SemaDecl.cpp revision cda9c674998aedeb9319e95a0284f4d266dcef32
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/Parse/DeclSpec.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Basic/SourceManager.h"
24// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "llvm/ADT/SmallSet.h"
28#include "llvm/ADT/STLExtras.h"
29#include <algorithm>
30#include <functional>
31using namespace clang;
32
33/// \brief If the identifier refers to a type name within this scope,
34/// return the declaration of that type.
35///
36/// This routine performs ordinary name lookup of the identifier II
37/// within the given scope, with optional C++ scope specifier SS, to
38/// determine whether the name refers to a type. If so, returns an
39/// opaque pointer (actually a QualType) corresponding to that
40/// type. Otherwise, returns NULL.
41///
42/// If name lookup results in an ambiguity, this routine will complain
43/// and then return NULL.
44Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
45                                Scope *S, const CXXScopeSpec *SS) {
46  Decl *IIDecl = 0;
47  LookupResult Result = LookupParsedName(S, SS, &II, LookupOrdinaryName,
48                                         false, false);
49  switch (Result.getKind()) {
50    case LookupResult::NotFound:
51    case LookupResult::FoundOverloaded:
52      return 0;
53
54    case LookupResult::AmbiguousBaseSubobjectTypes:
55    case LookupResult::AmbiguousBaseSubobjects:
56    case LookupResult::AmbiguousReference:
57      DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
58      return 0;
59
60    case LookupResult::Found:
61      IIDecl = Result.getAsDecl();
62      break;
63  }
64
65  if (IIDecl) {
66    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl))
67      return Context.getTypeDeclType(TD).getAsOpaquePtr();
68    else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl))
69      return Context.getObjCInterfaceType(IDecl).getAsOpaquePtr();
70  }
71  return 0;
72}
73
74DeclContext *Sema::getContainingDC(DeclContext *DC) {
75  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
76    // A C++ out-of-line method will return to the file declaration context.
77    if (MD->isOutOfLineDefinition())
78      return MD->getLexicalDeclContext();
79
80    // A C++ inline method is parsed *after* the topmost class it was declared
81    // in is fully parsed (it's "complete").
82    // The parsing of a C++ inline method happens at the declaration context of
83    // the topmost (non-nested) class it is lexically declared in.
84    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
85    DC = MD->getParent();
86    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
87      DC = RD;
88
89    // Return the declaration context of the topmost class the inline method is
90    // declared in.
91    return DC;
92  }
93
94  if (isa<ObjCMethodDecl>(DC))
95    return Context.getTranslationUnitDecl();
96
97  if (Decl *D = dyn_cast<Decl>(DC))
98    return D->getLexicalDeclContext();
99
100  return DC->getLexicalParent();
101}
102
103void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
104  assert(getContainingDC(DC) == CurContext &&
105      "The next DeclContext should be lexically contained in the current one.");
106  CurContext = DC;
107  S->setEntity(DC);
108}
109
110void Sema::PopDeclContext() {
111  assert(CurContext && "DeclContext imbalance!");
112
113  CurContext = getContainingDC(CurContext);
114}
115
116/// \brief Determine whether we allow overloading of the function
117/// PrevDecl with another declaration.
118///
119/// This routine determines whether overloading is possible, not
120/// whether some new function is actually an overload. It will return
121/// true in C++ (where we can always provide overloads) or, as an
122/// extension, in C when the previous function is already an
123/// overloaded function declaration or has the "overloadable"
124/// attribute.
125static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
126  if (Context.getLangOptions().CPlusPlus)
127    return true;
128
129  if (isa<OverloadedFunctionDecl>(PrevDecl))
130    return true;
131
132  return PrevDecl->getAttr<OverloadableAttr>() != 0;
133}
134
135/// Add this decl to the scope shadowed decl chains.
136void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
137  // Move up the scope chain until we find the nearest enclosing
138  // non-transparent context. The declaration will be introduced into this
139  // scope.
140  while (S->getEntity() &&
141         ((DeclContext *)S->getEntity())->isTransparentContext())
142    S = S->getParent();
143
144  S->AddDecl(D);
145
146  // Add scoped declarations into their context, so that they can be
147  // found later. Declarations without a context won't be inserted
148  // into any context.
149  CurContext->addDecl(D);
150
151  // C++ [basic.scope]p4:
152  //   -- exactly one declaration shall declare a class name or
153  //   enumeration name that is not a typedef name and the other
154  //   declarations shall all refer to the same object or
155  //   enumerator, or all refer to functions and function templates;
156  //   in this case the class name or enumeration name is hidden.
157  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
158    // We are pushing the name of a tag (enum or class).
159    if (CurContext->getLookupContext()
160          == TD->getDeclContext()->getLookupContext()) {
161      // We're pushing the tag into the current context, which might
162      // require some reshuffling in the identifier resolver.
163      IdentifierResolver::iterator
164        I = IdResolver.begin(TD->getDeclName()),
165        IEnd = IdResolver.end();
166      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
167        NamedDecl *PrevDecl = *I;
168        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
169             PrevDecl = *I, ++I) {
170          if (TD->declarationReplaces(*I)) {
171            // This is a redeclaration. Remove it from the chain and
172            // break out, so that we'll add in the shadowed
173            // declaration.
174            S->RemoveDecl(*I);
175            if (PrevDecl == *I) {
176              IdResolver.RemoveDecl(*I);
177              IdResolver.AddDecl(TD);
178              return;
179            } else {
180              IdResolver.RemoveDecl(*I);
181              break;
182            }
183          }
184        }
185
186        // There is already a declaration with the same name in the same
187        // scope, which is not a tag declaration. It must be found
188        // before we find the new declaration, so insert the new
189        // declaration at the end of the chain.
190        IdResolver.AddShadowedDecl(TD, PrevDecl);
191
192        return;
193      }
194    }
195  } else if (isa<FunctionDecl>(D) &&
196             AllowOverloadingOfFunction(D, Context)) {
197    // We are pushing the name of a function, which might be an
198    // overloaded name.
199    FunctionDecl *FD = cast<FunctionDecl>(D);
200    IdentifierResolver::iterator Redecl
201      = std::find_if(IdResolver.begin(FD->getDeclName()),
202                     IdResolver.end(),
203                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
204                                  FD));
205    if (Redecl != IdResolver.end()) {
206      // There is already a declaration of a function on our
207      // IdResolver chain. Replace it with this declaration.
208      S->RemoveDecl(*Redecl);
209      IdResolver.RemoveDecl(*Redecl);
210    }
211  }
212
213  IdResolver.AddDecl(D);
214}
215
216void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
217  if (S->decl_empty()) return;
218  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
219	 "Scope shouldn't contain decls!");
220
221  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
222       I != E; ++I) {
223    Decl *TmpD = static_cast<Decl*>(*I);
224    assert(TmpD && "This decl didn't get pushed??");
225
226    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
227    NamedDecl *D = cast<NamedDecl>(TmpD);
228
229    if (!D->getDeclName()) continue;
230
231    // Remove this name from our lexical scope.
232    IdResolver.RemoveDecl(D);
233  }
234}
235
236/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
237/// return 0 if one not found.
238ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
239  // The third "scope" argument is 0 since we aren't enabling lazy built-in
240  // creation from this context.
241  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
242
243  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
244}
245
246/// getNonFieldDeclScope - Retrieves the innermost scope, starting
247/// from S, where a non-field would be declared. This routine copes
248/// with the difference between C and C++ scoping rules in structs and
249/// unions. For example, the following code is well-formed in C but
250/// ill-formed in C++:
251/// @code
252/// struct S6 {
253///   enum { BAR } e;
254/// };
255///
256/// void test_S6() {
257///   struct S6 a;
258///   a.e = BAR;
259/// }
260/// @endcode
261/// For the declaration of BAR, this routine will return a different
262/// scope. The scope S will be the scope of the unnamed enumeration
263/// within S6. In C++, this routine will return the scope associated
264/// with S6, because the enumeration's scope is a transparent
265/// context but structures can contain non-field names. In C, this
266/// routine will return the translation unit scope, since the
267/// enumeration's scope is a transparent context and structures cannot
268/// contain non-field names.
269Scope *Sema::getNonFieldDeclScope(Scope *S) {
270  while (((S->getFlags() & Scope::DeclScope) == 0) ||
271         (S->getEntity() &&
272          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
273         (S->isClassScope() && !getLangOptions().CPlusPlus))
274    S = S->getParent();
275  return S;
276}
277
278void Sema::InitBuiltinVaListType() {
279  if (!Context.getBuiltinVaListType().isNull())
280    return;
281
282  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
283  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
284  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
285  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
286}
287
288/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
289/// file scope.  lazily create a decl for it. ForRedeclaration is true
290/// if we're creating this built-in in anticipation of redeclaring the
291/// built-in.
292NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
293                                     Scope *S, bool ForRedeclaration,
294                                     SourceLocation Loc) {
295  Builtin::ID BID = (Builtin::ID)bid;
296
297  if (Context.BuiltinInfo.hasVAListUse(BID))
298    InitBuiltinVaListType();
299
300  Builtin::Context::GetBuiltinTypeError Error;
301  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context, Error);
302  switch (Error) {
303  case Builtin::Context::GE_None:
304    // Okay
305    break;
306
307  case Builtin::Context::GE_Missing_FILE:
308    if (ForRedeclaration)
309      Diag(Loc, diag::err_implicit_decl_requires_stdio)
310        << Context.BuiltinInfo.GetName(BID);
311    return 0;
312  }
313
314  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
315    Diag(Loc, diag::ext_implicit_lib_function_decl)
316      << Context.BuiltinInfo.GetName(BID)
317      << R;
318    if (!Context.BuiltinInfo.getHeaderName(BID).empty() &&
319        Diags.getDiagnosticMapping(diag::ext_implicit_lib_function_decl)
320          != diag::MAP_IGNORE)
321      Diag(Loc, diag::note_please_include_header)
322        << Context.BuiltinInfo.getHeaderName(BID)
323        << Context.BuiltinInfo.GetName(BID);
324  }
325
326  FunctionDecl *New = FunctionDecl::Create(Context,
327                                           Context.getTranslationUnitDecl(),
328                                           Loc, II, R,
329                                           FunctionDecl::Extern, false);
330  New->setImplicit();
331
332  // Create Decl objects for each parameter, adding them to the
333  // FunctionDecl.
334  if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(R)) {
335    llvm::SmallVector<ParmVarDecl*, 16> Params;
336    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
337      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
338                                           FT->getArgType(i), VarDecl::None, 0));
339    New->setParams(Context, &Params[0], Params.size());
340  }
341
342  AddKnownFunctionAttributes(New);
343
344  // TUScope is the translation-unit scope to insert this function into.
345  // FIXME: This is hideous. We need to teach PushOnScopeChains to
346  // relate Scopes to DeclContexts, and probably eliminate CurContext
347  // entirely, but we're not there yet.
348  DeclContext *SavedContext = CurContext;
349  CurContext = Context.getTranslationUnitDecl();
350  PushOnScopeChains(New, TUScope);
351  CurContext = SavedContext;
352  return New;
353}
354
355/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
356/// everything from the standard library is defined.
357NamespaceDecl *Sema::GetStdNamespace() {
358  if (!StdNamespace) {
359    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
360    DeclContext *Global = Context.getTranslationUnitDecl();
361    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
362    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
363  }
364  return StdNamespace;
365}
366
367/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
368/// same name and scope as a previous declaration 'Old'.  Figure out
369/// how to resolve this situation, merging decls or emitting
370/// diagnostics as appropriate. Returns true if there was an error,
371/// false otherwise.
372///
373bool Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
374  bool objc_types = false;
375  // Allow multiple definitions for ObjC built-in typedefs.
376  // FIXME: Verify the underlying types are equivalent!
377  if (getLangOptions().ObjC1) {
378    const IdentifierInfo *TypeID = New->getIdentifier();
379    switch (TypeID->getLength()) {
380    default: break;
381    case 2:
382      if (!TypeID->isStr("id"))
383        break;
384      Context.setObjCIdType(New);
385      objc_types = true;
386      break;
387    case 5:
388      if (!TypeID->isStr("Class"))
389        break;
390      Context.setObjCClassType(New);
391      objc_types = true;
392      return false;
393    case 3:
394      if (!TypeID->isStr("SEL"))
395        break;
396      Context.setObjCSelType(New);
397      objc_types = true;
398      return false;
399    case 8:
400      if (!TypeID->isStr("Protocol"))
401        break;
402      Context.setObjCProtoType(New->getUnderlyingType());
403      objc_types = true;
404      return false;
405    }
406    // Fall through - the typedef name was not a builtin type.
407  }
408  // Verify the old decl was also a type.
409  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
410  if (!Old) {
411    Diag(New->getLocation(), diag::err_redefinition_different_kind)
412      << New->getDeclName();
413    if (!objc_types)
414      Diag(OldD->getLocation(), diag::note_previous_definition);
415    return true;
416  }
417
418  // Determine the "old" type we'll use for checking and diagnostics.
419  QualType OldType;
420  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
421    OldType = OldTypedef->getUnderlyingType();
422  else
423    OldType = Context.getTypeDeclType(Old);
424
425  // If the typedef types are not identical, reject them in all languages and
426  // with any extensions enabled.
427
428  if (OldType != New->getUnderlyingType() &&
429      Context.getCanonicalType(OldType) !=
430      Context.getCanonicalType(New->getUnderlyingType())) {
431    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
432      << New->getUnderlyingType() << OldType;
433    if (!objc_types)
434      Diag(Old->getLocation(), diag::note_previous_definition);
435    return true;
436  }
437  if (objc_types) return false;
438  if (getLangOptions().Microsoft) return false;
439
440  // C++ [dcl.typedef]p2:
441  //   In a given non-class scope, a typedef specifier can be used to
442  //   redefine the name of any type declared in that scope to refer
443  //   to the type to which it already refers.
444  if (getLangOptions().CPlusPlus && !isa<CXXRecordDecl>(CurContext))
445    return false;
446
447  // In C, redeclaration of a type is a constraint violation (6.7.2.3p1).
448  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
449  // *either* declaration is in a system header. The code below implements
450  // this adhoc compatibility rule. FIXME: The following code will not
451  // work properly when compiling ".i" files (containing preprocessed output).
452  if (PP.getDiagnostics().getSuppressSystemWarnings()) {
453    SourceManager &SrcMgr = Context.getSourceManager();
454    if (SrcMgr.isInSystemHeader(Old->getLocation()))
455      return false;
456    if (SrcMgr.isInSystemHeader(New->getLocation()))
457      return false;
458  }
459
460  Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
461  Diag(Old->getLocation(), diag::note_previous_definition);
462  return true;
463}
464
465/// DeclhasAttr - returns true if decl Declaration already has the target
466/// attribute.
467static bool DeclHasAttr(const Decl *decl, const Attr *target) {
468  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
469    if (attr->getKind() == target->getKind())
470      return true;
471
472  return false;
473}
474
475/// MergeAttributes - append attributes from the Old decl to the New one.
476static void MergeAttributes(Decl *New, Decl *Old) {
477  Attr *attr = const_cast<Attr*>(Old->getAttrs()), *tmp;
478
479  while (attr) {
480    tmp = attr;
481    attr = attr->getNext();
482
483    if (!DeclHasAttr(New, tmp) && tmp->isMerged()) {
484      tmp->setInherited(true);
485      New->addAttr(tmp);
486    } else {
487      tmp->setNext(0);
488      delete(tmp);
489    }
490  }
491
492  Old->invalidateAttrs();
493}
494
495/// MergeFunctionDecl - We just parsed a function 'New' from
496/// declarator D which has the same name and scope as a previous
497/// declaration 'Old'.  Figure out how to resolve this situation,
498/// merging decls or emitting diagnostics as appropriate.
499///
500/// In C++, New and Old must be declarations that are not
501/// overloaded. Use IsOverload to determine whether New and Old are
502/// overloaded, and to select the Old declaration that New should be
503/// merged with.
504///
505/// Returns true if there was an error, false otherwise.
506bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
507  assert(!isa<OverloadedFunctionDecl>(OldD) &&
508         "Cannot merge with an overloaded function declaration");
509
510  // Verify the old decl was also a function.
511  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
512  if (!Old) {
513    Diag(New->getLocation(), diag::err_redefinition_different_kind)
514      << New->getDeclName();
515    Diag(OldD->getLocation(), diag::note_previous_definition);
516    return true;
517  }
518
519  // Determine whether the previous declaration was a definition,
520  // implicit declaration, or a declaration.
521  diag::kind PrevDiag;
522  if (Old->isThisDeclarationADefinition())
523    PrevDiag = diag::note_previous_definition;
524  else if (Old->isImplicit())
525    PrevDiag = diag::note_previous_implicit_declaration;
526  else
527    PrevDiag = diag::note_previous_declaration;
528
529  QualType OldQType = Context.getCanonicalType(Old->getType());
530  QualType NewQType = Context.getCanonicalType(New->getType());
531
532  if (getLangOptions().CPlusPlus) {
533    // (C++98 13.1p2):
534    //   Certain function declarations cannot be overloaded:
535    //     -- Function declarations that differ only in the return type
536    //        cannot be overloaded.
537    QualType OldReturnType
538      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
539    QualType NewReturnType
540      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
541    if (OldReturnType != NewReturnType) {
542      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
543      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
544      return true;
545    }
546
547    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
548    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
549    if (OldMethod && NewMethod) {
550      //    -- Member function declarations with the same name and the
551      //       same parameter types cannot be overloaded if any of them
552      //       is a static member function declaration.
553      if (OldMethod->isStatic() || NewMethod->isStatic()) {
554        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
555        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
556        return true;
557      }
558
559      // C++ [class.mem]p1:
560      //   [...] A member shall not be declared twice in the
561      //   member-specification, except that a nested class or member
562      //   class template can be declared and then later defined.
563      if (OldMethod->getLexicalDeclContext() ==
564            NewMethod->getLexicalDeclContext()) {
565        unsigned NewDiag;
566        if (isa<CXXConstructorDecl>(OldMethod))
567          NewDiag = diag::err_constructor_redeclared;
568        else if (isa<CXXDestructorDecl>(NewMethod))
569          NewDiag = diag::err_destructor_redeclared;
570        else if (isa<CXXConversionDecl>(NewMethod))
571          NewDiag = diag::err_conv_function_redeclared;
572        else
573          NewDiag = diag::err_member_redeclared;
574
575        Diag(New->getLocation(), NewDiag);
576        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
577      }
578    }
579
580    // (C++98 8.3.5p3):
581    //   All declarations for a function shall agree exactly in both the
582    //   return type and the parameter-type-list.
583    if (OldQType == NewQType) {
584      // We have a redeclaration.
585      MergeAttributes(New, Old);
586      return MergeCXXFunctionDecl(New, Old);
587    }
588
589    // Fall through for conflicting redeclarations and redefinitions.
590  }
591
592  // C: Function types need to be compatible, not identical. This handles
593  // duplicate function decls like "void f(int); void f(enum X);" properly.
594  if (!getLangOptions().CPlusPlus &&
595      Context.typesAreCompatible(OldQType, NewQType)) {
596    MergeAttributes(New, Old);
597    return false;
598  }
599
600  // A function that has already been declared has been redeclared or defined
601  // with a different type- show appropriate diagnostic
602  if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
603    // The user has declared a builtin function with an incompatible
604    // signature.
605    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
606      // The function the user is redeclaring is a library-defined
607      // function like 'malloc' or 'printf'. Warn about the
608      // redeclaration, then ignore it.
609      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
610      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
611        << Old << Old->getType();
612      return false;
613    }
614
615    PrevDiag = diag::note_previous_builtin_declaration;
616  }
617
618  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
619  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
620  return true;
621}
622
623/// Predicate for C "tentative" external object definitions (C99 6.9.2).
624static bool isTentativeDefinition(VarDecl *VD) {
625  if (VD->isFileVarDecl())
626    return (!VD->getInit() &&
627            (VD->getStorageClass() == VarDecl::None ||
628             VD->getStorageClass() == VarDecl::Static));
629  return false;
630}
631
632/// CheckForFileScopedRedefinitions - Make sure we forgo redefinition errors
633/// when dealing with C "tentative" external object definitions (C99 6.9.2).
634void Sema::CheckForFileScopedRedefinitions(Scope *S, VarDecl *VD) {
635  bool VDIsTentative = isTentativeDefinition(VD);
636  bool VDIsIncompleteArray = VD->getType()->isIncompleteArrayType();
637
638  // FIXME: I don't think this will actually see all of the
639  // redefinitions. Can't we check this property on-the-fly?
640  for (IdentifierResolver::iterator I = IdResolver.begin(VD->getIdentifier()),
641                                    E = IdResolver.end();
642       I != E; ++I) {
643    if (*I != VD && isDeclInScope(*I, VD->getDeclContext(), S)) {
644      VarDecl *OldDecl = dyn_cast<VarDecl>(*I);
645
646      // Handle the following case:
647      //   int a[10];
648      //   int a[];   - the code below makes sure we set the correct type.
649      //   int a[11]; - this is an error, size isn't 10.
650      if (OldDecl && VDIsTentative && VDIsIncompleteArray &&
651          OldDecl->getType()->isConstantArrayType())
652        VD->setType(OldDecl->getType());
653
654      // Check for "tentative" definitions. We can't accomplish this in
655      // MergeVarDecl since the initializer hasn't been attached.
656      if (!OldDecl || isTentativeDefinition(OldDecl) || VDIsTentative)
657        continue;
658
659      // Handle __private_extern__ just like extern.
660      if (OldDecl->getStorageClass() != VarDecl::Extern &&
661          OldDecl->getStorageClass() != VarDecl::PrivateExtern &&
662          VD->getStorageClass() != VarDecl::Extern &&
663          VD->getStorageClass() != VarDecl::PrivateExtern) {
664        Diag(VD->getLocation(), diag::err_redefinition) << VD->getDeclName();
665        Diag(OldDecl->getLocation(), diag::note_previous_definition);
666        // One redefinition error is enough.
667        break;
668      }
669    }
670  }
671}
672
673/// MergeVarDecl - We just parsed a variable 'New' which has the same name
674/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
675/// situation, merging decls or emitting diagnostics as appropriate.
676///
677/// Tentative definition rules (C99 6.9.2p2) are checked by
678/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
679/// definitions here, since the initializer hasn't been attached.
680///
681bool Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
682  // Verify the old decl was also a variable.
683  VarDecl *Old = dyn_cast<VarDecl>(OldD);
684  if (!Old) {
685    Diag(New->getLocation(), diag::err_redefinition_different_kind)
686      << New->getDeclName();
687    Diag(OldD->getLocation(), diag::note_previous_definition);
688    return true;
689  }
690
691  MergeAttributes(New, Old);
692
693  // Merge the types
694  QualType MergedT = Context.mergeTypes(New->getType(), Old->getType());
695  if (MergedT.isNull()) {
696    Diag(New->getLocation(), diag::err_redefinition_different_type)
697      << New->getDeclName();
698    Diag(Old->getLocation(), diag::note_previous_definition);
699    return true;
700  }
701  New->setType(MergedT);
702  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
703  if (New->getStorageClass() == VarDecl::Static &&
704      (Old->getStorageClass() == VarDecl::None ||
705       Old->getStorageClass() == VarDecl::Extern)) {
706    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
707    Diag(Old->getLocation(), diag::note_previous_definition);
708    return true;
709  }
710  // C99 6.2.2p4: Check if we have a non-static decl followed by a static.
711  if (New->getStorageClass() != VarDecl::Static &&
712      Old->getStorageClass() == VarDecl::Static) {
713    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
714    Diag(Old->getLocation(), diag::note_previous_definition);
715    return true;
716  }
717  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
718  if (New->getStorageClass() != VarDecl::Extern && !New->isFileVarDecl()) {
719    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
720    Diag(Old->getLocation(), diag::note_previous_definition);
721    return true;
722  }
723  return false;
724}
725
726/// CheckParmsForFunctionDef - Check that the parameters of the given
727/// function are appropriate for the definition of a function. This
728/// takes care of any checks that cannot be performed on the
729/// declaration itself, e.g., that the types of each of the function
730/// parameters are complete.
731bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
732  bool HasInvalidParm = false;
733  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
734    ParmVarDecl *Param = FD->getParamDecl(p);
735
736    // C99 6.7.5.3p4: the parameters in a parameter type list in a
737    // function declarator that is part of a function definition of
738    // that function shall not have incomplete type.
739    if (!Param->isInvalidDecl() &&
740        DiagnoseIncompleteType(Param->getLocation(), Param->getType(),
741                               diag::err_typecheck_decl_incomplete_type)) {
742      Param->setInvalidDecl();
743      HasInvalidParm = true;
744    }
745
746    // C99 6.9.1p5: If the declarator includes a parameter type list, the
747    // declaration of each parameter shall include an identifier.
748    if (Param->getIdentifier() == 0 && !getLangOptions().CPlusPlus)
749      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
750  }
751
752  return HasInvalidParm;
753}
754
755/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
756/// no declarator (e.g. "struct foo;") is parsed.
757Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
758  TagDecl *Tag = 0;
759  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
760      DS.getTypeSpecType() == DeclSpec::TST_struct ||
761      DS.getTypeSpecType() == DeclSpec::TST_union ||
762      DS.getTypeSpecType() == DeclSpec::TST_enum)
763    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
764
765  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
766    if (!Record->getDeclName() && Record->isDefinition() &&
767        DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
768      return BuildAnonymousStructOrUnion(S, DS, Record);
769
770    // Microsoft allows unnamed struct/union fields. Don't complain
771    // about them.
772    // FIXME: Should we support Microsoft's extensions in this area?
773    if (Record->getDeclName() && getLangOptions().Microsoft)
774      return Tag;
775  }
776
777  if (!DS.isMissingDeclaratorOk() &&
778      DS.getTypeSpecType() != DeclSpec::TST_error) {
779    // Warn about typedefs of enums without names, since this is an
780    // extension in both Microsoft an GNU.
781    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
782        Tag && isa<EnumDecl>(Tag)) {
783      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
784        << DS.getSourceRange();
785      return Tag;
786    }
787
788    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
789      << DS.getSourceRange();
790    return 0;
791  }
792
793  return Tag;
794}
795
796/// InjectAnonymousStructOrUnionMembers - Inject the members of the
797/// anonymous struct or union AnonRecord into the owning context Owner
798/// and scope S. This routine will be invoked just after we realize
799/// that an unnamed union or struct is actually an anonymous union or
800/// struct, e.g.,
801///
802/// @code
803/// union {
804///   int i;
805///   float f;
806/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
807///    // f into the surrounding scope.x
808/// @endcode
809///
810/// This routine is recursive, injecting the names of nested anonymous
811/// structs/unions into the owning context and scope as well.
812bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
813                                               RecordDecl *AnonRecord) {
814  bool Invalid = false;
815  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
816                               FEnd = AnonRecord->field_end();
817       F != FEnd; ++F) {
818    if ((*F)->getDeclName()) {
819      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
820                                                LookupOrdinaryName, true);
821      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
822        // C++ [class.union]p2:
823        //   The names of the members of an anonymous union shall be
824        //   distinct from the names of any other entity in the
825        //   scope in which the anonymous union is declared.
826        unsigned diagKind
827          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
828                                 : diag::err_anonymous_struct_member_redecl;
829        Diag((*F)->getLocation(), diagKind)
830          << (*F)->getDeclName();
831        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
832        Invalid = true;
833      } else {
834        // C++ [class.union]p2:
835        //   For the purpose of name lookup, after the anonymous union
836        //   definition, the members of the anonymous union are
837        //   considered to have been defined in the scope in which the
838        //   anonymous union is declared.
839        Owner->makeDeclVisibleInContext(*F);
840        S->AddDecl(*F);
841        IdResolver.AddDecl(*F);
842      }
843    } else if (const RecordType *InnerRecordType
844                 = (*F)->getType()->getAsRecordType()) {
845      RecordDecl *InnerRecord = InnerRecordType->getDecl();
846      if (InnerRecord->isAnonymousStructOrUnion())
847        Invalid = Invalid ||
848          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
849    }
850  }
851
852  return Invalid;
853}
854
855/// ActOnAnonymousStructOrUnion - Handle the declaration of an
856/// anonymous structure or union. Anonymous unions are a C++ feature
857/// (C++ [class.union]) and a GNU C extension; anonymous structures
858/// are a GNU C and GNU C++ extension.
859Sema::DeclTy *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
860                                                RecordDecl *Record) {
861  DeclContext *Owner = Record->getDeclContext();
862
863  // Diagnose whether this anonymous struct/union is an extension.
864  if (Record->isUnion() && !getLangOptions().CPlusPlus)
865    Diag(Record->getLocation(), diag::ext_anonymous_union);
866  else if (!Record->isUnion())
867    Diag(Record->getLocation(), diag::ext_anonymous_struct);
868
869  // C and C++ require different kinds of checks for anonymous
870  // structs/unions.
871  bool Invalid = false;
872  if (getLangOptions().CPlusPlus) {
873    const char* PrevSpec = 0;
874    // C++ [class.union]p3:
875    //   Anonymous unions declared in a named namespace or in the
876    //   global namespace shall be declared static.
877    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
878        (isa<TranslationUnitDecl>(Owner) ||
879         (isa<NamespaceDecl>(Owner) &&
880          cast<NamespaceDecl>(Owner)->getDeclName()))) {
881      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
882      Invalid = true;
883
884      // Recover by adding 'static'.
885      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
886    }
887    // C++ [class.union]p3:
888    //   A storage class is not allowed in a declaration of an
889    //   anonymous union in a class scope.
890    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
891             isa<RecordDecl>(Owner)) {
892      Diag(DS.getStorageClassSpecLoc(),
893           diag::err_anonymous_union_with_storage_spec);
894      Invalid = true;
895
896      // Recover by removing the storage specifier.
897      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
898                             PrevSpec);
899    }
900
901    // C++ [class.union]p2:
902    //   The member-specification of an anonymous union shall only
903    //   define non-static data members. [Note: nested types and
904    //   functions cannot be declared within an anonymous union. ]
905    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
906                                 MemEnd = Record->decls_end();
907         Mem != MemEnd; ++Mem) {
908      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
909        // C++ [class.union]p3:
910        //   An anonymous union shall not have private or protected
911        //   members (clause 11).
912        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
913          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
914            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
915          Invalid = true;
916        }
917      } else if ((*Mem)->isImplicit()) {
918        // Any implicit members are fine.
919      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
920        // This is a type that showed up in an
921        // elaborated-type-specifier inside the anonymous struct or
922        // union, but which actually declares a type outside of the
923        // anonymous struct or union. It's okay.
924      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
925        if (!MemRecord->isAnonymousStructOrUnion() &&
926            MemRecord->getDeclName()) {
927          // This is a nested type declaration.
928          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
929            << (int)Record->isUnion();
930          Invalid = true;
931        }
932      } else {
933        // We have something that isn't a non-static data
934        // member. Complain about it.
935        unsigned DK = diag::err_anonymous_record_bad_member;
936        if (isa<TypeDecl>(*Mem))
937          DK = diag::err_anonymous_record_with_type;
938        else if (isa<FunctionDecl>(*Mem))
939          DK = diag::err_anonymous_record_with_function;
940        else if (isa<VarDecl>(*Mem))
941          DK = diag::err_anonymous_record_with_static;
942        Diag((*Mem)->getLocation(), DK)
943            << (int)Record->isUnion();
944          Invalid = true;
945      }
946    }
947  } else {
948    // FIXME: Check GNU C semantics
949    if (Record->isUnion() && !Owner->isRecord()) {
950      Diag(Record->getLocation(), diag::err_anonymous_union_not_member)
951        << (int)getLangOptions().CPlusPlus;
952      Invalid = true;
953    }
954  }
955
956  if (!Record->isUnion() && !Owner->isRecord()) {
957    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
958      << (int)getLangOptions().CPlusPlus;
959    Invalid = true;
960  }
961
962  // Create a declaration for this anonymous struct/union.
963  NamedDecl *Anon = 0;
964  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
965    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
966                             /*IdentifierInfo=*/0,
967                             Context.getTypeDeclType(Record),
968                             /*BitWidth=*/0, /*Mutable=*/false);
969    Anon->setAccess(AS_public);
970    if (getLangOptions().CPlusPlus)
971      FieldCollector->Add(cast<FieldDecl>(Anon));
972  } else {
973    VarDecl::StorageClass SC;
974    switch (DS.getStorageClassSpec()) {
975    default: assert(0 && "Unknown storage class!");
976    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
977    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
978    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
979    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
980    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
981    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
982    case DeclSpec::SCS_mutable:
983      // mutable can only appear on non-static class members, so it's always
984      // an error here
985      Diag(Record->getLocation(), diag::err_mutable_nonmember);
986      Invalid = true;
987      SC = VarDecl::None;
988      break;
989    }
990
991    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
992                           /*IdentifierInfo=*/0,
993                           Context.getTypeDeclType(Record),
994                           SC, DS.getSourceRange().getBegin());
995  }
996  Anon->setImplicit();
997
998  // Add the anonymous struct/union object to the current
999  // context. We'll be referencing this object when we refer to one of
1000  // its members.
1001  Owner->addDecl(Anon);
1002
1003  // Inject the members of the anonymous struct/union into the owning
1004  // context and into the identifier resolver chain for name lookup
1005  // purposes.
1006  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1007    Invalid = true;
1008
1009  // Mark this as an anonymous struct/union type. Note that we do not
1010  // do this until after we have already checked and injected the
1011  // members of this anonymous struct/union type, because otherwise
1012  // the members could be injected twice: once by DeclContext when it
1013  // builds its lookup table, and once by
1014  // InjectAnonymousStructOrUnionMembers.
1015  Record->setAnonymousStructOrUnion(true);
1016
1017  if (Invalid)
1018    Anon->setInvalidDecl();
1019
1020  return Anon;
1021}
1022
1023bool Sema::CheckSingleInitializer(Expr *&Init, QualType DeclType,
1024                                  bool DirectInit) {
1025  // Get the type before calling CheckSingleAssignmentConstraints(), since
1026  // it can promote the expression.
1027  QualType InitType = Init->getType();
1028
1029  if (getLangOptions().CPlusPlus) {
1030    // FIXME: I dislike this error message. A lot.
1031    if (PerformImplicitConversion(Init, DeclType, "initializing", DirectInit))
1032      return Diag(Init->getSourceRange().getBegin(),
1033                  diag::err_typecheck_convert_incompatible)
1034        << DeclType << Init->getType() << "initializing"
1035        << Init->getSourceRange();
1036
1037    return false;
1038  }
1039
1040  AssignConvertType ConvTy = CheckSingleAssignmentConstraints(DeclType, Init);
1041  return DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType,
1042                                  InitType, Init, "initializing");
1043}
1044
1045bool Sema::CheckStringLiteralInit(StringLiteral *strLiteral, QualType &DeclT) {
1046  const ArrayType *AT = Context.getAsArrayType(DeclT);
1047
1048  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
1049    // C99 6.7.8p14. We have an array of character type with unknown size
1050    // being initialized to a string literal.
1051    llvm::APSInt ConstVal(32);
1052    ConstVal = strLiteral->getByteLength() + 1;
1053    // Return a new array type (C99 6.7.8p22).
1054    DeclT = Context.getConstantArrayType(IAT->getElementType(), ConstVal,
1055                                         ArrayType::Normal, 0);
1056  } else {
1057    const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
1058    // C99 6.7.8p14. We have an array of character type with known size.
1059    // FIXME: Avoid truncation for 64-bit length strings.
1060    if (strLiteral->getByteLength() > (unsigned)CAT->getSize().getZExtValue())
1061      Diag(strLiteral->getSourceRange().getBegin(),
1062           diag::warn_initializer_string_for_char_array_too_long)
1063        << strLiteral->getSourceRange();
1064  }
1065  // Set type from "char *" to "constant array of char".
1066  strLiteral->setType(DeclT);
1067  // For now, we always return false (meaning success).
1068  return false;
1069}
1070
1071StringLiteral *Sema::IsStringLiteralInit(Expr *Init, QualType DeclType) {
1072  const ArrayType *AT = Context.getAsArrayType(DeclType);
1073  if (AT && AT->getElementType()->isCharType()) {
1074    return dyn_cast<StringLiteral>(Init->IgnoreParens());
1075  }
1076  return 0;
1077}
1078
1079bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType,
1080                                 SourceLocation InitLoc,
1081                                 DeclarationName InitEntity,
1082                                 bool DirectInit) {
1083  if (DeclType->isDependentType() || Init->isTypeDependent())
1084    return false;
1085
1086  // C++ [dcl.init.ref]p1:
1087  //   A variable declared to be a T&, that is "reference to type T"
1088  //   (8.3.2), shall be initialized by an object, or function, of
1089  //   type T or by an object that can be converted into a T.
1090  if (DeclType->isReferenceType())
1091    return CheckReferenceInit(Init, DeclType, 0, false, DirectInit);
1092
1093  // C99 6.7.8p3: The type of the entity to be initialized shall be an array
1094  // of unknown size ("[]") or an object type that is not a variable array type.
1095  if (const VariableArrayType *VAT = Context.getAsVariableArrayType(DeclType))
1096    return Diag(InitLoc,  diag::err_variable_object_no_init)
1097      << VAT->getSizeExpr()->getSourceRange();
1098
1099  InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
1100  if (!InitList) {
1101    // FIXME: Handle wide strings
1102    if (StringLiteral *strLiteral = IsStringLiteralInit(Init, DeclType))
1103      return CheckStringLiteralInit(strLiteral, DeclType);
1104
1105    // C++ [dcl.init]p14:
1106    //   -- If the destination type is a (possibly cv-qualified) class
1107    //      type:
1108    if (getLangOptions().CPlusPlus && DeclType->isRecordType()) {
1109      QualType DeclTypeC = Context.getCanonicalType(DeclType);
1110      QualType InitTypeC = Context.getCanonicalType(Init->getType());
1111
1112      //   -- If the initialization is direct-initialization, or if it is
1113      //      copy-initialization where the cv-unqualified version of the
1114      //      source type is the same class as, or a derived class of, the
1115      //      class of the destination, constructors are considered.
1116      if ((DeclTypeC.getUnqualifiedType() == InitTypeC.getUnqualifiedType()) ||
1117          IsDerivedFrom(InitTypeC, DeclTypeC)) {
1118        CXXConstructorDecl *Constructor
1119          = PerformInitializationByConstructor(DeclType, &Init, 1,
1120                                               InitLoc, Init->getSourceRange(),
1121                                               InitEntity,
1122                                               DirectInit? IK_Direct : IK_Copy);
1123        return Constructor == 0;
1124      }
1125
1126      //   -- Otherwise (i.e., for the remaining copy-initialization
1127      //      cases), user-defined conversion sequences that can
1128      //      convert from the source type to the destination type or
1129      //      (when a conversion function is used) to a derived class
1130      //      thereof are enumerated as described in 13.3.1.4, and the
1131      //      best one is chosen through overload resolution
1132      //      (13.3). If the conversion cannot be done or is
1133      //      ambiguous, the initialization is ill-formed. The
1134      //      function selected is called with the initializer
1135      //      expression as its argument; if the function is a
1136      //      constructor, the call initializes a temporary of the
1137      //      destination type.
1138      // FIXME: We're pretending to do copy elision here; return to
1139      // this when we have ASTs for such things.
1140      if (!PerformImplicitConversion(Init, DeclType, "initializing"))
1141        return false;
1142
1143      if (InitEntity)
1144        return Diag(InitLoc, diag::err_cannot_initialize_decl)
1145          << InitEntity << (int)(Init->isLvalue(Context) == Expr::LV_Valid)
1146          << Init->getType() << Init->getSourceRange();
1147      else
1148        return Diag(InitLoc, diag::err_cannot_initialize_decl_noname)
1149          << DeclType << (int)(Init->isLvalue(Context) == Expr::LV_Valid)
1150          << Init->getType() << Init->getSourceRange();
1151    }
1152
1153    // C99 6.7.8p16.
1154    if (DeclType->isArrayType())
1155      return Diag(Init->getLocStart(), diag::err_array_init_list_required)
1156        << Init->getSourceRange();
1157
1158    return CheckSingleInitializer(Init, DeclType, DirectInit);
1159  }
1160
1161  bool hadError = CheckInitList(InitList, DeclType);
1162  Init = InitList;
1163  return hadError;
1164}
1165
1166/// GetNameForDeclarator - Determine the full declaration name for the
1167/// given Declarator.
1168DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1169  switch (D.getKind()) {
1170  case Declarator::DK_Abstract:
1171    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1172    return DeclarationName();
1173
1174  case Declarator::DK_Normal:
1175    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1176    return DeclarationName(D.getIdentifier());
1177
1178  case Declarator::DK_Constructor: {
1179    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1180    Ty = Context.getCanonicalType(Ty);
1181    return Context.DeclarationNames.getCXXConstructorName(Ty);
1182  }
1183
1184  case Declarator::DK_Destructor: {
1185    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1186    Ty = Context.getCanonicalType(Ty);
1187    return Context.DeclarationNames.getCXXDestructorName(Ty);
1188  }
1189
1190  case Declarator::DK_Conversion: {
1191    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1192    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1193    Ty = Context.getCanonicalType(Ty);
1194    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1195  }
1196
1197  case Declarator::DK_Operator:
1198    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1199    return Context.DeclarationNames.getCXXOperatorName(
1200                                                D.getOverloadedOperator());
1201  }
1202
1203  assert(false && "Unknown name kind");
1204  return DeclarationName();
1205}
1206
1207/// isNearlyMatchingFunction - Determine whether the C++ functions
1208/// Declaration and Definition are "nearly" matching. This heuristic
1209/// is used to improve diagnostics in the case where an out-of-line
1210/// function definition doesn't match any declaration within
1211/// the class or namespace.
1212static bool isNearlyMatchingFunction(ASTContext &Context,
1213                                     FunctionDecl *Declaration,
1214                                     FunctionDecl *Definition) {
1215  if (Declaration->param_size() != Definition->param_size())
1216    return false;
1217  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1218    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1219    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1220
1221    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1222    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1223    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1224      return false;
1225  }
1226
1227  return true;
1228}
1229
1230Sema::DeclTy *
1231Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl,
1232                      bool IsFunctionDefinition) {
1233  NamedDecl *LastDeclarator = dyn_cast_or_null<NamedDecl>((Decl *)lastDecl);
1234  DeclarationName Name = GetNameForDeclarator(D);
1235
1236  // All of these full declarators require an identifier.  If it doesn't have
1237  // one, the ParsedFreeStandingDeclSpec action should be used.
1238  if (!Name) {
1239    if (!D.getInvalidType())  // Reject this if we think it is valid.
1240      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1241           diag::err_declarator_need_ident)
1242        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1243    return 0;
1244  }
1245
1246  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1247  // we find one that is.
1248  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1249         (S->getFlags() & Scope::TemplateParamScope) != 0)
1250    S = S->getParent();
1251
1252  DeclContext *DC;
1253  NamedDecl *PrevDecl;
1254  NamedDecl *New;
1255  bool InvalidDecl = false;
1256
1257  // See if this is a redefinition of a variable in the same scope.
1258  if (!D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid()) {
1259    DC = CurContext;
1260    PrevDecl = LookupName(S, Name, LookupOrdinaryName, true, true,
1261                          D.getIdentifierLoc());
1262  } else { // Something like "int foo::x;"
1263    DC = static_cast<DeclContext*>(D.getCXXScopeSpec().getScopeRep());
1264    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1265
1266    // C++ 7.3.1.2p2:
1267    // Members (including explicit specializations of templates) of a named
1268    // namespace can also be defined outside that namespace by explicit
1269    // qualification of the name being defined, provided that the entity being
1270    // defined was already declared in the namespace and the definition appears
1271    // after the point of declaration in a namespace that encloses the
1272    // declarations namespace.
1273    //
1274    // Note that we only check the context at this point. We don't yet
1275    // have enough information to make sure that PrevDecl is actually
1276    // the declaration we want to match. For example, given:
1277    //
1278    //   class X {
1279    //     void f();
1280    //     void f(float);
1281    //   };
1282    //
1283    //   void X::f(int) { } // ill-formed
1284    //
1285    // In this case, PrevDecl will point to the overload set
1286    // containing the two f's declared in X, but neither of them
1287    // matches.
1288
1289    // First check whether we named the global scope.
1290    if (isa<TranslationUnitDecl>(DC)) {
1291      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1292        << Name << D.getCXXScopeSpec().getRange();
1293    } else if (!CurContext->Encloses(DC)) {
1294      // The qualifying scope doesn't enclose the original declaration.
1295      // Emit diagnostic based on current scope.
1296      SourceLocation L = D.getIdentifierLoc();
1297      SourceRange R = D.getCXXScopeSpec().getRange();
1298      if (isa<FunctionDecl>(CurContext))
1299        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1300      else
1301        Diag(L, diag::err_invalid_declarator_scope)
1302          << Name << cast<NamedDecl>(DC) << R;
1303      InvalidDecl = true;
1304    }
1305  }
1306
1307  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1308    // Maybe we will complain about the shadowed template parameter.
1309    InvalidDecl = InvalidDecl
1310      || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
1311    // Just pretend that we didn't see the previous declaration.
1312    PrevDecl = 0;
1313  }
1314
1315  // In C++, the previous declaration we find might be a tag type
1316  // (class or enum). In this case, the new declaration will hide the
1317  // tag type. Note that this does does not apply if we're declaring a
1318  // typedef (C++ [dcl.typedef]p4).
1319  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1320      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1321    PrevDecl = 0;
1322
1323  QualType R = GetTypeForDeclarator(D, S);
1324  assert(!R.isNull() && "GetTypeForDeclarator() returned null type");
1325
1326  bool Redeclaration = false;
1327  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1328    New = ActOnTypedefDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1329                                 InvalidDecl, Redeclaration);
1330  } else if (R.getTypePtr()->isFunctionType()) {
1331    New = ActOnFunctionDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1332                                  IsFunctionDefinition, InvalidDecl,
1333                                  Redeclaration);
1334  } else {
1335    New = ActOnVariableDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1336                                  InvalidDecl, Redeclaration);
1337  }
1338
1339  if (New == 0)
1340    return 0;
1341
1342  // Set the lexical context. If the declarator has a C++ scope specifier, the
1343  // lexical context will be different from the semantic context.
1344  New->setLexicalDeclContext(CurContext);
1345
1346  // If this has an identifier and is not an invalid redeclaration,
1347  // add it to the scope stack.
1348  if (Name && !(Redeclaration && InvalidDecl))
1349    PushOnScopeChains(New, S);
1350  // If any semantic error occurred, mark the decl as invalid.
1351  if (D.getInvalidType() || InvalidDecl)
1352    New->setInvalidDecl();
1353
1354  return New;
1355}
1356
1357NamedDecl*
1358Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1359                             QualType R, Decl* LastDeclarator,
1360                             Decl* PrevDecl, bool& InvalidDecl,
1361                             bool &Redeclaration) {
1362  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1363  if (D.getCXXScopeSpec().isSet()) {
1364    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1365      << D.getCXXScopeSpec().getRange();
1366    InvalidDecl = true;
1367    // Pretend we didn't see the scope specifier.
1368    DC = 0;
1369  }
1370
1371  // Check that there are no default arguments (C++ only).
1372  if (getLangOptions().CPlusPlus)
1373    CheckExtraCXXDefaultArguments(D);
1374
1375  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
1376  if (!NewTD) return 0;
1377
1378  // Handle attributes prior to checking for duplicates in MergeVarDecl
1379  ProcessDeclAttributes(NewTD, D);
1380  // Merge the decl with the existing one if appropriate. If the decl is
1381  // in an outer scope, it isn't the same thing.
1382  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1383    Redeclaration = true;
1384    if (MergeTypeDefDecl(NewTD, PrevDecl))
1385      InvalidDecl = true;
1386  }
1387
1388  if (S->getFnParent() == 0) {
1389    // C99 6.7.7p2: If a typedef name specifies a variably modified type
1390    // then it shall have block scope.
1391    if (NewTD->getUnderlyingType()->isVariablyModifiedType()) {
1392      if (NewTD->getUnderlyingType()->isVariableArrayType())
1393        Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1394      else
1395        Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1396
1397      InvalidDecl = true;
1398    }
1399  }
1400  return NewTD;
1401}
1402
1403NamedDecl*
1404Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1405                              QualType R, Decl* LastDeclarator,
1406                              Decl* PrevDecl, bool& InvalidDecl,
1407                              bool &Redeclaration) {
1408  DeclarationName Name = GetNameForDeclarator(D);
1409
1410  // Check that there are no default arguments (C++ only).
1411  if (getLangOptions().CPlusPlus)
1412    CheckExtraCXXDefaultArguments(D);
1413
1414  if (R.getTypePtr()->isObjCInterfaceType()) {
1415    Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object)
1416      << D.getIdentifier();
1417    InvalidDecl = true;
1418  }
1419
1420  VarDecl *NewVD;
1421  VarDecl::StorageClass SC;
1422  switch (D.getDeclSpec().getStorageClassSpec()) {
1423  default: assert(0 && "Unknown storage class!");
1424  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1425  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1426  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1427  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1428  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1429  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1430  case DeclSpec::SCS_mutable:
1431    // mutable can only appear on non-static class members, so it's always
1432    // an error here
1433    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1434    InvalidDecl = true;
1435    SC = VarDecl::None;
1436    break;
1437  }
1438
1439  IdentifierInfo *II = Name.getAsIdentifierInfo();
1440  if (!II) {
1441    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1442      << Name.getAsString();
1443    return 0;
1444  }
1445
1446  if (DC->isRecord()) {
1447    // This is a static data member for a C++ class.
1448    NewVD = CXXClassVarDecl::Create(Context, cast<CXXRecordDecl>(DC),
1449                                    D.getIdentifierLoc(), II,
1450                                    R);
1451  } else {
1452    bool ThreadSpecified = D.getDeclSpec().isThreadSpecified();
1453    if (S->getFnParent() == 0) {
1454      // C99 6.9p2: The storage-class specifiers auto and register shall not
1455      // appear in the declaration specifiers in an external declaration.
1456      if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1457        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1458        InvalidDecl = true;
1459      }
1460    }
1461    NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1462                            II, R, SC,
1463                            // FIXME: Move to DeclGroup...
1464                            D.getDeclSpec().getSourceRange().getBegin());
1465    NewVD->setThreadSpecified(ThreadSpecified);
1466  }
1467  NewVD->setNextDeclarator(LastDeclarator);
1468
1469  // Handle attributes prior to checking for duplicates in MergeVarDecl
1470  ProcessDeclAttributes(NewVD, D);
1471
1472  // Handle GNU asm-label extension (encoded as an attribute).
1473  if (Expr *E = (Expr*) D.getAsmLabel()) {
1474    // The parser guarantees this is a string.
1475    StringLiteral *SE = cast<StringLiteral>(E);
1476    NewVD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1477                                                SE->getByteLength())));
1478  }
1479
1480  // Emit an error if an address space was applied to decl with local storage.
1481  // This includes arrays of objects with address space qualifiers, but not
1482  // automatic variables that point to other address spaces.
1483  // ISO/IEC TR 18037 S5.1.2
1484  if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
1485    Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
1486    InvalidDecl = true;
1487  }
1488  // Merge the decl with the existing one if appropriate. If the decl is
1489  // in an outer scope, it isn't the same thing.
1490  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1491    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
1492      // The user tried to define a non-static data member
1493      // out-of-line (C++ [dcl.meaning]p1).
1494      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
1495        << D.getCXXScopeSpec().getRange();
1496      NewVD->Destroy(Context);
1497      return 0;
1498    }
1499
1500    Redeclaration = true;
1501    if (MergeVarDecl(NewVD, PrevDecl))
1502      InvalidDecl = true;
1503
1504    if (D.getCXXScopeSpec().isSet()) {
1505      // No previous declaration in the qualifying scope.
1506      Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
1507        << Name << D.getCXXScopeSpec().getRange();
1508      InvalidDecl = true;
1509    }
1510  }
1511  return NewVD;
1512}
1513
1514NamedDecl*
1515Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1516                              QualType R, Decl *LastDeclarator,
1517                              Decl* PrevDecl, bool IsFunctionDefinition,
1518                              bool& InvalidDecl, bool &Redeclaration) {
1519  assert(R.getTypePtr()->isFunctionType());
1520
1521  DeclarationName Name = GetNameForDeclarator(D);
1522  FunctionDecl::StorageClass SC = FunctionDecl::None;
1523  switch (D.getDeclSpec().getStorageClassSpec()) {
1524  default: assert(0 && "Unknown storage class!");
1525  case DeclSpec::SCS_auto:
1526  case DeclSpec::SCS_register:
1527  case DeclSpec::SCS_mutable:
1528    Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_func);
1529    InvalidDecl = true;
1530    break;
1531  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
1532  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
1533  case DeclSpec::SCS_static:      SC = FunctionDecl::Static; break;
1534  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
1535  }
1536
1537  bool isInline = D.getDeclSpec().isInlineSpecified();
1538  // bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1539  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
1540
1541  FunctionDecl *NewFD;
1542  if (D.getKind() == Declarator::DK_Constructor) {
1543    // This is a C++ constructor declaration.
1544    assert(DC->isRecord() &&
1545           "Constructors can only be declared in a member context");
1546
1547    InvalidDecl = InvalidDecl || CheckConstructorDeclarator(D, R, SC);
1548
1549    // Create the new declaration
1550    NewFD = CXXConstructorDecl::Create(Context,
1551                                       cast<CXXRecordDecl>(DC),
1552                                       D.getIdentifierLoc(), Name, R,
1553                                       isExplicit, isInline,
1554                                       /*isImplicitlyDeclared=*/false);
1555
1556    if (InvalidDecl)
1557      NewFD->setInvalidDecl();
1558  } else if (D.getKind() == Declarator::DK_Destructor) {
1559    // This is a C++ destructor declaration.
1560    if (DC->isRecord()) {
1561      InvalidDecl = InvalidDecl || CheckDestructorDeclarator(D, R, SC);
1562
1563      NewFD = CXXDestructorDecl::Create(Context,
1564                                        cast<CXXRecordDecl>(DC),
1565                                        D.getIdentifierLoc(), Name, R,
1566                                        isInline,
1567                                        /*isImplicitlyDeclared=*/false);
1568
1569      if (InvalidDecl)
1570        NewFD->setInvalidDecl();
1571    } else {
1572      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
1573
1574      // Create a FunctionDecl to satisfy the function definition parsing
1575      // code path.
1576      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
1577                                   Name, R, SC, isInline,
1578                                   // FIXME: Move to DeclGroup...
1579                                   D.getDeclSpec().getSourceRange().getBegin());
1580      InvalidDecl = true;
1581      NewFD->setInvalidDecl();
1582    }
1583  } else if (D.getKind() == Declarator::DK_Conversion) {
1584    if (!DC->isRecord()) {
1585      Diag(D.getIdentifierLoc(),
1586           diag::err_conv_function_not_member);
1587      return 0;
1588    } else {
1589      InvalidDecl = InvalidDecl || CheckConversionDeclarator(D, R, SC);
1590
1591      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
1592                                        D.getIdentifierLoc(), Name, R,
1593                                        isInline, isExplicit);
1594
1595      if (InvalidDecl)
1596        NewFD->setInvalidDecl();
1597    }
1598  } else if (DC->isRecord()) {
1599    // This is a C++ method declaration.
1600    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
1601                                  D.getIdentifierLoc(), Name, R,
1602                                  (SC == FunctionDecl::Static), isInline);
1603  } else {
1604    NewFD = FunctionDecl::Create(Context, DC,
1605                                 D.getIdentifierLoc(),
1606                                 Name, R, SC, isInline,
1607                                 // FIXME: Move to DeclGroup...
1608                                 D.getDeclSpec().getSourceRange().getBegin());
1609  }
1610  NewFD->setNextDeclarator(LastDeclarator);
1611
1612  // Set the lexical context. If the declarator has a C++
1613  // scope specifier, the lexical context will be different
1614  // from the semantic context.
1615  NewFD->setLexicalDeclContext(CurContext);
1616
1617  // Handle GNU asm-label extension (encoded as an attribute).
1618  if (Expr *E = (Expr*) D.getAsmLabel()) {
1619    // The parser guarantees this is a string.
1620    StringLiteral *SE = cast<StringLiteral>(E);
1621    NewFD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1622                                                SE->getByteLength())));
1623  }
1624
1625  // Copy the parameter declarations from the declarator D to
1626  // the function declaration NewFD, if they are available.
1627  if (D.getNumTypeObjects() > 0) {
1628    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1629
1630    // Create Decl objects for each parameter, adding them to the
1631    // FunctionDecl.
1632    llvm::SmallVector<ParmVarDecl*, 16> Params;
1633
1634    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
1635    // function that takes no arguments, not a function that takes a
1636    // single void argument.
1637    // We let through "const void" here because Sema::GetTypeForDeclarator
1638    // already checks for that case.
1639    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1640        FTI.ArgInfo[0].Param &&
1641        ((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
1642      // empty arg list, don't push any params.
1643      ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
1644
1645      // In C++, the empty parameter-type-list must be spelled "void"; a
1646      // typedef of void is not permitted.
1647      if (getLangOptions().CPlusPlus &&
1648          Param->getType().getUnqualifiedType() != Context.VoidTy) {
1649        Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
1650      }
1651    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
1652      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
1653        Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
1654    }
1655
1656    NewFD->setParams(Context, &Params[0], Params.size());
1657  } else if (R->getAsTypedefType()) {
1658    // When we're declaring a function with a typedef, as in the
1659    // following example, we'll need to synthesize (unnamed)
1660    // parameters for use in the declaration.
1661    //
1662    // @code
1663    // typedef void fn(int);
1664    // fn f;
1665    // @endcode
1666    const FunctionTypeProto *FT = R->getAsFunctionTypeProto();
1667    if (!FT) {
1668      // This is a typedef of a function with no prototype, so we
1669      // don't need to do anything.
1670    } else if ((FT->getNumArgs() == 0) ||
1671               (FT->getNumArgs() == 1 && !FT->isVariadic() &&
1672                FT->getArgType(0)->isVoidType())) {
1673      // This is a zero-argument function. We don't need to do anything.
1674    } else {
1675      // Synthesize a parameter for each argument type.
1676      llvm::SmallVector<ParmVarDecl*, 16> Params;
1677      for (FunctionTypeProto::arg_type_iterator ArgType = FT->arg_type_begin();
1678           ArgType != FT->arg_type_end(); ++ArgType) {
1679        Params.push_back(ParmVarDecl::Create(Context, DC,
1680                                             SourceLocation(), 0,
1681                                             *ArgType, VarDecl::None,
1682                                             0));
1683      }
1684
1685      NewFD->setParams(Context, &Params[0], Params.size());
1686    }
1687  }
1688
1689  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD))
1690    InvalidDecl = InvalidDecl || CheckConstructor(Constructor);
1691  else if (isa<CXXDestructorDecl>(NewFD)) {
1692    CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
1693    Record->setUserDeclaredDestructor(true);
1694    // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
1695    // user-defined destructor.
1696    Record->setPOD(false);
1697  } else if (CXXConversionDecl *Conversion =
1698             dyn_cast<CXXConversionDecl>(NewFD))
1699    ActOnConversionDeclarator(Conversion);
1700
1701  // Extra checking for C++ overloaded operators (C++ [over.oper]).
1702  if (NewFD->isOverloadedOperator() &&
1703      CheckOverloadedOperatorDeclaration(NewFD))
1704    NewFD->setInvalidDecl();
1705
1706  // Merge the decl with the existing one if appropriate. Since C functions
1707  // are in a flat namespace, make sure we consider decls in outer scopes.
1708  bool OverloadableAttrRequired = false;
1709  if (PrevDecl &&
1710      (!getLangOptions().CPlusPlus||isDeclInScope(PrevDecl, DC, S))) {
1711    // Determine whether NewFD is an overload of PrevDecl or
1712    // a declaration that requires merging. If it's an overload,
1713    // there's no more work to do here; we'll just add the new
1714    // function to the scope.
1715    OverloadedFunctionDecl::function_iterator MatchedDecl;
1716
1717    if (!getLangOptions().CPlusPlus &&
1718        AllowOverloadingOfFunction(PrevDecl, Context))
1719      OverloadableAttrRequired = true;
1720
1721    if (!AllowOverloadingOfFunction(PrevDecl, Context) ||
1722        !IsOverload(NewFD, PrevDecl, MatchedDecl)) {
1723      Redeclaration = true;
1724      Decl *OldDecl = PrevDecl;
1725
1726      // If PrevDecl was an overloaded function, extract the
1727      // FunctionDecl that matched.
1728      if (isa<OverloadedFunctionDecl>(PrevDecl))
1729        OldDecl = *MatchedDecl;
1730
1731      // NewFD and PrevDecl represent declarations that need to be
1732      // merged.
1733      if (MergeFunctionDecl(NewFD, OldDecl))
1734        InvalidDecl = true;
1735
1736      if (!InvalidDecl) {
1737        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
1738
1739        // An out-of-line member function declaration must also be a
1740        // definition (C++ [dcl.meaning]p1).
1741        if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
1742            !InvalidDecl) {
1743          Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
1744            << D.getCXXScopeSpec().getRange();
1745          NewFD->setInvalidDecl();
1746        }
1747      }
1748    }
1749  }
1750
1751  if (D.getCXXScopeSpec().isSet() &&
1752      (!PrevDecl || !Redeclaration)) {
1753    // The user tried to provide an out-of-line definition for a
1754    // function that is a member of a class or namespace, but there
1755    // was no such member function declared (C++ [class.mfct]p2,
1756    // C++ [namespace.memdef]p2). For example:
1757    //
1758    // class X {
1759    //   void f() const;
1760    // };
1761    //
1762    // void X::f() { } // ill-formed
1763    //
1764    // Complain about this problem, and attempt to suggest close
1765    // matches (e.g., those that differ only in cv-qualifiers and
1766    // whether the parameter types are references).
1767    Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
1768      << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
1769    InvalidDecl = true;
1770
1771    LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
1772                                            true);
1773    assert(!Prev.isAmbiguous() &&
1774           "Cannot have an ambiguity in previous-declaration lookup");
1775    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
1776         Func != FuncEnd; ++Func) {
1777      if (isa<FunctionDecl>(*Func) &&
1778          isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
1779        Diag((*Func)->getLocation(), diag::note_member_def_close_match);
1780    }
1781
1782    PrevDecl = 0;
1783  }
1784
1785  // Handle attributes. We need to have merged decls when handling attributes
1786  // (for example to check for conflicts, etc).
1787  ProcessDeclAttributes(NewFD, D);
1788  AddKnownFunctionAttributes(NewFD);
1789
1790  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
1791    // If a function name is overloadable in C, then every function
1792    // with that name must be marked "overloadable".
1793    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
1794      << Redeclaration << NewFD;
1795    if (PrevDecl)
1796      Diag(PrevDecl->getLocation(),
1797           diag::note_attribute_overloadable_prev_overload);
1798    NewFD->addAttr(new OverloadableAttr);
1799  }
1800
1801  if (getLangOptions().CPlusPlus) {
1802    // In C++, check default arguments now that we have merged decls. Unless
1803    // the lexical context is the class, because in this case this is done
1804    // during delayed parsing anyway.
1805    if (!CurContext->isRecord())
1806      CheckCXXDefaultArguments(NewFD);
1807
1808    // An out-of-line member function declaration must also be a
1809    // definition (C++ [dcl.meaning]p1).
1810    if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() && !InvalidDecl) {
1811      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
1812        << D.getCXXScopeSpec().getRange();
1813      InvalidDecl = true;
1814    }
1815  }
1816  return NewFD;
1817}
1818
1819void Sema::InitializerElementNotConstant(const Expr *Init) {
1820  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
1821    << Init->getSourceRange();
1822}
1823
1824bool Sema::CheckAddressConstantExpressionLValue(const Expr* Init) {
1825  switch (Init->getStmtClass()) {
1826  default:
1827    InitializerElementNotConstant(Init);
1828    return true;
1829  case Expr::ParenExprClass: {
1830    const ParenExpr* PE = cast<ParenExpr>(Init);
1831    return CheckAddressConstantExpressionLValue(PE->getSubExpr());
1832  }
1833  case Expr::CompoundLiteralExprClass:
1834    return cast<CompoundLiteralExpr>(Init)->isFileScope();
1835  case Expr::DeclRefExprClass:
1836  case Expr::QualifiedDeclRefExprClass: {
1837    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
1838    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1839      if (VD->hasGlobalStorage())
1840        return false;
1841      InitializerElementNotConstant(Init);
1842      return true;
1843    }
1844    if (isa<FunctionDecl>(D))
1845      return false;
1846    InitializerElementNotConstant(Init);
1847    return true;
1848  }
1849  case Expr::MemberExprClass: {
1850    const MemberExpr *M = cast<MemberExpr>(Init);
1851    if (M->isArrow())
1852      return CheckAddressConstantExpression(M->getBase());
1853    return CheckAddressConstantExpressionLValue(M->getBase());
1854  }
1855  case Expr::ArraySubscriptExprClass: {
1856    // FIXME: Should we pedwarn for "x[0+0]" (where x is a pointer)?
1857    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(Init);
1858    return CheckAddressConstantExpression(ASE->getBase()) ||
1859           CheckArithmeticConstantExpression(ASE->getIdx());
1860  }
1861  case Expr::StringLiteralClass:
1862  case Expr::PredefinedExprClass:
1863    return false;
1864  case Expr::UnaryOperatorClass: {
1865    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1866
1867    // C99 6.6p9
1868    if (Exp->getOpcode() == UnaryOperator::Deref)
1869      return CheckAddressConstantExpression(Exp->getSubExpr());
1870
1871    InitializerElementNotConstant(Init);
1872    return true;
1873  }
1874  }
1875}
1876
1877bool Sema::CheckAddressConstantExpression(const Expr* Init) {
1878  switch (Init->getStmtClass()) {
1879  default:
1880    InitializerElementNotConstant(Init);
1881    return true;
1882  case Expr::ParenExprClass:
1883    return CheckAddressConstantExpression(cast<ParenExpr>(Init)->getSubExpr());
1884  case Expr::StringLiteralClass:
1885  case Expr::ObjCStringLiteralClass:
1886    return false;
1887  case Expr::CallExprClass:
1888  case Expr::CXXOperatorCallExprClass:
1889    // __builtin___CFStringMakeConstantString is a valid constant l-value.
1890    if (cast<CallExpr>(Init)->isBuiltinCall(Context) ==
1891           Builtin::BI__builtin___CFStringMakeConstantString)
1892      return false;
1893
1894    InitializerElementNotConstant(Init);
1895    return true;
1896
1897  case Expr::UnaryOperatorClass: {
1898    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1899
1900    // C99 6.6p9
1901    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1902      return CheckAddressConstantExpressionLValue(Exp->getSubExpr());
1903
1904    if (Exp->getOpcode() == UnaryOperator::Extension)
1905      return CheckAddressConstantExpression(Exp->getSubExpr());
1906
1907    InitializerElementNotConstant(Init);
1908    return true;
1909  }
1910  case Expr::BinaryOperatorClass: {
1911    // FIXME: Should we pedwarn for expressions like "a + 1 + 2"?
1912    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
1913
1914    Expr *PExp = Exp->getLHS();
1915    Expr *IExp = Exp->getRHS();
1916    if (IExp->getType()->isPointerType())
1917      std::swap(PExp, IExp);
1918
1919    // FIXME: Should we pedwarn if IExp isn't an integer constant expression?
1920    return CheckAddressConstantExpression(PExp) ||
1921           CheckArithmeticConstantExpression(IExp);
1922  }
1923  case Expr::ImplicitCastExprClass:
1924  case Expr::CStyleCastExprClass: {
1925    const Expr* SubExpr = cast<CastExpr>(Init)->getSubExpr();
1926    if (Init->getStmtClass() == Expr::ImplicitCastExprClass) {
1927      // Check for implicit promotion
1928      if (SubExpr->getType()->isFunctionType() ||
1929          SubExpr->getType()->isArrayType())
1930        return CheckAddressConstantExpressionLValue(SubExpr);
1931    }
1932
1933    // Check for pointer->pointer cast
1934    if (SubExpr->getType()->isPointerType())
1935      return CheckAddressConstantExpression(SubExpr);
1936
1937    if (SubExpr->getType()->isIntegralType()) {
1938      // Check for the special-case of a pointer->int->pointer cast;
1939      // this isn't standard, but some code requires it. See
1940      // PR2720 for an example.
1941      if (const CastExpr* SubCast = dyn_cast<CastExpr>(SubExpr)) {
1942        if (SubCast->getSubExpr()->getType()->isPointerType()) {
1943          unsigned IntWidth = Context.getIntWidth(SubCast->getType());
1944          unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
1945          if (IntWidth >= PointerWidth) {
1946            return CheckAddressConstantExpression(SubCast->getSubExpr());
1947          }
1948        }
1949      }
1950    }
1951    if (SubExpr->getType()->isArithmeticType()) {
1952      return CheckArithmeticConstantExpression(SubExpr);
1953    }
1954
1955    InitializerElementNotConstant(Init);
1956    return true;
1957  }
1958  case Expr::ConditionalOperatorClass: {
1959    // FIXME: Should we pedwarn here?
1960    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
1961    if (!Exp->getCond()->getType()->isArithmeticType()) {
1962      InitializerElementNotConstant(Init);
1963      return true;
1964    }
1965    if (CheckArithmeticConstantExpression(Exp->getCond()))
1966      return true;
1967    if (Exp->getLHS() &&
1968        CheckAddressConstantExpression(Exp->getLHS()))
1969      return true;
1970    return CheckAddressConstantExpression(Exp->getRHS());
1971  }
1972  case Expr::AddrLabelExprClass:
1973    return false;
1974  }
1975}
1976
1977static const Expr* FindExpressionBaseAddress(const Expr* E);
1978
1979static const Expr* FindExpressionBaseAddressLValue(const Expr* E) {
1980  switch (E->getStmtClass()) {
1981  default:
1982    return E;
1983  case Expr::ParenExprClass: {
1984    const ParenExpr* PE = cast<ParenExpr>(E);
1985    return FindExpressionBaseAddressLValue(PE->getSubExpr());
1986  }
1987  case Expr::MemberExprClass: {
1988    const MemberExpr *M = cast<MemberExpr>(E);
1989    if (M->isArrow())
1990      return FindExpressionBaseAddress(M->getBase());
1991    return FindExpressionBaseAddressLValue(M->getBase());
1992  }
1993  case Expr::ArraySubscriptExprClass: {
1994    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(E);
1995    return FindExpressionBaseAddress(ASE->getBase());
1996  }
1997  case Expr::UnaryOperatorClass: {
1998    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1999
2000    if (Exp->getOpcode() == UnaryOperator::Deref)
2001      return FindExpressionBaseAddress(Exp->getSubExpr());
2002
2003    return E;
2004  }
2005  }
2006}
2007
2008static const Expr* FindExpressionBaseAddress(const Expr* E) {
2009  switch (E->getStmtClass()) {
2010  default:
2011    return E;
2012  case Expr::ParenExprClass: {
2013    const ParenExpr* PE = cast<ParenExpr>(E);
2014    return FindExpressionBaseAddress(PE->getSubExpr());
2015  }
2016  case Expr::UnaryOperatorClass: {
2017    const UnaryOperator *Exp = cast<UnaryOperator>(E);
2018
2019    // C99 6.6p9
2020    if (Exp->getOpcode() == UnaryOperator::AddrOf)
2021      return FindExpressionBaseAddressLValue(Exp->getSubExpr());
2022
2023    if (Exp->getOpcode() == UnaryOperator::Extension)
2024      return FindExpressionBaseAddress(Exp->getSubExpr());
2025
2026    return E;
2027  }
2028  case Expr::BinaryOperatorClass: {
2029    const BinaryOperator *Exp = cast<BinaryOperator>(E);
2030
2031    Expr *PExp = Exp->getLHS();
2032    Expr *IExp = Exp->getRHS();
2033    if (IExp->getType()->isPointerType())
2034      std::swap(PExp, IExp);
2035
2036    return FindExpressionBaseAddress(PExp);
2037  }
2038  case Expr::ImplicitCastExprClass: {
2039    const Expr* SubExpr = cast<ImplicitCastExpr>(E)->getSubExpr();
2040
2041    // Check for implicit promotion
2042    if (SubExpr->getType()->isFunctionType() ||
2043        SubExpr->getType()->isArrayType())
2044      return FindExpressionBaseAddressLValue(SubExpr);
2045
2046    // Check for pointer->pointer cast
2047    if (SubExpr->getType()->isPointerType())
2048      return FindExpressionBaseAddress(SubExpr);
2049
2050    // We assume that we have an arithmetic expression here;
2051    // if we don't, we'll figure it out later
2052    return 0;
2053  }
2054  case Expr::CStyleCastExprClass: {
2055    const Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
2056
2057    // Check for pointer->pointer cast
2058    if (SubExpr->getType()->isPointerType())
2059      return FindExpressionBaseAddress(SubExpr);
2060
2061    // We assume that we have an arithmetic expression here;
2062    // if we don't, we'll figure it out later
2063    return 0;
2064  }
2065  }
2066}
2067
2068bool Sema::CheckArithmeticConstantExpression(const Expr* Init) {
2069  switch (Init->getStmtClass()) {
2070  default:
2071    InitializerElementNotConstant(Init);
2072    return true;
2073  case Expr::ParenExprClass: {
2074    const ParenExpr* PE = cast<ParenExpr>(Init);
2075    return CheckArithmeticConstantExpression(PE->getSubExpr());
2076  }
2077  case Expr::FloatingLiteralClass:
2078  case Expr::IntegerLiteralClass:
2079  case Expr::CharacterLiteralClass:
2080  case Expr::ImaginaryLiteralClass:
2081  case Expr::TypesCompatibleExprClass:
2082  case Expr::CXXBoolLiteralExprClass:
2083    return false;
2084  case Expr::CallExprClass:
2085  case Expr::CXXOperatorCallExprClass: {
2086    const CallExpr *CE = cast<CallExpr>(Init);
2087
2088    // Allow any constant foldable calls to builtins.
2089    if (CE->isBuiltinCall(Context) && CE->isEvaluatable(Context))
2090      return false;
2091
2092    InitializerElementNotConstant(Init);
2093    return true;
2094  }
2095  case Expr::DeclRefExprClass:
2096  case Expr::QualifiedDeclRefExprClass: {
2097    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
2098    if (isa<EnumConstantDecl>(D))
2099      return false;
2100    InitializerElementNotConstant(Init);
2101    return true;
2102  }
2103  case Expr::CompoundLiteralExprClass:
2104    // Allow "(vector type){2,4}"; normal C constraints don't allow this,
2105    // but vectors are allowed to be magic.
2106    if (Init->getType()->isVectorType())
2107      return false;
2108    InitializerElementNotConstant(Init);
2109    return true;
2110  case Expr::UnaryOperatorClass: {
2111    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
2112
2113    switch (Exp->getOpcode()) {
2114    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
2115    // See C99 6.6p3.
2116    default:
2117      InitializerElementNotConstant(Init);
2118      return true;
2119    case UnaryOperator::OffsetOf:
2120      if (Exp->getSubExpr()->getType()->isConstantSizeType())
2121        return false;
2122      InitializerElementNotConstant(Init);
2123      return true;
2124    case UnaryOperator::Extension:
2125    case UnaryOperator::LNot:
2126    case UnaryOperator::Plus:
2127    case UnaryOperator::Minus:
2128    case UnaryOperator::Not:
2129      return CheckArithmeticConstantExpression(Exp->getSubExpr());
2130    }
2131  }
2132  case Expr::SizeOfAlignOfExprClass: {
2133    const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(Init);
2134    // Special check for void types, which are allowed as an extension
2135    if (Exp->getTypeOfArgument()->isVoidType())
2136      return false;
2137    // alignof always evaluates to a constant.
2138    // FIXME: is sizeof(int[3.0]) a constant expression?
2139    if (Exp->isSizeOf() && !Exp->getTypeOfArgument()->isConstantSizeType()) {
2140      InitializerElementNotConstant(Init);
2141      return true;
2142    }
2143    return false;
2144  }
2145  case Expr::BinaryOperatorClass: {
2146    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
2147
2148    if (Exp->getLHS()->getType()->isArithmeticType() &&
2149        Exp->getRHS()->getType()->isArithmeticType()) {
2150      return CheckArithmeticConstantExpression(Exp->getLHS()) ||
2151             CheckArithmeticConstantExpression(Exp->getRHS());
2152    }
2153
2154    if (Exp->getLHS()->getType()->isPointerType() &&
2155        Exp->getRHS()->getType()->isPointerType()) {
2156      const Expr* LHSBase = FindExpressionBaseAddress(Exp->getLHS());
2157      const Expr* RHSBase = FindExpressionBaseAddress(Exp->getRHS());
2158
2159      // Only allow a null (constant integer) base; we could
2160      // allow some additional cases if necessary, but this
2161      // is sufficient to cover offsetof-like constructs.
2162      if (!LHSBase && !RHSBase) {
2163        return CheckAddressConstantExpression(Exp->getLHS()) ||
2164               CheckAddressConstantExpression(Exp->getRHS());
2165      }
2166    }
2167
2168    InitializerElementNotConstant(Init);
2169    return true;
2170  }
2171  case Expr::ImplicitCastExprClass:
2172  case Expr::CStyleCastExprClass: {
2173    const CastExpr *CE = cast<CastExpr>(Init);
2174    const Expr *SubExpr = CE->getSubExpr();
2175
2176    if (SubExpr->getType()->isArithmeticType())
2177      return CheckArithmeticConstantExpression(SubExpr);
2178
2179    if (SubExpr->getType()->isPointerType()) {
2180      const Expr* Base = FindExpressionBaseAddress(SubExpr);
2181      if (Base) {
2182        // the cast is only valid if done to a wide enough type
2183        if (Context.getTypeSize(CE->getType()) >=
2184            Context.getTypeSize(SubExpr->getType()))
2185          return false;
2186      } else {
2187        // If the pointer has a null base, this is an offsetof-like construct
2188        return CheckAddressConstantExpression(SubExpr);
2189      }
2190    }
2191
2192    InitializerElementNotConstant(Init);
2193    return true;
2194  }
2195  case Expr::ConditionalOperatorClass: {
2196    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
2197
2198    // If GNU extensions are disabled, we require all operands to be arithmetic
2199    // constant expressions.
2200    if (getLangOptions().NoExtensions) {
2201      return CheckArithmeticConstantExpression(Exp->getCond()) ||
2202          (Exp->getLHS() && CheckArithmeticConstantExpression(Exp->getLHS())) ||
2203             CheckArithmeticConstantExpression(Exp->getRHS());
2204    }
2205
2206    // Otherwise, we have to emulate some of the behavior of fold here.
2207    // Basically GCC treats things like "4 ? 1 : somefunc()" as a constant
2208    // because it can constant fold things away.  To retain compatibility with
2209    // GCC code, we see if we can fold the condition to a constant (which we
2210    // should always be able to do in theory).  If so, we only require the
2211    // specified arm of the conditional to be a constant.  This is a horrible
2212    // hack, but is require by real world code that uses __builtin_constant_p.
2213    Expr::EvalResult EvalResult;
2214    if (!Exp->getCond()->Evaluate(EvalResult, Context) ||
2215        EvalResult.HasSideEffects) {
2216      // If Evaluate couldn't fold it, CheckArithmeticConstantExpression
2217      // won't be able to either.  Use it to emit the diagnostic though.
2218      bool Res = CheckArithmeticConstantExpression(Exp->getCond());
2219      assert(Res && "Evaluate couldn't evaluate this constant?");
2220      return Res;
2221    }
2222
2223    // Verify that the side following the condition is also a constant.
2224    const Expr *TrueSide = Exp->getLHS(), *FalseSide = Exp->getRHS();
2225    if (EvalResult.Val.getInt() == 0)
2226      std::swap(TrueSide, FalseSide);
2227
2228    if (TrueSide && CheckArithmeticConstantExpression(TrueSide))
2229      return true;
2230
2231    // Okay, the evaluated side evaluates to a constant, so we accept this.
2232    // Check to see if the other side is obviously not a constant.  If so,
2233    // emit a warning that this is a GNU extension.
2234    if (FalseSide && !FalseSide->isEvaluatable(Context))
2235      Diag(Init->getExprLoc(),
2236           diag::ext_typecheck_expression_not_constant_but_accepted)
2237        << FalseSide->getSourceRange();
2238    return false;
2239  }
2240  }
2241}
2242
2243bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2244  if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init))
2245    Init = DIE->getInit();
2246
2247  Init = Init->IgnoreParens();
2248
2249  if (Init->isEvaluatable(Context))
2250    return false;
2251
2252  // Look through CXXDefaultArgExprs; they have no meaning in this context.
2253  if (CXXDefaultArgExpr* DAE = dyn_cast<CXXDefaultArgExpr>(Init))
2254    return CheckForConstantInitializer(DAE->getExpr(), DclT);
2255
2256  if (CompoundLiteralExpr *e = dyn_cast<CompoundLiteralExpr>(Init))
2257    return CheckForConstantInitializer(e->getInitializer(), DclT);
2258
2259  if (isa<ImplicitValueInitExpr>(Init)) {
2260    // FIXME: In C++, check for non-POD types.
2261    return false;
2262  }
2263
2264  if (InitListExpr *Exp = dyn_cast<InitListExpr>(Init)) {
2265    unsigned numInits = Exp->getNumInits();
2266    for (unsigned i = 0; i < numInits; i++) {
2267      // FIXME: Need to get the type of the declaration for C++,
2268      // because it could be a reference?
2269
2270      if (CheckForConstantInitializer(Exp->getInit(i),
2271                                      Exp->getInit(i)->getType()))
2272        return true;
2273    }
2274    return false;
2275  }
2276
2277  // FIXME: We can probably remove some of this code below, now that
2278  // Expr::Evaluate is doing the heavy lifting for scalars.
2279
2280  if (Init->isNullPointerConstant(Context))
2281    return false;
2282  if (Init->getType()->isArithmeticType()) {
2283    QualType InitTy = Context.getCanonicalType(Init->getType())
2284                             .getUnqualifiedType();
2285    if (InitTy == Context.BoolTy) {
2286      // Special handling for pointers implicitly cast to bool;
2287      // (e.g. "_Bool rr = &rr;"). This is only legal at the top level.
2288      if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Init)) {
2289        Expr* SubE = ICE->getSubExpr();
2290        if (SubE->getType()->isPointerType() ||
2291            SubE->getType()->isArrayType() ||
2292            SubE->getType()->isFunctionType()) {
2293          return CheckAddressConstantExpression(Init);
2294        }
2295      }
2296    } else if (InitTy->isIntegralType()) {
2297      Expr* SubE = 0;
2298      if (CastExpr* CE = dyn_cast<CastExpr>(Init))
2299        SubE = CE->getSubExpr();
2300      // Special check for pointer cast to int; we allow as an extension
2301      // an address constant cast to an integer if the integer
2302      // is of an appropriate width (this sort of code is apparently used
2303      // in some places).
2304      // FIXME: Add pedwarn?
2305      // FIXME: Don't allow bitfields here!  Need the FieldDecl for that.
2306      if (SubE && (SubE->getType()->isPointerType() ||
2307                   SubE->getType()->isArrayType() ||
2308                   SubE->getType()->isFunctionType())) {
2309        unsigned IntWidth = Context.getTypeSize(Init->getType());
2310        unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
2311        if (IntWidth >= PointerWidth)
2312          return CheckAddressConstantExpression(Init);
2313      }
2314    }
2315
2316    return CheckArithmeticConstantExpression(Init);
2317  }
2318
2319  if (Init->getType()->isPointerType())
2320    return CheckAddressConstantExpression(Init);
2321
2322  // An array type at the top level that isn't an init-list must
2323  // be a string literal
2324  if (Init->getType()->isArrayType())
2325    return false;
2326
2327  if (Init->getType()->isFunctionType())
2328    return false;
2329
2330  // Allow block exprs at top level.
2331  if (Init->getType()->isBlockPointerType())
2332    return false;
2333
2334  // GCC cast to union extension
2335  // note: the validity of the cast expr is checked by CheckCastTypes()
2336  if (CastExpr *C = dyn_cast<CastExpr>(Init)) {
2337    QualType T = C->getType();
2338    return T->isUnionType() && CheckForConstantInitializer(C->getSubExpr(), T);
2339  }
2340
2341  InitializerElementNotConstant(Init);
2342  return true;
2343}
2344
2345void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init) {
2346  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
2347}
2348
2349/// AddInitializerToDecl - Adds the initializer Init to the
2350/// declaration dcl. If DirectInit is true, this is C++ direct
2351/// initialization rather than copy initialization.
2352void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init, bool DirectInit) {
2353  Decl *RealDecl = static_cast<Decl *>(dcl);
2354  Expr *Init = static_cast<Expr *>(init.release());
2355  assert(Init && "missing initializer");
2356
2357  // If there is no declaration, there was an error parsing it.  Just ignore
2358  // the initializer.
2359  if (RealDecl == 0) {
2360    Init->Destroy(Context);
2361    return;
2362  }
2363
2364  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2365  if (!VDecl) {
2366    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2367    RealDecl->setInvalidDecl();
2368    return;
2369  }
2370  // Get the decls type and save a reference for later, since
2371  // CheckInitializerTypes may change it.
2372  QualType DclT = VDecl->getType(), SavT = DclT;
2373  if (VDecl->isBlockVarDecl()) {
2374    VarDecl::StorageClass SC = VDecl->getStorageClass();
2375    if (SC == VarDecl::Extern) { // C99 6.7.8p5
2376      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2377      VDecl->setInvalidDecl();
2378    } else if (!VDecl->isInvalidDecl()) {
2379      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2380                                VDecl->getDeclName(), DirectInit))
2381        VDecl->setInvalidDecl();
2382
2383      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2384      if (!getLangOptions().CPlusPlus) {
2385        if (SC == VarDecl::Static) // C99 6.7.8p4.
2386          CheckForConstantInitializer(Init, DclT);
2387      }
2388    }
2389  } else if (VDecl->isFileVarDecl()) {
2390    if (VDecl->getStorageClass() == VarDecl::Extern)
2391      Diag(VDecl->getLocation(), diag::warn_extern_init);
2392    if (!VDecl->isInvalidDecl())
2393      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2394                                VDecl->getDeclName(), DirectInit))
2395        VDecl->setInvalidDecl();
2396
2397    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2398    if (!getLangOptions().CPlusPlus) {
2399      // C99 6.7.8p4. All file scoped initializers need to be constant.
2400      CheckForConstantInitializer(Init, DclT);
2401    }
2402  }
2403  // If the type changed, it means we had an incomplete type that was
2404  // completed by the initializer. For example:
2405  //   int ary[] = { 1, 3, 5 };
2406  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2407  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2408    VDecl->setType(DclT);
2409    Init->setType(DclT);
2410  }
2411
2412  // Attach the initializer to the decl.
2413  VDecl->setInit(Init);
2414  return;
2415}
2416
2417void Sema::ActOnUninitializedDecl(DeclTy *dcl) {
2418  Decl *RealDecl = static_cast<Decl *>(dcl);
2419
2420  // If there is no declaration, there was an error parsing it. Just ignore it.
2421  if (RealDecl == 0)
2422    return;
2423
2424  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2425    QualType Type = Var->getType();
2426    // C++ [dcl.init.ref]p3:
2427    //   The initializer can be omitted for a reference only in a
2428    //   parameter declaration (8.3.5), in the declaration of a
2429    //   function return type, in the declaration of a class member
2430    //   within its class declaration (9.2), and where the extern
2431    //   specifier is explicitly used.
2432    if (Type->isReferenceType() &&
2433        Var->getStorageClass() != VarDecl::Extern &&
2434        Var->getStorageClass() != VarDecl::PrivateExtern) {
2435      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2436        << Var->getDeclName()
2437        << SourceRange(Var->getLocation(), Var->getLocation());
2438      Var->setInvalidDecl();
2439      return;
2440    }
2441
2442    // C++ [dcl.init]p9:
2443    //
2444    //   If no initializer is specified for an object, and the object
2445    //   is of (possibly cv-qualified) non-POD class type (or array
2446    //   thereof), the object shall be default-initialized; if the
2447    //   object is of const-qualified type, the underlying class type
2448    //   shall have a user-declared default constructor.
2449    if (getLangOptions().CPlusPlus) {
2450      QualType InitType = Type;
2451      if (const ArrayType *Array = Context.getAsArrayType(Type))
2452        InitType = Array->getElementType();
2453      if (Var->getStorageClass() != VarDecl::Extern &&
2454          Var->getStorageClass() != VarDecl::PrivateExtern &&
2455          InitType->isRecordType()) {
2456        const CXXConstructorDecl *Constructor
2457          = PerformInitializationByConstructor(InitType, 0, 0,
2458                                               Var->getLocation(),
2459                                               SourceRange(Var->getLocation(),
2460                                                           Var->getLocation()),
2461                                               Var->getDeclName(),
2462                                               IK_Default);
2463        if (!Constructor)
2464          Var->setInvalidDecl();
2465      }
2466    }
2467
2468#if 0
2469    // FIXME: Temporarily disabled because we are not properly parsing
2470    // linkage specifications on declarations, e.g.,
2471    //
2472    //   extern "C" const CGPoint CGPointerZero;
2473    //
2474    // C++ [dcl.init]p9:
2475    //
2476    //     If no initializer is specified for an object, and the
2477    //     object is of (possibly cv-qualified) non-POD class type (or
2478    //     array thereof), the object shall be default-initialized; if
2479    //     the object is of const-qualified type, the underlying class
2480    //     type shall have a user-declared default
2481    //     constructor. Otherwise, if no initializer is specified for
2482    //     an object, the object and its subobjects, if any, have an
2483    //     indeterminate initial value; if the object or any of its
2484    //     subobjects are of const-qualified type, the program is
2485    //     ill-formed.
2486    //
2487    // This isn't technically an error in C, so we don't diagnose it.
2488    //
2489    // FIXME: Actually perform the POD/user-defined default
2490    // constructor check.
2491    if (getLangOptions().CPlusPlus &&
2492        Context.getCanonicalType(Type).isConstQualified() &&
2493        Var->getStorageClass() != VarDecl::Extern)
2494      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2495        << Var->getName()
2496        << SourceRange(Var->getLocation(), Var->getLocation());
2497#endif
2498  }
2499}
2500
2501/// The declarators are chained together backwards, reverse the list.
2502Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
2503  // Often we have single declarators, handle them quickly.
2504  Decl *GroupDecl = static_cast<Decl*>(group);
2505  if (GroupDecl == 0)
2506    return 0;
2507
2508  Decl *Group = dyn_cast<Decl>(GroupDecl);
2509  Decl *NewGroup = 0;
2510  if (Group->getNextDeclarator() == 0)
2511    NewGroup = Group;
2512  else { // reverse the list.
2513    while (Group) {
2514      Decl *Next = Group->getNextDeclarator();
2515      Group->setNextDeclarator(NewGroup);
2516      NewGroup = Group;
2517      Group = Next;
2518    }
2519  }
2520  // Perform semantic analysis that depends on having fully processed both
2521  // the declarator and initializer.
2522  for (Decl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
2523    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
2524    if (!IDecl)
2525      continue;
2526    QualType T = IDecl->getType();
2527
2528    if (T->isVariableArrayType()) {
2529      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2530
2531      // FIXME: This won't give the correct result for
2532      // int a[10][n];
2533      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2534      if (IDecl->isFileVarDecl()) {
2535        Diag(IDecl->getLocation(), diag::err_vla_decl_in_file_scope) <<
2536          SizeRange;
2537
2538        IDecl->setInvalidDecl();
2539      } else {
2540        // C99 6.7.5.2p2: If an identifier is declared to be an object with
2541        // static storage duration, it shall not have a variable length array.
2542        if (IDecl->getStorageClass() == VarDecl::Static) {
2543          Diag(IDecl->getLocation(), diag::err_vla_decl_has_static_storage)
2544            << SizeRange;
2545          IDecl->setInvalidDecl();
2546        } else if (IDecl->getStorageClass() == VarDecl::Extern) {
2547          Diag(IDecl->getLocation(), diag::err_vla_decl_has_extern_linkage)
2548            << SizeRange;
2549          IDecl->setInvalidDecl();
2550        }
2551      }
2552    } else if (T->isVariablyModifiedType()) {
2553      if (IDecl->isFileVarDecl()) {
2554        Diag(IDecl->getLocation(), diag::err_vm_decl_in_file_scope);
2555        IDecl->setInvalidDecl();
2556      } else {
2557        if (IDecl->getStorageClass() == VarDecl::Extern) {
2558          Diag(IDecl->getLocation(), diag::err_vm_decl_has_extern_linkage);
2559          IDecl->setInvalidDecl();
2560        }
2561      }
2562    }
2563
2564    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2565    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2566    if (IDecl->isBlockVarDecl() &&
2567        IDecl->getStorageClass() != VarDecl::Extern) {
2568      if (!IDecl->isInvalidDecl() &&
2569          DiagnoseIncompleteType(IDecl->getLocation(), T,
2570                                 diag::err_typecheck_decl_incomplete_type))
2571        IDecl->setInvalidDecl();
2572    }
2573    // File scope. C99 6.9.2p2: A declaration of an identifier for and
2574    // object that has file scope without an initializer, and without a
2575    // storage-class specifier or with the storage-class specifier "static",
2576    // constitutes a tentative definition. Note: A tentative definition with
2577    // external linkage is valid (C99 6.2.2p5).
2578    if (isTentativeDefinition(IDecl)) {
2579      if (T->isIncompleteArrayType()) {
2580        // C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete
2581        // array to be completed. Don't issue a diagnostic.
2582      } else if (!IDecl->isInvalidDecl() &&
2583                 DiagnoseIncompleteType(IDecl->getLocation(), T,
2584                                        diag::err_typecheck_decl_incomplete_type))
2585        // C99 6.9.2p3: If the declaration of an identifier for an object is
2586        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2587        // declared type shall not be an incomplete type.
2588        IDecl->setInvalidDecl();
2589    }
2590    if (IDecl->isFileVarDecl())
2591      CheckForFileScopedRedefinitions(S, IDecl);
2592  }
2593  return NewGroup;
2594}
2595
2596/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2597/// to introduce parameters into function prototype scope.
2598Sema::DeclTy *
2599Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2600  const DeclSpec &DS = D.getDeclSpec();
2601
2602  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2603  VarDecl::StorageClass StorageClass = VarDecl::None;
2604  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2605    StorageClass = VarDecl::Register;
2606  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2607    Diag(DS.getStorageClassSpecLoc(),
2608         diag::err_invalid_storage_class_in_func_decl);
2609    D.getMutableDeclSpec().ClearStorageClassSpecs();
2610  }
2611  if (DS.isThreadSpecified()) {
2612    Diag(DS.getThreadSpecLoc(),
2613         diag::err_invalid_storage_class_in_func_decl);
2614    D.getMutableDeclSpec().ClearStorageClassSpecs();
2615  }
2616
2617  // Check that there are no default arguments inside the type of this
2618  // parameter (C++ only).
2619  if (getLangOptions().CPlusPlus)
2620    CheckExtraCXXDefaultArguments(D);
2621
2622  // In this context, we *do not* check D.getInvalidType(). If the declarator
2623  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
2624  // though it will not reflect the user specified type.
2625  QualType parmDeclType = GetTypeForDeclarator(D, S);
2626
2627  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
2628
2629  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2630  // Can this happen for params?  We already checked that they don't conflict
2631  // among each other.  Here they can only shadow globals, which is ok.
2632  IdentifierInfo *II = D.getIdentifier();
2633  if (II) {
2634    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2635      if (PrevDecl->isTemplateParameter()) {
2636        // Maybe we will complain about the shadowed template parameter.
2637        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2638        // Just pretend that we didn't see the previous declaration.
2639        PrevDecl = 0;
2640      } else if (S->isDeclScope(PrevDecl)) {
2641        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2642
2643        // Recover by removing the name
2644        II = 0;
2645        D.SetIdentifier(0, D.getIdentifierLoc());
2646      }
2647    }
2648  }
2649
2650  // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
2651  // Doing the promotion here has a win and a loss. The win is the type for
2652  // both Decl's and DeclRefExpr's will match (a convenient invariant for the
2653  // code generator). The loss is the orginal type isn't preserved. For example:
2654  //
2655  // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
2656  //    int blockvardecl[5];
2657  //    sizeof(parmvardecl);  // size == 4
2658  //    sizeof(blockvardecl); // size == 20
2659  // }
2660  //
2661  // For expressions, all implicit conversions are captured using the
2662  // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
2663  //
2664  // FIXME: If a source translation tool needs to see the original type, then
2665  // we need to consider storing both types (in ParmVarDecl)...
2666  //
2667  if (parmDeclType->isArrayType()) {
2668    // int x[restrict 4] ->  int *restrict
2669    parmDeclType = Context.getArrayDecayedType(parmDeclType);
2670  } else if (parmDeclType->isFunctionType())
2671    parmDeclType = Context.getPointerType(parmDeclType);
2672
2673  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext,
2674                                         D.getIdentifierLoc(), II,
2675                                         parmDeclType, StorageClass,
2676                                         0);
2677
2678  if (D.getInvalidType())
2679    New->setInvalidDecl();
2680
2681  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2682  if (D.getCXXScopeSpec().isSet()) {
2683    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
2684      << D.getCXXScopeSpec().getRange();
2685    New->setInvalidDecl();
2686  }
2687
2688  // Add the parameter declaration into this scope.
2689  S->AddDecl(New);
2690  if (II)
2691    IdResolver.AddDecl(New);
2692
2693  ProcessDeclAttributes(New, D);
2694  return New;
2695
2696}
2697
2698void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D) {
2699  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2700         "Not a function declarator!");
2701  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2702
2703  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
2704  // for a K&R function.
2705  if (!FTI.hasPrototype) {
2706    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2707      if (FTI.ArgInfo[i].Param == 0) {
2708        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
2709          << FTI.ArgInfo[i].Ident;
2710        // Implicitly declare the argument as type 'int' for lack of a better
2711        // type.
2712        DeclSpec DS;
2713        const char* PrevSpec; // unused
2714        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
2715                           PrevSpec);
2716        Declarator ParamD(DS, Declarator::KNRTypeListContext);
2717        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
2718        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
2719      }
2720    }
2721  }
2722}
2723
2724Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
2725  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2726  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2727         "Not a function declarator!");
2728  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2729
2730  if (FTI.hasPrototype) {
2731    // FIXME: Diagnose arguments without names in C.
2732  }
2733
2734  Scope *ParentScope = FnBodyScope->getParent();
2735
2736  return ActOnStartOfFunctionDef(FnBodyScope,
2737                                 ActOnDeclarator(ParentScope, D, 0,
2738                                                 /*IsFunctionDefinition=*/true));
2739}
2740
2741Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclTy *D) {
2742  Decl *decl = static_cast<Decl*>(D);
2743  FunctionDecl *FD = cast<FunctionDecl>(decl);
2744
2745  // See if this is a redefinition.
2746  const FunctionDecl *Definition;
2747  if (FD->getBody(Definition)) {
2748    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
2749    Diag(Definition->getLocation(), diag::note_previous_definition);
2750  }
2751
2752  // Builtin functions cannot be defined.
2753  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
2754    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2755      Diag(FD->getLocation(), diag::err_builtin_lib_definition) << FD;
2756      Diag(FD->getLocation(), diag::note_builtin_lib_def_freestanding);
2757    } else
2758      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
2759    FD->setInvalidDecl();
2760  }
2761
2762  PushDeclContext(FnBodyScope, FD);
2763
2764  // Check the validity of our function parameters
2765  CheckParmsForFunctionDef(FD);
2766
2767  // Introduce our parameters into the function scope
2768  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2769    ParmVarDecl *Param = FD->getParamDecl(p);
2770    Param->setOwningFunction(FD);
2771
2772    // If this has an identifier, add it to the scope stack.
2773    if (Param->getIdentifier())
2774      PushOnScopeChains(Param, FnBodyScope);
2775  }
2776
2777  // Checking attributes of current function definition
2778  // dllimport attribute.
2779  if (FD->getAttr<DLLImportAttr>() && (!FD->getAttr<DLLExportAttr>())) {
2780    // dllimport attribute cannot be applied to definition.
2781    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
2782      Diag(FD->getLocation(),
2783           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
2784        << "dllimport";
2785      FD->setInvalidDecl();
2786      return FD;
2787    } else {
2788      // If a symbol previously declared dllimport is later defined, the
2789      // attribute is ignored in subsequent references, and a warning is
2790      // emitted.
2791      Diag(FD->getLocation(),
2792           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
2793        << FD->getNameAsCString() << "dllimport";
2794    }
2795  }
2796  return FD;
2797}
2798
2799Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtArg BodyArg) {
2800  Decl *dcl = static_cast<Decl *>(D);
2801  Stmt *Body = static_cast<Stmt*>(BodyArg.release());
2802  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
2803    FD->setBody(Body);
2804    assert(FD == getCurFunctionDecl() && "Function parsing confused");
2805  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
2806    MD->setBody((Stmt*)Body);
2807  } else {
2808    Body->Destroy(Context);
2809    return 0;
2810  }
2811  PopDeclContext();
2812  // Verify and clean out per-function state.
2813
2814  // Check goto/label use.
2815  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
2816       I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
2817    // Verify that we have no forward references left.  If so, there was a goto
2818    // or address of a label taken, but no definition of it.  Label fwd
2819    // definitions are indicated with a null substmt.
2820    if (I->second->getSubStmt() == 0) {
2821      LabelStmt *L = I->second;
2822      // Emit error.
2823      Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
2824
2825      // At this point, we have gotos that use the bogus label.  Stitch it into
2826      // the function body so that they aren't leaked and that the AST is well
2827      // formed.
2828      if (Body) {
2829#if 0
2830        // FIXME: Why do this?  Having a 'push_back' in CompoundStmt is ugly,
2831        // and the AST is malformed anyway.  We should just blow away 'L'.
2832        L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
2833        cast<CompoundStmt>(Body)->push_back(L);
2834#else
2835        L->Destroy(Context);
2836#endif
2837      } else {
2838        // The whole function wasn't parsed correctly, just delete this.
2839        L->Destroy(Context);
2840      }
2841    }
2842  }
2843  LabelMap.clear();
2844
2845  return D;
2846}
2847
2848/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
2849/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
2850NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
2851                                          IdentifierInfo &II, Scope *S) {
2852  // Extension in C99.  Legal in C90, but warn about it.
2853  if (getLangOptions().C99)
2854    Diag(Loc, diag::ext_implicit_function_decl) << &II;
2855  else
2856    Diag(Loc, diag::warn_implicit_function_decl) << &II;
2857
2858  // FIXME: handle stuff like:
2859  // void foo() { extern float X(); }
2860  // void bar() { X(); }  <-- implicit decl for X in another scope.
2861
2862  // Set a Declarator for the implicit definition: int foo();
2863  const char *Dummy;
2864  DeclSpec DS;
2865  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
2866  Error = Error; // Silence warning.
2867  assert(!Error && "Error setting up implicit decl!");
2868  Declarator D(DS, Declarator::BlockContext);
2869  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, 0, 0, 0, Loc, D),
2870                SourceLocation());
2871  D.SetIdentifier(&II, Loc);
2872
2873  // Insert this function into translation-unit scope.
2874
2875  DeclContext *PrevDC = CurContext;
2876  CurContext = Context.getTranslationUnitDecl();
2877
2878  FunctionDecl *FD =
2879    dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0)));
2880  FD->setImplicit();
2881
2882  CurContext = PrevDC;
2883
2884  AddKnownFunctionAttributes(FD);
2885
2886  return FD;
2887}
2888
2889/// \brief Adds any function attributes that we know a priori based on
2890/// the declaration of this function.
2891///
2892/// These attributes can apply both to implicitly-declared builtins
2893/// (like __builtin___printf_chk) or to library-declared functions
2894/// like NSLog or printf.
2895void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
2896  if (FD->isInvalidDecl())
2897    return;
2898
2899  // If this is a built-in function, map its builtin attributes to
2900  // actual attributes.
2901  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
2902    // Handle printf-formatting attributes.
2903    unsigned FormatIdx;
2904    bool HasVAListArg;
2905    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
2906      if (!FD->getAttr<FormatAttr>())
2907        FD->addAttr(new FormatAttr("printf", FormatIdx + 1, FormatIdx + 2));
2908    }
2909  }
2910
2911  IdentifierInfo *Name = FD->getIdentifier();
2912  if (!Name)
2913    return;
2914  if ((!getLangOptions().CPlusPlus &&
2915       FD->getDeclContext()->isTranslationUnit()) ||
2916      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
2917       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
2918       LinkageSpecDecl::lang_c)) {
2919    // Okay: this could be a libc/libm/Objective-C function we know
2920    // about.
2921  } else
2922    return;
2923
2924  unsigned KnownID;
2925  for (KnownID = 0; KnownID != id_num_known_functions; ++KnownID)
2926    if (KnownFunctionIDs[KnownID] == Name)
2927      break;
2928
2929  switch (KnownID) {
2930  case id_NSLog:
2931  case id_NSLogv:
2932    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
2933      // FIXME: We known better than our headers.
2934      const_cast<FormatAttr *>(Format)->setType("printf");
2935    } else
2936      FD->addAttr(new FormatAttr("printf", 1, 2));
2937    break;
2938
2939  case id_asprintf:
2940  case id_vasprintf:
2941    if (!FD->getAttr<FormatAttr>())
2942      FD->addAttr(new FormatAttr("printf", 2, 3));
2943    break;
2944
2945  default:
2946    // Unknown function or known function without any attributes to
2947    // add. Do nothing.
2948    break;
2949  }
2950}
2951
2952TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
2953                                    Decl *LastDeclarator) {
2954  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
2955  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2956
2957  // Scope manipulation handled by caller.
2958  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
2959                                           D.getIdentifierLoc(),
2960                                           D.getIdentifier(),
2961                                           T);
2962  NewTD->setNextDeclarator(LastDeclarator);
2963  if (D.getInvalidType())
2964    NewTD->setInvalidDecl();
2965  return NewTD;
2966}
2967
2968/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
2969/// former case, Name will be non-null.  In the later case, Name will be null.
2970/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
2971/// reference/declaration/definition of a tag.
2972Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
2973                             SourceLocation KWLoc, const CXXScopeSpec &SS,
2974                             IdentifierInfo *Name, SourceLocation NameLoc,
2975                             AttributeList *Attr) {
2976  // If this is not a definition, it must have a name.
2977  assert((Name != 0 || TK == TK_Definition) &&
2978         "Nameless record must be a definition!");
2979
2980  TagDecl::TagKind Kind;
2981  switch (TagSpec) {
2982  default: assert(0 && "Unknown tag type!");
2983  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
2984  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
2985  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
2986  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
2987  }
2988
2989  DeclContext *SearchDC = CurContext;
2990  DeclContext *DC = CurContext;
2991  NamedDecl *PrevDecl = 0;
2992
2993  bool Invalid = false;
2994
2995  if (Name && SS.isNotEmpty()) {
2996    // We have a nested-name tag ('struct foo::bar').
2997
2998    // Check for invalid 'foo::'.
2999    if (SS.isInvalid()) {
3000      Name = 0;
3001      goto CreateNewDecl;
3002    }
3003
3004    DC = static_cast<DeclContext*>(SS.getScopeRep());
3005    SearchDC = DC;
3006    // Look-up name inside 'foo::'.
3007    PrevDecl = dyn_cast_or_null<TagDecl>(
3008                 LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
3009
3010    // A tag 'foo::bar' must already exist.
3011    if (PrevDecl == 0) {
3012      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
3013      Name = 0;
3014      goto CreateNewDecl;
3015    }
3016  } else if (Name) {
3017    // If this is a named struct, check to see if there was a previous forward
3018    // declaration or definition.
3019    // FIXME: We're looking into outer scopes here, even when we
3020    // shouldn't be. Doing so can result in ambiguities that we
3021    // shouldn't be diagnosing.
3022    LookupResult R = LookupName(S, Name, LookupTagName,
3023                                /*RedeclarationOnly=*/(TK != TK_Reference));
3024    if (R.isAmbiguous()) {
3025      DiagnoseAmbiguousLookup(R, Name, NameLoc);
3026      // FIXME: This is not best way to recover from case like:
3027      //
3028      // struct S s;
3029      //
3030      // causes needless err_ovl_no_viable_function_in_init latter.
3031      Name = 0;
3032      PrevDecl = 0;
3033      Invalid = true;
3034    }
3035    else
3036      PrevDecl = R;
3037
3038    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
3039      // FIXME: This makes sure that we ignore the contexts associated
3040      // with C structs, unions, and enums when looking for a matching
3041      // tag declaration or definition. See the similar lookup tweak
3042      // in Sema::LookupName; is there a better way to deal with this?
3043      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
3044        SearchDC = SearchDC->getParent();
3045    }
3046  }
3047
3048  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3049    // Maybe we will complain about the shadowed template parameter.
3050    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
3051    // Just pretend that we didn't see the previous declaration.
3052    PrevDecl = 0;
3053  }
3054
3055  if (PrevDecl) {
3056    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
3057      // If this is a use of a previous tag, or if the tag is already declared
3058      // in the same scope (so that the definition/declaration completes or
3059      // rementions the tag), reuse the decl.
3060      if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
3061        // Make sure that this wasn't declared as an enum and now used as a
3062        // struct or something similar.
3063        if (PrevTagDecl->getTagKind() != Kind) {
3064          Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
3065          Diag(PrevDecl->getLocation(), diag::note_previous_use);
3066          // Recover by making this an anonymous redefinition.
3067          Name = 0;
3068          PrevDecl = 0;
3069          Invalid = true;
3070        } else {
3071          // If this is a use, just return the declaration we found.
3072
3073          // FIXME: In the future, return a variant or some other clue
3074          // for the consumer of this Decl to know it doesn't own it.
3075          // For our current ASTs this shouldn't be a problem, but will
3076          // need to be changed with DeclGroups.
3077          if (TK == TK_Reference)
3078            return PrevDecl;
3079
3080          // Diagnose attempts to redefine a tag.
3081          if (TK == TK_Definition) {
3082            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
3083              Diag(NameLoc, diag::err_redefinition) << Name;
3084              Diag(Def->getLocation(), diag::note_previous_definition);
3085              // If this is a redefinition, recover by making this
3086              // struct be anonymous, which will make any later
3087              // references get the previous definition.
3088              Name = 0;
3089              PrevDecl = 0;
3090              Invalid = true;
3091            } else {
3092              // If the type is currently being defined, complain
3093              // about a nested redefinition.
3094              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
3095              if (Tag->isBeingDefined()) {
3096                Diag(NameLoc, diag::err_nested_redefinition) << Name;
3097                Diag(PrevTagDecl->getLocation(),
3098                     diag::note_previous_definition);
3099                Name = 0;
3100                PrevDecl = 0;
3101                Invalid = true;
3102              }
3103            }
3104
3105            // Okay, this is definition of a previously declared or referenced
3106            // tag PrevDecl. We're going to create a new Decl for it.
3107          }
3108        }
3109        // If we get here we have (another) forward declaration or we
3110        // have a definition.  Just create a new decl.
3111      } else {
3112        // If we get here, this is a definition of a new tag type in a nested
3113        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
3114        // new decl/type.  We set PrevDecl to NULL so that the entities
3115        // have distinct types.
3116        PrevDecl = 0;
3117      }
3118      // If we get here, we're going to create a new Decl. If PrevDecl
3119      // is non-NULL, it's a definition of the tag declared by
3120      // PrevDecl. If it's NULL, we have a new definition.
3121    } else {
3122      // PrevDecl is a namespace, template, or anything else
3123      // that lives in the IDNS_Tag identifier namespace.
3124      if (isDeclInScope(PrevDecl, SearchDC, S)) {
3125        // The tag name clashes with a namespace name, issue an error and
3126        // recover by making this tag be anonymous.
3127        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
3128        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3129        Name = 0;
3130        PrevDecl = 0;
3131        Invalid = true;
3132      } else {
3133        // The existing declaration isn't relevant to us; we're in a
3134        // new scope, so clear out the previous declaration.
3135        PrevDecl = 0;
3136      }
3137    }
3138  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
3139             (Kind != TagDecl::TK_enum))  {
3140    // C++ [basic.scope.pdecl]p5:
3141    //   -- for an elaborated-type-specifier of the form
3142    //
3143    //          class-key identifier
3144    //
3145    //      if the elaborated-type-specifier is used in the
3146    //      decl-specifier-seq or parameter-declaration-clause of a
3147    //      function defined in namespace scope, the identifier is
3148    //      declared as a class-name in the namespace that contains
3149    //      the declaration; otherwise, except as a friend
3150    //      declaration, the identifier is declared in the smallest
3151    //      non-class, non-function-prototype scope that contains the
3152    //      declaration.
3153    //
3154    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
3155    // C structs and unions.
3156
3157    // Find the context where we'll be declaring the tag.
3158    // FIXME: We would like to maintain the current DeclContext as the
3159    // lexical context,
3160    while (SearchDC->isRecord())
3161      SearchDC = SearchDC->getParent();
3162
3163    // Find the scope where we'll be declaring the tag.
3164    while (S->isClassScope() ||
3165           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
3166           ((S->getFlags() & Scope::DeclScope) == 0) ||
3167           (S->getEntity() &&
3168            ((DeclContext *)S->getEntity())->isTransparentContext()))
3169      S = S->getParent();
3170  }
3171
3172CreateNewDecl:
3173
3174  // If there is an identifier, use the location of the identifier as the
3175  // location of the decl, otherwise use the location of the struct/union
3176  // keyword.
3177  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
3178
3179  // Otherwise, create a new declaration. If there is a previous
3180  // declaration of the same entity, the two will be linked via
3181  // PrevDecl.
3182  TagDecl *New;
3183
3184  if (Kind == TagDecl::TK_enum) {
3185    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3186    // enum X { A, B, C } D;    D should chain to X.
3187    New = EnumDecl::Create(Context, SearchDC, Loc, Name,
3188                           cast_or_null<EnumDecl>(PrevDecl));
3189    // If this is an undefined enum, warn.
3190    if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum);
3191  } else {
3192    // struct/union/class
3193
3194    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3195    // struct X { int A; } D;    D should chain to X.
3196    if (getLangOptions().CPlusPlus)
3197      // FIXME: Look for a way to use RecordDecl for simple structs.
3198      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3199                                  cast_or_null<CXXRecordDecl>(PrevDecl));
3200    else
3201      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3202                               cast_or_null<RecordDecl>(PrevDecl));
3203  }
3204
3205  if (Kind != TagDecl::TK_enum) {
3206    // Handle #pragma pack: if the #pragma pack stack has non-default
3207    // alignment, make up a packed attribute for this decl. These
3208    // attributes are checked when the ASTContext lays out the
3209    // structure.
3210    //
3211    // It is important for implementing the correct semantics that this
3212    // happen here (in act on tag decl). The #pragma pack stack is
3213    // maintained as a result of parser callbacks which can occur at
3214    // many points during the parsing of a struct declaration (because
3215    // the #pragma tokens are effectively skipped over during the
3216    // parsing of the struct).
3217    if (unsigned Alignment = PackContext.getAlignment())
3218      New->addAttr(new PackedAttr(Alignment * 8));
3219  }
3220
3221  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
3222    // C++ [dcl.typedef]p3:
3223    //   [...] Similarly, in a given scope, a class or enumeration
3224    //   shall not be declared with the same name as a typedef-name
3225    //   that is declared in that scope and refers to a type other
3226    //   than the class or enumeration itself.
3227    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
3228    TypedefDecl *PrevTypedef = 0;
3229    if (Lookup.getKind() == LookupResult::Found)
3230      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
3231
3232    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
3233        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
3234          Context.getCanonicalType(Context.getTypeDeclType(New))) {
3235      Diag(Loc, diag::err_tag_definition_of_typedef)
3236        << Context.getTypeDeclType(New)
3237        << PrevTypedef->getUnderlyingType();
3238      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
3239      Invalid = true;
3240    }
3241  }
3242
3243  if (Invalid)
3244    New->setInvalidDecl();
3245
3246  if (Attr)
3247    ProcessDeclAttributeList(New, Attr);
3248
3249  // If we're declaring or defining a tag in function prototype scope
3250  // in C, note that this type can only be used within the function.
3251  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
3252    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
3253
3254  // Set the lexical context. If the tag has a C++ scope specifier, the
3255  // lexical context will be different from the semantic context.
3256  New->setLexicalDeclContext(CurContext);
3257
3258  if (TK == TK_Definition)
3259    New->startDefinition();
3260
3261  // If this has an identifier, add it to the scope stack.
3262  if (Name) {
3263    S = getNonFieldDeclScope(S);
3264    PushOnScopeChains(New, S);
3265  } else {
3266    CurContext->addDecl(New);
3267  }
3268
3269  return New;
3270}
3271
3272void Sema::ActOnTagStartDefinition(Scope *S, DeclTy *TagD) {
3273  AdjustDeclIfTemplate(TagD);
3274  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3275
3276  // Enter the tag context.
3277  PushDeclContext(S, Tag);
3278
3279  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
3280    FieldCollector->StartClass();
3281
3282    if (Record->getIdentifier()) {
3283      // C++ [class]p2:
3284      //   [...] The class-name is also inserted into the scope of the
3285      //   class itself; this is known as the injected-class-name. For
3286      //   purposes of access checking, the injected-class-name is treated
3287      //   as if it were a public member name.
3288      RecordDecl *InjectedClassName
3289        = CXXRecordDecl::Create(Context, Record->getTagKind(),
3290                                CurContext, Record->getLocation(),
3291                                Record->getIdentifier(), Record);
3292      InjectedClassName->setImplicit();
3293      PushOnScopeChains(InjectedClassName, S);
3294    }
3295  }
3296}
3297
3298void Sema::ActOnTagFinishDefinition(Scope *S, DeclTy *TagD) {
3299  AdjustDeclIfTemplate(TagD);
3300  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3301
3302  if (isa<CXXRecordDecl>(Tag))
3303    FieldCollector->FinishClass();
3304
3305  // Exit this scope of this tag's definition.
3306  PopDeclContext();
3307
3308  // Notify the consumer that we've defined a tag.
3309  Consumer.HandleTagDeclDefinition(Tag);
3310}
3311
3312/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3313/// types into constant array types in certain situations which would otherwise
3314/// be errors (for GCC compatibility).
3315static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3316                                                    ASTContext &Context) {
3317  // This method tries to turn a variable array into a constant
3318  // array even when the size isn't an ICE.  This is necessary
3319  // for compatibility with code that depends on gcc's buggy
3320  // constant expression folding, like struct {char x[(int)(char*)2];}
3321  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3322  if (!VLATy) return QualType();
3323
3324  Expr::EvalResult EvalResult;
3325  if (!VLATy->getSizeExpr() ||
3326      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context))
3327    return QualType();
3328
3329  assert(EvalResult.Val.isInt() && "Size expressions must be integers!");
3330  llvm::APSInt &Res = EvalResult.Val.getInt();
3331  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
3332    return Context.getConstantArrayType(VLATy->getElementType(),
3333                                        Res, ArrayType::Normal, 0);
3334  return QualType();
3335}
3336
3337bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
3338                          QualType FieldTy, const Expr *BitWidth) {
3339  // FIXME: 6.7.2.1p4 - verify the field type.
3340
3341  llvm::APSInt Value;
3342  if (VerifyIntegerConstantExpression(BitWidth, &Value))
3343    return true;
3344
3345  // Zero-width bitfield is ok for anonymous field.
3346  if (Value == 0 && FieldName)
3347    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
3348
3349  if (Value.isNegative())
3350    return Diag(FieldLoc, diag::err_bitfield_has_negative_width) << FieldName;
3351
3352  uint64_t TypeSize = Context.getTypeSize(FieldTy);
3353  // FIXME: We won't need the 0 size once we check that the field type is valid.
3354  if (TypeSize && Value.getZExtValue() > TypeSize)
3355    return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
3356       << FieldName << (unsigned)TypeSize;
3357
3358  return false;
3359}
3360
3361/// ActOnField - Each field of a struct/union/class is passed into this in order
3362/// to create a FieldDecl object for it.
3363Sema::DeclTy *Sema::ActOnField(Scope *S, DeclTy *TagD,
3364                               SourceLocation DeclStart,
3365                               Declarator &D, ExprTy *BitfieldWidth) {
3366  IdentifierInfo *II = D.getIdentifier();
3367  Expr *BitWidth = (Expr*)BitfieldWidth;
3368  SourceLocation Loc = DeclStart;
3369  RecordDecl *Record = (RecordDecl *)TagD;
3370  if (II) Loc = D.getIdentifierLoc();
3371
3372  // FIXME: Unnamed fields can be handled in various different ways, for
3373  // example, unnamed unions inject all members into the struct namespace!
3374
3375  QualType T = GetTypeForDeclarator(D, S);
3376  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3377  bool InvalidDecl = false;
3378
3379  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3380  // than a variably modified type.
3381  if (T->isVariablyModifiedType()) {
3382    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context);
3383    if (!FixedTy.isNull()) {
3384      Diag(Loc, diag::warn_illegal_constant_array_size);
3385      T = FixedTy;
3386    } else {
3387      Diag(Loc, diag::err_typecheck_field_variable_size);
3388      T = Context.IntTy;
3389      InvalidDecl = true;
3390    }
3391  }
3392
3393  if (BitWidth) {
3394    if (VerifyBitField(Loc, II, T, BitWidth))
3395      InvalidDecl = true;
3396  } else {
3397    // Not a bitfield.
3398
3399    // validate II.
3400
3401  }
3402
3403  // FIXME: Chain fielddecls together.
3404  FieldDecl *NewFD;
3405
3406  NewFD = FieldDecl::Create(Context, Record,
3407                            Loc, II, T, BitWidth,
3408                            D.getDeclSpec().getStorageClassSpec() ==
3409                              DeclSpec::SCS_mutable);
3410
3411  if (II) {
3412    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3413    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3414        && !isa<TagDecl>(PrevDecl)) {
3415      Diag(Loc, diag::err_duplicate_member) << II;
3416      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3417      NewFD->setInvalidDecl();
3418      Record->setInvalidDecl();
3419    }
3420  }
3421
3422  if (getLangOptions().CPlusPlus) {
3423    CheckExtraCXXDefaultArguments(D);
3424    if (!T->isPODType())
3425      cast<CXXRecordDecl>(Record)->setPOD(false);
3426  }
3427
3428  ProcessDeclAttributes(NewFD, D);
3429
3430  if (D.getInvalidType() || InvalidDecl)
3431    NewFD->setInvalidDecl();
3432
3433  if (II) {
3434    PushOnScopeChains(NewFD, S);
3435  } else
3436    Record->addDecl(NewFD);
3437
3438  return NewFD;
3439}
3440
3441/// TranslateIvarVisibility - Translate visibility from a token ID to an
3442///  AST enum value.
3443static ObjCIvarDecl::AccessControl
3444TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
3445  switch (ivarVisibility) {
3446  default: assert(0 && "Unknown visitibility kind");
3447  case tok::objc_private: return ObjCIvarDecl::Private;
3448  case tok::objc_public: return ObjCIvarDecl::Public;
3449  case tok::objc_protected: return ObjCIvarDecl::Protected;
3450  case tok::objc_package: return ObjCIvarDecl::Package;
3451  }
3452}
3453
3454/// ActOnIvar - Each ivar field of an objective-c class is passed into this
3455/// in order to create an IvarDecl object for it.
3456Sema::DeclTy *Sema::ActOnIvar(Scope *S,
3457                              SourceLocation DeclStart,
3458                              Declarator &D, ExprTy *BitfieldWidth,
3459                              tok::ObjCKeywordKind Visibility) {
3460
3461  IdentifierInfo *II = D.getIdentifier();
3462  Expr *BitWidth = (Expr*)BitfieldWidth;
3463  SourceLocation Loc = DeclStart;
3464  if (II) Loc = D.getIdentifierLoc();
3465
3466  // FIXME: Unnamed fields can be handled in various different ways, for
3467  // example, unnamed unions inject all members into the struct namespace!
3468
3469  QualType T = GetTypeForDeclarator(D, S);
3470  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3471  bool InvalidDecl = false;
3472
3473  if (BitWidth) {
3474    // TODO: Validate.
3475    //printf("WARNING: BITFIELDS IGNORED!\n");
3476
3477    // 6.7.2.1p3
3478    // 6.7.2.1p4
3479
3480  } else {
3481    // Not a bitfield.
3482
3483    // validate II.
3484
3485  }
3486
3487  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3488  // than a variably modified type.
3489  if (T->isVariablyModifiedType()) {
3490    Diag(Loc, diag::err_typecheck_ivar_variable_size);
3491    InvalidDecl = true;
3492  }
3493
3494  // Get the visibility (access control) for this ivar.
3495  ObjCIvarDecl::AccessControl ac =
3496    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
3497                                        : ObjCIvarDecl::None;
3498
3499  // Construct the decl.
3500  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, Loc, II, T, ac,
3501                                             (Expr *)BitfieldWidth);
3502
3503  if (II) {
3504    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3505    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3506        && !isa<TagDecl>(PrevDecl)) {
3507      Diag(Loc, diag::err_duplicate_member) << II;
3508      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3509      NewID->setInvalidDecl();
3510    }
3511  }
3512
3513  // Process attributes attached to the ivar.
3514  ProcessDeclAttributes(NewID, D);
3515
3516  if (D.getInvalidType() || InvalidDecl)
3517    NewID->setInvalidDecl();
3518
3519  if (II) {
3520    // FIXME: When interfaces are DeclContexts, we'll need to add
3521    // these to the interface.
3522    S->AddDecl(NewID);
3523    IdResolver.AddDecl(NewID);
3524  }
3525
3526  return NewID;
3527}
3528
3529void Sema::ActOnFields(Scope* S,
3530                       SourceLocation RecLoc, DeclTy *RecDecl,
3531                       DeclTy **Fields, unsigned NumFields,
3532                       SourceLocation LBrac, SourceLocation RBrac,
3533                       AttributeList *Attr) {
3534  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
3535  assert(EnclosingDecl && "missing record or interface decl");
3536  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
3537
3538  // Verify that all the fields are okay.
3539  unsigned NumNamedMembers = 0;
3540  llvm::SmallVector<FieldDecl*, 32> RecFields;
3541
3542  for (unsigned i = 0; i != NumFields; ++i) {
3543    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
3544    assert(FD && "missing field decl");
3545
3546    // Get the type for the field.
3547    Type *FDTy = FD->getType().getTypePtr();
3548
3549    if (!FD->isAnonymousStructOrUnion()) {
3550      // Remember all fields written by the user.
3551      RecFields.push_back(FD);
3552    }
3553
3554    // C99 6.7.2.1p2 - A field may not be a function type.
3555    if (FDTy->isFunctionType()) {
3556      Diag(FD->getLocation(), diag::err_field_declared_as_function)
3557        << FD->getDeclName();
3558      FD->setInvalidDecl();
3559      EnclosingDecl->setInvalidDecl();
3560      continue;
3561    }
3562    // C99 6.7.2.1p2 - A field may not be an incomplete type except...
3563    if (FDTy->isIncompleteType()) {
3564      if (!Record) {  // Incomplete ivar type is always an error.
3565        DiagnoseIncompleteType(FD->getLocation(), FD->getType(),
3566                               diag::err_field_incomplete);
3567        FD->setInvalidDecl();
3568        EnclosingDecl->setInvalidDecl();
3569        continue;
3570      }
3571      if (i != NumFields-1 ||                   // ... that the last member ...
3572          !Record->isStruct() ||  // ... of a structure ...
3573          !FDTy->isArrayType()) {         //... may have incomplete array type.
3574        DiagnoseIncompleteType(FD->getLocation(), FD->getType(),
3575                               diag::err_field_incomplete);
3576        FD->setInvalidDecl();
3577        EnclosingDecl->setInvalidDecl();
3578        continue;
3579      }
3580      if (NumNamedMembers < 1) {  //... must have more than named member ...
3581        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
3582          << FD->getDeclName();
3583        FD->setInvalidDecl();
3584        EnclosingDecl->setInvalidDecl();
3585        continue;
3586      }
3587      // Okay, we have a legal flexible array member at the end of the struct.
3588      if (Record)
3589        Record->setHasFlexibleArrayMember(true);
3590    }
3591    /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
3592    /// field of another structure or the element of an array.
3593    if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
3594      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
3595        // If this is a member of a union, then entire union becomes "flexible".
3596        if (Record && Record->isUnion()) {
3597          Record->setHasFlexibleArrayMember(true);
3598        } else {
3599          // If this is a struct/class and this is not the last element, reject
3600          // it.  Note that GCC supports variable sized arrays in the middle of
3601          // structures.
3602          if (i != NumFields-1) {
3603            Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct)
3604              << FD->getDeclName();
3605            FD->setInvalidDecl();
3606            EnclosingDecl->setInvalidDecl();
3607            continue;
3608          }
3609          // We support flexible arrays at the end of structs in other structs
3610          // as an extension.
3611          Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
3612            << FD->getDeclName();
3613          if (Record)
3614            Record->setHasFlexibleArrayMember(true);
3615        }
3616      }
3617    }
3618    /// A field cannot be an Objective-c object
3619    if (FDTy->isObjCInterfaceType()) {
3620      Diag(FD->getLocation(), diag::err_statically_allocated_object)
3621        << FD->getDeclName();
3622      FD->setInvalidDecl();
3623      EnclosingDecl->setInvalidDecl();
3624      continue;
3625    }
3626    // Keep track of the number of named members.
3627    if (FD->getIdentifier())
3628      ++NumNamedMembers;
3629  }
3630
3631  // Okay, we successfully defined 'Record'.
3632  if (Record) {
3633    Record->completeDefinition(Context);
3634  } else {
3635    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
3636    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
3637      ID->addInstanceVariablesToClass(ClsFields, RecFields.size(), RBrac);
3638      // Must enforce the rule that ivars in the base classes may not be
3639      // duplicates.
3640      if (ID->getSuperClass()) {
3641        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
3642             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
3643          ObjCIvarDecl* Ivar = (*IVI);
3644          IdentifierInfo *II = Ivar->getIdentifier();
3645          ObjCIvarDecl* prevIvar = ID->getSuperClass()->FindIvarDeclaration(II);
3646          if (prevIvar) {
3647            Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3648            Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3649          }
3650        }
3651      }
3652    }
3653    else if (ObjCImplementationDecl *IMPDecl =
3654               dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
3655      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
3656      IMPDecl->ObjCAddInstanceVariablesToClassImpl(ClsFields, RecFields.size());
3657      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
3658    }
3659  }
3660
3661  if (Attr)
3662    ProcessDeclAttributeList(Record, Attr);
3663}
3664
3665Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
3666                                      DeclTy *lastEnumConst,
3667                                      SourceLocation IdLoc, IdentifierInfo *Id,
3668                                      SourceLocation EqualLoc, ExprTy *val) {
3669  EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
3670  EnumConstantDecl *LastEnumConst =
3671    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
3672  Expr *Val = static_cast<Expr*>(val);
3673
3674  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3675  // we find one that is.
3676  S = getNonFieldDeclScope(S);
3677
3678  // Verify that there isn't already something declared with this name in this
3679  // scope.
3680  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
3681  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3682    // Maybe we will complain about the shadowed template parameter.
3683    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
3684    // Just pretend that we didn't see the previous declaration.
3685    PrevDecl = 0;
3686  }
3687
3688  if (PrevDecl) {
3689    // When in C++, we may get a TagDecl with the same name; in this case the
3690    // enum constant will 'hide' the tag.
3691    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
3692           "Received TagDecl when not in C++!");
3693    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
3694      if (isa<EnumConstantDecl>(PrevDecl))
3695        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
3696      else
3697        Diag(IdLoc, diag::err_redefinition) << Id;
3698      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3699      Val->Destroy(Context);
3700      return 0;
3701    }
3702  }
3703
3704  llvm::APSInt EnumVal(32);
3705  QualType EltTy;
3706  if (Val) {
3707    // Make sure to promote the operand type to int.
3708    UsualUnaryConversions(Val);
3709
3710    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
3711    SourceLocation ExpLoc;
3712    if (VerifyIntegerConstantExpression(Val, &EnumVal)) {
3713      Val->Destroy(Context);
3714      Val = 0;  // Just forget about it.
3715    } else {
3716      EltTy = Val->getType();
3717    }
3718  }
3719
3720  if (!Val) {
3721    if (LastEnumConst) {
3722      // Assign the last value + 1.
3723      EnumVal = LastEnumConst->getInitVal();
3724      ++EnumVal;
3725
3726      // Check for overflow on increment.
3727      if (EnumVal < LastEnumConst->getInitVal())
3728        Diag(IdLoc, diag::warn_enum_value_overflow);
3729
3730      EltTy = LastEnumConst->getType();
3731    } else {
3732      // First value, set to zero.
3733      EltTy = Context.IntTy;
3734      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
3735    }
3736  }
3737
3738  EnumConstantDecl *New =
3739    EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy,
3740                             Val, EnumVal);
3741
3742  // Register this decl in the current scope stack.
3743  PushOnScopeChains(New, S);
3744
3745  return New;
3746}
3747
3748// FIXME: For consistency with ActOnFields(), we should have the parser
3749// pass in the source location for the left/right braces.
3750void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
3751                         DeclTy **Elements, unsigned NumElements) {
3752  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
3753  QualType EnumType = Context.getTypeDeclType(Enum);
3754
3755  // TODO: If the result value doesn't fit in an int, it must be a long or long
3756  // long value.  ISO C does not support this, but GCC does as an extension,
3757  // emit a warning.
3758  unsigned IntWidth = Context.Target.getIntWidth();
3759
3760  // Verify that all the values are okay, compute the size of the values, and
3761  // reverse the list.
3762  unsigned NumNegativeBits = 0;
3763  unsigned NumPositiveBits = 0;
3764
3765  // Keep track of whether all elements have type int.
3766  bool AllElementsInt = true;
3767
3768  for (unsigned i = 0; i != NumElements; ++i) {
3769    EnumConstantDecl *ECD =
3770      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3771    if (!ECD) continue;  // Already issued a diagnostic.
3772
3773    // If the enum value doesn't fit in an int, emit an extension warning.
3774    const llvm::APSInt &InitVal = ECD->getInitVal();
3775    assert(InitVal.getBitWidth() >= IntWidth &&
3776           "Should have promoted value to int");
3777    if (InitVal.getBitWidth() > IntWidth) {
3778      llvm::APSInt V(InitVal);
3779      V.trunc(IntWidth);
3780      V.extend(InitVal.getBitWidth());
3781      if (V != InitVal)
3782        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
3783          << InitVal.toString(10);
3784    }
3785
3786    // Keep track of the size of positive and negative values.
3787    if (InitVal.isUnsigned() || InitVal.isNonNegative())
3788      NumPositiveBits = std::max(NumPositiveBits,
3789                                 (unsigned)InitVal.getActiveBits());
3790    else
3791      NumNegativeBits = std::max(NumNegativeBits,
3792                                 (unsigned)InitVal.getMinSignedBits());
3793
3794    // Keep track of whether every enum element has type int (very commmon).
3795    if (AllElementsInt)
3796      AllElementsInt = ECD->getType() == Context.IntTy;
3797  }
3798
3799  // Figure out the type that should be used for this enum.
3800  // FIXME: Support attribute(packed) on enums and -fshort-enums.
3801  QualType BestType;
3802  unsigned BestWidth;
3803
3804  if (NumNegativeBits) {
3805    // If there is a negative value, figure out the smallest integer type (of
3806    // int/long/longlong) that fits.
3807    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
3808      BestType = Context.IntTy;
3809      BestWidth = IntWidth;
3810    } else {
3811      BestWidth = Context.Target.getLongWidth();
3812
3813      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
3814        BestType = Context.LongTy;
3815      else {
3816        BestWidth = Context.Target.getLongLongWidth();
3817
3818        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
3819          Diag(Enum->getLocation(), diag::warn_enum_too_large);
3820        BestType = Context.LongLongTy;
3821      }
3822    }
3823  } else {
3824    // If there is no negative value, figure out which of uint, ulong, ulonglong
3825    // fits.
3826    if (NumPositiveBits <= IntWidth) {
3827      BestType = Context.UnsignedIntTy;
3828      BestWidth = IntWidth;
3829    } else if (NumPositiveBits <=
3830               (BestWidth = Context.Target.getLongWidth())) {
3831      BestType = Context.UnsignedLongTy;
3832    } else {
3833      BestWidth = Context.Target.getLongLongWidth();
3834      assert(NumPositiveBits <= BestWidth &&
3835             "How could an initializer get larger than ULL?");
3836      BestType = Context.UnsignedLongLongTy;
3837    }
3838  }
3839
3840  // Loop over all of the enumerator constants, changing their types to match
3841  // the type of the enum if needed.
3842  for (unsigned i = 0; i != NumElements; ++i) {
3843    EnumConstantDecl *ECD =
3844      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3845    if (!ECD) continue;  // Already issued a diagnostic.
3846
3847    // Standard C says the enumerators have int type, but we allow, as an
3848    // extension, the enumerators to be larger than int size.  If each
3849    // enumerator value fits in an int, type it as an int, otherwise type it the
3850    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
3851    // that X has type 'int', not 'unsigned'.
3852    if (ECD->getType() == Context.IntTy) {
3853      // Make sure the init value is signed.
3854      llvm::APSInt IV = ECD->getInitVal();
3855      IV.setIsSigned(true);
3856      ECD->setInitVal(IV);
3857
3858      if (getLangOptions().CPlusPlus)
3859        // C++ [dcl.enum]p4: Following the closing brace of an
3860        // enum-specifier, each enumerator has the type of its
3861        // enumeration.
3862        ECD->setType(EnumType);
3863      continue;  // Already int type.
3864    }
3865
3866    // Determine whether the value fits into an int.
3867    llvm::APSInt InitVal = ECD->getInitVal();
3868    bool FitsInInt;
3869    if (InitVal.isUnsigned() || !InitVal.isNegative())
3870      FitsInInt = InitVal.getActiveBits() < IntWidth;
3871    else
3872      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
3873
3874    // If it fits into an integer type, force it.  Otherwise force it to match
3875    // the enum decl type.
3876    QualType NewTy;
3877    unsigned NewWidth;
3878    bool NewSign;
3879    if (FitsInInt) {
3880      NewTy = Context.IntTy;
3881      NewWidth = IntWidth;
3882      NewSign = true;
3883    } else if (ECD->getType() == BestType) {
3884      // Already the right type!
3885      if (getLangOptions().CPlusPlus)
3886        // C++ [dcl.enum]p4: Following the closing brace of an
3887        // enum-specifier, each enumerator has the type of its
3888        // enumeration.
3889        ECD->setType(EnumType);
3890      continue;
3891    } else {
3892      NewTy = BestType;
3893      NewWidth = BestWidth;
3894      NewSign = BestType->isSignedIntegerType();
3895    }
3896
3897    // Adjust the APSInt value.
3898    InitVal.extOrTrunc(NewWidth);
3899    InitVal.setIsSigned(NewSign);
3900    ECD->setInitVal(InitVal);
3901
3902    // Adjust the Expr initializer and type.
3903    if (ECD->getInitExpr())
3904      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy, ECD->getInitExpr(),
3905                                                      /*isLvalue=*/false));
3906    if (getLangOptions().CPlusPlus)
3907      // C++ [dcl.enum]p4: Following the closing brace of an
3908      // enum-specifier, each enumerator has the type of its
3909      // enumeration.
3910      ECD->setType(EnumType);
3911    else
3912      ECD->setType(NewTy);
3913  }
3914
3915  Enum->completeDefinition(Context, BestType);
3916}
3917
3918Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
3919                                          ExprArg expr) {
3920  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr.release());
3921
3922  return FileScopeAsmDecl::Create(Context, CurContext, Loc, AsmString);
3923}
3924
3925
3926void Sema::ActOnPragmaPack(PragmaPackKind Kind, IdentifierInfo *Name,
3927                           ExprTy *alignment, SourceLocation PragmaLoc,
3928                           SourceLocation LParenLoc, SourceLocation RParenLoc) {
3929  Expr *Alignment = static_cast<Expr *>(alignment);
3930
3931  // If specified then alignment must be a "small" power of two.
3932  unsigned AlignmentVal = 0;
3933  if (Alignment) {
3934    llvm::APSInt Val;
3935    if (!Alignment->isIntegerConstantExpr(Val, Context) ||
3936        !Val.isPowerOf2() ||
3937        Val.getZExtValue() > 16) {
3938      Diag(PragmaLoc, diag::warn_pragma_pack_invalid_alignment);
3939      Alignment->Destroy(Context);
3940      return; // Ignore
3941    }
3942
3943    AlignmentVal = (unsigned) Val.getZExtValue();
3944  }
3945
3946  switch (Kind) {
3947  case Action::PPK_Default: // pack([n])
3948    PackContext.setAlignment(AlignmentVal);
3949    break;
3950
3951  case Action::PPK_Show: // pack(show)
3952    // Show the current alignment, making sure to show the right value
3953    // for the default.
3954    AlignmentVal = PackContext.getAlignment();
3955    // FIXME: This should come from the target.
3956    if (AlignmentVal == 0)
3957      AlignmentVal = 8;
3958    Diag(PragmaLoc, diag::warn_pragma_pack_show) << AlignmentVal;
3959    break;
3960
3961  case Action::PPK_Push: // pack(push [, id] [, [n])
3962    PackContext.push(Name);
3963    // Set the new alignment if specified.
3964    if (Alignment)
3965      PackContext.setAlignment(AlignmentVal);
3966    break;
3967
3968  case Action::PPK_Pop: // pack(pop [, id] [,  n])
3969    // MSDN, C/C++ Preprocessor Reference > Pragma Directives > pack:
3970    // "#pragma pack(pop, identifier, n) is undefined"
3971    if (Alignment && Name)
3972      Diag(PragmaLoc, diag::warn_pragma_pack_pop_identifer_and_alignment);
3973
3974    // Do the pop.
3975    if (!PackContext.pop(Name)) {
3976      // If a name was specified then failure indicates the name
3977      // wasn't found. Otherwise failure indicates the stack was
3978      // empty.
3979      Diag(PragmaLoc, diag::warn_pragma_pack_pop_failed)
3980        << (Name ? "no record matching name" : "stack empty");
3981
3982      // FIXME: Warn about popping named records as MSVC does.
3983    } else {
3984      // Pop succeeded, set the new alignment if specified.
3985      if (Alignment)
3986        PackContext.setAlignment(AlignmentVal);
3987    }
3988    break;
3989
3990  default:
3991    assert(0 && "Invalid #pragma pack kind.");
3992  }
3993}
3994
3995bool PragmaPackStack::pop(IdentifierInfo *Name) {
3996  if (Stack.empty())
3997    return false;
3998
3999  // If name is empty just pop top.
4000  if (!Name) {
4001    Alignment = Stack.back().first;
4002    Stack.pop_back();
4003    return true;
4004  }
4005
4006  // Otherwise, find the named record.
4007  for (unsigned i = Stack.size(); i != 0; ) {
4008    --i;
4009    if (Stack[i].second == Name) {
4010      // Found it, pop up to and including this record.
4011      Alignment = Stack[i].first;
4012      Stack.erase(Stack.begin() + i, Stack.end());
4013      return true;
4014    }
4015  }
4016
4017  return false;
4018}
4019