SemaDecl.cpp revision cad84b7c12564ff37feb66d6d004bb609bea8788
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/Analysis/CFG.h"
19#include "clang/AST/CXXInheritance.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/AST/StmtObjC.h"
25#include "clang/Parse/DeclSpec.h"
26#include "clang/Parse/ParseDiagnostic.h"
27#include "clang/Parse/Template.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Basic/SourceManager.h"
30#include "clang/Basic/TargetInfo.h"
31// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
32#include "clang/Lex/Preprocessor.h"
33#include "clang/Lex/HeaderSearch.h"
34#include "llvm/ADT/BitVector.h"
35#include "llvm/ADT/STLExtras.h"
36#include <algorithm>
37#include <cstring>
38#include <functional>
39#include <queue>
40using namespace clang;
41
42/// getDeclName - Return a pretty name for the specified decl if possible, or
43/// an empty string if not.  This is used for pretty crash reporting.
44std::string Sema::getDeclName(DeclPtrTy d) {
45  Decl *D = d.getAs<Decl>();
46  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
47    return DN->getQualifiedNameAsString();
48  return "";
49}
50
51Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
52  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
53}
54
55/// \brief If the identifier refers to a type name within this scope,
56/// return the declaration of that type.
57///
58/// This routine performs ordinary name lookup of the identifier II
59/// within the given scope, with optional C++ scope specifier SS, to
60/// determine whether the name refers to a type. If so, returns an
61/// opaque pointer (actually a QualType) corresponding to that
62/// type. Otherwise, returns NULL.
63///
64/// If name lookup results in an ambiguity, this routine will complain
65/// and then return NULL.
66Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
67                                Scope *S, const CXXScopeSpec *SS,
68                                bool isClassName) {
69  // C++ [temp.res]p3:
70  //   A qualified-id that refers to a type and in which the
71  //   nested-name-specifier depends on a template-parameter (14.6.2)
72  //   shall be prefixed by the keyword typename to indicate that the
73  //   qualified-id denotes a type, forming an
74  //   elaborated-type-specifier (7.1.5.3).
75  //
76  // We therefore do not perform any name lookup if the result would
77  // refer to a member of an unknown specialization.
78  if (SS && isUnknownSpecialization(*SS)) {
79    if (!isClassName)
80      return 0;
81
82    // We know from the grammar that this name refers to a type, so build a
83    // TypenameType node to describe the type.
84    // FIXME: Record somewhere that this TypenameType node has no "typename"
85    // keyword associated with it.
86    return CheckTypenameType((NestedNameSpecifier *)SS->getScopeRep(),
87                             II, SS->getRange()).getAsOpaquePtr();
88  }
89
90  LookupResult Result;
91  LookupParsedName(Result, S, SS, &II, LookupOrdinaryName, false, false);
92
93  NamedDecl *IIDecl = 0;
94  switch (Result.getKind()) {
95  case LookupResult::NotFound:
96  case LookupResult::FoundOverloaded:
97    return 0;
98
99  case LookupResult::Ambiguous:
100    // Recover from type-hiding ambiguities by hiding the type.  We'll
101    // do the lookup again when looking for an object, and we can
102    // diagnose the error then.  If we don't do this, then the error
103    // about hiding the type will be immediately followed by an error
104    // that only makes sense if the identifier was treated like a type.
105    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding)
106      return 0;
107
108    // Look to see if we have a type anywhere in the list of results.
109    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
110         Res != ResEnd; ++Res) {
111      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
112        if (!IIDecl ||
113            (*Res)->getLocation().getRawEncoding() <
114              IIDecl->getLocation().getRawEncoding())
115          IIDecl = *Res;
116      }
117    }
118
119    if (!IIDecl) {
120      // None of the entities we found is a type, so there is no way
121      // to even assume that the result is a type. In this case, don't
122      // complain about the ambiguity. The parser will either try to
123      // perform this lookup again (e.g., as an object name), which
124      // will produce the ambiguity, or will complain that it expected
125      // a type name.
126      return 0;
127    }
128
129    // We found a type within the ambiguous lookup; diagnose the
130    // ambiguity and then return that type. This might be the right
131    // answer, or it might not be, but it suppresses any attempt to
132    // perform the name lookup again.
133    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
134    break;
135
136  case LookupResult::Found:
137    IIDecl = Result.getFoundDecl();
138    break;
139  }
140
141  assert(IIDecl && "Didn't find decl");
142
143  QualType T;
144  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
145    DiagnoseUseOfDecl(IIDecl, NameLoc);
146
147    // C++ [temp.local]p2:
148    //   Within the scope of a class template specialization or
149    //   partial specialization, when the injected-class-name is
150    //   not followed by a <, it is equivalent to the
151    //   injected-class-name followed by the template-argument s
152    //   of the class template specialization or partial
153    //   specialization enclosed in <>.
154    if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
155      if (RD->isInjectedClassName())
156        if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
157          T = Template->getInjectedClassNameType(Context);
158
159    if (T.isNull())
160      T = Context.getTypeDeclType(TD);
161
162    if (SS)
163      T = getQualifiedNameType(*SS, T);
164
165  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
166    DiagnoseUseOfDecl(IIDecl, NameLoc);
167    T = Context.getObjCInterfaceType(IDecl);
168  } else
169    return 0;
170
171  return T.getAsOpaquePtr();
172}
173
174/// isTagName() - This method is called *for error recovery purposes only*
175/// to determine if the specified name is a valid tag name ("struct foo").  If
176/// so, this returns the TST for the tag corresponding to it (TST_enum,
177/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
178/// where the user forgot to specify the tag.
179DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
180  // Do a tag name lookup in this scope.
181  LookupResult R;
182  LookupName(R, S, &II, LookupTagName, false, false);
183  if (R.getKind() == LookupResult::Found)
184    if (const TagDecl *TD = dyn_cast<TagDecl>(R.getAsSingleDecl(Context))) {
185      switch (TD->getTagKind()) {
186      case TagDecl::TK_struct: return DeclSpec::TST_struct;
187      case TagDecl::TK_union:  return DeclSpec::TST_union;
188      case TagDecl::TK_class:  return DeclSpec::TST_class;
189      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
190      }
191    }
192
193  return DeclSpec::TST_unspecified;
194}
195
196bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
197                                   SourceLocation IILoc,
198                                   Scope *S,
199                                   const CXXScopeSpec *SS,
200                                   TypeTy *&SuggestedType) {
201  // We don't have anything to suggest (yet).
202  SuggestedType = 0;
203
204  // FIXME: Should we move the logic that tries to recover from a missing tag
205  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
206
207  if (!SS)
208    Diag(IILoc, diag::err_unknown_typename) << &II;
209  else if (DeclContext *DC = computeDeclContext(*SS, false))
210    Diag(IILoc, diag::err_typename_nested_not_found)
211      << &II << DC << SS->getRange();
212  else if (isDependentScopeSpecifier(*SS)) {
213    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
214      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
215      << SourceRange(SS->getRange().getBegin(), IILoc)
216      << CodeModificationHint::CreateInsertion(SS->getRange().getBegin(),
217                                               "typename ");
218    SuggestedType = ActOnTypenameType(SourceLocation(), *SS, II, IILoc).get();
219  } else {
220    assert(SS && SS->isInvalid() &&
221           "Invalid scope specifier has already been diagnosed");
222  }
223
224  return true;
225}
226
227// Determines the context to return to after temporarily entering a
228// context.  This depends in an unnecessarily complicated way on the
229// exact ordering of callbacks from the parser.
230DeclContext *Sema::getContainingDC(DeclContext *DC) {
231
232  // Functions defined inline within classes aren't parsed until we've
233  // finished parsing the top-level class, so the top-level class is
234  // the context we'll need to return to.
235  if (isa<FunctionDecl>(DC)) {
236    DC = DC->getLexicalParent();
237
238    // A function not defined within a class will always return to its
239    // lexical context.
240    if (!isa<CXXRecordDecl>(DC))
241      return DC;
242
243    // A C++ inline method/friend is parsed *after* the topmost class
244    // it was declared in is fully parsed ("complete");  the topmost
245    // class is the context we need to return to.
246    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
247      DC = RD;
248
249    // Return the declaration context of the topmost class the inline method is
250    // declared in.
251    return DC;
252  }
253
254  if (isa<ObjCMethodDecl>(DC))
255    return Context.getTranslationUnitDecl();
256
257  return DC->getLexicalParent();
258}
259
260void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
261  assert(getContainingDC(DC) == CurContext &&
262      "The next DeclContext should be lexically contained in the current one.");
263  CurContext = DC;
264  S->setEntity(DC);
265}
266
267void Sema::PopDeclContext() {
268  assert(CurContext && "DeclContext imbalance!");
269
270  CurContext = getContainingDC(CurContext);
271}
272
273/// EnterDeclaratorContext - Used when we must lookup names in the context
274/// of a declarator's nested name specifier.
275void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
276  assert(PreDeclaratorDC == 0 && "Previous declarator context not popped?");
277  PreDeclaratorDC = static_cast<DeclContext*>(S->getEntity());
278  CurContext = DC;
279  assert(CurContext && "No context?");
280  S->setEntity(CurContext);
281}
282
283void Sema::ExitDeclaratorContext(Scope *S) {
284  S->setEntity(PreDeclaratorDC);
285  PreDeclaratorDC = 0;
286
287  // Reset CurContext to the nearest enclosing context.
288  while (!S->getEntity() && S->getParent())
289    S = S->getParent();
290  CurContext = static_cast<DeclContext*>(S->getEntity());
291  assert(CurContext && "No context?");
292}
293
294/// \brief Determine whether we allow overloading of the function
295/// PrevDecl with another declaration.
296///
297/// This routine determines whether overloading is possible, not
298/// whether some new function is actually an overload. It will return
299/// true in C++ (where we can always provide overloads) or, as an
300/// extension, in C when the previous function is already an
301/// overloaded function declaration or has the "overloadable"
302/// attribute.
303static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
304  if (Context.getLangOptions().CPlusPlus)
305    return true;
306
307  if (isa<OverloadedFunctionDecl>(PrevDecl))
308    return true;
309
310  return PrevDecl->getAttr<OverloadableAttr>() != 0;
311}
312
313/// Add this decl to the scope shadowed decl chains.
314void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
315  // Move up the scope chain until we find the nearest enclosing
316  // non-transparent context. The declaration will be introduced into this
317  // scope.
318  while (S->getEntity() &&
319         ((DeclContext *)S->getEntity())->isTransparentContext())
320    S = S->getParent();
321
322  // Add scoped declarations into their context, so that they can be
323  // found later. Declarations without a context won't be inserted
324  // into any context.
325  if (AddToContext)
326    CurContext->addDecl(D);
327
328  // Out-of-line function and variable definitions should not be pushed into
329  // scope.
330  if ((isa<FunctionTemplateDecl>(D) &&
331       cast<FunctionTemplateDecl>(D)->getTemplatedDecl()->isOutOfLine()) ||
332      (isa<FunctionDecl>(D) && cast<FunctionDecl>(D)->isOutOfLine()) ||
333      (isa<VarDecl>(D) && cast<VarDecl>(D)->isOutOfLine()))
334    return;
335
336  // If this replaces anything in the current scope,
337  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
338                               IEnd = IdResolver.end();
339  for (; I != IEnd; ++I) {
340    if (S->isDeclScope(DeclPtrTy::make(*I)) && D->declarationReplaces(*I)) {
341      S->RemoveDecl(DeclPtrTy::make(*I));
342      IdResolver.RemoveDecl(*I);
343
344      // Should only need to replace one decl.
345      break;
346    }
347  }
348
349  S->AddDecl(DeclPtrTy::make(D));
350  IdResolver.AddDecl(D);
351}
352
353bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
354  if (OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D)) {
355    // Look inside the overload set to determine if any of the declarations
356    // are in scope. (Possibly) build a new overload set containing only
357    // those declarations that are in scope.
358    OverloadedFunctionDecl *NewOvl = 0;
359    bool FoundInScope = false;
360    for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
361         FEnd = Ovl->function_end();
362         F != FEnd; ++F) {
363      NamedDecl *FD = F->get();
364      if (!isDeclInScope(FD, Ctx, S)) {
365        if (!NewOvl && F != Ovl->function_begin()) {
366          NewOvl = OverloadedFunctionDecl::Create(Context,
367                                                  F->get()->getDeclContext(),
368                                                  F->get()->getDeclName());
369          D = NewOvl;
370          for (OverloadedFunctionDecl::function_iterator
371               First = Ovl->function_begin();
372               First != F; ++First)
373            NewOvl->addOverload(*First);
374        }
375      } else {
376        FoundInScope = true;
377        if (NewOvl)
378          NewOvl->addOverload(*F);
379      }
380    }
381
382    return FoundInScope;
383  }
384
385  return IdResolver.isDeclInScope(D, Ctx, Context, S);
386}
387
388static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
389  if (D->isUsed() || D->hasAttr<UnusedAttr>())
390    return false;
391
392  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
393    if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
394      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
395        if (!RD->hasTrivialConstructor())
396          return false;
397        if (!RD->hasTrivialDestructor())
398          return false;
399      }
400    }
401  }
402
403  return (isa<VarDecl>(D) && !isa<ParmVarDecl>(D) &&
404          !isa<ImplicitParamDecl>(D) &&
405          D->getDeclContext()->isFunctionOrMethod());
406}
407
408void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
409  if (S->decl_empty()) return;
410  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
411         "Scope shouldn't contain decls!");
412
413  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
414       I != E; ++I) {
415    Decl *TmpD = (*I).getAs<Decl>();
416    assert(TmpD && "This decl didn't get pushed??");
417
418    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
419    NamedDecl *D = cast<NamedDecl>(TmpD);
420
421    if (!D->getDeclName()) continue;
422
423    // Diagnose unused variables in this scope.
424    if (ShouldDiagnoseUnusedDecl(D))
425      Diag(D->getLocation(), diag::warn_unused_variable) << D->getDeclName();
426
427    // Remove this name from our lexical scope.
428    IdResolver.RemoveDecl(D);
429  }
430}
431
432/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
433/// return 0 if one not found.
434ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
435  // The third "scope" argument is 0 since we aren't enabling lazy built-in
436  // creation from this context.
437  NamedDecl *IDecl = LookupSingleName(TUScope, Id, LookupOrdinaryName);
438
439  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
440}
441
442/// getNonFieldDeclScope - Retrieves the innermost scope, starting
443/// from S, where a non-field would be declared. This routine copes
444/// with the difference between C and C++ scoping rules in structs and
445/// unions. For example, the following code is well-formed in C but
446/// ill-formed in C++:
447/// @code
448/// struct S6 {
449///   enum { BAR } e;
450/// };
451///
452/// void test_S6() {
453///   struct S6 a;
454///   a.e = BAR;
455/// }
456/// @endcode
457/// For the declaration of BAR, this routine will return a different
458/// scope. The scope S will be the scope of the unnamed enumeration
459/// within S6. In C++, this routine will return the scope associated
460/// with S6, because the enumeration's scope is a transparent
461/// context but structures can contain non-field names. In C, this
462/// routine will return the translation unit scope, since the
463/// enumeration's scope is a transparent context and structures cannot
464/// contain non-field names.
465Scope *Sema::getNonFieldDeclScope(Scope *S) {
466  while (((S->getFlags() & Scope::DeclScope) == 0) ||
467         (S->getEntity() &&
468          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
469         (S->isClassScope() && !getLangOptions().CPlusPlus))
470    S = S->getParent();
471  return S;
472}
473
474void Sema::InitBuiltinVaListType() {
475  if (!Context.getBuiltinVaListType().isNull())
476    return;
477
478  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
479  NamedDecl *VaDecl = LookupSingleName(TUScope, VaIdent, LookupOrdinaryName);
480  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
481  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
482}
483
484/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
485/// file scope.  lazily create a decl for it. ForRedeclaration is true
486/// if we're creating this built-in in anticipation of redeclaring the
487/// built-in.
488NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
489                                     Scope *S, bool ForRedeclaration,
490                                     SourceLocation Loc) {
491  Builtin::ID BID = (Builtin::ID)bid;
492
493  if (Context.BuiltinInfo.hasVAListUse(BID))
494    InitBuiltinVaListType();
495
496  ASTContext::GetBuiltinTypeError Error;
497  QualType R = Context.GetBuiltinType(BID, Error);
498  switch (Error) {
499  case ASTContext::GE_None:
500    // Okay
501    break;
502
503  case ASTContext::GE_Missing_stdio:
504    if (ForRedeclaration)
505      Diag(Loc, diag::err_implicit_decl_requires_stdio)
506        << Context.BuiltinInfo.GetName(BID);
507    return 0;
508
509  case ASTContext::GE_Missing_setjmp:
510    if (ForRedeclaration)
511      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
512        << Context.BuiltinInfo.GetName(BID);
513    return 0;
514  }
515
516  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
517    Diag(Loc, diag::ext_implicit_lib_function_decl)
518      << Context.BuiltinInfo.GetName(BID)
519      << R;
520    if (Context.BuiltinInfo.getHeaderName(BID) &&
521        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
522          != Diagnostic::Ignored)
523      Diag(Loc, diag::note_please_include_header)
524        << Context.BuiltinInfo.getHeaderName(BID)
525        << Context.BuiltinInfo.GetName(BID);
526  }
527
528  FunctionDecl *New = FunctionDecl::Create(Context,
529                                           Context.getTranslationUnitDecl(),
530                                           Loc, II, R, /*DInfo=*/0,
531                                           FunctionDecl::Extern, false,
532                                           /*hasPrototype=*/true);
533  New->setImplicit();
534
535  // Create Decl objects for each parameter, adding them to the
536  // FunctionDecl.
537  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
538    llvm::SmallVector<ParmVarDecl*, 16> Params;
539    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
540      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
541                                           FT->getArgType(i), /*DInfo=*/0,
542                                           VarDecl::None, 0));
543    New->setParams(Context, Params.data(), Params.size());
544  }
545
546  AddKnownFunctionAttributes(New);
547
548  // TUScope is the translation-unit scope to insert this function into.
549  // FIXME: This is hideous. We need to teach PushOnScopeChains to
550  // relate Scopes to DeclContexts, and probably eliminate CurContext
551  // entirely, but we're not there yet.
552  DeclContext *SavedContext = CurContext;
553  CurContext = Context.getTranslationUnitDecl();
554  PushOnScopeChains(New, TUScope);
555  CurContext = SavedContext;
556  return New;
557}
558
559/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
560/// same name and scope as a previous declaration 'Old'.  Figure out
561/// how to resolve this situation, merging decls or emitting
562/// diagnostics as appropriate. If there was an error, set New to be invalid.
563///
564void Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
565  // If either decl is known invalid already, set the new one to be invalid and
566  // don't bother doing any merging checks.
567  if (New->isInvalidDecl() || OldD->isInvalidDecl())
568    return New->setInvalidDecl();
569
570  // Allow multiple definitions for ObjC built-in typedefs.
571  // FIXME: Verify the underlying types are equivalent!
572  if (getLangOptions().ObjC1) {
573    const IdentifierInfo *TypeID = New->getIdentifier();
574    switch (TypeID->getLength()) {
575    default: break;
576    case 2:
577      if (!TypeID->isStr("id"))
578        break;
579      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
580      // Install the built-in type for 'id', ignoring the current definition.
581      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
582      return;
583    case 5:
584      if (!TypeID->isStr("Class"))
585        break;
586      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
587      // Install the built-in type for 'Class', ignoring the current definition.
588      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
589      return;
590    case 3:
591      if (!TypeID->isStr("SEL"))
592        break;
593      Context.setObjCSelType(Context.getTypeDeclType(New));
594      return;
595    case 8:
596      if (!TypeID->isStr("Protocol"))
597        break;
598      Context.setObjCProtoType(New->getUnderlyingType());
599      return;
600    }
601    // Fall through - the typedef name was not a builtin type.
602  }
603  // Verify the old decl was also a type.
604  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
605  if (!Old) {
606    Diag(New->getLocation(), diag::err_redefinition_different_kind)
607      << New->getDeclName();
608    if (OldD->getLocation().isValid())
609      Diag(OldD->getLocation(), diag::note_previous_definition);
610    return New->setInvalidDecl();
611  }
612
613  // Determine the "old" type we'll use for checking and diagnostics.
614  QualType OldType;
615  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
616    OldType = OldTypedef->getUnderlyingType();
617  else
618    OldType = Context.getTypeDeclType(Old);
619
620  // If the typedef types are not identical, reject them in all languages and
621  // with any extensions enabled.
622
623  if (OldType != New->getUnderlyingType() &&
624      Context.getCanonicalType(OldType) !=
625      Context.getCanonicalType(New->getUnderlyingType())) {
626    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
627      << New->getUnderlyingType() << OldType;
628    if (Old->getLocation().isValid())
629      Diag(Old->getLocation(), diag::note_previous_definition);
630    return New->setInvalidDecl();
631  }
632
633  if (getLangOptions().Microsoft)
634    return;
635
636  // C++ [dcl.typedef]p2:
637  //   In a given non-class scope, a typedef specifier can be used to
638  //   redefine the name of any type declared in that scope to refer
639  //   to the type to which it already refers.
640  if (getLangOptions().CPlusPlus) {
641    if (!isa<CXXRecordDecl>(CurContext))
642      return;
643    Diag(New->getLocation(), diag::err_redefinition)
644      << New->getDeclName();
645    Diag(Old->getLocation(), diag::note_previous_definition);
646    return New->setInvalidDecl();
647  }
648
649  // If we have a redefinition of a typedef in C, emit a warning.  This warning
650  // is normally mapped to an error, but can be controlled with
651  // -Wtypedef-redefinition.  If either the original or the redefinition is
652  // in a system header, don't emit this for compatibility with GCC.
653  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
654      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
655       Context.getSourceManager().isInSystemHeader(New->getLocation())))
656    return;
657
658  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
659    << New->getDeclName();
660  Diag(Old->getLocation(), diag::note_previous_definition);
661  return;
662}
663
664/// DeclhasAttr - returns true if decl Declaration already has the target
665/// attribute.
666static bool
667DeclHasAttr(const Decl *decl, const Attr *target) {
668  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
669    if (attr->getKind() == target->getKind())
670      return true;
671
672  return false;
673}
674
675/// MergeAttributes - append attributes from the Old decl to the New one.
676static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
677  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
678    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
679      Attr *NewAttr = attr->clone(C);
680      NewAttr->setInherited(true);
681      New->addAttr(NewAttr);
682    }
683  }
684}
685
686/// Used in MergeFunctionDecl to keep track of function parameters in
687/// C.
688struct GNUCompatibleParamWarning {
689  ParmVarDecl *OldParm;
690  ParmVarDecl *NewParm;
691  QualType PromotedType;
692};
693
694/// MergeFunctionDecl - We just parsed a function 'New' from
695/// declarator D which has the same name and scope as a previous
696/// declaration 'Old'.  Figure out how to resolve this situation,
697/// merging decls or emitting diagnostics as appropriate.
698///
699/// In C++, New and Old must be declarations that are not
700/// overloaded. Use IsOverload to determine whether New and Old are
701/// overloaded, and to select the Old declaration that New should be
702/// merged with.
703///
704/// Returns true if there was an error, false otherwise.
705bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
706  assert(!isa<OverloadedFunctionDecl>(OldD) &&
707         "Cannot merge with an overloaded function declaration");
708
709  // Verify the old decl was also a function.
710  FunctionDecl *Old = 0;
711  if (FunctionTemplateDecl *OldFunctionTemplate
712        = dyn_cast<FunctionTemplateDecl>(OldD))
713    Old = OldFunctionTemplate->getTemplatedDecl();
714  else
715    Old = dyn_cast<FunctionDecl>(OldD);
716  if (!Old) {
717    Diag(New->getLocation(), diag::err_redefinition_different_kind)
718      << New->getDeclName();
719    Diag(OldD->getLocation(), diag::note_previous_definition);
720    return true;
721  }
722
723  // Determine whether the previous declaration was a definition,
724  // implicit declaration, or a declaration.
725  diag::kind PrevDiag;
726  if (Old->isThisDeclarationADefinition())
727    PrevDiag = diag::note_previous_definition;
728  else if (Old->isImplicit())
729    PrevDiag = diag::note_previous_implicit_declaration;
730  else
731    PrevDiag = diag::note_previous_declaration;
732
733  QualType OldQType = Context.getCanonicalType(Old->getType());
734  QualType NewQType = Context.getCanonicalType(New->getType());
735
736  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
737      New->getStorageClass() == FunctionDecl::Static &&
738      Old->getStorageClass() != FunctionDecl::Static) {
739    Diag(New->getLocation(), diag::err_static_non_static)
740      << New;
741    Diag(Old->getLocation(), PrevDiag);
742    return true;
743  }
744
745  if (getLangOptions().CPlusPlus) {
746    // (C++98 13.1p2):
747    //   Certain function declarations cannot be overloaded:
748    //     -- Function declarations that differ only in the return type
749    //        cannot be overloaded.
750    QualType OldReturnType
751      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
752    QualType NewReturnType
753      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
754    if (OldReturnType != NewReturnType) {
755      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
756      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
757      return true;
758    }
759
760    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
761    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
762    if (OldMethod && NewMethod && !NewMethod->getFriendObjectKind() &&
763        NewMethod->getLexicalDeclContext()->isRecord()) {
764      //    -- Member function declarations with the same name and the
765      //       same parameter types cannot be overloaded if any of them
766      //       is a static member function declaration.
767      if (OldMethod->isStatic() || NewMethod->isStatic()) {
768        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
769        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
770        return true;
771      }
772
773      // C++ [class.mem]p1:
774      //   [...] A member shall not be declared twice in the
775      //   member-specification, except that a nested class or member
776      //   class template can be declared and then later defined.
777      unsigned NewDiag;
778      if (isa<CXXConstructorDecl>(OldMethod))
779        NewDiag = diag::err_constructor_redeclared;
780      else if (isa<CXXDestructorDecl>(NewMethod))
781        NewDiag = diag::err_destructor_redeclared;
782      else if (isa<CXXConversionDecl>(NewMethod))
783        NewDiag = diag::err_conv_function_redeclared;
784      else
785        NewDiag = diag::err_member_redeclared;
786
787      Diag(New->getLocation(), NewDiag);
788      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
789    }
790
791    // (C++98 8.3.5p3):
792    //   All declarations for a function shall agree exactly in both the
793    //   return type and the parameter-type-list.
794    if (OldQType == NewQType)
795      return MergeCompatibleFunctionDecls(New, Old);
796
797    // Fall through for conflicting redeclarations and redefinitions.
798  }
799
800  // C: Function types need to be compatible, not identical. This handles
801  // duplicate function decls like "void f(int); void f(enum X);" properly.
802  if (!getLangOptions().CPlusPlus &&
803      Context.typesAreCompatible(OldQType, NewQType)) {
804    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
805    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
806    const FunctionProtoType *OldProto = 0;
807    if (isa<FunctionNoProtoType>(NewFuncType) &&
808        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
809      // The old declaration provided a function prototype, but the
810      // new declaration does not. Merge in the prototype.
811      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
812      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
813                                                 OldProto->arg_type_end());
814      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
815                                         ParamTypes.data(), ParamTypes.size(),
816                                         OldProto->isVariadic(),
817                                         OldProto->getTypeQuals());
818      New->setType(NewQType);
819      New->setHasInheritedPrototype();
820
821      // Synthesize a parameter for each argument type.
822      llvm::SmallVector<ParmVarDecl*, 16> Params;
823      for (FunctionProtoType::arg_type_iterator
824             ParamType = OldProto->arg_type_begin(),
825             ParamEnd = OldProto->arg_type_end();
826           ParamType != ParamEnd; ++ParamType) {
827        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
828                                                 SourceLocation(), 0,
829                                                 *ParamType, /*DInfo=*/0,
830                                                 VarDecl::None, 0);
831        Param->setImplicit();
832        Params.push_back(Param);
833      }
834
835      New->setParams(Context, Params.data(), Params.size());
836    }
837
838    return MergeCompatibleFunctionDecls(New, Old);
839  }
840
841  // GNU C permits a K&R definition to follow a prototype declaration
842  // if the declared types of the parameters in the K&R definition
843  // match the types in the prototype declaration, even when the
844  // promoted types of the parameters from the K&R definition differ
845  // from the types in the prototype. GCC then keeps the types from
846  // the prototype.
847  //
848  // If a variadic prototype is followed by a non-variadic K&R definition,
849  // the K&R definition becomes variadic.  This is sort of an edge case, but
850  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
851  // C99 6.9.1p8.
852  if (!getLangOptions().CPlusPlus &&
853      Old->hasPrototype() && !New->hasPrototype() &&
854      New->getType()->getAs<FunctionProtoType>() &&
855      Old->getNumParams() == New->getNumParams()) {
856    llvm::SmallVector<QualType, 16> ArgTypes;
857    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
858    const FunctionProtoType *OldProto
859      = Old->getType()->getAs<FunctionProtoType>();
860    const FunctionProtoType *NewProto
861      = New->getType()->getAs<FunctionProtoType>();
862
863    // Determine whether this is the GNU C extension.
864    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
865                                               NewProto->getResultType());
866    bool LooseCompatible = !MergedReturn.isNull();
867    for (unsigned Idx = 0, End = Old->getNumParams();
868         LooseCompatible && Idx != End; ++Idx) {
869      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
870      ParmVarDecl *NewParm = New->getParamDecl(Idx);
871      if (Context.typesAreCompatible(OldParm->getType(),
872                                     NewProto->getArgType(Idx))) {
873        ArgTypes.push_back(NewParm->getType());
874      } else if (Context.typesAreCompatible(OldParm->getType(),
875                                            NewParm->getType())) {
876        GNUCompatibleParamWarning Warn
877          = { OldParm, NewParm, NewProto->getArgType(Idx) };
878        Warnings.push_back(Warn);
879        ArgTypes.push_back(NewParm->getType());
880      } else
881        LooseCompatible = false;
882    }
883
884    if (LooseCompatible) {
885      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
886        Diag(Warnings[Warn].NewParm->getLocation(),
887             diag::ext_param_promoted_not_compatible_with_prototype)
888          << Warnings[Warn].PromotedType
889          << Warnings[Warn].OldParm->getType();
890        Diag(Warnings[Warn].OldParm->getLocation(),
891             diag::note_previous_declaration);
892      }
893
894      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
895                                           ArgTypes.size(),
896                                           OldProto->isVariadic(), 0));
897      return MergeCompatibleFunctionDecls(New, Old);
898    }
899
900    // Fall through to diagnose conflicting types.
901  }
902
903  // A function that has already been declared has been redeclared or defined
904  // with a different type- show appropriate diagnostic
905  if (unsigned BuiltinID = Old->getBuiltinID()) {
906    // The user has declared a builtin function with an incompatible
907    // signature.
908    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
909      // The function the user is redeclaring is a library-defined
910      // function like 'malloc' or 'printf'. Warn about the
911      // redeclaration, then pretend that we don't know about this
912      // library built-in.
913      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
914      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
915        << Old << Old->getType();
916      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
917      Old->setInvalidDecl();
918      return false;
919    }
920
921    PrevDiag = diag::note_previous_builtin_declaration;
922  }
923
924  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
925  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
926  return true;
927}
928
929/// \brief Completes the merge of two function declarations that are
930/// known to be compatible.
931///
932/// This routine handles the merging of attributes and other
933/// properties of function declarations form the old declaration to
934/// the new declaration, once we know that New is in fact a
935/// redeclaration of Old.
936///
937/// \returns false
938bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
939  // Merge the attributes
940  MergeAttributes(New, Old, Context);
941
942  // Merge the storage class.
943  if (Old->getStorageClass() != FunctionDecl::Extern &&
944      Old->getStorageClass() != FunctionDecl::None)
945    New->setStorageClass(Old->getStorageClass());
946
947  // Merge "pure" flag.
948  if (Old->isPure())
949    New->setPure();
950
951  // Merge the "deleted" flag.
952  if (Old->isDeleted())
953    New->setDeleted();
954
955  if (getLangOptions().CPlusPlus)
956    return MergeCXXFunctionDecl(New, Old);
957
958  return false;
959}
960
961/// MergeVarDecl - We just parsed a variable 'New' which has the same name
962/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
963/// situation, merging decls or emitting diagnostics as appropriate.
964///
965/// Tentative definition rules (C99 6.9.2p2) are checked by
966/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
967/// definitions here, since the initializer hasn't been attached.
968///
969void Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
970  // If either decl is invalid, make sure the new one is marked invalid and
971  // don't do any other checking.
972  if (New->isInvalidDecl() || OldD->isInvalidDecl())
973    return New->setInvalidDecl();
974
975  // Verify the old decl was also a variable.
976  VarDecl *Old = dyn_cast<VarDecl>(OldD);
977  if (!Old) {
978    Diag(New->getLocation(), diag::err_redefinition_different_kind)
979      << New->getDeclName();
980    Diag(OldD->getLocation(), diag::note_previous_definition);
981    return New->setInvalidDecl();
982  }
983
984  MergeAttributes(New, Old, Context);
985
986  // Merge the types
987  QualType MergedT;
988  if (getLangOptions().CPlusPlus) {
989    if (Context.hasSameType(New->getType(), Old->getType()))
990      MergedT = New->getType();
991    // C++ [basic.types]p7:
992    //   [...] The declared type of an array object might be an array of
993    //   unknown size and therefore be incomplete at one point in a
994    //   translation unit and complete later on; [...]
995    else if (Old->getType()->isIncompleteArrayType() &&
996             New->getType()->isArrayType()) {
997      CanQual<ArrayType> OldArray
998        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
999      CanQual<ArrayType> NewArray
1000        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1001      if (OldArray->getElementType() == NewArray->getElementType())
1002        MergedT = New->getType();
1003    }
1004  } else {
1005    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1006  }
1007  if (MergedT.isNull()) {
1008    Diag(New->getLocation(), diag::err_redefinition_different_type)
1009      << New->getDeclName();
1010    Diag(Old->getLocation(), diag::note_previous_definition);
1011    return New->setInvalidDecl();
1012  }
1013  New->setType(MergedT);
1014
1015  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1016  if (New->getStorageClass() == VarDecl::Static &&
1017      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
1018    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1019    Diag(Old->getLocation(), diag::note_previous_definition);
1020    return New->setInvalidDecl();
1021  }
1022  // C99 6.2.2p4:
1023  //   For an identifier declared with the storage-class specifier
1024  //   extern in a scope in which a prior declaration of that
1025  //   identifier is visible,23) if the prior declaration specifies
1026  //   internal or external linkage, the linkage of the identifier at
1027  //   the later declaration is the same as the linkage specified at
1028  //   the prior declaration. If no prior declaration is visible, or
1029  //   if the prior declaration specifies no linkage, then the
1030  //   identifier has external linkage.
1031  if (New->hasExternalStorage() && Old->hasLinkage())
1032    /* Okay */;
1033  else if (New->getStorageClass() != VarDecl::Static &&
1034           Old->getStorageClass() == VarDecl::Static) {
1035    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1036    Diag(Old->getLocation(), diag::note_previous_definition);
1037    return New->setInvalidDecl();
1038  }
1039
1040  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1041
1042  // FIXME: The test for external storage here seems wrong? We still
1043  // need to check for mismatches.
1044  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1045      // Don't complain about out-of-line definitions of static members.
1046      !(Old->getLexicalDeclContext()->isRecord() &&
1047        !New->getLexicalDeclContext()->isRecord())) {
1048    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1049    Diag(Old->getLocation(), diag::note_previous_definition);
1050    return New->setInvalidDecl();
1051  }
1052
1053  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1054    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1055    Diag(Old->getLocation(), diag::note_previous_definition);
1056  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1057    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1058    Diag(Old->getLocation(), diag::note_previous_definition);
1059  }
1060
1061  // Keep a chain of previous declarations.
1062  New->setPreviousDeclaration(Old);
1063}
1064
1065/// CheckFallThrough - Check that we don't fall off the end of a
1066/// Statement that should return a value.
1067///
1068/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
1069/// MaybeFallThrough iff we might or might not fall off the end,
1070/// NeverFallThroughOrReturn iff we never fall off the end of the statement or
1071/// return.  We assume NeverFallThrough iff we never fall off the end of the
1072/// statement but we may return.  We assume that functions not marked noreturn
1073/// will return.
1074Sema::ControlFlowKind Sema::CheckFallThrough(Stmt *Root) {
1075  // FIXME: Eventually share this CFG object when we have other warnings based
1076  // of the CFG.  This can be done using AnalysisContext.
1077  llvm::OwningPtr<CFG> cfg (CFG::buildCFG(Root, &Context));
1078
1079  // FIXME: They should never return 0, fix that, delete this code.
1080  if (cfg == 0)
1081    // FIXME: This should be NeverFallThrough
1082    return NeverFallThroughOrReturn;
1083  // The CFG leaves in dead things, and we don't want to dead code paths to
1084  // confuse us, so we mark all live things first.
1085  std::queue<CFGBlock*> workq;
1086  llvm::BitVector live(cfg->getNumBlockIDs());
1087  // Prep work queue
1088  workq.push(&cfg->getEntry());
1089  // Solve
1090  while (!workq.empty()) {
1091    CFGBlock *item = workq.front();
1092    workq.pop();
1093    live.set(item->getBlockID());
1094    for (CFGBlock::succ_iterator I=item->succ_begin(),
1095           E=item->succ_end();
1096         I != E;
1097         ++I) {
1098      if ((*I) && !live[(*I)->getBlockID()]) {
1099        live.set((*I)->getBlockID());
1100        workq.push(*I);
1101      }
1102    }
1103  }
1104
1105  // Now we know what is live, we check the live precessors of the exit block
1106  // and look for fall through paths, being careful to ignore normal returns,
1107  // and exceptional paths.
1108  bool HasLiveReturn = false;
1109  bool HasFakeEdge = false;
1110  bool HasPlainEdge = false;
1111  for (CFGBlock::pred_iterator I=cfg->getExit().pred_begin(),
1112         E = cfg->getExit().pred_end();
1113       I != E;
1114       ++I) {
1115    CFGBlock& B = **I;
1116    if (!live[B.getBlockID()])
1117      continue;
1118    if (B.size() == 0) {
1119      // A labeled empty statement, or the entry block...
1120      HasPlainEdge = true;
1121      continue;
1122    }
1123    Stmt *S = B[B.size()-1];
1124    if (isa<ReturnStmt>(S)) {
1125      HasLiveReturn = true;
1126      continue;
1127    }
1128    if (isa<ObjCAtThrowStmt>(S)) {
1129      HasFakeEdge = true;
1130      continue;
1131    }
1132    if (isa<CXXThrowExpr>(S)) {
1133      HasFakeEdge = true;
1134      continue;
1135    }
1136    bool NoReturnEdge = false;
1137    if (CallExpr *C = dyn_cast<CallExpr>(S)) {
1138      Expr *CEE = C->getCallee()->IgnoreParenCasts();
1139      if (CEE->getType().getNoReturnAttr()) {
1140        NoReturnEdge = true;
1141        HasFakeEdge = true;
1142      } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) {
1143        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1144          if (FD->hasAttr<NoReturnAttr>()) {
1145            NoReturnEdge = true;
1146            HasFakeEdge = true;
1147          }
1148        }
1149      }
1150    }
1151    // FIXME: Add noreturn message sends.
1152    if (NoReturnEdge == false)
1153      HasPlainEdge = true;
1154  }
1155  if (!HasPlainEdge) {
1156    if (HasLiveReturn)
1157      return NeverFallThrough;
1158    return NeverFallThroughOrReturn;
1159  }
1160  if (HasFakeEdge || HasLiveReturn)
1161    return MaybeFallThrough;
1162  // This says AlwaysFallThrough for calls to functions that are not marked
1163  // noreturn, that don't return.  If people would like this warning to be more
1164  // accurate, such functions should be marked as noreturn.
1165  return AlwaysFallThrough;
1166}
1167
1168/// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
1169/// function that should return a value.  Check that we don't fall off the end
1170/// of a noreturn function.  We assume that functions and blocks not marked
1171/// noreturn will return.
1172void Sema::CheckFallThroughForFunctionDef(Decl *D, Stmt *Body) {
1173  // FIXME: Would be nice if we had a better way to control cascading errors,
1174  // but for now, avoid them.  The problem is that when Parse sees:
1175  //   int foo() { return a; }
1176  // The return is eaten and the Sema code sees just:
1177  //   int foo() { }
1178  // which this code would then warn about.
1179  if (getDiagnostics().hasErrorOccurred())
1180    return;
1181
1182  bool ReturnsVoid = false;
1183  bool HasNoReturn = false;
1184  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1185    // If the result type of the function is a dependent type, we don't know
1186    // whether it will be void or not, so don't
1187    if (FD->getResultType()->isDependentType())
1188      return;
1189    if (FD->getResultType()->isVoidType())
1190      ReturnsVoid = true;
1191    if (FD->hasAttr<NoReturnAttr>())
1192      HasNoReturn = true;
1193  } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
1194    if (MD->getResultType()->isVoidType())
1195      ReturnsVoid = true;
1196    if (MD->hasAttr<NoReturnAttr>())
1197      HasNoReturn = true;
1198  }
1199
1200  // Short circuit for compilation speed.
1201  if ((Diags.getDiagnosticLevel(diag::warn_maybe_falloff_nonvoid_function)
1202       == Diagnostic::Ignored || ReturnsVoid)
1203      && (Diags.getDiagnosticLevel(diag::warn_noreturn_function_has_return_expr)
1204          == Diagnostic::Ignored || !HasNoReturn)
1205      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1206          == Diagnostic::Ignored || !ReturnsVoid))
1207    return;
1208  // FIXME: Function try block
1209  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1210    switch (CheckFallThrough(Body)) {
1211    case MaybeFallThrough:
1212      if (HasNoReturn)
1213        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1214      else if (!ReturnsVoid)
1215        Diag(Compound->getRBracLoc(),diag::warn_maybe_falloff_nonvoid_function);
1216      break;
1217    case AlwaysFallThrough:
1218      if (HasNoReturn)
1219        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1220      else if (!ReturnsVoid)
1221        Diag(Compound->getRBracLoc(), diag::warn_falloff_nonvoid_function);
1222      break;
1223    case NeverFallThroughOrReturn:
1224      if (ReturnsVoid && !HasNoReturn)
1225        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_function);
1226      break;
1227    case NeverFallThrough:
1228      break;
1229    }
1230  }
1231}
1232
1233/// CheckFallThroughForBlock - Check that we don't fall off the end of a block
1234/// that should return a value.  Check that we don't fall off the end of a
1235/// noreturn block.  We assume that functions and blocks not marked noreturn
1236/// will return.
1237void Sema::CheckFallThroughForBlock(QualType BlockTy, Stmt *Body) {
1238  // FIXME: Would be nice if we had a better way to control cascading errors,
1239  // but for now, avoid them.  The problem is that when Parse sees:
1240  //   int foo() { return a; }
1241  // The return is eaten and the Sema code sees just:
1242  //   int foo() { }
1243  // which this code would then warn about.
1244  if (getDiagnostics().hasErrorOccurred())
1245    return;
1246  bool ReturnsVoid = false;
1247  bool HasNoReturn = false;
1248  if (const FunctionType *FT =BlockTy->getPointeeType()->getAs<FunctionType>()){
1249    if (FT->getResultType()->isVoidType())
1250      ReturnsVoid = true;
1251    if (FT->getNoReturnAttr())
1252      HasNoReturn = true;
1253  }
1254
1255  // Short circuit for compilation speed.
1256  if (ReturnsVoid
1257      && !HasNoReturn
1258      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1259          == Diagnostic::Ignored || !ReturnsVoid))
1260    return;
1261  // FIXME: Funtion try block
1262  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1263    switch (CheckFallThrough(Body)) {
1264    case MaybeFallThrough:
1265      if (HasNoReturn)
1266        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1267      else if (!ReturnsVoid)
1268        Diag(Compound->getRBracLoc(), diag::err_maybe_falloff_nonvoid_block);
1269      break;
1270    case AlwaysFallThrough:
1271      if (HasNoReturn)
1272        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1273      else if (!ReturnsVoid)
1274        Diag(Compound->getRBracLoc(), diag::err_falloff_nonvoid_block);
1275      break;
1276    case NeverFallThroughOrReturn:
1277      if (ReturnsVoid)
1278        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_block);
1279      break;
1280    case NeverFallThrough:
1281      break;
1282    }
1283  }
1284}
1285
1286/// CheckParmsForFunctionDef - Check that the parameters of the given
1287/// function are appropriate for the definition of a function. This
1288/// takes care of any checks that cannot be performed on the
1289/// declaration itself, e.g., that the types of each of the function
1290/// parameters are complete.
1291bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
1292  bool HasInvalidParm = false;
1293  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1294    ParmVarDecl *Param = FD->getParamDecl(p);
1295
1296    // C99 6.7.5.3p4: the parameters in a parameter type list in a
1297    // function declarator that is part of a function definition of
1298    // that function shall not have incomplete type.
1299    //
1300    // This is also C++ [dcl.fct]p6.
1301    if (!Param->isInvalidDecl() &&
1302        RequireCompleteType(Param->getLocation(), Param->getType(),
1303                               diag::err_typecheck_decl_incomplete_type)) {
1304      Param->setInvalidDecl();
1305      HasInvalidParm = true;
1306    }
1307
1308    // C99 6.9.1p5: If the declarator includes a parameter type list, the
1309    // declaration of each parameter shall include an identifier.
1310    if (Param->getIdentifier() == 0 &&
1311        !Param->isImplicit() &&
1312        !getLangOptions().CPlusPlus)
1313      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
1314  }
1315
1316  return HasInvalidParm;
1317}
1318
1319/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1320/// no declarator (e.g. "struct foo;") is parsed.
1321Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1322  // FIXME: Error on auto/register at file scope
1323  // FIXME: Error on inline/virtual/explicit
1324  // FIXME: Error on invalid restrict
1325  // FIXME: Warn on useless __thread
1326  // FIXME: Warn on useless const/volatile
1327  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1328  // FIXME: Warn on useless attributes
1329  Decl *TagD = 0;
1330  TagDecl *Tag = 0;
1331  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1332      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1333      DS.getTypeSpecType() == DeclSpec::TST_union ||
1334      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1335    TagD = static_cast<Decl *>(DS.getTypeRep());
1336
1337    if (!TagD) // We probably had an error
1338      return DeclPtrTy();
1339
1340    // Note that the above type specs guarantee that the
1341    // type rep is a Decl, whereas in many of the others
1342    // it's a Type.
1343    Tag = dyn_cast<TagDecl>(TagD);
1344  }
1345
1346  if (DS.isFriendSpecified()) {
1347    // If we're dealing with a class template decl, assume that the
1348    // template routines are handling it.
1349    if (TagD && isa<ClassTemplateDecl>(TagD))
1350      return DeclPtrTy();
1351    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1352  }
1353
1354  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1355    // If there are attributes in the DeclSpec, apply them to the record.
1356    if (const AttributeList *AL = DS.getAttributes())
1357      ProcessDeclAttributeList(S, Record, AL);
1358
1359    if (!Record->getDeclName() && Record->isDefinition() &&
1360        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1361      if (getLangOptions().CPlusPlus ||
1362          Record->getDeclContext()->isRecord())
1363        return BuildAnonymousStructOrUnion(S, DS, Record);
1364
1365      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1366        << DS.getSourceRange();
1367    }
1368
1369    // Microsoft allows unnamed struct/union fields. Don't complain
1370    // about them.
1371    // FIXME: Should we support Microsoft's extensions in this area?
1372    if (Record->getDeclName() && getLangOptions().Microsoft)
1373      return DeclPtrTy::make(Tag);
1374  }
1375
1376  if (!DS.isMissingDeclaratorOk() &&
1377      DS.getTypeSpecType() != DeclSpec::TST_error) {
1378    // Warn about typedefs of enums without names, since this is an
1379    // extension in both Microsoft an GNU.
1380    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1381        Tag && isa<EnumDecl>(Tag)) {
1382      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1383        << DS.getSourceRange();
1384      return DeclPtrTy::make(Tag);
1385    }
1386
1387    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1388      << DS.getSourceRange();
1389    return DeclPtrTy();
1390  }
1391
1392  return DeclPtrTy::make(Tag);
1393}
1394
1395/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1396/// anonymous struct or union AnonRecord into the owning context Owner
1397/// and scope S. This routine will be invoked just after we realize
1398/// that an unnamed union or struct is actually an anonymous union or
1399/// struct, e.g.,
1400///
1401/// @code
1402/// union {
1403///   int i;
1404///   float f;
1405/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1406///    // f into the surrounding scope.x
1407/// @endcode
1408///
1409/// This routine is recursive, injecting the names of nested anonymous
1410/// structs/unions into the owning context and scope as well.
1411bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1412                                               RecordDecl *AnonRecord) {
1413  bool Invalid = false;
1414  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1415                               FEnd = AnonRecord->field_end();
1416       F != FEnd; ++F) {
1417    if ((*F)->getDeclName()) {
1418      LookupResult R;
1419      LookupQualifiedName(R, Owner, (*F)->getDeclName(),
1420                          LookupOrdinaryName, true);
1421      NamedDecl *PrevDecl = R.getAsSingleDecl(Context);
1422      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
1423        // C++ [class.union]p2:
1424        //   The names of the members of an anonymous union shall be
1425        //   distinct from the names of any other entity in the
1426        //   scope in which the anonymous union is declared.
1427        unsigned diagKind
1428          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
1429                                 : diag::err_anonymous_struct_member_redecl;
1430        Diag((*F)->getLocation(), diagKind)
1431          << (*F)->getDeclName();
1432        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1433        Invalid = true;
1434      } else {
1435        // C++ [class.union]p2:
1436        //   For the purpose of name lookup, after the anonymous union
1437        //   definition, the members of the anonymous union are
1438        //   considered to have been defined in the scope in which the
1439        //   anonymous union is declared.
1440        Owner->makeDeclVisibleInContext(*F);
1441        S->AddDecl(DeclPtrTy::make(*F));
1442        IdResolver.AddDecl(*F);
1443      }
1444    } else if (const RecordType *InnerRecordType
1445                 = (*F)->getType()->getAs<RecordType>()) {
1446      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1447      if (InnerRecord->isAnonymousStructOrUnion())
1448        Invalid = Invalid ||
1449          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1450    }
1451  }
1452
1453  return Invalid;
1454}
1455
1456/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1457/// anonymous structure or union. Anonymous unions are a C++ feature
1458/// (C++ [class.union]) and a GNU C extension; anonymous structures
1459/// are a GNU C and GNU C++ extension.
1460Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1461                                                  RecordDecl *Record) {
1462  DeclContext *Owner = Record->getDeclContext();
1463
1464  // Diagnose whether this anonymous struct/union is an extension.
1465  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1466    Diag(Record->getLocation(), diag::ext_anonymous_union);
1467  else if (!Record->isUnion())
1468    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1469
1470  // C and C++ require different kinds of checks for anonymous
1471  // structs/unions.
1472  bool Invalid = false;
1473  if (getLangOptions().CPlusPlus) {
1474    const char* PrevSpec = 0;
1475    unsigned DiagID;
1476    // C++ [class.union]p3:
1477    //   Anonymous unions declared in a named namespace or in the
1478    //   global namespace shall be declared static.
1479    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1480        (isa<TranslationUnitDecl>(Owner) ||
1481         (isa<NamespaceDecl>(Owner) &&
1482          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1483      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1484      Invalid = true;
1485
1486      // Recover by adding 'static'.
1487      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1488                             PrevSpec, DiagID);
1489    }
1490    // C++ [class.union]p3:
1491    //   A storage class is not allowed in a declaration of an
1492    //   anonymous union in a class scope.
1493    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1494             isa<RecordDecl>(Owner)) {
1495      Diag(DS.getStorageClassSpecLoc(),
1496           diag::err_anonymous_union_with_storage_spec);
1497      Invalid = true;
1498
1499      // Recover by removing the storage specifier.
1500      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1501                             PrevSpec, DiagID);
1502    }
1503
1504    // C++ [class.union]p2:
1505    //   The member-specification of an anonymous union shall only
1506    //   define non-static data members. [Note: nested types and
1507    //   functions cannot be declared within an anonymous union. ]
1508    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1509                                 MemEnd = Record->decls_end();
1510         Mem != MemEnd; ++Mem) {
1511      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1512        // C++ [class.union]p3:
1513        //   An anonymous union shall not have private or protected
1514        //   members (clause 11).
1515        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1516          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1517            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1518          Invalid = true;
1519        }
1520      } else if ((*Mem)->isImplicit()) {
1521        // Any implicit members are fine.
1522      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1523        // This is a type that showed up in an
1524        // elaborated-type-specifier inside the anonymous struct or
1525        // union, but which actually declares a type outside of the
1526        // anonymous struct or union. It's okay.
1527      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1528        if (!MemRecord->isAnonymousStructOrUnion() &&
1529            MemRecord->getDeclName()) {
1530          // This is a nested type declaration.
1531          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1532            << (int)Record->isUnion();
1533          Invalid = true;
1534        }
1535      } else {
1536        // We have something that isn't a non-static data
1537        // member. Complain about it.
1538        unsigned DK = diag::err_anonymous_record_bad_member;
1539        if (isa<TypeDecl>(*Mem))
1540          DK = diag::err_anonymous_record_with_type;
1541        else if (isa<FunctionDecl>(*Mem))
1542          DK = diag::err_anonymous_record_with_function;
1543        else if (isa<VarDecl>(*Mem))
1544          DK = diag::err_anonymous_record_with_static;
1545        Diag((*Mem)->getLocation(), DK)
1546            << (int)Record->isUnion();
1547          Invalid = true;
1548      }
1549    }
1550  }
1551
1552  if (!Record->isUnion() && !Owner->isRecord()) {
1553    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1554      << (int)getLangOptions().CPlusPlus;
1555    Invalid = true;
1556  }
1557
1558  // Mock up a declarator.
1559  Declarator Dc(DS, Declarator::TypeNameContext);
1560  DeclaratorInfo *DInfo = 0;
1561  GetTypeForDeclarator(Dc, S, &DInfo);
1562  assert(DInfo && "couldn't build declarator info for anonymous struct/union");
1563
1564  // Create a declaration for this anonymous struct/union.
1565  NamedDecl *Anon = 0;
1566  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1567    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1568                             /*IdentifierInfo=*/0,
1569                             Context.getTypeDeclType(Record),
1570                             DInfo,
1571                             /*BitWidth=*/0, /*Mutable=*/false);
1572    Anon->setAccess(AS_public);
1573    if (getLangOptions().CPlusPlus)
1574      FieldCollector->Add(cast<FieldDecl>(Anon));
1575  } else {
1576    VarDecl::StorageClass SC;
1577    switch (DS.getStorageClassSpec()) {
1578    default: assert(0 && "Unknown storage class!");
1579    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1580    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1581    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1582    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1583    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1584    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1585    case DeclSpec::SCS_mutable:
1586      // mutable can only appear on non-static class members, so it's always
1587      // an error here
1588      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1589      Invalid = true;
1590      SC = VarDecl::None;
1591      break;
1592    }
1593
1594    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1595                           /*IdentifierInfo=*/0,
1596                           Context.getTypeDeclType(Record),
1597                           DInfo,
1598                           SC);
1599  }
1600  Anon->setImplicit();
1601
1602  // Add the anonymous struct/union object to the current
1603  // context. We'll be referencing this object when we refer to one of
1604  // its members.
1605  Owner->addDecl(Anon);
1606
1607  // Inject the members of the anonymous struct/union into the owning
1608  // context and into the identifier resolver chain for name lookup
1609  // purposes.
1610  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1611    Invalid = true;
1612
1613  // Mark this as an anonymous struct/union type. Note that we do not
1614  // do this until after we have already checked and injected the
1615  // members of this anonymous struct/union type, because otherwise
1616  // the members could be injected twice: once by DeclContext when it
1617  // builds its lookup table, and once by
1618  // InjectAnonymousStructOrUnionMembers.
1619  Record->setAnonymousStructOrUnion(true);
1620
1621  if (Invalid)
1622    Anon->setInvalidDecl();
1623
1624  return DeclPtrTy::make(Anon);
1625}
1626
1627
1628/// GetNameForDeclarator - Determine the full declaration name for the
1629/// given Declarator.
1630DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1631  return GetNameFromUnqualifiedId(D.getName());
1632}
1633
1634/// \brief Retrieves the canonicalized name from a parsed unqualified-id.
1635DeclarationName Sema::GetNameFromUnqualifiedId(UnqualifiedId &Name) {
1636  switch (Name.getKind()) {
1637    case UnqualifiedId::IK_Identifier:
1638      return DeclarationName(Name.Identifier);
1639
1640    case UnqualifiedId::IK_OperatorFunctionId:
1641      return Context.DeclarationNames.getCXXOperatorName(
1642                                                         Name.OperatorFunctionId.Operator);
1643
1644    case UnqualifiedId::IK_ConversionFunctionId: {
1645      QualType Ty = GetTypeFromParser(Name.ConversionFunctionId);
1646      if (Ty.isNull())
1647        return DeclarationName();
1648
1649      return Context.DeclarationNames.getCXXConversionFunctionName(
1650                                                                   Context.getCanonicalType(Ty));
1651    }
1652
1653    case UnqualifiedId::IK_ConstructorName: {
1654      QualType Ty = GetTypeFromParser(Name.ConstructorName);
1655      if (Ty.isNull())
1656        return DeclarationName();
1657
1658      return Context.DeclarationNames.getCXXConstructorName(
1659                                                            Context.getCanonicalType(Ty));
1660    }
1661
1662    case UnqualifiedId::IK_DestructorName: {
1663      QualType Ty = GetTypeFromParser(Name.DestructorName);
1664      if (Ty.isNull())
1665        return DeclarationName();
1666
1667      return Context.DeclarationNames.getCXXDestructorName(
1668                                                           Context.getCanonicalType(Ty));
1669    }
1670
1671    case UnqualifiedId::IK_TemplateId: {
1672      TemplateName TName
1673        = TemplateName::getFromVoidPointer(Name.TemplateId->Template);
1674      if (TemplateDecl *Template = TName.getAsTemplateDecl())
1675        return Template->getDeclName();
1676      if (OverloadedFunctionDecl *Ovl = TName.getAsOverloadedFunctionDecl())
1677        return Ovl->getDeclName();
1678
1679      return DeclarationName();
1680    }
1681  }
1682
1683  assert(false && "Unknown name kind");
1684  return DeclarationName();
1685}
1686
1687/// isNearlyMatchingFunction - Determine whether the C++ functions
1688/// Declaration and Definition are "nearly" matching. This heuristic
1689/// is used to improve diagnostics in the case where an out-of-line
1690/// function definition doesn't match any declaration within
1691/// the class or namespace.
1692static bool isNearlyMatchingFunction(ASTContext &Context,
1693                                     FunctionDecl *Declaration,
1694                                     FunctionDecl *Definition) {
1695  if (Declaration->param_size() != Definition->param_size())
1696    return false;
1697  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1698    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1699    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1700
1701    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1702    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1703    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1704      return false;
1705  }
1706
1707  return true;
1708}
1709
1710Sema::DeclPtrTy
1711Sema::HandleDeclarator(Scope *S, Declarator &D,
1712                       MultiTemplateParamsArg TemplateParamLists,
1713                       bool IsFunctionDefinition) {
1714  DeclarationName Name = GetNameForDeclarator(D);
1715
1716  // All of these full declarators require an identifier.  If it doesn't have
1717  // one, the ParsedFreeStandingDeclSpec action should be used.
1718  if (!Name) {
1719    if (!D.isInvalidType())  // Reject this if we think it is valid.
1720      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1721           diag::err_declarator_need_ident)
1722        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1723    return DeclPtrTy();
1724  }
1725
1726  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1727  // we find one that is.
1728  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1729         (S->getFlags() & Scope::TemplateParamScope) != 0)
1730    S = S->getParent();
1731
1732  // If this is an out-of-line definition of a member of a class template
1733  // or class template partial specialization, we may need to rebuild the
1734  // type specifier in the declarator. See RebuildTypeInCurrentInstantiation()
1735  // for more information.
1736  // FIXME: cope with decltype(expr) and typeof(expr) once the rebuilder can
1737  // handle expressions properly.
1738  DeclSpec &DS = const_cast<DeclSpec&>(D.getDeclSpec());
1739  if (D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid() &&
1740      isDependentScopeSpecifier(D.getCXXScopeSpec()) &&
1741      (DS.getTypeSpecType() == DeclSpec::TST_typename ||
1742       DS.getTypeSpecType() == DeclSpec::TST_typeofType ||
1743       DS.getTypeSpecType() == DeclSpec::TST_typeofExpr ||
1744       DS.getTypeSpecType() == DeclSpec::TST_decltype)) {
1745    if (DeclContext *DC = computeDeclContext(D.getCXXScopeSpec(), true)) {
1746      // FIXME: Preserve type source info.
1747      QualType T = GetTypeFromParser(DS.getTypeRep());
1748      EnterDeclaratorContext(S, DC);
1749      T = RebuildTypeInCurrentInstantiation(T, D.getIdentifierLoc(), Name);
1750      ExitDeclaratorContext(S);
1751      if (T.isNull())
1752        return DeclPtrTy();
1753      DS.UpdateTypeRep(T.getAsOpaquePtr());
1754    }
1755  }
1756
1757  DeclContext *DC;
1758  NamedDecl *PrevDecl;
1759  NamedDecl *New;
1760
1761  DeclaratorInfo *DInfo = 0;
1762  QualType R = GetTypeForDeclarator(D, S, &DInfo);
1763
1764  // See if this is a redefinition of a variable in the same scope.
1765  if (D.getCXXScopeSpec().isInvalid()) {
1766    DC = CurContext;
1767    PrevDecl = 0;
1768    D.setInvalidType();
1769  } else if (!D.getCXXScopeSpec().isSet()) {
1770    LookupNameKind NameKind = LookupOrdinaryName;
1771
1772    // If the declaration we're planning to build will be a function
1773    // or object with linkage, then look for another declaration with
1774    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1775    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1776      /* Do nothing*/;
1777    else if (R->isFunctionType()) {
1778      if (CurContext->isFunctionOrMethod() ||
1779          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1780        NameKind = LookupRedeclarationWithLinkage;
1781    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1782      NameKind = LookupRedeclarationWithLinkage;
1783    else if (CurContext->getLookupContext()->isTranslationUnit() &&
1784             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1785      NameKind = LookupRedeclarationWithLinkage;
1786
1787    DC = CurContext;
1788    LookupResult R;
1789    LookupName(R, S, Name, NameKind, true,
1790               NameKind == LookupRedeclarationWithLinkage,
1791               D.getIdentifierLoc());
1792    PrevDecl = R.getAsSingleDecl(Context);
1793  } else { // Something like "int foo::x;"
1794    DC = computeDeclContext(D.getCXXScopeSpec(), true);
1795
1796    if (!DC) {
1797      // If we could not compute the declaration context, it's because the
1798      // declaration context is dependent but does not refer to a class,
1799      // class template, or class template partial specialization. Complain
1800      // and return early, to avoid the coming semantic disaster.
1801      Diag(D.getIdentifierLoc(),
1802           diag::err_template_qualified_declarator_no_match)
1803        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
1804        << D.getCXXScopeSpec().getRange();
1805      return DeclPtrTy();
1806    }
1807
1808    if (!DC->isDependentContext() &&
1809        RequireCompleteDeclContext(D.getCXXScopeSpec()))
1810      return DeclPtrTy();
1811
1812    LookupResult Res;
1813    LookupQualifiedName(Res, DC, Name, LookupOrdinaryName, true);
1814    PrevDecl = Res.getAsSingleDecl(Context);
1815
1816    // C++ 7.3.1.2p2:
1817    // Members (including explicit specializations of templates) of a named
1818    // namespace can also be defined outside that namespace by explicit
1819    // qualification of the name being defined, provided that the entity being
1820    // defined was already declared in the namespace and the definition appears
1821    // after the point of declaration in a namespace that encloses the
1822    // declarations namespace.
1823    //
1824    // Note that we only check the context at this point. We don't yet
1825    // have enough information to make sure that PrevDecl is actually
1826    // the declaration we want to match. For example, given:
1827    //
1828    //   class X {
1829    //     void f();
1830    //     void f(float);
1831    //   };
1832    //
1833    //   void X::f(int) { } // ill-formed
1834    //
1835    // In this case, PrevDecl will point to the overload set
1836    // containing the two f's declared in X, but neither of them
1837    // matches.
1838
1839    // First check whether we named the global scope.
1840    if (isa<TranslationUnitDecl>(DC)) {
1841      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1842        << Name << D.getCXXScopeSpec().getRange();
1843    } else {
1844      DeclContext *Cur = CurContext;
1845      while (isa<LinkageSpecDecl>(Cur))
1846        Cur = Cur->getParent();
1847      if (!Cur->Encloses(DC)) {
1848        // The qualifying scope doesn't enclose the original declaration.
1849        // Emit diagnostic based on current scope.
1850        SourceLocation L = D.getIdentifierLoc();
1851        SourceRange R = D.getCXXScopeSpec().getRange();
1852        if (isa<FunctionDecl>(Cur))
1853          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1854        else
1855          Diag(L, diag::err_invalid_declarator_scope)
1856            << Name << cast<NamedDecl>(DC) << R;
1857        D.setInvalidType();
1858      }
1859    }
1860  }
1861
1862  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1863    // Maybe we will complain about the shadowed template parameter.
1864    if (!D.isInvalidType())
1865      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl))
1866        D.setInvalidType();
1867
1868    // Just pretend that we didn't see the previous declaration.
1869    PrevDecl = 0;
1870  }
1871
1872  // In C++, the previous declaration we find might be a tag type
1873  // (class or enum). In this case, the new declaration will hide the
1874  // tag type. Note that this does does not apply if we're declaring a
1875  // typedef (C++ [dcl.typedef]p4).
1876  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1877      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1878    PrevDecl = 0;
1879
1880  bool Redeclaration = false;
1881  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1882    if (TemplateParamLists.size()) {
1883      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
1884      return DeclPtrTy();
1885    }
1886
1887    New = ActOnTypedefDeclarator(S, D, DC, R, DInfo, PrevDecl, Redeclaration);
1888  } else if (R->isFunctionType()) {
1889    New = ActOnFunctionDeclarator(S, D, DC, R, DInfo, PrevDecl,
1890                                  move(TemplateParamLists),
1891                                  IsFunctionDefinition, Redeclaration);
1892  } else {
1893    New = ActOnVariableDeclarator(S, D, DC, R, DInfo, PrevDecl,
1894                                  move(TemplateParamLists),
1895                                  Redeclaration);
1896  }
1897
1898  if (New == 0)
1899    return DeclPtrTy();
1900
1901  // If this has an identifier and is not an invalid redeclaration or
1902  // function template specialization, add it to the scope stack.
1903  if (Name && !(Redeclaration && New->isInvalidDecl()) &&
1904      !(isa<FunctionDecl>(New) &&
1905        cast<FunctionDecl>(New)->isFunctionTemplateSpecialization()))
1906    PushOnScopeChains(New, S);
1907
1908  return DeclPtrTy::make(New);
1909}
1910
1911/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1912/// types into constant array types in certain situations which would otherwise
1913/// be errors (for GCC compatibility).
1914static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1915                                                    ASTContext &Context,
1916                                                    bool &SizeIsNegative) {
1917  // This method tries to turn a variable array into a constant
1918  // array even when the size isn't an ICE.  This is necessary
1919  // for compatibility with code that depends on gcc's buggy
1920  // constant expression folding, like struct {char x[(int)(char*)2];}
1921  SizeIsNegative = false;
1922
1923  QualifierCollector Qs;
1924  const Type *Ty = Qs.strip(T);
1925
1926  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
1927    QualType Pointee = PTy->getPointeeType();
1928    QualType FixedType =
1929        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1930    if (FixedType.isNull()) return FixedType;
1931    FixedType = Context.getPointerType(FixedType);
1932    return Qs.apply(FixedType);
1933  }
1934
1935  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1936  if (!VLATy)
1937    return QualType();
1938  // FIXME: We should probably handle this case
1939  if (VLATy->getElementType()->isVariablyModifiedType())
1940    return QualType();
1941
1942  Expr::EvalResult EvalResult;
1943  if (!VLATy->getSizeExpr() ||
1944      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1945      !EvalResult.Val.isInt())
1946    return QualType();
1947
1948  llvm::APSInt &Res = EvalResult.Val.getInt();
1949  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
1950    // TODO: preserve the size expression in declarator info
1951    return Context.getConstantArrayType(VLATy->getElementType(),
1952                                        Res, ArrayType::Normal, 0);
1953  }
1954
1955  SizeIsNegative = true;
1956  return QualType();
1957}
1958
1959/// \brief Register the given locally-scoped external C declaration so
1960/// that it can be found later for redeclarations
1961void
1962Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1963                                       Scope *S) {
1964  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1965         "Decl is not a locally-scoped decl!");
1966  // Note that we have a locally-scoped external with this name.
1967  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1968
1969  if (!PrevDecl)
1970    return;
1971
1972  // If there was a previous declaration of this variable, it may be
1973  // in our identifier chain. Update the identifier chain with the new
1974  // declaration.
1975  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
1976    // The previous declaration was found on the identifer resolver
1977    // chain, so remove it from its scope.
1978    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
1979      S = S->getParent();
1980
1981    if (S)
1982      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
1983  }
1984}
1985
1986/// \brief Diagnose function specifiers on a declaration of an identifier that
1987/// does not identify a function.
1988void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
1989  // FIXME: We should probably indicate the identifier in question to avoid
1990  // confusion for constructs like "inline int a(), b;"
1991  if (D.getDeclSpec().isInlineSpecified())
1992    Diag(D.getDeclSpec().getInlineSpecLoc(),
1993         diag::err_inline_non_function);
1994
1995  if (D.getDeclSpec().isVirtualSpecified())
1996    Diag(D.getDeclSpec().getVirtualSpecLoc(),
1997         diag::err_virtual_non_function);
1998
1999  if (D.getDeclSpec().isExplicitSpecified())
2000    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2001         diag::err_explicit_non_function);
2002}
2003
2004NamedDecl*
2005Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2006                             QualType R,  DeclaratorInfo *DInfo,
2007                             NamedDecl* PrevDecl, bool &Redeclaration) {
2008  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2009  if (D.getCXXScopeSpec().isSet()) {
2010    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2011      << D.getCXXScopeSpec().getRange();
2012    D.setInvalidType();
2013    // Pretend we didn't see the scope specifier.
2014    DC = 0;
2015  }
2016
2017  if (getLangOptions().CPlusPlus) {
2018    // Check that there are no default arguments (C++ only).
2019    CheckExtraCXXDefaultArguments(D);
2020  }
2021
2022  DiagnoseFunctionSpecifiers(D);
2023
2024  if (D.getDeclSpec().isThreadSpecified())
2025    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2026
2027  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, DInfo);
2028  if (!NewTD) return 0;
2029
2030  // Handle attributes prior to checking for duplicates in MergeVarDecl
2031  ProcessDeclAttributes(S, NewTD, D);
2032  // Merge the decl with the existing one if appropriate. If the decl is
2033  // in an outer scope, it isn't the same thing.
2034  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
2035    Redeclaration = true;
2036    MergeTypeDefDecl(NewTD, PrevDecl);
2037  }
2038
2039  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2040  // then it shall have block scope.
2041  QualType T = NewTD->getUnderlyingType();
2042  if (T->isVariablyModifiedType()) {
2043    CurFunctionNeedsScopeChecking = true;
2044
2045    if (S->getFnParent() == 0) {
2046      bool SizeIsNegative;
2047      QualType FixedTy =
2048          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2049      if (!FixedTy.isNull()) {
2050        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2051        NewTD->setTypeDeclaratorInfo(Context.getTrivialDeclaratorInfo(FixedTy));
2052      } else {
2053        if (SizeIsNegative)
2054          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2055        else if (T->isVariableArrayType())
2056          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2057        else
2058          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2059        NewTD->setInvalidDecl();
2060      }
2061    }
2062  }
2063
2064  // If this is the C FILE type, notify the AST context.
2065  if (IdentifierInfo *II = NewTD->getIdentifier())
2066    if (!NewTD->isInvalidDecl() &&
2067        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
2068      if (II->isStr("FILE"))
2069        Context.setFILEDecl(NewTD);
2070      else if (II->isStr("jmp_buf"))
2071        Context.setjmp_bufDecl(NewTD);
2072      else if (II->isStr("sigjmp_buf"))
2073        Context.setsigjmp_bufDecl(NewTD);
2074    }
2075
2076  return NewTD;
2077}
2078
2079/// \brief Determines whether the given declaration is an out-of-scope
2080/// previous declaration.
2081///
2082/// This routine should be invoked when name lookup has found a
2083/// previous declaration (PrevDecl) that is not in the scope where a
2084/// new declaration by the same name is being introduced. If the new
2085/// declaration occurs in a local scope, previous declarations with
2086/// linkage may still be considered previous declarations (C99
2087/// 6.2.2p4-5, C++ [basic.link]p6).
2088///
2089/// \param PrevDecl the previous declaration found by name
2090/// lookup
2091///
2092/// \param DC the context in which the new declaration is being
2093/// declared.
2094///
2095/// \returns true if PrevDecl is an out-of-scope previous declaration
2096/// for a new delcaration with the same name.
2097static bool
2098isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2099                                ASTContext &Context) {
2100  if (!PrevDecl)
2101    return 0;
2102
2103  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
2104  // case we need to check each of the overloaded functions.
2105  if (!PrevDecl->hasLinkage())
2106    return false;
2107
2108  if (Context.getLangOptions().CPlusPlus) {
2109    // C++ [basic.link]p6:
2110    //   If there is a visible declaration of an entity with linkage
2111    //   having the same name and type, ignoring entities declared
2112    //   outside the innermost enclosing namespace scope, the block
2113    //   scope declaration declares that same entity and receives the
2114    //   linkage of the previous declaration.
2115    DeclContext *OuterContext = DC->getLookupContext();
2116    if (!OuterContext->isFunctionOrMethod())
2117      // This rule only applies to block-scope declarations.
2118      return false;
2119    else {
2120      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2121      if (PrevOuterContext->isRecord())
2122        // We found a member function: ignore it.
2123        return false;
2124      else {
2125        // Find the innermost enclosing namespace for the new and
2126        // previous declarations.
2127        while (!OuterContext->isFileContext())
2128          OuterContext = OuterContext->getParent();
2129        while (!PrevOuterContext->isFileContext())
2130          PrevOuterContext = PrevOuterContext->getParent();
2131
2132        // The previous declaration is in a different namespace, so it
2133        // isn't the same function.
2134        if (OuterContext->getPrimaryContext() !=
2135            PrevOuterContext->getPrimaryContext())
2136          return false;
2137      }
2138    }
2139  }
2140
2141  return true;
2142}
2143
2144NamedDecl*
2145Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2146                              QualType R, DeclaratorInfo *DInfo,
2147                              NamedDecl* PrevDecl,
2148                              MultiTemplateParamsArg TemplateParamLists,
2149                              bool &Redeclaration) {
2150  DeclarationName Name = GetNameForDeclarator(D);
2151
2152  // Check that there are no default arguments (C++ only).
2153  if (getLangOptions().CPlusPlus)
2154    CheckExtraCXXDefaultArguments(D);
2155
2156  VarDecl *NewVD;
2157  VarDecl::StorageClass SC;
2158  switch (D.getDeclSpec().getStorageClassSpec()) {
2159  default: assert(0 && "Unknown storage class!");
2160  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
2161  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
2162  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
2163  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
2164  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
2165  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
2166  case DeclSpec::SCS_mutable:
2167    // mutable can only appear on non-static class members, so it's always
2168    // an error here
2169    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2170    D.setInvalidType();
2171    SC = VarDecl::None;
2172    break;
2173  }
2174
2175  IdentifierInfo *II = Name.getAsIdentifierInfo();
2176  if (!II) {
2177    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2178      << Name.getAsString();
2179    return 0;
2180  }
2181
2182  DiagnoseFunctionSpecifiers(D);
2183
2184  if (!DC->isRecord() && S->getFnParent() == 0) {
2185    // C99 6.9p2: The storage-class specifiers auto and register shall not
2186    // appear in the declaration specifiers in an external declaration.
2187    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2188
2189      // If this is a register variable with an asm label specified, then this
2190      // is a GNU extension.
2191      if (SC == VarDecl::Register && D.getAsmLabel())
2192        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2193      else
2194        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2195      D.setInvalidType();
2196    }
2197  }
2198  if (DC->isRecord() && !CurContext->isRecord()) {
2199    // This is an out-of-line definition of a static data member.
2200    if (SC == VarDecl::Static) {
2201      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2202           diag::err_static_out_of_line)
2203        << CodeModificationHint::CreateRemoval(
2204                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2205    } else if (SC == VarDecl::None)
2206      SC = VarDecl::Static;
2207  }
2208  if (SC == VarDecl::Static) {
2209    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2210      if (RD->isLocalClass())
2211        Diag(D.getIdentifierLoc(),
2212             diag::err_static_data_member_not_allowed_in_local_class)
2213          << Name << RD->getDeclName();
2214    }
2215  }
2216
2217  // Match up the template parameter lists with the scope specifier, then
2218  // determine whether we have a template or a template specialization.
2219  bool isExplicitSpecialization = false;
2220  if (TemplateParameterList *TemplateParams
2221        = MatchTemplateParametersToScopeSpecifier(
2222                                  D.getDeclSpec().getSourceRange().getBegin(),
2223                                                  D.getCXXScopeSpec(),
2224                        (TemplateParameterList**)TemplateParamLists.get(),
2225                                                   TemplateParamLists.size(),
2226                                                  isExplicitSpecialization)) {
2227    if (TemplateParams->size() > 0) {
2228      // There is no such thing as a variable template.
2229      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2230        << II
2231        << SourceRange(TemplateParams->getTemplateLoc(),
2232                       TemplateParams->getRAngleLoc());
2233      return 0;
2234    } else {
2235      // There is an extraneous 'template<>' for this variable. Complain
2236      // about it, but allow the declaration of the variable.
2237      Diag(TemplateParams->getTemplateLoc(),
2238           diag::err_template_variable_noparams)
2239        << II
2240        << SourceRange(TemplateParams->getTemplateLoc(),
2241                       TemplateParams->getRAngleLoc());
2242
2243      isExplicitSpecialization = true;
2244    }
2245  }
2246
2247  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2248                          II, R, DInfo, SC);
2249
2250  if (D.isInvalidType())
2251    NewVD->setInvalidDecl();
2252
2253  if (D.getDeclSpec().isThreadSpecified()) {
2254    if (NewVD->hasLocalStorage())
2255      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2256    else if (!Context.Target.isTLSSupported())
2257      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2258    else
2259      NewVD->setThreadSpecified(true);
2260  }
2261
2262  // Set the lexical context. If the declarator has a C++ scope specifier, the
2263  // lexical context will be different from the semantic context.
2264  NewVD->setLexicalDeclContext(CurContext);
2265
2266  // Handle attributes prior to checking for duplicates in MergeVarDecl
2267  ProcessDeclAttributes(S, NewVD, D);
2268
2269  // Handle GNU asm-label extension (encoded as an attribute).
2270  if (Expr *E = (Expr*) D.getAsmLabel()) {
2271    // The parser guarantees this is a string.
2272    StringLiteral *SE = cast<StringLiteral>(E);
2273    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2274                                                        SE->getByteLength())));
2275  }
2276
2277  // If name lookup finds a previous declaration that is not in the
2278  // same scope as the new declaration, this may still be an
2279  // acceptable redeclaration.
2280  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2281      !(NewVD->hasLinkage() &&
2282        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2283    PrevDecl = 0;
2284
2285  // Merge the decl with the existing one if appropriate.
2286  if (PrevDecl) {
2287    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
2288      // The user tried to define a non-static data member
2289      // out-of-line (C++ [dcl.meaning]p1).
2290      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2291        << D.getCXXScopeSpec().getRange();
2292      PrevDecl = 0;
2293      NewVD->setInvalidDecl();
2294    }
2295  } else if (D.getCXXScopeSpec().isSet()) {
2296    // No previous declaration in the qualifying scope.
2297    Diag(D.getIdentifierLoc(), diag::err_no_member)
2298      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2299      << D.getCXXScopeSpec().getRange();
2300    NewVD->setInvalidDecl();
2301  }
2302
2303  CheckVariableDeclaration(NewVD, PrevDecl, Redeclaration);
2304
2305  // This is an explicit specialization of a static data member. Check it.
2306  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2307      CheckMemberSpecialization(NewVD, PrevDecl))
2308    NewVD->setInvalidDecl();
2309
2310  // attributes declared post-definition are currently ignored
2311  if (PrevDecl) {
2312    const VarDecl *Def = 0, *PrevVD = dyn_cast<VarDecl>(PrevDecl);
2313    if (PrevVD->getDefinition(Def) && D.hasAttributes()) {
2314      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2315      Diag(Def->getLocation(), diag::note_previous_definition);
2316    }
2317  }
2318
2319  // If this is a locally-scoped extern C variable, update the map of
2320  // such variables.
2321  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2322      !NewVD->isInvalidDecl())
2323    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
2324
2325  return NewVD;
2326}
2327
2328/// \brief Perform semantic checking on a newly-created variable
2329/// declaration.
2330///
2331/// This routine performs all of the type-checking required for a
2332/// variable declaration once it has been built. It is used both to
2333/// check variables after they have been parsed and their declarators
2334/// have been translated into a declaration, and to check variables
2335/// that have been instantiated from a template.
2336///
2337/// Sets NewVD->isInvalidDecl() if an error was encountered.
2338void Sema::CheckVariableDeclaration(VarDecl *NewVD, NamedDecl *PrevDecl,
2339                                    bool &Redeclaration) {
2340  // If the decl is already known invalid, don't check it.
2341  if (NewVD->isInvalidDecl())
2342    return;
2343
2344  QualType T = NewVD->getType();
2345
2346  if (T->isObjCInterfaceType()) {
2347    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2348    return NewVD->setInvalidDecl();
2349  }
2350
2351  // The variable can not have an abstract class type.
2352  if (RequireNonAbstractType(NewVD->getLocation(), T,
2353                             diag::err_abstract_type_in_decl,
2354                             AbstractVariableType))
2355    return NewVD->setInvalidDecl();
2356
2357  // Emit an error if an address space was applied to decl with local storage.
2358  // This includes arrays of objects with address space qualifiers, but not
2359  // automatic variables that point to other address spaces.
2360  // ISO/IEC TR 18037 S5.1.2
2361  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2362    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2363    return NewVD->setInvalidDecl();
2364  }
2365
2366  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2367      && !NewVD->hasAttr<BlocksAttr>())
2368    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2369
2370  bool isVM = T->isVariablyModifiedType();
2371  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2372      NewVD->hasAttr<BlocksAttr>())
2373    CurFunctionNeedsScopeChecking = true;
2374
2375  if ((isVM && NewVD->hasLinkage()) ||
2376      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2377    bool SizeIsNegative;
2378    QualType FixedTy =
2379        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2380
2381    if (FixedTy.isNull() && T->isVariableArrayType()) {
2382      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2383      // FIXME: This won't give the correct result for
2384      // int a[10][n];
2385      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2386
2387      if (NewVD->isFileVarDecl())
2388        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2389        << SizeRange;
2390      else if (NewVD->getStorageClass() == VarDecl::Static)
2391        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2392        << SizeRange;
2393      else
2394        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2395        << SizeRange;
2396      return NewVD->setInvalidDecl();
2397    }
2398
2399    if (FixedTy.isNull()) {
2400      if (NewVD->isFileVarDecl())
2401        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2402      else
2403        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2404      return NewVD->setInvalidDecl();
2405    }
2406
2407    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2408    NewVD->setType(FixedTy);
2409  }
2410
2411  if (!PrevDecl && NewVD->isExternC()) {
2412    // Since we did not find anything by this name and we're declaring
2413    // an extern "C" variable, look for a non-visible extern "C"
2414    // declaration with the same name.
2415    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2416      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2417    if (Pos != LocallyScopedExternalDecls.end())
2418      PrevDecl = Pos->second;
2419  }
2420
2421  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2422    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2423      << T;
2424    return NewVD->setInvalidDecl();
2425  }
2426
2427  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2428    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2429    return NewVD->setInvalidDecl();
2430  }
2431
2432  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2433    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2434    return NewVD->setInvalidDecl();
2435  }
2436
2437  if (PrevDecl) {
2438    Redeclaration = true;
2439    MergeVarDecl(NewVD, PrevDecl);
2440  }
2441}
2442
2443static bool isUsingDecl(Decl *D) {
2444  return isa<UsingDecl>(D) || isa<UnresolvedUsingDecl>(D);
2445}
2446
2447/// \brief Data used with FindOverriddenMethod
2448struct FindOverriddenMethodData {
2449  Sema *S;
2450  CXXMethodDecl *Method;
2451};
2452
2453/// \brief Member lookup function that determines whether a given C++
2454/// method overrides a method in a base class, to be used with
2455/// CXXRecordDecl::lookupInBases().
2456static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
2457                                 CXXBasePath &Path,
2458                                 void *UserData) {
2459  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
2460
2461  FindOverriddenMethodData *Data
2462    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
2463  for (Path.Decls = BaseRecord->lookup(Data->Method->getDeclName());
2464       Path.Decls.first != Path.Decls.second;
2465       ++Path.Decls.first) {
2466    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*Path.Decls.first)) {
2467      OverloadedFunctionDecl::function_iterator MatchedDecl;
2468      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, MatchedDecl))
2469        return true;
2470    }
2471  }
2472
2473  return false;
2474}
2475
2476NamedDecl*
2477Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2478                              QualType R, DeclaratorInfo *DInfo,
2479                              NamedDecl* PrevDecl,
2480                              MultiTemplateParamsArg TemplateParamLists,
2481                              bool IsFunctionDefinition, bool &Redeclaration) {
2482  assert(R.getTypePtr()->isFunctionType());
2483
2484  DeclarationName Name = GetNameForDeclarator(D);
2485  FunctionDecl::StorageClass SC = FunctionDecl::None;
2486  switch (D.getDeclSpec().getStorageClassSpec()) {
2487  default: assert(0 && "Unknown storage class!");
2488  case DeclSpec::SCS_auto:
2489  case DeclSpec::SCS_register:
2490  case DeclSpec::SCS_mutable:
2491    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2492         diag::err_typecheck_sclass_func);
2493    D.setInvalidType();
2494    break;
2495  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2496  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2497  case DeclSpec::SCS_static: {
2498    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2499      // C99 6.7.1p5:
2500      //   The declaration of an identifier for a function that has
2501      //   block scope shall have no explicit storage-class specifier
2502      //   other than extern
2503      // See also (C++ [dcl.stc]p4).
2504      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2505           diag::err_static_block_func);
2506      SC = FunctionDecl::None;
2507    } else
2508      SC = FunctionDecl::Static;
2509    break;
2510  }
2511  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2512  }
2513
2514  if (D.getDeclSpec().isThreadSpecified())
2515    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2516
2517  bool isFriend = D.getDeclSpec().isFriendSpecified();
2518  bool isInline = D.getDeclSpec().isInlineSpecified();
2519  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2520  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2521
2522  // Check that the return type is not an abstract class type.
2523  // For record types, this is done by the AbstractClassUsageDiagnoser once
2524  // the class has been completely parsed.
2525  if (!DC->isRecord() &&
2526      RequireNonAbstractType(D.getIdentifierLoc(),
2527                             R->getAs<FunctionType>()->getResultType(),
2528                             diag::err_abstract_type_in_decl,
2529                             AbstractReturnType))
2530    D.setInvalidType();
2531
2532  // Do not allow returning a objc interface by-value.
2533  if (R->getAs<FunctionType>()->getResultType()->isObjCInterfaceType()) {
2534    Diag(D.getIdentifierLoc(),
2535         diag::err_object_cannot_be_passed_returned_by_value) << 0
2536      << R->getAs<FunctionType>()->getResultType();
2537    D.setInvalidType();
2538  }
2539
2540  bool isVirtualOkay = false;
2541  FunctionDecl *NewFD;
2542
2543  if (isFriend) {
2544    // DC is the namespace in which the function is being declared.
2545    assert((DC->isFileContext() || PrevDecl) && "previously-undeclared "
2546           "friend function being created in a non-namespace context");
2547
2548    // C++ [class.friend]p5
2549    //   A function can be defined in a friend declaration of a
2550    //   class . . . . Such a function is implicitly inline.
2551    isInline |= IsFunctionDefinition;
2552  }
2553
2554  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
2555    // This is a C++ constructor declaration.
2556    assert(DC->isRecord() &&
2557           "Constructors can only be declared in a member context");
2558
2559    R = CheckConstructorDeclarator(D, R, SC);
2560
2561    // Create the new declaration
2562    NewFD = CXXConstructorDecl::Create(Context,
2563                                       cast<CXXRecordDecl>(DC),
2564                                       D.getIdentifierLoc(), Name, R, DInfo,
2565                                       isExplicit, isInline,
2566                                       /*isImplicitlyDeclared=*/false);
2567  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2568    // This is a C++ destructor declaration.
2569    if (DC->isRecord()) {
2570      R = CheckDestructorDeclarator(D, SC);
2571
2572      NewFD = CXXDestructorDecl::Create(Context,
2573                                        cast<CXXRecordDecl>(DC),
2574                                        D.getIdentifierLoc(), Name, R,
2575                                        isInline,
2576                                        /*isImplicitlyDeclared=*/false);
2577
2578      isVirtualOkay = true;
2579    } else {
2580      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2581
2582      // Create a FunctionDecl to satisfy the function definition parsing
2583      // code path.
2584      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2585                                   Name, R, DInfo, SC, isInline,
2586                                   /*hasPrototype=*/true);
2587      D.setInvalidType();
2588    }
2589  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
2590    if (!DC->isRecord()) {
2591      Diag(D.getIdentifierLoc(),
2592           diag::err_conv_function_not_member);
2593      return 0;
2594    }
2595
2596    CheckConversionDeclarator(D, R, SC);
2597    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2598                                      D.getIdentifierLoc(), Name, R, DInfo,
2599                                      isInline, isExplicit);
2600
2601    isVirtualOkay = true;
2602  } else if (DC->isRecord()) {
2603    // If the of the function is the same as the name of the record, then this
2604    // must be an invalid constructor that has a return type.
2605    // (The parser checks for a return type and makes the declarator a
2606    // constructor if it has no return type).
2607    // must have an invalid constructor that has a return type
2608    if (Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2609      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2610        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2611        << SourceRange(D.getIdentifierLoc());
2612      return 0;
2613    }
2614
2615    // This is a C++ method declaration.
2616    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2617                                  D.getIdentifierLoc(), Name, R, DInfo,
2618                                  (SC == FunctionDecl::Static), isInline);
2619
2620    isVirtualOkay = (SC != FunctionDecl::Static);
2621  } else {
2622    // Determine whether the function was written with a
2623    // prototype. This true when:
2624    //   - we're in C++ (where every function has a prototype),
2625    //   - there is a prototype in the declarator, or
2626    //   - the type R of the function is some kind of typedef or other reference
2627    //     to a type name (which eventually refers to a function type).
2628    bool HasPrototype =
2629       getLangOptions().CPlusPlus ||
2630       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2631       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2632
2633    NewFD = FunctionDecl::Create(Context, DC,
2634                                 D.getIdentifierLoc(),
2635                                 Name, R, DInfo, SC, isInline, HasPrototype);
2636  }
2637
2638  if (D.isInvalidType())
2639    NewFD->setInvalidDecl();
2640
2641  // Set the lexical context. If the declarator has a C++
2642  // scope specifier, or is the object of a friend declaration, the
2643  // lexical context will be different from the semantic context.
2644  NewFD->setLexicalDeclContext(CurContext);
2645
2646  // Match up the template parameter lists with the scope specifier, then
2647  // determine whether we have a template or a template specialization.
2648  FunctionTemplateDecl *FunctionTemplate = 0;
2649  bool isExplicitSpecialization = false;
2650  bool isFunctionTemplateSpecialization = false;
2651  if (TemplateParameterList *TemplateParams
2652        = MatchTemplateParametersToScopeSpecifier(
2653                                  D.getDeclSpec().getSourceRange().getBegin(),
2654                                  D.getCXXScopeSpec(),
2655                           (TemplateParameterList**)TemplateParamLists.get(),
2656                                                  TemplateParamLists.size(),
2657                                                  isExplicitSpecialization)) {
2658    if (TemplateParams->size() > 0) {
2659      // This is a function template
2660
2661      // Check that we can declare a template here.
2662      if (CheckTemplateDeclScope(S, TemplateParams))
2663        return 0;
2664
2665      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
2666                                                      NewFD->getLocation(),
2667                                                      Name, TemplateParams,
2668                                                      NewFD);
2669      FunctionTemplate->setLexicalDeclContext(CurContext);
2670      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
2671    } else {
2672      // This is a function template specialization.
2673      isFunctionTemplateSpecialization = true;
2674    }
2675
2676    // FIXME: Free this memory properly.
2677    TemplateParamLists.release();
2678  }
2679
2680  // C++ [dcl.fct.spec]p5:
2681  //   The virtual specifier shall only be used in declarations of
2682  //   nonstatic class member functions that appear within a
2683  //   member-specification of a class declaration; see 10.3.
2684  //
2685  if (isVirtual && !NewFD->isInvalidDecl()) {
2686    if (!isVirtualOkay) {
2687       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2688           diag::err_virtual_non_function);
2689    } else if (!CurContext->isRecord()) {
2690      // 'virtual' was specified outside of the class.
2691      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2692        << CodeModificationHint::CreateRemoval(
2693                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
2694    } else {
2695      // Okay: Add virtual to the method.
2696      cast<CXXMethodDecl>(NewFD)->setVirtualAsWritten(true);
2697      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2698      CurClass->setAggregate(false);
2699      CurClass->setPOD(false);
2700      CurClass->setEmpty(false);
2701      CurClass->setPolymorphic(true);
2702      CurClass->setHasTrivialConstructor(false);
2703      CurClass->setHasTrivialCopyConstructor(false);
2704      CurClass->setHasTrivialCopyAssignment(false);
2705    }
2706  }
2707
2708  if (isFriend) {
2709    if (FunctionTemplate) {
2710      FunctionTemplate->setObjectOfFriendDecl(
2711                                   /* PreviouslyDeclared= */ PrevDecl != NULL);
2712      FunctionTemplate->setAccess(AS_public);
2713    }
2714    else
2715      NewFD->setObjectOfFriendDecl(/* PreviouslyDeclared= */ PrevDecl != NULL);
2716
2717    NewFD->setAccess(AS_public);
2718  }
2719
2720
2721  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD)) {
2722    // Look for virtual methods in base classes that this method might override.
2723    CXXBasePaths Paths;
2724    FindOverriddenMethodData Data;
2725    Data.Method = NewMD;
2726    Data.S = this;
2727    if (cast<CXXRecordDecl>(DC)->lookupInBases(&FindOverriddenMethod, &Data,
2728                                                Paths)) {
2729      for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
2730           E = Paths.found_decls_end(); I != E; ++I) {
2731        if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2732          if (!CheckOverridingFunctionReturnType(NewMD, OldMD) &&
2733              !CheckOverridingFunctionExceptionSpec(NewMD, OldMD))
2734            NewMD->addOverriddenMethod(OldMD);
2735        }
2736      }
2737    }
2738  }
2739
2740  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2741      !CurContext->isRecord()) {
2742    // C++ [class.static]p1:
2743    //   A data or function member of a class may be declared static
2744    //   in a class definition, in which case it is a static member of
2745    //   the class.
2746
2747    // Complain about the 'static' specifier if it's on an out-of-line
2748    // member function definition.
2749    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2750         diag::err_static_out_of_line)
2751      << CodeModificationHint::CreateRemoval(
2752                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2753  }
2754
2755  // Handle GNU asm-label extension (encoded as an attribute).
2756  if (Expr *E = (Expr*) D.getAsmLabel()) {
2757    // The parser guarantees this is a string.
2758    StringLiteral *SE = cast<StringLiteral>(E);
2759    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2760                                                        SE->getByteLength())));
2761  }
2762
2763  // Copy the parameter declarations from the declarator D to the function
2764  // declaration NewFD, if they are available.  First scavenge them into Params.
2765  llvm::SmallVector<ParmVarDecl*, 16> Params;
2766  if (D.getNumTypeObjects() > 0) {
2767    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2768
2769    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2770    // function that takes no arguments, not a function that takes a
2771    // single void argument.
2772    // We let through "const void" here because Sema::GetTypeForDeclarator
2773    // already checks for that case.
2774    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2775        FTI.ArgInfo[0].Param &&
2776        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2777      // Empty arg list, don't push any params.
2778      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2779
2780      // In C++, the empty parameter-type-list must be spelled "void"; a
2781      // typedef of void is not permitted.
2782      if (getLangOptions().CPlusPlus &&
2783          Param->getType().getUnqualifiedType() != Context.VoidTy)
2784        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2785      // FIXME: Leaks decl?
2786    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2787      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2788        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
2789        assert(Param->getDeclContext() != NewFD && "Was set before ?");
2790        Param->setDeclContext(NewFD);
2791        Params.push_back(Param);
2792      }
2793    }
2794
2795  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
2796    // When we're declaring a function with a typedef, typeof, etc as in the
2797    // following example, we'll need to synthesize (unnamed)
2798    // parameters for use in the declaration.
2799    //
2800    // @code
2801    // typedef void fn(int);
2802    // fn f;
2803    // @endcode
2804
2805    // Synthesize a parameter for each argument type.
2806    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2807         AE = FT->arg_type_end(); AI != AE; ++AI) {
2808      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2809                                               SourceLocation(), 0,
2810                                               *AI, /*DInfo=*/0,
2811                                               VarDecl::None, 0);
2812      Param->setImplicit();
2813      Params.push_back(Param);
2814    }
2815  } else {
2816    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
2817           "Should not need args for typedef of non-prototype fn");
2818  }
2819  // Finally, we know we have the right number of parameters, install them.
2820  NewFD->setParams(Context, Params.data(), Params.size());
2821
2822  // If name lookup finds a previous declaration that is not in the
2823  // same scope as the new declaration, this may still be an
2824  // acceptable redeclaration.
2825  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2826      !(NewFD->hasLinkage() &&
2827        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2828    PrevDecl = 0;
2829
2830  // If the declarator is a template-id, translate the parser's template
2831  // argument list into our AST format.
2832  bool HasExplicitTemplateArgs = false;
2833  llvm::SmallVector<TemplateArgumentLoc, 16> TemplateArgs;
2834  SourceLocation LAngleLoc, RAngleLoc;
2835  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
2836    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
2837    ASTTemplateArgsPtr TemplateArgsPtr(*this,
2838                                       TemplateId->getTemplateArgs(),
2839                                       TemplateId->NumArgs);
2840    translateTemplateArguments(TemplateArgsPtr,
2841                               TemplateArgs);
2842    TemplateArgsPtr.release();
2843
2844    HasExplicitTemplateArgs = true;
2845    LAngleLoc = TemplateId->LAngleLoc;
2846    RAngleLoc = TemplateId->RAngleLoc;
2847
2848    if (FunctionTemplate) {
2849      // FIXME: Diagnose function template with explicit template
2850      // arguments.
2851      HasExplicitTemplateArgs = false;
2852    } else if (!isFunctionTemplateSpecialization &&
2853               !D.getDeclSpec().isFriendSpecified()) {
2854      // We have encountered something that the user meant to be a
2855      // specialization (because it has explicitly-specified template
2856      // arguments) but that was not introduced with a "template<>" (or had
2857      // too few of them).
2858      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
2859        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
2860        << CodeModificationHint::CreateInsertion(
2861                                   D.getDeclSpec().getSourceRange().getBegin(),
2862                                                 "template<> ");
2863      isFunctionTemplateSpecialization = true;
2864    }
2865  }
2866
2867  if (isFunctionTemplateSpecialization) {
2868      if (CheckFunctionTemplateSpecialization(NewFD, HasExplicitTemplateArgs,
2869                                              LAngleLoc, TemplateArgs.data(),
2870                                              TemplateArgs.size(), RAngleLoc,
2871                                              PrevDecl))
2872        NewFD->setInvalidDecl();
2873  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD) &&
2874             CheckMemberSpecialization(NewFD, PrevDecl))
2875    NewFD->setInvalidDecl();
2876
2877  // Perform semantic checking on the function declaration.
2878  bool OverloadableAttrRequired = false; // FIXME: HACK!
2879  CheckFunctionDeclaration(NewFD, PrevDecl, isExplicitSpecialization,
2880                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
2881
2882  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
2883    // An out-of-line member function declaration must also be a
2884    // definition (C++ [dcl.meaning]p1).
2885    // Note that this is not the case for explicit specializations of
2886    // function templates or member functions of class templates, per
2887    // C++ [temp.expl.spec]p2.
2888    if (!IsFunctionDefinition && !isFriend &&
2889        !isFunctionTemplateSpecialization && !isExplicitSpecialization) {
2890      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2891        << D.getCXXScopeSpec().getRange();
2892      NewFD->setInvalidDecl();
2893    } else if (!Redeclaration && (!PrevDecl || !isUsingDecl(PrevDecl))) {
2894      // The user tried to provide an out-of-line definition for a
2895      // function that is a member of a class or namespace, but there
2896      // was no such member function declared (C++ [class.mfct]p2,
2897      // C++ [namespace.memdef]p2). For example:
2898      //
2899      // class X {
2900      //   void f() const;
2901      // };
2902      //
2903      // void X::f() { } // ill-formed
2904      //
2905      // Complain about this problem, and attempt to suggest close
2906      // matches (e.g., those that differ only in cv-qualifiers and
2907      // whether the parameter types are references).
2908      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2909        << Name << DC << D.getCXXScopeSpec().getRange();
2910      NewFD->setInvalidDecl();
2911
2912      LookupResult Prev;
2913      LookupQualifiedName(Prev, DC, Name, LookupOrdinaryName, true);
2914      assert(!Prev.isAmbiguous() &&
2915             "Cannot have an ambiguity in previous-declaration lookup");
2916      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2917           Func != FuncEnd; ++Func) {
2918        if (isa<FunctionDecl>(*Func) &&
2919            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2920          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2921      }
2922
2923      PrevDecl = 0;
2924    }
2925  }
2926
2927  // Handle attributes. We need to have merged decls when handling attributes
2928  // (for example to check for conflicts, etc).
2929  // FIXME: This needs to happen before we merge declarations. Then,
2930  // let attribute merging cope with attribute conflicts.
2931  ProcessDeclAttributes(S, NewFD, D);
2932
2933  // attributes declared post-definition are currently ignored
2934  if (Redeclaration && PrevDecl) {
2935    const FunctionDecl *Def, *PrevFD = dyn_cast<FunctionDecl>(PrevDecl);
2936    if (PrevFD && PrevFD->getBody(Def) && D.hasAttributes()) {
2937      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
2938      Diag(Def->getLocation(), diag::note_previous_definition);
2939    }
2940  }
2941
2942  AddKnownFunctionAttributes(NewFD);
2943
2944  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2945    // If a function name is overloadable in C, then every function
2946    // with that name must be marked "overloadable".
2947    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2948      << Redeclaration << NewFD;
2949    if (PrevDecl)
2950      Diag(PrevDecl->getLocation(),
2951           diag::note_attribute_overloadable_prev_overload);
2952    NewFD->addAttr(::new (Context) OverloadableAttr());
2953  }
2954
2955  // If this is a locally-scoped extern C function, update the
2956  // map of such names.
2957  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
2958      && !NewFD->isInvalidDecl())
2959    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2960
2961  // Set this FunctionDecl's range up to the right paren.
2962  NewFD->setLocEnd(D.getSourceRange().getEnd());
2963
2964  if (FunctionTemplate && NewFD->isInvalidDecl())
2965    FunctionTemplate->setInvalidDecl();
2966
2967  if (FunctionTemplate)
2968    return FunctionTemplate;
2969
2970  return NewFD;
2971}
2972
2973/// \brief Perform semantic checking of a new function declaration.
2974///
2975/// Performs semantic analysis of the new function declaration
2976/// NewFD. This routine performs all semantic checking that does not
2977/// require the actual declarator involved in the declaration, and is
2978/// used both for the declaration of functions as they are parsed
2979/// (called via ActOnDeclarator) and for the declaration of functions
2980/// that have been instantiated via C++ template instantiation (called
2981/// via InstantiateDecl).
2982///
2983/// \param IsExplicitSpecialiation whether this new function declaration is
2984/// an explicit specialization of the previous declaration.
2985///
2986/// This sets NewFD->isInvalidDecl() to true if there was an error.
2987void Sema::CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl,
2988                                    bool IsExplicitSpecialization,
2989                                    bool &Redeclaration,
2990                                    bool &OverloadableAttrRequired) {
2991  // If NewFD is already known erroneous, don't do any of this checking.
2992  if (NewFD->isInvalidDecl())
2993    return;
2994
2995  if (NewFD->getResultType()->isVariablyModifiedType()) {
2996    // Functions returning a variably modified type violate C99 6.7.5.2p2
2997    // because all functions have linkage.
2998    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
2999    return NewFD->setInvalidDecl();
3000  }
3001
3002  if (NewFD->isMain())
3003    CheckMain(NewFD);
3004
3005  // Check for a previous declaration of this name.
3006  if (!PrevDecl && NewFD->isExternC()) {
3007    // Since we did not find anything by this name and we're declaring
3008    // an extern "C" function, look for a non-visible extern "C"
3009    // declaration with the same name.
3010    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3011      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
3012    if (Pos != LocallyScopedExternalDecls.end())
3013      PrevDecl = Pos->second;
3014  }
3015
3016  // Merge or overload the declaration with an existing declaration of
3017  // the same name, if appropriate.
3018  if (PrevDecl) {
3019    // Determine whether NewFD is an overload of PrevDecl or
3020    // a declaration that requires merging. If it's an overload,
3021    // there's no more work to do here; we'll just add the new
3022    // function to the scope.
3023    OverloadedFunctionDecl::function_iterator MatchedDecl;
3024
3025    if (!getLangOptions().CPlusPlus &&
3026        AllowOverloadingOfFunction(PrevDecl, Context)) {
3027      OverloadableAttrRequired = true;
3028
3029      // Functions marked "overloadable" must have a prototype (that
3030      // we can't get through declaration merging).
3031      if (!NewFD->getType()->getAs<FunctionProtoType>()) {
3032        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
3033          << NewFD;
3034        Redeclaration = true;
3035
3036        // Turn this into a variadic function with no parameters.
3037        QualType R = Context.getFunctionType(
3038                       NewFD->getType()->getAs<FunctionType>()->getResultType(),
3039                       0, 0, true, 0);
3040        NewFD->setType(R);
3041        return NewFD->setInvalidDecl();
3042      }
3043    }
3044
3045    if (PrevDecl &&
3046        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
3047         !IsOverload(NewFD, PrevDecl, MatchedDecl)) && !isUsingDecl(PrevDecl)) {
3048      Redeclaration = true;
3049      Decl *OldDecl = PrevDecl;
3050
3051      // If PrevDecl was an overloaded function, extract the
3052      // FunctionDecl that matched.
3053      if (isa<OverloadedFunctionDecl>(PrevDecl))
3054        OldDecl = *MatchedDecl;
3055
3056      // NewFD and OldDecl represent declarations that need to be
3057      // merged.
3058      if (MergeFunctionDecl(NewFD, OldDecl))
3059        return NewFD->setInvalidDecl();
3060
3061      if (FunctionTemplateDecl *OldTemplateDecl
3062                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
3063        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3064        FunctionTemplateDecl *NewTemplateDecl
3065          = NewFD->getDescribedFunctionTemplate();
3066        assert(NewTemplateDecl && "Template/non-template mismatch");
3067        if (CXXMethodDecl *Method
3068              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
3069          Method->setAccess(OldTemplateDecl->getAccess());
3070          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
3071        }
3072
3073        // If this is an explicit specialization of a member that is a function
3074        // template, mark it as a member specialization.
3075        if (IsExplicitSpecialization &&
3076            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
3077          NewTemplateDecl->setMemberSpecialization();
3078          assert(OldTemplateDecl->isMemberSpecialization());
3079        }
3080      } else {
3081        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3082          NewFD->setAccess(OldDecl->getAccess());
3083        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3084      }
3085    }
3086  }
3087
3088  // Semantic checking for this function declaration (in isolation).
3089  if (getLangOptions().CPlusPlus) {
3090    // C++-specific checks.
3091    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3092      CheckConstructor(Constructor);
3093    } else if (isa<CXXDestructorDecl>(NewFD)) {
3094      CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
3095      QualType ClassType = Context.getTypeDeclType(Record);
3096      if (!ClassType->isDependentType()) {
3097        DeclarationName Name
3098          = Context.DeclarationNames.getCXXDestructorName(
3099                                        Context.getCanonicalType(ClassType));
3100        if (NewFD->getDeclName() != Name) {
3101          Diag(NewFD->getLocation(), diag::err_destructor_name);
3102          return NewFD->setInvalidDecl();
3103        }
3104      }
3105      Record->setUserDeclaredDestructor(true);
3106      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
3107      // user-defined destructor.
3108      Record->setPOD(false);
3109
3110      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
3111      // declared destructor.
3112      // FIXME: C++0x: don't do this for "= default" destructors
3113      Record->setHasTrivialDestructor(false);
3114    } else if (CXXConversionDecl *Conversion
3115               = dyn_cast<CXXConversionDecl>(NewFD))
3116      ActOnConversionDeclarator(Conversion);
3117
3118    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3119    if (NewFD->isOverloadedOperator() &&
3120        CheckOverloadedOperatorDeclaration(NewFD))
3121      return NewFD->setInvalidDecl();
3122
3123    // In C++, check default arguments now that we have merged decls. Unless
3124    // the lexical context is the class, because in this case this is done
3125    // during delayed parsing anyway.
3126    if (!CurContext->isRecord())
3127      CheckCXXDefaultArguments(NewFD);
3128  }
3129}
3130
3131void Sema::CheckMain(FunctionDecl* FD) {
3132  // C++ [basic.start.main]p3:  A program that declares main to be inline
3133  //   or static is ill-formed.
3134  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3135  //   shall not appear in a declaration of main.
3136  // static main is not an error under C99, but we should warn about it.
3137  bool isInline = FD->isInlineSpecified();
3138  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
3139  if (isInline || isStatic) {
3140    unsigned diagID = diag::warn_unusual_main_decl;
3141    if (isInline || getLangOptions().CPlusPlus)
3142      diagID = diag::err_unusual_main_decl;
3143
3144    int which = isStatic + (isInline << 1) - 1;
3145    Diag(FD->getLocation(), diagID) << which;
3146  }
3147
3148  QualType T = FD->getType();
3149  assert(T->isFunctionType() && "function decl is not of function type");
3150  const FunctionType* FT = T->getAs<FunctionType>();
3151
3152  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3153    // TODO: add a replacement fixit to turn the return type into 'int'.
3154    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
3155    FD->setInvalidDecl(true);
3156  }
3157
3158  // Treat protoless main() as nullary.
3159  if (isa<FunctionNoProtoType>(FT)) return;
3160
3161  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
3162  unsigned nparams = FTP->getNumArgs();
3163  assert(FD->getNumParams() == nparams);
3164
3165  if (nparams > 3) {
3166    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
3167    FD->setInvalidDecl(true);
3168    nparams = 3;
3169  }
3170
3171  // FIXME: a lot of the following diagnostics would be improved
3172  // if we had some location information about types.
3173
3174  QualType CharPP =
3175    Context.getPointerType(Context.getPointerType(Context.CharTy));
3176  QualType Expected[] = { Context.IntTy, CharPP, CharPP };
3177
3178  for (unsigned i = 0; i < nparams; ++i) {
3179    QualType AT = FTP->getArgType(i);
3180
3181    bool mismatch = true;
3182
3183    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
3184      mismatch = false;
3185    else if (Expected[i] == CharPP) {
3186      // As an extension, the following forms are okay:
3187      //   char const **
3188      //   char const * const *
3189      //   char * const *
3190
3191      QualifierCollector qs;
3192      const PointerType* PT;
3193      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
3194          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
3195          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
3196        qs.removeConst();
3197        mismatch = !qs.empty();
3198      }
3199    }
3200
3201    if (mismatch) {
3202      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
3203      // TODO: suggest replacing given type with expected type
3204      FD->setInvalidDecl(true);
3205    }
3206  }
3207
3208  if (nparams == 1 && !FD->isInvalidDecl()) {
3209    Diag(FD->getLocation(), diag::warn_main_one_arg);
3210  }
3211}
3212
3213bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
3214  // FIXME: Need strict checking.  In C89, we need to check for
3215  // any assignment, increment, decrement, function-calls, or
3216  // commas outside of a sizeof.  In C99, it's the same list,
3217  // except that the aforementioned are allowed in unevaluated
3218  // expressions.  Everything else falls under the
3219  // "may accept other forms of constant expressions" exception.
3220  // (We never end up here for C++, so the constant expression
3221  // rules there don't matter.)
3222  if (Init->isConstantInitializer(Context))
3223    return false;
3224  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
3225    << Init->getSourceRange();
3226  return true;
3227}
3228
3229void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
3230  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
3231}
3232
3233/// AddInitializerToDecl - Adds the initializer Init to the
3234/// declaration dcl. If DirectInit is true, this is C++ direct
3235/// initialization rather than copy initialization.
3236void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
3237  Decl *RealDecl = dcl.getAs<Decl>();
3238  // If there is no declaration, there was an error parsing it.  Just ignore
3239  // the initializer.
3240  if (RealDecl == 0)
3241    return;
3242
3243  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
3244    // With declarators parsed the way they are, the parser cannot
3245    // distinguish between a normal initializer and a pure-specifier.
3246    // Thus this grotesque test.
3247    IntegerLiteral *IL;
3248    Expr *Init = static_cast<Expr *>(init.get());
3249    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
3250        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
3251      if (Method->isVirtualAsWritten()) {
3252        Method->setPure();
3253
3254        // A class is abstract if at least one function is pure virtual.
3255        cast<CXXRecordDecl>(CurContext)->setAbstract(true);
3256      } else if (!Method->isInvalidDecl()) {
3257        Diag(Method->getLocation(), diag::err_non_virtual_pure)
3258          << Method->getDeclName() << Init->getSourceRange();
3259        Method->setInvalidDecl();
3260      }
3261    } else {
3262      Diag(Method->getLocation(), diag::err_member_function_initialization)
3263        << Method->getDeclName() << Init->getSourceRange();
3264      Method->setInvalidDecl();
3265    }
3266    return;
3267  }
3268
3269  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3270  if (!VDecl) {
3271    if (getLangOptions().CPlusPlus &&
3272        RealDecl->getLexicalDeclContext()->isRecord() &&
3273        isa<NamedDecl>(RealDecl))
3274      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3275        << cast<NamedDecl>(RealDecl)->getDeclName();
3276    else
3277      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3278    RealDecl->setInvalidDecl();
3279    return;
3280  }
3281
3282  if (!VDecl->getType()->isArrayType() &&
3283      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
3284                          diag::err_typecheck_decl_incomplete_type)) {
3285    RealDecl->setInvalidDecl();
3286    return;
3287  }
3288
3289  const VarDecl *Def = 0;
3290  if (VDecl->getDefinition(Def)) {
3291    Diag(VDecl->getLocation(), diag::err_redefinition)
3292      << VDecl->getDeclName();
3293    Diag(Def->getLocation(), diag::note_previous_definition);
3294    VDecl->setInvalidDecl();
3295    return;
3296  }
3297
3298  // Take ownership of the expression, now that we're sure we have somewhere
3299  // to put it.
3300  Expr *Init = init.takeAs<Expr>();
3301  assert(Init && "missing initializer");
3302
3303  // Get the decls type and save a reference for later, since
3304  // CheckInitializerTypes may change it.
3305  QualType DclT = VDecl->getType(), SavT = DclT;
3306  if (VDecl->isBlockVarDecl()) {
3307    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
3308      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
3309      VDecl->setInvalidDecl();
3310    } else if (!VDecl->isInvalidDecl()) {
3311      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3312                                VDecl->getDeclName(), DirectInit))
3313        VDecl->setInvalidDecl();
3314
3315      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3316      // Don't check invalid declarations to avoid emitting useless diagnostics.
3317      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3318        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
3319          CheckForConstantInitializer(Init, DclT);
3320      }
3321    }
3322  } else if (VDecl->isStaticDataMember() &&
3323             VDecl->getLexicalDeclContext()->isRecord()) {
3324    // This is an in-class initialization for a static data member, e.g.,
3325    //
3326    // struct S {
3327    //   static const int value = 17;
3328    // };
3329
3330    // Attach the initializer
3331    VDecl->setInit(Context, Init);
3332
3333    // C++ [class.mem]p4:
3334    //   A member-declarator can contain a constant-initializer only
3335    //   if it declares a static member (9.4) of const integral or
3336    //   const enumeration type, see 9.4.2.
3337    QualType T = VDecl->getType();
3338    if (!T->isDependentType() &&
3339        (!Context.getCanonicalType(T).isConstQualified() ||
3340         !T->isIntegralType())) {
3341      Diag(VDecl->getLocation(), diag::err_member_initialization)
3342        << VDecl->getDeclName() << Init->getSourceRange();
3343      VDecl->setInvalidDecl();
3344    } else {
3345      // C++ [class.static.data]p4:
3346      //   If a static data member is of const integral or const
3347      //   enumeration type, its declaration in the class definition
3348      //   can specify a constant-initializer which shall be an
3349      //   integral constant expression (5.19).
3350      if (!Init->isTypeDependent() &&
3351          !Init->getType()->isIntegralType()) {
3352        // We have a non-dependent, non-integral or enumeration type.
3353        Diag(Init->getSourceRange().getBegin(),
3354             diag::err_in_class_initializer_non_integral_type)
3355          << Init->getType() << Init->getSourceRange();
3356        VDecl->setInvalidDecl();
3357      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
3358        // Check whether the expression is a constant expression.
3359        llvm::APSInt Value;
3360        SourceLocation Loc;
3361        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
3362          Diag(Loc, diag::err_in_class_initializer_non_constant)
3363            << Init->getSourceRange();
3364          VDecl->setInvalidDecl();
3365        } else if (!VDecl->getType()->isDependentType())
3366          ImpCastExprToType(Init, VDecl->getType(), CastExpr::CK_IntegralCast);
3367      }
3368    }
3369  } else if (VDecl->isFileVarDecl()) {
3370    if (VDecl->getStorageClass() == VarDecl::Extern)
3371      Diag(VDecl->getLocation(), diag::warn_extern_init);
3372    if (!VDecl->isInvalidDecl())
3373      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3374                                VDecl->getDeclName(), DirectInit))
3375        VDecl->setInvalidDecl();
3376
3377    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3378    // Don't check invalid declarations to avoid emitting useless diagnostics.
3379    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3380      // C99 6.7.8p4. All file scoped initializers need to be constant.
3381      CheckForConstantInitializer(Init, DclT);
3382    }
3383  }
3384  // If the type changed, it means we had an incomplete type that was
3385  // completed by the initializer. For example:
3386  //   int ary[] = { 1, 3, 5 };
3387  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
3388  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
3389    VDecl->setType(DclT);
3390    Init->setType(DclT);
3391  }
3392
3393  Init = MaybeCreateCXXExprWithTemporaries(Init,
3394                                           /*ShouldDestroyTemporaries=*/true);
3395  // Attach the initializer to the decl.
3396  VDecl->setInit(Context, Init);
3397
3398  // If the previous declaration of VDecl was a tentative definition,
3399  // remove it from the set of tentative definitions.
3400  if (VDecl->getPreviousDeclaration() &&
3401      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
3402    bool Deleted = TentativeDefinitions.erase(VDecl->getDeclName());
3403    assert(Deleted && "Unrecorded tentative definition?"); Deleted=Deleted;
3404  }
3405
3406  return;
3407}
3408
3409void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
3410                                  bool TypeContainsUndeducedAuto) {
3411  Decl *RealDecl = dcl.getAs<Decl>();
3412
3413  // If there is no declaration, there was an error parsing it. Just ignore it.
3414  if (RealDecl == 0)
3415    return;
3416
3417  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
3418    QualType Type = Var->getType();
3419
3420    // Record tentative definitions.
3421    if (Var->isTentativeDefinition(Context)) {
3422      std::pair<llvm::DenseMap<DeclarationName, VarDecl *>::iterator, bool>
3423        InsertPair =
3424           TentativeDefinitions.insert(std::make_pair(Var->getDeclName(), Var));
3425
3426      // Keep the latest definition in the map.  If we see 'int i; int i;' we
3427      // want the second one in the map.
3428      InsertPair.first->second = Var;
3429
3430      // However, for the list, we don't care about the order, just make sure
3431      // that there are no dupes for a given declaration name.
3432      if (InsertPair.second)
3433        TentativeDefinitionList.push_back(Var->getDeclName());
3434    }
3435
3436    // C++ [dcl.init.ref]p3:
3437    //   The initializer can be omitted for a reference only in a
3438    //   parameter declaration (8.3.5), in the declaration of a
3439    //   function return type, in the declaration of a class member
3440    //   within its class declaration (9.2), and where the extern
3441    //   specifier is explicitly used.
3442    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
3443      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
3444        << Var->getDeclName()
3445        << SourceRange(Var->getLocation(), Var->getLocation());
3446      Var->setInvalidDecl();
3447      return;
3448    }
3449
3450    // C++0x [dcl.spec.auto]p3
3451    if (TypeContainsUndeducedAuto) {
3452      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
3453        << Var->getDeclName() << Type;
3454      Var->setInvalidDecl();
3455      return;
3456    }
3457
3458    // An array without size is an incomplete type, and there are no special
3459    // rules in C++ to make such a definition acceptable.
3460    if (getLangOptions().CPlusPlus && Type->isIncompleteArrayType() &&
3461        !Var->hasExternalStorage()) {
3462      Diag(Var->getLocation(),
3463           diag::err_typecheck_incomplete_array_needs_initializer);
3464      Var->setInvalidDecl();
3465      return;
3466    }
3467
3468    // C++ [temp.expl.spec]p15:
3469    //   An explicit specialization of a static data member of a template is a
3470    //   definition if the declaration includes an initializer; otherwise, it
3471    //   is a declaration.
3472    if (Var->isStaticDataMember() &&
3473        Var->getInstantiatedFromStaticDataMember() &&
3474        Var->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
3475      return;
3476
3477    // C++ [dcl.init]p9:
3478    //   If no initializer is specified for an object, and the object
3479    //   is of (possibly cv-qualified) non-POD class type (or array
3480    //   thereof), the object shall be default-initialized; if the
3481    //   object is of const-qualified type, the underlying class type
3482    //   shall have a user-declared default constructor.
3483    //
3484    // FIXME: Diagnose the "user-declared default constructor" bit.
3485    if (getLangOptions().CPlusPlus) {
3486      QualType InitType = Type;
3487      if (const ArrayType *Array = Context.getAsArrayType(Type))
3488        InitType = Context.getBaseElementType(Array);
3489      if ((!Var->hasExternalStorage() && !Var->isExternC()) &&
3490          InitType->isRecordType() && !InitType->isDependentType()) {
3491        if (!RequireCompleteType(Var->getLocation(), InitType,
3492                                 diag::err_invalid_incomplete_type_use)) {
3493          ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
3494
3495          CXXConstructorDecl *Constructor
3496            = PerformInitializationByConstructor(InitType,
3497                                                 MultiExprArg(*this, 0, 0),
3498                                                 Var->getLocation(),
3499                                               SourceRange(Var->getLocation(),
3500                                                           Var->getLocation()),
3501                                                 Var->getDeclName(),
3502                                                 IK_Default,
3503                                                 ConstructorArgs);
3504
3505          // FIXME: Location info for the variable initialization?
3506          if (!Constructor)
3507            Var->setInvalidDecl();
3508          else {
3509            // FIXME: Cope with initialization of arrays
3510            if (!Constructor->isTrivial() &&
3511                InitializeVarWithConstructor(Var, Constructor,
3512                                             move_arg(ConstructorArgs)))
3513              Var->setInvalidDecl();
3514
3515            FinalizeVarWithDestructor(Var, InitType);
3516          }
3517        } else {
3518          Var->setInvalidDecl();
3519        }
3520      }
3521    }
3522
3523#if 0
3524    // FIXME: Temporarily disabled because we are not properly parsing
3525    // linkage specifications on declarations, e.g.,
3526    //
3527    //   extern "C" const CGPoint CGPointerZero;
3528    //
3529    // C++ [dcl.init]p9:
3530    //
3531    //     If no initializer is specified for an object, and the
3532    //     object is of (possibly cv-qualified) non-POD class type (or
3533    //     array thereof), the object shall be default-initialized; if
3534    //     the object is of const-qualified type, the underlying class
3535    //     type shall have a user-declared default
3536    //     constructor. Otherwise, if no initializer is specified for
3537    //     an object, the object and its subobjects, if any, have an
3538    //     indeterminate initial value; if the object or any of its
3539    //     subobjects are of const-qualified type, the program is
3540    //     ill-formed.
3541    //
3542    // This isn't technically an error in C, so we don't diagnose it.
3543    //
3544    // FIXME: Actually perform the POD/user-defined default
3545    // constructor check.
3546    if (getLangOptions().CPlusPlus &&
3547        Context.getCanonicalType(Type).isConstQualified() &&
3548        !Var->hasExternalStorage())
3549      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
3550        << Var->getName()
3551        << SourceRange(Var->getLocation(), Var->getLocation());
3552#endif
3553  }
3554}
3555
3556Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
3557                                                   DeclPtrTy *Group,
3558                                                   unsigned NumDecls) {
3559  llvm::SmallVector<Decl*, 8> Decls;
3560
3561  if (DS.isTypeSpecOwned())
3562    Decls.push_back((Decl*)DS.getTypeRep());
3563
3564  for (unsigned i = 0; i != NumDecls; ++i)
3565    if (Decl *D = Group[i].getAs<Decl>())
3566      Decls.push_back(D);
3567
3568  // Perform semantic analysis that depends on having fully processed both
3569  // the declarator and initializer.
3570  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
3571    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
3572    if (!IDecl)
3573      continue;
3574    QualType T = IDecl->getType();
3575
3576    // Block scope. C99 6.7p7: If an identifier for an object is declared with
3577    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
3578    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
3579      if (T->isDependentType()) {
3580        // If T is dependent, we should not require a complete type.
3581        // (RequireCompleteType shouldn't be called with dependent types.)
3582        // But we still can at least check if we've got an array of unspecified
3583        // size without an initializer.
3584        if (!IDecl->isInvalidDecl() && T->isIncompleteArrayType() &&
3585            !IDecl->getInit()) {
3586          Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type)
3587            << T;
3588          IDecl->setInvalidDecl();
3589        }
3590      } else if (!IDecl->isInvalidDecl()) {
3591        // If T is an incomplete array type with an initializer list that is
3592        // dependent on something, its size has not been fixed. We could attempt
3593        // to fix the size for such arrays, but we would still have to check
3594        // here for initializers containing a C++0x vararg expansion, e.g.
3595        // template <typename... Args> void f(Args... args) {
3596        //   int vals[] = { args };
3597        // }
3598        const IncompleteArrayType *IAT = Context.getAsIncompleteArrayType(T);
3599        Expr *Init = IDecl->getInit();
3600        if (IAT && Init &&
3601            (Init->isTypeDependent() || Init->isValueDependent())) {
3602          // Check that the member type of the array is complete, at least.
3603          if (RequireCompleteType(IDecl->getLocation(), IAT->getElementType(),
3604                                  diag::err_typecheck_decl_incomplete_type))
3605            IDecl->setInvalidDecl();
3606        } else if (RequireCompleteType(IDecl->getLocation(), T,
3607                                      diag::err_typecheck_decl_incomplete_type))
3608          IDecl->setInvalidDecl();
3609      }
3610    }
3611    // File scope. C99 6.9.2p2: A declaration of an identifier for an
3612    // object that has file scope without an initializer, and without a
3613    // storage-class specifier or with the storage-class specifier "static",
3614    // constitutes a tentative definition. Note: A tentative definition with
3615    // external linkage is valid (C99 6.2.2p5).
3616    if (IDecl->isTentativeDefinition(Context) && !IDecl->isInvalidDecl()) {
3617      if (const IncompleteArrayType *ArrayT
3618          = Context.getAsIncompleteArrayType(T)) {
3619        if (RequireCompleteType(IDecl->getLocation(),
3620                                ArrayT->getElementType(),
3621                                diag::err_illegal_decl_array_incomplete_type))
3622          IDecl->setInvalidDecl();
3623      } else if (IDecl->getStorageClass() == VarDecl::Static) {
3624        // C99 6.9.2p3: If the declaration of an identifier for an object is
3625        // a tentative definition and has internal linkage (C99 6.2.2p3), the
3626        // declared type shall not be an incomplete type.
3627        // NOTE: code such as the following
3628        //     static struct s;
3629        //     struct s { int a; };
3630        // is accepted by gcc. Hence here we issue a warning instead of
3631        // an error and we do not invalidate the static declaration.
3632        // NOTE: to avoid multiple warnings, only check the first declaration.
3633        if (IDecl->getPreviousDeclaration() == 0)
3634          RequireCompleteType(IDecl->getLocation(), T,
3635                              diag::ext_typecheck_decl_incomplete_type);
3636      }
3637    }
3638  }
3639  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
3640                                                   Decls.data(), Decls.size()));
3641}
3642
3643
3644/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
3645/// to introduce parameters into function prototype scope.
3646Sema::DeclPtrTy
3647Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
3648  const DeclSpec &DS = D.getDeclSpec();
3649
3650  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
3651  VarDecl::StorageClass StorageClass = VarDecl::None;
3652  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
3653    StorageClass = VarDecl::Register;
3654  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
3655    Diag(DS.getStorageClassSpecLoc(),
3656         diag::err_invalid_storage_class_in_func_decl);
3657    D.getMutableDeclSpec().ClearStorageClassSpecs();
3658  }
3659
3660  if (D.getDeclSpec().isThreadSpecified())
3661    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3662
3663  DiagnoseFunctionSpecifiers(D);
3664
3665  // Check that there are no default arguments inside the type of this
3666  // parameter (C++ only).
3667  if (getLangOptions().CPlusPlus)
3668    CheckExtraCXXDefaultArguments(D);
3669
3670  DeclaratorInfo *DInfo = 0;
3671  TagDecl *OwnedDecl = 0;
3672  QualType parmDeclType = GetTypeForDeclarator(D, S, &DInfo, &OwnedDecl);
3673
3674  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
3675    // C++ [dcl.fct]p6:
3676    //   Types shall not be defined in return or parameter types.
3677    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
3678      << Context.getTypeDeclType(OwnedDecl);
3679  }
3680
3681  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
3682  // Can this happen for params?  We already checked that they don't conflict
3683  // among each other.  Here they can only shadow globals, which is ok.
3684  IdentifierInfo *II = D.getIdentifier();
3685  if (II) {
3686    if (NamedDecl *PrevDecl = LookupSingleName(S, II, LookupOrdinaryName)) {
3687      if (PrevDecl->isTemplateParameter()) {
3688        // Maybe we will complain about the shadowed template parameter.
3689        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3690        // Just pretend that we didn't see the previous declaration.
3691        PrevDecl = 0;
3692      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
3693        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
3694
3695        // Recover by removing the name
3696        II = 0;
3697        D.SetIdentifier(0, D.getIdentifierLoc());
3698      }
3699    }
3700  }
3701
3702  // Parameters can not be abstract class types.
3703  // For record types, this is done by the AbstractClassUsageDiagnoser once
3704  // the class has been completely parsed.
3705  if (!CurContext->isRecord() &&
3706      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
3707                             diag::err_abstract_type_in_decl,
3708                             AbstractParamType))
3709    D.setInvalidType(true);
3710
3711  QualType T = adjustParameterType(parmDeclType);
3712
3713  ParmVarDecl *New
3714    = ParmVarDecl::Create(Context, CurContext, D.getIdentifierLoc(), II,
3715                          T, DInfo, StorageClass, 0);
3716
3717  if (D.isInvalidType())
3718    New->setInvalidDecl();
3719
3720  // Parameter declarators cannot be interface types. All ObjC objects are
3721  // passed by reference.
3722  if (T->isObjCInterfaceType()) {
3723    Diag(D.getIdentifierLoc(),
3724         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
3725    New->setInvalidDecl();
3726  }
3727
3728  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
3729  if (D.getCXXScopeSpec().isSet()) {
3730    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
3731      << D.getCXXScopeSpec().getRange();
3732    New->setInvalidDecl();
3733  }
3734
3735  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
3736  // duration shall not be qualified by an address-space qualifier."
3737  // Since all parameters have automatic store duration, they can not have
3738  // an address space.
3739  if (T.getAddressSpace() != 0) {
3740    Diag(D.getIdentifierLoc(),
3741         diag::err_arg_with_address_space);
3742    New->setInvalidDecl();
3743  }
3744
3745
3746  // Add the parameter declaration into this scope.
3747  S->AddDecl(DeclPtrTy::make(New));
3748  if (II)
3749    IdResolver.AddDecl(New);
3750
3751  ProcessDeclAttributes(S, New, D);
3752
3753  if (New->hasAttr<BlocksAttr>()) {
3754    Diag(New->getLocation(), diag::err_block_on_nonlocal);
3755  }
3756  return DeclPtrTy::make(New);
3757}
3758
3759void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
3760                                           SourceLocation LocAfterDecls) {
3761  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3762         "Not a function declarator!");
3763  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3764
3765  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
3766  // for a K&R function.
3767  if (!FTI.hasPrototype) {
3768    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
3769      --i;
3770      if (FTI.ArgInfo[i].Param == 0) {
3771        llvm::SmallString<256> Code;
3772        llvm::raw_svector_ostream(Code) << "  int "
3773                                        << FTI.ArgInfo[i].Ident->getName()
3774                                        << ";\n";
3775        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
3776          << FTI.ArgInfo[i].Ident
3777          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code.str());
3778
3779        // Implicitly declare the argument as type 'int' for lack of a better
3780        // type.
3781        DeclSpec DS;
3782        const char* PrevSpec; // unused
3783        unsigned DiagID; // unused
3784        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
3785                           PrevSpec, DiagID);
3786        Declarator ParamD(DS, Declarator::KNRTypeListContext);
3787        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
3788        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
3789      }
3790    }
3791  }
3792}
3793
3794Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
3795                                              Declarator &D) {
3796  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
3797  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3798         "Not a function declarator!");
3799  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3800
3801  if (FTI.hasPrototype) {
3802    // FIXME: Diagnose arguments without names in C.
3803  }
3804
3805  Scope *ParentScope = FnBodyScope->getParent();
3806
3807  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
3808                                  MultiTemplateParamsArg(*this),
3809                                  /*IsFunctionDefinition=*/true);
3810  return ActOnStartOfFunctionDef(FnBodyScope, DP);
3811}
3812
3813Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
3814  // Clear the last template instantiation error context.
3815  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
3816
3817  if (!D)
3818    return D;
3819  FunctionDecl *FD = 0;
3820
3821  if (FunctionTemplateDecl *FunTmpl
3822        = dyn_cast<FunctionTemplateDecl>(D.getAs<Decl>()))
3823    FD = FunTmpl->getTemplatedDecl();
3824  else
3825    FD = cast<FunctionDecl>(D.getAs<Decl>());
3826
3827  CurFunctionNeedsScopeChecking = false;
3828
3829  // See if this is a redefinition.
3830  const FunctionDecl *Definition;
3831  if (FD->getBody(Definition)) {
3832    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
3833    Diag(Definition->getLocation(), diag::note_previous_definition);
3834  }
3835
3836  // Builtin functions cannot be defined.
3837  if (unsigned BuiltinID = FD->getBuiltinID()) {
3838    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3839      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
3840      FD->setInvalidDecl();
3841    }
3842  }
3843
3844  // The return type of a function definition must be complete
3845  // (C99 6.9.1p3, C++ [dcl.fct]p6).
3846  QualType ResultType = FD->getResultType();
3847  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
3848      !FD->isInvalidDecl() &&
3849      RequireCompleteType(FD->getLocation(), ResultType,
3850                          diag::err_func_def_incomplete_result))
3851    FD->setInvalidDecl();
3852
3853  // GNU warning -Wmissing-prototypes:
3854  //   Warn if a global function is defined without a previous
3855  //   prototype declaration. This warning is issued even if the
3856  //   definition itself provides a prototype. The aim is to detect
3857  //   global functions that fail to be declared in header files.
3858  if (!FD->isInvalidDecl() && FD->isGlobal() && !isa<CXXMethodDecl>(FD) &&
3859      !FD->isMain()) {
3860    bool MissingPrototype = true;
3861    for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
3862         Prev; Prev = Prev->getPreviousDeclaration()) {
3863      // Ignore any declarations that occur in function or method
3864      // scope, because they aren't visible from the header.
3865      if (Prev->getDeclContext()->isFunctionOrMethod())
3866        continue;
3867
3868      MissingPrototype = !Prev->getType()->isFunctionProtoType();
3869      break;
3870    }
3871
3872    if (MissingPrototype)
3873      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
3874  }
3875
3876  if (FnBodyScope)
3877    PushDeclContext(FnBodyScope, FD);
3878
3879  // Check the validity of our function parameters
3880  CheckParmsForFunctionDef(FD);
3881
3882  // Introduce our parameters into the function scope
3883  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
3884    ParmVarDecl *Param = FD->getParamDecl(p);
3885    Param->setOwningFunction(FD);
3886
3887    // If this has an identifier, add it to the scope stack.
3888    if (Param->getIdentifier() && FnBodyScope)
3889      PushOnScopeChains(Param, FnBodyScope);
3890  }
3891
3892  // Checking attributes of current function definition
3893  // dllimport attribute.
3894  if (FD->getAttr<DLLImportAttr>() &&
3895      (!FD->getAttr<DLLExportAttr>())) {
3896    // dllimport attribute cannot be applied to definition.
3897    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
3898      Diag(FD->getLocation(),
3899           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
3900        << "dllimport";
3901      FD->setInvalidDecl();
3902      return DeclPtrTy::make(FD);
3903    } else {
3904      // If a symbol previously declared dllimport is later defined, the
3905      // attribute is ignored in subsequent references, and a warning is
3906      // emitted.
3907      Diag(FD->getLocation(),
3908           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
3909        << FD->getNameAsCString() << "dllimport";
3910    }
3911  }
3912
3913  assert(ExprTemporaries.empty() && "Leftover temporaries before starting");
3914
3915  return DeclPtrTy::make(FD);
3916}
3917
3918Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
3919  return ActOnFinishFunctionBody(D, move(BodyArg), false);
3920}
3921
3922Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
3923                                              bool IsInstantiation) {
3924  Decl *dcl = D.getAs<Decl>();
3925  Stmt *Body = BodyArg.takeAs<Stmt>();
3926
3927  FunctionDecl *FD = 0;
3928  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
3929  if (FunTmpl)
3930    FD = FunTmpl->getTemplatedDecl();
3931  else
3932    FD = dyn_cast_or_null<FunctionDecl>(dcl);
3933
3934  if (FD) {
3935    FD->setBody(Body);
3936    if (FD->isMain())
3937      // C and C++ allow for main to automagically return 0.
3938      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
3939      FD->setHasImplicitReturnZero(true);
3940    else
3941      CheckFallThroughForFunctionDef(FD, Body);
3942
3943    if (!FD->isInvalidDecl())
3944      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
3945
3946    // C++ [basic.def.odr]p2:
3947    //   [...] A virtual member function is used if it is not pure. [...]
3948    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
3949      if (Method->isVirtual() && !Method->isPure())
3950        MarkDeclarationReferenced(Method->getLocation(), Method);
3951
3952    assert(FD == getCurFunctionDecl() && "Function parsing confused");
3953  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
3954    assert(MD == getCurMethodDecl() && "Method parsing confused");
3955    MD->setBody(Body);
3956    CheckFallThroughForFunctionDef(MD, Body);
3957    MD->setEndLoc(Body->getLocEnd());
3958
3959    if (!MD->isInvalidDecl())
3960      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
3961  } else {
3962    Body->Destroy(Context);
3963    return DeclPtrTy();
3964  }
3965  if (!IsInstantiation)
3966    PopDeclContext();
3967
3968  // Verify and clean out per-function state.
3969
3970  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
3971
3972  // Check goto/label use.
3973  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
3974       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
3975    LabelStmt *L = I->second;
3976
3977    // Verify that we have no forward references left.  If so, there was a goto
3978    // or address of a label taken, but no definition of it.  Label fwd
3979    // definitions are indicated with a null substmt.
3980    if (L->getSubStmt() != 0)
3981      continue;
3982
3983    // Emit error.
3984    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
3985
3986    // At this point, we have gotos that use the bogus label.  Stitch it into
3987    // the function body so that they aren't leaked and that the AST is well
3988    // formed.
3989    if (Body == 0) {
3990      // The whole function wasn't parsed correctly, just delete this.
3991      L->Destroy(Context);
3992      continue;
3993    }
3994
3995    // Otherwise, the body is valid: we want to stitch the label decl into the
3996    // function somewhere so that it is properly owned and so that the goto
3997    // has a valid target.  Do this by creating a new compound stmt with the
3998    // label in it.
3999
4000    // Give the label a sub-statement.
4001    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
4002
4003    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
4004                               cast<CXXTryStmt>(Body)->getTryBlock() :
4005                               cast<CompoundStmt>(Body);
4006    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
4007    Elements.push_back(L);
4008    Compound->setStmts(Context, &Elements[0], Elements.size());
4009  }
4010  FunctionLabelMap.clear();
4011
4012  if (!Body) return D;
4013
4014  // Verify that that gotos and switch cases don't jump into scopes illegally.
4015  if (CurFunctionNeedsScopeChecking)
4016    DiagnoseInvalidJumps(Body);
4017
4018  // C++ constructors that have function-try-blocks can't have return
4019  // statements in the handlers of that block. (C++ [except.handle]p14)
4020  // Verify this.
4021  if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
4022    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
4023
4024  if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
4025    computeBaseOrMembersToDestroy(Destructor);
4026
4027  assert(ExprTemporaries.empty() && "Leftover temporaries in function");
4028  return D;
4029}
4030
4031/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
4032/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
4033NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
4034                                          IdentifierInfo &II, Scope *S) {
4035  // Before we produce a declaration for an implicitly defined
4036  // function, see whether there was a locally-scoped declaration of
4037  // this name as a function or variable. If so, use that
4038  // (non-visible) declaration, and complain about it.
4039  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4040    = LocallyScopedExternalDecls.find(&II);
4041  if (Pos != LocallyScopedExternalDecls.end()) {
4042    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
4043    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
4044    return Pos->second;
4045  }
4046
4047  // Extension in C99.  Legal in C90, but warn about it.
4048  if (II.getName().startswith("__builtin_"))
4049    Diag(Loc, diag::warn_builtin_unknown) << &II;
4050  else if (getLangOptions().C99)
4051    Diag(Loc, diag::ext_implicit_function_decl) << &II;
4052  else
4053    Diag(Loc, diag::warn_implicit_function_decl) << &II;
4054
4055  // Set a Declarator for the implicit definition: int foo();
4056  const char *Dummy;
4057  DeclSpec DS;
4058  unsigned DiagID;
4059  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
4060  Error = Error; // Silence warning.
4061  assert(!Error && "Error setting up implicit decl!");
4062  Declarator D(DS, Declarator::BlockContext);
4063  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
4064                                             0, 0, false, SourceLocation(),
4065                                             false, 0,0,0, Loc, Loc, D),
4066                SourceLocation());
4067  D.SetIdentifier(&II, Loc);
4068
4069  // Insert this function into translation-unit scope.
4070
4071  DeclContext *PrevDC = CurContext;
4072  CurContext = Context.getTranslationUnitDecl();
4073
4074  FunctionDecl *FD =
4075 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
4076  FD->setImplicit();
4077
4078  CurContext = PrevDC;
4079
4080  AddKnownFunctionAttributes(FD);
4081
4082  return FD;
4083}
4084
4085/// \brief Adds any function attributes that we know a priori based on
4086/// the declaration of this function.
4087///
4088/// These attributes can apply both to implicitly-declared builtins
4089/// (like __builtin___printf_chk) or to library-declared functions
4090/// like NSLog or printf.
4091void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
4092  if (FD->isInvalidDecl())
4093    return;
4094
4095  // If this is a built-in function, map its builtin attributes to
4096  // actual attributes.
4097  if (unsigned BuiltinID = FD->getBuiltinID()) {
4098    // Handle printf-formatting attributes.
4099    unsigned FormatIdx;
4100    bool HasVAListArg;
4101    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
4102      if (!FD->getAttr<FormatAttr>())
4103        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
4104                                             HasVAListArg ? 0 : FormatIdx + 2));
4105    }
4106
4107    // Mark const if we don't care about errno and that is the only
4108    // thing preventing the function from being const. This allows
4109    // IRgen to use LLVM intrinsics for such functions.
4110    if (!getLangOptions().MathErrno &&
4111        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
4112      if (!FD->getAttr<ConstAttr>())
4113        FD->addAttr(::new (Context) ConstAttr());
4114    }
4115
4116    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
4117      FD->addAttr(::new (Context) NoReturnAttr());
4118  }
4119
4120  IdentifierInfo *Name = FD->getIdentifier();
4121  if (!Name)
4122    return;
4123  if ((!getLangOptions().CPlusPlus &&
4124       FD->getDeclContext()->isTranslationUnit()) ||
4125      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
4126       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
4127       LinkageSpecDecl::lang_c)) {
4128    // Okay: this could be a libc/libm/Objective-C function we know
4129    // about.
4130  } else
4131    return;
4132
4133  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
4134    // FIXME: NSLog and NSLogv should be target specific
4135    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
4136      // FIXME: We known better than our headers.
4137      const_cast<FormatAttr *>(Format)->setType("printf");
4138    } else
4139      FD->addAttr(::new (Context) FormatAttr("printf", 1,
4140                                             Name->isStr("NSLogv") ? 0 : 2));
4141  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
4142    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
4143    // target-specific builtins, perhaps?
4144    if (!FD->getAttr<FormatAttr>())
4145      FD->addAttr(::new (Context) FormatAttr("printf", 2,
4146                                             Name->isStr("vasprintf") ? 0 : 3));
4147  }
4148}
4149
4150TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
4151                                    DeclaratorInfo *DInfo) {
4152  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
4153  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
4154
4155  if (!DInfo) {
4156    assert(D.isInvalidType() && "no declarator info for valid type");
4157    DInfo = Context.getTrivialDeclaratorInfo(T);
4158  }
4159
4160  // Scope manipulation handled by caller.
4161  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
4162                                           D.getIdentifierLoc(),
4163                                           D.getIdentifier(),
4164                                           DInfo);
4165
4166  if (const TagType *TT = T->getAs<TagType>()) {
4167    TagDecl *TD = TT->getDecl();
4168
4169    // If the TagDecl that the TypedefDecl points to is an anonymous decl
4170    // keep track of the TypedefDecl.
4171    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
4172      TD->setTypedefForAnonDecl(NewTD);
4173  }
4174
4175  if (D.isInvalidType())
4176    NewTD->setInvalidDecl();
4177  return NewTD;
4178}
4179
4180
4181/// \brief Determine whether a tag with a given kind is acceptable
4182/// as a redeclaration of the given tag declaration.
4183///
4184/// \returns true if the new tag kind is acceptable, false otherwise.
4185bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
4186                                        TagDecl::TagKind NewTag,
4187                                        SourceLocation NewTagLoc,
4188                                        const IdentifierInfo &Name) {
4189  // C++ [dcl.type.elab]p3:
4190  //   The class-key or enum keyword present in the
4191  //   elaborated-type-specifier shall agree in kind with the
4192  //   declaration to which the name in theelaborated-type-specifier
4193  //   refers. This rule also applies to the form of
4194  //   elaborated-type-specifier that declares a class-name or
4195  //   friend class since it can be construed as referring to the
4196  //   definition of the class. Thus, in any
4197  //   elaborated-type-specifier, the enum keyword shall be used to
4198  //   refer to an enumeration (7.2), the union class-keyshall be
4199  //   used to refer to a union (clause 9), and either the class or
4200  //   struct class-key shall be used to refer to a class (clause 9)
4201  //   declared using the class or struct class-key.
4202  TagDecl::TagKind OldTag = Previous->getTagKind();
4203  if (OldTag == NewTag)
4204    return true;
4205
4206  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
4207      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
4208    // Warn about the struct/class tag mismatch.
4209    bool isTemplate = false;
4210    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
4211      isTemplate = Record->getDescribedClassTemplate();
4212
4213    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
4214      << (NewTag == TagDecl::TK_class)
4215      << isTemplate << &Name
4216      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
4217                              OldTag == TagDecl::TK_class? "class" : "struct");
4218    Diag(Previous->getLocation(), diag::note_previous_use);
4219    return true;
4220  }
4221  return false;
4222}
4223
4224/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
4225/// former case, Name will be non-null.  In the later case, Name will be null.
4226/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
4227/// reference/declaration/definition of a tag.
4228Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
4229                               SourceLocation KWLoc, const CXXScopeSpec &SS,
4230                               IdentifierInfo *Name, SourceLocation NameLoc,
4231                               AttributeList *Attr, AccessSpecifier AS,
4232                               MultiTemplateParamsArg TemplateParameterLists,
4233                               bool &OwnedDecl, bool &IsDependent) {
4234  // If this is not a definition, it must have a name.
4235  assert((Name != 0 || TUK == TUK_Definition) &&
4236         "Nameless record must be a definition!");
4237
4238  OwnedDecl = false;
4239  TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec);
4240
4241  // FIXME: Check explicit specializations more carefully.
4242  bool isExplicitSpecialization = false;
4243  if (TUK != TUK_Reference) {
4244    if (TemplateParameterList *TemplateParams
4245          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
4246                        (TemplateParameterList**)TemplateParameterLists.get(),
4247                                              TemplateParameterLists.size(),
4248                                                    isExplicitSpecialization)) {
4249      if (TemplateParams->size() > 0) {
4250        // This is a declaration or definition of a class template (which may
4251        // be a member of another template).
4252        OwnedDecl = false;
4253        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
4254                                               SS, Name, NameLoc, Attr,
4255                                               TemplateParams,
4256                                               AS);
4257        TemplateParameterLists.release();
4258        return Result.get();
4259      } else {
4260        // The "template<>" header is extraneous.
4261        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
4262          << ElaboratedType::getNameForTagKind(Kind) << Name;
4263        isExplicitSpecialization = true;
4264      }
4265    }
4266
4267    TemplateParameterLists.release();
4268  }
4269
4270  DeclContext *SearchDC = CurContext;
4271  DeclContext *DC = CurContext;
4272  NamedDecl *PrevDecl = 0;
4273  bool isStdBadAlloc = false;
4274  bool Invalid = false;
4275
4276  bool RedeclarationOnly = (TUK != TUK_Reference);
4277
4278  if (Name && SS.isNotEmpty()) {
4279    // We have a nested-name tag ('struct foo::bar').
4280
4281    // Check for invalid 'foo::'.
4282    if (SS.isInvalid()) {
4283      Name = 0;
4284      goto CreateNewDecl;
4285    }
4286
4287    // If this is a friend or a reference to a class in a dependent
4288    // context, don't try to make a decl for it.
4289    if (TUK == TUK_Friend || TUK == TUK_Reference) {
4290      DC = computeDeclContext(SS, false);
4291      if (!DC) {
4292        IsDependent = true;
4293        return DeclPtrTy();
4294      }
4295    }
4296
4297    if (RequireCompleteDeclContext(SS))
4298      return DeclPtrTy::make((Decl *)0);
4299
4300    DC = computeDeclContext(SS, true);
4301    SearchDC = DC;
4302    // Look-up name inside 'foo::'.
4303    LookupResult R;
4304    LookupQualifiedName(R, DC, Name, LookupTagName, RedeclarationOnly);
4305
4306    if (R.isAmbiguous()) {
4307      DiagnoseAmbiguousLookup(R, Name, NameLoc, SS.getRange());
4308      return DeclPtrTy();
4309    }
4310
4311    if (R.getKind() == LookupResult::Found)
4312      PrevDecl = dyn_cast<TagDecl>(R.getFoundDecl());
4313
4314    // A tag 'foo::bar' must already exist.
4315    if (!PrevDecl) {
4316      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
4317      Name = 0;
4318      Invalid = true;
4319      goto CreateNewDecl;
4320    }
4321  } else if (Name) {
4322    // If this is a named struct, check to see if there was a previous forward
4323    // declaration or definition.
4324    // FIXME: We're looking into outer scopes here, even when we
4325    // shouldn't be. Doing so can result in ambiguities that we
4326    // shouldn't be diagnosing.
4327    LookupResult R;
4328    LookupName(R, S, Name, LookupTagName, RedeclarationOnly);
4329    if (R.isAmbiguous()) {
4330      DiagnoseAmbiguousLookup(R, Name, NameLoc);
4331      // FIXME: This is not best way to recover from case like:
4332      //
4333      // struct S s;
4334      //
4335      // causes needless "incomplete type" error later.
4336      Name = 0;
4337      PrevDecl = 0;
4338      Invalid = true;
4339    } else
4340      PrevDecl = R.getAsSingleDecl(Context);
4341
4342    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
4343      // FIXME: This makes sure that we ignore the contexts associated
4344      // with C structs, unions, and enums when looking for a matching
4345      // tag declaration or definition. See the similar lookup tweak
4346      // in Sema::LookupName; is there a better way to deal with this?
4347      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
4348        SearchDC = SearchDC->getParent();
4349    }
4350  }
4351
4352  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4353    // Maybe we will complain about the shadowed template parameter.
4354    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
4355    // Just pretend that we didn't see the previous declaration.
4356    PrevDecl = 0;
4357  }
4358
4359  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
4360      DC->Equals(StdNamespace) && Name->isStr("bad_alloc")) {
4361    // This is a declaration of or a reference to "std::bad_alloc".
4362    isStdBadAlloc = true;
4363
4364    if (!PrevDecl && StdBadAlloc) {
4365      // std::bad_alloc has been implicitly declared (but made invisible to
4366      // name lookup). Fill in this implicit declaration as the previous
4367      // declaration, so that the declarations get chained appropriately.
4368      PrevDecl = StdBadAlloc;
4369    }
4370  }
4371
4372  if (PrevDecl) {
4373    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
4374      // If this is a use of a previous tag, or if the tag is already declared
4375      // in the same scope (so that the definition/declaration completes or
4376      // rementions the tag), reuse the decl.
4377      if (TUK == TUK_Reference || TUK == TUK_Friend ||
4378          isDeclInScope(PrevDecl, SearchDC, S)) {
4379        // Make sure that this wasn't declared as an enum and now used as a
4380        // struct or something similar.
4381        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
4382          bool SafeToContinue
4383            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
4384               Kind != TagDecl::TK_enum);
4385          if (SafeToContinue)
4386            Diag(KWLoc, diag::err_use_with_wrong_tag)
4387              << Name
4388              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
4389                                                  PrevTagDecl->getKindName());
4390          else
4391            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
4392          Diag(PrevDecl->getLocation(), diag::note_previous_use);
4393
4394          if (SafeToContinue)
4395            Kind = PrevTagDecl->getTagKind();
4396          else {
4397            // Recover by making this an anonymous redefinition.
4398            Name = 0;
4399            PrevDecl = 0;
4400            Invalid = true;
4401          }
4402        }
4403
4404        if (!Invalid) {
4405          // If this is a use, just return the declaration we found.
4406
4407          // FIXME: In the future, return a variant or some other clue
4408          // for the consumer of this Decl to know it doesn't own it.
4409          // For our current ASTs this shouldn't be a problem, but will
4410          // need to be changed with DeclGroups.
4411          if (TUK == TUK_Reference || TUK == TUK_Friend)
4412            return DeclPtrTy::make(PrevDecl);
4413
4414          // Diagnose attempts to redefine a tag.
4415          if (TUK == TUK_Definition) {
4416            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
4417              // If we're defining a specialization and the previous definition
4418              // is from an implicit instantiation, don't emit an error
4419              // here; we'll catch this in the general case below.
4420              if (!isExplicitSpecialization ||
4421                  !isa<CXXRecordDecl>(Def) ||
4422                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
4423                                               == TSK_ExplicitSpecialization) {
4424                Diag(NameLoc, diag::err_redefinition) << Name;
4425                Diag(Def->getLocation(), diag::note_previous_definition);
4426                // If this is a redefinition, recover by making this
4427                // struct be anonymous, which will make any later
4428                // references get the previous definition.
4429                Name = 0;
4430                PrevDecl = 0;
4431                Invalid = true;
4432              }
4433            } else {
4434              // If the type is currently being defined, complain
4435              // about a nested redefinition.
4436              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
4437              if (Tag->isBeingDefined()) {
4438                Diag(NameLoc, diag::err_nested_redefinition) << Name;
4439                Diag(PrevTagDecl->getLocation(),
4440                     diag::note_previous_definition);
4441                Name = 0;
4442                PrevDecl = 0;
4443                Invalid = true;
4444              }
4445            }
4446
4447            // Okay, this is definition of a previously declared or referenced
4448            // tag PrevDecl. We're going to create a new Decl for it.
4449          }
4450        }
4451        // If we get here we have (another) forward declaration or we
4452        // have a definition.  Just create a new decl.
4453
4454      } else {
4455        // If we get here, this is a definition of a new tag type in a nested
4456        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
4457        // new decl/type.  We set PrevDecl to NULL so that the entities
4458        // have distinct types.
4459        PrevDecl = 0;
4460      }
4461      // If we get here, we're going to create a new Decl. If PrevDecl
4462      // is non-NULL, it's a definition of the tag declared by
4463      // PrevDecl. If it's NULL, we have a new definition.
4464    } else {
4465      // PrevDecl is a namespace, template, or anything else
4466      // that lives in the IDNS_Tag identifier namespace.
4467      if (isDeclInScope(PrevDecl, SearchDC, S)) {
4468        // The tag name clashes with a namespace name, issue an error and
4469        // recover by making this tag be anonymous.
4470        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
4471        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4472        Name = 0;
4473        PrevDecl = 0;
4474        Invalid = true;
4475      } else {
4476        // The existing declaration isn't relevant to us; we're in a
4477        // new scope, so clear out the previous declaration.
4478        PrevDecl = 0;
4479      }
4480    }
4481  } else if (TUK == TUK_Reference && SS.isEmpty() && Name &&
4482             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
4483    // C++ [basic.scope.pdecl]p5:
4484    //   -- for an elaborated-type-specifier of the form
4485    //
4486    //          class-key identifier
4487    //
4488    //      if the elaborated-type-specifier is used in the
4489    //      decl-specifier-seq or parameter-declaration-clause of a
4490    //      function defined in namespace scope, the identifier is
4491    //      declared as a class-name in the namespace that contains
4492    //      the declaration; otherwise, except as a friend
4493    //      declaration, the identifier is declared in the smallest
4494    //      non-class, non-function-prototype scope that contains the
4495    //      declaration.
4496    //
4497    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
4498    // C structs and unions.
4499    //
4500    // GNU C also supports this behavior as part of its incomplete
4501    // enum types extension, while GNU C++ does not.
4502    //
4503    // Find the context where we'll be declaring the tag.
4504    // FIXME: We would like to maintain the current DeclContext as the
4505    // lexical context,
4506    while (SearchDC->isRecord())
4507      SearchDC = SearchDC->getParent();
4508
4509    // Find the scope where we'll be declaring the tag.
4510    while (S->isClassScope() ||
4511           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
4512           ((S->getFlags() & Scope::DeclScope) == 0) ||
4513           (S->getEntity() &&
4514            ((DeclContext *)S->getEntity())->isTransparentContext()))
4515      S = S->getParent();
4516
4517  } else if (TUK == TUK_Friend && SS.isEmpty() && Name) {
4518    // C++ [namespace.memdef]p3:
4519    //   If a friend declaration in a non-local class first declares a
4520    //   class or function, the friend class or function is a member of
4521    //   the innermost enclosing namespace.
4522    while (!SearchDC->isFileContext())
4523      SearchDC = SearchDC->getParent();
4524
4525    // The entity of a decl scope is a DeclContext; see PushDeclContext.
4526    while (S->getEntity() != SearchDC)
4527      S = S->getParent();
4528  }
4529
4530CreateNewDecl:
4531
4532  // If there is an identifier, use the location of the identifier as the
4533  // location of the decl, otherwise use the location of the struct/union
4534  // keyword.
4535  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
4536
4537  // Otherwise, create a new declaration. If there is a previous
4538  // declaration of the same entity, the two will be linked via
4539  // PrevDecl.
4540  TagDecl *New;
4541
4542  if (Kind == TagDecl::TK_enum) {
4543    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4544    // enum X { A, B, C } D;    D should chain to X.
4545    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
4546                           cast_or_null<EnumDecl>(PrevDecl));
4547    // If this is an undefined enum, warn.
4548    if (TUK != TUK_Definition && !Invalid)  {
4549      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
4550                                              : diag::ext_forward_ref_enum;
4551      Diag(Loc, DK);
4552    }
4553  } else {
4554    // struct/union/class
4555
4556    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4557    // struct X { int A; } D;    D should chain to X.
4558    if (getLangOptions().CPlusPlus) {
4559      // FIXME: Look for a way to use RecordDecl for simple structs.
4560      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4561                                  cast_or_null<CXXRecordDecl>(PrevDecl));
4562
4563      if (isStdBadAlloc && (!StdBadAlloc || StdBadAlloc->isImplicit()))
4564        StdBadAlloc = cast<CXXRecordDecl>(New);
4565    } else
4566      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4567                               cast_or_null<RecordDecl>(PrevDecl));
4568  }
4569
4570  if (Kind != TagDecl::TK_enum) {
4571    // Handle #pragma pack: if the #pragma pack stack has non-default
4572    // alignment, make up a packed attribute for this decl. These
4573    // attributes are checked when the ASTContext lays out the
4574    // structure.
4575    //
4576    // It is important for implementing the correct semantics that this
4577    // happen here (in act on tag decl). The #pragma pack stack is
4578    // maintained as a result of parser callbacks which can occur at
4579    // many points during the parsing of a struct declaration (because
4580    // the #pragma tokens are effectively skipped over during the
4581    // parsing of the struct).
4582    if (unsigned Alignment = getPragmaPackAlignment())
4583      New->addAttr(::new (Context) PragmaPackAttr(Alignment * 8));
4584  }
4585
4586  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
4587    // C++ [dcl.typedef]p3:
4588    //   [...] Similarly, in a given scope, a class or enumeration
4589    //   shall not be declared with the same name as a typedef-name
4590    //   that is declared in that scope and refers to a type other
4591    //   than the class or enumeration itself.
4592    LookupResult Lookup;
4593    LookupName(Lookup, S, Name, LookupOrdinaryName, true);
4594    TypedefDecl *PrevTypedef = 0;
4595    if (NamedDecl *Prev = Lookup.getAsSingleDecl(Context))
4596      PrevTypedef = dyn_cast<TypedefDecl>(Prev);
4597
4598    NamedDecl *PrevTypedefNamed = PrevTypedef;
4599    if (PrevTypedef && isDeclInScope(PrevTypedefNamed, SearchDC, S) &&
4600        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
4601          Context.getCanonicalType(Context.getTypeDeclType(New))) {
4602      Diag(Loc, diag::err_tag_definition_of_typedef)
4603        << Context.getTypeDeclType(New)
4604        << PrevTypedef->getUnderlyingType();
4605      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
4606      Invalid = true;
4607    }
4608  }
4609
4610  // If this is a specialization of a member class (of a class template),
4611  // check the specialization.
4612  if (isExplicitSpecialization && CheckMemberSpecialization(New, PrevDecl))
4613    Invalid = true;
4614
4615  if (Invalid)
4616    New->setInvalidDecl();
4617
4618  if (Attr)
4619    ProcessDeclAttributeList(S, New, Attr);
4620
4621  // If we're declaring or defining a tag in function prototype scope
4622  // in C, note that this type can only be used within the function.
4623  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
4624    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
4625
4626  // Set the lexical context. If the tag has a C++ scope specifier, the
4627  // lexical context will be different from the semantic context.
4628  New->setLexicalDeclContext(CurContext);
4629
4630  // Mark this as a friend decl if applicable.
4631  if (TUK == TUK_Friend)
4632    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ PrevDecl != NULL);
4633
4634  // Set the access specifier.
4635  if (!Invalid && TUK != TUK_Friend)
4636    SetMemberAccessSpecifier(New, PrevDecl, AS);
4637
4638  if (TUK == TUK_Definition)
4639    New->startDefinition();
4640
4641  // If this has an identifier, add it to the scope stack.
4642  if (TUK == TUK_Friend) {
4643    // We might be replacing an existing declaration in the lookup tables;
4644    // if so, borrow its access specifier.
4645    if (PrevDecl)
4646      New->setAccess(PrevDecl->getAccess());
4647
4648    // Friend tag decls are visible in fairly strange ways.
4649    if (!CurContext->isDependentContext()) {
4650      DeclContext *DC = New->getDeclContext()->getLookupContext();
4651      DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
4652      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
4653        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
4654    }
4655  } else if (Name) {
4656    S = getNonFieldDeclScope(S);
4657    PushOnScopeChains(New, S);
4658  } else {
4659    CurContext->addDecl(New);
4660  }
4661
4662  // If this is the C FILE type, notify the AST context.
4663  if (IdentifierInfo *II = New->getIdentifier())
4664    if (!New->isInvalidDecl() &&
4665        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
4666        II->isStr("FILE"))
4667      Context.setFILEDecl(New);
4668
4669  OwnedDecl = true;
4670  return DeclPtrTy::make(New);
4671}
4672
4673void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
4674  AdjustDeclIfTemplate(TagD);
4675  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4676
4677  // Enter the tag context.
4678  PushDeclContext(S, Tag);
4679
4680  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
4681    FieldCollector->StartClass();
4682
4683    if (Record->getIdentifier()) {
4684      // C++ [class]p2:
4685      //   [...] The class-name is also inserted into the scope of the
4686      //   class itself; this is known as the injected-class-name. For
4687      //   purposes of access checking, the injected-class-name is treated
4688      //   as if it were a public member name.
4689      CXXRecordDecl *InjectedClassName
4690        = CXXRecordDecl::Create(Context, Record->getTagKind(),
4691                                CurContext, Record->getLocation(),
4692                                Record->getIdentifier(),
4693                                Record->getTagKeywordLoc(),
4694                                Record);
4695      InjectedClassName->setImplicit();
4696      InjectedClassName->setAccess(AS_public);
4697      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
4698        InjectedClassName->setDescribedClassTemplate(Template);
4699      PushOnScopeChains(InjectedClassName, S);
4700      assert(InjectedClassName->isInjectedClassName() &&
4701             "Broken injected-class-name");
4702    }
4703  }
4704}
4705
4706void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
4707                                    SourceLocation RBraceLoc) {
4708  AdjustDeclIfTemplate(TagD);
4709  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4710  Tag->setRBraceLoc(RBraceLoc);
4711
4712  if (isa<CXXRecordDecl>(Tag))
4713    FieldCollector->FinishClass();
4714
4715  // Exit this scope of this tag's definition.
4716  PopDeclContext();
4717
4718  // Notify the consumer that we've defined a tag.
4719  Consumer.HandleTagDeclDefinition(Tag);
4720}
4721
4722// Note that FieldName may be null for anonymous bitfields.
4723bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
4724                          QualType FieldTy, const Expr *BitWidth,
4725                          bool *ZeroWidth) {
4726  // Default to true; that shouldn't confuse checks for emptiness
4727  if (ZeroWidth)
4728    *ZeroWidth = true;
4729
4730  // C99 6.7.2.1p4 - verify the field type.
4731  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
4732  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
4733    // Handle incomplete types with specific error.
4734    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
4735      return true;
4736    if (FieldName)
4737      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
4738        << FieldName << FieldTy << BitWidth->getSourceRange();
4739    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
4740      << FieldTy << BitWidth->getSourceRange();
4741  }
4742
4743  // If the bit-width is type- or value-dependent, don't try to check
4744  // it now.
4745  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
4746    return false;
4747
4748  llvm::APSInt Value;
4749  if (VerifyIntegerConstantExpression(BitWidth, &Value))
4750    return true;
4751
4752  if (Value != 0 && ZeroWidth)
4753    *ZeroWidth = false;
4754
4755  // Zero-width bitfield is ok for anonymous field.
4756  if (Value == 0 && FieldName)
4757    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
4758
4759  if (Value.isSigned() && Value.isNegative()) {
4760    if (FieldName)
4761      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
4762               << FieldName << Value.toString(10);
4763    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
4764      << Value.toString(10);
4765  }
4766
4767  if (!FieldTy->isDependentType()) {
4768    uint64_t TypeSize = Context.getTypeSize(FieldTy);
4769    if (Value.getZExtValue() > TypeSize) {
4770      if (FieldName)
4771        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
4772          << FieldName << (unsigned)TypeSize;
4773      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
4774        << (unsigned)TypeSize;
4775    }
4776  }
4777
4778  return false;
4779}
4780
4781/// ActOnField - Each field of a struct/union/class is passed into this in order
4782/// to create a FieldDecl object for it.
4783Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
4784                                 SourceLocation DeclStart,
4785                                 Declarator &D, ExprTy *BitfieldWidth) {
4786  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
4787                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
4788                               AS_public);
4789  return DeclPtrTy::make(Res);
4790}
4791
4792/// HandleField - Analyze a field of a C struct or a C++ data member.
4793///
4794FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
4795                             SourceLocation DeclStart,
4796                             Declarator &D, Expr *BitWidth,
4797                             AccessSpecifier AS) {
4798  IdentifierInfo *II = D.getIdentifier();
4799  SourceLocation Loc = DeclStart;
4800  if (II) Loc = D.getIdentifierLoc();
4801
4802  DeclaratorInfo *DInfo = 0;
4803  QualType T = GetTypeForDeclarator(D, S, &DInfo);
4804  if (getLangOptions().CPlusPlus)
4805    CheckExtraCXXDefaultArguments(D);
4806
4807  DiagnoseFunctionSpecifiers(D);
4808
4809  if (D.getDeclSpec().isThreadSpecified())
4810    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4811
4812  NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName, true);
4813
4814  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4815    // Maybe we will complain about the shadowed template parameter.
4816    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4817    // Just pretend that we didn't see the previous declaration.
4818    PrevDecl = 0;
4819  }
4820
4821  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
4822    PrevDecl = 0;
4823
4824  bool Mutable
4825    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
4826  SourceLocation TSSL = D.getSourceRange().getBegin();
4827  FieldDecl *NewFD
4828    = CheckFieldDecl(II, T, DInfo, Record, Loc, Mutable, BitWidth, TSSL,
4829                     AS, PrevDecl, &D);
4830  if (NewFD->isInvalidDecl() && PrevDecl) {
4831    // Don't introduce NewFD into scope; there's already something
4832    // with the same name in the same scope.
4833  } else if (II) {
4834    PushOnScopeChains(NewFD, S);
4835  } else
4836    Record->addDecl(NewFD);
4837
4838  return NewFD;
4839}
4840
4841/// \brief Build a new FieldDecl and check its well-formedness.
4842///
4843/// This routine builds a new FieldDecl given the fields name, type,
4844/// record, etc. \p PrevDecl should refer to any previous declaration
4845/// with the same name and in the same scope as the field to be
4846/// created.
4847///
4848/// \returns a new FieldDecl.
4849///
4850/// \todo The Declarator argument is a hack. It will be removed once
4851FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
4852                                DeclaratorInfo *DInfo,
4853                                RecordDecl *Record, SourceLocation Loc,
4854                                bool Mutable, Expr *BitWidth,
4855                                SourceLocation TSSL,
4856                                AccessSpecifier AS, NamedDecl *PrevDecl,
4857                                Declarator *D) {
4858  IdentifierInfo *II = Name.getAsIdentifierInfo();
4859  bool InvalidDecl = false;
4860  if (D) InvalidDecl = D->isInvalidType();
4861
4862  // If we receive a broken type, recover by assuming 'int' and
4863  // marking this declaration as invalid.
4864  if (T.isNull()) {
4865    InvalidDecl = true;
4866    T = Context.IntTy;
4867  }
4868
4869  // C99 6.7.2.1p8: A member of a structure or union may have any type other
4870  // than a variably modified type.
4871  if (T->isVariablyModifiedType()) {
4872    bool SizeIsNegative;
4873    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
4874                                                           SizeIsNegative);
4875    if (!FixedTy.isNull()) {
4876      Diag(Loc, diag::warn_illegal_constant_array_size);
4877      T = FixedTy;
4878    } else {
4879      if (SizeIsNegative)
4880        Diag(Loc, diag::err_typecheck_negative_array_size);
4881      else
4882        Diag(Loc, diag::err_typecheck_field_variable_size);
4883      InvalidDecl = true;
4884    }
4885  }
4886
4887  // Fields can not have abstract class types
4888  if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl,
4889                             AbstractFieldType))
4890    InvalidDecl = true;
4891
4892  bool ZeroWidth = false;
4893  // If this is declared as a bit-field, check the bit-field.
4894  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
4895    InvalidDecl = true;
4896    DeleteExpr(BitWidth);
4897    BitWidth = 0;
4898    ZeroWidth = false;
4899  }
4900
4901  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, DInfo,
4902                                       BitWidth, Mutable);
4903  if (InvalidDecl)
4904    NewFD->setInvalidDecl();
4905
4906  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
4907    Diag(Loc, diag::err_duplicate_member) << II;
4908    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4909    NewFD->setInvalidDecl();
4910  }
4911
4912  if (getLangOptions().CPlusPlus) {
4913    QualType EltTy = Context.getBaseElementType(T);
4914
4915    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
4916
4917    if (!T->isPODType())
4918      CXXRecord->setPOD(false);
4919    if (!ZeroWidth)
4920      CXXRecord->setEmpty(false);
4921
4922    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
4923      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
4924
4925      if (!RDecl->hasTrivialConstructor())
4926        CXXRecord->setHasTrivialConstructor(false);
4927      if (!RDecl->hasTrivialCopyConstructor())
4928        CXXRecord->setHasTrivialCopyConstructor(false);
4929      if (!RDecl->hasTrivialCopyAssignment())
4930        CXXRecord->setHasTrivialCopyAssignment(false);
4931      if (!RDecl->hasTrivialDestructor())
4932        CXXRecord->setHasTrivialDestructor(false);
4933
4934      // C++ 9.5p1: An object of a class with a non-trivial
4935      // constructor, a non-trivial copy constructor, a non-trivial
4936      // destructor, or a non-trivial copy assignment operator
4937      // cannot be a member of a union, nor can an array of such
4938      // objects.
4939      // TODO: C++0x alters this restriction significantly.
4940      if (Record->isUnion()) {
4941        // We check for copy constructors before constructors
4942        // because otherwise we'll never get complaints about
4943        // copy constructors.
4944
4945        const CXXSpecialMember invalid = (CXXSpecialMember) -1;
4946
4947        CXXSpecialMember member;
4948        if (!RDecl->hasTrivialCopyConstructor())
4949          member = CXXCopyConstructor;
4950        else if (!RDecl->hasTrivialConstructor())
4951          member = CXXDefaultConstructor;
4952        else if (!RDecl->hasTrivialCopyAssignment())
4953          member = CXXCopyAssignment;
4954        else if (!RDecl->hasTrivialDestructor())
4955          member = CXXDestructor;
4956        else
4957          member = invalid;
4958
4959        if (member != invalid) {
4960          Diag(Loc, diag::err_illegal_union_member) << Name << member;
4961          DiagnoseNontrivial(RT, member);
4962          NewFD->setInvalidDecl();
4963        }
4964      }
4965    }
4966  }
4967
4968  // FIXME: We need to pass in the attributes given an AST
4969  // representation, not a parser representation.
4970  if (D)
4971    // FIXME: What to pass instead of TUScope?
4972    ProcessDeclAttributes(TUScope, NewFD, *D);
4973
4974  if (T.isObjCGCWeak())
4975    Diag(Loc, diag::warn_attribute_weak_on_field);
4976
4977  NewFD->setAccess(AS);
4978
4979  // C++ [dcl.init.aggr]p1:
4980  //   An aggregate is an array or a class (clause 9) with [...] no
4981  //   private or protected non-static data members (clause 11).
4982  // A POD must be an aggregate.
4983  if (getLangOptions().CPlusPlus &&
4984      (AS == AS_private || AS == AS_protected)) {
4985    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
4986    CXXRecord->setAggregate(false);
4987    CXXRecord->setPOD(false);
4988  }
4989
4990  return NewFD;
4991}
4992
4993/// DiagnoseNontrivial - Given that a class has a non-trivial
4994/// special member, figure out why.
4995void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
4996  QualType QT(T, 0U);
4997  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
4998
4999  // Check whether the member was user-declared.
5000  switch (member) {
5001  case CXXDefaultConstructor:
5002    if (RD->hasUserDeclaredConstructor()) {
5003      typedef CXXRecordDecl::ctor_iterator ctor_iter;
5004      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
5005        const FunctionDecl *body = 0;
5006        ci->getBody(body);
5007        if (!body ||
5008            !cast<CXXConstructorDecl>(body)->isImplicitlyDefined(Context)) {
5009          SourceLocation CtorLoc = ci->getLocation();
5010          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5011          return;
5012        }
5013      }
5014
5015      assert(0 && "found no user-declared constructors");
5016      return;
5017    }
5018    break;
5019
5020  case CXXCopyConstructor:
5021    if (RD->hasUserDeclaredCopyConstructor()) {
5022      SourceLocation CtorLoc =
5023        RD->getCopyConstructor(Context, 0)->getLocation();
5024      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5025      return;
5026    }
5027    break;
5028
5029  case CXXCopyAssignment:
5030    if (RD->hasUserDeclaredCopyAssignment()) {
5031      // FIXME: this should use the location of the copy
5032      // assignment, not the type.
5033      SourceLocation TyLoc = RD->getSourceRange().getBegin();
5034      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
5035      return;
5036    }
5037    break;
5038
5039  case CXXDestructor:
5040    if (RD->hasUserDeclaredDestructor()) {
5041      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
5042      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5043      return;
5044    }
5045    break;
5046  }
5047
5048  typedef CXXRecordDecl::base_class_iterator base_iter;
5049
5050  // Virtual bases and members inhibit trivial copying/construction,
5051  // but not trivial destruction.
5052  if (member != CXXDestructor) {
5053    // Check for virtual bases.  vbases includes indirect virtual bases,
5054    // so we just iterate through the direct bases.
5055    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
5056      if (bi->isVirtual()) {
5057        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5058        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
5059        return;
5060      }
5061
5062    // Check for virtual methods.
5063    typedef CXXRecordDecl::method_iterator meth_iter;
5064    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
5065         ++mi) {
5066      if (mi->isVirtual()) {
5067        SourceLocation MLoc = mi->getSourceRange().getBegin();
5068        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
5069        return;
5070      }
5071    }
5072  }
5073
5074  bool (CXXRecordDecl::*hasTrivial)() const;
5075  switch (member) {
5076  case CXXDefaultConstructor:
5077    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
5078  case CXXCopyConstructor:
5079    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
5080  case CXXCopyAssignment:
5081    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
5082  case CXXDestructor:
5083    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
5084  default:
5085    assert(0 && "unexpected special member"); return;
5086  }
5087
5088  // Check for nontrivial bases (and recurse).
5089  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
5090    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
5091    assert(BaseRT && "Don't know how to handle dependent bases");
5092    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
5093    if (!(BaseRecTy->*hasTrivial)()) {
5094      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5095      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
5096      DiagnoseNontrivial(BaseRT, member);
5097      return;
5098    }
5099  }
5100
5101  // Check for nontrivial members (and recurse).
5102  typedef RecordDecl::field_iterator field_iter;
5103  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
5104       ++fi) {
5105    QualType EltTy = Context.getBaseElementType((*fi)->getType());
5106    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
5107      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
5108
5109      if (!(EltRD->*hasTrivial)()) {
5110        SourceLocation FLoc = (*fi)->getLocation();
5111        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
5112        DiagnoseNontrivial(EltRT, member);
5113        return;
5114      }
5115    }
5116  }
5117
5118  assert(0 && "found no explanation for non-trivial member");
5119}
5120
5121/// TranslateIvarVisibility - Translate visibility from a token ID to an
5122///  AST enum value.
5123static ObjCIvarDecl::AccessControl
5124TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
5125  switch (ivarVisibility) {
5126  default: assert(0 && "Unknown visitibility kind");
5127  case tok::objc_private: return ObjCIvarDecl::Private;
5128  case tok::objc_public: return ObjCIvarDecl::Public;
5129  case tok::objc_protected: return ObjCIvarDecl::Protected;
5130  case tok::objc_package: return ObjCIvarDecl::Package;
5131  }
5132}
5133
5134/// ActOnIvar - Each ivar field of an objective-c class is passed into this
5135/// in order to create an IvarDecl object for it.
5136Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
5137                                SourceLocation DeclStart,
5138                                DeclPtrTy IntfDecl,
5139                                Declarator &D, ExprTy *BitfieldWidth,
5140                                tok::ObjCKeywordKind Visibility) {
5141
5142  IdentifierInfo *II = D.getIdentifier();
5143  Expr *BitWidth = (Expr*)BitfieldWidth;
5144  SourceLocation Loc = DeclStart;
5145  if (II) Loc = D.getIdentifierLoc();
5146
5147  // FIXME: Unnamed fields can be handled in various different ways, for
5148  // example, unnamed unions inject all members into the struct namespace!
5149
5150  DeclaratorInfo *DInfo = 0;
5151  QualType T = GetTypeForDeclarator(D, S, &DInfo);
5152
5153  if (BitWidth) {
5154    // 6.7.2.1p3, 6.7.2.1p4
5155    if (VerifyBitField(Loc, II, T, BitWidth)) {
5156      D.setInvalidType();
5157      DeleteExpr(BitWidth);
5158      BitWidth = 0;
5159    }
5160  } else {
5161    // Not a bitfield.
5162
5163    // validate II.
5164
5165  }
5166
5167  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5168  // than a variably modified type.
5169  if (T->isVariablyModifiedType()) {
5170    Diag(Loc, diag::err_typecheck_ivar_variable_size);
5171    D.setInvalidType();
5172  }
5173
5174  // Get the visibility (access control) for this ivar.
5175  ObjCIvarDecl::AccessControl ac =
5176    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
5177                                        : ObjCIvarDecl::None;
5178  // Must set ivar's DeclContext to its enclosing interface.
5179  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
5180  DeclContext *EnclosingContext;
5181  if (ObjCImplementationDecl *IMPDecl =
5182      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5183    // Case of ivar declared in an implementation. Context is that of its class.
5184    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
5185    assert(IDecl && "No class- ActOnIvar");
5186    EnclosingContext = cast_or_null<DeclContext>(IDecl);
5187  } else
5188    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
5189  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
5190
5191  // Construct the decl.
5192  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
5193                                             EnclosingContext, Loc, II, T,
5194                                             DInfo, ac, (Expr *)BitfieldWidth);
5195
5196  if (II) {
5197    NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName, true);
5198    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
5199        && !isa<TagDecl>(PrevDecl)) {
5200      Diag(Loc, diag::err_duplicate_member) << II;
5201      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5202      NewID->setInvalidDecl();
5203    }
5204  }
5205
5206  // Process attributes attached to the ivar.
5207  ProcessDeclAttributes(S, NewID, D);
5208
5209  if (D.isInvalidType())
5210    NewID->setInvalidDecl();
5211
5212  if (II) {
5213    // FIXME: When interfaces are DeclContexts, we'll need to add
5214    // these to the interface.
5215    S->AddDecl(DeclPtrTy::make(NewID));
5216    IdResolver.AddDecl(NewID);
5217  }
5218
5219  return DeclPtrTy::make(NewID);
5220}
5221
5222void Sema::ActOnFields(Scope* S,
5223                       SourceLocation RecLoc, DeclPtrTy RecDecl,
5224                       DeclPtrTy *Fields, unsigned NumFields,
5225                       SourceLocation LBrac, SourceLocation RBrac,
5226                       AttributeList *Attr) {
5227  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
5228  assert(EnclosingDecl && "missing record or interface decl");
5229
5230  // If the decl this is being inserted into is invalid, then it may be a
5231  // redeclaration or some other bogus case.  Don't try to add fields to it.
5232  if (EnclosingDecl->isInvalidDecl()) {
5233    // FIXME: Deallocate fields?
5234    return;
5235  }
5236
5237
5238  // Verify that all the fields are okay.
5239  unsigned NumNamedMembers = 0;
5240  llvm::SmallVector<FieldDecl*, 32> RecFields;
5241
5242  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
5243  for (unsigned i = 0; i != NumFields; ++i) {
5244    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
5245
5246    // Get the type for the field.
5247    Type *FDTy = FD->getType().getTypePtr();
5248
5249    if (!FD->isAnonymousStructOrUnion()) {
5250      // Remember all fields written by the user.
5251      RecFields.push_back(FD);
5252    }
5253
5254    // If the field is already invalid for some reason, don't emit more
5255    // diagnostics about it.
5256    if (FD->isInvalidDecl())
5257      continue;
5258
5259    // C99 6.7.2.1p2:
5260    //   A structure or union shall not contain a member with
5261    //   incomplete or function type (hence, a structure shall not
5262    //   contain an instance of itself, but may contain a pointer to
5263    //   an instance of itself), except that the last member of a
5264    //   structure with more than one named member may have incomplete
5265    //   array type; such a structure (and any union containing,
5266    //   possibly recursively, a member that is such a structure)
5267    //   shall not be a member of a structure or an element of an
5268    //   array.
5269    if (FDTy->isFunctionType()) {
5270      // Field declared as a function.
5271      Diag(FD->getLocation(), diag::err_field_declared_as_function)
5272        << FD->getDeclName();
5273      FD->setInvalidDecl();
5274      EnclosingDecl->setInvalidDecl();
5275      continue;
5276    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
5277               Record && Record->isStruct()) {
5278      // Flexible array member.
5279      if (NumNamedMembers < 1) {
5280        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
5281          << FD->getDeclName();
5282        FD->setInvalidDecl();
5283        EnclosingDecl->setInvalidDecl();
5284        continue;
5285      }
5286      // Okay, we have a legal flexible array member at the end of the struct.
5287      if (Record)
5288        Record->setHasFlexibleArrayMember(true);
5289    } else if (!FDTy->isDependentType() &&
5290               RequireCompleteType(FD->getLocation(), FD->getType(),
5291                                   diag::err_field_incomplete)) {
5292      // Incomplete type
5293      FD->setInvalidDecl();
5294      EnclosingDecl->setInvalidDecl();
5295      continue;
5296    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
5297      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
5298        // If this is a member of a union, then entire union becomes "flexible".
5299        if (Record && Record->isUnion()) {
5300          Record->setHasFlexibleArrayMember(true);
5301        } else {
5302          // If this is a struct/class and this is not the last element, reject
5303          // it.  Note that GCC supports variable sized arrays in the middle of
5304          // structures.
5305          if (i != NumFields-1)
5306            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
5307              << FD->getDeclName() << FD->getType();
5308          else {
5309            // We support flexible arrays at the end of structs in
5310            // other structs as an extension.
5311            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
5312              << FD->getDeclName();
5313            if (Record)
5314              Record->setHasFlexibleArrayMember(true);
5315          }
5316        }
5317      }
5318      if (Record && FDTTy->getDecl()->hasObjectMember())
5319        Record->setHasObjectMember(true);
5320    } else if (FDTy->isObjCInterfaceType()) {
5321      /// A field cannot be an Objective-c object
5322      Diag(FD->getLocation(), diag::err_statically_allocated_object);
5323      FD->setInvalidDecl();
5324      EnclosingDecl->setInvalidDecl();
5325      continue;
5326    } else if (getLangOptions().ObjC1 &&
5327               getLangOptions().getGCMode() != LangOptions::NonGC &&
5328               Record &&
5329               (FD->getType()->isObjCObjectPointerType() ||
5330                FD->getType().isObjCGCStrong()))
5331      Record->setHasObjectMember(true);
5332    // Keep track of the number of named members.
5333    if (FD->getIdentifier())
5334      ++NumNamedMembers;
5335  }
5336
5337  // Okay, we successfully defined 'Record'.
5338  if (Record) {
5339    Record->completeDefinition(Context);
5340  } else {
5341    ObjCIvarDecl **ClsFields =
5342      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
5343    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
5344      ID->setIVarList(ClsFields, RecFields.size(), Context);
5345      ID->setLocEnd(RBrac);
5346      // Add ivar's to class's DeclContext.
5347      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
5348        ClsFields[i]->setLexicalDeclContext(ID);
5349        ID->addDecl(ClsFields[i]);
5350      }
5351      // Must enforce the rule that ivars in the base classes may not be
5352      // duplicates.
5353      if (ID->getSuperClass()) {
5354        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
5355             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
5356          ObjCIvarDecl* Ivar = (*IVI);
5357
5358          if (IdentifierInfo *II = Ivar->getIdentifier()) {
5359            ObjCIvarDecl* prevIvar =
5360              ID->getSuperClass()->lookupInstanceVariable(II);
5361            if (prevIvar) {
5362              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
5363              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
5364            }
5365          }
5366        }
5367      }
5368    } else if (ObjCImplementationDecl *IMPDecl =
5369                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5370      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
5371      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
5372        // Ivar declared in @implementation never belongs to the implementation.
5373        // Only it is in implementation's lexical context.
5374        ClsFields[I]->setLexicalDeclContext(IMPDecl);
5375      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
5376    }
5377  }
5378
5379  if (Attr)
5380    ProcessDeclAttributeList(S, Record, Attr);
5381}
5382
5383EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
5384                                          EnumConstantDecl *LastEnumConst,
5385                                          SourceLocation IdLoc,
5386                                          IdentifierInfo *Id,
5387                                          ExprArg val) {
5388  Expr *Val = (Expr *)val.get();
5389
5390  llvm::APSInt EnumVal(32);
5391  QualType EltTy;
5392  if (Val) {
5393    if (Val->isTypeDependent())
5394      EltTy = Context.DependentTy;
5395    else {
5396      // Make sure to promote the operand type to int.
5397      UsualUnaryConversions(Val);
5398      if (Val != val.get()) {
5399        val.release();
5400        val = Val;
5401      }
5402
5403      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
5404      SourceLocation ExpLoc;
5405      if (!Val->isValueDependent() &&
5406          VerifyIntegerConstantExpression(Val, &EnumVal)) {
5407        Val = 0;
5408      } else {
5409        EltTy = Val->getType();
5410      }
5411    }
5412  }
5413
5414  if (!Val) {
5415    if (LastEnumConst) {
5416      // Assign the last value + 1.
5417      EnumVal = LastEnumConst->getInitVal();
5418      ++EnumVal;
5419
5420      // Check for overflow on increment.
5421      if (EnumVal < LastEnumConst->getInitVal())
5422        Diag(IdLoc, diag::warn_enum_value_overflow);
5423
5424      EltTy = LastEnumConst->getType();
5425    } else {
5426      // First value, set to zero.
5427      EltTy = Context.IntTy;
5428      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
5429    }
5430  }
5431
5432  assert(!EltTy.isNull() && "Enum constant with NULL type");
5433
5434  val.release();
5435  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
5436                                  Val, EnumVal);
5437}
5438
5439
5440Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
5441                                        DeclPtrTy lastEnumConst,
5442                                        SourceLocation IdLoc,
5443                                        IdentifierInfo *Id,
5444                                        SourceLocation EqualLoc, ExprTy *val) {
5445  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
5446  EnumConstantDecl *LastEnumConst =
5447    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
5448  Expr *Val = static_cast<Expr*>(val);
5449
5450  // The scope passed in may not be a decl scope.  Zip up the scope tree until
5451  // we find one that is.
5452  S = getNonFieldDeclScope(S);
5453
5454  // Verify that there isn't already something declared with this name in this
5455  // scope.
5456  NamedDecl *PrevDecl = LookupSingleName(S, Id, LookupOrdinaryName);
5457  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5458    // Maybe we will complain about the shadowed template parameter.
5459    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
5460    // Just pretend that we didn't see the previous declaration.
5461    PrevDecl = 0;
5462  }
5463
5464  if (PrevDecl) {
5465    // When in C++, we may get a TagDecl with the same name; in this case the
5466    // enum constant will 'hide' the tag.
5467    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
5468           "Received TagDecl when not in C++!");
5469    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
5470      if (isa<EnumConstantDecl>(PrevDecl))
5471        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
5472      else
5473        Diag(IdLoc, diag::err_redefinition) << Id;
5474      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5475      if (Val) Val->Destroy(Context);
5476      return DeclPtrTy();
5477    }
5478  }
5479
5480  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
5481                                            IdLoc, Id, Owned(Val));
5482
5483  // Register this decl in the current scope stack.
5484  if (New)
5485    PushOnScopeChains(New, S);
5486
5487  return DeclPtrTy::make(New);
5488}
5489
5490void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
5491                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
5492                         DeclPtrTy *Elements, unsigned NumElements,
5493                         Scope *S, AttributeList *Attr) {
5494  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
5495  QualType EnumType = Context.getTypeDeclType(Enum);
5496
5497  if (Attr)
5498    ProcessDeclAttributeList(S, Enum, Attr);
5499
5500  // TODO: If the result value doesn't fit in an int, it must be a long or long
5501  // long value.  ISO C does not support this, but GCC does as an extension,
5502  // emit a warning.
5503  unsigned IntWidth = Context.Target.getIntWidth();
5504  unsigned CharWidth = Context.Target.getCharWidth();
5505  unsigned ShortWidth = Context.Target.getShortWidth();
5506
5507  // Verify that all the values are okay, compute the size of the values, and
5508  // reverse the list.
5509  unsigned NumNegativeBits = 0;
5510  unsigned NumPositiveBits = 0;
5511
5512  // Keep track of whether all elements have type int.
5513  bool AllElementsInt = true;
5514
5515  for (unsigned i = 0; i != NumElements; ++i) {
5516    EnumConstantDecl *ECD =
5517      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5518    if (!ECD) continue;  // Already issued a diagnostic.
5519
5520    // If the enum value doesn't fit in an int, emit an extension warning.
5521    const llvm::APSInt &InitVal = ECD->getInitVal();
5522    assert(InitVal.getBitWidth() >= IntWidth &&
5523           "Should have promoted value to int");
5524    if (InitVal.getBitWidth() > IntWidth) {
5525      llvm::APSInt V(InitVal);
5526      V.trunc(IntWidth);
5527      V.extend(InitVal.getBitWidth());
5528      if (V != InitVal)
5529        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
5530          << InitVal.toString(10);
5531    }
5532
5533    // Keep track of the size of positive and negative values.
5534    if (InitVal.isUnsigned() || InitVal.isNonNegative())
5535      NumPositiveBits = std::max(NumPositiveBits,
5536                                 (unsigned)InitVal.getActiveBits());
5537    else
5538      NumNegativeBits = std::max(NumNegativeBits,
5539                                 (unsigned)InitVal.getMinSignedBits());
5540
5541    // Keep track of whether every enum element has type int (very commmon).
5542    if (AllElementsInt)
5543      AllElementsInt = ECD->getType() == Context.IntTy;
5544  }
5545
5546  // Figure out the type that should be used for this enum.
5547  // FIXME: Support -fshort-enums.
5548  QualType BestType;
5549  unsigned BestWidth;
5550
5551  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
5552
5553  if (NumNegativeBits) {
5554    // If there is a negative value, figure out the smallest integer type (of
5555    // int/long/longlong) that fits.
5556    // If it's packed, check also if it fits a char or a short.
5557    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
5558        BestType = Context.SignedCharTy;
5559        BestWidth = CharWidth;
5560    } else if (Packed && NumNegativeBits <= ShortWidth &&
5561               NumPositiveBits < ShortWidth) {
5562        BestType = Context.ShortTy;
5563        BestWidth = ShortWidth;
5564    }
5565    else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
5566      BestType = Context.IntTy;
5567      BestWidth = IntWidth;
5568    } else {
5569      BestWidth = Context.Target.getLongWidth();
5570
5571      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
5572        BestType = Context.LongTy;
5573      else {
5574        BestWidth = Context.Target.getLongLongWidth();
5575
5576        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
5577          Diag(Enum->getLocation(), diag::warn_enum_too_large);
5578        BestType = Context.LongLongTy;
5579      }
5580    }
5581  } else {
5582    // If there is no negative value, figure out which of uint, ulong, ulonglong
5583    // fits.
5584    // If it's packed, check also if it fits a char or a short.
5585    if (Packed && NumPositiveBits <= CharWidth) {
5586        BestType = Context.UnsignedCharTy;
5587        BestWidth = CharWidth;
5588    } else if (Packed && NumPositiveBits <= ShortWidth) {
5589        BestType = Context.UnsignedShortTy;
5590        BestWidth = ShortWidth;
5591    }
5592    else if (NumPositiveBits <= IntWidth) {
5593      BestType = Context.UnsignedIntTy;
5594      BestWidth = IntWidth;
5595    } else if (NumPositiveBits <=
5596               (BestWidth = Context.Target.getLongWidth())) {
5597      BestType = Context.UnsignedLongTy;
5598    } else {
5599      BestWidth = Context.Target.getLongLongWidth();
5600      assert(NumPositiveBits <= BestWidth &&
5601             "How could an initializer get larger than ULL?");
5602      BestType = Context.UnsignedLongLongTy;
5603    }
5604  }
5605
5606  // Loop over all of the enumerator constants, changing their types to match
5607  // the type of the enum if needed.
5608  for (unsigned i = 0; i != NumElements; ++i) {
5609    EnumConstantDecl *ECD =
5610      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5611    if (!ECD) continue;  // Already issued a diagnostic.
5612
5613    // Standard C says the enumerators have int type, but we allow, as an
5614    // extension, the enumerators to be larger than int size.  If each
5615    // enumerator value fits in an int, type it as an int, otherwise type it the
5616    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
5617    // that X has type 'int', not 'unsigned'.
5618    if (ECD->getType() == Context.IntTy) {
5619      // Make sure the init value is signed.
5620      llvm::APSInt IV = ECD->getInitVal();
5621      IV.setIsSigned(true);
5622      ECD->setInitVal(IV);
5623
5624      if (getLangOptions().CPlusPlus)
5625        // C++ [dcl.enum]p4: Following the closing brace of an
5626        // enum-specifier, each enumerator has the type of its
5627        // enumeration.
5628        ECD->setType(EnumType);
5629      continue;  // Already int type.
5630    }
5631
5632    // Determine whether the value fits into an int.
5633    llvm::APSInt InitVal = ECD->getInitVal();
5634    bool FitsInInt;
5635    if (InitVal.isUnsigned() || !InitVal.isNegative())
5636      FitsInInt = InitVal.getActiveBits() < IntWidth;
5637    else
5638      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
5639
5640    // If it fits into an integer type, force it.  Otherwise force it to match
5641    // the enum decl type.
5642    QualType NewTy;
5643    unsigned NewWidth;
5644    bool NewSign;
5645    if (FitsInInt) {
5646      NewTy = Context.IntTy;
5647      NewWidth = IntWidth;
5648      NewSign = true;
5649    } else if (ECD->getType() == BestType) {
5650      // Already the right type!
5651      if (getLangOptions().CPlusPlus)
5652        // C++ [dcl.enum]p4: Following the closing brace of an
5653        // enum-specifier, each enumerator has the type of its
5654        // enumeration.
5655        ECD->setType(EnumType);
5656      continue;
5657    } else {
5658      NewTy = BestType;
5659      NewWidth = BestWidth;
5660      NewSign = BestType->isSignedIntegerType();
5661    }
5662
5663    // Adjust the APSInt value.
5664    InitVal.extOrTrunc(NewWidth);
5665    InitVal.setIsSigned(NewSign);
5666    ECD->setInitVal(InitVal);
5667
5668    // Adjust the Expr initializer and type.
5669    if (ECD->getInitExpr())
5670      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
5671                                                      CastExpr::CK_IntegralCast,
5672                                                      ECD->getInitExpr(),
5673                                                      /*isLvalue=*/false));
5674    if (getLangOptions().CPlusPlus)
5675      // C++ [dcl.enum]p4: Following the closing brace of an
5676      // enum-specifier, each enumerator has the type of its
5677      // enumeration.
5678      ECD->setType(EnumType);
5679    else
5680      ECD->setType(NewTy);
5681  }
5682
5683  Enum->completeDefinition(Context, BestType);
5684}
5685
5686Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
5687                                            ExprArg expr) {
5688  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
5689
5690  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
5691                                                   Loc, AsmString);
5692  CurContext->addDecl(New);
5693  return DeclPtrTy::make(New);
5694}
5695
5696void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
5697                             SourceLocation PragmaLoc,
5698                             SourceLocation NameLoc) {
5699  Decl *PrevDecl = LookupSingleName(TUScope, Name, LookupOrdinaryName);
5700
5701  if (PrevDecl) {
5702    PrevDecl->addAttr(::new (Context) WeakAttr());
5703  } else {
5704    (void)WeakUndeclaredIdentifiers.insert(
5705      std::pair<IdentifierInfo*,WeakInfo>
5706        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
5707  }
5708}
5709
5710void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
5711                                IdentifierInfo* AliasName,
5712                                SourceLocation PragmaLoc,
5713                                SourceLocation NameLoc,
5714                                SourceLocation AliasNameLoc) {
5715  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, LookupOrdinaryName);
5716  WeakInfo W = WeakInfo(Name, NameLoc);
5717
5718  if (PrevDecl) {
5719    if (!PrevDecl->hasAttr<AliasAttr>())
5720      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
5721        DeclApplyPragmaWeak(TUScope, ND, W);
5722  } else {
5723    (void)WeakUndeclaredIdentifiers.insert(
5724      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
5725  }
5726}
5727