SemaDecl.cpp revision d2c6490385555eaabfaf611d1cf6e89544163c4a
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/AST/APValue.h"
18#include "clang/AST/ASTConsumer.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/Parse/DeclSpec.h"
25#include "clang/Parse/ParseDiagnostic.h"
26#include "clang/Parse/Template.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
31#include "clang/Lex/Preprocessor.h"
32#include "clang/Lex/HeaderSearch.h"
33#include "llvm/ADT/Triple.h"
34#include <algorithm>
35#include <cstring>
36#include <functional>
37using namespace clang;
38
39/// getDeclName - Return a pretty name for the specified decl if possible, or
40/// an empty string if not.  This is used for pretty crash reporting.
41std::string Sema::getDeclName(DeclPtrTy d) {
42  Decl *D = d.getAs<Decl>();
43  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
44    return DN->getQualifiedNameAsString();
45  return "";
46}
47
48Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
49  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
50}
51
52/// \brief If the identifier refers to a type name within this scope,
53/// return the declaration of that type.
54///
55/// This routine performs ordinary name lookup of the identifier II
56/// within the given scope, with optional C++ scope specifier SS, to
57/// determine whether the name refers to a type. If so, returns an
58/// opaque pointer (actually a QualType) corresponding to that
59/// type. Otherwise, returns NULL.
60///
61/// If name lookup results in an ambiguity, this routine will complain
62/// and then return NULL.
63Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
64                                Scope *S, CXXScopeSpec *SS,
65                                bool isClassName,
66                                TypeTy *ObjectTypePtr) {
67  // Determine where we will perform name lookup.
68  DeclContext *LookupCtx = 0;
69  if (ObjectTypePtr) {
70    QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
71    if (ObjectType->isRecordType())
72      LookupCtx = computeDeclContext(ObjectType);
73  } else if (SS && SS->isNotEmpty()) {
74    LookupCtx = computeDeclContext(*SS, false);
75
76    if (!LookupCtx) {
77      if (isDependentScopeSpecifier(*SS)) {
78        // C++ [temp.res]p3:
79        //   A qualified-id that refers to a type and in which the
80        //   nested-name-specifier depends on a template-parameter (14.6.2)
81        //   shall be prefixed by the keyword typename to indicate that the
82        //   qualified-id denotes a type, forming an
83        //   elaborated-type-specifier (7.1.5.3).
84        //
85        // We therefore do not perform any name lookup if the result would
86        // refer to a member of an unknown specialization.
87        if (!isClassName)
88          return 0;
89
90        // We know from the grammar that this name refers to a type,
91        // so build a dependent node to describe the type.
92        return CheckTypenameType(ETK_None,
93                                 (NestedNameSpecifier *)SS->getScopeRep(), II,
94                                 SourceLocation(), SS->getRange(), NameLoc
95                                 ).getAsOpaquePtr();
96      }
97
98      return 0;
99    }
100
101    if (!LookupCtx->isDependentContext() &&
102        RequireCompleteDeclContext(*SS, LookupCtx))
103      return 0;
104  }
105
106  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
107  // lookup for class-names.
108  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
109                                      LookupOrdinaryName;
110  LookupResult Result(*this, &II, NameLoc, Kind);
111  if (LookupCtx) {
112    // Perform "qualified" name lookup into the declaration context we
113    // computed, which is either the type of the base of a member access
114    // expression or the declaration context associated with a prior
115    // nested-name-specifier.
116    LookupQualifiedName(Result, LookupCtx);
117
118    if (ObjectTypePtr && Result.empty()) {
119      // C++ [basic.lookup.classref]p3:
120      //   If the unqualified-id is ~type-name, the type-name is looked up
121      //   in the context of the entire postfix-expression. If the type T of
122      //   the object expression is of a class type C, the type-name is also
123      //   looked up in the scope of class C. At least one of the lookups shall
124      //   find a name that refers to (possibly cv-qualified) T.
125      LookupName(Result, S);
126    }
127  } else {
128    // Perform unqualified name lookup.
129    LookupName(Result, S);
130  }
131
132  NamedDecl *IIDecl = 0;
133  switch (Result.getResultKind()) {
134  case LookupResult::NotFound:
135  case LookupResult::NotFoundInCurrentInstantiation:
136  case LookupResult::FoundOverloaded:
137  case LookupResult::FoundUnresolvedValue:
138    Result.suppressDiagnostics();
139    return 0;
140
141  case LookupResult::Ambiguous:
142    // Recover from type-hiding ambiguities by hiding the type.  We'll
143    // do the lookup again when looking for an object, and we can
144    // diagnose the error then.  If we don't do this, then the error
145    // about hiding the type will be immediately followed by an error
146    // that only makes sense if the identifier was treated like a type.
147    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
148      Result.suppressDiagnostics();
149      return 0;
150    }
151
152    // Look to see if we have a type anywhere in the list of results.
153    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
154         Res != ResEnd; ++Res) {
155      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
156        if (!IIDecl ||
157            (*Res)->getLocation().getRawEncoding() <
158              IIDecl->getLocation().getRawEncoding())
159          IIDecl = *Res;
160      }
161    }
162
163    if (!IIDecl) {
164      // None of the entities we found is a type, so there is no way
165      // to even assume that the result is a type. In this case, don't
166      // complain about the ambiguity. The parser will either try to
167      // perform this lookup again (e.g., as an object name), which
168      // will produce the ambiguity, or will complain that it expected
169      // a type name.
170      Result.suppressDiagnostics();
171      return 0;
172    }
173
174    // We found a type within the ambiguous lookup; diagnose the
175    // ambiguity and then return that type. This might be the right
176    // answer, or it might not be, but it suppresses any attempt to
177    // perform the name lookup again.
178    break;
179
180  case LookupResult::Found:
181    IIDecl = Result.getFoundDecl();
182    break;
183  }
184
185  assert(IIDecl && "Didn't find decl");
186
187  QualType T;
188  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
189    DiagnoseUseOfDecl(IIDecl, NameLoc);
190
191    if (T.isNull())
192      T = Context.getTypeDeclType(TD);
193
194    if (SS)
195      T = getElaboratedType(ETK_None, *SS, T);
196
197  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
198    T = Context.getObjCInterfaceType(IDecl);
199  } else {
200    // If it's not plausibly a type, suppress diagnostics.
201    Result.suppressDiagnostics();
202    return 0;
203  }
204
205  return T.getAsOpaquePtr();
206}
207
208/// isTagName() - This method is called *for error recovery purposes only*
209/// to determine if the specified name is a valid tag name ("struct foo").  If
210/// so, this returns the TST for the tag corresponding to it (TST_enum,
211/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
212/// where the user forgot to specify the tag.
213DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
214  // Do a tag name lookup in this scope.
215  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
216  LookupName(R, S, false);
217  R.suppressDiagnostics();
218  if (R.getResultKind() == LookupResult::Found)
219    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
220      switch (TD->getTagKind()) {
221      default:         return DeclSpec::TST_unspecified;
222      case TTK_Struct: return DeclSpec::TST_struct;
223      case TTK_Union:  return DeclSpec::TST_union;
224      case TTK_Class:  return DeclSpec::TST_class;
225      case TTK_Enum:   return DeclSpec::TST_enum;
226      }
227    }
228
229  return DeclSpec::TST_unspecified;
230}
231
232bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
233                                   SourceLocation IILoc,
234                                   Scope *S,
235                                   CXXScopeSpec *SS,
236                                   TypeTy *&SuggestedType) {
237  // We don't have anything to suggest (yet).
238  SuggestedType = 0;
239
240  // There may have been a typo in the name of the type. Look up typo
241  // results, in case we have something that we can suggest.
242  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
243                      NotForRedeclaration);
244
245  if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
246    if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
247      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
248          !Result->isInvalidDecl()) {
249        // We found a similarly-named type or interface; suggest that.
250        if (!SS || !SS->isSet())
251          Diag(IILoc, diag::err_unknown_typename_suggest)
252            << &II << Lookup.getLookupName()
253            << FixItHint::CreateReplacement(SourceRange(IILoc),
254                                            Result->getNameAsString());
255        else if (DeclContext *DC = computeDeclContext(*SS, false))
256          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
257            << &II << DC << Lookup.getLookupName() << SS->getRange()
258            << FixItHint::CreateReplacement(SourceRange(IILoc),
259                                            Result->getNameAsString());
260        else
261          llvm_unreachable("could not have corrected a typo here");
262
263        Diag(Result->getLocation(), diag::note_previous_decl)
264          << Result->getDeclName();
265
266        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS);
267        return true;
268      }
269    } else if (Lookup.empty()) {
270      // We corrected to a keyword.
271      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
272      Diag(IILoc, diag::err_unknown_typename_suggest)
273        << &II << Corrected;
274      return true;
275    }
276  }
277
278  if (getLangOptions().CPlusPlus) {
279    // See if II is a class template that the user forgot to pass arguments to.
280    UnqualifiedId Name;
281    Name.setIdentifier(&II, IILoc);
282    CXXScopeSpec EmptySS;
283    TemplateTy TemplateResult;
284    bool MemberOfUnknownSpecialization;
285    if (isTemplateName(S, SS ? *SS : EmptySS, Name, 0, true, TemplateResult,
286                       MemberOfUnknownSpecialization) == TNK_Type_template) {
287      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
288      Diag(IILoc, diag::err_template_missing_args) << TplName;
289      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
290        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
291          << TplDecl->getTemplateParameters()->getSourceRange();
292      }
293      return true;
294    }
295  }
296
297  // FIXME: Should we move the logic that tries to recover from a missing tag
298  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
299
300  if (!SS || (!SS->isSet() && !SS->isInvalid()))
301    Diag(IILoc, diag::err_unknown_typename) << &II;
302  else if (DeclContext *DC = computeDeclContext(*SS, false))
303    Diag(IILoc, diag::err_typename_nested_not_found)
304      << &II << DC << SS->getRange();
305  else if (isDependentScopeSpecifier(*SS)) {
306    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
307      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
308      << SourceRange(SS->getRange().getBegin(), IILoc)
309      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
310    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
311  } else {
312    assert(SS && SS->isInvalid() &&
313           "Invalid scope specifier has already been diagnosed");
314  }
315
316  return true;
317}
318
319// Determines the context to return to after temporarily entering a
320// context.  This depends in an unnecessarily complicated way on the
321// exact ordering of callbacks from the parser.
322DeclContext *Sema::getContainingDC(DeclContext *DC) {
323
324  // Functions defined inline within classes aren't parsed until we've
325  // finished parsing the top-level class, so the top-level class is
326  // the context we'll need to return to.
327  if (isa<FunctionDecl>(DC)) {
328    DC = DC->getLexicalParent();
329
330    // A function not defined within a class will always return to its
331    // lexical context.
332    if (!isa<CXXRecordDecl>(DC))
333      return DC;
334
335    // A C++ inline method/friend is parsed *after* the topmost class
336    // it was declared in is fully parsed ("complete");  the topmost
337    // class is the context we need to return to.
338    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
339      DC = RD;
340
341    // Return the declaration context of the topmost class the inline method is
342    // declared in.
343    return DC;
344  }
345
346  if (isa<ObjCMethodDecl>(DC))
347    return Context.getTranslationUnitDecl();
348
349  return DC->getLexicalParent();
350}
351
352void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
353  assert(getContainingDC(DC) == CurContext &&
354      "The next DeclContext should be lexically contained in the current one.");
355  CurContext = DC;
356  S->setEntity(DC);
357}
358
359void Sema::PopDeclContext() {
360  assert(CurContext && "DeclContext imbalance!");
361
362  CurContext = getContainingDC(CurContext);
363}
364
365/// EnterDeclaratorContext - Used when we must lookup names in the context
366/// of a declarator's nested name specifier.
367///
368void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
369  // C++0x [basic.lookup.unqual]p13:
370  //   A name used in the definition of a static data member of class
371  //   X (after the qualified-id of the static member) is looked up as
372  //   if the name was used in a member function of X.
373  // C++0x [basic.lookup.unqual]p14:
374  //   If a variable member of a namespace is defined outside of the
375  //   scope of its namespace then any name used in the definition of
376  //   the variable member (after the declarator-id) is looked up as
377  //   if the definition of the variable member occurred in its
378  //   namespace.
379  // Both of these imply that we should push a scope whose context
380  // is the semantic context of the declaration.  We can't use
381  // PushDeclContext here because that context is not necessarily
382  // lexically contained in the current context.  Fortunately,
383  // the containing scope should have the appropriate information.
384
385  assert(!S->getEntity() && "scope already has entity");
386
387#ifndef NDEBUG
388  Scope *Ancestor = S->getParent();
389  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
390  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
391#endif
392
393  CurContext = DC;
394  S->setEntity(DC);
395}
396
397void Sema::ExitDeclaratorContext(Scope *S) {
398  assert(S->getEntity() == CurContext && "Context imbalance!");
399
400  // Switch back to the lexical context.  The safety of this is
401  // enforced by an assert in EnterDeclaratorContext.
402  Scope *Ancestor = S->getParent();
403  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
404  CurContext = (DeclContext*) Ancestor->getEntity();
405
406  // We don't need to do anything with the scope, which is going to
407  // disappear.
408}
409
410/// \brief Determine whether we allow overloading of the function
411/// PrevDecl with another declaration.
412///
413/// This routine determines whether overloading is possible, not
414/// whether some new function is actually an overload. It will return
415/// true in C++ (where we can always provide overloads) or, as an
416/// extension, in C when the previous function is already an
417/// overloaded function declaration or has the "overloadable"
418/// attribute.
419static bool AllowOverloadingOfFunction(LookupResult &Previous,
420                                       ASTContext &Context) {
421  if (Context.getLangOptions().CPlusPlus)
422    return true;
423
424  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
425    return true;
426
427  return (Previous.getResultKind() == LookupResult::Found
428          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
429}
430
431/// Add this decl to the scope shadowed decl chains.
432void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
433  // Move up the scope chain until we find the nearest enclosing
434  // non-transparent context. The declaration will be introduced into this
435  // scope.
436  while (S->getEntity() &&
437         ((DeclContext *)S->getEntity())->isTransparentContext())
438    S = S->getParent();
439
440  // Add scoped declarations into their context, so that they can be
441  // found later. Declarations without a context won't be inserted
442  // into any context.
443  if (AddToContext)
444    CurContext->addDecl(D);
445
446  // Out-of-line definitions shouldn't be pushed into scope in C++.
447  // Out-of-line variable and function definitions shouldn't even in C.
448  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
449      D->isOutOfLine())
450    return;
451
452  // Template instantiations should also not be pushed into scope.
453  if (isa<FunctionDecl>(D) &&
454      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
455    return;
456
457  // If this replaces anything in the current scope,
458  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
459                               IEnd = IdResolver.end();
460  for (; I != IEnd; ++I) {
461    if (S->isDeclScope(DeclPtrTy::make(*I)) && D->declarationReplaces(*I)) {
462      S->RemoveDecl(DeclPtrTy::make(*I));
463      IdResolver.RemoveDecl(*I);
464
465      // Should only need to replace one decl.
466      break;
467    }
468  }
469
470  S->AddDecl(DeclPtrTy::make(D));
471  IdResolver.AddDecl(D);
472}
473
474bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
475  return IdResolver.isDeclInScope(D, Ctx, Context, S);
476}
477
478static bool isOutOfScopePreviousDeclaration(NamedDecl *,
479                                            DeclContext*,
480                                            ASTContext&);
481
482/// Filters out lookup results that don't fall within the given scope
483/// as determined by isDeclInScope.
484static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
485                                 DeclContext *Ctx, Scope *S,
486                                 bool ConsiderLinkage) {
487  LookupResult::Filter F = R.makeFilter();
488  while (F.hasNext()) {
489    NamedDecl *D = F.next();
490
491    if (SemaRef.isDeclInScope(D, Ctx, S))
492      continue;
493
494    if (ConsiderLinkage &&
495        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
496      continue;
497
498    F.erase();
499  }
500
501  F.done();
502}
503
504static bool isUsingDecl(NamedDecl *D) {
505  return isa<UsingShadowDecl>(D) ||
506         isa<UnresolvedUsingTypenameDecl>(D) ||
507         isa<UnresolvedUsingValueDecl>(D);
508}
509
510/// Removes using shadow declarations from the lookup results.
511static void RemoveUsingDecls(LookupResult &R) {
512  LookupResult::Filter F = R.makeFilter();
513  while (F.hasNext())
514    if (isUsingDecl(F.next()))
515      F.erase();
516
517  F.done();
518}
519
520static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
521  if (D->isInvalidDecl())
522    return false;
523
524  if (D->isUsed() || D->hasAttr<UnusedAttr>())
525    return false;
526
527  // White-list anything that isn't a local variable.
528  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
529      !D->getDeclContext()->isFunctionOrMethod())
530    return false;
531
532  // Types of valid local variables should be complete, so this should succeed.
533  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
534
535    // White-list anything with an __attribute__((unused)) type.
536    QualType Ty = VD->getType();
537
538    // Only look at the outermost level of typedef.
539    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
540      if (TT->getDecl()->hasAttr<UnusedAttr>())
541        return false;
542    }
543
544    // If we failed to complete the type for some reason, or if the type is
545    // dependent, don't diagnose the variable.
546    if (Ty->isIncompleteType() || Ty->isDependentType())
547      return false;
548
549    if (const TagType *TT = Ty->getAs<TagType>()) {
550      const TagDecl *Tag = TT->getDecl();
551      if (Tag->hasAttr<UnusedAttr>())
552        return false;
553
554      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
555        // FIXME: Checking for the presence of a user-declared constructor
556        // isn't completely accurate; we'd prefer to check that the initializer
557        // has no side effects.
558        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
559          return false;
560      }
561    }
562
563    // TODO: __attribute__((unused)) templates?
564  }
565
566  return true;
567}
568
569void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
570  if (!ShouldDiagnoseUnusedDecl(D))
571    return;
572
573  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
574    Diag(D->getLocation(), diag::warn_unused_exception_param)
575    << D->getDeclName();
576  else
577    Diag(D->getLocation(), diag::warn_unused_variable)
578    << D->getDeclName();
579}
580
581void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
582  if (S->decl_empty()) return;
583  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
584         "Scope shouldn't contain decls!");
585
586  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
587       I != E; ++I) {
588    Decl *TmpD = (*I).getAs<Decl>();
589    assert(TmpD && "This decl didn't get pushed??");
590
591    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
592    NamedDecl *D = cast<NamedDecl>(TmpD);
593
594    if (!D->getDeclName()) continue;
595
596    // Diagnose unused variables in this scope.
597    if (S->getNumErrorsAtStart() == getDiagnostics().getNumErrors())
598      DiagnoseUnusedDecl(D);
599
600    // Remove this name from our lexical scope.
601    IdResolver.RemoveDecl(D);
602  }
603}
604
605/// \brief Look for an Objective-C class in the translation unit.
606///
607/// \param Id The name of the Objective-C class we're looking for. If
608/// typo-correction fixes this name, the Id will be updated
609/// to the fixed name.
610///
611/// \param IdLoc The location of the name in the translation unit.
612///
613/// \param TypoCorrection If true, this routine will attempt typo correction
614/// if there is no class with the given name.
615///
616/// \returns The declaration of the named Objective-C class, or NULL if the
617/// class could not be found.
618ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
619                                              SourceLocation IdLoc,
620                                              bool TypoCorrection) {
621  // The third "scope" argument is 0 since we aren't enabling lazy built-in
622  // creation from this context.
623  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
624
625  if (!IDecl && TypoCorrection) {
626    // Perform typo correction at the given location, but only if we
627    // find an Objective-C class name.
628    LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
629    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
630        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
631      Diag(IdLoc, diag::err_undef_interface_suggest)
632        << Id << IDecl->getDeclName()
633        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
634      Diag(IDecl->getLocation(), diag::note_previous_decl)
635        << IDecl->getDeclName();
636
637      Id = IDecl->getIdentifier();
638    }
639  }
640
641  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
642}
643
644/// getNonFieldDeclScope - Retrieves the innermost scope, starting
645/// from S, where a non-field would be declared. This routine copes
646/// with the difference between C and C++ scoping rules in structs and
647/// unions. For example, the following code is well-formed in C but
648/// ill-formed in C++:
649/// @code
650/// struct S6 {
651///   enum { BAR } e;
652/// };
653///
654/// void test_S6() {
655///   struct S6 a;
656///   a.e = BAR;
657/// }
658/// @endcode
659/// For the declaration of BAR, this routine will return a different
660/// scope. The scope S will be the scope of the unnamed enumeration
661/// within S6. In C++, this routine will return the scope associated
662/// with S6, because the enumeration's scope is a transparent
663/// context but structures can contain non-field names. In C, this
664/// routine will return the translation unit scope, since the
665/// enumeration's scope is a transparent context and structures cannot
666/// contain non-field names.
667Scope *Sema::getNonFieldDeclScope(Scope *S) {
668  while (((S->getFlags() & Scope::DeclScope) == 0) ||
669         (S->getEntity() &&
670          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
671         (S->isClassScope() && !getLangOptions().CPlusPlus))
672    S = S->getParent();
673  return S;
674}
675
676void Sema::InitBuiltinVaListType() {
677  if (!Context.getBuiltinVaListType().isNull())
678    return;
679
680  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
681  NamedDecl *VaDecl = LookupSingleName(TUScope, VaIdent, SourceLocation(),
682                                       LookupOrdinaryName, ForRedeclaration);
683  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
684  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
685}
686
687/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
688/// file scope.  lazily create a decl for it. ForRedeclaration is true
689/// if we're creating this built-in in anticipation of redeclaring the
690/// built-in.
691NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
692                                     Scope *S, bool ForRedeclaration,
693                                     SourceLocation Loc) {
694  Builtin::ID BID = (Builtin::ID)bid;
695
696  if (Context.BuiltinInfo.hasVAListUse(BID))
697    InitBuiltinVaListType();
698
699  ASTContext::GetBuiltinTypeError Error;
700  QualType R = Context.GetBuiltinType(BID, Error);
701  switch (Error) {
702  case ASTContext::GE_None:
703    // Okay
704    break;
705
706  case ASTContext::GE_Missing_stdio:
707    if (ForRedeclaration)
708      Diag(Loc, diag::err_implicit_decl_requires_stdio)
709        << Context.BuiltinInfo.GetName(BID);
710    return 0;
711
712  case ASTContext::GE_Missing_setjmp:
713    if (ForRedeclaration)
714      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
715        << Context.BuiltinInfo.GetName(BID);
716    return 0;
717  }
718
719  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
720    Diag(Loc, diag::ext_implicit_lib_function_decl)
721      << Context.BuiltinInfo.GetName(BID)
722      << R;
723    if (Context.BuiltinInfo.getHeaderName(BID) &&
724        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
725          != Diagnostic::Ignored)
726      Diag(Loc, diag::note_please_include_header)
727        << Context.BuiltinInfo.getHeaderName(BID)
728        << Context.BuiltinInfo.GetName(BID);
729  }
730
731  FunctionDecl *New = FunctionDecl::Create(Context,
732                                           Context.getTranslationUnitDecl(),
733                                           Loc, II, R, /*TInfo=*/0,
734                                           FunctionDecl::Extern,
735                                           FunctionDecl::None, false,
736                                           /*hasPrototype=*/true);
737  New->setImplicit();
738
739  // Create Decl objects for each parameter, adding them to the
740  // FunctionDecl.
741  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
742    llvm::SmallVector<ParmVarDecl*, 16> Params;
743    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
744      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
745                                           FT->getArgType(i), /*TInfo=*/0,
746                                           VarDecl::None, VarDecl::None, 0));
747    New->setParams(Params.data(), Params.size());
748  }
749
750  AddKnownFunctionAttributes(New);
751
752  // TUScope is the translation-unit scope to insert this function into.
753  // FIXME: This is hideous. We need to teach PushOnScopeChains to
754  // relate Scopes to DeclContexts, and probably eliminate CurContext
755  // entirely, but we're not there yet.
756  DeclContext *SavedContext = CurContext;
757  CurContext = Context.getTranslationUnitDecl();
758  PushOnScopeChains(New, TUScope);
759  CurContext = SavedContext;
760  return New;
761}
762
763/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
764/// same name and scope as a previous declaration 'Old'.  Figure out
765/// how to resolve this situation, merging decls or emitting
766/// diagnostics as appropriate. If there was an error, set New to be invalid.
767///
768void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
769  // If the new decl is known invalid already, don't bother doing any
770  // merging checks.
771  if (New->isInvalidDecl()) return;
772
773  // Allow multiple definitions for ObjC built-in typedefs.
774  // FIXME: Verify the underlying types are equivalent!
775  if (getLangOptions().ObjC1) {
776    const IdentifierInfo *TypeID = New->getIdentifier();
777    switch (TypeID->getLength()) {
778    default: break;
779    case 2:
780      if (!TypeID->isStr("id"))
781        break;
782      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
783      // Install the built-in type for 'id', ignoring the current definition.
784      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
785      return;
786    case 5:
787      if (!TypeID->isStr("Class"))
788        break;
789      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
790      // Install the built-in type for 'Class', ignoring the current definition.
791      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
792      return;
793    case 3:
794      if (!TypeID->isStr("SEL"))
795        break;
796      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
797      // Install the built-in type for 'SEL', ignoring the current definition.
798      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
799      return;
800    case 8:
801      if (!TypeID->isStr("Protocol"))
802        break;
803      Context.setObjCProtoType(New->getUnderlyingType());
804      return;
805    }
806    // Fall through - the typedef name was not a builtin type.
807  }
808
809  // Verify the old decl was also a type.
810  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
811  if (!Old) {
812    Diag(New->getLocation(), diag::err_redefinition_different_kind)
813      << New->getDeclName();
814
815    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
816    if (OldD->getLocation().isValid())
817      Diag(OldD->getLocation(), diag::note_previous_definition);
818
819    return New->setInvalidDecl();
820  }
821
822  // If the old declaration is invalid, just give up here.
823  if (Old->isInvalidDecl())
824    return New->setInvalidDecl();
825
826  // Determine the "old" type we'll use for checking and diagnostics.
827  QualType OldType;
828  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
829    OldType = OldTypedef->getUnderlyingType();
830  else
831    OldType = Context.getTypeDeclType(Old);
832
833  // If the typedef types are not identical, reject them in all languages and
834  // with any extensions enabled.
835
836  if (OldType != New->getUnderlyingType() &&
837      Context.getCanonicalType(OldType) !=
838      Context.getCanonicalType(New->getUnderlyingType())) {
839    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
840      << New->getUnderlyingType() << OldType;
841    if (Old->getLocation().isValid())
842      Diag(Old->getLocation(), diag::note_previous_definition);
843    return New->setInvalidDecl();
844  }
845
846  // The types match.  Link up the redeclaration chain if the old
847  // declaration was a typedef.
848  // FIXME: this is a potential source of wierdness if the type
849  // spellings don't match exactly.
850  if (isa<TypedefDecl>(Old))
851    New->setPreviousDeclaration(cast<TypedefDecl>(Old));
852
853  if (getLangOptions().Microsoft)
854    return;
855
856  if (getLangOptions().CPlusPlus) {
857    // C++ [dcl.typedef]p2:
858    //   In a given non-class scope, a typedef specifier can be used to
859    //   redefine the name of any type declared in that scope to refer
860    //   to the type to which it already refers.
861    if (!isa<CXXRecordDecl>(CurContext))
862      return;
863
864    // C++0x [dcl.typedef]p4:
865    //   In a given class scope, a typedef specifier can be used to redefine
866    //   any class-name declared in that scope that is not also a typedef-name
867    //   to refer to the type to which it already refers.
868    //
869    // This wording came in via DR424, which was a correction to the
870    // wording in DR56, which accidentally banned code like:
871    //
872    //   struct S {
873    //     typedef struct A { } A;
874    //   };
875    //
876    // in the C++03 standard. We implement the C++0x semantics, which
877    // allow the above but disallow
878    //
879    //   struct S {
880    //     typedef int I;
881    //     typedef int I;
882    //   };
883    //
884    // since that was the intent of DR56.
885    if (!isa<TypedefDecl >(Old))
886      return;
887
888    Diag(New->getLocation(), diag::err_redefinition)
889      << New->getDeclName();
890    Diag(Old->getLocation(), diag::note_previous_definition);
891    return New->setInvalidDecl();
892  }
893
894  // If we have a redefinition of a typedef in C, emit a warning.  This warning
895  // is normally mapped to an error, but can be controlled with
896  // -Wtypedef-redefinition.  If either the original or the redefinition is
897  // in a system header, don't emit this for compatibility with GCC.
898  if (getDiagnostics().getSuppressSystemWarnings() &&
899      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
900       Context.getSourceManager().isInSystemHeader(New->getLocation())))
901    return;
902
903  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
904    << New->getDeclName();
905  Diag(Old->getLocation(), diag::note_previous_definition);
906  return;
907}
908
909/// DeclhasAttr - returns true if decl Declaration already has the target
910/// attribute.
911static bool
912DeclHasAttr(const Decl *decl, const Attr *target) {
913  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
914    if (attr->getKind() == target->getKind())
915      return true;
916
917  return false;
918}
919
920/// MergeAttributes - append attributes from the Old decl to the New one.
921static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
922  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
923    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
924      Attr *NewAttr = attr->clone(C);
925      NewAttr->setInherited(true);
926      New->addAttr(NewAttr);
927    }
928  }
929}
930
931/// Used in MergeFunctionDecl to keep track of function parameters in
932/// C.
933struct GNUCompatibleParamWarning {
934  ParmVarDecl *OldParm;
935  ParmVarDecl *NewParm;
936  QualType PromotedType;
937};
938
939
940/// getSpecialMember - get the special member enum for a method.
941Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
942  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
943    if (Ctor->isCopyConstructor())
944      return Sema::CXXCopyConstructor;
945
946    return Sema::CXXConstructor;
947  }
948
949  if (isa<CXXDestructorDecl>(MD))
950    return Sema::CXXDestructor;
951
952  assert(MD->isCopyAssignment() && "Must have copy assignment operator");
953  return Sema::CXXCopyAssignment;
954}
955
956/// canRedefineFunction - checks if a function can be redefined. Currently,
957/// only extern inline functions can be redefined, and even then only in
958/// GNU89 mode.
959static bool canRedefineFunction(const FunctionDecl *FD,
960                                const LangOptions& LangOpts) {
961  return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
962          FD->isInlineSpecified() &&
963          FD->getStorageClass() == FunctionDecl::Extern);
964}
965
966/// MergeFunctionDecl - We just parsed a function 'New' from
967/// declarator D which has the same name and scope as a previous
968/// declaration 'Old'.  Figure out how to resolve this situation,
969/// merging decls or emitting diagnostics as appropriate.
970///
971/// In C++, New and Old must be declarations that are not
972/// overloaded. Use IsOverload to determine whether New and Old are
973/// overloaded, and to select the Old declaration that New should be
974/// merged with.
975///
976/// Returns true if there was an error, false otherwise.
977bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
978  // Verify the old decl was also a function.
979  FunctionDecl *Old = 0;
980  if (FunctionTemplateDecl *OldFunctionTemplate
981        = dyn_cast<FunctionTemplateDecl>(OldD))
982    Old = OldFunctionTemplate->getTemplatedDecl();
983  else
984    Old = dyn_cast<FunctionDecl>(OldD);
985  if (!Old) {
986    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
987      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
988      Diag(Shadow->getTargetDecl()->getLocation(),
989           diag::note_using_decl_target);
990      Diag(Shadow->getUsingDecl()->getLocation(),
991           diag::note_using_decl) << 0;
992      return true;
993    }
994
995    Diag(New->getLocation(), diag::err_redefinition_different_kind)
996      << New->getDeclName();
997    Diag(OldD->getLocation(), diag::note_previous_definition);
998    return true;
999  }
1000
1001  // Determine whether the previous declaration was a definition,
1002  // implicit declaration, or a declaration.
1003  diag::kind PrevDiag;
1004  if (Old->isThisDeclarationADefinition())
1005    PrevDiag = diag::note_previous_definition;
1006  else if (Old->isImplicit())
1007    PrevDiag = diag::note_previous_implicit_declaration;
1008  else
1009    PrevDiag = diag::note_previous_declaration;
1010
1011  QualType OldQType = Context.getCanonicalType(Old->getType());
1012  QualType NewQType = Context.getCanonicalType(New->getType());
1013
1014  // Don't complain about this if we're in GNU89 mode and the old function
1015  // is an extern inline function.
1016  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1017      New->getStorageClass() == FunctionDecl::Static &&
1018      Old->getStorageClass() != FunctionDecl::Static &&
1019      !canRedefineFunction(Old, getLangOptions())) {
1020    Diag(New->getLocation(), diag::err_static_non_static)
1021      << New;
1022    Diag(Old->getLocation(), PrevDiag);
1023    return true;
1024  }
1025
1026  // If a function is first declared with a calling convention, but is
1027  // later declared or defined without one, the second decl assumes the
1028  // calling convention of the first.
1029  //
1030  // For the new decl, we have to look at the NON-canonical type to tell the
1031  // difference between a function that really doesn't have a calling
1032  // convention and one that is declared cdecl. That's because in
1033  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1034  // because it is the default calling convention.
1035  //
1036  // Note also that we DO NOT return at this point, because we still have
1037  // other tests to run.
1038  const FunctionType *OldType = OldQType->getAs<FunctionType>();
1039  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1040  const FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1041  const FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1042  if (OldTypeInfo.getCC() != CC_Default &&
1043      NewTypeInfo.getCC() == CC_Default) {
1044    NewQType = Context.getCallConvType(NewQType, OldTypeInfo.getCC());
1045    New->setType(NewQType);
1046    NewQType = Context.getCanonicalType(NewQType);
1047  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1048                                     NewTypeInfo.getCC())) {
1049    // Calling conventions really aren't compatible, so complain.
1050    Diag(New->getLocation(), diag::err_cconv_change)
1051      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1052      << (OldTypeInfo.getCC() == CC_Default)
1053      << (OldTypeInfo.getCC() == CC_Default ? "" :
1054          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1055    Diag(Old->getLocation(), diag::note_previous_declaration);
1056    return true;
1057  }
1058
1059  // FIXME: diagnose the other way around?
1060  if (OldType->getNoReturnAttr() && !NewType->getNoReturnAttr()) {
1061    NewQType = Context.getNoReturnType(NewQType);
1062    New->setType(NewQType);
1063    assert(NewQType.isCanonical());
1064  }
1065
1066  // Merge regparm attribute.
1067  if (OldType->getRegParmType() != NewType->getRegParmType()) {
1068    if (NewType->getRegParmType()) {
1069      Diag(New->getLocation(), diag::err_regparm_mismatch)
1070        << NewType->getRegParmType()
1071        << OldType->getRegParmType();
1072      Diag(Old->getLocation(), diag::note_previous_declaration);
1073      return true;
1074    }
1075
1076    NewQType = Context.getRegParmType(NewQType, OldType->getRegParmType());
1077    New->setType(NewQType);
1078    assert(NewQType.isCanonical());
1079  }
1080
1081  if (getLangOptions().CPlusPlus) {
1082    // (C++98 13.1p2):
1083    //   Certain function declarations cannot be overloaded:
1084    //     -- Function declarations that differ only in the return type
1085    //        cannot be overloaded.
1086    QualType OldReturnType
1087      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
1088    QualType NewReturnType
1089      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
1090    QualType ResQT;
1091    if (OldReturnType != NewReturnType) {
1092      if (NewReturnType->isObjCObjectPointerType()
1093          && OldReturnType->isObjCObjectPointerType())
1094        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1095      if (ResQT.isNull()) {
1096        Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1097        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1098        return true;
1099      }
1100      else
1101        NewQType = ResQT;
1102    }
1103
1104    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1105    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1106    if (OldMethod && NewMethod) {
1107      // Preserve triviality.
1108      NewMethod->setTrivial(OldMethod->isTrivial());
1109
1110      bool isFriend = NewMethod->getFriendObjectKind();
1111
1112      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1113        //    -- Member function declarations with the same name and the
1114        //       same parameter types cannot be overloaded if any of them
1115        //       is a static member function declaration.
1116        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1117          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1118          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1119          return true;
1120        }
1121
1122        // C++ [class.mem]p1:
1123        //   [...] A member shall not be declared twice in the
1124        //   member-specification, except that a nested class or member
1125        //   class template can be declared and then later defined.
1126        unsigned NewDiag;
1127        if (isa<CXXConstructorDecl>(OldMethod))
1128          NewDiag = diag::err_constructor_redeclared;
1129        else if (isa<CXXDestructorDecl>(NewMethod))
1130          NewDiag = diag::err_destructor_redeclared;
1131        else if (isa<CXXConversionDecl>(NewMethod))
1132          NewDiag = diag::err_conv_function_redeclared;
1133        else
1134          NewDiag = diag::err_member_redeclared;
1135
1136        Diag(New->getLocation(), NewDiag);
1137        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1138
1139      // Complain if this is an explicit declaration of a special
1140      // member that was initially declared implicitly.
1141      //
1142      // As an exception, it's okay to befriend such methods in order
1143      // to permit the implicit constructor/destructor/operator calls.
1144      } else if (OldMethod->isImplicit()) {
1145        if (isFriend) {
1146          NewMethod->setImplicit();
1147        } else {
1148          Diag(NewMethod->getLocation(),
1149               diag::err_definition_of_implicitly_declared_member)
1150            << New << getSpecialMember(OldMethod);
1151          return true;
1152        }
1153      }
1154    }
1155
1156    // (C++98 8.3.5p3):
1157    //   All declarations for a function shall agree exactly in both the
1158    //   return type and the parameter-type-list.
1159    // attributes should be ignored when comparing.
1160    if (Context.getNoReturnType(OldQType, false) ==
1161        Context.getNoReturnType(NewQType, false))
1162      return MergeCompatibleFunctionDecls(New, Old);
1163
1164    // Fall through for conflicting redeclarations and redefinitions.
1165  }
1166
1167  // C: Function types need to be compatible, not identical. This handles
1168  // duplicate function decls like "void f(int); void f(enum X);" properly.
1169  if (!getLangOptions().CPlusPlus &&
1170      Context.typesAreCompatible(OldQType, NewQType)) {
1171    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1172    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1173    const FunctionProtoType *OldProto = 0;
1174    if (isa<FunctionNoProtoType>(NewFuncType) &&
1175        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1176      // The old declaration provided a function prototype, but the
1177      // new declaration does not. Merge in the prototype.
1178      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1179      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1180                                                 OldProto->arg_type_end());
1181      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1182                                         ParamTypes.data(), ParamTypes.size(),
1183                                         OldProto->isVariadic(),
1184                                         OldProto->getTypeQuals(),
1185                                         false, false, 0, 0,
1186                                         OldProto->getExtInfo());
1187      New->setType(NewQType);
1188      New->setHasInheritedPrototype();
1189
1190      // Synthesize a parameter for each argument type.
1191      llvm::SmallVector<ParmVarDecl*, 16> Params;
1192      for (FunctionProtoType::arg_type_iterator
1193             ParamType = OldProto->arg_type_begin(),
1194             ParamEnd = OldProto->arg_type_end();
1195           ParamType != ParamEnd; ++ParamType) {
1196        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1197                                                 SourceLocation(), 0,
1198                                                 *ParamType, /*TInfo=*/0,
1199                                                 VarDecl::None, VarDecl::None,
1200                                                 0);
1201        Param->setImplicit();
1202        Params.push_back(Param);
1203      }
1204
1205      New->setParams(Params.data(), Params.size());
1206    }
1207
1208    return MergeCompatibleFunctionDecls(New, Old);
1209  }
1210
1211  // GNU C permits a K&R definition to follow a prototype declaration
1212  // if the declared types of the parameters in the K&R definition
1213  // match the types in the prototype declaration, even when the
1214  // promoted types of the parameters from the K&R definition differ
1215  // from the types in the prototype. GCC then keeps the types from
1216  // the prototype.
1217  //
1218  // If a variadic prototype is followed by a non-variadic K&R definition,
1219  // the K&R definition becomes variadic.  This is sort of an edge case, but
1220  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1221  // C99 6.9.1p8.
1222  if (!getLangOptions().CPlusPlus &&
1223      Old->hasPrototype() && !New->hasPrototype() &&
1224      New->getType()->getAs<FunctionProtoType>() &&
1225      Old->getNumParams() == New->getNumParams()) {
1226    llvm::SmallVector<QualType, 16> ArgTypes;
1227    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1228    const FunctionProtoType *OldProto
1229      = Old->getType()->getAs<FunctionProtoType>();
1230    const FunctionProtoType *NewProto
1231      = New->getType()->getAs<FunctionProtoType>();
1232
1233    // Determine whether this is the GNU C extension.
1234    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1235                                               NewProto->getResultType());
1236    bool LooseCompatible = !MergedReturn.isNull();
1237    for (unsigned Idx = 0, End = Old->getNumParams();
1238         LooseCompatible && Idx != End; ++Idx) {
1239      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1240      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1241      if (Context.typesAreCompatible(OldParm->getType(),
1242                                     NewProto->getArgType(Idx))) {
1243        ArgTypes.push_back(NewParm->getType());
1244      } else if (Context.typesAreCompatible(OldParm->getType(),
1245                                            NewParm->getType())) {
1246        GNUCompatibleParamWarning Warn
1247          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1248        Warnings.push_back(Warn);
1249        ArgTypes.push_back(NewParm->getType());
1250      } else
1251        LooseCompatible = false;
1252    }
1253
1254    if (LooseCompatible) {
1255      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1256        Diag(Warnings[Warn].NewParm->getLocation(),
1257             diag::ext_param_promoted_not_compatible_with_prototype)
1258          << Warnings[Warn].PromotedType
1259          << Warnings[Warn].OldParm->getType();
1260        Diag(Warnings[Warn].OldParm->getLocation(),
1261             diag::note_previous_declaration);
1262      }
1263
1264      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1265                                           ArgTypes.size(),
1266                                           OldProto->isVariadic(), 0,
1267                                           false, false, 0, 0,
1268                                           OldProto->getExtInfo()));
1269      return MergeCompatibleFunctionDecls(New, Old);
1270    }
1271
1272    // Fall through to diagnose conflicting types.
1273  }
1274
1275  // A function that has already been declared has been redeclared or defined
1276  // with a different type- show appropriate diagnostic
1277  if (unsigned BuiltinID = Old->getBuiltinID()) {
1278    // The user has declared a builtin function with an incompatible
1279    // signature.
1280    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1281      // The function the user is redeclaring is a library-defined
1282      // function like 'malloc' or 'printf'. Warn about the
1283      // redeclaration, then pretend that we don't know about this
1284      // library built-in.
1285      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1286      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1287        << Old << Old->getType();
1288      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1289      Old->setInvalidDecl();
1290      return false;
1291    }
1292
1293    PrevDiag = diag::note_previous_builtin_declaration;
1294  }
1295
1296  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1297  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1298  return true;
1299}
1300
1301/// \brief Completes the merge of two function declarations that are
1302/// known to be compatible.
1303///
1304/// This routine handles the merging of attributes and other
1305/// properties of function declarations form the old declaration to
1306/// the new declaration, once we know that New is in fact a
1307/// redeclaration of Old.
1308///
1309/// \returns false
1310bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1311  // Merge the attributes
1312  MergeAttributes(New, Old, Context);
1313
1314  // Merge the storage class.
1315  if (Old->getStorageClass() != FunctionDecl::Extern &&
1316      Old->getStorageClass() != FunctionDecl::None)
1317    New->setStorageClass(Old->getStorageClass());
1318
1319  // Merge "pure" flag.
1320  if (Old->isPure())
1321    New->setPure();
1322
1323  // Merge the "deleted" flag.
1324  if (Old->isDeleted())
1325    New->setDeleted();
1326
1327  if (getLangOptions().CPlusPlus)
1328    return MergeCXXFunctionDecl(New, Old);
1329
1330  return false;
1331}
1332
1333/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1334/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1335/// situation, merging decls or emitting diagnostics as appropriate.
1336///
1337/// Tentative definition rules (C99 6.9.2p2) are checked by
1338/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1339/// definitions here, since the initializer hasn't been attached.
1340///
1341void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1342  // If the new decl is already invalid, don't do any other checking.
1343  if (New->isInvalidDecl())
1344    return;
1345
1346  // Verify the old decl was also a variable.
1347  VarDecl *Old = 0;
1348  if (!Previous.isSingleResult() ||
1349      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1350    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1351      << New->getDeclName();
1352    Diag(Previous.getRepresentativeDecl()->getLocation(),
1353         diag::note_previous_definition);
1354    return New->setInvalidDecl();
1355  }
1356
1357  MergeAttributes(New, Old, Context);
1358
1359  // Merge the types
1360  QualType MergedT;
1361  if (getLangOptions().CPlusPlus) {
1362    if (Context.hasSameType(New->getType(), Old->getType()))
1363      MergedT = New->getType();
1364    // C++ [basic.link]p10:
1365    //   [...] the types specified by all declarations referring to a given
1366    //   object or function shall be identical, except that declarations for an
1367    //   array object can specify array types that differ by the presence or
1368    //   absence of a major array bound (8.3.4).
1369    else if (Old->getType()->isIncompleteArrayType() &&
1370             New->getType()->isArrayType()) {
1371      CanQual<ArrayType> OldArray
1372        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1373      CanQual<ArrayType> NewArray
1374        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1375      if (OldArray->getElementType() == NewArray->getElementType())
1376        MergedT = New->getType();
1377    } else if (Old->getType()->isArrayType() &&
1378             New->getType()->isIncompleteArrayType()) {
1379      CanQual<ArrayType> OldArray
1380        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1381      CanQual<ArrayType> NewArray
1382        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1383      if (OldArray->getElementType() == NewArray->getElementType())
1384        MergedT = Old->getType();
1385    } else if (New->getType()->isObjCObjectPointerType()
1386               && Old->getType()->isObjCObjectPointerType()) {
1387        MergedT = Context.mergeObjCGCQualifiers(New->getType(), Old->getType());
1388    }
1389  } else {
1390    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1391  }
1392  if (MergedT.isNull()) {
1393    Diag(New->getLocation(), diag::err_redefinition_different_type)
1394      << New->getDeclName();
1395    Diag(Old->getLocation(), diag::note_previous_definition);
1396    return New->setInvalidDecl();
1397  }
1398  New->setType(MergedT);
1399
1400  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1401  if (New->getStorageClass() == VarDecl::Static &&
1402      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
1403    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1404    Diag(Old->getLocation(), diag::note_previous_definition);
1405    return New->setInvalidDecl();
1406  }
1407  // C99 6.2.2p4:
1408  //   For an identifier declared with the storage-class specifier
1409  //   extern in a scope in which a prior declaration of that
1410  //   identifier is visible,23) if the prior declaration specifies
1411  //   internal or external linkage, the linkage of the identifier at
1412  //   the later declaration is the same as the linkage specified at
1413  //   the prior declaration. If no prior declaration is visible, or
1414  //   if the prior declaration specifies no linkage, then the
1415  //   identifier has external linkage.
1416  if (New->hasExternalStorage() && Old->hasLinkage())
1417    /* Okay */;
1418  else if (New->getStorageClass() != VarDecl::Static &&
1419           Old->getStorageClass() == VarDecl::Static) {
1420    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1421    Diag(Old->getLocation(), diag::note_previous_definition);
1422    return New->setInvalidDecl();
1423  }
1424
1425  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1426
1427  // FIXME: The test for external storage here seems wrong? We still
1428  // need to check for mismatches.
1429  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1430      // Don't complain about out-of-line definitions of static members.
1431      !(Old->getLexicalDeclContext()->isRecord() &&
1432        !New->getLexicalDeclContext()->isRecord())) {
1433    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1434    Diag(Old->getLocation(), diag::note_previous_definition);
1435    return New->setInvalidDecl();
1436  }
1437
1438  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1439    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1440    Diag(Old->getLocation(), diag::note_previous_definition);
1441  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1442    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1443    Diag(Old->getLocation(), diag::note_previous_definition);
1444  }
1445
1446  // C++ doesn't have tentative definitions, so go right ahead and check here.
1447  const VarDecl *Def;
1448  if (getLangOptions().CPlusPlus &&
1449      New->isThisDeclarationADefinition() == VarDecl::Definition &&
1450      (Def = Old->getDefinition())) {
1451    Diag(New->getLocation(), diag::err_redefinition)
1452      << New->getDeclName();
1453    Diag(Def->getLocation(), diag::note_previous_definition);
1454    New->setInvalidDecl();
1455    return;
1456  }
1457
1458  // Keep a chain of previous declarations.
1459  New->setPreviousDeclaration(Old);
1460
1461  // Inherit access appropriately.
1462  New->setAccess(Old->getAccess());
1463}
1464
1465/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1466/// no declarator (e.g. "struct foo;") is parsed.
1467Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
1468                                                 DeclSpec &DS) {
1469  // FIXME: Error on auto/register at file scope
1470  // FIXME: Error on inline/virtual/explicit
1471  // FIXME: Warn on useless __thread
1472  // FIXME: Warn on useless const/volatile
1473  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1474  // FIXME: Warn on useless attributes
1475  Decl *TagD = 0;
1476  TagDecl *Tag = 0;
1477  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1478      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1479      DS.getTypeSpecType() == DeclSpec::TST_union ||
1480      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1481    TagD = static_cast<Decl *>(DS.getTypeRep());
1482
1483    if (!TagD) // We probably had an error
1484      return DeclPtrTy();
1485
1486    // Note that the above type specs guarantee that the
1487    // type rep is a Decl, whereas in many of the others
1488    // it's a Type.
1489    Tag = dyn_cast<TagDecl>(TagD);
1490  }
1491
1492  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1493    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1494    // or incomplete types shall not be restrict-qualified."
1495    if (TypeQuals & DeclSpec::TQ_restrict)
1496      Diag(DS.getRestrictSpecLoc(),
1497           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1498           << DS.getSourceRange();
1499  }
1500
1501  if (DS.isFriendSpecified()) {
1502    // If we're dealing with a class template decl, assume that the
1503    // template routines are handling it.
1504    if (TagD && isa<ClassTemplateDecl>(TagD))
1505      return DeclPtrTy();
1506    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1507  }
1508
1509  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1510    // If there are attributes in the DeclSpec, apply them to the record.
1511    if (const AttributeList *AL = DS.getAttributes())
1512      ProcessDeclAttributeList(S, Record, AL);
1513
1514    if (!Record->getDeclName() && Record->isDefinition() &&
1515        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1516      if (getLangOptions().CPlusPlus ||
1517          Record->getDeclContext()->isRecord())
1518        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
1519
1520      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1521        << DS.getSourceRange();
1522    }
1523
1524    // Microsoft allows unnamed struct/union fields. Don't complain
1525    // about them.
1526    // FIXME: Should we support Microsoft's extensions in this area?
1527    if (Record->getDeclName() && getLangOptions().Microsoft)
1528      return DeclPtrTy::make(Tag);
1529  }
1530
1531  if (!DS.isMissingDeclaratorOk() &&
1532      DS.getTypeSpecType() != DeclSpec::TST_error) {
1533    // Warn about typedefs of enums without names, since this is an
1534    // extension in both Microsoft an GNU.
1535    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1536        Tag && isa<EnumDecl>(Tag)) {
1537      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1538        << DS.getSourceRange();
1539      return DeclPtrTy::make(Tag);
1540    }
1541
1542    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1543      << DS.getSourceRange();
1544  }
1545
1546  return DeclPtrTy::make(Tag);
1547}
1548
1549/// We are trying to inject an anonymous member into the given scope;
1550/// check if there's an existing declaration that can't be overloaded.
1551///
1552/// \return true if this is a forbidden redeclaration
1553static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1554                                         Scope *S,
1555                                         DeclContext *Owner,
1556                                         DeclarationName Name,
1557                                         SourceLocation NameLoc,
1558                                         unsigned diagnostic) {
1559  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1560                 Sema::ForRedeclaration);
1561  if (!SemaRef.LookupName(R, S)) return false;
1562
1563  if (R.getAsSingle<TagDecl>())
1564    return false;
1565
1566  // Pick a representative declaration.
1567  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1568  if (PrevDecl && Owner->isRecord()) {
1569    RecordDecl *Record = cast<RecordDecl>(Owner);
1570    if (!SemaRef.isDeclInScope(PrevDecl, Record, S))
1571      return false;
1572  }
1573
1574  SemaRef.Diag(NameLoc, diagnostic) << Name;
1575  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1576
1577  return true;
1578}
1579
1580/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1581/// anonymous struct or union AnonRecord into the owning context Owner
1582/// and scope S. This routine will be invoked just after we realize
1583/// that an unnamed union or struct is actually an anonymous union or
1584/// struct, e.g.,
1585///
1586/// @code
1587/// union {
1588///   int i;
1589///   float f;
1590/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1591///    // f into the surrounding scope.x
1592/// @endcode
1593///
1594/// This routine is recursive, injecting the names of nested anonymous
1595/// structs/unions into the owning context and scope as well.
1596static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
1597                                                DeclContext *Owner,
1598                                                RecordDecl *AnonRecord,
1599                                                AccessSpecifier AS) {
1600  unsigned diagKind
1601    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1602                            : diag::err_anonymous_struct_member_redecl;
1603
1604  bool Invalid = false;
1605  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1606                               FEnd = AnonRecord->field_end();
1607       F != FEnd; ++F) {
1608    if ((*F)->getDeclName()) {
1609      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, (*F)->getDeclName(),
1610                                       (*F)->getLocation(), diagKind)) {
1611        // C++ [class.union]p2:
1612        //   The names of the members of an anonymous union shall be
1613        //   distinct from the names of any other entity in the
1614        //   scope in which the anonymous union is declared.
1615        Invalid = true;
1616      } else {
1617        // C++ [class.union]p2:
1618        //   For the purpose of name lookup, after the anonymous union
1619        //   definition, the members of the anonymous union are
1620        //   considered to have been defined in the scope in which the
1621        //   anonymous union is declared.
1622        Owner->makeDeclVisibleInContext(*F);
1623        S->AddDecl(Sema::DeclPtrTy::make(*F));
1624        SemaRef.IdResolver.AddDecl(*F);
1625
1626        // That includes picking up the appropriate access specifier.
1627        if (AS != AS_none) (*F)->setAccess(AS);
1628      }
1629    } else if (const RecordType *InnerRecordType
1630                 = (*F)->getType()->getAs<RecordType>()) {
1631      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1632      if (InnerRecord->isAnonymousStructOrUnion())
1633        Invalid = Invalid ||
1634          InjectAnonymousStructOrUnionMembers(SemaRef, S, Owner,
1635                                              InnerRecord, AS);
1636    }
1637  }
1638
1639  return Invalid;
1640}
1641
1642/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
1643/// a VarDecl::StorageClass. Any error reporting is up to the caller:
1644/// illegal input values are mapped to VarDecl::None.
1645/// If the input declaration context is a linkage specification
1646/// with no braces, then Extern is mapped to None.
1647static VarDecl::StorageClass
1648StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec,
1649                                      DeclContext *DC) {
1650  switch (StorageClassSpec) {
1651  case DeclSpec::SCS_unspecified:    return VarDecl::None;
1652  case DeclSpec::SCS_extern:
1653    // If the current context is a C++ linkage specification
1654    // having no braces, then the keyword "extern" is properly part
1655    // of the linkage specification itself, rather than being
1656    // the written storage class specifier.
1657    return (DC && isa<LinkageSpecDecl>(DC) &&
1658            !cast<LinkageSpecDecl>(DC)->hasBraces())
1659      ? VarDecl::None : VarDecl::Extern;
1660  case DeclSpec::SCS_static:         return VarDecl::Static;
1661  case DeclSpec::SCS_auto:           return VarDecl::Auto;
1662  case DeclSpec::SCS_register:       return VarDecl::Register;
1663  case DeclSpec::SCS_private_extern: return VarDecl::PrivateExtern;
1664    // Illegal SCSs map to None: error reporting is up to the caller.
1665  case DeclSpec::SCS_mutable:        // Fall through.
1666  case DeclSpec::SCS_typedef:        return VarDecl::None;
1667  }
1668  llvm_unreachable("unknown storage class specifier");
1669}
1670
1671/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
1672/// a FunctionDecl::StorageClass. Any error reporting is up to the caller:
1673/// illegal input values are mapped to FunctionDecl::None.
1674/// If the input declaration context is a linkage specification
1675/// with no braces, then Extern is mapped to None.
1676static FunctionDecl::StorageClass
1677StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec,
1678                                           DeclContext *DC) {
1679  switch (StorageClassSpec) {
1680  case DeclSpec::SCS_unspecified:    return FunctionDecl::None;
1681  case DeclSpec::SCS_extern:
1682    // If the current context is a C++ linkage specification
1683    // having no braces, then the keyword "extern" is properly part
1684    // of the linkage specification itself, rather than being
1685    // the written storage class specifier.
1686    return (DC && isa<LinkageSpecDecl>(DC) &&
1687            !cast<LinkageSpecDecl>(DC)->hasBraces())
1688      ? FunctionDecl::None : FunctionDecl::Extern;
1689  case DeclSpec::SCS_static:         return FunctionDecl::Static;
1690  case DeclSpec::SCS_private_extern: return FunctionDecl::PrivateExtern;
1691    // Illegal SCSs map to None: error reporting is up to the caller.
1692  case DeclSpec::SCS_auto:           // Fall through.
1693  case DeclSpec::SCS_mutable:        // Fall through.
1694  case DeclSpec::SCS_register:       // Fall through.
1695  case DeclSpec::SCS_typedef:        return FunctionDecl::None;
1696  }
1697  llvm_unreachable("unknown storage class specifier");
1698}
1699
1700/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1701/// anonymous structure or union. Anonymous unions are a C++ feature
1702/// (C++ [class.union]) and a GNU C extension; anonymous structures
1703/// are a GNU C and GNU C++ extension.
1704Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1705                                                  AccessSpecifier AS,
1706                                                  RecordDecl *Record) {
1707  DeclContext *Owner = Record->getDeclContext();
1708
1709  // Diagnose whether this anonymous struct/union is an extension.
1710  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1711    Diag(Record->getLocation(), diag::ext_anonymous_union);
1712  else if (!Record->isUnion())
1713    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1714
1715  // C and C++ require different kinds of checks for anonymous
1716  // structs/unions.
1717  bool Invalid = false;
1718  if (getLangOptions().CPlusPlus) {
1719    const char* PrevSpec = 0;
1720    unsigned DiagID;
1721    // C++ [class.union]p3:
1722    //   Anonymous unions declared in a named namespace or in the
1723    //   global namespace shall be declared static.
1724    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1725        (isa<TranslationUnitDecl>(Owner) ||
1726         (isa<NamespaceDecl>(Owner) &&
1727          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1728      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1729      Invalid = true;
1730
1731      // Recover by adding 'static'.
1732      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1733                             PrevSpec, DiagID);
1734    }
1735    // C++ [class.union]p3:
1736    //   A storage class is not allowed in a declaration of an
1737    //   anonymous union in a class scope.
1738    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1739             isa<RecordDecl>(Owner)) {
1740      Diag(DS.getStorageClassSpecLoc(),
1741           diag::err_anonymous_union_with_storage_spec);
1742      Invalid = true;
1743
1744      // Recover by removing the storage specifier.
1745      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1746                             PrevSpec, DiagID);
1747    }
1748
1749    // C++ [class.union]p2:
1750    //   The member-specification of an anonymous union shall only
1751    //   define non-static data members. [Note: nested types and
1752    //   functions cannot be declared within an anonymous union. ]
1753    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1754                                 MemEnd = Record->decls_end();
1755         Mem != MemEnd; ++Mem) {
1756      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1757        // C++ [class.union]p3:
1758        //   An anonymous union shall not have private or protected
1759        //   members (clause 11).
1760        assert(FD->getAccess() != AS_none);
1761        if (FD->getAccess() != AS_public) {
1762          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1763            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1764          Invalid = true;
1765        }
1766      } else if ((*Mem)->isImplicit()) {
1767        // Any implicit members are fine.
1768      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1769        // This is a type that showed up in an
1770        // elaborated-type-specifier inside the anonymous struct or
1771        // union, but which actually declares a type outside of the
1772        // anonymous struct or union. It's okay.
1773      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1774        if (!MemRecord->isAnonymousStructOrUnion() &&
1775            MemRecord->getDeclName()) {
1776          // This is a nested type declaration.
1777          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1778            << (int)Record->isUnion();
1779          Invalid = true;
1780        }
1781      } else if (isa<AccessSpecDecl>(*Mem)) {
1782        // Any access specifier is fine.
1783      } else {
1784        // We have something that isn't a non-static data
1785        // member. Complain about it.
1786        unsigned DK = diag::err_anonymous_record_bad_member;
1787        if (isa<TypeDecl>(*Mem))
1788          DK = diag::err_anonymous_record_with_type;
1789        else if (isa<FunctionDecl>(*Mem))
1790          DK = diag::err_anonymous_record_with_function;
1791        else if (isa<VarDecl>(*Mem))
1792          DK = diag::err_anonymous_record_with_static;
1793        Diag((*Mem)->getLocation(), DK)
1794            << (int)Record->isUnion();
1795          Invalid = true;
1796      }
1797    }
1798  }
1799
1800  if (!Record->isUnion() && !Owner->isRecord()) {
1801    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1802      << (int)getLangOptions().CPlusPlus;
1803    Invalid = true;
1804  }
1805
1806  // Mock up a declarator.
1807  Declarator Dc(DS, Declarator::TypeNameContext);
1808  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
1809  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
1810
1811  // Create a declaration for this anonymous struct/union.
1812  NamedDecl *Anon = 0;
1813  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1814    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1815                             /*IdentifierInfo=*/0,
1816                             Context.getTypeDeclType(Record),
1817                             TInfo,
1818                             /*BitWidth=*/0, /*Mutable=*/false);
1819    Anon->setAccess(AS);
1820    if (getLangOptions().CPlusPlus) {
1821      FieldCollector->Add(cast<FieldDecl>(Anon));
1822      if (!cast<CXXRecordDecl>(Record)->isEmpty())
1823        cast<CXXRecordDecl>(OwningClass)->setEmpty(false);
1824    }
1825  } else {
1826    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
1827    assert(SCSpec != DeclSpec::SCS_typedef &&
1828           "Parser allowed 'typedef' as storage class VarDecl.");
1829    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec, 0);
1830    if (SCSpec == DeclSpec::SCS_mutable) {
1831      // mutable can only appear on non-static class members, so it's always
1832      // an error here
1833      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1834      Invalid = true;
1835      SC = VarDecl::None;
1836    }
1837    SCSpec = DS.getStorageClassSpecAsWritten();
1838    VarDecl::StorageClass SCAsWritten
1839      = StorageClassSpecToVarDeclStorageClass(SCSpec, 0);
1840
1841    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1842                           /*IdentifierInfo=*/0,
1843                           Context.getTypeDeclType(Record),
1844                           TInfo, SC, SCAsWritten);
1845  }
1846  Anon->setImplicit();
1847
1848  // Add the anonymous struct/union object to the current
1849  // context. We'll be referencing this object when we refer to one of
1850  // its members.
1851  Owner->addDecl(Anon);
1852
1853  // Inject the members of the anonymous struct/union into the owning
1854  // context and into the identifier resolver chain for name lookup
1855  // purposes.
1856  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS))
1857    Invalid = true;
1858
1859  // Mark this as an anonymous struct/union type. Note that we do not
1860  // do this until after we have already checked and injected the
1861  // members of this anonymous struct/union type, because otherwise
1862  // the members could be injected twice: once by DeclContext when it
1863  // builds its lookup table, and once by
1864  // InjectAnonymousStructOrUnionMembers.
1865  Record->setAnonymousStructOrUnion(true);
1866
1867  if (Invalid)
1868    Anon->setInvalidDecl();
1869
1870  return DeclPtrTy::make(Anon);
1871}
1872
1873
1874/// GetNameForDeclarator - Determine the full declaration name for the
1875/// given Declarator.
1876DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1877  return GetNameFromUnqualifiedId(D.getName());
1878}
1879
1880/// \brief Retrieves the canonicalized name from a parsed unqualified-id.
1881DeclarationName Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
1882  switch (Name.getKind()) {
1883    case UnqualifiedId::IK_Identifier:
1884      return DeclarationName(Name.Identifier);
1885
1886    case UnqualifiedId::IK_OperatorFunctionId:
1887      return Context.DeclarationNames.getCXXOperatorName(
1888                                              Name.OperatorFunctionId.Operator);
1889
1890    case UnqualifiedId::IK_LiteralOperatorId:
1891      return Context.DeclarationNames.getCXXLiteralOperatorName(
1892                                                               Name.Identifier);
1893
1894    case UnqualifiedId::IK_ConversionFunctionId: {
1895      QualType Ty = GetTypeFromParser(Name.ConversionFunctionId);
1896      if (Ty.isNull())
1897        return DeclarationName();
1898
1899      return Context.DeclarationNames.getCXXConversionFunctionName(
1900                                                  Context.getCanonicalType(Ty));
1901    }
1902
1903    case UnqualifiedId::IK_ConstructorName: {
1904      QualType Ty = GetTypeFromParser(Name.ConstructorName);
1905      if (Ty.isNull())
1906        return DeclarationName();
1907
1908      return Context.DeclarationNames.getCXXConstructorName(
1909                                                  Context.getCanonicalType(Ty));
1910    }
1911
1912    case UnqualifiedId::IK_ConstructorTemplateId: {
1913      // In well-formed code, we can only have a constructor
1914      // template-id that refers to the current context, so go there
1915      // to find the actual type being constructed.
1916      CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
1917      if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
1918        return DeclarationName();
1919
1920      // Determine the type of the class being constructed.
1921      QualType CurClassType = Context.getTypeDeclType(CurClass);
1922
1923      // FIXME: Check two things: that the template-id names the same type as
1924      // CurClassType, and that the template-id does not occur when the name
1925      // was qualified.
1926
1927      return Context.DeclarationNames.getCXXConstructorName(
1928                                       Context.getCanonicalType(CurClassType));
1929    }
1930
1931    case UnqualifiedId::IK_DestructorName: {
1932      QualType Ty = GetTypeFromParser(Name.DestructorName);
1933      if (Ty.isNull())
1934        return DeclarationName();
1935
1936      return Context.DeclarationNames.getCXXDestructorName(
1937                                                           Context.getCanonicalType(Ty));
1938    }
1939
1940    case UnqualifiedId::IK_TemplateId: {
1941      TemplateName TName
1942        = TemplateName::getFromVoidPointer(Name.TemplateId->Template);
1943      return Context.getNameForTemplate(TName);
1944    }
1945  }
1946
1947  assert(false && "Unknown name kind");
1948  return DeclarationName();
1949}
1950
1951/// isNearlyMatchingFunction - Determine whether the C++ functions
1952/// Declaration and Definition are "nearly" matching. This heuristic
1953/// is used to improve diagnostics in the case where an out-of-line
1954/// function definition doesn't match any declaration within
1955/// the class or namespace.
1956static bool isNearlyMatchingFunction(ASTContext &Context,
1957                                     FunctionDecl *Declaration,
1958                                     FunctionDecl *Definition) {
1959  if (Declaration->param_size() != Definition->param_size())
1960    return false;
1961  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1962    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1963    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1964
1965    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
1966                                        DefParamTy.getNonReferenceType()))
1967      return false;
1968  }
1969
1970  return true;
1971}
1972
1973/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
1974/// declarator needs to be rebuilt in the current instantiation.
1975/// Any bits of declarator which appear before the name are valid for
1976/// consideration here.  That's specifically the type in the decl spec
1977/// and the base type in any member-pointer chunks.
1978static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
1979                                                    DeclarationName Name) {
1980  // The types we specifically need to rebuild are:
1981  //   - typenames, typeofs, and decltypes
1982  //   - types which will become injected class names
1983  // Of course, we also need to rebuild any type referencing such a
1984  // type.  It's safest to just say "dependent", but we call out a
1985  // few cases here.
1986
1987  DeclSpec &DS = D.getMutableDeclSpec();
1988  switch (DS.getTypeSpecType()) {
1989  case DeclSpec::TST_typename:
1990  case DeclSpec::TST_typeofType:
1991  case DeclSpec::TST_typeofExpr:
1992  case DeclSpec::TST_decltype: {
1993    // Grab the type from the parser.
1994    TypeSourceInfo *TSI = 0;
1995    QualType T = S.GetTypeFromParser(DS.getTypeRep(), &TSI);
1996    if (T.isNull() || !T->isDependentType()) break;
1997
1998    // Make sure there's a type source info.  This isn't really much
1999    // of a waste; most dependent types should have type source info
2000    // attached already.
2001    if (!TSI)
2002      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
2003
2004    // Rebuild the type in the current instantiation.
2005    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
2006    if (!TSI) return true;
2007
2008    // Store the new type back in the decl spec.
2009    QualType LocType = S.CreateLocInfoType(TSI->getType(), TSI);
2010    DS.UpdateTypeRep(LocType.getAsOpaquePtr());
2011    break;
2012  }
2013
2014  default:
2015    // Nothing to do for these decl specs.
2016    break;
2017  }
2018
2019  // It doesn't matter what order we do this in.
2020  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2021    DeclaratorChunk &Chunk = D.getTypeObject(I);
2022
2023    // The only type information in the declarator which can come
2024    // before the declaration name is the base type of a member
2025    // pointer.
2026    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
2027      continue;
2028
2029    // Rebuild the scope specifier in-place.
2030    CXXScopeSpec &SS = Chunk.Mem.Scope();
2031    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2032      return true;
2033  }
2034
2035  return false;
2036}
2037
2038Sema::DeclPtrTy
2039Sema::HandleDeclarator(Scope *S, Declarator &D,
2040                       MultiTemplateParamsArg TemplateParamLists,
2041                       bool IsFunctionDefinition) {
2042  DeclarationName Name = GetNameForDeclarator(D);
2043
2044  // All of these full declarators require an identifier.  If it doesn't have
2045  // one, the ParsedFreeStandingDeclSpec action should be used.
2046  if (!Name) {
2047    if (!D.isInvalidType())  // Reject this if we think it is valid.
2048      Diag(D.getDeclSpec().getSourceRange().getBegin(),
2049           diag::err_declarator_need_ident)
2050        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2051    return DeclPtrTy();
2052  }
2053
2054  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2055  // we find one that is.
2056  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2057         (S->getFlags() & Scope::TemplateParamScope) != 0)
2058    S = S->getParent();
2059
2060  DeclContext *DC = CurContext;
2061  if (D.getCXXScopeSpec().isInvalid())
2062    D.setInvalidType();
2063  else if (D.getCXXScopeSpec().isSet()) {
2064    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
2065    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
2066    if (!DC) {
2067      // If we could not compute the declaration context, it's because the
2068      // declaration context is dependent but does not refer to a class,
2069      // class template, or class template partial specialization. Complain
2070      // and return early, to avoid the coming semantic disaster.
2071      Diag(D.getIdentifierLoc(),
2072           diag::err_template_qualified_declarator_no_match)
2073        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2074        << D.getCXXScopeSpec().getRange();
2075      return DeclPtrTy();
2076    }
2077
2078    bool IsDependentContext = DC->isDependentContext();
2079
2080    if (!IsDependentContext &&
2081        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
2082      return DeclPtrTy();
2083
2084    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
2085      Diag(D.getIdentifierLoc(),
2086           diag::err_member_def_undefined_record)
2087        << Name << DC << D.getCXXScopeSpec().getRange();
2088      D.setInvalidType();
2089    }
2090
2091    // Check whether we need to rebuild the type of the given
2092    // declaration in the current instantiation.
2093    if (EnteringContext && IsDependentContext &&
2094        TemplateParamLists.size() != 0) {
2095      ContextRAII SavedContext(*this, DC);
2096      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
2097        D.setInvalidType();
2098    }
2099  }
2100
2101  NamedDecl *New;
2102
2103  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
2104  QualType R = TInfo->getType();
2105
2106  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
2107                        ForRedeclaration);
2108
2109  // See if this is a redefinition of a variable in the same scope.
2110  if (!D.getCXXScopeSpec().isSet()) {
2111    bool IsLinkageLookup = false;
2112
2113    // If the declaration we're planning to build will be a function
2114    // or object with linkage, then look for another declaration with
2115    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
2116    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2117      /* Do nothing*/;
2118    else if (R->isFunctionType()) {
2119      if (CurContext->isFunctionOrMethod() ||
2120          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2121        IsLinkageLookup = true;
2122    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
2123      IsLinkageLookup = true;
2124    else if (CurContext->getLookupContext()->isTranslationUnit() &&
2125             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2126      IsLinkageLookup = true;
2127
2128    if (IsLinkageLookup)
2129      Previous.clear(LookupRedeclarationWithLinkage);
2130
2131    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
2132  } else { // Something like "int foo::x;"
2133    LookupQualifiedName(Previous, DC);
2134
2135    // Don't consider using declarations as previous declarations for
2136    // out-of-line members.
2137    RemoveUsingDecls(Previous);
2138
2139    // C++ 7.3.1.2p2:
2140    // Members (including explicit specializations of templates) of a named
2141    // namespace can also be defined outside that namespace by explicit
2142    // qualification of the name being defined, provided that the entity being
2143    // defined was already declared in the namespace and the definition appears
2144    // after the point of declaration in a namespace that encloses the
2145    // declarations namespace.
2146    //
2147    // Note that we only check the context at this point. We don't yet
2148    // have enough information to make sure that PrevDecl is actually
2149    // the declaration we want to match. For example, given:
2150    //
2151    //   class X {
2152    //     void f();
2153    //     void f(float);
2154    //   };
2155    //
2156    //   void X::f(int) { } // ill-formed
2157    //
2158    // In this case, PrevDecl will point to the overload set
2159    // containing the two f's declared in X, but neither of them
2160    // matches.
2161
2162    // First check whether we named the global scope.
2163    if (isa<TranslationUnitDecl>(DC)) {
2164      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
2165        << Name << D.getCXXScopeSpec().getRange();
2166    } else {
2167      DeclContext *Cur = CurContext;
2168      while (isa<LinkageSpecDecl>(Cur))
2169        Cur = Cur->getParent();
2170      if (!Cur->Encloses(DC)) {
2171        // The qualifying scope doesn't enclose the original declaration.
2172        // Emit diagnostic based on current scope.
2173        SourceLocation L = D.getIdentifierLoc();
2174        SourceRange R = D.getCXXScopeSpec().getRange();
2175        if (isa<FunctionDecl>(Cur))
2176          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
2177        else
2178          Diag(L, diag::err_invalid_declarator_scope)
2179            << Name << cast<NamedDecl>(DC) << R;
2180        D.setInvalidType();
2181      }
2182    }
2183  }
2184
2185  if (Previous.isSingleResult() &&
2186      Previous.getFoundDecl()->isTemplateParameter()) {
2187    // Maybe we will complain about the shadowed template parameter.
2188    if (!D.isInvalidType())
2189      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
2190                                          Previous.getFoundDecl()))
2191        D.setInvalidType();
2192
2193    // Just pretend that we didn't see the previous declaration.
2194    Previous.clear();
2195  }
2196
2197  // In C++, the previous declaration we find might be a tag type
2198  // (class or enum). In this case, the new declaration will hide the
2199  // tag type. Note that this does does not apply if we're declaring a
2200  // typedef (C++ [dcl.typedef]p4).
2201  if (Previous.isSingleTagDecl() &&
2202      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2203    Previous.clear();
2204
2205  bool Redeclaration = false;
2206  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2207    if (TemplateParamLists.size()) {
2208      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2209      return DeclPtrTy();
2210    }
2211
2212    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2213  } else if (R->isFunctionType()) {
2214    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2215                                  move(TemplateParamLists),
2216                                  IsFunctionDefinition, Redeclaration);
2217  } else {
2218    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2219                                  move(TemplateParamLists),
2220                                  Redeclaration);
2221  }
2222
2223  if (New == 0)
2224    return DeclPtrTy();
2225
2226  // If this has an identifier and is not an invalid redeclaration or
2227  // function template specialization, add it to the scope stack.
2228  if (Name && !(Redeclaration && New->isInvalidDecl()))
2229    PushOnScopeChains(New, S);
2230
2231  return DeclPtrTy::make(New);
2232}
2233
2234/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2235/// types into constant array types in certain situations which would otherwise
2236/// be errors (for GCC compatibility).
2237static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2238                                                    ASTContext &Context,
2239                                                    bool &SizeIsNegative) {
2240  // This method tries to turn a variable array into a constant
2241  // array even when the size isn't an ICE.  This is necessary
2242  // for compatibility with code that depends on gcc's buggy
2243  // constant expression folding, like struct {char x[(int)(char*)2];}
2244  SizeIsNegative = false;
2245
2246  QualifierCollector Qs;
2247  const Type *Ty = Qs.strip(T);
2248
2249  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2250    QualType Pointee = PTy->getPointeeType();
2251    QualType FixedType =
2252        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
2253    if (FixedType.isNull()) return FixedType;
2254    FixedType = Context.getPointerType(FixedType);
2255    return Qs.apply(FixedType);
2256  }
2257
2258  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2259  if (!VLATy)
2260    return QualType();
2261  // FIXME: We should probably handle this case
2262  if (VLATy->getElementType()->isVariablyModifiedType())
2263    return QualType();
2264
2265  Expr::EvalResult EvalResult;
2266  if (!VLATy->getSizeExpr() ||
2267      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2268      !EvalResult.Val.isInt())
2269    return QualType();
2270
2271  llvm::APSInt &Res = EvalResult.Val.getInt();
2272  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
2273    // TODO: preserve the size expression in declarator info
2274    return Context.getConstantArrayType(VLATy->getElementType(),
2275                                        Res, ArrayType::Normal, 0);
2276  }
2277
2278  SizeIsNegative = true;
2279  return QualType();
2280}
2281
2282/// \brief Register the given locally-scoped external C declaration so
2283/// that it can be found later for redeclarations
2284void
2285Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2286                                       const LookupResult &Previous,
2287                                       Scope *S) {
2288  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2289         "Decl is not a locally-scoped decl!");
2290  // Note that we have a locally-scoped external with this name.
2291  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2292
2293  if (!Previous.isSingleResult())
2294    return;
2295
2296  NamedDecl *PrevDecl = Previous.getFoundDecl();
2297
2298  // If there was a previous declaration of this variable, it may be
2299  // in our identifier chain. Update the identifier chain with the new
2300  // declaration.
2301  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2302    // The previous declaration was found on the identifer resolver
2303    // chain, so remove it from its scope.
2304    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
2305      S = S->getParent();
2306
2307    if (S)
2308      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
2309  }
2310}
2311
2312/// \brief Diagnose function specifiers on a declaration of an identifier that
2313/// does not identify a function.
2314void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2315  // FIXME: We should probably indicate the identifier in question to avoid
2316  // confusion for constructs like "inline int a(), b;"
2317  if (D.getDeclSpec().isInlineSpecified())
2318    Diag(D.getDeclSpec().getInlineSpecLoc(),
2319         diag::err_inline_non_function);
2320
2321  if (D.getDeclSpec().isVirtualSpecified())
2322    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2323         diag::err_virtual_non_function);
2324
2325  if (D.getDeclSpec().isExplicitSpecified())
2326    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2327         diag::err_explicit_non_function);
2328}
2329
2330NamedDecl*
2331Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2332                             QualType R,  TypeSourceInfo *TInfo,
2333                             LookupResult &Previous, bool &Redeclaration) {
2334  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2335  if (D.getCXXScopeSpec().isSet()) {
2336    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2337      << D.getCXXScopeSpec().getRange();
2338    D.setInvalidType();
2339    // Pretend we didn't see the scope specifier.
2340    DC = CurContext;
2341    Previous.clear();
2342  }
2343
2344  if (getLangOptions().CPlusPlus) {
2345    // Check that there are no default arguments (C++ only).
2346    CheckExtraCXXDefaultArguments(D);
2347  }
2348
2349  DiagnoseFunctionSpecifiers(D);
2350
2351  if (D.getDeclSpec().isThreadSpecified())
2352    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2353
2354  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2355  if (!NewTD) return 0;
2356
2357  // Handle attributes prior to checking for duplicates in MergeVarDecl
2358  ProcessDeclAttributes(S, NewTD, D);
2359
2360  // Merge the decl with the existing one if appropriate. If the decl is
2361  // in an outer scope, it isn't the same thing.
2362  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2363  if (!Previous.empty()) {
2364    Redeclaration = true;
2365    MergeTypeDefDecl(NewTD, Previous);
2366  }
2367
2368  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2369  // then it shall have block scope.
2370  QualType T = NewTD->getUnderlyingType();
2371  if (T->isVariablyModifiedType()) {
2372    FunctionNeedsScopeChecking() = true;
2373
2374    if (S->getFnParent() == 0) {
2375      bool SizeIsNegative;
2376      QualType FixedTy =
2377          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2378      if (!FixedTy.isNull()) {
2379        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2380        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2381      } else {
2382        if (SizeIsNegative)
2383          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2384        else if (T->isVariableArrayType())
2385          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2386        else
2387          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2388        NewTD->setInvalidDecl();
2389      }
2390    }
2391  }
2392
2393  // If this is the C FILE type, notify the AST context.
2394  if (IdentifierInfo *II = NewTD->getIdentifier())
2395    if (!NewTD->isInvalidDecl() &&
2396        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
2397      if (II->isStr("FILE"))
2398        Context.setFILEDecl(NewTD);
2399      else if (II->isStr("jmp_buf"))
2400        Context.setjmp_bufDecl(NewTD);
2401      else if (II->isStr("sigjmp_buf"))
2402        Context.setsigjmp_bufDecl(NewTD);
2403    }
2404
2405  return NewTD;
2406}
2407
2408/// \brief Determines whether the given declaration is an out-of-scope
2409/// previous declaration.
2410///
2411/// This routine should be invoked when name lookup has found a
2412/// previous declaration (PrevDecl) that is not in the scope where a
2413/// new declaration by the same name is being introduced. If the new
2414/// declaration occurs in a local scope, previous declarations with
2415/// linkage may still be considered previous declarations (C99
2416/// 6.2.2p4-5, C++ [basic.link]p6).
2417///
2418/// \param PrevDecl the previous declaration found by name
2419/// lookup
2420///
2421/// \param DC the context in which the new declaration is being
2422/// declared.
2423///
2424/// \returns true if PrevDecl is an out-of-scope previous declaration
2425/// for a new delcaration with the same name.
2426static bool
2427isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2428                                ASTContext &Context) {
2429  if (!PrevDecl)
2430    return 0;
2431
2432  if (!PrevDecl->hasLinkage())
2433    return false;
2434
2435  if (Context.getLangOptions().CPlusPlus) {
2436    // C++ [basic.link]p6:
2437    //   If there is a visible declaration of an entity with linkage
2438    //   having the same name and type, ignoring entities declared
2439    //   outside the innermost enclosing namespace scope, the block
2440    //   scope declaration declares that same entity and receives the
2441    //   linkage of the previous declaration.
2442    DeclContext *OuterContext = DC->getLookupContext();
2443    if (!OuterContext->isFunctionOrMethod())
2444      // This rule only applies to block-scope declarations.
2445      return false;
2446    else {
2447      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2448      if (PrevOuterContext->isRecord())
2449        // We found a member function: ignore it.
2450        return false;
2451      else {
2452        // Find the innermost enclosing namespace for the new and
2453        // previous declarations.
2454        while (!OuterContext->isFileContext())
2455          OuterContext = OuterContext->getParent();
2456        while (!PrevOuterContext->isFileContext())
2457          PrevOuterContext = PrevOuterContext->getParent();
2458
2459        // The previous declaration is in a different namespace, so it
2460        // isn't the same function.
2461        if (OuterContext->getPrimaryContext() !=
2462            PrevOuterContext->getPrimaryContext())
2463          return false;
2464      }
2465    }
2466  }
2467
2468  return true;
2469}
2470
2471static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
2472  CXXScopeSpec &SS = D.getCXXScopeSpec();
2473  if (!SS.isSet()) return;
2474  DD->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
2475                       SS.getRange());
2476}
2477
2478NamedDecl*
2479Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2480                              QualType R, TypeSourceInfo *TInfo,
2481                              LookupResult &Previous,
2482                              MultiTemplateParamsArg TemplateParamLists,
2483                              bool &Redeclaration) {
2484  DeclarationName Name = GetNameForDeclarator(D);
2485
2486  // Check that there are no default arguments (C++ only).
2487  if (getLangOptions().CPlusPlus)
2488    CheckExtraCXXDefaultArguments(D);
2489
2490  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
2491  assert(SCSpec != DeclSpec::SCS_typedef &&
2492         "Parser allowed 'typedef' as storage class VarDecl.");
2493  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec, 0);
2494  if (SCSpec == DeclSpec::SCS_mutable) {
2495    // mutable can only appear on non-static class members, so it's always
2496    // an error here
2497    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2498    D.setInvalidType();
2499    SC = VarDecl::None;
2500  }
2501  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
2502  VarDecl::StorageClass SCAsWritten
2503    = StorageClassSpecToVarDeclStorageClass(SCSpec, DC);
2504
2505  IdentifierInfo *II = Name.getAsIdentifierInfo();
2506  if (!II) {
2507    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2508      << Name.getAsString();
2509    return 0;
2510  }
2511
2512  DiagnoseFunctionSpecifiers(D);
2513
2514  if (!DC->isRecord() && S->getFnParent() == 0) {
2515    // C99 6.9p2: The storage-class specifiers auto and register shall not
2516    // appear in the declaration specifiers in an external declaration.
2517    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2518
2519      // If this is a register variable with an asm label specified, then this
2520      // is a GNU extension.
2521      if (SC == VarDecl::Register && D.getAsmLabel())
2522        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2523      else
2524        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2525      D.setInvalidType();
2526    }
2527  }
2528  if (DC->isRecord() && !CurContext->isRecord()) {
2529    // This is an out-of-line definition of a static data member.
2530    if (SC == VarDecl::Static) {
2531      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2532           diag::err_static_out_of_line)
2533        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
2534    } else if (SC == VarDecl::None)
2535      SC = VarDecl::Static;
2536  }
2537  if (SC == VarDecl::Static) {
2538    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2539      if (RD->isLocalClass())
2540        Diag(D.getIdentifierLoc(),
2541             diag::err_static_data_member_not_allowed_in_local_class)
2542          << Name << RD->getDeclName();
2543    }
2544  }
2545
2546  // Match up the template parameter lists with the scope specifier, then
2547  // determine whether we have a template or a template specialization.
2548  bool isExplicitSpecialization = false;
2549  unsigned NumMatchedTemplateParamLists = TemplateParamLists.size();
2550  if (TemplateParameterList *TemplateParams
2551        = MatchTemplateParametersToScopeSpecifier(
2552                                  D.getDeclSpec().getSourceRange().getBegin(),
2553                                                  D.getCXXScopeSpec(),
2554                        (TemplateParameterList**)TemplateParamLists.get(),
2555                                                   TemplateParamLists.size(),
2556                                                  /*never a friend*/ false,
2557                                                  isExplicitSpecialization)) {
2558    // All but one template parameter lists have been matching.
2559    --NumMatchedTemplateParamLists;
2560
2561    if (TemplateParams->size() > 0) {
2562      // There is no such thing as a variable template.
2563      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2564        << II
2565        << SourceRange(TemplateParams->getTemplateLoc(),
2566                       TemplateParams->getRAngleLoc());
2567      return 0;
2568    } else {
2569      // There is an extraneous 'template<>' for this variable. Complain
2570      // about it, but allow the declaration of the variable.
2571      Diag(TemplateParams->getTemplateLoc(),
2572           diag::err_template_variable_noparams)
2573        << II
2574        << SourceRange(TemplateParams->getTemplateLoc(),
2575                       TemplateParams->getRAngleLoc());
2576
2577      isExplicitSpecialization = true;
2578    }
2579  }
2580
2581  VarDecl *NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2582                                   II, R, TInfo, SC, SCAsWritten);
2583
2584  if (D.isInvalidType())
2585    NewVD->setInvalidDecl();
2586
2587  SetNestedNameSpecifier(NewVD, D);
2588
2589  if (NumMatchedTemplateParamLists > 0) {
2590    NewVD->setTemplateParameterListsInfo(Context,
2591                                         NumMatchedTemplateParamLists,
2592                        (TemplateParameterList**)TemplateParamLists.release());
2593  }
2594
2595  if (D.getDeclSpec().isThreadSpecified()) {
2596    if (NewVD->hasLocalStorage())
2597      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2598    else if (!Context.Target.isTLSSupported())
2599      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2600    else
2601      NewVD->setThreadSpecified(true);
2602  }
2603
2604  // Set the lexical context. If the declarator has a C++ scope specifier, the
2605  // lexical context will be different from the semantic context.
2606  NewVD->setLexicalDeclContext(CurContext);
2607
2608  // Handle attributes prior to checking for duplicates in MergeVarDecl
2609  ProcessDeclAttributes(S, NewVD, D);
2610
2611  // Handle GNU asm-label extension (encoded as an attribute).
2612  if (Expr *E = (Expr*) D.getAsmLabel()) {
2613    // The parser guarantees this is a string.
2614    StringLiteral *SE = cast<StringLiteral>(E);
2615    NewVD->addAttr(::new (Context) AsmLabelAttr(Context, SE->getString()));
2616  }
2617
2618  // Diagnose shadowed variables before filtering for scope.
2619  if (!D.getCXXScopeSpec().isSet())
2620    CheckShadow(S, NewVD, Previous);
2621
2622  // Don't consider existing declarations that are in a different
2623  // scope and are out-of-semantic-context declarations (if the new
2624  // declaration has linkage).
2625  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
2626
2627  // Merge the decl with the existing one if appropriate.
2628  if (!Previous.empty()) {
2629    if (Previous.isSingleResult() &&
2630        isa<FieldDecl>(Previous.getFoundDecl()) &&
2631        D.getCXXScopeSpec().isSet()) {
2632      // The user tried to define a non-static data member
2633      // out-of-line (C++ [dcl.meaning]p1).
2634      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2635        << D.getCXXScopeSpec().getRange();
2636      Previous.clear();
2637      NewVD->setInvalidDecl();
2638    }
2639  } else if (D.getCXXScopeSpec().isSet()) {
2640    // No previous declaration in the qualifying scope.
2641    Diag(D.getIdentifierLoc(), diag::err_no_member)
2642      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2643      << D.getCXXScopeSpec().getRange();
2644    NewVD->setInvalidDecl();
2645  }
2646
2647  CheckVariableDeclaration(NewVD, Previous, Redeclaration);
2648
2649  // This is an explicit specialization of a static data member. Check it.
2650  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2651      CheckMemberSpecialization(NewVD, Previous))
2652    NewVD->setInvalidDecl();
2653
2654  // attributes declared post-definition are currently ignored
2655  if (Previous.isSingleResult()) {
2656    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
2657    if (Def && (Def = Def->getDefinition()) &&
2658        Def != NewVD && D.hasAttributes()) {
2659      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2660      Diag(Def->getLocation(), diag::note_previous_definition);
2661    }
2662  }
2663
2664  // If this is a locally-scoped extern C variable, update the map of
2665  // such variables.
2666  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2667      !NewVD->isInvalidDecl())
2668    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
2669
2670  return NewVD;
2671}
2672
2673/// \brief Diagnose variable or built-in function shadowing.  Implements
2674/// -Wshadow.
2675///
2676/// This method is called whenever a VarDecl is added to a "useful"
2677/// scope.
2678///
2679/// \param S the scope in which the shadowing name is being declared
2680/// \param R the lookup of the name
2681///
2682void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
2683  // Return if warning is ignored.
2684  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow) == Diagnostic::Ignored)
2685    return;
2686
2687  // Don't diagnose declarations at file scope.  The scope might not
2688  // have a DeclContext if (e.g.) we're parsing a function prototype.
2689  DeclContext *NewDC = static_cast<DeclContext*>(S->getEntity());
2690  if (NewDC && NewDC->isFileContext())
2691    return;
2692
2693  // Only diagnose if we're shadowing an unambiguous field or variable.
2694  if (R.getResultKind() != LookupResult::Found)
2695    return;
2696
2697  NamedDecl* ShadowedDecl = R.getFoundDecl();
2698  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
2699    return;
2700
2701  DeclContext *OldDC = ShadowedDecl->getDeclContext();
2702
2703  // Only warn about certain kinds of shadowing for class members.
2704  if (NewDC && NewDC->isRecord()) {
2705    // In particular, don't warn about shadowing non-class members.
2706    if (!OldDC->isRecord())
2707      return;
2708
2709    // TODO: should we warn about static data members shadowing
2710    // static data members from base classes?
2711
2712    // TODO: don't diagnose for inaccessible shadowed members.
2713    // This is hard to do perfectly because we might friend the
2714    // shadowing context, but that's just a false negative.
2715  }
2716
2717  // Determine what kind of declaration we're shadowing.
2718  unsigned Kind;
2719  if (isa<RecordDecl>(OldDC)) {
2720    if (isa<FieldDecl>(ShadowedDecl))
2721      Kind = 3; // field
2722    else
2723      Kind = 2; // static data member
2724  } else if (OldDC->isFileContext())
2725    Kind = 1; // global
2726  else
2727    Kind = 0; // local
2728
2729  DeclarationName Name = R.getLookupName();
2730
2731  // Emit warning and note.
2732  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
2733  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
2734}
2735
2736/// \brief Check -Wshadow without the advantage of a previous lookup.
2737void Sema::CheckShadow(Scope *S, VarDecl *D) {
2738  LookupResult R(*this, D->getDeclName(), D->getLocation(),
2739                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
2740  LookupName(R, S);
2741  CheckShadow(S, D, R);
2742}
2743
2744/// \brief Perform semantic checking on a newly-created variable
2745/// declaration.
2746///
2747/// This routine performs all of the type-checking required for a
2748/// variable declaration once it has been built. It is used both to
2749/// check variables after they have been parsed and their declarators
2750/// have been translated into a declaration, and to check variables
2751/// that have been instantiated from a template.
2752///
2753/// Sets NewVD->isInvalidDecl() if an error was encountered.
2754void Sema::CheckVariableDeclaration(VarDecl *NewVD,
2755                                    LookupResult &Previous,
2756                                    bool &Redeclaration) {
2757  // If the decl is already known invalid, don't check it.
2758  if (NewVD->isInvalidDecl())
2759    return;
2760
2761  QualType T = NewVD->getType();
2762
2763  if (T->isObjCObjectType()) {
2764    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2765    return NewVD->setInvalidDecl();
2766  }
2767
2768  // Emit an error if an address space was applied to decl with local storage.
2769  // This includes arrays of objects with address space qualifiers, but not
2770  // automatic variables that point to other address spaces.
2771  // ISO/IEC TR 18037 S5.1.2
2772  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2773    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2774    return NewVD->setInvalidDecl();
2775  }
2776
2777  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2778      && !NewVD->hasAttr<BlocksAttr>())
2779    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2780
2781  bool isVM = T->isVariablyModifiedType();
2782  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2783      NewVD->hasAttr<BlocksAttr>() ||
2784      // FIXME: We need to diagnose jumps passed initialized variables in C++.
2785      // However, this turns on the scope checker for everything with a variable
2786      // which may impact compile time.  See if we can find a better solution
2787      // to this, perhaps only checking functions that contain gotos in C++?
2788      (LangOpts.CPlusPlus && NewVD->hasLocalStorage()))
2789    FunctionNeedsScopeChecking() = true;
2790
2791  if ((isVM && NewVD->hasLinkage()) ||
2792      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2793    bool SizeIsNegative;
2794    QualType FixedTy =
2795        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2796
2797    if (FixedTy.isNull() && T->isVariableArrayType()) {
2798      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2799      // FIXME: This won't give the correct result for
2800      // int a[10][n];
2801      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2802
2803      if (NewVD->isFileVarDecl())
2804        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2805        << SizeRange;
2806      else if (NewVD->getStorageClass() == VarDecl::Static)
2807        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2808        << SizeRange;
2809      else
2810        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2811        << SizeRange;
2812      return NewVD->setInvalidDecl();
2813    }
2814
2815    if (FixedTy.isNull()) {
2816      if (NewVD->isFileVarDecl())
2817        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2818      else
2819        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2820      return NewVD->setInvalidDecl();
2821    }
2822
2823    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2824    NewVD->setType(FixedTy);
2825  }
2826
2827  if (Previous.empty() && NewVD->isExternC()) {
2828    // Since we did not find anything by this name and we're declaring
2829    // an extern "C" variable, look for a non-visible extern "C"
2830    // declaration with the same name.
2831    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2832      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2833    if (Pos != LocallyScopedExternalDecls.end())
2834      Previous.addDecl(Pos->second);
2835  }
2836
2837  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2838    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2839      << T;
2840    return NewVD->setInvalidDecl();
2841  }
2842
2843  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2844    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2845    return NewVD->setInvalidDecl();
2846  }
2847
2848  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2849    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2850    return NewVD->setInvalidDecl();
2851  }
2852
2853  if (!Previous.empty()) {
2854    Redeclaration = true;
2855    MergeVarDecl(NewVD, Previous);
2856  }
2857}
2858
2859/// \brief Data used with FindOverriddenMethod
2860struct FindOverriddenMethodData {
2861  Sema *S;
2862  CXXMethodDecl *Method;
2863};
2864
2865/// \brief Member lookup function that determines whether a given C++
2866/// method overrides a method in a base class, to be used with
2867/// CXXRecordDecl::lookupInBases().
2868static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
2869                                 CXXBasePath &Path,
2870                                 void *UserData) {
2871  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
2872
2873  FindOverriddenMethodData *Data
2874    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
2875
2876  DeclarationName Name = Data->Method->getDeclName();
2877
2878  // FIXME: Do we care about other names here too?
2879  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2880    // We really want to find the base class destructor here.
2881    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
2882    CanQualType CT = Data->S->Context.getCanonicalType(T);
2883
2884    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
2885  }
2886
2887  for (Path.Decls = BaseRecord->lookup(Name);
2888       Path.Decls.first != Path.Decls.second;
2889       ++Path.Decls.first) {
2890    NamedDecl *D = *Path.Decls.first;
2891    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
2892      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
2893        return true;
2894    }
2895  }
2896
2897  return false;
2898}
2899
2900/// AddOverriddenMethods - See if a method overrides any in the base classes,
2901/// and if so, check that it's a valid override and remember it.
2902void Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
2903  // Look for virtual methods in base classes that this method might override.
2904  CXXBasePaths Paths;
2905  FindOverriddenMethodData Data;
2906  Data.Method = MD;
2907  Data.S = this;
2908  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
2909    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
2910         E = Paths.found_decls_end(); I != E; ++I) {
2911      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2912        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
2913            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
2914            !CheckOverridingFunctionAttributes(MD, OldMD))
2915          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
2916      }
2917    }
2918  }
2919}
2920
2921NamedDecl*
2922Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2923                              QualType R, TypeSourceInfo *TInfo,
2924                              LookupResult &Previous,
2925                              MultiTemplateParamsArg TemplateParamLists,
2926                              bool IsFunctionDefinition, bool &Redeclaration) {
2927  assert(R.getTypePtr()->isFunctionType());
2928
2929  DeclarationName Name = GetNameForDeclarator(D);
2930  FunctionDecl::StorageClass SC = FunctionDecl::None;
2931  switch (D.getDeclSpec().getStorageClassSpec()) {
2932  default: assert(0 && "Unknown storage class!");
2933  case DeclSpec::SCS_auto:
2934  case DeclSpec::SCS_register:
2935  case DeclSpec::SCS_mutable:
2936    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2937         diag::err_typecheck_sclass_func);
2938    D.setInvalidType();
2939    break;
2940  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2941  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2942  case DeclSpec::SCS_static: {
2943    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2944      // C99 6.7.1p5:
2945      //   The declaration of an identifier for a function that has
2946      //   block scope shall have no explicit storage-class specifier
2947      //   other than extern
2948      // See also (C++ [dcl.stc]p4).
2949      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2950           diag::err_static_block_func);
2951      SC = FunctionDecl::None;
2952    } else
2953      SC = FunctionDecl::Static;
2954    break;
2955  }
2956  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2957  }
2958
2959  if (D.getDeclSpec().isThreadSpecified())
2960    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2961
2962  bool isFriend = D.getDeclSpec().isFriendSpecified();
2963  bool isInline = D.getDeclSpec().isInlineSpecified();
2964  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2965  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2966
2967  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
2968  FunctionDecl::StorageClass SCAsWritten
2969    = StorageClassSpecToFunctionDeclStorageClass(SCSpec, DC);
2970
2971  // Check that the return type is not an abstract class type.
2972  // For record types, this is done by the AbstractClassUsageDiagnoser once
2973  // the class has been completely parsed.
2974  if (!DC->isRecord() &&
2975      RequireNonAbstractType(D.getIdentifierLoc(),
2976                             R->getAs<FunctionType>()->getResultType(),
2977                             diag::err_abstract_type_in_decl,
2978                             AbstractReturnType))
2979    D.setInvalidType();
2980
2981  // Do not allow returning a objc interface by-value.
2982  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
2983    Diag(D.getIdentifierLoc(),
2984         diag::err_object_cannot_be_passed_returned_by_value) << 0
2985      << R->getAs<FunctionType>()->getResultType();
2986    D.setInvalidType();
2987  }
2988
2989  bool isVirtualOkay = false;
2990  FunctionDecl *NewFD;
2991
2992  if (isFriend) {
2993    // C++ [class.friend]p5
2994    //   A function can be defined in a friend declaration of a
2995    //   class . . . . Such a function is implicitly inline.
2996    isInline |= IsFunctionDefinition;
2997  }
2998
2999  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
3000    // This is a C++ constructor declaration.
3001    assert(DC->isRecord() &&
3002           "Constructors can only be declared in a member context");
3003
3004    R = CheckConstructorDeclarator(D, R, SC);
3005
3006    // Create the new declaration
3007    NewFD = CXXConstructorDecl::Create(Context,
3008                                       cast<CXXRecordDecl>(DC),
3009                                       D.getIdentifierLoc(), Name, R, TInfo,
3010                                       isExplicit, isInline,
3011                                       /*isImplicitlyDeclared=*/false);
3012  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3013    // This is a C++ destructor declaration.
3014    if (DC->isRecord()) {
3015      R = CheckDestructorDeclarator(D, SC);
3016
3017      NewFD = CXXDestructorDecl::Create(Context,
3018                                        cast<CXXRecordDecl>(DC),
3019                                        D.getIdentifierLoc(), Name, R,
3020                                        isInline,
3021                                        /*isImplicitlyDeclared=*/false);
3022      NewFD->setTypeSourceInfo(TInfo);
3023
3024      isVirtualOkay = true;
3025    } else {
3026      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
3027
3028      // Create a FunctionDecl to satisfy the function definition parsing
3029      // code path.
3030      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
3031                                   Name, R, TInfo, SC, SCAsWritten, isInline,
3032                                   /*hasPrototype=*/true);
3033      D.setInvalidType();
3034    }
3035  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
3036    if (!DC->isRecord()) {
3037      Diag(D.getIdentifierLoc(),
3038           diag::err_conv_function_not_member);
3039      return 0;
3040    }
3041
3042    CheckConversionDeclarator(D, R, SC);
3043    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
3044                                      D.getIdentifierLoc(), Name, R, TInfo,
3045                                      isInline, isExplicit);
3046
3047    isVirtualOkay = true;
3048  } else if (DC->isRecord()) {
3049    // If the of the function is the same as the name of the record, then this
3050    // must be an invalid constructor that has a return type.
3051    // (The parser checks for a return type and makes the declarator a
3052    // constructor if it has no return type).
3053    // must have an invalid constructor that has a return type
3054    if (Name.getAsIdentifierInfo() &&
3055        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
3056      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
3057        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3058        << SourceRange(D.getIdentifierLoc());
3059      return 0;
3060    }
3061
3062    bool isStatic = SC == FunctionDecl::Static;
3063
3064    // [class.free]p1:
3065    // Any allocation function for a class T is a static member
3066    // (even if not explicitly declared static).
3067    if (Name.getCXXOverloadedOperator() == OO_New ||
3068        Name.getCXXOverloadedOperator() == OO_Array_New)
3069      isStatic = true;
3070
3071    // [class.free]p6 Any deallocation function for a class X is a static member
3072    // (even if not explicitly declared static).
3073    if (Name.getCXXOverloadedOperator() == OO_Delete ||
3074        Name.getCXXOverloadedOperator() == OO_Array_Delete)
3075      isStatic = true;
3076
3077    // This is a C++ method declaration.
3078    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
3079                                  D.getIdentifierLoc(), Name, R, TInfo,
3080                                  isStatic, SCAsWritten, isInline);
3081
3082    isVirtualOkay = !isStatic;
3083  } else {
3084    // Determine whether the function was written with a
3085    // prototype. This true when:
3086    //   - we're in C++ (where every function has a prototype),
3087    //   - there is a prototype in the declarator, or
3088    //   - the type R of the function is some kind of typedef or other reference
3089    //     to a type name (which eventually refers to a function type).
3090    bool HasPrototype =
3091       getLangOptions().CPlusPlus ||
3092       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
3093       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
3094
3095    NewFD = FunctionDecl::Create(Context, DC,
3096                                 D.getIdentifierLoc(),
3097                                 Name, R, TInfo, SC, SCAsWritten, isInline,
3098                                 HasPrototype);
3099  }
3100
3101  if (D.isInvalidType())
3102    NewFD->setInvalidDecl();
3103
3104  SetNestedNameSpecifier(NewFD, D);
3105
3106  // Set the lexical context. If the declarator has a C++
3107  // scope specifier, or is the object of a friend declaration, the
3108  // lexical context will be different from the semantic context.
3109  NewFD->setLexicalDeclContext(CurContext);
3110
3111  // Match up the template parameter lists with the scope specifier, then
3112  // determine whether we have a template or a template specialization.
3113  FunctionTemplateDecl *FunctionTemplate = 0;
3114  bool isExplicitSpecialization = false;
3115  bool isFunctionTemplateSpecialization = false;
3116  unsigned NumMatchedTemplateParamLists = TemplateParamLists.size();
3117  if (TemplateParameterList *TemplateParams
3118        = MatchTemplateParametersToScopeSpecifier(
3119                                  D.getDeclSpec().getSourceRange().getBegin(),
3120                                  D.getCXXScopeSpec(),
3121                           (TemplateParameterList**)TemplateParamLists.get(),
3122                                                  TemplateParamLists.size(),
3123                                                  isFriend,
3124                                                  isExplicitSpecialization)) {
3125    // All but one template parameter lists have been matching.
3126    --NumMatchedTemplateParamLists;
3127
3128    if (TemplateParams->size() > 0) {
3129      // This is a function template
3130
3131      // Check that we can declare a template here.
3132      if (CheckTemplateDeclScope(S, TemplateParams))
3133        return 0;
3134
3135      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
3136                                                      NewFD->getLocation(),
3137                                                      Name, TemplateParams,
3138                                                      NewFD);
3139      FunctionTemplate->setLexicalDeclContext(CurContext);
3140      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
3141    } else {
3142      // This is a function template specialization.
3143      isFunctionTemplateSpecialization = true;
3144
3145      // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
3146      if (isFriend && isFunctionTemplateSpecialization) {
3147        // We want to remove the "template<>", found here.
3148        SourceRange RemoveRange = TemplateParams->getSourceRange();
3149
3150        // If we remove the template<> and the name is not a
3151        // template-id, we're actually silently creating a problem:
3152        // the friend declaration will refer to an untemplated decl,
3153        // and clearly the user wants a template specialization.  So
3154        // we need to insert '<>' after the name.
3155        SourceLocation InsertLoc;
3156        if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
3157          InsertLoc = D.getName().getSourceRange().getEnd();
3158          InsertLoc = PP.getLocForEndOfToken(InsertLoc);
3159        }
3160
3161        Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
3162          << Name << RemoveRange
3163          << FixItHint::CreateRemoval(RemoveRange)
3164          << FixItHint::CreateInsertion(InsertLoc, "<>");
3165      }
3166    }
3167  }
3168
3169  if (NumMatchedTemplateParamLists > 0) {
3170    NewFD->setTemplateParameterListsInfo(Context,
3171                                         NumMatchedTemplateParamLists,
3172                        (TemplateParameterList**)TemplateParamLists.release());
3173  }
3174
3175  // C++ [dcl.fct.spec]p5:
3176  //   The virtual specifier shall only be used in declarations of
3177  //   nonstatic class member functions that appear within a
3178  //   member-specification of a class declaration; see 10.3.
3179  //
3180  if (isVirtual && !NewFD->isInvalidDecl()) {
3181    if (!isVirtualOkay) {
3182       Diag(D.getDeclSpec().getVirtualSpecLoc(),
3183           diag::err_virtual_non_function);
3184    } else if (!CurContext->isRecord()) {
3185      // 'virtual' was specified outside of the class.
3186      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
3187        << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
3188    } else {
3189      // Okay: Add virtual to the method.
3190      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
3191      CurClass->setMethodAsVirtual(NewFD);
3192    }
3193  }
3194
3195  // C++ [dcl.fct.spec]p6:
3196  //  The explicit specifier shall be used only in the declaration of a
3197  //  constructor or conversion function within its class definition; see 12.3.1
3198  //  and 12.3.2.
3199  if (isExplicit && !NewFD->isInvalidDecl()) {
3200    if (!CurContext->isRecord()) {
3201      // 'explicit' was specified outside of the class.
3202      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3203           diag::err_explicit_out_of_class)
3204        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3205    } else if (!isa<CXXConstructorDecl>(NewFD) &&
3206               !isa<CXXConversionDecl>(NewFD)) {
3207      // 'explicit' was specified on a function that wasn't a constructor
3208      // or conversion function.
3209      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3210           diag::err_explicit_non_ctor_or_conv_function)
3211        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3212    }
3213  }
3214
3215  // Filter out previous declarations that don't match the scope.
3216  FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
3217
3218  if (isFriend) {
3219    // DC is the namespace in which the function is being declared.
3220    assert((DC->isFileContext() || !Previous.empty()) &&
3221           "previously-undeclared friend function being created "
3222           "in a non-namespace context");
3223
3224    // For now, claim that the objects have no previous declaration.
3225    if (FunctionTemplate) {
3226      FunctionTemplate->setObjectOfFriendDecl(false);
3227      FunctionTemplate->setAccess(AS_public);
3228    }
3229    NewFD->setObjectOfFriendDecl(false);
3230    NewFD->setAccess(AS_public);
3231  }
3232
3233  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
3234      !CurContext->isRecord()) {
3235    // C++ [class.static]p1:
3236    //   A data or function member of a class may be declared static
3237    //   in a class definition, in which case it is a static member of
3238    //   the class.
3239
3240    // Complain about the 'static' specifier if it's on an out-of-line
3241    // member function definition.
3242    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3243         diag::err_static_out_of_line)
3244      << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3245  }
3246
3247  // Handle GNU asm-label extension (encoded as an attribute).
3248  if (Expr *E = (Expr*) D.getAsmLabel()) {
3249    // The parser guarantees this is a string.
3250    StringLiteral *SE = cast<StringLiteral>(E);
3251    NewFD->addAttr(::new (Context) AsmLabelAttr(Context, SE->getString()));
3252  }
3253
3254  // Copy the parameter declarations from the declarator D to the function
3255  // declaration NewFD, if they are available.  First scavenge them into Params.
3256  llvm::SmallVector<ParmVarDecl*, 16> Params;
3257  if (D.getNumTypeObjects() > 0) {
3258    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3259
3260    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
3261    // function that takes no arguments, not a function that takes a
3262    // single void argument.
3263    // We let through "const void" here because Sema::GetTypeForDeclarator
3264    // already checks for that case.
3265    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3266        FTI.ArgInfo[0].Param &&
3267        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
3268      // Empty arg list, don't push any params.
3269      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
3270
3271      // In C++, the empty parameter-type-list must be spelled "void"; a
3272      // typedef of void is not permitted.
3273      if (getLangOptions().CPlusPlus &&
3274          Param->getType().getUnqualifiedType() != Context.VoidTy)
3275        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
3276      // FIXME: Leaks decl?
3277    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
3278      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
3279        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
3280        assert(Param->getDeclContext() != NewFD && "Was set before ?");
3281        Param->setDeclContext(NewFD);
3282        Params.push_back(Param);
3283
3284        if (Param->isInvalidDecl())
3285          NewFD->setInvalidDecl();
3286      }
3287    }
3288
3289  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
3290    // When we're declaring a function with a typedef, typeof, etc as in the
3291    // following example, we'll need to synthesize (unnamed)
3292    // parameters for use in the declaration.
3293    //
3294    // @code
3295    // typedef void fn(int);
3296    // fn f;
3297    // @endcode
3298
3299    // Synthesize a parameter for each argument type.
3300    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
3301         AE = FT->arg_type_end(); AI != AE; ++AI) {
3302      ParmVarDecl *Param =
3303        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
3304      Params.push_back(Param);
3305    }
3306  } else {
3307    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
3308           "Should not need args for typedef of non-prototype fn");
3309  }
3310  // Finally, we know we have the right number of parameters, install them.
3311  NewFD->setParams(Params.data(), Params.size());
3312
3313  // If the declarator is a template-id, translate the parser's template
3314  // argument list into our AST format.
3315  bool HasExplicitTemplateArgs = false;
3316  TemplateArgumentListInfo TemplateArgs;
3317  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
3318    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
3319    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
3320    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
3321    ASTTemplateArgsPtr TemplateArgsPtr(*this,
3322                                       TemplateId->getTemplateArgs(),
3323                                       TemplateId->NumArgs);
3324    translateTemplateArguments(TemplateArgsPtr,
3325                               TemplateArgs);
3326    TemplateArgsPtr.release();
3327
3328    HasExplicitTemplateArgs = true;
3329
3330    if (FunctionTemplate) {
3331      // FIXME: Diagnose function template with explicit template
3332      // arguments.
3333      HasExplicitTemplateArgs = false;
3334    } else if (!isFunctionTemplateSpecialization &&
3335               !D.getDeclSpec().isFriendSpecified()) {
3336      // We have encountered something that the user meant to be a
3337      // specialization (because it has explicitly-specified template
3338      // arguments) but that was not introduced with a "template<>" (or had
3339      // too few of them).
3340      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
3341        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
3342        << FixItHint::CreateInsertion(
3343                                   D.getDeclSpec().getSourceRange().getBegin(),
3344                                                 "template<> ");
3345      isFunctionTemplateSpecialization = true;
3346    } else {
3347      // "friend void foo<>(int);" is an implicit specialization decl.
3348      isFunctionTemplateSpecialization = true;
3349    }
3350  } else if (isFriend && isFunctionTemplateSpecialization) {
3351    // This combination is only possible in a recovery case;  the user
3352    // wrote something like:
3353    //   template <> friend void foo(int);
3354    // which we're recovering from as if the user had written:
3355    //   friend void foo<>(int);
3356    // Go ahead and fake up a template id.
3357    HasExplicitTemplateArgs = true;
3358    TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
3359    TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
3360  }
3361
3362  // If it's a friend (and only if it's a friend), it's possible
3363  // that either the specialized function type or the specialized
3364  // template is dependent, and therefore matching will fail.  In
3365  // this case, don't check the specialization yet.
3366  if (isFunctionTemplateSpecialization && isFriend &&
3367      (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
3368    assert(HasExplicitTemplateArgs &&
3369           "friend function specialization without template args");
3370    if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
3371                                                     Previous))
3372      NewFD->setInvalidDecl();
3373  } else if (isFunctionTemplateSpecialization) {
3374    if (CheckFunctionTemplateSpecialization(NewFD,
3375                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
3376                                            Previous))
3377      NewFD->setInvalidDecl();
3378  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
3379    if (CheckMemberSpecialization(NewFD, Previous))
3380      NewFD->setInvalidDecl();
3381  }
3382
3383  // Perform semantic checking on the function declaration.
3384  bool OverloadableAttrRequired = false; // FIXME: HACK!
3385  CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
3386                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
3387
3388  assert((NewFD->isInvalidDecl() || !Redeclaration ||
3389          Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3390         "previous declaration set still overloaded");
3391
3392  NamedDecl *PrincipalDecl = (FunctionTemplate
3393                              ? cast<NamedDecl>(FunctionTemplate)
3394                              : NewFD);
3395
3396  if (isFriend && Redeclaration) {
3397    AccessSpecifier Access = AS_public;
3398    if (!NewFD->isInvalidDecl())
3399      Access = NewFD->getPreviousDeclaration()->getAccess();
3400
3401    NewFD->setAccess(Access);
3402    if (FunctionTemplate) FunctionTemplate->setAccess(Access);
3403
3404    PrincipalDecl->setObjectOfFriendDecl(true);
3405  }
3406
3407  if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
3408      PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
3409    PrincipalDecl->setNonMemberOperator();
3410
3411  // If we have a function template, check the template parameter
3412  // list. This will check and merge default template arguments.
3413  if (FunctionTemplate) {
3414    FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
3415    CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
3416                      PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
3417             D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate
3418                                                : TPC_FunctionTemplate);
3419  }
3420
3421  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
3422    // Fake up an access specifier if it's supposed to be a class member.
3423    if (!Redeclaration && isa<CXXRecordDecl>(NewFD->getDeclContext()))
3424      NewFD->setAccess(AS_public);
3425
3426    // An out-of-line member function declaration must also be a
3427    // definition (C++ [dcl.meaning]p1).
3428    // Note that this is not the case for explicit specializations of
3429    // function templates or member functions of class templates, per
3430    // C++ [temp.expl.spec]p2.
3431    if (!IsFunctionDefinition && !isFriend &&
3432        !isFunctionTemplateSpecialization && !isExplicitSpecialization) {
3433      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
3434        << D.getCXXScopeSpec().getRange();
3435      NewFD->setInvalidDecl();
3436    } else if (!Redeclaration &&
3437               !(isFriend && CurContext->isDependentContext())) {
3438      // The user tried to provide an out-of-line definition for a
3439      // function that is a member of a class or namespace, but there
3440      // was no such member function declared (C++ [class.mfct]p2,
3441      // C++ [namespace.memdef]p2). For example:
3442      //
3443      // class X {
3444      //   void f() const;
3445      // };
3446      //
3447      // void X::f() { } // ill-formed
3448      //
3449      // Complain about this problem, and attempt to suggest close
3450      // matches (e.g., those that differ only in cv-qualifiers and
3451      // whether the parameter types are references).
3452      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
3453        << Name << DC << D.getCXXScopeSpec().getRange();
3454      NewFD->setInvalidDecl();
3455
3456      LookupResult Prev(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
3457                        ForRedeclaration);
3458      LookupQualifiedName(Prev, DC);
3459      assert(!Prev.isAmbiguous() &&
3460             "Cannot have an ambiguity in previous-declaration lookup");
3461      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3462           Func != FuncEnd; ++Func) {
3463        if (isa<FunctionDecl>(*Func) &&
3464            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
3465          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3466      }
3467    }
3468  }
3469
3470  // Handle attributes. We need to have merged decls when handling attributes
3471  // (for example to check for conflicts, etc).
3472  // FIXME: This needs to happen before we merge declarations. Then,
3473  // let attribute merging cope with attribute conflicts.
3474  ProcessDeclAttributes(S, NewFD, D);
3475
3476  // attributes declared post-definition are currently ignored
3477  if (Redeclaration && Previous.isSingleResult()) {
3478    const FunctionDecl *Def;
3479    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
3480    if (PrevFD && PrevFD->getBody(Def) && D.hasAttributes()) {
3481      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
3482      Diag(Def->getLocation(), diag::note_previous_definition);
3483    }
3484  }
3485
3486  AddKnownFunctionAttributes(NewFD);
3487
3488  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
3489    // If a function name is overloadable in C, then every function
3490    // with that name must be marked "overloadable".
3491    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
3492      << Redeclaration << NewFD;
3493    if (!Previous.empty())
3494      Diag(Previous.getRepresentativeDecl()->getLocation(),
3495           diag::note_attribute_overloadable_prev_overload);
3496    NewFD->addAttr(::new (Context) OverloadableAttr());
3497  }
3498
3499  // If this is a locally-scoped extern C function, update the
3500  // map of such names.
3501  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
3502      && !NewFD->isInvalidDecl())
3503    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
3504
3505  // Set this FunctionDecl's range up to the right paren.
3506  NewFD->setLocEnd(D.getSourceRange().getEnd());
3507
3508  if (FunctionTemplate && NewFD->isInvalidDecl())
3509    FunctionTemplate->setInvalidDecl();
3510
3511  if (FunctionTemplate)
3512    return FunctionTemplate;
3513
3514
3515  // Keep track of static, non-inlined function definitions that
3516  // have not been used. We will warn later.
3517  // FIXME: Also include static functions declared but not defined.
3518  if (!NewFD->isInvalidDecl() && IsFunctionDefinition
3519      && !NewFD->isInlined() && NewFD->getLinkage() == InternalLinkage
3520      && !NewFD->isUsed() && !NewFD->hasAttr<UnusedAttr>()
3521      && !NewFD->hasAttr<ConstructorAttr>()
3522      && !NewFD->hasAttr<DestructorAttr>())
3523    UnusedStaticFuncs.push_back(NewFD);
3524
3525  return NewFD;
3526}
3527
3528/// \brief Perform semantic checking of a new function declaration.
3529///
3530/// Performs semantic analysis of the new function declaration
3531/// NewFD. This routine performs all semantic checking that does not
3532/// require the actual declarator involved in the declaration, and is
3533/// used both for the declaration of functions as they are parsed
3534/// (called via ActOnDeclarator) and for the declaration of functions
3535/// that have been instantiated via C++ template instantiation (called
3536/// via InstantiateDecl).
3537///
3538/// \param IsExplicitSpecialiation whether this new function declaration is
3539/// an explicit specialization of the previous declaration.
3540///
3541/// This sets NewFD->isInvalidDecl() to true if there was an error.
3542void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
3543                                    LookupResult &Previous,
3544                                    bool IsExplicitSpecialization,
3545                                    bool &Redeclaration,
3546                                    bool &OverloadableAttrRequired) {
3547  // If NewFD is already known erroneous, don't do any of this checking.
3548  if (NewFD->isInvalidDecl())
3549    return;
3550
3551  if (NewFD->getResultType()->isVariablyModifiedType()) {
3552    // Functions returning a variably modified type violate C99 6.7.5.2p2
3553    // because all functions have linkage.
3554    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
3555    return NewFD->setInvalidDecl();
3556  }
3557
3558  if (NewFD->isMain())
3559    CheckMain(NewFD);
3560
3561  // Check for a previous declaration of this name.
3562  if (Previous.empty() && NewFD->isExternC()) {
3563    // Since we did not find anything by this name and we're declaring
3564    // an extern "C" function, look for a non-visible extern "C"
3565    // declaration with the same name.
3566    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3567      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
3568    if (Pos != LocallyScopedExternalDecls.end())
3569      Previous.addDecl(Pos->second);
3570  }
3571
3572  // Merge or overload the declaration with an existing declaration of
3573  // the same name, if appropriate.
3574  if (!Previous.empty()) {
3575    // Determine whether NewFD is an overload of PrevDecl or
3576    // a declaration that requires merging. If it's an overload,
3577    // there's no more work to do here; we'll just add the new
3578    // function to the scope.
3579
3580    NamedDecl *OldDecl = 0;
3581    if (!AllowOverloadingOfFunction(Previous, Context)) {
3582      Redeclaration = true;
3583      OldDecl = Previous.getFoundDecl();
3584    } else {
3585      if (!getLangOptions().CPlusPlus) {
3586        OverloadableAttrRequired = true;
3587
3588        // Functions marked "overloadable" must have a prototype (that
3589        // we can't get through declaration merging).
3590        if (!NewFD->getType()->getAs<FunctionProtoType>()) {
3591          Diag(NewFD->getLocation(),
3592               diag::err_attribute_overloadable_no_prototype)
3593            << NewFD;
3594          Redeclaration = true;
3595
3596          // Turn this into a variadic function with no parameters.
3597          QualType R = Context.getFunctionType(
3598                     NewFD->getType()->getAs<FunctionType>()->getResultType(),
3599                     0, 0, true, 0, false, false, 0, 0,
3600                     FunctionType::ExtInfo());
3601          NewFD->setType(R);
3602          return NewFD->setInvalidDecl();
3603        }
3604      }
3605
3606      switch (CheckOverload(S, NewFD, Previous, OldDecl,
3607                            /*NewIsUsingDecl*/ false)) {
3608      case Ovl_Match:
3609        Redeclaration = true;
3610        break;
3611
3612      case Ovl_NonFunction:
3613        Redeclaration = true;
3614        break;
3615
3616      case Ovl_Overload:
3617        Redeclaration = false;
3618        break;
3619      }
3620    }
3621
3622    if (Redeclaration) {
3623      // NewFD and OldDecl represent declarations that need to be
3624      // merged.
3625      if (MergeFunctionDecl(NewFD, OldDecl))
3626        return NewFD->setInvalidDecl();
3627
3628      Previous.clear();
3629      Previous.addDecl(OldDecl);
3630
3631      if (FunctionTemplateDecl *OldTemplateDecl
3632                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
3633        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3634        FunctionTemplateDecl *NewTemplateDecl
3635          = NewFD->getDescribedFunctionTemplate();
3636        assert(NewTemplateDecl && "Template/non-template mismatch");
3637        if (CXXMethodDecl *Method
3638              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
3639          Method->setAccess(OldTemplateDecl->getAccess());
3640          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
3641        }
3642
3643        // If this is an explicit specialization of a member that is a function
3644        // template, mark it as a member specialization.
3645        if (IsExplicitSpecialization &&
3646            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
3647          NewTemplateDecl->setMemberSpecialization();
3648          assert(OldTemplateDecl->isMemberSpecialization());
3649        }
3650      } else {
3651        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3652          NewFD->setAccess(OldDecl->getAccess());
3653        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3654      }
3655    }
3656  }
3657
3658  // Semantic checking for this function declaration (in isolation).
3659  if (getLangOptions().CPlusPlus) {
3660    // C++-specific checks.
3661    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3662      CheckConstructor(Constructor);
3663    } else if (CXXDestructorDecl *Destructor =
3664                dyn_cast<CXXDestructorDecl>(NewFD)) {
3665      CXXRecordDecl *Record = Destructor->getParent();
3666      QualType ClassType = Context.getTypeDeclType(Record);
3667
3668      // FIXME: Shouldn't we be able to perform thisc heck even when the class
3669      // type is dependent? Both gcc and edg can handle that.
3670      if (!ClassType->isDependentType()) {
3671        DeclarationName Name
3672          = Context.DeclarationNames.getCXXDestructorName(
3673                                        Context.getCanonicalType(ClassType));
3674        if (NewFD->getDeclName() != Name) {
3675          Diag(NewFD->getLocation(), diag::err_destructor_name);
3676          return NewFD->setInvalidDecl();
3677        }
3678      }
3679
3680      Record->setUserDeclaredDestructor(true);
3681      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
3682      // user-defined destructor.
3683      Record->setPOD(false);
3684
3685      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
3686      // declared destructor.
3687      // FIXME: C++0x: don't do this for "= default" destructors
3688      Record->setHasTrivialDestructor(false);
3689    } else if (CXXConversionDecl *Conversion
3690               = dyn_cast<CXXConversionDecl>(NewFD)) {
3691      ActOnConversionDeclarator(Conversion);
3692    }
3693
3694    // Find any virtual functions that this function overrides.
3695    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
3696      if (!Method->isFunctionTemplateSpecialization() &&
3697          !Method->getDescribedFunctionTemplate())
3698        AddOverriddenMethods(Method->getParent(), Method);
3699    }
3700
3701    // Additional checks for the destructor; make sure we do this after we
3702    // figure out whether the destructor is virtual.
3703    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(NewFD))
3704      if (!Destructor->getParent()->isDependentType())
3705        CheckDestructor(Destructor);
3706
3707    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3708    if (NewFD->isOverloadedOperator() &&
3709        CheckOverloadedOperatorDeclaration(NewFD))
3710      return NewFD->setInvalidDecl();
3711
3712    // Extra checking for C++0x literal operators (C++0x [over.literal]).
3713    if (NewFD->getLiteralIdentifier() &&
3714        CheckLiteralOperatorDeclaration(NewFD))
3715      return NewFD->setInvalidDecl();
3716
3717    // In C++, check default arguments now that we have merged decls. Unless
3718    // the lexical context is the class, because in this case this is done
3719    // during delayed parsing anyway.
3720    if (!CurContext->isRecord())
3721      CheckCXXDefaultArguments(NewFD);
3722  }
3723}
3724
3725void Sema::CheckMain(FunctionDecl* FD) {
3726  // C++ [basic.start.main]p3:  A program that declares main to be inline
3727  //   or static is ill-formed.
3728  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3729  //   shall not appear in a declaration of main.
3730  // static main is not an error under C99, but we should warn about it.
3731  bool isInline = FD->isInlineSpecified();
3732  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
3733  if (isInline || isStatic) {
3734    unsigned diagID = diag::warn_unusual_main_decl;
3735    if (isInline || getLangOptions().CPlusPlus)
3736      diagID = diag::err_unusual_main_decl;
3737
3738    int which = isStatic + (isInline << 1) - 1;
3739    Diag(FD->getLocation(), diagID) << which;
3740  }
3741
3742  QualType T = FD->getType();
3743  assert(T->isFunctionType() && "function decl is not of function type");
3744  const FunctionType* FT = T->getAs<FunctionType>();
3745
3746  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3747    // TODO: add a replacement fixit to turn the return type into 'int'.
3748    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
3749    FD->setInvalidDecl(true);
3750  }
3751
3752  // Treat protoless main() as nullary.
3753  if (isa<FunctionNoProtoType>(FT)) return;
3754
3755  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
3756  unsigned nparams = FTP->getNumArgs();
3757  assert(FD->getNumParams() == nparams);
3758
3759  bool HasExtraParameters = (nparams > 3);
3760
3761  // Darwin passes an undocumented fourth argument of type char**.  If
3762  // other platforms start sprouting these, the logic below will start
3763  // getting shifty.
3764  if (nparams == 4 &&
3765      Context.Target.getTriple().getOS() == llvm::Triple::Darwin)
3766    HasExtraParameters = false;
3767
3768  if (HasExtraParameters) {
3769    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
3770    FD->setInvalidDecl(true);
3771    nparams = 3;
3772  }
3773
3774  // FIXME: a lot of the following diagnostics would be improved
3775  // if we had some location information about types.
3776
3777  QualType CharPP =
3778    Context.getPointerType(Context.getPointerType(Context.CharTy));
3779  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
3780
3781  for (unsigned i = 0; i < nparams; ++i) {
3782    QualType AT = FTP->getArgType(i);
3783
3784    bool mismatch = true;
3785
3786    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
3787      mismatch = false;
3788    else if (Expected[i] == CharPP) {
3789      // As an extension, the following forms are okay:
3790      //   char const **
3791      //   char const * const *
3792      //   char * const *
3793
3794      QualifierCollector qs;
3795      const PointerType* PT;
3796      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
3797          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
3798          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
3799        qs.removeConst();
3800        mismatch = !qs.empty();
3801      }
3802    }
3803
3804    if (mismatch) {
3805      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
3806      // TODO: suggest replacing given type with expected type
3807      FD->setInvalidDecl(true);
3808    }
3809  }
3810
3811  if (nparams == 1 && !FD->isInvalidDecl()) {
3812    Diag(FD->getLocation(), diag::warn_main_one_arg);
3813  }
3814}
3815
3816bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
3817  // FIXME: Need strict checking.  In C89, we need to check for
3818  // any assignment, increment, decrement, function-calls, or
3819  // commas outside of a sizeof.  In C99, it's the same list,
3820  // except that the aforementioned are allowed in unevaluated
3821  // expressions.  Everything else falls under the
3822  // "may accept other forms of constant expressions" exception.
3823  // (We never end up here for C++, so the constant expression
3824  // rules there don't matter.)
3825  if (Init->isConstantInitializer(Context))
3826    return false;
3827  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
3828    << Init->getSourceRange();
3829  return true;
3830}
3831
3832void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
3833  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
3834}
3835
3836/// AddInitializerToDecl - Adds the initializer Init to the
3837/// declaration dcl. If DirectInit is true, this is C++ direct
3838/// initialization rather than copy initialization.
3839void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
3840  Decl *RealDecl = dcl.getAs<Decl>();
3841  // If there is no declaration, there was an error parsing it.  Just ignore
3842  // the initializer.
3843  if (RealDecl == 0)
3844    return;
3845
3846  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
3847    // With declarators parsed the way they are, the parser cannot
3848    // distinguish between a normal initializer and a pure-specifier.
3849    // Thus this grotesque test.
3850    IntegerLiteral *IL;
3851    Expr *Init = static_cast<Expr *>(init.get());
3852    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
3853        Context.getCanonicalType(IL->getType()) == Context.IntTy)
3854      CheckPureMethod(Method, Init->getSourceRange());
3855    else {
3856      Diag(Method->getLocation(), diag::err_member_function_initialization)
3857        << Method->getDeclName() << Init->getSourceRange();
3858      Method->setInvalidDecl();
3859    }
3860    return;
3861  }
3862
3863  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3864  if (!VDecl) {
3865    if (getLangOptions().CPlusPlus &&
3866        RealDecl->getLexicalDeclContext()->isRecord() &&
3867        isa<NamedDecl>(RealDecl))
3868      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3869        << cast<NamedDecl>(RealDecl)->getDeclName();
3870    else
3871      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3872    RealDecl->setInvalidDecl();
3873    return;
3874  }
3875
3876  // A definition must end up with a complete type, which means it must be
3877  // complete with the restriction that an array type might be completed by the
3878  // initializer; note that later code assumes this restriction.
3879  QualType BaseDeclType = VDecl->getType();
3880  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
3881    BaseDeclType = Array->getElementType();
3882  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
3883                          diag::err_typecheck_decl_incomplete_type)) {
3884    RealDecl->setInvalidDecl();
3885    return;
3886  }
3887
3888  // The variable can not have an abstract class type.
3889  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
3890                             diag::err_abstract_type_in_decl,
3891                             AbstractVariableType))
3892    VDecl->setInvalidDecl();
3893
3894  const VarDecl *Def;
3895  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
3896    Diag(VDecl->getLocation(), diag::err_redefinition)
3897      << VDecl->getDeclName();
3898    Diag(Def->getLocation(), diag::note_previous_definition);
3899    VDecl->setInvalidDecl();
3900    return;
3901  }
3902
3903  // Take ownership of the expression, now that we're sure we have somewhere
3904  // to put it.
3905  Expr *Init = init.takeAs<Expr>();
3906  assert(Init && "missing initializer");
3907
3908  // Capture the variable that is being initialized and the style of
3909  // initialization.
3910  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
3911
3912  // FIXME: Poor source location information.
3913  InitializationKind Kind
3914    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
3915                                                   Init->getLocStart(),
3916                                                   Init->getLocEnd())
3917                : InitializationKind::CreateCopy(VDecl->getLocation(),
3918                                                 Init->getLocStart());
3919
3920  // Get the decls type and save a reference for later, since
3921  // CheckInitializerTypes may change it.
3922  QualType DclT = VDecl->getType(), SavT = DclT;
3923  if (VDecl->isBlockVarDecl()) {
3924    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
3925      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
3926      VDecl->setInvalidDecl();
3927    } else if (!VDecl->isInvalidDecl()) {
3928      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
3929      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3930                                          MultiExprArg(*this, (void**)&Init, 1),
3931                                                &DclT);
3932      if (Result.isInvalid()) {
3933        VDecl->setInvalidDecl();
3934        return;
3935      }
3936
3937      Init = Result.takeAs<Expr>();
3938
3939      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3940      // Don't check invalid declarations to avoid emitting useless diagnostics.
3941      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3942        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
3943          CheckForConstantInitializer(Init, DclT);
3944      }
3945    }
3946  } else if (VDecl->isStaticDataMember() &&
3947             VDecl->getLexicalDeclContext()->isRecord()) {
3948    // This is an in-class initialization for a static data member, e.g.,
3949    //
3950    // struct S {
3951    //   static const int value = 17;
3952    // };
3953
3954    // Attach the initializer
3955    VDecl->setInit(Init);
3956
3957    // C++ [class.mem]p4:
3958    //   A member-declarator can contain a constant-initializer only
3959    //   if it declares a static member (9.4) of const integral or
3960    //   const enumeration type, see 9.4.2.
3961    QualType T = VDecl->getType();
3962    if (!T->isDependentType() &&
3963        (!Context.getCanonicalType(T).isConstQualified() ||
3964         !T->isIntegralOrEnumerationType())) {
3965      Diag(VDecl->getLocation(), diag::err_member_initialization)
3966        << VDecl->getDeclName() << Init->getSourceRange();
3967      VDecl->setInvalidDecl();
3968    } else {
3969      // C++ [class.static.data]p4:
3970      //   If a static data member is of const integral or const
3971      //   enumeration type, its declaration in the class definition
3972      //   can specify a constant-initializer which shall be an
3973      //   integral constant expression (5.19).
3974      if (!Init->isTypeDependent() &&
3975          !Init->getType()->isIntegralOrEnumerationType()) {
3976        // We have a non-dependent, non-integral or enumeration type.
3977        Diag(Init->getSourceRange().getBegin(),
3978             diag::err_in_class_initializer_non_integral_type)
3979          << Init->getType() << Init->getSourceRange();
3980        VDecl->setInvalidDecl();
3981      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
3982        // Check whether the expression is a constant expression.
3983        llvm::APSInt Value;
3984        SourceLocation Loc;
3985        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
3986          Diag(Loc, diag::err_in_class_initializer_non_constant)
3987            << Init->getSourceRange();
3988          VDecl->setInvalidDecl();
3989        } else if (!VDecl->getType()->isDependentType())
3990          ImpCastExprToType(Init, VDecl->getType(), CastExpr::CK_IntegralCast);
3991      }
3992    }
3993  } else if (VDecl->isFileVarDecl()) {
3994    if (VDecl->getStorageClass() == VarDecl::Extern &&
3995        (!getLangOptions().CPlusPlus ||
3996         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
3997      Diag(VDecl->getLocation(), diag::warn_extern_init);
3998    if (!VDecl->isInvalidDecl()) {
3999      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4000      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4001                                          MultiExprArg(*this, (void**)&Init, 1),
4002                                                &DclT);
4003      if (Result.isInvalid()) {
4004        VDecl->setInvalidDecl();
4005        return;
4006      }
4007
4008      Init = Result.takeAs<Expr>();
4009    }
4010
4011    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4012    // Don't check invalid declarations to avoid emitting useless diagnostics.
4013    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4014      // C99 6.7.8p4. All file scoped initializers need to be constant.
4015      CheckForConstantInitializer(Init, DclT);
4016    }
4017  }
4018  // If the type changed, it means we had an incomplete type that was
4019  // completed by the initializer. For example:
4020  //   int ary[] = { 1, 3, 5 };
4021  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
4022  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
4023    VDecl->setType(DclT);
4024    Init->setType(DclT);
4025  }
4026
4027  Init = MaybeCreateCXXExprWithTemporaries(Init);
4028  // Attach the initializer to the decl.
4029  VDecl->setInit(Init);
4030
4031  if (getLangOptions().CPlusPlus) {
4032    // Make sure we mark the destructor as used if necessary.
4033    QualType InitType = VDecl->getType();
4034    while (const ArrayType *Array = Context.getAsArrayType(InitType))
4035      InitType = Context.getBaseElementType(Array);
4036    if (const RecordType *Record = InitType->getAs<RecordType>())
4037      FinalizeVarWithDestructor(VDecl, Record);
4038  }
4039
4040  return;
4041}
4042
4043/// ActOnInitializerError - Given that there was an error parsing an
4044/// initializer for the given declaration, try to return to some form
4045/// of sanity.
4046void Sema::ActOnInitializerError(DeclPtrTy dcl) {
4047  // Our main concern here is re-establishing invariants like "a
4048  // variable's type is either dependent or complete".
4049  Decl *D = dcl.getAs<Decl>();
4050  if (!D || D->isInvalidDecl()) return;
4051
4052  VarDecl *VD = dyn_cast<VarDecl>(D);
4053  if (!VD) return;
4054
4055  QualType Ty = VD->getType();
4056  if (Ty->isDependentType()) return;
4057
4058  // Require a complete type.
4059  if (RequireCompleteType(VD->getLocation(),
4060                          Context.getBaseElementType(Ty),
4061                          diag::err_typecheck_decl_incomplete_type)) {
4062    VD->setInvalidDecl();
4063    return;
4064  }
4065
4066  // Require an abstract type.
4067  if (RequireNonAbstractType(VD->getLocation(), Ty,
4068                             diag::err_abstract_type_in_decl,
4069                             AbstractVariableType)) {
4070    VD->setInvalidDecl();
4071    return;
4072  }
4073
4074  // Don't bother complaining about constructors or destructors,
4075  // though.
4076}
4077
4078void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
4079                                  bool TypeContainsUndeducedAuto) {
4080  Decl *RealDecl = dcl.getAs<Decl>();
4081
4082  // If there is no declaration, there was an error parsing it. Just ignore it.
4083  if (RealDecl == 0)
4084    return;
4085
4086  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
4087    QualType Type = Var->getType();
4088
4089    // C++0x [dcl.spec.auto]p3
4090    if (TypeContainsUndeducedAuto) {
4091      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
4092        << Var->getDeclName() << Type;
4093      Var->setInvalidDecl();
4094      return;
4095    }
4096
4097    switch (Var->isThisDeclarationADefinition()) {
4098    case VarDecl::Definition:
4099      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
4100        break;
4101
4102      // We have an out-of-line definition of a static data member
4103      // that has an in-class initializer, so we type-check this like
4104      // a declaration.
4105      //
4106      // Fall through
4107
4108    case VarDecl::DeclarationOnly:
4109      // It's only a declaration.
4110
4111      // Block scope. C99 6.7p7: If an identifier for an object is
4112      // declared with no linkage (C99 6.2.2p6), the type for the
4113      // object shall be complete.
4114      if (!Type->isDependentType() && Var->isBlockVarDecl() &&
4115          !Var->getLinkage() && !Var->isInvalidDecl() &&
4116          RequireCompleteType(Var->getLocation(), Type,
4117                              diag::err_typecheck_decl_incomplete_type))
4118        Var->setInvalidDecl();
4119
4120      // Make sure that the type is not abstract.
4121      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
4122          RequireNonAbstractType(Var->getLocation(), Type,
4123                                 diag::err_abstract_type_in_decl,
4124                                 AbstractVariableType))
4125        Var->setInvalidDecl();
4126      return;
4127
4128    case VarDecl::TentativeDefinition:
4129      // File scope. C99 6.9.2p2: A declaration of an identifier for an
4130      // object that has file scope without an initializer, and without a
4131      // storage-class specifier or with the storage-class specifier "static",
4132      // constitutes a tentative definition. Note: A tentative definition with
4133      // external linkage is valid (C99 6.2.2p5).
4134      if (!Var->isInvalidDecl()) {
4135        if (const IncompleteArrayType *ArrayT
4136                                    = Context.getAsIncompleteArrayType(Type)) {
4137          if (RequireCompleteType(Var->getLocation(),
4138                                  ArrayT->getElementType(),
4139                                  diag::err_illegal_decl_array_incomplete_type))
4140            Var->setInvalidDecl();
4141        } else if (Var->getStorageClass() == VarDecl::Static) {
4142          // C99 6.9.2p3: If the declaration of an identifier for an object is
4143          // a tentative definition and has internal linkage (C99 6.2.2p3), the
4144          // declared type shall not be an incomplete type.
4145          // NOTE: code such as the following
4146          //     static struct s;
4147          //     struct s { int a; };
4148          // is accepted by gcc. Hence here we issue a warning instead of
4149          // an error and we do not invalidate the static declaration.
4150          // NOTE: to avoid multiple warnings, only check the first declaration.
4151          if (Var->getPreviousDeclaration() == 0)
4152            RequireCompleteType(Var->getLocation(), Type,
4153                                diag::ext_typecheck_decl_incomplete_type);
4154        }
4155      }
4156
4157      // Record the tentative definition; we're done.
4158      if (!Var->isInvalidDecl())
4159        TentativeDefinitions.push_back(Var);
4160      return;
4161    }
4162
4163    // Provide a specific diagnostic for uninitialized variable
4164    // definitions with incomplete array type.
4165    if (Type->isIncompleteArrayType()) {
4166      Diag(Var->getLocation(),
4167           diag::err_typecheck_incomplete_array_needs_initializer);
4168      Var->setInvalidDecl();
4169      return;
4170    }
4171
4172   // Provide a specific diagnostic for uninitialized variable
4173   // definitions with reference type.
4174   if (Type->isReferenceType()) {
4175     Diag(Var->getLocation(), diag::err_reference_var_requires_init)
4176       << Var->getDeclName()
4177       << SourceRange(Var->getLocation(), Var->getLocation());
4178     Var->setInvalidDecl();
4179     return;
4180   }
4181
4182    // Do not attempt to type-check the default initializer for a
4183    // variable with dependent type.
4184    if (Type->isDependentType())
4185      return;
4186
4187    if (Var->isInvalidDecl())
4188      return;
4189
4190    if (RequireCompleteType(Var->getLocation(),
4191                            Context.getBaseElementType(Type),
4192                            diag::err_typecheck_decl_incomplete_type)) {
4193      Var->setInvalidDecl();
4194      return;
4195    }
4196
4197    // The variable can not have an abstract class type.
4198    if (RequireNonAbstractType(Var->getLocation(), Type,
4199                               diag::err_abstract_type_in_decl,
4200                               AbstractVariableType)) {
4201      Var->setInvalidDecl();
4202      return;
4203    }
4204
4205    const RecordType *Record
4206      = Context.getBaseElementType(Type)->getAs<RecordType>();
4207    if (Record && getLangOptions().CPlusPlus && !getLangOptions().CPlusPlus0x &&
4208        cast<CXXRecordDecl>(Record->getDecl())->isPOD()) {
4209      // C++03 [dcl.init]p9:
4210      //   If no initializer is specified for an object, and the
4211      //   object is of (possibly cv-qualified) non-POD class type (or
4212      //   array thereof), the object shall be default-initialized; if
4213      //   the object is of const-qualified type, the underlying class
4214      //   type shall have a user-declared default
4215      //   constructor. Otherwise, if no initializer is specified for
4216      //   a non- static object, the object and its subobjects, if
4217      //   any, have an indeterminate initial value); if the object
4218      //   or any of its subobjects are of const-qualified type, the
4219      //   program is ill-formed.
4220      // FIXME: DPG thinks it is very fishy that C++0x disables this.
4221    } else {
4222      InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
4223      InitializationKind Kind
4224        = InitializationKind::CreateDefault(Var->getLocation());
4225
4226      InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
4227      OwningExprResult Init = InitSeq.Perform(*this, Entity, Kind,
4228                                              MultiExprArg(*this, 0, 0));
4229      if (Init.isInvalid())
4230        Var->setInvalidDecl();
4231      else if (Init.get())
4232        Var->setInit(MaybeCreateCXXExprWithTemporaries(Init.takeAs<Expr>()));
4233    }
4234
4235    if (!Var->isInvalidDecl() && getLangOptions().CPlusPlus && Record)
4236      FinalizeVarWithDestructor(Var, Record);
4237  }
4238}
4239
4240Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
4241                                                   DeclPtrTy *Group,
4242                                                   unsigned NumDecls) {
4243  llvm::SmallVector<Decl*, 8> Decls;
4244
4245  if (DS.isTypeSpecOwned())
4246    Decls.push_back((Decl*)DS.getTypeRep());
4247
4248  for (unsigned i = 0; i != NumDecls; ++i)
4249    if (Decl *D = Group[i].getAs<Decl>())
4250      Decls.push_back(D);
4251
4252  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
4253                                                   Decls.data(), Decls.size()));
4254}
4255
4256
4257/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
4258/// to introduce parameters into function prototype scope.
4259Sema::DeclPtrTy
4260Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
4261  const DeclSpec &DS = D.getDeclSpec();
4262
4263  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
4264  VarDecl::StorageClass StorageClass = VarDecl::None;
4265  VarDecl::StorageClass StorageClassAsWritten = VarDecl::None;
4266  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
4267    StorageClass = VarDecl::Register;
4268    StorageClassAsWritten = VarDecl::Register;
4269  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
4270    Diag(DS.getStorageClassSpecLoc(),
4271         diag::err_invalid_storage_class_in_func_decl);
4272    D.getMutableDeclSpec().ClearStorageClassSpecs();
4273  }
4274
4275  if (D.getDeclSpec().isThreadSpecified())
4276    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4277
4278  DiagnoseFunctionSpecifiers(D);
4279
4280  // Check that there are no default arguments inside the type of this
4281  // parameter (C++ only).
4282  if (getLangOptions().CPlusPlus)
4283    CheckExtraCXXDefaultArguments(D);
4284
4285  TagDecl *OwnedDecl = 0;
4286  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
4287  QualType parmDeclType = TInfo->getType();
4288
4289  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
4290    // C++ [dcl.fct]p6:
4291    //   Types shall not be defined in return or parameter types.
4292    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
4293      << Context.getTypeDeclType(OwnedDecl);
4294  }
4295
4296  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
4297  IdentifierInfo *II = D.getIdentifier();
4298  if (II) {
4299    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
4300                   ForRedeclaration);
4301    LookupName(R, S);
4302    if (R.isSingleResult()) {
4303      NamedDecl *PrevDecl = R.getFoundDecl();
4304      if (PrevDecl->isTemplateParameter()) {
4305        // Maybe we will complain about the shadowed template parameter.
4306        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4307        // Just pretend that we didn't see the previous declaration.
4308        PrevDecl = 0;
4309      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
4310        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
4311        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4312
4313        // Recover by removing the name
4314        II = 0;
4315        D.SetIdentifier(0, D.getIdentifierLoc());
4316        D.setInvalidType(true);
4317      }
4318    }
4319  }
4320
4321  // Temporarily put parameter variables in the translation unit, not
4322  // the enclosing context.  This prevents them from accidentally
4323  // looking like class members in C++.
4324  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
4325                                    TInfo, parmDeclType, II,
4326                                    D.getIdentifierLoc(),
4327                                    StorageClass, StorageClassAsWritten);
4328
4329  if (D.isInvalidType())
4330    New->setInvalidDecl();
4331
4332  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
4333  if (D.getCXXScopeSpec().isSet()) {
4334    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
4335      << D.getCXXScopeSpec().getRange();
4336    New->setInvalidDecl();
4337  }
4338
4339  // Add the parameter declaration into this scope.
4340  S->AddDecl(DeclPtrTy::make(New));
4341  if (II)
4342    IdResolver.AddDecl(New);
4343
4344  ProcessDeclAttributes(S, New, D);
4345
4346  if (New->hasAttr<BlocksAttr>()) {
4347    Diag(New->getLocation(), diag::err_block_on_nonlocal);
4348  }
4349  return DeclPtrTy::make(New);
4350}
4351
4352/// \brief Synthesizes a variable for a parameter arising from a
4353/// typedef.
4354ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
4355                                              SourceLocation Loc,
4356                                              QualType T) {
4357  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, 0,
4358                                T, Context.getTrivialTypeSourceInfo(T, Loc),
4359                                           VarDecl::None, VarDecl::None, 0);
4360  Param->setImplicit();
4361  return Param;
4362}
4363
4364ParmVarDecl *Sema::CheckParameter(DeclContext *DC,
4365                                  TypeSourceInfo *TSInfo, QualType T,
4366                                  IdentifierInfo *Name,
4367                                  SourceLocation NameLoc,
4368                                  VarDecl::StorageClass StorageClass,
4369                                  VarDecl::StorageClass StorageClassAsWritten) {
4370  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, NameLoc, Name,
4371                                         adjustParameterType(T), TSInfo,
4372                                         StorageClass, StorageClassAsWritten,
4373                                         0);
4374
4375  // Parameters can not be abstract class types.
4376  // For record types, this is done by the AbstractClassUsageDiagnoser once
4377  // the class has been completely parsed.
4378  if (!CurContext->isRecord() &&
4379      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
4380                             AbstractParamType))
4381    New->setInvalidDecl();
4382
4383  // Parameter declarators cannot be interface types. All ObjC objects are
4384  // passed by reference.
4385  if (T->isObjCObjectType()) {
4386    Diag(NameLoc,
4387         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
4388    New->setInvalidDecl();
4389  }
4390
4391  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
4392  // duration shall not be qualified by an address-space qualifier."
4393  // Since all parameters have automatic store duration, they can not have
4394  // an address space.
4395  if (T.getAddressSpace() != 0) {
4396    Diag(NameLoc, diag::err_arg_with_address_space);
4397    New->setInvalidDecl();
4398  }
4399
4400  return New;
4401}
4402
4403void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
4404                                           SourceLocation LocAfterDecls) {
4405  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4406         "Not a function declarator!");
4407  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4408
4409  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
4410  // for a K&R function.
4411  if (!FTI.hasPrototype) {
4412    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
4413      --i;
4414      if (FTI.ArgInfo[i].Param == 0) {
4415        llvm::SmallString<256> Code;
4416        llvm::raw_svector_ostream(Code) << "  int "
4417                                        << FTI.ArgInfo[i].Ident->getName()
4418                                        << ";\n";
4419        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
4420          << FTI.ArgInfo[i].Ident
4421          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
4422
4423        // Implicitly declare the argument as type 'int' for lack of a better
4424        // type.
4425        DeclSpec DS;
4426        const char* PrevSpec; // unused
4427        unsigned DiagID; // unused
4428        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
4429                           PrevSpec, DiagID);
4430        Declarator ParamD(DS, Declarator::KNRTypeListContext);
4431        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
4432        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
4433      }
4434    }
4435  }
4436}
4437
4438Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
4439                                              Declarator &D) {
4440  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4441  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4442         "Not a function declarator!");
4443  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4444
4445  if (FTI.hasPrototype) {
4446    // FIXME: Diagnose arguments without names in C.
4447  }
4448
4449  Scope *ParentScope = FnBodyScope->getParent();
4450
4451  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
4452                                  MultiTemplateParamsArg(*this),
4453                                  /*IsFunctionDefinition=*/true);
4454  return ActOnStartOfFunctionDef(FnBodyScope, DP);
4455}
4456
4457static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
4458  // Don't warn about invalid declarations.
4459  if (FD->isInvalidDecl())
4460    return false;
4461
4462  // Or declarations that aren't global.
4463  if (!FD->isGlobal())
4464    return false;
4465
4466  // Don't warn about C++ member functions.
4467  if (isa<CXXMethodDecl>(FD))
4468    return false;
4469
4470  // Don't warn about 'main'.
4471  if (FD->isMain())
4472    return false;
4473
4474  // Don't warn about inline functions.
4475  if (FD->isInlineSpecified())
4476    return false;
4477
4478  // Don't warn about function templates.
4479  if (FD->getDescribedFunctionTemplate())
4480    return false;
4481
4482  // Don't warn about function template specializations.
4483  if (FD->isFunctionTemplateSpecialization())
4484    return false;
4485
4486  bool MissingPrototype = true;
4487  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
4488       Prev; Prev = Prev->getPreviousDeclaration()) {
4489    // Ignore any declarations that occur in function or method
4490    // scope, because they aren't visible from the header.
4491    if (Prev->getDeclContext()->isFunctionOrMethod())
4492      continue;
4493
4494    MissingPrototype = !Prev->getType()->isFunctionProtoType();
4495    break;
4496  }
4497
4498  return MissingPrototype;
4499}
4500
4501Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
4502  // Clear the last template instantiation error context.
4503  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
4504
4505  if (!D)
4506    return D;
4507  FunctionDecl *FD = 0;
4508
4509  if (FunctionTemplateDecl *FunTmpl
4510        = dyn_cast<FunctionTemplateDecl>(D.getAs<Decl>()))
4511    FD = FunTmpl->getTemplatedDecl();
4512  else
4513    FD = cast<FunctionDecl>(D.getAs<Decl>());
4514
4515  // Enter a new function scope
4516  PushFunctionScope();
4517
4518  // See if this is a redefinition.
4519  // But don't complain if we're in GNU89 mode and the previous definition
4520  // was an extern inline function.
4521  const FunctionDecl *Definition;
4522  if (FD->getBody(Definition) &&
4523      !canRedefineFunction(Definition, getLangOptions())) {
4524    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
4525    Diag(Definition->getLocation(), diag::note_previous_definition);
4526  }
4527
4528  // Builtin functions cannot be defined.
4529  if (unsigned BuiltinID = FD->getBuiltinID()) {
4530    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
4531      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
4532      FD->setInvalidDecl();
4533    }
4534  }
4535
4536  // The return type of a function definition must be complete
4537  // (C99 6.9.1p3, C++ [dcl.fct]p6).
4538  QualType ResultType = FD->getResultType();
4539  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
4540      !FD->isInvalidDecl() &&
4541      RequireCompleteType(FD->getLocation(), ResultType,
4542                          diag::err_func_def_incomplete_result))
4543    FD->setInvalidDecl();
4544
4545  // GNU warning -Wmissing-prototypes:
4546  //   Warn if a global function is defined without a previous
4547  //   prototype declaration. This warning is issued even if the
4548  //   definition itself provides a prototype. The aim is to detect
4549  //   global functions that fail to be declared in header files.
4550  if (ShouldWarnAboutMissingPrototype(FD))
4551    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
4552
4553  if (FnBodyScope)
4554    PushDeclContext(FnBodyScope, FD);
4555
4556  // Check the validity of our function parameters
4557  CheckParmsForFunctionDef(FD);
4558
4559  bool ShouldCheckShadow =
4560    Diags.getDiagnosticLevel(diag::warn_decl_shadow) != Diagnostic::Ignored;
4561
4562  // Introduce our parameters into the function scope
4563  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
4564    ParmVarDecl *Param = FD->getParamDecl(p);
4565    Param->setOwningFunction(FD);
4566
4567    // If this has an identifier, add it to the scope stack.
4568    if (Param->getIdentifier() && FnBodyScope) {
4569      if (ShouldCheckShadow)
4570        CheckShadow(FnBodyScope, Param);
4571
4572      PushOnScopeChains(Param, FnBodyScope);
4573    }
4574  }
4575
4576  // Checking attributes of current function definition
4577  // dllimport attribute.
4578  if (FD->getAttr<DLLImportAttr>() &&
4579      (!FD->getAttr<DLLExportAttr>())) {
4580    // dllimport attribute cannot be applied to definition.
4581    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
4582      Diag(FD->getLocation(),
4583           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
4584        << "dllimport";
4585      FD->setInvalidDecl();
4586      return DeclPtrTy::make(FD);
4587    }
4588
4589    // Visual C++ appears to not think this is an issue, so only issue
4590    // a warning when Microsoft extensions are disabled.
4591    if (!LangOpts.Microsoft) {
4592      // If a symbol previously declared dllimport is later defined, the
4593      // attribute is ignored in subsequent references, and a warning is
4594      // emitted.
4595      Diag(FD->getLocation(),
4596           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
4597        << FD->getNameAsCString() << "dllimport";
4598    }
4599  }
4600  return DeclPtrTy::make(FD);
4601}
4602
4603/// \brief Given the set of return statements within a function body,
4604/// compute the variables that are subject to the named return value
4605/// optimization.
4606///
4607/// Each of the variables that is subject to the named return value
4608/// optimization will be marked as NRVO variables in the AST, and any
4609/// return statement that has a marked NRVO variable as its NRVO candidate can
4610/// use the named return value optimization.
4611///
4612/// This function applies a very simplistic algorithm for NRVO: if every return
4613/// statement in the function has the same NRVO candidate, that candidate is
4614/// the NRVO variable.
4615///
4616/// FIXME: Employ a smarter algorithm that accounts for multiple return
4617/// statements and the lifetimes of the NRVO candidates. We should be able to
4618/// find a maximal set of NRVO variables.
4619static void ComputeNRVO(Stmt *Body, ReturnStmt **Returns, unsigned NumReturns) {
4620  const VarDecl *NRVOCandidate = 0;
4621  for (unsigned I = 0; I != NumReturns; ++I) {
4622    if (!Returns[I]->getNRVOCandidate())
4623      return;
4624
4625    if (!NRVOCandidate)
4626      NRVOCandidate = Returns[I]->getNRVOCandidate();
4627    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
4628      return;
4629  }
4630
4631  if (NRVOCandidate)
4632    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
4633}
4634
4635Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
4636  return ActOnFinishFunctionBody(D, move(BodyArg), false);
4637}
4638
4639Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
4640                                              bool IsInstantiation) {
4641  Decl *dcl = D.getAs<Decl>();
4642  Stmt *Body = BodyArg.takeAs<Stmt>();
4643
4644  FunctionDecl *FD = 0;
4645  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
4646  if (FunTmpl)
4647    FD = FunTmpl->getTemplatedDecl();
4648  else
4649    FD = dyn_cast_or_null<FunctionDecl>(dcl);
4650
4651  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
4652
4653  if (FD) {
4654    FD->setBody(Body);
4655    if (FD->isMain()) {
4656      // C and C++ allow for main to automagically return 0.
4657      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
4658      FD->setHasImplicitReturnZero(true);
4659      WP.disableCheckFallThrough();
4660    }
4661
4662    if (!FD->isInvalidDecl()) {
4663      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
4664
4665      // If this is a constructor, we need a vtable.
4666      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
4667        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
4668
4669      ComputeNRVO(Body, FunctionScopes.back()->Returns.data(),
4670                  FunctionScopes.back()->Returns.size());
4671    }
4672
4673    assert(FD == getCurFunctionDecl() && "Function parsing confused");
4674  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
4675    assert(MD == getCurMethodDecl() && "Method parsing confused");
4676    MD->setBody(Body);
4677    MD->setEndLoc(Body->getLocEnd());
4678    if (!MD->isInvalidDecl())
4679      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
4680  } else {
4681    Body->Destroy(Context);
4682    return DeclPtrTy();
4683  }
4684
4685  // Verify and clean out per-function state.
4686
4687  // Check goto/label use.
4688  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
4689       I = getLabelMap().begin(), E = getLabelMap().end(); I != E; ++I) {
4690    LabelStmt *L = I->second;
4691
4692    // Verify that we have no forward references left.  If so, there was a goto
4693    // or address of a label taken, but no definition of it.  Label fwd
4694    // definitions are indicated with a null substmt.
4695    if (L->getSubStmt() != 0)
4696      continue;
4697
4698    // Emit error.
4699    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
4700
4701    // At this point, we have gotos that use the bogus label.  Stitch it into
4702    // the function body so that they aren't leaked and that the AST is well
4703    // formed.
4704    if (Body == 0) {
4705      // The whole function wasn't parsed correctly, just delete this.
4706      L->Destroy(Context);
4707      continue;
4708    }
4709
4710    // Otherwise, the body is valid: we want to stitch the label decl into the
4711    // function somewhere so that it is properly owned and so that the goto
4712    // has a valid target.  Do this by creating a new compound stmt with the
4713    // label in it.
4714
4715    // Give the label a sub-statement.
4716    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
4717
4718    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
4719                               cast<CXXTryStmt>(Body)->getTryBlock() :
4720                               cast<CompoundStmt>(Body);
4721    llvm::SmallVector<Stmt*, 64> Elements(Compound->body_begin(),
4722                                          Compound->body_end());
4723    Elements.push_back(L);
4724    Compound->setStmts(Context, Elements.data(), Elements.size());
4725  }
4726
4727  if (Body) {
4728    // C++ constructors that have function-try-blocks can't have return
4729    // statements in the handlers of that block. (C++ [except.handle]p14)
4730    // Verify this.
4731    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
4732      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
4733
4734    // Verify that that gotos and switch cases don't jump into scopes illegally.
4735    // Verify that that gotos and switch cases don't jump into scopes illegally.
4736    if (FunctionNeedsScopeChecking() &&
4737        !dcl->isInvalidDecl() &&
4738        !hasAnyErrorsInThisFunction())
4739      DiagnoseInvalidJumps(Body);
4740
4741    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
4742      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
4743                                             Destructor->getParent());
4744
4745    // If any errors have occurred, clear out any temporaries that may have
4746    // been leftover. This ensures that these temporaries won't be picked up for
4747    // deletion in some later function.
4748    if (PP.getDiagnostics().hasErrorOccurred())
4749      ExprTemporaries.clear();
4750    else if (!isa<FunctionTemplateDecl>(dcl)) {
4751      // Since the body is valid, issue any analysis-based warnings that are
4752      // enabled.
4753      QualType ResultType;
4754      if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(dcl)) {
4755        ResultType = FD->getResultType();
4756      }
4757      else {
4758        ObjCMethodDecl *MD = cast<ObjCMethodDecl>(dcl);
4759        ResultType = MD->getResultType();
4760      }
4761      AnalysisWarnings.IssueWarnings(WP, dcl);
4762    }
4763
4764    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
4765  }
4766
4767  if (!IsInstantiation)
4768    PopDeclContext();
4769
4770  PopFunctionOrBlockScope();
4771
4772  // If any errors have occurred, clear out any temporaries that may have
4773  // been leftover. This ensures that these temporaries won't be picked up for
4774  // deletion in some later function.
4775  if (getDiagnostics().hasErrorOccurred())
4776    ExprTemporaries.clear();
4777
4778  return D;
4779}
4780
4781/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
4782/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
4783NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
4784                                          IdentifierInfo &II, Scope *S) {
4785  // Before we produce a declaration for an implicitly defined
4786  // function, see whether there was a locally-scoped declaration of
4787  // this name as a function or variable. If so, use that
4788  // (non-visible) declaration, and complain about it.
4789  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4790    = LocallyScopedExternalDecls.find(&II);
4791  if (Pos != LocallyScopedExternalDecls.end()) {
4792    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
4793    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
4794    return Pos->second;
4795  }
4796
4797  // Extension in C99.  Legal in C90, but warn about it.
4798  if (II.getName().startswith("__builtin_"))
4799    Diag(Loc, diag::warn_builtin_unknown) << &II;
4800  else if (getLangOptions().C99)
4801    Diag(Loc, diag::ext_implicit_function_decl) << &II;
4802  else
4803    Diag(Loc, diag::warn_implicit_function_decl) << &II;
4804
4805  // Set a Declarator for the implicit definition: int foo();
4806  const char *Dummy;
4807  DeclSpec DS;
4808  unsigned DiagID;
4809  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
4810  Error = Error; // Silence warning.
4811  assert(!Error && "Error setting up implicit decl!");
4812  Declarator D(DS, Declarator::BlockContext);
4813  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
4814                                             0, 0, false, SourceLocation(),
4815                                             false, 0,0,0, Loc, Loc, D),
4816                SourceLocation());
4817  D.SetIdentifier(&II, Loc);
4818
4819  // Insert this function into translation-unit scope.
4820
4821  DeclContext *PrevDC = CurContext;
4822  CurContext = Context.getTranslationUnitDecl();
4823
4824  FunctionDecl *FD =
4825 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
4826  FD->setImplicit();
4827
4828  CurContext = PrevDC;
4829
4830  AddKnownFunctionAttributes(FD);
4831
4832  return FD;
4833}
4834
4835/// \brief Adds any function attributes that we know a priori based on
4836/// the declaration of this function.
4837///
4838/// These attributes can apply both to implicitly-declared builtins
4839/// (like __builtin___printf_chk) or to library-declared functions
4840/// like NSLog or printf.
4841void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
4842  if (FD->isInvalidDecl())
4843    return;
4844
4845  // If this is a built-in function, map its builtin attributes to
4846  // actual attributes.
4847  if (unsigned BuiltinID = FD->getBuiltinID()) {
4848    // Handle printf-formatting attributes.
4849    unsigned FormatIdx;
4850    bool HasVAListArg;
4851    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
4852      if (!FD->getAttr<FormatAttr>())
4853        FD->addAttr(::new (Context) FormatAttr(Context, "printf", FormatIdx+1,
4854                                               HasVAListArg ? 0 : FormatIdx+2));
4855    }
4856
4857    // Mark const if we don't care about errno and that is the only
4858    // thing preventing the function from being const. This allows
4859    // IRgen to use LLVM intrinsics for such functions.
4860    if (!getLangOptions().MathErrno &&
4861        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
4862      if (!FD->getAttr<ConstAttr>())
4863        FD->addAttr(::new (Context) ConstAttr());
4864    }
4865
4866    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
4867      FD->setType(Context.getNoReturnType(FD->getType()));
4868    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
4869      FD->addAttr(::new (Context) NoThrowAttr());
4870    if (Context.BuiltinInfo.isConst(BuiltinID))
4871      FD->addAttr(::new (Context) ConstAttr());
4872  }
4873
4874  IdentifierInfo *Name = FD->getIdentifier();
4875  if (!Name)
4876    return;
4877  if ((!getLangOptions().CPlusPlus &&
4878       FD->getDeclContext()->isTranslationUnit()) ||
4879      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
4880       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
4881       LinkageSpecDecl::lang_c)) {
4882    // Okay: this could be a libc/libm/Objective-C function we know
4883    // about.
4884  } else
4885    return;
4886
4887  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
4888    // FIXME: NSLog and NSLogv should be target specific
4889    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
4890      // FIXME: We known better than our headers.
4891      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
4892    } else
4893      FD->addAttr(::new (Context) FormatAttr(Context, "printf", 1,
4894                                             Name->isStr("NSLogv") ? 0 : 2));
4895  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
4896    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
4897    // target-specific builtins, perhaps?
4898    if (!FD->getAttr<FormatAttr>())
4899      FD->addAttr(::new (Context) FormatAttr(Context, "printf", 2,
4900                                             Name->isStr("vasprintf") ? 0 : 3));
4901  }
4902}
4903
4904TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
4905                                    TypeSourceInfo *TInfo) {
4906  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
4907  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
4908
4909  if (!TInfo) {
4910    assert(D.isInvalidType() && "no declarator info for valid type");
4911    TInfo = Context.getTrivialTypeSourceInfo(T);
4912  }
4913
4914  // Scope manipulation handled by caller.
4915  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
4916                                           D.getIdentifierLoc(),
4917                                           D.getIdentifier(),
4918                                           TInfo);
4919
4920  if (const TagType *TT = T->getAs<TagType>()) {
4921    TagDecl *TD = TT->getDecl();
4922
4923    // If the TagDecl that the TypedefDecl points to is an anonymous decl
4924    // keep track of the TypedefDecl.
4925    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
4926      TD->setTypedefForAnonDecl(NewTD);
4927  }
4928
4929  if (D.isInvalidType())
4930    NewTD->setInvalidDecl();
4931  return NewTD;
4932}
4933
4934
4935/// \brief Determine whether a tag with a given kind is acceptable
4936/// as a redeclaration of the given tag declaration.
4937///
4938/// \returns true if the new tag kind is acceptable, false otherwise.
4939bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
4940                                        TagTypeKind NewTag,
4941                                        SourceLocation NewTagLoc,
4942                                        const IdentifierInfo &Name) {
4943  // C++ [dcl.type.elab]p3:
4944  //   The class-key or enum keyword present in the
4945  //   elaborated-type-specifier shall agree in kind with the
4946  //   declaration to which the name in the elaborated-type-specifier
4947  //   refers. This rule also applies to the form of
4948  //   elaborated-type-specifier that declares a class-name or
4949  //   friend class since it can be construed as referring to the
4950  //   definition of the class. Thus, in any
4951  //   elaborated-type-specifier, the enum keyword shall be used to
4952  //   refer to an enumeration (7.2), the union class-key shall be
4953  //   used to refer to a union (clause 9), and either the class or
4954  //   struct class-key shall be used to refer to a class (clause 9)
4955  //   declared using the class or struct class-key.
4956  TagTypeKind OldTag = Previous->getTagKind();
4957  if (OldTag == NewTag)
4958    return true;
4959
4960  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
4961      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
4962    // Warn about the struct/class tag mismatch.
4963    bool isTemplate = false;
4964    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
4965      isTemplate = Record->getDescribedClassTemplate();
4966
4967    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
4968      << (NewTag == TTK_Class)
4969      << isTemplate << &Name
4970      << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
4971                              OldTag == TTK_Class? "class" : "struct");
4972    Diag(Previous->getLocation(), diag::note_previous_use);
4973    return true;
4974  }
4975  return false;
4976}
4977
4978/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
4979/// former case, Name will be non-null.  In the later case, Name will be null.
4980/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
4981/// reference/declaration/definition of a tag.
4982Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
4983                               SourceLocation KWLoc, CXXScopeSpec &SS,
4984                               IdentifierInfo *Name, SourceLocation NameLoc,
4985                               AttributeList *Attr, AccessSpecifier AS,
4986                               MultiTemplateParamsArg TemplateParameterLists,
4987                               bool &OwnedDecl, bool &IsDependent) {
4988  // If this is not a definition, it must have a name.
4989  assert((Name != 0 || TUK == TUK_Definition) &&
4990         "Nameless record must be a definition!");
4991
4992  OwnedDecl = false;
4993  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
4994
4995  // FIXME: Check explicit specializations more carefully.
4996  bool isExplicitSpecialization = false;
4997  unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size();
4998  if (TUK != TUK_Reference) {
4999    if (TemplateParameterList *TemplateParams
5000          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
5001                        (TemplateParameterList**)TemplateParameterLists.get(),
5002                                              TemplateParameterLists.size(),
5003                                                    TUK == TUK_Friend,
5004                                                    isExplicitSpecialization)) {
5005      // All but one template parameter lists have been matching.
5006      --NumMatchedTemplateParamLists;
5007
5008      if (TemplateParams->size() > 0) {
5009        // This is a declaration or definition of a class template (which may
5010        // be a member of another template).
5011        OwnedDecl = false;
5012        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
5013                                               SS, Name, NameLoc, Attr,
5014                                               TemplateParams,
5015                                               AS);
5016        TemplateParameterLists.release();
5017        return Result.get();
5018      } else {
5019        // The "template<>" header is extraneous.
5020        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
5021          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
5022        isExplicitSpecialization = true;
5023      }
5024    }
5025  }
5026
5027  DeclContext *SearchDC = CurContext;
5028  DeclContext *DC = CurContext;
5029  bool isStdBadAlloc = false;
5030  bool Invalid = false;
5031
5032  RedeclarationKind Redecl = ForRedeclaration;
5033  if (TUK == TUK_Friend || TUK == TUK_Reference)
5034    Redecl = NotForRedeclaration;
5035
5036  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
5037
5038  if (Name && SS.isNotEmpty()) {
5039    // We have a nested-name tag ('struct foo::bar').
5040
5041    // Check for invalid 'foo::'.
5042    if (SS.isInvalid()) {
5043      Name = 0;
5044      goto CreateNewDecl;
5045    }
5046
5047    // If this is a friend or a reference to a class in a dependent
5048    // context, don't try to make a decl for it.
5049    if (TUK == TUK_Friend || TUK == TUK_Reference) {
5050      DC = computeDeclContext(SS, false);
5051      if (!DC) {
5052        IsDependent = true;
5053        return DeclPtrTy();
5054      }
5055    } else {
5056      DC = computeDeclContext(SS, true);
5057      if (!DC) {
5058        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
5059          << SS.getRange();
5060        return DeclPtrTy();
5061      }
5062    }
5063
5064    if (RequireCompleteDeclContext(SS, DC))
5065      return DeclPtrTy::make((Decl *)0);
5066
5067    SearchDC = DC;
5068    // Look-up name inside 'foo::'.
5069    LookupQualifiedName(Previous, DC);
5070
5071    if (Previous.isAmbiguous())
5072      return DeclPtrTy();
5073
5074    if (Previous.empty()) {
5075      // Name lookup did not find anything. However, if the
5076      // nested-name-specifier refers to the current instantiation,
5077      // and that current instantiation has any dependent base
5078      // classes, we might find something at instantiation time: treat
5079      // this as a dependent elaborated-type-specifier.
5080      if (Previous.wasNotFoundInCurrentInstantiation()) {
5081        IsDependent = true;
5082        return DeclPtrTy();
5083      }
5084
5085      // A tag 'foo::bar' must already exist.
5086      Diag(NameLoc, diag::err_not_tag_in_scope)
5087        << Kind << Name << DC << SS.getRange();
5088      Name = 0;
5089      Invalid = true;
5090      goto CreateNewDecl;
5091    }
5092  } else if (Name) {
5093    // If this is a named struct, check to see if there was a previous forward
5094    // declaration or definition.
5095    // FIXME: We're looking into outer scopes here, even when we
5096    // shouldn't be. Doing so can result in ambiguities that we
5097    // shouldn't be diagnosing.
5098    LookupName(Previous, S);
5099
5100    // Note:  there used to be some attempt at recovery here.
5101    if (Previous.isAmbiguous())
5102      return DeclPtrTy();
5103
5104    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
5105      // FIXME: This makes sure that we ignore the contexts associated
5106      // with C structs, unions, and enums when looking for a matching
5107      // tag declaration or definition. See the similar lookup tweak
5108      // in Sema::LookupName; is there a better way to deal with this?
5109      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
5110        SearchDC = SearchDC->getParent();
5111    }
5112  }
5113
5114  if (Previous.isSingleResult() &&
5115      Previous.getFoundDecl()->isTemplateParameter()) {
5116    // Maybe we will complain about the shadowed template parameter.
5117    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
5118    // Just pretend that we didn't see the previous declaration.
5119    Previous.clear();
5120  }
5121
5122  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
5123      DC->Equals(StdNamespace) && Name->isStr("bad_alloc")) {
5124    // This is a declaration of or a reference to "std::bad_alloc".
5125    isStdBadAlloc = true;
5126
5127    if (Previous.empty() && StdBadAlloc) {
5128      // std::bad_alloc has been implicitly declared (but made invisible to
5129      // name lookup). Fill in this implicit declaration as the previous
5130      // declaration, so that the declarations get chained appropriately.
5131      Previous.addDecl(StdBadAlloc);
5132    }
5133  }
5134
5135  // If we didn't find a previous declaration, and this is a reference
5136  // (or friend reference), move to the correct scope.  In C++, we
5137  // also need to do a redeclaration lookup there, just in case
5138  // there's a shadow friend decl.
5139  if (Name && Previous.empty() &&
5140      (TUK == TUK_Reference || TUK == TUK_Friend)) {
5141    if (Invalid) goto CreateNewDecl;
5142    assert(SS.isEmpty());
5143
5144    if (TUK == TUK_Reference) {
5145      // C++ [basic.scope.pdecl]p5:
5146      //   -- for an elaborated-type-specifier of the form
5147      //
5148      //          class-key identifier
5149      //
5150      //      if the elaborated-type-specifier is used in the
5151      //      decl-specifier-seq or parameter-declaration-clause of a
5152      //      function defined in namespace scope, the identifier is
5153      //      declared as a class-name in the namespace that contains
5154      //      the declaration; otherwise, except as a friend
5155      //      declaration, the identifier is declared in the smallest
5156      //      non-class, non-function-prototype scope that contains the
5157      //      declaration.
5158      //
5159      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
5160      // C structs and unions.
5161      //
5162      // It is an error in C++ to declare (rather than define) an enum
5163      // type, including via an elaborated type specifier.  We'll
5164      // diagnose that later; for now, declare the enum in the same
5165      // scope as we would have picked for any other tag type.
5166      //
5167      // GNU C also supports this behavior as part of its incomplete
5168      // enum types extension, while GNU C++ does not.
5169      //
5170      // Find the context where we'll be declaring the tag.
5171      // FIXME: We would like to maintain the current DeclContext as the
5172      // lexical context,
5173      while (SearchDC->isRecord())
5174        SearchDC = SearchDC->getParent();
5175
5176      // Find the scope where we'll be declaring the tag.
5177      while (S->isClassScope() ||
5178             (getLangOptions().CPlusPlus &&
5179              S->isFunctionPrototypeScope()) ||
5180             ((S->getFlags() & Scope::DeclScope) == 0) ||
5181             (S->getEntity() &&
5182              ((DeclContext *)S->getEntity())->isTransparentContext()))
5183        S = S->getParent();
5184    } else {
5185      assert(TUK == TUK_Friend);
5186      // C++ [namespace.memdef]p3:
5187      //   If a friend declaration in a non-local class first declares a
5188      //   class or function, the friend class or function is a member of
5189      //   the innermost enclosing namespace.
5190      SearchDC = SearchDC->getEnclosingNamespaceContext();
5191    }
5192
5193    // In C++, we need to do a redeclaration lookup to properly
5194    // diagnose some problems.
5195    if (getLangOptions().CPlusPlus) {
5196      Previous.setRedeclarationKind(ForRedeclaration);
5197      LookupQualifiedName(Previous, SearchDC);
5198    }
5199  }
5200
5201  if (!Previous.empty()) {
5202    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
5203
5204    // It's okay to have a tag decl in the same scope as a typedef
5205    // which hides a tag decl in the same scope.  Finding this
5206    // insanity with a redeclaration lookup can only actually happen
5207    // in C++.
5208    //
5209    // This is also okay for elaborated-type-specifiers, which is
5210    // technically forbidden by the current standard but which is
5211    // okay according to the likely resolution of an open issue;
5212    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
5213    if (getLangOptions().CPlusPlus) {
5214      if (TypedefDecl *TD = dyn_cast<TypedefDecl>(PrevDecl)) {
5215        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
5216          TagDecl *Tag = TT->getDecl();
5217          if (Tag->getDeclName() == Name &&
5218              Tag->getDeclContext()->getLookupContext()
5219                          ->Equals(TD->getDeclContext()->getLookupContext())) {
5220            PrevDecl = Tag;
5221            Previous.clear();
5222            Previous.addDecl(Tag);
5223          }
5224        }
5225      }
5226    }
5227
5228    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
5229      // If this is a use of a previous tag, or if the tag is already declared
5230      // in the same scope (so that the definition/declaration completes or
5231      // rementions the tag), reuse the decl.
5232      if (TUK == TUK_Reference || TUK == TUK_Friend ||
5233          isDeclInScope(PrevDecl, SearchDC, S)) {
5234        // Make sure that this wasn't declared as an enum and now used as a
5235        // struct or something similar.
5236        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
5237          bool SafeToContinue
5238            = (PrevTagDecl->getTagKind() != TTK_Enum &&
5239               Kind != TTK_Enum);
5240          if (SafeToContinue)
5241            Diag(KWLoc, diag::err_use_with_wrong_tag)
5242              << Name
5243              << FixItHint::CreateReplacement(SourceRange(KWLoc),
5244                                              PrevTagDecl->getKindName());
5245          else
5246            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
5247          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
5248
5249          if (SafeToContinue)
5250            Kind = PrevTagDecl->getTagKind();
5251          else {
5252            // Recover by making this an anonymous redefinition.
5253            Name = 0;
5254            Previous.clear();
5255            Invalid = true;
5256          }
5257        }
5258
5259        if (!Invalid) {
5260          // If this is a use, just return the declaration we found.
5261
5262          // FIXME: In the future, return a variant or some other clue
5263          // for the consumer of this Decl to know it doesn't own it.
5264          // For our current ASTs this shouldn't be a problem, but will
5265          // need to be changed with DeclGroups.
5266          if ((TUK == TUK_Reference && !PrevTagDecl->getFriendObjectKind()) ||
5267              TUK == TUK_Friend)
5268            return DeclPtrTy::make(PrevTagDecl);
5269
5270          // Diagnose attempts to redefine a tag.
5271          if (TUK == TUK_Definition) {
5272            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
5273              // If we're defining a specialization and the previous definition
5274              // is from an implicit instantiation, don't emit an error
5275              // here; we'll catch this in the general case below.
5276              if (!isExplicitSpecialization ||
5277                  !isa<CXXRecordDecl>(Def) ||
5278                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
5279                                               == TSK_ExplicitSpecialization) {
5280                Diag(NameLoc, diag::err_redefinition) << Name;
5281                Diag(Def->getLocation(), diag::note_previous_definition);
5282                // If this is a redefinition, recover by making this
5283                // struct be anonymous, which will make any later
5284                // references get the previous definition.
5285                Name = 0;
5286                Previous.clear();
5287                Invalid = true;
5288              }
5289            } else {
5290              // If the type is currently being defined, complain
5291              // about a nested redefinition.
5292              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
5293              if (Tag->isBeingDefined()) {
5294                Diag(NameLoc, diag::err_nested_redefinition) << Name;
5295                Diag(PrevTagDecl->getLocation(),
5296                     diag::note_previous_definition);
5297                Name = 0;
5298                Previous.clear();
5299                Invalid = true;
5300              }
5301            }
5302
5303            // Okay, this is definition of a previously declared or referenced
5304            // tag PrevDecl. We're going to create a new Decl for it.
5305          }
5306        }
5307        // If we get here we have (another) forward declaration or we
5308        // have a definition.  Just create a new decl.
5309
5310      } else {
5311        // If we get here, this is a definition of a new tag type in a nested
5312        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
5313        // new decl/type.  We set PrevDecl to NULL so that the entities
5314        // have distinct types.
5315        Previous.clear();
5316      }
5317      // If we get here, we're going to create a new Decl. If PrevDecl
5318      // is non-NULL, it's a definition of the tag declared by
5319      // PrevDecl. If it's NULL, we have a new definition.
5320
5321
5322    // Otherwise, PrevDecl is not a tag, but was found with tag
5323    // lookup.  This is only actually possible in C++, where a few
5324    // things like templates still live in the tag namespace.
5325    } else {
5326      assert(getLangOptions().CPlusPlus);
5327
5328      // Use a better diagnostic if an elaborated-type-specifier
5329      // found the wrong kind of type on the first
5330      // (non-redeclaration) lookup.
5331      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
5332          !Previous.isForRedeclaration()) {
5333        unsigned Kind = 0;
5334        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
5335        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
5336        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
5337        Diag(PrevDecl->getLocation(), diag::note_declared_at);
5338        Invalid = true;
5339
5340      // Otherwise, only diagnose if the declaration is in scope.
5341      } else if (!isDeclInScope(PrevDecl, SearchDC, S)) {
5342        // do nothing
5343
5344      // Diagnose implicit declarations introduced by elaborated types.
5345      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
5346        unsigned Kind = 0;
5347        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
5348        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
5349        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
5350        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
5351        Invalid = true;
5352
5353      // Otherwise it's a declaration.  Call out a particularly common
5354      // case here.
5355      } else if (isa<TypedefDecl>(PrevDecl)) {
5356        Diag(NameLoc, diag::err_tag_definition_of_typedef)
5357          << Name
5358          << cast<TypedefDecl>(PrevDecl)->getUnderlyingType();
5359        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
5360        Invalid = true;
5361
5362      // Otherwise, diagnose.
5363      } else {
5364        // The tag name clashes with something else in the target scope,
5365        // issue an error and recover by making this tag be anonymous.
5366        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
5367        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5368        Name = 0;
5369        Invalid = true;
5370      }
5371
5372      // The existing declaration isn't relevant to us; we're in a
5373      // new scope, so clear out the previous declaration.
5374      Previous.clear();
5375    }
5376  }
5377
5378CreateNewDecl:
5379
5380  TagDecl *PrevDecl = 0;
5381  if (Previous.isSingleResult())
5382    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
5383
5384  // If there is an identifier, use the location of the identifier as the
5385  // location of the decl, otherwise use the location of the struct/union
5386  // keyword.
5387  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
5388
5389  // Otherwise, create a new declaration. If there is a previous
5390  // declaration of the same entity, the two will be linked via
5391  // PrevDecl.
5392  TagDecl *New;
5393
5394  if (Kind == TTK_Enum) {
5395    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5396    // enum X { A, B, C } D;    D should chain to X.
5397    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
5398                           cast_or_null<EnumDecl>(PrevDecl));
5399    // If this is an undefined enum, warn.
5400    if (TUK != TUK_Definition && !Invalid)  {
5401      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
5402                                              : diag::ext_forward_ref_enum;
5403      Diag(Loc, DK);
5404    }
5405  } else {
5406    // struct/union/class
5407
5408    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5409    // struct X { int A; } D;    D should chain to X.
5410    if (getLangOptions().CPlusPlus) {
5411      // FIXME: Look for a way to use RecordDecl for simple structs.
5412      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5413                                  cast_or_null<CXXRecordDecl>(PrevDecl));
5414
5415      if (isStdBadAlloc && (!StdBadAlloc || StdBadAlloc->isImplicit()))
5416        StdBadAlloc = cast<CXXRecordDecl>(New);
5417    } else
5418      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5419                               cast_or_null<RecordDecl>(PrevDecl));
5420  }
5421
5422  // Maybe add qualifier info.
5423  if (SS.isNotEmpty()) {
5424    if (SS.isSet()) {
5425      NestedNameSpecifier *NNS
5426        = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
5427      New->setQualifierInfo(NNS, SS.getRange());
5428      if (NumMatchedTemplateParamLists > 0) {
5429        New->setTemplateParameterListsInfo(Context,
5430                                           NumMatchedTemplateParamLists,
5431                    (TemplateParameterList**) TemplateParameterLists.release());
5432      }
5433    }
5434    else
5435      Invalid = true;
5436  }
5437
5438  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
5439    // Add alignment attributes if necessary; these attributes are checked when
5440    // the ASTContext lays out the structure.
5441    //
5442    // It is important for implementing the correct semantics that this
5443    // happen here (in act on tag decl). The #pragma pack stack is
5444    // maintained as a result of parser callbacks which can occur at
5445    // many points during the parsing of a struct declaration (because
5446    // the #pragma tokens are effectively skipped over during the
5447    // parsing of the struct).
5448    AddAlignmentAttributesForRecord(RD);
5449  }
5450
5451  // If this is a specialization of a member class (of a class template),
5452  // check the specialization.
5453  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
5454    Invalid = true;
5455
5456  if (Invalid)
5457    New->setInvalidDecl();
5458
5459  if (Attr)
5460    ProcessDeclAttributeList(S, New, Attr);
5461
5462  // If we're declaring or defining a tag in function prototype scope
5463  // in C, note that this type can only be used within the function.
5464  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
5465    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
5466
5467  // Set the lexical context. If the tag has a C++ scope specifier, the
5468  // lexical context will be different from the semantic context.
5469  New->setLexicalDeclContext(CurContext);
5470
5471  // Mark this as a friend decl if applicable.
5472  if (TUK == TUK_Friend)
5473    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
5474
5475  // Set the access specifier.
5476  if (!Invalid && SearchDC->isRecord())
5477    SetMemberAccessSpecifier(New, PrevDecl, AS);
5478
5479  if (TUK == TUK_Definition)
5480    New->startDefinition();
5481
5482  // If this has an identifier, add it to the scope stack.
5483  if (TUK == TUK_Friend) {
5484    // We might be replacing an existing declaration in the lookup tables;
5485    // if so, borrow its access specifier.
5486    if (PrevDecl)
5487      New->setAccess(PrevDecl->getAccess());
5488
5489    DeclContext *DC = New->getDeclContext()->getLookupContext();
5490    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
5491    if (Name) // can be null along some error paths
5492      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
5493        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
5494  } else if (Name) {
5495    S = getNonFieldDeclScope(S);
5496    PushOnScopeChains(New, S);
5497  } else {
5498    CurContext->addDecl(New);
5499  }
5500
5501  // If this is the C FILE type, notify the AST context.
5502  if (IdentifierInfo *II = New->getIdentifier())
5503    if (!New->isInvalidDecl() &&
5504        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
5505        II->isStr("FILE"))
5506      Context.setFILEDecl(New);
5507
5508  OwnedDecl = true;
5509  return DeclPtrTy::make(New);
5510}
5511
5512void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
5513  AdjustDeclIfTemplate(TagD);
5514  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5515
5516  // Enter the tag context.
5517  PushDeclContext(S, Tag);
5518}
5519
5520void Sema::ActOnStartCXXMemberDeclarations(Scope *S, DeclPtrTy TagD,
5521                                           SourceLocation LBraceLoc) {
5522  AdjustDeclIfTemplate(TagD);
5523  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD.getAs<Decl>());
5524
5525  FieldCollector->StartClass();
5526
5527  if (!Record->getIdentifier())
5528    return;
5529
5530  // C++ [class]p2:
5531  //   [...] The class-name is also inserted into the scope of the
5532  //   class itself; this is known as the injected-class-name. For
5533  //   purposes of access checking, the injected-class-name is treated
5534  //   as if it were a public member name.
5535  CXXRecordDecl *InjectedClassName
5536    = CXXRecordDecl::Create(Context, Record->getTagKind(),
5537                            CurContext, Record->getLocation(),
5538                            Record->getIdentifier(),
5539                            Record->getTagKeywordLoc(),
5540                            Record);
5541  InjectedClassName->setImplicit();
5542  InjectedClassName->setAccess(AS_public);
5543  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
5544      InjectedClassName->setDescribedClassTemplate(Template);
5545  PushOnScopeChains(InjectedClassName, S);
5546  assert(InjectedClassName->isInjectedClassName() &&
5547         "Broken injected-class-name");
5548}
5549
5550void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
5551                                    SourceLocation RBraceLoc) {
5552  AdjustDeclIfTemplate(TagD);
5553  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5554  Tag->setRBraceLoc(RBraceLoc);
5555
5556  if (isa<CXXRecordDecl>(Tag))
5557    FieldCollector->FinishClass();
5558
5559  // Exit this scope of this tag's definition.
5560  PopDeclContext();
5561
5562  // Notify the consumer that we've defined a tag.
5563  Consumer.HandleTagDeclDefinition(Tag);
5564}
5565
5566void Sema::ActOnTagDefinitionError(Scope *S, DeclPtrTy TagD) {
5567  AdjustDeclIfTemplate(TagD);
5568  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5569  Tag->setInvalidDecl();
5570
5571  // We're undoing ActOnTagStartDefinition here, not
5572  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
5573  // the FieldCollector.
5574
5575  PopDeclContext();
5576}
5577
5578// Note that FieldName may be null for anonymous bitfields.
5579bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
5580                          QualType FieldTy, const Expr *BitWidth,
5581                          bool *ZeroWidth) {
5582  // Default to true; that shouldn't confuse checks for emptiness
5583  if (ZeroWidth)
5584    *ZeroWidth = true;
5585
5586  // C99 6.7.2.1p4 - verify the field type.
5587  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
5588  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
5589    // Handle incomplete types with specific error.
5590    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
5591      return true;
5592    if (FieldName)
5593      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
5594        << FieldName << FieldTy << BitWidth->getSourceRange();
5595    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
5596      << FieldTy << BitWidth->getSourceRange();
5597  }
5598
5599  // If the bit-width is type- or value-dependent, don't try to check
5600  // it now.
5601  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
5602    return false;
5603
5604  llvm::APSInt Value;
5605  if (VerifyIntegerConstantExpression(BitWidth, &Value))
5606    return true;
5607
5608  if (Value != 0 && ZeroWidth)
5609    *ZeroWidth = false;
5610
5611  // Zero-width bitfield is ok for anonymous field.
5612  if (Value == 0 && FieldName)
5613    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
5614
5615  if (Value.isSigned() && Value.isNegative()) {
5616    if (FieldName)
5617      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
5618               << FieldName << Value.toString(10);
5619    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
5620      << Value.toString(10);
5621  }
5622
5623  if (!FieldTy->isDependentType()) {
5624    uint64_t TypeSize = Context.getTypeSize(FieldTy);
5625    if (Value.getZExtValue() > TypeSize) {
5626      if (!getLangOptions().CPlusPlus) {
5627        if (FieldName)
5628          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
5629            << FieldName << (unsigned)Value.getZExtValue()
5630            << (unsigned)TypeSize;
5631
5632        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
5633          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
5634      }
5635
5636      if (FieldName)
5637        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
5638          << FieldName << (unsigned)Value.getZExtValue()
5639          << (unsigned)TypeSize;
5640      else
5641        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
5642          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
5643    }
5644  }
5645
5646  return false;
5647}
5648
5649/// ActOnField - Each field of a struct/union/class is passed into this in order
5650/// to create a FieldDecl object for it.
5651Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
5652                                 SourceLocation DeclStart,
5653                                 Declarator &D, ExprTy *BitfieldWidth) {
5654  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
5655                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
5656                               AS_public);
5657  return DeclPtrTy::make(Res);
5658}
5659
5660/// HandleField - Analyze a field of a C struct or a C++ data member.
5661///
5662FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
5663                             SourceLocation DeclStart,
5664                             Declarator &D, Expr *BitWidth,
5665                             AccessSpecifier AS) {
5666  IdentifierInfo *II = D.getIdentifier();
5667  SourceLocation Loc = DeclStart;
5668  if (II) Loc = D.getIdentifierLoc();
5669
5670  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
5671  QualType T = TInfo->getType();
5672  if (getLangOptions().CPlusPlus)
5673    CheckExtraCXXDefaultArguments(D);
5674
5675  DiagnoseFunctionSpecifiers(D);
5676
5677  if (D.getDeclSpec().isThreadSpecified())
5678    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5679
5680  NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
5681                                         ForRedeclaration);
5682
5683  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5684    // Maybe we will complain about the shadowed template parameter.
5685    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5686    // Just pretend that we didn't see the previous declaration.
5687    PrevDecl = 0;
5688  }
5689
5690  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
5691    PrevDecl = 0;
5692
5693  bool Mutable
5694    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
5695  SourceLocation TSSL = D.getSourceRange().getBegin();
5696  FieldDecl *NewFD
5697    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
5698                     AS, PrevDecl, &D);
5699
5700  if (NewFD->isInvalidDecl())
5701    Record->setInvalidDecl();
5702
5703  if (NewFD->isInvalidDecl() && PrevDecl) {
5704    // Don't introduce NewFD into scope; there's already something
5705    // with the same name in the same scope.
5706  } else if (II) {
5707    PushOnScopeChains(NewFD, S);
5708  } else
5709    Record->addDecl(NewFD);
5710
5711  return NewFD;
5712}
5713
5714/// \brief Build a new FieldDecl and check its well-formedness.
5715///
5716/// This routine builds a new FieldDecl given the fields name, type,
5717/// record, etc. \p PrevDecl should refer to any previous declaration
5718/// with the same name and in the same scope as the field to be
5719/// created.
5720///
5721/// \returns a new FieldDecl.
5722///
5723/// \todo The Declarator argument is a hack. It will be removed once
5724FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
5725                                TypeSourceInfo *TInfo,
5726                                RecordDecl *Record, SourceLocation Loc,
5727                                bool Mutable, Expr *BitWidth,
5728                                SourceLocation TSSL,
5729                                AccessSpecifier AS, NamedDecl *PrevDecl,
5730                                Declarator *D) {
5731  IdentifierInfo *II = Name.getAsIdentifierInfo();
5732  bool InvalidDecl = false;
5733  if (D) InvalidDecl = D->isInvalidType();
5734
5735  // If we receive a broken type, recover by assuming 'int' and
5736  // marking this declaration as invalid.
5737  if (T.isNull()) {
5738    InvalidDecl = true;
5739    T = Context.IntTy;
5740  }
5741
5742  QualType EltTy = Context.getBaseElementType(T);
5743  if (!EltTy->isDependentType() &&
5744      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete))
5745    InvalidDecl = true;
5746
5747  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5748  // than a variably modified type.
5749  if (!InvalidDecl && T->isVariablyModifiedType()) {
5750    bool SizeIsNegative;
5751    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
5752                                                           SizeIsNegative);
5753    if (!FixedTy.isNull()) {
5754      Diag(Loc, diag::warn_illegal_constant_array_size);
5755      T = FixedTy;
5756    } else {
5757      if (SizeIsNegative)
5758        Diag(Loc, diag::err_typecheck_negative_array_size);
5759      else
5760        Diag(Loc, diag::err_typecheck_field_variable_size);
5761      InvalidDecl = true;
5762    }
5763  }
5764
5765  // Fields can not have abstract class types
5766  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
5767                                             diag::err_abstract_type_in_decl,
5768                                             AbstractFieldType))
5769    InvalidDecl = true;
5770
5771  bool ZeroWidth = false;
5772  // If this is declared as a bit-field, check the bit-field.
5773  if (!InvalidDecl && BitWidth &&
5774      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
5775    InvalidDecl = true;
5776    DeleteExpr(BitWidth);
5777    BitWidth = 0;
5778    ZeroWidth = false;
5779  }
5780
5781  // Check that 'mutable' is consistent with the type of the declaration.
5782  if (!InvalidDecl && Mutable) {
5783    unsigned DiagID = 0;
5784    if (T->isReferenceType())
5785      DiagID = diag::err_mutable_reference;
5786    else if (T.isConstQualified())
5787      DiagID = diag::err_mutable_const;
5788
5789    if (DiagID) {
5790      SourceLocation ErrLoc = Loc;
5791      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
5792        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
5793      Diag(ErrLoc, DiagID);
5794      Mutable = false;
5795      InvalidDecl = true;
5796    }
5797  }
5798
5799  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo,
5800                                       BitWidth, Mutable);
5801  if (InvalidDecl)
5802    NewFD->setInvalidDecl();
5803
5804  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
5805    Diag(Loc, diag::err_duplicate_member) << II;
5806    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5807    NewFD->setInvalidDecl();
5808  }
5809
5810  if (!InvalidDecl && getLangOptions().CPlusPlus) {
5811    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
5812
5813    if (!T->isPODType())
5814      CXXRecord->setPOD(false);
5815    if (!ZeroWidth)
5816      CXXRecord->setEmpty(false);
5817
5818    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
5819      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
5820      if (RDecl->getDefinition()) {
5821        if (!RDecl->hasTrivialConstructor())
5822          CXXRecord->setHasTrivialConstructor(false);
5823        if (!RDecl->hasTrivialCopyConstructor())
5824          CXXRecord->setHasTrivialCopyConstructor(false);
5825        if (!RDecl->hasTrivialCopyAssignment())
5826          CXXRecord->setHasTrivialCopyAssignment(false);
5827        if (!RDecl->hasTrivialDestructor())
5828          CXXRecord->setHasTrivialDestructor(false);
5829
5830        // C++ 9.5p1: An object of a class with a non-trivial
5831        // constructor, a non-trivial copy constructor, a non-trivial
5832        // destructor, or a non-trivial copy assignment operator
5833        // cannot be a member of a union, nor can an array of such
5834        // objects.
5835        // TODO: C++0x alters this restriction significantly.
5836        if (Record->isUnion()) {
5837          // We check for copy constructors before constructors
5838          // because otherwise we'll never get complaints about
5839          // copy constructors.
5840
5841          CXXSpecialMember member = CXXInvalid;
5842          if (!RDecl->hasTrivialCopyConstructor())
5843            member = CXXCopyConstructor;
5844          else if (!RDecl->hasTrivialConstructor())
5845            member = CXXConstructor;
5846          else if (!RDecl->hasTrivialCopyAssignment())
5847            member = CXXCopyAssignment;
5848          else if (!RDecl->hasTrivialDestructor())
5849            member = CXXDestructor;
5850
5851          if (member != CXXInvalid) {
5852            Diag(Loc, diag::err_illegal_union_member) << Name << member;
5853            DiagnoseNontrivial(RT, member);
5854            NewFD->setInvalidDecl();
5855          }
5856        }
5857      }
5858    }
5859  }
5860
5861  // FIXME: We need to pass in the attributes given an AST
5862  // representation, not a parser representation.
5863  if (D)
5864    // FIXME: What to pass instead of TUScope?
5865    ProcessDeclAttributes(TUScope, NewFD, *D);
5866
5867  if (T.isObjCGCWeak())
5868    Diag(Loc, diag::warn_attribute_weak_on_field);
5869
5870  NewFD->setAccess(AS);
5871
5872  // C++ [dcl.init.aggr]p1:
5873  //   An aggregate is an array or a class (clause 9) with [...] no
5874  //   private or protected non-static data members (clause 11).
5875  // A POD must be an aggregate.
5876  if (getLangOptions().CPlusPlus &&
5877      (AS == AS_private || AS == AS_protected)) {
5878    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
5879    CXXRecord->setAggregate(false);
5880    CXXRecord->setPOD(false);
5881  }
5882
5883  return NewFD;
5884}
5885
5886/// DiagnoseNontrivial - Given that a class has a non-trivial
5887/// special member, figure out why.
5888void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
5889  QualType QT(T, 0U);
5890  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
5891
5892  // Check whether the member was user-declared.
5893  switch (member) {
5894  case CXXInvalid:
5895    break;
5896
5897  case CXXConstructor:
5898    if (RD->hasUserDeclaredConstructor()) {
5899      typedef CXXRecordDecl::ctor_iterator ctor_iter;
5900      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
5901        const FunctionDecl *body = 0;
5902        ci->getBody(body);
5903        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
5904          SourceLocation CtorLoc = ci->getLocation();
5905          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5906          return;
5907        }
5908      }
5909
5910      assert(0 && "found no user-declared constructors");
5911      return;
5912    }
5913    break;
5914
5915  case CXXCopyConstructor:
5916    if (RD->hasUserDeclaredCopyConstructor()) {
5917      SourceLocation CtorLoc =
5918        RD->getCopyConstructor(Context, 0)->getLocation();
5919      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5920      return;
5921    }
5922    break;
5923
5924  case CXXCopyAssignment:
5925    if (RD->hasUserDeclaredCopyAssignment()) {
5926      // FIXME: this should use the location of the copy
5927      // assignment, not the type.
5928      SourceLocation TyLoc = RD->getSourceRange().getBegin();
5929      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
5930      return;
5931    }
5932    break;
5933
5934  case CXXDestructor:
5935    if (RD->hasUserDeclaredDestructor()) {
5936      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
5937      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5938      return;
5939    }
5940    break;
5941  }
5942
5943  typedef CXXRecordDecl::base_class_iterator base_iter;
5944
5945  // Virtual bases and members inhibit trivial copying/construction,
5946  // but not trivial destruction.
5947  if (member != CXXDestructor) {
5948    // Check for virtual bases.  vbases includes indirect virtual bases,
5949    // so we just iterate through the direct bases.
5950    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
5951      if (bi->isVirtual()) {
5952        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5953        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
5954        return;
5955      }
5956
5957    // Check for virtual methods.
5958    typedef CXXRecordDecl::method_iterator meth_iter;
5959    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
5960         ++mi) {
5961      if (mi->isVirtual()) {
5962        SourceLocation MLoc = mi->getSourceRange().getBegin();
5963        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
5964        return;
5965      }
5966    }
5967  }
5968
5969  bool (CXXRecordDecl::*hasTrivial)() const;
5970  switch (member) {
5971  case CXXConstructor:
5972    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
5973  case CXXCopyConstructor:
5974    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
5975  case CXXCopyAssignment:
5976    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
5977  case CXXDestructor:
5978    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
5979  default:
5980    assert(0 && "unexpected special member"); return;
5981  }
5982
5983  // Check for nontrivial bases (and recurse).
5984  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
5985    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
5986    assert(BaseRT && "Don't know how to handle dependent bases");
5987    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
5988    if (!(BaseRecTy->*hasTrivial)()) {
5989      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5990      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
5991      DiagnoseNontrivial(BaseRT, member);
5992      return;
5993    }
5994  }
5995
5996  // Check for nontrivial members (and recurse).
5997  typedef RecordDecl::field_iterator field_iter;
5998  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
5999       ++fi) {
6000    QualType EltTy = Context.getBaseElementType((*fi)->getType());
6001    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
6002      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
6003
6004      if (!(EltRD->*hasTrivial)()) {
6005        SourceLocation FLoc = (*fi)->getLocation();
6006        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
6007        DiagnoseNontrivial(EltRT, member);
6008        return;
6009      }
6010    }
6011  }
6012
6013  assert(0 && "found no explanation for non-trivial member");
6014}
6015
6016/// TranslateIvarVisibility - Translate visibility from a token ID to an
6017///  AST enum value.
6018static ObjCIvarDecl::AccessControl
6019TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
6020  switch (ivarVisibility) {
6021  default: assert(0 && "Unknown visitibility kind");
6022  case tok::objc_private: return ObjCIvarDecl::Private;
6023  case tok::objc_public: return ObjCIvarDecl::Public;
6024  case tok::objc_protected: return ObjCIvarDecl::Protected;
6025  case tok::objc_package: return ObjCIvarDecl::Package;
6026  }
6027}
6028
6029/// ActOnIvar - Each ivar field of an objective-c class is passed into this
6030/// in order to create an IvarDecl object for it.
6031Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
6032                                SourceLocation DeclStart,
6033                                DeclPtrTy IntfDecl,
6034                                Declarator &D, ExprTy *BitfieldWidth,
6035                                tok::ObjCKeywordKind Visibility) {
6036
6037  IdentifierInfo *II = D.getIdentifier();
6038  Expr *BitWidth = (Expr*)BitfieldWidth;
6039  SourceLocation Loc = DeclStart;
6040  if (II) Loc = D.getIdentifierLoc();
6041
6042  // FIXME: Unnamed fields can be handled in various different ways, for
6043  // example, unnamed unions inject all members into the struct namespace!
6044
6045  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6046  QualType T = TInfo->getType();
6047
6048  if (BitWidth) {
6049    // 6.7.2.1p3, 6.7.2.1p4
6050    if (VerifyBitField(Loc, II, T, BitWidth)) {
6051      D.setInvalidType();
6052      DeleteExpr(BitWidth);
6053      BitWidth = 0;
6054    }
6055  } else {
6056    // Not a bitfield.
6057
6058    // validate II.
6059
6060  }
6061  if (T->isReferenceType()) {
6062    Diag(Loc, diag::err_ivar_reference_type);
6063    D.setInvalidType();
6064  }
6065  // C99 6.7.2.1p8: A member of a structure or union may have any type other
6066  // than a variably modified type.
6067  else if (T->isVariablyModifiedType()) {
6068    Diag(Loc, diag::err_typecheck_ivar_variable_size);
6069    D.setInvalidType();
6070  }
6071
6072  // Get the visibility (access control) for this ivar.
6073  ObjCIvarDecl::AccessControl ac =
6074    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
6075                                        : ObjCIvarDecl::None;
6076  // Must set ivar's DeclContext to its enclosing interface.
6077  ObjCContainerDecl *EnclosingDecl = IntfDecl.getAs<ObjCContainerDecl>();
6078  ObjCContainerDecl *EnclosingContext;
6079  if (ObjCImplementationDecl *IMPDecl =
6080      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
6081    // Case of ivar declared in an implementation. Context is that of its class.
6082    EnclosingContext = IMPDecl->getClassInterface();
6083    assert(EnclosingContext && "Implementation has no class interface!");
6084  } else {
6085    if (ObjCCategoryDecl *CDecl =
6086        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6087      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
6088        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
6089        return DeclPtrTy();
6090      }
6091    }
6092    EnclosingContext = EnclosingDecl;
6093  }
6094
6095  // Construct the decl.
6096  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
6097                                             EnclosingContext, Loc, II, T,
6098                                             TInfo, ac, (Expr *)BitfieldWidth);
6099
6100  if (II) {
6101    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
6102                                           ForRedeclaration);
6103    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
6104        && !isa<TagDecl>(PrevDecl)) {
6105      Diag(Loc, diag::err_duplicate_member) << II;
6106      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6107      NewID->setInvalidDecl();
6108    }
6109  }
6110
6111  // Process attributes attached to the ivar.
6112  ProcessDeclAttributes(S, NewID, D);
6113
6114  if (D.isInvalidType())
6115    NewID->setInvalidDecl();
6116
6117  if (II) {
6118    // FIXME: When interfaces are DeclContexts, we'll need to add
6119    // these to the interface.
6120    S->AddDecl(DeclPtrTy::make(NewID));
6121    IdResolver.AddDecl(NewID);
6122  }
6123
6124  return DeclPtrTy::make(NewID);
6125}
6126
6127void Sema::ActOnFields(Scope* S,
6128                       SourceLocation RecLoc, DeclPtrTy RecDecl,
6129                       DeclPtrTy *Fields, unsigned NumFields,
6130                       SourceLocation LBrac, SourceLocation RBrac,
6131                       AttributeList *Attr) {
6132  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
6133  assert(EnclosingDecl && "missing record or interface decl");
6134
6135  // If the decl this is being inserted into is invalid, then it may be a
6136  // redeclaration or some other bogus case.  Don't try to add fields to it.
6137  if (EnclosingDecl->isInvalidDecl()) {
6138    // FIXME: Deallocate fields?
6139    return;
6140  }
6141
6142
6143  // Verify that all the fields are okay.
6144  unsigned NumNamedMembers = 0;
6145  llvm::SmallVector<FieldDecl*, 32> RecFields;
6146
6147  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
6148  for (unsigned i = 0; i != NumFields; ++i) {
6149    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
6150
6151    // Get the type for the field.
6152    Type *FDTy = FD->getType().getTypePtr();
6153
6154    if (!FD->isAnonymousStructOrUnion()) {
6155      // Remember all fields written by the user.
6156      RecFields.push_back(FD);
6157    }
6158
6159    // If the field is already invalid for some reason, don't emit more
6160    // diagnostics about it.
6161    if (FD->isInvalidDecl()) {
6162      EnclosingDecl->setInvalidDecl();
6163      continue;
6164    }
6165
6166    // C99 6.7.2.1p2:
6167    //   A structure or union shall not contain a member with
6168    //   incomplete or function type (hence, a structure shall not
6169    //   contain an instance of itself, but may contain a pointer to
6170    //   an instance of itself), except that the last member of a
6171    //   structure with more than one named member may have incomplete
6172    //   array type; such a structure (and any union containing,
6173    //   possibly recursively, a member that is such a structure)
6174    //   shall not be a member of a structure or an element of an
6175    //   array.
6176    if (FDTy->isFunctionType()) {
6177      // Field declared as a function.
6178      Diag(FD->getLocation(), diag::err_field_declared_as_function)
6179        << FD->getDeclName();
6180      FD->setInvalidDecl();
6181      EnclosingDecl->setInvalidDecl();
6182      continue;
6183    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
6184               Record && Record->isStruct()) {
6185      // Flexible array member.
6186      if (NumNamedMembers < 1) {
6187        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
6188          << FD->getDeclName();
6189        FD->setInvalidDecl();
6190        EnclosingDecl->setInvalidDecl();
6191        continue;
6192      }
6193      if (!FD->getType()->isDependentType() &&
6194          !Context.getBaseElementType(FD->getType())->isPODType()) {
6195        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
6196          << FD->getDeclName() << FD->getType();
6197        FD->setInvalidDecl();
6198        EnclosingDecl->setInvalidDecl();
6199        continue;
6200      }
6201
6202      // Okay, we have a legal flexible array member at the end of the struct.
6203      if (Record)
6204        Record->setHasFlexibleArrayMember(true);
6205    } else if (!FDTy->isDependentType() &&
6206               RequireCompleteType(FD->getLocation(), FD->getType(),
6207                                   diag::err_field_incomplete)) {
6208      // Incomplete type
6209      FD->setInvalidDecl();
6210      EnclosingDecl->setInvalidDecl();
6211      continue;
6212    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
6213      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
6214        // If this is a member of a union, then entire union becomes "flexible".
6215        if (Record && Record->isUnion()) {
6216          Record->setHasFlexibleArrayMember(true);
6217        } else {
6218          // If this is a struct/class and this is not the last element, reject
6219          // it.  Note that GCC supports variable sized arrays in the middle of
6220          // structures.
6221          if (i != NumFields-1)
6222            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
6223              << FD->getDeclName() << FD->getType();
6224          else {
6225            // We support flexible arrays at the end of structs in
6226            // other structs as an extension.
6227            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
6228              << FD->getDeclName();
6229            if (Record)
6230              Record->setHasFlexibleArrayMember(true);
6231          }
6232        }
6233      }
6234      if (Record && FDTTy->getDecl()->hasObjectMember())
6235        Record->setHasObjectMember(true);
6236    } else if (FDTy->isObjCObjectType()) {
6237      /// A field cannot be an Objective-c object
6238      Diag(FD->getLocation(), diag::err_statically_allocated_object);
6239      FD->setInvalidDecl();
6240      EnclosingDecl->setInvalidDecl();
6241      continue;
6242    } else if (getLangOptions().ObjC1 &&
6243               getLangOptions().getGCMode() != LangOptions::NonGC &&
6244               Record &&
6245               (FD->getType()->isObjCObjectPointerType() ||
6246                FD->getType().isObjCGCStrong()))
6247      Record->setHasObjectMember(true);
6248    else if (Context.getAsArrayType(FD->getType())) {
6249      QualType BaseType = Context.getBaseElementType(FD->getType());
6250      if (Record && BaseType->isRecordType() &&
6251          BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
6252        Record->setHasObjectMember(true);
6253    }
6254    // Keep track of the number of named members.
6255    if (FD->getIdentifier())
6256      ++NumNamedMembers;
6257  }
6258
6259  // Okay, we successfully defined 'Record'.
6260  if (Record) {
6261    Record->completeDefinition();
6262  } else {
6263    ObjCIvarDecl **ClsFields =
6264      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
6265    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
6266      ID->setLocEnd(RBrac);
6267      // Add ivar's to class's DeclContext.
6268      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
6269        ClsFields[i]->setLexicalDeclContext(ID);
6270        ID->addDecl(ClsFields[i]);
6271      }
6272      // Must enforce the rule that ivars in the base classes may not be
6273      // duplicates.
6274      if (ID->getSuperClass())
6275        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
6276    } else if (ObjCImplementationDecl *IMPDecl =
6277                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
6278      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
6279      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
6280        // Ivar declared in @implementation never belongs to the implementation.
6281        // Only it is in implementation's lexical context.
6282        ClsFields[I]->setLexicalDeclContext(IMPDecl);
6283      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
6284    } else if (ObjCCategoryDecl *CDecl =
6285                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6286      // case of ivars in class extension; all other cases have been
6287      // reported as errors elsewhere.
6288      // FIXME. Class extension does not have a LocEnd field.
6289      // CDecl->setLocEnd(RBrac);
6290      // Add ivar's to class extension's DeclContext.
6291      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
6292        ClsFields[i]->setLexicalDeclContext(CDecl);
6293        CDecl->addDecl(ClsFields[i]);
6294      }
6295    }
6296  }
6297
6298  if (Attr)
6299    ProcessDeclAttributeList(S, Record, Attr);
6300}
6301
6302/// \brief Determine whether the given integral value is representable within
6303/// the given type T.
6304static bool isRepresentableIntegerValue(ASTContext &Context,
6305                                        llvm::APSInt &Value,
6306                                        QualType T) {
6307  assert(T->isIntegralType(Context) && "Integral type required!");
6308  unsigned BitWidth = Context.getIntWidth(T);
6309
6310  if (Value.isUnsigned() || Value.isNonNegative())
6311    return Value.getActiveBits() < BitWidth;
6312
6313  return Value.getMinSignedBits() <= BitWidth;
6314}
6315
6316// \brief Given an integral type, return the next larger integral type
6317// (or a NULL type of no such type exists).
6318static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
6319  // FIXME: Int128/UInt128 support, which also needs to be introduced into
6320  // enum checking below.
6321  assert(T->isIntegralType(Context) && "Integral type required!");
6322  const unsigned NumTypes = 4;
6323  QualType SignedIntegralTypes[NumTypes] = {
6324    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
6325  };
6326  QualType UnsignedIntegralTypes[NumTypes] = {
6327    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
6328    Context.UnsignedLongLongTy
6329  };
6330
6331  unsigned BitWidth = Context.getTypeSize(T);
6332  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
6333                                            : UnsignedIntegralTypes;
6334  for (unsigned I = 0; I != NumTypes; ++I)
6335    if (Context.getTypeSize(Types[I]) > BitWidth)
6336      return Types[I];
6337
6338  return QualType();
6339}
6340
6341EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
6342                                          EnumConstantDecl *LastEnumConst,
6343                                          SourceLocation IdLoc,
6344                                          IdentifierInfo *Id,
6345                                          ExprArg val) {
6346  Expr *Val = (Expr *)val.get();
6347
6348  unsigned IntWidth = Context.Target.getIntWidth();
6349  llvm::APSInt EnumVal(IntWidth);
6350  QualType EltTy;
6351  if (Val) {
6352    if (Enum->isDependentType() || Val->isTypeDependent())
6353      EltTy = Context.DependentTy;
6354    else {
6355      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
6356      SourceLocation ExpLoc;
6357      if (!Val->isValueDependent() &&
6358          VerifyIntegerConstantExpression(Val, &EnumVal)) {
6359        Val = 0;
6360      } else {
6361        if (!getLangOptions().CPlusPlus) {
6362          // C99 6.7.2.2p2:
6363          //   The expression that defines the value of an enumeration constant
6364          //   shall be an integer constant expression that has a value
6365          //   representable as an int.
6366
6367          // Complain if the value is not representable in an int.
6368          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
6369            Diag(IdLoc, diag::ext_enum_value_not_int)
6370              << EnumVal.toString(10) << Val->getSourceRange()
6371              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
6372          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
6373            // Force the type of the expression to 'int'.
6374            ImpCastExprToType(Val, Context.IntTy, CastExpr::CK_IntegralCast);
6375
6376            if (Val != val.get()) {
6377              val.release();
6378              val = Val;
6379            }
6380          }
6381        }
6382
6383        // C++0x [dcl.enum]p5:
6384        //   If the underlying type is not fixed, the type of each enumerator
6385        //   is the type of its initializing value:
6386        //     - If an initializer is specified for an enumerator, the
6387        //       initializing value has the same type as the expression.
6388        EltTy = Val->getType();
6389      }
6390    }
6391  }
6392
6393  if (!Val) {
6394    if (Enum->isDependentType())
6395      EltTy = Context.DependentTy;
6396    else if (!LastEnumConst) {
6397      // C++0x [dcl.enum]p5:
6398      //   If the underlying type is not fixed, the type of each enumerator
6399      //   is the type of its initializing value:
6400      //     - If no initializer is specified for the first enumerator, the
6401      //       initializing value has an unspecified integral type.
6402      //
6403      // GCC uses 'int' for its unspecified integral type, as does
6404      // C99 6.7.2.2p3.
6405      EltTy = Context.IntTy;
6406    } else {
6407      // Assign the last value + 1.
6408      EnumVal = LastEnumConst->getInitVal();
6409      ++EnumVal;
6410      EltTy = LastEnumConst->getType();
6411
6412      // Check for overflow on increment.
6413      if (EnumVal < LastEnumConst->getInitVal()) {
6414        // C++0x [dcl.enum]p5:
6415        //   If the underlying type is not fixed, the type of each enumerator
6416        //   is the type of its initializing value:
6417        //
6418        //     - Otherwise the type of the initializing value is the same as
6419        //       the type of the initializing value of the preceding enumerator
6420        //       unless the incremented value is not representable in that type,
6421        //       in which case the type is an unspecified integral type
6422        //       sufficient to contain the incremented value. If no such type
6423        //       exists, the program is ill-formed.
6424        QualType T = getNextLargerIntegralType(Context, EltTy);
6425        if (T.isNull()) {
6426          // There is no integral type larger enough to represent this
6427          // value. Complain, then allow the value to wrap around.
6428          EnumVal = LastEnumConst->getInitVal();
6429          EnumVal.zext(EnumVal.getBitWidth() * 2);
6430          Diag(IdLoc, diag::warn_enumerator_too_large)
6431            << EnumVal.toString(10);
6432        } else {
6433          EltTy = T;
6434        }
6435
6436        // Retrieve the last enumerator's value, extent that type to the
6437        // type that is supposed to be large enough to represent the incremented
6438        // value, then increment.
6439        EnumVal = LastEnumConst->getInitVal();
6440        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
6441        EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
6442        ++EnumVal;
6443
6444        // If we're not in C++, diagnose the overflow of enumerator values,
6445        // which in C99 means that the enumerator value is not representable in
6446        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
6447        // permits enumerator values that are representable in some larger
6448        // integral type.
6449        if (!getLangOptions().CPlusPlus && !T.isNull())
6450          Diag(IdLoc, diag::warn_enum_value_overflow);
6451      } else if (!getLangOptions().CPlusPlus &&
6452                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
6453        // Enforce C99 6.7.2.2p2 even when we compute the next value.
6454        Diag(IdLoc, diag::ext_enum_value_not_int)
6455          << EnumVal.toString(10) << 1;
6456      }
6457    }
6458  }
6459
6460  if (!EltTy->isDependentType()) {
6461    // Make the enumerator value match the signedness and size of the
6462    // enumerator's type.
6463    EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
6464    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
6465  }
6466
6467  val.release();
6468  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
6469                                  Val, EnumVal);
6470}
6471
6472
6473Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
6474                                        DeclPtrTy lastEnumConst,
6475                                        SourceLocation IdLoc,
6476                                        IdentifierInfo *Id,
6477                                        SourceLocation EqualLoc, ExprTy *val) {
6478  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
6479  EnumConstantDecl *LastEnumConst =
6480    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
6481  Expr *Val = static_cast<Expr*>(val);
6482
6483  // The scope passed in may not be a decl scope.  Zip up the scope tree until
6484  // we find one that is.
6485  S = getNonFieldDeclScope(S);
6486
6487  // Verify that there isn't already something declared with this name in this
6488  // scope.
6489  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
6490                                         ForRedeclaration);
6491  if (PrevDecl && PrevDecl->isTemplateParameter()) {
6492    // Maybe we will complain about the shadowed template parameter.
6493    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
6494    // Just pretend that we didn't see the previous declaration.
6495    PrevDecl = 0;
6496  }
6497
6498  if (PrevDecl) {
6499    // When in C++, we may get a TagDecl with the same name; in this case the
6500    // enum constant will 'hide' the tag.
6501    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
6502           "Received TagDecl when not in C++!");
6503    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
6504      if (isa<EnumConstantDecl>(PrevDecl))
6505        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
6506      else
6507        Diag(IdLoc, diag::err_redefinition) << Id;
6508      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6509      if (Val) Val->Destroy(Context);
6510      return DeclPtrTy();
6511    }
6512  }
6513
6514  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
6515                                            IdLoc, Id, Owned(Val));
6516
6517  // Register this decl in the current scope stack.
6518  if (New) {
6519    New->setAccess(TheEnumDecl->getAccess());
6520    PushOnScopeChains(New, S);
6521  }
6522
6523  return DeclPtrTy::make(New);
6524}
6525
6526void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
6527                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
6528                         DeclPtrTy *Elements, unsigned NumElements,
6529                         Scope *S, AttributeList *Attr) {
6530  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
6531  QualType EnumType = Context.getTypeDeclType(Enum);
6532
6533  if (Attr)
6534    ProcessDeclAttributeList(S, Enum, Attr);
6535
6536  if (Enum->isDependentType()) {
6537    for (unsigned i = 0; i != NumElements; ++i) {
6538      EnumConstantDecl *ECD =
6539        cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6540      if (!ECD) continue;
6541
6542      ECD->setType(EnumType);
6543    }
6544
6545    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
6546    return;
6547  }
6548
6549  // TODO: If the result value doesn't fit in an int, it must be a long or long
6550  // long value.  ISO C does not support this, but GCC does as an extension,
6551  // emit a warning.
6552  unsigned IntWidth = Context.Target.getIntWidth();
6553  unsigned CharWidth = Context.Target.getCharWidth();
6554  unsigned ShortWidth = Context.Target.getShortWidth();
6555
6556  // Verify that all the values are okay, compute the size of the values, and
6557  // reverse the list.
6558  unsigned NumNegativeBits = 0;
6559  unsigned NumPositiveBits = 0;
6560
6561  // Keep track of whether all elements have type int.
6562  bool AllElementsInt = true;
6563
6564  for (unsigned i = 0; i != NumElements; ++i) {
6565    EnumConstantDecl *ECD =
6566      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6567    if (!ECD) continue;  // Already issued a diagnostic.
6568
6569    const llvm::APSInt &InitVal = ECD->getInitVal();
6570
6571    // Keep track of the size of positive and negative values.
6572    if (InitVal.isUnsigned() || InitVal.isNonNegative())
6573      NumPositiveBits = std::max(NumPositiveBits,
6574                                 (unsigned)InitVal.getActiveBits());
6575    else
6576      NumNegativeBits = std::max(NumNegativeBits,
6577                                 (unsigned)InitVal.getMinSignedBits());
6578
6579    // Keep track of whether every enum element has type int (very commmon).
6580    if (AllElementsInt)
6581      AllElementsInt = ECD->getType() == Context.IntTy;
6582  }
6583
6584  // Figure out the type that should be used for this enum.
6585  // FIXME: Support -fshort-enums.
6586  QualType BestType;
6587  unsigned BestWidth;
6588
6589  // C++0x N3000 [conv.prom]p3:
6590  //   An rvalue of an unscoped enumeration type whose underlying
6591  //   type is not fixed can be converted to an rvalue of the first
6592  //   of the following types that can represent all the values of
6593  //   the enumeration: int, unsigned int, long int, unsigned long
6594  //   int, long long int, or unsigned long long int.
6595  // C99 6.4.4.3p2:
6596  //   An identifier declared as an enumeration constant has type int.
6597  // The C99 rule is modified by a gcc extension
6598  QualType BestPromotionType;
6599
6600  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
6601
6602  if (NumNegativeBits) {
6603    // If there is a negative value, figure out the smallest integer type (of
6604    // int/long/longlong) that fits.
6605    // If it's packed, check also if it fits a char or a short.
6606    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
6607      BestType = Context.SignedCharTy;
6608      BestWidth = CharWidth;
6609    } else if (Packed && NumNegativeBits <= ShortWidth &&
6610               NumPositiveBits < ShortWidth) {
6611      BestType = Context.ShortTy;
6612      BestWidth = ShortWidth;
6613    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
6614      BestType = Context.IntTy;
6615      BestWidth = IntWidth;
6616    } else {
6617      BestWidth = Context.Target.getLongWidth();
6618
6619      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
6620        BestType = Context.LongTy;
6621      } else {
6622        BestWidth = Context.Target.getLongLongWidth();
6623
6624        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
6625          Diag(Enum->getLocation(), diag::warn_enum_too_large);
6626        BestType = Context.LongLongTy;
6627      }
6628    }
6629    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
6630  } else {
6631    // If there is no negative value, figure out the smallest type that fits
6632    // all of the enumerator values.
6633    // If it's packed, check also if it fits a char or a short.
6634    if (Packed && NumPositiveBits <= CharWidth) {
6635      BestType = Context.UnsignedCharTy;
6636      BestPromotionType = Context.IntTy;
6637      BestWidth = CharWidth;
6638    } else if (Packed && NumPositiveBits <= ShortWidth) {
6639      BestType = Context.UnsignedShortTy;
6640      BestPromotionType = Context.IntTy;
6641      BestWidth = ShortWidth;
6642    } else if (NumPositiveBits <= IntWidth) {
6643      BestType = Context.UnsignedIntTy;
6644      BestWidth = IntWidth;
6645      BestPromotionType
6646        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6647                           ? Context.UnsignedIntTy : Context.IntTy;
6648    } else if (NumPositiveBits <=
6649               (BestWidth = Context.Target.getLongWidth())) {
6650      BestType = Context.UnsignedLongTy;
6651      BestPromotionType
6652        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6653                           ? Context.UnsignedLongTy : Context.LongTy;
6654    } else {
6655      BestWidth = Context.Target.getLongLongWidth();
6656      assert(NumPositiveBits <= BestWidth &&
6657             "How could an initializer get larger than ULL?");
6658      BestType = Context.UnsignedLongLongTy;
6659      BestPromotionType
6660        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6661                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
6662    }
6663  }
6664
6665  // Loop over all of the enumerator constants, changing their types to match
6666  // the type of the enum if needed.
6667  for (unsigned i = 0; i != NumElements; ++i) {
6668    EnumConstantDecl *ECD =
6669      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6670    if (!ECD) continue;  // Already issued a diagnostic.
6671
6672    // Standard C says the enumerators have int type, but we allow, as an
6673    // extension, the enumerators to be larger than int size.  If each
6674    // enumerator value fits in an int, type it as an int, otherwise type it the
6675    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
6676    // that X has type 'int', not 'unsigned'.
6677
6678    // Determine whether the value fits into an int.
6679    llvm::APSInt InitVal = ECD->getInitVal();
6680
6681    // If it fits into an integer type, force it.  Otherwise force it to match
6682    // the enum decl type.
6683    QualType NewTy;
6684    unsigned NewWidth;
6685    bool NewSign;
6686    if (!getLangOptions().CPlusPlus &&
6687        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
6688      NewTy = Context.IntTy;
6689      NewWidth = IntWidth;
6690      NewSign = true;
6691    } else if (ECD->getType() == BestType) {
6692      // Already the right type!
6693      if (getLangOptions().CPlusPlus)
6694        // C++ [dcl.enum]p4: Following the closing brace of an
6695        // enum-specifier, each enumerator has the type of its
6696        // enumeration.
6697        ECD->setType(EnumType);
6698      continue;
6699    } else {
6700      NewTy = BestType;
6701      NewWidth = BestWidth;
6702      NewSign = BestType->isSignedIntegerType();
6703    }
6704
6705    // Adjust the APSInt value.
6706    InitVal.extOrTrunc(NewWidth);
6707    InitVal.setIsSigned(NewSign);
6708    ECD->setInitVal(InitVal);
6709
6710    // Adjust the Expr initializer and type.
6711    if (ECD->getInitExpr())
6712      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
6713                                                      CastExpr::CK_IntegralCast,
6714                                                      ECD->getInitExpr(),
6715                                                      CXXBaseSpecifierArray(),
6716                                                      /*isLvalue=*/false));
6717    if (getLangOptions().CPlusPlus)
6718      // C++ [dcl.enum]p4: Following the closing brace of an
6719      // enum-specifier, each enumerator has the type of its
6720      // enumeration.
6721      ECD->setType(EnumType);
6722    else
6723      ECD->setType(NewTy);
6724  }
6725
6726  Enum->completeDefinition(BestType, BestPromotionType,
6727                           NumPositiveBits, NumNegativeBits);
6728}
6729
6730Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
6731                                            ExprArg expr) {
6732  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
6733
6734  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
6735                                                   Loc, AsmString);
6736  CurContext->addDecl(New);
6737  return DeclPtrTy::make(New);
6738}
6739
6740void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
6741                             SourceLocation PragmaLoc,
6742                             SourceLocation NameLoc) {
6743  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
6744
6745  if (PrevDecl) {
6746    PrevDecl->addAttr(::new (Context) WeakAttr());
6747  } else {
6748    (void)WeakUndeclaredIdentifiers.insert(
6749      std::pair<IdentifierInfo*,WeakInfo>
6750        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
6751  }
6752}
6753
6754void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
6755                                IdentifierInfo* AliasName,
6756                                SourceLocation PragmaLoc,
6757                                SourceLocation NameLoc,
6758                                SourceLocation AliasNameLoc) {
6759  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
6760                                    LookupOrdinaryName);
6761  WeakInfo W = WeakInfo(Name, NameLoc);
6762
6763  if (PrevDecl) {
6764    if (!PrevDecl->hasAttr<AliasAttr>())
6765      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
6766        DeclApplyPragmaWeak(TUScope, ND, W);
6767  } else {
6768    (void)WeakUndeclaredIdentifiers.insert(
6769      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
6770  }
6771}
6772