SemaDecl.cpp revision b3d8748e797c6c2f1dc01186c8eeb3b1b5fe970c
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/Sema.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/AST/APValue.h"
18#include "clang/AST/ASTConsumer.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/Sema/DeclSpec.h"
25#include "clang/Sema/ParsedTemplate.h"
26#include "clang/Parse/ParseDiagnostic.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
31#include "clang/Lex/Preprocessor.h"
32#include "clang/Lex/HeaderSearch.h"
33#include "llvm/ADT/Triple.h"
34#include <algorithm>
35#include <cstring>
36#include <functional>
37using namespace clang;
38
39/// getDeclName - Return a pretty name for the specified decl if possible, or
40/// an empty string if not.  This is used for pretty crash reporting.
41std::string Sema::getDeclName(Decl *D) {
42  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
43    return DN->getQualifiedNameAsString();
44  return "";
45}
46
47Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr) {
48  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
49}
50
51/// \brief If the identifier refers to a type name within this scope,
52/// return the declaration of that type.
53///
54/// This routine performs ordinary name lookup of the identifier II
55/// within the given scope, with optional C++ scope specifier SS, to
56/// determine whether the name refers to a type. If so, returns an
57/// opaque pointer (actually a QualType) corresponding to that
58/// type. Otherwise, returns NULL.
59///
60/// If name lookup results in an ambiguity, this routine will complain
61/// and then return NULL.
62ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
63                             Scope *S, CXXScopeSpec *SS,
64                             bool isClassName,
65                             ParsedType ObjectTypePtr) {
66  // Determine where we will perform name lookup.
67  DeclContext *LookupCtx = 0;
68  if (ObjectTypePtr) {
69    QualType ObjectType = ObjectTypePtr.get();
70    if (ObjectType->isRecordType())
71      LookupCtx = computeDeclContext(ObjectType);
72  } else if (SS && SS->isNotEmpty()) {
73    LookupCtx = computeDeclContext(*SS, false);
74
75    if (!LookupCtx) {
76      if (isDependentScopeSpecifier(*SS)) {
77        // C++ [temp.res]p3:
78        //   A qualified-id that refers to a type and in which the
79        //   nested-name-specifier depends on a template-parameter (14.6.2)
80        //   shall be prefixed by the keyword typename to indicate that the
81        //   qualified-id denotes a type, forming an
82        //   elaborated-type-specifier (7.1.5.3).
83        //
84        // We therefore do not perform any name lookup if the result would
85        // refer to a member of an unknown specialization.
86        if (!isClassName)
87          return ParsedType();
88
89        // We know from the grammar that this name refers to a type,
90        // so build a dependent node to describe the type.
91        QualType T =
92          CheckTypenameType(ETK_None, SS->getScopeRep(), II,
93                            SourceLocation(), SS->getRange(), NameLoc);
94        return ParsedType::make(T);
95      }
96
97      return ParsedType();
98    }
99
100    if (!LookupCtx->isDependentContext() &&
101        RequireCompleteDeclContext(*SS, LookupCtx))
102      return ParsedType();
103  }
104
105  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
106  // lookup for class-names.
107  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
108                                      LookupOrdinaryName;
109  LookupResult Result(*this, &II, NameLoc, Kind);
110  if (LookupCtx) {
111    // Perform "qualified" name lookup into the declaration context we
112    // computed, which is either the type of the base of a member access
113    // expression or the declaration context associated with a prior
114    // nested-name-specifier.
115    LookupQualifiedName(Result, LookupCtx);
116
117    if (ObjectTypePtr && Result.empty()) {
118      // C++ [basic.lookup.classref]p3:
119      //   If the unqualified-id is ~type-name, the type-name is looked up
120      //   in the context of the entire postfix-expression. If the type T of
121      //   the object expression is of a class type C, the type-name is also
122      //   looked up in the scope of class C. At least one of the lookups shall
123      //   find a name that refers to (possibly cv-qualified) T.
124      LookupName(Result, S);
125    }
126  } else {
127    // Perform unqualified name lookup.
128    LookupName(Result, S);
129  }
130
131  NamedDecl *IIDecl = 0;
132  switch (Result.getResultKind()) {
133  case LookupResult::NotFound:
134  case LookupResult::NotFoundInCurrentInstantiation:
135  case LookupResult::FoundOverloaded:
136  case LookupResult::FoundUnresolvedValue:
137    Result.suppressDiagnostics();
138    return ParsedType();
139
140  case LookupResult::Ambiguous:
141    // Recover from type-hiding ambiguities by hiding the type.  We'll
142    // do the lookup again when looking for an object, and we can
143    // diagnose the error then.  If we don't do this, then the error
144    // about hiding the type will be immediately followed by an error
145    // that only makes sense if the identifier was treated like a type.
146    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
147      Result.suppressDiagnostics();
148      return ParsedType();
149    }
150
151    // Look to see if we have a type anywhere in the list of results.
152    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
153         Res != ResEnd; ++Res) {
154      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
155        if (!IIDecl ||
156            (*Res)->getLocation().getRawEncoding() <
157              IIDecl->getLocation().getRawEncoding())
158          IIDecl = *Res;
159      }
160    }
161
162    if (!IIDecl) {
163      // None of the entities we found is a type, so there is no way
164      // to even assume that the result is a type. In this case, don't
165      // complain about the ambiguity. The parser will either try to
166      // perform this lookup again (e.g., as an object name), which
167      // will produce the ambiguity, or will complain that it expected
168      // a type name.
169      Result.suppressDiagnostics();
170      return ParsedType();
171    }
172
173    // We found a type within the ambiguous lookup; diagnose the
174    // ambiguity and then return that type. This might be the right
175    // answer, or it might not be, but it suppresses any attempt to
176    // perform the name lookup again.
177    break;
178
179  case LookupResult::Found:
180    IIDecl = Result.getFoundDecl();
181    break;
182  }
183
184  assert(IIDecl && "Didn't find decl");
185
186  QualType T;
187  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
188    DiagnoseUseOfDecl(IIDecl, NameLoc);
189
190    if (T.isNull())
191      T = Context.getTypeDeclType(TD);
192
193    if (SS)
194      T = getElaboratedType(ETK_None, *SS, T);
195
196  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
197    T = Context.getObjCInterfaceType(IDecl);
198  } else {
199    // If it's not plausibly a type, suppress diagnostics.
200    Result.suppressDiagnostics();
201    return ParsedType();
202  }
203
204  return ParsedType::make(T);
205}
206
207/// isTagName() - This method is called *for error recovery purposes only*
208/// to determine if the specified name is a valid tag name ("struct foo").  If
209/// so, this returns the TST for the tag corresponding to it (TST_enum,
210/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
211/// where the user forgot to specify the tag.
212DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
213  // Do a tag name lookup in this scope.
214  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
215  LookupName(R, S, false);
216  R.suppressDiagnostics();
217  if (R.getResultKind() == LookupResult::Found)
218    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
219      switch (TD->getTagKind()) {
220      default:         return DeclSpec::TST_unspecified;
221      case TTK_Struct: return DeclSpec::TST_struct;
222      case TTK_Union:  return DeclSpec::TST_union;
223      case TTK_Class:  return DeclSpec::TST_class;
224      case TTK_Enum:   return DeclSpec::TST_enum;
225      }
226    }
227
228  return DeclSpec::TST_unspecified;
229}
230
231bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
232                                   SourceLocation IILoc,
233                                   Scope *S,
234                                   CXXScopeSpec *SS,
235                                   ParsedType &SuggestedType) {
236  // We don't have anything to suggest (yet).
237  SuggestedType = ParsedType();
238
239  // There may have been a typo in the name of the type. Look up typo
240  // results, in case we have something that we can suggest.
241  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
242                      NotForRedeclaration);
243
244  if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
245    if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
246      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
247          !Result->isInvalidDecl()) {
248        // We found a similarly-named type or interface; suggest that.
249        if (!SS || !SS->isSet())
250          Diag(IILoc, diag::err_unknown_typename_suggest)
251            << &II << Lookup.getLookupName()
252            << FixItHint::CreateReplacement(SourceRange(IILoc),
253                                            Result->getNameAsString());
254        else if (DeclContext *DC = computeDeclContext(*SS, false))
255          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
256            << &II << DC << Lookup.getLookupName() << SS->getRange()
257            << FixItHint::CreateReplacement(SourceRange(IILoc),
258                                            Result->getNameAsString());
259        else
260          llvm_unreachable("could not have corrected a typo here");
261
262        Diag(Result->getLocation(), diag::note_previous_decl)
263          << Result->getDeclName();
264
265        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS);
266        return true;
267      }
268    } else if (Lookup.empty()) {
269      // We corrected to a keyword.
270      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
271      Diag(IILoc, diag::err_unknown_typename_suggest)
272        << &II << Corrected;
273      return true;
274    }
275  }
276
277  if (getLangOptions().CPlusPlus) {
278    // See if II is a class template that the user forgot to pass arguments to.
279    UnqualifiedId Name;
280    Name.setIdentifier(&II, IILoc);
281    CXXScopeSpec EmptySS;
282    TemplateTy TemplateResult;
283    bool MemberOfUnknownSpecialization;
284    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
285                       Name, ParsedType(), true, TemplateResult,
286                       MemberOfUnknownSpecialization) == TNK_Type_template) {
287      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
288      Diag(IILoc, diag::err_template_missing_args) << TplName;
289      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
290        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
291          << TplDecl->getTemplateParameters()->getSourceRange();
292      }
293      return true;
294    }
295  }
296
297  // FIXME: Should we move the logic that tries to recover from a missing tag
298  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
299
300  if (!SS || (!SS->isSet() && !SS->isInvalid()))
301    Diag(IILoc, diag::err_unknown_typename) << &II;
302  else if (DeclContext *DC = computeDeclContext(*SS, false))
303    Diag(IILoc, diag::err_typename_nested_not_found)
304      << &II << DC << SS->getRange();
305  else if (isDependentScopeSpecifier(*SS)) {
306    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
307      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
308      << SourceRange(SS->getRange().getBegin(), IILoc)
309      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
310    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
311  } else {
312    assert(SS && SS->isInvalid() &&
313           "Invalid scope specifier has already been diagnosed");
314  }
315
316  return true;
317}
318
319// Determines the context to return to after temporarily entering a
320// context.  This depends in an unnecessarily complicated way on the
321// exact ordering of callbacks from the parser.
322DeclContext *Sema::getContainingDC(DeclContext *DC) {
323
324  // Functions defined inline within classes aren't parsed until we've
325  // finished parsing the top-level class, so the top-level class is
326  // the context we'll need to return to.
327  if (isa<FunctionDecl>(DC)) {
328    DC = DC->getLexicalParent();
329
330    // A function not defined within a class will always return to its
331    // lexical context.
332    if (!isa<CXXRecordDecl>(DC))
333      return DC;
334
335    // A C++ inline method/friend is parsed *after* the topmost class
336    // it was declared in is fully parsed ("complete");  the topmost
337    // class is the context we need to return to.
338    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
339      DC = RD;
340
341    // Return the declaration context of the topmost class the inline method is
342    // declared in.
343    return DC;
344  }
345
346  // ObjCMethodDecls are parsed (for some reason) outside the context
347  // of the class.
348  if (isa<ObjCMethodDecl>(DC))
349    return DC->getLexicalParent()->getLexicalParent();
350
351  return DC->getLexicalParent();
352}
353
354void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
355  assert(getContainingDC(DC) == CurContext &&
356      "The next DeclContext should be lexically contained in the current one.");
357  CurContext = DC;
358  S->setEntity(DC);
359}
360
361void Sema::PopDeclContext() {
362  assert(CurContext && "DeclContext imbalance!");
363
364  CurContext = getContainingDC(CurContext);
365  assert(CurContext && "Popped translation unit!");
366}
367
368/// EnterDeclaratorContext - Used when we must lookup names in the context
369/// of a declarator's nested name specifier.
370///
371void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
372  // C++0x [basic.lookup.unqual]p13:
373  //   A name used in the definition of a static data member of class
374  //   X (after the qualified-id of the static member) is looked up as
375  //   if the name was used in a member function of X.
376  // C++0x [basic.lookup.unqual]p14:
377  //   If a variable member of a namespace is defined outside of the
378  //   scope of its namespace then any name used in the definition of
379  //   the variable member (after the declarator-id) is looked up as
380  //   if the definition of the variable member occurred in its
381  //   namespace.
382  // Both of these imply that we should push a scope whose context
383  // is the semantic context of the declaration.  We can't use
384  // PushDeclContext here because that context is not necessarily
385  // lexically contained in the current context.  Fortunately,
386  // the containing scope should have the appropriate information.
387
388  assert(!S->getEntity() && "scope already has entity");
389
390#ifndef NDEBUG
391  Scope *Ancestor = S->getParent();
392  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
393  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
394#endif
395
396  CurContext = DC;
397  S->setEntity(DC);
398}
399
400void Sema::ExitDeclaratorContext(Scope *S) {
401  assert(S->getEntity() == CurContext && "Context imbalance!");
402
403  // Switch back to the lexical context.  The safety of this is
404  // enforced by an assert in EnterDeclaratorContext.
405  Scope *Ancestor = S->getParent();
406  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
407  CurContext = (DeclContext*) Ancestor->getEntity();
408
409  // We don't need to do anything with the scope, which is going to
410  // disappear.
411}
412
413/// \brief Determine whether we allow overloading of the function
414/// PrevDecl with another declaration.
415///
416/// This routine determines whether overloading is possible, not
417/// whether some new function is actually an overload. It will return
418/// true in C++ (where we can always provide overloads) or, as an
419/// extension, in C when the previous function is already an
420/// overloaded function declaration or has the "overloadable"
421/// attribute.
422static bool AllowOverloadingOfFunction(LookupResult &Previous,
423                                       ASTContext &Context) {
424  if (Context.getLangOptions().CPlusPlus)
425    return true;
426
427  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
428    return true;
429
430  return (Previous.getResultKind() == LookupResult::Found
431          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
432}
433
434/// Add this decl to the scope shadowed decl chains.
435void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
436  // Move up the scope chain until we find the nearest enclosing
437  // non-transparent context. The declaration will be introduced into this
438  // scope.
439  while (S->getEntity() &&
440         ((DeclContext *)S->getEntity())->isTransparentContext())
441    S = S->getParent();
442
443  // Add scoped declarations into their context, so that they can be
444  // found later. Declarations without a context won't be inserted
445  // into any context.
446  if (AddToContext)
447    CurContext->addDecl(D);
448
449  // Out-of-line definitions shouldn't be pushed into scope in C++.
450  // Out-of-line variable and function definitions shouldn't even in C.
451  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
452      D->isOutOfLine())
453    return;
454
455  // Template instantiations should also not be pushed into scope.
456  if (isa<FunctionDecl>(D) &&
457      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
458    return;
459
460  // If this replaces anything in the current scope,
461  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
462                               IEnd = IdResolver.end();
463  for (; I != IEnd; ++I) {
464    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
465      S->RemoveDecl(*I);
466      IdResolver.RemoveDecl(*I);
467
468      // Should only need to replace one decl.
469      break;
470    }
471  }
472
473  S->AddDecl(D);
474  IdResolver.AddDecl(D);
475}
476
477bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
478  return IdResolver.isDeclInScope(D, Ctx, Context, S);
479}
480
481static bool isOutOfScopePreviousDeclaration(NamedDecl *,
482                                            DeclContext*,
483                                            ASTContext&);
484
485/// Filters out lookup results that don't fall within the given scope
486/// as determined by isDeclInScope.
487static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
488                                 DeclContext *Ctx, Scope *S,
489                                 bool ConsiderLinkage) {
490  LookupResult::Filter F = R.makeFilter();
491  while (F.hasNext()) {
492    NamedDecl *D = F.next();
493
494    if (SemaRef.isDeclInScope(D, Ctx, S))
495      continue;
496
497    if (ConsiderLinkage &&
498        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
499      continue;
500
501    F.erase();
502  }
503
504  F.done();
505}
506
507static bool isUsingDecl(NamedDecl *D) {
508  return isa<UsingShadowDecl>(D) ||
509         isa<UnresolvedUsingTypenameDecl>(D) ||
510         isa<UnresolvedUsingValueDecl>(D);
511}
512
513/// Removes using shadow declarations from the lookup results.
514static void RemoveUsingDecls(LookupResult &R) {
515  LookupResult::Filter F = R.makeFilter();
516  while (F.hasNext())
517    if (isUsingDecl(F.next()))
518      F.erase();
519
520  F.done();
521}
522
523/// \brief Check for this common pattern:
524/// @code
525/// class S {
526///   S(const S&); // DO NOT IMPLEMENT
527///   void operator=(const S&); // DO NOT IMPLEMENT
528/// };
529/// @endcode
530static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
531  // FIXME: Should check for private access too but access is set after we get
532  // the decl here.
533  if (D->isThisDeclarationADefinition())
534    return false;
535
536  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
537    return CD->isCopyConstructor();
538  return D->isCopyAssignment();
539}
540
541bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
542  assert(D);
543
544  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
545    return false;
546
547  // Ignore class templates.
548  if (D->getDeclContext()->isDependentContext())
549    return false;
550
551  // We warn for unused decls internal to the translation unit.
552  if (D->getLinkage() == ExternalLinkage)
553    return false;
554
555  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
556    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
557      return false;
558
559    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
560      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
561        return false;
562    } else {
563      // 'static inline' functions are used in headers; don't warn.
564      if (FD->getStorageClass() == FunctionDecl::Static &&
565          FD->isInlineSpecified())
566        return false;
567    }
568
569    if (FD->isThisDeclarationADefinition())
570      return !Context.DeclMustBeEmitted(FD);
571    return true;
572  }
573
574  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
575    if (VD->isStaticDataMember() &&
576        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
577      return false;
578
579    if ( VD->isFileVarDecl() &&
580        !VD->getType().isConstant(Context))
581      return !Context.DeclMustBeEmitted(VD);
582  }
583
584   return false;
585 }
586
587 void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
588  if (!D)
589    return;
590
591  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
592    const FunctionDecl *First = FD->getFirstDeclaration();
593    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
594      return; // First should already be in the vector.
595  }
596
597  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
598    const VarDecl *First = VD->getFirstDeclaration();
599    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
600      return; // First should already be in the vector.
601  }
602
603   if (ShouldWarnIfUnusedFileScopedDecl(D))
604     UnusedFileScopedDecls.push_back(D);
605 }
606
607static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
608  if (D->isInvalidDecl())
609    return false;
610
611  if (D->isUsed() || D->hasAttr<UnusedAttr>())
612    return false;
613
614  // White-list anything that isn't a local variable.
615  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
616      !D->getDeclContext()->isFunctionOrMethod())
617    return false;
618
619  // Types of valid local variables should be complete, so this should succeed.
620  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
621
622    // White-list anything with an __attribute__((unused)) type.
623    QualType Ty = VD->getType();
624
625    // Only look at the outermost level of typedef.
626    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
627      if (TT->getDecl()->hasAttr<UnusedAttr>())
628        return false;
629    }
630
631    // If we failed to complete the type for some reason, or if the type is
632    // dependent, don't diagnose the variable.
633    if (Ty->isIncompleteType() || Ty->isDependentType())
634      return false;
635
636    if (const TagType *TT = Ty->getAs<TagType>()) {
637      const TagDecl *Tag = TT->getDecl();
638      if (Tag->hasAttr<UnusedAttr>())
639        return false;
640
641      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
642        // FIXME: Checking for the presence of a user-declared constructor
643        // isn't completely accurate; we'd prefer to check that the initializer
644        // has no side effects.
645        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
646          return false;
647      }
648    }
649
650    // TODO: __attribute__((unused)) templates?
651  }
652
653  return true;
654}
655
656void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
657  if (!ShouldDiagnoseUnusedDecl(D))
658    return;
659
660  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
661    Diag(D->getLocation(), diag::warn_unused_exception_param)
662    << D->getDeclName();
663  else
664    Diag(D->getLocation(), diag::warn_unused_variable)
665    << D->getDeclName();
666}
667
668void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
669  if (S->decl_empty()) return;
670  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
671         "Scope shouldn't contain decls!");
672
673  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
674       I != E; ++I) {
675    Decl *TmpD = (*I);
676    assert(TmpD && "This decl didn't get pushed??");
677
678    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
679    NamedDecl *D = cast<NamedDecl>(TmpD);
680
681    if (!D->getDeclName()) continue;
682
683    // Diagnose unused variables in this scope.
684    if (S->getNumErrorsAtStart() == getDiagnostics().getNumErrors())
685      DiagnoseUnusedDecl(D);
686
687    // Remove this name from our lexical scope.
688    IdResolver.RemoveDecl(D);
689  }
690}
691
692/// \brief Look for an Objective-C class in the translation unit.
693///
694/// \param Id The name of the Objective-C class we're looking for. If
695/// typo-correction fixes this name, the Id will be updated
696/// to the fixed name.
697///
698/// \param IdLoc The location of the name in the translation unit.
699///
700/// \param TypoCorrection If true, this routine will attempt typo correction
701/// if there is no class with the given name.
702///
703/// \returns The declaration of the named Objective-C class, or NULL if the
704/// class could not be found.
705ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
706                                              SourceLocation IdLoc,
707                                              bool TypoCorrection) {
708  // The third "scope" argument is 0 since we aren't enabling lazy built-in
709  // creation from this context.
710  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
711
712  if (!IDecl && TypoCorrection) {
713    // Perform typo correction at the given location, but only if we
714    // find an Objective-C class name.
715    LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
716    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
717        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
718      Diag(IdLoc, diag::err_undef_interface_suggest)
719        << Id << IDecl->getDeclName()
720        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
721      Diag(IDecl->getLocation(), diag::note_previous_decl)
722        << IDecl->getDeclName();
723
724      Id = IDecl->getIdentifier();
725    }
726  }
727
728  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
729}
730
731/// getNonFieldDeclScope - Retrieves the innermost scope, starting
732/// from S, where a non-field would be declared. This routine copes
733/// with the difference between C and C++ scoping rules in structs and
734/// unions. For example, the following code is well-formed in C but
735/// ill-formed in C++:
736/// @code
737/// struct S6 {
738///   enum { BAR } e;
739/// };
740///
741/// void test_S6() {
742///   struct S6 a;
743///   a.e = BAR;
744/// }
745/// @endcode
746/// For the declaration of BAR, this routine will return a different
747/// scope. The scope S will be the scope of the unnamed enumeration
748/// within S6. In C++, this routine will return the scope associated
749/// with S6, because the enumeration's scope is a transparent
750/// context but structures can contain non-field names. In C, this
751/// routine will return the translation unit scope, since the
752/// enumeration's scope is a transparent context and structures cannot
753/// contain non-field names.
754Scope *Sema::getNonFieldDeclScope(Scope *S) {
755  while (((S->getFlags() & Scope::DeclScope) == 0) ||
756         (S->getEntity() &&
757          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
758         (S->isClassScope() && !getLangOptions().CPlusPlus))
759    S = S->getParent();
760  return S;
761}
762
763void Sema::InitBuiltinVaListType() {
764  if (!Context.getBuiltinVaListType().isNull())
765    return;
766
767  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
768  NamedDecl *VaDecl = LookupSingleName(TUScope, VaIdent, SourceLocation(),
769                                       LookupOrdinaryName, ForRedeclaration);
770  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
771  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
772}
773
774/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
775/// file scope.  lazily create a decl for it. ForRedeclaration is true
776/// if we're creating this built-in in anticipation of redeclaring the
777/// built-in.
778NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
779                                     Scope *S, bool ForRedeclaration,
780                                     SourceLocation Loc) {
781  Builtin::ID BID = (Builtin::ID)bid;
782
783  if (Context.BuiltinInfo.hasVAListUse(BID))
784    InitBuiltinVaListType();
785
786  ASTContext::GetBuiltinTypeError Error;
787  QualType R = Context.GetBuiltinType(BID, Error);
788  switch (Error) {
789  case ASTContext::GE_None:
790    // Okay
791    break;
792
793  case ASTContext::GE_Missing_stdio:
794    if (ForRedeclaration)
795      Diag(Loc, diag::err_implicit_decl_requires_stdio)
796        << Context.BuiltinInfo.GetName(BID);
797    return 0;
798
799  case ASTContext::GE_Missing_setjmp:
800    if (ForRedeclaration)
801      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
802        << Context.BuiltinInfo.GetName(BID);
803    return 0;
804  }
805
806  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
807    Diag(Loc, diag::ext_implicit_lib_function_decl)
808      << Context.BuiltinInfo.GetName(BID)
809      << R;
810    if (Context.BuiltinInfo.getHeaderName(BID) &&
811        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
812          != Diagnostic::Ignored)
813      Diag(Loc, diag::note_please_include_header)
814        << Context.BuiltinInfo.getHeaderName(BID)
815        << Context.BuiltinInfo.GetName(BID);
816  }
817
818  FunctionDecl *New = FunctionDecl::Create(Context,
819                                           Context.getTranslationUnitDecl(),
820                                           Loc, II, R, /*TInfo=*/0,
821                                           FunctionDecl::Extern,
822                                           FunctionDecl::None, false,
823                                           /*hasPrototype=*/true);
824  New->setImplicit();
825
826  // Create Decl objects for each parameter, adding them to the
827  // FunctionDecl.
828  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
829    llvm::SmallVector<ParmVarDecl*, 16> Params;
830    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
831      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
832                                           FT->getArgType(i), /*TInfo=*/0,
833                                           VarDecl::None, VarDecl::None, 0));
834    New->setParams(Params.data(), Params.size());
835  }
836
837  AddKnownFunctionAttributes(New);
838
839  // TUScope is the translation-unit scope to insert this function into.
840  // FIXME: This is hideous. We need to teach PushOnScopeChains to
841  // relate Scopes to DeclContexts, and probably eliminate CurContext
842  // entirely, but we're not there yet.
843  DeclContext *SavedContext = CurContext;
844  CurContext = Context.getTranslationUnitDecl();
845  PushOnScopeChains(New, TUScope);
846  CurContext = SavedContext;
847  return New;
848}
849
850/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
851/// same name and scope as a previous declaration 'Old'.  Figure out
852/// how to resolve this situation, merging decls or emitting
853/// diagnostics as appropriate. If there was an error, set New to be invalid.
854///
855void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
856  // If the new decl is known invalid already, don't bother doing any
857  // merging checks.
858  if (New->isInvalidDecl()) return;
859
860  // Allow multiple definitions for ObjC built-in typedefs.
861  // FIXME: Verify the underlying types are equivalent!
862  if (getLangOptions().ObjC1) {
863    const IdentifierInfo *TypeID = New->getIdentifier();
864    switch (TypeID->getLength()) {
865    default: break;
866    case 2:
867      if (!TypeID->isStr("id"))
868        break;
869      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
870      // Install the built-in type for 'id', ignoring the current definition.
871      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
872      return;
873    case 5:
874      if (!TypeID->isStr("Class"))
875        break;
876      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
877      // Install the built-in type for 'Class', ignoring the current definition.
878      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
879      return;
880    case 3:
881      if (!TypeID->isStr("SEL"))
882        break;
883      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
884      // Install the built-in type for 'SEL', ignoring the current definition.
885      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
886      return;
887    case 8:
888      if (!TypeID->isStr("Protocol"))
889        break;
890      Context.setObjCProtoType(New->getUnderlyingType());
891      return;
892    }
893    // Fall through - the typedef name was not a builtin type.
894  }
895
896  // Verify the old decl was also a type.
897  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
898  if (!Old) {
899    Diag(New->getLocation(), diag::err_redefinition_different_kind)
900      << New->getDeclName();
901
902    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
903    if (OldD->getLocation().isValid())
904      Diag(OldD->getLocation(), diag::note_previous_definition);
905
906    return New->setInvalidDecl();
907  }
908
909  // If the old declaration is invalid, just give up here.
910  if (Old->isInvalidDecl())
911    return New->setInvalidDecl();
912
913  // Determine the "old" type we'll use for checking and diagnostics.
914  QualType OldType;
915  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
916    OldType = OldTypedef->getUnderlyingType();
917  else
918    OldType = Context.getTypeDeclType(Old);
919
920  // If the typedef types are not identical, reject them in all languages and
921  // with any extensions enabled.
922
923  if (OldType != New->getUnderlyingType() &&
924      Context.getCanonicalType(OldType) !=
925      Context.getCanonicalType(New->getUnderlyingType())) {
926    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
927      << New->getUnderlyingType() << OldType;
928    if (Old->getLocation().isValid())
929      Diag(Old->getLocation(), diag::note_previous_definition);
930    return New->setInvalidDecl();
931  }
932
933  // The types match.  Link up the redeclaration chain if the old
934  // declaration was a typedef.
935  // FIXME: this is a potential source of wierdness if the type
936  // spellings don't match exactly.
937  if (isa<TypedefDecl>(Old))
938    New->setPreviousDeclaration(cast<TypedefDecl>(Old));
939
940  if (getLangOptions().Microsoft)
941    return;
942
943  if (getLangOptions().CPlusPlus) {
944    // C++ [dcl.typedef]p2:
945    //   In a given non-class scope, a typedef specifier can be used to
946    //   redefine the name of any type declared in that scope to refer
947    //   to the type to which it already refers.
948    if (!isa<CXXRecordDecl>(CurContext))
949      return;
950
951    // C++0x [dcl.typedef]p4:
952    //   In a given class scope, a typedef specifier can be used to redefine
953    //   any class-name declared in that scope that is not also a typedef-name
954    //   to refer to the type to which it already refers.
955    //
956    // This wording came in via DR424, which was a correction to the
957    // wording in DR56, which accidentally banned code like:
958    //
959    //   struct S {
960    //     typedef struct A { } A;
961    //   };
962    //
963    // in the C++03 standard. We implement the C++0x semantics, which
964    // allow the above but disallow
965    //
966    //   struct S {
967    //     typedef int I;
968    //     typedef int I;
969    //   };
970    //
971    // since that was the intent of DR56.
972    if (!isa<TypedefDecl >(Old))
973      return;
974
975    Diag(New->getLocation(), diag::err_redefinition)
976      << New->getDeclName();
977    Diag(Old->getLocation(), diag::note_previous_definition);
978    return New->setInvalidDecl();
979  }
980
981  // If we have a redefinition of a typedef in C, emit a warning.  This warning
982  // is normally mapped to an error, but can be controlled with
983  // -Wtypedef-redefinition.  If either the original or the redefinition is
984  // in a system header, don't emit this for compatibility with GCC.
985  if (getDiagnostics().getSuppressSystemWarnings() &&
986      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
987       Context.getSourceManager().isInSystemHeader(New->getLocation())))
988    return;
989
990  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
991    << New->getDeclName();
992  Diag(Old->getLocation(), diag::note_previous_definition);
993  return;
994}
995
996/// DeclhasAttr - returns true if decl Declaration already has the target
997/// attribute.
998static bool
999DeclHasAttr(const Decl *D, const Attr *A) {
1000  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1001  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1002    if ((*i)->getKind() == A->getKind()) {
1003      // FIXME: Don't hardcode this check
1004      if (OA && isa<OwnershipAttr>(*i))
1005        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1006      return true;
1007    }
1008
1009  return false;
1010}
1011
1012/// MergeDeclAttributes - append attributes from the Old decl to the New one.
1013static void MergeDeclAttributes(Decl *New, Decl *Old, ASTContext &C) {
1014  if (!Old->hasAttrs())
1015    return;
1016  // Ensure that any moving of objects within the allocated map is done before
1017  // we process them.
1018  if (!New->hasAttrs())
1019    New->setAttrs(AttrVec());
1020  for (Decl::attr_iterator i = Old->attr_begin(), e = Old->attr_end(); i != e;
1021       ++i) {
1022    // FIXME: Make this more general than just checking for Overloadable.
1023    if (!DeclHasAttr(New, *i) && (*i)->getKind() != attr::Overloadable) {
1024      Attr *NewAttr = (*i)->clone(C);
1025      NewAttr->setInherited(true);
1026      New->addAttr(NewAttr);
1027    }
1028  }
1029}
1030
1031namespace {
1032
1033/// Used in MergeFunctionDecl to keep track of function parameters in
1034/// C.
1035struct GNUCompatibleParamWarning {
1036  ParmVarDecl *OldParm;
1037  ParmVarDecl *NewParm;
1038  QualType PromotedType;
1039};
1040
1041}
1042
1043/// getSpecialMember - get the special member enum for a method.
1044Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1045  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1046    if (Ctor->isCopyConstructor())
1047      return Sema::CXXCopyConstructor;
1048
1049    return Sema::CXXConstructor;
1050  }
1051
1052  if (isa<CXXDestructorDecl>(MD))
1053    return Sema::CXXDestructor;
1054
1055  assert(MD->isCopyAssignment() && "Must have copy assignment operator");
1056  return Sema::CXXCopyAssignment;
1057}
1058
1059/// canRedefineFunction - checks if a function can be redefined. Currently,
1060/// only extern inline functions can be redefined, and even then only in
1061/// GNU89 mode.
1062static bool canRedefineFunction(const FunctionDecl *FD,
1063                                const LangOptions& LangOpts) {
1064  return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
1065          FD->isInlineSpecified() &&
1066          FD->getStorageClass() == FunctionDecl::Extern);
1067}
1068
1069/// MergeFunctionDecl - We just parsed a function 'New' from
1070/// declarator D which has the same name and scope as a previous
1071/// declaration 'Old'.  Figure out how to resolve this situation,
1072/// merging decls or emitting diagnostics as appropriate.
1073///
1074/// In C++, New and Old must be declarations that are not
1075/// overloaded. Use IsOverload to determine whether New and Old are
1076/// overloaded, and to select the Old declaration that New should be
1077/// merged with.
1078///
1079/// Returns true if there was an error, false otherwise.
1080bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1081  // Verify the old decl was also a function.
1082  FunctionDecl *Old = 0;
1083  if (FunctionTemplateDecl *OldFunctionTemplate
1084        = dyn_cast<FunctionTemplateDecl>(OldD))
1085    Old = OldFunctionTemplate->getTemplatedDecl();
1086  else
1087    Old = dyn_cast<FunctionDecl>(OldD);
1088  if (!Old) {
1089    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1090      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1091      Diag(Shadow->getTargetDecl()->getLocation(),
1092           diag::note_using_decl_target);
1093      Diag(Shadow->getUsingDecl()->getLocation(),
1094           diag::note_using_decl) << 0;
1095      return true;
1096    }
1097
1098    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1099      << New->getDeclName();
1100    Diag(OldD->getLocation(), diag::note_previous_definition);
1101    return true;
1102  }
1103
1104  // Determine whether the previous declaration was a definition,
1105  // implicit declaration, or a declaration.
1106  diag::kind PrevDiag;
1107  if (Old->isThisDeclarationADefinition())
1108    PrevDiag = diag::note_previous_definition;
1109  else if (Old->isImplicit())
1110    PrevDiag = diag::note_previous_implicit_declaration;
1111  else
1112    PrevDiag = diag::note_previous_declaration;
1113
1114  QualType OldQType = Context.getCanonicalType(Old->getType());
1115  QualType NewQType = Context.getCanonicalType(New->getType());
1116
1117  // Don't complain about this if we're in GNU89 mode and the old function
1118  // is an extern inline function.
1119  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1120      New->getStorageClass() == FunctionDecl::Static &&
1121      Old->getStorageClass() != FunctionDecl::Static &&
1122      !canRedefineFunction(Old, getLangOptions())) {
1123    Diag(New->getLocation(), diag::err_static_non_static)
1124      << New;
1125    Diag(Old->getLocation(), PrevDiag);
1126    return true;
1127  }
1128
1129  // If a function is first declared with a calling convention, but is
1130  // later declared or defined without one, the second decl assumes the
1131  // calling convention of the first.
1132  //
1133  // For the new decl, we have to look at the NON-canonical type to tell the
1134  // difference between a function that really doesn't have a calling
1135  // convention and one that is declared cdecl. That's because in
1136  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1137  // because it is the default calling convention.
1138  //
1139  // Note also that we DO NOT return at this point, because we still have
1140  // other tests to run.
1141  const FunctionType *OldType = OldQType->getAs<FunctionType>();
1142  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1143  const FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1144  const FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1145  if (OldTypeInfo.getCC() != CC_Default &&
1146      NewTypeInfo.getCC() == CC_Default) {
1147    NewQType = Context.getCallConvType(NewQType, OldTypeInfo.getCC());
1148    New->setType(NewQType);
1149    NewQType = Context.getCanonicalType(NewQType);
1150  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1151                                     NewTypeInfo.getCC())) {
1152    // Calling conventions really aren't compatible, so complain.
1153    Diag(New->getLocation(), diag::err_cconv_change)
1154      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1155      << (OldTypeInfo.getCC() == CC_Default)
1156      << (OldTypeInfo.getCC() == CC_Default ? "" :
1157          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1158    Diag(Old->getLocation(), diag::note_previous_declaration);
1159    return true;
1160  }
1161
1162  // FIXME: diagnose the other way around?
1163  if (OldType->getNoReturnAttr() && !NewType->getNoReturnAttr()) {
1164    NewQType = Context.getNoReturnType(NewQType);
1165    New->setType(NewQType);
1166    assert(NewQType.isCanonical());
1167  }
1168
1169  // Merge regparm attribute.
1170  if (OldType->getRegParmType() != NewType->getRegParmType()) {
1171    if (NewType->getRegParmType()) {
1172      Diag(New->getLocation(), diag::err_regparm_mismatch)
1173        << NewType->getRegParmType()
1174        << OldType->getRegParmType();
1175      Diag(Old->getLocation(), diag::note_previous_declaration);
1176      return true;
1177    }
1178
1179    NewQType = Context.getRegParmType(NewQType, OldType->getRegParmType());
1180    New->setType(NewQType);
1181    assert(NewQType.isCanonical());
1182  }
1183
1184  if (getLangOptions().CPlusPlus) {
1185    // (C++98 13.1p2):
1186    //   Certain function declarations cannot be overloaded:
1187    //     -- Function declarations that differ only in the return type
1188    //        cannot be overloaded.
1189    QualType OldReturnType
1190      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
1191    QualType NewReturnType
1192      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
1193    QualType ResQT;
1194    if (OldReturnType != NewReturnType) {
1195      if (NewReturnType->isObjCObjectPointerType()
1196          && OldReturnType->isObjCObjectPointerType())
1197        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1198      if (ResQT.isNull()) {
1199        Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1200        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1201        return true;
1202      }
1203      else
1204        NewQType = ResQT;
1205    }
1206
1207    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1208    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1209    if (OldMethod && NewMethod) {
1210      // Preserve triviality.
1211      NewMethod->setTrivial(OldMethod->isTrivial());
1212
1213      bool isFriend = NewMethod->getFriendObjectKind();
1214
1215      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1216        //    -- Member function declarations with the same name and the
1217        //       same parameter types cannot be overloaded if any of them
1218        //       is a static member function declaration.
1219        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1220          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1221          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1222          return true;
1223        }
1224
1225        // C++ [class.mem]p1:
1226        //   [...] A member shall not be declared twice in the
1227        //   member-specification, except that a nested class or member
1228        //   class template can be declared and then later defined.
1229        unsigned NewDiag;
1230        if (isa<CXXConstructorDecl>(OldMethod))
1231          NewDiag = diag::err_constructor_redeclared;
1232        else if (isa<CXXDestructorDecl>(NewMethod))
1233          NewDiag = diag::err_destructor_redeclared;
1234        else if (isa<CXXConversionDecl>(NewMethod))
1235          NewDiag = diag::err_conv_function_redeclared;
1236        else
1237          NewDiag = diag::err_member_redeclared;
1238
1239        Diag(New->getLocation(), NewDiag);
1240        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1241
1242      // Complain if this is an explicit declaration of a special
1243      // member that was initially declared implicitly.
1244      //
1245      // As an exception, it's okay to befriend such methods in order
1246      // to permit the implicit constructor/destructor/operator calls.
1247      } else if (OldMethod->isImplicit()) {
1248        if (isFriend) {
1249          NewMethod->setImplicit();
1250        } else {
1251          Diag(NewMethod->getLocation(),
1252               diag::err_definition_of_implicitly_declared_member)
1253            << New << getSpecialMember(OldMethod);
1254          return true;
1255        }
1256      }
1257    }
1258
1259    // (C++98 8.3.5p3):
1260    //   All declarations for a function shall agree exactly in both the
1261    //   return type and the parameter-type-list.
1262    // attributes should be ignored when comparing.
1263    if (Context.getNoReturnType(OldQType, false) ==
1264        Context.getNoReturnType(NewQType, false))
1265      return MergeCompatibleFunctionDecls(New, Old);
1266
1267    // Fall through for conflicting redeclarations and redefinitions.
1268  }
1269
1270  // C: Function types need to be compatible, not identical. This handles
1271  // duplicate function decls like "void f(int); void f(enum X);" properly.
1272  if (!getLangOptions().CPlusPlus &&
1273      Context.typesAreCompatible(OldQType, NewQType)) {
1274    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1275    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1276    const FunctionProtoType *OldProto = 0;
1277    if (isa<FunctionNoProtoType>(NewFuncType) &&
1278        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1279      // The old declaration provided a function prototype, but the
1280      // new declaration does not. Merge in the prototype.
1281      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1282      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1283                                                 OldProto->arg_type_end());
1284      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1285                                         ParamTypes.data(), ParamTypes.size(),
1286                                         OldProto->isVariadic(),
1287                                         OldProto->getTypeQuals(),
1288                                         false, false, 0, 0,
1289                                         OldProto->getExtInfo());
1290      New->setType(NewQType);
1291      New->setHasInheritedPrototype();
1292
1293      // Synthesize a parameter for each argument type.
1294      llvm::SmallVector<ParmVarDecl*, 16> Params;
1295      for (FunctionProtoType::arg_type_iterator
1296             ParamType = OldProto->arg_type_begin(),
1297             ParamEnd = OldProto->arg_type_end();
1298           ParamType != ParamEnd; ++ParamType) {
1299        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1300                                                 SourceLocation(), 0,
1301                                                 *ParamType, /*TInfo=*/0,
1302                                                 VarDecl::None, VarDecl::None,
1303                                                 0);
1304        Param->setImplicit();
1305        Params.push_back(Param);
1306      }
1307
1308      New->setParams(Params.data(), Params.size());
1309    }
1310
1311    return MergeCompatibleFunctionDecls(New, Old);
1312  }
1313
1314  // GNU C permits a K&R definition to follow a prototype declaration
1315  // if the declared types of the parameters in the K&R definition
1316  // match the types in the prototype declaration, even when the
1317  // promoted types of the parameters from the K&R definition differ
1318  // from the types in the prototype. GCC then keeps the types from
1319  // the prototype.
1320  //
1321  // If a variadic prototype is followed by a non-variadic K&R definition,
1322  // the K&R definition becomes variadic.  This is sort of an edge case, but
1323  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1324  // C99 6.9.1p8.
1325  if (!getLangOptions().CPlusPlus &&
1326      Old->hasPrototype() && !New->hasPrototype() &&
1327      New->getType()->getAs<FunctionProtoType>() &&
1328      Old->getNumParams() == New->getNumParams()) {
1329    llvm::SmallVector<QualType, 16> ArgTypes;
1330    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1331    const FunctionProtoType *OldProto
1332      = Old->getType()->getAs<FunctionProtoType>();
1333    const FunctionProtoType *NewProto
1334      = New->getType()->getAs<FunctionProtoType>();
1335
1336    // Determine whether this is the GNU C extension.
1337    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1338                                               NewProto->getResultType());
1339    bool LooseCompatible = !MergedReturn.isNull();
1340    for (unsigned Idx = 0, End = Old->getNumParams();
1341         LooseCompatible && Idx != End; ++Idx) {
1342      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1343      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1344      if (Context.typesAreCompatible(OldParm->getType(),
1345                                     NewProto->getArgType(Idx))) {
1346        ArgTypes.push_back(NewParm->getType());
1347      } else if (Context.typesAreCompatible(OldParm->getType(),
1348                                            NewParm->getType(),
1349                                            /*CompareUnqualified=*/true)) {
1350        GNUCompatibleParamWarning Warn
1351          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1352        Warnings.push_back(Warn);
1353        ArgTypes.push_back(NewParm->getType());
1354      } else
1355        LooseCompatible = false;
1356    }
1357
1358    if (LooseCompatible) {
1359      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1360        Diag(Warnings[Warn].NewParm->getLocation(),
1361             diag::ext_param_promoted_not_compatible_with_prototype)
1362          << Warnings[Warn].PromotedType
1363          << Warnings[Warn].OldParm->getType();
1364        if (Warnings[Warn].OldParm->getLocation().isValid())
1365          Diag(Warnings[Warn].OldParm->getLocation(),
1366               diag::note_previous_declaration);
1367      }
1368
1369      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1370                                           ArgTypes.size(),
1371                                           OldProto->isVariadic(), 0,
1372                                           false, false, 0, 0,
1373                                           OldProto->getExtInfo()));
1374      return MergeCompatibleFunctionDecls(New, Old);
1375    }
1376
1377    // Fall through to diagnose conflicting types.
1378  }
1379
1380  // A function that has already been declared has been redeclared or defined
1381  // with a different type- show appropriate diagnostic
1382  if (unsigned BuiltinID = Old->getBuiltinID()) {
1383    // The user has declared a builtin function with an incompatible
1384    // signature.
1385    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1386      // The function the user is redeclaring is a library-defined
1387      // function like 'malloc' or 'printf'. Warn about the
1388      // redeclaration, then pretend that we don't know about this
1389      // library built-in.
1390      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1391      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1392        << Old << Old->getType();
1393      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1394      Old->setInvalidDecl();
1395      return false;
1396    }
1397
1398    PrevDiag = diag::note_previous_builtin_declaration;
1399  }
1400
1401  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1402  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1403  return true;
1404}
1405
1406/// \brief Completes the merge of two function declarations that are
1407/// known to be compatible.
1408///
1409/// This routine handles the merging of attributes and other
1410/// properties of function declarations form the old declaration to
1411/// the new declaration, once we know that New is in fact a
1412/// redeclaration of Old.
1413///
1414/// \returns false
1415bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1416  // Merge the attributes
1417  MergeDeclAttributes(New, Old, Context);
1418
1419  // Merge the storage class.
1420  if (Old->getStorageClass() != FunctionDecl::Extern &&
1421      Old->getStorageClass() != FunctionDecl::None)
1422    New->setStorageClass(Old->getStorageClass());
1423
1424  // Merge "pure" flag.
1425  if (Old->isPure())
1426    New->setPure();
1427
1428  // Merge the "deleted" flag.
1429  if (Old->isDeleted())
1430    New->setDeleted();
1431
1432  if (getLangOptions().CPlusPlus)
1433    return MergeCXXFunctionDecl(New, Old);
1434
1435  return false;
1436}
1437
1438/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1439/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1440/// situation, merging decls or emitting diagnostics as appropriate.
1441///
1442/// Tentative definition rules (C99 6.9.2p2) are checked by
1443/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1444/// definitions here, since the initializer hasn't been attached.
1445///
1446void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1447  // If the new decl is already invalid, don't do any other checking.
1448  if (New->isInvalidDecl())
1449    return;
1450
1451  // Verify the old decl was also a variable.
1452  VarDecl *Old = 0;
1453  if (!Previous.isSingleResult() ||
1454      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1455    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1456      << New->getDeclName();
1457    Diag(Previous.getRepresentativeDecl()->getLocation(),
1458         diag::note_previous_definition);
1459    return New->setInvalidDecl();
1460  }
1461
1462  MergeDeclAttributes(New, Old, Context);
1463
1464  // Merge the types
1465  QualType MergedT;
1466  if (getLangOptions().CPlusPlus) {
1467    if (Context.hasSameType(New->getType(), Old->getType()))
1468      MergedT = New->getType();
1469    // C++ [basic.link]p10:
1470    //   [...] the types specified by all declarations referring to a given
1471    //   object or function shall be identical, except that declarations for an
1472    //   array object can specify array types that differ by the presence or
1473    //   absence of a major array bound (8.3.4).
1474    else if (Old->getType()->isIncompleteArrayType() &&
1475             New->getType()->isArrayType()) {
1476      CanQual<ArrayType> OldArray
1477        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1478      CanQual<ArrayType> NewArray
1479        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1480      if (OldArray->getElementType() == NewArray->getElementType())
1481        MergedT = New->getType();
1482    } else if (Old->getType()->isArrayType() &&
1483             New->getType()->isIncompleteArrayType()) {
1484      CanQual<ArrayType> OldArray
1485        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1486      CanQual<ArrayType> NewArray
1487        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1488      if (OldArray->getElementType() == NewArray->getElementType())
1489        MergedT = Old->getType();
1490    } else if (New->getType()->isObjCObjectPointerType()
1491               && Old->getType()->isObjCObjectPointerType()) {
1492        MergedT = Context.mergeObjCGCQualifiers(New->getType(), Old->getType());
1493    }
1494  } else {
1495    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1496  }
1497  if (MergedT.isNull()) {
1498    Diag(New->getLocation(), diag::err_redefinition_different_type)
1499      << New->getDeclName();
1500    Diag(Old->getLocation(), diag::note_previous_definition);
1501    return New->setInvalidDecl();
1502  }
1503  New->setType(MergedT);
1504
1505  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1506  if (New->getStorageClass() == VarDecl::Static &&
1507      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
1508    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1509    Diag(Old->getLocation(), diag::note_previous_definition);
1510    return New->setInvalidDecl();
1511  }
1512  // C99 6.2.2p4:
1513  //   For an identifier declared with the storage-class specifier
1514  //   extern in a scope in which a prior declaration of that
1515  //   identifier is visible,23) if the prior declaration specifies
1516  //   internal or external linkage, the linkage of the identifier at
1517  //   the later declaration is the same as the linkage specified at
1518  //   the prior declaration. If no prior declaration is visible, or
1519  //   if the prior declaration specifies no linkage, then the
1520  //   identifier has external linkage.
1521  if (New->hasExternalStorage() && Old->hasLinkage())
1522    /* Okay */;
1523  else if (New->getStorageClass() != VarDecl::Static &&
1524           Old->getStorageClass() == VarDecl::Static) {
1525    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1526    Diag(Old->getLocation(), diag::note_previous_definition);
1527    return New->setInvalidDecl();
1528  }
1529
1530  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1531
1532  // FIXME: The test for external storage here seems wrong? We still
1533  // need to check for mismatches.
1534  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1535      // Don't complain about out-of-line definitions of static members.
1536      !(Old->getLexicalDeclContext()->isRecord() &&
1537        !New->getLexicalDeclContext()->isRecord())) {
1538    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1539    Diag(Old->getLocation(), diag::note_previous_definition);
1540    return New->setInvalidDecl();
1541  }
1542
1543  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1544    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1545    Diag(Old->getLocation(), diag::note_previous_definition);
1546  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1547    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1548    Diag(Old->getLocation(), diag::note_previous_definition);
1549  }
1550
1551  // C++ doesn't have tentative definitions, so go right ahead and check here.
1552  const VarDecl *Def;
1553  if (getLangOptions().CPlusPlus &&
1554      New->isThisDeclarationADefinition() == VarDecl::Definition &&
1555      (Def = Old->getDefinition())) {
1556    Diag(New->getLocation(), diag::err_redefinition)
1557      << New->getDeclName();
1558    Diag(Def->getLocation(), diag::note_previous_definition);
1559    New->setInvalidDecl();
1560    return;
1561  }
1562  // c99 6.2.2 P4.
1563  // For an identifier declared with the storage-class specifier extern in a
1564  // scope in which a prior declaration of that identifier is visible, if
1565  // the prior declaration specifies internal or external linkage, the linkage
1566  // of the identifier at the later declaration is the same as the linkage
1567  // specified at the prior declaration.
1568  // FIXME. revisit this code.
1569  if (New->hasExternalStorage() &&
1570      Old->getLinkage() == InternalLinkage &&
1571      New->getDeclContext() == Old->getDeclContext())
1572    New->setStorageClass(Old->getStorageClass());
1573
1574  // Keep a chain of previous declarations.
1575  New->setPreviousDeclaration(Old);
1576
1577  // Inherit access appropriately.
1578  New->setAccess(Old->getAccess());
1579}
1580
1581/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1582/// no declarator (e.g. "struct foo;") is parsed.
1583Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
1584                                            DeclSpec &DS) {
1585  // FIXME: Error on auto/register at file scope
1586  // FIXME: Error on inline/virtual/explicit
1587  // FIXME: Warn on useless __thread
1588  // FIXME: Warn on useless const/volatile
1589  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1590  // FIXME: Warn on useless attributes
1591  Decl *TagD = 0;
1592  TagDecl *Tag = 0;
1593  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1594      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1595      DS.getTypeSpecType() == DeclSpec::TST_union ||
1596      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1597    TagD = DS.getRepAsDecl();
1598
1599    if (!TagD) // We probably had an error
1600      return 0;
1601
1602    // Note that the above type specs guarantee that the
1603    // type rep is a Decl, whereas in many of the others
1604    // it's a Type.
1605    Tag = dyn_cast<TagDecl>(TagD);
1606  }
1607
1608  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1609    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1610    // or incomplete types shall not be restrict-qualified."
1611    if (TypeQuals & DeclSpec::TQ_restrict)
1612      Diag(DS.getRestrictSpecLoc(),
1613           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1614           << DS.getSourceRange();
1615  }
1616
1617  if (DS.isFriendSpecified()) {
1618    // If we're dealing with a class template decl, assume that the
1619    // template routines are handling it.
1620    if (TagD && isa<ClassTemplateDecl>(TagD))
1621      return 0;
1622    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1623  }
1624
1625  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1626    ProcessDeclAttributeList(S, Record, DS.getAttributes());
1627
1628    if (!Record->getDeclName() && Record->isDefinition() &&
1629        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1630      if (getLangOptions().CPlusPlus ||
1631          Record->getDeclContext()->isRecord())
1632        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
1633
1634      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1635        << DS.getSourceRange();
1636    }
1637
1638    // Microsoft allows unnamed struct/union fields. Don't complain
1639    // about them.
1640    // FIXME: Should we support Microsoft's extensions in this area?
1641    if (Record->getDeclName() && getLangOptions().Microsoft)
1642      return Tag;
1643  }
1644
1645  if (getLangOptions().CPlusPlus &&
1646      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
1647    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
1648      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
1649          !Enum->getIdentifier() && !Enum->isInvalidDecl())
1650        Diag(Enum->getLocation(), diag::ext_no_declarators)
1651          << DS.getSourceRange();
1652
1653  if (!DS.isMissingDeclaratorOk() &&
1654      DS.getTypeSpecType() != DeclSpec::TST_error) {
1655    // Warn about typedefs of enums without names, since this is an
1656    // extension in both Microsoft and GNU.
1657    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1658        Tag && isa<EnumDecl>(Tag)) {
1659      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1660        << DS.getSourceRange();
1661      return Tag;
1662    }
1663
1664    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1665      << DS.getSourceRange();
1666  }
1667
1668  return TagD;
1669}
1670
1671/// We are trying to inject an anonymous member into the given scope;
1672/// check if there's an existing declaration that can't be overloaded.
1673///
1674/// \return true if this is a forbidden redeclaration
1675static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1676                                         Scope *S,
1677                                         DeclContext *Owner,
1678                                         DeclarationName Name,
1679                                         SourceLocation NameLoc,
1680                                         unsigned diagnostic) {
1681  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1682                 Sema::ForRedeclaration);
1683  if (!SemaRef.LookupName(R, S)) return false;
1684
1685  if (R.getAsSingle<TagDecl>())
1686    return false;
1687
1688  // Pick a representative declaration.
1689  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1690  if (PrevDecl && Owner->isRecord()) {
1691    RecordDecl *Record = cast<RecordDecl>(Owner);
1692    if (!SemaRef.isDeclInScope(PrevDecl, Record, S))
1693      return false;
1694  }
1695
1696  SemaRef.Diag(NameLoc, diagnostic) << Name;
1697  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1698
1699  return true;
1700}
1701
1702/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1703/// anonymous struct or union AnonRecord into the owning context Owner
1704/// and scope S. This routine will be invoked just after we realize
1705/// that an unnamed union or struct is actually an anonymous union or
1706/// struct, e.g.,
1707///
1708/// @code
1709/// union {
1710///   int i;
1711///   float f;
1712/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1713///    // f into the surrounding scope.x
1714/// @endcode
1715///
1716/// This routine is recursive, injecting the names of nested anonymous
1717/// structs/unions into the owning context and scope as well.
1718static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
1719                                                DeclContext *Owner,
1720                                                RecordDecl *AnonRecord,
1721                                                AccessSpecifier AS) {
1722  unsigned diagKind
1723    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1724                            : diag::err_anonymous_struct_member_redecl;
1725
1726  bool Invalid = false;
1727  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1728                               FEnd = AnonRecord->field_end();
1729       F != FEnd; ++F) {
1730    if ((*F)->getDeclName()) {
1731      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, (*F)->getDeclName(),
1732                                       (*F)->getLocation(), diagKind)) {
1733        // C++ [class.union]p2:
1734        //   The names of the members of an anonymous union shall be
1735        //   distinct from the names of any other entity in the
1736        //   scope in which the anonymous union is declared.
1737        Invalid = true;
1738      } else {
1739        // C++ [class.union]p2:
1740        //   For the purpose of name lookup, after the anonymous union
1741        //   definition, the members of the anonymous union are
1742        //   considered to have been defined in the scope in which the
1743        //   anonymous union is declared.
1744        Owner->makeDeclVisibleInContext(*F);
1745        S->AddDecl(*F);
1746        SemaRef.IdResolver.AddDecl(*F);
1747
1748        // That includes picking up the appropriate access specifier.
1749        if (AS != AS_none) (*F)->setAccess(AS);
1750      }
1751    } else if (const RecordType *InnerRecordType
1752                 = (*F)->getType()->getAs<RecordType>()) {
1753      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1754      if (InnerRecord->isAnonymousStructOrUnion())
1755        Invalid = Invalid ||
1756          InjectAnonymousStructOrUnionMembers(SemaRef, S, Owner,
1757                                              InnerRecord, AS);
1758    }
1759  }
1760
1761  return Invalid;
1762}
1763
1764/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
1765/// a VarDecl::StorageClass. Any error reporting is up to the caller:
1766/// illegal input values are mapped to VarDecl::None.
1767static VarDecl::StorageClass
1768StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1769  switch (StorageClassSpec) {
1770  case DeclSpec::SCS_unspecified:    return VarDecl::None;
1771  case DeclSpec::SCS_extern:         return VarDecl::Extern;
1772  case DeclSpec::SCS_static:         return VarDecl::Static;
1773  case DeclSpec::SCS_auto:           return VarDecl::Auto;
1774  case DeclSpec::SCS_register:       return VarDecl::Register;
1775  case DeclSpec::SCS_private_extern: return VarDecl::PrivateExtern;
1776    // Illegal SCSs map to None: error reporting is up to the caller.
1777  case DeclSpec::SCS_mutable:        // Fall through.
1778  case DeclSpec::SCS_typedef:        return VarDecl::None;
1779  }
1780  llvm_unreachable("unknown storage class specifier");
1781}
1782
1783/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
1784/// a FunctionDecl::StorageClass. Any error reporting is up to the caller:
1785/// illegal input values are mapped to FunctionDecl::None.
1786static FunctionDecl::StorageClass
1787StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1788  switch (StorageClassSpec) {
1789  case DeclSpec::SCS_unspecified:    return FunctionDecl::None;
1790  case DeclSpec::SCS_extern:         return FunctionDecl::Extern;
1791  case DeclSpec::SCS_static:         return FunctionDecl::Static;
1792  case DeclSpec::SCS_private_extern: return FunctionDecl::PrivateExtern;
1793    // Illegal SCSs map to None: error reporting is up to the caller.
1794  case DeclSpec::SCS_auto:           // Fall through.
1795  case DeclSpec::SCS_mutable:        // Fall through.
1796  case DeclSpec::SCS_register:       // Fall through.
1797  case DeclSpec::SCS_typedef:        return FunctionDecl::None;
1798  }
1799  llvm_unreachable("unknown storage class specifier");
1800}
1801
1802/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1803/// anonymous structure or union. Anonymous unions are a C++ feature
1804/// (C++ [class.union]) and a GNU C extension; anonymous structures
1805/// are a GNU C and GNU C++ extension.
1806Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1807                                             AccessSpecifier AS,
1808                                             RecordDecl *Record) {
1809  DeclContext *Owner = Record->getDeclContext();
1810
1811  // Diagnose whether this anonymous struct/union is an extension.
1812  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1813    Diag(Record->getLocation(), diag::ext_anonymous_union);
1814  else if (!Record->isUnion())
1815    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1816
1817  // C and C++ require different kinds of checks for anonymous
1818  // structs/unions.
1819  bool Invalid = false;
1820  if (getLangOptions().CPlusPlus) {
1821    const char* PrevSpec = 0;
1822    unsigned DiagID;
1823    // C++ [class.union]p3:
1824    //   Anonymous unions declared in a named namespace or in the
1825    //   global namespace shall be declared static.
1826    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1827        (isa<TranslationUnitDecl>(Owner) ||
1828         (isa<NamespaceDecl>(Owner) &&
1829          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1830      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1831      Invalid = true;
1832
1833      // Recover by adding 'static'.
1834      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1835                             PrevSpec, DiagID);
1836    }
1837    // C++ [class.union]p3:
1838    //   A storage class is not allowed in a declaration of an
1839    //   anonymous union in a class scope.
1840    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1841             isa<RecordDecl>(Owner)) {
1842      Diag(DS.getStorageClassSpecLoc(),
1843           diag::err_anonymous_union_with_storage_spec);
1844      Invalid = true;
1845
1846      // Recover by removing the storage specifier.
1847      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1848                             PrevSpec, DiagID);
1849    }
1850
1851    // C++ [class.union]p2:
1852    //   The member-specification of an anonymous union shall only
1853    //   define non-static data members. [Note: nested types and
1854    //   functions cannot be declared within an anonymous union. ]
1855    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1856                                 MemEnd = Record->decls_end();
1857         Mem != MemEnd; ++Mem) {
1858      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1859        // C++ [class.union]p3:
1860        //   An anonymous union shall not have private or protected
1861        //   members (clause 11).
1862        assert(FD->getAccess() != AS_none);
1863        if (FD->getAccess() != AS_public) {
1864          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1865            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1866          Invalid = true;
1867        }
1868
1869        if (CheckNontrivialField(FD))
1870          Invalid = true;
1871      } else if ((*Mem)->isImplicit()) {
1872        // Any implicit members are fine.
1873      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1874        // This is a type that showed up in an
1875        // elaborated-type-specifier inside the anonymous struct or
1876        // union, but which actually declares a type outside of the
1877        // anonymous struct or union. It's okay.
1878      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1879        if (!MemRecord->isAnonymousStructOrUnion() &&
1880            MemRecord->getDeclName()) {
1881          // This is a nested type declaration.
1882          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1883            << (int)Record->isUnion();
1884          Invalid = true;
1885        }
1886      } else if (isa<AccessSpecDecl>(*Mem)) {
1887        // Any access specifier is fine.
1888      } else {
1889        // We have something that isn't a non-static data
1890        // member. Complain about it.
1891        unsigned DK = diag::err_anonymous_record_bad_member;
1892        if (isa<TypeDecl>(*Mem))
1893          DK = diag::err_anonymous_record_with_type;
1894        else if (isa<FunctionDecl>(*Mem))
1895          DK = diag::err_anonymous_record_with_function;
1896        else if (isa<VarDecl>(*Mem))
1897          DK = diag::err_anonymous_record_with_static;
1898        Diag((*Mem)->getLocation(), DK)
1899            << (int)Record->isUnion();
1900          Invalid = true;
1901      }
1902    }
1903  }
1904
1905  if (!Record->isUnion() && !Owner->isRecord()) {
1906    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1907      << (int)getLangOptions().CPlusPlus;
1908    Invalid = true;
1909  }
1910
1911  // Mock up a declarator.
1912  Declarator Dc(DS, Declarator::TypeNameContext);
1913  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
1914  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
1915
1916  // Create a declaration for this anonymous struct/union.
1917  NamedDecl *Anon = 0;
1918  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1919    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1920                             /*IdentifierInfo=*/0,
1921                             Context.getTypeDeclType(Record),
1922                             TInfo,
1923                             /*BitWidth=*/0, /*Mutable=*/false);
1924    Anon->setAccess(AS);
1925    if (getLangOptions().CPlusPlus) {
1926      FieldCollector->Add(cast<FieldDecl>(Anon));
1927      if (!cast<CXXRecordDecl>(Record)->isEmpty())
1928        cast<CXXRecordDecl>(OwningClass)->setEmpty(false);
1929    }
1930  } else {
1931    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
1932    assert(SCSpec != DeclSpec::SCS_typedef &&
1933           "Parser allowed 'typedef' as storage class VarDecl.");
1934    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
1935    if (SCSpec == DeclSpec::SCS_mutable) {
1936      // mutable can only appear on non-static class members, so it's always
1937      // an error here
1938      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1939      Invalid = true;
1940      SC = VarDecl::None;
1941    }
1942    SCSpec = DS.getStorageClassSpecAsWritten();
1943    VarDecl::StorageClass SCAsWritten
1944      = StorageClassSpecToVarDeclStorageClass(SCSpec);
1945
1946    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1947                           /*IdentifierInfo=*/0,
1948                           Context.getTypeDeclType(Record),
1949                           TInfo, SC, SCAsWritten);
1950  }
1951  Anon->setImplicit();
1952
1953  // Add the anonymous struct/union object to the current
1954  // context. We'll be referencing this object when we refer to one of
1955  // its members.
1956  Owner->addDecl(Anon);
1957
1958  // Inject the members of the anonymous struct/union into the owning
1959  // context and into the identifier resolver chain for name lookup
1960  // purposes.
1961  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS))
1962    Invalid = true;
1963
1964  // Mark this as an anonymous struct/union type. Note that we do not
1965  // do this until after we have already checked and injected the
1966  // members of this anonymous struct/union type, because otherwise
1967  // the members could be injected twice: once by DeclContext when it
1968  // builds its lookup table, and once by
1969  // InjectAnonymousStructOrUnionMembers.
1970  Record->setAnonymousStructOrUnion(true);
1971
1972  if (Invalid)
1973    Anon->setInvalidDecl();
1974
1975  return Anon;
1976}
1977
1978
1979/// GetNameForDeclarator - Determine the full declaration name for the
1980/// given Declarator.
1981DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
1982  return GetNameFromUnqualifiedId(D.getName());
1983}
1984
1985/// \brief Retrieves the declaration name from a parsed unqualified-id.
1986DeclarationNameInfo
1987Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
1988  DeclarationNameInfo NameInfo;
1989  NameInfo.setLoc(Name.StartLocation);
1990
1991  switch (Name.getKind()) {
1992
1993  case UnqualifiedId::IK_Identifier:
1994    NameInfo.setName(Name.Identifier);
1995    NameInfo.setLoc(Name.StartLocation);
1996    return NameInfo;
1997
1998  case UnqualifiedId::IK_OperatorFunctionId:
1999    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2000                                           Name.OperatorFunctionId.Operator));
2001    NameInfo.setLoc(Name.StartLocation);
2002    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2003      = Name.OperatorFunctionId.SymbolLocations[0];
2004    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2005      = Name.EndLocation.getRawEncoding();
2006    return NameInfo;
2007
2008  case UnqualifiedId::IK_LiteralOperatorId:
2009    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2010                                                           Name.Identifier));
2011    NameInfo.setLoc(Name.StartLocation);
2012    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2013    return NameInfo;
2014
2015  case UnqualifiedId::IK_ConversionFunctionId: {
2016    TypeSourceInfo *TInfo;
2017    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2018    if (Ty.isNull())
2019      return DeclarationNameInfo();
2020    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2021                                               Context.getCanonicalType(Ty)));
2022    NameInfo.setLoc(Name.StartLocation);
2023    NameInfo.setNamedTypeInfo(TInfo);
2024    return NameInfo;
2025  }
2026
2027  case UnqualifiedId::IK_ConstructorName: {
2028    TypeSourceInfo *TInfo;
2029    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2030    if (Ty.isNull())
2031      return DeclarationNameInfo();
2032    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2033                                              Context.getCanonicalType(Ty)));
2034    NameInfo.setLoc(Name.StartLocation);
2035    NameInfo.setNamedTypeInfo(TInfo);
2036    return NameInfo;
2037  }
2038
2039  case UnqualifiedId::IK_ConstructorTemplateId: {
2040    // In well-formed code, we can only have a constructor
2041    // template-id that refers to the current context, so go there
2042    // to find the actual type being constructed.
2043    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2044    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2045      return DeclarationNameInfo();
2046
2047    // Determine the type of the class being constructed.
2048    QualType CurClassType = Context.getTypeDeclType(CurClass);
2049
2050    // FIXME: Check two things: that the template-id names the same type as
2051    // CurClassType, and that the template-id does not occur when the name
2052    // was qualified.
2053
2054    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2055                                    Context.getCanonicalType(CurClassType)));
2056    NameInfo.setLoc(Name.StartLocation);
2057    // FIXME: should we retrieve TypeSourceInfo?
2058    NameInfo.setNamedTypeInfo(0);
2059    return NameInfo;
2060  }
2061
2062  case UnqualifiedId::IK_DestructorName: {
2063    TypeSourceInfo *TInfo;
2064    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2065    if (Ty.isNull())
2066      return DeclarationNameInfo();
2067    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2068                                              Context.getCanonicalType(Ty)));
2069    NameInfo.setLoc(Name.StartLocation);
2070    NameInfo.setNamedTypeInfo(TInfo);
2071    return NameInfo;
2072  }
2073
2074  case UnqualifiedId::IK_TemplateId: {
2075    TemplateName TName = Name.TemplateId->Template.get();
2076    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
2077    return Context.getNameForTemplate(TName, TNameLoc);
2078  }
2079
2080  } // switch (Name.getKind())
2081
2082  assert(false && "Unknown name kind");
2083  return DeclarationNameInfo();
2084}
2085
2086/// isNearlyMatchingFunction - Determine whether the C++ functions
2087/// Declaration and Definition are "nearly" matching. This heuristic
2088/// is used to improve diagnostics in the case where an out-of-line
2089/// function definition doesn't match any declaration within
2090/// the class or namespace.
2091static bool isNearlyMatchingFunction(ASTContext &Context,
2092                                     FunctionDecl *Declaration,
2093                                     FunctionDecl *Definition) {
2094  if (Declaration->param_size() != Definition->param_size())
2095    return false;
2096  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2097    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2098    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2099
2100    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
2101                                        DefParamTy.getNonReferenceType()))
2102      return false;
2103  }
2104
2105  return true;
2106}
2107
2108/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
2109/// declarator needs to be rebuilt in the current instantiation.
2110/// Any bits of declarator which appear before the name are valid for
2111/// consideration here.  That's specifically the type in the decl spec
2112/// and the base type in any member-pointer chunks.
2113static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
2114                                                    DeclarationName Name) {
2115  // The types we specifically need to rebuild are:
2116  //   - typenames, typeofs, and decltypes
2117  //   - types which will become injected class names
2118  // Of course, we also need to rebuild any type referencing such a
2119  // type.  It's safest to just say "dependent", but we call out a
2120  // few cases here.
2121
2122  DeclSpec &DS = D.getMutableDeclSpec();
2123  switch (DS.getTypeSpecType()) {
2124  case DeclSpec::TST_typename:
2125  case DeclSpec::TST_typeofType:
2126  case DeclSpec::TST_decltype: {
2127    // Grab the type from the parser.
2128    TypeSourceInfo *TSI = 0;
2129    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
2130    if (T.isNull() || !T->isDependentType()) break;
2131
2132    // Make sure there's a type source info.  This isn't really much
2133    // of a waste; most dependent types should have type source info
2134    // attached already.
2135    if (!TSI)
2136      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
2137
2138    // Rebuild the type in the current instantiation.
2139    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
2140    if (!TSI) return true;
2141
2142    // Store the new type back in the decl spec.
2143    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
2144    DS.UpdateTypeRep(LocType);
2145    break;
2146  }
2147
2148  case DeclSpec::TST_typeofExpr: {
2149    Expr *E = DS.getRepAsExpr();
2150    OwningExprResult Result = S.RebuildExprInCurrentInstantiation(E);
2151    if (Result.isInvalid()) return true;
2152    DS.UpdateExprRep(Result.get());
2153    break;
2154  }
2155
2156  default:
2157    // Nothing to do for these decl specs.
2158    break;
2159  }
2160
2161  // It doesn't matter what order we do this in.
2162  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2163    DeclaratorChunk &Chunk = D.getTypeObject(I);
2164
2165    // The only type information in the declarator which can come
2166    // before the declaration name is the base type of a member
2167    // pointer.
2168    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
2169      continue;
2170
2171    // Rebuild the scope specifier in-place.
2172    CXXScopeSpec &SS = Chunk.Mem.Scope();
2173    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2174      return true;
2175  }
2176
2177  return false;
2178}
2179
2180Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
2181                             MultiTemplateParamsArg TemplateParamLists,
2182                             bool IsFunctionDefinition) {
2183  // TODO: consider using NameInfo for diagnostic.
2184  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2185  DeclarationName Name = NameInfo.getName();
2186
2187  // All of these full declarators require an identifier.  If it doesn't have
2188  // one, the ParsedFreeStandingDeclSpec action should be used.
2189  if (!Name) {
2190    if (!D.isInvalidType())  // Reject this if we think it is valid.
2191      Diag(D.getDeclSpec().getSourceRange().getBegin(),
2192           diag::err_declarator_need_ident)
2193        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2194    return 0;
2195  }
2196
2197  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2198  // we find one that is.
2199  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2200         (S->getFlags() & Scope::TemplateParamScope) != 0)
2201    S = S->getParent();
2202
2203  DeclContext *DC = CurContext;
2204  if (D.getCXXScopeSpec().isInvalid())
2205    D.setInvalidType();
2206  else if (D.getCXXScopeSpec().isSet()) {
2207    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
2208    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
2209    if (!DC) {
2210      // If we could not compute the declaration context, it's because the
2211      // declaration context is dependent but does not refer to a class,
2212      // class template, or class template partial specialization. Complain
2213      // and return early, to avoid the coming semantic disaster.
2214      Diag(D.getIdentifierLoc(),
2215           diag::err_template_qualified_declarator_no_match)
2216        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2217        << D.getCXXScopeSpec().getRange();
2218      return 0;
2219    }
2220
2221    bool IsDependentContext = DC->isDependentContext();
2222
2223    if (!IsDependentContext &&
2224        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
2225      return 0;
2226
2227    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
2228      Diag(D.getIdentifierLoc(),
2229           diag::err_member_def_undefined_record)
2230        << Name << DC << D.getCXXScopeSpec().getRange();
2231      D.setInvalidType();
2232    }
2233
2234    // Check whether we need to rebuild the type of the given
2235    // declaration in the current instantiation.
2236    if (EnteringContext && IsDependentContext &&
2237        TemplateParamLists.size() != 0) {
2238      ContextRAII SavedContext(*this, DC);
2239      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
2240        D.setInvalidType();
2241    }
2242  }
2243
2244  NamedDecl *New;
2245
2246  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
2247  QualType R = TInfo->getType();
2248
2249  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
2250                        ForRedeclaration);
2251
2252  // See if this is a redefinition of a variable in the same scope.
2253  if (!D.getCXXScopeSpec().isSet()) {
2254    bool IsLinkageLookup = false;
2255
2256    // If the declaration we're planning to build will be a function
2257    // or object with linkage, then look for another declaration with
2258    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
2259    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2260      /* Do nothing*/;
2261    else if (R->isFunctionType()) {
2262      if (CurContext->isFunctionOrMethod() ||
2263          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2264        IsLinkageLookup = true;
2265    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
2266      IsLinkageLookup = true;
2267    else if (CurContext->getLookupContext()->isTranslationUnit() &&
2268             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2269      IsLinkageLookup = true;
2270
2271    if (IsLinkageLookup)
2272      Previous.clear(LookupRedeclarationWithLinkage);
2273
2274    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
2275  } else { // Something like "int foo::x;"
2276    LookupQualifiedName(Previous, DC);
2277
2278    // Don't consider using declarations as previous declarations for
2279    // out-of-line members.
2280    RemoveUsingDecls(Previous);
2281
2282    // C++ 7.3.1.2p2:
2283    // Members (including explicit specializations of templates) of a named
2284    // namespace can also be defined outside that namespace by explicit
2285    // qualification of the name being defined, provided that the entity being
2286    // defined was already declared in the namespace and the definition appears
2287    // after the point of declaration in a namespace that encloses the
2288    // declarations namespace.
2289    //
2290    // Note that we only check the context at this point. We don't yet
2291    // have enough information to make sure that PrevDecl is actually
2292    // the declaration we want to match. For example, given:
2293    //
2294    //   class X {
2295    //     void f();
2296    //     void f(float);
2297    //   };
2298    //
2299    //   void X::f(int) { } // ill-formed
2300    //
2301    // In this case, PrevDecl will point to the overload set
2302    // containing the two f's declared in X, but neither of them
2303    // matches.
2304
2305    // First check whether we named the global scope.
2306    if (isa<TranslationUnitDecl>(DC)) {
2307      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
2308        << Name << D.getCXXScopeSpec().getRange();
2309    } else {
2310      DeclContext *Cur = CurContext;
2311      while (isa<LinkageSpecDecl>(Cur))
2312        Cur = Cur->getParent();
2313      if (!Cur->Encloses(DC)) {
2314        // The qualifying scope doesn't enclose the original declaration.
2315        // Emit diagnostic based on current scope.
2316        SourceLocation L = D.getIdentifierLoc();
2317        SourceRange R = D.getCXXScopeSpec().getRange();
2318        if (isa<FunctionDecl>(Cur))
2319          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
2320        else
2321          Diag(L, diag::err_invalid_declarator_scope)
2322            << Name << cast<NamedDecl>(DC) << R;
2323        D.setInvalidType();
2324      }
2325    }
2326  }
2327
2328  if (Previous.isSingleResult() &&
2329      Previous.getFoundDecl()->isTemplateParameter()) {
2330    // Maybe we will complain about the shadowed template parameter.
2331    if (!D.isInvalidType())
2332      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
2333                                          Previous.getFoundDecl()))
2334        D.setInvalidType();
2335
2336    // Just pretend that we didn't see the previous declaration.
2337    Previous.clear();
2338  }
2339
2340  // In C++, the previous declaration we find might be a tag type
2341  // (class or enum). In this case, the new declaration will hide the
2342  // tag type. Note that this does does not apply if we're declaring a
2343  // typedef (C++ [dcl.typedef]p4).
2344  if (Previous.isSingleTagDecl() &&
2345      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2346    Previous.clear();
2347
2348  bool Redeclaration = false;
2349  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2350    if (TemplateParamLists.size()) {
2351      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2352      return 0;
2353    }
2354
2355    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2356  } else if (R->isFunctionType()) {
2357    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2358                                  move(TemplateParamLists),
2359                                  IsFunctionDefinition, Redeclaration);
2360  } else {
2361    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2362                                  move(TemplateParamLists),
2363                                  Redeclaration);
2364  }
2365
2366  if (New == 0)
2367    return 0;
2368
2369  // If this has an identifier and is not an invalid redeclaration or
2370  // function template specialization, add it to the scope stack.
2371  if (New->getDeclName() && !(Redeclaration && New->isInvalidDecl()))
2372    PushOnScopeChains(New, S);
2373
2374  return New;
2375}
2376
2377/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2378/// types into constant array types in certain situations which would otherwise
2379/// be errors (for GCC compatibility).
2380static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2381                                                    ASTContext &Context,
2382                                                    bool &SizeIsNegative,
2383                                                    llvm::APSInt &Oversized) {
2384  // This method tries to turn a variable array into a constant
2385  // array even when the size isn't an ICE.  This is necessary
2386  // for compatibility with code that depends on gcc's buggy
2387  // constant expression folding, like struct {char x[(int)(char*)2];}
2388  SizeIsNegative = false;
2389  Oversized = 0;
2390
2391  if (T->isDependentType())
2392    return QualType();
2393
2394  QualifierCollector Qs;
2395  const Type *Ty = Qs.strip(T);
2396
2397  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2398    QualType Pointee = PTy->getPointeeType();
2399    QualType FixedType =
2400        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
2401                                            Oversized);
2402    if (FixedType.isNull()) return FixedType;
2403    FixedType = Context.getPointerType(FixedType);
2404    return Qs.apply(FixedType);
2405  }
2406
2407  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2408  if (!VLATy)
2409    return QualType();
2410  // FIXME: We should probably handle this case
2411  if (VLATy->getElementType()->isVariablyModifiedType())
2412    return QualType();
2413
2414  Expr::EvalResult EvalResult;
2415  if (!VLATy->getSizeExpr() ||
2416      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2417      !EvalResult.Val.isInt())
2418    return QualType();
2419
2420  // Check whether the array size is negative.
2421  llvm::APSInt &Res = EvalResult.Val.getInt();
2422  if (Res.isSigned() && Res.isNegative()) {
2423    SizeIsNegative = true;
2424    return QualType();
2425  }
2426
2427  // Check whether the array is too large to be addressed.
2428  unsigned ActiveSizeBits
2429    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
2430                                              Res);
2431  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
2432    Oversized = Res;
2433    return QualType();
2434  }
2435
2436  return Context.getConstantArrayType(VLATy->getElementType(),
2437                                      Res, ArrayType::Normal, 0);
2438}
2439
2440/// \brief Register the given locally-scoped external C declaration so
2441/// that it can be found later for redeclarations
2442void
2443Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2444                                       const LookupResult &Previous,
2445                                       Scope *S) {
2446  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2447         "Decl is not a locally-scoped decl!");
2448  // Note that we have a locally-scoped external with this name.
2449  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2450
2451  if (!Previous.isSingleResult())
2452    return;
2453
2454  NamedDecl *PrevDecl = Previous.getFoundDecl();
2455
2456  // If there was a previous declaration of this variable, it may be
2457  // in our identifier chain. Update the identifier chain with the new
2458  // declaration.
2459  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2460    // The previous declaration was found on the identifer resolver
2461    // chain, so remove it from its scope.
2462    while (S && !S->isDeclScope(PrevDecl))
2463      S = S->getParent();
2464
2465    if (S)
2466      S->RemoveDecl(PrevDecl);
2467  }
2468}
2469
2470/// \brief Diagnose function specifiers on a declaration of an identifier that
2471/// does not identify a function.
2472void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2473  // FIXME: We should probably indicate the identifier in question to avoid
2474  // confusion for constructs like "inline int a(), b;"
2475  if (D.getDeclSpec().isInlineSpecified())
2476    Diag(D.getDeclSpec().getInlineSpecLoc(),
2477         diag::err_inline_non_function);
2478
2479  if (D.getDeclSpec().isVirtualSpecified())
2480    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2481         diag::err_virtual_non_function);
2482
2483  if (D.getDeclSpec().isExplicitSpecified())
2484    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2485         diag::err_explicit_non_function);
2486}
2487
2488NamedDecl*
2489Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2490                             QualType R,  TypeSourceInfo *TInfo,
2491                             LookupResult &Previous, bool &Redeclaration) {
2492  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2493  if (D.getCXXScopeSpec().isSet()) {
2494    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2495      << D.getCXXScopeSpec().getRange();
2496    D.setInvalidType();
2497    // Pretend we didn't see the scope specifier.
2498    DC = CurContext;
2499    Previous.clear();
2500  }
2501
2502  if (getLangOptions().CPlusPlus) {
2503    // Check that there are no default arguments (C++ only).
2504    CheckExtraCXXDefaultArguments(D);
2505  }
2506
2507  DiagnoseFunctionSpecifiers(D);
2508
2509  if (D.getDeclSpec().isThreadSpecified())
2510    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2511
2512  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
2513    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
2514      << D.getName().getSourceRange();
2515    return 0;
2516  }
2517
2518  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2519  if (!NewTD) return 0;
2520
2521  // Handle attributes prior to checking for duplicates in MergeVarDecl
2522  ProcessDeclAttributes(S, NewTD, D);
2523
2524  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2525  // then it shall have block scope.
2526  // Note that variably modified types must be fixed before merging the decl so
2527  // that redeclarations will match.
2528  QualType T = NewTD->getUnderlyingType();
2529  if (T->isVariablyModifiedType()) {
2530    setFunctionHasBranchProtectedScope();
2531
2532    if (S->getFnParent() == 0) {
2533      bool SizeIsNegative;
2534      llvm::APSInt Oversized;
2535      QualType FixedTy =
2536          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
2537                                              Oversized);
2538      if (!FixedTy.isNull()) {
2539        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2540        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2541      } else {
2542        if (SizeIsNegative)
2543          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2544        else if (T->isVariableArrayType())
2545          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2546        else if (Oversized.getBoolValue())
2547          Diag(D.getIdentifierLoc(), diag::err_array_too_large)
2548            << Oversized.toString(10);
2549        else
2550          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2551        NewTD->setInvalidDecl();
2552      }
2553    }
2554  }
2555
2556  // Merge the decl with the existing one if appropriate. If the decl is
2557  // in an outer scope, it isn't the same thing.
2558  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2559  if (!Previous.empty()) {
2560    Redeclaration = true;
2561    MergeTypeDefDecl(NewTD, Previous);
2562  }
2563
2564  // If this is the C FILE type, notify the AST context.
2565  if (IdentifierInfo *II = NewTD->getIdentifier())
2566    if (!NewTD->isInvalidDecl() &&
2567        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
2568      if (II->isStr("FILE"))
2569        Context.setFILEDecl(NewTD);
2570      else if (II->isStr("jmp_buf"))
2571        Context.setjmp_bufDecl(NewTD);
2572      else if (II->isStr("sigjmp_buf"))
2573        Context.setsigjmp_bufDecl(NewTD);
2574    }
2575
2576  return NewTD;
2577}
2578
2579/// \brief Determines whether the given declaration is an out-of-scope
2580/// previous declaration.
2581///
2582/// This routine should be invoked when name lookup has found a
2583/// previous declaration (PrevDecl) that is not in the scope where a
2584/// new declaration by the same name is being introduced. If the new
2585/// declaration occurs in a local scope, previous declarations with
2586/// linkage may still be considered previous declarations (C99
2587/// 6.2.2p4-5, C++ [basic.link]p6).
2588///
2589/// \param PrevDecl the previous declaration found by name
2590/// lookup
2591///
2592/// \param DC the context in which the new declaration is being
2593/// declared.
2594///
2595/// \returns true if PrevDecl is an out-of-scope previous declaration
2596/// for a new delcaration with the same name.
2597static bool
2598isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2599                                ASTContext &Context) {
2600  if (!PrevDecl)
2601    return 0;
2602
2603  if (!PrevDecl->hasLinkage())
2604    return false;
2605
2606  if (Context.getLangOptions().CPlusPlus) {
2607    // C++ [basic.link]p6:
2608    //   If there is a visible declaration of an entity with linkage
2609    //   having the same name and type, ignoring entities declared
2610    //   outside the innermost enclosing namespace scope, the block
2611    //   scope declaration declares that same entity and receives the
2612    //   linkage of the previous declaration.
2613    DeclContext *OuterContext = DC->getLookupContext();
2614    if (!OuterContext->isFunctionOrMethod())
2615      // This rule only applies to block-scope declarations.
2616      return false;
2617    else {
2618      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2619      if (PrevOuterContext->isRecord())
2620        // We found a member function: ignore it.
2621        return false;
2622      else {
2623        // Find the innermost enclosing namespace for the new and
2624        // previous declarations.
2625        while (!OuterContext->isFileContext())
2626          OuterContext = OuterContext->getParent();
2627        while (!PrevOuterContext->isFileContext())
2628          PrevOuterContext = PrevOuterContext->getParent();
2629
2630        // The previous declaration is in a different namespace, so it
2631        // isn't the same function.
2632        if (OuterContext->getPrimaryContext() !=
2633            PrevOuterContext->getPrimaryContext())
2634          return false;
2635      }
2636    }
2637  }
2638
2639  return true;
2640}
2641
2642static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
2643  CXXScopeSpec &SS = D.getCXXScopeSpec();
2644  if (!SS.isSet()) return;
2645  DD->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
2646                       SS.getRange());
2647}
2648
2649NamedDecl*
2650Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2651                              QualType R, TypeSourceInfo *TInfo,
2652                              LookupResult &Previous,
2653                              MultiTemplateParamsArg TemplateParamLists,
2654                              bool &Redeclaration) {
2655  DeclarationName Name = GetNameForDeclarator(D).getName();
2656
2657  // Check that there are no default arguments (C++ only).
2658  if (getLangOptions().CPlusPlus)
2659    CheckExtraCXXDefaultArguments(D);
2660
2661  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
2662  assert(SCSpec != DeclSpec::SCS_typedef &&
2663         "Parser allowed 'typedef' as storage class VarDecl.");
2664  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2665  if (SCSpec == DeclSpec::SCS_mutable) {
2666    // mutable can only appear on non-static class members, so it's always
2667    // an error here
2668    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2669    D.setInvalidType();
2670    SC = VarDecl::None;
2671  }
2672  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
2673  VarDecl::StorageClass SCAsWritten
2674    = StorageClassSpecToVarDeclStorageClass(SCSpec);
2675
2676  IdentifierInfo *II = Name.getAsIdentifierInfo();
2677  if (!II) {
2678    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2679      << Name.getAsString();
2680    return 0;
2681  }
2682
2683  DiagnoseFunctionSpecifiers(D);
2684
2685  if (!DC->isRecord() && S->getFnParent() == 0) {
2686    // C99 6.9p2: The storage-class specifiers auto and register shall not
2687    // appear in the declaration specifiers in an external declaration.
2688    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2689
2690      // If this is a register variable with an asm label specified, then this
2691      // is a GNU extension.
2692      if (SC == VarDecl::Register && D.getAsmLabel())
2693        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2694      else
2695        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2696      D.setInvalidType();
2697    }
2698  }
2699  if (DC->isRecord() && !CurContext->isRecord()) {
2700    // This is an out-of-line definition of a static data member.
2701    if (SC == VarDecl::Static) {
2702      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2703           diag::err_static_out_of_line)
2704        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
2705    } else if (SC == VarDecl::None)
2706      SC = VarDecl::Static;
2707  }
2708  if (SC == VarDecl::Static) {
2709    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2710      if (RD->isLocalClass())
2711        Diag(D.getIdentifierLoc(),
2712             diag::err_static_data_member_not_allowed_in_local_class)
2713          << Name << RD->getDeclName();
2714    }
2715  }
2716
2717  // Match up the template parameter lists with the scope specifier, then
2718  // determine whether we have a template or a template specialization.
2719  bool isExplicitSpecialization = false;
2720  unsigned NumMatchedTemplateParamLists = TemplateParamLists.size();
2721  bool Invalid = false;
2722  if (TemplateParameterList *TemplateParams
2723        = MatchTemplateParametersToScopeSpecifier(
2724                                  D.getDeclSpec().getSourceRange().getBegin(),
2725                                                  D.getCXXScopeSpec(),
2726                        (TemplateParameterList**)TemplateParamLists.get(),
2727                                                   TemplateParamLists.size(),
2728                                                  /*never a friend*/ false,
2729                                                  isExplicitSpecialization,
2730                                                  Invalid)) {
2731    // All but one template parameter lists have been matching.
2732    --NumMatchedTemplateParamLists;
2733
2734    if (TemplateParams->size() > 0) {
2735      // There is no such thing as a variable template.
2736      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2737        << II
2738        << SourceRange(TemplateParams->getTemplateLoc(),
2739                       TemplateParams->getRAngleLoc());
2740      return 0;
2741    } else {
2742      // There is an extraneous 'template<>' for this variable. Complain
2743      // about it, but allow the declaration of the variable.
2744      Diag(TemplateParams->getTemplateLoc(),
2745           diag::err_template_variable_noparams)
2746        << II
2747        << SourceRange(TemplateParams->getTemplateLoc(),
2748                       TemplateParams->getRAngleLoc());
2749
2750      isExplicitSpecialization = true;
2751    }
2752  }
2753
2754  VarDecl *NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2755                                   II, R, TInfo, SC, SCAsWritten);
2756
2757  if (D.isInvalidType() || Invalid)
2758    NewVD->setInvalidDecl();
2759
2760  SetNestedNameSpecifier(NewVD, D);
2761
2762  if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
2763    NewVD->setTemplateParameterListsInfo(Context,
2764                                         NumMatchedTemplateParamLists,
2765                        (TemplateParameterList**)TemplateParamLists.release());
2766  }
2767
2768  if (D.getDeclSpec().isThreadSpecified()) {
2769    if (NewVD->hasLocalStorage())
2770      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2771    else if (!Context.Target.isTLSSupported())
2772      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2773    else
2774      NewVD->setThreadSpecified(true);
2775  }
2776
2777  // Set the lexical context. If the declarator has a C++ scope specifier, the
2778  // lexical context will be different from the semantic context.
2779  NewVD->setLexicalDeclContext(CurContext);
2780
2781  // Handle attributes prior to checking for duplicates in MergeVarDecl
2782  ProcessDeclAttributes(S, NewVD, D);
2783
2784  // Handle GNU asm-label extension (encoded as an attribute).
2785  if (Expr *E = (Expr*) D.getAsmLabel()) {
2786    // The parser guarantees this is a string.
2787    StringLiteral *SE = cast<StringLiteral>(E);
2788    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
2789                                                Context, SE->getString()));
2790  }
2791
2792  // Diagnose shadowed variables before filtering for scope.
2793  if (!D.getCXXScopeSpec().isSet())
2794    CheckShadow(S, NewVD, Previous);
2795
2796  // Don't consider existing declarations that are in a different
2797  // scope and are out-of-semantic-context declarations (if the new
2798  // declaration has linkage).
2799  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
2800
2801  // Merge the decl with the existing one if appropriate.
2802  if (!Previous.empty()) {
2803    if (Previous.isSingleResult() &&
2804        isa<FieldDecl>(Previous.getFoundDecl()) &&
2805        D.getCXXScopeSpec().isSet()) {
2806      // The user tried to define a non-static data member
2807      // out-of-line (C++ [dcl.meaning]p1).
2808      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2809        << D.getCXXScopeSpec().getRange();
2810      Previous.clear();
2811      NewVD->setInvalidDecl();
2812    }
2813  } else if (D.getCXXScopeSpec().isSet()) {
2814    // No previous declaration in the qualifying scope.
2815    Diag(D.getIdentifierLoc(), diag::err_no_member)
2816      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2817      << D.getCXXScopeSpec().getRange();
2818    NewVD->setInvalidDecl();
2819  }
2820
2821  CheckVariableDeclaration(NewVD, Previous, Redeclaration);
2822
2823  // This is an explicit specialization of a static data member. Check it.
2824  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2825      CheckMemberSpecialization(NewVD, Previous))
2826    NewVD->setInvalidDecl();
2827
2828  // attributes declared post-definition are currently ignored
2829  // FIXME: This should be handled in attribute merging, not
2830  // here.
2831  if (Previous.isSingleResult()) {
2832    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
2833    if (Def && (Def = Def->getDefinition()) &&
2834        Def != NewVD && D.hasAttributes()) {
2835      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2836      Diag(Def->getLocation(), diag::note_previous_definition);
2837    }
2838  }
2839
2840  // If this is a locally-scoped extern C variable, update the map of
2841  // such variables.
2842  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2843      !NewVD->isInvalidDecl())
2844    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
2845
2846  // If there's a #pragma GCC visibility in scope, and this isn't a class
2847  // member, set the visibility of this variable.
2848  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
2849    AddPushedVisibilityAttribute(NewVD);
2850
2851  MarkUnusedFileScopedDecl(NewVD);
2852
2853  return NewVD;
2854}
2855
2856/// \brief Diagnose variable or built-in function shadowing.  Implements
2857/// -Wshadow.
2858///
2859/// This method is called whenever a VarDecl is added to a "useful"
2860/// scope.
2861///
2862/// \param S the scope in which the shadowing name is being declared
2863/// \param R the lookup of the name
2864///
2865void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
2866  // Return if warning is ignored.
2867  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow) == Diagnostic::Ignored)
2868    return;
2869
2870  // Don't diagnose declarations at file scope.  The scope might not
2871  // have a DeclContext if (e.g.) we're parsing a function prototype.
2872  DeclContext *NewDC = static_cast<DeclContext*>(S->getEntity());
2873  if (NewDC && NewDC->isFileContext())
2874    return;
2875
2876  // Only diagnose if we're shadowing an unambiguous field or variable.
2877  if (R.getResultKind() != LookupResult::Found)
2878    return;
2879
2880  NamedDecl* ShadowedDecl = R.getFoundDecl();
2881  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
2882    return;
2883
2884  DeclContext *OldDC = ShadowedDecl->getDeclContext();
2885
2886  // Only warn about certain kinds of shadowing for class members.
2887  if (NewDC && NewDC->isRecord()) {
2888    // In particular, don't warn about shadowing non-class members.
2889    if (!OldDC->isRecord())
2890      return;
2891
2892    // TODO: should we warn about static data members shadowing
2893    // static data members from base classes?
2894
2895    // TODO: don't diagnose for inaccessible shadowed members.
2896    // This is hard to do perfectly because we might friend the
2897    // shadowing context, but that's just a false negative.
2898  }
2899
2900  // Determine what kind of declaration we're shadowing.
2901  unsigned Kind;
2902  if (isa<RecordDecl>(OldDC)) {
2903    if (isa<FieldDecl>(ShadowedDecl))
2904      Kind = 3; // field
2905    else
2906      Kind = 2; // static data member
2907  } else if (OldDC->isFileContext())
2908    Kind = 1; // global
2909  else
2910    Kind = 0; // local
2911
2912  DeclarationName Name = R.getLookupName();
2913
2914  // Emit warning and note.
2915  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
2916  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
2917}
2918
2919/// \brief Check -Wshadow without the advantage of a previous lookup.
2920void Sema::CheckShadow(Scope *S, VarDecl *D) {
2921  LookupResult R(*this, D->getDeclName(), D->getLocation(),
2922                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
2923  LookupName(R, S);
2924  CheckShadow(S, D, R);
2925}
2926
2927/// \brief Perform semantic checking on a newly-created variable
2928/// declaration.
2929///
2930/// This routine performs all of the type-checking required for a
2931/// variable declaration once it has been built. It is used both to
2932/// check variables after they have been parsed and their declarators
2933/// have been translated into a declaration, and to check variables
2934/// that have been instantiated from a template.
2935///
2936/// Sets NewVD->isInvalidDecl() if an error was encountered.
2937void Sema::CheckVariableDeclaration(VarDecl *NewVD,
2938                                    LookupResult &Previous,
2939                                    bool &Redeclaration) {
2940  // If the decl is already known invalid, don't check it.
2941  if (NewVD->isInvalidDecl())
2942    return;
2943
2944  QualType T = NewVD->getType();
2945
2946  if (T->isObjCObjectType()) {
2947    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2948    return NewVD->setInvalidDecl();
2949  }
2950
2951  // Emit an error if an address space was applied to decl with local storage.
2952  // This includes arrays of objects with address space qualifiers, but not
2953  // automatic variables that point to other address spaces.
2954  // ISO/IEC TR 18037 S5.1.2
2955  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2956    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2957    return NewVD->setInvalidDecl();
2958  }
2959
2960  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2961      && !NewVD->hasAttr<BlocksAttr>())
2962    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2963
2964  bool isVM = T->isVariablyModifiedType();
2965  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2966      NewVD->hasAttr<BlocksAttr>())
2967    setFunctionHasBranchProtectedScope();
2968
2969  if ((isVM && NewVD->hasLinkage()) ||
2970      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2971    bool SizeIsNegative;
2972    llvm::APSInt Oversized;
2973    QualType FixedTy =
2974        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
2975                                            Oversized);
2976
2977    if (FixedTy.isNull() && T->isVariableArrayType()) {
2978      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2979      // FIXME: This won't give the correct result for
2980      // int a[10][n];
2981      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2982
2983      if (NewVD->isFileVarDecl())
2984        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2985        << SizeRange;
2986      else if (NewVD->getStorageClass() == VarDecl::Static)
2987        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2988        << SizeRange;
2989      else
2990        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2991        << SizeRange;
2992      return NewVD->setInvalidDecl();
2993    }
2994
2995    if (FixedTy.isNull()) {
2996      if (NewVD->isFileVarDecl())
2997        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2998      else
2999        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
3000      return NewVD->setInvalidDecl();
3001    }
3002
3003    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
3004    NewVD->setType(FixedTy);
3005  }
3006
3007  if (Previous.empty() && NewVD->isExternC()) {
3008    // Since we did not find anything by this name and we're declaring
3009    // an extern "C" variable, look for a non-visible extern "C"
3010    // declaration with the same name.
3011    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3012      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
3013    if (Pos != LocallyScopedExternalDecls.end())
3014      Previous.addDecl(Pos->second);
3015  }
3016
3017  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
3018    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
3019      << T;
3020    return NewVD->setInvalidDecl();
3021  }
3022
3023  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
3024    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
3025    return NewVD->setInvalidDecl();
3026  }
3027
3028  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
3029    Diag(NewVD->getLocation(), diag::err_block_on_vm);
3030    return NewVD->setInvalidDecl();
3031  }
3032
3033  // Function pointers and references cannot have qualified function type, only
3034  // function pointer-to-members can do that.
3035  QualType Pointee;
3036  unsigned PtrOrRef = 0;
3037  if (const PointerType *Ptr = T->getAs<PointerType>())
3038    Pointee = Ptr->getPointeeType();
3039  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
3040    Pointee = Ref->getPointeeType();
3041    PtrOrRef = 1;
3042  }
3043  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
3044      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
3045    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
3046        << PtrOrRef;
3047    return NewVD->setInvalidDecl();
3048  }
3049
3050  if (!Previous.empty()) {
3051    Redeclaration = true;
3052    MergeVarDecl(NewVD, Previous);
3053  }
3054}
3055
3056/// \brief Data used with FindOverriddenMethod
3057struct FindOverriddenMethodData {
3058  Sema *S;
3059  CXXMethodDecl *Method;
3060};
3061
3062/// \brief Member lookup function that determines whether a given C++
3063/// method overrides a method in a base class, to be used with
3064/// CXXRecordDecl::lookupInBases().
3065static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
3066                                 CXXBasePath &Path,
3067                                 void *UserData) {
3068  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
3069
3070  FindOverriddenMethodData *Data
3071    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
3072
3073  DeclarationName Name = Data->Method->getDeclName();
3074
3075  // FIXME: Do we care about other names here too?
3076  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3077    // We really want to find the base class destructor here.
3078    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
3079    CanQualType CT = Data->S->Context.getCanonicalType(T);
3080
3081    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
3082  }
3083
3084  for (Path.Decls = BaseRecord->lookup(Name);
3085       Path.Decls.first != Path.Decls.second;
3086       ++Path.Decls.first) {
3087    NamedDecl *D = *Path.Decls.first;
3088    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
3089      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
3090        return true;
3091    }
3092  }
3093
3094  return false;
3095}
3096
3097/// AddOverriddenMethods - See if a method overrides any in the base classes,
3098/// and if so, check that it's a valid override and remember it.
3099void Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
3100  // Look for virtual methods in base classes that this method might override.
3101  CXXBasePaths Paths;
3102  FindOverriddenMethodData Data;
3103  Data.Method = MD;
3104  Data.S = this;
3105  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
3106    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
3107         E = Paths.found_decls_end(); I != E; ++I) {
3108      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
3109        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
3110            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
3111            !CheckOverridingFunctionAttributes(MD, OldMD))
3112          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
3113      }
3114    }
3115  }
3116}
3117
3118NamedDecl*
3119Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3120                              QualType R, TypeSourceInfo *TInfo,
3121                              LookupResult &Previous,
3122                              MultiTemplateParamsArg TemplateParamLists,
3123                              bool IsFunctionDefinition, bool &Redeclaration) {
3124  assert(R.getTypePtr()->isFunctionType());
3125
3126  // TODO: consider using NameInfo for diagnostic.
3127  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3128  DeclarationName Name = NameInfo.getName();
3129  FunctionDecl::StorageClass SC = FunctionDecl::None;
3130  switch (D.getDeclSpec().getStorageClassSpec()) {
3131  default: assert(0 && "Unknown storage class!");
3132  case DeclSpec::SCS_auto:
3133  case DeclSpec::SCS_register:
3134  case DeclSpec::SCS_mutable:
3135    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3136         diag::err_typecheck_sclass_func);
3137    D.setInvalidType();
3138    break;
3139  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
3140  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
3141  case DeclSpec::SCS_static: {
3142    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
3143      // C99 6.7.1p5:
3144      //   The declaration of an identifier for a function that has
3145      //   block scope shall have no explicit storage-class specifier
3146      //   other than extern
3147      // See also (C++ [dcl.stc]p4).
3148      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3149           diag::err_static_block_func);
3150      SC = FunctionDecl::None;
3151    } else
3152      SC = FunctionDecl::Static;
3153    break;
3154  }
3155  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
3156  }
3157
3158  if (D.getDeclSpec().isThreadSpecified())
3159    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3160
3161  bool isFriend = D.getDeclSpec().isFriendSpecified();
3162  bool isInline = D.getDeclSpec().isInlineSpecified();
3163  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
3164  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
3165
3166  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3167  FunctionDecl::StorageClass SCAsWritten
3168    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
3169
3170  // Check that the return type is not an abstract class type.
3171  // For record types, this is done by the AbstractClassUsageDiagnoser once
3172  // the class has been completely parsed.
3173  if (!DC->isRecord() &&
3174      RequireNonAbstractType(D.getIdentifierLoc(),
3175                             R->getAs<FunctionType>()->getResultType(),
3176                             diag::err_abstract_type_in_decl,
3177                             AbstractReturnType))
3178    D.setInvalidType();
3179
3180  // Do not allow returning a objc interface by-value.
3181  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
3182    Diag(D.getIdentifierLoc(),
3183         diag::err_object_cannot_be_passed_returned_by_value) << 0
3184      << R->getAs<FunctionType>()->getResultType();
3185    D.setInvalidType();
3186  }
3187
3188  bool isVirtualOkay = false;
3189  FunctionDecl *NewFD;
3190
3191  if (isFriend) {
3192    // C++ [class.friend]p5
3193    //   A function can be defined in a friend declaration of a
3194    //   class . . . . Such a function is implicitly inline.
3195    isInline |= IsFunctionDefinition;
3196  }
3197
3198  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
3199    // This is a C++ constructor declaration.
3200    assert(DC->isRecord() &&
3201           "Constructors can only be declared in a member context");
3202
3203    R = CheckConstructorDeclarator(D, R, SC);
3204
3205    // Create the new declaration
3206    NewFD = CXXConstructorDecl::Create(Context,
3207                                       cast<CXXRecordDecl>(DC),
3208                                       NameInfo, R, TInfo,
3209                                       isExplicit, isInline,
3210                                       /*isImplicitlyDeclared=*/false);
3211  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3212    // This is a C++ destructor declaration.
3213    if (DC->isRecord()) {
3214      R = CheckDestructorDeclarator(D, R, SC);
3215
3216      NewFD = CXXDestructorDecl::Create(Context,
3217                                        cast<CXXRecordDecl>(DC),
3218                                        NameInfo, R,
3219                                        isInline,
3220                                        /*isImplicitlyDeclared=*/false);
3221      NewFD->setTypeSourceInfo(TInfo);
3222
3223      isVirtualOkay = true;
3224    } else {
3225      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
3226
3227      // Create a FunctionDecl to satisfy the function definition parsing
3228      // code path.
3229      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
3230                                   Name, R, TInfo, SC, SCAsWritten, isInline,
3231                                   /*hasPrototype=*/true);
3232      D.setInvalidType();
3233    }
3234  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
3235    if (!DC->isRecord()) {
3236      Diag(D.getIdentifierLoc(),
3237           diag::err_conv_function_not_member);
3238      return 0;
3239    }
3240
3241    CheckConversionDeclarator(D, R, SC);
3242    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
3243                                      NameInfo, R, TInfo,
3244                                      isInline, isExplicit);
3245
3246    isVirtualOkay = true;
3247  } else if (DC->isRecord()) {
3248    // If the of the function is the same as the name of the record, then this
3249    // must be an invalid constructor that has a return type.
3250    // (The parser checks for a return type and makes the declarator a
3251    // constructor if it has no return type).
3252    // must have an invalid constructor that has a return type
3253    if (Name.getAsIdentifierInfo() &&
3254        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
3255      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
3256        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3257        << SourceRange(D.getIdentifierLoc());
3258      return 0;
3259    }
3260
3261    bool isStatic = SC == FunctionDecl::Static;
3262
3263    // [class.free]p1:
3264    // Any allocation function for a class T is a static member
3265    // (even if not explicitly declared static).
3266    if (Name.getCXXOverloadedOperator() == OO_New ||
3267        Name.getCXXOverloadedOperator() == OO_Array_New)
3268      isStatic = true;
3269
3270    // [class.free]p6 Any deallocation function for a class X is a static member
3271    // (even if not explicitly declared static).
3272    if (Name.getCXXOverloadedOperator() == OO_Delete ||
3273        Name.getCXXOverloadedOperator() == OO_Array_Delete)
3274      isStatic = true;
3275
3276    // This is a C++ method declaration.
3277    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
3278                                  NameInfo, R, TInfo,
3279                                  isStatic, SCAsWritten, isInline);
3280
3281    isVirtualOkay = !isStatic;
3282  } else {
3283    // Determine whether the function was written with a
3284    // prototype. This true when:
3285    //   - we're in C++ (where every function has a prototype),
3286    //   - there is a prototype in the declarator, or
3287    //   - the type R of the function is some kind of typedef or other reference
3288    //     to a type name (which eventually refers to a function type).
3289    bool HasPrototype =
3290       getLangOptions().CPlusPlus ||
3291       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
3292       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
3293
3294    NewFD = FunctionDecl::Create(Context, DC,
3295                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
3296                                 HasPrototype);
3297  }
3298
3299  if (D.isInvalidType())
3300    NewFD->setInvalidDecl();
3301
3302  SetNestedNameSpecifier(NewFD, D);
3303
3304  // Set the lexical context. If the declarator has a C++
3305  // scope specifier, or is the object of a friend declaration, the
3306  // lexical context will be different from the semantic context.
3307  NewFD->setLexicalDeclContext(CurContext);
3308
3309  // Match up the template parameter lists with the scope specifier, then
3310  // determine whether we have a template or a template specialization.
3311  FunctionTemplateDecl *FunctionTemplate = 0;
3312  bool isExplicitSpecialization = false;
3313  bool isFunctionTemplateSpecialization = false;
3314  unsigned NumMatchedTemplateParamLists = TemplateParamLists.size();
3315  bool Invalid = false;
3316  if (TemplateParameterList *TemplateParams
3317        = MatchTemplateParametersToScopeSpecifier(
3318                                  D.getDeclSpec().getSourceRange().getBegin(),
3319                                  D.getCXXScopeSpec(),
3320                           (TemplateParameterList**)TemplateParamLists.get(),
3321                                                  TemplateParamLists.size(),
3322                                                  isFriend,
3323                                                  isExplicitSpecialization,
3324                                                  Invalid)) {
3325    // All but one template parameter lists have been matching.
3326    --NumMatchedTemplateParamLists;
3327
3328    if (TemplateParams->size() > 0) {
3329      // This is a function template
3330
3331      // Check that we can declare a template here.
3332      if (CheckTemplateDeclScope(S, TemplateParams))
3333        return 0;
3334
3335      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
3336                                                      NewFD->getLocation(),
3337                                                      Name, TemplateParams,
3338                                                      NewFD);
3339      FunctionTemplate->setLexicalDeclContext(CurContext);
3340      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
3341    } else {
3342      // This is a function template specialization.
3343      isFunctionTemplateSpecialization = true;
3344
3345      // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
3346      if (isFriend && isFunctionTemplateSpecialization) {
3347        // We want to remove the "template<>", found here.
3348        SourceRange RemoveRange = TemplateParams->getSourceRange();
3349
3350        // If we remove the template<> and the name is not a
3351        // template-id, we're actually silently creating a problem:
3352        // the friend declaration will refer to an untemplated decl,
3353        // and clearly the user wants a template specialization.  So
3354        // we need to insert '<>' after the name.
3355        SourceLocation InsertLoc;
3356        if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
3357          InsertLoc = D.getName().getSourceRange().getEnd();
3358          InsertLoc = PP.getLocForEndOfToken(InsertLoc);
3359        }
3360
3361        Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
3362          << Name << RemoveRange
3363          << FixItHint::CreateRemoval(RemoveRange)
3364          << FixItHint::CreateInsertion(InsertLoc, "<>");
3365      }
3366    }
3367  }
3368
3369  if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
3370    NewFD->setTemplateParameterListsInfo(Context,
3371                                         NumMatchedTemplateParamLists,
3372                        (TemplateParameterList**)TemplateParamLists.release());
3373  }
3374
3375  if (Invalid) {
3376    NewFD->setInvalidDecl();
3377    if (FunctionTemplate)
3378      FunctionTemplate->setInvalidDecl();
3379  }
3380
3381  // C++ [dcl.fct.spec]p5:
3382  //   The virtual specifier shall only be used in declarations of
3383  //   nonstatic class member functions that appear within a
3384  //   member-specification of a class declaration; see 10.3.
3385  //
3386  if (isVirtual && !NewFD->isInvalidDecl()) {
3387    if (!isVirtualOkay) {
3388       Diag(D.getDeclSpec().getVirtualSpecLoc(),
3389           diag::err_virtual_non_function);
3390    } else if (!CurContext->isRecord()) {
3391      // 'virtual' was specified outside of the class.
3392      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
3393        << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
3394    } else {
3395      // Okay: Add virtual to the method.
3396      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
3397      CurClass->setMethodAsVirtual(NewFD);
3398    }
3399  }
3400
3401  // C++ [dcl.fct.spec]p3:
3402  //  The inline specifier shall not appear on a block scope function declaration.
3403  if (isInline && !NewFD->isInvalidDecl() && getLangOptions().CPlusPlus) {
3404    if (CurContext->isFunctionOrMethod()) {
3405      // 'inline' is not allowed on block scope function declaration.
3406      Diag(D.getDeclSpec().getInlineSpecLoc(),
3407           diag::err_inline_declaration_block_scope) << Name
3408        << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
3409    }
3410  }
3411
3412  // C++ [dcl.fct.spec]p6:
3413  //  The explicit specifier shall be used only in the declaration of a
3414  //  constructor or conversion function within its class definition; see 12.3.1
3415  //  and 12.3.2.
3416  if (isExplicit && !NewFD->isInvalidDecl()) {
3417    if (!CurContext->isRecord()) {
3418      // 'explicit' was specified outside of the class.
3419      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3420           diag::err_explicit_out_of_class)
3421        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3422    } else if (!isa<CXXConstructorDecl>(NewFD) &&
3423               !isa<CXXConversionDecl>(NewFD)) {
3424      // 'explicit' was specified on a function that wasn't a constructor
3425      // or conversion function.
3426      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3427           diag::err_explicit_non_ctor_or_conv_function)
3428        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3429    }
3430  }
3431
3432  // Filter out previous declarations that don't match the scope.
3433  FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
3434
3435  if (isFriend) {
3436    // DC is the namespace in which the function is being declared.
3437    assert((DC->isFileContext() || !Previous.empty()) &&
3438           "previously-undeclared friend function being created "
3439           "in a non-namespace context");
3440
3441    // For now, claim that the objects have no previous declaration.
3442    if (FunctionTemplate) {
3443      FunctionTemplate->setObjectOfFriendDecl(false);
3444      FunctionTemplate->setAccess(AS_public);
3445    }
3446    NewFD->setObjectOfFriendDecl(false);
3447    NewFD->setAccess(AS_public);
3448  }
3449
3450  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
3451      !CurContext->isRecord()) {
3452    // C++ [class.static]p1:
3453    //   A data or function member of a class may be declared static
3454    //   in a class definition, in which case it is a static member of
3455    //   the class.
3456
3457    // Complain about the 'static' specifier if it's on an out-of-line
3458    // member function definition.
3459    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3460         diag::err_static_out_of_line)
3461      << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3462  }
3463
3464  // Handle GNU asm-label extension (encoded as an attribute).
3465  if (Expr *E = (Expr*) D.getAsmLabel()) {
3466    // The parser guarantees this is a string.
3467    StringLiteral *SE = cast<StringLiteral>(E);
3468    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
3469                                                SE->getString()));
3470  }
3471
3472  // Copy the parameter declarations from the declarator D to the function
3473  // declaration NewFD, if they are available.  First scavenge them into Params.
3474  llvm::SmallVector<ParmVarDecl*, 16> Params;
3475  if (D.getNumTypeObjects() > 0) {
3476    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3477
3478    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
3479    // function that takes no arguments, not a function that takes a
3480    // single void argument.
3481    // We let through "const void" here because Sema::GetTypeForDeclarator
3482    // already checks for that case.
3483    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3484        FTI.ArgInfo[0].Param &&
3485        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
3486      // Empty arg list, don't push any params.
3487      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
3488
3489      // In C++, the empty parameter-type-list must be spelled "void"; a
3490      // typedef of void is not permitted.
3491      if (getLangOptions().CPlusPlus &&
3492          Param->getType().getUnqualifiedType() != Context.VoidTy)
3493        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
3494      // FIXME: Leaks decl?
3495    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
3496      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
3497        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
3498        assert(Param->getDeclContext() != NewFD && "Was set before ?");
3499        Param->setDeclContext(NewFD);
3500        Params.push_back(Param);
3501
3502        if (Param->isInvalidDecl())
3503          NewFD->setInvalidDecl();
3504      }
3505    }
3506
3507  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
3508    // When we're declaring a function with a typedef, typeof, etc as in the
3509    // following example, we'll need to synthesize (unnamed)
3510    // parameters for use in the declaration.
3511    //
3512    // @code
3513    // typedef void fn(int);
3514    // fn f;
3515    // @endcode
3516
3517    // Synthesize a parameter for each argument type.
3518    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
3519         AE = FT->arg_type_end(); AI != AE; ++AI) {
3520      ParmVarDecl *Param =
3521        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
3522      Params.push_back(Param);
3523    }
3524  } else {
3525    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
3526           "Should not need args for typedef of non-prototype fn");
3527  }
3528  // Finally, we know we have the right number of parameters, install them.
3529  NewFD->setParams(Params.data(), Params.size());
3530
3531  // If the declarator is a template-id, translate the parser's template
3532  // argument list into our AST format.
3533  bool HasExplicitTemplateArgs = false;
3534  TemplateArgumentListInfo TemplateArgs;
3535  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
3536    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
3537    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
3538    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
3539    ASTTemplateArgsPtr TemplateArgsPtr(*this,
3540                                       TemplateId->getTemplateArgs(),
3541                                       TemplateId->NumArgs);
3542    translateTemplateArguments(TemplateArgsPtr,
3543                               TemplateArgs);
3544    TemplateArgsPtr.release();
3545
3546    HasExplicitTemplateArgs = true;
3547
3548    if (FunctionTemplate) {
3549      // FIXME: Diagnose function template with explicit template
3550      // arguments.
3551      HasExplicitTemplateArgs = false;
3552    } else if (!isFunctionTemplateSpecialization &&
3553               !D.getDeclSpec().isFriendSpecified()) {
3554      // We have encountered something that the user meant to be a
3555      // specialization (because it has explicitly-specified template
3556      // arguments) but that was not introduced with a "template<>" (or had
3557      // too few of them).
3558      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
3559        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
3560        << FixItHint::CreateInsertion(
3561                                   D.getDeclSpec().getSourceRange().getBegin(),
3562                                                 "template<> ");
3563      isFunctionTemplateSpecialization = true;
3564    } else {
3565      // "friend void foo<>(int);" is an implicit specialization decl.
3566      isFunctionTemplateSpecialization = true;
3567    }
3568  } else if (isFriend && isFunctionTemplateSpecialization) {
3569    // This combination is only possible in a recovery case;  the user
3570    // wrote something like:
3571    //   template <> friend void foo(int);
3572    // which we're recovering from as if the user had written:
3573    //   friend void foo<>(int);
3574    // Go ahead and fake up a template id.
3575    HasExplicitTemplateArgs = true;
3576    TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
3577    TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
3578  }
3579
3580  // If it's a friend (and only if it's a friend), it's possible
3581  // that either the specialized function type or the specialized
3582  // template is dependent, and therefore matching will fail.  In
3583  // this case, don't check the specialization yet.
3584  if (isFunctionTemplateSpecialization && isFriend &&
3585      (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
3586    assert(HasExplicitTemplateArgs &&
3587           "friend function specialization without template args");
3588    if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
3589                                                     Previous))
3590      NewFD->setInvalidDecl();
3591  } else if (isFunctionTemplateSpecialization) {
3592    if (CheckFunctionTemplateSpecialization(NewFD,
3593                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
3594                                            Previous))
3595      NewFD->setInvalidDecl();
3596  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
3597    if (CheckMemberSpecialization(NewFD, Previous))
3598      NewFD->setInvalidDecl();
3599  }
3600
3601  // Perform semantic checking on the function declaration.
3602  bool OverloadableAttrRequired = false; // FIXME: HACK!
3603  CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
3604                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
3605
3606  assert((NewFD->isInvalidDecl() || !Redeclaration ||
3607          Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3608         "previous declaration set still overloaded");
3609
3610  NamedDecl *PrincipalDecl = (FunctionTemplate
3611                              ? cast<NamedDecl>(FunctionTemplate)
3612                              : NewFD);
3613
3614  if (isFriend && Redeclaration) {
3615    AccessSpecifier Access = AS_public;
3616    if (!NewFD->isInvalidDecl())
3617      Access = NewFD->getPreviousDeclaration()->getAccess();
3618
3619    NewFD->setAccess(Access);
3620    if (FunctionTemplate) FunctionTemplate->setAccess(Access);
3621
3622    PrincipalDecl->setObjectOfFriendDecl(true);
3623  }
3624
3625  if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
3626      PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
3627    PrincipalDecl->setNonMemberOperator();
3628
3629  // If we have a function template, check the template parameter
3630  // list. This will check and merge default template arguments.
3631  if (FunctionTemplate) {
3632    FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
3633    CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
3634                      PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
3635             D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate
3636                                                : TPC_FunctionTemplate);
3637  }
3638
3639  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
3640    // Fake up an access specifier if it's supposed to be a class member.
3641    if (!Redeclaration && isa<CXXRecordDecl>(NewFD->getDeclContext()))
3642      NewFD->setAccess(AS_public);
3643
3644    // An out-of-line member function declaration must also be a
3645    // definition (C++ [dcl.meaning]p1).
3646    // Note that this is not the case for explicit specializations of
3647    // function templates or member functions of class templates, per
3648    // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
3649    // for compatibility with old SWIG code which likes to generate them.
3650    if (!IsFunctionDefinition && !isFriend &&
3651        !isFunctionTemplateSpecialization && !isExplicitSpecialization) {
3652      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
3653        << D.getCXXScopeSpec().getRange();
3654    }
3655    if (!Redeclaration && !(isFriend && CurContext->isDependentContext())) {
3656      // The user tried to provide an out-of-line definition for a
3657      // function that is a member of a class or namespace, but there
3658      // was no such member function declared (C++ [class.mfct]p2,
3659      // C++ [namespace.memdef]p2). For example:
3660      //
3661      // class X {
3662      //   void f() const;
3663      // };
3664      //
3665      // void X::f() { } // ill-formed
3666      //
3667      // Complain about this problem, and attempt to suggest close
3668      // matches (e.g., those that differ only in cv-qualifiers and
3669      // whether the parameter types are references).
3670      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
3671        << Name << DC << D.getCXXScopeSpec().getRange();
3672      NewFD->setInvalidDecl();
3673
3674      LookupResult Prev(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
3675                        ForRedeclaration);
3676      LookupQualifiedName(Prev, DC);
3677      assert(!Prev.isAmbiguous() &&
3678             "Cannot have an ambiguity in previous-declaration lookup");
3679      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3680           Func != FuncEnd; ++Func) {
3681        if (isa<FunctionDecl>(*Func) &&
3682            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
3683          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3684      }
3685    }
3686  }
3687
3688  // Handle attributes. We need to have merged decls when handling attributes
3689  // (for example to check for conflicts, etc).
3690  // FIXME: This needs to happen before we merge declarations. Then,
3691  // let attribute merging cope with attribute conflicts.
3692  ProcessDeclAttributes(S, NewFD, D);
3693
3694  // attributes declared post-definition are currently ignored
3695  // FIXME: This should happen during attribute merging
3696  if (Redeclaration && Previous.isSingleResult()) {
3697    const FunctionDecl *Def;
3698    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
3699    if (PrevFD && PrevFD->hasBody(Def) && D.hasAttributes()) {
3700      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
3701      Diag(Def->getLocation(), diag::note_previous_definition);
3702    }
3703  }
3704
3705  AddKnownFunctionAttributes(NewFD);
3706
3707  if (OverloadableAttrRequired && !NewFD->hasAttr<OverloadableAttr>()) {
3708    // If a function name is overloadable in C, then every function
3709    // with that name must be marked "overloadable".
3710    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
3711      << Redeclaration << NewFD;
3712    if (!Previous.empty())
3713      Diag(Previous.getRepresentativeDecl()->getLocation(),
3714           diag::note_attribute_overloadable_prev_overload);
3715    NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(), Context));
3716  }
3717
3718  if (NewFD->hasAttr<OverloadableAttr>() &&
3719      !NewFD->getType()->getAs<FunctionProtoType>()) {
3720    Diag(NewFD->getLocation(),
3721         diag::err_attribute_overloadable_no_prototype)
3722      << NewFD;
3723
3724    // Turn this into a variadic function with no parameters.
3725    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
3726    QualType R = Context.getFunctionType(FT->getResultType(),
3727                                         0, 0, true, 0, false, false, 0, 0,
3728                                         FT->getExtInfo());
3729    NewFD->setType(R);
3730  }
3731
3732  // If there's a #pragma GCC visibility in scope, and this isn't a class
3733  // member, set the visibility of this function.
3734  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
3735    AddPushedVisibilityAttribute(NewFD);
3736
3737  // If this is a locally-scoped extern C function, update the
3738  // map of such names.
3739  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
3740      && !NewFD->isInvalidDecl())
3741    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
3742
3743  // Set this FunctionDecl's range up to the right paren.
3744  NewFD->setLocEnd(D.getSourceRange().getEnd());
3745
3746  if (FunctionTemplate && NewFD->isInvalidDecl())
3747    FunctionTemplate->setInvalidDecl();
3748
3749  if (FunctionTemplate)
3750    return FunctionTemplate;
3751
3752  MarkUnusedFileScopedDecl(NewFD);
3753
3754  return NewFD;
3755}
3756
3757/// \brief Perform semantic checking of a new function declaration.
3758///
3759/// Performs semantic analysis of the new function declaration
3760/// NewFD. This routine performs all semantic checking that does not
3761/// require the actual declarator involved in the declaration, and is
3762/// used both for the declaration of functions as they are parsed
3763/// (called via ActOnDeclarator) and for the declaration of functions
3764/// that have been instantiated via C++ template instantiation (called
3765/// via InstantiateDecl).
3766///
3767/// \param IsExplicitSpecialiation whether this new function declaration is
3768/// an explicit specialization of the previous declaration.
3769///
3770/// This sets NewFD->isInvalidDecl() to true if there was an error.
3771void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
3772                                    LookupResult &Previous,
3773                                    bool IsExplicitSpecialization,
3774                                    bool &Redeclaration,
3775                                    bool &OverloadableAttrRequired) {
3776  // If NewFD is already known erroneous, don't do any of this checking.
3777  if (NewFD->isInvalidDecl()) {
3778    // If this is a class member, mark the class invalid immediately.
3779    // This avoids some consistency errors later.
3780    if (isa<CXXMethodDecl>(NewFD))
3781      cast<CXXMethodDecl>(NewFD)->getParent()->setInvalidDecl();
3782
3783    return;
3784  }
3785
3786  if (NewFD->getResultType()->isVariablyModifiedType()) {
3787    // Functions returning a variably modified type violate C99 6.7.5.2p2
3788    // because all functions have linkage.
3789    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
3790    return NewFD->setInvalidDecl();
3791  }
3792
3793  if (NewFD->isMain())
3794    CheckMain(NewFD);
3795
3796  // Check for a previous declaration of this name.
3797  if (Previous.empty() && NewFD->isExternC()) {
3798    // Since we did not find anything by this name and we're declaring
3799    // an extern "C" function, look for a non-visible extern "C"
3800    // declaration with the same name.
3801    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3802      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
3803    if (Pos != LocallyScopedExternalDecls.end())
3804      Previous.addDecl(Pos->second);
3805  }
3806
3807  // Merge or overload the declaration with an existing declaration of
3808  // the same name, if appropriate.
3809  if (!Previous.empty()) {
3810    // Determine whether NewFD is an overload of PrevDecl or
3811    // a declaration that requires merging. If it's an overload,
3812    // there's no more work to do here; we'll just add the new
3813    // function to the scope.
3814
3815    NamedDecl *OldDecl = 0;
3816    if (!AllowOverloadingOfFunction(Previous, Context)) {
3817      Redeclaration = true;
3818      OldDecl = Previous.getFoundDecl();
3819    } else {
3820      if (!getLangOptions().CPlusPlus)
3821        OverloadableAttrRequired = true;
3822
3823      switch (CheckOverload(S, NewFD, Previous, OldDecl,
3824                            /*NewIsUsingDecl*/ false)) {
3825      case Ovl_Match:
3826        Redeclaration = true;
3827        break;
3828
3829      case Ovl_NonFunction:
3830        Redeclaration = true;
3831        break;
3832
3833      case Ovl_Overload:
3834        Redeclaration = false;
3835        break;
3836      }
3837    }
3838
3839    if (Redeclaration) {
3840      // NewFD and OldDecl represent declarations that need to be
3841      // merged.
3842      if (MergeFunctionDecl(NewFD, OldDecl))
3843        return NewFD->setInvalidDecl();
3844
3845      Previous.clear();
3846      Previous.addDecl(OldDecl);
3847
3848      if (FunctionTemplateDecl *OldTemplateDecl
3849                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
3850        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3851        FunctionTemplateDecl *NewTemplateDecl
3852          = NewFD->getDescribedFunctionTemplate();
3853        assert(NewTemplateDecl && "Template/non-template mismatch");
3854        if (CXXMethodDecl *Method
3855              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
3856          Method->setAccess(OldTemplateDecl->getAccess());
3857          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
3858        }
3859
3860        // If this is an explicit specialization of a member that is a function
3861        // template, mark it as a member specialization.
3862        if (IsExplicitSpecialization &&
3863            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
3864          NewTemplateDecl->setMemberSpecialization();
3865          assert(OldTemplateDecl->isMemberSpecialization());
3866        }
3867      } else {
3868        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3869          NewFD->setAccess(OldDecl->getAccess());
3870        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3871      }
3872    }
3873  }
3874
3875  // Semantic checking for this function declaration (in isolation).
3876  if (getLangOptions().CPlusPlus) {
3877    // C++-specific checks.
3878    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3879      CheckConstructor(Constructor);
3880    } else if (CXXDestructorDecl *Destructor =
3881                dyn_cast<CXXDestructorDecl>(NewFD)) {
3882      CXXRecordDecl *Record = Destructor->getParent();
3883      QualType ClassType = Context.getTypeDeclType(Record);
3884
3885      // FIXME: Shouldn't we be able to perform this check even when the class
3886      // type is dependent? Both gcc and edg can handle that.
3887      if (!ClassType->isDependentType()) {
3888        DeclarationName Name
3889          = Context.DeclarationNames.getCXXDestructorName(
3890                                        Context.getCanonicalType(ClassType));
3891//         NewFD->getDeclName().dump();
3892//         Name.dump();
3893        if (NewFD->getDeclName() != Name) {
3894          Diag(NewFD->getLocation(), diag::err_destructor_name);
3895          return NewFD->setInvalidDecl();
3896        }
3897      }
3898
3899      Record->setUserDeclaredDestructor(true);
3900      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
3901      // user-defined destructor.
3902      Record->setPOD(false);
3903
3904      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
3905      // declared destructor.
3906      // FIXME: C++0x: don't do this for "= default" destructors
3907      Record->setHasTrivialDestructor(false);
3908    } else if (CXXConversionDecl *Conversion
3909               = dyn_cast<CXXConversionDecl>(NewFD)) {
3910      ActOnConversionDeclarator(Conversion);
3911    }
3912
3913    // Find any virtual functions that this function overrides.
3914    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
3915      if (!Method->isFunctionTemplateSpecialization() &&
3916          !Method->getDescribedFunctionTemplate())
3917        AddOverriddenMethods(Method->getParent(), Method);
3918    }
3919
3920    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3921    if (NewFD->isOverloadedOperator() &&
3922        CheckOverloadedOperatorDeclaration(NewFD))
3923      return NewFD->setInvalidDecl();
3924
3925    // Extra checking for C++0x literal operators (C++0x [over.literal]).
3926    if (NewFD->getLiteralIdentifier() &&
3927        CheckLiteralOperatorDeclaration(NewFD))
3928      return NewFD->setInvalidDecl();
3929
3930    // In C++, check default arguments now that we have merged decls. Unless
3931    // the lexical context is the class, because in this case this is done
3932    // during delayed parsing anyway.
3933    if (!CurContext->isRecord())
3934      CheckCXXDefaultArguments(NewFD);
3935  }
3936}
3937
3938void Sema::CheckMain(FunctionDecl* FD) {
3939  // C++ [basic.start.main]p3:  A program that declares main to be inline
3940  //   or static is ill-formed.
3941  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3942  //   shall not appear in a declaration of main.
3943  // static main is not an error under C99, but we should warn about it.
3944  bool isInline = FD->isInlineSpecified();
3945  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
3946  if (isInline || isStatic) {
3947    unsigned diagID = diag::warn_unusual_main_decl;
3948    if (isInline || getLangOptions().CPlusPlus)
3949      diagID = diag::err_unusual_main_decl;
3950
3951    int which = isStatic + (isInline << 1) - 1;
3952    Diag(FD->getLocation(), diagID) << which;
3953  }
3954
3955  QualType T = FD->getType();
3956  assert(T->isFunctionType() && "function decl is not of function type");
3957  const FunctionType* FT = T->getAs<FunctionType>();
3958
3959  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3960    // TODO: add a replacement fixit to turn the return type into 'int'.
3961    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
3962    FD->setInvalidDecl(true);
3963  }
3964
3965  // Treat protoless main() as nullary.
3966  if (isa<FunctionNoProtoType>(FT)) return;
3967
3968  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
3969  unsigned nparams = FTP->getNumArgs();
3970  assert(FD->getNumParams() == nparams);
3971
3972  bool HasExtraParameters = (nparams > 3);
3973
3974  // Darwin passes an undocumented fourth argument of type char**.  If
3975  // other platforms start sprouting these, the logic below will start
3976  // getting shifty.
3977  if (nparams == 4 &&
3978      Context.Target.getTriple().getOS() == llvm::Triple::Darwin)
3979    HasExtraParameters = false;
3980
3981  if (HasExtraParameters) {
3982    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
3983    FD->setInvalidDecl(true);
3984    nparams = 3;
3985  }
3986
3987  // FIXME: a lot of the following diagnostics would be improved
3988  // if we had some location information about types.
3989
3990  QualType CharPP =
3991    Context.getPointerType(Context.getPointerType(Context.CharTy));
3992  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
3993
3994  for (unsigned i = 0; i < nparams; ++i) {
3995    QualType AT = FTP->getArgType(i);
3996
3997    bool mismatch = true;
3998
3999    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
4000      mismatch = false;
4001    else if (Expected[i] == CharPP) {
4002      // As an extension, the following forms are okay:
4003      //   char const **
4004      //   char const * const *
4005      //   char * const *
4006
4007      QualifierCollector qs;
4008      const PointerType* PT;
4009      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
4010          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
4011          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
4012        qs.removeConst();
4013        mismatch = !qs.empty();
4014      }
4015    }
4016
4017    if (mismatch) {
4018      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
4019      // TODO: suggest replacing given type with expected type
4020      FD->setInvalidDecl(true);
4021    }
4022  }
4023
4024  if (nparams == 1 && !FD->isInvalidDecl()) {
4025    Diag(FD->getLocation(), diag::warn_main_one_arg);
4026  }
4027}
4028
4029bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
4030  // FIXME: Need strict checking.  In C89, we need to check for
4031  // any assignment, increment, decrement, function-calls, or
4032  // commas outside of a sizeof.  In C99, it's the same list,
4033  // except that the aforementioned are allowed in unevaluated
4034  // expressions.  Everything else falls under the
4035  // "may accept other forms of constant expressions" exception.
4036  // (We never end up here for C++, so the constant expression
4037  // rules there don't matter.)
4038  if (Init->isConstantInitializer(Context, false))
4039    return false;
4040  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
4041    << Init->getSourceRange();
4042  return true;
4043}
4044
4045void Sema::AddInitializerToDecl(Decl *dcl, Expr *init) {
4046  AddInitializerToDecl(dcl, init, /*DirectInit=*/false);
4047}
4048
4049/// AddInitializerToDecl - Adds the initializer Init to the
4050/// declaration dcl. If DirectInit is true, this is C++ direct
4051/// initialization rather than copy initialization.
4052void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init, bool DirectInit) {
4053  // If there is no declaration, there was an error parsing it.  Just ignore
4054  // the initializer.
4055  if (RealDecl == 0)
4056    return;
4057
4058  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
4059    // With declarators parsed the way they are, the parser cannot
4060    // distinguish between a normal initializer and a pure-specifier.
4061    // Thus this grotesque test.
4062    IntegerLiteral *IL;
4063    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
4064        Context.getCanonicalType(IL->getType()) == Context.IntTy)
4065      CheckPureMethod(Method, Init->getSourceRange());
4066    else {
4067      Diag(Method->getLocation(), diag::err_member_function_initialization)
4068        << Method->getDeclName() << Init->getSourceRange();
4069      Method->setInvalidDecl();
4070    }
4071    return;
4072  }
4073
4074  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
4075  if (!VDecl) {
4076    if (getLangOptions().CPlusPlus &&
4077        RealDecl->getLexicalDeclContext()->isRecord() &&
4078        isa<NamedDecl>(RealDecl))
4079      Diag(RealDecl->getLocation(), diag::err_member_initialization)
4080        << cast<NamedDecl>(RealDecl)->getDeclName();
4081    else
4082      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
4083    RealDecl->setInvalidDecl();
4084    return;
4085  }
4086
4087
4088
4089  // A definition must end up with a complete type, which means it must be
4090  // complete with the restriction that an array type might be completed by the
4091  // initializer; note that later code assumes this restriction.
4092  QualType BaseDeclType = VDecl->getType();
4093  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
4094    BaseDeclType = Array->getElementType();
4095  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
4096                          diag::err_typecheck_decl_incomplete_type)) {
4097    RealDecl->setInvalidDecl();
4098    return;
4099  }
4100
4101  // The variable can not have an abstract class type.
4102  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
4103                             diag::err_abstract_type_in_decl,
4104                             AbstractVariableType))
4105    VDecl->setInvalidDecl();
4106
4107  const VarDecl *Def;
4108  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
4109    Diag(VDecl->getLocation(), diag::err_redefinition)
4110      << VDecl->getDeclName();
4111    Diag(Def->getLocation(), diag::note_previous_definition);
4112    VDecl->setInvalidDecl();
4113    return;
4114  }
4115
4116  // C++ [class.static.data]p4
4117  //   If a static data member is of const integral or const
4118  //   enumeration type, its declaration in the class definition can
4119  //   specify a constant-initializer which shall be an integral
4120  //   constant expression (5.19). In that case, the member can appear
4121  //   in integral constant expressions. The member shall still be
4122  //   defined in a namespace scope if it is used in the program and the
4123  //   namespace scope definition shall not contain an initializer.
4124  //
4125  // We already performed a redefinition check above, but for static
4126  // data members we also need to check whether there was an in-class
4127  // declaration with an initializer.
4128  const VarDecl* PrevInit = 0;
4129  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
4130    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
4131    Diag(PrevInit->getLocation(), diag::note_previous_definition);
4132    return;
4133  }
4134
4135  if (getLangOptions().CPlusPlus && VDecl->hasLocalStorage())
4136    setFunctionHasBranchProtectedScope();
4137
4138  // Capture the variable that is being initialized and the style of
4139  // initialization.
4140  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
4141
4142  // FIXME: Poor source location information.
4143  InitializationKind Kind
4144    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
4145                                                   Init->getLocStart(),
4146                                                   Init->getLocEnd())
4147                : InitializationKind::CreateCopy(VDecl->getLocation(),
4148                                                 Init->getLocStart());
4149
4150  // Get the decls type and save a reference for later, since
4151  // CheckInitializerTypes may change it.
4152  QualType DclT = VDecl->getType(), SavT = DclT;
4153  if (VDecl->isBlockVarDecl()) {
4154    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
4155      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
4156      VDecl->setInvalidDecl();
4157    } else if (!VDecl->isInvalidDecl()) {
4158      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4159      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4160                                                MultiExprArg(*this, &Init, 1),
4161                                                &DclT);
4162      if (Result.isInvalid()) {
4163        VDecl->setInvalidDecl();
4164        return;
4165      }
4166
4167      Init = Result.takeAs<Expr>();
4168
4169      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4170      // Don't check invalid declarations to avoid emitting useless diagnostics.
4171      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4172        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
4173          CheckForConstantInitializer(Init, DclT);
4174      }
4175    }
4176  } else if (VDecl->isStaticDataMember() &&
4177             VDecl->getLexicalDeclContext()->isRecord()) {
4178    // This is an in-class initialization for a static data member, e.g.,
4179    //
4180    // struct S {
4181    //   static const int value = 17;
4182    // };
4183
4184    // Attach the initializer
4185    VDecl->setInit(Init);
4186
4187    // C++ [class.mem]p4:
4188    //   A member-declarator can contain a constant-initializer only
4189    //   if it declares a static member (9.4) of const integral or
4190    //   const enumeration type, see 9.4.2.
4191    QualType T = VDecl->getType();
4192    if (!T->isDependentType() &&
4193        (!Context.getCanonicalType(T).isConstQualified() ||
4194         !T->isIntegralOrEnumerationType())) {
4195      Diag(VDecl->getLocation(), diag::err_member_initialization)
4196        << VDecl->getDeclName() << Init->getSourceRange();
4197      VDecl->setInvalidDecl();
4198    } else {
4199      // C++ [class.static.data]p4:
4200      //   If a static data member is of const integral or const
4201      //   enumeration type, its declaration in the class definition
4202      //   can specify a constant-initializer which shall be an
4203      //   integral constant expression (5.19).
4204      if (!Init->isTypeDependent() &&
4205          !Init->getType()->isIntegralOrEnumerationType()) {
4206        // We have a non-dependent, non-integral or enumeration type.
4207        Diag(Init->getSourceRange().getBegin(),
4208             diag::err_in_class_initializer_non_integral_type)
4209          << Init->getType() << Init->getSourceRange();
4210        VDecl->setInvalidDecl();
4211      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
4212        // Check whether the expression is a constant expression.
4213        llvm::APSInt Value;
4214        SourceLocation Loc;
4215        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
4216          Diag(Loc, diag::err_in_class_initializer_non_constant)
4217            << Init->getSourceRange();
4218          VDecl->setInvalidDecl();
4219        } else if (!VDecl->getType()->isDependentType())
4220          ImpCastExprToType(Init, VDecl->getType(), CastExpr::CK_IntegralCast);
4221      }
4222    }
4223  } else if (VDecl->isFileVarDecl()) {
4224    if (VDecl->getStorageClass() == VarDecl::Extern &&
4225        (!getLangOptions().CPlusPlus ||
4226         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
4227      Diag(VDecl->getLocation(), diag::warn_extern_init);
4228    if (!VDecl->isInvalidDecl()) {
4229      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4230      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4231                                                MultiExprArg(*this, &Init, 1),
4232                                                &DclT);
4233      if (Result.isInvalid()) {
4234        VDecl->setInvalidDecl();
4235        return;
4236      }
4237
4238      Init = Result.takeAs<Expr>();
4239    }
4240
4241    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4242    // Don't check invalid declarations to avoid emitting useless diagnostics.
4243    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4244      // C99 6.7.8p4. All file scoped initializers need to be constant.
4245      CheckForConstantInitializer(Init, DclT);
4246    }
4247  }
4248  // If the type changed, it means we had an incomplete type that was
4249  // completed by the initializer. For example:
4250  //   int ary[] = { 1, 3, 5 };
4251  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
4252  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
4253    VDecl->setType(DclT);
4254    Init->setType(DclT);
4255  }
4256
4257  Init = MaybeCreateCXXExprWithTemporaries(Init);
4258  // Attach the initializer to the decl.
4259  VDecl->setInit(Init);
4260
4261  if (getLangOptions().CPlusPlus) {
4262    if (!VDecl->isInvalidDecl() &&
4263        !VDecl->getDeclContext()->isDependentContext() &&
4264        VDecl->hasGlobalStorage() &&
4265        !Init->isConstantInitializer(Context,
4266                                     VDecl->getType()->isReferenceType()))
4267      Diag(VDecl->getLocation(), diag::warn_global_constructor)
4268        << Init->getSourceRange();
4269
4270    // Make sure we mark the destructor as used if necessary.
4271    QualType InitType = VDecl->getType();
4272    while (const ArrayType *Array = Context.getAsArrayType(InitType))
4273      InitType = Context.getBaseElementType(Array);
4274    if (const RecordType *Record = InitType->getAs<RecordType>())
4275      FinalizeVarWithDestructor(VDecl, Record);
4276  }
4277
4278  return;
4279}
4280
4281/// ActOnInitializerError - Given that there was an error parsing an
4282/// initializer for the given declaration, try to return to some form
4283/// of sanity.
4284void Sema::ActOnInitializerError(Decl *D) {
4285  // Our main concern here is re-establishing invariants like "a
4286  // variable's type is either dependent or complete".
4287  if (!D || D->isInvalidDecl()) return;
4288
4289  VarDecl *VD = dyn_cast<VarDecl>(D);
4290  if (!VD) return;
4291
4292  QualType Ty = VD->getType();
4293  if (Ty->isDependentType()) return;
4294
4295  // Require a complete type.
4296  if (RequireCompleteType(VD->getLocation(),
4297                          Context.getBaseElementType(Ty),
4298                          diag::err_typecheck_decl_incomplete_type)) {
4299    VD->setInvalidDecl();
4300    return;
4301  }
4302
4303  // Require an abstract type.
4304  if (RequireNonAbstractType(VD->getLocation(), Ty,
4305                             diag::err_abstract_type_in_decl,
4306                             AbstractVariableType)) {
4307    VD->setInvalidDecl();
4308    return;
4309  }
4310
4311  // Don't bother complaining about constructors or destructors,
4312  // though.
4313}
4314
4315void Sema::ActOnUninitializedDecl(Decl *RealDecl,
4316                                  bool TypeContainsUndeducedAuto) {
4317  // If there is no declaration, there was an error parsing it. Just ignore it.
4318  if (RealDecl == 0)
4319    return;
4320
4321  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
4322    QualType Type = Var->getType();
4323
4324    // C++0x [dcl.spec.auto]p3
4325    if (TypeContainsUndeducedAuto) {
4326      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
4327        << Var->getDeclName() << Type;
4328      Var->setInvalidDecl();
4329      return;
4330    }
4331
4332    switch (Var->isThisDeclarationADefinition()) {
4333    case VarDecl::Definition:
4334      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
4335        break;
4336
4337      // We have an out-of-line definition of a static data member
4338      // that has an in-class initializer, so we type-check this like
4339      // a declaration.
4340      //
4341      // Fall through
4342
4343    case VarDecl::DeclarationOnly:
4344      // It's only a declaration.
4345
4346      // Block scope. C99 6.7p7: If an identifier for an object is
4347      // declared with no linkage (C99 6.2.2p6), the type for the
4348      // object shall be complete.
4349      if (!Type->isDependentType() && Var->isBlockVarDecl() &&
4350          !Var->getLinkage() && !Var->isInvalidDecl() &&
4351          RequireCompleteType(Var->getLocation(), Type,
4352                              diag::err_typecheck_decl_incomplete_type))
4353        Var->setInvalidDecl();
4354
4355      // Make sure that the type is not abstract.
4356      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
4357          RequireNonAbstractType(Var->getLocation(), Type,
4358                                 diag::err_abstract_type_in_decl,
4359                                 AbstractVariableType))
4360        Var->setInvalidDecl();
4361      return;
4362
4363    case VarDecl::TentativeDefinition:
4364      // File scope. C99 6.9.2p2: A declaration of an identifier for an
4365      // object that has file scope without an initializer, and without a
4366      // storage-class specifier or with the storage-class specifier "static",
4367      // constitutes a tentative definition. Note: A tentative definition with
4368      // external linkage is valid (C99 6.2.2p5).
4369      if (!Var->isInvalidDecl()) {
4370        if (const IncompleteArrayType *ArrayT
4371                                    = Context.getAsIncompleteArrayType(Type)) {
4372          if (RequireCompleteType(Var->getLocation(),
4373                                  ArrayT->getElementType(),
4374                                  diag::err_illegal_decl_array_incomplete_type))
4375            Var->setInvalidDecl();
4376        } else if (Var->getStorageClass() == VarDecl::Static) {
4377          // C99 6.9.2p3: If the declaration of an identifier for an object is
4378          // a tentative definition and has internal linkage (C99 6.2.2p3), the
4379          // declared type shall not be an incomplete type.
4380          // NOTE: code such as the following
4381          //     static struct s;
4382          //     struct s { int a; };
4383          // is accepted by gcc. Hence here we issue a warning instead of
4384          // an error and we do not invalidate the static declaration.
4385          // NOTE: to avoid multiple warnings, only check the first declaration.
4386          if (Var->getPreviousDeclaration() == 0)
4387            RequireCompleteType(Var->getLocation(), Type,
4388                                diag::ext_typecheck_decl_incomplete_type);
4389        }
4390      }
4391
4392      // Record the tentative definition; we're done.
4393      if (!Var->isInvalidDecl())
4394        TentativeDefinitions.push_back(Var);
4395      return;
4396    }
4397
4398    // Provide a specific diagnostic for uninitialized variable
4399    // definitions with incomplete array type.
4400    if (Type->isIncompleteArrayType()) {
4401      Diag(Var->getLocation(),
4402           diag::err_typecheck_incomplete_array_needs_initializer);
4403      Var->setInvalidDecl();
4404      return;
4405    }
4406
4407    // Provide a specific diagnostic for uninitialized variable
4408    // definitions with reference type.
4409    if (Type->isReferenceType()) {
4410      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
4411        << Var->getDeclName()
4412        << SourceRange(Var->getLocation(), Var->getLocation());
4413      Var->setInvalidDecl();
4414      return;
4415    }
4416
4417    // Do not attempt to type-check the default initializer for a
4418    // variable with dependent type.
4419    if (Type->isDependentType())
4420      return;
4421
4422    if (Var->isInvalidDecl())
4423      return;
4424
4425    if (RequireCompleteType(Var->getLocation(),
4426                            Context.getBaseElementType(Type),
4427                            diag::err_typecheck_decl_incomplete_type)) {
4428      Var->setInvalidDecl();
4429      return;
4430    }
4431
4432    // The variable can not have an abstract class type.
4433    if (RequireNonAbstractType(Var->getLocation(), Type,
4434                               diag::err_abstract_type_in_decl,
4435                               AbstractVariableType)) {
4436      Var->setInvalidDecl();
4437      return;
4438    }
4439
4440    const RecordType *Record
4441      = Context.getBaseElementType(Type)->getAs<RecordType>();
4442    if (Record && getLangOptions().CPlusPlus && !getLangOptions().CPlusPlus0x &&
4443        cast<CXXRecordDecl>(Record->getDecl())->isPOD()) {
4444      // C++03 [dcl.init]p9:
4445      //   If no initializer is specified for an object, and the
4446      //   object is of (possibly cv-qualified) non-POD class type (or
4447      //   array thereof), the object shall be default-initialized; if
4448      //   the object is of const-qualified type, the underlying class
4449      //   type shall have a user-declared default
4450      //   constructor. Otherwise, if no initializer is specified for
4451      //   a non- static object, the object and its subobjects, if
4452      //   any, have an indeterminate initial value); if the object
4453      //   or any of its subobjects are of const-qualified type, the
4454      //   program is ill-formed.
4455      // FIXME: DPG thinks it is very fishy that C++0x disables this.
4456    } else {
4457      // Check for jumps past the implicit initializer.  C++0x
4458      // clarifies that this applies to a "variable with automatic
4459      // storage duration", not a "local variable".
4460      if (getLangOptions().CPlusPlus && Var->hasLocalStorage())
4461        setFunctionHasBranchProtectedScope();
4462
4463      InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
4464      InitializationKind Kind
4465        = InitializationKind::CreateDefault(Var->getLocation());
4466
4467      InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
4468      OwningExprResult Init = InitSeq.Perform(*this, Entity, Kind,
4469                                              MultiExprArg(*this, 0, 0));
4470      if (Init.isInvalid())
4471        Var->setInvalidDecl();
4472      else if (Init.get()) {
4473        Var->setInit(MaybeCreateCXXExprWithTemporaries(Init.takeAs<Expr>()));
4474
4475        if (getLangOptions().CPlusPlus && !Var->isInvalidDecl() &&
4476            Var->hasGlobalStorage() &&
4477            !Var->getDeclContext()->isDependentContext() &&
4478            !Var->getInit()->isConstantInitializer(Context, false))
4479          Diag(Var->getLocation(), diag::warn_global_constructor);
4480      }
4481    }
4482
4483    if (!Var->isInvalidDecl() && getLangOptions().CPlusPlus && Record)
4484      FinalizeVarWithDestructor(Var, Record);
4485  }
4486}
4487
4488Sema::DeclGroupPtrTy
4489Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
4490                              Decl **Group, unsigned NumDecls) {
4491  llvm::SmallVector<Decl*, 8> Decls;
4492
4493  if (DS.isTypeSpecOwned())
4494    Decls.push_back(DS.getRepAsDecl());
4495
4496  for (unsigned i = 0; i != NumDecls; ++i)
4497    if (Decl *D = Group[i])
4498      Decls.push_back(D);
4499
4500  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
4501                                                   Decls.data(), Decls.size()));
4502}
4503
4504
4505/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
4506/// to introduce parameters into function prototype scope.
4507Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
4508  const DeclSpec &DS = D.getDeclSpec();
4509
4510  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
4511  VarDecl::StorageClass StorageClass = VarDecl::None;
4512  VarDecl::StorageClass StorageClassAsWritten = VarDecl::None;
4513  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
4514    StorageClass = VarDecl::Register;
4515    StorageClassAsWritten = VarDecl::Register;
4516  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
4517    Diag(DS.getStorageClassSpecLoc(),
4518         diag::err_invalid_storage_class_in_func_decl);
4519    D.getMutableDeclSpec().ClearStorageClassSpecs();
4520  }
4521
4522  if (D.getDeclSpec().isThreadSpecified())
4523    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4524
4525  DiagnoseFunctionSpecifiers(D);
4526
4527  // Check that there are no default arguments inside the type of this
4528  // parameter (C++ only).
4529  if (getLangOptions().CPlusPlus)
4530    CheckExtraCXXDefaultArguments(D);
4531
4532  TagDecl *OwnedDecl = 0;
4533  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
4534  QualType parmDeclType = TInfo->getType();
4535
4536  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
4537    // C++ [dcl.fct]p6:
4538    //   Types shall not be defined in return or parameter types.
4539    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
4540      << Context.getTypeDeclType(OwnedDecl);
4541  }
4542
4543  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
4544  IdentifierInfo *II = D.getIdentifier();
4545  if (II) {
4546    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
4547                   ForRedeclaration);
4548    LookupName(R, S);
4549    if (R.isSingleResult()) {
4550      NamedDecl *PrevDecl = R.getFoundDecl();
4551      if (PrevDecl->isTemplateParameter()) {
4552        // Maybe we will complain about the shadowed template parameter.
4553        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4554        // Just pretend that we didn't see the previous declaration.
4555        PrevDecl = 0;
4556      } else if (S->isDeclScope(PrevDecl)) {
4557        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
4558        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4559
4560        // Recover by removing the name
4561        II = 0;
4562        D.SetIdentifier(0, D.getIdentifierLoc());
4563        D.setInvalidType(true);
4564      }
4565    }
4566  }
4567
4568  // Temporarily put parameter variables in the translation unit, not
4569  // the enclosing context.  This prevents them from accidentally
4570  // looking like class members in C++.
4571  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
4572                                    TInfo, parmDeclType, II,
4573                                    D.getIdentifierLoc(),
4574                                    StorageClass, StorageClassAsWritten);
4575
4576  if (D.isInvalidType())
4577    New->setInvalidDecl();
4578
4579  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
4580  if (D.getCXXScopeSpec().isSet()) {
4581    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
4582      << D.getCXXScopeSpec().getRange();
4583    New->setInvalidDecl();
4584  }
4585
4586  // Add the parameter declaration into this scope.
4587  S->AddDecl(New);
4588  if (II)
4589    IdResolver.AddDecl(New);
4590
4591  ProcessDeclAttributes(S, New, D);
4592
4593  if (New->hasAttr<BlocksAttr>()) {
4594    Diag(New->getLocation(), diag::err_block_on_nonlocal);
4595  }
4596  return New;
4597}
4598
4599/// \brief Synthesizes a variable for a parameter arising from a
4600/// typedef.
4601ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
4602                                              SourceLocation Loc,
4603                                              QualType T) {
4604  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, 0,
4605                                T, Context.getTrivialTypeSourceInfo(T, Loc),
4606                                           VarDecl::None, VarDecl::None, 0);
4607  Param->setImplicit();
4608  return Param;
4609}
4610
4611ParmVarDecl *Sema::CheckParameter(DeclContext *DC,
4612                                  TypeSourceInfo *TSInfo, QualType T,
4613                                  IdentifierInfo *Name,
4614                                  SourceLocation NameLoc,
4615                                  VarDecl::StorageClass StorageClass,
4616                                  VarDecl::StorageClass StorageClassAsWritten) {
4617  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, NameLoc, Name,
4618                                         adjustParameterType(T), TSInfo,
4619                                         StorageClass, StorageClassAsWritten,
4620                                         0);
4621
4622  // Parameters can not be abstract class types.
4623  // For record types, this is done by the AbstractClassUsageDiagnoser once
4624  // the class has been completely parsed.
4625  if (!CurContext->isRecord() &&
4626      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
4627                             AbstractParamType))
4628    New->setInvalidDecl();
4629
4630  // Parameter declarators cannot be interface types. All ObjC objects are
4631  // passed by reference.
4632  if (T->isObjCObjectType()) {
4633    Diag(NameLoc,
4634         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
4635    New->setInvalidDecl();
4636  }
4637
4638  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
4639  // duration shall not be qualified by an address-space qualifier."
4640  // Since all parameters have automatic store duration, they can not have
4641  // an address space.
4642  if (T.getAddressSpace() != 0) {
4643    Diag(NameLoc, diag::err_arg_with_address_space);
4644    New->setInvalidDecl();
4645  }
4646
4647  return New;
4648}
4649
4650void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
4651                                           SourceLocation LocAfterDecls) {
4652  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4653         "Not a function declarator!");
4654  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4655
4656  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
4657  // for a K&R function.
4658  if (!FTI.hasPrototype) {
4659    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
4660      --i;
4661      if (FTI.ArgInfo[i].Param == 0) {
4662        llvm::SmallString<256> Code;
4663        llvm::raw_svector_ostream(Code) << "  int "
4664                                        << FTI.ArgInfo[i].Ident->getName()
4665                                        << ";\n";
4666        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
4667          << FTI.ArgInfo[i].Ident
4668          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
4669
4670        // Implicitly declare the argument as type 'int' for lack of a better
4671        // type.
4672        DeclSpec DS;
4673        const char* PrevSpec; // unused
4674        unsigned DiagID; // unused
4675        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
4676                           PrevSpec, DiagID);
4677        Declarator ParamD(DS, Declarator::KNRTypeListContext);
4678        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
4679        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
4680      }
4681    }
4682  }
4683}
4684
4685Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
4686                                         Declarator &D) {
4687  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4688  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4689         "Not a function declarator!");
4690  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4691
4692  if (FTI.hasPrototype) {
4693    // FIXME: Diagnose arguments without names in C.
4694  }
4695
4696  Scope *ParentScope = FnBodyScope->getParent();
4697
4698  Decl *DP = HandleDeclarator(ParentScope, D,
4699                              MultiTemplateParamsArg(*this),
4700                              /*IsFunctionDefinition=*/true);
4701  return ActOnStartOfFunctionDef(FnBodyScope, DP);
4702}
4703
4704static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
4705  // Don't warn about invalid declarations.
4706  if (FD->isInvalidDecl())
4707    return false;
4708
4709  // Or declarations that aren't global.
4710  if (!FD->isGlobal())
4711    return false;
4712
4713  // Don't warn about C++ member functions.
4714  if (isa<CXXMethodDecl>(FD))
4715    return false;
4716
4717  // Don't warn about 'main'.
4718  if (FD->isMain())
4719    return false;
4720
4721  // Don't warn about inline functions.
4722  if (FD->isInlineSpecified())
4723    return false;
4724
4725  // Don't warn about function templates.
4726  if (FD->getDescribedFunctionTemplate())
4727    return false;
4728
4729  // Don't warn about function template specializations.
4730  if (FD->isFunctionTemplateSpecialization())
4731    return false;
4732
4733  bool MissingPrototype = true;
4734  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
4735       Prev; Prev = Prev->getPreviousDeclaration()) {
4736    // Ignore any declarations that occur in function or method
4737    // scope, because they aren't visible from the header.
4738    if (Prev->getDeclContext()->isFunctionOrMethod())
4739      continue;
4740
4741    MissingPrototype = !Prev->getType()->isFunctionProtoType();
4742    break;
4743  }
4744
4745  return MissingPrototype;
4746}
4747
4748Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
4749  // Clear the last template instantiation error context.
4750  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
4751
4752  if (!D)
4753    return D;
4754  FunctionDecl *FD = 0;
4755
4756  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
4757    FD = FunTmpl->getTemplatedDecl();
4758  else
4759    FD = cast<FunctionDecl>(D);
4760
4761  // Enter a new function scope
4762  PushFunctionScope();
4763
4764  // See if this is a redefinition.
4765  // But don't complain if we're in GNU89 mode and the previous definition
4766  // was an extern inline function.
4767  const FunctionDecl *Definition;
4768  if (FD->hasBody(Definition) &&
4769      !canRedefineFunction(Definition, getLangOptions())) {
4770    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
4771    Diag(Definition->getLocation(), diag::note_previous_definition);
4772  }
4773
4774  // Builtin functions cannot be defined.
4775  if (unsigned BuiltinID = FD->getBuiltinID()) {
4776    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
4777      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
4778      FD->setInvalidDecl();
4779    }
4780  }
4781
4782  // The return type of a function definition must be complete
4783  // (C99 6.9.1p3, C++ [dcl.fct]p6).
4784  QualType ResultType = FD->getResultType();
4785  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
4786      !FD->isInvalidDecl() &&
4787      RequireCompleteType(FD->getLocation(), ResultType,
4788                          diag::err_func_def_incomplete_result))
4789    FD->setInvalidDecl();
4790
4791  // GNU warning -Wmissing-prototypes:
4792  //   Warn if a global function is defined without a previous
4793  //   prototype declaration. This warning is issued even if the
4794  //   definition itself provides a prototype. The aim is to detect
4795  //   global functions that fail to be declared in header files.
4796  if (ShouldWarnAboutMissingPrototype(FD))
4797    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
4798
4799  if (FnBodyScope)
4800    PushDeclContext(FnBodyScope, FD);
4801
4802  // Check the validity of our function parameters
4803  CheckParmsForFunctionDef(FD);
4804
4805  bool ShouldCheckShadow =
4806    Diags.getDiagnosticLevel(diag::warn_decl_shadow) != Diagnostic::Ignored;
4807
4808  // Introduce our parameters into the function scope
4809  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
4810    ParmVarDecl *Param = FD->getParamDecl(p);
4811    Param->setOwningFunction(FD);
4812
4813    // If this has an identifier, add it to the scope stack.
4814    if (Param->getIdentifier() && FnBodyScope) {
4815      if (ShouldCheckShadow)
4816        CheckShadow(FnBodyScope, Param);
4817
4818      PushOnScopeChains(Param, FnBodyScope);
4819    }
4820  }
4821
4822  // Checking attributes of current function definition
4823  // dllimport attribute.
4824  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
4825  if (DA && (!FD->getAttr<DLLExportAttr>())) {
4826    // dllimport attribute cannot be directly applied to definition.
4827    if (!DA->isInherited()) {
4828      Diag(FD->getLocation(),
4829           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
4830        << "dllimport";
4831      FD->setInvalidDecl();
4832      return FD;
4833    }
4834
4835    // Visual C++ appears to not think this is an issue, so only issue
4836    // a warning when Microsoft extensions are disabled.
4837    if (!LangOpts.Microsoft) {
4838      // If a symbol previously declared dllimport is later defined, the
4839      // attribute is ignored in subsequent references, and a warning is
4840      // emitted.
4841      Diag(FD->getLocation(),
4842           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
4843        << FD->getName() << "dllimport";
4844    }
4845  }
4846  return FD;
4847}
4848
4849/// \brief Given the set of return statements within a function body,
4850/// compute the variables that are subject to the named return value
4851/// optimization.
4852///
4853/// Each of the variables that is subject to the named return value
4854/// optimization will be marked as NRVO variables in the AST, and any
4855/// return statement that has a marked NRVO variable as its NRVO candidate can
4856/// use the named return value optimization.
4857///
4858/// This function applies a very simplistic algorithm for NRVO: if every return
4859/// statement in the function has the same NRVO candidate, that candidate is
4860/// the NRVO variable.
4861///
4862/// FIXME: Employ a smarter algorithm that accounts for multiple return
4863/// statements and the lifetimes of the NRVO candidates. We should be able to
4864/// find a maximal set of NRVO variables.
4865static void ComputeNRVO(Stmt *Body, ReturnStmt **Returns, unsigned NumReturns) {
4866  const VarDecl *NRVOCandidate = 0;
4867  for (unsigned I = 0; I != NumReturns; ++I) {
4868    if (!Returns[I]->getNRVOCandidate())
4869      return;
4870
4871    if (!NRVOCandidate)
4872      NRVOCandidate = Returns[I]->getNRVOCandidate();
4873    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
4874      return;
4875  }
4876
4877  if (NRVOCandidate)
4878    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
4879}
4880
4881Decl *Sema::ActOnFinishFunctionBody(Decl *D, StmtArg BodyArg) {
4882  return ActOnFinishFunctionBody(D, move(BodyArg), false);
4883}
4884
4885Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
4886                                    bool IsInstantiation) {
4887  FunctionDecl *FD = 0;
4888  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
4889  if (FunTmpl)
4890    FD = FunTmpl->getTemplatedDecl();
4891  else
4892    FD = dyn_cast_or_null<FunctionDecl>(dcl);
4893
4894  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
4895
4896  if (FD) {
4897    FD->setBody(Body);
4898    if (FD->isMain()) {
4899      // C and C++ allow for main to automagically return 0.
4900      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
4901      FD->setHasImplicitReturnZero(true);
4902      WP.disableCheckFallThrough();
4903    }
4904
4905    if (!FD->isInvalidDecl()) {
4906      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
4907
4908      // If this is a constructor, we need a vtable.
4909      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
4910        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
4911
4912      ComputeNRVO(Body, FunctionScopes.back()->Returns.data(),
4913                  FunctionScopes.back()->Returns.size());
4914    }
4915
4916    assert(FD == getCurFunctionDecl() && "Function parsing confused");
4917  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
4918    assert(MD == getCurMethodDecl() && "Method parsing confused");
4919    MD->setBody(Body);
4920    MD->setEndLoc(Body->getLocEnd());
4921    if (!MD->isInvalidDecl())
4922      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
4923  } else {
4924    return 0;
4925  }
4926
4927  // Verify and clean out per-function state.
4928
4929  // Check goto/label use.
4930  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
4931       I = getLabelMap().begin(), E = getLabelMap().end(); I != E; ++I) {
4932    LabelStmt *L = I->second;
4933
4934    // Verify that we have no forward references left.  If so, there was a goto
4935    // or address of a label taken, but no definition of it.  Label fwd
4936    // definitions are indicated with a null substmt.
4937    if (L->getSubStmt() != 0)
4938      continue;
4939
4940    // Emit error.
4941    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
4942
4943    // At this point, we have gotos that use the bogus label.  Stitch it into
4944    // the function body so that they aren't leaked and that the AST is well
4945    // formed.
4946    if (Body == 0) {
4947      // The whole function wasn't parsed correctly.
4948      continue;
4949    }
4950
4951    // Otherwise, the body is valid: we want to stitch the label decl into the
4952    // function somewhere so that it is properly owned and so that the goto
4953    // has a valid target.  Do this by creating a new compound stmt with the
4954    // label in it.
4955
4956    // Give the label a sub-statement.
4957    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
4958
4959    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
4960                               cast<CXXTryStmt>(Body)->getTryBlock() :
4961                               cast<CompoundStmt>(Body);
4962    llvm::SmallVector<Stmt*, 64> Elements(Compound->body_begin(),
4963                                          Compound->body_end());
4964    Elements.push_back(L);
4965    Compound->setStmts(Context, Elements.data(), Elements.size());
4966  }
4967
4968  if (Body) {
4969    // C++ constructors that have function-try-blocks can't have return
4970    // statements in the handlers of that block. (C++ [except.handle]p14)
4971    // Verify this.
4972    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
4973      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
4974
4975    // Verify that that gotos and switch cases don't jump into scopes illegally.
4976    // Verify that that gotos and switch cases don't jump into scopes illegally.
4977    if (FunctionNeedsScopeChecking() &&
4978        !dcl->isInvalidDecl() &&
4979        !hasAnyErrorsInThisFunction())
4980      DiagnoseInvalidJumps(Body);
4981
4982    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
4983      if (!Destructor->getParent()->isDependentType())
4984        CheckDestructor(Destructor);
4985
4986      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
4987                                             Destructor->getParent());
4988    }
4989
4990    // If any errors have occurred, clear out any temporaries that may have
4991    // been leftover. This ensures that these temporaries won't be picked up for
4992    // deletion in some later function.
4993    if (PP.getDiagnostics().hasErrorOccurred())
4994      ExprTemporaries.clear();
4995    else if (!isa<FunctionTemplateDecl>(dcl)) {
4996      // Since the body is valid, issue any analysis-based warnings that are
4997      // enabled.
4998      QualType ResultType;
4999      if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(dcl)) {
5000        ResultType = FD->getResultType();
5001      }
5002      else {
5003        ObjCMethodDecl *MD = cast<ObjCMethodDecl>(dcl);
5004        ResultType = MD->getResultType();
5005      }
5006      AnalysisWarnings.IssueWarnings(WP, dcl);
5007    }
5008
5009    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
5010  }
5011
5012  if (!IsInstantiation)
5013    PopDeclContext();
5014
5015  PopFunctionOrBlockScope();
5016
5017  // If any errors have occurred, clear out any temporaries that may have
5018  // been leftover. This ensures that these temporaries won't be picked up for
5019  // deletion in some later function.
5020  if (getDiagnostics().hasErrorOccurred())
5021    ExprTemporaries.clear();
5022
5023  return dcl;
5024}
5025
5026/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
5027/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
5028NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
5029                                          IdentifierInfo &II, Scope *S) {
5030  // Before we produce a declaration for an implicitly defined
5031  // function, see whether there was a locally-scoped declaration of
5032  // this name as a function or variable. If so, use that
5033  // (non-visible) declaration, and complain about it.
5034  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5035    = LocallyScopedExternalDecls.find(&II);
5036  if (Pos != LocallyScopedExternalDecls.end()) {
5037    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
5038    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
5039    return Pos->second;
5040  }
5041
5042  // Extension in C99.  Legal in C90, but warn about it.
5043  if (II.getName().startswith("__builtin_"))
5044    Diag(Loc, diag::warn_builtin_unknown) << &II;
5045  else if (getLangOptions().C99)
5046    Diag(Loc, diag::ext_implicit_function_decl) << &II;
5047  else
5048    Diag(Loc, diag::warn_implicit_function_decl) << &II;
5049
5050  // Set a Declarator for the implicit definition: int foo();
5051  const char *Dummy;
5052  DeclSpec DS;
5053  unsigned DiagID;
5054  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
5055  Error = Error; // Silence warning.
5056  assert(!Error && "Error setting up implicit decl!");
5057  Declarator D(DS, Declarator::BlockContext);
5058  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
5059                                             0, 0, false, SourceLocation(),
5060                                             false, 0,0,0, Loc, Loc, D),
5061                SourceLocation());
5062  D.SetIdentifier(&II, Loc);
5063
5064  // Insert this function into translation-unit scope.
5065
5066  DeclContext *PrevDC = CurContext;
5067  CurContext = Context.getTranslationUnitDecl();
5068
5069  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
5070  FD->setImplicit();
5071
5072  CurContext = PrevDC;
5073
5074  AddKnownFunctionAttributes(FD);
5075
5076  return FD;
5077}
5078
5079/// \brief Adds any function attributes that we know a priori based on
5080/// the declaration of this function.
5081///
5082/// These attributes can apply both to implicitly-declared builtins
5083/// (like __builtin___printf_chk) or to library-declared functions
5084/// like NSLog or printf.
5085void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
5086  if (FD->isInvalidDecl())
5087    return;
5088
5089  // If this is a built-in function, map its builtin attributes to
5090  // actual attributes.
5091  if (unsigned BuiltinID = FD->getBuiltinID()) {
5092    // Handle printf-formatting attributes.
5093    unsigned FormatIdx;
5094    bool HasVAListArg;
5095    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
5096      if (!FD->getAttr<FormatAttr>())
5097        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5098                                                "printf", FormatIdx+1,
5099                                               HasVAListArg ? 0 : FormatIdx+2));
5100    }
5101    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
5102                                             HasVAListArg)) {
5103     if (!FD->getAttr<FormatAttr>())
5104       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5105                                              "scanf", FormatIdx+1,
5106                                              HasVAListArg ? 0 : FormatIdx+2));
5107    }
5108
5109    // Mark const if we don't care about errno and that is the only
5110    // thing preventing the function from being const. This allows
5111    // IRgen to use LLVM intrinsics for such functions.
5112    if (!getLangOptions().MathErrno &&
5113        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
5114      if (!FD->getAttr<ConstAttr>())
5115        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
5116    }
5117
5118    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
5119      FD->setType(Context.getNoReturnType(FD->getType()));
5120    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
5121      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
5122    if (Context.BuiltinInfo.isConst(BuiltinID))
5123      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
5124  }
5125
5126  IdentifierInfo *Name = FD->getIdentifier();
5127  if (!Name)
5128    return;
5129  if ((!getLangOptions().CPlusPlus &&
5130       FD->getDeclContext()->isTranslationUnit()) ||
5131      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
5132       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
5133       LinkageSpecDecl::lang_c)) {
5134    // Okay: this could be a libc/libm/Objective-C function we know
5135    // about.
5136  } else
5137    return;
5138
5139  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
5140    // FIXME: NSLog and NSLogv should be target specific
5141    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
5142      // FIXME: We known better than our headers.
5143      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
5144    } else
5145      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5146                                             "printf", 1,
5147                                             Name->isStr("NSLogv") ? 0 : 2));
5148  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
5149    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
5150    // target-specific builtins, perhaps?
5151    if (!FD->getAttr<FormatAttr>())
5152      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5153                                             "printf", 2,
5154                                             Name->isStr("vasprintf") ? 0 : 3));
5155  }
5156}
5157
5158TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
5159                                    TypeSourceInfo *TInfo) {
5160  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
5161  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
5162
5163  if (!TInfo) {
5164    assert(D.isInvalidType() && "no declarator info for valid type");
5165    TInfo = Context.getTrivialTypeSourceInfo(T);
5166  }
5167
5168  // Scope manipulation handled by caller.
5169  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
5170                                           D.getIdentifierLoc(),
5171                                           D.getIdentifier(),
5172                                           TInfo);
5173
5174  if (const TagType *TT = T->getAs<TagType>()) {
5175    TagDecl *TD = TT->getDecl();
5176
5177    // If the TagDecl that the TypedefDecl points to is an anonymous decl
5178    // keep track of the TypedefDecl.
5179    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
5180      TD->setTypedefForAnonDecl(NewTD);
5181  }
5182
5183  if (D.isInvalidType())
5184    NewTD->setInvalidDecl();
5185  return NewTD;
5186}
5187
5188
5189/// \brief Determine whether a tag with a given kind is acceptable
5190/// as a redeclaration of the given tag declaration.
5191///
5192/// \returns true if the new tag kind is acceptable, false otherwise.
5193bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
5194                                        TagTypeKind NewTag,
5195                                        SourceLocation NewTagLoc,
5196                                        const IdentifierInfo &Name) {
5197  // C++ [dcl.type.elab]p3:
5198  //   The class-key or enum keyword present in the
5199  //   elaborated-type-specifier shall agree in kind with the
5200  //   declaration to which the name in the elaborated-type-specifier
5201  //   refers. This rule also applies to the form of
5202  //   elaborated-type-specifier that declares a class-name or
5203  //   friend class since it can be construed as referring to the
5204  //   definition of the class. Thus, in any
5205  //   elaborated-type-specifier, the enum keyword shall be used to
5206  //   refer to an enumeration (7.2), the union class-key shall be
5207  //   used to refer to a union (clause 9), and either the class or
5208  //   struct class-key shall be used to refer to a class (clause 9)
5209  //   declared using the class or struct class-key.
5210  TagTypeKind OldTag = Previous->getTagKind();
5211  if (OldTag == NewTag)
5212    return true;
5213
5214  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
5215      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
5216    // Warn about the struct/class tag mismatch.
5217    bool isTemplate = false;
5218    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
5219      isTemplate = Record->getDescribedClassTemplate();
5220
5221    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
5222      << (NewTag == TTK_Class)
5223      << isTemplate << &Name
5224      << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
5225                              OldTag == TTK_Class? "class" : "struct");
5226    Diag(Previous->getLocation(), diag::note_previous_use);
5227    return true;
5228  }
5229  return false;
5230}
5231
5232/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
5233/// former case, Name will be non-null.  In the later case, Name will be null.
5234/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
5235/// reference/declaration/definition of a tag.
5236Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
5237                               SourceLocation KWLoc, CXXScopeSpec &SS,
5238                               IdentifierInfo *Name, SourceLocation NameLoc,
5239                               AttributeList *Attr, AccessSpecifier AS,
5240                               MultiTemplateParamsArg TemplateParameterLists,
5241                               bool &OwnedDecl, bool &IsDependent) {
5242  // If this is not a definition, it must have a name.
5243  assert((Name != 0 || TUK == TUK_Definition) &&
5244         "Nameless record must be a definition!");
5245
5246  OwnedDecl = false;
5247  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5248
5249  // FIXME: Check explicit specializations more carefully.
5250  bool isExplicitSpecialization = false;
5251  unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size();
5252  bool Invalid = false;
5253  if (TUK != TUK_Reference) {
5254    if (TemplateParameterList *TemplateParams
5255          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
5256                        (TemplateParameterList**)TemplateParameterLists.get(),
5257                                              TemplateParameterLists.size(),
5258                                                    TUK == TUK_Friend,
5259                                                    isExplicitSpecialization,
5260                                                    Invalid)) {
5261      // All but one template parameter lists have been matching.
5262      --NumMatchedTemplateParamLists;
5263
5264      if (TemplateParams->size() > 0) {
5265        // This is a declaration or definition of a class template (which may
5266        // be a member of another template).
5267        if (Invalid)
5268          return 0;
5269
5270        OwnedDecl = false;
5271        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
5272                                               SS, Name, NameLoc, Attr,
5273                                               TemplateParams,
5274                                               AS);
5275        TemplateParameterLists.release();
5276        return Result.get();
5277      } else {
5278        // The "template<>" header is extraneous.
5279        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
5280          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
5281        isExplicitSpecialization = true;
5282      }
5283    }
5284  }
5285
5286  DeclContext *SearchDC = CurContext;
5287  DeclContext *DC = CurContext;
5288  bool isStdBadAlloc = false;
5289
5290  RedeclarationKind Redecl = ForRedeclaration;
5291  if (TUK == TUK_Friend || TUK == TUK_Reference)
5292    Redecl = NotForRedeclaration;
5293
5294  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
5295
5296  if (Name && SS.isNotEmpty()) {
5297    // We have a nested-name tag ('struct foo::bar').
5298
5299    // Check for invalid 'foo::'.
5300    if (SS.isInvalid()) {
5301      Name = 0;
5302      goto CreateNewDecl;
5303    }
5304
5305    // If this is a friend or a reference to a class in a dependent
5306    // context, don't try to make a decl for it.
5307    if (TUK == TUK_Friend || TUK == TUK_Reference) {
5308      DC = computeDeclContext(SS, false);
5309      if (!DC) {
5310        IsDependent = true;
5311        return 0;
5312      }
5313    } else {
5314      DC = computeDeclContext(SS, true);
5315      if (!DC) {
5316        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
5317          << SS.getRange();
5318        return 0;
5319      }
5320    }
5321
5322    if (RequireCompleteDeclContext(SS, DC))
5323      return 0;
5324
5325    SearchDC = DC;
5326    // Look-up name inside 'foo::'.
5327    LookupQualifiedName(Previous, DC);
5328
5329    if (Previous.isAmbiguous())
5330      return 0;
5331
5332    if (Previous.empty()) {
5333      // Name lookup did not find anything. However, if the
5334      // nested-name-specifier refers to the current instantiation,
5335      // and that current instantiation has any dependent base
5336      // classes, we might find something at instantiation time: treat
5337      // this as a dependent elaborated-type-specifier.
5338      if (Previous.wasNotFoundInCurrentInstantiation()) {
5339        IsDependent = true;
5340        return 0;
5341      }
5342
5343      // A tag 'foo::bar' must already exist.
5344      Diag(NameLoc, diag::err_not_tag_in_scope)
5345        << Kind << Name << DC << SS.getRange();
5346      Name = 0;
5347      Invalid = true;
5348      goto CreateNewDecl;
5349    }
5350  } else if (Name) {
5351    // If this is a named struct, check to see if there was a previous forward
5352    // declaration or definition.
5353    // FIXME: We're looking into outer scopes here, even when we
5354    // shouldn't be. Doing so can result in ambiguities that we
5355    // shouldn't be diagnosing.
5356    LookupName(Previous, S);
5357
5358    // Note:  there used to be some attempt at recovery here.
5359    if (Previous.isAmbiguous())
5360      return 0;
5361
5362    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
5363      // FIXME: This makes sure that we ignore the contexts associated
5364      // with C structs, unions, and enums when looking for a matching
5365      // tag declaration or definition. See the similar lookup tweak
5366      // in Sema::LookupName; is there a better way to deal with this?
5367      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
5368        SearchDC = SearchDC->getParent();
5369    }
5370  }
5371
5372  if (Previous.isSingleResult() &&
5373      Previous.getFoundDecl()->isTemplateParameter()) {
5374    // Maybe we will complain about the shadowed template parameter.
5375    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
5376    // Just pretend that we didn't see the previous declaration.
5377    Previous.clear();
5378  }
5379
5380  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
5381      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
5382    // This is a declaration of or a reference to "std::bad_alloc".
5383    isStdBadAlloc = true;
5384
5385    if (Previous.empty() && StdBadAlloc) {
5386      // std::bad_alloc has been implicitly declared (but made invisible to
5387      // name lookup). Fill in this implicit declaration as the previous
5388      // declaration, so that the declarations get chained appropriately.
5389      Previous.addDecl(getStdBadAlloc());
5390    }
5391  }
5392
5393  // If we didn't find a previous declaration, and this is a reference
5394  // (or friend reference), move to the correct scope.  In C++, we
5395  // also need to do a redeclaration lookup there, just in case
5396  // there's a shadow friend decl.
5397  if (Name && Previous.empty() &&
5398      (TUK == TUK_Reference || TUK == TUK_Friend)) {
5399    if (Invalid) goto CreateNewDecl;
5400    assert(SS.isEmpty());
5401
5402    if (TUK == TUK_Reference) {
5403      // C++ [basic.scope.pdecl]p5:
5404      //   -- for an elaborated-type-specifier of the form
5405      //
5406      //          class-key identifier
5407      //
5408      //      if the elaborated-type-specifier is used in the
5409      //      decl-specifier-seq or parameter-declaration-clause of a
5410      //      function defined in namespace scope, the identifier is
5411      //      declared as a class-name in the namespace that contains
5412      //      the declaration; otherwise, except as a friend
5413      //      declaration, the identifier is declared in the smallest
5414      //      non-class, non-function-prototype scope that contains the
5415      //      declaration.
5416      //
5417      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
5418      // C structs and unions.
5419      //
5420      // It is an error in C++ to declare (rather than define) an enum
5421      // type, including via an elaborated type specifier.  We'll
5422      // diagnose that later; for now, declare the enum in the same
5423      // scope as we would have picked for any other tag type.
5424      //
5425      // GNU C also supports this behavior as part of its incomplete
5426      // enum types extension, while GNU C++ does not.
5427      //
5428      // Find the context where we'll be declaring the tag.
5429      // FIXME: We would like to maintain the current DeclContext as the
5430      // lexical context,
5431      while (SearchDC->isRecord())
5432        SearchDC = SearchDC->getParent();
5433
5434      // Find the scope where we'll be declaring the tag.
5435      while (S->isClassScope() ||
5436             (getLangOptions().CPlusPlus &&
5437              S->isFunctionPrototypeScope()) ||
5438             ((S->getFlags() & Scope::DeclScope) == 0) ||
5439             (S->getEntity() &&
5440              ((DeclContext *)S->getEntity())->isTransparentContext()))
5441        S = S->getParent();
5442    } else {
5443      assert(TUK == TUK_Friend);
5444      // C++ [namespace.memdef]p3:
5445      //   If a friend declaration in a non-local class first declares a
5446      //   class or function, the friend class or function is a member of
5447      //   the innermost enclosing namespace.
5448      SearchDC = SearchDC->getEnclosingNamespaceContext();
5449    }
5450
5451    // In C++, we need to do a redeclaration lookup to properly
5452    // diagnose some problems.
5453    if (getLangOptions().CPlusPlus) {
5454      Previous.setRedeclarationKind(ForRedeclaration);
5455      LookupQualifiedName(Previous, SearchDC);
5456    }
5457  }
5458
5459  if (!Previous.empty()) {
5460    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
5461
5462    // It's okay to have a tag decl in the same scope as a typedef
5463    // which hides a tag decl in the same scope.  Finding this
5464    // insanity with a redeclaration lookup can only actually happen
5465    // in C++.
5466    //
5467    // This is also okay for elaborated-type-specifiers, which is
5468    // technically forbidden by the current standard but which is
5469    // okay according to the likely resolution of an open issue;
5470    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
5471    if (getLangOptions().CPlusPlus) {
5472      if (TypedefDecl *TD = dyn_cast<TypedefDecl>(PrevDecl)) {
5473        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
5474          TagDecl *Tag = TT->getDecl();
5475          if (Tag->getDeclName() == Name &&
5476              Tag->getDeclContext()->getLookupContext()
5477                          ->Equals(TD->getDeclContext()->getLookupContext())) {
5478            PrevDecl = Tag;
5479            Previous.clear();
5480            Previous.addDecl(Tag);
5481          }
5482        }
5483      }
5484    }
5485
5486    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
5487      // If this is a use of a previous tag, or if the tag is already declared
5488      // in the same scope (so that the definition/declaration completes or
5489      // rementions the tag), reuse the decl.
5490      if (TUK == TUK_Reference || TUK == TUK_Friend ||
5491          isDeclInScope(PrevDecl, SearchDC, S)) {
5492        // Make sure that this wasn't declared as an enum and now used as a
5493        // struct or something similar.
5494        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
5495          bool SafeToContinue
5496            = (PrevTagDecl->getTagKind() != TTK_Enum &&
5497               Kind != TTK_Enum);
5498          if (SafeToContinue)
5499            Diag(KWLoc, diag::err_use_with_wrong_tag)
5500              << Name
5501              << FixItHint::CreateReplacement(SourceRange(KWLoc),
5502                                              PrevTagDecl->getKindName());
5503          else
5504            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
5505          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
5506
5507          if (SafeToContinue)
5508            Kind = PrevTagDecl->getTagKind();
5509          else {
5510            // Recover by making this an anonymous redefinition.
5511            Name = 0;
5512            Previous.clear();
5513            Invalid = true;
5514          }
5515        }
5516
5517        if (!Invalid) {
5518          // If this is a use, just return the declaration we found.
5519
5520          // FIXME: In the future, return a variant or some other clue
5521          // for the consumer of this Decl to know it doesn't own it.
5522          // For our current ASTs this shouldn't be a problem, but will
5523          // need to be changed with DeclGroups.
5524          if ((TUK == TUK_Reference && !PrevTagDecl->getFriendObjectKind()) ||
5525              TUK == TUK_Friend)
5526            return PrevTagDecl;
5527
5528          // Diagnose attempts to redefine a tag.
5529          if (TUK == TUK_Definition) {
5530            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
5531              // If we're defining a specialization and the previous definition
5532              // is from an implicit instantiation, don't emit an error
5533              // here; we'll catch this in the general case below.
5534              if (!isExplicitSpecialization ||
5535                  !isa<CXXRecordDecl>(Def) ||
5536                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
5537                                               == TSK_ExplicitSpecialization) {
5538                Diag(NameLoc, diag::err_redefinition) << Name;
5539                Diag(Def->getLocation(), diag::note_previous_definition);
5540                // If this is a redefinition, recover by making this
5541                // struct be anonymous, which will make any later
5542                // references get the previous definition.
5543                Name = 0;
5544                Previous.clear();
5545                Invalid = true;
5546              }
5547            } else {
5548              // If the type is currently being defined, complain
5549              // about a nested redefinition.
5550              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
5551              if (Tag->isBeingDefined()) {
5552                Diag(NameLoc, diag::err_nested_redefinition) << Name;
5553                Diag(PrevTagDecl->getLocation(),
5554                     diag::note_previous_definition);
5555                Name = 0;
5556                Previous.clear();
5557                Invalid = true;
5558              }
5559            }
5560
5561            // Okay, this is definition of a previously declared or referenced
5562            // tag PrevDecl. We're going to create a new Decl for it.
5563          }
5564        }
5565        // If we get here we have (another) forward declaration or we
5566        // have a definition.  Just create a new decl.
5567
5568      } else {
5569        // If we get here, this is a definition of a new tag type in a nested
5570        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
5571        // new decl/type.  We set PrevDecl to NULL so that the entities
5572        // have distinct types.
5573        Previous.clear();
5574      }
5575      // If we get here, we're going to create a new Decl. If PrevDecl
5576      // is non-NULL, it's a definition of the tag declared by
5577      // PrevDecl. If it's NULL, we have a new definition.
5578
5579
5580    // Otherwise, PrevDecl is not a tag, but was found with tag
5581    // lookup.  This is only actually possible in C++, where a few
5582    // things like templates still live in the tag namespace.
5583    } else {
5584      assert(getLangOptions().CPlusPlus);
5585
5586      // Use a better diagnostic if an elaborated-type-specifier
5587      // found the wrong kind of type on the first
5588      // (non-redeclaration) lookup.
5589      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
5590          !Previous.isForRedeclaration()) {
5591        unsigned Kind = 0;
5592        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
5593        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
5594        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
5595        Diag(PrevDecl->getLocation(), diag::note_declared_at);
5596        Invalid = true;
5597
5598      // Otherwise, only diagnose if the declaration is in scope.
5599      } else if (!isDeclInScope(PrevDecl, SearchDC, S)) {
5600        // do nothing
5601
5602      // Diagnose implicit declarations introduced by elaborated types.
5603      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
5604        unsigned Kind = 0;
5605        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
5606        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
5607        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
5608        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
5609        Invalid = true;
5610
5611      // Otherwise it's a declaration.  Call out a particularly common
5612      // case here.
5613      } else if (isa<TypedefDecl>(PrevDecl)) {
5614        Diag(NameLoc, diag::err_tag_definition_of_typedef)
5615          << Name
5616          << cast<TypedefDecl>(PrevDecl)->getUnderlyingType();
5617        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
5618        Invalid = true;
5619
5620      // Otherwise, diagnose.
5621      } else {
5622        // The tag name clashes with something else in the target scope,
5623        // issue an error and recover by making this tag be anonymous.
5624        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
5625        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5626        Name = 0;
5627        Invalid = true;
5628      }
5629
5630      // The existing declaration isn't relevant to us; we're in a
5631      // new scope, so clear out the previous declaration.
5632      Previous.clear();
5633    }
5634  }
5635
5636CreateNewDecl:
5637
5638  TagDecl *PrevDecl = 0;
5639  if (Previous.isSingleResult())
5640    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
5641
5642  // If there is an identifier, use the location of the identifier as the
5643  // location of the decl, otherwise use the location of the struct/union
5644  // keyword.
5645  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
5646
5647  // Otherwise, create a new declaration. If there is a previous
5648  // declaration of the same entity, the two will be linked via
5649  // PrevDecl.
5650  TagDecl *New;
5651
5652  if (Kind == TTK_Enum) {
5653    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5654    // enum X { A, B, C } D;    D should chain to X.
5655    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
5656                           cast_or_null<EnumDecl>(PrevDecl));
5657    // If this is an undefined enum, warn.
5658    if (TUK != TUK_Definition && !Invalid) {
5659      TagDecl *Def;
5660      if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
5661        Diag(Loc, diag::ext_forward_ref_enum_def)
5662          << New;
5663        Diag(Def->getLocation(), diag::note_previous_definition);
5664      } else {
5665        Diag(Loc,
5666             getLangOptions().CPlusPlus? diag::err_forward_ref_enum
5667                                       : diag::ext_forward_ref_enum);
5668      }
5669    }
5670  } else {
5671    // struct/union/class
5672
5673    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5674    // struct X { int A; } D;    D should chain to X.
5675    if (getLangOptions().CPlusPlus) {
5676      // FIXME: Look for a way to use RecordDecl for simple structs.
5677      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5678                                  cast_or_null<CXXRecordDecl>(PrevDecl));
5679
5680      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
5681        StdBadAlloc = cast<CXXRecordDecl>(New);
5682    } else
5683      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5684                               cast_or_null<RecordDecl>(PrevDecl));
5685  }
5686
5687  // Maybe add qualifier info.
5688  if (SS.isNotEmpty()) {
5689    if (SS.isSet()) {
5690      NestedNameSpecifier *NNS
5691        = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
5692      New->setQualifierInfo(NNS, SS.getRange());
5693      if (NumMatchedTemplateParamLists > 0) {
5694        New->setTemplateParameterListsInfo(Context,
5695                                           NumMatchedTemplateParamLists,
5696                    (TemplateParameterList**) TemplateParameterLists.release());
5697      }
5698    }
5699    else
5700      Invalid = true;
5701  }
5702
5703  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
5704    // Add alignment attributes if necessary; these attributes are checked when
5705    // the ASTContext lays out the structure.
5706    //
5707    // It is important for implementing the correct semantics that this
5708    // happen here (in act on tag decl). The #pragma pack stack is
5709    // maintained as a result of parser callbacks which can occur at
5710    // many points during the parsing of a struct declaration (because
5711    // the #pragma tokens are effectively skipped over during the
5712    // parsing of the struct).
5713    AddAlignmentAttributesForRecord(RD);
5714  }
5715
5716  // If this is a specialization of a member class (of a class template),
5717  // check the specialization.
5718  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
5719    Invalid = true;
5720
5721  if (Invalid)
5722    New->setInvalidDecl();
5723
5724  if (Attr)
5725    ProcessDeclAttributeList(S, New, Attr);
5726
5727  // If we're declaring or defining a tag in function prototype scope
5728  // in C, note that this type can only be used within the function.
5729  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
5730    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
5731
5732  // Set the lexical context. If the tag has a C++ scope specifier, the
5733  // lexical context will be different from the semantic context.
5734  New->setLexicalDeclContext(CurContext);
5735
5736  // Mark this as a friend decl if applicable.
5737  if (TUK == TUK_Friend)
5738    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
5739
5740  // Set the access specifier.
5741  if (!Invalid && SearchDC->isRecord())
5742    SetMemberAccessSpecifier(New, PrevDecl, AS);
5743
5744  if (TUK == TUK_Definition)
5745    New->startDefinition();
5746
5747  // If this has an identifier, add it to the scope stack.
5748  if (TUK == TUK_Friend) {
5749    // We might be replacing an existing declaration in the lookup tables;
5750    // if so, borrow its access specifier.
5751    if (PrevDecl)
5752      New->setAccess(PrevDecl->getAccess());
5753
5754    DeclContext *DC = New->getDeclContext()->getLookupContext();
5755    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
5756    if (Name) // can be null along some error paths
5757      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
5758        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
5759  } else if (Name) {
5760    S = getNonFieldDeclScope(S);
5761    PushOnScopeChains(New, S);
5762  } else {
5763    CurContext->addDecl(New);
5764  }
5765
5766  // If this is the C FILE type, notify the AST context.
5767  if (IdentifierInfo *II = New->getIdentifier())
5768    if (!New->isInvalidDecl() &&
5769        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
5770        II->isStr("FILE"))
5771      Context.setFILEDecl(New);
5772
5773  OwnedDecl = true;
5774  return New;
5775}
5776
5777void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
5778  AdjustDeclIfTemplate(TagD);
5779  TagDecl *Tag = cast<TagDecl>(TagD);
5780
5781  // Enter the tag context.
5782  PushDeclContext(S, Tag);
5783}
5784
5785void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
5786                                           SourceLocation LBraceLoc) {
5787  AdjustDeclIfTemplate(TagD);
5788  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
5789
5790  FieldCollector->StartClass();
5791
5792  if (!Record->getIdentifier())
5793    return;
5794
5795  // C++ [class]p2:
5796  //   [...] The class-name is also inserted into the scope of the
5797  //   class itself; this is known as the injected-class-name. For
5798  //   purposes of access checking, the injected-class-name is treated
5799  //   as if it were a public member name.
5800  CXXRecordDecl *InjectedClassName
5801    = CXXRecordDecl::Create(Context, Record->getTagKind(),
5802                            CurContext, Record->getLocation(),
5803                            Record->getIdentifier(),
5804                            Record->getTagKeywordLoc(),
5805                            Record);
5806  InjectedClassName->setImplicit();
5807  InjectedClassName->setAccess(AS_public);
5808  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
5809      InjectedClassName->setDescribedClassTemplate(Template);
5810  PushOnScopeChains(InjectedClassName, S);
5811  assert(InjectedClassName->isInjectedClassName() &&
5812         "Broken injected-class-name");
5813}
5814
5815void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
5816                                    SourceLocation RBraceLoc) {
5817  AdjustDeclIfTemplate(TagD);
5818  TagDecl *Tag = cast<TagDecl>(TagD);
5819  Tag->setRBraceLoc(RBraceLoc);
5820
5821  if (isa<CXXRecordDecl>(Tag))
5822    FieldCollector->FinishClass();
5823
5824  // Exit this scope of this tag's definition.
5825  PopDeclContext();
5826
5827  // Notify the consumer that we've defined a tag.
5828  Consumer.HandleTagDeclDefinition(Tag);
5829}
5830
5831void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
5832  AdjustDeclIfTemplate(TagD);
5833  TagDecl *Tag = cast<TagDecl>(TagD);
5834  Tag->setInvalidDecl();
5835
5836  // We're undoing ActOnTagStartDefinition here, not
5837  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
5838  // the FieldCollector.
5839
5840  PopDeclContext();
5841}
5842
5843// Note that FieldName may be null for anonymous bitfields.
5844bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
5845                          QualType FieldTy, const Expr *BitWidth,
5846                          bool *ZeroWidth) {
5847  // Default to true; that shouldn't confuse checks for emptiness
5848  if (ZeroWidth)
5849    *ZeroWidth = true;
5850
5851  // C99 6.7.2.1p4 - verify the field type.
5852  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
5853  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
5854    // Handle incomplete types with specific error.
5855    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
5856      return true;
5857    if (FieldName)
5858      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
5859        << FieldName << FieldTy << BitWidth->getSourceRange();
5860    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
5861      << FieldTy << BitWidth->getSourceRange();
5862  }
5863
5864  // If the bit-width is type- or value-dependent, don't try to check
5865  // it now.
5866  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
5867    return false;
5868
5869  llvm::APSInt Value;
5870  if (VerifyIntegerConstantExpression(BitWidth, &Value))
5871    return true;
5872
5873  if (Value != 0 && ZeroWidth)
5874    *ZeroWidth = false;
5875
5876  // Zero-width bitfield is ok for anonymous field.
5877  if (Value == 0 && FieldName)
5878    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
5879
5880  if (Value.isSigned() && Value.isNegative()) {
5881    if (FieldName)
5882      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
5883               << FieldName << Value.toString(10);
5884    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
5885      << Value.toString(10);
5886  }
5887
5888  if (!FieldTy->isDependentType()) {
5889    uint64_t TypeSize = Context.getTypeSize(FieldTy);
5890    if (Value.getZExtValue() > TypeSize) {
5891      if (!getLangOptions().CPlusPlus) {
5892        if (FieldName)
5893          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
5894            << FieldName << (unsigned)Value.getZExtValue()
5895            << (unsigned)TypeSize;
5896
5897        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
5898          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
5899      }
5900
5901      if (FieldName)
5902        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
5903          << FieldName << (unsigned)Value.getZExtValue()
5904          << (unsigned)TypeSize;
5905      else
5906        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
5907          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
5908    }
5909  }
5910
5911  return false;
5912}
5913
5914/// ActOnField - Each field of a struct/union/class is passed into this in order
5915/// to create a FieldDecl object for it.
5916Decl *Sema::ActOnField(Scope *S, Decl *TagD,
5917                                 SourceLocation DeclStart,
5918                                 Declarator &D, ExprTy *BitfieldWidth) {
5919  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
5920                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
5921                               AS_public);
5922  return Res;
5923}
5924
5925/// HandleField - Analyze a field of a C struct or a C++ data member.
5926///
5927FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
5928                             SourceLocation DeclStart,
5929                             Declarator &D, Expr *BitWidth,
5930                             AccessSpecifier AS) {
5931  IdentifierInfo *II = D.getIdentifier();
5932  SourceLocation Loc = DeclStart;
5933  if (II) Loc = D.getIdentifierLoc();
5934
5935  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
5936  QualType T = TInfo->getType();
5937  if (getLangOptions().CPlusPlus)
5938    CheckExtraCXXDefaultArguments(D);
5939
5940  DiagnoseFunctionSpecifiers(D);
5941
5942  if (D.getDeclSpec().isThreadSpecified())
5943    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5944
5945  NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
5946                                         ForRedeclaration);
5947
5948  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5949    // Maybe we will complain about the shadowed template parameter.
5950    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5951    // Just pretend that we didn't see the previous declaration.
5952    PrevDecl = 0;
5953  }
5954
5955  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
5956    PrevDecl = 0;
5957
5958  bool Mutable
5959    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
5960  SourceLocation TSSL = D.getSourceRange().getBegin();
5961  FieldDecl *NewFD
5962    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
5963                     AS, PrevDecl, &D);
5964
5965  if (NewFD->isInvalidDecl())
5966    Record->setInvalidDecl();
5967
5968  if (NewFD->isInvalidDecl() && PrevDecl) {
5969    // Don't introduce NewFD into scope; there's already something
5970    // with the same name in the same scope.
5971  } else if (II) {
5972    PushOnScopeChains(NewFD, S);
5973  } else
5974    Record->addDecl(NewFD);
5975
5976  return NewFD;
5977}
5978
5979/// \brief Build a new FieldDecl and check its well-formedness.
5980///
5981/// This routine builds a new FieldDecl given the fields name, type,
5982/// record, etc. \p PrevDecl should refer to any previous declaration
5983/// with the same name and in the same scope as the field to be
5984/// created.
5985///
5986/// \returns a new FieldDecl.
5987///
5988/// \todo The Declarator argument is a hack. It will be removed once
5989FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
5990                                TypeSourceInfo *TInfo,
5991                                RecordDecl *Record, SourceLocation Loc,
5992                                bool Mutable, Expr *BitWidth,
5993                                SourceLocation TSSL,
5994                                AccessSpecifier AS, NamedDecl *PrevDecl,
5995                                Declarator *D) {
5996  IdentifierInfo *II = Name.getAsIdentifierInfo();
5997  bool InvalidDecl = false;
5998  if (D) InvalidDecl = D->isInvalidType();
5999
6000  // If we receive a broken type, recover by assuming 'int' and
6001  // marking this declaration as invalid.
6002  if (T.isNull()) {
6003    InvalidDecl = true;
6004    T = Context.IntTy;
6005  }
6006
6007  QualType EltTy = Context.getBaseElementType(T);
6008  if (!EltTy->isDependentType() &&
6009      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
6010    // Fields of incomplete type force their record to be invalid.
6011    Record->setInvalidDecl();
6012    InvalidDecl = true;
6013  }
6014
6015  // C99 6.7.2.1p8: A member of a structure or union may have any type other
6016  // than a variably modified type.
6017  if (!InvalidDecl && T->isVariablyModifiedType()) {
6018    bool SizeIsNegative;
6019    llvm::APSInt Oversized;
6020    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
6021                                                           SizeIsNegative,
6022                                                           Oversized);
6023    if (!FixedTy.isNull()) {
6024      Diag(Loc, diag::warn_illegal_constant_array_size);
6025      T = FixedTy;
6026    } else {
6027      if (SizeIsNegative)
6028        Diag(Loc, diag::err_typecheck_negative_array_size);
6029      else if (Oversized.getBoolValue())
6030        Diag(Loc, diag::err_array_too_large)
6031          << Oversized.toString(10);
6032      else
6033        Diag(Loc, diag::err_typecheck_field_variable_size);
6034      InvalidDecl = true;
6035    }
6036  }
6037
6038  // Fields can not have abstract class types
6039  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
6040                                             diag::err_abstract_type_in_decl,
6041                                             AbstractFieldType))
6042    InvalidDecl = true;
6043
6044  bool ZeroWidth = false;
6045  // If this is declared as a bit-field, check the bit-field.
6046  if (!InvalidDecl && BitWidth &&
6047      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
6048    InvalidDecl = true;
6049    DeleteExpr(BitWidth);
6050    BitWidth = 0;
6051    ZeroWidth = false;
6052  }
6053
6054  // Check that 'mutable' is consistent with the type of the declaration.
6055  if (!InvalidDecl && Mutable) {
6056    unsigned DiagID = 0;
6057    if (T->isReferenceType())
6058      DiagID = diag::err_mutable_reference;
6059    else if (T.isConstQualified())
6060      DiagID = diag::err_mutable_const;
6061
6062    if (DiagID) {
6063      SourceLocation ErrLoc = Loc;
6064      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
6065        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
6066      Diag(ErrLoc, DiagID);
6067      Mutable = false;
6068      InvalidDecl = true;
6069    }
6070  }
6071
6072  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo,
6073                                       BitWidth, Mutable);
6074  if (InvalidDecl)
6075    NewFD->setInvalidDecl();
6076
6077  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
6078    Diag(Loc, diag::err_duplicate_member) << II;
6079    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6080    NewFD->setInvalidDecl();
6081  }
6082
6083  if (!InvalidDecl && getLangOptions().CPlusPlus) {
6084    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
6085
6086    if (!T->isPODType())
6087      CXXRecord->setPOD(false);
6088    if (!ZeroWidth)
6089      CXXRecord->setEmpty(false);
6090
6091    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
6092      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
6093      if (RDecl->getDefinition()) {
6094        if (!RDecl->hasTrivialConstructor())
6095          CXXRecord->setHasTrivialConstructor(false);
6096        if (!RDecl->hasTrivialCopyConstructor())
6097          CXXRecord->setHasTrivialCopyConstructor(false);
6098        if (!RDecl->hasTrivialCopyAssignment())
6099          CXXRecord->setHasTrivialCopyAssignment(false);
6100        if (!RDecl->hasTrivialDestructor())
6101          CXXRecord->setHasTrivialDestructor(false);
6102
6103        // C++ 9.5p1: An object of a class with a non-trivial
6104        // constructor, a non-trivial copy constructor, a non-trivial
6105        // destructor, or a non-trivial copy assignment operator
6106        // cannot be a member of a union, nor can an array of such
6107        // objects.
6108        // TODO: C++0x alters this restriction significantly.
6109        if (Record->isUnion() && CheckNontrivialField(NewFD))
6110          NewFD->setInvalidDecl();
6111      }
6112    }
6113  }
6114
6115  // FIXME: We need to pass in the attributes given an AST
6116  // representation, not a parser representation.
6117  if (D)
6118    // FIXME: What to pass instead of TUScope?
6119    ProcessDeclAttributes(TUScope, NewFD, *D);
6120
6121  if (T.isObjCGCWeak())
6122    Diag(Loc, diag::warn_attribute_weak_on_field);
6123
6124  NewFD->setAccess(AS);
6125
6126  // C++ [dcl.init.aggr]p1:
6127  //   An aggregate is an array or a class (clause 9) with [...] no
6128  //   private or protected non-static data members (clause 11).
6129  // A POD must be an aggregate.
6130  if (getLangOptions().CPlusPlus &&
6131      (AS == AS_private || AS == AS_protected)) {
6132    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
6133    CXXRecord->setAggregate(false);
6134    CXXRecord->setPOD(false);
6135  }
6136
6137  return NewFD;
6138}
6139
6140bool Sema::CheckNontrivialField(FieldDecl *FD) {
6141  assert(FD);
6142  assert(getLangOptions().CPlusPlus && "valid check only for C++");
6143
6144  if (FD->isInvalidDecl())
6145    return true;
6146
6147  QualType EltTy = Context.getBaseElementType(FD->getType());
6148  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
6149    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
6150    if (RDecl->getDefinition()) {
6151      // We check for copy constructors before constructors
6152      // because otherwise we'll never get complaints about
6153      // copy constructors.
6154
6155      CXXSpecialMember member = CXXInvalid;
6156      if (!RDecl->hasTrivialCopyConstructor())
6157        member = CXXCopyConstructor;
6158      else if (!RDecl->hasTrivialConstructor())
6159        member = CXXConstructor;
6160      else if (!RDecl->hasTrivialCopyAssignment())
6161        member = CXXCopyAssignment;
6162      else if (!RDecl->hasTrivialDestructor())
6163        member = CXXDestructor;
6164
6165      if (member != CXXInvalid) {
6166        Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
6167              << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
6168        DiagnoseNontrivial(RT, member);
6169        return true;
6170      }
6171    }
6172  }
6173
6174  return false;
6175}
6176
6177/// DiagnoseNontrivial - Given that a class has a non-trivial
6178/// special member, figure out why.
6179void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
6180  QualType QT(T, 0U);
6181  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
6182
6183  // Check whether the member was user-declared.
6184  switch (member) {
6185  case CXXInvalid:
6186    break;
6187
6188  case CXXConstructor:
6189    if (RD->hasUserDeclaredConstructor()) {
6190      typedef CXXRecordDecl::ctor_iterator ctor_iter;
6191      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
6192        const FunctionDecl *body = 0;
6193        ci->hasBody(body);
6194        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
6195          SourceLocation CtorLoc = ci->getLocation();
6196          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6197          return;
6198        }
6199      }
6200
6201      assert(0 && "found no user-declared constructors");
6202      return;
6203    }
6204    break;
6205
6206  case CXXCopyConstructor:
6207    if (RD->hasUserDeclaredCopyConstructor()) {
6208      SourceLocation CtorLoc =
6209        RD->getCopyConstructor(Context, 0)->getLocation();
6210      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6211      return;
6212    }
6213    break;
6214
6215  case CXXCopyAssignment:
6216    if (RD->hasUserDeclaredCopyAssignment()) {
6217      // FIXME: this should use the location of the copy
6218      // assignment, not the type.
6219      SourceLocation TyLoc = RD->getSourceRange().getBegin();
6220      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
6221      return;
6222    }
6223    break;
6224
6225  case CXXDestructor:
6226    if (RD->hasUserDeclaredDestructor()) {
6227      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
6228      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6229      return;
6230    }
6231    break;
6232  }
6233
6234  typedef CXXRecordDecl::base_class_iterator base_iter;
6235
6236  // Virtual bases and members inhibit trivial copying/construction,
6237  // but not trivial destruction.
6238  if (member != CXXDestructor) {
6239    // Check for virtual bases.  vbases includes indirect virtual bases,
6240    // so we just iterate through the direct bases.
6241    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
6242      if (bi->isVirtual()) {
6243        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6244        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
6245        return;
6246      }
6247
6248    // Check for virtual methods.
6249    typedef CXXRecordDecl::method_iterator meth_iter;
6250    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
6251         ++mi) {
6252      if (mi->isVirtual()) {
6253        SourceLocation MLoc = mi->getSourceRange().getBegin();
6254        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
6255        return;
6256      }
6257    }
6258  }
6259
6260  bool (CXXRecordDecl::*hasTrivial)() const;
6261  switch (member) {
6262  case CXXConstructor:
6263    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
6264  case CXXCopyConstructor:
6265    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
6266  case CXXCopyAssignment:
6267    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
6268  case CXXDestructor:
6269    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
6270  default:
6271    assert(0 && "unexpected special member"); return;
6272  }
6273
6274  // Check for nontrivial bases (and recurse).
6275  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
6276    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
6277    assert(BaseRT && "Don't know how to handle dependent bases");
6278    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
6279    if (!(BaseRecTy->*hasTrivial)()) {
6280      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6281      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
6282      DiagnoseNontrivial(BaseRT, member);
6283      return;
6284    }
6285  }
6286
6287  // Check for nontrivial members (and recurse).
6288  typedef RecordDecl::field_iterator field_iter;
6289  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
6290       ++fi) {
6291    QualType EltTy = Context.getBaseElementType((*fi)->getType());
6292    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
6293      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
6294
6295      if (!(EltRD->*hasTrivial)()) {
6296        SourceLocation FLoc = (*fi)->getLocation();
6297        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
6298        DiagnoseNontrivial(EltRT, member);
6299        return;
6300      }
6301    }
6302  }
6303
6304  assert(0 && "found no explanation for non-trivial member");
6305}
6306
6307/// TranslateIvarVisibility - Translate visibility from a token ID to an
6308///  AST enum value.
6309static ObjCIvarDecl::AccessControl
6310TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
6311  switch (ivarVisibility) {
6312  default: assert(0 && "Unknown visitibility kind");
6313  case tok::objc_private: return ObjCIvarDecl::Private;
6314  case tok::objc_public: return ObjCIvarDecl::Public;
6315  case tok::objc_protected: return ObjCIvarDecl::Protected;
6316  case tok::objc_package: return ObjCIvarDecl::Package;
6317  }
6318}
6319
6320/// ActOnIvar - Each ivar field of an objective-c class is passed into this
6321/// in order to create an IvarDecl object for it.
6322Decl *Sema::ActOnIvar(Scope *S,
6323                                SourceLocation DeclStart,
6324                                Decl *IntfDecl,
6325                                Declarator &D, ExprTy *BitfieldWidth,
6326                                tok::ObjCKeywordKind Visibility) {
6327
6328  IdentifierInfo *II = D.getIdentifier();
6329  Expr *BitWidth = (Expr*)BitfieldWidth;
6330  SourceLocation Loc = DeclStart;
6331  if (II) Loc = D.getIdentifierLoc();
6332
6333  // FIXME: Unnamed fields can be handled in various different ways, for
6334  // example, unnamed unions inject all members into the struct namespace!
6335
6336  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6337  QualType T = TInfo->getType();
6338
6339  if (BitWidth) {
6340    // 6.7.2.1p3, 6.7.2.1p4
6341    if (VerifyBitField(Loc, II, T, BitWidth)) {
6342      D.setInvalidType();
6343      DeleteExpr(BitWidth);
6344      BitWidth = 0;
6345    }
6346  } else {
6347    // Not a bitfield.
6348
6349    // validate II.
6350
6351  }
6352  if (T->isReferenceType()) {
6353    Diag(Loc, diag::err_ivar_reference_type);
6354    D.setInvalidType();
6355  }
6356  // C99 6.7.2.1p8: A member of a structure or union may have any type other
6357  // than a variably modified type.
6358  else if (T->isVariablyModifiedType()) {
6359    Diag(Loc, diag::err_typecheck_ivar_variable_size);
6360    D.setInvalidType();
6361  }
6362
6363  // Get the visibility (access control) for this ivar.
6364  ObjCIvarDecl::AccessControl ac =
6365    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
6366                                        : ObjCIvarDecl::None;
6367  // Must set ivar's DeclContext to its enclosing interface.
6368  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(IntfDecl);
6369  ObjCContainerDecl *EnclosingContext;
6370  if (ObjCImplementationDecl *IMPDecl =
6371      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
6372    if (!LangOpts.ObjCNonFragileABI2) {
6373    // Case of ivar declared in an implementation. Context is that of its class.
6374      EnclosingContext = IMPDecl->getClassInterface();
6375      assert(EnclosingContext && "Implementation has no class interface!");
6376    }
6377    else
6378      EnclosingContext = EnclosingDecl;
6379  } else {
6380    if (ObjCCategoryDecl *CDecl =
6381        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6382      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
6383        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
6384        return 0;
6385      }
6386    }
6387    EnclosingContext = EnclosingDecl;
6388  }
6389
6390  // Construct the decl.
6391  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
6392                                             EnclosingContext, Loc, II, T,
6393                                             TInfo, ac, (Expr *)BitfieldWidth);
6394
6395  if (II) {
6396    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
6397                                           ForRedeclaration);
6398    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
6399        && !isa<TagDecl>(PrevDecl)) {
6400      Diag(Loc, diag::err_duplicate_member) << II;
6401      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6402      NewID->setInvalidDecl();
6403    }
6404  }
6405
6406  // Process attributes attached to the ivar.
6407  ProcessDeclAttributes(S, NewID, D);
6408
6409  if (D.isInvalidType())
6410    NewID->setInvalidDecl();
6411
6412  if (II) {
6413    // FIXME: When interfaces are DeclContexts, we'll need to add
6414    // these to the interface.
6415    S->AddDecl(NewID);
6416    IdResolver.AddDecl(NewID);
6417  }
6418
6419  return NewID;
6420}
6421
6422/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
6423/// class and class extensions. For every class @interface and class
6424/// extension @interface, if the last ivar is a bitfield of any type,
6425/// then add an implicit `char :0` ivar to the end of that interface.
6426void Sema::ActOnLastBitfield(SourceLocation DeclLoc, Decl *EnclosingDecl,
6427                             llvm::SmallVectorImpl<Decl *> &AllIvarDecls) {
6428  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
6429    return;
6430
6431  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
6432  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
6433
6434  if (!Ivar->isBitField())
6435    return;
6436  uint64_t BitFieldSize =
6437    Ivar->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
6438  if (BitFieldSize == 0)
6439    return;
6440  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl);
6441  if (!ID) {
6442    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6443      if (!CD->IsClassExtension())
6444        return;
6445    }
6446    // No need to add this to end of @implementation.
6447    else
6448      return;
6449  }
6450  // All conditions are met. Add a new bitfield to the tail end of ivars.
6451  llvm::APInt Zero(Context.getTypeSize(Context.CharTy), 0);
6452  Expr * BW =
6453    new (Context) IntegerLiteral(Zero, Context.CharTy, DeclLoc);
6454
6455  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(EnclosingDecl),
6456                              DeclLoc, 0,
6457                              Context.CharTy,
6458                              Context.CreateTypeSourceInfo(Context.CharTy),
6459                              ObjCIvarDecl::Private, BW,
6460                              true);
6461  AllIvarDecls.push_back(Ivar);
6462}
6463
6464void Sema::ActOnFields(Scope* S,
6465                       SourceLocation RecLoc, Decl *EnclosingDecl,
6466                       Decl **Fields, unsigned NumFields,
6467                       SourceLocation LBrac, SourceLocation RBrac,
6468                       AttributeList *Attr) {
6469  assert(EnclosingDecl && "missing record or interface decl");
6470
6471  // If the decl this is being inserted into is invalid, then it may be a
6472  // redeclaration or some other bogus case.  Don't try to add fields to it.
6473  if (EnclosingDecl->isInvalidDecl()) {
6474    // FIXME: Deallocate fields?
6475    return;
6476  }
6477
6478
6479  // Verify that all the fields are okay.
6480  unsigned NumNamedMembers = 0;
6481  llvm::SmallVector<FieldDecl*, 32> RecFields;
6482
6483  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
6484  for (unsigned i = 0; i != NumFields; ++i) {
6485    FieldDecl *FD = cast<FieldDecl>(Fields[i]);
6486
6487    // Get the type for the field.
6488    Type *FDTy = FD->getType().getTypePtr();
6489
6490    if (!FD->isAnonymousStructOrUnion()) {
6491      // Remember all fields written by the user.
6492      RecFields.push_back(FD);
6493    }
6494
6495    // If the field is already invalid for some reason, don't emit more
6496    // diagnostics about it.
6497    if (FD->isInvalidDecl()) {
6498      EnclosingDecl->setInvalidDecl();
6499      continue;
6500    }
6501
6502    // C99 6.7.2.1p2:
6503    //   A structure or union shall not contain a member with
6504    //   incomplete or function type (hence, a structure shall not
6505    //   contain an instance of itself, but may contain a pointer to
6506    //   an instance of itself), except that the last member of a
6507    //   structure with more than one named member may have incomplete
6508    //   array type; such a structure (and any union containing,
6509    //   possibly recursively, a member that is such a structure)
6510    //   shall not be a member of a structure or an element of an
6511    //   array.
6512    if (FDTy->isFunctionType()) {
6513      // Field declared as a function.
6514      Diag(FD->getLocation(), diag::err_field_declared_as_function)
6515        << FD->getDeclName();
6516      FD->setInvalidDecl();
6517      EnclosingDecl->setInvalidDecl();
6518      continue;
6519    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
6520               Record && Record->isStruct()) {
6521      // Flexible array member.
6522      if (NumNamedMembers < 1) {
6523        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
6524          << FD->getDeclName();
6525        FD->setInvalidDecl();
6526        EnclosingDecl->setInvalidDecl();
6527        continue;
6528      }
6529      if (!FD->getType()->isDependentType() &&
6530          !Context.getBaseElementType(FD->getType())->isPODType()) {
6531        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
6532          << FD->getDeclName() << FD->getType();
6533        FD->setInvalidDecl();
6534        EnclosingDecl->setInvalidDecl();
6535        continue;
6536      }
6537
6538      // Okay, we have a legal flexible array member at the end of the struct.
6539      if (Record)
6540        Record->setHasFlexibleArrayMember(true);
6541    } else if (!FDTy->isDependentType() &&
6542               RequireCompleteType(FD->getLocation(), FD->getType(),
6543                                   diag::err_field_incomplete)) {
6544      // Incomplete type
6545      FD->setInvalidDecl();
6546      EnclosingDecl->setInvalidDecl();
6547      continue;
6548    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
6549      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
6550        // If this is a member of a union, then entire union becomes "flexible".
6551        if (Record && Record->isUnion()) {
6552          Record->setHasFlexibleArrayMember(true);
6553        } else {
6554          // If this is a struct/class and this is not the last element, reject
6555          // it.  Note that GCC supports variable sized arrays in the middle of
6556          // structures.
6557          if (i != NumFields-1)
6558            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
6559              << FD->getDeclName() << FD->getType();
6560          else {
6561            // We support flexible arrays at the end of structs in
6562            // other structs as an extension.
6563            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
6564              << FD->getDeclName();
6565            if (Record)
6566              Record->setHasFlexibleArrayMember(true);
6567          }
6568        }
6569      }
6570      if (Record && FDTTy->getDecl()->hasObjectMember())
6571        Record->setHasObjectMember(true);
6572    } else if (FDTy->isObjCObjectType()) {
6573      /// A field cannot be an Objective-c object
6574      Diag(FD->getLocation(), diag::err_statically_allocated_object);
6575      FD->setInvalidDecl();
6576      EnclosingDecl->setInvalidDecl();
6577      continue;
6578    } else if (getLangOptions().ObjC1 &&
6579               getLangOptions().getGCMode() != LangOptions::NonGC &&
6580               Record &&
6581               (FD->getType()->isObjCObjectPointerType() ||
6582                FD->getType().isObjCGCStrong()))
6583      Record->setHasObjectMember(true);
6584    else if (Context.getAsArrayType(FD->getType())) {
6585      QualType BaseType = Context.getBaseElementType(FD->getType());
6586      if (Record && BaseType->isRecordType() &&
6587          BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
6588        Record->setHasObjectMember(true);
6589    }
6590    // Keep track of the number of named members.
6591    if (FD->getIdentifier())
6592      ++NumNamedMembers;
6593  }
6594
6595  // Okay, we successfully defined 'Record'.
6596  if (Record) {
6597    Record->completeDefinition();
6598  } else {
6599    ObjCIvarDecl **ClsFields =
6600      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
6601    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
6602      ID->setLocEnd(RBrac);
6603      // Add ivar's to class's DeclContext.
6604      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
6605        ClsFields[i]->setLexicalDeclContext(ID);
6606        ID->addDecl(ClsFields[i]);
6607      }
6608      // Must enforce the rule that ivars in the base classes may not be
6609      // duplicates.
6610      if (ID->getSuperClass())
6611        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
6612    } else if (ObjCImplementationDecl *IMPDecl =
6613                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
6614      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
6615      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
6616        // Ivar declared in @implementation never belongs to the implementation.
6617        // Only it is in implementation's lexical context.
6618        ClsFields[I]->setLexicalDeclContext(IMPDecl);
6619      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
6620    } else if (ObjCCategoryDecl *CDecl =
6621                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6622      // case of ivars in class extension; all other cases have been
6623      // reported as errors elsewhere.
6624      // FIXME. Class extension does not have a LocEnd field.
6625      // CDecl->setLocEnd(RBrac);
6626      // Add ivar's to class extension's DeclContext.
6627      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
6628        ClsFields[i]->setLexicalDeclContext(CDecl);
6629        CDecl->addDecl(ClsFields[i]);
6630      }
6631    }
6632  }
6633
6634  if (Attr)
6635    ProcessDeclAttributeList(S, Record, Attr);
6636
6637  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
6638  // set the visibility of this record.
6639  if (Record && !Record->getDeclContext()->isRecord())
6640    AddPushedVisibilityAttribute(Record);
6641}
6642
6643/// \brief Determine whether the given integral value is representable within
6644/// the given type T.
6645static bool isRepresentableIntegerValue(ASTContext &Context,
6646                                        llvm::APSInt &Value,
6647                                        QualType T) {
6648  assert(T->isIntegralType(Context) && "Integral type required!");
6649  unsigned BitWidth = Context.getIntWidth(T);
6650
6651  if (Value.isUnsigned() || Value.isNonNegative())
6652    return Value.getActiveBits() < BitWidth;
6653
6654  return Value.getMinSignedBits() <= BitWidth;
6655}
6656
6657// \brief Given an integral type, return the next larger integral type
6658// (or a NULL type of no such type exists).
6659static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
6660  // FIXME: Int128/UInt128 support, which also needs to be introduced into
6661  // enum checking below.
6662  assert(T->isIntegralType(Context) && "Integral type required!");
6663  const unsigned NumTypes = 4;
6664  QualType SignedIntegralTypes[NumTypes] = {
6665    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
6666  };
6667  QualType UnsignedIntegralTypes[NumTypes] = {
6668    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
6669    Context.UnsignedLongLongTy
6670  };
6671
6672  unsigned BitWidth = Context.getTypeSize(T);
6673  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
6674                                            : UnsignedIntegralTypes;
6675  for (unsigned I = 0; I != NumTypes; ++I)
6676    if (Context.getTypeSize(Types[I]) > BitWidth)
6677      return Types[I];
6678
6679  return QualType();
6680}
6681
6682EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
6683                                          EnumConstantDecl *LastEnumConst,
6684                                          SourceLocation IdLoc,
6685                                          IdentifierInfo *Id,
6686                                          Expr *Val) {
6687  unsigned IntWidth = Context.Target.getIntWidth();
6688  llvm::APSInt EnumVal(IntWidth);
6689  QualType EltTy;
6690  if (Val) {
6691    if (Enum->isDependentType() || Val->isTypeDependent())
6692      EltTy = Context.DependentTy;
6693    else {
6694      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
6695      SourceLocation ExpLoc;
6696      if (!Val->isValueDependent() &&
6697          VerifyIntegerConstantExpression(Val, &EnumVal)) {
6698        Val = 0;
6699      } else {
6700        if (!getLangOptions().CPlusPlus) {
6701          // C99 6.7.2.2p2:
6702          //   The expression that defines the value of an enumeration constant
6703          //   shall be an integer constant expression that has a value
6704          //   representable as an int.
6705
6706          // Complain if the value is not representable in an int.
6707          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
6708            Diag(IdLoc, diag::ext_enum_value_not_int)
6709              << EnumVal.toString(10) << Val->getSourceRange()
6710              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
6711          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
6712            // Force the type of the expression to 'int'.
6713            ImpCastExprToType(Val, Context.IntTy, CastExpr::CK_IntegralCast);
6714          }
6715        }
6716
6717        // C++0x [dcl.enum]p5:
6718        //   If the underlying type is not fixed, the type of each enumerator
6719        //   is the type of its initializing value:
6720        //     - If an initializer is specified for an enumerator, the
6721        //       initializing value has the same type as the expression.
6722        EltTy = Val->getType();
6723      }
6724    }
6725  }
6726
6727  if (!Val) {
6728    if (Enum->isDependentType())
6729      EltTy = Context.DependentTy;
6730    else if (!LastEnumConst) {
6731      // C++0x [dcl.enum]p5:
6732      //   If the underlying type is not fixed, the type of each enumerator
6733      //   is the type of its initializing value:
6734      //     - If no initializer is specified for the first enumerator, the
6735      //       initializing value has an unspecified integral type.
6736      //
6737      // GCC uses 'int' for its unspecified integral type, as does
6738      // C99 6.7.2.2p3.
6739      EltTy = Context.IntTy;
6740    } else {
6741      // Assign the last value + 1.
6742      EnumVal = LastEnumConst->getInitVal();
6743      ++EnumVal;
6744      EltTy = LastEnumConst->getType();
6745
6746      // Check for overflow on increment.
6747      if (EnumVal < LastEnumConst->getInitVal()) {
6748        // C++0x [dcl.enum]p5:
6749        //   If the underlying type is not fixed, the type of each enumerator
6750        //   is the type of its initializing value:
6751        //
6752        //     - Otherwise the type of the initializing value is the same as
6753        //       the type of the initializing value of the preceding enumerator
6754        //       unless the incremented value is not representable in that type,
6755        //       in which case the type is an unspecified integral type
6756        //       sufficient to contain the incremented value. If no such type
6757        //       exists, the program is ill-formed.
6758        QualType T = getNextLargerIntegralType(Context, EltTy);
6759        if (T.isNull()) {
6760          // There is no integral type larger enough to represent this
6761          // value. Complain, then allow the value to wrap around.
6762          EnumVal = LastEnumConst->getInitVal();
6763          EnumVal.zext(EnumVal.getBitWidth() * 2);
6764          Diag(IdLoc, diag::warn_enumerator_too_large)
6765            << EnumVal.toString(10);
6766        } else {
6767          EltTy = T;
6768        }
6769
6770        // Retrieve the last enumerator's value, extent that type to the
6771        // type that is supposed to be large enough to represent the incremented
6772        // value, then increment.
6773        EnumVal = LastEnumConst->getInitVal();
6774        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
6775        EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
6776        ++EnumVal;
6777
6778        // If we're not in C++, diagnose the overflow of enumerator values,
6779        // which in C99 means that the enumerator value is not representable in
6780        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
6781        // permits enumerator values that are representable in some larger
6782        // integral type.
6783        if (!getLangOptions().CPlusPlus && !T.isNull())
6784          Diag(IdLoc, diag::warn_enum_value_overflow);
6785      } else if (!getLangOptions().CPlusPlus &&
6786                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
6787        // Enforce C99 6.7.2.2p2 even when we compute the next value.
6788        Diag(IdLoc, diag::ext_enum_value_not_int)
6789          << EnumVal.toString(10) << 1;
6790      }
6791    }
6792  }
6793
6794  if (!EltTy->isDependentType()) {
6795    // Make the enumerator value match the signedness and size of the
6796    // enumerator's type.
6797    EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
6798    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
6799  }
6800
6801  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
6802                                  Val, EnumVal);
6803}
6804
6805
6806Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl,
6807                                        Decl *lastEnumConst,
6808                                        SourceLocation IdLoc,
6809                                        IdentifierInfo *Id,
6810                                        SourceLocation EqualLoc, ExprTy *val) {
6811  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
6812  EnumConstantDecl *LastEnumConst =
6813    cast_or_null<EnumConstantDecl>(lastEnumConst);
6814  Expr *Val = static_cast<Expr*>(val);
6815
6816  // The scope passed in may not be a decl scope.  Zip up the scope tree until
6817  // we find one that is.
6818  S = getNonFieldDeclScope(S);
6819
6820  // Verify that there isn't already something declared with this name in this
6821  // scope.
6822  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
6823                                         ForRedeclaration);
6824  if (PrevDecl && PrevDecl->isTemplateParameter()) {
6825    // Maybe we will complain about the shadowed template parameter.
6826    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
6827    // Just pretend that we didn't see the previous declaration.
6828    PrevDecl = 0;
6829  }
6830
6831  if (PrevDecl) {
6832    // When in C++, we may get a TagDecl with the same name; in this case the
6833    // enum constant will 'hide' the tag.
6834    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
6835           "Received TagDecl when not in C++!");
6836    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
6837      if (isa<EnumConstantDecl>(PrevDecl))
6838        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
6839      else
6840        Diag(IdLoc, diag::err_redefinition) << Id;
6841      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6842      return 0;
6843    }
6844  }
6845
6846  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
6847                                            IdLoc, Id, Val);
6848
6849  // Register this decl in the current scope stack.
6850  if (New) {
6851    New->setAccess(TheEnumDecl->getAccess());
6852    PushOnScopeChains(New, S);
6853  }
6854
6855  return New;
6856}
6857
6858void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
6859                         SourceLocation RBraceLoc, Decl *EnumDeclX,
6860                         Decl **Elements, unsigned NumElements,
6861                         Scope *S, AttributeList *Attr) {
6862  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
6863  QualType EnumType = Context.getTypeDeclType(Enum);
6864
6865  if (Attr)
6866    ProcessDeclAttributeList(S, Enum, Attr);
6867
6868  if (Enum->isDependentType()) {
6869    for (unsigned i = 0; i != NumElements; ++i) {
6870      EnumConstantDecl *ECD =
6871        cast_or_null<EnumConstantDecl>(Elements[i]);
6872      if (!ECD) continue;
6873
6874      ECD->setType(EnumType);
6875    }
6876
6877    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
6878    return;
6879  }
6880
6881  // TODO: If the result value doesn't fit in an int, it must be a long or long
6882  // long value.  ISO C does not support this, but GCC does as an extension,
6883  // emit a warning.
6884  unsigned IntWidth = Context.Target.getIntWidth();
6885  unsigned CharWidth = Context.Target.getCharWidth();
6886  unsigned ShortWidth = Context.Target.getShortWidth();
6887
6888  // Verify that all the values are okay, compute the size of the values, and
6889  // reverse the list.
6890  unsigned NumNegativeBits = 0;
6891  unsigned NumPositiveBits = 0;
6892
6893  // Keep track of whether all elements have type int.
6894  bool AllElementsInt = true;
6895
6896  for (unsigned i = 0; i != NumElements; ++i) {
6897    EnumConstantDecl *ECD =
6898      cast_or_null<EnumConstantDecl>(Elements[i]);
6899    if (!ECD) continue;  // Already issued a diagnostic.
6900
6901    const llvm::APSInt &InitVal = ECD->getInitVal();
6902
6903    // Keep track of the size of positive and negative values.
6904    if (InitVal.isUnsigned() || InitVal.isNonNegative())
6905      NumPositiveBits = std::max(NumPositiveBits,
6906                                 (unsigned)InitVal.getActiveBits());
6907    else
6908      NumNegativeBits = std::max(NumNegativeBits,
6909                                 (unsigned)InitVal.getMinSignedBits());
6910
6911    // Keep track of whether every enum element has type int (very commmon).
6912    if (AllElementsInt)
6913      AllElementsInt = ECD->getType() == Context.IntTy;
6914  }
6915
6916  // Figure out the type that should be used for this enum.
6917  // FIXME: Support -fshort-enums.
6918  QualType BestType;
6919  unsigned BestWidth;
6920
6921  // C++0x N3000 [conv.prom]p3:
6922  //   An rvalue of an unscoped enumeration type whose underlying
6923  //   type is not fixed can be converted to an rvalue of the first
6924  //   of the following types that can represent all the values of
6925  //   the enumeration: int, unsigned int, long int, unsigned long
6926  //   int, long long int, or unsigned long long int.
6927  // C99 6.4.4.3p2:
6928  //   An identifier declared as an enumeration constant has type int.
6929  // The C99 rule is modified by a gcc extension
6930  QualType BestPromotionType;
6931
6932  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
6933
6934  if (NumNegativeBits) {
6935    // If there is a negative value, figure out the smallest integer type (of
6936    // int/long/longlong) that fits.
6937    // If it's packed, check also if it fits a char or a short.
6938    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
6939      BestType = Context.SignedCharTy;
6940      BestWidth = CharWidth;
6941    } else if (Packed && NumNegativeBits <= ShortWidth &&
6942               NumPositiveBits < ShortWidth) {
6943      BestType = Context.ShortTy;
6944      BestWidth = ShortWidth;
6945    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
6946      BestType = Context.IntTy;
6947      BestWidth = IntWidth;
6948    } else {
6949      BestWidth = Context.Target.getLongWidth();
6950
6951      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
6952        BestType = Context.LongTy;
6953      } else {
6954        BestWidth = Context.Target.getLongLongWidth();
6955
6956        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
6957          Diag(Enum->getLocation(), diag::warn_enum_too_large);
6958        BestType = Context.LongLongTy;
6959      }
6960    }
6961    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
6962  } else {
6963    // If there is no negative value, figure out the smallest type that fits
6964    // all of the enumerator values.
6965    // If it's packed, check also if it fits a char or a short.
6966    if (Packed && NumPositiveBits <= CharWidth) {
6967      BestType = Context.UnsignedCharTy;
6968      BestPromotionType = Context.IntTy;
6969      BestWidth = CharWidth;
6970    } else if (Packed && NumPositiveBits <= ShortWidth) {
6971      BestType = Context.UnsignedShortTy;
6972      BestPromotionType = Context.IntTy;
6973      BestWidth = ShortWidth;
6974    } else if (NumPositiveBits <= IntWidth) {
6975      BestType = Context.UnsignedIntTy;
6976      BestWidth = IntWidth;
6977      BestPromotionType
6978        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6979                           ? Context.UnsignedIntTy : Context.IntTy;
6980    } else if (NumPositiveBits <=
6981               (BestWidth = Context.Target.getLongWidth())) {
6982      BestType = Context.UnsignedLongTy;
6983      BestPromotionType
6984        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6985                           ? Context.UnsignedLongTy : Context.LongTy;
6986    } else {
6987      BestWidth = Context.Target.getLongLongWidth();
6988      assert(NumPositiveBits <= BestWidth &&
6989             "How could an initializer get larger than ULL?");
6990      BestType = Context.UnsignedLongLongTy;
6991      BestPromotionType
6992        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6993                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
6994    }
6995  }
6996
6997  // Loop over all of the enumerator constants, changing their types to match
6998  // the type of the enum if needed.
6999  for (unsigned i = 0; i != NumElements; ++i) {
7000    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
7001    if (!ECD) continue;  // Already issued a diagnostic.
7002
7003    // Standard C says the enumerators have int type, but we allow, as an
7004    // extension, the enumerators to be larger than int size.  If each
7005    // enumerator value fits in an int, type it as an int, otherwise type it the
7006    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
7007    // that X has type 'int', not 'unsigned'.
7008
7009    // Determine whether the value fits into an int.
7010    llvm::APSInt InitVal = ECD->getInitVal();
7011
7012    // If it fits into an integer type, force it.  Otherwise force it to match
7013    // the enum decl type.
7014    QualType NewTy;
7015    unsigned NewWidth;
7016    bool NewSign;
7017    if (!getLangOptions().CPlusPlus &&
7018        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
7019      NewTy = Context.IntTy;
7020      NewWidth = IntWidth;
7021      NewSign = true;
7022    } else if (ECD->getType() == BestType) {
7023      // Already the right type!
7024      if (getLangOptions().CPlusPlus)
7025        // C++ [dcl.enum]p4: Following the closing brace of an
7026        // enum-specifier, each enumerator has the type of its
7027        // enumeration.
7028        ECD->setType(EnumType);
7029      continue;
7030    } else {
7031      NewTy = BestType;
7032      NewWidth = BestWidth;
7033      NewSign = BestType->isSignedIntegerType();
7034    }
7035
7036    // Adjust the APSInt value.
7037    InitVal.extOrTrunc(NewWidth);
7038    InitVal.setIsSigned(NewSign);
7039    ECD->setInitVal(InitVal);
7040
7041    // Adjust the Expr initializer and type.
7042    if (ECD->getInitExpr())
7043      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
7044                                                CastExpr::CK_IntegralCast,
7045                                                ECD->getInitExpr(),
7046                                                /*base paths*/ 0,
7047                                                ImplicitCastExpr::RValue));
7048    if (getLangOptions().CPlusPlus)
7049      // C++ [dcl.enum]p4: Following the closing brace of an
7050      // enum-specifier, each enumerator has the type of its
7051      // enumeration.
7052      ECD->setType(EnumType);
7053    else
7054      ECD->setType(NewTy);
7055  }
7056
7057  Enum->completeDefinition(BestType, BestPromotionType,
7058                           NumPositiveBits, NumNegativeBits);
7059}
7060
7061Decl *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc, Expr *expr) {
7062  StringLiteral *AsmString = cast<StringLiteral>(expr);
7063
7064  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
7065                                                   Loc, AsmString);
7066  CurContext->addDecl(New);
7067  return New;
7068}
7069
7070void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
7071                             SourceLocation PragmaLoc,
7072                             SourceLocation NameLoc) {
7073  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
7074
7075  if (PrevDecl) {
7076    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
7077  } else {
7078    (void)WeakUndeclaredIdentifiers.insert(
7079      std::pair<IdentifierInfo*,WeakInfo>
7080        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
7081  }
7082}
7083
7084void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
7085                                IdentifierInfo* AliasName,
7086                                SourceLocation PragmaLoc,
7087                                SourceLocation NameLoc,
7088                                SourceLocation AliasNameLoc) {
7089  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
7090                                    LookupOrdinaryName);
7091  WeakInfo W = WeakInfo(Name, NameLoc);
7092
7093  if (PrevDecl) {
7094    if (!PrevDecl->hasAttr<AliasAttr>())
7095      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
7096        DeclApplyPragmaWeak(TUScope, ND, W);
7097  } else {
7098    (void)WeakUndeclaredIdentifiers.insert(
7099      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
7100  }
7101}
7102