SemaDecl.cpp revision a735ad8be5536a1cd3e9817ec27dfeb2a0c1d5ca
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/Attr.h"
19#include "clang/AST/Builtins.h"
20#include "clang/AST/Decl.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/Expr.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/Type.h"
25#include "clang/Parse/DeclSpec.h"
26#include "clang/Parse/Scope.h"
27#include "clang/Basic/LangOptions.h"
28#include "clang/Basic/TargetInfo.h"
29#include "clang/Basic/SourceManager.h"
30// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
31#include "clang/Lex/Preprocessor.h"
32#include "clang/Lex/HeaderSearch.h"
33#include "llvm/ADT/SmallString.h"
34#include "llvm/ADT/SmallSet.h"
35#include "llvm/ADT/DenseSet.h"
36using namespace clang;
37
38Sema::TypeTy *Sema::isTypeName(const IdentifierInfo &II, Scope *S) {
39  Decl *IIDecl = LookupDecl(&II, Decl::IDNS_Ordinary, S, false);
40
41  if (IIDecl && (isa<TypedefDecl>(IIDecl) ||
42                 isa<ObjCInterfaceDecl>(IIDecl) ||
43                 isa<TagDecl>(IIDecl)))
44    return IIDecl;
45  return 0;
46}
47
48DeclContext *Sema::getDCParent(DeclContext *DC) {
49  // If CurContext is a ObjC method, getParent() will return NULL.
50  if (isa<ObjCMethodDecl>(DC))
51    return Context.getTranslationUnitDecl();
52
53  // A C++ inline method is parsed *after* the topmost class it was declared in
54  // is fully parsed (it's "complete").
55  // The parsing of a C++ inline method happens at the declaration context of
56  // the topmost (non-nested) class it is declared in.
57  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
58    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
59    DC = MD->getParent();
60    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getParent()))
61      DC = RD;
62
63    // Return the declaration context of the topmost class the inline method is
64    // declared in.
65    return DC;
66  }
67
68  return DC->getParent();
69}
70
71void Sema::PushDeclContext(DeclContext *DC) {
72  assert(getDCParent(DC) == CurContext &&
73       "The next DeclContext should be directly contained in the current one.");
74  CurContext = DC;
75}
76
77void Sema::PopDeclContext() {
78  assert(CurContext && "DeclContext imbalance!");
79  CurContext = getDCParent(CurContext);
80}
81
82/// Add this decl to the scope shadowed decl chains.
83void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
84  S->AddDecl(D);
85
86  // C++ [basic.scope]p4:
87  //   -- exactly one declaration shall declare a class name or
88  //   enumeration name that is not a typedef name and the other
89  //   declarations shall all refer to the same object or
90  //   enumerator, or all refer to functions and function templates;
91  //   in this case the class name or enumeration name is hidden.
92  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
93    // We are pushing the name of a tag (enum or class).
94    IdentifierResolver::iterator
95        I = IdResolver.begin(TD->getIdentifier(),
96                             TD->getDeclContext(), false/*LookInParentCtx*/);
97    if (I != IdResolver.end() &&
98        IdResolver.isDeclInScope(*I, TD->getDeclContext(), S)) {
99      // There is already a declaration with the same name in the same
100      // scope. It must be found before we find the new declaration,
101      // so swap the order on the shadowed declaration chain.
102
103      IdResolver.AddShadowedDecl(TD, *I);
104      return;
105    }
106  }
107
108  IdResolver.AddDecl(D);
109}
110
111void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
112  if (S->decl_empty()) return;
113  assert((S->getFlags() & Scope::DeclScope) &&"Scope shouldn't contain decls!");
114
115  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
116       I != E; ++I) {
117    Decl *TmpD = static_cast<Decl*>(*I);
118    assert(TmpD && "This decl didn't get pushed??");
119
120    if (isa<CXXFieldDecl>(TmpD)) continue;
121
122    assert(isa<ScopedDecl>(TmpD) && "Decl isn't ScopedDecl?");
123    ScopedDecl *D = cast<ScopedDecl>(TmpD);
124
125    IdentifierInfo *II = D->getIdentifier();
126    if (!II) continue;
127
128    // We only want to remove the decls from the identifier decl chains for local
129    // scopes, when inside a function/method.
130    if (S->getFnParent() != 0)
131      IdResolver.RemoveDecl(D);
132
133    // Chain this decl to the containing DeclContext.
134    D->setNext(CurContext->getDeclChain());
135    CurContext->setDeclChain(D);
136  }
137}
138
139/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
140/// return 0 if one not found.
141ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
142  // The third "scope" argument is 0 since we aren't enabling lazy built-in
143  // creation from this context.
144  Decl *IDecl = LookupDecl(Id, Decl::IDNS_Ordinary, 0, false);
145
146  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
147}
148
149/// LookupDecl - Look up the inner-most declaration in the specified
150/// namespace.
151Decl *Sema::LookupDecl(const IdentifierInfo *II, unsigned NSI,
152                       Scope *S, bool enableLazyBuiltinCreation) {
153  if (II == 0) return 0;
154  unsigned NS = NSI;
155  if (getLangOptions().CPlusPlus && (NS & Decl::IDNS_Ordinary))
156    NS |= Decl::IDNS_Tag;
157
158  // Scan up the scope chain looking for a decl that matches this identifier
159  // that is in the appropriate namespace.  This search should not take long, as
160  // shadowing of names is uncommon, and deep shadowing is extremely uncommon.
161  for (IdentifierResolver::iterator
162       I = IdResolver.begin(II, CurContext), E = IdResolver.end(); I != E; ++I)
163    if ((*I)->getIdentifierNamespace() & NS)
164      return *I;
165
166  // If we didn't find a use of this identifier, and if the identifier
167  // corresponds to a compiler builtin, create the decl object for the builtin
168  // now, injecting it into translation unit scope, and return it.
169  if (NS & Decl::IDNS_Ordinary) {
170    if (enableLazyBuiltinCreation) {
171      // If this is a builtin on this (or all) targets, create the decl.
172      if (unsigned BuiltinID = II->getBuiltinID())
173        return LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID, S);
174    }
175    if (getLangOptions().ObjC1) {
176      // @interface and @compatibility_alias introduce typedef-like names.
177      // Unlike typedef's, they can only be introduced at file-scope (and are
178      // therefore not scoped decls). They can, however, be shadowed by
179      // other names in IDNS_Ordinary.
180      ObjCInterfaceDeclsTy::iterator IDI = ObjCInterfaceDecls.find(II);
181      if (IDI != ObjCInterfaceDecls.end())
182        return IDI->second;
183      ObjCAliasTy::iterator I = ObjCAliasDecls.find(II);
184      if (I != ObjCAliasDecls.end())
185        return I->second->getClassInterface();
186    }
187  }
188  return 0;
189}
190
191void Sema::InitBuiltinVaListType() {
192  if (!Context.getBuiltinVaListType().isNull())
193    return;
194
195  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
196  Decl *VaDecl = LookupDecl(VaIdent, Decl::IDNS_Ordinary, TUScope);
197  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
198  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
199}
200
201/// LazilyCreateBuiltin - The specified Builtin-ID was first used at file scope.
202/// lazily create a decl for it.
203ScopedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
204                                      Scope *S) {
205  Builtin::ID BID = (Builtin::ID)bid;
206
207  if (BID == Builtin::BI__builtin_va_start ||
208      BID == Builtin::BI__builtin_va_copy ||
209      BID == Builtin::BI__builtin_va_end ||
210      BID == Builtin::BI__builtin_stdarg_start)
211    InitBuiltinVaListType();
212
213  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context);
214  FunctionDecl *New = FunctionDecl::Create(Context,
215                                           Context.getTranslationUnitDecl(),
216                                           SourceLocation(), II, R,
217                                           FunctionDecl::Extern, false, 0);
218
219  // Create Decl objects for each parameter, adding them to the
220  // FunctionDecl.
221  if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(R)) {
222    llvm::SmallVector<ParmVarDecl*, 16> Params;
223    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
224      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
225                                           FT->getArgType(i), VarDecl::None, 0,
226                                           0));
227    New->setParams(&Params[0], Params.size());
228  }
229
230
231
232  // TUScope is the translation-unit scope to insert this function into.
233  PushOnScopeChains(New, TUScope);
234  return New;
235}
236
237/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the same name
238/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
239/// situation, merging decls or emitting diagnostics as appropriate.
240///
241TypedefDecl *Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
242  // Verify the old decl was also a typedef.
243  TypedefDecl *Old = dyn_cast<TypedefDecl>(OldD);
244  if (!Old) {
245    Diag(New->getLocation(), diag::err_redefinition_different_kind,
246         New->getName());
247    Diag(OldD->getLocation(), diag::err_previous_definition);
248    return New;
249  }
250
251  // If the typedef types are not identical, reject them in all languages and
252  // with any extensions enabled.
253  if (Old->getUnderlyingType() != New->getUnderlyingType() &&
254      Context.getCanonicalType(Old->getUnderlyingType()) !=
255      Context.getCanonicalType(New->getUnderlyingType())) {
256    Diag(New->getLocation(), diag::err_redefinition_different_typedef,
257         New->getUnderlyingType().getAsString(),
258         Old->getUnderlyingType().getAsString());
259    Diag(Old->getLocation(), diag::err_previous_definition);
260    return Old;
261  }
262
263  // Allow multiple definitions for ObjC built-in typedefs.
264  // FIXME: Verify the underlying types are equivalent!
265  if (getLangOptions().ObjC1 && isBuiltinObjCType(New))
266    return Old;
267
268  if (getLangOptions().Microsoft) return New;
269
270  // Redeclaration of a type is a constraint violation (6.7.2.3p1).
271  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
272  // *either* declaration is in a system header. The code below implements
273  // this adhoc compatibility rule. FIXME: The following code will not
274  // work properly when compiling ".i" files (containing preprocessed output).
275  SourceManager &SrcMgr = Context.getSourceManager();
276  HeaderSearch &HdrInfo = PP.getHeaderSearchInfo();
277  const FileEntry *OldDeclFile = SrcMgr.getFileEntryForLoc(Old->getLocation());
278  if (OldDeclFile) {
279    DirectoryLookup::DirType OldDirType = HdrInfo.getFileDirFlavor(OldDeclFile);
280    // Allow reclarations in both SystemHeaderDir and ExternCSystemHeaderDir.
281    if (OldDirType != DirectoryLookup::NormalHeaderDir)
282      return New;
283  }
284  const FileEntry *NewDeclFile = SrcMgr.getFileEntryForLoc(New->getLocation());
285  if (NewDeclFile) {
286    DirectoryLookup::DirType NewDirType = HdrInfo.getFileDirFlavor(NewDeclFile);
287    // Allow reclarations in both SystemHeaderDir and ExternCSystemHeaderDir.
288    if (NewDirType != DirectoryLookup::NormalHeaderDir)
289      return New;
290  }
291
292  Diag(New->getLocation(), diag::err_redefinition, New->getName());
293  Diag(Old->getLocation(), diag::err_previous_definition);
294  return New;
295}
296
297/// DeclhasAttr - returns true if decl Declaration already has the target
298/// attribute.
299static bool DeclHasAttr(const Decl *decl, const Attr *target) {
300  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
301    if (attr->getKind() == target->getKind())
302      return true;
303
304  return false;
305}
306
307/// MergeAttributes - append attributes from the Old decl to the New one.
308static void MergeAttributes(Decl *New, Decl *Old) {
309  Attr *attr = const_cast<Attr*>(Old->getAttrs()), *tmp;
310
311  while (attr) {
312     tmp = attr;
313     attr = attr->getNext();
314
315    if (!DeclHasAttr(New, tmp)) {
316       New->addAttr(tmp);
317    } else {
318       tmp->setNext(0);
319       delete(tmp);
320    }
321  }
322
323  Old->invalidateAttrs();
324}
325
326/// MergeFunctionDecl - We just parsed a function 'New' from
327/// declarator D which has the same name and scope as a previous
328/// declaration 'Old'.  Figure out how to resolve this situation,
329/// merging decls or emitting diagnostics as appropriate.
330/// Redeclaration will be set true if thisNew is a redeclaration OldD.
331FunctionDecl *
332Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, bool &Redeclaration) {
333  Redeclaration = false;
334  // Verify the old decl was also a function.
335  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
336  if (!Old) {
337    Diag(New->getLocation(), diag::err_redefinition_different_kind,
338         New->getName());
339    Diag(OldD->getLocation(), diag::err_previous_definition);
340    return New;
341  }
342
343  QualType OldQType = Context.getCanonicalType(Old->getType());
344  QualType NewQType = Context.getCanonicalType(New->getType());
345
346  // C++ [dcl.fct]p3:
347  //   All declarations for a function shall agree exactly in both the
348  //   return type and the parameter-type-list.
349  if (getLangOptions().CPlusPlus && OldQType == NewQType) {
350    MergeAttributes(New, Old);
351    Redeclaration = true;
352    return MergeCXXFunctionDecl(New, Old);
353  }
354
355  // C: Function types need to be compatible, not identical. This handles
356  // duplicate function decls like "void f(int); void f(enum X);" properly.
357  if (!getLangOptions().CPlusPlus &&
358      Context.functionTypesAreCompatible(OldQType, NewQType)) {
359    MergeAttributes(New, Old);
360    Redeclaration = true;
361    return New;
362  }
363
364  // A function that has already been declared has been redeclared or defined
365  // with a different type- show appropriate diagnostic
366  diag::kind PrevDiag;
367  if (Old->isThisDeclarationADefinition())
368    PrevDiag = diag::err_previous_definition;
369  else if (Old->isImplicit())
370    PrevDiag = diag::err_previous_implicit_declaration;
371  else
372    PrevDiag = diag::err_previous_declaration;
373
374  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
375  // TODO: This is totally simplistic.  It should handle merging functions
376  // together etc, merging extern int X; int X; ...
377  Diag(New->getLocation(), diag::err_conflicting_types, New->getName());
378  Diag(Old->getLocation(), PrevDiag);
379  return New;
380}
381
382/// equivalentArrayTypes - Used to determine whether two array types are
383/// equivalent.
384/// We need to check this explicitly as an incomplete array definition is
385/// considered a VariableArrayType, so will not match a complete array
386/// definition that would be otherwise equivalent.
387static bool areEquivalentArrayTypes(QualType NewQType, QualType OldQType,
388                                    ASTContext &Context) {
389  const ArrayType *NewAT = Context.getAsArrayType(NewQType);
390  const ArrayType *OldAT = Context.getAsArrayType(OldQType);
391
392  if (!NewAT || !OldAT)
393    return false;
394
395  // If either (or both) array types in incomplete we need to strip off the
396  // outer VariableArrayType.  Once the outer VAT is removed the remaining
397  // types must be identical if the array types are to be considered
398  // equivalent.
399  // eg. int[][1] and int[1][1] become
400  //     VAT(null, CAT(1, int)) and CAT(1, CAT(1, int))
401  // removing the outermost VAT gives
402  //     CAT(1, int) and CAT(1, int)
403  // which are equal, therefore the array types are equivalent.
404  if (NewAT->isIncompleteArrayType() || OldAT->isIncompleteArrayType()) {
405    if (NewAT->getIndexTypeQualifier() != OldAT->getIndexTypeQualifier())
406      return false;
407    NewQType = Context.getCanonicalType(NewAT->getElementType());
408    OldQType = Context.getCanonicalType(OldAT->getElementType());
409  }
410
411  return NewQType == OldQType;
412}
413
414/// MergeVarDecl - We just parsed a variable 'New' which has the same name
415/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
416/// situation, merging decls or emitting diagnostics as appropriate.
417///
418/// FIXME: Need to carefully consider tentative definition rules (C99 6.9.2p2).
419/// For example, we incorrectly complain about i1, i4 from C99 6.9.2p4.
420///
421VarDecl *Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
422  // Verify the old decl was also a variable.
423  VarDecl *Old = dyn_cast<VarDecl>(OldD);
424  if (!Old) {
425    Diag(New->getLocation(), diag::err_redefinition_different_kind,
426         New->getName());
427    Diag(OldD->getLocation(), diag::err_previous_definition);
428    return New;
429  }
430
431  MergeAttributes(New, Old);
432
433  // Verify the types match.
434  QualType OldCType = Context.getCanonicalType(Old->getType());
435  QualType NewCType = Context.getCanonicalType(New->getType());
436  if (OldCType != NewCType &&
437      !areEquivalentArrayTypes(NewCType, OldCType, Context)) {
438    Diag(New->getLocation(), diag::err_redefinition, New->getName());
439    Diag(Old->getLocation(), diag::err_previous_definition);
440    return New;
441  }
442  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
443  if (New->getStorageClass() == VarDecl::Static &&
444      (Old->getStorageClass() == VarDecl::None ||
445       Old->getStorageClass() == VarDecl::Extern)) {
446    Diag(New->getLocation(), diag::err_static_non_static, New->getName());
447    Diag(Old->getLocation(), diag::err_previous_definition);
448    return New;
449  }
450  // C99 6.2.2p4: Check if we have a non-static decl followed by a static.
451  if (New->getStorageClass() != VarDecl::Static &&
452      Old->getStorageClass() == VarDecl::Static) {
453    Diag(New->getLocation(), diag::err_non_static_static, New->getName());
454    Diag(Old->getLocation(), diag::err_previous_definition);
455    return New;
456  }
457  // We've verified the types match, now handle "tentative" definitions.
458  if (Old->isFileVarDecl() && New->isFileVarDecl()) {
459    // Handle C "tentative" external object definitions (C99 6.9.2).
460    bool OldIsTentative = false;
461    bool NewIsTentative = false;
462
463    if (!Old->getInit() &&
464        (Old->getStorageClass() == VarDecl::None ||
465         Old->getStorageClass() == VarDecl::Static))
466      OldIsTentative = true;
467
468    // FIXME: this check doesn't work (since the initializer hasn't been
469    // attached yet). This check should be moved to FinalizeDeclaratorGroup.
470    // Unfortunately, by the time we get to FinializeDeclaratorGroup, we've
471    // thrown out the old decl.
472    if (!New->getInit() &&
473        (New->getStorageClass() == VarDecl::None ||
474         New->getStorageClass() == VarDecl::Static))
475      ; // change to NewIsTentative = true; once the code is moved.
476
477    if (NewIsTentative || OldIsTentative)
478      return New;
479  }
480  // Handle __private_extern__ just like extern.
481  if (Old->getStorageClass() != VarDecl::Extern &&
482      Old->getStorageClass() != VarDecl::PrivateExtern &&
483      New->getStorageClass() != VarDecl::Extern &&
484      New->getStorageClass() != VarDecl::PrivateExtern) {
485    Diag(New->getLocation(), diag::err_redefinition, New->getName());
486    Diag(Old->getLocation(), diag::err_previous_definition);
487  }
488  return New;
489}
490
491/// CheckParmsForFunctionDef - Check that the parameters of the given
492/// function are appropriate for the definition of a function. This
493/// takes care of any checks that cannot be performed on the
494/// declaration itself, e.g., that the types of each of the function
495/// parameters are complete.
496bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
497  bool HasInvalidParm = false;
498  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
499    ParmVarDecl *Param = FD->getParamDecl(p);
500
501    // C99 6.7.5.3p4: the parameters in a parameter type list in a
502    // function declarator that is part of a function definition of
503    // that function shall not have incomplete type.
504    if (Param->getType()->isIncompleteType() &&
505        !Param->isInvalidDecl()) {
506      Diag(Param->getLocation(), diag::err_typecheck_decl_incomplete_type,
507           Param->getType().getAsString());
508      Param->setInvalidDecl();
509      HasInvalidParm = true;
510    }
511  }
512
513  return HasInvalidParm;
514}
515
516/// CreateImplicitParameter - Creates an implicit function parameter
517/// in the scope S and with the given type. This routine is used, for
518/// example, to create the implicit "self" parameter in an Objective-C
519/// method.
520ImplicitParamDecl *
521Sema::CreateImplicitParameter(Scope *S, IdentifierInfo *Id,
522                              SourceLocation IdLoc, QualType Type) {
523  ImplicitParamDecl *New = ImplicitParamDecl::Create(Context, CurContext,
524      IdLoc, Id, Type, 0);
525  if (Id)
526    PushOnScopeChains(New, S);
527
528  return New;
529}
530
531/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
532/// no declarator (e.g. "struct foo;") is parsed.
533Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
534  // TODO: emit error on 'int;' or 'const enum foo;'.
535  // TODO: emit error on 'typedef int;'
536  // if (!DS.isMissingDeclaratorOk()) Diag(...);
537
538  return dyn_cast_or_null<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
539}
540
541bool Sema::CheckSingleInitializer(Expr *&Init, QualType DeclType) {
542  // Get the type before calling CheckSingleAssignmentConstraints(), since
543  // it can promote the expression.
544  QualType InitType = Init->getType();
545
546  AssignConvertType ConvTy = CheckSingleAssignmentConstraints(DeclType, Init);
547  return DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType,
548                                  InitType, Init, "initializing");
549}
550
551bool Sema::CheckStringLiteralInit(StringLiteral *strLiteral, QualType &DeclT) {
552  const ArrayType *AT = Context.getAsArrayType(DeclT);
553
554  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
555    // C99 6.7.8p14. We have an array of character type with unknown size
556    // being initialized to a string literal.
557    llvm::APSInt ConstVal(32);
558    ConstVal = strLiteral->getByteLength() + 1;
559    // Return a new array type (C99 6.7.8p22).
560    DeclT = Context.getConstantArrayType(IAT->getElementType(), ConstVal,
561                                         ArrayType::Normal, 0);
562  } else {
563    const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
564    // C99 6.7.8p14. We have an array of character type with known size.
565    // FIXME: Avoid truncation for 64-bit length strings.
566    if (strLiteral->getByteLength() > (unsigned)CAT->getSize().getZExtValue())
567      Diag(strLiteral->getSourceRange().getBegin(),
568           diag::warn_initializer_string_for_char_array_too_long,
569           strLiteral->getSourceRange());
570  }
571  // Set type from "char *" to "constant array of char".
572  strLiteral->setType(DeclT);
573  // For now, we always return false (meaning success).
574  return false;
575}
576
577StringLiteral *Sema::IsStringLiteralInit(Expr *Init, QualType DeclType) {
578  const ArrayType *AT = Context.getAsArrayType(DeclType);
579  if (AT && AT->getElementType()->isCharType()) {
580    return dyn_cast<StringLiteral>(Init);
581  }
582  return 0;
583}
584
585bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType) {
586  // C99 6.7.8p3: The type of the entity to be initialized shall be an array
587  // of unknown size ("[]") or an object type that is not a variable array type.
588  if (const VariableArrayType *VAT = Context.getAsVariableArrayType(DeclType))
589    return Diag(VAT->getSizeExpr()->getLocStart(),
590                diag::err_variable_object_no_init,
591                VAT->getSizeExpr()->getSourceRange());
592
593  InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
594  if (!InitList) {
595    // FIXME: Handle wide strings
596    if (StringLiteral *strLiteral = IsStringLiteralInit(Init, DeclType))
597      return CheckStringLiteralInit(strLiteral, DeclType);
598
599    if (DeclType->isArrayType())
600      return Diag(Init->getLocStart(),
601                  diag::err_array_init_list_required,
602                  Init->getSourceRange());
603
604    return CheckSingleInitializer(Init, DeclType);
605  }
606
607  InitListChecker CheckInitList(this, InitList, DeclType);
608  return CheckInitList.HadError();
609}
610
611Sema::DeclTy *
612Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl) {
613  ScopedDecl *LastDeclarator = dyn_cast_or_null<ScopedDecl>((Decl *)lastDecl);
614  IdentifierInfo *II = D.getIdentifier();
615
616  // All of these full declarators require an identifier.  If it doesn't have
617  // one, the ParsedFreeStandingDeclSpec action should be used.
618  if (II == 0) {
619    Diag(D.getDeclSpec().getSourceRange().getBegin(),
620         diag::err_declarator_need_ident,
621         D.getDeclSpec().getSourceRange(), D.getSourceRange());
622    return 0;
623  }
624
625  // The scope passed in may not be a decl scope.  Zip up the scope tree until
626  // we find one that is.
627  while ((S->getFlags() & Scope::DeclScope) == 0)
628    S = S->getParent();
629
630  // See if this is a redefinition of a variable in the same scope.
631  Decl *PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S);
632  ScopedDecl *New;
633  bool InvalidDecl = false;
634
635  // In C++, the previous declaration we find might be a tag type
636  // (class or enum). In this case, the new declaration will hide the
637  // tag type.
638  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag)
639    PrevDecl = 0;
640
641  QualType R = GetTypeForDeclarator(D, S);
642  assert(!R.isNull() && "GetTypeForDeclarator() returned null type");
643
644  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
645    // Check that there are no default arguments (C++ only).
646    if (getLangOptions().CPlusPlus)
647      CheckExtraCXXDefaultArguments(D);
648
649    TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
650    if (!NewTD) return 0;
651
652    // Handle attributes prior to checking for duplicates in MergeVarDecl
653    ProcessDeclAttributes(NewTD, D);
654    // Merge the decl with the existing one if appropriate. If the decl is
655    // in an outer scope, it isn't the same thing.
656    if (PrevDecl && IdResolver.isDeclInScope(PrevDecl, CurContext, S)) {
657      NewTD = MergeTypeDefDecl(NewTD, PrevDecl);
658      if (NewTD == 0) return 0;
659    }
660    New = NewTD;
661    if (S->getFnParent() == 0) {
662      // C99 6.7.7p2: If a typedef name specifies a variably modified type
663      // then it shall have block scope.
664      if (NewTD->getUnderlyingType()->isVariablyModifiedType()) {
665        // FIXME: Diagnostic needs to be fixed.
666        Diag(D.getIdentifierLoc(), diag::err_typecheck_illegal_vla);
667        InvalidDecl = true;
668      }
669    }
670  } else if (R.getTypePtr()->isFunctionType()) {
671    FunctionDecl::StorageClass SC = FunctionDecl::None;
672    switch (D.getDeclSpec().getStorageClassSpec()) {
673      default: assert(0 && "Unknown storage class!");
674      case DeclSpec::SCS_auto:
675      case DeclSpec::SCS_register:
676        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_func,
677             R.getAsString());
678        InvalidDecl = true;
679        break;
680      case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
681      case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
682      case DeclSpec::SCS_static:      SC = FunctionDecl::Static; break;
683      case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
684    }
685
686    bool isInline = D.getDeclSpec().isInlineSpecified();
687    FunctionDecl *NewFD;
688    if (D.getContext() == Declarator::MemberContext) {
689      // This is a C++ method declaration.
690      NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(CurContext),
691                                    D.getIdentifierLoc(), II, R,
692                                    (SC == FunctionDecl::Static), isInline,
693                                    LastDeclarator);
694    } else {
695      NewFD = FunctionDecl::Create(Context, CurContext,
696                                   D.getIdentifierLoc(),
697                                   II, R, SC, isInline,
698                                   LastDeclarator);
699    }
700    // Handle attributes.
701    ProcessDeclAttributes(NewFD, D);
702
703    // Handle GNU asm-label extension (encoded as an attribute).
704    if (Expr *E = (Expr*) D.getAsmLabel()) {
705      // The parser guarantees this is a string.
706      StringLiteral *SE = cast<StringLiteral>(E);
707      NewFD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
708                                                  SE->getByteLength())));
709    }
710
711    // Copy the parameter declarations from the declarator D to
712    // the function declaration NewFD, if they are available.
713    if (D.getNumTypeObjects() > 0 &&
714        D.getTypeObject(0).Fun.hasPrototype) {
715      DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
716
717      // Create Decl objects for each parameter, adding them to the
718      // FunctionDecl.
719      llvm::SmallVector<ParmVarDecl*, 16> Params;
720
721      // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
722      // function that takes no arguments, not a function that takes a
723      // single void argument.
724      // We let through "const void" here because Sema::GetTypeForDeclarator
725      // already checks for that case.
726      if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
727          FTI.ArgInfo[0].Param &&
728          ((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
729        // empty arg list, don't push any params.
730        ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
731
732        // In C++, the empty parameter-type-list must be spelled "void"; a
733        // typedef of void is not permitted.
734        if (getLangOptions().CPlusPlus &&
735            Param->getType().getUnqualifiedType() != Context.VoidTy) {
736          Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
737        }
738
739      } else {
740        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
741          Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
742      }
743
744      NewFD->setParams(&Params[0], Params.size());
745    }
746
747    // Merge the decl with the existing one if appropriate. Since C functions
748    // are in a flat namespace, make sure we consider decls in outer scopes.
749    if (PrevDecl &&
750        (!getLangOptions().CPlusPlus ||
751         IdResolver.isDeclInScope(PrevDecl, CurContext, S)) ) {
752      bool Redeclaration = false;
753      NewFD = MergeFunctionDecl(NewFD, PrevDecl, Redeclaration);
754      if (NewFD == 0) return 0;
755      if (Redeclaration) {
756        NewFD->setPreviousDeclaration(cast<FunctionDecl>(PrevDecl));
757      }
758    }
759    New = NewFD;
760
761    // In C++, check default arguments now that we have merged decls.
762    if (getLangOptions().CPlusPlus)
763      CheckCXXDefaultArguments(NewFD);
764  } else {
765    // Check that there are no default arguments (C++ only).
766    if (getLangOptions().CPlusPlus)
767      CheckExtraCXXDefaultArguments(D);
768
769    if (R.getTypePtr()->isObjCInterfaceType()) {
770      Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object,
771           D.getIdentifier()->getName());
772      InvalidDecl = true;
773    }
774
775    VarDecl *NewVD;
776    VarDecl::StorageClass SC;
777    switch (D.getDeclSpec().getStorageClassSpec()) {
778    default: assert(0 && "Unknown storage class!");
779    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
780    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
781    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
782    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
783    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
784    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
785    }
786    if (D.getContext() == Declarator::MemberContext) {
787      assert(SC == VarDecl::Static && "Invalid storage class for member!");
788      // This is a static data member for a C++ class.
789      NewVD = CXXClassVarDecl::Create(Context, cast<CXXRecordDecl>(CurContext),
790                                      D.getIdentifierLoc(), II,
791                                      R, LastDeclarator);
792    } else {
793      if (S->getFnParent() == 0) {
794        // C99 6.9p2: The storage-class specifiers auto and register shall not
795        // appear in the declaration specifiers in an external declaration.
796        if (SC == VarDecl::Auto || SC == VarDecl::Register) {
797          Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope,
798               R.getAsString());
799          InvalidDecl = true;
800        }
801        NewVD = VarDecl::Create(Context, CurContext, D.getIdentifierLoc(),
802                                II, R, SC, LastDeclarator);
803      } else {
804        NewVD = VarDecl::Create(Context, CurContext, D.getIdentifierLoc(),
805                                II, R, SC, LastDeclarator);
806      }
807    }
808    // Handle attributes prior to checking for duplicates in MergeVarDecl
809    ProcessDeclAttributes(NewVD, D);
810
811    // Handle GNU asm-label extension (encoded as an attribute).
812    if (Expr *E = (Expr*) D.getAsmLabel()) {
813      // The parser guarantees this is a string.
814      StringLiteral *SE = cast<StringLiteral>(E);
815      NewVD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
816                                                  SE->getByteLength())));
817    }
818
819    // Emit an error if an address space was applied to decl with local storage.
820    // This includes arrays of objects with address space qualifiers, but not
821    // automatic variables that point to other address spaces.
822    // ISO/IEC TR 18037 S5.1.2
823    if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
824      Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
825      InvalidDecl = true;
826    }
827    // Merge the decl with the existing one if appropriate. If the decl is
828    // in an outer scope, it isn't the same thing.
829    if (PrevDecl && IdResolver.isDeclInScope(PrevDecl, CurContext, S)) {
830      NewVD = MergeVarDecl(NewVD, PrevDecl);
831      if (NewVD == 0) return 0;
832    }
833    New = NewVD;
834  }
835
836  // If this has an identifier, add it to the scope stack.
837  if (II)
838    PushOnScopeChains(New, S);
839  // If any semantic error occurred, mark the decl as invalid.
840  if (D.getInvalidType() || InvalidDecl)
841    New->setInvalidDecl();
842
843  return New;
844}
845
846bool Sema::CheckAddressConstantExpressionLValue(const Expr* Init) {
847  switch (Init->getStmtClass()) {
848  default:
849    Diag(Init->getExprLoc(),
850         diag::err_init_element_not_constant, Init->getSourceRange());
851    return true;
852  case Expr::ParenExprClass: {
853    const ParenExpr* PE = cast<ParenExpr>(Init);
854    return CheckAddressConstantExpressionLValue(PE->getSubExpr());
855  }
856  case Expr::CompoundLiteralExprClass:
857    return cast<CompoundLiteralExpr>(Init)->isFileScope();
858  case Expr::DeclRefExprClass: {
859    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
860    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
861      if (VD->hasGlobalStorage())
862        return false;
863      Diag(Init->getExprLoc(),
864           diag::err_init_element_not_constant, Init->getSourceRange());
865      return true;
866    }
867    if (isa<FunctionDecl>(D))
868      return false;
869    Diag(Init->getExprLoc(),
870         diag::err_init_element_not_constant, Init->getSourceRange());
871    return true;
872  }
873  case Expr::MemberExprClass: {
874    const MemberExpr *M = cast<MemberExpr>(Init);
875    if (M->isArrow())
876      return CheckAddressConstantExpression(M->getBase());
877    return CheckAddressConstantExpressionLValue(M->getBase());
878  }
879  case Expr::ArraySubscriptExprClass: {
880    // FIXME: Should we pedwarn for "x[0+0]" (where x is a pointer)?
881    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(Init);
882    return CheckAddressConstantExpression(ASE->getBase()) ||
883           CheckArithmeticConstantExpression(ASE->getIdx());
884  }
885  case Expr::StringLiteralClass:
886  case Expr::PreDefinedExprClass:
887    return false;
888  case Expr::UnaryOperatorClass: {
889    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
890
891    // C99 6.6p9
892    if (Exp->getOpcode() == UnaryOperator::Deref)
893      return CheckAddressConstantExpression(Exp->getSubExpr());
894
895    Diag(Init->getExprLoc(),
896         diag::err_init_element_not_constant, Init->getSourceRange());
897    return true;
898  }
899  }
900}
901
902bool Sema::CheckAddressConstantExpression(const Expr* Init) {
903  switch (Init->getStmtClass()) {
904  default:
905    Diag(Init->getExprLoc(),
906         diag::err_init_element_not_constant, Init->getSourceRange());
907    return true;
908  case Expr::ParenExprClass: {
909    const ParenExpr* PE = cast<ParenExpr>(Init);
910    return CheckAddressConstantExpression(PE->getSubExpr());
911  }
912  case Expr::StringLiteralClass:
913  case Expr::ObjCStringLiteralClass:
914    return false;
915  case Expr::CallExprClass: {
916    const CallExpr *CE = cast<CallExpr>(Init);
917    if (CE->isBuiltinConstantExpr())
918      return false;
919    Diag(Init->getExprLoc(),
920         diag::err_init_element_not_constant, Init->getSourceRange());
921    return true;
922  }
923  case Expr::UnaryOperatorClass: {
924    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
925
926    // C99 6.6p9
927    if (Exp->getOpcode() == UnaryOperator::AddrOf)
928      return CheckAddressConstantExpressionLValue(Exp->getSubExpr());
929
930    if (Exp->getOpcode() == UnaryOperator::Extension)
931      return CheckAddressConstantExpression(Exp->getSubExpr());
932
933    Diag(Init->getExprLoc(),
934         diag::err_init_element_not_constant, Init->getSourceRange());
935    return true;
936  }
937  case Expr::BinaryOperatorClass: {
938    // FIXME: Should we pedwarn for expressions like "a + 1 + 2"?
939    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
940
941    Expr *PExp = Exp->getLHS();
942    Expr *IExp = Exp->getRHS();
943    if (IExp->getType()->isPointerType())
944      std::swap(PExp, IExp);
945
946    // FIXME: Should we pedwarn if IExp isn't an integer constant expression?
947    return CheckAddressConstantExpression(PExp) ||
948           CheckArithmeticConstantExpression(IExp);
949  }
950  case Expr::ImplicitCastExprClass: {
951    const Expr* SubExpr = cast<ImplicitCastExpr>(Init)->getSubExpr();
952
953    // Check for implicit promotion
954    if (SubExpr->getType()->isFunctionType() ||
955        SubExpr->getType()->isArrayType())
956      return CheckAddressConstantExpressionLValue(SubExpr);
957
958    // Check for pointer->pointer cast
959    if (SubExpr->getType()->isPointerType())
960      return CheckAddressConstantExpression(SubExpr);
961
962    if (SubExpr->getType()->isArithmeticType())
963      return CheckArithmeticConstantExpression(SubExpr);
964
965    Diag(Init->getExprLoc(),
966         diag::err_init_element_not_constant, Init->getSourceRange());
967    return true;
968  }
969  case Expr::CastExprClass: {
970    const Expr* SubExpr = cast<CastExpr>(Init)->getSubExpr();
971
972    // Check for pointer->pointer cast
973    if (SubExpr->getType()->isPointerType())
974      return CheckAddressConstantExpression(SubExpr);
975
976    // FIXME: Should we pedwarn for (int*)(0+0)?
977    if (SubExpr->getType()->isArithmeticType())
978      return CheckArithmeticConstantExpression(SubExpr);
979
980    Diag(Init->getExprLoc(),
981         diag::err_init_element_not_constant, Init->getSourceRange());
982    return true;
983  }
984  case Expr::ConditionalOperatorClass: {
985    // FIXME: Should we pedwarn here?
986    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
987    if (!Exp->getCond()->getType()->isArithmeticType()) {
988      Diag(Init->getExprLoc(),
989           diag::err_init_element_not_constant, Init->getSourceRange());
990      return true;
991    }
992    if (CheckArithmeticConstantExpression(Exp->getCond()))
993      return true;
994    if (Exp->getLHS() &&
995        CheckAddressConstantExpression(Exp->getLHS()))
996      return true;
997    return CheckAddressConstantExpression(Exp->getRHS());
998  }
999  case Expr::AddrLabelExprClass:
1000    return false;
1001  }
1002}
1003
1004static const Expr* FindExpressionBaseAddress(const Expr* E);
1005
1006static const Expr* FindExpressionBaseAddressLValue(const Expr* E) {
1007  switch (E->getStmtClass()) {
1008  default:
1009    return E;
1010  case Expr::ParenExprClass: {
1011    const ParenExpr* PE = cast<ParenExpr>(E);
1012    return FindExpressionBaseAddressLValue(PE->getSubExpr());
1013  }
1014  case Expr::MemberExprClass: {
1015    const MemberExpr *M = cast<MemberExpr>(E);
1016    if (M->isArrow())
1017      return FindExpressionBaseAddress(M->getBase());
1018    return FindExpressionBaseAddressLValue(M->getBase());
1019  }
1020  case Expr::ArraySubscriptExprClass: {
1021    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(E);
1022    return FindExpressionBaseAddress(ASE->getBase());
1023  }
1024  case Expr::UnaryOperatorClass: {
1025    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1026
1027    if (Exp->getOpcode() == UnaryOperator::Deref)
1028      return FindExpressionBaseAddress(Exp->getSubExpr());
1029
1030    return E;
1031  }
1032  }
1033}
1034
1035static const Expr* FindExpressionBaseAddress(const Expr* E) {
1036  switch (E->getStmtClass()) {
1037  default:
1038    return E;
1039  case Expr::ParenExprClass: {
1040    const ParenExpr* PE = cast<ParenExpr>(E);
1041    return FindExpressionBaseAddress(PE->getSubExpr());
1042  }
1043  case Expr::UnaryOperatorClass: {
1044    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1045
1046    // C99 6.6p9
1047    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1048      return FindExpressionBaseAddressLValue(Exp->getSubExpr());
1049
1050    if (Exp->getOpcode() == UnaryOperator::Extension)
1051      return FindExpressionBaseAddress(Exp->getSubExpr());
1052
1053    return E;
1054  }
1055  case Expr::BinaryOperatorClass: {
1056    const BinaryOperator *Exp = cast<BinaryOperator>(E);
1057
1058    Expr *PExp = Exp->getLHS();
1059    Expr *IExp = Exp->getRHS();
1060    if (IExp->getType()->isPointerType())
1061      std::swap(PExp, IExp);
1062
1063    return FindExpressionBaseAddress(PExp);
1064  }
1065  case Expr::ImplicitCastExprClass: {
1066    const Expr* SubExpr = cast<ImplicitCastExpr>(E)->getSubExpr();
1067
1068    // Check for implicit promotion
1069    if (SubExpr->getType()->isFunctionType() ||
1070        SubExpr->getType()->isArrayType())
1071      return FindExpressionBaseAddressLValue(SubExpr);
1072
1073    // Check for pointer->pointer cast
1074    if (SubExpr->getType()->isPointerType())
1075      return FindExpressionBaseAddress(SubExpr);
1076
1077    // We assume that we have an arithmetic expression here;
1078    // if we don't, we'll figure it out later
1079    return 0;
1080  }
1081  case Expr::CastExprClass: {
1082    const Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
1083
1084    // Check for pointer->pointer cast
1085    if (SubExpr->getType()->isPointerType())
1086      return FindExpressionBaseAddress(SubExpr);
1087
1088    // We assume that we have an arithmetic expression here;
1089    // if we don't, we'll figure it out later
1090    return 0;
1091  }
1092  }
1093}
1094
1095bool Sema::CheckArithmeticConstantExpression(const Expr* Init) {
1096  switch (Init->getStmtClass()) {
1097  default:
1098    Diag(Init->getExprLoc(),
1099         diag::err_init_element_not_constant, Init->getSourceRange());
1100    return true;
1101  case Expr::ParenExprClass: {
1102    const ParenExpr* PE = cast<ParenExpr>(Init);
1103    return CheckArithmeticConstantExpression(PE->getSubExpr());
1104  }
1105  case Expr::FloatingLiteralClass:
1106  case Expr::IntegerLiteralClass:
1107  case Expr::CharacterLiteralClass:
1108  case Expr::ImaginaryLiteralClass:
1109  case Expr::TypesCompatibleExprClass:
1110  case Expr::CXXBoolLiteralExprClass:
1111    return false;
1112  case Expr::CallExprClass: {
1113    const CallExpr *CE = cast<CallExpr>(Init);
1114    if (CE->isBuiltinConstantExpr())
1115      return false;
1116    Diag(Init->getExprLoc(),
1117         diag::err_init_element_not_constant, Init->getSourceRange());
1118    return true;
1119  }
1120  case Expr::DeclRefExprClass: {
1121    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
1122    if (isa<EnumConstantDecl>(D))
1123      return false;
1124    Diag(Init->getExprLoc(),
1125         diag::err_init_element_not_constant, Init->getSourceRange());
1126    return true;
1127  }
1128  case Expr::CompoundLiteralExprClass:
1129    // Allow "(vector type){2,4}"; normal C constraints don't allow this,
1130    // but vectors are allowed to be magic.
1131    if (Init->getType()->isVectorType())
1132      return false;
1133    Diag(Init->getExprLoc(),
1134         diag::err_init_element_not_constant, Init->getSourceRange());
1135    return true;
1136  case Expr::UnaryOperatorClass: {
1137    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1138
1139    switch (Exp->getOpcode()) {
1140    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
1141    // See C99 6.6p3.
1142    default:
1143      Diag(Init->getExprLoc(),
1144           diag::err_init_element_not_constant, Init->getSourceRange());
1145      return true;
1146    case UnaryOperator::SizeOf:
1147    case UnaryOperator::AlignOf:
1148    case UnaryOperator::OffsetOf:
1149      // sizeof(E) is a constantexpr if and only if E is not evaluted.
1150      // See C99 6.5.3.4p2 and 6.6p3.
1151      if (Exp->getSubExpr()->getType()->isConstantSizeType())
1152        return false;
1153      Diag(Init->getExprLoc(),
1154           diag::err_init_element_not_constant, Init->getSourceRange());
1155      return true;
1156    case UnaryOperator::Extension:
1157    case UnaryOperator::LNot:
1158    case UnaryOperator::Plus:
1159    case UnaryOperator::Minus:
1160    case UnaryOperator::Not:
1161      return CheckArithmeticConstantExpression(Exp->getSubExpr());
1162    }
1163  }
1164  case Expr::SizeOfAlignOfTypeExprClass: {
1165    const SizeOfAlignOfTypeExpr *Exp = cast<SizeOfAlignOfTypeExpr>(Init);
1166    // Special check for void types, which are allowed as an extension
1167    if (Exp->getArgumentType()->isVoidType())
1168      return false;
1169    // alignof always evaluates to a constant.
1170    // FIXME: is sizeof(int[3.0]) a constant expression?
1171    if (Exp->isSizeOf() && !Exp->getArgumentType()->isConstantSizeType()) {
1172      Diag(Init->getExprLoc(),
1173           diag::err_init_element_not_constant, Init->getSourceRange());
1174      return true;
1175    }
1176    return false;
1177  }
1178  case Expr::BinaryOperatorClass: {
1179    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
1180
1181    if (Exp->getLHS()->getType()->isArithmeticType() &&
1182        Exp->getRHS()->getType()->isArithmeticType()) {
1183      return CheckArithmeticConstantExpression(Exp->getLHS()) ||
1184             CheckArithmeticConstantExpression(Exp->getRHS());
1185    }
1186
1187    if (Exp->getLHS()->getType()->isPointerType() &&
1188        Exp->getRHS()->getType()->isPointerType()) {
1189      const Expr* LHSBase = FindExpressionBaseAddress(Exp->getLHS());
1190      const Expr* RHSBase = FindExpressionBaseAddress(Exp->getRHS());
1191
1192      // Only allow a null (constant integer) base; we could
1193      // allow some additional cases if necessary, but this
1194      // is sufficient to cover offsetof-like constructs.
1195      if (!LHSBase && !RHSBase) {
1196        return CheckAddressConstantExpression(Exp->getLHS()) ||
1197               CheckAddressConstantExpression(Exp->getRHS());
1198      }
1199    }
1200
1201    Diag(Init->getExprLoc(),
1202         diag::err_init_element_not_constant, Init->getSourceRange());
1203    return true;
1204  }
1205  case Expr::ImplicitCastExprClass:
1206  case Expr::CastExprClass: {
1207    const Expr *SubExpr;
1208    if (const CastExpr *C = dyn_cast<CastExpr>(Init)) {
1209      SubExpr = C->getSubExpr();
1210    } else {
1211      SubExpr = cast<ImplicitCastExpr>(Init)->getSubExpr();
1212    }
1213
1214    if (SubExpr->getType()->isArithmeticType())
1215      return CheckArithmeticConstantExpression(SubExpr);
1216
1217    Diag(Init->getExprLoc(),
1218         diag::err_init_element_not_constant, Init->getSourceRange());
1219    return true;
1220  }
1221  case Expr::ConditionalOperatorClass: {
1222    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
1223    if (CheckArithmeticConstantExpression(Exp->getCond()))
1224      return true;
1225    if (Exp->getLHS() &&
1226        CheckArithmeticConstantExpression(Exp->getLHS()))
1227      return true;
1228    return CheckArithmeticConstantExpression(Exp->getRHS());
1229  }
1230  }
1231}
1232
1233bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
1234  Init = Init->IgnoreParens();
1235
1236  // Look through CXXDefaultArgExprs; they have no meaning in this context.
1237  if (CXXDefaultArgExpr* DAE = dyn_cast<CXXDefaultArgExpr>(Init))
1238    return CheckForConstantInitializer(DAE->getExpr(), DclT);
1239
1240  if (CompoundLiteralExpr *e = dyn_cast<CompoundLiteralExpr>(Init))
1241    return CheckForConstantInitializer(e->getInitializer(), DclT);
1242
1243  if (Init->getType()->isReferenceType()) {
1244    // FIXME: Work out how the heck reference types work
1245    return false;
1246#if 0
1247    // A reference is constant if the address of the expression
1248    // is constant
1249    // We look through initlists here to simplify
1250    // CheckAddressConstantExpressionLValue.
1251    if (InitListExpr *Exp = dyn_cast<InitListExpr>(Init)) {
1252      assert(Exp->getNumInits() > 0 &&
1253             "Refernce initializer cannot be empty");
1254      Init = Exp->getInit(0);
1255    }
1256    return CheckAddressConstantExpressionLValue(Init);
1257#endif
1258  }
1259
1260  if (InitListExpr *Exp = dyn_cast<InitListExpr>(Init)) {
1261    unsigned numInits = Exp->getNumInits();
1262    for (unsigned i = 0; i < numInits; i++) {
1263      // FIXME: Need to get the type of the declaration for C++,
1264      // because it could be a reference?
1265      if (CheckForConstantInitializer(Exp->getInit(i),
1266                                      Exp->getInit(i)->getType()))
1267        return true;
1268    }
1269    return false;
1270  }
1271
1272  if (Init->isNullPointerConstant(Context))
1273    return false;
1274  if (Init->getType()->isArithmeticType()) {
1275    QualType InitTy = Context.getCanonicalType(Init->getType())
1276                             .getUnqualifiedType();
1277    if (InitTy == Context.BoolTy) {
1278      // Special handling for pointers implicitly cast to bool;
1279      // (e.g. "_Bool rr = &rr;"). This is only legal at the top level.
1280      if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Init)) {
1281        Expr* SubE = ICE->getSubExpr();
1282        if (SubE->getType()->isPointerType() ||
1283            SubE->getType()->isArrayType() ||
1284            SubE->getType()->isFunctionType()) {
1285          return CheckAddressConstantExpression(Init);
1286        }
1287      }
1288    } else if (InitTy->isIntegralType()) {
1289      Expr* SubE = 0;
1290      if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Init))
1291        SubE = ICE->getSubExpr();
1292      else if (CastExpr* CE = dyn_cast<CastExpr>(Init))
1293        SubE = CE->getSubExpr();
1294      // Special check for pointer cast to int; we allow as an extension
1295      // an address constant cast to an integer if the integer
1296      // is of an appropriate width (this sort of code is apparently used
1297      // in some places).
1298      // FIXME: Add pedwarn?
1299      // FIXME: Don't allow bitfields here!  Need the FieldDecl for that.
1300      if (SubE && (SubE->getType()->isPointerType() ||
1301                   SubE->getType()->isArrayType() ||
1302                   SubE->getType()->isFunctionType())) {
1303        unsigned IntWidth = Context.getTypeSize(Init->getType());
1304        unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
1305        if (IntWidth >= PointerWidth)
1306          return CheckAddressConstantExpression(Init);
1307      }
1308    }
1309
1310    return CheckArithmeticConstantExpression(Init);
1311  }
1312
1313  if (Init->getType()->isPointerType())
1314    return CheckAddressConstantExpression(Init);
1315
1316  // An array type at the top level that isn't an init-list must
1317  // be a string literal
1318  if (Init->getType()->isArrayType())
1319    return false;
1320
1321  Diag(Init->getExprLoc(), diag::err_init_element_not_constant,
1322       Init->getSourceRange());
1323  return true;
1324}
1325
1326void Sema::AddInitializerToDecl(DeclTy *dcl, ExprTy *init) {
1327  Decl *RealDecl = static_cast<Decl *>(dcl);
1328  Expr *Init = static_cast<Expr *>(init);
1329  assert(Init && "missing initializer");
1330
1331  // If there is no declaration, there was an error parsing it.  Just ignore
1332  // the initializer.
1333  if (RealDecl == 0) {
1334    delete Init;
1335    return;
1336  }
1337
1338  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
1339  if (!VDecl) {
1340    Diag(dyn_cast<ScopedDecl>(RealDecl)->getLocation(),
1341         diag::err_illegal_initializer);
1342    RealDecl->setInvalidDecl();
1343    return;
1344  }
1345  // Get the decls type and save a reference for later, since
1346  // CheckInitializerTypes may change it.
1347  QualType DclT = VDecl->getType(), SavT = DclT;
1348  if (VDecl->isBlockVarDecl()) {
1349    VarDecl::StorageClass SC = VDecl->getStorageClass();
1350    if (SC == VarDecl::Extern) { // C99 6.7.8p5
1351      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
1352      VDecl->setInvalidDecl();
1353    } else if (!VDecl->isInvalidDecl()) {
1354      if (CheckInitializerTypes(Init, DclT))
1355        VDecl->setInvalidDecl();
1356      if (SC == VarDecl::Static) // C99 6.7.8p4.
1357        CheckForConstantInitializer(Init, DclT);
1358    }
1359  } else if (VDecl->isFileVarDecl()) {
1360    if (VDecl->getStorageClass() == VarDecl::Extern)
1361      Diag(VDecl->getLocation(), diag::warn_extern_init);
1362    if (!VDecl->isInvalidDecl())
1363      if (CheckInitializerTypes(Init, DclT))
1364        VDecl->setInvalidDecl();
1365
1366    // C99 6.7.8p4. All file scoped initializers need to be constant.
1367    CheckForConstantInitializer(Init, DclT);
1368  }
1369  // If the type changed, it means we had an incomplete type that was
1370  // completed by the initializer. For example:
1371  //   int ary[] = { 1, 3, 5 };
1372  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
1373  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
1374    VDecl->setType(DclT);
1375    Init->setType(DclT);
1376  }
1377
1378  // Attach the initializer to the decl.
1379  VDecl->setInit(Init);
1380  return;
1381}
1382
1383/// The declarators are chained together backwards, reverse the list.
1384Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
1385  // Often we have single declarators, handle them quickly.
1386  Decl *GroupDecl = static_cast<Decl*>(group);
1387  if (GroupDecl == 0)
1388    return 0;
1389
1390  ScopedDecl *Group = dyn_cast<ScopedDecl>(GroupDecl);
1391  ScopedDecl *NewGroup = 0;
1392  if (Group->getNextDeclarator() == 0)
1393    NewGroup = Group;
1394  else { // reverse the list.
1395    while (Group) {
1396      ScopedDecl *Next = Group->getNextDeclarator();
1397      Group->setNextDeclarator(NewGroup);
1398      NewGroup = Group;
1399      Group = Next;
1400    }
1401  }
1402  // Perform semantic analysis that depends on having fully processed both
1403  // the declarator and initializer.
1404  for (ScopedDecl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
1405    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
1406    if (!IDecl)
1407      continue;
1408    QualType T = IDecl->getType();
1409
1410    // C99 6.7.5.2p2: If an identifier is declared to be an object with
1411    // static storage duration, it shall not have a variable length array.
1412    if ((IDecl->isFileVarDecl() || IDecl->isBlockVarDecl()) &&
1413        IDecl->getStorageClass() == VarDecl::Static) {
1414      if (T->isVariableArrayType()) {
1415        Diag(IDecl->getLocation(), diag::err_typecheck_illegal_vla);
1416        IDecl->setInvalidDecl();
1417      }
1418    }
1419    // Block scope. C99 6.7p7: If an identifier for an object is declared with
1420    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
1421    if (IDecl->isBlockVarDecl() &&
1422        IDecl->getStorageClass() != VarDecl::Extern) {
1423      if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
1424        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type,
1425             T.getAsString());
1426        IDecl->setInvalidDecl();
1427      }
1428    }
1429    // File scope. C99 6.9.2p2: A declaration of an identifier for and
1430    // object that has file scope without an initializer, and without a
1431    // storage-class specifier or with the storage-class specifier "static",
1432    // constitutes a tentative definition. Note: A tentative definition with
1433    // external linkage is valid (C99 6.2.2p5).
1434    if (IDecl && !IDecl->getInit() &&
1435        (IDecl->getStorageClass() == VarDecl::Static ||
1436         IDecl->getStorageClass() == VarDecl::None)) {
1437      if (T->isIncompleteArrayType()) {
1438        // C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete
1439        // array to be completed. Don't issue a diagnostic.
1440      } else if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
1441        // C99 6.9.2p3: If the declaration of an identifier for an object is
1442        // a tentative definition and has internal linkage (C99 6.2.2p3), the
1443        // declared type shall not be an incomplete type.
1444        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type,
1445             T.getAsString());
1446        IDecl->setInvalidDecl();
1447      }
1448    }
1449  }
1450  return NewGroup;
1451}
1452
1453/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
1454/// to introduce parameters into function prototype scope.
1455Sema::DeclTy *
1456Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
1457  const DeclSpec &DS = D.getDeclSpec();
1458
1459  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
1460  if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1461      DS.getStorageClassSpec() != DeclSpec::SCS_register) {
1462    Diag(DS.getStorageClassSpecLoc(),
1463         diag::err_invalid_storage_class_in_func_decl);
1464    D.getMutableDeclSpec().ClearStorageClassSpecs();
1465  }
1466  if (DS.isThreadSpecified()) {
1467    Diag(DS.getThreadSpecLoc(),
1468         diag::err_invalid_storage_class_in_func_decl);
1469    D.getMutableDeclSpec().ClearStorageClassSpecs();
1470  }
1471
1472  // Check that there are no default arguments inside the type of this
1473  // parameter (C++ only).
1474  if (getLangOptions().CPlusPlus)
1475    CheckExtraCXXDefaultArguments(D);
1476
1477  // In this context, we *do not* check D.getInvalidType(). If the declarator
1478  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
1479  // though it will not reflect the user specified type.
1480  QualType parmDeclType = GetTypeForDeclarator(D, S);
1481
1482  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
1483
1484  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
1485  // Can this happen for params?  We already checked that they don't conflict
1486  // among each other.  Here they can only shadow globals, which is ok.
1487  IdentifierInfo *II = D.getIdentifier();
1488  if (Decl *PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S)) {
1489    if (S->isDeclScope(PrevDecl)) {
1490      Diag(D.getIdentifierLoc(), diag::err_param_redefinition,
1491           dyn_cast<NamedDecl>(PrevDecl)->getName());
1492
1493      // Recover by removing the name
1494      II = 0;
1495      D.SetIdentifier(0, D.getIdentifierLoc());
1496    }
1497  }
1498
1499  // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
1500  // Doing the promotion here has a win and a loss. The win is the type for
1501  // both Decl's and DeclRefExpr's will match (a convenient invariant for the
1502  // code generator). The loss is the orginal type isn't preserved. For example:
1503  //
1504  // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
1505  //    int blockvardecl[5];
1506  //    sizeof(parmvardecl);  // size == 4
1507  //    sizeof(blockvardecl); // size == 20
1508  // }
1509  //
1510  // For expressions, all implicit conversions are captured using the
1511  // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
1512  //
1513  // FIXME: If a source translation tool needs to see the original type, then
1514  // we need to consider storing both types (in ParmVarDecl)...
1515  //
1516  if (parmDeclType->isArrayType()) {
1517    // int x[restrict 4] ->  int *restrict
1518    parmDeclType = Context.getArrayDecayedType(parmDeclType);
1519  } else if (parmDeclType->isFunctionType())
1520    parmDeclType = Context.getPointerType(parmDeclType);
1521
1522  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext,
1523                                         D.getIdentifierLoc(), II,
1524                                         parmDeclType, VarDecl::None,
1525                                         0, 0);
1526
1527  if (D.getInvalidType())
1528    New->setInvalidDecl();
1529
1530  if (II)
1531    PushOnScopeChains(New, S);
1532
1533  ProcessDeclAttributes(New, D);
1534  return New;
1535
1536}
1537
1538Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
1539  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
1540  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
1541         "Not a function declarator!");
1542  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1543
1544  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
1545  // for a K&R function.
1546  if (!FTI.hasPrototype) {
1547    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
1548      if (FTI.ArgInfo[i].Param == 0) {
1549        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared,
1550             FTI.ArgInfo[i].Ident->getName());
1551        // Implicitly declare the argument as type 'int' for lack of a better
1552        // type.
1553        DeclSpec DS;
1554        const char* PrevSpec; // unused
1555        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
1556                           PrevSpec);
1557        Declarator ParamD(DS, Declarator::KNRTypeListContext);
1558        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
1559        FTI.ArgInfo[i].Param = ActOnParamDeclarator(FnBodyScope, ParamD);
1560      }
1561    }
1562
1563    // Since this is a function definition, act as though we have information
1564    // about the arguments.
1565    if (FTI.NumArgs)
1566      FTI.hasPrototype = true;
1567  } else {
1568    // FIXME: Diagnose arguments without names in C.
1569  }
1570
1571  Scope *GlobalScope = FnBodyScope->getParent();
1572
1573  // See if this is a redefinition.
1574  Decl *PrevDcl = LookupDecl(D.getIdentifier(), Decl::IDNS_Ordinary,
1575                             GlobalScope);
1576  if (PrevDcl && IdResolver.isDeclInScope(PrevDcl, CurContext)) {
1577    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(PrevDcl)) {
1578      const FunctionDecl *Definition;
1579      if (FD->getBody(Definition)) {
1580        Diag(D.getIdentifierLoc(), diag::err_redefinition,
1581             D.getIdentifier()->getName());
1582        Diag(Definition->getLocation(), diag::err_previous_definition);
1583      }
1584    }
1585  }
1586
1587  return ActOnStartOfFunctionDef(FnBodyScope,
1588                                 ActOnDeclarator(GlobalScope, D, 0));
1589}
1590
1591Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclTy *D) {
1592  Decl *decl = static_cast<Decl*>(D);
1593  FunctionDecl *FD = cast<FunctionDecl>(decl);
1594  PushDeclContext(FD);
1595
1596  // Check the validity of our function parameters
1597  CheckParmsForFunctionDef(FD);
1598
1599  // Introduce our parameters into the function scope
1600  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1601    ParmVarDecl *Param = FD->getParamDecl(p);
1602    // If this has an identifier, add it to the scope stack.
1603    if (Param->getIdentifier())
1604      PushOnScopeChains(Param, FnBodyScope);
1605  }
1606
1607  return FD;
1608}
1609
1610Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtTy *Body) {
1611  Decl *dcl = static_cast<Decl *>(D);
1612  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
1613    FD->setBody((Stmt*)Body);
1614    assert(FD == getCurFunctionDecl() && "Function parsing confused");
1615  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
1616    MD->setBody((Stmt*)Body);
1617  } else
1618    return 0;
1619  PopDeclContext();
1620  // Verify and clean out per-function state.
1621
1622  // Check goto/label use.
1623  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
1624       I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
1625    // Verify that we have no forward references left.  If so, there was a goto
1626    // or address of a label taken, but no definition of it.  Label fwd
1627    // definitions are indicated with a null substmt.
1628    if (I->second->getSubStmt() == 0) {
1629      LabelStmt *L = I->second;
1630      // Emit error.
1631      Diag(L->getIdentLoc(), diag::err_undeclared_label_use, L->getName());
1632
1633      // At this point, we have gotos that use the bogus label.  Stitch it into
1634      // the function body so that they aren't leaked and that the AST is well
1635      // formed.
1636      if (Body) {
1637        L->setSubStmt(new NullStmt(L->getIdentLoc()));
1638        cast<CompoundStmt>((Stmt*)Body)->push_back(L);
1639      } else {
1640        // The whole function wasn't parsed correctly, just delete this.
1641        delete L;
1642      }
1643    }
1644  }
1645  LabelMap.clear();
1646
1647  return D;
1648}
1649
1650/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
1651/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
1652ScopedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
1653                                           IdentifierInfo &II, Scope *S) {
1654  // Extension in C99.  Legal in C90, but warn about it.
1655  if (getLangOptions().C99)
1656    Diag(Loc, diag::ext_implicit_function_decl, II.getName());
1657  else
1658    Diag(Loc, diag::warn_implicit_function_decl, II.getName());
1659
1660  // FIXME: handle stuff like:
1661  // void foo() { extern float X(); }
1662  // void bar() { X(); }  <-- implicit decl for X in another scope.
1663
1664  // Set a Declarator for the implicit definition: int foo();
1665  const char *Dummy;
1666  DeclSpec DS;
1667  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
1668  Error = Error; // Silence warning.
1669  assert(!Error && "Error setting up implicit decl!");
1670  Declarator D(DS, Declarator::BlockContext);
1671  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, 0, 0, Loc));
1672  D.SetIdentifier(&II, Loc);
1673
1674  // Insert this function into translation-unit scope.
1675
1676  DeclContext *PrevDC = CurContext;
1677  CurContext = Context.getTranslationUnitDecl();
1678
1679  FunctionDecl *FD =
1680    dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0)));
1681  FD->setImplicit();
1682
1683  CurContext = PrevDC;
1684
1685  return FD;
1686}
1687
1688
1689TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
1690                                    ScopedDecl *LastDeclarator) {
1691  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
1692  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
1693
1694  // Scope manipulation handled by caller.
1695  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
1696                                           D.getIdentifierLoc(),
1697                                           D.getIdentifier(),
1698                                           T, LastDeclarator);
1699  if (D.getInvalidType())
1700    NewTD->setInvalidDecl();
1701  return NewTD;
1702}
1703
1704/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
1705/// former case, Name will be non-null.  In the later case, Name will be null.
1706/// TagType indicates what kind of tag this is. TK indicates whether this is a
1707/// reference/declaration/definition of a tag.
1708Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagType, TagKind TK,
1709                             SourceLocation KWLoc, IdentifierInfo *Name,
1710                             SourceLocation NameLoc, AttributeList *Attr) {
1711  // If this is a use of an existing tag, it must have a name.
1712  assert((Name != 0 || TK == TK_Definition) &&
1713         "Nameless record must be a definition!");
1714
1715  TagDecl::TagKind Kind;
1716  switch (TagType) {
1717  default: assert(0 && "Unknown tag type!");
1718  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
1719  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
1720  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
1721  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
1722  }
1723
1724  // If this is a named struct, check to see if there was a previous forward
1725  // declaration or definition.
1726  // Use ScopedDecl instead of TagDecl, because a NamespaceDecl may come up.
1727  if (ScopedDecl *PrevDecl =
1728          dyn_cast_or_null<ScopedDecl>(LookupDecl(Name, Decl::IDNS_Tag, S))) {
1729
1730    assert((isa<TagDecl>(PrevDecl) || isa<NamespaceDecl>(PrevDecl)) &&
1731            "unexpected Decl type");
1732    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
1733      // If this is a use of a previous tag, or if the tag is already declared
1734      // in the same scope (so that the definition/declaration completes or
1735      // rementions the tag), reuse the decl.
1736      if (TK == TK_Reference ||
1737          IdResolver.isDeclInScope(PrevDecl, CurContext, S)) {
1738        // Make sure that this wasn't declared as an enum and now used as a
1739        // struct or something similar.
1740        if (PrevTagDecl->getTagKind() != Kind) {
1741          Diag(KWLoc, diag::err_use_with_wrong_tag, Name->getName());
1742          Diag(PrevDecl->getLocation(), diag::err_previous_use);
1743          // Recover by making this an anonymous redefinition.
1744          Name = 0;
1745          PrevDecl = 0;
1746        } else {
1747          // If this is a use or a forward declaration, we're good.
1748          if (TK != TK_Definition)
1749            return PrevDecl;
1750
1751          // Diagnose attempts to redefine a tag.
1752          if (PrevTagDecl->isDefinition()) {
1753            Diag(NameLoc, diag::err_redefinition, Name->getName());
1754            Diag(PrevDecl->getLocation(), diag::err_previous_definition);
1755            // If this is a redefinition, recover by making this struct be
1756            // anonymous, which will make any later references get the previous
1757            // definition.
1758            Name = 0;
1759          } else {
1760            // Okay, this is definition of a previously declared or referenced
1761            // tag. Move the location of the decl to be the definition site.
1762            PrevDecl->setLocation(NameLoc);
1763            return PrevDecl;
1764          }
1765        }
1766      }
1767      // If we get here, this is a definition of a new struct type in a nested
1768      // scope, e.g. "struct foo; void bar() { struct foo; }", just create a new
1769      // type.
1770    } else {
1771      // PrevDecl is a namespace.
1772      if (IdResolver.isDeclInScope(PrevDecl, CurContext, S)) {
1773        // The tag name clashes with a namespace name, issue an error and recover
1774        // by making this tag be anonymous.
1775        Diag(NameLoc, diag::err_redefinition_different_kind, Name->getName());
1776        Diag(PrevDecl->getLocation(), diag::err_previous_definition);
1777        Name = 0;
1778      }
1779    }
1780  }
1781
1782  // If there is an identifier, use the location of the identifier as the
1783  // location of the decl, otherwise use the location of the struct/union
1784  // keyword.
1785  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
1786
1787  // Otherwise, if this is the first time we've seen this tag, create the decl.
1788  TagDecl *New;
1789  if (Kind == TagDecl::TK_enum) {
1790    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
1791    // enum X { A, B, C } D;    D should chain to X.
1792    New = EnumDecl::Create(Context, CurContext, Loc, Name, 0);
1793    // If this is an undefined enum, warn.
1794    if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum);
1795  } else {
1796    // struct/union/class
1797
1798    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
1799    // struct X { int A; } D;    D should chain to X.
1800    if (getLangOptions().CPlusPlus)
1801      // FIXME: Look for a way to use RecordDecl for simple structs.
1802      New = CXXRecordDecl::Create(Context, Kind, CurContext, Loc, Name, 0);
1803    else
1804      New = RecordDecl::Create(Context, Kind, CurContext, Loc, Name, 0);
1805  }
1806
1807  // If this has an identifier, add it to the scope stack.
1808  if (Name) {
1809    // The scope passed in may not be a decl scope.  Zip up the scope tree until
1810    // we find one that is.
1811    while ((S->getFlags() & Scope::DeclScope) == 0)
1812      S = S->getParent();
1813
1814    // Add it to the decl chain.
1815    PushOnScopeChains(New, S);
1816  }
1817
1818  if (Attr)
1819    ProcessDeclAttributeList(New, Attr);
1820  return New;
1821}
1822
1823/// Collect the instance variables declared in an Objective-C object.  Used in
1824/// the creation of structures from objects using the @defs directive.
1825static void CollectIvars(ObjCInterfaceDecl *Class,
1826                         llvm::SmallVectorImpl<Sema::DeclTy*> &ivars) {
1827  if (Class->getSuperClass())
1828    CollectIvars(Class->getSuperClass(), ivars);
1829  ivars.append(Class->ivar_begin(), Class->ivar_end());
1830}
1831
1832/// Called whenever @defs(ClassName) is encountered in the source.  Inserts the
1833/// instance variables of ClassName into Decls.
1834void Sema::ActOnDefs(Scope *S, SourceLocation DeclStart,
1835                     IdentifierInfo *ClassName,
1836                     llvm::SmallVectorImpl<DeclTy*> &Decls) {
1837  // Check that ClassName is a valid class
1838  ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName);
1839  if (!Class) {
1840    Diag(DeclStart, diag::err_undef_interface, ClassName->getName());
1841    return;
1842  }
1843  // Collect the instance variables
1844  CollectIvars(Class, Decls);
1845}
1846
1847QualType Sema::TryFixInvalidVariablyModifiedType(QualType T) {
1848  // This method tries to turn a variable array into a constant
1849  // array even when the size isn't an ICE.  This is necessary
1850  // for compatibility with code that depends on gcc's buggy
1851  // constant expression folding, like struct {char x[(int)(char*)2];}
1852  if (const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T)) {
1853    APValue Result;
1854    if (VLATy->getSizeExpr() &&
1855        VLATy->getSizeExpr()->tryEvaluate(Result, Context) && Result.isInt()) {
1856      llvm::APSInt &Res = Result.getInt();
1857      if (Res > llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
1858        return Context.getConstantArrayType(VLATy->getElementType(),
1859                                            Res, ArrayType::Normal, 0);
1860    }
1861  }
1862  return QualType();
1863}
1864
1865/// ActOnField - Each field of a struct/union/class is passed into this in order
1866/// to create a FieldDecl object for it.
1867Sema::DeclTy *Sema::ActOnField(Scope *S,
1868                               SourceLocation DeclStart,
1869                               Declarator &D, ExprTy *BitfieldWidth) {
1870  IdentifierInfo *II = D.getIdentifier();
1871  Expr *BitWidth = (Expr*)BitfieldWidth;
1872  SourceLocation Loc = DeclStart;
1873  if (II) Loc = D.getIdentifierLoc();
1874
1875  // FIXME: Unnamed fields can be handled in various different ways, for
1876  // example, unnamed unions inject all members into the struct namespace!
1877
1878
1879  if (BitWidth) {
1880    // TODO: Validate.
1881    //printf("WARNING: BITFIELDS IGNORED!\n");
1882
1883    // 6.7.2.1p3
1884    // 6.7.2.1p4
1885
1886  } else {
1887    // Not a bitfield.
1888
1889    // validate II.
1890
1891  }
1892
1893  QualType T = GetTypeForDeclarator(D, S);
1894  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
1895  bool InvalidDecl = false;
1896
1897  // C99 6.7.2.1p8: A member of a structure or union may have any type other
1898  // than a variably modified type.
1899  if (T->isVariablyModifiedType()) {
1900    QualType FixedTy = TryFixInvalidVariablyModifiedType(T);
1901    if (!FixedTy.isNull()) {
1902      Diag(Loc, diag::warn_illegal_constant_array_size, Loc);
1903      T = FixedTy;
1904    } else {
1905      // FIXME: This diagnostic needs work
1906      Diag(Loc, diag::err_typecheck_illegal_vla, Loc);
1907      InvalidDecl = true;
1908    }
1909  }
1910  // FIXME: Chain fielddecls together.
1911  FieldDecl *NewFD;
1912
1913  if (getLangOptions().CPlusPlus) {
1914    // FIXME: Replace CXXFieldDecls with FieldDecls for simple structs.
1915    NewFD = CXXFieldDecl::Create(Context, cast<CXXRecordDecl>(CurContext),
1916                                 Loc, II, T, BitWidth);
1917    if (II)
1918      PushOnScopeChains(NewFD, S);
1919  }
1920  else
1921    NewFD = FieldDecl::Create(Context, Loc, II, T, BitWidth);
1922
1923  ProcessDeclAttributes(NewFD, D);
1924
1925  if (D.getInvalidType() || InvalidDecl)
1926    NewFD->setInvalidDecl();
1927  return NewFD;
1928}
1929
1930/// TranslateIvarVisibility - Translate visibility from a token ID to an
1931///  AST enum value.
1932static ObjCIvarDecl::AccessControl
1933TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
1934  switch (ivarVisibility) {
1935    case tok::objc_private: return ObjCIvarDecl::Private;
1936    case tok::objc_public: return ObjCIvarDecl::Public;
1937    case tok::objc_protected: return ObjCIvarDecl::Protected;
1938    case tok::objc_package: return ObjCIvarDecl::Package;
1939    default: assert(false && "Unknown visitibility kind");
1940  }
1941}
1942
1943/// ActOnIvar - Each ivar field of an objective-c class is passed into this
1944/// in order to create an IvarDecl object for it.
1945Sema::DeclTy *Sema::ActOnIvar(Scope *S,
1946                              SourceLocation DeclStart,
1947                              Declarator &D, ExprTy *BitfieldWidth,
1948                              tok::ObjCKeywordKind Visibility) {
1949  IdentifierInfo *II = D.getIdentifier();
1950  Expr *BitWidth = (Expr*)BitfieldWidth;
1951  SourceLocation Loc = DeclStart;
1952  if (II) Loc = D.getIdentifierLoc();
1953
1954  // FIXME: Unnamed fields can be handled in various different ways, for
1955  // example, unnamed unions inject all members into the struct namespace!
1956
1957
1958  if (BitWidth) {
1959    // TODO: Validate.
1960    //printf("WARNING: BITFIELDS IGNORED!\n");
1961
1962    // 6.7.2.1p3
1963    // 6.7.2.1p4
1964
1965  } else {
1966    // Not a bitfield.
1967
1968    // validate II.
1969
1970  }
1971
1972  QualType T = GetTypeForDeclarator(D, S);
1973  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
1974  bool InvalidDecl = false;
1975
1976  // C99 6.7.2.1p8: A member of a structure or union may have any type other
1977  // than a variably modified type.
1978  if (T->isVariablyModifiedType()) {
1979    // FIXME: This diagnostic needs work
1980    Diag(Loc, diag::err_typecheck_illegal_vla, Loc);
1981    InvalidDecl = true;
1982  }
1983
1984  // Get the visibility (access control) for this ivar.
1985  ObjCIvarDecl::AccessControl ac =
1986    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
1987                                        : ObjCIvarDecl::None;
1988
1989  // Construct the decl.
1990  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, Loc, II, T, ac,
1991                                             (Expr *)BitfieldWidth);
1992
1993  // Process attributes attached to the ivar.
1994  ProcessDeclAttributes(NewID, D);
1995
1996  if (D.getInvalidType() || InvalidDecl)
1997    NewID->setInvalidDecl();
1998
1999  return NewID;
2000}
2001
2002void Sema::ActOnFields(Scope* S,
2003                       SourceLocation RecLoc, DeclTy *RecDecl,
2004                       DeclTy **Fields, unsigned NumFields,
2005                       SourceLocation LBrac, SourceLocation RBrac) {
2006  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
2007  assert(EnclosingDecl && "missing record or interface decl");
2008  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
2009
2010  if (Record && Record->isDefinition()) {
2011    // Diagnose code like:
2012    //     struct S { struct S {} X; };
2013    // We discover this when we complete the outer S.  Reject and ignore the
2014    // outer S.
2015    Diag(Record->getLocation(), diag::err_nested_redefinition,
2016         Record->getKindName());
2017    Diag(RecLoc, diag::err_previous_definition);
2018    Record->setInvalidDecl();
2019    return;
2020  }
2021  // Verify that all the fields are okay.
2022  unsigned NumNamedMembers = 0;
2023  llvm::SmallVector<FieldDecl*, 32> RecFields;
2024  llvm::SmallSet<const IdentifierInfo*, 32> FieldIDs;
2025
2026  for (unsigned i = 0; i != NumFields; ++i) {
2027
2028    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
2029    assert(FD && "missing field decl");
2030
2031    // Remember all fields.
2032    RecFields.push_back(FD);
2033
2034    // Get the type for the field.
2035    Type *FDTy = FD->getType().getTypePtr();
2036
2037    // C99 6.7.2.1p2 - A field may not be a function type.
2038    if (FDTy->isFunctionType()) {
2039      Diag(FD->getLocation(), diag::err_field_declared_as_function,
2040           FD->getName());
2041      FD->setInvalidDecl();
2042      EnclosingDecl->setInvalidDecl();
2043      continue;
2044    }
2045    // C99 6.7.2.1p2 - A field may not be an incomplete type except...
2046    if (FDTy->isIncompleteType()) {
2047      if (!Record) {  // Incomplete ivar type is always an error.
2048        Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName());
2049        FD->setInvalidDecl();
2050        EnclosingDecl->setInvalidDecl();
2051        continue;
2052      }
2053      if (i != NumFields-1 ||                   // ... that the last member ...
2054          !Record->isStruct() ||  // ... of a structure ...
2055          !FDTy->isArrayType()) {         //... may have incomplete array type.
2056        Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName());
2057        FD->setInvalidDecl();
2058        EnclosingDecl->setInvalidDecl();
2059        continue;
2060      }
2061      if (NumNamedMembers < 1) {  //... must have more than named member ...
2062        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct,
2063             FD->getName());
2064        FD->setInvalidDecl();
2065        EnclosingDecl->setInvalidDecl();
2066        continue;
2067      }
2068      // Okay, we have a legal flexible array member at the end of the struct.
2069      if (Record)
2070        Record->setHasFlexibleArrayMember(true);
2071    }
2072    /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
2073    /// field of another structure or the element of an array.
2074    if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
2075      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
2076        // If this is a member of a union, then entire union becomes "flexible".
2077        if (Record && Record->isUnion()) {
2078          Record->setHasFlexibleArrayMember(true);
2079        } else {
2080          // If this is a struct/class and this is not the last element, reject
2081          // it.  Note that GCC supports variable sized arrays in the middle of
2082          // structures.
2083          if (i != NumFields-1) {
2084            Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct,
2085                 FD->getName());
2086            FD->setInvalidDecl();
2087            EnclosingDecl->setInvalidDecl();
2088            continue;
2089          }
2090          // We support flexible arrays at the end of structs in other structs
2091          // as an extension.
2092          Diag(FD->getLocation(), diag::ext_flexible_array_in_struct,
2093               FD->getName());
2094          if (Record)
2095            Record->setHasFlexibleArrayMember(true);
2096        }
2097      }
2098    }
2099    /// A field cannot be an Objective-c object
2100    if (FDTy->isObjCInterfaceType()) {
2101      Diag(FD->getLocation(), diag::err_statically_allocated_object,
2102           FD->getName());
2103      FD->setInvalidDecl();
2104      EnclosingDecl->setInvalidDecl();
2105      continue;
2106    }
2107    // Keep track of the number of named members.
2108    if (IdentifierInfo *II = FD->getIdentifier()) {
2109      // Detect duplicate member names.
2110      if (!FieldIDs.insert(II)) {
2111        Diag(FD->getLocation(), diag::err_duplicate_member, II->getName());
2112        // Find the previous decl.
2113        SourceLocation PrevLoc;
2114        for (unsigned i = 0, e = RecFields.size(); ; ++i) {
2115          assert(i != e && "Didn't find previous def!");
2116          if (RecFields[i]->getIdentifier() == II) {
2117            PrevLoc = RecFields[i]->getLocation();
2118            break;
2119          }
2120        }
2121        Diag(PrevLoc, diag::err_previous_definition);
2122        FD->setInvalidDecl();
2123        EnclosingDecl->setInvalidDecl();
2124        continue;
2125      }
2126      ++NumNamedMembers;
2127    }
2128  }
2129
2130  // Okay, we successfully defined 'Record'.
2131  if (Record) {
2132    Record->defineBody(&RecFields[0], RecFields.size());
2133    Consumer.HandleTagDeclDefinition(Record);
2134  } else {
2135    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
2136    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl))
2137      ID->addInstanceVariablesToClass(ClsFields, RecFields.size(), RBrac);
2138    else if (ObjCImplementationDecl *IMPDecl =
2139               dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
2140      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
2141      IMPDecl->ObjCAddInstanceVariablesToClassImpl(ClsFields, RecFields.size());
2142      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
2143    }
2144  }
2145}
2146
2147Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
2148                                      DeclTy *lastEnumConst,
2149                                      SourceLocation IdLoc, IdentifierInfo *Id,
2150                                      SourceLocation EqualLoc, ExprTy *val) {
2151  EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
2152  EnumConstantDecl *LastEnumConst =
2153    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
2154  Expr *Val = static_cast<Expr*>(val);
2155
2156  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2157  // we find one that is.
2158  while ((S->getFlags() & Scope::DeclScope) == 0)
2159    S = S->getParent();
2160
2161  // Verify that there isn't already something declared with this name in this
2162  // scope.
2163  if (Decl *PrevDecl = LookupDecl(Id, Decl::IDNS_Ordinary, S)) {
2164    // When in C++, we may get a TagDecl with the same name; in this case the
2165    // enum constant will 'hide' the tag.
2166    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
2167           "Received TagDecl when not in C++!");
2168    if (!isa<TagDecl>(PrevDecl) &&
2169        IdResolver.isDeclInScope(PrevDecl, CurContext, S)) {
2170      if (isa<EnumConstantDecl>(PrevDecl))
2171        Diag(IdLoc, diag::err_redefinition_of_enumerator, Id->getName());
2172      else
2173        Diag(IdLoc, diag::err_redefinition, Id->getName());
2174      Diag(PrevDecl->getLocation(), diag::err_previous_definition);
2175      delete Val;
2176      return 0;
2177    }
2178  }
2179
2180  llvm::APSInt EnumVal(32);
2181  QualType EltTy;
2182  if (Val) {
2183    // Make sure to promote the operand type to int.
2184    UsualUnaryConversions(Val);
2185
2186    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
2187    SourceLocation ExpLoc;
2188    if (!Val->isIntegerConstantExpr(EnumVal, Context, &ExpLoc)) {
2189      Diag(ExpLoc, diag::err_enum_value_not_integer_constant_expr,
2190           Id->getName());
2191      delete Val;
2192      Val = 0;  // Just forget about it.
2193    } else {
2194      EltTy = Val->getType();
2195    }
2196  }
2197
2198  if (!Val) {
2199    if (LastEnumConst) {
2200      // Assign the last value + 1.
2201      EnumVal = LastEnumConst->getInitVal();
2202      ++EnumVal;
2203
2204      // Check for overflow on increment.
2205      if (EnumVal < LastEnumConst->getInitVal())
2206        Diag(IdLoc, diag::warn_enum_value_overflow);
2207
2208      EltTy = LastEnumConst->getType();
2209    } else {
2210      // First value, set to zero.
2211      EltTy = Context.IntTy;
2212      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
2213    }
2214  }
2215
2216  EnumConstantDecl *New =
2217    EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy,
2218                             Val, EnumVal,
2219                             LastEnumConst);
2220
2221  // Register this decl in the current scope stack.
2222  PushOnScopeChains(New, S);
2223  return New;
2224}
2225
2226void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
2227                         DeclTy **Elements, unsigned NumElements) {
2228  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
2229  assert(!Enum->isDefinition() && "Enum redefinitions can't reach here");
2230
2231  // TODO: If the result value doesn't fit in an int, it must be a long or long
2232  // long value.  ISO C does not support this, but GCC does as an extension,
2233  // emit a warning.
2234  unsigned IntWidth = Context.Target.getIntWidth();
2235
2236  // Verify that all the values are okay, compute the size of the values, and
2237  // reverse the list.
2238  unsigned NumNegativeBits = 0;
2239  unsigned NumPositiveBits = 0;
2240
2241  // Keep track of whether all elements have type int.
2242  bool AllElementsInt = true;
2243
2244  EnumConstantDecl *EltList = 0;
2245  for (unsigned i = 0; i != NumElements; ++i) {
2246    EnumConstantDecl *ECD =
2247      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
2248    if (!ECD) continue;  // Already issued a diagnostic.
2249
2250    // If the enum value doesn't fit in an int, emit an extension warning.
2251    const llvm::APSInt &InitVal = ECD->getInitVal();
2252    assert(InitVal.getBitWidth() >= IntWidth &&
2253           "Should have promoted value to int");
2254    if (InitVal.getBitWidth() > IntWidth) {
2255      llvm::APSInt V(InitVal);
2256      V.trunc(IntWidth);
2257      V.extend(InitVal.getBitWidth());
2258      if (V != InitVal)
2259        Diag(ECD->getLocation(), diag::ext_enum_value_not_int,
2260             InitVal.toString());
2261    }
2262
2263    // Keep track of the size of positive and negative values.
2264    if (InitVal.isUnsigned() || InitVal.isNonNegative())
2265      NumPositiveBits = std::max(NumPositiveBits,
2266                                 (unsigned)InitVal.getActiveBits());
2267    else
2268      NumNegativeBits = std::max(NumNegativeBits,
2269                                 (unsigned)InitVal.getMinSignedBits());
2270
2271    // Keep track of whether every enum element has type int (very commmon).
2272    if (AllElementsInt)
2273      AllElementsInt = ECD->getType() == Context.IntTy;
2274
2275    ECD->setNextDeclarator(EltList);
2276    EltList = ECD;
2277  }
2278
2279  // Figure out the type that should be used for this enum.
2280  // FIXME: Support attribute(packed) on enums and -fshort-enums.
2281  QualType BestType;
2282  unsigned BestWidth;
2283
2284  if (NumNegativeBits) {
2285    // If there is a negative value, figure out the smallest integer type (of
2286    // int/long/longlong) that fits.
2287    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
2288      BestType = Context.IntTy;
2289      BestWidth = IntWidth;
2290    } else {
2291      BestWidth = Context.Target.getLongWidth();
2292
2293      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
2294        BestType = Context.LongTy;
2295      else {
2296        BestWidth = Context.Target.getLongLongWidth();
2297
2298        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
2299          Diag(Enum->getLocation(), diag::warn_enum_too_large);
2300        BestType = Context.LongLongTy;
2301      }
2302    }
2303  } else {
2304    // If there is no negative value, figure out which of uint, ulong, ulonglong
2305    // fits.
2306    if (NumPositiveBits <= IntWidth) {
2307      BestType = Context.UnsignedIntTy;
2308      BestWidth = IntWidth;
2309    } else if (NumPositiveBits <=
2310               (BestWidth = Context.Target.getLongWidth())) {
2311      BestType = Context.UnsignedLongTy;
2312    } else {
2313      BestWidth = Context.Target.getLongLongWidth();
2314      assert(NumPositiveBits <= BestWidth &&
2315             "How could an initializer get larger than ULL?");
2316      BestType = Context.UnsignedLongLongTy;
2317    }
2318  }
2319
2320  // Loop over all of the enumerator constants, changing their types to match
2321  // the type of the enum if needed.
2322  for (unsigned i = 0; i != NumElements; ++i) {
2323    EnumConstantDecl *ECD =
2324      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
2325    if (!ECD) continue;  // Already issued a diagnostic.
2326
2327    // Standard C says the enumerators have int type, but we allow, as an
2328    // extension, the enumerators to be larger than int size.  If each
2329    // enumerator value fits in an int, type it as an int, otherwise type it the
2330    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
2331    // that X has type 'int', not 'unsigned'.
2332    if (ECD->getType() == Context.IntTy) {
2333      // Make sure the init value is signed.
2334      llvm::APSInt IV = ECD->getInitVal();
2335      IV.setIsSigned(true);
2336      ECD->setInitVal(IV);
2337      continue;  // Already int type.
2338    }
2339
2340    // Determine whether the value fits into an int.
2341    llvm::APSInt InitVal = ECD->getInitVal();
2342    bool FitsInInt;
2343    if (InitVal.isUnsigned() || !InitVal.isNegative())
2344      FitsInInt = InitVal.getActiveBits() < IntWidth;
2345    else
2346      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
2347
2348    // If it fits into an integer type, force it.  Otherwise force it to match
2349    // the enum decl type.
2350    QualType NewTy;
2351    unsigned NewWidth;
2352    bool NewSign;
2353    if (FitsInInt) {
2354      NewTy = Context.IntTy;
2355      NewWidth = IntWidth;
2356      NewSign = true;
2357    } else if (ECD->getType() == BestType) {
2358      // Already the right type!
2359      continue;
2360    } else {
2361      NewTy = BestType;
2362      NewWidth = BestWidth;
2363      NewSign = BestType->isSignedIntegerType();
2364    }
2365
2366    // Adjust the APSInt value.
2367    InitVal.extOrTrunc(NewWidth);
2368    InitVal.setIsSigned(NewSign);
2369    ECD->setInitVal(InitVal);
2370
2371    // Adjust the Expr initializer and type.
2372    ECD->setInitExpr(new ImplicitCastExpr(NewTy, ECD->getInitExpr()));
2373    ECD->setType(NewTy);
2374  }
2375
2376  Enum->defineElements(EltList, BestType);
2377  Consumer.HandleTagDeclDefinition(Enum);
2378}
2379
2380Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
2381                                          ExprTy *expr) {
2382  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr);
2383
2384  return FileScopeAsmDecl::Create(Context, Loc, AsmString);
2385}
2386
2387Sema::DeclTy* Sema::ActOnLinkageSpec(SourceLocation Loc,
2388                                     SourceLocation LBrace,
2389                                     SourceLocation RBrace,
2390                                     const char *Lang,
2391                                     unsigned StrSize,
2392                                     DeclTy *D) {
2393  LinkageSpecDecl::LanguageIDs Language;
2394  Decl *dcl = static_cast<Decl *>(D);
2395  if (strncmp(Lang, "\"C\"", StrSize) == 0)
2396    Language = LinkageSpecDecl::lang_c;
2397  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
2398    Language = LinkageSpecDecl::lang_cxx;
2399  else {
2400    Diag(Loc, diag::err_bad_language);
2401    return 0;
2402  }
2403
2404  // FIXME: Add all the various semantics of linkage specifications
2405  return LinkageSpecDecl::Create(Context, Loc, Language, dcl);
2406}
2407