SemaDecl.cpp revision afcc7b425bcdc8ef8092f5f510486d2f246c2d86
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/Parse/DeclSpec.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Basic/SourceManager.h"
24// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "llvm/ADT/SmallSet.h"
28#include "llvm/ADT/STLExtras.h"
29#include <algorithm>
30#include <functional>
31using namespace clang;
32
33/// \brief If the identifier refers to a type name within this scope,
34/// return the declaration of that type.
35///
36/// This routine performs ordinary name lookup of the identifier II
37/// within the given scope, with optional C++ scope specifier SS, to
38/// determine whether the name refers to a type. If so, returns an
39/// opaque pointer (actually a QualType) corresponding to that
40/// type. Otherwise, returns NULL.
41///
42/// If name lookup results in an ambiguity, this routine will complain
43/// and then return NULL.
44Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
45                                Scope *S, const CXXScopeSpec *SS) {
46  NamedDecl *IIDecl = 0;
47  LookupResult Result = LookupParsedName(S, SS, &II, LookupOrdinaryName,
48                                         false, false);
49  switch (Result.getKind()) {
50  case LookupResult::NotFound:
51  case LookupResult::FoundOverloaded:
52    return 0;
53
54  case LookupResult::AmbiguousBaseSubobjectTypes:
55  case LookupResult::AmbiguousBaseSubobjects:
56  case LookupResult::AmbiguousReference:
57    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
58    return 0;
59
60  case LookupResult::Found:
61    IIDecl = Result.getAsDecl();
62    break;
63  }
64
65  if (IIDecl) {
66    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
67      // If this typename is deprecated, emit a warning.
68      DiagnoseUseOfDeprecatedDecl(IIDecl, NameLoc);
69
70      return Context.getTypeDeclType(TD).getAsOpaquePtr();
71    }
72
73    if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
74      // If this typename is deprecated, emit a warning.
75      DiagnoseUseOfDeprecatedDecl(IIDecl, NameLoc);
76
77      return Context.getObjCInterfaceType(IDecl).getAsOpaquePtr();
78    }
79
80    // Otherwise, could be a variable, function etc.
81  }
82  return 0;
83}
84
85DeclContext *Sema::getContainingDC(DeclContext *DC) {
86  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
87    // A C++ out-of-line method will return to the file declaration context.
88    if (MD->isOutOfLineDefinition())
89      return MD->getLexicalDeclContext();
90
91    // A C++ inline method is parsed *after* the topmost class it was declared
92    // in is fully parsed (it's "complete").
93    // The parsing of a C++ inline method happens at the declaration context of
94    // the topmost (non-nested) class it is lexically declared in.
95    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
96    DC = MD->getParent();
97    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
98      DC = RD;
99
100    // Return the declaration context of the topmost class the inline method is
101    // declared in.
102    return DC;
103  }
104
105  if (isa<ObjCMethodDecl>(DC))
106    return Context.getTranslationUnitDecl();
107
108  return DC->getLexicalParent();
109}
110
111void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
112  assert(getContainingDC(DC) == CurContext &&
113      "The next DeclContext should be lexically contained in the current one.");
114  CurContext = DC;
115  S->setEntity(DC);
116}
117
118void Sema::PopDeclContext() {
119  assert(CurContext && "DeclContext imbalance!");
120
121  CurContext = getContainingDC(CurContext);
122}
123
124/// \brief Determine whether we allow overloading of the function
125/// PrevDecl with another declaration.
126///
127/// This routine determines whether overloading is possible, not
128/// whether some new function is actually an overload. It will return
129/// true in C++ (where we can always provide overloads) or, as an
130/// extension, in C when the previous function is already an
131/// overloaded function declaration or has the "overloadable"
132/// attribute.
133static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
134  if (Context.getLangOptions().CPlusPlus)
135    return true;
136
137  if (isa<OverloadedFunctionDecl>(PrevDecl))
138    return true;
139
140  return PrevDecl->getAttr<OverloadableAttr>() != 0;
141}
142
143/// Add this decl to the scope shadowed decl chains.
144void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
145  // Move up the scope chain until we find the nearest enclosing
146  // non-transparent context. The declaration will be introduced into this
147  // scope.
148  while (S->getEntity() &&
149         ((DeclContext *)S->getEntity())->isTransparentContext())
150    S = S->getParent();
151
152  S->AddDecl(D);
153
154  // Add scoped declarations into their context, so that they can be
155  // found later. Declarations without a context won't be inserted
156  // into any context.
157  CurContext->addDecl(D);
158
159  // C++ [basic.scope]p4:
160  //   -- exactly one declaration shall declare a class name or
161  //   enumeration name that is not a typedef name and the other
162  //   declarations shall all refer to the same object or
163  //   enumerator, or all refer to functions and function templates;
164  //   in this case the class name or enumeration name is hidden.
165  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
166    // We are pushing the name of a tag (enum or class).
167    if (CurContext->getLookupContext()
168          == TD->getDeclContext()->getLookupContext()) {
169      // We're pushing the tag into the current context, which might
170      // require some reshuffling in the identifier resolver.
171      IdentifierResolver::iterator
172        I = IdResolver.begin(TD->getDeclName()),
173        IEnd = IdResolver.end();
174      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
175        NamedDecl *PrevDecl = *I;
176        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
177             PrevDecl = *I, ++I) {
178          if (TD->declarationReplaces(*I)) {
179            // This is a redeclaration. Remove it from the chain and
180            // break out, so that we'll add in the shadowed
181            // declaration.
182            S->RemoveDecl(*I);
183            if (PrevDecl == *I) {
184              IdResolver.RemoveDecl(*I);
185              IdResolver.AddDecl(TD);
186              return;
187            } else {
188              IdResolver.RemoveDecl(*I);
189              break;
190            }
191          }
192        }
193
194        // There is already a declaration with the same name in the same
195        // scope, which is not a tag declaration. It must be found
196        // before we find the new declaration, so insert the new
197        // declaration at the end of the chain.
198        IdResolver.AddShadowedDecl(TD, PrevDecl);
199
200        return;
201      }
202    }
203  } else if (isa<FunctionDecl>(D) &&
204             AllowOverloadingOfFunction(D, Context)) {
205    // We are pushing the name of a function, which might be an
206    // overloaded name.
207    FunctionDecl *FD = cast<FunctionDecl>(D);
208    IdentifierResolver::iterator Redecl
209      = std::find_if(IdResolver.begin(FD->getDeclName()),
210                     IdResolver.end(),
211                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
212                                  FD));
213    if (Redecl != IdResolver.end()) {
214      // There is already a declaration of a function on our
215      // IdResolver chain. Replace it with this declaration.
216      S->RemoveDecl(*Redecl);
217      IdResolver.RemoveDecl(*Redecl);
218    }
219  }
220
221  IdResolver.AddDecl(D);
222}
223
224void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
225  if (S->decl_empty()) return;
226  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
227	 "Scope shouldn't contain decls!");
228
229  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
230       I != E; ++I) {
231    Decl *TmpD = static_cast<Decl*>(*I);
232    assert(TmpD && "This decl didn't get pushed??");
233
234    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
235    NamedDecl *D = cast<NamedDecl>(TmpD);
236
237    if (!D->getDeclName()) continue;
238
239    // Remove this name from our lexical scope.
240    IdResolver.RemoveDecl(D);
241  }
242}
243
244/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
245/// return 0 if one not found.
246ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
247  // The third "scope" argument is 0 since we aren't enabling lazy built-in
248  // creation from this context.
249  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
250
251  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
252}
253
254/// getNonFieldDeclScope - Retrieves the innermost scope, starting
255/// from S, where a non-field would be declared. This routine copes
256/// with the difference between C and C++ scoping rules in structs and
257/// unions. For example, the following code is well-formed in C but
258/// ill-formed in C++:
259/// @code
260/// struct S6 {
261///   enum { BAR } e;
262/// };
263///
264/// void test_S6() {
265///   struct S6 a;
266///   a.e = BAR;
267/// }
268/// @endcode
269/// For the declaration of BAR, this routine will return a different
270/// scope. The scope S will be the scope of the unnamed enumeration
271/// within S6. In C++, this routine will return the scope associated
272/// with S6, because the enumeration's scope is a transparent
273/// context but structures can contain non-field names. In C, this
274/// routine will return the translation unit scope, since the
275/// enumeration's scope is a transparent context and structures cannot
276/// contain non-field names.
277Scope *Sema::getNonFieldDeclScope(Scope *S) {
278  while (((S->getFlags() & Scope::DeclScope) == 0) ||
279         (S->getEntity() &&
280          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
281         (S->isClassScope() && !getLangOptions().CPlusPlus))
282    S = S->getParent();
283  return S;
284}
285
286void Sema::InitBuiltinVaListType() {
287  if (!Context.getBuiltinVaListType().isNull())
288    return;
289
290  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
291  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
292  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
293  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
294}
295
296/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
297/// file scope.  lazily create a decl for it. ForRedeclaration is true
298/// if we're creating this built-in in anticipation of redeclaring the
299/// built-in.
300NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
301                                     Scope *S, bool ForRedeclaration,
302                                     SourceLocation Loc) {
303  Builtin::ID BID = (Builtin::ID)bid;
304
305  if (Context.BuiltinInfo.hasVAListUse(BID))
306    InitBuiltinVaListType();
307
308  Builtin::Context::GetBuiltinTypeError Error;
309  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context, Error);
310  switch (Error) {
311  case Builtin::Context::GE_None:
312    // Okay
313    break;
314
315  case Builtin::Context::GE_Missing_FILE:
316    if (ForRedeclaration)
317      Diag(Loc, diag::err_implicit_decl_requires_stdio)
318        << Context.BuiltinInfo.GetName(BID);
319    return 0;
320  }
321
322  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
323    Diag(Loc, diag::ext_implicit_lib_function_decl)
324      << Context.BuiltinInfo.GetName(BID)
325      << R;
326    if (Context.BuiltinInfo.getHeaderName(BID) &&
327        Diags.getDiagnosticMapping(diag::ext_implicit_lib_function_decl)
328          != diag::MAP_IGNORE)
329      Diag(Loc, diag::note_please_include_header)
330        << Context.BuiltinInfo.getHeaderName(BID)
331        << Context.BuiltinInfo.GetName(BID);
332  }
333
334  FunctionDecl *New = FunctionDecl::Create(Context,
335                                           Context.getTranslationUnitDecl(),
336                                           Loc, II, R,
337                                           FunctionDecl::Extern, false);
338  New->setImplicit();
339
340  // Create Decl objects for each parameter, adding them to the
341  // FunctionDecl.
342  if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(R)) {
343    llvm::SmallVector<ParmVarDecl*, 16> Params;
344    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
345      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
346                                           FT->getArgType(i), VarDecl::None, 0));
347    New->setParams(Context, &Params[0], Params.size());
348  }
349
350  AddKnownFunctionAttributes(New);
351
352  // TUScope is the translation-unit scope to insert this function into.
353  // FIXME: This is hideous. We need to teach PushOnScopeChains to
354  // relate Scopes to DeclContexts, and probably eliminate CurContext
355  // entirely, but we're not there yet.
356  DeclContext *SavedContext = CurContext;
357  CurContext = Context.getTranslationUnitDecl();
358  PushOnScopeChains(New, TUScope);
359  CurContext = SavedContext;
360  return New;
361}
362
363/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
364/// everything from the standard library is defined.
365NamespaceDecl *Sema::GetStdNamespace() {
366  if (!StdNamespace) {
367    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
368    DeclContext *Global = Context.getTranslationUnitDecl();
369    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
370    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
371  }
372  return StdNamespace;
373}
374
375/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
376/// same name and scope as a previous declaration 'Old'.  Figure out
377/// how to resolve this situation, merging decls or emitting
378/// diagnostics as appropriate. Returns true if there was an error,
379/// false otherwise.
380///
381bool Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
382  bool objc_types = false;
383  // Allow multiple definitions for ObjC built-in typedefs.
384  // FIXME: Verify the underlying types are equivalent!
385  if (getLangOptions().ObjC1) {
386    const IdentifierInfo *TypeID = New->getIdentifier();
387    switch (TypeID->getLength()) {
388    default: break;
389    case 2:
390      if (!TypeID->isStr("id"))
391        break;
392      Context.setObjCIdType(New);
393      objc_types = true;
394      break;
395    case 5:
396      if (!TypeID->isStr("Class"))
397        break;
398      Context.setObjCClassType(New);
399      objc_types = true;
400      return false;
401    case 3:
402      if (!TypeID->isStr("SEL"))
403        break;
404      Context.setObjCSelType(New);
405      objc_types = true;
406      return false;
407    case 8:
408      if (!TypeID->isStr("Protocol"))
409        break;
410      Context.setObjCProtoType(New->getUnderlyingType());
411      objc_types = true;
412      return false;
413    }
414    // Fall through - the typedef name was not a builtin type.
415  }
416  // Verify the old decl was also a type.
417  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
418  if (!Old) {
419    Diag(New->getLocation(), diag::err_redefinition_different_kind)
420      << New->getDeclName();
421    if (!objc_types)
422      Diag(OldD->getLocation(), diag::note_previous_definition);
423    return true;
424  }
425
426  // Determine the "old" type we'll use for checking and diagnostics.
427  QualType OldType;
428  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
429    OldType = OldTypedef->getUnderlyingType();
430  else
431    OldType = Context.getTypeDeclType(Old);
432
433  // If the typedef types are not identical, reject them in all languages and
434  // with any extensions enabled.
435
436  if (OldType != New->getUnderlyingType() &&
437      Context.getCanonicalType(OldType) !=
438      Context.getCanonicalType(New->getUnderlyingType())) {
439    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
440      << New->getUnderlyingType() << OldType;
441    if (!objc_types)
442      Diag(Old->getLocation(), diag::note_previous_definition);
443    return true;
444  }
445  if (objc_types) return false;
446  if (getLangOptions().Microsoft) return false;
447
448  // C++ [dcl.typedef]p2:
449  //   In a given non-class scope, a typedef specifier can be used to
450  //   redefine the name of any type declared in that scope to refer
451  //   to the type to which it already refers.
452  if (getLangOptions().CPlusPlus && !isa<CXXRecordDecl>(CurContext))
453    return false;
454
455  // In C, redeclaration of a type is a constraint violation (6.7.2.3p1).
456  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
457  // *either* declaration is in a system header. The code below implements
458  // this adhoc compatibility rule. FIXME: The following code will not
459  // work properly when compiling ".i" files (containing preprocessed output).
460  if (PP.getDiagnostics().getSuppressSystemWarnings()) {
461    SourceManager &SrcMgr = Context.getSourceManager();
462    if (SrcMgr.isInSystemHeader(Old->getLocation()))
463      return false;
464    if (SrcMgr.isInSystemHeader(New->getLocation()))
465      return false;
466  }
467
468  Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
469  Diag(Old->getLocation(), diag::note_previous_definition);
470  return true;
471}
472
473/// DeclhasAttr - returns true if decl Declaration already has the target
474/// attribute.
475static bool DeclHasAttr(const Decl *decl, const Attr *target) {
476  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
477    if (attr->getKind() == target->getKind())
478      return true;
479
480  return false;
481}
482
483/// MergeAttributes - append attributes from the Old decl to the New one.
484static void MergeAttributes(Decl *New, Decl *Old) {
485  Attr *attr = const_cast<Attr*>(Old->getAttrs()), *tmp;
486
487  while (attr) {
488    tmp = attr;
489    attr = attr->getNext();
490
491    if (!DeclHasAttr(New, tmp) && tmp->isMerged()) {
492      tmp->setInherited(true);
493      New->addAttr(tmp);
494    } else {
495      tmp->setNext(0);
496      delete(tmp);
497    }
498  }
499
500  Old->invalidateAttrs();
501}
502
503/// MergeFunctionDecl - We just parsed a function 'New' from
504/// declarator D which has the same name and scope as a previous
505/// declaration 'Old'.  Figure out how to resolve this situation,
506/// merging decls or emitting diagnostics as appropriate.
507///
508/// In C++, New and Old must be declarations that are not
509/// overloaded. Use IsOverload to determine whether New and Old are
510/// overloaded, and to select the Old declaration that New should be
511/// merged with.
512///
513/// Returns true if there was an error, false otherwise.
514bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
515  assert(!isa<OverloadedFunctionDecl>(OldD) &&
516         "Cannot merge with an overloaded function declaration");
517
518  // Verify the old decl was also a function.
519  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
520  if (!Old) {
521    Diag(New->getLocation(), diag::err_redefinition_different_kind)
522      << New->getDeclName();
523    Diag(OldD->getLocation(), diag::note_previous_definition);
524    return true;
525  }
526
527  // Determine whether the previous declaration was a definition,
528  // implicit declaration, or a declaration.
529  diag::kind PrevDiag;
530  if (Old->isThisDeclarationADefinition())
531    PrevDiag = diag::note_previous_definition;
532  else if (Old->isImplicit())
533    PrevDiag = diag::note_previous_implicit_declaration;
534  else
535    PrevDiag = diag::note_previous_declaration;
536
537  QualType OldQType = Context.getCanonicalType(Old->getType());
538  QualType NewQType = Context.getCanonicalType(New->getType());
539
540  if (getLangOptions().CPlusPlus) {
541    // (C++98 13.1p2):
542    //   Certain function declarations cannot be overloaded:
543    //     -- Function declarations that differ only in the return type
544    //        cannot be overloaded.
545    QualType OldReturnType
546      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
547    QualType NewReturnType
548      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
549    if (OldReturnType != NewReturnType) {
550      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
551      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
552      return true;
553    }
554
555    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
556    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
557    if (OldMethod && NewMethod) {
558      //    -- Member function declarations with the same name and the
559      //       same parameter types cannot be overloaded if any of them
560      //       is a static member function declaration.
561      if (OldMethod->isStatic() || NewMethod->isStatic()) {
562        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
563        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
564        return true;
565      }
566
567      // C++ [class.mem]p1:
568      //   [...] A member shall not be declared twice in the
569      //   member-specification, except that a nested class or member
570      //   class template can be declared and then later defined.
571      if (OldMethod->getLexicalDeclContext() ==
572            NewMethod->getLexicalDeclContext()) {
573        unsigned NewDiag;
574        if (isa<CXXConstructorDecl>(OldMethod))
575          NewDiag = diag::err_constructor_redeclared;
576        else if (isa<CXXDestructorDecl>(NewMethod))
577          NewDiag = diag::err_destructor_redeclared;
578        else if (isa<CXXConversionDecl>(NewMethod))
579          NewDiag = diag::err_conv_function_redeclared;
580        else
581          NewDiag = diag::err_member_redeclared;
582
583        Diag(New->getLocation(), NewDiag);
584        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
585      }
586    }
587
588    // (C++98 8.3.5p3):
589    //   All declarations for a function shall agree exactly in both the
590    //   return type and the parameter-type-list.
591    if (OldQType == NewQType) {
592      // We have a redeclaration.
593      MergeAttributes(New, Old);
594      return MergeCXXFunctionDecl(New, Old);
595    }
596
597    // Fall through for conflicting redeclarations and redefinitions.
598  }
599
600  // C: Function types need to be compatible, not identical. This handles
601  // duplicate function decls like "void f(int); void f(enum X);" properly.
602  if (!getLangOptions().CPlusPlus &&
603      Context.typesAreCompatible(OldQType, NewQType)) {
604    const FunctionType *NewFuncType = NewQType->getAsFunctionType();
605    const FunctionTypeProto *OldProto = 0;
606    if (isa<FunctionTypeNoProto>(NewFuncType) &&
607        (OldProto = OldQType->getAsFunctionTypeProto())) {
608      // The old declaration provided a function prototype, but the
609      // new declaration does not. Merge in the prototype.
610      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
611                                                 OldProto->arg_type_end());
612      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
613                                         &ParamTypes[0], ParamTypes.size(),
614                                         OldProto->isVariadic(),
615                                         OldProto->getTypeQuals());
616      New->setType(NewQType);
617      New->setInheritedPrototype();
618
619      // Synthesize a parameter for each argument type.
620      llvm::SmallVector<ParmVarDecl*, 16> Params;
621      for (FunctionTypeProto::arg_type_iterator
622             ParamType = OldProto->arg_type_begin(),
623             ParamEnd = OldProto->arg_type_end();
624           ParamType != ParamEnd; ++ParamType) {
625        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
626                                                 SourceLocation(), 0,
627                                                 *ParamType, VarDecl::None,
628                                                 0);
629        Param->setImplicit();
630        Params.push_back(Param);
631      }
632
633      New->setParams(Context, &Params[0], Params.size());
634
635    }
636
637    MergeAttributes(New, Old);
638
639    return false;
640  }
641
642  // A function that has already been declared has been redeclared or defined
643  // with a different type- show appropriate diagnostic
644  if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
645    // The user has declared a builtin function with an incompatible
646    // signature.
647    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
648      // The function the user is redeclaring is a library-defined
649      // function like 'malloc' or 'printf'. Warn about the
650      // redeclaration, then ignore it.
651      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
652      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
653        << Old << Old->getType();
654      return false;
655    }
656
657    PrevDiag = diag::note_previous_builtin_declaration;
658  }
659
660  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
661  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
662  return true;
663}
664
665/// Predicate for C "tentative" external object definitions (C99 6.9.2).
666static bool isTentativeDefinition(VarDecl *VD) {
667  if (VD->isFileVarDecl())
668    return (!VD->getInit() &&
669            (VD->getStorageClass() == VarDecl::None ||
670             VD->getStorageClass() == VarDecl::Static));
671  return false;
672}
673
674/// CheckForFileScopedRedefinitions - Make sure we forgo redefinition errors
675/// when dealing with C "tentative" external object definitions (C99 6.9.2).
676void Sema::CheckForFileScopedRedefinitions(Scope *S, VarDecl *VD) {
677  bool VDIsTentative = isTentativeDefinition(VD);
678  bool VDIsIncompleteArray = VD->getType()->isIncompleteArrayType();
679
680  // FIXME: I don't think this will actually see all of the
681  // redefinitions. Can't we check this property on-the-fly?
682  for (IdentifierResolver::iterator I = IdResolver.begin(VD->getIdentifier()),
683                                    E = IdResolver.end();
684       I != E; ++I) {
685    if (*I != VD && isDeclInScope(*I, VD->getDeclContext(), S)) {
686      VarDecl *OldDecl = dyn_cast<VarDecl>(*I);
687
688      // Handle the following case:
689      //   int a[10];
690      //   int a[];   - the code below makes sure we set the correct type.
691      //   int a[11]; - this is an error, size isn't 10.
692      if (OldDecl && VDIsTentative && VDIsIncompleteArray &&
693          OldDecl->getType()->isConstantArrayType())
694        VD->setType(OldDecl->getType());
695
696      // Check for "tentative" definitions. We can't accomplish this in
697      // MergeVarDecl since the initializer hasn't been attached.
698      if (!OldDecl || isTentativeDefinition(OldDecl) || VDIsTentative)
699        continue;
700
701      // Handle __private_extern__ just like extern.
702      if (OldDecl->getStorageClass() != VarDecl::Extern &&
703          OldDecl->getStorageClass() != VarDecl::PrivateExtern &&
704          VD->getStorageClass() != VarDecl::Extern &&
705          VD->getStorageClass() != VarDecl::PrivateExtern) {
706        Diag(VD->getLocation(), diag::err_redefinition) << VD->getDeclName();
707        Diag(OldDecl->getLocation(), diag::note_previous_definition);
708        // One redefinition error is enough.
709        break;
710      }
711    }
712  }
713}
714
715/// MergeVarDecl - We just parsed a variable 'New' which has the same name
716/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
717/// situation, merging decls or emitting diagnostics as appropriate.
718///
719/// Tentative definition rules (C99 6.9.2p2) are checked by
720/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
721/// definitions here, since the initializer hasn't been attached.
722///
723bool Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
724  // Verify the old decl was also a variable.
725  VarDecl *Old = dyn_cast<VarDecl>(OldD);
726  if (!Old) {
727    Diag(New->getLocation(), diag::err_redefinition_different_kind)
728      << New->getDeclName();
729    Diag(OldD->getLocation(), diag::note_previous_definition);
730    return true;
731  }
732
733  MergeAttributes(New, Old);
734
735  // Merge the types
736  QualType MergedT = Context.mergeTypes(New->getType(), Old->getType());
737  if (MergedT.isNull()) {
738    Diag(New->getLocation(), diag::err_redefinition_different_type)
739      << New->getDeclName();
740    Diag(Old->getLocation(), diag::note_previous_definition);
741    return true;
742  }
743  New->setType(MergedT);
744  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
745  if (New->getStorageClass() == VarDecl::Static &&
746      (Old->getStorageClass() == VarDecl::None ||
747       Old->getStorageClass() == VarDecl::Extern)) {
748    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
749    Diag(Old->getLocation(), diag::note_previous_definition);
750    return true;
751  }
752  // C99 6.2.2p4: Check if we have a non-static decl followed by a static.
753  if (New->getStorageClass() != VarDecl::Static &&
754      Old->getStorageClass() == VarDecl::Static) {
755    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
756    Diag(Old->getLocation(), diag::note_previous_definition);
757    return true;
758  }
759  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
760  if (New->getStorageClass() != VarDecl::Extern && !New->isFileVarDecl()) {
761    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
762    Diag(Old->getLocation(), diag::note_previous_definition);
763    return true;
764  }
765  return false;
766}
767
768/// CheckParmsForFunctionDef - Check that the parameters of the given
769/// function are appropriate for the definition of a function. This
770/// takes care of any checks that cannot be performed on the
771/// declaration itself, e.g., that the types of each of the function
772/// parameters are complete.
773bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
774  bool HasInvalidParm = false;
775  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
776    ParmVarDecl *Param = FD->getParamDecl(p);
777
778    // C99 6.7.5.3p4: the parameters in a parameter type list in a
779    // function declarator that is part of a function definition of
780    // that function shall not have incomplete type.
781    if (!Param->isInvalidDecl() &&
782        DiagnoseIncompleteType(Param->getLocation(), Param->getType(),
783                               diag::err_typecheck_decl_incomplete_type)) {
784      Param->setInvalidDecl();
785      HasInvalidParm = true;
786    }
787
788    // C99 6.9.1p5: If the declarator includes a parameter type list, the
789    // declaration of each parameter shall include an identifier.
790    if (Param->getIdentifier() == 0 &&
791        !Param->isImplicit() &&
792        !getLangOptions().CPlusPlus)
793      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
794  }
795
796  return HasInvalidParm;
797}
798
799/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
800/// no declarator (e.g. "struct foo;") is parsed.
801Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
802  TagDecl *Tag = 0;
803  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
804      DS.getTypeSpecType() == DeclSpec::TST_struct ||
805      DS.getTypeSpecType() == DeclSpec::TST_union ||
806      DS.getTypeSpecType() == DeclSpec::TST_enum)
807    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
808
809  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
810    if (!Record->getDeclName() && Record->isDefinition() &&
811        DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
812      return BuildAnonymousStructOrUnion(S, DS, Record);
813
814    // Microsoft allows unnamed struct/union fields. Don't complain
815    // about them.
816    // FIXME: Should we support Microsoft's extensions in this area?
817    if (Record->getDeclName() && getLangOptions().Microsoft)
818      return Tag;
819  }
820
821  if (!DS.isMissingDeclaratorOk() &&
822      DS.getTypeSpecType() != DeclSpec::TST_error) {
823    // Warn about typedefs of enums without names, since this is an
824    // extension in both Microsoft an GNU.
825    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
826        Tag && isa<EnumDecl>(Tag)) {
827      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
828        << DS.getSourceRange();
829      return Tag;
830    }
831
832    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
833      << DS.getSourceRange();
834    return 0;
835  }
836
837  return Tag;
838}
839
840/// InjectAnonymousStructOrUnionMembers - Inject the members of the
841/// anonymous struct or union AnonRecord into the owning context Owner
842/// and scope S. This routine will be invoked just after we realize
843/// that an unnamed union or struct is actually an anonymous union or
844/// struct, e.g.,
845///
846/// @code
847/// union {
848///   int i;
849///   float f;
850/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
851///    // f into the surrounding scope.x
852/// @endcode
853///
854/// This routine is recursive, injecting the names of nested anonymous
855/// structs/unions into the owning context and scope as well.
856bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
857                                               RecordDecl *AnonRecord) {
858  bool Invalid = false;
859  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
860                               FEnd = AnonRecord->field_end();
861       F != FEnd; ++F) {
862    if ((*F)->getDeclName()) {
863      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
864                                                LookupOrdinaryName, true);
865      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
866        // C++ [class.union]p2:
867        //   The names of the members of an anonymous union shall be
868        //   distinct from the names of any other entity in the
869        //   scope in which the anonymous union is declared.
870        unsigned diagKind
871          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
872                                 : diag::err_anonymous_struct_member_redecl;
873        Diag((*F)->getLocation(), diagKind)
874          << (*F)->getDeclName();
875        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
876        Invalid = true;
877      } else {
878        // C++ [class.union]p2:
879        //   For the purpose of name lookup, after the anonymous union
880        //   definition, the members of the anonymous union are
881        //   considered to have been defined in the scope in which the
882        //   anonymous union is declared.
883        Owner->makeDeclVisibleInContext(*F);
884        S->AddDecl(*F);
885        IdResolver.AddDecl(*F);
886      }
887    } else if (const RecordType *InnerRecordType
888                 = (*F)->getType()->getAsRecordType()) {
889      RecordDecl *InnerRecord = InnerRecordType->getDecl();
890      if (InnerRecord->isAnonymousStructOrUnion())
891        Invalid = Invalid ||
892          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
893    }
894  }
895
896  return Invalid;
897}
898
899/// ActOnAnonymousStructOrUnion - Handle the declaration of an
900/// anonymous structure or union. Anonymous unions are a C++ feature
901/// (C++ [class.union]) and a GNU C extension; anonymous structures
902/// are a GNU C and GNU C++ extension.
903Sema::DeclTy *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
904                                                RecordDecl *Record) {
905  DeclContext *Owner = Record->getDeclContext();
906
907  // Diagnose whether this anonymous struct/union is an extension.
908  if (Record->isUnion() && !getLangOptions().CPlusPlus)
909    Diag(Record->getLocation(), diag::ext_anonymous_union);
910  else if (!Record->isUnion())
911    Diag(Record->getLocation(), diag::ext_anonymous_struct);
912
913  // C and C++ require different kinds of checks for anonymous
914  // structs/unions.
915  bool Invalid = false;
916  if (getLangOptions().CPlusPlus) {
917    const char* PrevSpec = 0;
918    // C++ [class.union]p3:
919    //   Anonymous unions declared in a named namespace or in the
920    //   global namespace shall be declared static.
921    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
922        (isa<TranslationUnitDecl>(Owner) ||
923         (isa<NamespaceDecl>(Owner) &&
924          cast<NamespaceDecl>(Owner)->getDeclName()))) {
925      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
926      Invalid = true;
927
928      // Recover by adding 'static'.
929      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
930    }
931    // C++ [class.union]p3:
932    //   A storage class is not allowed in a declaration of an
933    //   anonymous union in a class scope.
934    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
935             isa<RecordDecl>(Owner)) {
936      Diag(DS.getStorageClassSpecLoc(),
937           diag::err_anonymous_union_with_storage_spec);
938      Invalid = true;
939
940      // Recover by removing the storage specifier.
941      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
942                             PrevSpec);
943    }
944
945    // C++ [class.union]p2:
946    //   The member-specification of an anonymous union shall only
947    //   define non-static data members. [Note: nested types and
948    //   functions cannot be declared within an anonymous union. ]
949    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
950                                 MemEnd = Record->decls_end();
951         Mem != MemEnd; ++Mem) {
952      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
953        // C++ [class.union]p3:
954        //   An anonymous union shall not have private or protected
955        //   members (clause 11).
956        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
957          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
958            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
959          Invalid = true;
960        }
961      } else if ((*Mem)->isImplicit()) {
962        // Any implicit members are fine.
963      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
964        // This is a type that showed up in an
965        // elaborated-type-specifier inside the anonymous struct or
966        // union, but which actually declares a type outside of the
967        // anonymous struct or union. It's okay.
968      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
969        if (!MemRecord->isAnonymousStructOrUnion() &&
970            MemRecord->getDeclName()) {
971          // This is a nested type declaration.
972          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
973            << (int)Record->isUnion();
974          Invalid = true;
975        }
976      } else {
977        // We have something that isn't a non-static data
978        // member. Complain about it.
979        unsigned DK = diag::err_anonymous_record_bad_member;
980        if (isa<TypeDecl>(*Mem))
981          DK = diag::err_anonymous_record_with_type;
982        else if (isa<FunctionDecl>(*Mem))
983          DK = diag::err_anonymous_record_with_function;
984        else if (isa<VarDecl>(*Mem))
985          DK = diag::err_anonymous_record_with_static;
986        Diag((*Mem)->getLocation(), DK)
987            << (int)Record->isUnion();
988          Invalid = true;
989      }
990    }
991  } else {
992    // FIXME: Check GNU C semantics
993    if (Record->isUnion() && !Owner->isRecord()) {
994      Diag(Record->getLocation(), diag::err_anonymous_union_not_member)
995        << (int)getLangOptions().CPlusPlus;
996      Invalid = true;
997    }
998  }
999
1000  if (!Record->isUnion() && !Owner->isRecord()) {
1001    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1002      << (int)getLangOptions().CPlusPlus;
1003    Invalid = true;
1004  }
1005
1006  // Create a declaration for this anonymous struct/union.
1007  NamedDecl *Anon = 0;
1008  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1009    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1010                             /*IdentifierInfo=*/0,
1011                             Context.getTypeDeclType(Record),
1012                             /*BitWidth=*/0, /*Mutable=*/false);
1013    Anon->setAccess(AS_public);
1014    if (getLangOptions().CPlusPlus)
1015      FieldCollector->Add(cast<FieldDecl>(Anon));
1016  } else {
1017    VarDecl::StorageClass SC;
1018    switch (DS.getStorageClassSpec()) {
1019    default: assert(0 && "Unknown storage class!");
1020    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1021    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1022    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1023    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1024    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1025    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1026    case DeclSpec::SCS_mutable:
1027      // mutable can only appear on non-static class members, so it's always
1028      // an error here
1029      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1030      Invalid = true;
1031      SC = VarDecl::None;
1032      break;
1033    }
1034
1035    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1036                           /*IdentifierInfo=*/0,
1037                           Context.getTypeDeclType(Record),
1038                           SC, DS.getSourceRange().getBegin());
1039  }
1040  Anon->setImplicit();
1041
1042  // Add the anonymous struct/union object to the current
1043  // context. We'll be referencing this object when we refer to one of
1044  // its members.
1045  Owner->addDecl(Anon);
1046
1047  // Inject the members of the anonymous struct/union into the owning
1048  // context and into the identifier resolver chain for name lookup
1049  // purposes.
1050  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1051    Invalid = true;
1052
1053  // Mark this as an anonymous struct/union type. Note that we do not
1054  // do this until after we have already checked and injected the
1055  // members of this anonymous struct/union type, because otherwise
1056  // the members could be injected twice: once by DeclContext when it
1057  // builds its lookup table, and once by
1058  // InjectAnonymousStructOrUnionMembers.
1059  Record->setAnonymousStructOrUnion(true);
1060
1061  if (Invalid)
1062    Anon->setInvalidDecl();
1063
1064  return Anon;
1065}
1066
1067bool Sema::CheckSingleInitializer(Expr *&Init, QualType DeclType,
1068                                  bool DirectInit) {
1069  // Get the type before calling CheckSingleAssignmentConstraints(), since
1070  // it can promote the expression.
1071  QualType InitType = Init->getType();
1072
1073  if (getLangOptions().CPlusPlus) {
1074    // FIXME: I dislike this error message. A lot.
1075    if (PerformImplicitConversion(Init, DeclType, "initializing", DirectInit))
1076      return Diag(Init->getSourceRange().getBegin(),
1077                  diag::err_typecheck_convert_incompatible)
1078        << DeclType << Init->getType() << "initializing"
1079        << Init->getSourceRange();
1080
1081    return false;
1082  }
1083
1084  AssignConvertType ConvTy = CheckSingleAssignmentConstraints(DeclType, Init);
1085  return DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType,
1086                                  InitType, Init, "initializing");
1087}
1088
1089bool Sema::CheckStringLiteralInit(StringLiteral *strLiteral, QualType &DeclT) {
1090  const ArrayType *AT = Context.getAsArrayType(DeclT);
1091
1092  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
1093    // C99 6.7.8p14. We have an array of character type with unknown size
1094    // being initialized to a string literal.
1095    llvm::APSInt ConstVal(32);
1096    ConstVal = strLiteral->getByteLength() + 1;
1097    // Return a new array type (C99 6.7.8p22).
1098    DeclT = Context.getConstantArrayType(IAT->getElementType(), ConstVal,
1099                                         ArrayType::Normal, 0);
1100  } else {
1101    const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
1102    // C99 6.7.8p14. We have an array of character type with known size.
1103    // FIXME: Avoid truncation for 64-bit length strings.
1104    if (strLiteral->getByteLength() > (unsigned)CAT->getSize().getZExtValue())
1105      Diag(strLiteral->getSourceRange().getBegin(),
1106           diag::warn_initializer_string_for_char_array_too_long)
1107        << strLiteral->getSourceRange();
1108  }
1109  // Set type from "char *" to "constant array of char".
1110  strLiteral->setType(DeclT);
1111  // For now, we always return false (meaning success).
1112  return false;
1113}
1114
1115StringLiteral *Sema::IsStringLiteralInit(Expr *Init, QualType DeclType) {
1116  const ArrayType *AT = Context.getAsArrayType(DeclType);
1117  if (AT && AT->getElementType()->isCharType()) {
1118    return dyn_cast<StringLiteral>(Init->IgnoreParens());
1119  }
1120  return 0;
1121}
1122
1123bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType,
1124                                 SourceLocation InitLoc,
1125                                 DeclarationName InitEntity,
1126                                 bool DirectInit) {
1127  if (DeclType->isDependentType() || Init->isTypeDependent())
1128    return false;
1129
1130  // C++ [dcl.init.ref]p1:
1131  //   A variable declared to be a T&, that is "reference to type T"
1132  //   (8.3.2), shall be initialized by an object, or function, of
1133  //   type T or by an object that can be converted into a T.
1134  if (DeclType->isReferenceType())
1135    return CheckReferenceInit(Init, DeclType, 0, false, DirectInit);
1136
1137  // C99 6.7.8p3: The type of the entity to be initialized shall be an array
1138  // of unknown size ("[]") or an object type that is not a variable array type.
1139  if (const VariableArrayType *VAT = Context.getAsVariableArrayType(DeclType))
1140    return Diag(InitLoc,  diag::err_variable_object_no_init)
1141      << VAT->getSizeExpr()->getSourceRange();
1142
1143  InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
1144  if (!InitList) {
1145    // FIXME: Handle wide strings
1146    if (StringLiteral *strLiteral = IsStringLiteralInit(Init, DeclType))
1147      return CheckStringLiteralInit(strLiteral, DeclType);
1148
1149    // C++ [dcl.init]p14:
1150    //   -- If the destination type is a (possibly cv-qualified) class
1151    //      type:
1152    if (getLangOptions().CPlusPlus && DeclType->isRecordType()) {
1153      QualType DeclTypeC = Context.getCanonicalType(DeclType);
1154      QualType InitTypeC = Context.getCanonicalType(Init->getType());
1155
1156      //   -- If the initialization is direct-initialization, or if it is
1157      //      copy-initialization where the cv-unqualified version of the
1158      //      source type is the same class as, or a derived class of, the
1159      //      class of the destination, constructors are considered.
1160      if ((DeclTypeC.getUnqualifiedType() == InitTypeC.getUnqualifiedType()) ||
1161          IsDerivedFrom(InitTypeC, DeclTypeC)) {
1162        CXXConstructorDecl *Constructor
1163          = PerformInitializationByConstructor(DeclType, &Init, 1,
1164                                               InitLoc, Init->getSourceRange(),
1165                                               InitEntity,
1166                                               DirectInit? IK_Direct : IK_Copy);
1167        return Constructor == 0;
1168      }
1169
1170      //   -- Otherwise (i.e., for the remaining copy-initialization
1171      //      cases), user-defined conversion sequences that can
1172      //      convert from the source type to the destination type or
1173      //      (when a conversion function is used) to a derived class
1174      //      thereof are enumerated as described in 13.3.1.4, and the
1175      //      best one is chosen through overload resolution
1176      //      (13.3). If the conversion cannot be done or is
1177      //      ambiguous, the initialization is ill-formed. The
1178      //      function selected is called with the initializer
1179      //      expression as its argument; if the function is a
1180      //      constructor, the call initializes a temporary of the
1181      //      destination type.
1182      // FIXME: We're pretending to do copy elision here; return to
1183      // this when we have ASTs for such things.
1184      if (!PerformImplicitConversion(Init, DeclType, "initializing"))
1185        return false;
1186
1187      if (InitEntity)
1188        return Diag(InitLoc, diag::err_cannot_initialize_decl)
1189          << InitEntity << (int)(Init->isLvalue(Context) == Expr::LV_Valid)
1190          << Init->getType() << Init->getSourceRange();
1191      else
1192        return Diag(InitLoc, diag::err_cannot_initialize_decl_noname)
1193          << DeclType << (int)(Init->isLvalue(Context) == Expr::LV_Valid)
1194          << Init->getType() << Init->getSourceRange();
1195    }
1196
1197    // C99 6.7.8p16.
1198    if (DeclType->isArrayType())
1199      return Diag(Init->getLocStart(), diag::err_array_init_list_required)
1200        << Init->getSourceRange();
1201
1202    return CheckSingleInitializer(Init, DeclType, DirectInit);
1203  }
1204
1205  bool hadError = CheckInitList(InitList, DeclType);
1206  Init = InitList;
1207  return hadError;
1208}
1209
1210/// GetNameForDeclarator - Determine the full declaration name for the
1211/// given Declarator.
1212DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1213  switch (D.getKind()) {
1214  case Declarator::DK_Abstract:
1215    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1216    return DeclarationName();
1217
1218  case Declarator::DK_Normal:
1219    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1220    return DeclarationName(D.getIdentifier());
1221
1222  case Declarator::DK_Constructor: {
1223    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1224    Ty = Context.getCanonicalType(Ty);
1225    return Context.DeclarationNames.getCXXConstructorName(Ty);
1226  }
1227
1228  case Declarator::DK_Destructor: {
1229    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1230    Ty = Context.getCanonicalType(Ty);
1231    return Context.DeclarationNames.getCXXDestructorName(Ty);
1232  }
1233
1234  case Declarator::DK_Conversion: {
1235    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1236    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1237    Ty = Context.getCanonicalType(Ty);
1238    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1239  }
1240
1241  case Declarator::DK_Operator:
1242    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1243    return Context.DeclarationNames.getCXXOperatorName(
1244                                                D.getOverloadedOperator());
1245  }
1246
1247  assert(false && "Unknown name kind");
1248  return DeclarationName();
1249}
1250
1251/// isNearlyMatchingFunction - Determine whether the C++ functions
1252/// Declaration and Definition are "nearly" matching. This heuristic
1253/// is used to improve diagnostics in the case where an out-of-line
1254/// function definition doesn't match any declaration within
1255/// the class or namespace.
1256static bool isNearlyMatchingFunction(ASTContext &Context,
1257                                     FunctionDecl *Declaration,
1258                                     FunctionDecl *Definition) {
1259  if (Declaration->param_size() != Definition->param_size())
1260    return false;
1261  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1262    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1263    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1264
1265    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1266    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1267    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1268      return false;
1269  }
1270
1271  return true;
1272}
1273
1274Sema::DeclTy *
1275Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl,
1276                      bool IsFunctionDefinition) {
1277  NamedDecl *LastDeclarator = dyn_cast_or_null<NamedDecl>((Decl *)lastDecl);
1278  DeclarationName Name = GetNameForDeclarator(D);
1279
1280  // All of these full declarators require an identifier.  If it doesn't have
1281  // one, the ParsedFreeStandingDeclSpec action should be used.
1282  if (!Name) {
1283    if (!D.getInvalidType())  // Reject this if we think it is valid.
1284      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1285           diag::err_declarator_need_ident)
1286        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1287    return 0;
1288  }
1289
1290  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1291  // we find one that is.
1292  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1293         (S->getFlags() & Scope::TemplateParamScope) != 0)
1294    S = S->getParent();
1295
1296  DeclContext *DC;
1297  NamedDecl *PrevDecl;
1298  NamedDecl *New;
1299  bool InvalidDecl = false;
1300
1301  // See if this is a redefinition of a variable in the same scope.
1302  if (!D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid()) {
1303    DC = CurContext;
1304    PrevDecl = LookupName(S, Name, LookupOrdinaryName, true,
1305                          D.getDeclSpec().getStorageClassSpec() !=
1306                            DeclSpec::SCS_static,
1307                          D.getIdentifierLoc());
1308  } else { // Something like "int foo::x;"
1309    DC = static_cast<DeclContext*>(D.getCXXScopeSpec().getScopeRep());
1310    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1311
1312    // C++ 7.3.1.2p2:
1313    // Members (including explicit specializations of templates) of a named
1314    // namespace can also be defined outside that namespace by explicit
1315    // qualification of the name being defined, provided that the entity being
1316    // defined was already declared in the namespace and the definition appears
1317    // after the point of declaration in a namespace that encloses the
1318    // declarations namespace.
1319    //
1320    // Note that we only check the context at this point. We don't yet
1321    // have enough information to make sure that PrevDecl is actually
1322    // the declaration we want to match. For example, given:
1323    //
1324    //   class X {
1325    //     void f();
1326    //     void f(float);
1327    //   };
1328    //
1329    //   void X::f(int) { } // ill-formed
1330    //
1331    // In this case, PrevDecl will point to the overload set
1332    // containing the two f's declared in X, but neither of them
1333    // matches.
1334
1335    // First check whether we named the global scope.
1336    if (isa<TranslationUnitDecl>(DC)) {
1337      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1338        << Name << D.getCXXScopeSpec().getRange();
1339    } else if (!CurContext->Encloses(DC)) {
1340      // The qualifying scope doesn't enclose the original declaration.
1341      // Emit diagnostic based on current scope.
1342      SourceLocation L = D.getIdentifierLoc();
1343      SourceRange R = D.getCXXScopeSpec().getRange();
1344      if (isa<FunctionDecl>(CurContext))
1345        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1346      else
1347        Diag(L, diag::err_invalid_declarator_scope)
1348          << Name << cast<NamedDecl>(DC) << R;
1349      InvalidDecl = true;
1350    }
1351  }
1352
1353  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1354    // Maybe we will complain about the shadowed template parameter.
1355    InvalidDecl = InvalidDecl
1356      || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
1357    // Just pretend that we didn't see the previous declaration.
1358    PrevDecl = 0;
1359  }
1360
1361  // In C++, the previous declaration we find might be a tag type
1362  // (class or enum). In this case, the new declaration will hide the
1363  // tag type. Note that this does does not apply if we're declaring a
1364  // typedef (C++ [dcl.typedef]p4).
1365  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1366      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1367    PrevDecl = 0;
1368
1369  QualType R = GetTypeForDeclarator(D, S);
1370  assert(!R.isNull() && "GetTypeForDeclarator() returned null type");
1371
1372  bool Redeclaration = false;
1373  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1374    New = ActOnTypedefDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1375                                 InvalidDecl, Redeclaration);
1376  } else if (R.getTypePtr()->isFunctionType()) {
1377    New = ActOnFunctionDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1378                                  IsFunctionDefinition, InvalidDecl,
1379                                  Redeclaration);
1380  } else {
1381    New = ActOnVariableDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1382                                  InvalidDecl, Redeclaration);
1383  }
1384
1385  if (New == 0)
1386    return 0;
1387
1388  // Set the lexical context. If the declarator has a C++ scope specifier, the
1389  // lexical context will be different from the semantic context.
1390  New->setLexicalDeclContext(CurContext);
1391
1392  // If this has an identifier and is not an invalid redeclaration,
1393  // add it to the scope stack.
1394  if (Name && !(Redeclaration && InvalidDecl))
1395    PushOnScopeChains(New, S);
1396  // If any semantic error occurred, mark the decl as invalid.
1397  if (D.getInvalidType() || InvalidDecl)
1398    New->setInvalidDecl();
1399
1400  return New;
1401}
1402
1403NamedDecl*
1404Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1405                             QualType R, Decl* LastDeclarator,
1406                             Decl* PrevDecl, bool& InvalidDecl,
1407                             bool &Redeclaration) {
1408  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1409  if (D.getCXXScopeSpec().isSet()) {
1410    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1411      << D.getCXXScopeSpec().getRange();
1412    InvalidDecl = true;
1413    // Pretend we didn't see the scope specifier.
1414    DC = 0;
1415  }
1416
1417  // Check that there are no default arguments (C++ only).
1418  if (getLangOptions().CPlusPlus)
1419    CheckExtraCXXDefaultArguments(D);
1420
1421  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
1422  if (!NewTD) return 0;
1423
1424  // Handle attributes prior to checking for duplicates in MergeVarDecl
1425  ProcessDeclAttributes(NewTD, D);
1426  // Merge the decl with the existing one if appropriate. If the decl is
1427  // in an outer scope, it isn't the same thing.
1428  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1429    Redeclaration = true;
1430    if (MergeTypeDefDecl(NewTD, PrevDecl))
1431      InvalidDecl = true;
1432  }
1433
1434  if (S->getFnParent() == 0) {
1435    // C99 6.7.7p2: If a typedef name specifies a variably modified type
1436    // then it shall have block scope.
1437    if (NewTD->getUnderlyingType()->isVariablyModifiedType()) {
1438      if (NewTD->getUnderlyingType()->isVariableArrayType())
1439        Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1440      else
1441        Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1442
1443      InvalidDecl = true;
1444    }
1445  }
1446  return NewTD;
1447}
1448
1449NamedDecl*
1450Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1451                              QualType R, Decl* LastDeclarator,
1452                              Decl* PrevDecl, bool& InvalidDecl,
1453                              bool &Redeclaration) {
1454  DeclarationName Name = GetNameForDeclarator(D);
1455
1456  // Check that there are no default arguments (C++ only).
1457  if (getLangOptions().CPlusPlus)
1458    CheckExtraCXXDefaultArguments(D);
1459
1460  if (R.getTypePtr()->isObjCInterfaceType()) {
1461    Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object)
1462      << D.getIdentifier();
1463    InvalidDecl = true;
1464  }
1465
1466  VarDecl *NewVD;
1467  VarDecl::StorageClass SC;
1468  switch (D.getDeclSpec().getStorageClassSpec()) {
1469  default: assert(0 && "Unknown storage class!");
1470  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1471  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1472  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1473  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1474  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1475  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1476  case DeclSpec::SCS_mutable:
1477    // mutable can only appear on non-static class members, so it's always
1478    // an error here
1479    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1480    InvalidDecl = true;
1481    SC = VarDecl::None;
1482    break;
1483  }
1484
1485  IdentifierInfo *II = Name.getAsIdentifierInfo();
1486  if (!II) {
1487    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1488      << Name.getAsString();
1489    return 0;
1490  }
1491
1492  if (DC->isRecord()) {
1493    // This is a static data member for a C++ class.
1494    NewVD = CXXClassVarDecl::Create(Context, cast<CXXRecordDecl>(DC),
1495                                    D.getIdentifierLoc(), II,
1496                                    R);
1497  } else {
1498    bool ThreadSpecified = D.getDeclSpec().isThreadSpecified();
1499    if (S->getFnParent() == 0) {
1500      // C99 6.9p2: The storage-class specifiers auto and register shall not
1501      // appear in the declaration specifiers in an external declaration.
1502      if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1503        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1504        InvalidDecl = true;
1505      }
1506    }
1507    NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1508                            II, R, SC,
1509                            // FIXME: Move to DeclGroup...
1510                            D.getDeclSpec().getSourceRange().getBegin());
1511    NewVD->setThreadSpecified(ThreadSpecified);
1512  }
1513  NewVD->setNextDeclarator(LastDeclarator);
1514
1515  // Handle attributes prior to checking for duplicates in MergeVarDecl
1516  ProcessDeclAttributes(NewVD, D);
1517
1518  // Handle GNU asm-label extension (encoded as an attribute).
1519  if (Expr *E = (Expr*) D.getAsmLabel()) {
1520    // The parser guarantees this is a string.
1521    StringLiteral *SE = cast<StringLiteral>(E);
1522    NewVD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1523                                                SE->getByteLength())));
1524  }
1525
1526  // Emit an error if an address space was applied to decl with local storage.
1527  // This includes arrays of objects with address space qualifiers, but not
1528  // automatic variables that point to other address spaces.
1529  // ISO/IEC TR 18037 S5.1.2
1530  if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
1531    Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
1532    InvalidDecl = true;
1533  }
1534  // Merge the decl with the existing one if appropriate. If the decl is
1535  // in an outer scope, it isn't the same thing.
1536  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1537    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
1538      // The user tried to define a non-static data member
1539      // out-of-line (C++ [dcl.meaning]p1).
1540      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
1541        << D.getCXXScopeSpec().getRange();
1542      NewVD->Destroy(Context);
1543      return 0;
1544    }
1545
1546    Redeclaration = true;
1547    if (MergeVarDecl(NewVD, PrevDecl))
1548      InvalidDecl = true;
1549
1550    if (D.getCXXScopeSpec().isSet()) {
1551      // No previous declaration in the qualifying scope.
1552      Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
1553        << Name << D.getCXXScopeSpec().getRange();
1554      InvalidDecl = true;
1555    }
1556  }
1557  return NewVD;
1558}
1559
1560NamedDecl*
1561Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1562                              QualType R, Decl *LastDeclarator,
1563                              Decl* PrevDecl, bool IsFunctionDefinition,
1564                              bool& InvalidDecl, bool &Redeclaration) {
1565  assert(R.getTypePtr()->isFunctionType());
1566
1567  DeclarationName Name = GetNameForDeclarator(D);
1568  FunctionDecl::StorageClass SC = FunctionDecl::None;
1569  switch (D.getDeclSpec().getStorageClassSpec()) {
1570  default: assert(0 && "Unknown storage class!");
1571  case DeclSpec::SCS_auto:
1572  case DeclSpec::SCS_register:
1573  case DeclSpec::SCS_mutable:
1574    Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_func);
1575    InvalidDecl = true;
1576    break;
1577  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
1578  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
1579  case DeclSpec::SCS_static:      SC = FunctionDecl::Static; break;
1580  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
1581  }
1582
1583  bool isInline = D.getDeclSpec().isInlineSpecified();
1584  // bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1585  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
1586
1587  FunctionDecl *NewFD;
1588  if (D.getKind() == Declarator::DK_Constructor) {
1589    // This is a C++ constructor declaration.
1590    assert(DC->isRecord() &&
1591           "Constructors can only be declared in a member context");
1592
1593    InvalidDecl = InvalidDecl || CheckConstructorDeclarator(D, R, SC);
1594
1595    // Create the new declaration
1596    NewFD = CXXConstructorDecl::Create(Context,
1597                                       cast<CXXRecordDecl>(DC),
1598                                       D.getIdentifierLoc(), Name, R,
1599                                       isExplicit, isInline,
1600                                       /*isImplicitlyDeclared=*/false);
1601
1602    if (InvalidDecl)
1603      NewFD->setInvalidDecl();
1604  } else if (D.getKind() == Declarator::DK_Destructor) {
1605    // This is a C++ destructor declaration.
1606    if (DC->isRecord()) {
1607      InvalidDecl = InvalidDecl || CheckDestructorDeclarator(D, R, SC);
1608
1609      NewFD = CXXDestructorDecl::Create(Context,
1610                                        cast<CXXRecordDecl>(DC),
1611                                        D.getIdentifierLoc(), Name, R,
1612                                        isInline,
1613                                        /*isImplicitlyDeclared=*/false);
1614
1615      if (InvalidDecl)
1616        NewFD->setInvalidDecl();
1617    } else {
1618      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
1619
1620      // Create a FunctionDecl to satisfy the function definition parsing
1621      // code path.
1622      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
1623                                   Name, R, SC, isInline,
1624                                   // FIXME: Move to DeclGroup...
1625                                   D.getDeclSpec().getSourceRange().getBegin());
1626      InvalidDecl = true;
1627      NewFD->setInvalidDecl();
1628    }
1629  } else if (D.getKind() == Declarator::DK_Conversion) {
1630    if (!DC->isRecord()) {
1631      Diag(D.getIdentifierLoc(),
1632           diag::err_conv_function_not_member);
1633      return 0;
1634    } else {
1635      InvalidDecl = InvalidDecl || CheckConversionDeclarator(D, R, SC);
1636
1637      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
1638                                        D.getIdentifierLoc(), Name, R,
1639                                        isInline, isExplicit);
1640
1641      if (InvalidDecl)
1642        NewFD->setInvalidDecl();
1643    }
1644  } else if (DC->isRecord()) {
1645    // This is a C++ method declaration.
1646    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
1647                                  D.getIdentifierLoc(), Name, R,
1648                                  (SC == FunctionDecl::Static), isInline);
1649  } else {
1650    NewFD = FunctionDecl::Create(Context, DC,
1651                                 D.getIdentifierLoc(),
1652                                 Name, R, SC, isInline,
1653                                 // FIXME: Move to DeclGroup...
1654                                 D.getDeclSpec().getSourceRange().getBegin());
1655  }
1656  NewFD->setNextDeclarator(LastDeclarator);
1657
1658  // Set the lexical context. If the declarator has a C++
1659  // scope specifier, the lexical context will be different
1660  // from the semantic context.
1661  NewFD->setLexicalDeclContext(CurContext);
1662
1663  // Handle GNU asm-label extension (encoded as an attribute).
1664  if (Expr *E = (Expr*) D.getAsmLabel()) {
1665    // The parser guarantees this is a string.
1666    StringLiteral *SE = cast<StringLiteral>(E);
1667    NewFD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1668                                                SE->getByteLength())));
1669  }
1670
1671  // Copy the parameter declarations from the declarator D to
1672  // the function declaration NewFD, if they are available.
1673  if (D.getNumTypeObjects() > 0) {
1674    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1675
1676    // Create Decl objects for each parameter, adding them to the
1677    // FunctionDecl.
1678    llvm::SmallVector<ParmVarDecl*, 16> Params;
1679
1680    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
1681    // function that takes no arguments, not a function that takes a
1682    // single void argument.
1683    // We let through "const void" here because Sema::GetTypeForDeclarator
1684    // already checks for that case.
1685    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1686        FTI.ArgInfo[0].Param &&
1687        ((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
1688      // empty arg list, don't push any params.
1689      ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
1690
1691      // In C++, the empty parameter-type-list must be spelled "void"; a
1692      // typedef of void is not permitted.
1693      if (getLangOptions().CPlusPlus &&
1694          Param->getType().getUnqualifiedType() != Context.VoidTy) {
1695        Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
1696      }
1697    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
1698      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
1699        Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
1700    }
1701
1702    NewFD->setParams(Context, &Params[0], Params.size());
1703  } else if (R->getAsTypedefType()) {
1704    // When we're declaring a function with a typedef, as in the
1705    // following example, we'll need to synthesize (unnamed)
1706    // parameters for use in the declaration.
1707    //
1708    // @code
1709    // typedef void fn(int);
1710    // fn f;
1711    // @endcode
1712    const FunctionTypeProto *FT = R->getAsFunctionTypeProto();
1713    if (!FT) {
1714      // This is a typedef of a function with no prototype, so we
1715      // don't need to do anything.
1716    } else if ((FT->getNumArgs() == 0) ||
1717               (FT->getNumArgs() == 1 && !FT->isVariadic() &&
1718                FT->getArgType(0)->isVoidType())) {
1719      // This is a zero-argument function. We don't need to do anything.
1720    } else {
1721      // Synthesize a parameter for each argument type.
1722      llvm::SmallVector<ParmVarDecl*, 16> Params;
1723      for (FunctionTypeProto::arg_type_iterator ArgType = FT->arg_type_begin();
1724           ArgType != FT->arg_type_end(); ++ArgType) {
1725        ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
1726                                                 SourceLocation(), 0,
1727                                                 *ArgType, VarDecl::None,
1728                                                 0);
1729        Param->setImplicit();
1730        Params.push_back(Param);
1731      }
1732
1733      NewFD->setParams(Context, &Params[0], Params.size());
1734    }
1735  }
1736
1737  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD))
1738    InvalidDecl = InvalidDecl || CheckConstructor(Constructor);
1739  else if (isa<CXXDestructorDecl>(NewFD)) {
1740    CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
1741    Record->setUserDeclaredDestructor(true);
1742    // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
1743    // user-defined destructor.
1744    Record->setPOD(false);
1745  } else if (CXXConversionDecl *Conversion =
1746             dyn_cast<CXXConversionDecl>(NewFD))
1747    ActOnConversionDeclarator(Conversion);
1748
1749  // Extra checking for C++ overloaded operators (C++ [over.oper]).
1750  if (NewFD->isOverloadedOperator() &&
1751      CheckOverloadedOperatorDeclaration(NewFD))
1752    NewFD->setInvalidDecl();
1753
1754  // Merge the decl with the existing one if appropriate. Since C functions
1755  // are in a flat namespace, make sure we consider decls in outer scopes.
1756  bool OverloadableAttrRequired = false;
1757  if (PrevDecl &&
1758      (!getLangOptions().CPlusPlus||isDeclInScope(PrevDecl, DC, S))) {
1759    // Determine whether NewFD is an overload of PrevDecl or
1760    // a declaration that requires merging. If it's an overload,
1761    // there's no more work to do here; we'll just add the new
1762    // function to the scope.
1763    OverloadedFunctionDecl::function_iterator MatchedDecl;
1764
1765    if (!getLangOptions().CPlusPlus &&
1766        AllowOverloadingOfFunction(PrevDecl, Context))
1767      OverloadableAttrRequired = true;
1768
1769    if (!AllowOverloadingOfFunction(PrevDecl, Context) ||
1770        !IsOverload(NewFD, PrevDecl, MatchedDecl)) {
1771      Redeclaration = true;
1772      Decl *OldDecl = PrevDecl;
1773
1774      // If PrevDecl was an overloaded function, extract the
1775      // FunctionDecl that matched.
1776      if (isa<OverloadedFunctionDecl>(PrevDecl))
1777        OldDecl = *MatchedDecl;
1778
1779      // NewFD and PrevDecl represent declarations that need to be
1780      // merged.
1781      if (MergeFunctionDecl(NewFD, OldDecl))
1782        InvalidDecl = true;
1783
1784      if (!InvalidDecl) {
1785        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
1786
1787        // An out-of-line member function declaration must also be a
1788        // definition (C++ [dcl.meaning]p1).
1789        if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
1790            !InvalidDecl) {
1791          Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
1792            << D.getCXXScopeSpec().getRange();
1793          NewFD->setInvalidDecl();
1794        }
1795      }
1796    }
1797  }
1798
1799  if (D.getCXXScopeSpec().isSet() &&
1800      (!PrevDecl || !Redeclaration)) {
1801    // The user tried to provide an out-of-line definition for a
1802    // function that is a member of a class or namespace, but there
1803    // was no such member function declared (C++ [class.mfct]p2,
1804    // C++ [namespace.memdef]p2). For example:
1805    //
1806    // class X {
1807    //   void f() const;
1808    // };
1809    //
1810    // void X::f() { } // ill-formed
1811    //
1812    // Complain about this problem, and attempt to suggest close
1813    // matches (e.g., those that differ only in cv-qualifiers and
1814    // whether the parameter types are references).
1815    Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
1816      << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
1817    InvalidDecl = true;
1818
1819    LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
1820                                            true);
1821    assert(!Prev.isAmbiguous() &&
1822           "Cannot have an ambiguity in previous-declaration lookup");
1823    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
1824         Func != FuncEnd; ++Func) {
1825      if (isa<FunctionDecl>(*Func) &&
1826          isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
1827        Diag((*Func)->getLocation(), diag::note_member_def_close_match);
1828    }
1829
1830    PrevDecl = 0;
1831  }
1832
1833  // Handle attributes. We need to have merged decls when handling attributes
1834  // (for example to check for conflicts, etc).
1835  ProcessDeclAttributes(NewFD, D);
1836  AddKnownFunctionAttributes(NewFD);
1837
1838  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
1839    // If a function name is overloadable in C, then every function
1840    // with that name must be marked "overloadable".
1841    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
1842      << Redeclaration << NewFD;
1843    if (PrevDecl)
1844      Diag(PrevDecl->getLocation(),
1845           diag::note_attribute_overloadable_prev_overload);
1846    NewFD->addAttr(new OverloadableAttr);
1847  }
1848
1849  if (getLangOptions().CPlusPlus) {
1850    // In C++, check default arguments now that we have merged decls. Unless
1851    // the lexical context is the class, because in this case this is done
1852    // during delayed parsing anyway.
1853    if (!CurContext->isRecord())
1854      CheckCXXDefaultArguments(NewFD);
1855
1856    // An out-of-line member function declaration must also be a
1857    // definition (C++ [dcl.meaning]p1).
1858    if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() && !InvalidDecl) {
1859      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
1860        << D.getCXXScopeSpec().getRange();
1861      InvalidDecl = true;
1862    }
1863  }
1864  return NewFD;
1865}
1866
1867void Sema::InitializerElementNotConstant(const Expr *Init) {
1868  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
1869    << Init->getSourceRange();
1870}
1871
1872bool Sema::CheckAddressConstantExpressionLValue(const Expr* Init) {
1873  switch (Init->getStmtClass()) {
1874  default:
1875    InitializerElementNotConstant(Init);
1876    return true;
1877  case Expr::ParenExprClass: {
1878    const ParenExpr* PE = cast<ParenExpr>(Init);
1879    return CheckAddressConstantExpressionLValue(PE->getSubExpr());
1880  }
1881  case Expr::CompoundLiteralExprClass:
1882    return cast<CompoundLiteralExpr>(Init)->isFileScope();
1883  case Expr::DeclRefExprClass:
1884  case Expr::QualifiedDeclRefExprClass: {
1885    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
1886    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1887      if (VD->hasGlobalStorage())
1888        return false;
1889      InitializerElementNotConstant(Init);
1890      return true;
1891    }
1892    if (isa<FunctionDecl>(D))
1893      return false;
1894    InitializerElementNotConstant(Init);
1895    return true;
1896  }
1897  case Expr::MemberExprClass: {
1898    const MemberExpr *M = cast<MemberExpr>(Init);
1899    if (M->isArrow())
1900      return CheckAddressConstantExpression(M->getBase());
1901    return CheckAddressConstantExpressionLValue(M->getBase());
1902  }
1903  case Expr::ArraySubscriptExprClass: {
1904    // FIXME: Should we pedwarn for "x[0+0]" (where x is a pointer)?
1905    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(Init);
1906    return CheckAddressConstantExpression(ASE->getBase()) ||
1907           CheckArithmeticConstantExpression(ASE->getIdx());
1908  }
1909  case Expr::StringLiteralClass:
1910  case Expr::PredefinedExprClass:
1911    return false;
1912  case Expr::UnaryOperatorClass: {
1913    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1914
1915    // C99 6.6p9
1916    if (Exp->getOpcode() == UnaryOperator::Deref)
1917      return CheckAddressConstantExpression(Exp->getSubExpr());
1918
1919    InitializerElementNotConstant(Init);
1920    return true;
1921  }
1922  }
1923}
1924
1925bool Sema::CheckAddressConstantExpression(const Expr* Init) {
1926  switch (Init->getStmtClass()) {
1927  default:
1928    InitializerElementNotConstant(Init);
1929    return true;
1930  case Expr::ParenExprClass:
1931    return CheckAddressConstantExpression(cast<ParenExpr>(Init)->getSubExpr());
1932  case Expr::StringLiteralClass:
1933  case Expr::ObjCStringLiteralClass:
1934    return false;
1935  case Expr::CallExprClass:
1936  case Expr::CXXOperatorCallExprClass:
1937    // __builtin___CFStringMakeConstantString is a valid constant l-value.
1938    if (cast<CallExpr>(Init)->isBuiltinCall(Context) ==
1939           Builtin::BI__builtin___CFStringMakeConstantString)
1940      return false;
1941
1942    InitializerElementNotConstant(Init);
1943    return true;
1944
1945  case Expr::UnaryOperatorClass: {
1946    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1947
1948    // C99 6.6p9
1949    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1950      return CheckAddressConstantExpressionLValue(Exp->getSubExpr());
1951
1952    if (Exp->getOpcode() == UnaryOperator::Extension)
1953      return CheckAddressConstantExpression(Exp->getSubExpr());
1954
1955    InitializerElementNotConstant(Init);
1956    return true;
1957  }
1958  case Expr::BinaryOperatorClass: {
1959    // FIXME: Should we pedwarn for expressions like "a + 1 + 2"?
1960    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
1961
1962    Expr *PExp = Exp->getLHS();
1963    Expr *IExp = Exp->getRHS();
1964    if (IExp->getType()->isPointerType())
1965      std::swap(PExp, IExp);
1966
1967    // FIXME: Should we pedwarn if IExp isn't an integer constant expression?
1968    return CheckAddressConstantExpression(PExp) ||
1969           CheckArithmeticConstantExpression(IExp);
1970  }
1971  case Expr::ImplicitCastExprClass:
1972  case Expr::CStyleCastExprClass: {
1973    const Expr* SubExpr = cast<CastExpr>(Init)->getSubExpr();
1974    if (Init->getStmtClass() == Expr::ImplicitCastExprClass) {
1975      // Check for implicit promotion
1976      if (SubExpr->getType()->isFunctionType() ||
1977          SubExpr->getType()->isArrayType())
1978        return CheckAddressConstantExpressionLValue(SubExpr);
1979    }
1980
1981    // Check for pointer->pointer cast
1982    if (SubExpr->getType()->isPointerType())
1983      return CheckAddressConstantExpression(SubExpr);
1984
1985    if (SubExpr->getType()->isIntegralType()) {
1986      // Check for the special-case of a pointer->int->pointer cast;
1987      // this isn't standard, but some code requires it. See
1988      // PR2720 for an example.
1989      if (const CastExpr* SubCast = dyn_cast<CastExpr>(SubExpr)) {
1990        if (SubCast->getSubExpr()->getType()->isPointerType()) {
1991          unsigned IntWidth = Context.getIntWidth(SubCast->getType());
1992          unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
1993          if (IntWidth >= PointerWidth) {
1994            return CheckAddressConstantExpression(SubCast->getSubExpr());
1995          }
1996        }
1997      }
1998    }
1999    if (SubExpr->getType()->isArithmeticType()) {
2000      return CheckArithmeticConstantExpression(SubExpr);
2001    }
2002
2003    InitializerElementNotConstant(Init);
2004    return true;
2005  }
2006  case Expr::ConditionalOperatorClass: {
2007    // FIXME: Should we pedwarn here?
2008    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
2009    if (!Exp->getCond()->getType()->isArithmeticType()) {
2010      InitializerElementNotConstant(Init);
2011      return true;
2012    }
2013    if (CheckArithmeticConstantExpression(Exp->getCond()))
2014      return true;
2015    if (Exp->getLHS() &&
2016        CheckAddressConstantExpression(Exp->getLHS()))
2017      return true;
2018    return CheckAddressConstantExpression(Exp->getRHS());
2019  }
2020  case Expr::AddrLabelExprClass:
2021    return false;
2022  }
2023}
2024
2025static const Expr* FindExpressionBaseAddress(const Expr* E);
2026
2027static const Expr* FindExpressionBaseAddressLValue(const Expr* E) {
2028  switch (E->getStmtClass()) {
2029  default:
2030    return E;
2031  case Expr::ParenExprClass: {
2032    const ParenExpr* PE = cast<ParenExpr>(E);
2033    return FindExpressionBaseAddressLValue(PE->getSubExpr());
2034  }
2035  case Expr::MemberExprClass: {
2036    const MemberExpr *M = cast<MemberExpr>(E);
2037    if (M->isArrow())
2038      return FindExpressionBaseAddress(M->getBase());
2039    return FindExpressionBaseAddressLValue(M->getBase());
2040  }
2041  case Expr::ArraySubscriptExprClass: {
2042    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(E);
2043    return FindExpressionBaseAddress(ASE->getBase());
2044  }
2045  case Expr::UnaryOperatorClass: {
2046    const UnaryOperator *Exp = cast<UnaryOperator>(E);
2047
2048    if (Exp->getOpcode() == UnaryOperator::Deref)
2049      return FindExpressionBaseAddress(Exp->getSubExpr());
2050
2051    return E;
2052  }
2053  }
2054}
2055
2056static const Expr* FindExpressionBaseAddress(const Expr* E) {
2057  switch (E->getStmtClass()) {
2058  default:
2059    return E;
2060  case Expr::ParenExprClass: {
2061    const ParenExpr* PE = cast<ParenExpr>(E);
2062    return FindExpressionBaseAddress(PE->getSubExpr());
2063  }
2064  case Expr::UnaryOperatorClass: {
2065    const UnaryOperator *Exp = cast<UnaryOperator>(E);
2066
2067    // C99 6.6p9
2068    if (Exp->getOpcode() == UnaryOperator::AddrOf)
2069      return FindExpressionBaseAddressLValue(Exp->getSubExpr());
2070
2071    if (Exp->getOpcode() == UnaryOperator::Extension)
2072      return FindExpressionBaseAddress(Exp->getSubExpr());
2073
2074    return E;
2075  }
2076  case Expr::BinaryOperatorClass: {
2077    const BinaryOperator *Exp = cast<BinaryOperator>(E);
2078
2079    Expr *PExp = Exp->getLHS();
2080    Expr *IExp = Exp->getRHS();
2081    if (IExp->getType()->isPointerType())
2082      std::swap(PExp, IExp);
2083
2084    return FindExpressionBaseAddress(PExp);
2085  }
2086  case Expr::ImplicitCastExprClass: {
2087    const Expr* SubExpr = cast<ImplicitCastExpr>(E)->getSubExpr();
2088
2089    // Check for implicit promotion
2090    if (SubExpr->getType()->isFunctionType() ||
2091        SubExpr->getType()->isArrayType())
2092      return FindExpressionBaseAddressLValue(SubExpr);
2093
2094    // Check for pointer->pointer cast
2095    if (SubExpr->getType()->isPointerType())
2096      return FindExpressionBaseAddress(SubExpr);
2097
2098    // We assume that we have an arithmetic expression here;
2099    // if we don't, we'll figure it out later
2100    return 0;
2101  }
2102  case Expr::CStyleCastExprClass: {
2103    const Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
2104
2105    // Check for pointer->pointer cast
2106    if (SubExpr->getType()->isPointerType())
2107      return FindExpressionBaseAddress(SubExpr);
2108
2109    // We assume that we have an arithmetic expression here;
2110    // if we don't, we'll figure it out later
2111    return 0;
2112  }
2113  }
2114}
2115
2116bool Sema::CheckArithmeticConstantExpression(const Expr* Init) {
2117  switch (Init->getStmtClass()) {
2118  default:
2119    InitializerElementNotConstant(Init);
2120    return true;
2121  case Expr::ParenExprClass: {
2122    const ParenExpr* PE = cast<ParenExpr>(Init);
2123    return CheckArithmeticConstantExpression(PE->getSubExpr());
2124  }
2125  case Expr::FloatingLiteralClass:
2126  case Expr::IntegerLiteralClass:
2127  case Expr::CharacterLiteralClass:
2128  case Expr::ImaginaryLiteralClass:
2129  case Expr::TypesCompatibleExprClass:
2130  case Expr::CXXBoolLiteralExprClass:
2131    return false;
2132  case Expr::CallExprClass:
2133  case Expr::CXXOperatorCallExprClass: {
2134    const CallExpr *CE = cast<CallExpr>(Init);
2135
2136    // Allow any constant foldable calls to builtins.
2137    if (CE->isBuiltinCall(Context) && CE->isEvaluatable(Context))
2138      return false;
2139
2140    InitializerElementNotConstant(Init);
2141    return true;
2142  }
2143  case Expr::DeclRefExprClass:
2144  case Expr::QualifiedDeclRefExprClass: {
2145    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
2146    if (isa<EnumConstantDecl>(D))
2147      return false;
2148    InitializerElementNotConstant(Init);
2149    return true;
2150  }
2151  case Expr::CompoundLiteralExprClass:
2152    // Allow "(vector type){2,4}"; normal C constraints don't allow this,
2153    // but vectors are allowed to be magic.
2154    if (Init->getType()->isVectorType())
2155      return false;
2156    InitializerElementNotConstant(Init);
2157    return true;
2158  case Expr::UnaryOperatorClass: {
2159    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
2160
2161    switch (Exp->getOpcode()) {
2162    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
2163    // See C99 6.6p3.
2164    default:
2165      InitializerElementNotConstant(Init);
2166      return true;
2167    case UnaryOperator::OffsetOf:
2168      if (Exp->getSubExpr()->getType()->isConstantSizeType())
2169        return false;
2170      InitializerElementNotConstant(Init);
2171      return true;
2172    case UnaryOperator::Extension:
2173    case UnaryOperator::LNot:
2174    case UnaryOperator::Plus:
2175    case UnaryOperator::Minus:
2176    case UnaryOperator::Not:
2177      return CheckArithmeticConstantExpression(Exp->getSubExpr());
2178    }
2179  }
2180  case Expr::SizeOfAlignOfExprClass: {
2181    const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(Init);
2182    // Special check for void types, which are allowed as an extension
2183    if (Exp->getTypeOfArgument()->isVoidType())
2184      return false;
2185    // alignof always evaluates to a constant.
2186    // FIXME: is sizeof(int[3.0]) a constant expression?
2187    if (Exp->isSizeOf() && !Exp->getTypeOfArgument()->isConstantSizeType()) {
2188      InitializerElementNotConstant(Init);
2189      return true;
2190    }
2191    return false;
2192  }
2193  case Expr::BinaryOperatorClass: {
2194    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
2195
2196    if (Exp->getLHS()->getType()->isArithmeticType() &&
2197        Exp->getRHS()->getType()->isArithmeticType()) {
2198      return CheckArithmeticConstantExpression(Exp->getLHS()) ||
2199             CheckArithmeticConstantExpression(Exp->getRHS());
2200    }
2201
2202    if (Exp->getLHS()->getType()->isPointerType() &&
2203        Exp->getRHS()->getType()->isPointerType()) {
2204      const Expr* LHSBase = FindExpressionBaseAddress(Exp->getLHS());
2205      const Expr* RHSBase = FindExpressionBaseAddress(Exp->getRHS());
2206
2207      // Only allow a null (constant integer) base; we could
2208      // allow some additional cases if necessary, but this
2209      // is sufficient to cover offsetof-like constructs.
2210      if (!LHSBase && !RHSBase) {
2211        return CheckAddressConstantExpression(Exp->getLHS()) ||
2212               CheckAddressConstantExpression(Exp->getRHS());
2213      }
2214    }
2215
2216    InitializerElementNotConstant(Init);
2217    return true;
2218  }
2219  case Expr::ImplicitCastExprClass:
2220  case Expr::CStyleCastExprClass: {
2221    const CastExpr *CE = cast<CastExpr>(Init);
2222    const Expr *SubExpr = CE->getSubExpr();
2223
2224    if (SubExpr->getType()->isArithmeticType())
2225      return CheckArithmeticConstantExpression(SubExpr);
2226
2227    if (SubExpr->getType()->isPointerType()) {
2228      const Expr* Base = FindExpressionBaseAddress(SubExpr);
2229      if (Base) {
2230        // the cast is only valid if done to a wide enough type
2231        if (Context.getTypeSize(CE->getType()) >=
2232            Context.getTypeSize(SubExpr->getType()))
2233          return false;
2234      } else {
2235        // If the pointer has a null base, this is an offsetof-like construct
2236        return CheckAddressConstantExpression(SubExpr);
2237      }
2238    }
2239
2240    InitializerElementNotConstant(Init);
2241    return true;
2242  }
2243  case Expr::ConditionalOperatorClass: {
2244    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
2245
2246    // If GNU extensions are disabled, we require all operands to be arithmetic
2247    // constant expressions.
2248    if (getLangOptions().NoExtensions) {
2249      return CheckArithmeticConstantExpression(Exp->getCond()) ||
2250          (Exp->getLHS() && CheckArithmeticConstantExpression(Exp->getLHS())) ||
2251             CheckArithmeticConstantExpression(Exp->getRHS());
2252    }
2253
2254    // Otherwise, we have to emulate some of the behavior of fold here.
2255    // Basically GCC treats things like "4 ? 1 : somefunc()" as a constant
2256    // because it can constant fold things away.  To retain compatibility with
2257    // GCC code, we see if we can fold the condition to a constant (which we
2258    // should always be able to do in theory).  If so, we only require the
2259    // specified arm of the conditional to be a constant.  This is a horrible
2260    // hack, but is require by real world code that uses __builtin_constant_p.
2261    Expr::EvalResult EvalResult;
2262    if (!Exp->getCond()->Evaluate(EvalResult, Context) ||
2263        EvalResult.HasSideEffects) {
2264      // If Evaluate couldn't fold it, CheckArithmeticConstantExpression
2265      // won't be able to either.  Use it to emit the diagnostic though.
2266      bool Res = CheckArithmeticConstantExpression(Exp->getCond());
2267      assert(Res && "Evaluate couldn't evaluate this constant?");
2268      return Res;
2269    }
2270
2271    // Verify that the side following the condition is also a constant.
2272    const Expr *TrueSide = Exp->getLHS(), *FalseSide = Exp->getRHS();
2273    if (EvalResult.Val.getInt() == 0)
2274      std::swap(TrueSide, FalseSide);
2275
2276    if (TrueSide && CheckArithmeticConstantExpression(TrueSide))
2277      return true;
2278
2279    // Okay, the evaluated side evaluates to a constant, so we accept this.
2280    // Check to see if the other side is obviously not a constant.  If so,
2281    // emit a warning that this is a GNU extension.
2282    if (FalseSide && !FalseSide->isEvaluatable(Context))
2283      Diag(Init->getExprLoc(),
2284           diag::ext_typecheck_expression_not_constant_but_accepted)
2285        << FalseSide->getSourceRange();
2286    return false;
2287  }
2288  }
2289}
2290
2291bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2292  if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init))
2293    Init = DIE->getInit();
2294
2295  Init = Init->IgnoreParens();
2296
2297  if (Init->isEvaluatable(Context))
2298    return false;
2299
2300  // Look through CXXDefaultArgExprs; they have no meaning in this context.
2301  if (CXXDefaultArgExpr* DAE = dyn_cast<CXXDefaultArgExpr>(Init))
2302    return CheckForConstantInitializer(DAE->getExpr(), DclT);
2303
2304  if (CompoundLiteralExpr *e = dyn_cast<CompoundLiteralExpr>(Init))
2305    return CheckForConstantInitializer(e->getInitializer(), DclT);
2306
2307  if (isa<ImplicitValueInitExpr>(Init)) {
2308    // FIXME: In C++, check for non-POD types.
2309    return false;
2310  }
2311
2312  if (InitListExpr *Exp = dyn_cast<InitListExpr>(Init)) {
2313    unsigned numInits = Exp->getNumInits();
2314    for (unsigned i = 0; i < numInits; i++) {
2315      // FIXME: Need to get the type of the declaration for C++,
2316      // because it could be a reference?
2317
2318      if (CheckForConstantInitializer(Exp->getInit(i),
2319                                      Exp->getInit(i)->getType()))
2320        return true;
2321    }
2322    return false;
2323  }
2324
2325  // FIXME: We can probably remove some of this code below, now that
2326  // Expr::Evaluate is doing the heavy lifting for scalars.
2327
2328  if (Init->isNullPointerConstant(Context))
2329    return false;
2330  if (Init->getType()->isArithmeticType()) {
2331    QualType InitTy = Context.getCanonicalType(Init->getType())
2332                             .getUnqualifiedType();
2333    if (InitTy == Context.BoolTy) {
2334      // Special handling for pointers implicitly cast to bool;
2335      // (e.g. "_Bool rr = &rr;"). This is only legal at the top level.
2336      if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Init)) {
2337        Expr* SubE = ICE->getSubExpr();
2338        if (SubE->getType()->isPointerType() ||
2339            SubE->getType()->isArrayType() ||
2340            SubE->getType()->isFunctionType()) {
2341          return CheckAddressConstantExpression(Init);
2342        }
2343      }
2344    } else if (InitTy->isIntegralType()) {
2345      Expr* SubE = 0;
2346      if (CastExpr* CE = dyn_cast<CastExpr>(Init))
2347        SubE = CE->getSubExpr();
2348      // Special check for pointer cast to int; we allow as an extension
2349      // an address constant cast to an integer if the integer
2350      // is of an appropriate width (this sort of code is apparently used
2351      // in some places).
2352      // FIXME: Add pedwarn?
2353      // FIXME: Don't allow bitfields here!  Need the FieldDecl for that.
2354      if (SubE && (SubE->getType()->isPointerType() ||
2355                   SubE->getType()->isArrayType() ||
2356                   SubE->getType()->isFunctionType())) {
2357        unsigned IntWidth = Context.getTypeSize(Init->getType());
2358        unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
2359        if (IntWidth >= PointerWidth)
2360          return CheckAddressConstantExpression(Init);
2361      }
2362    }
2363
2364    return CheckArithmeticConstantExpression(Init);
2365  }
2366
2367  if (Init->getType()->isPointerType())
2368    return CheckAddressConstantExpression(Init);
2369
2370  // An array type at the top level that isn't an init-list must
2371  // be a string literal
2372  if (Init->getType()->isArrayType())
2373    return false;
2374
2375  if (Init->getType()->isFunctionType())
2376    return false;
2377
2378  // Allow block exprs at top level.
2379  if (Init->getType()->isBlockPointerType())
2380    return false;
2381
2382  // GCC cast to union extension
2383  // note: the validity of the cast expr is checked by CheckCastTypes()
2384  if (CastExpr *C = dyn_cast<CastExpr>(Init)) {
2385    QualType T = C->getType();
2386    return T->isUnionType() && CheckForConstantInitializer(C->getSubExpr(), T);
2387  }
2388
2389  InitializerElementNotConstant(Init);
2390  return true;
2391}
2392
2393void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init) {
2394  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
2395}
2396
2397/// AddInitializerToDecl - Adds the initializer Init to the
2398/// declaration dcl. If DirectInit is true, this is C++ direct
2399/// initialization rather than copy initialization.
2400void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init, bool DirectInit) {
2401  Decl *RealDecl = static_cast<Decl *>(dcl);
2402  Expr *Init = static_cast<Expr *>(init.release());
2403  assert(Init && "missing initializer");
2404
2405  // If there is no declaration, there was an error parsing it.  Just ignore
2406  // the initializer.
2407  if (RealDecl == 0) {
2408    Init->Destroy(Context);
2409    return;
2410  }
2411
2412  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2413  if (!VDecl) {
2414    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2415    RealDecl->setInvalidDecl();
2416    return;
2417  }
2418  // Get the decls type and save a reference for later, since
2419  // CheckInitializerTypes may change it.
2420  QualType DclT = VDecl->getType(), SavT = DclT;
2421  if (VDecl->isBlockVarDecl()) {
2422    VarDecl::StorageClass SC = VDecl->getStorageClass();
2423    if (SC == VarDecl::Extern) { // C99 6.7.8p5
2424      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2425      VDecl->setInvalidDecl();
2426    } else if (!VDecl->isInvalidDecl()) {
2427      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2428                                VDecl->getDeclName(), DirectInit))
2429        VDecl->setInvalidDecl();
2430
2431      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2432      if (!getLangOptions().CPlusPlus) {
2433        if (SC == VarDecl::Static) // C99 6.7.8p4.
2434          CheckForConstantInitializer(Init, DclT);
2435      }
2436    }
2437  } else if (VDecl->isFileVarDecl()) {
2438    if (VDecl->getStorageClass() == VarDecl::Extern)
2439      Diag(VDecl->getLocation(), diag::warn_extern_init);
2440    if (!VDecl->isInvalidDecl())
2441      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2442                                VDecl->getDeclName(), DirectInit))
2443        VDecl->setInvalidDecl();
2444
2445    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2446    if (!getLangOptions().CPlusPlus) {
2447      // C99 6.7.8p4. All file scoped initializers need to be constant.
2448      CheckForConstantInitializer(Init, DclT);
2449    }
2450  }
2451  // If the type changed, it means we had an incomplete type that was
2452  // completed by the initializer. For example:
2453  //   int ary[] = { 1, 3, 5 };
2454  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2455  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2456    VDecl->setType(DclT);
2457    Init->setType(DclT);
2458  }
2459
2460  // Attach the initializer to the decl.
2461  VDecl->setInit(Init);
2462  return;
2463}
2464
2465void Sema::ActOnUninitializedDecl(DeclTy *dcl) {
2466  Decl *RealDecl = static_cast<Decl *>(dcl);
2467
2468  // If there is no declaration, there was an error parsing it. Just ignore it.
2469  if (RealDecl == 0)
2470    return;
2471
2472  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2473    QualType Type = Var->getType();
2474    // C++ [dcl.init.ref]p3:
2475    //   The initializer can be omitted for a reference only in a
2476    //   parameter declaration (8.3.5), in the declaration of a
2477    //   function return type, in the declaration of a class member
2478    //   within its class declaration (9.2), and where the extern
2479    //   specifier is explicitly used.
2480    if (Type->isReferenceType() &&
2481        Var->getStorageClass() != VarDecl::Extern &&
2482        Var->getStorageClass() != VarDecl::PrivateExtern) {
2483      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2484        << Var->getDeclName()
2485        << SourceRange(Var->getLocation(), Var->getLocation());
2486      Var->setInvalidDecl();
2487      return;
2488    }
2489
2490    // C++ [dcl.init]p9:
2491    //
2492    //   If no initializer is specified for an object, and the object
2493    //   is of (possibly cv-qualified) non-POD class type (or array
2494    //   thereof), the object shall be default-initialized; if the
2495    //   object is of const-qualified type, the underlying class type
2496    //   shall have a user-declared default constructor.
2497    if (getLangOptions().CPlusPlus) {
2498      QualType InitType = Type;
2499      if (const ArrayType *Array = Context.getAsArrayType(Type))
2500        InitType = Array->getElementType();
2501      if (Var->getStorageClass() != VarDecl::Extern &&
2502          Var->getStorageClass() != VarDecl::PrivateExtern &&
2503          InitType->isRecordType()) {
2504        const CXXConstructorDecl *Constructor
2505          = PerformInitializationByConstructor(InitType, 0, 0,
2506                                               Var->getLocation(),
2507                                               SourceRange(Var->getLocation(),
2508                                                           Var->getLocation()),
2509                                               Var->getDeclName(),
2510                                               IK_Default);
2511        if (!Constructor)
2512          Var->setInvalidDecl();
2513      }
2514    }
2515
2516#if 0
2517    // FIXME: Temporarily disabled because we are not properly parsing
2518    // linkage specifications on declarations, e.g.,
2519    //
2520    //   extern "C" const CGPoint CGPointerZero;
2521    //
2522    // C++ [dcl.init]p9:
2523    //
2524    //     If no initializer is specified for an object, and the
2525    //     object is of (possibly cv-qualified) non-POD class type (or
2526    //     array thereof), the object shall be default-initialized; if
2527    //     the object is of const-qualified type, the underlying class
2528    //     type shall have a user-declared default
2529    //     constructor. Otherwise, if no initializer is specified for
2530    //     an object, the object and its subobjects, if any, have an
2531    //     indeterminate initial value; if the object or any of its
2532    //     subobjects are of const-qualified type, the program is
2533    //     ill-formed.
2534    //
2535    // This isn't technically an error in C, so we don't diagnose it.
2536    //
2537    // FIXME: Actually perform the POD/user-defined default
2538    // constructor check.
2539    if (getLangOptions().CPlusPlus &&
2540        Context.getCanonicalType(Type).isConstQualified() &&
2541        Var->getStorageClass() != VarDecl::Extern)
2542      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2543        << Var->getName()
2544        << SourceRange(Var->getLocation(), Var->getLocation());
2545#endif
2546  }
2547}
2548
2549/// The declarators are chained together backwards, reverse the list.
2550Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
2551  // Often we have single declarators, handle them quickly.
2552  Decl *Group = static_cast<Decl*>(group);
2553  if (Group == 0)
2554    return 0;
2555
2556  Decl *NewGroup = 0;
2557  if (Group->getNextDeclarator() == 0)
2558    NewGroup = Group;
2559  else { // reverse the list.
2560    while (Group) {
2561      Decl *Next = Group->getNextDeclarator();
2562      Group->setNextDeclarator(NewGroup);
2563      NewGroup = Group;
2564      Group = Next;
2565    }
2566  }
2567  // Perform semantic analysis that depends on having fully processed both
2568  // the declarator and initializer.
2569  for (Decl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
2570    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
2571    if (!IDecl)
2572      continue;
2573    QualType T = IDecl->getType();
2574
2575    if (T->isVariableArrayType()) {
2576      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2577
2578      // FIXME: This won't give the correct result for
2579      // int a[10][n];
2580      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2581      if (IDecl->isFileVarDecl()) {
2582        Diag(IDecl->getLocation(), diag::err_vla_decl_in_file_scope) <<
2583          SizeRange;
2584
2585        IDecl->setInvalidDecl();
2586      } else {
2587        // C99 6.7.5.2p2: If an identifier is declared to be an object with
2588        // static storage duration, it shall not have a variable length array.
2589        if (IDecl->getStorageClass() == VarDecl::Static) {
2590          Diag(IDecl->getLocation(), diag::err_vla_decl_has_static_storage)
2591            << SizeRange;
2592          IDecl->setInvalidDecl();
2593        } else if (IDecl->getStorageClass() == VarDecl::Extern) {
2594          Diag(IDecl->getLocation(), diag::err_vla_decl_has_extern_linkage)
2595            << SizeRange;
2596          IDecl->setInvalidDecl();
2597        }
2598      }
2599    } else if (T->isVariablyModifiedType()) {
2600      if (IDecl->isFileVarDecl()) {
2601        Diag(IDecl->getLocation(), diag::err_vm_decl_in_file_scope);
2602        IDecl->setInvalidDecl();
2603      } else {
2604        if (IDecl->getStorageClass() == VarDecl::Extern) {
2605          Diag(IDecl->getLocation(), diag::err_vm_decl_has_extern_linkage);
2606          IDecl->setInvalidDecl();
2607        }
2608      }
2609    }
2610
2611    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2612    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2613    if (IDecl->isBlockVarDecl() &&
2614        IDecl->getStorageClass() != VarDecl::Extern) {
2615      if (!IDecl->isInvalidDecl() &&
2616          DiagnoseIncompleteType(IDecl->getLocation(), T,
2617                                 diag::err_typecheck_decl_incomplete_type))
2618        IDecl->setInvalidDecl();
2619    }
2620    // File scope. C99 6.9.2p2: A declaration of an identifier for and
2621    // object that has file scope without an initializer, and without a
2622    // storage-class specifier or with the storage-class specifier "static",
2623    // constitutes a tentative definition. Note: A tentative definition with
2624    // external linkage is valid (C99 6.2.2p5).
2625    if (isTentativeDefinition(IDecl)) {
2626      if (T->isIncompleteArrayType()) {
2627        // C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete
2628        // array to be completed. Don't issue a diagnostic.
2629      } else if (!IDecl->isInvalidDecl() &&
2630                 DiagnoseIncompleteType(IDecl->getLocation(), T,
2631                                        diag::err_typecheck_decl_incomplete_type))
2632        // C99 6.9.2p3: If the declaration of an identifier for an object is
2633        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2634        // declared type shall not be an incomplete type.
2635        IDecl->setInvalidDecl();
2636    }
2637    if (IDecl->isFileVarDecl())
2638      CheckForFileScopedRedefinitions(S, IDecl);
2639  }
2640  return NewGroup;
2641}
2642
2643/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2644/// to introduce parameters into function prototype scope.
2645Sema::DeclTy *
2646Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2647  const DeclSpec &DS = D.getDeclSpec();
2648
2649  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2650  VarDecl::StorageClass StorageClass = VarDecl::None;
2651  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2652    StorageClass = VarDecl::Register;
2653  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2654    Diag(DS.getStorageClassSpecLoc(),
2655         diag::err_invalid_storage_class_in_func_decl);
2656    D.getMutableDeclSpec().ClearStorageClassSpecs();
2657  }
2658  if (DS.isThreadSpecified()) {
2659    Diag(DS.getThreadSpecLoc(),
2660         diag::err_invalid_storage_class_in_func_decl);
2661    D.getMutableDeclSpec().ClearStorageClassSpecs();
2662  }
2663
2664  // Check that there are no default arguments inside the type of this
2665  // parameter (C++ only).
2666  if (getLangOptions().CPlusPlus)
2667    CheckExtraCXXDefaultArguments(D);
2668
2669  // In this context, we *do not* check D.getInvalidType(). If the declarator
2670  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
2671  // though it will not reflect the user specified type.
2672  QualType parmDeclType = GetTypeForDeclarator(D, S);
2673
2674  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
2675
2676  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2677  // Can this happen for params?  We already checked that they don't conflict
2678  // among each other.  Here they can only shadow globals, which is ok.
2679  IdentifierInfo *II = D.getIdentifier();
2680  if (II) {
2681    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2682      if (PrevDecl->isTemplateParameter()) {
2683        // Maybe we will complain about the shadowed template parameter.
2684        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2685        // Just pretend that we didn't see the previous declaration.
2686        PrevDecl = 0;
2687      } else if (S->isDeclScope(PrevDecl)) {
2688        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2689
2690        // Recover by removing the name
2691        II = 0;
2692        D.SetIdentifier(0, D.getIdentifierLoc());
2693      }
2694    }
2695  }
2696
2697  // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
2698  // Doing the promotion here has a win and a loss. The win is the type for
2699  // both Decl's and DeclRefExpr's will match (a convenient invariant for the
2700  // code generator). The loss is the orginal type isn't preserved. For example:
2701  //
2702  // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
2703  //    int blockvardecl[5];
2704  //    sizeof(parmvardecl);  // size == 4
2705  //    sizeof(blockvardecl); // size == 20
2706  // }
2707  //
2708  // For expressions, all implicit conversions are captured using the
2709  // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
2710  //
2711  // FIXME: If a source translation tool needs to see the original type, then
2712  // we need to consider storing both types (in ParmVarDecl)...
2713  //
2714  if (parmDeclType->isArrayType()) {
2715    // int x[restrict 4] ->  int *restrict
2716    parmDeclType = Context.getArrayDecayedType(parmDeclType);
2717  } else if (parmDeclType->isFunctionType())
2718    parmDeclType = Context.getPointerType(parmDeclType);
2719
2720  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext,
2721                                         D.getIdentifierLoc(), II,
2722                                         parmDeclType, StorageClass,
2723                                         0);
2724
2725  if (D.getInvalidType())
2726    New->setInvalidDecl();
2727
2728  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2729  if (D.getCXXScopeSpec().isSet()) {
2730    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
2731      << D.getCXXScopeSpec().getRange();
2732    New->setInvalidDecl();
2733  }
2734
2735  // Add the parameter declaration into this scope.
2736  S->AddDecl(New);
2737  if (II)
2738    IdResolver.AddDecl(New);
2739
2740  ProcessDeclAttributes(New, D);
2741  return New;
2742
2743}
2744
2745void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D) {
2746  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2747         "Not a function declarator!");
2748  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2749
2750  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
2751  // for a K&R function.
2752  if (!FTI.hasPrototype) {
2753    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2754      if (FTI.ArgInfo[i].Param == 0) {
2755        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
2756          << FTI.ArgInfo[i].Ident;
2757        // Implicitly declare the argument as type 'int' for lack of a better
2758        // type.
2759        DeclSpec DS;
2760        const char* PrevSpec; // unused
2761        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
2762                           PrevSpec);
2763        Declarator ParamD(DS, Declarator::KNRTypeListContext);
2764        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
2765        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
2766      }
2767    }
2768  }
2769}
2770
2771Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
2772  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2773  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2774         "Not a function declarator!");
2775  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2776
2777  if (FTI.hasPrototype) {
2778    // FIXME: Diagnose arguments without names in C.
2779  }
2780
2781  Scope *ParentScope = FnBodyScope->getParent();
2782
2783  return ActOnStartOfFunctionDef(FnBodyScope,
2784                                 ActOnDeclarator(ParentScope, D, 0,
2785                                                 /*IsFunctionDefinition=*/true));
2786}
2787
2788Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclTy *D) {
2789  Decl *decl = static_cast<Decl*>(D);
2790  FunctionDecl *FD = cast<FunctionDecl>(decl);
2791
2792  // See if this is a redefinition.
2793  const FunctionDecl *Definition;
2794  if (FD->getBody(Definition)) {
2795    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
2796    Diag(Definition->getLocation(), diag::note_previous_definition);
2797  }
2798
2799  // Builtin functions cannot be defined.
2800  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
2801    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2802      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
2803      FD->setInvalidDecl();
2804    }
2805  }
2806
2807  PushDeclContext(FnBodyScope, FD);
2808
2809  // Check the validity of our function parameters
2810  CheckParmsForFunctionDef(FD);
2811
2812  // Introduce our parameters into the function scope
2813  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2814    ParmVarDecl *Param = FD->getParamDecl(p);
2815    Param->setOwningFunction(FD);
2816
2817    // If this has an identifier, add it to the scope stack.
2818    if (Param->getIdentifier())
2819      PushOnScopeChains(Param, FnBodyScope);
2820  }
2821
2822  // Checking attributes of current function definition
2823  // dllimport attribute.
2824  if (FD->getAttr<DLLImportAttr>() && (!FD->getAttr<DLLExportAttr>())) {
2825    // dllimport attribute cannot be applied to definition.
2826    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
2827      Diag(FD->getLocation(),
2828           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
2829        << "dllimport";
2830      FD->setInvalidDecl();
2831      return FD;
2832    } else {
2833      // If a symbol previously declared dllimport is later defined, the
2834      // attribute is ignored in subsequent references, and a warning is
2835      // emitted.
2836      Diag(FD->getLocation(),
2837           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
2838        << FD->getNameAsCString() << "dllimport";
2839    }
2840  }
2841  return FD;
2842}
2843
2844Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtArg BodyArg) {
2845  Decl *dcl = static_cast<Decl *>(D);
2846  Stmt *Body = static_cast<Stmt*>(BodyArg.release());
2847  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
2848    FD->setBody(Body);
2849    assert(FD == getCurFunctionDecl() && "Function parsing confused");
2850  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
2851    assert(MD == getCurMethodDecl() && "Method parsing confused");
2852    MD->setBody((Stmt*)Body);
2853  } else {
2854    Body->Destroy(Context);
2855    return 0;
2856  }
2857  PopDeclContext();
2858  // Verify and clean out per-function state.
2859
2860  // Check goto/label use.
2861  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
2862       I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
2863    // Verify that we have no forward references left.  If so, there was a goto
2864    // or address of a label taken, but no definition of it.  Label fwd
2865    // definitions are indicated with a null substmt.
2866    if (I->second->getSubStmt() == 0) {
2867      LabelStmt *L = I->second;
2868      // Emit error.
2869      Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
2870
2871      // At this point, we have gotos that use the bogus label.  Stitch it into
2872      // the function body so that they aren't leaked and that the AST is well
2873      // formed.
2874      if (Body) {
2875#if 0
2876        // FIXME: Why do this?  Having a 'push_back' in CompoundStmt is ugly,
2877        // and the AST is malformed anyway.  We should just blow away 'L'.
2878        L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
2879        cast<CompoundStmt>(Body)->push_back(L);
2880#else
2881        L->Destroy(Context);
2882#endif
2883      } else {
2884        // The whole function wasn't parsed correctly, just delete this.
2885        L->Destroy(Context);
2886      }
2887    }
2888  }
2889  LabelMap.clear();
2890
2891  return D;
2892}
2893
2894/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
2895/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
2896NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
2897                                          IdentifierInfo &II, Scope *S) {
2898  // Extension in C99.  Legal in C90, but warn about it.
2899  if (getLangOptions().C99)
2900    Diag(Loc, diag::ext_implicit_function_decl) << &II;
2901  else
2902    Diag(Loc, diag::warn_implicit_function_decl) << &II;
2903
2904  // FIXME: handle stuff like:
2905  // void foo() { extern float X(); }
2906  // void bar() { X(); }  <-- implicit decl for X in another scope.
2907
2908  // Set a Declarator for the implicit definition: int foo();
2909  const char *Dummy;
2910  DeclSpec DS;
2911  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
2912  Error = Error; // Silence warning.
2913  assert(!Error && "Error setting up implicit decl!");
2914  Declarator D(DS, Declarator::BlockContext);
2915  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, 0, 0, 0, Loc, D),
2916                SourceLocation());
2917  D.SetIdentifier(&II, Loc);
2918
2919  // Insert this function into translation-unit scope.
2920
2921  DeclContext *PrevDC = CurContext;
2922  CurContext = Context.getTranslationUnitDecl();
2923
2924  FunctionDecl *FD =
2925    dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0)));
2926  FD->setImplicit();
2927
2928  CurContext = PrevDC;
2929
2930  AddKnownFunctionAttributes(FD);
2931
2932  return FD;
2933}
2934
2935/// \brief Adds any function attributes that we know a priori based on
2936/// the declaration of this function.
2937///
2938/// These attributes can apply both to implicitly-declared builtins
2939/// (like __builtin___printf_chk) or to library-declared functions
2940/// like NSLog or printf.
2941void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
2942  if (FD->isInvalidDecl())
2943    return;
2944
2945  // If this is a built-in function, map its builtin attributes to
2946  // actual attributes.
2947  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
2948    // Handle printf-formatting attributes.
2949    unsigned FormatIdx;
2950    bool HasVAListArg;
2951    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
2952      if (!FD->getAttr<FormatAttr>())
2953        FD->addAttr(new FormatAttr("printf", FormatIdx + 1, FormatIdx + 2));
2954    }
2955
2956    // Mark const if we don't care about errno and that is the only
2957    // thing preventing the function from being const. This allows
2958    // IRgen to use LLVM intrinsics for such functions.
2959    if (!getLangOptions().MathErrno &&
2960        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
2961      if (!FD->getAttr<ConstAttr>())
2962        FD->addAttr(new ConstAttr());
2963    }
2964  }
2965
2966  IdentifierInfo *Name = FD->getIdentifier();
2967  if (!Name)
2968    return;
2969  if ((!getLangOptions().CPlusPlus &&
2970       FD->getDeclContext()->isTranslationUnit()) ||
2971      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
2972       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
2973       LinkageSpecDecl::lang_c)) {
2974    // Okay: this could be a libc/libm/Objective-C function we know
2975    // about.
2976  } else
2977    return;
2978
2979  unsigned KnownID;
2980  for (KnownID = 0; KnownID != id_num_known_functions; ++KnownID)
2981    if (KnownFunctionIDs[KnownID] == Name)
2982      break;
2983
2984  switch (KnownID) {
2985  case id_NSLog:
2986  case id_NSLogv:
2987    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
2988      // FIXME: We known better than our headers.
2989      const_cast<FormatAttr *>(Format)->setType("printf");
2990    } else
2991      FD->addAttr(new FormatAttr("printf", 1, 2));
2992    break;
2993
2994  case id_asprintf:
2995  case id_vasprintf:
2996    if (!FD->getAttr<FormatAttr>())
2997      FD->addAttr(new FormatAttr("printf", 2, 3));
2998    break;
2999
3000  default:
3001    // Unknown function or known function without any attributes to
3002    // add. Do nothing.
3003    break;
3004  }
3005}
3006
3007TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
3008                                    Decl *LastDeclarator) {
3009  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
3010  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3011
3012  // Scope manipulation handled by caller.
3013  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
3014                                           D.getIdentifierLoc(),
3015                                           D.getIdentifier(),
3016                                           T);
3017  NewTD->setNextDeclarator(LastDeclarator);
3018  if (D.getInvalidType())
3019    NewTD->setInvalidDecl();
3020  return NewTD;
3021}
3022
3023/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
3024/// former case, Name will be non-null.  In the later case, Name will be null.
3025/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
3026/// reference/declaration/definition of a tag.
3027Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
3028                             SourceLocation KWLoc, const CXXScopeSpec &SS,
3029                             IdentifierInfo *Name, SourceLocation NameLoc,
3030                             AttributeList *Attr) {
3031  // If this is not a definition, it must have a name.
3032  assert((Name != 0 || TK == TK_Definition) &&
3033         "Nameless record must be a definition!");
3034
3035  TagDecl::TagKind Kind;
3036  switch (TagSpec) {
3037  default: assert(0 && "Unknown tag type!");
3038  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3039  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3040  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3041  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
3042  }
3043
3044  DeclContext *SearchDC = CurContext;
3045  DeclContext *DC = CurContext;
3046  NamedDecl *PrevDecl = 0;
3047
3048  bool Invalid = false;
3049
3050  if (Name && SS.isNotEmpty()) {
3051    // We have a nested-name tag ('struct foo::bar').
3052
3053    // Check for invalid 'foo::'.
3054    if (SS.isInvalid()) {
3055      Name = 0;
3056      goto CreateNewDecl;
3057    }
3058
3059    DC = static_cast<DeclContext*>(SS.getScopeRep());
3060    SearchDC = DC;
3061    // Look-up name inside 'foo::'.
3062    PrevDecl = dyn_cast_or_null<TagDecl>(
3063                 LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
3064
3065    // A tag 'foo::bar' must already exist.
3066    if (PrevDecl == 0) {
3067      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
3068      Name = 0;
3069      goto CreateNewDecl;
3070    }
3071  } else if (Name) {
3072    // If this is a named struct, check to see if there was a previous forward
3073    // declaration or definition.
3074    // FIXME: We're looking into outer scopes here, even when we
3075    // shouldn't be. Doing so can result in ambiguities that we
3076    // shouldn't be diagnosing.
3077    LookupResult R = LookupName(S, Name, LookupTagName,
3078                                /*RedeclarationOnly=*/(TK != TK_Reference));
3079    if (R.isAmbiguous()) {
3080      DiagnoseAmbiguousLookup(R, Name, NameLoc);
3081      // FIXME: This is not best way to recover from case like:
3082      //
3083      // struct S s;
3084      //
3085      // causes needless err_ovl_no_viable_function_in_init latter.
3086      Name = 0;
3087      PrevDecl = 0;
3088      Invalid = true;
3089    }
3090    else
3091      PrevDecl = R;
3092
3093    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
3094      // FIXME: This makes sure that we ignore the contexts associated
3095      // with C structs, unions, and enums when looking for a matching
3096      // tag declaration or definition. See the similar lookup tweak
3097      // in Sema::LookupName; is there a better way to deal with this?
3098      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
3099        SearchDC = SearchDC->getParent();
3100    }
3101  }
3102
3103  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3104    // Maybe we will complain about the shadowed template parameter.
3105    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
3106    // Just pretend that we didn't see the previous declaration.
3107    PrevDecl = 0;
3108  }
3109
3110  if (PrevDecl) {
3111    // If the previous declaration was deprecated, emit a warning.
3112    DiagnoseUseOfDeprecatedDecl(PrevDecl, NameLoc);
3113
3114    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
3115      // If this is a use of a previous tag, or if the tag is already declared
3116      // in the same scope (so that the definition/declaration completes or
3117      // rementions the tag), reuse the decl.
3118      if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
3119        // Make sure that this wasn't declared as an enum and now used as a
3120        // struct or something similar.
3121        if (PrevTagDecl->getTagKind() != Kind) {
3122          Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
3123          Diag(PrevDecl->getLocation(), diag::note_previous_use);
3124          // Recover by making this an anonymous redefinition.
3125          Name = 0;
3126          PrevDecl = 0;
3127          Invalid = true;
3128        } else {
3129          // If this is a use, just return the declaration we found.
3130
3131          // FIXME: In the future, return a variant or some other clue
3132          // for the consumer of this Decl to know it doesn't own it.
3133          // For our current ASTs this shouldn't be a problem, but will
3134          // need to be changed with DeclGroups.
3135          if (TK == TK_Reference)
3136            return PrevDecl;
3137
3138          // Diagnose attempts to redefine a tag.
3139          if (TK == TK_Definition) {
3140            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
3141              Diag(NameLoc, diag::err_redefinition) << Name;
3142              Diag(Def->getLocation(), diag::note_previous_definition);
3143              // If this is a redefinition, recover by making this
3144              // struct be anonymous, which will make any later
3145              // references get the previous definition.
3146              Name = 0;
3147              PrevDecl = 0;
3148              Invalid = true;
3149            } else {
3150              // If the type is currently being defined, complain
3151              // about a nested redefinition.
3152              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
3153              if (Tag->isBeingDefined()) {
3154                Diag(NameLoc, diag::err_nested_redefinition) << Name;
3155                Diag(PrevTagDecl->getLocation(),
3156                     diag::note_previous_definition);
3157                Name = 0;
3158                PrevDecl = 0;
3159                Invalid = true;
3160              }
3161            }
3162
3163            // Okay, this is definition of a previously declared or referenced
3164            // tag PrevDecl. We're going to create a new Decl for it.
3165          }
3166        }
3167        // If we get here we have (another) forward declaration or we
3168        // have a definition.  Just create a new decl.
3169      } else {
3170        // If we get here, this is a definition of a new tag type in a nested
3171        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
3172        // new decl/type.  We set PrevDecl to NULL so that the entities
3173        // have distinct types.
3174        PrevDecl = 0;
3175      }
3176      // If we get here, we're going to create a new Decl. If PrevDecl
3177      // is non-NULL, it's a definition of the tag declared by
3178      // PrevDecl. If it's NULL, we have a new definition.
3179    } else {
3180      // PrevDecl is a namespace, template, or anything else
3181      // that lives in the IDNS_Tag identifier namespace.
3182      if (isDeclInScope(PrevDecl, SearchDC, S)) {
3183        // The tag name clashes with a namespace name, issue an error and
3184        // recover by making this tag be anonymous.
3185        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
3186        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3187        Name = 0;
3188        PrevDecl = 0;
3189        Invalid = true;
3190      } else {
3191        // The existing declaration isn't relevant to us; we're in a
3192        // new scope, so clear out the previous declaration.
3193        PrevDecl = 0;
3194      }
3195    }
3196  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
3197             (Kind != TagDecl::TK_enum))  {
3198    // C++ [basic.scope.pdecl]p5:
3199    //   -- for an elaborated-type-specifier of the form
3200    //
3201    //          class-key identifier
3202    //
3203    //      if the elaborated-type-specifier is used in the
3204    //      decl-specifier-seq or parameter-declaration-clause of a
3205    //      function defined in namespace scope, the identifier is
3206    //      declared as a class-name in the namespace that contains
3207    //      the declaration; otherwise, except as a friend
3208    //      declaration, the identifier is declared in the smallest
3209    //      non-class, non-function-prototype scope that contains the
3210    //      declaration.
3211    //
3212    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
3213    // C structs and unions.
3214
3215    // Find the context where we'll be declaring the tag.
3216    // FIXME: We would like to maintain the current DeclContext as the
3217    // lexical context,
3218    while (SearchDC->isRecord())
3219      SearchDC = SearchDC->getParent();
3220
3221    // Find the scope where we'll be declaring the tag.
3222    while (S->isClassScope() ||
3223           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
3224           ((S->getFlags() & Scope::DeclScope) == 0) ||
3225           (S->getEntity() &&
3226            ((DeclContext *)S->getEntity())->isTransparentContext()))
3227      S = S->getParent();
3228  }
3229
3230CreateNewDecl:
3231
3232  // If there is an identifier, use the location of the identifier as the
3233  // location of the decl, otherwise use the location of the struct/union
3234  // keyword.
3235  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
3236
3237  // Otherwise, create a new declaration. If there is a previous
3238  // declaration of the same entity, the two will be linked via
3239  // PrevDecl.
3240  TagDecl *New;
3241
3242  if (Kind == TagDecl::TK_enum) {
3243    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3244    // enum X { A, B, C } D;    D should chain to X.
3245    New = EnumDecl::Create(Context, SearchDC, Loc, Name,
3246                           cast_or_null<EnumDecl>(PrevDecl));
3247    // If this is an undefined enum, warn.
3248    if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum);
3249  } else {
3250    // struct/union/class
3251
3252    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3253    // struct X { int A; } D;    D should chain to X.
3254    if (getLangOptions().CPlusPlus)
3255      // FIXME: Look for a way to use RecordDecl for simple structs.
3256      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3257                                  cast_or_null<CXXRecordDecl>(PrevDecl));
3258    else
3259      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3260                               cast_or_null<RecordDecl>(PrevDecl));
3261  }
3262
3263  if (Kind != TagDecl::TK_enum) {
3264    // Handle #pragma pack: if the #pragma pack stack has non-default
3265    // alignment, make up a packed attribute for this decl. These
3266    // attributes are checked when the ASTContext lays out the
3267    // structure.
3268    //
3269    // It is important for implementing the correct semantics that this
3270    // happen here (in act on tag decl). The #pragma pack stack is
3271    // maintained as a result of parser callbacks which can occur at
3272    // many points during the parsing of a struct declaration (because
3273    // the #pragma tokens are effectively skipped over during the
3274    // parsing of the struct).
3275    if (unsigned Alignment = getPragmaPackAlignment())
3276      New->addAttr(new PackedAttr(Alignment * 8));
3277  }
3278
3279  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
3280    // C++ [dcl.typedef]p3:
3281    //   [...] Similarly, in a given scope, a class or enumeration
3282    //   shall not be declared with the same name as a typedef-name
3283    //   that is declared in that scope and refers to a type other
3284    //   than the class or enumeration itself.
3285    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
3286    TypedefDecl *PrevTypedef = 0;
3287    if (Lookup.getKind() == LookupResult::Found)
3288      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
3289
3290    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
3291        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
3292          Context.getCanonicalType(Context.getTypeDeclType(New))) {
3293      Diag(Loc, diag::err_tag_definition_of_typedef)
3294        << Context.getTypeDeclType(New)
3295        << PrevTypedef->getUnderlyingType();
3296      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
3297      Invalid = true;
3298    }
3299  }
3300
3301  if (Invalid)
3302    New->setInvalidDecl();
3303
3304  if (Attr)
3305    ProcessDeclAttributeList(New, Attr);
3306
3307  // If we're declaring or defining a tag in function prototype scope
3308  // in C, note that this type can only be used within the function.
3309  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
3310    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
3311
3312  // Set the lexical context. If the tag has a C++ scope specifier, the
3313  // lexical context will be different from the semantic context.
3314  New->setLexicalDeclContext(CurContext);
3315
3316  if (TK == TK_Definition)
3317    New->startDefinition();
3318
3319  // If this has an identifier, add it to the scope stack.
3320  if (Name) {
3321    S = getNonFieldDeclScope(S);
3322    PushOnScopeChains(New, S);
3323  } else {
3324    CurContext->addDecl(New);
3325  }
3326
3327  return New;
3328}
3329
3330void Sema::ActOnTagStartDefinition(Scope *S, DeclTy *TagD) {
3331  AdjustDeclIfTemplate(TagD);
3332  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3333
3334  // Enter the tag context.
3335  PushDeclContext(S, Tag);
3336
3337  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
3338    FieldCollector->StartClass();
3339
3340    if (Record->getIdentifier()) {
3341      // C++ [class]p2:
3342      //   [...] The class-name is also inserted into the scope of the
3343      //   class itself; this is known as the injected-class-name. For
3344      //   purposes of access checking, the injected-class-name is treated
3345      //   as if it were a public member name.
3346      RecordDecl *InjectedClassName
3347        = CXXRecordDecl::Create(Context, Record->getTagKind(),
3348                                CurContext, Record->getLocation(),
3349                                Record->getIdentifier(), Record);
3350      InjectedClassName->setImplicit();
3351      PushOnScopeChains(InjectedClassName, S);
3352    }
3353  }
3354}
3355
3356void Sema::ActOnTagFinishDefinition(Scope *S, DeclTy *TagD) {
3357  AdjustDeclIfTemplate(TagD);
3358  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3359
3360  if (isa<CXXRecordDecl>(Tag))
3361    FieldCollector->FinishClass();
3362
3363  // Exit this scope of this tag's definition.
3364  PopDeclContext();
3365
3366  // Notify the consumer that we've defined a tag.
3367  Consumer.HandleTagDeclDefinition(Tag);
3368}
3369
3370/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3371/// types into constant array types in certain situations which would otherwise
3372/// be errors (for GCC compatibility).
3373static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3374                                                    ASTContext &Context) {
3375  // This method tries to turn a variable array into a constant
3376  // array even when the size isn't an ICE.  This is necessary
3377  // for compatibility with code that depends on gcc's buggy
3378  // constant expression folding, like struct {char x[(int)(char*)2];}
3379  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3380  if (!VLATy) return QualType();
3381
3382  Expr::EvalResult EvalResult;
3383  if (!VLATy->getSizeExpr() ||
3384      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context))
3385    return QualType();
3386
3387  assert(EvalResult.Val.isInt() && "Size expressions must be integers!");
3388  llvm::APSInt &Res = EvalResult.Val.getInt();
3389  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
3390    return Context.getConstantArrayType(VLATy->getElementType(),
3391                                        Res, ArrayType::Normal, 0);
3392  return QualType();
3393}
3394
3395bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
3396                          QualType FieldTy, const Expr *BitWidth) {
3397  // FIXME: 6.7.2.1p4 - verify the field type.
3398
3399  llvm::APSInt Value;
3400  if (VerifyIntegerConstantExpression(BitWidth, &Value))
3401    return true;
3402
3403  // Zero-width bitfield is ok for anonymous field.
3404  if (Value == 0 && FieldName)
3405    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
3406
3407  if (Value.isNegative())
3408    return Diag(FieldLoc, diag::err_bitfield_has_negative_width) << FieldName;
3409
3410  uint64_t TypeSize = Context.getTypeSize(FieldTy);
3411  // FIXME: We won't need the 0 size once we check that the field type is valid.
3412  if (TypeSize && Value.getZExtValue() > TypeSize)
3413    return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
3414       << FieldName << (unsigned)TypeSize;
3415
3416  return false;
3417}
3418
3419/// ActOnField - Each field of a struct/union/class is passed into this in order
3420/// to create a FieldDecl object for it.
3421Sema::DeclTy *Sema::ActOnField(Scope *S, DeclTy *TagD,
3422                               SourceLocation DeclStart,
3423                               Declarator &D, ExprTy *BitfieldWidth) {
3424  IdentifierInfo *II = D.getIdentifier();
3425  Expr *BitWidth = (Expr*)BitfieldWidth;
3426  SourceLocation Loc = DeclStart;
3427  RecordDecl *Record = (RecordDecl *)TagD;
3428  if (II) Loc = D.getIdentifierLoc();
3429
3430  // FIXME: Unnamed fields can be handled in various different ways, for
3431  // example, unnamed unions inject all members into the struct namespace!
3432
3433  QualType T = GetTypeForDeclarator(D, S);
3434  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3435  bool InvalidDecl = false;
3436
3437  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3438  // than a variably modified type.
3439  if (T->isVariablyModifiedType()) {
3440    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context);
3441    if (!FixedTy.isNull()) {
3442      Diag(Loc, diag::warn_illegal_constant_array_size);
3443      T = FixedTy;
3444    } else {
3445      Diag(Loc, diag::err_typecheck_field_variable_size);
3446      T = Context.IntTy;
3447      InvalidDecl = true;
3448    }
3449  }
3450
3451  if (BitWidth) {
3452    if (VerifyBitField(Loc, II, T, BitWidth))
3453      InvalidDecl = true;
3454  } else {
3455    // Not a bitfield.
3456
3457    // validate II.
3458
3459  }
3460
3461  // FIXME: Chain fielddecls together.
3462  FieldDecl *NewFD;
3463
3464  NewFD = FieldDecl::Create(Context, Record,
3465                            Loc, II, T, BitWidth,
3466                            D.getDeclSpec().getStorageClassSpec() ==
3467                              DeclSpec::SCS_mutable);
3468
3469  if (II) {
3470    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3471    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3472        && !isa<TagDecl>(PrevDecl)) {
3473      Diag(Loc, diag::err_duplicate_member) << II;
3474      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3475      NewFD->setInvalidDecl();
3476      Record->setInvalidDecl();
3477    }
3478  }
3479
3480  if (getLangOptions().CPlusPlus) {
3481    CheckExtraCXXDefaultArguments(D);
3482    if (!T->isPODType())
3483      cast<CXXRecordDecl>(Record)->setPOD(false);
3484  }
3485
3486  ProcessDeclAttributes(NewFD, D);
3487
3488  if (D.getInvalidType() || InvalidDecl)
3489    NewFD->setInvalidDecl();
3490
3491  if (II) {
3492    PushOnScopeChains(NewFD, S);
3493  } else
3494    Record->addDecl(NewFD);
3495
3496  return NewFD;
3497}
3498
3499/// TranslateIvarVisibility - Translate visibility from a token ID to an
3500///  AST enum value.
3501static ObjCIvarDecl::AccessControl
3502TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
3503  switch (ivarVisibility) {
3504  default: assert(0 && "Unknown visitibility kind");
3505  case tok::objc_private: return ObjCIvarDecl::Private;
3506  case tok::objc_public: return ObjCIvarDecl::Public;
3507  case tok::objc_protected: return ObjCIvarDecl::Protected;
3508  case tok::objc_package: return ObjCIvarDecl::Package;
3509  }
3510}
3511
3512/// ActOnIvar - Each ivar field of an objective-c class is passed into this
3513/// in order to create an IvarDecl object for it.
3514Sema::DeclTy *Sema::ActOnIvar(Scope *S,
3515                              SourceLocation DeclStart,
3516                              Declarator &D, ExprTy *BitfieldWidth,
3517                              tok::ObjCKeywordKind Visibility) {
3518
3519  IdentifierInfo *II = D.getIdentifier();
3520  Expr *BitWidth = (Expr*)BitfieldWidth;
3521  SourceLocation Loc = DeclStart;
3522  if (II) Loc = D.getIdentifierLoc();
3523
3524  // FIXME: Unnamed fields can be handled in various different ways, for
3525  // example, unnamed unions inject all members into the struct namespace!
3526
3527  QualType T = GetTypeForDeclarator(D, S);
3528  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3529  bool InvalidDecl = false;
3530
3531  if (BitWidth) {
3532    // TODO: Validate.
3533    //printf("WARNING: BITFIELDS IGNORED!\n");
3534
3535    // 6.7.2.1p3
3536    // 6.7.2.1p4
3537
3538  } else {
3539    // Not a bitfield.
3540
3541    // validate II.
3542
3543  }
3544
3545  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3546  // than a variably modified type.
3547  if (T->isVariablyModifiedType()) {
3548    Diag(Loc, diag::err_typecheck_ivar_variable_size);
3549    InvalidDecl = true;
3550  }
3551
3552  // Get the visibility (access control) for this ivar.
3553  ObjCIvarDecl::AccessControl ac =
3554    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
3555                                        : ObjCIvarDecl::None;
3556
3557  // Construct the decl.
3558  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, CurContext, Loc, II, T,ac,
3559                                             (Expr *)BitfieldWidth);
3560
3561  if (II) {
3562    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3563    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3564        && !isa<TagDecl>(PrevDecl)) {
3565      Diag(Loc, diag::err_duplicate_member) << II;
3566      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3567      NewID->setInvalidDecl();
3568    }
3569  }
3570
3571  // Process attributes attached to the ivar.
3572  ProcessDeclAttributes(NewID, D);
3573
3574  if (D.getInvalidType() || InvalidDecl)
3575    NewID->setInvalidDecl();
3576
3577  if (II) {
3578    // FIXME: When interfaces are DeclContexts, we'll need to add
3579    // these to the interface.
3580    S->AddDecl(NewID);
3581    IdResolver.AddDecl(NewID);
3582  }
3583
3584  return NewID;
3585}
3586
3587void Sema::ActOnFields(Scope* S,
3588                       SourceLocation RecLoc, DeclTy *RecDecl,
3589                       DeclTy **Fields, unsigned NumFields,
3590                       SourceLocation LBrac, SourceLocation RBrac,
3591                       AttributeList *Attr) {
3592  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
3593  assert(EnclosingDecl && "missing record or interface decl");
3594  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
3595
3596  // Verify that all the fields are okay.
3597  unsigned NumNamedMembers = 0;
3598  llvm::SmallVector<FieldDecl*, 32> RecFields;
3599
3600  for (unsigned i = 0; i != NumFields; ++i) {
3601    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
3602    assert(FD && "missing field decl");
3603
3604    // Get the type for the field.
3605    Type *FDTy = FD->getType().getTypePtr();
3606
3607    if (!FD->isAnonymousStructOrUnion()) {
3608      // Remember all fields written by the user.
3609      RecFields.push_back(FD);
3610    }
3611
3612    // C99 6.7.2.1p2 - A field may not be a function type.
3613    if (FDTy->isFunctionType()) {
3614      Diag(FD->getLocation(), diag::err_field_declared_as_function)
3615        << FD->getDeclName();
3616      FD->setInvalidDecl();
3617      EnclosingDecl->setInvalidDecl();
3618      continue;
3619    }
3620    // C99 6.7.2.1p2 - A field may not be an incomplete type except...
3621    if (FDTy->isIncompleteType()) {
3622      if (!Record) {  // Incomplete ivar type is always an error.
3623        DiagnoseIncompleteType(FD->getLocation(), FD->getType(),
3624                               diag::err_field_incomplete);
3625        FD->setInvalidDecl();
3626        EnclosingDecl->setInvalidDecl();
3627        continue;
3628      }
3629      if (i != NumFields-1 ||                   // ... that the last member ...
3630          !Record->isStruct() ||  // ... of a structure ...
3631          !FDTy->isArrayType()) {         //... may have incomplete array type.
3632        DiagnoseIncompleteType(FD->getLocation(), FD->getType(),
3633                               diag::err_field_incomplete);
3634        FD->setInvalidDecl();
3635        EnclosingDecl->setInvalidDecl();
3636        continue;
3637      }
3638      if (NumNamedMembers < 1) {  //... must have more than named member ...
3639        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
3640          << FD->getDeclName();
3641        FD->setInvalidDecl();
3642        EnclosingDecl->setInvalidDecl();
3643        continue;
3644      }
3645      // Okay, we have a legal flexible array member at the end of the struct.
3646      if (Record)
3647        Record->setHasFlexibleArrayMember(true);
3648    }
3649    /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
3650    /// field of another structure or the element of an array.
3651    if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
3652      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
3653        // If this is a member of a union, then entire union becomes "flexible".
3654        if (Record && Record->isUnion()) {
3655          Record->setHasFlexibleArrayMember(true);
3656        } else {
3657          // If this is a struct/class and this is not the last element, reject
3658          // it.  Note that GCC supports variable sized arrays in the middle of
3659          // structures.
3660          if (i != NumFields-1) {
3661            Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct)
3662              << FD->getDeclName();
3663            FD->setInvalidDecl();
3664            EnclosingDecl->setInvalidDecl();
3665            continue;
3666          }
3667          // We support flexible arrays at the end of structs in other structs
3668          // as an extension.
3669          Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
3670            << FD->getDeclName();
3671          if (Record)
3672            Record->setHasFlexibleArrayMember(true);
3673        }
3674      }
3675    }
3676    /// A field cannot be an Objective-c object
3677    if (FDTy->isObjCInterfaceType()) {
3678      Diag(FD->getLocation(), diag::err_statically_allocated_object)
3679        << FD->getDeclName();
3680      FD->setInvalidDecl();
3681      EnclosingDecl->setInvalidDecl();
3682      continue;
3683    }
3684    // Keep track of the number of named members.
3685    if (FD->getIdentifier())
3686      ++NumNamedMembers;
3687  }
3688
3689  // Okay, we successfully defined 'Record'.
3690  if (Record) {
3691    Record->completeDefinition(Context);
3692  } else {
3693    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
3694    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
3695      ID->addInstanceVariablesToClass(ClsFields, RecFields.size(), RBrac);
3696      // Must enforce the rule that ivars in the base classes may not be
3697      // duplicates.
3698      if (ID->getSuperClass()) {
3699        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
3700             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
3701          ObjCIvarDecl* Ivar = (*IVI);
3702          IdentifierInfo *II = Ivar->getIdentifier();
3703          ObjCIvarDecl* prevIvar = ID->getSuperClass()->lookupInstanceVariable(II);
3704          if (prevIvar) {
3705            Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3706            Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3707          }
3708        }
3709      }
3710    }
3711    else if (ObjCImplementationDecl *IMPDecl =
3712               dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
3713      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
3714      IMPDecl->ObjCAddInstanceVariablesToClassImpl(ClsFields, RecFields.size());
3715      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
3716    }
3717  }
3718
3719  if (Attr)
3720    ProcessDeclAttributeList(Record, Attr);
3721}
3722
3723Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
3724                                      DeclTy *lastEnumConst,
3725                                      SourceLocation IdLoc, IdentifierInfo *Id,
3726                                      SourceLocation EqualLoc, ExprTy *val) {
3727  EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
3728  EnumConstantDecl *LastEnumConst =
3729    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
3730  Expr *Val = static_cast<Expr*>(val);
3731
3732  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3733  // we find one that is.
3734  S = getNonFieldDeclScope(S);
3735
3736  // Verify that there isn't already something declared with this name in this
3737  // scope.
3738  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
3739  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3740    // Maybe we will complain about the shadowed template parameter.
3741    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
3742    // Just pretend that we didn't see the previous declaration.
3743    PrevDecl = 0;
3744  }
3745
3746  if (PrevDecl) {
3747    // When in C++, we may get a TagDecl with the same name; in this case the
3748    // enum constant will 'hide' the tag.
3749    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
3750           "Received TagDecl when not in C++!");
3751    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
3752      if (isa<EnumConstantDecl>(PrevDecl))
3753        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
3754      else
3755        Diag(IdLoc, diag::err_redefinition) << Id;
3756      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3757      Val->Destroy(Context);
3758      return 0;
3759    }
3760  }
3761
3762  llvm::APSInt EnumVal(32);
3763  QualType EltTy;
3764  if (Val) {
3765    // Make sure to promote the operand type to int.
3766    UsualUnaryConversions(Val);
3767
3768    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
3769    SourceLocation ExpLoc;
3770    if (VerifyIntegerConstantExpression(Val, &EnumVal)) {
3771      Val->Destroy(Context);
3772      Val = 0;  // Just forget about it.
3773    } else {
3774      EltTy = Val->getType();
3775    }
3776  }
3777
3778  if (!Val) {
3779    if (LastEnumConst) {
3780      // Assign the last value + 1.
3781      EnumVal = LastEnumConst->getInitVal();
3782      ++EnumVal;
3783
3784      // Check for overflow on increment.
3785      if (EnumVal < LastEnumConst->getInitVal())
3786        Diag(IdLoc, diag::warn_enum_value_overflow);
3787
3788      EltTy = LastEnumConst->getType();
3789    } else {
3790      // First value, set to zero.
3791      EltTy = Context.IntTy;
3792      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
3793    }
3794  }
3795
3796  EnumConstantDecl *New =
3797    EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy,
3798                             Val, EnumVal);
3799
3800  // Register this decl in the current scope stack.
3801  PushOnScopeChains(New, S);
3802
3803  return New;
3804}
3805
3806// FIXME: For consistency with ActOnFields(), we should have the parser
3807// pass in the source location for the left/right braces.
3808void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
3809                         DeclTy **Elements, unsigned NumElements) {
3810  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
3811  QualType EnumType = Context.getTypeDeclType(Enum);
3812
3813  // TODO: If the result value doesn't fit in an int, it must be a long or long
3814  // long value.  ISO C does not support this, but GCC does as an extension,
3815  // emit a warning.
3816  unsigned IntWidth = Context.Target.getIntWidth();
3817
3818  // Verify that all the values are okay, compute the size of the values, and
3819  // reverse the list.
3820  unsigned NumNegativeBits = 0;
3821  unsigned NumPositiveBits = 0;
3822
3823  // Keep track of whether all elements have type int.
3824  bool AllElementsInt = true;
3825
3826  for (unsigned i = 0; i != NumElements; ++i) {
3827    EnumConstantDecl *ECD =
3828      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3829    if (!ECD) continue;  // Already issued a diagnostic.
3830
3831    // If the enum value doesn't fit in an int, emit an extension warning.
3832    const llvm::APSInt &InitVal = ECD->getInitVal();
3833    assert(InitVal.getBitWidth() >= IntWidth &&
3834           "Should have promoted value to int");
3835    if (InitVal.getBitWidth() > IntWidth) {
3836      llvm::APSInt V(InitVal);
3837      V.trunc(IntWidth);
3838      V.extend(InitVal.getBitWidth());
3839      if (V != InitVal)
3840        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
3841          << InitVal.toString(10);
3842    }
3843
3844    // Keep track of the size of positive and negative values.
3845    if (InitVal.isUnsigned() || InitVal.isNonNegative())
3846      NumPositiveBits = std::max(NumPositiveBits,
3847                                 (unsigned)InitVal.getActiveBits());
3848    else
3849      NumNegativeBits = std::max(NumNegativeBits,
3850                                 (unsigned)InitVal.getMinSignedBits());
3851
3852    // Keep track of whether every enum element has type int (very commmon).
3853    if (AllElementsInt)
3854      AllElementsInt = ECD->getType() == Context.IntTy;
3855  }
3856
3857  // Figure out the type that should be used for this enum.
3858  // FIXME: Support attribute(packed) on enums and -fshort-enums.
3859  QualType BestType;
3860  unsigned BestWidth;
3861
3862  if (NumNegativeBits) {
3863    // If there is a negative value, figure out the smallest integer type (of
3864    // int/long/longlong) that fits.
3865    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
3866      BestType = Context.IntTy;
3867      BestWidth = IntWidth;
3868    } else {
3869      BestWidth = Context.Target.getLongWidth();
3870
3871      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
3872        BestType = Context.LongTy;
3873      else {
3874        BestWidth = Context.Target.getLongLongWidth();
3875
3876        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
3877          Diag(Enum->getLocation(), diag::warn_enum_too_large);
3878        BestType = Context.LongLongTy;
3879      }
3880    }
3881  } else {
3882    // If there is no negative value, figure out which of uint, ulong, ulonglong
3883    // fits.
3884    if (NumPositiveBits <= IntWidth) {
3885      BestType = Context.UnsignedIntTy;
3886      BestWidth = IntWidth;
3887    } else if (NumPositiveBits <=
3888               (BestWidth = Context.Target.getLongWidth())) {
3889      BestType = Context.UnsignedLongTy;
3890    } else {
3891      BestWidth = Context.Target.getLongLongWidth();
3892      assert(NumPositiveBits <= BestWidth &&
3893             "How could an initializer get larger than ULL?");
3894      BestType = Context.UnsignedLongLongTy;
3895    }
3896  }
3897
3898  // Loop over all of the enumerator constants, changing their types to match
3899  // the type of the enum if needed.
3900  for (unsigned i = 0; i != NumElements; ++i) {
3901    EnumConstantDecl *ECD =
3902      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3903    if (!ECD) continue;  // Already issued a diagnostic.
3904
3905    // Standard C says the enumerators have int type, but we allow, as an
3906    // extension, the enumerators to be larger than int size.  If each
3907    // enumerator value fits in an int, type it as an int, otherwise type it the
3908    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
3909    // that X has type 'int', not 'unsigned'.
3910    if (ECD->getType() == Context.IntTy) {
3911      // Make sure the init value is signed.
3912      llvm::APSInt IV = ECD->getInitVal();
3913      IV.setIsSigned(true);
3914      ECD->setInitVal(IV);
3915
3916      if (getLangOptions().CPlusPlus)
3917        // C++ [dcl.enum]p4: Following the closing brace of an
3918        // enum-specifier, each enumerator has the type of its
3919        // enumeration.
3920        ECD->setType(EnumType);
3921      continue;  // Already int type.
3922    }
3923
3924    // Determine whether the value fits into an int.
3925    llvm::APSInt InitVal = ECD->getInitVal();
3926    bool FitsInInt;
3927    if (InitVal.isUnsigned() || !InitVal.isNegative())
3928      FitsInInt = InitVal.getActiveBits() < IntWidth;
3929    else
3930      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
3931
3932    // If it fits into an integer type, force it.  Otherwise force it to match
3933    // the enum decl type.
3934    QualType NewTy;
3935    unsigned NewWidth;
3936    bool NewSign;
3937    if (FitsInInt) {
3938      NewTy = Context.IntTy;
3939      NewWidth = IntWidth;
3940      NewSign = true;
3941    } else if (ECD->getType() == BestType) {
3942      // Already the right type!
3943      if (getLangOptions().CPlusPlus)
3944        // C++ [dcl.enum]p4: Following the closing brace of an
3945        // enum-specifier, each enumerator has the type of its
3946        // enumeration.
3947        ECD->setType(EnumType);
3948      continue;
3949    } else {
3950      NewTy = BestType;
3951      NewWidth = BestWidth;
3952      NewSign = BestType->isSignedIntegerType();
3953    }
3954
3955    // Adjust the APSInt value.
3956    InitVal.extOrTrunc(NewWidth);
3957    InitVal.setIsSigned(NewSign);
3958    ECD->setInitVal(InitVal);
3959
3960    // Adjust the Expr initializer and type.
3961    if (ECD->getInitExpr())
3962      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy, ECD->getInitExpr(),
3963                                                      /*isLvalue=*/false));
3964    if (getLangOptions().CPlusPlus)
3965      // C++ [dcl.enum]p4: Following the closing brace of an
3966      // enum-specifier, each enumerator has the type of its
3967      // enumeration.
3968      ECD->setType(EnumType);
3969    else
3970      ECD->setType(NewTy);
3971  }
3972
3973  Enum->completeDefinition(Context, BestType);
3974}
3975
3976Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
3977                                          ExprArg expr) {
3978  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr.release());
3979
3980  return FileScopeAsmDecl::Create(Context, CurContext, Loc, AsmString);
3981}
3982
3983