SemaDecl.cpp revision aa74a1e49f7c4b89539830290f76fe2c3e97187f
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/Analysis/AnalysisContext.h"
18#include "clang/AST/APValue.h"
19#include "clang/AST/ASTConsumer.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/CXXInheritance.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/StmtCXX.h"
25#include "clang/Parse/DeclSpec.h"
26#include "clang/Parse/ParseDiagnostic.h"
27#include "clang/Parse/Template.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Basic/SourceManager.h"
30#include "clang/Basic/TargetInfo.h"
31// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
32#include "clang/Lex/Preprocessor.h"
33#include "clang/Lex/HeaderSearch.h"
34#include "llvm/ADT/Triple.h"
35#include <algorithm>
36#include <cstring>
37#include <functional>
38using namespace clang;
39
40/// getDeclName - Return a pretty name for the specified decl if possible, or
41/// an empty string if not.  This is used for pretty crash reporting.
42std::string Sema::getDeclName(DeclPtrTy d) {
43  Decl *D = d.getAs<Decl>();
44  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
45    return DN->getQualifiedNameAsString();
46  return "";
47}
48
49Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
50  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
51}
52
53/// \brief If the identifier refers to a type name within this scope,
54/// return the declaration of that type.
55///
56/// This routine performs ordinary name lookup of the identifier II
57/// within the given scope, with optional C++ scope specifier SS, to
58/// determine whether the name refers to a type. If so, returns an
59/// opaque pointer (actually a QualType) corresponding to that
60/// type. Otherwise, returns NULL.
61///
62/// If name lookup results in an ambiguity, this routine will complain
63/// and then return NULL.
64Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
65                                Scope *S, const CXXScopeSpec *SS,
66                                bool isClassName,
67                                TypeTy *ObjectTypePtr) {
68  // Determine where we will perform name lookup.
69  DeclContext *LookupCtx = 0;
70  if (ObjectTypePtr) {
71    QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
72    if (ObjectType->isRecordType())
73      LookupCtx = computeDeclContext(ObjectType);
74  } else if (SS && SS->isSet()) {
75    LookupCtx = computeDeclContext(*SS, false);
76
77    if (!LookupCtx) {
78      if (isDependentScopeSpecifier(*SS)) {
79        // C++ [temp.res]p3:
80        //   A qualified-id that refers to a type and in which the
81        //   nested-name-specifier depends on a template-parameter (14.6.2)
82        //   shall be prefixed by the keyword typename to indicate that the
83        //   qualified-id denotes a type, forming an
84        //   elaborated-type-specifier (7.1.5.3).
85        //
86        // We therefore do not perform any name lookup if the result would
87        // refer to a member of an unknown specialization.
88        if (!isClassName)
89          return 0;
90
91        // We know from the grammar that this name refers to a type, so build a
92        // TypenameType node to describe the type.
93        // FIXME: Record somewhere that this TypenameType node has no "typename"
94        // keyword associated with it.
95        return CheckTypenameType((NestedNameSpecifier *)SS->getScopeRep(),
96                                 II, SS->getRange()).getAsOpaquePtr();
97      }
98
99      return 0;
100    }
101
102    if (!LookupCtx->isDependentContext() && RequireCompleteDeclContext(*SS))
103      return 0;
104  }
105
106  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
107  // lookup for class-names.
108  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
109                                      LookupOrdinaryName;
110  LookupResult Result(*this, &II, NameLoc, Kind);
111  if (LookupCtx) {
112    // Perform "qualified" name lookup into the declaration context we
113    // computed, which is either the type of the base of a member access
114    // expression or the declaration context associated with a prior
115    // nested-name-specifier.
116    LookupQualifiedName(Result, LookupCtx);
117
118    if (ObjectTypePtr && Result.empty()) {
119      // C++ [basic.lookup.classref]p3:
120      //   If the unqualified-id is ~type-name, the type-name is looked up
121      //   in the context of the entire postfix-expression. If the type T of
122      //   the object expression is of a class type C, the type-name is also
123      //   looked up in the scope of class C. At least one of the lookups shall
124      //   find a name that refers to (possibly cv-qualified) T.
125      LookupName(Result, S);
126    }
127  } else {
128    // Perform unqualified name lookup.
129    LookupName(Result, S);
130  }
131
132  NamedDecl *IIDecl = 0;
133  switch (Result.getResultKind()) {
134  case LookupResult::NotFound:
135  case LookupResult::NotFoundInCurrentInstantiation:
136  case LookupResult::FoundOverloaded:
137  case LookupResult::FoundUnresolvedValue:
138    Result.suppressDiagnostics();
139    return 0;
140
141  case LookupResult::Ambiguous:
142    // Recover from type-hiding ambiguities by hiding the type.  We'll
143    // do the lookup again when looking for an object, and we can
144    // diagnose the error then.  If we don't do this, then the error
145    // about hiding the type will be immediately followed by an error
146    // that only makes sense if the identifier was treated like a type.
147    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
148      Result.suppressDiagnostics();
149      return 0;
150    }
151
152    // Look to see if we have a type anywhere in the list of results.
153    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
154         Res != ResEnd; ++Res) {
155      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
156        if (!IIDecl ||
157            (*Res)->getLocation().getRawEncoding() <
158              IIDecl->getLocation().getRawEncoding())
159          IIDecl = *Res;
160      }
161    }
162
163    if (!IIDecl) {
164      // None of the entities we found is a type, so there is no way
165      // to even assume that the result is a type. In this case, don't
166      // complain about the ambiguity. The parser will either try to
167      // perform this lookup again (e.g., as an object name), which
168      // will produce the ambiguity, or will complain that it expected
169      // a type name.
170      Result.suppressDiagnostics();
171      return 0;
172    }
173
174    // We found a type within the ambiguous lookup; diagnose the
175    // ambiguity and then return that type. This might be the right
176    // answer, or it might not be, but it suppresses any attempt to
177    // perform the name lookup again.
178    break;
179
180  case LookupResult::Found:
181    IIDecl = Result.getFoundDecl();
182    break;
183  }
184
185  assert(IIDecl && "Didn't find decl");
186
187  QualType T;
188  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
189    DiagnoseUseOfDecl(IIDecl, NameLoc);
190
191    // C++ [temp.local]p2:
192    //   Within the scope of a class template specialization or
193    //   partial specialization, when the injected-class-name is
194    //   not followed by a <, it is equivalent to the
195    //   injected-class-name followed by the template-argument s
196    //   of the class template specialization or partial
197    //   specialization enclosed in <>.
198    if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
199      if (RD->isInjectedClassName())
200        if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
201          T = Template->getInjectedClassNameType(Context);
202
203    if (T.isNull())
204      T = Context.getTypeDeclType(TD);
205
206    if (SS)
207      T = getQualifiedNameType(*SS, T);
208
209  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
210    T = Context.getObjCInterfaceType(IDecl);
211  } else if (UnresolvedUsingTypenameDecl *UUDecl =
212               dyn_cast<UnresolvedUsingTypenameDecl>(IIDecl)) {
213    // FIXME: preserve source structure information.
214    T = Context.getTypenameType(UUDecl->getTargetNestedNameSpecifier(), &II);
215  } else {
216    // If it's not plausibly a type, suppress diagnostics.
217    Result.suppressDiagnostics();
218    return 0;
219  }
220
221  return T.getAsOpaquePtr();
222}
223
224/// isTagName() - This method is called *for error recovery purposes only*
225/// to determine if the specified name is a valid tag name ("struct foo").  If
226/// so, this returns the TST for the tag corresponding to it (TST_enum,
227/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
228/// where the user forgot to specify the tag.
229DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
230  // Do a tag name lookup in this scope.
231  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
232  LookupName(R, S, false);
233  R.suppressDiagnostics();
234  if (R.getResultKind() == LookupResult::Found)
235    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
236      switch (TD->getTagKind()) {
237      case TagDecl::TK_struct: return DeclSpec::TST_struct;
238      case TagDecl::TK_union:  return DeclSpec::TST_union;
239      case TagDecl::TK_class:  return DeclSpec::TST_class;
240      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
241      }
242    }
243
244  return DeclSpec::TST_unspecified;
245}
246
247bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
248                                   SourceLocation IILoc,
249                                   Scope *S,
250                                   const CXXScopeSpec *SS,
251                                   TypeTy *&SuggestedType) {
252  // We don't have anything to suggest (yet).
253  SuggestedType = 0;
254
255  // There may have been a typo in the name of the type. Look up typo
256  // results, in case we have something that we can suggest.
257  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
258                      NotForRedeclaration);
259
260  // FIXME: It would be nice if we could correct for typos in built-in
261  // names, such as "itn" for "int".
262
263  if (CorrectTypo(Lookup, S, SS) && Lookup.isSingleResult()) {
264    NamedDecl *Result = Lookup.getAsSingle<NamedDecl>();
265    if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
266        !Result->isInvalidDecl()) {
267      // We found a similarly-named type or interface; suggest that.
268      if (!SS || !SS->isSet())
269        Diag(IILoc, diag::err_unknown_typename_suggest)
270          << &II << Lookup.getLookupName()
271          << CodeModificationHint::CreateReplacement(SourceRange(IILoc),
272                                                     Result->getNameAsString());
273      else if (DeclContext *DC = computeDeclContext(*SS, false))
274        Diag(IILoc, diag::err_unknown_nested_typename_suggest)
275          << &II << DC << Lookup.getLookupName() << SS->getRange()
276          << CodeModificationHint::CreateReplacement(SourceRange(IILoc),
277                                                     Result->getNameAsString());
278      else
279        llvm_unreachable("could not have corrected a typo here");
280
281      Diag(Result->getLocation(), diag::note_previous_decl)
282        << Result->getDeclName();
283
284      SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS);
285      return true;
286    }
287  }
288
289  // FIXME: Should we move the logic that tries to recover from a missing tag
290  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
291
292  if (!SS || (!SS->isSet() && !SS->isInvalid()))
293    Diag(IILoc, diag::err_unknown_typename) << &II;
294  else if (DeclContext *DC = computeDeclContext(*SS, false))
295    Diag(IILoc, diag::err_typename_nested_not_found)
296      << &II << DC << SS->getRange();
297  else if (isDependentScopeSpecifier(*SS)) {
298    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
299      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
300      << SourceRange(SS->getRange().getBegin(), IILoc)
301      << CodeModificationHint::CreateInsertion(SS->getRange().getBegin(),
302                                               "typename ");
303    SuggestedType = ActOnTypenameType(SourceLocation(), *SS, II, IILoc).get();
304  } else {
305    assert(SS && SS->isInvalid() &&
306           "Invalid scope specifier has already been diagnosed");
307  }
308
309  return true;
310}
311
312// Determines the context to return to after temporarily entering a
313// context.  This depends in an unnecessarily complicated way on the
314// exact ordering of callbacks from the parser.
315DeclContext *Sema::getContainingDC(DeclContext *DC) {
316
317  // Functions defined inline within classes aren't parsed until we've
318  // finished parsing the top-level class, so the top-level class is
319  // the context we'll need to return to.
320  if (isa<FunctionDecl>(DC)) {
321    DC = DC->getLexicalParent();
322
323    // A function not defined within a class will always return to its
324    // lexical context.
325    if (!isa<CXXRecordDecl>(DC))
326      return DC;
327
328    // A C++ inline method/friend is parsed *after* the topmost class
329    // it was declared in is fully parsed ("complete");  the topmost
330    // class is the context we need to return to.
331    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
332      DC = RD;
333
334    // Return the declaration context of the topmost class the inline method is
335    // declared in.
336    return DC;
337  }
338
339  if (isa<ObjCMethodDecl>(DC))
340    return Context.getTranslationUnitDecl();
341
342  return DC->getLexicalParent();
343}
344
345void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
346  assert(getContainingDC(DC) == CurContext &&
347      "The next DeclContext should be lexically contained in the current one.");
348  CurContext = DC;
349  S->setEntity(DC);
350}
351
352void Sema::PopDeclContext() {
353  assert(CurContext && "DeclContext imbalance!");
354
355  CurContext = getContainingDC(CurContext);
356}
357
358/// EnterDeclaratorContext - Used when we must lookup names in the context
359/// of a declarator's nested name specifier.
360///
361void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
362  // C++0x [basic.lookup.unqual]p13:
363  //   A name used in the definition of a static data member of class
364  //   X (after the qualified-id of the static member) is looked up as
365  //   if the name was used in a member function of X.
366  // C++0x [basic.lookup.unqual]p14:
367  //   If a variable member of a namespace is defined outside of the
368  //   scope of its namespace then any name used in the definition of
369  //   the variable member (after the declarator-id) is looked up as
370  //   if the definition of the variable member occurred in its
371  //   namespace.
372  // Both of these imply that we should push a scope whose context
373  // is the semantic context of the declaration.  We can't use
374  // PushDeclContext here because that context is not necessarily
375  // lexically contained in the current context.  Fortunately,
376  // the containing scope should have the appropriate information.
377
378  assert(!S->getEntity() && "scope already has entity");
379
380#ifndef NDEBUG
381  Scope *Ancestor = S->getParent();
382  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
383  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
384#endif
385
386  CurContext = DC;
387  S->setEntity(DC);
388}
389
390void Sema::ExitDeclaratorContext(Scope *S) {
391  assert(S->getEntity() == CurContext && "Context imbalance!");
392
393  // Switch back to the lexical context.  The safety of this is
394  // enforced by an assert in EnterDeclaratorContext.
395  Scope *Ancestor = S->getParent();
396  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
397  CurContext = (DeclContext*) Ancestor->getEntity();
398
399  // We don't need to do anything with the scope, which is going to
400  // disappear.
401}
402
403/// \brief Determine whether we allow overloading of the function
404/// PrevDecl with another declaration.
405///
406/// This routine determines whether overloading is possible, not
407/// whether some new function is actually an overload. It will return
408/// true in C++ (where we can always provide overloads) or, as an
409/// extension, in C when the previous function is already an
410/// overloaded function declaration or has the "overloadable"
411/// attribute.
412static bool AllowOverloadingOfFunction(LookupResult &Previous,
413                                       ASTContext &Context) {
414  if (Context.getLangOptions().CPlusPlus)
415    return true;
416
417  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
418    return true;
419
420  return (Previous.getResultKind() == LookupResult::Found
421          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
422}
423
424/// Add this decl to the scope shadowed decl chains.
425void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
426  // Move up the scope chain until we find the nearest enclosing
427  // non-transparent context. The declaration will be introduced into this
428  // scope.
429  while (S->getEntity() &&
430         ((DeclContext *)S->getEntity())->isTransparentContext())
431    S = S->getParent();
432
433  // Add scoped declarations into their context, so that they can be
434  // found later. Declarations without a context won't be inserted
435  // into any context.
436  if (AddToContext)
437    CurContext->addDecl(D);
438
439  // Out-of-line function and variable definitions should not be pushed into
440  // scope.
441  if ((isa<FunctionTemplateDecl>(D) &&
442       cast<FunctionTemplateDecl>(D)->getTemplatedDecl()->isOutOfLine()) ||
443      (isa<FunctionDecl>(D) &&
444       (cast<FunctionDecl>(D)->isFunctionTemplateSpecialization() ||
445        cast<FunctionDecl>(D)->isOutOfLine())) ||
446      (isa<VarDecl>(D) && cast<VarDecl>(D)->isOutOfLine()))
447    return;
448
449  // If this replaces anything in the current scope,
450  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
451                               IEnd = IdResolver.end();
452  for (; I != IEnd; ++I) {
453    if (S->isDeclScope(DeclPtrTy::make(*I)) && D->declarationReplaces(*I)) {
454      S->RemoveDecl(DeclPtrTy::make(*I));
455      IdResolver.RemoveDecl(*I);
456
457      // Should only need to replace one decl.
458      break;
459    }
460  }
461
462  S->AddDecl(DeclPtrTy::make(D));
463  IdResolver.AddDecl(D);
464}
465
466bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
467  return IdResolver.isDeclInScope(D, Ctx, Context, S);
468}
469
470static bool isOutOfScopePreviousDeclaration(NamedDecl *,
471                                            DeclContext*,
472                                            ASTContext&);
473
474/// Filters out lookup results that don't fall within the given scope
475/// as determined by isDeclInScope.
476static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
477                                 DeclContext *Ctx, Scope *S,
478                                 bool ConsiderLinkage) {
479  LookupResult::Filter F = R.makeFilter();
480  while (F.hasNext()) {
481    NamedDecl *D = F.next();
482
483    if (SemaRef.isDeclInScope(D, Ctx, S))
484      continue;
485
486    if (ConsiderLinkage &&
487        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
488      continue;
489
490    F.erase();
491  }
492
493  F.done();
494}
495
496static bool isUsingDecl(NamedDecl *D) {
497  return isa<UsingShadowDecl>(D) ||
498         isa<UnresolvedUsingTypenameDecl>(D) ||
499         isa<UnresolvedUsingValueDecl>(D);
500}
501
502/// Removes using shadow declarations from the lookup results.
503static void RemoveUsingDecls(LookupResult &R) {
504  LookupResult::Filter F = R.makeFilter();
505  while (F.hasNext())
506    if (isUsingDecl(F.next()))
507      F.erase();
508
509  F.done();
510}
511
512static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
513  if (D->isUsed() || D->hasAttr<UnusedAttr>())
514    return false;
515
516  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
517    if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
518      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
519        if (!RD->hasTrivialConstructor())
520          return false;
521        if (!RD->hasTrivialDestructor())
522          return false;
523      }
524    }
525  }
526
527  return (isa<VarDecl>(D) && !isa<ParmVarDecl>(D) &&
528          !isa<ImplicitParamDecl>(D) &&
529          D->getDeclContext()->isFunctionOrMethod());
530}
531
532void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
533  if (S->decl_empty()) return;
534  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
535         "Scope shouldn't contain decls!");
536
537  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
538       I != E; ++I) {
539    Decl *TmpD = (*I).getAs<Decl>();
540    assert(TmpD && "This decl didn't get pushed??");
541
542    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
543    NamedDecl *D = cast<NamedDecl>(TmpD);
544
545    if (!D->getDeclName()) continue;
546
547    // Diagnose unused variables in this scope.
548    if (ShouldDiagnoseUnusedDecl(D))
549      Diag(D->getLocation(), diag::warn_unused_variable) << D->getDeclName();
550
551    // Remove this name from our lexical scope.
552    IdResolver.RemoveDecl(D);
553  }
554}
555
556/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
557/// return 0 if one not found.
558///
559/// \param Id the name of the Objective-C class we're looking for. If
560/// typo-correction fixes this name, the Id will be updated
561/// to the fixed name.
562///
563/// \param RecoverLoc if provided, this routine will attempt to
564/// recover from a typo in the name of an existing Objective-C class
565/// and, if successful, will return the lookup that results from
566/// typo-correction.
567ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
568                                              SourceLocation RecoverLoc) {
569  // The third "scope" argument is 0 since we aren't enabling lazy built-in
570  // creation from this context.
571  NamedDecl *IDecl = LookupSingleName(TUScope, Id, LookupOrdinaryName);
572
573  if (!IDecl && !RecoverLoc.isInvalid()) {
574    // Perform typo correction at the given location, but only if we
575    // find an Objective-C class name.
576    LookupResult R(*this, Id, RecoverLoc, LookupOrdinaryName);
577    if (CorrectTypo(R, TUScope, 0) &&
578        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
579      Diag(RecoverLoc, diag::err_undef_interface_suggest)
580        << Id << IDecl->getDeclName()
581        << CodeModificationHint::CreateReplacement(RecoverLoc,
582                                                   IDecl->getNameAsString());
583      Diag(IDecl->getLocation(), diag::note_previous_decl)
584        << IDecl->getDeclName();
585
586      Id = IDecl->getIdentifier();
587    }
588  }
589
590  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
591}
592
593/// getNonFieldDeclScope - Retrieves the innermost scope, starting
594/// from S, where a non-field would be declared. This routine copes
595/// with the difference between C and C++ scoping rules in structs and
596/// unions. For example, the following code is well-formed in C but
597/// ill-formed in C++:
598/// @code
599/// struct S6 {
600///   enum { BAR } e;
601/// };
602///
603/// void test_S6() {
604///   struct S6 a;
605///   a.e = BAR;
606/// }
607/// @endcode
608/// For the declaration of BAR, this routine will return a different
609/// scope. The scope S will be the scope of the unnamed enumeration
610/// within S6. In C++, this routine will return the scope associated
611/// with S6, because the enumeration's scope is a transparent
612/// context but structures can contain non-field names. In C, this
613/// routine will return the translation unit scope, since the
614/// enumeration's scope is a transparent context and structures cannot
615/// contain non-field names.
616Scope *Sema::getNonFieldDeclScope(Scope *S) {
617  while (((S->getFlags() & Scope::DeclScope) == 0) ||
618         (S->getEntity() &&
619          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
620         (S->isClassScope() && !getLangOptions().CPlusPlus))
621    S = S->getParent();
622  return S;
623}
624
625void Sema::InitBuiltinVaListType() {
626  if (!Context.getBuiltinVaListType().isNull())
627    return;
628
629  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
630  NamedDecl *VaDecl = LookupSingleName(TUScope, VaIdent, LookupOrdinaryName);
631  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
632  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
633}
634
635/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
636/// file scope.  lazily create a decl for it. ForRedeclaration is true
637/// if we're creating this built-in in anticipation of redeclaring the
638/// built-in.
639NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
640                                     Scope *S, bool ForRedeclaration,
641                                     SourceLocation Loc) {
642  Builtin::ID BID = (Builtin::ID)bid;
643
644  if (Context.BuiltinInfo.hasVAListUse(BID))
645    InitBuiltinVaListType();
646
647  ASTContext::GetBuiltinTypeError Error;
648  QualType R = Context.GetBuiltinType(BID, Error);
649  switch (Error) {
650  case ASTContext::GE_None:
651    // Okay
652    break;
653
654  case ASTContext::GE_Missing_stdio:
655    if (ForRedeclaration)
656      Diag(Loc, diag::err_implicit_decl_requires_stdio)
657        << Context.BuiltinInfo.GetName(BID);
658    return 0;
659
660  case ASTContext::GE_Missing_setjmp:
661    if (ForRedeclaration)
662      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
663        << Context.BuiltinInfo.GetName(BID);
664    return 0;
665  }
666
667  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
668    Diag(Loc, diag::ext_implicit_lib_function_decl)
669      << Context.BuiltinInfo.GetName(BID)
670      << R;
671    if (Context.BuiltinInfo.getHeaderName(BID) &&
672        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
673          != Diagnostic::Ignored)
674      Diag(Loc, diag::note_please_include_header)
675        << Context.BuiltinInfo.getHeaderName(BID)
676        << Context.BuiltinInfo.GetName(BID);
677  }
678
679  FunctionDecl *New = FunctionDecl::Create(Context,
680                                           Context.getTranslationUnitDecl(),
681                                           Loc, II, R, /*TInfo=*/0,
682                                           FunctionDecl::Extern, false,
683                                           /*hasPrototype=*/true);
684  New->setImplicit();
685
686  // Create Decl objects for each parameter, adding them to the
687  // FunctionDecl.
688  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
689    llvm::SmallVector<ParmVarDecl*, 16> Params;
690    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
691      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
692                                           FT->getArgType(i), /*TInfo=*/0,
693                                           VarDecl::None, 0));
694    New->setParams(Context, Params.data(), Params.size());
695  }
696
697  AddKnownFunctionAttributes(New);
698
699  // TUScope is the translation-unit scope to insert this function into.
700  // FIXME: This is hideous. We need to teach PushOnScopeChains to
701  // relate Scopes to DeclContexts, and probably eliminate CurContext
702  // entirely, but we're not there yet.
703  DeclContext *SavedContext = CurContext;
704  CurContext = Context.getTranslationUnitDecl();
705  PushOnScopeChains(New, TUScope);
706  CurContext = SavedContext;
707  return New;
708}
709
710/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
711/// same name and scope as a previous declaration 'Old'.  Figure out
712/// how to resolve this situation, merging decls or emitting
713/// diagnostics as appropriate. If there was an error, set New to be invalid.
714///
715void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
716  // If the new decl is known invalid already, don't bother doing any
717  // merging checks.
718  if (New->isInvalidDecl()) return;
719
720  // Allow multiple definitions for ObjC built-in typedefs.
721  // FIXME: Verify the underlying types are equivalent!
722  if (getLangOptions().ObjC1) {
723    const IdentifierInfo *TypeID = New->getIdentifier();
724    switch (TypeID->getLength()) {
725    default: break;
726    case 2:
727      if (!TypeID->isStr("id"))
728        break;
729      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
730      // Install the built-in type for 'id', ignoring the current definition.
731      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
732      return;
733    case 5:
734      if (!TypeID->isStr("Class"))
735        break;
736      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
737      // Install the built-in type for 'Class', ignoring the current definition.
738      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
739      return;
740    case 3:
741      if (!TypeID->isStr("SEL"))
742        break;
743      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
744      // Install the built-in type for 'SEL', ignoring the current definition.
745      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
746      return;
747    case 8:
748      if (!TypeID->isStr("Protocol"))
749        break;
750      Context.setObjCProtoType(New->getUnderlyingType());
751      return;
752    }
753    // Fall through - the typedef name was not a builtin type.
754  }
755
756  // Verify the old decl was also a type.
757  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
758  if (!Old) {
759    Diag(New->getLocation(), diag::err_redefinition_different_kind)
760      << New->getDeclName();
761
762    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
763    if (OldD->getLocation().isValid())
764      Diag(OldD->getLocation(), diag::note_previous_definition);
765
766    return New->setInvalidDecl();
767  }
768
769  // If the old declaration is invalid, just give up here.
770  if (Old->isInvalidDecl())
771    return New->setInvalidDecl();
772
773  // Determine the "old" type we'll use for checking and diagnostics.
774  QualType OldType;
775  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
776    OldType = OldTypedef->getUnderlyingType();
777  else
778    OldType = Context.getTypeDeclType(Old);
779
780  // If the typedef types are not identical, reject them in all languages and
781  // with any extensions enabled.
782
783  if (OldType != New->getUnderlyingType() &&
784      Context.getCanonicalType(OldType) !=
785      Context.getCanonicalType(New->getUnderlyingType())) {
786    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
787      << New->getUnderlyingType() << OldType;
788    if (Old->getLocation().isValid())
789      Diag(Old->getLocation(), diag::note_previous_definition);
790    return New->setInvalidDecl();
791  }
792
793  // The types match.  Link up the redeclaration chain if the old
794  // declaration was a typedef.
795  // FIXME: this is a potential source of wierdness if the type
796  // spellings don't match exactly.
797  if (isa<TypedefDecl>(Old))
798    New->setPreviousDeclaration(cast<TypedefDecl>(Old));
799
800  if (getLangOptions().Microsoft)
801    return;
802
803  if (getLangOptions().CPlusPlus) {
804    // C++ [dcl.typedef]p2:
805    //   In a given non-class scope, a typedef specifier can be used to
806    //   redefine the name of any type declared in that scope to refer
807    //   to the type to which it already refers.
808    if (!isa<CXXRecordDecl>(CurContext))
809      return;
810
811    // C++0x [dcl.typedef]p4:
812    //   In a given class scope, a typedef specifier can be used to redefine
813    //   any class-name declared in that scope that is not also a typedef-name
814    //   to refer to the type to which it already refers.
815    //
816    // This wording came in via DR424, which was a correction to the
817    // wording in DR56, which accidentally banned code like:
818    //
819    //   struct S {
820    //     typedef struct A { } A;
821    //   };
822    //
823    // in the C++03 standard. We implement the C++0x semantics, which
824    // allow the above but disallow
825    //
826    //   struct S {
827    //     typedef int I;
828    //     typedef int I;
829    //   };
830    //
831    // since that was the intent of DR56.
832    if (!isa<TypedefDecl >(Old))
833      return;
834
835    Diag(New->getLocation(), diag::err_redefinition)
836      << New->getDeclName();
837    Diag(Old->getLocation(), diag::note_previous_definition);
838    return New->setInvalidDecl();
839  }
840
841  // If we have a redefinition of a typedef in C, emit a warning.  This warning
842  // is normally mapped to an error, but can be controlled with
843  // -Wtypedef-redefinition.  If either the original or the redefinition is
844  // in a system header, don't emit this for compatibility with GCC.
845  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
846      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
847       Context.getSourceManager().isInSystemHeader(New->getLocation())))
848    return;
849
850  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
851    << New->getDeclName();
852  Diag(Old->getLocation(), diag::note_previous_definition);
853  return;
854}
855
856/// DeclhasAttr - returns true if decl Declaration already has the target
857/// attribute.
858static bool
859DeclHasAttr(const Decl *decl, const Attr *target) {
860  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
861    if (attr->getKind() == target->getKind())
862      return true;
863
864  return false;
865}
866
867/// MergeAttributes - append attributes from the Old decl to the New one.
868static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
869  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
870    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
871      Attr *NewAttr = attr->clone(C);
872      NewAttr->setInherited(true);
873      New->addAttr(NewAttr);
874    }
875  }
876}
877
878/// Used in MergeFunctionDecl to keep track of function parameters in
879/// C.
880struct GNUCompatibleParamWarning {
881  ParmVarDecl *OldParm;
882  ParmVarDecl *NewParm;
883  QualType PromotedType;
884};
885
886
887/// getSpecialMember - get the special member enum for a method.
888static Sema::CXXSpecialMember getSpecialMember(ASTContext &Ctx,
889                                               const CXXMethodDecl *MD) {
890  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
891    if (Ctor->isDefaultConstructor())
892      return Sema::CXXDefaultConstructor;
893    if (Ctor->isCopyConstructor())
894      return Sema::CXXCopyConstructor;
895  }
896
897  if (isa<CXXDestructorDecl>(MD))
898    return Sema::CXXDestructor;
899
900  assert(MD->isCopyAssignment() && "Must have copy assignment operator");
901  return Sema::CXXCopyAssignment;
902}
903
904/// MergeFunctionDecl - We just parsed a function 'New' from
905/// declarator D which has the same name and scope as a previous
906/// declaration 'Old'.  Figure out how to resolve this situation,
907/// merging decls or emitting diagnostics as appropriate.
908///
909/// In C++, New and Old must be declarations that are not
910/// overloaded. Use IsOverload to determine whether New and Old are
911/// overloaded, and to select the Old declaration that New should be
912/// merged with.
913///
914/// Returns true if there was an error, false otherwise.
915bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
916  // Verify the old decl was also a function.
917  FunctionDecl *Old = 0;
918  if (FunctionTemplateDecl *OldFunctionTemplate
919        = dyn_cast<FunctionTemplateDecl>(OldD))
920    Old = OldFunctionTemplate->getTemplatedDecl();
921  else
922    Old = dyn_cast<FunctionDecl>(OldD);
923  if (!Old) {
924    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
925      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
926      Diag(Shadow->getTargetDecl()->getLocation(),
927           diag::note_using_decl_target);
928      Diag(Shadow->getUsingDecl()->getLocation(),
929           diag::note_using_decl) << 0;
930      return true;
931    }
932
933    Diag(New->getLocation(), diag::err_redefinition_different_kind)
934      << New->getDeclName();
935    Diag(OldD->getLocation(), diag::note_previous_definition);
936    return true;
937  }
938
939  // Determine whether the previous declaration was a definition,
940  // implicit declaration, or a declaration.
941  diag::kind PrevDiag;
942  if (Old->isThisDeclarationADefinition())
943    PrevDiag = diag::note_previous_definition;
944  else if (Old->isImplicit())
945    PrevDiag = diag::note_previous_implicit_declaration;
946  else
947    PrevDiag = diag::note_previous_declaration;
948
949  QualType OldQType = Context.getCanonicalType(Old->getType());
950  QualType NewQType = Context.getCanonicalType(New->getType());
951
952  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
953      New->getStorageClass() == FunctionDecl::Static &&
954      Old->getStorageClass() != FunctionDecl::Static) {
955    Diag(New->getLocation(), diag::err_static_non_static)
956      << New;
957    Diag(Old->getLocation(), PrevDiag);
958    return true;
959  }
960
961  if (getLangOptions().CPlusPlus) {
962    // (C++98 13.1p2):
963    //   Certain function declarations cannot be overloaded:
964    //     -- Function declarations that differ only in the return type
965    //        cannot be overloaded.
966    QualType OldReturnType
967      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
968    QualType NewReturnType
969      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
970    if (OldReturnType != NewReturnType) {
971      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
972      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
973      return true;
974    }
975
976    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
977    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
978    if (OldMethod && NewMethod) {
979      if (!NewMethod->getFriendObjectKind() &&
980          NewMethod->getLexicalDeclContext()->isRecord()) {
981        //    -- Member function declarations with the same name and the
982        //       same parameter types cannot be overloaded if any of them
983        //       is a static member function declaration.
984        if (OldMethod->isStatic() || NewMethod->isStatic()) {
985          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
986          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
987          return true;
988        }
989
990        // C++ [class.mem]p1:
991        //   [...] A member shall not be declared twice in the
992        //   member-specification, except that a nested class or member
993        //   class template can be declared and then later defined.
994        unsigned NewDiag;
995        if (isa<CXXConstructorDecl>(OldMethod))
996          NewDiag = diag::err_constructor_redeclared;
997        else if (isa<CXXDestructorDecl>(NewMethod))
998          NewDiag = diag::err_destructor_redeclared;
999        else if (isa<CXXConversionDecl>(NewMethod))
1000          NewDiag = diag::err_conv_function_redeclared;
1001        else
1002          NewDiag = diag::err_member_redeclared;
1003
1004        Diag(New->getLocation(), NewDiag);
1005        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1006      } else {
1007        if (OldMethod->isImplicit()) {
1008          Diag(NewMethod->getLocation(),
1009               diag::err_definition_of_implicitly_declared_member)
1010          << New << getSpecialMember(Context, OldMethod);
1011
1012          Diag(OldMethod->getLocation(),
1013               diag::note_previous_implicit_declaration);
1014          return true;
1015        }
1016      }
1017    }
1018
1019    // (C++98 8.3.5p3):
1020    //   All declarations for a function shall agree exactly in both the
1021    //   return type and the parameter-type-list.
1022    // attributes should be ignored when comparing.
1023    if (Context.getNoReturnType(OldQType, false) ==
1024        Context.getNoReturnType(NewQType, false))
1025      return MergeCompatibleFunctionDecls(New, Old);
1026
1027    // Fall through for conflicting redeclarations and redefinitions.
1028  }
1029
1030  // C: Function types need to be compatible, not identical. This handles
1031  // duplicate function decls like "void f(int); void f(enum X);" properly.
1032  if (!getLangOptions().CPlusPlus &&
1033      Context.typesAreCompatible(OldQType, NewQType)) {
1034    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1035    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1036    const FunctionProtoType *OldProto = 0;
1037    if (isa<FunctionNoProtoType>(NewFuncType) &&
1038        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1039      // The old declaration provided a function prototype, but the
1040      // new declaration does not. Merge in the prototype.
1041      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1042      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1043                                                 OldProto->arg_type_end());
1044      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1045                                         ParamTypes.data(), ParamTypes.size(),
1046                                         OldProto->isVariadic(),
1047                                         OldProto->getTypeQuals());
1048      New->setType(NewQType);
1049      New->setHasInheritedPrototype();
1050
1051      // Synthesize a parameter for each argument type.
1052      llvm::SmallVector<ParmVarDecl*, 16> Params;
1053      for (FunctionProtoType::arg_type_iterator
1054             ParamType = OldProto->arg_type_begin(),
1055             ParamEnd = OldProto->arg_type_end();
1056           ParamType != ParamEnd; ++ParamType) {
1057        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1058                                                 SourceLocation(), 0,
1059                                                 *ParamType, /*TInfo=*/0,
1060                                                 VarDecl::None, 0);
1061        Param->setImplicit();
1062        Params.push_back(Param);
1063      }
1064
1065      New->setParams(Context, Params.data(), Params.size());
1066    }
1067
1068    return MergeCompatibleFunctionDecls(New, Old);
1069  }
1070
1071  // GNU C permits a K&R definition to follow a prototype declaration
1072  // if the declared types of the parameters in the K&R definition
1073  // match the types in the prototype declaration, even when the
1074  // promoted types of the parameters from the K&R definition differ
1075  // from the types in the prototype. GCC then keeps the types from
1076  // the prototype.
1077  //
1078  // If a variadic prototype is followed by a non-variadic K&R definition,
1079  // the K&R definition becomes variadic.  This is sort of an edge case, but
1080  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1081  // C99 6.9.1p8.
1082  if (!getLangOptions().CPlusPlus &&
1083      Old->hasPrototype() && !New->hasPrototype() &&
1084      New->getType()->getAs<FunctionProtoType>() &&
1085      Old->getNumParams() == New->getNumParams()) {
1086    llvm::SmallVector<QualType, 16> ArgTypes;
1087    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1088    const FunctionProtoType *OldProto
1089      = Old->getType()->getAs<FunctionProtoType>();
1090    const FunctionProtoType *NewProto
1091      = New->getType()->getAs<FunctionProtoType>();
1092
1093    // Determine whether this is the GNU C extension.
1094    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1095                                               NewProto->getResultType());
1096    bool LooseCompatible = !MergedReturn.isNull();
1097    for (unsigned Idx = 0, End = Old->getNumParams();
1098         LooseCompatible && Idx != End; ++Idx) {
1099      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1100      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1101      if (Context.typesAreCompatible(OldParm->getType(),
1102                                     NewProto->getArgType(Idx))) {
1103        ArgTypes.push_back(NewParm->getType());
1104      } else if (Context.typesAreCompatible(OldParm->getType(),
1105                                            NewParm->getType())) {
1106        GNUCompatibleParamWarning Warn
1107          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1108        Warnings.push_back(Warn);
1109        ArgTypes.push_back(NewParm->getType());
1110      } else
1111        LooseCompatible = false;
1112    }
1113
1114    if (LooseCompatible) {
1115      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1116        Diag(Warnings[Warn].NewParm->getLocation(),
1117             diag::ext_param_promoted_not_compatible_with_prototype)
1118          << Warnings[Warn].PromotedType
1119          << Warnings[Warn].OldParm->getType();
1120        Diag(Warnings[Warn].OldParm->getLocation(),
1121             diag::note_previous_declaration);
1122      }
1123
1124      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1125                                           ArgTypes.size(),
1126                                           OldProto->isVariadic(), 0));
1127      return MergeCompatibleFunctionDecls(New, Old);
1128    }
1129
1130    // Fall through to diagnose conflicting types.
1131  }
1132
1133  // A function that has already been declared has been redeclared or defined
1134  // with a different type- show appropriate diagnostic
1135  if (unsigned BuiltinID = Old->getBuiltinID()) {
1136    // The user has declared a builtin function with an incompatible
1137    // signature.
1138    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1139      // The function the user is redeclaring is a library-defined
1140      // function like 'malloc' or 'printf'. Warn about the
1141      // redeclaration, then pretend that we don't know about this
1142      // library built-in.
1143      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1144      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1145        << Old << Old->getType();
1146      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1147      Old->setInvalidDecl();
1148      return false;
1149    }
1150
1151    PrevDiag = diag::note_previous_builtin_declaration;
1152  }
1153
1154  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1155  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1156  return true;
1157}
1158
1159/// \brief Completes the merge of two function declarations that are
1160/// known to be compatible.
1161///
1162/// This routine handles the merging of attributes and other
1163/// properties of function declarations form the old declaration to
1164/// the new declaration, once we know that New is in fact a
1165/// redeclaration of Old.
1166///
1167/// \returns false
1168bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1169  // Merge the attributes
1170  MergeAttributes(New, Old, Context);
1171
1172  // Merge the storage class.
1173  if (Old->getStorageClass() != FunctionDecl::Extern &&
1174      Old->getStorageClass() != FunctionDecl::None)
1175    New->setStorageClass(Old->getStorageClass());
1176
1177  // Merge "pure" flag.
1178  if (Old->isPure())
1179    New->setPure();
1180
1181  // Merge the "deleted" flag.
1182  if (Old->isDeleted())
1183    New->setDeleted();
1184
1185  if (getLangOptions().CPlusPlus)
1186    return MergeCXXFunctionDecl(New, Old);
1187
1188  return false;
1189}
1190
1191/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1192/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1193/// situation, merging decls or emitting diagnostics as appropriate.
1194///
1195/// Tentative definition rules (C99 6.9.2p2) are checked by
1196/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1197/// definitions here, since the initializer hasn't been attached.
1198///
1199void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1200  // If the new decl is already invalid, don't do any other checking.
1201  if (New->isInvalidDecl())
1202    return;
1203
1204  // Verify the old decl was also a variable.
1205  VarDecl *Old = 0;
1206  if (!Previous.isSingleResult() ||
1207      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1208    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1209      << New->getDeclName();
1210    Diag(Previous.getRepresentativeDecl()->getLocation(),
1211         diag::note_previous_definition);
1212    return New->setInvalidDecl();
1213  }
1214
1215  MergeAttributes(New, Old, Context);
1216
1217  // Merge the types
1218  QualType MergedT;
1219  if (getLangOptions().CPlusPlus) {
1220    if (Context.hasSameType(New->getType(), Old->getType()))
1221      MergedT = New->getType();
1222    // C++ [basic.link]p10:
1223    //   [...] the types specified by all declarations referring to a given
1224    //   object or function shall be identical, except that declarations for an
1225    //   array object can specify array types that differ by the presence or
1226    //   absence of a major array bound (8.3.4).
1227    else if (Old->getType()->isIncompleteArrayType() &&
1228             New->getType()->isArrayType()) {
1229      CanQual<ArrayType> OldArray
1230        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1231      CanQual<ArrayType> NewArray
1232        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1233      if (OldArray->getElementType() == NewArray->getElementType())
1234        MergedT = New->getType();
1235    } else if (Old->getType()->isArrayType() &&
1236             New->getType()->isIncompleteArrayType()) {
1237      CanQual<ArrayType> OldArray
1238        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1239      CanQual<ArrayType> NewArray
1240        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1241      if (OldArray->getElementType() == NewArray->getElementType())
1242        MergedT = Old->getType();
1243    }
1244  } else {
1245    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1246  }
1247  if (MergedT.isNull()) {
1248    Diag(New->getLocation(), diag::err_redefinition_different_type)
1249      << New->getDeclName();
1250    Diag(Old->getLocation(), diag::note_previous_definition);
1251    return New->setInvalidDecl();
1252  }
1253  New->setType(MergedT);
1254
1255  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1256  if (New->getStorageClass() == VarDecl::Static &&
1257      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
1258    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1259    Diag(Old->getLocation(), diag::note_previous_definition);
1260    return New->setInvalidDecl();
1261  }
1262  // C99 6.2.2p4:
1263  //   For an identifier declared with the storage-class specifier
1264  //   extern in a scope in which a prior declaration of that
1265  //   identifier is visible,23) if the prior declaration specifies
1266  //   internal or external linkage, the linkage of the identifier at
1267  //   the later declaration is the same as the linkage specified at
1268  //   the prior declaration. If no prior declaration is visible, or
1269  //   if the prior declaration specifies no linkage, then the
1270  //   identifier has external linkage.
1271  if (New->hasExternalStorage() && Old->hasLinkage())
1272    /* Okay */;
1273  else if (New->getStorageClass() != VarDecl::Static &&
1274           Old->getStorageClass() == VarDecl::Static) {
1275    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1276    Diag(Old->getLocation(), diag::note_previous_definition);
1277    return New->setInvalidDecl();
1278  }
1279
1280  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1281
1282  // FIXME: The test for external storage here seems wrong? We still
1283  // need to check for mismatches.
1284  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1285      // Don't complain about out-of-line definitions of static members.
1286      !(Old->getLexicalDeclContext()->isRecord() &&
1287        !New->getLexicalDeclContext()->isRecord())) {
1288    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1289    Diag(Old->getLocation(), diag::note_previous_definition);
1290    return New->setInvalidDecl();
1291  }
1292
1293  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1294    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1295    Diag(Old->getLocation(), diag::note_previous_definition);
1296  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1297    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1298    Diag(Old->getLocation(), diag::note_previous_definition);
1299  }
1300
1301  // C++ doesn't have tentative definitions, so go right ahead and check here.
1302  const VarDecl *Def;
1303  if (New->isThisDeclarationADefinition() == VarDecl::Definition &&
1304      (Def = Old->getDefinition())) {
1305    Diag(New->getLocation(), diag::err_redefinition)
1306      << New->getDeclName();
1307    Diag(Def->getLocation(), diag::note_previous_definition);
1308    New->setInvalidDecl();
1309    return;
1310  }
1311
1312  // Keep a chain of previous declarations.
1313  New->setPreviousDeclaration(Old);
1314
1315  // Inherit access appropriately.
1316  New->setAccess(Old->getAccess());
1317}
1318
1319/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1320/// no declarator (e.g. "struct foo;") is parsed.
1321Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1322  // FIXME: Error on auto/register at file scope
1323  // FIXME: Error on inline/virtual/explicit
1324  // FIXME: Warn on useless __thread
1325  // FIXME: Warn on useless const/volatile
1326  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1327  // FIXME: Warn on useless attributes
1328  Decl *TagD = 0;
1329  TagDecl *Tag = 0;
1330  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1331      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1332      DS.getTypeSpecType() == DeclSpec::TST_union ||
1333      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1334    TagD = static_cast<Decl *>(DS.getTypeRep());
1335
1336    if (!TagD) // We probably had an error
1337      return DeclPtrTy();
1338
1339    // Note that the above type specs guarantee that the
1340    // type rep is a Decl, whereas in many of the others
1341    // it's a Type.
1342    Tag = dyn_cast<TagDecl>(TagD);
1343  }
1344
1345  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1346    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1347    // or incomplete types shall not be restrict-qualified."
1348    if (TypeQuals & DeclSpec::TQ_restrict)
1349      Diag(DS.getRestrictSpecLoc(),
1350           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1351           << DS.getSourceRange();
1352  }
1353
1354  if (DS.isFriendSpecified()) {
1355    // If we're dealing with a class template decl, assume that the
1356    // template routines are handling it.
1357    if (TagD && isa<ClassTemplateDecl>(TagD))
1358      return DeclPtrTy();
1359    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1360  }
1361
1362  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1363    // If there are attributes in the DeclSpec, apply them to the record.
1364    if (const AttributeList *AL = DS.getAttributes())
1365      ProcessDeclAttributeList(S, Record, AL);
1366
1367    if (!Record->getDeclName() && Record->isDefinition() &&
1368        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1369      if (getLangOptions().CPlusPlus ||
1370          Record->getDeclContext()->isRecord())
1371        return BuildAnonymousStructOrUnion(S, DS, Record);
1372
1373      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1374        << DS.getSourceRange();
1375    }
1376
1377    // Microsoft allows unnamed struct/union fields. Don't complain
1378    // about them.
1379    // FIXME: Should we support Microsoft's extensions in this area?
1380    if (Record->getDeclName() && getLangOptions().Microsoft)
1381      return DeclPtrTy::make(Tag);
1382  }
1383
1384  if (!DS.isMissingDeclaratorOk() &&
1385      DS.getTypeSpecType() != DeclSpec::TST_error) {
1386    // Warn about typedefs of enums without names, since this is an
1387    // extension in both Microsoft an GNU.
1388    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1389        Tag && isa<EnumDecl>(Tag)) {
1390      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1391        << DS.getSourceRange();
1392      return DeclPtrTy::make(Tag);
1393    }
1394
1395    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1396      << DS.getSourceRange();
1397    return DeclPtrTy();
1398  }
1399
1400  return DeclPtrTy::make(Tag);
1401}
1402
1403/// We are trying to inject an anonymous member into the given scope;
1404/// check if there's an existing declaration that can't be overloaded.
1405///
1406/// \return true if this is a forbidden redeclaration
1407static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1408                                         Scope *S,
1409                                         DeclContext *Owner,
1410                                         DeclarationName Name,
1411                                         SourceLocation NameLoc,
1412                                         unsigned diagnostic) {
1413  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1414                 Sema::ForRedeclaration);
1415  if (!SemaRef.LookupName(R, S)) return false;
1416
1417  if (R.getAsSingle<TagDecl>())
1418    return false;
1419
1420  // Pick a representative declaration.
1421  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1422  if (PrevDecl && Owner->isRecord()) {
1423    RecordDecl *Record = cast<RecordDecl>(Owner);
1424    if (!SemaRef.isDeclInScope(PrevDecl, Record, S))
1425      return false;
1426  }
1427
1428  SemaRef.Diag(NameLoc, diagnostic) << Name;
1429  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1430
1431  return true;
1432}
1433
1434/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1435/// anonymous struct or union AnonRecord into the owning context Owner
1436/// and scope S. This routine will be invoked just after we realize
1437/// that an unnamed union or struct is actually an anonymous union or
1438/// struct, e.g.,
1439///
1440/// @code
1441/// union {
1442///   int i;
1443///   float f;
1444/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1445///    // f into the surrounding scope.x
1446/// @endcode
1447///
1448/// This routine is recursive, injecting the names of nested anonymous
1449/// structs/unions into the owning context and scope as well.
1450bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1451                                               RecordDecl *AnonRecord) {
1452  unsigned diagKind
1453    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1454                            : diag::err_anonymous_struct_member_redecl;
1455
1456  bool Invalid = false;
1457  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1458                               FEnd = AnonRecord->field_end();
1459       F != FEnd; ++F) {
1460    if ((*F)->getDeclName()) {
1461      if (CheckAnonMemberRedeclaration(*this, S, Owner, (*F)->getDeclName(),
1462                                       (*F)->getLocation(), diagKind)) {
1463        // C++ [class.union]p2:
1464        //   The names of the members of an anonymous union shall be
1465        //   distinct from the names of any other entity in the
1466        //   scope in which the anonymous union is declared.
1467        Invalid = true;
1468      } else {
1469        // C++ [class.union]p2:
1470        //   For the purpose of name lookup, after the anonymous union
1471        //   definition, the members of the anonymous union are
1472        //   considered to have been defined in the scope in which the
1473        //   anonymous union is declared.
1474        Owner->makeDeclVisibleInContext(*F);
1475        S->AddDecl(DeclPtrTy::make(*F));
1476        IdResolver.AddDecl(*F);
1477      }
1478    } else if (const RecordType *InnerRecordType
1479                 = (*F)->getType()->getAs<RecordType>()) {
1480      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1481      if (InnerRecord->isAnonymousStructOrUnion())
1482        Invalid = Invalid ||
1483          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1484    }
1485  }
1486
1487  return Invalid;
1488}
1489
1490/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1491/// anonymous structure or union. Anonymous unions are a C++ feature
1492/// (C++ [class.union]) and a GNU C extension; anonymous structures
1493/// are a GNU C and GNU C++ extension.
1494Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1495                                                  RecordDecl *Record) {
1496  DeclContext *Owner = Record->getDeclContext();
1497
1498  // Diagnose whether this anonymous struct/union is an extension.
1499  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1500    Diag(Record->getLocation(), diag::ext_anonymous_union);
1501  else if (!Record->isUnion())
1502    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1503
1504  // C and C++ require different kinds of checks for anonymous
1505  // structs/unions.
1506  bool Invalid = false;
1507  if (getLangOptions().CPlusPlus) {
1508    const char* PrevSpec = 0;
1509    unsigned DiagID;
1510    // C++ [class.union]p3:
1511    //   Anonymous unions declared in a named namespace or in the
1512    //   global namespace shall be declared static.
1513    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1514        (isa<TranslationUnitDecl>(Owner) ||
1515         (isa<NamespaceDecl>(Owner) &&
1516          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1517      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1518      Invalid = true;
1519
1520      // Recover by adding 'static'.
1521      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1522                             PrevSpec, DiagID);
1523    }
1524    // C++ [class.union]p3:
1525    //   A storage class is not allowed in a declaration of an
1526    //   anonymous union in a class scope.
1527    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1528             isa<RecordDecl>(Owner)) {
1529      Diag(DS.getStorageClassSpecLoc(),
1530           diag::err_anonymous_union_with_storage_spec);
1531      Invalid = true;
1532
1533      // Recover by removing the storage specifier.
1534      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1535                             PrevSpec, DiagID);
1536    }
1537
1538    // C++ [class.union]p2:
1539    //   The member-specification of an anonymous union shall only
1540    //   define non-static data members. [Note: nested types and
1541    //   functions cannot be declared within an anonymous union. ]
1542    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1543                                 MemEnd = Record->decls_end();
1544         Mem != MemEnd; ++Mem) {
1545      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1546        // C++ [class.union]p3:
1547        //   An anonymous union shall not have private or protected
1548        //   members (clause 11).
1549        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1550          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1551            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1552          Invalid = true;
1553        }
1554      } else if ((*Mem)->isImplicit()) {
1555        // Any implicit members are fine.
1556      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1557        // This is a type that showed up in an
1558        // elaborated-type-specifier inside the anonymous struct or
1559        // union, but which actually declares a type outside of the
1560        // anonymous struct or union. It's okay.
1561      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1562        if (!MemRecord->isAnonymousStructOrUnion() &&
1563            MemRecord->getDeclName()) {
1564          // This is a nested type declaration.
1565          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1566            << (int)Record->isUnion();
1567          Invalid = true;
1568        }
1569      } else {
1570        // We have something that isn't a non-static data
1571        // member. Complain about it.
1572        unsigned DK = diag::err_anonymous_record_bad_member;
1573        if (isa<TypeDecl>(*Mem))
1574          DK = diag::err_anonymous_record_with_type;
1575        else if (isa<FunctionDecl>(*Mem))
1576          DK = diag::err_anonymous_record_with_function;
1577        else if (isa<VarDecl>(*Mem))
1578          DK = diag::err_anonymous_record_with_static;
1579        Diag((*Mem)->getLocation(), DK)
1580            << (int)Record->isUnion();
1581          Invalid = true;
1582      }
1583    }
1584  }
1585
1586  if (!Record->isUnion() && !Owner->isRecord()) {
1587    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1588      << (int)getLangOptions().CPlusPlus;
1589    Invalid = true;
1590  }
1591
1592  // Mock up a declarator.
1593  Declarator Dc(DS, Declarator::TypeNameContext);
1594  TypeSourceInfo *TInfo = 0;
1595  GetTypeForDeclarator(Dc, S, &TInfo);
1596  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
1597
1598  // Create a declaration for this anonymous struct/union.
1599  NamedDecl *Anon = 0;
1600  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1601    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1602                             /*IdentifierInfo=*/0,
1603                             Context.getTypeDeclType(Record),
1604                             TInfo,
1605                             /*BitWidth=*/0, /*Mutable=*/false);
1606    Anon->setAccess(AS_public);
1607    if (getLangOptions().CPlusPlus)
1608      FieldCollector->Add(cast<FieldDecl>(Anon));
1609  } else {
1610    VarDecl::StorageClass SC;
1611    switch (DS.getStorageClassSpec()) {
1612    default: assert(0 && "Unknown storage class!");
1613    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1614    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1615    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1616    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1617    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1618    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1619    case DeclSpec::SCS_mutable:
1620      // mutable can only appear on non-static class members, so it's always
1621      // an error here
1622      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1623      Invalid = true;
1624      SC = VarDecl::None;
1625      break;
1626    }
1627
1628    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1629                           /*IdentifierInfo=*/0,
1630                           Context.getTypeDeclType(Record),
1631                           TInfo,
1632                           SC);
1633  }
1634  Anon->setImplicit();
1635
1636  // Add the anonymous struct/union object to the current
1637  // context. We'll be referencing this object when we refer to one of
1638  // its members.
1639  Owner->addDecl(Anon);
1640
1641  // Inject the members of the anonymous struct/union into the owning
1642  // context and into the identifier resolver chain for name lookup
1643  // purposes.
1644  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1645    Invalid = true;
1646
1647  // Mark this as an anonymous struct/union type. Note that we do not
1648  // do this until after we have already checked and injected the
1649  // members of this anonymous struct/union type, because otherwise
1650  // the members could be injected twice: once by DeclContext when it
1651  // builds its lookup table, and once by
1652  // InjectAnonymousStructOrUnionMembers.
1653  Record->setAnonymousStructOrUnion(true);
1654
1655  if (Invalid)
1656    Anon->setInvalidDecl();
1657
1658  return DeclPtrTy::make(Anon);
1659}
1660
1661
1662/// GetNameForDeclarator - Determine the full declaration name for the
1663/// given Declarator.
1664DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1665  return GetNameFromUnqualifiedId(D.getName());
1666}
1667
1668/// \brief Retrieves the canonicalized name from a parsed unqualified-id.
1669DeclarationName Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
1670  switch (Name.getKind()) {
1671    case UnqualifiedId::IK_Identifier:
1672      return DeclarationName(Name.Identifier);
1673
1674    case UnqualifiedId::IK_OperatorFunctionId:
1675      return Context.DeclarationNames.getCXXOperatorName(
1676                                              Name.OperatorFunctionId.Operator);
1677
1678    case UnqualifiedId::IK_LiteralOperatorId:
1679      return Context.DeclarationNames.getCXXLiteralOperatorName(
1680                                                               Name.Identifier);
1681
1682    case UnqualifiedId::IK_ConversionFunctionId: {
1683      QualType Ty = GetTypeFromParser(Name.ConversionFunctionId);
1684      if (Ty.isNull())
1685        return DeclarationName();
1686
1687      return Context.DeclarationNames.getCXXConversionFunctionName(
1688                                                  Context.getCanonicalType(Ty));
1689    }
1690
1691    case UnqualifiedId::IK_ConstructorName: {
1692      QualType Ty = GetTypeFromParser(Name.ConstructorName);
1693      if (Ty.isNull())
1694        return DeclarationName();
1695
1696      return Context.DeclarationNames.getCXXConstructorName(
1697                                                  Context.getCanonicalType(Ty));
1698    }
1699
1700    case UnqualifiedId::IK_ConstructorTemplateId: {
1701      // In well-formed code, we can only have a constructor
1702      // template-id that refers to the current context, so go there
1703      // to find the actual type being constructed.
1704      CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
1705      if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
1706        return DeclarationName();
1707
1708      // Determine the type of the class being constructed.
1709      QualType CurClassType;
1710      if (ClassTemplateDecl *ClassTemplate
1711            = CurClass->getDescribedClassTemplate())
1712        CurClassType = ClassTemplate->getInjectedClassNameType(Context);
1713      else
1714        CurClassType = Context.getTypeDeclType(CurClass);
1715
1716      // FIXME: Check two things: that the template-id names the same type as
1717      // CurClassType, and that the template-id does not occur when the name
1718      // was qualified.
1719
1720      return Context.DeclarationNames.getCXXConstructorName(
1721                                       Context.getCanonicalType(CurClassType));
1722    }
1723
1724    case UnqualifiedId::IK_DestructorName: {
1725      QualType Ty = GetTypeFromParser(Name.DestructorName);
1726      if (Ty.isNull())
1727        return DeclarationName();
1728
1729      return Context.DeclarationNames.getCXXDestructorName(
1730                                                           Context.getCanonicalType(Ty));
1731    }
1732
1733    case UnqualifiedId::IK_TemplateId: {
1734      TemplateName TName
1735        = TemplateName::getFromVoidPointer(Name.TemplateId->Template);
1736      return Context.getNameForTemplate(TName);
1737    }
1738  }
1739
1740  assert(false && "Unknown name kind");
1741  return DeclarationName();
1742}
1743
1744/// isNearlyMatchingFunction - Determine whether the C++ functions
1745/// Declaration and Definition are "nearly" matching. This heuristic
1746/// is used to improve diagnostics in the case where an out-of-line
1747/// function definition doesn't match any declaration within
1748/// the class or namespace.
1749static bool isNearlyMatchingFunction(ASTContext &Context,
1750                                     FunctionDecl *Declaration,
1751                                     FunctionDecl *Definition) {
1752  if (Declaration->param_size() != Definition->param_size())
1753    return false;
1754  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1755    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1756    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1757
1758    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
1759                                        DefParamTy.getNonReferenceType()))
1760      return false;
1761  }
1762
1763  return true;
1764}
1765
1766Sema::DeclPtrTy
1767Sema::HandleDeclarator(Scope *S, Declarator &D,
1768                       MultiTemplateParamsArg TemplateParamLists,
1769                       bool IsFunctionDefinition) {
1770  DeclarationName Name = GetNameForDeclarator(D);
1771
1772  // All of these full declarators require an identifier.  If it doesn't have
1773  // one, the ParsedFreeStandingDeclSpec action should be used.
1774  if (!Name) {
1775    if (!D.isInvalidType())  // Reject this if we think it is valid.
1776      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1777           diag::err_declarator_need_ident)
1778        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1779    return DeclPtrTy();
1780  }
1781
1782  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1783  // we find one that is.
1784  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1785         (S->getFlags() & Scope::TemplateParamScope) != 0)
1786    S = S->getParent();
1787
1788  // If this is an out-of-line definition of a member of a class template
1789  // or class template partial specialization, we may need to rebuild the
1790  // type specifier in the declarator. See RebuildTypeInCurrentInstantiation()
1791  // for more information.
1792  // FIXME: cope with decltype(expr) and typeof(expr) once the rebuilder can
1793  // handle expressions properly.
1794  DeclSpec &DS = const_cast<DeclSpec&>(D.getDeclSpec());
1795  if (D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid() &&
1796      isDependentScopeSpecifier(D.getCXXScopeSpec()) &&
1797      (DS.getTypeSpecType() == DeclSpec::TST_typename ||
1798       DS.getTypeSpecType() == DeclSpec::TST_typeofType ||
1799       DS.getTypeSpecType() == DeclSpec::TST_typeofExpr ||
1800       DS.getTypeSpecType() == DeclSpec::TST_decltype)) {
1801    if (DeclContext *DC = computeDeclContext(D.getCXXScopeSpec(), true)) {
1802      // FIXME: Preserve type source info.
1803      QualType T = GetTypeFromParser(DS.getTypeRep());
1804
1805      DeclContext *SavedContext = CurContext;
1806      CurContext = DC;
1807      T = RebuildTypeInCurrentInstantiation(T, D.getIdentifierLoc(), Name);
1808      CurContext = SavedContext;
1809
1810      if (T.isNull())
1811        return DeclPtrTy();
1812      DS.UpdateTypeRep(T.getAsOpaquePtr());
1813    }
1814  }
1815
1816  DeclContext *DC;
1817  NamedDecl *New;
1818
1819  TypeSourceInfo *TInfo = 0;
1820  QualType R = GetTypeForDeclarator(D, S, &TInfo);
1821
1822  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
1823                        ForRedeclaration);
1824
1825  // See if this is a redefinition of a variable in the same scope.
1826  if (D.getCXXScopeSpec().isInvalid()) {
1827    DC = CurContext;
1828    D.setInvalidType();
1829  } else if (!D.getCXXScopeSpec().isSet()) {
1830    bool IsLinkageLookup = false;
1831
1832    // If the declaration we're planning to build will be a function
1833    // or object with linkage, then look for another declaration with
1834    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1835    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1836      /* Do nothing*/;
1837    else if (R->isFunctionType()) {
1838      if (CurContext->isFunctionOrMethod() ||
1839          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1840        IsLinkageLookup = true;
1841    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1842      IsLinkageLookup = true;
1843    else if (CurContext->getLookupContext()->isTranslationUnit() &&
1844             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1845      IsLinkageLookup = true;
1846
1847    if (IsLinkageLookup)
1848      Previous.clear(LookupRedeclarationWithLinkage);
1849
1850    DC = CurContext;
1851    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
1852  } else { // Something like "int foo::x;"
1853    DC = computeDeclContext(D.getCXXScopeSpec(), true);
1854
1855    if (!DC) {
1856      // If we could not compute the declaration context, it's because the
1857      // declaration context is dependent but does not refer to a class,
1858      // class template, or class template partial specialization. Complain
1859      // and return early, to avoid the coming semantic disaster.
1860      Diag(D.getIdentifierLoc(),
1861           diag::err_template_qualified_declarator_no_match)
1862        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
1863        << D.getCXXScopeSpec().getRange();
1864      return DeclPtrTy();
1865    }
1866
1867    if (!DC->isDependentContext() &&
1868        RequireCompleteDeclContext(D.getCXXScopeSpec()))
1869      return DeclPtrTy();
1870
1871    LookupQualifiedName(Previous, DC);
1872
1873    // Don't consider using declarations as previous declarations for
1874    // out-of-line members.
1875    RemoveUsingDecls(Previous);
1876
1877    // C++ 7.3.1.2p2:
1878    // Members (including explicit specializations of templates) of a named
1879    // namespace can also be defined outside that namespace by explicit
1880    // qualification of the name being defined, provided that the entity being
1881    // defined was already declared in the namespace and the definition appears
1882    // after the point of declaration in a namespace that encloses the
1883    // declarations namespace.
1884    //
1885    // Note that we only check the context at this point. We don't yet
1886    // have enough information to make sure that PrevDecl is actually
1887    // the declaration we want to match. For example, given:
1888    //
1889    //   class X {
1890    //     void f();
1891    //     void f(float);
1892    //   };
1893    //
1894    //   void X::f(int) { } // ill-formed
1895    //
1896    // In this case, PrevDecl will point to the overload set
1897    // containing the two f's declared in X, but neither of them
1898    // matches.
1899
1900    // First check whether we named the global scope.
1901    if (isa<TranslationUnitDecl>(DC)) {
1902      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1903        << Name << D.getCXXScopeSpec().getRange();
1904    } else {
1905      DeclContext *Cur = CurContext;
1906      while (isa<LinkageSpecDecl>(Cur))
1907        Cur = Cur->getParent();
1908      if (!Cur->Encloses(DC)) {
1909        // The qualifying scope doesn't enclose the original declaration.
1910        // Emit diagnostic based on current scope.
1911        SourceLocation L = D.getIdentifierLoc();
1912        SourceRange R = D.getCXXScopeSpec().getRange();
1913        if (isa<FunctionDecl>(Cur))
1914          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1915        else
1916          Diag(L, diag::err_invalid_declarator_scope)
1917            << Name << cast<NamedDecl>(DC) << R;
1918        D.setInvalidType();
1919      }
1920    }
1921  }
1922
1923  if (Previous.isSingleResult() &&
1924      Previous.getFoundDecl()->isTemplateParameter()) {
1925    // Maybe we will complain about the shadowed template parameter.
1926    if (!D.isInvalidType())
1927      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
1928                                          Previous.getFoundDecl()))
1929        D.setInvalidType();
1930
1931    // Just pretend that we didn't see the previous declaration.
1932    Previous.clear();
1933  }
1934
1935  // In C++, the previous declaration we find might be a tag type
1936  // (class or enum). In this case, the new declaration will hide the
1937  // tag type. Note that this does does not apply if we're declaring a
1938  // typedef (C++ [dcl.typedef]p4).
1939  if (Previous.isSingleTagDecl() &&
1940      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1941    Previous.clear();
1942
1943  bool Redeclaration = false;
1944  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1945    if (TemplateParamLists.size()) {
1946      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
1947      return DeclPtrTy();
1948    }
1949
1950    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
1951  } else if (R->isFunctionType()) {
1952    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
1953                                  move(TemplateParamLists),
1954                                  IsFunctionDefinition, Redeclaration);
1955  } else {
1956    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
1957                                  move(TemplateParamLists),
1958                                  Redeclaration);
1959  }
1960
1961  if (New == 0)
1962    return DeclPtrTy();
1963
1964  // If this has an identifier and is not an invalid redeclaration or
1965  // function template specialization, add it to the scope stack.
1966  if (Name && !(Redeclaration && New->isInvalidDecl()))
1967    PushOnScopeChains(New, S);
1968
1969  return DeclPtrTy::make(New);
1970}
1971
1972/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1973/// types into constant array types in certain situations which would otherwise
1974/// be errors (for GCC compatibility).
1975static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1976                                                    ASTContext &Context,
1977                                                    bool &SizeIsNegative) {
1978  // This method tries to turn a variable array into a constant
1979  // array even when the size isn't an ICE.  This is necessary
1980  // for compatibility with code that depends on gcc's buggy
1981  // constant expression folding, like struct {char x[(int)(char*)2];}
1982  SizeIsNegative = false;
1983
1984  QualifierCollector Qs;
1985  const Type *Ty = Qs.strip(T);
1986
1987  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
1988    QualType Pointee = PTy->getPointeeType();
1989    QualType FixedType =
1990        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1991    if (FixedType.isNull()) return FixedType;
1992    FixedType = Context.getPointerType(FixedType);
1993    return Qs.apply(FixedType);
1994  }
1995
1996  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1997  if (!VLATy)
1998    return QualType();
1999  // FIXME: We should probably handle this case
2000  if (VLATy->getElementType()->isVariablyModifiedType())
2001    return QualType();
2002
2003  Expr::EvalResult EvalResult;
2004  if (!VLATy->getSizeExpr() ||
2005      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2006      !EvalResult.Val.isInt())
2007    return QualType();
2008
2009  llvm::APSInt &Res = EvalResult.Val.getInt();
2010  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
2011    // TODO: preserve the size expression in declarator info
2012    return Context.getConstantArrayType(VLATy->getElementType(),
2013                                        Res, ArrayType::Normal, 0);
2014  }
2015
2016  SizeIsNegative = true;
2017  return QualType();
2018}
2019
2020/// \brief Register the given locally-scoped external C declaration so
2021/// that it can be found later for redeclarations
2022void
2023Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2024                                       const LookupResult &Previous,
2025                                       Scope *S) {
2026  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2027         "Decl is not a locally-scoped decl!");
2028  // Note that we have a locally-scoped external with this name.
2029  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2030
2031  if (!Previous.isSingleResult())
2032    return;
2033
2034  NamedDecl *PrevDecl = Previous.getFoundDecl();
2035
2036  // If there was a previous declaration of this variable, it may be
2037  // in our identifier chain. Update the identifier chain with the new
2038  // declaration.
2039  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2040    // The previous declaration was found on the identifer resolver
2041    // chain, so remove it from its scope.
2042    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
2043      S = S->getParent();
2044
2045    if (S)
2046      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
2047  }
2048}
2049
2050/// \brief Diagnose function specifiers on a declaration of an identifier that
2051/// does not identify a function.
2052void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2053  // FIXME: We should probably indicate the identifier in question to avoid
2054  // confusion for constructs like "inline int a(), b;"
2055  if (D.getDeclSpec().isInlineSpecified())
2056    Diag(D.getDeclSpec().getInlineSpecLoc(),
2057         diag::err_inline_non_function);
2058
2059  if (D.getDeclSpec().isVirtualSpecified())
2060    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2061         diag::err_virtual_non_function);
2062
2063  if (D.getDeclSpec().isExplicitSpecified())
2064    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2065         diag::err_explicit_non_function);
2066}
2067
2068NamedDecl*
2069Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2070                             QualType R,  TypeSourceInfo *TInfo,
2071                             LookupResult &Previous, bool &Redeclaration) {
2072  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2073  if (D.getCXXScopeSpec().isSet()) {
2074    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2075      << D.getCXXScopeSpec().getRange();
2076    D.setInvalidType();
2077    // Pretend we didn't see the scope specifier.
2078    DC = 0;
2079  }
2080
2081  if (getLangOptions().CPlusPlus) {
2082    // Check that there are no default arguments (C++ only).
2083    CheckExtraCXXDefaultArguments(D);
2084  }
2085
2086  DiagnoseFunctionSpecifiers(D);
2087
2088  if (D.getDeclSpec().isThreadSpecified())
2089    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2090
2091  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2092  if (!NewTD) return 0;
2093
2094  // Handle attributes prior to checking for duplicates in MergeVarDecl
2095  ProcessDeclAttributes(S, NewTD, D);
2096
2097  // Merge the decl with the existing one if appropriate. If the decl is
2098  // in an outer scope, it isn't the same thing.
2099  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2100  if (!Previous.empty()) {
2101    Redeclaration = true;
2102    MergeTypeDefDecl(NewTD, Previous);
2103  }
2104
2105  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2106  // then it shall have block scope.
2107  QualType T = NewTD->getUnderlyingType();
2108  if (T->isVariablyModifiedType()) {
2109    CurFunctionNeedsScopeChecking = true;
2110
2111    if (S->getFnParent() == 0) {
2112      bool SizeIsNegative;
2113      QualType FixedTy =
2114          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2115      if (!FixedTy.isNull()) {
2116        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2117        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2118      } else {
2119        if (SizeIsNegative)
2120          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2121        else if (T->isVariableArrayType())
2122          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2123        else
2124          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2125        NewTD->setInvalidDecl();
2126      }
2127    }
2128  }
2129
2130  // If this is the C FILE type, notify the AST context.
2131  if (IdentifierInfo *II = NewTD->getIdentifier())
2132    if (!NewTD->isInvalidDecl() &&
2133        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
2134      if (II->isStr("FILE"))
2135        Context.setFILEDecl(NewTD);
2136      else if (II->isStr("jmp_buf"))
2137        Context.setjmp_bufDecl(NewTD);
2138      else if (II->isStr("sigjmp_buf"))
2139        Context.setsigjmp_bufDecl(NewTD);
2140    }
2141
2142  return NewTD;
2143}
2144
2145/// \brief Determines whether the given declaration is an out-of-scope
2146/// previous declaration.
2147///
2148/// This routine should be invoked when name lookup has found a
2149/// previous declaration (PrevDecl) that is not in the scope where a
2150/// new declaration by the same name is being introduced. If the new
2151/// declaration occurs in a local scope, previous declarations with
2152/// linkage may still be considered previous declarations (C99
2153/// 6.2.2p4-5, C++ [basic.link]p6).
2154///
2155/// \param PrevDecl the previous declaration found by name
2156/// lookup
2157///
2158/// \param DC the context in which the new declaration is being
2159/// declared.
2160///
2161/// \returns true if PrevDecl is an out-of-scope previous declaration
2162/// for a new delcaration with the same name.
2163static bool
2164isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2165                                ASTContext &Context) {
2166  if (!PrevDecl)
2167    return 0;
2168
2169  if (!PrevDecl->hasLinkage())
2170    return false;
2171
2172  if (Context.getLangOptions().CPlusPlus) {
2173    // C++ [basic.link]p6:
2174    //   If there is a visible declaration of an entity with linkage
2175    //   having the same name and type, ignoring entities declared
2176    //   outside the innermost enclosing namespace scope, the block
2177    //   scope declaration declares that same entity and receives the
2178    //   linkage of the previous declaration.
2179    DeclContext *OuterContext = DC->getLookupContext();
2180    if (!OuterContext->isFunctionOrMethod())
2181      // This rule only applies to block-scope declarations.
2182      return false;
2183    else {
2184      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2185      if (PrevOuterContext->isRecord())
2186        // We found a member function: ignore it.
2187        return false;
2188      else {
2189        // Find the innermost enclosing namespace for the new and
2190        // previous declarations.
2191        while (!OuterContext->isFileContext())
2192          OuterContext = OuterContext->getParent();
2193        while (!PrevOuterContext->isFileContext())
2194          PrevOuterContext = PrevOuterContext->getParent();
2195
2196        // The previous declaration is in a different namespace, so it
2197        // isn't the same function.
2198        if (OuterContext->getPrimaryContext() !=
2199            PrevOuterContext->getPrimaryContext())
2200          return false;
2201      }
2202    }
2203  }
2204
2205  return true;
2206}
2207
2208NamedDecl*
2209Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2210                              QualType R, TypeSourceInfo *TInfo,
2211                              LookupResult &Previous,
2212                              MultiTemplateParamsArg TemplateParamLists,
2213                              bool &Redeclaration) {
2214  DeclarationName Name = GetNameForDeclarator(D);
2215
2216  // Check that there are no default arguments (C++ only).
2217  if (getLangOptions().CPlusPlus)
2218    CheckExtraCXXDefaultArguments(D);
2219
2220  VarDecl *NewVD;
2221  VarDecl::StorageClass SC;
2222  switch (D.getDeclSpec().getStorageClassSpec()) {
2223  default: assert(0 && "Unknown storage class!");
2224  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
2225  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
2226  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
2227  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
2228  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
2229  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
2230  case DeclSpec::SCS_mutable:
2231    // mutable can only appear on non-static class members, so it's always
2232    // an error here
2233    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2234    D.setInvalidType();
2235    SC = VarDecl::None;
2236    break;
2237  }
2238
2239  IdentifierInfo *II = Name.getAsIdentifierInfo();
2240  if (!II) {
2241    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2242      << Name.getAsString();
2243    return 0;
2244  }
2245
2246  DiagnoseFunctionSpecifiers(D);
2247
2248  if (!DC->isRecord() && S->getFnParent() == 0) {
2249    // C99 6.9p2: The storage-class specifiers auto and register shall not
2250    // appear in the declaration specifiers in an external declaration.
2251    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2252
2253      // If this is a register variable with an asm label specified, then this
2254      // is a GNU extension.
2255      if (SC == VarDecl::Register && D.getAsmLabel())
2256        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2257      else
2258        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2259      D.setInvalidType();
2260    }
2261  }
2262  if (DC->isRecord() && !CurContext->isRecord()) {
2263    // This is an out-of-line definition of a static data member.
2264    if (SC == VarDecl::Static) {
2265      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2266           diag::err_static_out_of_line)
2267        << CodeModificationHint::CreateRemoval(
2268                                      D.getDeclSpec().getStorageClassSpecLoc());
2269    } else if (SC == VarDecl::None)
2270      SC = VarDecl::Static;
2271  }
2272  if (SC == VarDecl::Static) {
2273    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2274      if (RD->isLocalClass())
2275        Diag(D.getIdentifierLoc(),
2276             diag::err_static_data_member_not_allowed_in_local_class)
2277          << Name << RD->getDeclName();
2278    }
2279  }
2280
2281  // Match up the template parameter lists with the scope specifier, then
2282  // determine whether we have a template or a template specialization.
2283  bool isExplicitSpecialization = false;
2284  if (TemplateParameterList *TemplateParams
2285        = MatchTemplateParametersToScopeSpecifier(
2286                                  D.getDeclSpec().getSourceRange().getBegin(),
2287                                                  D.getCXXScopeSpec(),
2288                        (TemplateParameterList**)TemplateParamLists.get(),
2289                                                   TemplateParamLists.size(),
2290                                                  isExplicitSpecialization)) {
2291    if (TemplateParams->size() > 0) {
2292      // There is no such thing as a variable template.
2293      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2294        << II
2295        << SourceRange(TemplateParams->getTemplateLoc(),
2296                       TemplateParams->getRAngleLoc());
2297      return 0;
2298    } else {
2299      // There is an extraneous 'template<>' for this variable. Complain
2300      // about it, but allow the declaration of the variable.
2301      Diag(TemplateParams->getTemplateLoc(),
2302           diag::err_template_variable_noparams)
2303        << II
2304        << SourceRange(TemplateParams->getTemplateLoc(),
2305                       TemplateParams->getRAngleLoc());
2306
2307      isExplicitSpecialization = true;
2308    }
2309  }
2310
2311  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2312                          II, R, TInfo, SC);
2313
2314  if (D.isInvalidType())
2315    NewVD->setInvalidDecl();
2316
2317  if (D.getDeclSpec().isThreadSpecified()) {
2318    if (NewVD->hasLocalStorage())
2319      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2320    else if (!Context.Target.isTLSSupported())
2321      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2322    else
2323      NewVD->setThreadSpecified(true);
2324  }
2325
2326  // Set the lexical context. If the declarator has a C++ scope specifier, the
2327  // lexical context will be different from the semantic context.
2328  NewVD->setLexicalDeclContext(CurContext);
2329
2330  // Handle attributes prior to checking for duplicates in MergeVarDecl
2331  ProcessDeclAttributes(S, NewVD, D);
2332
2333  // Handle GNU asm-label extension (encoded as an attribute).
2334  if (Expr *E = (Expr*) D.getAsmLabel()) {
2335    // The parser guarantees this is a string.
2336    StringLiteral *SE = cast<StringLiteral>(E);
2337    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getString()));
2338  }
2339
2340  // Don't consider existing declarations that are in a different
2341  // scope and are out-of-semantic-context declarations (if the new
2342  // declaration has linkage).
2343  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
2344
2345  // Merge the decl with the existing one if appropriate.
2346  if (!Previous.empty()) {
2347    if (Previous.isSingleResult() &&
2348        isa<FieldDecl>(Previous.getFoundDecl()) &&
2349        D.getCXXScopeSpec().isSet()) {
2350      // The user tried to define a non-static data member
2351      // out-of-line (C++ [dcl.meaning]p1).
2352      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2353        << D.getCXXScopeSpec().getRange();
2354      Previous.clear();
2355      NewVD->setInvalidDecl();
2356    }
2357  } else if (D.getCXXScopeSpec().isSet()) {
2358    // No previous declaration in the qualifying scope.
2359    Diag(D.getIdentifierLoc(), diag::err_no_member)
2360      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2361      << D.getCXXScopeSpec().getRange();
2362    NewVD->setInvalidDecl();
2363  }
2364
2365  CheckVariableDeclaration(NewVD, Previous, Redeclaration);
2366
2367  // This is an explicit specialization of a static data member. Check it.
2368  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2369      CheckMemberSpecialization(NewVD, Previous))
2370    NewVD->setInvalidDecl();
2371
2372  // attributes declared post-definition are currently ignored
2373  if (Previous.isSingleResult()) {
2374    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
2375    if (Def && (Def = Def->getDefinition()) &&
2376        Def != NewVD && D.hasAttributes()) {
2377      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2378      Diag(Def->getLocation(), diag::note_previous_definition);
2379    }
2380  }
2381
2382  // If this is a locally-scoped extern C variable, update the map of
2383  // such variables.
2384  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2385      !NewVD->isInvalidDecl())
2386    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
2387
2388  return NewVD;
2389}
2390
2391/// \brief Perform semantic checking on a newly-created variable
2392/// declaration.
2393///
2394/// This routine performs all of the type-checking required for a
2395/// variable declaration once it has been built. It is used both to
2396/// check variables after they have been parsed and their declarators
2397/// have been translated into a declaration, and to check variables
2398/// that have been instantiated from a template.
2399///
2400/// Sets NewVD->isInvalidDecl() if an error was encountered.
2401void Sema::CheckVariableDeclaration(VarDecl *NewVD,
2402                                    LookupResult &Previous,
2403                                    bool &Redeclaration) {
2404  // If the decl is already known invalid, don't check it.
2405  if (NewVD->isInvalidDecl())
2406    return;
2407
2408  QualType T = NewVD->getType();
2409
2410  if (T->isObjCInterfaceType()) {
2411    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2412    return NewVD->setInvalidDecl();
2413  }
2414
2415  // Emit an error if an address space was applied to decl with local storage.
2416  // This includes arrays of objects with address space qualifiers, but not
2417  // automatic variables that point to other address spaces.
2418  // ISO/IEC TR 18037 S5.1.2
2419  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2420    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2421    return NewVD->setInvalidDecl();
2422  }
2423
2424  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2425      && !NewVD->hasAttr<BlocksAttr>())
2426    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2427
2428  bool isVM = T->isVariablyModifiedType();
2429  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2430      NewVD->hasAttr<BlocksAttr>())
2431    CurFunctionNeedsScopeChecking = true;
2432
2433  if ((isVM && NewVD->hasLinkage()) ||
2434      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2435    bool SizeIsNegative;
2436    QualType FixedTy =
2437        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2438
2439    if (FixedTy.isNull() && T->isVariableArrayType()) {
2440      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2441      // FIXME: This won't give the correct result for
2442      // int a[10][n];
2443      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2444
2445      if (NewVD->isFileVarDecl())
2446        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2447        << SizeRange;
2448      else if (NewVD->getStorageClass() == VarDecl::Static)
2449        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2450        << SizeRange;
2451      else
2452        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2453        << SizeRange;
2454      return NewVD->setInvalidDecl();
2455    }
2456
2457    if (FixedTy.isNull()) {
2458      if (NewVD->isFileVarDecl())
2459        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2460      else
2461        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2462      return NewVD->setInvalidDecl();
2463    }
2464
2465    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2466    NewVD->setType(FixedTy);
2467  }
2468
2469  if (Previous.empty() && NewVD->isExternC()) {
2470    // Since we did not find anything by this name and we're declaring
2471    // an extern "C" variable, look for a non-visible extern "C"
2472    // declaration with the same name.
2473    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2474      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2475    if (Pos != LocallyScopedExternalDecls.end())
2476      Previous.addDecl(Pos->second);
2477  }
2478
2479  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2480    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2481      << T;
2482    return NewVD->setInvalidDecl();
2483  }
2484
2485  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2486    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2487    return NewVD->setInvalidDecl();
2488  }
2489
2490  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2491    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2492    return NewVD->setInvalidDecl();
2493  }
2494
2495  if (!Previous.empty()) {
2496    Redeclaration = true;
2497    MergeVarDecl(NewVD, Previous);
2498  }
2499}
2500
2501/// \brief Data used with FindOverriddenMethod
2502struct FindOverriddenMethodData {
2503  Sema *S;
2504  CXXMethodDecl *Method;
2505};
2506
2507/// \brief Member lookup function that determines whether a given C++
2508/// method overrides a method in a base class, to be used with
2509/// CXXRecordDecl::lookupInBases().
2510static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
2511                                 CXXBasePath &Path,
2512                                 void *UserData) {
2513  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
2514
2515  FindOverriddenMethodData *Data
2516    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
2517
2518  DeclarationName Name = Data->Method->getDeclName();
2519
2520  // FIXME: Do we care about other names here too?
2521  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2522    // We really want to find the base class constructor here.
2523    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
2524    CanQualType CT = Data->S->Context.getCanonicalType(T);
2525
2526    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
2527  }
2528
2529  for (Path.Decls = BaseRecord->lookup(Name);
2530       Path.Decls.first != Path.Decls.second;
2531       ++Path.Decls.first) {
2532    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*Path.Decls.first)) {
2533      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD))
2534        return true;
2535    }
2536  }
2537
2538  return false;
2539}
2540
2541/// AddOverriddenMethods - See if a method overrides any in the base classes,
2542/// and if so, check that it's a valid override and remember it.
2543void Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
2544  // Look for virtual methods in base classes that this method might override.
2545  CXXBasePaths Paths;
2546  FindOverriddenMethodData Data;
2547  Data.Method = MD;
2548  Data.S = this;
2549  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
2550    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
2551         E = Paths.found_decls_end(); I != E; ++I) {
2552      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2553        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
2554            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
2555            !CheckOverridingFunctionAttributes(MD, OldMD))
2556          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
2557      }
2558    }
2559  }
2560}
2561
2562NamedDecl*
2563Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2564                              QualType R, TypeSourceInfo *TInfo,
2565                              LookupResult &Previous,
2566                              MultiTemplateParamsArg TemplateParamLists,
2567                              bool IsFunctionDefinition, bool &Redeclaration) {
2568  assert(R.getTypePtr()->isFunctionType());
2569
2570  DeclarationName Name = GetNameForDeclarator(D);
2571  FunctionDecl::StorageClass SC = FunctionDecl::None;
2572  switch (D.getDeclSpec().getStorageClassSpec()) {
2573  default: assert(0 && "Unknown storage class!");
2574  case DeclSpec::SCS_auto:
2575  case DeclSpec::SCS_register:
2576  case DeclSpec::SCS_mutable:
2577    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2578         diag::err_typecheck_sclass_func);
2579    D.setInvalidType();
2580    break;
2581  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2582  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2583  case DeclSpec::SCS_static: {
2584    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2585      // C99 6.7.1p5:
2586      //   The declaration of an identifier for a function that has
2587      //   block scope shall have no explicit storage-class specifier
2588      //   other than extern
2589      // See also (C++ [dcl.stc]p4).
2590      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2591           diag::err_static_block_func);
2592      SC = FunctionDecl::None;
2593    } else
2594      SC = FunctionDecl::Static;
2595    break;
2596  }
2597  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2598  }
2599
2600  if (D.getDeclSpec().isThreadSpecified())
2601    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2602
2603  bool isFriend = D.getDeclSpec().isFriendSpecified();
2604  bool isInline = D.getDeclSpec().isInlineSpecified();
2605  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2606  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2607
2608  // Check that the return type is not an abstract class type.
2609  // For record types, this is done by the AbstractClassUsageDiagnoser once
2610  // the class has been completely parsed.
2611  if (!DC->isRecord() &&
2612      RequireNonAbstractType(D.getIdentifierLoc(),
2613                             R->getAs<FunctionType>()->getResultType(),
2614                             diag::err_abstract_type_in_decl,
2615                             AbstractReturnType))
2616    D.setInvalidType();
2617
2618  // Do not allow returning a objc interface by-value.
2619  if (R->getAs<FunctionType>()->getResultType()->isObjCInterfaceType()) {
2620    Diag(D.getIdentifierLoc(),
2621         diag::err_object_cannot_be_passed_returned_by_value) << 0
2622      << R->getAs<FunctionType>()->getResultType();
2623    D.setInvalidType();
2624  }
2625
2626  bool isVirtualOkay = false;
2627  FunctionDecl *NewFD;
2628
2629  if (isFriend) {
2630    // C++ [class.friend]p5
2631    //   A function can be defined in a friend declaration of a
2632    //   class . . . . Such a function is implicitly inline.
2633    isInline |= IsFunctionDefinition;
2634  }
2635
2636  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
2637    // This is a C++ constructor declaration.
2638    assert(DC->isRecord() &&
2639           "Constructors can only be declared in a member context");
2640
2641    R = CheckConstructorDeclarator(D, R, SC);
2642
2643    // Create the new declaration
2644    NewFD = CXXConstructorDecl::Create(Context,
2645                                       cast<CXXRecordDecl>(DC),
2646                                       D.getIdentifierLoc(), Name, R, TInfo,
2647                                       isExplicit, isInline,
2648                                       /*isImplicitlyDeclared=*/false);
2649  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2650    // This is a C++ destructor declaration.
2651    if (DC->isRecord()) {
2652      R = CheckDestructorDeclarator(D, SC);
2653
2654      NewFD = CXXDestructorDecl::Create(Context,
2655                                        cast<CXXRecordDecl>(DC),
2656                                        D.getIdentifierLoc(), Name, R,
2657                                        isInline,
2658                                        /*isImplicitlyDeclared=*/false);
2659
2660      isVirtualOkay = true;
2661    } else {
2662      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2663
2664      // Create a FunctionDecl to satisfy the function definition parsing
2665      // code path.
2666      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2667                                   Name, R, TInfo, SC, isInline,
2668                                   /*hasPrototype=*/true);
2669      D.setInvalidType();
2670    }
2671  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
2672    if (!DC->isRecord()) {
2673      Diag(D.getIdentifierLoc(),
2674           diag::err_conv_function_not_member);
2675      return 0;
2676    }
2677
2678    CheckConversionDeclarator(D, R, SC);
2679    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2680                                      D.getIdentifierLoc(), Name, R, TInfo,
2681                                      isInline, isExplicit);
2682
2683    isVirtualOkay = true;
2684  } else if (DC->isRecord()) {
2685    // If the of the function is the same as the name of the record, then this
2686    // must be an invalid constructor that has a return type.
2687    // (The parser checks for a return type and makes the declarator a
2688    // constructor if it has no return type).
2689    // must have an invalid constructor that has a return type
2690    if (Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2691      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2692        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2693        << SourceRange(D.getIdentifierLoc());
2694      return 0;
2695    }
2696
2697    bool isStatic = SC == FunctionDecl::Static;
2698
2699    // [class.free]p1:
2700    // Any allocation function for a class T is a static member
2701    // (even if not explicitly declared static).
2702    if (Name.getCXXOverloadedOperator() == OO_New ||
2703        Name.getCXXOverloadedOperator() == OO_Array_New)
2704      isStatic = true;
2705
2706    // [class.free]p6 Any deallocation function for a class X is a static member
2707    // (even if not explicitly declared static).
2708    if (Name.getCXXOverloadedOperator() == OO_Delete ||
2709        Name.getCXXOverloadedOperator() == OO_Array_Delete)
2710      isStatic = true;
2711
2712    // This is a C++ method declaration.
2713    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2714                                  D.getIdentifierLoc(), Name, R, TInfo,
2715                                  isStatic, isInline);
2716
2717    isVirtualOkay = !isStatic;
2718  } else {
2719    // Determine whether the function was written with a
2720    // prototype. This true when:
2721    //   - we're in C++ (where every function has a prototype),
2722    //   - there is a prototype in the declarator, or
2723    //   - the type R of the function is some kind of typedef or other reference
2724    //     to a type name (which eventually refers to a function type).
2725    bool HasPrototype =
2726       getLangOptions().CPlusPlus ||
2727       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2728       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2729
2730    NewFD = FunctionDecl::Create(Context, DC,
2731                                 D.getIdentifierLoc(),
2732                                 Name, R, TInfo, SC, isInline, HasPrototype);
2733  }
2734
2735  if (D.isInvalidType())
2736    NewFD->setInvalidDecl();
2737
2738  // Set the lexical context. If the declarator has a C++
2739  // scope specifier, or is the object of a friend declaration, the
2740  // lexical context will be different from the semantic context.
2741  NewFD->setLexicalDeclContext(CurContext);
2742
2743  // Match up the template parameter lists with the scope specifier, then
2744  // determine whether we have a template or a template specialization.
2745  FunctionTemplateDecl *FunctionTemplate = 0;
2746  bool isExplicitSpecialization = false;
2747  bool isFunctionTemplateSpecialization = false;
2748  if (TemplateParameterList *TemplateParams
2749        = MatchTemplateParametersToScopeSpecifier(
2750                                  D.getDeclSpec().getSourceRange().getBegin(),
2751                                  D.getCXXScopeSpec(),
2752                           (TemplateParameterList**)TemplateParamLists.get(),
2753                                                  TemplateParamLists.size(),
2754                                                  isExplicitSpecialization)) {
2755    if (TemplateParams->size() > 0) {
2756      // This is a function template
2757
2758      // Check that we can declare a template here.
2759      if (CheckTemplateDeclScope(S, TemplateParams))
2760        return 0;
2761
2762      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
2763                                                      NewFD->getLocation(),
2764                                                      Name, TemplateParams,
2765                                                      NewFD);
2766      FunctionTemplate->setLexicalDeclContext(CurContext);
2767      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
2768    } else {
2769      // This is a function template specialization.
2770      isFunctionTemplateSpecialization = true;
2771    }
2772
2773    // FIXME: Free this memory properly.
2774    TemplateParamLists.release();
2775  }
2776
2777  // C++ [dcl.fct.spec]p5:
2778  //   The virtual specifier shall only be used in declarations of
2779  //   nonstatic class member functions that appear within a
2780  //   member-specification of a class declaration; see 10.3.
2781  //
2782  if (isVirtual && !NewFD->isInvalidDecl()) {
2783    if (!isVirtualOkay) {
2784       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2785           diag::err_virtual_non_function);
2786    } else if (!CurContext->isRecord()) {
2787      // 'virtual' was specified outside of the class.
2788      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2789        << CodeModificationHint::CreateRemoval(
2790                                           D.getDeclSpec().getVirtualSpecLoc());
2791    } else {
2792      // Okay: Add virtual to the method.
2793      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2794      CurClass->setMethodAsVirtual(NewFD);
2795    }
2796  }
2797
2798  // C++ [dcl.fct.spec]p6:
2799  //  The explicit specifier shall be used only in the declaration of a
2800  //  constructor or conversion function within its class definition; see 12.3.1
2801  //  and 12.3.2.
2802  if (isExplicit && !NewFD->isInvalidDecl()) {
2803    if (!CurContext->isRecord()) {
2804      // 'explicit' was specified outside of the class.
2805      Diag(D.getDeclSpec().getExplicitSpecLoc(),
2806           diag::err_explicit_out_of_class)
2807        << CodeModificationHint::CreateRemoval(
2808                                          D.getDeclSpec().getExplicitSpecLoc());
2809    } else if (!isa<CXXConstructorDecl>(NewFD) &&
2810               !isa<CXXConversionDecl>(NewFD)) {
2811      // 'explicit' was specified on a function that wasn't a constructor
2812      // or conversion function.
2813      Diag(D.getDeclSpec().getExplicitSpecLoc(),
2814           diag::err_explicit_non_ctor_or_conv_function)
2815        << CodeModificationHint::CreateRemoval(
2816                                          D.getDeclSpec().getExplicitSpecLoc());
2817    }
2818  }
2819
2820  // Filter out previous declarations that don't match the scope.
2821  FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
2822
2823  if (isFriend) {
2824    // DC is the namespace in which the function is being declared.
2825    assert((DC->isFileContext() || !Previous.empty()) &&
2826           "previously-undeclared friend function being created "
2827           "in a non-namespace context");
2828
2829    if (FunctionTemplate) {
2830      FunctionTemplate->setObjectOfFriendDecl(
2831                                   /* PreviouslyDeclared= */ !Previous.empty());
2832      FunctionTemplate->setAccess(AS_public);
2833    }
2834    else
2835      NewFD->setObjectOfFriendDecl(/* PreviouslyDeclared= */ !Previous.empty());
2836
2837    NewFD->setAccess(AS_public);
2838  }
2839
2840  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2841      !CurContext->isRecord()) {
2842    // C++ [class.static]p1:
2843    //   A data or function member of a class may be declared static
2844    //   in a class definition, in which case it is a static member of
2845    //   the class.
2846
2847    // Complain about the 'static' specifier if it's on an out-of-line
2848    // member function definition.
2849    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2850         diag::err_static_out_of_line)
2851      << CodeModificationHint::CreateRemoval(
2852                                      D.getDeclSpec().getStorageClassSpecLoc());
2853  }
2854
2855  // Handle GNU asm-label extension (encoded as an attribute).
2856  if (Expr *E = (Expr*) D.getAsmLabel()) {
2857    // The parser guarantees this is a string.
2858    StringLiteral *SE = cast<StringLiteral>(E);
2859    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getString()));
2860  }
2861
2862  // Copy the parameter declarations from the declarator D to the function
2863  // declaration NewFD, if they are available.  First scavenge them into Params.
2864  llvm::SmallVector<ParmVarDecl*, 16> Params;
2865  if (D.getNumTypeObjects() > 0) {
2866    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2867
2868    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2869    // function that takes no arguments, not a function that takes a
2870    // single void argument.
2871    // We let through "const void" here because Sema::GetTypeForDeclarator
2872    // already checks for that case.
2873    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2874        FTI.ArgInfo[0].Param &&
2875        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2876      // Empty arg list, don't push any params.
2877      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2878
2879      // In C++, the empty parameter-type-list must be spelled "void"; a
2880      // typedef of void is not permitted.
2881      if (getLangOptions().CPlusPlus &&
2882          Param->getType().getUnqualifiedType() != Context.VoidTy)
2883        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2884      // FIXME: Leaks decl?
2885    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2886      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2887        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
2888        assert(Param->getDeclContext() != NewFD && "Was set before ?");
2889        Param->setDeclContext(NewFD);
2890        Params.push_back(Param);
2891      }
2892    }
2893
2894  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
2895    // When we're declaring a function with a typedef, typeof, etc as in the
2896    // following example, we'll need to synthesize (unnamed)
2897    // parameters for use in the declaration.
2898    //
2899    // @code
2900    // typedef void fn(int);
2901    // fn f;
2902    // @endcode
2903
2904    // Synthesize a parameter for each argument type.
2905    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2906         AE = FT->arg_type_end(); AI != AE; ++AI) {
2907      ParmVarDecl *Param = ParmVarDecl::Create(Context, NewFD,
2908                                               SourceLocation(), 0,
2909                                               *AI, /*TInfo=*/0,
2910                                               VarDecl::None, 0);
2911      Param->setImplicit();
2912      Params.push_back(Param);
2913    }
2914  } else {
2915    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
2916           "Should not need args for typedef of non-prototype fn");
2917  }
2918  // Finally, we know we have the right number of parameters, install them.
2919  NewFD->setParams(Context, Params.data(), Params.size());
2920
2921  // If the declarator is a template-id, translate the parser's template
2922  // argument list into our AST format.
2923  bool HasExplicitTemplateArgs = false;
2924  TemplateArgumentListInfo TemplateArgs;
2925  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
2926    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
2927    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
2928    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
2929    ASTTemplateArgsPtr TemplateArgsPtr(*this,
2930                                       TemplateId->getTemplateArgs(),
2931                                       TemplateId->NumArgs);
2932    translateTemplateArguments(TemplateArgsPtr,
2933                               TemplateArgs);
2934    TemplateArgsPtr.release();
2935
2936    HasExplicitTemplateArgs = true;
2937
2938    if (FunctionTemplate) {
2939      // FIXME: Diagnose function template with explicit template
2940      // arguments.
2941      HasExplicitTemplateArgs = false;
2942    } else if (!isFunctionTemplateSpecialization &&
2943               !D.getDeclSpec().isFriendSpecified()) {
2944      // We have encountered something that the user meant to be a
2945      // specialization (because it has explicitly-specified template
2946      // arguments) but that was not introduced with a "template<>" (or had
2947      // too few of them).
2948      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
2949        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
2950        << CodeModificationHint::CreateInsertion(
2951                                   D.getDeclSpec().getSourceRange().getBegin(),
2952                                                 "template<> ");
2953      isFunctionTemplateSpecialization = true;
2954    }
2955  }
2956
2957  if (isFunctionTemplateSpecialization) {
2958      if (CheckFunctionTemplateSpecialization(NewFD,
2959                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
2960                                              Previous))
2961        NewFD->setInvalidDecl();
2962  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD) &&
2963             CheckMemberSpecialization(NewFD, Previous))
2964    NewFD->setInvalidDecl();
2965
2966  // Perform semantic checking on the function declaration.
2967  bool OverloadableAttrRequired = false; // FIXME: HACK!
2968  CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
2969                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
2970
2971  assert((NewFD->isInvalidDecl() || !Redeclaration ||
2972          Previous.getResultKind() != LookupResult::FoundOverloaded) &&
2973         "previous declaration set still overloaded");
2974
2975  // If we have a function template, check the template parameter
2976  // list. This will check and merge default template arguments.
2977  if (FunctionTemplate) {
2978    FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
2979    CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
2980                      PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
2981             D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate
2982                                                : TPC_FunctionTemplate);
2983  }
2984
2985  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
2986    // Fake up an access specifier if it's supposed to be a class member.
2987    if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
2988      NewFD->setAccess(AS_public);
2989
2990    // An out-of-line member function declaration must also be a
2991    // definition (C++ [dcl.meaning]p1).
2992    // Note that this is not the case for explicit specializations of
2993    // function templates or member functions of class templates, per
2994    // C++ [temp.expl.spec]p2.
2995    if (!IsFunctionDefinition && !isFriend &&
2996        !isFunctionTemplateSpecialization && !isExplicitSpecialization) {
2997      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2998        << D.getCXXScopeSpec().getRange();
2999      NewFD->setInvalidDecl();
3000    } else if (!Redeclaration &&
3001               !(isFriend && CurContext->isDependentContext())) {
3002      // The user tried to provide an out-of-line definition for a
3003      // function that is a member of a class or namespace, but there
3004      // was no such member function declared (C++ [class.mfct]p2,
3005      // C++ [namespace.memdef]p2). For example:
3006      //
3007      // class X {
3008      //   void f() const;
3009      // };
3010      //
3011      // void X::f() { } // ill-formed
3012      //
3013      // Complain about this problem, and attempt to suggest close
3014      // matches (e.g., those that differ only in cv-qualifiers and
3015      // whether the parameter types are references).
3016      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
3017        << Name << DC << D.getCXXScopeSpec().getRange();
3018      NewFD->setInvalidDecl();
3019
3020      LookupResult Prev(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
3021                        ForRedeclaration);
3022      LookupQualifiedName(Prev, DC);
3023      assert(!Prev.isAmbiguous() &&
3024             "Cannot have an ambiguity in previous-declaration lookup");
3025      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3026           Func != FuncEnd; ++Func) {
3027        if (isa<FunctionDecl>(*Func) &&
3028            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
3029          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3030      }
3031    }
3032  }
3033
3034  // Handle attributes. We need to have merged decls when handling attributes
3035  // (for example to check for conflicts, etc).
3036  // FIXME: This needs to happen before we merge declarations. Then,
3037  // let attribute merging cope with attribute conflicts.
3038  ProcessDeclAttributes(S, NewFD, D);
3039
3040  // attributes declared post-definition are currently ignored
3041  if (Redeclaration && Previous.isSingleResult()) {
3042    const FunctionDecl *Def;
3043    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
3044    if (PrevFD && PrevFD->getBody(Def) && D.hasAttributes()) {
3045      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
3046      Diag(Def->getLocation(), diag::note_previous_definition);
3047    }
3048  }
3049
3050  AddKnownFunctionAttributes(NewFD);
3051
3052  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
3053    // If a function name is overloadable in C, then every function
3054    // with that name must be marked "overloadable".
3055    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
3056      << Redeclaration << NewFD;
3057    if (!Previous.empty())
3058      Diag(Previous.getRepresentativeDecl()->getLocation(),
3059           diag::note_attribute_overloadable_prev_overload);
3060    NewFD->addAttr(::new (Context) OverloadableAttr());
3061  }
3062
3063  // If this is a locally-scoped extern C function, update the
3064  // map of such names.
3065  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
3066      && !NewFD->isInvalidDecl())
3067    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
3068
3069  // Set this FunctionDecl's range up to the right paren.
3070  NewFD->setLocEnd(D.getSourceRange().getEnd());
3071
3072  if (FunctionTemplate && NewFD->isInvalidDecl())
3073    FunctionTemplate->setInvalidDecl();
3074
3075  if (FunctionTemplate)
3076    return FunctionTemplate;
3077
3078  return NewFD;
3079}
3080
3081/// \brief Perform semantic checking of a new function declaration.
3082///
3083/// Performs semantic analysis of the new function declaration
3084/// NewFD. This routine performs all semantic checking that does not
3085/// require the actual declarator involved in the declaration, and is
3086/// used both for the declaration of functions as they are parsed
3087/// (called via ActOnDeclarator) and for the declaration of functions
3088/// that have been instantiated via C++ template instantiation (called
3089/// via InstantiateDecl).
3090///
3091/// \param IsExplicitSpecialiation whether this new function declaration is
3092/// an explicit specialization of the previous declaration.
3093///
3094/// This sets NewFD->isInvalidDecl() to true if there was an error.
3095void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
3096                                    LookupResult &Previous,
3097                                    bool IsExplicitSpecialization,
3098                                    bool &Redeclaration,
3099                                    bool &OverloadableAttrRequired) {
3100  // If NewFD is already known erroneous, don't do any of this checking.
3101  if (NewFD->isInvalidDecl())
3102    return;
3103
3104  if (NewFD->getResultType()->isVariablyModifiedType()) {
3105    // Functions returning a variably modified type violate C99 6.7.5.2p2
3106    // because all functions have linkage.
3107    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
3108    return NewFD->setInvalidDecl();
3109  }
3110
3111  if (NewFD->isMain())
3112    CheckMain(NewFD);
3113
3114  // Check for a previous declaration of this name.
3115  if (Previous.empty() && NewFD->isExternC()) {
3116    // Since we did not find anything by this name and we're declaring
3117    // an extern "C" function, look for a non-visible extern "C"
3118    // declaration with the same name.
3119    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3120      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
3121    if (Pos != LocallyScopedExternalDecls.end())
3122      Previous.addDecl(Pos->second);
3123  }
3124
3125  // Merge or overload the declaration with an existing declaration of
3126  // the same name, if appropriate.
3127  if (!Previous.empty()) {
3128    // Determine whether NewFD is an overload of PrevDecl or
3129    // a declaration that requires merging. If it's an overload,
3130    // there's no more work to do here; we'll just add the new
3131    // function to the scope.
3132
3133    NamedDecl *OldDecl = 0;
3134    if (!AllowOverloadingOfFunction(Previous, Context)) {
3135      Redeclaration = true;
3136      OldDecl = Previous.getFoundDecl();
3137    } else {
3138      if (!getLangOptions().CPlusPlus) {
3139        OverloadableAttrRequired = true;
3140
3141        // Functions marked "overloadable" must have a prototype (that
3142        // we can't get through declaration merging).
3143        if (!NewFD->getType()->getAs<FunctionProtoType>()) {
3144          Diag(NewFD->getLocation(),
3145               diag::err_attribute_overloadable_no_prototype)
3146            << NewFD;
3147          Redeclaration = true;
3148
3149          // Turn this into a variadic function with no parameters.
3150          QualType R = Context.getFunctionType(
3151                     NewFD->getType()->getAs<FunctionType>()->getResultType(),
3152                     0, 0, true, 0);
3153          NewFD->setType(R);
3154          return NewFD->setInvalidDecl();
3155        }
3156      }
3157
3158      switch (CheckOverload(NewFD, Previous, OldDecl)) {
3159      case Ovl_Match:
3160        Redeclaration = true;
3161        if (isa<UsingShadowDecl>(OldDecl) && CurContext->isRecord()) {
3162          HideUsingShadowDecl(S, cast<UsingShadowDecl>(OldDecl));
3163          Redeclaration = false;
3164        }
3165        break;
3166
3167      case Ovl_NonFunction:
3168        Redeclaration = true;
3169        break;
3170
3171      case Ovl_Overload:
3172        Redeclaration = false;
3173        break;
3174      }
3175    }
3176
3177    if (Redeclaration) {
3178      // NewFD and OldDecl represent declarations that need to be
3179      // merged.
3180      if (MergeFunctionDecl(NewFD, OldDecl))
3181        return NewFD->setInvalidDecl();
3182
3183      Previous.clear();
3184      Previous.addDecl(OldDecl);
3185
3186      if (FunctionTemplateDecl *OldTemplateDecl
3187                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
3188        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3189        FunctionTemplateDecl *NewTemplateDecl
3190          = NewFD->getDescribedFunctionTemplate();
3191        assert(NewTemplateDecl && "Template/non-template mismatch");
3192        if (CXXMethodDecl *Method
3193              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
3194          Method->setAccess(OldTemplateDecl->getAccess());
3195          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
3196        }
3197
3198        // If this is an explicit specialization of a member that is a function
3199        // template, mark it as a member specialization.
3200        if (IsExplicitSpecialization &&
3201            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
3202          NewTemplateDecl->setMemberSpecialization();
3203          assert(OldTemplateDecl->isMemberSpecialization());
3204        }
3205      } else {
3206        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3207          NewFD->setAccess(OldDecl->getAccess());
3208        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3209      }
3210    }
3211  }
3212
3213  // Semantic checking for this function declaration (in isolation).
3214  if (getLangOptions().CPlusPlus) {
3215    // C++-specific checks.
3216    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3217      CheckConstructor(Constructor);
3218    } else if (CXXDestructorDecl *Destructor =
3219                dyn_cast<CXXDestructorDecl>(NewFD)) {
3220      CXXRecordDecl *Record = Destructor->getParent();
3221      QualType ClassType = Context.getTypeDeclType(Record);
3222
3223      // FIXME: Shouldn't we be able to perform thisc heck even when the class
3224      // type is dependent? Both gcc and edg can handle that.
3225      if (!ClassType->isDependentType()) {
3226        DeclarationName Name
3227          = Context.DeclarationNames.getCXXDestructorName(
3228                                        Context.getCanonicalType(ClassType));
3229        if (NewFD->getDeclName() != Name) {
3230          Diag(NewFD->getLocation(), diag::err_destructor_name);
3231          return NewFD->setInvalidDecl();
3232        }
3233      }
3234
3235      Record->setUserDeclaredDestructor(true);
3236      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
3237      // user-defined destructor.
3238      Record->setPOD(false);
3239
3240      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
3241      // declared destructor.
3242      // FIXME: C++0x: don't do this for "= default" destructors
3243      Record->setHasTrivialDestructor(false);
3244    } else if (CXXConversionDecl *Conversion
3245               = dyn_cast<CXXConversionDecl>(NewFD)) {
3246      ActOnConversionDeclarator(Conversion);
3247    }
3248
3249    // Find any virtual functions that this function overrides.
3250    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
3251      if (!Method->isFunctionTemplateSpecialization() &&
3252          !Method->getDescribedFunctionTemplate())
3253        AddOverriddenMethods(Method->getParent(), Method);
3254    }
3255
3256    // Additional checks for the destructor; make sure we do this after we
3257    // figure out whether the destructor is virtual.
3258    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(NewFD))
3259      if (!Destructor->getParent()->isDependentType())
3260        CheckDestructor(Destructor);
3261
3262    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3263    if (NewFD->isOverloadedOperator() &&
3264        CheckOverloadedOperatorDeclaration(NewFD))
3265      return NewFD->setInvalidDecl();
3266
3267    // Extra checking for C++0x literal operators (C++0x [over.literal]).
3268    if (NewFD->getLiteralIdentifier() &&
3269        CheckLiteralOperatorDeclaration(NewFD))
3270      return NewFD->setInvalidDecl();
3271
3272    // In C++, check default arguments now that we have merged decls. Unless
3273    // the lexical context is the class, because in this case this is done
3274    // during delayed parsing anyway.
3275    if (!CurContext->isRecord())
3276      CheckCXXDefaultArguments(NewFD);
3277  }
3278}
3279
3280void Sema::CheckMain(FunctionDecl* FD) {
3281  // C++ [basic.start.main]p3:  A program that declares main to be inline
3282  //   or static is ill-formed.
3283  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3284  //   shall not appear in a declaration of main.
3285  // static main is not an error under C99, but we should warn about it.
3286  bool isInline = FD->isInlineSpecified();
3287  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
3288  if (isInline || isStatic) {
3289    unsigned diagID = diag::warn_unusual_main_decl;
3290    if (isInline || getLangOptions().CPlusPlus)
3291      diagID = diag::err_unusual_main_decl;
3292
3293    int which = isStatic + (isInline << 1) - 1;
3294    Diag(FD->getLocation(), diagID) << which;
3295  }
3296
3297  QualType T = FD->getType();
3298  assert(T->isFunctionType() && "function decl is not of function type");
3299  const FunctionType* FT = T->getAs<FunctionType>();
3300
3301  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3302    // TODO: add a replacement fixit to turn the return type into 'int'.
3303    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
3304    FD->setInvalidDecl(true);
3305  }
3306
3307  // Treat protoless main() as nullary.
3308  if (isa<FunctionNoProtoType>(FT)) return;
3309
3310  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
3311  unsigned nparams = FTP->getNumArgs();
3312  assert(FD->getNumParams() == nparams);
3313
3314  bool HasExtraParameters = (nparams > 3);
3315
3316  // Darwin passes an undocumented fourth argument of type char**.  If
3317  // other platforms start sprouting these, the logic below will start
3318  // getting shifty.
3319  if (nparams == 4 &&
3320      Context.Target.getTriple().getOS() == llvm::Triple::Darwin)
3321    HasExtraParameters = false;
3322
3323  if (HasExtraParameters) {
3324    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
3325    FD->setInvalidDecl(true);
3326    nparams = 3;
3327  }
3328
3329  // FIXME: a lot of the following diagnostics would be improved
3330  // if we had some location information about types.
3331
3332  QualType CharPP =
3333    Context.getPointerType(Context.getPointerType(Context.CharTy));
3334  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
3335
3336  for (unsigned i = 0; i < nparams; ++i) {
3337    QualType AT = FTP->getArgType(i);
3338
3339    bool mismatch = true;
3340
3341    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
3342      mismatch = false;
3343    else if (Expected[i] == CharPP) {
3344      // As an extension, the following forms are okay:
3345      //   char const **
3346      //   char const * const *
3347      //   char * const *
3348
3349      QualifierCollector qs;
3350      const PointerType* PT;
3351      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
3352          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
3353          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
3354        qs.removeConst();
3355        mismatch = !qs.empty();
3356      }
3357    }
3358
3359    if (mismatch) {
3360      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
3361      // TODO: suggest replacing given type with expected type
3362      FD->setInvalidDecl(true);
3363    }
3364  }
3365
3366  if (nparams == 1 && !FD->isInvalidDecl()) {
3367    Diag(FD->getLocation(), diag::warn_main_one_arg);
3368  }
3369}
3370
3371bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
3372  // FIXME: Need strict checking.  In C89, we need to check for
3373  // any assignment, increment, decrement, function-calls, or
3374  // commas outside of a sizeof.  In C99, it's the same list,
3375  // except that the aforementioned are allowed in unevaluated
3376  // expressions.  Everything else falls under the
3377  // "may accept other forms of constant expressions" exception.
3378  // (We never end up here for C++, so the constant expression
3379  // rules there don't matter.)
3380  if (Init->isConstantInitializer(Context))
3381    return false;
3382  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
3383    << Init->getSourceRange();
3384  return true;
3385}
3386
3387void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
3388  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
3389}
3390
3391/// AddInitializerToDecl - Adds the initializer Init to the
3392/// declaration dcl. If DirectInit is true, this is C++ direct
3393/// initialization rather than copy initialization.
3394void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
3395  Decl *RealDecl = dcl.getAs<Decl>();
3396  // If there is no declaration, there was an error parsing it.  Just ignore
3397  // the initializer.
3398  if (RealDecl == 0)
3399    return;
3400
3401  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
3402    // With declarators parsed the way they are, the parser cannot
3403    // distinguish between a normal initializer and a pure-specifier.
3404    // Thus this grotesque test.
3405    IntegerLiteral *IL;
3406    Expr *Init = static_cast<Expr *>(init.get());
3407    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
3408        Context.getCanonicalType(IL->getType()) == Context.IntTy)
3409      CheckPureMethod(Method, Init->getSourceRange());
3410    else {
3411      Diag(Method->getLocation(), diag::err_member_function_initialization)
3412        << Method->getDeclName() << Init->getSourceRange();
3413      Method->setInvalidDecl();
3414    }
3415    return;
3416  }
3417
3418  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3419  if (!VDecl) {
3420    if (getLangOptions().CPlusPlus &&
3421        RealDecl->getLexicalDeclContext()->isRecord() &&
3422        isa<NamedDecl>(RealDecl))
3423      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3424        << cast<NamedDecl>(RealDecl)->getDeclName();
3425    else
3426      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3427    RealDecl->setInvalidDecl();
3428    return;
3429  }
3430
3431  // A definition must end up with a complete type, which means it must be
3432  // complete with the restriction that an array type might be completed by the
3433  // initializer; note that later code assumes this restriction.
3434  QualType BaseDeclType = VDecl->getType();
3435  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
3436    BaseDeclType = Array->getElementType();
3437  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
3438                          diag::err_typecheck_decl_incomplete_type)) {
3439    RealDecl->setInvalidDecl();
3440    return;
3441  }
3442
3443  // The variable can not have an abstract class type.
3444  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
3445                             diag::err_abstract_type_in_decl,
3446                             AbstractVariableType))
3447    VDecl->setInvalidDecl();
3448
3449  const VarDecl *Def;
3450  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
3451    Diag(VDecl->getLocation(), diag::err_redefinition)
3452      << VDecl->getDeclName();
3453    Diag(Def->getLocation(), diag::note_previous_definition);
3454    VDecl->setInvalidDecl();
3455    return;
3456  }
3457
3458  // Take ownership of the expression, now that we're sure we have somewhere
3459  // to put it.
3460  Expr *Init = init.takeAs<Expr>();
3461  assert(Init && "missing initializer");
3462
3463  // Capture the variable that is being initialized and the style of
3464  // initialization.
3465  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
3466
3467  // FIXME: Poor source location information.
3468  InitializationKind Kind
3469    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
3470                                                   Init->getLocStart(),
3471                                                   Init->getLocEnd())
3472                : InitializationKind::CreateCopy(VDecl->getLocation(),
3473                                                 Init->getLocStart());
3474
3475  // Get the decls type and save a reference for later, since
3476  // CheckInitializerTypes may change it.
3477  QualType DclT = VDecl->getType(), SavT = DclT;
3478  if (VDecl->isBlockVarDecl()) {
3479    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
3480      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
3481      VDecl->setInvalidDecl();
3482    } else if (!VDecl->isInvalidDecl()) {
3483      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
3484      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3485                                          MultiExprArg(*this, (void**)&Init, 1),
3486                                                &DclT);
3487      if (Result.isInvalid()) {
3488        VDecl->setInvalidDecl();
3489        return;
3490      }
3491
3492      Init = Result.takeAs<Expr>();
3493
3494      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3495      // Don't check invalid declarations to avoid emitting useless diagnostics.
3496      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3497        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
3498          CheckForConstantInitializer(Init, DclT);
3499      }
3500    }
3501  } else if (VDecl->isStaticDataMember() &&
3502             VDecl->getLexicalDeclContext()->isRecord()) {
3503    // This is an in-class initialization for a static data member, e.g.,
3504    //
3505    // struct S {
3506    //   static const int value = 17;
3507    // };
3508
3509    // Attach the initializer
3510    VDecl->setInit(Context, Init);
3511
3512    // C++ [class.mem]p4:
3513    //   A member-declarator can contain a constant-initializer only
3514    //   if it declares a static member (9.4) of const integral or
3515    //   const enumeration type, see 9.4.2.
3516    QualType T = VDecl->getType();
3517    if (!T->isDependentType() &&
3518        (!Context.getCanonicalType(T).isConstQualified() ||
3519         !T->isIntegralType())) {
3520      Diag(VDecl->getLocation(), diag::err_member_initialization)
3521        << VDecl->getDeclName() << Init->getSourceRange();
3522      VDecl->setInvalidDecl();
3523    } else {
3524      // C++ [class.static.data]p4:
3525      //   If a static data member is of const integral or const
3526      //   enumeration type, its declaration in the class definition
3527      //   can specify a constant-initializer which shall be an
3528      //   integral constant expression (5.19).
3529      if (!Init->isTypeDependent() &&
3530          !Init->getType()->isIntegralType()) {
3531        // We have a non-dependent, non-integral or enumeration type.
3532        Diag(Init->getSourceRange().getBegin(),
3533             diag::err_in_class_initializer_non_integral_type)
3534          << Init->getType() << Init->getSourceRange();
3535        VDecl->setInvalidDecl();
3536      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
3537        // Check whether the expression is a constant expression.
3538        llvm::APSInt Value;
3539        SourceLocation Loc;
3540        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
3541          Diag(Loc, diag::err_in_class_initializer_non_constant)
3542            << Init->getSourceRange();
3543          VDecl->setInvalidDecl();
3544        } else if (!VDecl->getType()->isDependentType())
3545          ImpCastExprToType(Init, VDecl->getType(), CastExpr::CK_IntegralCast);
3546      }
3547    }
3548  } else if (VDecl->isFileVarDecl()) {
3549    if (VDecl->getStorageClass() == VarDecl::Extern)
3550      Diag(VDecl->getLocation(), diag::warn_extern_init);
3551    if (!VDecl->isInvalidDecl()) {
3552      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
3553      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3554                                          MultiExprArg(*this, (void**)&Init, 1),
3555                                                &DclT);
3556      if (Result.isInvalid()) {
3557        VDecl->setInvalidDecl();
3558        return;
3559      }
3560
3561      Init = Result.takeAs<Expr>();
3562    }
3563
3564    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3565    // Don't check invalid declarations to avoid emitting useless diagnostics.
3566    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3567      // C99 6.7.8p4. All file scoped initializers need to be constant.
3568      CheckForConstantInitializer(Init, DclT);
3569    }
3570  }
3571  // If the type changed, it means we had an incomplete type that was
3572  // completed by the initializer. For example:
3573  //   int ary[] = { 1, 3, 5 };
3574  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
3575  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
3576    VDecl->setType(DclT);
3577    Init->setType(DclT);
3578  }
3579
3580  Init = MaybeCreateCXXExprWithTemporaries(Init);
3581  // Attach the initializer to the decl.
3582  VDecl->setInit(Context, Init);
3583
3584  if (getLangOptions().CPlusPlus) {
3585    // Make sure we mark the destructor as used if necessary.
3586    QualType InitType = VDecl->getType();
3587    while (const ArrayType *Array = Context.getAsArrayType(InitType))
3588      InitType = Context.getBaseElementType(Array);
3589    if (const RecordType *Record = InitType->getAs<RecordType>())
3590      FinalizeVarWithDestructor(VDecl, Record);
3591  }
3592
3593  return;
3594}
3595
3596void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
3597                                  bool TypeContainsUndeducedAuto) {
3598  Decl *RealDecl = dcl.getAs<Decl>();
3599
3600  // If there is no declaration, there was an error parsing it. Just ignore it.
3601  if (RealDecl == 0)
3602    return;
3603
3604  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
3605    QualType Type = Var->getType();
3606
3607    // Record tentative definitions.
3608    if (Var->isTentativeDefinitionNow())
3609      TentativeDefinitions.push_back(Var);
3610
3611    // C++ [dcl.init.ref]p3:
3612    //   The initializer can be omitted for a reference only in a
3613    //   parameter declaration (8.3.5), in the declaration of a
3614    //   function return type, in the declaration of a class member
3615    //   within its class declaration (9.2), and where the extern
3616    //   specifier is explicitly used.
3617    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
3618      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
3619        << Var->getDeclName()
3620        << SourceRange(Var->getLocation(), Var->getLocation());
3621      Var->setInvalidDecl();
3622      return;
3623    }
3624
3625    // C++0x [dcl.spec.auto]p3
3626    if (TypeContainsUndeducedAuto) {
3627      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
3628        << Var->getDeclName() << Type;
3629      Var->setInvalidDecl();
3630      return;
3631    }
3632
3633    // An array without size is an incomplete type, and there are no special
3634    // rules in C++ to make such a definition acceptable.
3635    if (getLangOptions().CPlusPlus && Type->isIncompleteArrayType() &&
3636        !Var->hasExternalStorage()) {
3637      Diag(Var->getLocation(),
3638           diag::err_typecheck_incomplete_array_needs_initializer);
3639      Var->setInvalidDecl();
3640      return;
3641    }
3642
3643    // C++ [temp.expl.spec]p15:
3644    //   An explicit specialization of a static data member of a template is a
3645    //   definition if the declaration includes an initializer; otherwise, it
3646    //   is a declaration.
3647    if (Var->isStaticDataMember() &&
3648        Var->getInstantiatedFromStaticDataMember() &&
3649        Var->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
3650      return;
3651
3652    // C++ [dcl.init]p9:
3653    //   If no initializer is specified for an object, and the object
3654    //   is of (possibly cv-qualified) non-POD class type (or array
3655    //   thereof), the object shall be default-initialized; if the
3656    //   object is of const-qualified type, the underlying class type
3657    //   shall have a user-declared default constructor.
3658    //
3659    // FIXME: Diagnose the "user-declared default constructor" bit.
3660    if (getLangOptions().CPlusPlus) {
3661      QualType InitType = Type;
3662      if (const ArrayType *Array = Context.getAsArrayType(Type))
3663        InitType = Context.getBaseElementType(Array);
3664      if ((!Var->hasExternalStorage() && !Var->isExternC()) &&
3665          InitType->isRecordType() && !InitType->isDependentType()) {
3666        if (!RequireCompleteType(Var->getLocation(), InitType,
3667                                 diag::err_invalid_incomplete_type_use)) {
3668          InitializedEntity Entity
3669            = InitializedEntity::InitializeVariable(Var);
3670          InitializationKind Kind
3671            = InitializationKind::CreateDefault(Var->getLocation());
3672
3673          InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
3674          OwningExprResult Init = InitSeq.Perform(*this, Entity, Kind,
3675                                                  MultiExprArg(*this, 0, 0));
3676          if (Init.isInvalid())
3677            Var->setInvalidDecl();
3678          else {
3679            Var->setInit(Context,
3680                       MaybeCreateCXXExprWithTemporaries(Init.takeAs<Expr>()));
3681            FinalizeVarWithDestructor(Var, InitType->getAs<RecordType>());
3682          }
3683        } else {
3684          Var->setInvalidDecl();
3685        }
3686      }
3687
3688      // The variable can not have an abstract class type.
3689      if (RequireNonAbstractType(Var->getLocation(), Type,
3690                                 diag::err_abstract_type_in_decl,
3691                                 AbstractVariableType))
3692        Var->setInvalidDecl();
3693    }
3694
3695#if 0
3696    // FIXME: Temporarily disabled because we are not properly parsing
3697    // linkage specifications on declarations, e.g.,
3698    //
3699    //   extern "C" const CGPoint CGPointerZero;
3700    //
3701    // C++ [dcl.init]p9:
3702    //
3703    //     If no initializer is specified for an object, and the
3704    //     object is of (possibly cv-qualified) non-POD class type (or
3705    //     array thereof), the object shall be default-initialized; if
3706    //     the object is of const-qualified type, the underlying class
3707    //     type shall have a user-declared default
3708    //     constructor. Otherwise, if no initializer is specified for
3709    //     an object, the object and its subobjects, if any, have an
3710    //     indeterminate initial value; if the object or any of its
3711    //     subobjects are of const-qualified type, the program is
3712    //     ill-formed.
3713    //
3714    // This isn't technically an error in C, so we don't diagnose it.
3715    //
3716    // FIXME: Actually perform the POD/user-defined default
3717    // constructor check.
3718    if (getLangOptions().CPlusPlus &&
3719        Context.getCanonicalType(Type).isConstQualified() &&
3720        !Var->hasExternalStorage())
3721      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
3722        << Var->getName()
3723        << SourceRange(Var->getLocation(), Var->getLocation());
3724#endif
3725  }
3726}
3727
3728Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
3729                                                   DeclPtrTy *Group,
3730                                                   unsigned NumDecls) {
3731  llvm::SmallVector<Decl*, 8> Decls;
3732
3733  if (DS.isTypeSpecOwned())
3734    Decls.push_back((Decl*)DS.getTypeRep());
3735
3736  for (unsigned i = 0; i != NumDecls; ++i)
3737    if (Decl *D = Group[i].getAs<Decl>())
3738      Decls.push_back(D);
3739
3740  // Perform semantic analysis that depends on having fully processed both
3741  // the declarator and initializer.
3742  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
3743    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
3744    if (!IDecl)
3745      continue;
3746    QualType T = IDecl->getType();
3747
3748    // Block scope. C99 6.7p7: If an identifier for an object is declared with
3749    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
3750    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
3751      if (T->isDependentType()) {
3752        // If T is dependent, we should not require a complete type.
3753        // (RequireCompleteType shouldn't be called with dependent types.)
3754        // But we still can at least check if we've got an array of unspecified
3755        // size without an initializer.
3756        if (!IDecl->isInvalidDecl() && T->isIncompleteArrayType() &&
3757            !IDecl->getInit()) {
3758          Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type)
3759            << T;
3760          IDecl->setInvalidDecl();
3761        }
3762      } else if (!IDecl->isInvalidDecl()) {
3763        // If T is an incomplete array type with an initializer list that is
3764        // dependent on something, its size has not been fixed. We could attempt
3765        // to fix the size for such arrays, but we would still have to check
3766        // here for initializers containing a C++0x vararg expansion, e.g.
3767        // template <typename... Args> void f(Args... args) {
3768        //   int vals[] = { args };
3769        // }
3770        const IncompleteArrayType *IAT = Context.getAsIncompleteArrayType(T);
3771        Expr *Init = IDecl->getInit();
3772        if (IAT && Init &&
3773            (Init->isTypeDependent() || Init->isValueDependent())) {
3774          // Check that the member type of the array is complete, at least.
3775          if (RequireCompleteType(IDecl->getLocation(), IAT->getElementType(),
3776                                  diag::err_typecheck_decl_incomplete_type))
3777            IDecl->setInvalidDecl();
3778        } else if (RequireCompleteType(IDecl->getLocation(), T,
3779                                      diag::err_typecheck_decl_incomplete_type))
3780          IDecl->setInvalidDecl();
3781      }
3782    }
3783    // File scope. C99 6.9.2p2: A declaration of an identifier for an
3784    // object that has file scope without an initializer, and without a
3785    // storage-class specifier or with the storage-class specifier "static",
3786    // constitutes a tentative definition. Note: A tentative definition with
3787    // external linkage is valid (C99 6.2.2p5).
3788    if (IDecl->isThisDeclarationADefinition() == VarDecl::TentativeDefinition &&
3789        !IDecl->isInvalidDecl()) {
3790      if (const IncompleteArrayType *ArrayT
3791          = Context.getAsIncompleteArrayType(T)) {
3792        if (RequireCompleteType(IDecl->getLocation(),
3793                                ArrayT->getElementType(),
3794                                diag::err_illegal_decl_array_incomplete_type))
3795          IDecl->setInvalidDecl();
3796      } else if (IDecl->getStorageClass() == VarDecl::Static) {
3797        // C99 6.9.2p3: If the declaration of an identifier for an object is
3798        // a tentative definition and has internal linkage (C99 6.2.2p3), the
3799        // declared type shall not be an incomplete type.
3800        // NOTE: code such as the following
3801        //     static struct s;
3802        //     struct s { int a; };
3803        // is accepted by gcc. Hence here we issue a warning instead of
3804        // an error and we do not invalidate the static declaration.
3805        // NOTE: to avoid multiple warnings, only check the first declaration.
3806        if (IDecl->getPreviousDeclaration() == 0)
3807          RequireCompleteType(IDecl->getLocation(), T,
3808                              diag::ext_typecheck_decl_incomplete_type);
3809      }
3810    }
3811  }
3812  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
3813                                                   Decls.data(), Decls.size()));
3814}
3815
3816
3817/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
3818/// to introduce parameters into function prototype scope.
3819Sema::DeclPtrTy
3820Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
3821  const DeclSpec &DS = D.getDeclSpec();
3822
3823  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
3824  VarDecl::StorageClass StorageClass = VarDecl::None;
3825  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
3826    StorageClass = VarDecl::Register;
3827  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
3828    Diag(DS.getStorageClassSpecLoc(),
3829         diag::err_invalid_storage_class_in_func_decl);
3830    D.getMutableDeclSpec().ClearStorageClassSpecs();
3831  }
3832
3833  if (D.getDeclSpec().isThreadSpecified())
3834    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3835
3836  DiagnoseFunctionSpecifiers(D);
3837
3838  // Check that there are no default arguments inside the type of this
3839  // parameter (C++ only).
3840  if (getLangOptions().CPlusPlus)
3841    CheckExtraCXXDefaultArguments(D);
3842
3843  TypeSourceInfo *TInfo = 0;
3844  TagDecl *OwnedDecl = 0;
3845  QualType parmDeclType = GetTypeForDeclarator(D, S, &TInfo, &OwnedDecl);
3846
3847  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
3848    // C++ [dcl.fct]p6:
3849    //   Types shall not be defined in return or parameter types.
3850    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
3851      << Context.getTypeDeclType(OwnedDecl);
3852  }
3853
3854  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
3855  // Can this happen for params?  We already checked that they don't conflict
3856  // among each other.  Here they can only shadow globals, which is ok.
3857  IdentifierInfo *II = D.getIdentifier();
3858  if (II) {
3859    if (NamedDecl *PrevDecl = LookupSingleName(S, II, LookupOrdinaryName)) {
3860      if (PrevDecl->isTemplateParameter()) {
3861        // Maybe we will complain about the shadowed template parameter.
3862        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3863        // Just pretend that we didn't see the previous declaration.
3864        PrevDecl = 0;
3865      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
3866        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
3867
3868        // Recover by removing the name
3869        II = 0;
3870        D.SetIdentifier(0, D.getIdentifierLoc());
3871      }
3872    }
3873  }
3874
3875  // Parameters can not be abstract class types.
3876  // For record types, this is done by the AbstractClassUsageDiagnoser once
3877  // the class has been completely parsed.
3878  if (!CurContext->isRecord() &&
3879      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
3880                             diag::err_abstract_type_in_decl,
3881                             AbstractParamType))
3882    D.setInvalidType(true);
3883
3884  QualType T = adjustParameterType(parmDeclType);
3885
3886  // Temporarily put parameter variables in the translation unit, not
3887  // the enclosing context.  This prevents them from accidentally
3888  // looking like class members in C++.
3889  DeclContext *DC = Context.getTranslationUnitDecl();
3890
3891  ParmVarDecl *New
3892    = ParmVarDecl::Create(Context, DC, D.getIdentifierLoc(), II,
3893                          T, TInfo, StorageClass, 0);
3894
3895  if (D.isInvalidType())
3896    New->setInvalidDecl();
3897
3898  // Parameter declarators cannot be interface types. All ObjC objects are
3899  // passed by reference.
3900  if (T->isObjCInterfaceType()) {
3901    Diag(D.getIdentifierLoc(),
3902         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
3903    New->setInvalidDecl();
3904  }
3905
3906  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
3907  if (D.getCXXScopeSpec().isSet()) {
3908    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
3909      << D.getCXXScopeSpec().getRange();
3910    New->setInvalidDecl();
3911  }
3912
3913  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
3914  // duration shall not be qualified by an address-space qualifier."
3915  // Since all parameters have automatic store duration, they can not have
3916  // an address space.
3917  if (T.getAddressSpace() != 0) {
3918    Diag(D.getIdentifierLoc(),
3919         diag::err_arg_with_address_space);
3920    New->setInvalidDecl();
3921  }
3922
3923
3924  // Add the parameter declaration into this scope.
3925  S->AddDecl(DeclPtrTy::make(New));
3926  if (II)
3927    IdResolver.AddDecl(New);
3928
3929  ProcessDeclAttributes(S, New, D);
3930
3931  if (New->hasAttr<BlocksAttr>()) {
3932    Diag(New->getLocation(), diag::err_block_on_nonlocal);
3933  }
3934  return DeclPtrTy::make(New);
3935}
3936
3937void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
3938                                           SourceLocation LocAfterDecls) {
3939  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3940         "Not a function declarator!");
3941  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3942
3943  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
3944  // for a K&R function.
3945  if (!FTI.hasPrototype) {
3946    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
3947      --i;
3948      if (FTI.ArgInfo[i].Param == 0) {
3949        llvm::SmallString<256> Code;
3950        llvm::raw_svector_ostream(Code) << "  int "
3951                                        << FTI.ArgInfo[i].Ident->getName()
3952                                        << ";\n";
3953        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
3954          << FTI.ArgInfo[i].Ident
3955          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code.str());
3956
3957        // Implicitly declare the argument as type 'int' for lack of a better
3958        // type.
3959        DeclSpec DS;
3960        const char* PrevSpec; // unused
3961        unsigned DiagID; // unused
3962        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
3963                           PrevSpec, DiagID);
3964        Declarator ParamD(DS, Declarator::KNRTypeListContext);
3965        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
3966        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
3967      }
3968    }
3969  }
3970}
3971
3972Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
3973                                              Declarator &D) {
3974  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
3975  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3976         "Not a function declarator!");
3977  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3978
3979  if (FTI.hasPrototype) {
3980    // FIXME: Diagnose arguments without names in C.
3981  }
3982
3983  Scope *ParentScope = FnBodyScope->getParent();
3984
3985  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
3986                                  MultiTemplateParamsArg(*this),
3987                                  /*IsFunctionDefinition=*/true);
3988  return ActOnStartOfFunctionDef(FnBodyScope, DP);
3989}
3990
3991static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
3992  // Don't warn about invalid declarations.
3993  if (FD->isInvalidDecl())
3994    return false;
3995
3996  // Or declarations that aren't global.
3997  if (!FD->isGlobal())
3998    return false;
3999
4000  // Don't warn about C++ member functions.
4001  if (isa<CXXMethodDecl>(FD))
4002    return false;
4003
4004  // Don't warn about 'main'.
4005  if (FD->isMain())
4006    return false;
4007
4008  // Don't warn about inline functions.
4009  if (FD->isInlineSpecified())
4010    return false;
4011
4012  // Don't warn about function templates.
4013  if (FD->getDescribedFunctionTemplate())
4014    return false;
4015
4016  // Don't warn about function template specializations.
4017  if (FD->isFunctionTemplateSpecialization())
4018    return false;
4019
4020  bool MissingPrototype = true;
4021  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
4022       Prev; Prev = Prev->getPreviousDeclaration()) {
4023    // Ignore any declarations that occur in function or method
4024    // scope, because they aren't visible from the header.
4025    if (Prev->getDeclContext()->isFunctionOrMethod())
4026      continue;
4027
4028    MissingPrototype = !Prev->getType()->isFunctionProtoType();
4029    break;
4030  }
4031
4032  return MissingPrototype;
4033}
4034
4035Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
4036  // Clear the last template instantiation error context.
4037  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
4038
4039  if (!D)
4040    return D;
4041  FunctionDecl *FD = 0;
4042
4043  if (FunctionTemplateDecl *FunTmpl
4044        = dyn_cast<FunctionTemplateDecl>(D.getAs<Decl>()))
4045    FD = FunTmpl->getTemplatedDecl();
4046  else
4047    FD = cast<FunctionDecl>(D.getAs<Decl>());
4048
4049  CurFunctionNeedsScopeChecking = false;
4050
4051  // See if this is a redefinition.
4052  const FunctionDecl *Definition;
4053  if (FD->getBody(Definition)) {
4054    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
4055    Diag(Definition->getLocation(), diag::note_previous_definition);
4056  }
4057
4058  // Builtin functions cannot be defined.
4059  if (unsigned BuiltinID = FD->getBuiltinID()) {
4060    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
4061      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
4062      FD->setInvalidDecl();
4063    }
4064  }
4065
4066  // The return type of a function definition must be complete
4067  // (C99 6.9.1p3, C++ [dcl.fct]p6).
4068  QualType ResultType = FD->getResultType();
4069  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
4070      !FD->isInvalidDecl() &&
4071      RequireCompleteType(FD->getLocation(), ResultType,
4072                          diag::err_func_def_incomplete_result))
4073    FD->setInvalidDecl();
4074
4075  // GNU warning -Wmissing-prototypes:
4076  //   Warn if a global function is defined without a previous
4077  //   prototype declaration. This warning is issued even if the
4078  //   definition itself provides a prototype. The aim is to detect
4079  //   global functions that fail to be declared in header files.
4080  if (ShouldWarnAboutMissingPrototype(FD))
4081    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
4082
4083  if (FnBodyScope)
4084    PushDeclContext(FnBodyScope, FD);
4085
4086  // Check the validity of our function parameters
4087  CheckParmsForFunctionDef(FD);
4088
4089  // Introduce our parameters into the function scope
4090  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
4091    ParmVarDecl *Param = FD->getParamDecl(p);
4092    Param->setOwningFunction(FD);
4093
4094    // If this has an identifier, add it to the scope stack.
4095    if (Param->getIdentifier() && FnBodyScope)
4096      PushOnScopeChains(Param, FnBodyScope);
4097  }
4098
4099  // Checking attributes of current function definition
4100  // dllimport attribute.
4101  if (FD->getAttr<DLLImportAttr>() &&
4102      (!FD->getAttr<DLLExportAttr>())) {
4103    // dllimport attribute cannot be applied to definition.
4104    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
4105      Diag(FD->getLocation(),
4106           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
4107        << "dllimport";
4108      FD->setInvalidDecl();
4109      return DeclPtrTy::make(FD);
4110    } else {
4111      // If a symbol previously declared dllimport is later defined, the
4112      // attribute is ignored in subsequent references, and a warning is
4113      // emitted.
4114      Diag(FD->getLocation(),
4115           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
4116        << FD->getNameAsCString() << "dllimport";
4117    }
4118  }
4119  return DeclPtrTy::make(FD);
4120}
4121
4122Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
4123  return ActOnFinishFunctionBody(D, move(BodyArg), false);
4124}
4125
4126Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
4127                                              bool IsInstantiation) {
4128  Decl *dcl = D.getAs<Decl>();
4129  Stmt *Body = BodyArg.takeAs<Stmt>();
4130
4131  // Don't generate EH edges for CallExprs as we'd like to avoid the n^2
4132  // explosion for destrutors that can result and the compile time hit.
4133  AnalysisContext AC(dcl, false);
4134  FunctionDecl *FD = 0;
4135  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
4136  if (FunTmpl)
4137    FD = FunTmpl->getTemplatedDecl();
4138  else
4139    FD = dyn_cast_or_null<FunctionDecl>(dcl);
4140
4141  if (FD) {
4142    FD->setBody(Body);
4143    if (FD->isMain())
4144      // C and C++ allow for main to automagically return 0.
4145      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
4146      FD->setHasImplicitReturnZero(true);
4147    else
4148      CheckFallThroughForFunctionDef(FD, Body, AC);
4149
4150    if (!FD->isInvalidDecl())
4151      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
4152
4153    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
4154      MaybeMarkVirtualMembersReferenced(Method->getLocation(), Method);
4155
4156    assert(FD == getCurFunctionDecl() && "Function parsing confused");
4157  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
4158    assert(MD == getCurMethodDecl() && "Method parsing confused");
4159    MD->setBody(Body);
4160    CheckFallThroughForFunctionDef(MD, Body, AC);
4161    MD->setEndLoc(Body->getLocEnd());
4162
4163    if (!MD->isInvalidDecl())
4164      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
4165  } else {
4166    Body->Destroy(Context);
4167    return DeclPtrTy();
4168  }
4169  if (!IsInstantiation)
4170    PopDeclContext();
4171
4172  // Verify and clean out per-function state.
4173
4174  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
4175
4176  // Check goto/label use.
4177  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
4178       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
4179    LabelStmt *L = I->second;
4180
4181    // Verify that we have no forward references left.  If so, there was a goto
4182    // or address of a label taken, but no definition of it.  Label fwd
4183    // definitions are indicated with a null substmt.
4184    if (L->getSubStmt() != 0)
4185      continue;
4186
4187    // Emit error.
4188    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
4189
4190    // At this point, we have gotos that use the bogus label.  Stitch it into
4191    // the function body so that they aren't leaked and that the AST is well
4192    // formed.
4193    if (Body == 0) {
4194      // The whole function wasn't parsed correctly, just delete this.
4195      L->Destroy(Context);
4196      continue;
4197    }
4198
4199    // Otherwise, the body is valid: we want to stitch the label decl into the
4200    // function somewhere so that it is properly owned and so that the goto
4201    // has a valid target.  Do this by creating a new compound stmt with the
4202    // label in it.
4203
4204    // Give the label a sub-statement.
4205    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
4206
4207    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
4208                               cast<CXXTryStmt>(Body)->getTryBlock() :
4209                               cast<CompoundStmt>(Body);
4210    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
4211    Elements.push_back(L);
4212    Compound->setStmts(Context, &Elements[0], Elements.size());
4213  }
4214  FunctionLabelMap.clear();
4215
4216  if (!Body) return D;
4217
4218  CheckUnreachable(AC);
4219
4220  // Verify that that gotos and switch cases don't jump into scopes illegally.
4221  if (CurFunctionNeedsScopeChecking)
4222    DiagnoseInvalidJumps(Body);
4223
4224  // C++ constructors that have function-try-blocks can't have return
4225  // statements in the handlers of that block. (C++ [except.handle]p14)
4226  // Verify this.
4227  if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
4228    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
4229
4230  if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
4231    MarkBaseAndMemberDestructorsReferenced(Destructor);
4232
4233  // If any errors have occurred, clear out any temporaries that may have
4234  // been leftover. This ensures that these temporaries won't be picked up for
4235  // deletion in some later function.
4236  if (PP.getDiagnostics().hasErrorOccurred())
4237    ExprTemporaries.clear();
4238
4239  assert(ExprTemporaries.empty() && "Leftover temporaries in function");
4240  return D;
4241}
4242
4243/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
4244/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
4245NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
4246                                          IdentifierInfo &II, Scope *S) {
4247  // Before we produce a declaration for an implicitly defined
4248  // function, see whether there was a locally-scoped declaration of
4249  // this name as a function or variable. If so, use that
4250  // (non-visible) declaration, and complain about it.
4251  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4252    = LocallyScopedExternalDecls.find(&II);
4253  if (Pos != LocallyScopedExternalDecls.end()) {
4254    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
4255    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
4256    return Pos->second;
4257  }
4258
4259  // Extension in C99.  Legal in C90, but warn about it.
4260  if (II.getName().startswith("__builtin_"))
4261    Diag(Loc, diag::warn_builtin_unknown) << &II;
4262  else if (getLangOptions().C99)
4263    Diag(Loc, diag::ext_implicit_function_decl) << &II;
4264  else
4265    Diag(Loc, diag::warn_implicit_function_decl) << &II;
4266
4267  // Set a Declarator for the implicit definition: int foo();
4268  const char *Dummy;
4269  DeclSpec DS;
4270  unsigned DiagID;
4271  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
4272  Error = Error; // Silence warning.
4273  assert(!Error && "Error setting up implicit decl!");
4274  Declarator D(DS, Declarator::BlockContext);
4275  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
4276                                             0, 0, false, SourceLocation(),
4277                                             false, 0,0,0, Loc, Loc, D),
4278                SourceLocation());
4279  D.SetIdentifier(&II, Loc);
4280
4281  // Insert this function into translation-unit scope.
4282
4283  DeclContext *PrevDC = CurContext;
4284  CurContext = Context.getTranslationUnitDecl();
4285
4286  FunctionDecl *FD =
4287 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
4288  FD->setImplicit();
4289
4290  CurContext = PrevDC;
4291
4292  AddKnownFunctionAttributes(FD);
4293
4294  return FD;
4295}
4296
4297/// \brief Adds any function attributes that we know a priori based on
4298/// the declaration of this function.
4299///
4300/// These attributes can apply both to implicitly-declared builtins
4301/// (like __builtin___printf_chk) or to library-declared functions
4302/// like NSLog or printf.
4303void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
4304  if (FD->isInvalidDecl())
4305    return;
4306
4307  // If this is a built-in function, map its builtin attributes to
4308  // actual attributes.
4309  if (unsigned BuiltinID = FD->getBuiltinID()) {
4310    // Handle printf-formatting attributes.
4311    unsigned FormatIdx;
4312    bool HasVAListArg;
4313    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
4314      if (!FD->getAttr<FormatAttr>())
4315        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
4316                                             HasVAListArg ? 0 : FormatIdx + 2));
4317    }
4318
4319    // Mark const if we don't care about errno and that is the only
4320    // thing preventing the function from being const. This allows
4321    // IRgen to use LLVM intrinsics for such functions.
4322    if (!getLangOptions().MathErrno &&
4323        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
4324      if (!FD->getAttr<ConstAttr>())
4325        FD->addAttr(::new (Context) ConstAttr());
4326    }
4327
4328    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
4329      FD->addAttr(::new (Context) NoReturnAttr());
4330    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
4331      FD->addAttr(::new (Context) NoThrowAttr());
4332    if (Context.BuiltinInfo.isConst(BuiltinID))
4333      FD->addAttr(::new (Context) ConstAttr());
4334  }
4335
4336  IdentifierInfo *Name = FD->getIdentifier();
4337  if (!Name)
4338    return;
4339  if ((!getLangOptions().CPlusPlus &&
4340       FD->getDeclContext()->isTranslationUnit()) ||
4341      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
4342       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
4343       LinkageSpecDecl::lang_c)) {
4344    // Okay: this could be a libc/libm/Objective-C function we know
4345    // about.
4346  } else
4347    return;
4348
4349  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
4350    // FIXME: NSLog and NSLogv should be target specific
4351    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
4352      // FIXME: We known better than our headers.
4353      const_cast<FormatAttr *>(Format)->setType("printf");
4354    } else
4355      FD->addAttr(::new (Context) FormatAttr("printf", 1,
4356                                             Name->isStr("NSLogv") ? 0 : 2));
4357  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
4358    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
4359    // target-specific builtins, perhaps?
4360    if (!FD->getAttr<FormatAttr>())
4361      FD->addAttr(::new (Context) FormatAttr("printf", 2,
4362                                             Name->isStr("vasprintf") ? 0 : 3));
4363  }
4364}
4365
4366TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
4367                                    TypeSourceInfo *TInfo) {
4368  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
4369  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
4370
4371  if (!TInfo) {
4372    assert(D.isInvalidType() && "no declarator info for valid type");
4373    TInfo = Context.getTrivialTypeSourceInfo(T);
4374  }
4375
4376  // Scope manipulation handled by caller.
4377  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
4378                                           D.getIdentifierLoc(),
4379                                           D.getIdentifier(),
4380                                           TInfo);
4381
4382  if (const TagType *TT = T->getAs<TagType>()) {
4383    TagDecl *TD = TT->getDecl();
4384
4385    // If the TagDecl that the TypedefDecl points to is an anonymous decl
4386    // keep track of the TypedefDecl.
4387    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
4388      TD->setTypedefForAnonDecl(NewTD);
4389  }
4390
4391  if (D.isInvalidType())
4392    NewTD->setInvalidDecl();
4393  return NewTD;
4394}
4395
4396
4397/// \brief Determine whether a tag with a given kind is acceptable
4398/// as a redeclaration of the given tag declaration.
4399///
4400/// \returns true if the new tag kind is acceptable, false otherwise.
4401bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
4402                                        TagDecl::TagKind NewTag,
4403                                        SourceLocation NewTagLoc,
4404                                        const IdentifierInfo &Name) {
4405  // C++ [dcl.type.elab]p3:
4406  //   The class-key or enum keyword present in the
4407  //   elaborated-type-specifier shall agree in kind with the
4408  //   declaration to which the name in theelaborated-type-specifier
4409  //   refers. This rule also applies to the form of
4410  //   elaborated-type-specifier that declares a class-name or
4411  //   friend class since it can be construed as referring to the
4412  //   definition of the class. Thus, in any
4413  //   elaborated-type-specifier, the enum keyword shall be used to
4414  //   refer to an enumeration (7.2), the union class-keyshall be
4415  //   used to refer to a union (clause 9), and either the class or
4416  //   struct class-key shall be used to refer to a class (clause 9)
4417  //   declared using the class or struct class-key.
4418  TagDecl::TagKind OldTag = Previous->getTagKind();
4419  if (OldTag == NewTag)
4420    return true;
4421
4422  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
4423      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
4424    // Warn about the struct/class tag mismatch.
4425    bool isTemplate = false;
4426    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
4427      isTemplate = Record->getDescribedClassTemplate();
4428
4429    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
4430      << (NewTag == TagDecl::TK_class)
4431      << isTemplate << &Name
4432      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
4433                              OldTag == TagDecl::TK_class? "class" : "struct");
4434    Diag(Previous->getLocation(), diag::note_previous_use);
4435    return true;
4436  }
4437  return false;
4438}
4439
4440/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
4441/// former case, Name will be non-null.  In the later case, Name will be null.
4442/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
4443/// reference/declaration/definition of a tag.
4444Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
4445                               SourceLocation KWLoc, const CXXScopeSpec &SS,
4446                               IdentifierInfo *Name, SourceLocation NameLoc,
4447                               AttributeList *Attr, AccessSpecifier AS,
4448                               MultiTemplateParamsArg TemplateParameterLists,
4449                               bool &OwnedDecl, bool &IsDependent) {
4450  // If this is not a definition, it must have a name.
4451  assert((Name != 0 || TUK == TUK_Definition) &&
4452         "Nameless record must be a definition!");
4453
4454  OwnedDecl = false;
4455  TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec);
4456
4457  // FIXME: Check explicit specializations more carefully.
4458  bool isExplicitSpecialization = false;
4459  if (TUK != TUK_Reference) {
4460    if (TemplateParameterList *TemplateParams
4461          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
4462                        (TemplateParameterList**)TemplateParameterLists.get(),
4463                                              TemplateParameterLists.size(),
4464                                                    isExplicitSpecialization)) {
4465      if (TemplateParams->size() > 0) {
4466        // This is a declaration or definition of a class template (which may
4467        // be a member of another template).
4468        OwnedDecl = false;
4469        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
4470                                               SS, Name, NameLoc, Attr,
4471                                               TemplateParams,
4472                                               AS);
4473        TemplateParameterLists.release();
4474        return Result.get();
4475      } else {
4476        // The "template<>" header is extraneous.
4477        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
4478          << ElaboratedType::getNameForTagKind(Kind) << Name;
4479        isExplicitSpecialization = true;
4480      }
4481    }
4482
4483    TemplateParameterLists.release();
4484  }
4485
4486  DeclContext *SearchDC = CurContext;
4487  DeclContext *DC = CurContext;
4488  bool isStdBadAlloc = false;
4489  bool Invalid = false;
4490
4491  RedeclarationKind Redecl = (TUK != TUK_Reference ? ForRedeclaration
4492                                                   : NotForRedeclaration);
4493
4494  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
4495
4496  if (Name && SS.isNotEmpty()) {
4497    // We have a nested-name tag ('struct foo::bar').
4498
4499    // Check for invalid 'foo::'.
4500    if (SS.isInvalid()) {
4501      Name = 0;
4502      goto CreateNewDecl;
4503    }
4504
4505    // If this is a friend or a reference to a class in a dependent
4506    // context, don't try to make a decl for it.
4507    if (TUK == TUK_Friend || TUK == TUK_Reference) {
4508      DC = computeDeclContext(SS, false);
4509      if (!DC) {
4510        IsDependent = true;
4511        return DeclPtrTy();
4512      }
4513    }
4514
4515    if (RequireCompleteDeclContext(SS))
4516      return DeclPtrTy::make((Decl *)0);
4517
4518    DC = computeDeclContext(SS, true);
4519    SearchDC = DC;
4520    // Look-up name inside 'foo::'.
4521    LookupQualifiedName(Previous, DC);
4522
4523    if (Previous.isAmbiguous())
4524      return DeclPtrTy();
4525
4526    if (Previous.empty()) {
4527      // Name lookup did not find anything. However, if the
4528      // nested-name-specifier refers to the current instantiation,
4529      // and that current instantiation has any dependent base
4530      // classes, we might find something at instantiation time: treat
4531      // this as a dependent elaborated-type-specifier.
4532      if (Previous.wasNotFoundInCurrentInstantiation()) {
4533        IsDependent = true;
4534        return DeclPtrTy();
4535      }
4536
4537      // A tag 'foo::bar' must already exist.
4538      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
4539      Name = 0;
4540      Invalid = true;
4541      goto CreateNewDecl;
4542    }
4543  } else if (Name) {
4544    // If this is a named struct, check to see if there was a previous forward
4545    // declaration or definition.
4546    // FIXME: We're looking into outer scopes here, even when we
4547    // shouldn't be. Doing so can result in ambiguities that we
4548    // shouldn't be diagnosing.
4549    LookupName(Previous, S);
4550
4551    // Note:  there used to be some attempt at recovery here.
4552    if (Previous.isAmbiguous())
4553      return DeclPtrTy();
4554
4555    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
4556      // FIXME: This makes sure that we ignore the contexts associated
4557      // with C structs, unions, and enums when looking for a matching
4558      // tag declaration or definition. See the similar lookup tweak
4559      // in Sema::LookupName; is there a better way to deal with this?
4560      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
4561        SearchDC = SearchDC->getParent();
4562    }
4563  }
4564
4565  if (Previous.isSingleResult() &&
4566      Previous.getFoundDecl()->isTemplateParameter()) {
4567    // Maybe we will complain about the shadowed template parameter.
4568    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
4569    // Just pretend that we didn't see the previous declaration.
4570    Previous.clear();
4571  }
4572
4573  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
4574      DC->Equals(StdNamespace) && Name->isStr("bad_alloc")) {
4575    // This is a declaration of or a reference to "std::bad_alloc".
4576    isStdBadAlloc = true;
4577
4578    if (Previous.empty() && StdBadAlloc) {
4579      // std::bad_alloc has been implicitly declared (but made invisible to
4580      // name lookup). Fill in this implicit declaration as the previous
4581      // declaration, so that the declarations get chained appropriately.
4582      Previous.addDecl(StdBadAlloc);
4583    }
4584  }
4585
4586  if (!Previous.empty()) {
4587    assert(Previous.isSingleResult());
4588    NamedDecl *PrevDecl = Previous.getFoundDecl();
4589    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
4590      // If this is a use of a previous tag, or if the tag is already declared
4591      // in the same scope (so that the definition/declaration completes or
4592      // rementions the tag), reuse the decl.
4593      if (TUK == TUK_Reference || TUK == TUK_Friend ||
4594          isDeclInScope(PrevDecl, SearchDC, S)) {
4595        // Make sure that this wasn't declared as an enum and now used as a
4596        // struct or something similar.
4597        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
4598          bool SafeToContinue
4599            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
4600               Kind != TagDecl::TK_enum);
4601          if (SafeToContinue)
4602            Diag(KWLoc, diag::err_use_with_wrong_tag)
4603              << Name
4604              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
4605                                                  PrevTagDecl->getKindName());
4606          else
4607            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
4608          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
4609
4610          if (SafeToContinue)
4611            Kind = PrevTagDecl->getTagKind();
4612          else {
4613            // Recover by making this an anonymous redefinition.
4614            Name = 0;
4615            Previous.clear();
4616            Invalid = true;
4617          }
4618        }
4619
4620        if (!Invalid) {
4621          // If this is a use, just return the declaration we found.
4622
4623          // FIXME: In the future, return a variant or some other clue
4624          // for the consumer of this Decl to know it doesn't own it.
4625          // For our current ASTs this shouldn't be a problem, but will
4626          // need to be changed with DeclGroups.
4627          if (TUK == TUK_Reference || TUK == TUK_Friend)
4628            return DeclPtrTy::make(PrevTagDecl);
4629
4630          // Diagnose attempts to redefine a tag.
4631          if (TUK == TUK_Definition) {
4632            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
4633              // If we're defining a specialization and the previous definition
4634              // is from an implicit instantiation, don't emit an error
4635              // here; we'll catch this in the general case below.
4636              if (!isExplicitSpecialization ||
4637                  !isa<CXXRecordDecl>(Def) ||
4638                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
4639                                               == TSK_ExplicitSpecialization) {
4640                Diag(NameLoc, diag::err_redefinition) << Name;
4641                Diag(Def->getLocation(), diag::note_previous_definition);
4642                // If this is a redefinition, recover by making this
4643                // struct be anonymous, which will make any later
4644                // references get the previous definition.
4645                Name = 0;
4646                Previous.clear();
4647                Invalid = true;
4648              }
4649            } else {
4650              // If the type is currently being defined, complain
4651              // about a nested redefinition.
4652              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
4653              if (Tag->isBeingDefined()) {
4654                Diag(NameLoc, diag::err_nested_redefinition) << Name;
4655                Diag(PrevTagDecl->getLocation(),
4656                     diag::note_previous_definition);
4657                Name = 0;
4658                Previous.clear();
4659                Invalid = true;
4660              }
4661            }
4662
4663            // Okay, this is definition of a previously declared or referenced
4664            // tag PrevDecl. We're going to create a new Decl for it.
4665          }
4666        }
4667        // If we get here we have (another) forward declaration or we
4668        // have a definition.  Just create a new decl.
4669
4670      } else {
4671        // If we get here, this is a definition of a new tag type in a nested
4672        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
4673        // new decl/type.  We set PrevDecl to NULL so that the entities
4674        // have distinct types.
4675        Previous.clear();
4676      }
4677      // If we get here, we're going to create a new Decl. If PrevDecl
4678      // is non-NULL, it's a definition of the tag declared by
4679      // PrevDecl. If it's NULL, we have a new definition.
4680    } else {
4681      // PrevDecl is a namespace, template, or anything else
4682      // that lives in the IDNS_Tag identifier namespace.
4683      if (isDeclInScope(PrevDecl, SearchDC, S)) {
4684        // The tag name clashes with a namespace name, issue an error and
4685        // recover by making this tag be anonymous.
4686        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
4687        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4688        Name = 0;
4689        Previous.clear();
4690        Invalid = true;
4691      } else {
4692        // The existing declaration isn't relevant to us; we're in a
4693        // new scope, so clear out the previous declaration.
4694        Previous.clear();
4695      }
4696    }
4697  } else if (TUK == TUK_Reference && SS.isEmpty() && Name) {
4698    // C++ [basic.scope.pdecl]p5:
4699    //   -- for an elaborated-type-specifier of the form
4700    //
4701    //          class-key identifier
4702    //
4703    //      if the elaborated-type-specifier is used in the
4704    //      decl-specifier-seq or parameter-declaration-clause of a
4705    //      function defined in namespace scope, the identifier is
4706    //      declared as a class-name in the namespace that contains
4707    //      the declaration; otherwise, except as a friend
4708    //      declaration, the identifier is declared in the smallest
4709    //      non-class, non-function-prototype scope that contains the
4710    //      declaration.
4711    //
4712    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
4713    // C structs and unions.
4714    //
4715    // It is an error in C++ to declare (rather than define) an enum
4716    // type, including via an elaborated type specifier.  We'll
4717    // diagnose that later; for now, declare the enum in the same
4718    // scope as we would have picked for any other tag type.
4719    //
4720    // GNU C also supports this behavior as part of its incomplete
4721    // enum types extension, while GNU C++ does not.
4722    //
4723    // Find the context where we'll be declaring the tag.
4724    // FIXME: We would like to maintain the current DeclContext as the
4725    // lexical context,
4726    while (SearchDC->isRecord())
4727      SearchDC = SearchDC->getParent();
4728
4729    // Find the scope where we'll be declaring the tag.
4730    while (S->isClassScope() ||
4731           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
4732           ((S->getFlags() & Scope::DeclScope) == 0) ||
4733           (S->getEntity() &&
4734            ((DeclContext *)S->getEntity())->isTransparentContext()))
4735      S = S->getParent();
4736
4737  } else if (TUK == TUK_Friend && SS.isEmpty() && Name) {
4738    // C++ [namespace.memdef]p3:
4739    //   If a friend declaration in a non-local class first declares a
4740    //   class or function, the friend class or function is a member of
4741    //   the innermost enclosing namespace.
4742    while (!SearchDC->isFileContext())
4743      SearchDC = SearchDC->getParent();
4744
4745    // The entity of a decl scope is a DeclContext; see PushDeclContext.
4746    while (S->getEntity() != SearchDC)
4747      S = S->getParent();
4748  }
4749
4750CreateNewDecl:
4751
4752  TagDecl *PrevDecl = 0;
4753  if (Previous.isSingleResult())
4754    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
4755
4756  // If there is an identifier, use the location of the identifier as the
4757  // location of the decl, otherwise use the location of the struct/union
4758  // keyword.
4759  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
4760
4761  // Otherwise, create a new declaration. If there is a previous
4762  // declaration of the same entity, the two will be linked via
4763  // PrevDecl.
4764  TagDecl *New;
4765
4766  if (Kind == TagDecl::TK_enum) {
4767    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4768    // enum X { A, B, C } D;    D should chain to X.
4769    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
4770                           cast_or_null<EnumDecl>(PrevDecl));
4771    // If this is an undefined enum, warn.
4772    if (TUK != TUK_Definition && !Invalid)  {
4773      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
4774                                              : diag::ext_forward_ref_enum;
4775      Diag(Loc, DK);
4776    }
4777  } else {
4778    // struct/union/class
4779
4780    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4781    // struct X { int A; } D;    D should chain to X.
4782    if (getLangOptions().CPlusPlus) {
4783      // FIXME: Look for a way to use RecordDecl for simple structs.
4784      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4785                                  cast_or_null<CXXRecordDecl>(PrevDecl));
4786
4787      if (isStdBadAlloc && (!StdBadAlloc || StdBadAlloc->isImplicit()))
4788        StdBadAlloc = cast<CXXRecordDecl>(New);
4789    } else
4790      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4791                               cast_or_null<RecordDecl>(PrevDecl));
4792  }
4793
4794  if (Kind != TagDecl::TK_enum) {
4795    // Handle #pragma pack: if the #pragma pack stack has non-default
4796    // alignment, make up a packed attribute for this decl. These
4797    // attributes are checked when the ASTContext lays out the
4798    // structure.
4799    //
4800    // It is important for implementing the correct semantics that this
4801    // happen here (in act on tag decl). The #pragma pack stack is
4802    // maintained as a result of parser callbacks which can occur at
4803    // many points during the parsing of a struct declaration (because
4804    // the #pragma tokens are effectively skipped over during the
4805    // parsing of the struct).
4806    if (unsigned Alignment = getPragmaPackAlignment())
4807      New->addAttr(::new (Context) PragmaPackAttr(Alignment * 8));
4808  }
4809
4810  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
4811    // C++ [dcl.typedef]p3:
4812    //   [...] Similarly, in a given scope, a class or enumeration
4813    //   shall not be declared with the same name as a typedef-name
4814    //   that is declared in that scope and refers to a type other
4815    //   than the class or enumeration itself.
4816    LookupResult Lookup(*this, Name, NameLoc, LookupOrdinaryName,
4817                        ForRedeclaration);
4818    LookupName(Lookup, S);
4819    TypedefDecl *PrevTypedef = Lookup.getAsSingle<TypedefDecl>();
4820    NamedDecl *PrevTypedefNamed = PrevTypedef;
4821    if (PrevTypedef && isDeclInScope(PrevTypedefNamed, SearchDC, S) &&
4822        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
4823          Context.getCanonicalType(Context.getTypeDeclType(New))) {
4824      Diag(Loc, diag::err_tag_definition_of_typedef)
4825        << Context.getTypeDeclType(New)
4826        << PrevTypedef->getUnderlyingType();
4827      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
4828      Invalid = true;
4829    }
4830  }
4831
4832  // If this is a specialization of a member class (of a class template),
4833  // check the specialization.
4834  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
4835    Invalid = true;
4836
4837  if (Invalid)
4838    New->setInvalidDecl();
4839
4840  if (Attr)
4841    ProcessDeclAttributeList(S, New, Attr);
4842
4843  // If we're declaring or defining a tag in function prototype scope
4844  // in C, note that this type can only be used within the function.
4845  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
4846    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
4847
4848  // Set the lexical context. If the tag has a C++ scope specifier, the
4849  // lexical context will be different from the semantic context.
4850  New->setLexicalDeclContext(CurContext);
4851
4852  // Mark this as a friend decl if applicable.
4853  if (TUK == TUK_Friend)
4854    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
4855
4856  // Set the access specifier.
4857  if (!Invalid && TUK != TUK_Friend)
4858    SetMemberAccessSpecifier(New, PrevDecl, AS);
4859
4860  if (TUK == TUK_Definition)
4861    New->startDefinition();
4862
4863  // If this has an identifier, add it to the scope stack.
4864  if (TUK == TUK_Friend) {
4865    // We might be replacing an existing declaration in the lookup tables;
4866    // if so, borrow its access specifier.
4867    if (PrevDecl)
4868      New->setAccess(PrevDecl->getAccess());
4869
4870    // Friend tag decls are visible in fairly strange ways.
4871    if (!CurContext->isDependentContext()) {
4872      DeclContext *DC = New->getDeclContext()->getLookupContext();
4873      DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
4874      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
4875        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
4876    }
4877  } else if (Name) {
4878    S = getNonFieldDeclScope(S);
4879    PushOnScopeChains(New, S);
4880  } else {
4881    CurContext->addDecl(New);
4882  }
4883
4884  // If this is the C FILE type, notify the AST context.
4885  if (IdentifierInfo *II = New->getIdentifier())
4886    if (!New->isInvalidDecl() &&
4887        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
4888        II->isStr("FILE"))
4889      Context.setFILEDecl(New);
4890
4891  OwnedDecl = true;
4892  return DeclPtrTy::make(New);
4893}
4894
4895void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
4896  AdjustDeclIfTemplate(TagD);
4897  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4898
4899  // Enter the tag context.
4900  PushDeclContext(S, Tag);
4901}
4902
4903void Sema::ActOnStartCXXMemberDeclarations(Scope *S, DeclPtrTy TagD,
4904                                           SourceLocation LBraceLoc) {
4905  AdjustDeclIfTemplate(TagD);
4906  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD.getAs<Decl>());
4907
4908  FieldCollector->StartClass();
4909
4910  if (!Record->getIdentifier())
4911    return;
4912
4913  // C++ [class]p2:
4914  //   [...] The class-name is also inserted into the scope of the
4915  //   class itself; this is known as the injected-class-name. For
4916  //   purposes of access checking, the injected-class-name is treated
4917  //   as if it were a public member name.
4918  CXXRecordDecl *InjectedClassName
4919    = CXXRecordDecl::Create(Context, Record->getTagKind(),
4920                            CurContext, Record->getLocation(),
4921                            Record->getIdentifier(),
4922                            Record->getTagKeywordLoc(),
4923                            Record);
4924  InjectedClassName->setImplicit();
4925  InjectedClassName->setAccess(AS_public);
4926  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
4927      InjectedClassName->setDescribedClassTemplate(Template);
4928  PushOnScopeChains(InjectedClassName, S);
4929  assert(InjectedClassName->isInjectedClassName() &&
4930         "Broken injected-class-name");
4931}
4932
4933// Traverses the class and any nested classes, making a note of any
4934// dynamic classes that have no key function so that we can mark all of
4935// their virtual member functions as "used" at the end of the translation
4936// unit. This ensures that all functions needed by the vtable will get
4937// instantiated/synthesized.
4938static void
4939RecordDynamicClassesWithNoKeyFunction(Sema &S, CXXRecordDecl *Record,
4940                                      SourceLocation Loc) {
4941  // We don't look at dependent or undefined classes.
4942  if (Record->isDependentContext() || !Record->isDefinition())
4943    return;
4944
4945  if (Record->isDynamicClass() && !S.Context.getKeyFunction(Record))
4946    S.ClassesWithUnmarkedVirtualMembers.push_back(std::make_pair(Record, Loc));
4947
4948  for (DeclContext::decl_iterator D = Record->decls_begin(),
4949                               DEnd = Record->decls_end();
4950       D != DEnd; ++D) {
4951    if (CXXRecordDecl *Nested = dyn_cast<CXXRecordDecl>(*D))
4952      RecordDynamicClassesWithNoKeyFunction(S, Nested, Loc);
4953  }
4954}
4955
4956void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
4957                                    SourceLocation RBraceLoc) {
4958  AdjustDeclIfTemplate(TagD);
4959  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4960  Tag->setRBraceLoc(RBraceLoc);
4961
4962  if (isa<CXXRecordDecl>(Tag))
4963    FieldCollector->FinishClass();
4964
4965  // Exit this scope of this tag's definition.
4966  PopDeclContext();
4967
4968  if (isa<CXXRecordDecl>(Tag) && !Tag->getDeclContext()->isRecord())
4969    RecordDynamicClassesWithNoKeyFunction(*this, cast<CXXRecordDecl>(Tag),
4970                                          RBraceLoc);
4971
4972  // Notify the consumer that we've defined a tag.
4973  Consumer.HandleTagDeclDefinition(Tag);
4974}
4975
4976// Note that FieldName may be null for anonymous bitfields.
4977bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
4978                          QualType FieldTy, const Expr *BitWidth,
4979                          bool *ZeroWidth) {
4980  // Default to true; that shouldn't confuse checks for emptiness
4981  if (ZeroWidth)
4982    *ZeroWidth = true;
4983
4984  // C99 6.7.2.1p4 - verify the field type.
4985  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
4986  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
4987    // Handle incomplete types with specific error.
4988    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
4989      return true;
4990    if (FieldName)
4991      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
4992        << FieldName << FieldTy << BitWidth->getSourceRange();
4993    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
4994      << FieldTy << BitWidth->getSourceRange();
4995  }
4996
4997  // If the bit-width is type- or value-dependent, don't try to check
4998  // it now.
4999  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
5000    return false;
5001
5002  llvm::APSInt Value;
5003  if (VerifyIntegerConstantExpression(BitWidth, &Value))
5004    return true;
5005
5006  if (Value != 0 && ZeroWidth)
5007    *ZeroWidth = false;
5008
5009  // Zero-width bitfield is ok for anonymous field.
5010  if (Value == 0 && FieldName)
5011    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
5012
5013  if (Value.isSigned() && Value.isNegative()) {
5014    if (FieldName)
5015      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
5016               << FieldName << Value.toString(10);
5017    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
5018      << Value.toString(10);
5019  }
5020
5021  if (!FieldTy->isDependentType()) {
5022    uint64_t TypeSize = Context.getTypeSize(FieldTy);
5023    if (Value.getZExtValue() > TypeSize) {
5024      if (FieldName)
5025        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
5026          << FieldName << (unsigned)TypeSize;
5027      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
5028        << (unsigned)TypeSize;
5029    }
5030  }
5031
5032  return false;
5033}
5034
5035/// ActOnField - Each field of a struct/union/class is passed into this in order
5036/// to create a FieldDecl object for it.
5037Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
5038                                 SourceLocation DeclStart,
5039                                 Declarator &D, ExprTy *BitfieldWidth) {
5040  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
5041                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
5042                               AS_public);
5043  return DeclPtrTy::make(Res);
5044}
5045
5046/// HandleField - Analyze a field of a C struct or a C++ data member.
5047///
5048FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
5049                             SourceLocation DeclStart,
5050                             Declarator &D, Expr *BitWidth,
5051                             AccessSpecifier AS) {
5052  IdentifierInfo *II = D.getIdentifier();
5053  SourceLocation Loc = DeclStart;
5054  if (II) Loc = D.getIdentifierLoc();
5055
5056  TypeSourceInfo *TInfo = 0;
5057  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5058  if (getLangOptions().CPlusPlus)
5059    CheckExtraCXXDefaultArguments(D);
5060
5061  DiagnoseFunctionSpecifiers(D);
5062
5063  if (D.getDeclSpec().isThreadSpecified())
5064    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5065
5066  NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName,
5067                                         ForRedeclaration);
5068
5069  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5070    // Maybe we will complain about the shadowed template parameter.
5071    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5072    // Just pretend that we didn't see the previous declaration.
5073    PrevDecl = 0;
5074  }
5075
5076  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
5077    PrevDecl = 0;
5078
5079  bool Mutable
5080    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
5081  SourceLocation TSSL = D.getSourceRange().getBegin();
5082  FieldDecl *NewFD
5083    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
5084                     AS, PrevDecl, &D);
5085  if (NewFD->isInvalidDecl() && PrevDecl) {
5086    // Don't introduce NewFD into scope; there's already something
5087    // with the same name in the same scope.
5088  } else if (II) {
5089    PushOnScopeChains(NewFD, S);
5090  } else
5091    Record->addDecl(NewFD);
5092
5093  return NewFD;
5094}
5095
5096/// \brief Build a new FieldDecl and check its well-formedness.
5097///
5098/// This routine builds a new FieldDecl given the fields name, type,
5099/// record, etc. \p PrevDecl should refer to any previous declaration
5100/// with the same name and in the same scope as the field to be
5101/// created.
5102///
5103/// \returns a new FieldDecl.
5104///
5105/// \todo The Declarator argument is a hack. It will be removed once
5106FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
5107                                TypeSourceInfo *TInfo,
5108                                RecordDecl *Record, SourceLocation Loc,
5109                                bool Mutable, Expr *BitWidth,
5110                                SourceLocation TSSL,
5111                                AccessSpecifier AS, NamedDecl *PrevDecl,
5112                                Declarator *D) {
5113  IdentifierInfo *II = Name.getAsIdentifierInfo();
5114  bool InvalidDecl = false;
5115  if (D) InvalidDecl = D->isInvalidType();
5116
5117  // If we receive a broken type, recover by assuming 'int' and
5118  // marking this declaration as invalid.
5119  if (T.isNull()) {
5120    InvalidDecl = true;
5121    T = Context.IntTy;
5122  }
5123
5124  QualType EltTy = Context.getBaseElementType(T);
5125  if (!EltTy->isDependentType() &&
5126      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete))
5127    InvalidDecl = true;
5128
5129  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5130  // than a variably modified type.
5131  if (!InvalidDecl && T->isVariablyModifiedType()) {
5132    bool SizeIsNegative;
5133    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
5134                                                           SizeIsNegative);
5135    if (!FixedTy.isNull()) {
5136      Diag(Loc, diag::warn_illegal_constant_array_size);
5137      T = FixedTy;
5138    } else {
5139      if (SizeIsNegative)
5140        Diag(Loc, diag::err_typecheck_negative_array_size);
5141      else
5142        Diag(Loc, diag::err_typecheck_field_variable_size);
5143      InvalidDecl = true;
5144    }
5145  }
5146
5147  // Fields can not have abstract class types
5148  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
5149                                             diag::err_abstract_type_in_decl,
5150                                             AbstractFieldType))
5151    InvalidDecl = true;
5152
5153  bool ZeroWidth = false;
5154  // If this is declared as a bit-field, check the bit-field.
5155  if (!InvalidDecl && BitWidth &&
5156      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
5157    InvalidDecl = true;
5158    DeleteExpr(BitWidth);
5159    BitWidth = 0;
5160    ZeroWidth = false;
5161  }
5162
5163  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo,
5164                                       BitWidth, Mutable);
5165  if (InvalidDecl)
5166    NewFD->setInvalidDecl();
5167
5168  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
5169    Diag(Loc, diag::err_duplicate_member) << II;
5170    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5171    NewFD->setInvalidDecl();
5172  }
5173
5174  if (getLangOptions().CPlusPlus) {
5175    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
5176
5177    if (!T->isPODType())
5178      CXXRecord->setPOD(false);
5179    if (!ZeroWidth)
5180      CXXRecord->setEmpty(false);
5181
5182    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
5183      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
5184
5185      if (!RDecl->hasTrivialConstructor())
5186        CXXRecord->setHasTrivialConstructor(false);
5187      if (!RDecl->hasTrivialCopyConstructor())
5188        CXXRecord->setHasTrivialCopyConstructor(false);
5189      if (!RDecl->hasTrivialCopyAssignment())
5190        CXXRecord->setHasTrivialCopyAssignment(false);
5191      if (!RDecl->hasTrivialDestructor())
5192        CXXRecord->setHasTrivialDestructor(false);
5193
5194      // C++ 9.5p1: An object of a class with a non-trivial
5195      // constructor, a non-trivial copy constructor, a non-trivial
5196      // destructor, or a non-trivial copy assignment operator
5197      // cannot be a member of a union, nor can an array of such
5198      // objects.
5199      // TODO: C++0x alters this restriction significantly.
5200      if (Record->isUnion()) {
5201        // We check for copy constructors before constructors
5202        // because otherwise we'll never get complaints about
5203        // copy constructors.
5204
5205        const CXXSpecialMember invalid = (CXXSpecialMember) -1;
5206
5207        CXXSpecialMember member;
5208        if (!RDecl->hasTrivialCopyConstructor())
5209          member = CXXCopyConstructor;
5210        else if (!RDecl->hasTrivialConstructor())
5211          member = CXXDefaultConstructor;
5212        else if (!RDecl->hasTrivialCopyAssignment())
5213          member = CXXCopyAssignment;
5214        else if (!RDecl->hasTrivialDestructor())
5215          member = CXXDestructor;
5216        else
5217          member = invalid;
5218
5219        if (member != invalid) {
5220          Diag(Loc, diag::err_illegal_union_member) << Name << member;
5221          DiagnoseNontrivial(RT, member);
5222          NewFD->setInvalidDecl();
5223        }
5224      }
5225    }
5226  }
5227
5228  // FIXME: We need to pass in the attributes given an AST
5229  // representation, not a parser representation.
5230  if (D)
5231    // FIXME: What to pass instead of TUScope?
5232    ProcessDeclAttributes(TUScope, NewFD, *D);
5233
5234  if (T.isObjCGCWeak())
5235    Diag(Loc, diag::warn_attribute_weak_on_field);
5236
5237  NewFD->setAccess(AS);
5238
5239  // C++ [dcl.init.aggr]p1:
5240  //   An aggregate is an array or a class (clause 9) with [...] no
5241  //   private or protected non-static data members (clause 11).
5242  // A POD must be an aggregate.
5243  if (getLangOptions().CPlusPlus &&
5244      (AS == AS_private || AS == AS_protected)) {
5245    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
5246    CXXRecord->setAggregate(false);
5247    CXXRecord->setPOD(false);
5248  }
5249
5250  return NewFD;
5251}
5252
5253/// DiagnoseNontrivial - Given that a class has a non-trivial
5254/// special member, figure out why.
5255void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
5256  QualType QT(T, 0U);
5257  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
5258
5259  // Check whether the member was user-declared.
5260  switch (member) {
5261  case CXXDefaultConstructor:
5262    if (RD->hasUserDeclaredConstructor()) {
5263      typedef CXXRecordDecl::ctor_iterator ctor_iter;
5264      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
5265        const FunctionDecl *body = 0;
5266        ci->getBody(body);
5267        if (!body ||
5268            !cast<CXXConstructorDecl>(body)->isImplicitlyDefined(Context)) {
5269          SourceLocation CtorLoc = ci->getLocation();
5270          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5271          return;
5272        }
5273      }
5274
5275      assert(0 && "found no user-declared constructors");
5276      return;
5277    }
5278    break;
5279
5280  case CXXCopyConstructor:
5281    if (RD->hasUserDeclaredCopyConstructor()) {
5282      SourceLocation CtorLoc =
5283        RD->getCopyConstructor(Context, 0)->getLocation();
5284      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5285      return;
5286    }
5287    break;
5288
5289  case CXXCopyAssignment:
5290    if (RD->hasUserDeclaredCopyAssignment()) {
5291      // FIXME: this should use the location of the copy
5292      // assignment, not the type.
5293      SourceLocation TyLoc = RD->getSourceRange().getBegin();
5294      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
5295      return;
5296    }
5297    break;
5298
5299  case CXXDestructor:
5300    if (RD->hasUserDeclaredDestructor()) {
5301      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
5302      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5303      return;
5304    }
5305    break;
5306  }
5307
5308  typedef CXXRecordDecl::base_class_iterator base_iter;
5309
5310  // Virtual bases and members inhibit trivial copying/construction,
5311  // but not trivial destruction.
5312  if (member != CXXDestructor) {
5313    // Check for virtual bases.  vbases includes indirect virtual bases,
5314    // so we just iterate through the direct bases.
5315    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
5316      if (bi->isVirtual()) {
5317        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5318        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
5319        return;
5320      }
5321
5322    // Check for virtual methods.
5323    typedef CXXRecordDecl::method_iterator meth_iter;
5324    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
5325         ++mi) {
5326      if (mi->isVirtual()) {
5327        SourceLocation MLoc = mi->getSourceRange().getBegin();
5328        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
5329        return;
5330      }
5331    }
5332  }
5333
5334  bool (CXXRecordDecl::*hasTrivial)() const;
5335  switch (member) {
5336  case CXXDefaultConstructor:
5337    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
5338  case CXXCopyConstructor:
5339    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
5340  case CXXCopyAssignment:
5341    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
5342  case CXXDestructor:
5343    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
5344  default:
5345    assert(0 && "unexpected special member"); return;
5346  }
5347
5348  // Check for nontrivial bases (and recurse).
5349  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
5350    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
5351    assert(BaseRT && "Don't know how to handle dependent bases");
5352    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
5353    if (!(BaseRecTy->*hasTrivial)()) {
5354      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5355      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
5356      DiagnoseNontrivial(BaseRT, member);
5357      return;
5358    }
5359  }
5360
5361  // Check for nontrivial members (and recurse).
5362  typedef RecordDecl::field_iterator field_iter;
5363  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
5364       ++fi) {
5365    QualType EltTy = Context.getBaseElementType((*fi)->getType());
5366    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
5367      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
5368
5369      if (!(EltRD->*hasTrivial)()) {
5370        SourceLocation FLoc = (*fi)->getLocation();
5371        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
5372        DiagnoseNontrivial(EltRT, member);
5373        return;
5374      }
5375    }
5376  }
5377
5378  assert(0 && "found no explanation for non-trivial member");
5379}
5380
5381/// TranslateIvarVisibility - Translate visibility from a token ID to an
5382///  AST enum value.
5383static ObjCIvarDecl::AccessControl
5384TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
5385  switch (ivarVisibility) {
5386  default: assert(0 && "Unknown visitibility kind");
5387  case tok::objc_private: return ObjCIvarDecl::Private;
5388  case tok::objc_public: return ObjCIvarDecl::Public;
5389  case tok::objc_protected: return ObjCIvarDecl::Protected;
5390  case tok::objc_package: return ObjCIvarDecl::Package;
5391  }
5392}
5393
5394/// ActOnIvar - Each ivar field of an objective-c class is passed into this
5395/// in order to create an IvarDecl object for it.
5396Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
5397                                SourceLocation DeclStart,
5398                                DeclPtrTy IntfDecl,
5399                                Declarator &D, ExprTy *BitfieldWidth,
5400                                tok::ObjCKeywordKind Visibility) {
5401
5402  IdentifierInfo *II = D.getIdentifier();
5403  Expr *BitWidth = (Expr*)BitfieldWidth;
5404  SourceLocation Loc = DeclStart;
5405  if (II) Loc = D.getIdentifierLoc();
5406
5407  // FIXME: Unnamed fields can be handled in various different ways, for
5408  // example, unnamed unions inject all members into the struct namespace!
5409
5410  TypeSourceInfo *TInfo = 0;
5411  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5412
5413  if (BitWidth) {
5414    // 6.7.2.1p3, 6.7.2.1p4
5415    if (VerifyBitField(Loc, II, T, BitWidth)) {
5416      D.setInvalidType();
5417      DeleteExpr(BitWidth);
5418      BitWidth = 0;
5419    }
5420  } else {
5421    // Not a bitfield.
5422
5423    // validate II.
5424
5425  }
5426
5427  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5428  // than a variably modified type.
5429  if (T->isVariablyModifiedType()) {
5430    Diag(Loc, diag::err_typecheck_ivar_variable_size);
5431    D.setInvalidType();
5432  }
5433
5434  // Get the visibility (access control) for this ivar.
5435  ObjCIvarDecl::AccessControl ac =
5436    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
5437                                        : ObjCIvarDecl::None;
5438  // Must set ivar's DeclContext to its enclosing interface.
5439  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
5440  DeclContext *EnclosingContext;
5441  if (ObjCImplementationDecl *IMPDecl =
5442      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5443    // Case of ivar declared in an implementation. Context is that of its class.
5444    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
5445    assert(IDecl && "No class- ActOnIvar");
5446    EnclosingContext = cast_or_null<DeclContext>(IDecl);
5447  } else
5448    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
5449  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
5450
5451  // Construct the decl.
5452  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
5453                                             EnclosingContext, Loc, II, T,
5454                                             TInfo, ac, (Expr *)BitfieldWidth);
5455
5456  if (II) {
5457    NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName,
5458                                           ForRedeclaration);
5459    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
5460        && !isa<TagDecl>(PrevDecl)) {
5461      Diag(Loc, diag::err_duplicate_member) << II;
5462      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5463      NewID->setInvalidDecl();
5464    }
5465  }
5466
5467  // Process attributes attached to the ivar.
5468  ProcessDeclAttributes(S, NewID, D);
5469
5470  if (D.isInvalidType())
5471    NewID->setInvalidDecl();
5472
5473  if (II) {
5474    // FIXME: When interfaces are DeclContexts, we'll need to add
5475    // these to the interface.
5476    S->AddDecl(DeclPtrTy::make(NewID));
5477    IdResolver.AddDecl(NewID);
5478  }
5479
5480  return DeclPtrTy::make(NewID);
5481}
5482
5483void Sema::ActOnFields(Scope* S,
5484                       SourceLocation RecLoc, DeclPtrTy RecDecl,
5485                       DeclPtrTy *Fields, unsigned NumFields,
5486                       SourceLocation LBrac, SourceLocation RBrac,
5487                       AttributeList *Attr) {
5488  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
5489  assert(EnclosingDecl && "missing record or interface decl");
5490
5491  // If the decl this is being inserted into is invalid, then it may be a
5492  // redeclaration or some other bogus case.  Don't try to add fields to it.
5493  if (EnclosingDecl->isInvalidDecl()) {
5494    // FIXME: Deallocate fields?
5495    return;
5496  }
5497
5498
5499  // Verify that all the fields are okay.
5500  unsigned NumNamedMembers = 0;
5501  llvm::SmallVector<FieldDecl*, 32> RecFields;
5502
5503  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
5504  for (unsigned i = 0; i != NumFields; ++i) {
5505    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
5506
5507    // Get the type for the field.
5508    Type *FDTy = FD->getType().getTypePtr();
5509
5510    if (!FD->isAnonymousStructOrUnion()) {
5511      // Remember all fields written by the user.
5512      RecFields.push_back(FD);
5513    }
5514
5515    // If the field is already invalid for some reason, don't emit more
5516    // diagnostics about it.
5517    if (FD->isInvalidDecl()) {
5518      EnclosingDecl->setInvalidDecl();
5519      continue;
5520    }
5521
5522    // C99 6.7.2.1p2:
5523    //   A structure or union shall not contain a member with
5524    //   incomplete or function type (hence, a structure shall not
5525    //   contain an instance of itself, but may contain a pointer to
5526    //   an instance of itself), except that the last member of a
5527    //   structure with more than one named member may have incomplete
5528    //   array type; such a structure (and any union containing,
5529    //   possibly recursively, a member that is such a structure)
5530    //   shall not be a member of a structure or an element of an
5531    //   array.
5532    if (FDTy->isFunctionType()) {
5533      // Field declared as a function.
5534      Diag(FD->getLocation(), diag::err_field_declared_as_function)
5535        << FD->getDeclName();
5536      FD->setInvalidDecl();
5537      EnclosingDecl->setInvalidDecl();
5538      continue;
5539    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
5540               Record && Record->isStruct()) {
5541      // Flexible array member.
5542      if (NumNamedMembers < 1) {
5543        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
5544          << FD->getDeclName();
5545        FD->setInvalidDecl();
5546        EnclosingDecl->setInvalidDecl();
5547        continue;
5548      }
5549      // Okay, we have a legal flexible array member at the end of the struct.
5550      if (Record)
5551        Record->setHasFlexibleArrayMember(true);
5552    } else if (!FDTy->isDependentType() &&
5553               RequireCompleteType(FD->getLocation(), FD->getType(),
5554                                   diag::err_field_incomplete)) {
5555      // Incomplete type
5556      FD->setInvalidDecl();
5557      EnclosingDecl->setInvalidDecl();
5558      continue;
5559    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
5560      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
5561        // If this is a member of a union, then entire union becomes "flexible".
5562        if (Record && Record->isUnion()) {
5563          Record->setHasFlexibleArrayMember(true);
5564        } else {
5565          // If this is a struct/class and this is not the last element, reject
5566          // it.  Note that GCC supports variable sized arrays in the middle of
5567          // structures.
5568          if (i != NumFields-1)
5569            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
5570              << FD->getDeclName() << FD->getType();
5571          else {
5572            // We support flexible arrays at the end of structs in
5573            // other structs as an extension.
5574            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
5575              << FD->getDeclName();
5576            if (Record)
5577              Record->setHasFlexibleArrayMember(true);
5578          }
5579        }
5580      }
5581      if (Record && FDTTy->getDecl()->hasObjectMember())
5582        Record->setHasObjectMember(true);
5583    } else if (FDTy->isObjCInterfaceType()) {
5584      /// A field cannot be an Objective-c object
5585      Diag(FD->getLocation(), diag::err_statically_allocated_object);
5586      FD->setInvalidDecl();
5587      EnclosingDecl->setInvalidDecl();
5588      continue;
5589    } else if (getLangOptions().ObjC1 &&
5590               getLangOptions().getGCMode() != LangOptions::NonGC &&
5591               Record &&
5592               (FD->getType()->isObjCObjectPointerType() ||
5593                FD->getType().isObjCGCStrong()))
5594      Record->setHasObjectMember(true);
5595    // Keep track of the number of named members.
5596    if (FD->getIdentifier())
5597      ++NumNamedMembers;
5598  }
5599
5600  // Okay, we successfully defined 'Record'.
5601  if (Record) {
5602    Record->completeDefinition(Context);
5603  } else {
5604    ObjCIvarDecl **ClsFields =
5605      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
5606    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
5607      ID->setIVarList(ClsFields, RecFields.size(), Context);
5608      ID->setLocEnd(RBrac);
5609      // Add ivar's to class's DeclContext.
5610      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
5611        ClsFields[i]->setLexicalDeclContext(ID);
5612        ID->addDecl(ClsFields[i]);
5613      }
5614      // Must enforce the rule that ivars in the base classes may not be
5615      // duplicates.
5616      if (ID->getSuperClass()) {
5617        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
5618             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
5619          ObjCIvarDecl* Ivar = (*IVI);
5620
5621          if (IdentifierInfo *II = Ivar->getIdentifier()) {
5622            ObjCIvarDecl* prevIvar =
5623              ID->getSuperClass()->lookupInstanceVariable(II);
5624            if (prevIvar) {
5625              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
5626              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
5627            }
5628          }
5629        }
5630      }
5631    } else if (ObjCImplementationDecl *IMPDecl =
5632                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5633      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
5634      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
5635        // Ivar declared in @implementation never belongs to the implementation.
5636        // Only it is in implementation's lexical context.
5637        ClsFields[I]->setLexicalDeclContext(IMPDecl);
5638      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
5639    }
5640  }
5641
5642  if (Attr)
5643    ProcessDeclAttributeList(S, Record, Attr);
5644}
5645
5646/// \brief Determine whether the given integral value is representable within
5647/// the given type T.
5648static bool isRepresentableIntegerValue(ASTContext &Context,
5649                                        llvm::APSInt &Value,
5650                                        QualType T) {
5651  assert(T->isIntegralType() && "Integral type required!");
5652  unsigned BitWidth = Context.getTypeSize(T);
5653
5654  if (Value.isUnsigned() || Value.isNonNegative())
5655    return Value.getActiveBits() < BitWidth;
5656
5657  return Value.getMinSignedBits() <= BitWidth;
5658}
5659
5660// \brief Given an integral type, return the next larger integral type
5661// (or a NULL type of no such type exists).
5662static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
5663  // FIXME: Int128/UInt128 support, which also needs to be introduced into
5664  // enum checking below.
5665  assert(T->isIntegralType() && "Integral type required!");
5666  const unsigned NumTypes = 4;
5667  QualType SignedIntegralTypes[NumTypes] = {
5668    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
5669  };
5670  QualType UnsignedIntegralTypes[NumTypes] = {
5671    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
5672    Context.UnsignedLongLongTy
5673  };
5674
5675  unsigned BitWidth = Context.getTypeSize(T);
5676  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
5677                                            : UnsignedIntegralTypes;
5678  for (unsigned I = 0; I != NumTypes; ++I)
5679    if (Context.getTypeSize(Types[I]) > BitWidth)
5680      return Types[I];
5681
5682  return QualType();
5683}
5684
5685EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
5686                                          EnumConstantDecl *LastEnumConst,
5687                                          SourceLocation IdLoc,
5688                                          IdentifierInfo *Id,
5689                                          ExprArg val) {
5690  Expr *Val = (Expr *)val.get();
5691
5692  unsigned IntWidth = Context.Target.getIntWidth();
5693  llvm::APSInt EnumVal(IntWidth);
5694  QualType EltTy;
5695  if (Val) {
5696    if (Enum->isDependentType())
5697      EltTy = Context.DependentTy;
5698    else {
5699      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
5700      SourceLocation ExpLoc;
5701      if (VerifyIntegerConstantExpression(Val, &EnumVal)) {
5702        Val = 0;
5703      } else {
5704        if (!getLangOptions().CPlusPlus) {
5705          // C99 6.7.2.2p2:
5706          //   The expression that defines the value of an enumeration constant
5707          //   shall be an integer constant expression that has a value
5708          //   representable as an int.
5709
5710          // Complain if the value is not representable in an int.
5711          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
5712            Diag(IdLoc, diag::ext_enum_value_not_int)
5713              << EnumVal.toString(10) << Val->getSourceRange()
5714              << EnumVal.isNonNegative();
5715          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
5716            // Force the type of the expression to 'int'.
5717            ImpCastExprToType(Val, Context.IntTy, CastExpr::CK_IntegralCast);
5718
5719            if (Val != val.get()) {
5720              val.release();
5721              val = Val;
5722            }
5723          }
5724        }
5725
5726        // C++0x [dcl.enum]p5:
5727        //   If the underlying type is not fixed, the type of each enumerator
5728        //   is the type of its initializing value:
5729        //     - If an initializer is specified for an enumerator, the
5730        //       initializing value has the same type as the expression.
5731        EltTy = Val->getType();
5732      }
5733    }
5734  }
5735
5736  if (!Val) {
5737    if (Enum->isDependentType())
5738      EltTy = Context.DependentTy;
5739    else if (!LastEnumConst) {
5740      // C++0x [dcl.enum]p5:
5741      //   If the underlying type is not fixed, the type of each enumerator
5742      //   is the type of its initializing value:
5743      //     - If no initializer is specified for the first enumerator, the
5744      //       initializing value has an unspecified integral type.
5745      //
5746      // GCC uses 'int' for its unspecified integral type, as does
5747      // C99 6.7.2.2p3.
5748      EltTy = Context.IntTy;
5749    } else {
5750      // Assign the last value + 1.
5751      EnumVal = LastEnumConst->getInitVal();
5752      ++EnumVal;
5753      EltTy = LastEnumConst->getType();
5754
5755      // Check for overflow on increment.
5756      if (EnumVal < LastEnumConst->getInitVal()) {
5757        // C++0x [dcl.enum]p5:
5758        //   If the underlying type is not fixed, the type of each enumerator
5759        //   is the type of its initializing value:
5760        //
5761        //     - Otherwise the type of the initializing value is the same as
5762        //       the type of the initializing value of the preceding enumerator
5763        //       unless the incremented value is not representable in that type,
5764        //       in which case the type is an unspecified integral type
5765        //       sufficient to contain the incremented value. If no such type
5766        //       exists, the program is ill-formed.
5767        QualType T = getNextLargerIntegralType(Context, EltTy);
5768        if (T.isNull()) {
5769          // There is no integral type larger enough to represent this
5770          // value. Complain, then allow the value to wrap around.
5771          EnumVal = LastEnumConst->getInitVal();
5772          EnumVal.zext(EnumVal.getBitWidth() * 2);
5773          Diag(IdLoc, diag::warn_enumerator_too_large)
5774            << EnumVal.toString(10);
5775        } else {
5776          EltTy = T;
5777        }
5778
5779        // Retrieve the last enumerator's value, extent that type to the
5780        // type that is supposed to be large enough to represent the incremented
5781        // value, then increment.
5782        EnumVal = LastEnumConst->getInitVal();
5783        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
5784        EnumVal.zextOrTrunc(Context.getTypeSize(EltTy));
5785        ++EnumVal;
5786
5787        // If we're not in C++, diagnose the overflow of enumerator values,
5788        // which in C99 means that the enumerator value is not representable in
5789        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
5790        // permits enumerator values that are representable in some larger
5791        // integral type.
5792        if (!getLangOptions().CPlusPlus && !T.isNull())
5793          Diag(IdLoc, diag::warn_enum_value_overflow);
5794      } else if (!getLangOptions().CPlusPlus &&
5795                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
5796        // Enforce C99 6.7.2.2p2 even when we compute the next value.
5797        Diag(IdLoc, diag::ext_enum_value_not_int)
5798          << EnumVal.toString(10) << 1;
5799      }
5800    }
5801  }
5802
5803  if (!Enum->isDependentType()) {
5804    // Make the enumerator value match the signedness and size of the
5805    // enumerator's type.
5806    EnumVal.zextOrTrunc(Context.getTypeSize(EltTy));
5807    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
5808  }
5809
5810  val.release();
5811  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
5812                                  Val, EnumVal);
5813}
5814
5815
5816Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
5817                                        DeclPtrTy lastEnumConst,
5818                                        SourceLocation IdLoc,
5819                                        IdentifierInfo *Id,
5820                                        SourceLocation EqualLoc, ExprTy *val) {
5821  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
5822  EnumConstantDecl *LastEnumConst =
5823    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
5824  Expr *Val = static_cast<Expr*>(val);
5825
5826  // The scope passed in may not be a decl scope.  Zip up the scope tree until
5827  // we find one that is.
5828  S = getNonFieldDeclScope(S);
5829
5830  // Verify that there isn't already something declared with this name in this
5831  // scope.
5832  NamedDecl *PrevDecl = LookupSingleName(S, Id, LookupOrdinaryName,
5833                                         ForRedeclaration);
5834  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5835    // Maybe we will complain about the shadowed template parameter.
5836    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
5837    // Just pretend that we didn't see the previous declaration.
5838    PrevDecl = 0;
5839  }
5840
5841  if (PrevDecl) {
5842    // When in C++, we may get a TagDecl with the same name; in this case the
5843    // enum constant will 'hide' the tag.
5844    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
5845           "Received TagDecl when not in C++!");
5846    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
5847      if (isa<EnumConstantDecl>(PrevDecl))
5848        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
5849      else
5850        Diag(IdLoc, diag::err_redefinition) << Id;
5851      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5852      if (Val) Val->Destroy(Context);
5853      return DeclPtrTy();
5854    }
5855  }
5856
5857  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
5858                                            IdLoc, Id, Owned(Val));
5859
5860  // Register this decl in the current scope stack.
5861  if (New) {
5862    New->setAccess(TheEnumDecl->getAccess());
5863    PushOnScopeChains(New, S);
5864  }
5865
5866  return DeclPtrTy::make(New);
5867}
5868
5869void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
5870                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
5871                         DeclPtrTy *Elements, unsigned NumElements,
5872                         Scope *S, AttributeList *Attr) {
5873  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
5874  QualType EnumType = Context.getTypeDeclType(Enum);
5875
5876  if (Attr)
5877    ProcessDeclAttributeList(S, Enum, Attr);
5878
5879  if (Enum->isDependentType()) {
5880    for (unsigned i = 0; i != NumElements; ++i) {
5881      EnumConstantDecl *ECD =
5882        cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5883      if (!ECD) continue;
5884
5885      ECD->setType(EnumType);
5886    }
5887
5888    Enum->completeDefinition(Context, Context.DependentTy, Context.DependentTy);
5889    return;
5890  }
5891
5892  // TODO: If the result value doesn't fit in an int, it must be a long or long
5893  // long value.  ISO C does not support this, but GCC does as an extension,
5894  // emit a warning.
5895  unsigned IntWidth = Context.Target.getIntWidth();
5896  unsigned CharWidth = Context.Target.getCharWidth();
5897  unsigned ShortWidth = Context.Target.getShortWidth();
5898
5899  // Verify that all the values are okay, compute the size of the values, and
5900  // reverse the list.
5901  unsigned NumNegativeBits = 0;
5902  unsigned NumPositiveBits = 0;
5903
5904  // Keep track of whether all elements have type int.
5905  bool AllElementsInt = true;
5906
5907  for (unsigned i = 0; i != NumElements; ++i) {
5908    EnumConstantDecl *ECD =
5909      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5910    if (!ECD) continue;  // Already issued a diagnostic.
5911
5912    const llvm::APSInt &InitVal = ECD->getInitVal();
5913
5914    // Keep track of the size of positive and negative values.
5915    if (InitVal.isUnsigned() || InitVal.isNonNegative())
5916      NumPositiveBits = std::max(NumPositiveBits,
5917                                 (unsigned)InitVal.getActiveBits());
5918    else
5919      NumNegativeBits = std::max(NumNegativeBits,
5920                                 (unsigned)InitVal.getMinSignedBits());
5921
5922    // Keep track of whether every enum element has type int (very commmon).
5923    if (AllElementsInt)
5924      AllElementsInt = ECD->getType() == Context.IntTy;
5925  }
5926
5927  // Figure out the type that should be used for this enum.
5928  // FIXME: Support -fshort-enums.
5929  QualType BestType;
5930  unsigned BestWidth;
5931
5932  // C++0x N3000 [conv.prom]p3:
5933  //   An rvalue of an unscoped enumeration type whose underlying
5934  //   type is not fixed can be converted to an rvalue of the first
5935  //   of the following types that can represent all the values of
5936  //   the enumeration: int, unsigned int, long int, unsigned long
5937  //   int, long long int, or unsigned long long int.
5938  // C99 6.4.4.3p2:
5939  //   An identifier declared as an enumeration constant has type int.
5940  // The C99 rule is modified by a gcc extension
5941  QualType BestPromotionType;
5942
5943  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
5944
5945  if (NumNegativeBits) {
5946    // If there is a negative value, figure out the smallest integer type (of
5947    // int/long/longlong) that fits.
5948    // If it's packed, check also if it fits a char or a short.
5949    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
5950      BestType = Context.SignedCharTy;
5951      BestWidth = CharWidth;
5952    } else if (Packed && NumNegativeBits <= ShortWidth &&
5953               NumPositiveBits < ShortWidth) {
5954      BestType = Context.ShortTy;
5955      BestWidth = ShortWidth;
5956    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
5957      BestType = Context.IntTy;
5958      BestWidth = IntWidth;
5959    } else {
5960      BestWidth = Context.Target.getLongWidth();
5961
5962      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
5963        BestType = Context.LongTy;
5964      } else {
5965        BestWidth = Context.Target.getLongLongWidth();
5966
5967        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
5968          Diag(Enum->getLocation(), diag::warn_enum_too_large);
5969        BestType = Context.LongLongTy;
5970      }
5971    }
5972    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
5973  } else {
5974    // If there is no negative value, figure out the smallest type that fits
5975    // all of the enumerator values.
5976    // If it's packed, check also if it fits a char or a short.
5977    if (Packed && NumPositiveBits <= CharWidth) {
5978      BestType = Context.UnsignedCharTy;
5979      BestPromotionType = Context.IntTy;
5980      BestWidth = CharWidth;
5981    } else if (Packed && NumPositiveBits <= ShortWidth) {
5982      BestType = Context.UnsignedShortTy;
5983      BestPromotionType = Context.IntTy;
5984      BestWidth = ShortWidth;
5985    } else if (NumPositiveBits <= IntWidth) {
5986      BestType = Context.UnsignedIntTy;
5987      BestWidth = IntWidth;
5988      BestPromotionType
5989        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
5990                           ? Context.UnsignedIntTy : Context.IntTy;
5991    } else if (NumPositiveBits <=
5992               (BestWidth = Context.Target.getLongWidth())) {
5993      BestType = Context.UnsignedLongTy;
5994      BestPromotionType
5995        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
5996                           ? Context.UnsignedLongTy : Context.LongTy;
5997    } else {
5998      BestWidth = Context.Target.getLongLongWidth();
5999      assert(NumPositiveBits <= BestWidth &&
6000             "How could an initializer get larger than ULL?");
6001      BestType = Context.UnsignedLongLongTy;
6002      BestPromotionType
6003        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6004                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
6005    }
6006  }
6007
6008  // Loop over all of the enumerator constants, changing their types to match
6009  // the type of the enum if needed.
6010  for (unsigned i = 0; i != NumElements; ++i) {
6011    EnumConstantDecl *ECD =
6012      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6013    if (!ECD) continue;  // Already issued a diagnostic.
6014
6015    // Standard C says the enumerators have int type, but we allow, as an
6016    // extension, the enumerators to be larger than int size.  If each
6017    // enumerator value fits in an int, type it as an int, otherwise type it the
6018    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
6019    // that X has type 'int', not 'unsigned'.
6020
6021    // Determine whether the value fits into an int.
6022    llvm::APSInt InitVal = ECD->getInitVal();
6023
6024    // If it fits into an integer type, force it.  Otherwise force it to match
6025    // the enum decl type.
6026    QualType NewTy;
6027    unsigned NewWidth;
6028    bool NewSign;
6029    if (!getLangOptions().CPlusPlus &&
6030        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
6031      NewTy = Context.IntTy;
6032      NewWidth = IntWidth;
6033      NewSign = true;
6034    } else if (ECD->getType() == BestType) {
6035      // Already the right type!
6036      if (getLangOptions().CPlusPlus)
6037        // C++ [dcl.enum]p4: Following the closing brace of an
6038        // enum-specifier, each enumerator has the type of its
6039        // enumeration.
6040        ECD->setType(EnumType);
6041      continue;
6042    } else {
6043      NewTy = BestType;
6044      NewWidth = BestWidth;
6045      NewSign = BestType->isSignedIntegerType();
6046    }
6047
6048    // Adjust the APSInt value.
6049    InitVal.extOrTrunc(NewWidth);
6050    InitVal.setIsSigned(NewSign);
6051    ECD->setInitVal(InitVal);
6052
6053    // Adjust the Expr initializer and type.
6054    if (ECD->getInitExpr())
6055      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
6056                                                      CastExpr::CK_IntegralCast,
6057                                                      ECD->getInitExpr(),
6058                                                      /*isLvalue=*/false));
6059    if (getLangOptions().CPlusPlus)
6060      // C++ [dcl.enum]p4: Following the closing brace of an
6061      // enum-specifier, each enumerator has the type of its
6062      // enumeration.
6063      ECD->setType(EnumType);
6064    else
6065      ECD->setType(NewTy);
6066  }
6067
6068  Enum->completeDefinition(Context, BestType, BestPromotionType);
6069}
6070
6071Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
6072                                            ExprArg expr) {
6073  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
6074
6075  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
6076                                                   Loc, AsmString);
6077  CurContext->addDecl(New);
6078  return DeclPtrTy::make(New);
6079}
6080
6081void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
6082                             SourceLocation PragmaLoc,
6083                             SourceLocation NameLoc) {
6084  Decl *PrevDecl = LookupSingleName(TUScope, Name, LookupOrdinaryName);
6085
6086  if (PrevDecl) {
6087    PrevDecl->addAttr(::new (Context) WeakAttr());
6088  } else {
6089    (void)WeakUndeclaredIdentifiers.insert(
6090      std::pair<IdentifierInfo*,WeakInfo>
6091        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
6092  }
6093}
6094
6095void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
6096                                IdentifierInfo* AliasName,
6097                                SourceLocation PragmaLoc,
6098                                SourceLocation NameLoc,
6099                                SourceLocation AliasNameLoc) {
6100  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, LookupOrdinaryName);
6101  WeakInfo W = WeakInfo(Name, NameLoc);
6102
6103  if (PrevDecl) {
6104    if (!PrevDecl->hasAttr<AliasAttr>())
6105      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
6106        DeclApplyPragmaWeak(TUScope, ND, W);
6107  } else {
6108    (void)WeakUndeclaredIdentifiers.insert(
6109      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
6110  }
6111}
6112