C++ ARC: it is an error to have a non-trivial field of
8374          // a union. However, system headers in Objective-C programs
8375          // occasionally have Objective-C lifetime objects within unions,
8376          // and rather than cause the program to fail, we make those
8377          // members unavailable.
8378          SourceLocation Loc = FD->getLocation();
8379          if (getSourceManager().isInSystemHeader(Loc)) {
8380            if (!FD->hasAttr<UnavailableAttr>())
8381              FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
8382                                  "this system field has retaining ownership"));
8383            return false;
8384          }
8385        }
8386
8387        Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
8388              << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
8389        DiagnoseNontrivial(RT, member);
8390        return true;
8391      }
8392    }
8393  }
8394
8395  return false;
8396}
8397
8398/// DiagnoseNontrivial - Given that a class has a non-trivial
8399/// special member, figure out why.
8400void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
8401  QualType QT(T, 0U);
8402  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
8403
8404  // Check whether the member was user-declared.
8405  switch (member) {
8406  case CXXInvalid:
8407    break;
8408
8409  case CXXDefaultConstructor:
8410    if (RD->hasUserDeclaredConstructor()) {
8411      typedef CXXRecordDecl::ctor_iterator ctor_iter;
8412      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
8413        const FunctionDecl *body = 0;
8414        ci->hasBody(body);
8415        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
8416          SourceLocation CtorLoc = ci->getLocation();
8417          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8418          return;
8419        }
8420      }
8421
8422      llvm_unreachable("found no user-declared constructors");
8423    }
8424    break;
8425
8426  case CXXCopyConstructor:
8427    if (RD->hasUserDeclaredCopyConstructor()) {
8428      SourceLocation CtorLoc =
8429        RD->getCopyConstructor(0)->getLocation();
8430      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8431      return;
8432    }
8433    break;
8434
8435  case CXXMoveConstructor:
8436    if (RD->hasUserDeclaredMoveConstructor()) {
8437      SourceLocation CtorLoc = RD->getMoveConstructor()->getLocation();
8438      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8439      return;
8440    }
8441    break;
8442
8443  case CXXCopyAssignment:
8444    if (RD->hasUserDeclaredCopyAssignment()) {
8445      // FIXME: this should use the location of the copy
8446      // assignment, not the type.
8447      SourceLocation TyLoc = RD->getSourceRange().getBegin();
8448      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
8449      return;
8450    }
8451    break;
8452
8453  case CXXMoveAssignment:
8454    if (RD->hasUserDeclaredMoveAssignment()) {
8455      SourceLocation AssignLoc = RD->getMoveAssignmentOperator()->getLocation();
8456      Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
8457      return;
8458    }
8459    break;
8460
8461  case CXXDestructor:
8462    if (RD->hasUserDeclaredDestructor()) {
8463      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
8464      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8465      return;
8466    }
8467    break;
8468  }
8469
8470  typedef CXXRecordDecl::base_class_iterator base_iter;
8471
8472  // Virtual bases and members inhibit trivial copying/construction,
8473  // but not trivial destruction.
8474  if (member != CXXDestructor) {
8475    // Check for virtual bases.  vbases includes indirect virtual bases,
8476    // so we just iterate through the direct bases.
8477    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
8478      if (bi->isVirtual()) {
8479        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
8480        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
8481        return;
8482      }
8483
8484    // Check for virtual methods.
8485    typedef CXXRecordDecl::method_iterator meth_iter;
8486    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
8487         ++mi) {
8488      if (mi->isVirtual()) {
8489        SourceLocation MLoc = mi->getSourceRange().getBegin();
8490        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
8491        return;
8492      }
8493    }
8494  }
8495
8496  bool (CXXRecordDecl::*hasTrivial)() const;
8497  switch (member) {
8498  case CXXDefaultConstructor:
8499    hasTrivial = &CXXRecordDecl::hasTrivialDefaultConstructor; break;
8500  case CXXCopyConstructor:
8501    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
8502  case CXXCopyAssignment:
8503    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
8504  case CXXDestructor:
8505    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
8506  default:
8507    llvm_unreachable("unexpected special member");
8508  }
8509
8510  // Check for nontrivial bases (and recurse).
8511  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
8512    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
8513    assert(BaseRT && "Don't know how to handle dependent bases");
8514    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
8515    if (!(BaseRecTy->*hasTrivial)()) {
8516      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
8517      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
8518      DiagnoseNontrivial(BaseRT, member);
8519      return;
8520    }
8521  }
8522
8523  // Check for nontrivial members (and recurse).
8524  typedef RecordDecl::field_iterator field_iter;
8525  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
8526       ++fi) {
8527    QualType EltTy = Context.getBaseElementType((*fi)->getType());
8528    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
8529      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
8530
8531      if (!(EltRD->*hasTrivial)()) {
8532        SourceLocation FLoc = (*fi)->getLocation();
8533        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
8534        DiagnoseNontrivial(EltRT, member);
8535        return;
8536      }
8537    }
8538
8539    if (EltTy->isObjCLifetimeType()) {
8540      switch (EltTy.getObjCLifetime()) {
8541      case Qualifiers::OCL_None:
8542      case Qualifiers::OCL_ExplicitNone:
8543        break;
8544
8545      case Qualifiers::OCL_Autoreleasing:
8546      case Qualifiers::OCL_Weak:
8547      case Qualifiers::OCL_Strong:
8548        Diag((*fi)->getLocation(), diag::note_nontrivial_objc_ownership)
8549          << QT << EltTy.getObjCLifetime();
8550        return;
8551      }
8552    }
8553  }
8554
8555  llvm_unreachable("found no explanation for non-trivial member");
8556}
8557
8558/// TranslateIvarVisibility - Translate visibility from a token ID to an
8559///  AST enum value.
8560static ObjCIvarDecl::AccessControl
8561TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
8562  switch (ivarVisibility) {
8563  default: llvm_unreachable("Unknown visitibility kind");
8564  case tok::objc_private: return ObjCIvarDecl::Private;
8565  case tok::objc_public: return ObjCIvarDecl::Public;
8566  case tok::objc_protected: return ObjCIvarDecl::Protected;
8567  case tok::objc_package: return ObjCIvarDecl::Package;
8568  }
8569}
8570
8571/// ActOnIvar - Each ivar field of an objective-c class is passed into this
8572/// in order to create an IvarDecl object for it.
8573Decl *Sema::ActOnIvar(Scope *S,
8574                                SourceLocation DeclStart,
8575                                Declarator &D, Expr *BitfieldWidth,
8576                                tok::ObjCKeywordKind Visibility) {
8577
8578  IdentifierInfo *II = D.getIdentifier();
8579  Expr *BitWidth = (Expr*)BitfieldWidth;
8580  SourceLocation Loc = DeclStart;
8581  if (II) Loc = D.getIdentifierLoc();
8582
8583  // FIXME: Unnamed fields can be handled in various different ways, for
8584  // example, unnamed unions inject all members into the struct namespace!
8585
8586  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8587  QualType T = TInfo->getType();
8588
8589  if (BitWidth) {
8590    // 6.7.2.1p3, 6.7.2.1p4
8591    if (VerifyBitField(Loc, II, T, BitWidth)) {
8592      D.setInvalidType();
8593      BitWidth = 0;
8594    }
8595  } else {
8596    // Not a bitfield.
8597
8598    // validate II.
8599
8600  }
8601  if (T->isReferenceType()) {
8602    Diag(Loc, diag::err_ivar_reference_type);
8603    D.setInvalidType();
8604  }
8605  // C99 6.7.2.1p8: A member of a structure or union may have any type other
8606  // than a variably modified type.
8607  else if (T->isVariablyModifiedType()) {
8608    Diag(Loc, diag::err_typecheck_ivar_variable_size);
8609    D.setInvalidType();
8610  }
8611
8612  // Get the visibility (access control) for this ivar.
8613  ObjCIvarDecl::AccessControl ac =
8614    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
8615                                        : ObjCIvarDecl::None;
8616  // Must set ivar's DeclContext to its enclosing interface.
8617  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
8618  ObjCContainerDecl *EnclosingContext;
8619  if (ObjCImplementationDecl *IMPDecl =
8620      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
8621    if (!LangOpts.ObjCNonFragileABI2) {
8622    // Case of ivar declared in an implementation. Context is that of its class.
8623      EnclosingContext = IMPDecl->getClassInterface();
8624      assert(EnclosingContext && "Implementation has no class interface!");
8625    }
8626    else
8627      EnclosingContext = EnclosingDecl;
8628  } else {
8629    if (ObjCCategoryDecl *CDecl =
8630        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
8631      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
8632        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
8633        return 0;
8634      }
8635    }
8636    EnclosingContext = EnclosingDecl;
8637  }
8638
8639  // Construct the decl.
8640  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
8641                                             DeclStart, Loc, II, T,
8642                                             TInfo, ac, (Expr *)BitfieldWidth);
8643
8644  if (II) {
8645    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
8646                                           ForRedeclaration);
8647    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
8648        && !isa<TagDecl>(PrevDecl)) {
8649      Diag(Loc, diag::err_duplicate_member) << II;
8650      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8651      NewID->setInvalidDecl();
8652    }
8653  }
8654
8655  // Process attributes attached to the ivar.
8656  ProcessDeclAttributes(S, NewID, D);
8657
8658  if (D.isInvalidType())
8659    NewID->setInvalidDecl();
8660
8661  // In ARC, infer 'retaining' for ivars of retainable type.
8662  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
8663    NewID->setInvalidDecl();
8664
8665  if (D.getDeclSpec().isModulePrivateSpecified())
8666    NewID->setModulePrivate();
8667
8668  if (II) {
8669    // FIXME: When interfaces are DeclContexts, we'll need to add
8670    // these to the interface.
8671    S->AddDecl(NewID);
8672    IdResolver.AddDecl(NewID);
8673  }
8674
8675  return NewID;
8676}
8677
8678/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
8679/// class and class extensions. For every class @interface and class
8680/// extension @interface, if the last ivar is a bitfield of any type,
8681/// then add an implicit `char :0` ivar to the end of that interface.
8682void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
8683                             SmallVectorImpl<Decl *> &AllIvarDecls) {
8684  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
8685    return;
8686
8687  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
8688  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
8689
8690  if (!Ivar->isBitField())
8691    return;
8692  uint64_t BitFieldSize =
8693    Ivar->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
8694  if (BitFieldSize == 0)
8695    return;
8696  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
8697  if (!ID) {
8698    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
8699      if (!CD->IsClassExtension())
8700        return;
8701    }
8702    // No need to add this to end of @implementation.
8703    else
8704      return;
8705  }
8706  // All conditions are met. Add a new bitfield to the tail end of ivars.
8707  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
8708  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
8709
8710  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
8711                              DeclLoc, DeclLoc, 0,
8712                              Context.CharTy,
8713                              Context.getTrivialTypeSourceInfo(Context.CharTy,
8714                                                               DeclLoc),
8715                              ObjCIvarDecl::Private, BW,
8716                              true);
8717  AllIvarDecls.push_back(Ivar);
8718}
8719
8720void Sema::ActOnFields(Scope* S,
8721                       SourceLocation RecLoc, Decl *EnclosingDecl,
8722                       llvm::ArrayRef<Decl *> Fields,
8723                       SourceLocation LBrac, SourceLocation RBrac,
8724                       AttributeList *Attr) {
8725  assert(EnclosingDecl && "missing record or interface decl");
8726
8727  // If the decl this is being inserted into is invalid, then it may be a
8728  // redeclaration or some other bogus case.  Don't try to add fields to it.
8729  if (EnclosingDecl->isInvalidDecl())
8730    return;
8731
8732  // Verify that all the fields are okay.
8733  unsigned NumNamedMembers = 0;
8734  SmallVector<FieldDecl*, 32> RecFields;
8735
8736  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
8737  bool ARCErrReported = false;
8738  for (llvm::ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
8739       i != end; ++i) {
8740    FieldDecl *FD = cast<FieldDecl>(*i);
8741
8742    // Get the type for the field.
8743    const Type *FDTy = FD->getType().getTypePtr();
8744
8745    if (!FD->isAnonymousStructOrUnion()) {
8746      // Remember all fields written by the user.
8747      RecFields.push_back(FD);
8748    }
8749
8750    // If the field is already invalid for some reason, don't emit more
8751    // diagnostics about it.
8752    if (FD->isInvalidDecl()) {
8753      EnclosingDecl->setInvalidDecl();
8754      continue;
8755    }
8756
8757    // C99 6.7.2.1p2:
8758    //   A structure or union shall not contain a member with
8759    //   incomplete or function type (hence, a structure shall not
8760    //   contain an instance of itself, but may contain a pointer to
8761    //   an instance of itself), except that the last member of a
8762    //   structure with more than one named member may have incomplete
8763    //   array type; such a structure (and any union containing,
8764    //   possibly recursively, a member that is such a structure)
8765    //   shall not be a member of a structure or an element of an
8766    //   array.
8767    if (FDTy->isFunctionType()) {
8768      // Field declared as a function.
8769      Diag(FD->getLocation(), diag::err_field_declared_as_function)
8770        << FD->getDeclName();
8771      FD->setInvalidDecl();
8772      EnclosingDecl->setInvalidDecl();
8773      continue;
8774    } else if (FDTy->isIncompleteArrayType() && Record &&
8775               ((i + 1 == Fields.end() && !Record->isUnion()) ||
8776                ((getLangOptions().MicrosoftExt ||
8777                  getLangOptions().CPlusPlus) &&
8778                 (i + 1 == Fields.end() || Record->isUnion())))) {
8779      // Flexible array member.
8780      // Microsoft and g++ is more permissive regarding flexible array.
8781      // It will accept flexible array in union and also
8782      // as the sole element of a struct/class.
8783      if (getLangOptions().MicrosoftExt) {
8784        if (Record->isUnion())
8785          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
8786            << FD->getDeclName();
8787        else if (Fields.size() == 1)
8788          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
8789            << FD->getDeclName() << Record->getTagKind();
8790      } else if (getLangOptions().CPlusPlus) {
8791        if (Record->isUnion())
8792          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
8793            << FD->getDeclName();
8794        else if (Fields.size() == 1)
8795          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
8796            << FD->getDeclName() << Record->getTagKind();
8797      } else if (NumNamedMembers < 1) {
8798        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
8799          << FD->getDeclName();
8800        FD->setInvalidDecl();
8801        EnclosingDecl->setInvalidDecl();
8802        continue;
8803      }
8804      if (!FD->getType()->isDependentType() &&
8805          !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
8806        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
8807          << FD->getDeclName() << FD->getType();
8808        FD->setInvalidDecl();
8809        EnclosingDecl->setInvalidDecl();
8810        continue;
8811      }
8812      // Okay, we have a legal flexible array member at the end of the struct.
8813      if (Record)
8814        Record->setHasFlexibleArrayMember(true);
8815    } else if (!FDTy->isDependentType() &&
8816               RequireCompleteType(FD->getLocation(), FD->getType(),
8817                                   diag::err_field_incomplete)) {
8818      // Incomplete type
8819      FD->setInvalidDecl();
8820      EnclosingDecl->setInvalidDecl();
8821      continue;
8822    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
8823      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
8824        // If this is a member of a union, then entire union becomes "flexible".
8825        if (Record && Record->isUnion()) {
8826          Record->setHasFlexibleArrayMember(true);
8827        } else {
8828          // If this is a struct/class and this is not the last element, reject
8829          // it.  Note that GCC supports variable sized arrays in the middle of
8830          // structures.
8831          if (i + 1 != Fields.end())
8832            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
8833              << FD->getDeclName() << FD->getType();
8834          else {
8835            // We support flexible arrays at the end of structs in
8836            // other structs as an extension.
8837            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
8838              << FD->getDeclName();
8839            if (Record)
8840              Record->setHasFlexibleArrayMember(true);
8841          }
8842        }
8843      }
8844      if (Record && FDTTy->getDecl()->hasObjectMember())
8845        Record->setHasObjectMember(true);
8846    } else if (FDTy->isObjCObjectType()) {
8847      /// A field cannot be an Objective-c object
8848      Diag(FD->getLocation(), diag::err_statically_allocated_object)
8849        << FixItHint::CreateInsertion(FD->getLocation(), "*");
8850      QualType T = Context.getObjCObjectPointerType(FD->getType());
8851      FD->setType(T);
8852    }
8853    else if (!getLangOptions().CPlusPlus) {
8854      if (getLangOptions().ObjCAutoRefCount && Record && !ARCErrReported) {
8855        // It's an error in ARC if a field has lifetime.
8856        // We don't want to report this in a system header, though,
8857        // so we just make the field unavailable.
8858        // FIXME: that's really not sufficient; we need to make the type
8859        // itself invalid to, say, initialize or copy.
8860        QualType T = FD->getType();
8861        Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
8862        if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
8863          SourceLocation loc = FD->getLocation();
8864          if (getSourceManager().isInSystemHeader(loc)) {
8865            if (!FD->hasAttr<UnavailableAttr>()) {
8866              FD->addAttr(new (Context) UnavailableAttr(loc, Context,
8867                                "this system field has retaining ownership"));
8868            }
8869          } else {
8870            Diag(FD->getLocation(), diag::err_arc_objc_object_in_struct);
8871          }
8872          ARCErrReported = true;
8873        }
8874      }
8875      else if (getLangOptions().ObjC1 &&
8876               getLangOptions().getGC() != LangOptions::NonGC &&
8877               Record && !Record->hasObjectMember()) {
8878        if (FD->getType()->isObjCObjectPointerType() ||
8879            FD->getType().isObjCGCStrong())
8880          Record->setHasObjectMember(true);
8881        else if (Context.getAsArrayType(FD->getType())) {
8882          QualType BaseType = Context.getBaseElementType(FD->getType());
8883          if (BaseType->isRecordType() &&
8884              BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
8885            Record->setHasObjectMember(true);
8886          else if (BaseType->isObjCObjectPointerType() ||
8887                   BaseType.isObjCGCStrong())
8888                 Record->setHasObjectMember(true);
8889        }
8890      }
8891    }
8892    // Keep track of the number of named members.
8893    if (FD->getIdentifier())
8894      ++NumNamedMembers;
8895  }
8896
8897  // Okay, we successfully defined 'Record'.
8898  if (Record) {
8899    bool Completed = false;
8900    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
8901      if (!CXXRecord->isInvalidDecl()) {
8902        // Set access bits correctly on the directly-declared conversions.
8903        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
8904        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
8905             I != E; ++I)
8906          Convs->setAccess(I, (*I)->getAccess());
8907
8908        if (!CXXRecord->isDependentType()) {
8909          // Objective-C Automatic Reference Counting:
8910          //   If a class has a non-static data member of Objective-C pointer
8911          //   type (or array thereof), it is a non-POD type and its
8912          //   default constructor (if any), copy constructor, copy assignment
8913          //   operator, and destructor are non-trivial.
8914          //
8915          // This rule is also handled by CXXRecordDecl::completeDefinition().
8916          // However, here we check whether this particular class is only
8917          // non-POD because of the presence of an Objective-C pointer member.
8918          // If so, objects of this type cannot be shared between code compiled
8919          // with instant objects and code compiled with manual retain/release.
8920          if (getLangOptions().ObjCAutoRefCount &&
8921              CXXRecord->hasObjectMember() &&
8922              CXXRecord->getLinkage() == ExternalLinkage) {
8923            if (CXXRecord->isPOD()) {
8924              Diag(CXXRecord->getLocation(),
8925                   diag::warn_arc_non_pod_class_with_object_member)
8926               << CXXRecord;
8927            } else {
8928              // FIXME: Fix-Its would be nice here, but finding a good location
8929              // for them is going to be tricky.
8930              if (CXXRecord->hasTrivialCopyConstructor())
8931                Diag(CXXRecord->getLocation(),
8932                     diag::warn_arc_trivial_member_function_with_object_member)
8933                  << CXXRecord << 0;
8934              if (CXXRecord->hasTrivialCopyAssignment())
8935                Diag(CXXRecord->getLocation(),
8936                     diag::warn_arc_trivial_member_function_with_object_member)
8937                << CXXRecord << 1;
8938              if (CXXRecord->hasTrivialDestructor())
8939                Diag(CXXRecord->getLocation(),
8940                     diag::warn_arc_trivial_member_function_with_object_member)
8941                << CXXRecord << 2;
8942            }
8943          }
8944
8945          // Adjust user-defined destructor exception spec.
8946          if (getLangOptions().CPlusPlus0x &&
8947              CXXRecord->hasUserDeclaredDestructor())
8948            AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
8949
8950          // Add any implicitly-declared members to this class.
8951          AddImplicitlyDeclaredMembersToClass(CXXRecord);
8952
8953          // If we have virtual base classes, we may end up finding multiple
8954          // final overriders for a given virtual function. Check for this
8955          // problem now.
8956          if (CXXRecord->getNumVBases()) {
8957            CXXFinalOverriderMap FinalOverriders;
8958            CXXRecord->getFinalOverriders(FinalOverriders);
8959
8960            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
8961                                             MEnd = FinalOverriders.end();
8962                 M != MEnd; ++M) {
8963              for (OverridingMethods::iterator SO = M->second.begin(),
8964                                            SOEnd = M->second.end();
8965                   SO != SOEnd; ++SO) {
8966                assert(SO->second.size() > 0 &&
8967                       "Virtual function without overridding functions?");
8968                if (SO->second.size() == 1)
8969                  continue;
8970
8971                // C++ [class.virtual]p2:
8972                //   In a derived class, if a virtual member function of a base
8973                //   class subobject has more than one final overrider the
8974                //   program is ill-formed.
8975                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
8976                  << (NamedDecl *)M->first << Record;
8977                Diag(M->first->getLocation(),
8978                     diag::note_overridden_virtual_function);
8979                for (OverridingMethods::overriding_iterator
8980                          OM = SO->second.begin(),
8981                       OMEnd = SO->second.end();
8982                     OM != OMEnd; ++OM)
8983                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
8984                    << (NamedDecl *)M->first << OM->Method->getParent();
8985
8986                Record->setInvalidDecl();
8987              }
8988            }
8989            CXXRecord->completeDefinition(&FinalOverriders);
8990            Completed = true;
8991          }
8992        }
8993      }
8994    }
8995
8996    if (!Completed)
8997      Record->completeDefinition();
8998
8999    // Now that the record is complete, do any delayed exception spec checks
9000    // we were missing.
9001    while (!DelayedDestructorExceptionSpecChecks.empty()) {
9002      const CXXDestructorDecl *Dtor =
9003              DelayedDestructorExceptionSpecChecks.back().first;
9004      if (Dtor->getParent() != Record)
9005        break;
9006
9007      assert(!Dtor->getParent()->isDependentType() &&
9008          "Should not ever add destructors of templates into the list.");
9009      CheckOverridingFunctionExceptionSpec(Dtor,
9010          DelayedDestructorExceptionSpecChecks.back().second);
9011      DelayedDestructorExceptionSpecChecks.pop_back();
9012    }
9013
9014  } else {
9015    ObjCIvarDecl **ClsFields =
9016      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
9017    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
9018      ID->setLocEnd(RBrac);
9019      // Add ivar's to class's DeclContext.
9020      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
9021        ClsFields[i]->setLexicalDeclContext(ID);
9022        ID->addDecl(ClsFields[i]);
9023      }
9024      // Must enforce the rule that ivars in the base classes may not be
9025      // duplicates.
9026      if (ID->getSuperClass())
9027        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
9028    } else if (ObjCImplementationDecl *IMPDecl =
9029                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
9030      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
9031      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
9032        // Ivar declared in @implementation never belongs to the implementation.
9033        // Only it is in implementation's lexical context.
9034        ClsFields[I]->setLexicalDeclContext(IMPDecl);
9035      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
9036    } else if (ObjCCategoryDecl *CDecl =
9037                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
9038      // case of ivars in class extension; all other cases have been
9039      // reported as errors elsewhere.
9040      // FIXME. Class extension does not have a LocEnd field.
9041      // CDecl->setLocEnd(RBrac);
9042      // Add ivar's to class extension's DeclContext.
9043      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
9044        ClsFields[i]->setLexicalDeclContext(CDecl);
9045        CDecl->addDecl(ClsFields[i]);
9046      }
9047    }
9048  }
9049
9050  if (Attr)
9051    ProcessDeclAttributeList(S, Record, Attr);
9052
9053  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
9054  // set the visibility of this record.
9055  if (Record && !Record->getDeclContext()->isRecord())
9056    AddPushedVisibilityAttribute(Record);
9057}
9058
9059/// \brief Determine whether the given integral value is representable within
9060/// the given type T.
9061static bool isRepresentableIntegerValue(ASTContext &Context,
9062                                        llvm::APSInt &Value,
9063                                        QualType T) {
9064  assert(T->isIntegralType(Context) && "Integral type required!");
9065  unsigned BitWidth = Context.getIntWidth(T);
9066
9067  if (Value.isUnsigned() || Value.isNonNegative()) {
9068    if (T->isSignedIntegerOrEnumerationType())
9069      --BitWidth;
9070    return Value.getActiveBits() <= BitWidth;
9071  }
9072  return Value.getMinSignedBits() <= BitWidth;
9073}
9074
9075// \brief Given an integral type, return the next larger integral type
9076// (or a NULL type of no such type exists).
9077static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
9078  // FIXME: Int128/UInt128 support, which also needs to be introduced into
9079  // enum checking below.
9080  assert(T->isIntegralType(Context) && "Integral type required!");
9081  const unsigned NumTypes = 4;
9082  QualType SignedIntegralTypes[NumTypes] = {
9083    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
9084  };
9085  QualType UnsignedIntegralTypes[NumTypes] = {
9086    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
9087    Context.UnsignedLongLongTy
9088  };
9089
9090  unsigned BitWidth = Context.getTypeSize(T);
9091  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
9092                                                        : UnsignedIntegralTypes;
9093  for (unsigned I = 0; I != NumTypes; ++I)
9094    if (Context.getTypeSize(Types[I]) > BitWidth)
9095      return Types[I];
9096
9097  return QualType();
9098}
9099
9100EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
9101                                          EnumConstantDecl *LastEnumConst,
9102                                          SourceLocation IdLoc,
9103                                          IdentifierInfo *Id,
9104                                          Expr *Val) {
9105  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
9106  llvm::APSInt EnumVal(IntWidth);
9107  QualType EltTy;
9108
9109  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
9110    Val = 0;
9111
9112  if (Val) {
9113    if (Enum->isDependentType() || Val->isTypeDependent())
9114      EltTy = Context.DependentTy;
9115    else {
9116      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
9117      SourceLocation ExpLoc;
9118      if (!Val->isValueDependent() &&
9119          VerifyIntegerConstantExpression(Val, &EnumVal)) {
9120        Val = 0;
9121      } else {
9122        if (!getLangOptions().CPlusPlus) {
9123          // C99 6.7.2.2p2:
9124          //   The expression that defines the value of an enumeration constant
9125          //   shall be an integer constant expression that has a value
9126          //   representable as an int.
9127
9128          // Complain if the value is not representable in an int.
9129          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
9130            Diag(IdLoc, diag::ext_enum_value_not_int)
9131              << EnumVal.toString(10) << Val->getSourceRange()
9132              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
9133          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
9134            // Force the type of the expression to 'int'.
9135            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
9136          }
9137        }
9138
9139        if (Enum->isFixed()) {
9140          EltTy = Enum->getIntegerType();
9141
9142          // C++0x [dcl.enum]p5:
9143          //   ... if the initializing value of an enumerator cannot be
9144          //   represented by the underlying type, the program is ill-formed.
9145          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
9146            if (getLangOptions().MicrosoftExt) {
9147              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
9148              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
9149            } else
9150              Diag(IdLoc, diag::err_enumerator_too_large)
9151                << EltTy;
9152          } else
9153            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
9154        }
9155        else {
9156          // C++0x [dcl.enum]p5:
9157          //   If the underlying type is not fixed, the type of each enumerator
9158          //   is the type of its initializing value:
9159          //     - If an initializer is specified for an enumerator, the
9160          //       initializing value has the same type as the expression.
9161          EltTy = Val->getType();
9162        }
9163      }
9164    }
9165  }
9166
9167  if (!Val) {
9168    if (Enum->isDependentType())
9169      EltTy = Context.DependentTy;
9170    else if (!LastEnumConst) {
9171      // C++0x [dcl.enum]p5:
9172      //   If the underlying type is not fixed, the type of each enumerator
9173      //   is the type of its initializing value:
9174      //     - If no initializer is specified for the first enumerator, the
9175      //       initializing value has an unspecified integral type.
9176      //
9177      // GCC uses 'int' for its unspecified integral type, as does
9178      // C99 6.7.2.2p3.
9179      if (Enum->isFixed()) {
9180        EltTy = Enum->getIntegerType();
9181      }
9182      else {
9183        EltTy = Context.IntTy;
9184      }
9185    } else {
9186      // Assign the last value + 1.
9187      EnumVal = LastEnumConst->getInitVal();
9188      ++EnumVal;
9189      EltTy = LastEnumConst->getType();
9190
9191      // Check for overflow on increment.
9192      if (EnumVal < LastEnumConst->getInitVal()) {
9193        // C++0x [dcl.enum]p5:
9194        //   If the underlying type is not fixed, the type of each enumerator
9195        //   is the type of its initializing value:
9196        //
9197        //     - Otherwise the type of the initializing value is the same as
9198        //       the type of the initializing value of the preceding enumerator
9199        //       unless the incremented value is not representable in that type,
9200        //       in which case the type is an unspecified integral type
9201        //       sufficient to contain the incremented value. If no such type
9202        //       exists, the program is ill-formed.
9203        QualType T = getNextLargerIntegralType(Context, EltTy);
9204        if (T.isNull() || Enum->isFixed()) {
9205          // There is no integral type larger enough to represent this
9206          // value. Complain, then allow the value to wrap around.
9207          EnumVal = LastEnumConst->getInitVal();
9208          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
9209          ++EnumVal;
9210          if (Enum->isFixed())
9211            // When the underlying type is fixed, this is ill-formed.
9212            Diag(IdLoc, diag::err_enumerator_wrapped)
9213              << EnumVal.toString(10)
9214              << EltTy;
9215          else
9216            Diag(IdLoc, diag::warn_enumerator_too_large)
9217              << EnumVal.toString(10);
9218        } else {
9219          EltTy = T;
9220        }
9221
9222        // Retrieve the last enumerator's value, extent that type to the
9223        // type that is supposed to be large enough to represent the incremented
9224        // value, then increment.
9225        EnumVal = LastEnumConst->getInitVal();
9226        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
9227        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
9228        ++EnumVal;
9229
9230        // If we're not in C++, diagnose the overflow of enumerator values,
9231        // which in C99 means that the enumerator value is not representable in
9232        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
9233        // permits enumerator values that are representable in some larger
9234        // integral type.
9235        if (!getLangOptions().CPlusPlus && !T.isNull())
9236          Diag(IdLoc, diag::warn_enum_value_overflow);
9237      } else if (!getLangOptions().CPlusPlus &&
9238                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
9239        // Enforce C99 6.7.2.2p2 even when we compute the next value.
9240        Diag(IdLoc, diag::ext_enum_value_not_int)
9241          << EnumVal.toString(10) << 1;
9242      }
9243    }
9244  }
9245
9246  if (!EltTy->isDependentType()) {
9247    // Make the enumerator value match the signedness and size of the
9248    // enumerator's type.
9249    EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
9250    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
9251  }
9252
9253  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
9254                                  Val, EnumVal);
9255}
9256
9257
9258Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
9259                              SourceLocation IdLoc, IdentifierInfo *Id,
9260                              AttributeList *Attr,
9261                              SourceLocation EqualLoc, Expr *val) {
9262  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
9263  EnumConstantDecl *LastEnumConst =
9264    cast_or_null<EnumConstantDecl>(lastEnumConst);
9265  Expr *Val = static_cast<Expr*>(val);
9266
9267  // The scope passed in may not be a decl scope.  Zip up the scope tree until
9268  // we find one that is.
9269  S = getNonFieldDeclScope(S);
9270
9271  // Verify that there isn't already something declared with this name in this
9272  // scope.
9273  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
9274                                         ForRedeclaration);
9275  if (PrevDecl && PrevDecl->isTemplateParameter()) {
9276    // Maybe we will complain about the shadowed template parameter.
9277    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
9278    // Just pretend that we didn't see the previous declaration.
9279    PrevDecl = 0;
9280  }
9281
9282  if (PrevDecl) {
9283    // When in C++, we may get a TagDecl with the same name; in this case the
9284    // enum constant will 'hide' the tag.
9285    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
9286           "Received TagDecl when not in C++!");
9287    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
9288      if (isa<EnumConstantDecl>(PrevDecl))
9289        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
9290      else
9291        Diag(IdLoc, diag::err_redefinition) << Id;
9292      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
9293      return 0;
9294    }
9295  }
9296
9297  // C++ [class.mem]p13:
9298  //   If T is the name of a class, then each of the following shall have a
9299  //   name different from T:
9300  //     - every enumerator of every member of class T that is an enumerated
9301  //       type
9302  if (CXXRecordDecl *Record
9303                      = dyn_cast<CXXRecordDecl>(
9304                             TheEnumDecl->getDeclContext()->getRedeclContext()))
9305    if (Record->getIdentifier() && Record->getIdentifier() == Id)
9306      Diag(IdLoc, diag::err_member_name_of_class) << Id;
9307
9308  EnumConstantDecl *New =
9309    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
9310
9311  if (New) {
9312    // Process attributes.
9313    if (Attr) ProcessDeclAttributeList(S, New, Attr);
9314
9315    // Register this decl in the current scope stack.
9316    New->setAccess(TheEnumDecl->getAccess());
9317    PushOnScopeChains(New, S);
9318  }
9319
9320  return New;
9321}
9322
9323void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
9324                         SourceLocation RBraceLoc, Decl *EnumDeclX,
9325                         Decl **Elements, unsigned NumElements,
9326                         Scope *S, AttributeList *Attr) {
9327  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
9328  QualType EnumType = Context.getTypeDeclType(Enum);
9329
9330  if (Attr)
9331    ProcessDeclAttributeList(S, Enum, Attr);
9332
9333  if (Enum->isDependentType()) {
9334    for (unsigned i = 0; i != NumElements; ++i) {
9335      EnumConstantDecl *ECD =
9336        cast_or_null<EnumConstantDecl>(Elements[i]);
9337      if (!ECD) continue;
9338
9339      ECD->setType(EnumType);
9340    }
9341
9342    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
9343    return;
9344  }
9345
9346  // TODO: If the result value doesn't fit in an int, it must be a long or long
9347  // long value.  ISO C does not support this, but GCC does as an extension,
9348  // emit a warning.
9349  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
9350  unsigned CharWidth = Context.getTargetInfo().getCharWidth();
9351  unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
9352
9353  // Verify that all the values are okay, compute the size of the values, and
9354  // reverse the list.
9355  unsigned NumNegativeBits = 0;
9356  unsigned NumPositiveBits = 0;
9357
9358  // Keep track of whether all elements have type int.
9359  bool AllElementsInt = true;
9360
9361  for (unsigned i = 0; i != NumElements; ++i) {
9362    EnumConstantDecl *ECD =
9363      cast_or_null<EnumConstantDecl>(Elements[i]);
9364    if (!ECD) continue;  // Already issued a diagnostic.
9365
9366    const llvm::APSInt &InitVal = ECD->getInitVal();
9367
9368    // Keep track of the size of positive and negative values.
9369    if (InitVal.isUnsigned() || InitVal.isNonNegative())
9370      NumPositiveBits = std::max(NumPositiveBits,
9371                                 (unsigned)InitVal.getActiveBits());
9372    else
9373      NumNegativeBits = std::max(NumNegativeBits,
9374                                 (unsigned)InitVal.getMinSignedBits());
9375
9376    // Keep track of whether every enum element has type int (very commmon).
9377    if (AllElementsInt)
9378      AllElementsInt = ECD->getType() == Context.IntTy;
9379  }
9380
9381  // Figure out the type that should be used for this enum.
9382  QualType BestType;
9383  unsigned BestWidth;
9384
9385  // C++0x N3000 [conv.prom]p3:
9386  //   An rvalue of an unscoped enumeration type whose underlying
9387  //   type is not fixed can be converted to an rvalue of the first
9388  //   of the following types that can represent all the values of
9389  //   the enumeration: int, unsigned int, long int, unsigned long
9390  //   int, long long int, or unsigned long long int.
9391  // C99 6.4.4.3p2:
9392  //   An identifier declared as an enumeration constant has type int.
9393  // The C99 rule is modified by a gcc extension
9394  QualType BestPromotionType;
9395
9396  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
9397  // -fshort-enums is the equivalent to specifying the packed attribute on all
9398  // enum definitions.
9399  if (LangOpts.ShortEnums)
9400    Packed = true;
9401
9402  if (Enum->isFixed()) {
9403    BestType = BestPromotionType = Enum->getIntegerType();
9404    // We don't need to set BestWidth, because BestType is going to be the type
9405    // of the enumerators, but we do anyway because otherwise some compilers
9406    // warn that it might be used uninitialized.
9407    BestWidth = CharWidth;
9408  }
9409  else if (NumNegativeBits) {
9410    // If there is a negative value, figure out the smallest integer type (of
9411    // int/long/longlong) that fits.
9412    // If it's packed, check also if it fits a char or a short.
9413    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
9414      BestType = Context.SignedCharTy;
9415      BestWidth = CharWidth;
9416    } else if (Packed && NumNegativeBits <= ShortWidth &&
9417               NumPositiveBits < ShortWidth) {
9418      BestType = Context.ShortTy;
9419      BestWidth = ShortWidth;
9420    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
9421      BestType = Context.IntTy;
9422      BestWidth = IntWidth;
9423    } else {
9424      BestWidth = Context.getTargetInfo().getLongWidth();
9425
9426      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
9427        BestType = Context.LongTy;
9428      } else {
9429        BestWidth = Context.getTargetInfo().getLongLongWidth();
9430
9431        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
9432          Diag(Enum->getLocation(), diag::warn_enum_too_large);
9433        BestType = Context.LongLongTy;
9434      }
9435    }
9436    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
9437  } else {
9438    // If there is no negative value, figure out the smallest type that fits
9439    // all of the enumerator values.
9440    // If it's packed, check also if it fits a char or a short.
9441    if (Packed && NumPositiveBits <= CharWidth) {
9442      BestType = Context.UnsignedCharTy;
9443      BestPromotionType = Context.IntTy;
9444      BestWidth = CharWidth;
9445    } else if (Packed && NumPositiveBits <= ShortWidth) {
9446      BestType = Context.UnsignedShortTy;
9447      BestPromotionType = Context.IntTy;
9448      BestWidth = ShortWidth;
9449    } else if (NumPositiveBits <= IntWidth) {
9450      BestType = Context.UnsignedIntTy;
9451      BestWidth = IntWidth;
9452      BestPromotionType
9453        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9454                           ? Context.UnsignedIntTy : Context.IntTy;
9455    } else if (NumPositiveBits <=
9456               (BestWidth = Context.getTargetInfo().getLongWidth())) {
9457      BestType = Context.UnsignedLongTy;
9458      BestPromotionType
9459        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9460                           ? Context.UnsignedLongTy : Context.LongTy;
9461    } else {
9462      BestWidth = Context.getTargetInfo().getLongLongWidth();
9463      assert(NumPositiveBits <= BestWidth &&
9464             "How could an initializer get larger than ULL?");
9465      BestType = Context.UnsignedLongLongTy;
9466      BestPromotionType
9467        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9468                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
9469    }
9470  }
9471
9472  // Loop over all of the enumerator constants, changing their types to match
9473  // the type of the enum if needed.
9474  for (unsigned i = 0; i != NumElements; ++i) {
9475    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
9476    if (!ECD) continue;  // Already issued a diagnostic.
9477
9478    // Standard C says the enumerators have int type, but we allow, as an
9479    // extension, the enumerators to be larger than int size.  If each
9480    // enumerator value fits in an int, type it as an int, otherwise type it the
9481    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
9482    // that X has type 'int', not 'unsigned'.
9483
9484    // Determine whether the value fits into an int.
9485    llvm::APSInt InitVal = ECD->getInitVal();
9486
9487    // If it fits into an integer type, force it.  Otherwise force it to match
9488    // the enum decl type.
9489    QualType NewTy;
9490    unsigned NewWidth;
9491    bool NewSign;
9492    if (!getLangOptions().CPlusPlus &&
9493        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
9494      NewTy = Context.IntTy;
9495      NewWidth = IntWidth;
9496      NewSign = true;
9497    } else if (ECD->getType() == BestType) {
9498      // Already the right type!
9499      if (getLangOptions().CPlusPlus)
9500        // C++ [dcl.enum]p4: Following the closing brace of an
9501        // enum-specifier, each enumerator has the type of its
9502        // enumeration.
9503        ECD->setType(EnumType);
9504      continue;
9505    } else {
9506      NewTy = BestType;
9507      NewWidth = BestWidth;
9508      NewSign = BestType->isSignedIntegerOrEnumerationType();
9509    }
9510
9511    // Adjust the APSInt value.
9512    InitVal = InitVal.extOrTrunc(NewWidth);
9513    InitVal.setIsSigned(NewSign);
9514    ECD->setInitVal(InitVal);
9515
9516    // Adjust the Expr initializer and type.
9517    if (ECD->getInitExpr() &&
9518        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
9519      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
9520                                                CK_IntegralCast,
9521                                                ECD->getInitExpr(),
9522                                                /*base paths*/ 0,
9523                                                VK_RValue));
9524    if (getLangOptions().CPlusPlus)
9525      // C++ [dcl.enum]p4: Following the closing brace of an
9526      // enum-specifier, each enumerator has the type of its
9527      // enumeration.
9528      ECD->setType(EnumType);
9529    else
9530      ECD->setType(NewTy);
9531  }
9532
9533  Enum->completeDefinition(BestType, BestPromotionType,
9534                           NumPositiveBits, NumNegativeBits);
9535}
9536
9537Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
9538                                  SourceLocation StartLoc,
9539                                  SourceLocation EndLoc) {
9540  StringLiteral *AsmString = cast<StringLiteral>(expr);
9541
9542  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
9543                                                   AsmString, StartLoc,
9544                                                   EndLoc);
9545  CurContext->addDecl(New);
9546  return New;
9547}
9548
9549DeclResult Sema::ActOnModuleImport(SourceLocation ImportLoc,
9550                                   IdentifierInfo &ModuleName,
9551                                   SourceLocation ModuleNameLoc) {
9552  ModuleKey Module = PP.getModuleLoader().loadModule(ImportLoc,
9553                                                     ModuleName, ModuleNameLoc);
9554  if (!Module)
9555    return true;
9556
9557  // FIXME: Actually create a declaration to describe the module import.
9558  (void)Module;
9559  return DeclResult((Decl *)0);
9560}
9561
9562void
9563Sema::diagnoseModulePrivateRedeclaration(NamedDecl *New, NamedDecl *Old,
9564                                         SourceLocation ModulePrivateKeyword) {
9565  assert(!Old->isModulePrivate() && "Old is module-private!");
9566
9567  Diag(New->getLocation(), diag::err_module_private_follows_public)
9568    << New->getDeclName() << SourceRange(ModulePrivateKeyword);
9569  Diag(Old->getLocation(), diag::note_previous_declaration)
9570    << Old->getDeclName();
9571
9572  // Drop the __module_private__ from the new declaration, since it's invalid.
9573  New->setModulePrivate(false);
9574}
9575
9576void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
9577                             SourceLocation PragmaLoc,
9578                             SourceLocation NameLoc) {
9579  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
9580
9581  if (PrevDecl) {
9582    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
9583  } else {
9584    (void)WeakUndeclaredIdentifiers.insert(
9585      std::pair<IdentifierInfo*,WeakInfo>
9586        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
9587  }
9588}
9589
9590void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
9591                                IdentifierInfo* AliasName,
9592                                SourceLocation PragmaLoc,
9593                                SourceLocation NameLoc,
9594                                SourceLocation AliasNameLoc) {
9595  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
9596                                    LookupOrdinaryName);
9597  WeakInfo W = WeakInfo(Name, NameLoc);
9598
9599  if (PrevDecl) {
9600    if (!PrevDecl->hasAttr<AliasAttr>())
9601      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
9602        DeclApplyPragmaWeak(TUScope, ND, W);
9603  } else {
9604    (void)WeakUndeclaredIdentifiers.insert(
9605      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
9606  }
9607}
9608
9609Decl *Sema::getObjCDeclContext() const {
9610  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
9611}
9612