SemaDecl.cpp revision d4a0caf78e7c18e7aca65fbfd799a6c024ff51fb
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "TypeLocBuilder.h"
21#include "clang/AST/APValue.h"
22#include "clang/AST/ASTConsumer.h"
23#include "clang/AST/ASTContext.h"
24#include "clang/AST/CXXInheritance.h"
25#include "clang/AST/DeclCXX.h"
26#include "clang/AST/DeclObjC.h"
27#include "clang/AST/DeclTemplate.h"
28#include "clang/AST/EvaluatedExprVisitor.h"
29#include "clang/AST/ExprCXX.h"
30#include "clang/AST/StmtCXX.h"
31#include "clang/AST/CharUnits.h"
32#include "clang/Sema/DeclSpec.h"
33#include "clang/Sema/ParsedTemplate.h"
34#include "clang/Parse/ParseDiagnostic.h"
35#include "clang/Basic/PartialDiagnostic.h"
36#include "clang/Basic/SourceManager.h"
37#include "clang/Basic/TargetInfo.h"
38// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
39#include "clang/Lex/Preprocessor.h"
40#include "clang/Lex/HeaderSearch.h"
41#include "llvm/ADT/Triple.h"
42#include <algorithm>
43#include <cstring>
44#include <functional>
45using namespace clang;
46using namespace sema;
47
48Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr) {
49  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
50}
51
52/// \brief If the identifier refers to a type name within this scope,
53/// return the declaration of that type.
54///
55/// This routine performs ordinary name lookup of the identifier II
56/// within the given scope, with optional C++ scope specifier SS, to
57/// determine whether the name refers to a type. If so, returns an
58/// opaque pointer (actually a QualType) corresponding to that
59/// type. Otherwise, returns NULL.
60///
61/// If name lookup results in an ambiguity, this routine will complain
62/// and then return NULL.
63ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
64                             Scope *S, CXXScopeSpec *SS,
65                             bool isClassName, bool HasTrailingDot,
66                             ParsedType ObjectTypePtr,
67                             bool WantNontrivialTypeSourceInfo) {
68  // Determine where we will perform name lookup.
69  DeclContext *LookupCtx = 0;
70  if (ObjectTypePtr) {
71    QualType ObjectType = ObjectTypePtr.get();
72    if (ObjectType->isRecordType())
73      LookupCtx = computeDeclContext(ObjectType);
74  } else if (SS && SS->isNotEmpty()) {
75    LookupCtx = computeDeclContext(*SS, false);
76
77    if (!LookupCtx) {
78      if (isDependentScopeSpecifier(*SS)) {
79        // C++ [temp.res]p3:
80        //   A qualified-id that refers to a type and in which the
81        //   nested-name-specifier depends on a template-parameter (14.6.2)
82        //   shall be prefixed by the keyword typename to indicate that the
83        //   qualified-id denotes a type, forming an
84        //   elaborated-type-specifier (7.1.5.3).
85        //
86        // We therefore do not perform any name lookup if the result would
87        // refer to a member of an unknown specialization.
88        if (!isClassName)
89          return ParsedType();
90
91        // We know from the grammar that this name refers to a type,
92        // so build a dependent node to describe the type.
93        if (WantNontrivialTypeSourceInfo)
94          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
95
96        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
97        QualType T =
98          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
99                            II, NameLoc);
100
101          return ParsedType::make(T);
102      }
103
104      return ParsedType();
105    }
106
107    if (!LookupCtx->isDependentContext() &&
108        RequireCompleteDeclContext(*SS, LookupCtx))
109      return ParsedType();
110  }
111
112  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
113  // lookup for class-names.
114  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
115                                      LookupOrdinaryName;
116  LookupResult Result(*this, &II, NameLoc, Kind);
117  if (LookupCtx) {
118    // Perform "qualified" name lookup into the declaration context we
119    // computed, which is either the type of the base of a member access
120    // expression or the declaration context associated with a prior
121    // nested-name-specifier.
122    LookupQualifiedName(Result, LookupCtx);
123
124    if (ObjectTypePtr && Result.empty()) {
125      // C++ [basic.lookup.classref]p3:
126      //   If the unqualified-id is ~type-name, the type-name is looked up
127      //   in the context of the entire postfix-expression. If the type T of
128      //   the object expression is of a class type C, the type-name is also
129      //   looked up in the scope of class C. At least one of the lookups shall
130      //   find a name that refers to (possibly cv-qualified) T.
131      LookupName(Result, S);
132    }
133  } else {
134    // Perform unqualified name lookup.
135    LookupName(Result, S);
136  }
137
138  NamedDecl *IIDecl = 0;
139  switch (Result.getResultKind()) {
140  case LookupResult::NotFound:
141  case LookupResult::NotFoundInCurrentInstantiation:
142  case LookupResult::FoundOverloaded:
143  case LookupResult::FoundUnresolvedValue:
144    Result.suppressDiagnostics();
145    return ParsedType();
146
147  case LookupResult::Ambiguous:
148    // Recover from type-hiding ambiguities by hiding the type.  We'll
149    // do the lookup again when looking for an object, and we can
150    // diagnose the error then.  If we don't do this, then the error
151    // about hiding the type will be immediately followed by an error
152    // that only makes sense if the identifier was treated like a type.
153    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
154      Result.suppressDiagnostics();
155      return ParsedType();
156    }
157
158    // Look to see if we have a type anywhere in the list of results.
159    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
160         Res != ResEnd; ++Res) {
161      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
162        if (!IIDecl ||
163            (*Res)->getLocation().getRawEncoding() <
164              IIDecl->getLocation().getRawEncoding())
165          IIDecl = *Res;
166      }
167    }
168
169    if (!IIDecl) {
170      // None of the entities we found is a type, so there is no way
171      // to even assume that the result is a type. In this case, don't
172      // complain about the ambiguity. The parser will either try to
173      // perform this lookup again (e.g., as an object name), which
174      // will produce the ambiguity, or will complain that it expected
175      // a type name.
176      Result.suppressDiagnostics();
177      return ParsedType();
178    }
179
180    // We found a type within the ambiguous lookup; diagnose the
181    // ambiguity and then return that type. This might be the right
182    // answer, or it might not be, but it suppresses any attempt to
183    // perform the name lookup again.
184    break;
185
186  case LookupResult::Found:
187    IIDecl = Result.getFoundDecl();
188    break;
189  }
190
191  assert(IIDecl && "Didn't find decl");
192
193  QualType T;
194  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
195    DiagnoseUseOfDecl(IIDecl, NameLoc);
196
197    if (T.isNull())
198      T = Context.getTypeDeclType(TD);
199
200    if (SS && SS->isNotEmpty()) {
201      if (WantNontrivialTypeSourceInfo) {
202        // Construct a type with type-source information.
203        TypeLocBuilder Builder;
204        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
205
206        T = getElaboratedType(ETK_None, *SS, T);
207        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
208        ElabTL.setKeywordLoc(SourceLocation());
209        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
210        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
211      } else {
212        T = getElaboratedType(ETK_None, *SS, T);
213      }
214    }
215  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
216    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
217    if (!HasTrailingDot)
218      T = Context.getObjCInterfaceType(IDecl);
219  }
220
221  if (T.isNull()) {
222    // If it's not plausibly a type, suppress diagnostics.
223    Result.suppressDiagnostics();
224    return ParsedType();
225  }
226  return ParsedType::make(T);
227}
228
229/// isTagName() - This method is called *for error recovery purposes only*
230/// to determine if the specified name is a valid tag name ("struct foo").  If
231/// so, this returns the TST for the tag corresponding to it (TST_enum,
232/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
233/// where the user forgot to specify the tag.
234DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
235  // Do a tag name lookup in this scope.
236  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
237  LookupName(R, S, false);
238  R.suppressDiagnostics();
239  if (R.getResultKind() == LookupResult::Found)
240    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
241      switch (TD->getTagKind()) {
242      default:         return DeclSpec::TST_unspecified;
243      case TTK_Struct: return DeclSpec::TST_struct;
244      case TTK_Union:  return DeclSpec::TST_union;
245      case TTK_Class:  return DeclSpec::TST_class;
246      case TTK_Enum:   return DeclSpec::TST_enum;
247      }
248    }
249
250  return DeclSpec::TST_unspecified;
251}
252
253/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
254/// if a CXXScopeSpec's type is equal to the type of one of the base classes
255/// then downgrade the missing typename error to a warning.
256/// This is needed for MSVC compatibility; Example:
257/// @code
258/// template<class T> class A {
259/// public:
260///   typedef int TYPE;
261/// };
262/// template<class T> class B : public A<T> {
263/// public:
264///   A<T>::TYPE a; // no typename required because A<T> is a base class.
265/// };
266/// @endcode
267bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS) {
268  if (CurContext->isRecord()) {
269    const Type *Ty = SS->getScopeRep()->getAsType();
270
271    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
272    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
273          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
274      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
275        return true;
276  }
277  return false;
278}
279
280bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
281                                   SourceLocation IILoc,
282                                   Scope *S,
283                                   CXXScopeSpec *SS,
284                                   ParsedType &SuggestedType) {
285  // We don't have anything to suggest (yet).
286  SuggestedType = ParsedType();
287
288  // There may have been a typo in the name of the type. Look up typo
289  // results, in case we have something that we can suggest.
290  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
291                      NotForRedeclaration);
292
293  if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
294    if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
295      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
296          !Result->isInvalidDecl()) {
297        // We found a similarly-named type or interface; suggest that.
298        if (!SS || !SS->isSet())
299          Diag(IILoc, diag::err_unknown_typename_suggest)
300            << &II << Lookup.getLookupName()
301            << FixItHint::CreateReplacement(SourceRange(IILoc),
302                                            Result->getNameAsString());
303        else if (DeclContext *DC = computeDeclContext(*SS, false))
304          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
305            << &II << DC << Lookup.getLookupName() << SS->getRange()
306            << FixItHint::CreateReplacement(SourceRange(IILoc),
307                                            Result->getNameAsString());
308        else
309          llvm_unreachable("could not have corrected a typo here");
310
311        Diag(Result->getLocation(), diag::note_previous_decl)
312          << Result->getDeclName();
313
314        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
315                                    false, false, ParsedType(),
316                                    /*NonTrivialTypeSourceInfo=*/true);
317        return true;
318      }
319    } else if (Lookup.empty()) {
320      // We corrected to a keyword.
321      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
322      Diag(IILoc, diag::err_unknown_typename_suggest)
323        << &II << Corrected;
324      return true;
325    }
326  }
327
328  if (getLangOptions().CPlusPlus) {
329    // See if II is a class template that the user forgot to pass arguments to.
330    UnqualifiedId Name;
331    Name.setIdentifier(&II, IILoc);
332    CXXScopeSpec EmptySS;
333    TemplateTy TemplateResult;
334    bool MemberOfUnknownSpecialization;
335    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
336                       Name, ParsedType(), true, TemplateResult,
337                       MemberOfUnknownSpecialization) == TNK_Type_template) {
338      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
339      Diag(IILoc, diag::err_template_missing_args) << TplName;
340      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
341        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
342          << TplDecl->getTemplateParameters()->getSourceRange();
343      }
344      return true;
345    }
346  }
347
348  // FIXME: Should we move the logic that tries to recover from a missing tag
349  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
350
351  if (!SS || (!SS->isSet() && !SS->isInvalid()))
352    Diag(IILoc, diag::err_unknown_typename) << &II;
353  else if (DeclContext *DC = computeDeclContext(*SS, false))
354    Diag(IILoc, diag::err_typename_nested_not_found)
355      << &II << DC << SS->getRange();
356  else if (isDependentScopeSpecifier(*SS)) {
357    unsigned DiagID = diag::err_typename_missing;
358    if (getLangOptions().Microsoft && isMicrosoftMissingTypename(SS))
359      DiagID = diag::warn_typename_missing;
360
361    Diag(SS->getRange().getBegin(), DiagID)
362      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
363      << SourceRange(SS->getRange().getBegin(), IILoc)
364      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
365    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
366  } else {
367    assert(SS && SS->isInvalid() &&
368           "Invalid scope specifier has already been diagnosed");
369  }
370
371  return true;
372}
373
374// Determines the context to return to after temporarily entering a
375// context.  This depends in an unnecessarily complicated way on the
376// exact ordering of callbacks from the parser.
377DeclContext *Sema::getContainingDC(DeclContext *DC) {
378
379  // Functions defined inline within classes aren't parsed until we've
380  // finished parsing the top-level class, so the top-level class is
381  // the context we'll need to return to.
382  if (isa<FunctionDecl>(DC)) {
383    DC = DC->getLexicalParent();
384
385    // A function not defined within a class will always return to its
386    // lexical context.
387    if (!isa<CXXRecordDecl>(DC))
388      return DC;
389
390    // A C++ inline method/friend is parsed *after* the topmost class
391    // it was declared in is fully parsed ("complete");  the topmost
392    // class is the context we need to return to.
393    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
394      DC = RD;
395
396    // Return the declaration context of the topmost class the inline method is
397    // declared in.
398    return DC;
399  }
400
401  // ObjCMethodDecls are parsed (for some reason) outside the context
402  // of the class.
403  if (isa<ObjCMethodDecl>(DC))
404    return DC->getLexicalParent()->getLexicalParent();
405
406  return DC->getLexicalParent();
407}
408
409void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
410  assert(getContainingDC(DC) == CurContext &&
411      "The next DeclContext should be lexically contained in the current one.");
412  CurContext = DC;
413  S->setEntity(DC);
414}
415
416void Sema::PopDeclContext() {
417  assert(CurContext && "DeclContext imbalance!");
418
419  CurContext = getContainingDC(CurContext);
420  assert(CurContext && "Popped translation unit!");
421}
422
423/// EnterDeclaratorContext - Used when we must lookup names in the context
424/// of a declarator's nested name specifier.
425///
426void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
427  // C++0x [basic.lookup.unqual]p13:
428  //   A name used in the definition of a static data member of class
429  //   X (after the qualified-id of the static member) is looked up as
430  //   if the name was used in a member function of X.
431  // C++0x [basic.lookup.unqual]p14:
432  //   If a variable member of a namespace is defined outside of the
433  //   scope of its namespace then any name used in the definition of
434  //   the variable member (after the declarator-id) is looked up as
435  //   if the definition of the variable member occurred in its
436  //   namespace.
437  // Both of these imply that we should push a scope whose context
438  // is the semantic context of the declaration.  We can't use
439  // PushDeclContext here because that context is not necessarily
440  // lexically contained in the current context.  Fortunately,
441  // the containing scope should have the appropriate information.
442
443  assert(!S->getEntity() && "scope already has entity");
444
445#ifndef NDEBUG
446  Scope *Ancestor = S->getParent();
447  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
448  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
449#endif
450
451  CurContext = DC;
452  S->setEntity(DC);
453}
454
455void Sema::ExitDeclaratorContext(Scope *S) {
456  assert(S->getEntity() == CurContext && "Context imbalance!");
457
458  // Switch back to the lexical context.  The safety of this is
459  // enforced by an assert in EnterDeclaratorContext.
460  Scope *Ancestor = S->getParent();
461  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
462  CurContext = (DeclContext*) Ancestor->getEntity();
463
464  // We don't need to do anything with the scope, which is going to
465  // disappear.
466}
467
468/// \brief Determine whether we allow overloading of the function
469/// PrevDecl with another declaration.
470///
471/// This routine determines whether overloading is possible, not
472/// whether some new function is actually an overload. It will return
473/// true in C++ (where we can always provide overloads) or, as an
474/// extension, in C when the previous function is already an
475/// overloaded function declaration or has the "overloadable"
476/// attribute.
477static bool AllowOverloadingOfFunction(LookupResult &Previous,
478                                       ASTContext &Context) {
479  if (Context.getLangOptions().CPlusPlus)
480    return true;
481
482  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
483    return true;
484
485  return (Previous.getResultKind() == LookupResult::Found
486          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
487}
488
489/// Add this decl to the scope shadowed decl chains.
490void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
491  // Move up the scope chain until we find the nearest enclosing
492  // non-transparent context. The declaration will be introduced into this
493  // scope.
494  while (S->getEntity() &&
495         ((DeclContext *)S->getEntity())->isTransparentContext())
496    S = S->getParent();
497
498  // Add scoped declarations into their context, so that they can be
499  // found later. Declarations without a context won't be inserted
500  // into any context.
501  if (AddToContext)
502    CurContext->addDecl(D);
503
504  // Out-of-line definitions shouldn't be pushed into scope in C++.
505  // Out-of-line variable and function definitions shouldn't even in C.
506  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
507      D->isOutOfLine())
508    return;
509
510  // Template instantiations should also not be pushed into scope.
511  if (isa<FunctionDecl>(D) &&
512      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
513    return;
514
515  // If this replaces anything in the current scope,
516  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
517                               IEnd = IdResolver.end();
518  for (; I != IEnd; ++I) {
519    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
520      S->RemoveDecl(*I);
521      IdResolver.RemoveDecl(*I);
522
523      // Should only need to replace one decl.
524      break;
525    }
526  }
527
528  S->AddDecl(D);
529
530  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
531    // Implicitly-generated labels may end up getting generated in an order that
532    // isn't strictly lexical, which breaks name lookup. Be careful to insert
533    // the label at the appropriate place in the identifier chain.
534    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
535      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
536      if (IDC == CurContext) {
537        if (!S->isDeclScope(*I))
538          continue;
539      } else if (IDC->Encloses(CurContext))
540        break;
541    }
542
543    IdResolver.InsertDeclAfter(I, D);
544  } else {
545    IdResolver.AddDecl(D);
546  }
547}
548
549bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
550                         bool ExplicitInstantiationOrSpecialization) {
551  return IdResolver.isDeclInScope(D, Ctx, Context, S,
552                                  ExplicitInstantiationOrSpecialization);
553}
554
555Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
556  DeclContext *TargetDC = DC->getPrimaryContext();
557  do {
558    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
559      if (ScopeDC->getPrimaryContext() == TargetDC)
560        return S;
561  } while ((S = S->getParent()));
562
563  return 0;
564}
565
566static bool isOutOfScopePreviousDeclaration(NamedDecl *,
567                                            DeclContext*,
568                                            ASTContext&);
569
570/// Filters out lookup results that don't fall within the given scope
571/// as determined by isDeclInScope.
572static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
573                                 DeclContext *Ctx, Scope *S,
574                                 bool ConsiderLinkage,
575                                 bool ExplicitInstantiationOrSpecialization) {
576  LookupResult::Filter F = R.makeFilter();
577  while (F.hasNext()) {
578    NamedDecl *D = F.next();
579
580    if (SemaRef.isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
581      continue;
582
583    if (ConsiderLinkage &&
584        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
585      continue;
586
587    F.erase();
588  }
589
590  F.done();
591}
592
593static bool isUsingDecl(NamedDecl *D) {
594  return isa<UsingShadowDecl>(D) ||
595         isa<UnresolvedUsingTypenameDecl>(D) ||
596         isa<UnresolvedUsingValueDecl>(D);
597}
598
599/// Removes using shadow declarations from the lookup results.
600static void RemoveUsingDecls(LookupResult &R) {
601  LookupResult::Filter F = R.makeFilter();
602  while (F.hasNext())
603    if (isUsingDecl(F.next()))
604      F.erase();
605
606  F.done();
607}
608
609/// \brief Check for this common pattern:
610/// @code
611/// class S {
612///   S(const S&); // DO NOT IMPLEMENT
613///   void operator=(const S&); // DO NOT IMPLEMENT
614/// };
615/// @endcode
616static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
617  // FIXME: Should check for private access too but access is set after we get
618  // the decl here.
619  if (D->isThisDeclarationADefinition())
620    return false;
621
622  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
623    return CD->isCopyConstructor();
624  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
625    return Method->isCopyAssignmentOperator();
626  return false;
627}
628
629bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
630  assert(D);
631
632  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
633    return false;
634
635  // Ignore class templates.
636  if (D->getDeclContext()->isDependentContext() ||
637      D->getLexicalDeclContext()->isDependentContext())
638    return false;
639
640  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
641    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
642      return false;
643
644    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
645      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
646        return false;
647    } else {
648      // 'static inline' functions are used in headers; don't warn.
649      if (FD->getStorageClass() == SC_Static &&
650          FD->isInlineSpecified())
651        return false;
652    }
653
654    if (FD->isThisDeclarationADefinition() &&
655        Context.DeclMustBeEmitted(FD))
656      return false;
657
658  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
659    if (!VD->isFileVarDecl() ||
660        VD->getType().isConstant(Context) ||
661        Context.DeclMustBeEmitted(VD))
662      return false;
663
664    if (VD->isStaticDataMember() &&
665        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
666      return false;
667
668  } else {
669    return false;
670  }
671
672  // Only warn for unused decls internal to the translation unit.
673  if (D->getLinkage() == ExternalLinkage)
674    return false;
675
676  return true;
677}
678
679void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
680  if (!D)
681    return;
682
683  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
684    const FunctionDecl *First = FD->getFirstDeclaration();
685    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
686      return; // First should already be in the vector.
687  }
688
689  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
690    const VarDecl *First = VD->getFirstDeclaration();
691    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
692      return; // First should already be in the vector.
693  }
694
695   if (ShouldWarnIfUnusedFileScopedDecl(D))
696     UnusedFileScopedDecls.push_back(D);
697 }
698
699static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
700  if (D->isInvalidDecl())
701    return false;
702
703  if (D->isUsed() || D->hasAttr<UnusedAttr>())
704    return false;
705
706  if (isa<LabelDecl>(D))
707    return true;
708
709  // White-list anything that isn't a local variable.
710  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
711      !D->getDeclContext()->isFunctionOrMethod())
712    return false;
713
714  // Types of valid local variables should be complete, so this should succeed.
715  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
716
717    // White-list anything with an __attribute__((unused)) type.
718    QualType Ty = VD->getType();
719
720    // Only look at the outermost level of typedef.
721    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
722      if (TT->getDecl()->hasAttr<UnusedAttr>())
723        return false;
724    }
725
726    // If we failed to complete the type for some reason, or if the type is
727    // dependent, don't diagnose the variable.
728    if (Ty->isIncompleteType() || Ty->isDependentType())
729      return false;
730
731    if (const TagType *TT = Ty->getAs<TagType>()) {
732      const TagDecl *Tag = TT->getDecl();
733      if (Tag->hasAttr<UnusedAttr>())
734        return false;
735
736      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
737        // FIXME: Checking for the presence of a user-declared constructor
738        // isn't completely accurate; we'd prefer to check that the initializer
739        // has no side effects.
740        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
741          return false;
742      }
743    }
744
745    // TODO: __attribute__((unused)) templates?
746  }
747
748  return true;
749}
750
751/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
752/// unless they are marked attr(unused).
753void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
754  if (!ShouldDiagnoseUnusedDecl(D))
755    return;
756
757  unsigned DiagID;
758  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
759    DiagID = diag::warn_unused_exception_param;
760  else if (isa<LabelDecl>(D))
761    DiagID = diag::warn_unused_label;
762  else
763    DiagID = diag::warn_unused_variable;
764
765  Diag(D->getLocation(), DiagID) << D->getDeclName();
766}
767
768static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
769  // Verify that we have no forward references left.  If so, there was a goto
770  // or address of a label taken, but no definition of it.  Label fwd
771  // definitions are indicated with a null substmt.
772  if (L->getStmt() == 0)
773    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
774}
775
776void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
777  if (S->decl_empty()) return;
778  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
779         "Scope shouldn't contain decls!");
780
781  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
782       I != E; ++I) {
783    Decl *TmpD = (*I);
784    assert(TmpD && "This decl didn't get pushed??");
785
786    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
787    NamedDecl *D = cast<NamedDecl>(TmpD);
788
789    if (!D->getDeclName()) continue;
790
791    // Diagnose unused variables in this scope.
792    if (!S->hasErrorOccurred())
793      DiagnoseUnusedDecl(D);
794
795    // If this was a forward reference to a label, verify it was defined.
796    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
797      CheckPoppedLabel(LD, *this);
798
799    // Remove this name from our lexical scope.
800    IdResolver.RemoveDecl(D);
801  }
802}
803
804/// \brief Look for an Objective-C class in the translation unit.
805///
806/// \param Id The name of the Objective-C class we're looking for. If
807/// typo-correction fixes this name, the Id will be updated
808/// to the fixed name.
809///
810/// \param IdLoc The location of the name in the translation unit.
811///
812/// \param TypoCorrection If true, this routine will attempt typo correction
813/// if there is no class with the given name.
814///
815/// \returns The declaration of the named Objective-C class, or NULL if the
816/// class could not be found.
817ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
818                                              SourceLocation IdLoc,
819                                              bool TypoCorrection) {
820  // The third "scope" argument is 0 since we aren't enabling lazy built-in
821  // creation from this context.
822  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
823
824  if (!IDecl && TypoCorrection) {
825    // Perform typo correction at the given location, but only if we
826    // find an Objective-C class name.
827    LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
828    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
829        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
830      Diag(IdLoc, diag::err_undef_interface_suggest)
831        << Id << IDecl->getDeclName()
832        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
833      Diag(IDecl->getLocation(), diag::note_previous_decl)
834        << IDecl->getDeclName();
835
836      Id = IDecl->getIdentifier();
837    }
838  }
839
840  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
841}
842
843/// getNonFieldDeclScope - Retrieves the innermost scope, starting
844/// from S, where a non-field would be declared. This routine copes
845/// with the difference between C and C++ scoping rules in structs and
846/// unions. For example, the following code is well-formed in C but
847/// ill-formed in C++:
848/// @code
849/// struct S6 {
850///   enum { BAR } e;
851/// };
852///
853/// void test_S6() {
854///   struct S6 a;
855///   a.e = BAR;
856/// }
857/// @endcode
858/// For the declaration of BAR, this routine will return a different
859/// scope. The scope S will be the scope of the unnamed enumeration
860/// within S6. In C++, this routine will return the scope associated
861/// with S6, because the enumeration's scope is a transparent
862/// context but structures can contain non-field names. In C, this
863/// routine will return the translation unit scope, since the
864/// enumeration's scope is a transparent context and structures cannot
865/// contain non-field names.
866Scope *Sema::getNonFieldDeclScope(Scope *S) {
867  while (((S->getFlags() & Scope::DeclScope) == 0) ||
868         (S->getEntity() &&
869          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
870         (S->isClassScope() && !getLangOptions().CPlusPlus))
871    S = S->getParent();
872  return S;
873}
874
875/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
876/// file scope.  lazily create a decl for it. ForRedeclaration is true
877/// if we're creating this built-in in anticipation of redeclaring the
878/// built-in.
879NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
880                                     Scope *S, bool ForRedeclaration,
881                                     SourceLocation Loc) {
882  Builtin::ID BID = (Builtin::ID)bid;
883
884  ASTContext::GetBuiltinTypeError Error;
885  QualType R = Context.GetBuiltinType(BID, Error);
886  switch (Error) {
887  case ASTContext::GE_None:
888    // Okay
889    break;
890
891  case ASTContext::GE_Missing_stdio:
892    if (ForRedeclaration)
893      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
894        << Context.BuiltinInfo.GetName(BID);
895    return 0;
896
897  case ASTContext::GE_Missing_setjmp:
898    if (ForRedeclaration)
899      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
900        << Context.BuiltinInfo.GetName(BID);
901    return 0;
902  }
903
904  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
905    Diag(Loc, diag::ext_implicit_lib_function_decl)
906      << Context.BuiltinInfo.GetName(BID)
907      << R;
908    if (Context.BuiltinInfo.getHeaderName(BID) &&
909        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
910          != Diagnostic::Ignored)
911      Diag(Loc, diag::note_please_include_header)
912        << Context.BuiltinInfo.getHeaderName(BID)
913        << Context.BuiltinInfo.GetName(BID);
914  }
915
916  FunctionDecl *New = FunctionDecl::Create(Context,
917                                           Context.getTranslationUnitDecl(),
918                                           Loc, Loc, II, R, /*TInfo=*/0,
919                                           SC_Extern,
920                                           SC_None, false,
921                                           /*hasPrototype=*/true);
922  New->setImplicit();
923
924  // Create Decl objects for each parameter, adding them to the
925  // FunctionDecl.
926  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
927    llvm::SmallVector<ParmVarDecl*, 16> Params;
928    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
929      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(),
930                                           SourceLocation(), 0,
931                                           FT->getArgType(i), /*TInfo=*/0,
932                                           SC_None, SC_None, 0));
933    New->setParams(Params.data(), Params.size());
934  }
935
936  AddKnownFunctionAttributes(New);
937
938  // TUScope is the translation-unit scope to insert this function into.
939  // FIXME: This is hideous. We need to teach PushOnScopeChains to
940  // relate Scopes to DeclContexts, and probably eliminate CurContext
941  // entirely, but we're not there yet.
942  DeclContext *SavedContext = CurContext;
943  CurContext = Context.getTranslationUnitDecl();
944  PushOnScopeChains(New, TUScope);
945  CurContext = SavedContext;
946  return New;
947}
948
949/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
950/// same name and scope as a previous declaration 'Old'.  Figure out
951/// how to resolve this situation, merging decls or emitting
952/// diagnostics as appropriate. If there was an error, set New to be invalid.
953///
954void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
955  // If the new decl is known invalid already, don't bother doing any
956  // merging checks.
957  if (New->isInvalidDecl()) return;
958
959  // Allow multiple definitions for ObjC built-in typedefs.
960  // FIXME: Verify the underlying types are equivalent!
961  if (getLangOptions().ObjC1) {
962    const IdentifierInfo *TypeID = New->getIdentifier();
963    switch (TypeID->getLength()) {
964    default: break;
965    case 2:
966      if (!TypeID->isStr("id"))
967        break;
968      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
969      // Install the built-in type for 'id', ignoring the current definition.
970      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
971      return;
972    case 5:
973      if (!TypeID->isStr("Class"))
974        break;
975      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
976      // Install the built-in type for 'Class', ignoring the current definition.
977      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
978      return;
979    case 3:
980      if (!TypeID->isStr("SEL"))
981        break;
982      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
983      // Install the built-in type for 'SEL', ignoring the current definition.
984      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
985      return;
986    case 8:
987      if (!TypeID->isStr("Protocol"))
988        break;
989      Context.setObjCProtoType(New->getUnderlyingType());
990      return;
991    }
992    // Fall through - the typedef name was not a builtin type.
993  }
994
995  // Verify the old decl was also a type.
996  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
997  if (!Old) {
998    Diag(New->getLocation(), diag::err_redefinition_different_kind)
999      << New->getDeclName();
1000
1001    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1002    if (OldD->getLocation().isValid())
1003      Diag(OldD->getLocation(), diag::note_previous_definition);
1004
1005    return New->setInvalidDecl();
1006  }
1007
1008  // If the old declaration is invalid, just give up here.
1009  if (Old->isInvalidDecl())
1010    return New->setInvalidDecl();
1011
1012  // Determine the "old" type we'll use for checking and diagnostics.
1013  QualType OldType;
1014  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1015    OldType = OldTypedef->getUnderlyingType();
1016  else
1017    OldType = Context.getTypeDeclType(Old);
1018
1019  // If the typedef types are not identical, reject them in all languages and
1020  // with any extensions enabled.
1021
1022  if (OldType != New->getUnderlyingType() &&
1023      Context.getCanonicalType(OldType) !=
1024      Context.getCanonicalType(New->getUnderlyingType())) {
1025    int Kind = 0;
1026    if (isa<TypeAliasDecl>(Old))
1027      Kind = 1;
1028    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1029      << Kind << New->getUnderlyingType() << OldType;
1030    if (Old->getLocation().isValid())
1031      Diag(Old->getLocation(), diag::note_previous_definition);
1032    return New->setInvalidDecl();
1033  }
1034
1035  // The types match.  Link up the redeclaration chain if the old
1036  // declaration was a typedef.
1037  // FIXME: this is a potential source of wierdness if the type
1038  // spellings don't match exactly.
1039  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1040    New->setPreviousDeclaration(Typedef);
1041
1042  if (getLangOptions().Microsoft)
1043    return;
1044
1045  if (getLangOptions().CPlusPlus) {
1046    // C++ [dcl.typedef]p2:
1047    //   In a given non-class scope, a typedef specifier can be used to
1048    //   redefine the name of any type declared in that scope to refer
1049    //   to the type to which it already refers.
1050    if (!isa<CXXRecordDecl>(CurContext))
1051      return;
1052
1053    // C++0x [dcl.typedef]p4:
1054    //   In a given class scope, a typedef specifier can be used to redefine
1055    //   any class-name declared in that scope that is not also a typedef-name
1056    //   to refer to the type to which it already refers.
1057    //
1058    // This wording came in via DR424, which was a correction to the
1059    // wording in DR56, which accidentally banned code like:
1060    //
1061    //   struct S {
1062    //     typedef struct A { } A;
1063    //   };
1064    //
1065    // in the C++03 standard. We implement the C++0x semantics, which
1066    // allow the above but disallow
1067    //
1068    //   struct S {
1069    //     typedef int I;
1070    //     typedef int I;
1071    //   };
1072    //
1073    // since that was the intent of DR56.
1074    if (!isa<TypedefNameDecl>(Old))
1075      return;
1076
1077    Diag(New->getLocation(), diag::err_redefinition)
1078      << New->getDeclName();
1079    Diag(Old->getLocation(), diag::note_previous_definition);
1080    return New->setInvalidDecl();
1081  }
1082
1083  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1084  // is normally mapped to an error, but can be controlled with
1085  // -Wtypedef-redefinition.  If either the original or the redefinition is
1086  // in a system header, don't emit this for compatibility with GCC.
1087  if (getDiagnostics().getSuppressSystemWarnings() &&
1088      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1089       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1090    return;
1091
1092  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1093    << New->getDeclName();
1094  Diag(Old->getLocation(), diag::note_previous_definition);
1095  return;
1096}
1097
1098/// DeclhasAttr - returns true if decl Declaration already has the target
1099/// attribute.
1100static bool
1101DeclHasAttr(const Decl *D, const Attr *A) {
1102  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1103  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1104    if ((*i)->getKind() == A->getKind()) {
1105      // FIXME: Don't hardcode this check
1106      if (OA && isa<OwnershipAttr>(*i))
1107        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1108      return true;
1109    }
1110
1111  return false;
1112}
1113
1114/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1115static void mergeDeclAttributes(Decl *newDecl, const Decl *oldDecl,
1116                                ASTContext &C) {
1117  if (!oldDecl->hasAttrs())
1118    return;
1119
1120  bool foundAny = newDecl->hasAttrs();
1121
1122  // Ensure that any moving of objects within the allocated map is done before
1123  // we process them.
1124  if (!foundAny) newDecl->setAttrs(AttrVec());
1125
1126  for (specific_attr_iterator<InheritableAttr>
1127       i = oldDecl->specific_attr_begin<InheritableAttr>(),
1128       e = oldDecl->specific_attr_end<InheritableAttr>(); i != e; ++i) {
1129    if (!DeclHasAttr(newDecl, *i)) {
1130      InheritableAttr *newAttr = cast<InheritableAttr>((*i)->clone(C));
1131      newAttr->setInherited(true);
1132      newDecl->addAttr(newAttr);
1133      foundAny = true;
1134    }
1135  }
1136
1137  if (!foundAny) newDecl->dropAttrs();
1138}
1139
1140/// mergeParamDeclAttributes - Copy attributes from the old parameter
1141/// to the new one.
1142static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1143                                     const ParmVarDecl *oldDecl,
1144                                     ASTContext &C) {
1145  if (!oldDecl->hasAttrs())
1146    return;
1147
1148  bool foundAny = newDecl->hasAttrs();
1149
1150  // Ensure that any moving of objects within the allocated map is
1151  // done before we process them.
1152  if (!foundAny) newDecl->setAttrs(AttrVec());
1153
1154  for (specific_attr_iterator<InheritableParamAttr>
1155       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1156       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1157    if (!DeclHasAttr(newDecl, *i)) {
1158      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1159      newAttr->setInherited(true);
1160      newDecl->addAttr(newAttr);
1161      foundAny = true;
1162    }
1163  }
1164
1165  if (!foundAny) newDecl->dropAttrs();
1166}
1167
1168namespace {
1169
1170/// Used in MergeFunctionDecl to keep track of function parameters in
1171/// C.
1172struct GNUCompatibleParamWarning {
1173  ParmVarDecl *OldParm;
1174  ParmVarDecl *NewParm;
1175  QualType PromotedType;
1176};
1177
1178}
1179
1180/// getSpecialMember - get the special member enum for a method.
1181Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1182  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1183    if (Ctor->isCopyConstructor())
1184      return Sema::CXXCopyConstructor;
1185
1186    return Sema::CXXConstructor;
1187  }
1188
1189  if (isa<CXXDestructorDecl>(MD))
1190    return Sema::CXXDestructor;
1191
1192  assert(MD->isCopyAssignmentOperator() &&
1193         "Must have copy assignment operator");
1194  return Sema::CXXCopyAssignment;
1195}
1196
1197/// canRedefineFunction - checks if a function can be redefined. Currently,
1198/// only extern inline functions can be redefined, and even then only in
1199/// GNU89 mode.
1200static bool canRedefineFunction(const FunctionDecl *FD,
1201                                const LangOptions& LangOpts) {
1202  return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
1203          FD->isInlineSpecified() &&
1204          FD->getStorageClass() == SC_Extern);
1205}
1206
1207/// MergeFunctionDecl - We just parsed a function 'New' from
1208/// declarator D which has the same name and scope as a previous
1209/// declaration 'Old'.  Figure out how to resolve this situation,
1210/// merging decls or emitting diagnostics as appropriate.
1211///
1212/// In C++, New and Old must be declarations that are not
1213/// overloaded. Use IsOverload to determine whether New and Old are
1214/// overloaded, and to select the Old declaration that New should be
1215/// merged with.
1216///
1217/// Returns true if there was an error, false otherwise.
1218bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1219  // Verify the old decl was also a function.
1220  FunctionDecl *Old = 0;
1221  if (FunctionTemplateDecl *OldFunctionTemplate
1222        = dyn_cast<FunctionTemplateDecl>(OldD))
1223    Old = OldFunctionTemplate->getTemplatedDecl();
1224  else
1225    Old = dyn_cast<FunctionDecl>(OldD);
1226  if (!Old) {
1227    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1228      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1229      Diag(Shadow->getTargetDecl()->getLocation(),
1230           diag::note_using_decl_target);
1231      Diag(Shadow->getUsingDecl()->getLocation(),
1232           diag::note_using_decl) << 0;
1233      return true;
1234    }
1235
1236    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1237      << New->getDeclName();
1238    Diag(OldD->getLocation(), diag::note_previous_definition);
1239    return true;
1240  }
1241
1242  // Determine whether the previous declaration was a definition,
1243  // implicit declaration, or a declaration.
1244  diag::kind PrevDiag;
1245  if (Old->isThisDeclarationADefinition())
1246    PrevDiag = diag::note_previous_definition;
1247  else if (Old->isImplicit())
1248    PrevDiag = diag::note_previous_implicit_declaration;
1249  else
1250    PrevDiag = diag::note_previous_declaration;
1251
1252  QualType OldQType = Context.getCanonicalType(Old->getType());
1253  QualType NewQType = Context.getCanonicalType(New->getType());
1254
1255  // Don't complain about this if we're in GNU89 mode and the old function
1256  // is an extern inline function.
1257  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1258      New->getStorageClass() == SC_Static &&
1259      Old->getStorageClass() != SC_Static &&
1260      !canRedefineFunction(Old, getLangOptions())) {
1261    if (getLangOptions().Microsoft) {
1262      Diag(New->getLocation(), diag::warn_static_non_static) << New;
1263      Diag(Old->getLocation(), PrevDiag);
1264    } else {
1265      Diag(New->getLocation(), diag::err_static_non_static) << New;
1266      Diag(Old->getLocation(), PrevDiag);
1267      return true;
1268    }
1269  }
1270
1271  // If a function is first declared with a calling convention, but is
1272  // later declared or defined without one, the second decl assumes the
1273  // calling convention of the first.
1274  //
1275  // For the new decl, we have to look at the NON-canonical type to tell the
1276  // difference between a function that really doesn't have a calling
1277  // convention and one that is declared cdecl. That's because in
1278  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1279  // because it is the default calling convention.
1280  //
1281  // Note also that we DO NOT return at this point, because we still have
1282  // other tests to run.
1283  const FunctionType *OldType = cast<FunctionType>(OldQType);
1284  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1285  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1286  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1287  bool RequiresAdjustment = false;
1288  if (OldTypeInfo.getCC() != CC_Default &&
1289      NewTypeInfo.getCC() == CC_Default) {
1290    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1291    RequiresAdjustment = true;
1292  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1293                                     NewTypeInfo.getCC())) {
1294    // Calling conventions really aren't compatible, so complain.
1295    Diag(New->getLocation(), diag::err_cconv_change)
1296      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1297      << (OldTypeInfo.getCC() == CC_Default)
1298      << (OldTypeInfo.getCC() == CC_Default ? "" :
1299          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1300    Diag(Old->getLocation(), diag::note_previous_declaration);
1301    return true;
1302  }
1303
1304  // FIXME: diagnose the other way around?
1305  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1306    NewTypeInfo = NewTypeInfo.withNoReturn(true);
1307    RequiresAdjustment = true;
1308  }
1309
1310  // Merge regparm attribute.
1311  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
1312      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1313    if (NewTypeInfo.getHasRegParm()) {
1314      Diag(New->getLocation(), diag::err_regparm_mismatch)
1315        << NewType->getRegParmType()
1316        << OldType->getRegParmType();
1317      Diag(Old->getLocation(), diag::note_previous_declaration);
1318      return true;
1319    }
1320
1321    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1322    RequiresAdjustment = true;
1323  }
1324
1325  if (RequiresAdjustment) {
1326    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1327    New->setType(QualType(NewType, 0));
1328    NewQType = Context.getCanonicalType(New->getType());
1329  }
1330
1331  if (getLangOptions().CPlusPlus) {
1332    // (C++98 13.1p2):
1333    //   Certain function declarations cannot be overloaded:
1334    //     -- Function declarations that differ only in the return type
1335    //        cannot be overloaded.
1336    QualType OldReturnType = OldType->getResultType();
1337    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1338    QualType ResQT;
1339    if (OldReturnType != NewReturnType) {
1340      if (NewReturnType->isObjCObjectPointerType()
1341          && OldReturnType->isObjCObjectPointerType())
1342        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1343      if (ResQT.isNull()) {
1344        if (New->isCXXClassMember() && New->isOutOfLine())
1345          Diag(New->getLocation(),
1346               diag::err_member_def_does_not_match_ret_type) << New;
1347        else
1348          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1349        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1350        return true;
1351      }
1352      else
1353        NewQType = ResQT;
1354    }
1355
1356    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1357    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1358    if (OldMethod && NewMethod) {
1359      // Preserve triviality.
1360      NewMethod->setTrivial(OldMethod->isTrivial());
1361
1362      bool isFriend = NewMethod->getFriendObjectKind();
1363
1364      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1365        //    -- Member function declarations with the same name and the
1366        //       same parameter types cannot be overloaded if any of them
1367        //       is a static member function declaration.
1368        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1369          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1370          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1371          return true;
1372        }
1373
1374        // C++ [class.mem]p1:
1375        //   [...] A member shall not be declared twice in the
1376        //   member-specification, except that a nested class or member
1377        //   class template can be declared and then later defined.
1378        unsigned NewDiag;
1379        if (isa<CXXConstructorDecl>(OldMethod))
1380          NewDiag = diag::err_constructor_redeclared;
1381        else if (isa<CXXDestructorDecl>(NewMethod))
1382          NewDiag = diag::err_destructor_redeclared;
1383        else if (isa<CXXConversionDecl>(NewMethod))
1384          NewDiag = diag::err_conv_function_redeclared;
1385        else
1386          NewDiag = diag::err_member_redeclared;
1387
1388        Diag(New->getLocation(), NewDiag);
1389        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1390
1391      // Complain if this is an explicit declaration of a special
1392      // member that was initially declared implicitly.
1393      //
1394      // As an exception, it's okay to befriend such methods in order
1395      // to permit the implicit constructor/destructor/operator calls.
1396      } else if (OldMethod->isImplicit()) {
1397        if (isFriend) {
1398          NewMethod->setImplicit();
1399        } else {
1400          Diag(NewMethod->getLocation(),
1401               diag::err_definition_of_implicitly_declared_member)
1402            << New << getSpecialMember(OldMethod);
1403          return true;
1404        }
1405      }
1406    }
1407
1408    // (C++98 8.3.5p3):
1409    //   All declarations for a function shall agree exactly in both the
1410    //   return type and the parameter-type-list.
1411    // We also want to respect all the extended bits except noreturn.
1412
1413    // noreturn should now match unless the old type info didn't have it.
1414    QualType OldQTypeForComparison = OldQType;
1415    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
1416      assert(OldQType == QualType(OldType, 0));
1417      const FunctionType *OldTypeForComparison
1418        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
1419      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
1420      assert(OldQTypeForComparison.isCanonical());
1421    }
1422
1423    if (OldQTypeForComparison == NewQType)
1424      return MergeCompatibleFunctionDecls(New, Old);
1425
1426    // Fall through for conflicting redeclarations and redefinitions.
1427  }
1428
1429  // C: Function types need to be compatible, not identical. This handles
1430  // duplicate function decls like "void f(int); void f(enum X);" properly.
1431  if (!getLangOptions().CPlusPlus &&
1432      Context.typesAreCompatible(OldQType, NewQType)) {
1433    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1434    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1435    const FunctionProtoType *OldProto = 0;
1436    if (isa<FunctionNoProtoType>(NewFuncType) &&
1437        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1438      // The old declaration provided a function prototype, but the
1439      // new declaration does not. Merge in the prototype.
1440      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1441      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1442                                                 OldProto->arg_type_end());
1443      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1444                                         ParamTypes.data(), ParamTypes.size(),
1445                                         OldProto->getExtProtoInfo());
1446      New->setType(NewQType);
1447      New->setHasInheritedPrototype();
1448
1449      // Synthesize a parameter for each argument type.
1450      llvm::SmallVector<ParmVarDecl*, 16> Params;
1451      for (FunctionProtoType::arg_type_iterator
1452             ParamType = OldProto->arg_type_begin(),
1453             ParamEnd = OldProto->arg_type_end();
1454           ParamType != ParamEnd; ++ParamType) {
1455        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1456                                                 SourceLocation(),
1457                                                 SourceLocation(), 0,
1458                                                 *ParamType, /*TInfo=*/0,
1459                                                 SC_None, SC_None,
1460                                                 0);
1461        Param->setImplicit();
1462        Params.push_back(Param);
1463      }
1464
1465      New->setParams(Params.data(), Params.size());
1466    }
1467
1468    return MergeCompatibleFunctionDecls(New, Old);
1469  }
1470
1471  // GNU C permits a K&R definition to follow a prototype declaration
1472  // if the declared types of the parameters in the K&R definition
1473  // match the types in the prototype declaration, even when the
1474  // promoted types of the parameters from the K&R definition differ
1475  // from the types in the prototype. GCC then keeps the types from
1476  // the prototype.
1477  //
1478  // If a variadic prototype is followed by a non-variadic K&R definition,
1479  // the K&R definition becomes variadic.  This is sort of an edge case, but
1480  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1481  // C99 6.9.1p8.
1482  if (!getLangOptions().CPlusPlus &&
1483      Old->hasPrototype() && !New->hasPrototype() &&
1484      New->getType()->getAs<FunctionProtoType>() &&
1485      Old->getNumParams() == New->getNumParams()) {
1486    llvm::SmallVector<QualType, 16> ArgTypes;
1487    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1488    const FunctionProtoType *OldProto
1489      = Old->getType()->getAs<FunctionProtoType>();
1490    const FunctionProtoType *NewProto
1491      = New->getType()->getAs<FunctionProtoType>();
1492
1493    // Determine whether this is the GNU C extension.
1494    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1495                                               NewProto->getResultType());
1496    bool LooseCompatible = !MergedReturn.isNull();
1497    for (unsigned Idx = 0, End = Old->getNumParams();
1498         LooseCompatible && Idx != End; ++Idx) {
1499      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1500      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1501      if (Context.typesAreCompatible(OldParm->getType(),
1502                                     NewProto->getArgType(Idx))) {
1503        ArgTypes.push_back(NewParm->getType());
1504      } else if (Context.typesAreCompatible(OldParm->getType(),
1505                                            NewParm->getType(),
1506                                            /*CompareUnqualified=*/true)) {
1507        GNUCompatibleParamWarning Warn
1508          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1509        Warnings.push_back(Warn);
1510        ArgTypes.push_back(NewParm->getType());
1511      } else
1512        LooseCompatible = false;
1513    }
1514
1515    if (LooseCompatible) {
1516      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1517        Diag(Warnings[Warn].NewParm->getLocation(),
1518             diag::ext_param_promoted_not_compatible_with_prototype)
1519          << Warnings[Warn].PromotedType
1520          << Warnings[Warn].OldParm->getType();
1521        if (Warnings[Warn].OldParm->getLocation().isValid())
1522          Diag(Warnings[Warn].OldParm->getLocation(),
1523               diag::note_previous_declaration);
1524      }
1525
1526      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1527                                           ArgTypes.size(),
1528                                           OldProto->getExtProtoInfo()));
1529      return MergeCompatibleFunctionDecls(New, Old);
1530    }
1531
1532    // Fall through to diagnose conflicting types.
1533  }
1534
1535  // A function that has already been declared has been redeclared or defined
1536  // with a different type- show appropriate diagnostic
1537  if (unsigned BuiltinID = Old->getBuiltinID()) {
1538    // The user has declared a builtin function with an incompatible
1539    // signature.
1540    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1541      // The function the user is redeclaring is a library-defined
1542      // function like 'malloc' or 'printf'. Warn about the
1543      // redeclaration, then pretend that we don't know about this
1544      // library built-in.
1545      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1546      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1547        << Old << Old->getType();
1548      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1549      Old->setInvalidDecl();
1550      return false;
1551    }
1552
1553    PrevDiag = diag::note_previous_builtin_declaration;
1554  }
1555
1556  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1557  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1558  return true;
1559}
1560
1561/// \brief Completes the merge of two function declarations that are
1562/// known to be compatible.
1563///
1564/// This routine handles the merging of attributes and other
1565/// properties of function declarations form the old declaration to
1566/// the new declaration, once we know that New is in fact a
1567/// redeclaration of Old.
1568///
1569/// \returns false
1570bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1571  // Merge the attributes
1572  mergeDeclAttributes(New, Old, Context);
1573
1574  // Merge the storage class.
1575  if (Old->getStorageClass() != SC_Extern &&
1576      Old->getStorageClass() != SC_None)
1577    New->setStorageClass(Old->getStorageClass());
1578
1579  // Merge "pure" flag.
1580  if (Old->isPure())
1581    New->setPure();
1582
1583  // Merge the "deleted" flag.
1584  if (Old->isDeleted())
1585    New->setDeleted();
1586
1587  // Merge attributes from the parameters.  These can mismatch with K&R
1588  // declarations.
1589  if (New->getNumParams() == Old->getNumParams())
1590    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
1591      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
1592                               Context);
1593
1594  if (getLangOptions().CPlusPlus)
1595    return MergeCXXFunctionDecl(New, Old);
1596
1597  return false;
1598}
1599
1600void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
1601                                const ObjCMethodDecl *oldMethod) {
1602  // Merge the attributes.
1603  mergeDeclAttributes(newMethod, oldMethod, Context);
1604
1605  // Merge attributes from the parameters.
1606  for (ObjCMethodDecl::param_iterator oi = oldMethod->param_begin(),
1607         ni = newMethod->param_begin(), ne = newMethod->param_end();
1608       ni != ne; ++ni, ++oi)
1609    mergeParamDeclAttributes(*ni, *oi, Context);
1610}
1611
1612/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
1613/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
1614/// emitting diagnostics as appropriate.
1615///
1616/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
1617/// to here in AddInitializerToDecl and AddCXXDirectInitializerToDecl. We can't
1618/// check them before the initializer is attached.
1619///
1620void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
1621  if (New->isInvalidDecl() || Old->isInvalidDecl())
1622    return;
1623
1624  QualType MergedT;
1625  if (getLangOptions().CPlusPlus) {
1626    AutoType *AT = New->getType()->getContainedAutoType();
1627    if (AT && !AT->isDeduced()) {
1628      // We don't know what the new type is until the initializer is attached.
1629      return;
1630    } else if (Context.hasSameType(New->getType(), Old->getType())) {
1631      // These could still be something that needs exception specs checked.
1632      return MergeVarDeclExceptionSpecs(New, Old);
1633    }
1634    // C++ [basic.link]p10:
1635    //   [...] the types specified by all declarations referring to a given
1636    //   object or function shall be identical, except that declarations for an
1637    //   array object can specify array types that differ by the presence or
1638    //   absence of a major array bound (8.3.4).
1639    else if (Old->getType()->isIncompleteArrayType() &&
1640             New->getType()->isArrayType()) {
1641      CanQual<ArrayType> OldArray
1642        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1643      CanQual<ArrayType> NewArray
1644        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1645      if (OldArray->getElementType() == NewArray->getElementType())
1646        MergedT = New->getType();
1647    } else if (Old->getType()->isArrayType() &&
1648             New->getType()->isIncompleteArrayType()) {
1649      CanQual<ArrayType> OldArray
1650        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1651      CanQual<ArrayType> NewArray
1652        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1653      if (OldArray->getElementType() == NewArray->getElementType())
1654        MergedT = Old->getType();
1655    } else if (New->getType()->isObjCObjectPointerType()
1656               && Old->getType()->isObjCObjectPointerType()) {
1657        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
1658                                                        Old->getType());
1659    }
1660  } else {
1661    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1662  }
1663  if (MergedT.isNull()) {
1664    Diag(New->getLocation(), diag::err_redefinition_different_type)
1665      << New->getDeclName();
1666    Diag(Old->getLocation(), diag::note_previous_definition);
1667    return New->setInvalidDecl();
1668  }
1669  New->setType(MergedT);
1670}
1671
1672/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1673/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1674/// situation, merging decls or emitting diagnostics as appropriate.
1675///
1676/// Tentative definition rules (C99 6.9.2p2) are checked by
1677/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1678/// definitions here, since the initializer hasn't been attached.
1679///
1680void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1681  // If the new decl is already invalid, don't do any other checking.
1682  if (New->isInvalidDecl())
1683    return;
1684
1685  // Verify the old decl was also a variable.
1686  VarDecl *Old = 0;
1687  if (!Previous.isSingleResult() ||
1688      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1689    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1690      << New->getDeclName();
1691    Diag(Previous.getRepresentativeDecl()->getLocation(),
1692         diag::note_previous_definition);
1693    return New->setInvalidDecl();
1694  }
1695
1696  // C++ [class.mem]p1:
1697  //   A member shall not be declared twice in the member-specification [...]
1698  //
1699  // Here, we need only consider static data members.
1700  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
1701    Diag(New->getLocation(), diag::err_duplicate_member)
1702      << New->getIdentifier();
1703    Diag(Old->getLocation(), diag::note_previous_declaration);
1704    New->setInvalidDecl();
1705  }
1706
1707  mergeDeclAttributes(New, Old, Context);
1708
1709  // Merge the types.
1710  MergeVarDeclTypes(New, Old);
1711  if (New->isInvalidDecl())
1712    return;
1713
1714  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1715  if (New->getStorageClass() == SC_Static &&
1716      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
1717    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1718    Diag(Old->getLocation(), diag::note_previous_definition);
1719    return New->setInvalidDecl();
1720  }
1721  // C99 6.2.2p4:
1722  //   For an identifier declared with the storage-class specifier
1723  //   extern in a scope in which a prior declaration of that
1724  //   identifier is visible,23) if the prior declaration specifies
1725  //   internal or external linkage, the linkage of the identifier at
1726  //   the later declaration is the same as the linkage specified at
1727  //   the prior declaration. If no prior declaration is visible, or
1728  //   if the prior declaration specifies no linkage, then the
1729  //   identifier has external linkage.
1730  if (New->hasExternalStorage() && Old->hasLinkage())
1731    /* Okay */;
1732  else if (New->getStorageClass() != SC_Static &&
1733           Old->getStorageClass() == SC_Static) {
1734    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1735    Diag(Old->getLocation(), diag::note_previous_definition);
1736    return New->setInvalidDecl();
1737  }
1738
1739  // Check if extern is followed by non-extern and vice-versa.
1740  if (New->hasExternalStorage() &&
1741      !Old->hasLinkage() && Old->isLocalVarDecl()) {
1742    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
1743    Diag(Old->getLocation(), diag::note_previous_definition);
1744    return New->setInvalidDecl();
1745  }
1746  if (Old->hasExternalStorage() &&
1747      !New->hasLinkage() && New->isLocalVarDecl()) {
1748    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
1749    Diag(Old->getLocation(), diag::note_previous_definition);
1750    return New->setInvalidDecl();
1751  }
1752
1753  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1754
1755  // FIXME: The test for external storage here seems wrong? We still
1756  // need to check for mismatches.
1757  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1758      // Don't complain about out-of-line definitions of static members.
1759      !(Old->getLexicalDeclContext()->isRecord() &&
1760        !New->getLexicalDeclContext()->isRecord())) {
1761    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1762    Diag(Old->getLocation(), diag::note_previous_definition);
1763    return New->setInvalidDecl();
1764  }
1765
1766  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1767    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1768    Diag(Old->getLocation(), diag::note_previous_definition);
1769  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1770    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1771    Diag(Old->getLocation(), diag::note_previous_definition);
1772  }
1773
1774  // C++ doesn't have tentative definitions, so go right ahead and check here.
1775  const VarDecl *Def;
1776  if (getLangOptions().CPlusPlus &&
1777      New->isThisDeclarationADefinition() == VarDecl::Definition &&
1778      (Def = Old->getDefinition())) {
1779    Diag(New->getLocation(), diag::err_redefinition)
1780      << New->getDeclName();
1781    Diag(Def->getLocation(), diag::note_previous_definition);
1782    New->setInvalidDecl();
1783    return;
1784  }
1785  // c99 6.2.2 P4.
1786  // For an identifier declared with the storage-class specifier extern in a
1787  // scope in which a prior declaration of that identifier is visible, if
1788  // the prior declaration specifies internal or external linkage, the linkage
1789  // of the identifier at the later declaration is the same as the linkage
1790  // specified at the prior declaration.
1791  // FIXME. revisit this code.
1792  if (New->hasExternalStorage() &&
1793      Old->getLinkage() == InternalLinkage &&
1794      New->getDeclContext() == Old->getDeclContext())
1795    New->setStorageClass(Old->getStorageClass());
1796
1797  // Keep a chain of previous declarations.
1798  New->setPreviousDeclaration(Old);
1799
1800  // Inherit access appropriately.
1801  New->setAccess(Old->getAccess());
1802}
1803
1804/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1805/// no declarator (e.g. "struct foo;") is parsed.
1806Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
1807                                       DeclSpec &DS) {
1808  Decl *TagD = 0;
1809  TagDecl *Tag = 0;
1810  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1811      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1812      DS.getTypeSpecType() == DeclSpec::TST_union ||
1813      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1814    TagD = DS.getRepAsDecl();
1815
1816    if (!TagD) // We probably had an error
1817      return 0;
1818
1819    // Note that the above type specs guarantee that the
1820    // type rep is a Decl, whereas in many of the others
1821    // it's a Type.
1822    Tag = dyn_cast<TagDecl>(TagD);
1823  }
1824
1825  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1826    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1827    // or incomplete types shall not be restrict-qualified."
1828    if (TypeQuals & DeclSpec::TQ_restrict)
1829      Diag(DS.getRestrictSpecLoc(),
1830           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1831           << DS.getSourceRange();
1832  }
1833
1834  if (DS.isFriendSpecified()) {
1835    // If we're dealing with a decl but not a TagDecl, assume that
1836    // whatever routines created it handled the friendship aspect.
1837    if (TagD && !Tag)
1838      return 0;
1839    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1840  }
1841
1842  // Track whether we warned about the fact that there aren't any
1843  // declarators.
1844  bool emittedWarning = false;
1845
1846  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1847    ProcessDeclAttributeList(S, Record, DS.getAttributes().getList());
1848
1849    if (!Record->getDeclName() && Record->isDefinition() &&
1850        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1851      if (getLangOptions().CPlusPlus ||
1852          Record->getDeclContext()->isRecord())
1853        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
1854
1855      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1856        << DS.getSourceRange();
1857      emittedWarning = true;
1858    }
1859  }
1860
1861  // Check for Microsoft C extension: anonymous struct.
1862  if (getLangOptions().Microsoft && !getLangOptions().CPlusPlus &&
1863      CurContext->isRecord() &&
1864      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
1865    // Handle 2 kinds of anonymous struct:
1866    //   struct STRUCT;
1867    // and
1868    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
1869    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
1870    if ((Record && Record->getDeclName() && !Record->isDefinition()) ||
1871        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
1872         DS.getRepAsType().get()->isStructureType())) {
1873      Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
1874        << DS.getSourceRange();
1875      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
1876    }
1877  }
1878
1879  if (getLangOptions().CPlusPlus &&
1880      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
1881    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
1882      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
1883          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
1884        Diag(Enum->getLocation(), diag::ext_no_declarators)
1885          << DS.getSourceRange();
1886        emittedWarning = true;
1887      }
1888
1889  // Skip all the checks below if we have a type error.
1890  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
1891
1892  if (!DS.isMissingDeclaratorOk()) {
1893    // Warn about typedefs of enums without names, since this is an
1894    // extension in both Microsoft and GNU.
1895    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1896        Tag && isa<EnumDecl>(Tag)) {
1897      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1898        << DS.getSourceRange();
1899      return Tag;
1900    }
1901
1902    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1903      << DS.getSourceRange();
1904    emittedWarning = true;
1905  }
1906
1907  // We're going to complain about a bunch of spurious specifiers;
1908  // only do this if we're declaring a tag, because otherwise we
1909  // should be getting diag::ext_no_declarators.
1910  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
1911    return TagD;
1912
1913  // Note that a linkage-specification sets a storage class, but
1914  // 'extern "C" struct foo;' is actually valid and not theoretically
1915  // useless.
1916  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
1917    if (!DS.isExternInLinkageSpec())
1918      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
1919        << DeclSpec::getSpecifierName(scs);
1920
1921  if (DS.isThreadSpecified())
1922    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
1923  if (DS.getTypeQualifiers()) {
1924    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
1925      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
1926    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
1927      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
1928    // Restrict is covered above.
1929  }
1930  if (DS.isInlineSpecified())
1931    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
1932  if (DS.isVirtualSpecified())
1933    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
1934  if (DS.isExplicitSpecified())
1935    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
1936
1937  // FIXME: Warn on useless attributes
1938
1939  return TagD;
1940}
1941
1942/// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec.
1943/// builds a statement for it and returns it so it is evaluated.
1944StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) {
1945  StmtResult R;
1946  if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) {
1947    Expr *Exp = DS.getRepAsExpr();
1948    QualType Ty = Exp->getType();
1949    if (Ty->isPointerType()) {
1950      do
1951        Ty = Ty->getAs<PointerType>()->getPointeeType();
1952      while (Ty->isPointerType());
1953    }
1954    if (Ty->isVariableArrayType()) {
1955      R = ActOnExprStmt(MakeFullExpr(Exp));
1956    }
1957  }
1958  return R;
1959}
1960
1961/// We are trying to inject an anonymous member into the given scope;
1962/// check if there's an existing declaration that can't be overloaded.
1963///
1964/// \return true if this is a forbidden redeclaration
1965static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1966                                         Scope *S,
1967                                         DeclContext *Owner,
1968                                         DeclarationName Name,
1969                                         SourceLocation NameLoc,
1970                                         unsigned diagnostic) {
1971  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1972                 Sema::ForRedeclaration);
1973  if (!SemaRef.LookupName(R, S)) return false;
1974
1975  if (R.getAsSingle<TagDecl>())
1976    return false;
1977
1978  // Pick a representative declaration.
1979  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1980  assert(PrevDecl && "Expected a non-null Decl");
1981
1982  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
1983    return false;
1984
1985  SemaRef.Diag(NameLoc, diagnostic) << Name;
1986  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1987
1988  return true;
1989}
1990
1991/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1992/// anonymous struct or union AnonRecord into the owning context Owner
1993/// and scope S. This routine will be invoked just after we realize
1994/// that an unnamed union or struct is actually an anonymous union or
1995/// struct, e.g.,
1996///
1997/// @code
1998/// union {
1999///   int i;
2000///   float f;
2001/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
2002///    // f into the surrounding scope.x
2003/// @endcode
2004///
2005/// This routine is recursive, injecting the names of nested anonymous
2006/// structs/unions into the owning context and scope as well.
2007static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2008                                                DeclContext *Owner,
2009                                                RecordDecl *AnonRecord,
2010                                                AccessSpecifier AS,
2011                              llvm::SmallVector<NamedDecl*, 2> &Chaining,
2012                                                      bool MSAnonStruct) {
2013  unsigned diagKind
2014    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2015                            : diag::err_anonymous_struct_member_redecl;
2016
2017  bool Invalid = false;
2018
2019  // Look every FieldDecl and IndirectFieldDecl with a name.
2020  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2021                               DEnd = AnonRecord->decls_end();
2022       D != DEnd; ++D) {
2023    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2024        cast<NamedDecl>(*D)->getDeclName()) {
2025      ValueDecl *VD = cast<ValueDecl>(*D);
2026      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2027                                       VD->getLocation(), diagKind)) {
2028        // C++ [class.union]p2:
2029        //   The names of the members of an anonymous union shall be
2030        //   distinct from the names of any other entity in the
2031        //   scope in which the anonymous union is declared.
2032        Invalid = true;
2033      } else {
2034        // C++ [class.union]p2:
2035        //   For the purpose of name lookup, after the anonymous union
2036        //   definition, the members of the anonymous union are
2037        //   considered to have been defined in the scope in which the
2038        //   anonymous union is declared.
2039        unsigned OldChainingSize = Chaining.size();
2040        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2041          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2042               PE = IF->chain_end(); PI != PE; ++PI)
2043            Chaining.push_back(*PI);
2044        else
2045          Chaining.push_back(VD);
2046
2047        assert(Chaining.size() >= 2);
2048        NamedDecl **NamedChain =
2049          new (SemaRef.Context)NamedDecl*[Chaining.size()];
2050        for (unsigned i = 0; i < Chaining.size(); i++)
2051          NamedChain[i] = Chaining[i];
2052
2053        IndirectFieldDecl* IndirectField =
2054          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2055                                    VD->getIdentifier(), VD->getType(),
2056                                    NamedChain, Chaining.size());
2057
2058        IndirectField->setAccess(AS);
2059        IndirectField->setImplicit();
2060        SemaRef.PushOnScopeChains(IndirectField, S);
2061
2062        // That includes picking up the appropriate access specifier.
2063        if (AS != AS_none) IndirectField->setAccess(AS);
2064
2065        Chaining.resize(OldChainingSize);
2066      }
2067    }
2068  }
2069
2070  return Invalid;
2071}
2072
2073/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2074/// a VarDecl::StorageClass. Any error reporting is up to the caller:
2075/// illegal input values are mapped to SC_None.
2076static StorageClass
2077StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2078  switch (StorageClassSpec) {
2079  case DeclSpec::SCS_unspecified:    return SC_None;
2080  case DeclSpec::SCS_extern:         return SC_Extern;
2081  case DeclSpec::SCS_static:         return SC_Static;
2082  case DeclSpec::SCS_auto:           return SC_Auto;
2083  case DeclSpec::SCS_register:       return SC_Register;
2084  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2085    // Illegal SCSs map to None: error reporting is up to the caller.
2086  case DeclSpec::SCS_mutable:        // Fall through.
2087  case DeclSpec::SCS_typedef:        return SC_None;
2088  }
2089  llvm_unreachable("unknown storage class specifier");
2090}
2091
2092/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2093/// a StorageClass. Any error reporting is up to the caller:
2094/// illegal input values are mapped to SC_None.
2095static StorageClass
2096StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2097  switch (StorageClassSpec) {
2098  case DeclSpec::SCS_unspecified:    return SC_None;
2099  case DeclSpec::SCS_extern:         return SC_Extern;
2100  case DeclSpec::SCS_static:         return SC_Static;
2101  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2102    // Illegal SCSs map to None: error reporting is up to the caller.
2103  case DeclSpec::SCS_auto:           // Fall through.
2104  case DeclSpec::SCS_mutable:        // Fall through.
2105  case DeclSpec::SCS_register:       // Fall through.
2106  case DeclSpec::SCS_typedef:        return SC_None;
2107  }
2108  llvm_unreachable("unknown storage class specifier");
2109}
2110
2111/// BuildAnonymousStructOrUnion - Handle the declaration of an
2112/// anonymous structure or union. Anonymous unions are a C++ feature
2113/// (C++ [class.union]) and a GNU C extension; anonymous structures
2114/// are a GNU C and GNU C++ extension.
2115Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2116                                             AccessSpecifier AS,
2117                                             RecordDecl *Record) {
2118  DeclContext *Owner = Record->getDeclContext();
2119
2120  // Diagnose whether this anonymous struct/union is an extension.
2121  if (Record->isUnion() && !getLangOptions().CPlusPlus)
2122    Diag(Record->getLocation(), diag::ext_anonymous_union);
2123  else if (!Record->isUnion())
2124    Diag(Record->getLocation(), diag::ext_anonymous_struct);
2125
2126  // C and C++ require different kinds of checks for anonymous
2127  // structs/unions.
2128  bool Invalid = false;
2129  if (getLangOptions().CPlusPlus) {
2130    const char* PrevSpec = 0;
2131    unsigned DiagID;
2132    // C++ [class.union]p3:
2133    //   Anonymous unions declared in a named namespace or in the
2134    //   global namespace shall be declared static.
2135    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2136        (isa<TranslationUnitDecl>(Owner) ||
2137         (isa<NamespaceDecl>(Owner) &&
2138          cast<NamespaceDecl>(Owner)->getDeclName()))) {
2139      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
2140      Invalid = true;
2141
2142      // Recover by adding 'static'.
2143      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
2144                             PrevSpec, DiagID, getLangOptions());
2145    }
2146    // C++ [class.union]p3:
2147    //   A storage class is not allowed in a declaration of an
2148    //   anonymous union in a class scope.
2149    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2150             isa<RecordDecl>(Owner)) {
2151      Diag(DS.getStorageClassSpecLoc(),
2152           diag::err_anonymous_union_with_storage_spec);
2153      Invalid = true;
2154
2155      // Recover by removing the storage specifier.
2156      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
2157                             PrevSpec, DiagID, getLangOptions());
2158    }
2159
2160    // C++ [class.union]p2:
2161    //   The member-specification of an anonymous union shall only
2162    //   define non-static data members. [Note: nested types and
2163    //   functions cannot be declared within an anonymous union. ]
2164    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
2165                                 MemEnd = Record->decls_end();
2166         Mem != MemEnd; ++Mem) {
2167      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
2168        // C++ [class.union]p3:
2169        //   An anonymous union shall not have private or protected
2170        //   members (clause 11).
2171        assert(FD->getAccess() != AS_none);
2172        if (FD->getAccess() != AS_public) {
2173          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
2174            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
2175          Invalid = true;
2176        }
2177
2178        if (CheckNontrivialField(FD))
2179          Invalid = true;
2180      } else if ((*Mem)->isImplicit()) {
2181        // Any implicit members are fine.
2182      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
2183        // This is a type that showed up in an
2184        // elaborated-type-specifier inside the anonymous struct or
2185        // union, but which actually declares a type outside of the
2186        // anonymous struct or union. It's okay.
2187      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
2188        if (!MemRecord->isAnonymousStructOrUnion() &&
2189            MemRecord->getDeclName()) {
2190          // Visual C++ allows type definition in anonymous struct or union.
2191          if (getLangOptions().Microsoft)
2192            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
2193              << (int)Record->isUnion();
2194          else {
2195            // This is a nested type declaration.
2196            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
2197              << (int)Record->isUnion();
2198            Invalid = true;
2199          }
2200        }
2201      } else if (isa<AccessSpecDecl>(*Mem)) {
2202        // Any access specifier is fine.
2203      } else {
2204        // We have something that isn't a non-static data
2205        // member. Complain about it.
2206        unsigned DK = diag::err_anonymous_record_bad_member;
2207        if (isa<TypeDecl>(*Mem))
2208          DK = diag::err_anonymous_record_with_type;
2209        else if (isa<FunctionDecl>(*Mem))
2210          DK = diag::err_anonymous_record_with_function;
2211        else if (isa<VarDecl>(*Mem))
2212          DK = diag::err_anonymous_record_with_static;
2213
2214        // Visual C++ allows type definition in anonymous struct or union.
2215        if (getLangOptions().Microsoft &&
2216            DK == diag::err_anonymous_record_with_type)
2217          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
2218            << (int)Record->isUnion();
2219        else {
2220          Diag((*Mem)->getLocation(), DK)
2221              << (int)Record->isUnion();
2222          Invalid = true;
2223        }
2224      }
2225    }
2226  }
2227
2228  if (!Record->isUnion() && !Owner->isRecord()) {
2229    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
2230      << (int)getLangOptions().CPlusPlus;
2231    Invalid = true;
2232  }
2233
2234  // Mock up a declarator.
2235  Declarator Dc(DS, Declarator::TypeNameContext);
2236  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2237  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
2238
2239  // Create a declaration for this anonymous struct/union.
2240  NamedDecl *Anon = 0;
2241  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2242    Anon = FieldDecl::Create(Context, OwningClass,
2243                             DS.getSourceRange().getBegin(),
2244                             Record->getLocation(),
2245                             /*IdentifierInfo=*/0,
2246                             Context.getTypeDeclType(Record),
2247                             TInfo,
2248                             /*BitWidth=*/0, /*Mutable=*/false);
2249    Anon->setAccess(AS);
2250    if (getLangOptions().CPlusPlus)
2251      FieldCollector->Add(cast<FieldDecl>(Anon));
2252  } else {
2253    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2254    assert(SCSpec != DeclSpec::SCS_typedef &&
2255           "Parser allowed 'typedef' as storage class VarDecl.");
2256    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2257    if (SCSpec == DeclSpec::SCS_mutable) {
2258      // mutable can only appear on non-static class members, so it's always
2259      // an error here
2260      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2261      Invalid = true;
2262      SC = SC_None;
2263    }
2264    SCSpec = DS.getStorageClassSpecAsWritten();
2265    VarDecl::StorageClass SCAsWritten
2266      = StorageClassSpecToVarDeclStorageClass(SCSpec);
2267
2268    Anon = VarDecl::Create(Context, Owner,
2269                           DS.getSourceRange().getBegin(),
2270                           Record->getLocation(), /*IdentifierInfo=*/0,
2271                           Context.getTypeDeclType(Record),
2272                           TInfo, SC, SCAsWritten);
2273  }
2274  Anon->setImplicit();
2275
2276  // Add the anonymous struct/union object to the current
2277  // context. We'll be referencing this object when we refer to one of
2278  // its members.
2279  Owner->addDecl(Anon);
2280
2281  // Inject the members of the anonymous struct/union into the owning
2282  // context and into the identifier resolver chain for name lookup
2283  // purposes.
2284  llvm::SmallVector<NamedDecl*, 2> Chain;
2285  Chain.push_back(Anon);
2286
2287  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2288                                          Chain, false))
2289    Invalid = true;
2290
2291  // Mark this as an anonymous struct/union type. Note that we do not
2292  // do this until after we have already checked and injected the
2293  // members of this anonymous struct/union type, because otherwise
2294  // the members could be injected twice: once by DeclContext when it
2295  // builds its lookup table, and once by
2296  // InjectAnonymousStructOrUnionMembers.
2297  Record->setAnonymousStructOrUnion(true);
2298
2299  if (Invalid)
2300    Anon->setInvalidDecl();
2301
2302  return Anon;
2303}
2304
2305/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2306/// Microsoft C anonymous structure.
2307/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2308/// Example:
2309///
2310/// struct A { int a; };
2311/// struct B { struct A; int b; };
2312///
2313/// void foo() {
2314///   B var;
2315///   var.a = 3;
2316/// }
2317///
2318Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2319                                           RecordDecl *Record) {
2320
2321  // If there is no Record, get the record via the typedef.
2322  if (!Record)
2323    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2324
2325  // Mock up a declarator.
2326  Declarator Dc(DS, Declarator::TypeNameContext);
2327  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2328  assert(TInfo && "couldn't build declarator info for anonymous struct");
2329
2330  // Create a declaration for this anonymous struct.
2331  NamedDecl* Anon = FieldDecl::Create(Context,
2332                             cast<RecordDecl>(CurContext),
2333                             DS.getSourceRange().getBegin(),
2334                             DS.getSourceRange().getBegin(),
2335                             /*IdentifierInfo=*/0,
2336                             Context.getTypeDeclType(Record),
2337                             TInfo,
2338                             /*BitWidth=*/0, /*Mutable=*/false);
2339  Anon->setImplicit();
2340
2341  // Add the anonymous struct object to the current context.
2342  CurContext->addDecl(Anon);
2343
2344  // Inject the members of the anonymous struct into the current
2345  // context and into the identifier resolver chain for name lookup
2346  // purposes.
2347  llvm::SmallVector<NamedDecl*, 2> Chain;
2348  Chain.push_back(Anon);
2349
2350  if (InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2351                                          Record->getDefinition(),
2352                                          AS_none, Chain, true))
2353    Anon->setInvalidDecl();
2354
2355  return Anon;
2356}
2357
2358/// GetNameForDeclarator - Determine the full declaration name for the
2359/// given Declarator.
2360DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2361  return GetNameFromUnqualifiedId(D.getName());
2362}
2363
2364/// \brief Retrieves the declaration name from a parsed unqualified-id.
2365DeclarationNameInfo
2366Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2367  DeclarationNameInfo NameInfo;
2368  NameInfo.setLoc(Name.StartLocation);
2369
2370  switch (Name.getKind()) {
2371
2372  case UnqualifiedId::IK_Identifier:
2373    NameInfo.setName(Name.Identifier);
2374    NameInfo.setLoc(Name.StartLocation);
2375    return NameInfo;
2376
2377  case UnqualifiedId::IK_OperatorFunctionId:
2378    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2379                                           Name.OperatorFunctionId.Operator));
2380    NameInfo.setLoc(Name.StartLocation);
2381    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2382      = Name.OperatorFunctionId.SymbolLocations[0];
2383    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2384      = Name.EndLocation.getRawEncoding();
2385    return NameInfo;
2386
2387  case UnqualifiedId::IK_LiteralOperatorId:
2388    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2389                                                           Name.Identifier));
2390    NameInfo.setLoc(Name.StartLocation);
2391    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2392    return NameInfo;
2393
2394  case UnqualifiedId::IK_ConversionFunctionId: {
2395    TypeSourceInfo *TInfo;
2396    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2397    if (Ty.isNull())
2398      return DeclarationNameInfo();
2399    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2400                                               Context.getCanonicalType(Ty)));
2401    NameInfo.setLoc(Name.StartLocation);
2402    NameInfo.setNamedTypeInfo(TInfo);
2403    return NameInfo;
2404  }
2405
2406  case UnqualifiedId::IK_ConstructorName: {
2407    TypeSourceInfo *TInfo;
2408    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2409    if (Ty.isNull())
2410      return DeclarationNameInfo();
2411    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2412                                              Context.getCanonicalType(Ty)));
2413    NameInfo.setLoc(Name.StartLocation);
2414    NameInfo.setNamedTypeInfo(TInfo);
2415    return NameInfo;
2416  }
2417
2418  case UnqualifiedId::IK_ConstructorTemplateId: {
2419    // In well-formed code, we can only have a constructor
2420    // template-id that refers to the current context, so go there
2421    // to find the actual type being constructed.
2422    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2423    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2424      return DeclarationNameInfo();
2425
2426    // Determine the type of the class being constructed.
2427    QualType CurClassType = Context.getTypeDeclType(CurClass);
2428
2429    // FIXME: Check two things: that the template-id names the same type as
2430    // CurClassType, and that the template-id does not occur when the name
2431    // was qualified.
2432
2433    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2434                                    Context.getCanonicalType(CurClassType)));
2435    NameInfo.setLoc(Name.StartLocation);
2436    // FIXME: should we retrieve TypeSourceInfo?
2437    NameInfo.setNamedTypeInfo(0);
2438    return NameInfo;
2439  }
2440
2441  case UnqualifiedId::IK_DestructorName: {
2442    TypeSourceInfo *TInfo;
2443    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2444    if (Ty.isNull())
2445      return DeclarationNameInfo();
2446    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2447                                              Context.getCanonicalType(Ty)));
2448    NameInfo.setLoc(Name.StartLocation);
2449    NameInfo.setNamedTypeInfo(TInfo);
2450    return NameInfo;
2451  }
2452
2453  case UnqualifiedId::IK_TemplateId: {
2454    TemplateName TName = Name.TemplateId->Template.get();
2455    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
2456    return Context.getNameForTemplate(TName, TNameLoc);
2457  }
2458
2459  } // switch (Name.getKind())
2460
2461  assert(false && "Unknown name kind");
2462  return DeclarationNameInfo();
2463}
2464
2465/// isNearlyMatchingFunction - Determine whether the C++ functions
2466/// Declaration and Definition are "nearly" matching. This heuristic
2467/// is used to improve diagnostics in the case where an out-of-line
2468/// function definition doesn't match any declaration within
2469/// the class or namespace.
2470static bool isNearlyMatchingFunction(ASTContext &Context,
2471                                     FunctionDecl *Declaration,
2472                                     FunctionDecl *Definition) {
2473  if (Declaration->param_size() != Definition->param_size())
2474    return false;
2475  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2476    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2477    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2478
2479    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
2480                                        DefParamTy.getNonReferenceType()))
2481      return false;
2482  }
2483
2484  return true;
2485}
2486
2487/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
2488/// declarator needs to be rebuilt in the current instantiation.
2489/// Any bits of declarator which appear before the name are valid for
2490/// consideration here.  That's specifically the type in the decl spec
2491/// and the base type in any member-pointer chunks.
2492static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
2493                                                    DeclarationName Name) {
2494  // The types we specifically need to rebuild are:
2495  //   - typenames, typeofs, and decltypes
2496  //   - types which will become injected class names
2497  // Of course, we also need to rebuild any type referencing such a
2498  // type.  It's safest to just say "dependent", but we call out a
2499  // few cases here.
2500
2501  DeclSpec &DS = D.getMutableDeclSpec();
2502  switch (DS.getTypeSpecType()) {
2503  case DeclSpec::TST_typename:
2504  case DeclSpec::TST_typeofType:
2505  case DeclSpec::TST_decltype: {
2506    // Grab the type from the parser.
2507    TypeSourceInfo *TSI = 0;
2508    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
2509    if (T.isNull() || !T->isDependentType()) break;
2510
2511    // Make sure there's a type source info.  This isn't really much
2512    // of a waste; most dependent types should have type source info
2513    // attached already.
2514    if (!TSI)
2515      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
2516
2517    // Rebuild the type in the current instantiation.
2518    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
2519    if (!TSI) return true;
2520
2521    // Store the new type back in the decl spec.
2522    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
2523    DS.UpdateTypeRep(LocType);
2524    break;
2525  }
2526
2527  case DeclSpec::TST_typeofExpr: {
2528    Expr *E = DS.getRepAsExpr();
2529    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
2530    if (Result.isInvalid()) return true;
2531    DS.UpdateExprRep(Result.get());
2532    break;
2533  }
2534
2535  default:
2536    // Nothing to do for these decl specs.
2537    break;
2538  }
2539
2540  // It doesn't matter what order we do this in.
2541  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2542    DeclaratorChunk &Chunk = D.getTypeObject(I);
2543
2544    // The only type information in the declarator which can come
2545    // before the declaration name is the base type of a member
2546    // pointer.
2547    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
2548      continue;
2549
2550    // Rebuild the scope specifier in-place.
2551    CXXScopeSpec &SS = Chunk.Mem.Scope();
2552    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2553      return true;
2554  }
2555
2556  return false;
2557}
2558
2559Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
2560  return HandleDeclarator(S, D, MultiTemplateParamsArg(*this), false);
2561}
2562
2563/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
2564///   If T is the name of a class, then each of the following shall have a
2565///   name different from T:
2566///     - every static data member of class T;
2567///     - every member function of class T
2568///     - every member of class T that is itself a type;
2569/// \returns true if the declaration name violates these rules.
2570bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
2571                                   DeclarationNameInfo NameInfo) {
2572  DeclarationName Name = NameInfo.getName();
2573
2574  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
2575    if (Record->getIdentifier() && Record->getDeclName() == Name) {
2576      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
2577      return true;
2578    }
2579
2580  return false;
2581}
2582
2583Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
2584                             MultiTemplateParamsArg TemplateParamLists,
2585                             bool IsFunctionDefinition) {
2586  // TODO: consider using NameInfo for diagnostic.
2587  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2588  DeclarationName Name = NameInfo.getName();
2589
2590  // All of these full declarators require an identifier.  If it doesn't have
2591  // one, the ParsedFreeStandingDeclSpec action should be used.
2592  if (!Name) {
2593    if (!D.isInvalidType())  // Reject this if we think it is valid.
2594      Diag(D.getDeclSpec().getSourceRange().getBegin(),
2595           diag::err_declarator_need_ident)
2596        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2597    return 0;
2598  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
2599    return 0;
2600
2601  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2602  // we find one that is.
2603  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2604         (S->getFlags() & Scope::TemplateParamScope) != 0)
2605    S = S->getParent();
2606
2607  DeclContext *DC = CurContext;
2608  if (D.getCXXScopeSpec().isInvalid())
2609    D.setInvalidType();
2610  else if (D.getCXXScopeSpec().isSet()) {
2611    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
2612                                        UPPC_DeclarationQualifier))
2613      return 0;
2614
2615    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
2616    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
2617    if (!DC) {
2618      // If we could not compute the declaration context, it's because the
2619      // declaration context is dependent but does not refer to a class,
2620      // class template, or class template partial specialization. Complain
2621      // and return early, to avoid the coming semantic disaster.
2622      Diag(D.getIdentifierLoc(),
2623           diag::err_template_qualified_declarator_no_match)
2624        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2625        << D.getCXXScopeSpec().getRange();
2626      return 0;
2627    }
2628
2629    bool IsDependentContext = DC->isDependentContext();
2630
2631    if (!IsDependentContext &&
2632        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
2633      return 0;
2634
2635    if (isa<CXXRecordDecl>(DC)) {
2636      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
2637        Diag(D.getIdentifierLoc(),
2638             diag::err_member_def_undefined_record)
2639          << Name << DC << D.getCXXScopeSpec().getRange();
2640        D.setInvalidType();
2641      } else if (isa<CXXRecordDecl>(CurContext) &&
2642                 !D.getDeclSpec().isFriendSpecified()) {
2643        // The user provided a superfluous scope specifier inside a class
2644        // definition:
2645        //
2646        // class X {
2647        //   void X::f();
2648        // };
2649        if (CurContext->Equals(DC))
2650          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
2651            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
2652        else
2653          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
2654            << Name << D.getCXXScopeSpec().getRange();
2655
2656        // Pretend that this qualifier was not here.
2657        D.getCXXScopeSpec().clear();
2658      }
2659    }
2660
2661    // Check whether we need to rebuild the type of the given
2662    // declaration in the current instantiation.
2663    if (EnteringContext && IsDependentContext &&
2664        TemplateParamLists.size() != 0) {
2665      ContextRAII SavedContext(*this, DC);
2666      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
2667        D.setInvalidType();
2668    }
2669  }
2670
2671  if (DiagnoseClassNameShadow(DC, NameInfo))
2672    // If this is a typedef, we'll end up spewing multiple diagnostics.
2673    // Just return early; it's safer.
2674    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2675      return 0;
2676
2677  NamedDecl *New;
2678
2679  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
2680  QualType R = TInfo->getType();
2681
2682  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
2683                                      UPPC_DeclarationType))
2684    D.setInvalidType();
2685
2686  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
2687                        ForRedeclaration);
2688
2689  // See if this is a redefinition of a variable in the same scope.
2690  if (!D.getCXXScopeSpec().isSet()) {
2691    bool IsLinkageLookup = false;
2692
2693    // If the declaration we're planning to build will be a function
2694    // or object with linkage, then look for another declaration with
2695    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
2696    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2697      /* Do nothing*/;
2698    else if (R->isFunctionType()) {
2699      if (CurContext->isFunctionOrMethod() ||
2700          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2701        IsLinkageLookup = true;
2702    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
2703      IsLinkageLookup = true;
2704    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
2705             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2706      IsLinkageLookup = true;
2707
2708    if (IsLinkageLookup)
2709      Previous.clear(LookupRedeclarationWithLinkage);
2710
2711    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
2712  } else { // Something like "int foo::x;"
2713    LookupQualifiedName(Previous, DC);
2714
2715    // Don't consider using declarations as previous declarations for
2716    // out-of-line members.
2717    RemoveUsingDecls(Previous);
2718
2719    // C++ 7.3.1.2p2:
2720    // Members (including explicit specializations of templates) of a named
2721    // namespace can also be defined outside that namespace by explicit
2722    // qualification of the name being defined, provided that the entity being
2723    // defined was already declared in the namespace and the definition appears
2724    // after the point of declaration in a namespace that encloses the
2725    // declarations namespace.
2726    //
2727    // Note that we only check the context at this point. We don't yet
2728    // have enough information to make sure that PrevDecl is actually
2729    // the declaration we want to match. For example, given:
2730    //
2731    //   class X {
2732    //     void f();
2733    //     void f(float);
2734    //   };
2735    //
2736    //   void X::f(int) { } // ill-formed
2737    //
2738    // In this case, PrevDecl will point to the overload set
2739    // containing the two f's declared in X, but neither of them
2740    // matches.
2741
2742    // First check whether we named the global scope.
2743    if (isa<TranslationUnitDecl>(DC)) {
2744      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
2745        << Name << D.getCXXScopeSpec().getRange();
2746    } else {
2747      DeclContext *Cur = CurContext;
2748      while (isa<LinkageSpecDecl>(Cur))
2749        Cur = Cur->getParent();
2750      if (!Cur->Encloses(DC)) {
2751        // The qualifying scope doesn't enclose the original declaration.
2752        // Emit diagnostic based on current scope.
2753        SourceLocation L = D.getIdentifierLoc();
2754        SourceRange R = D.getCXXScopeSpec().getRange();
2755        if (isa<FunctionDecl>(Cur))
2756          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
2757        else
2758          Diag(L, diag::err_invalid_declarator_scope)
2759            << Name << cast<NamedDecl>(DC) << R;
2760        D.setInvalidType();
2761      }
2762    }
2763  }
2764
2765  if (Previous.isSingleResult() &&
2766      Previous.getFoundDecl()->isTemplateParameter()) {
2767    // Maybe we will complain about the shadowed template parameter.
2768    if (!D.isInvalidType())
2769      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
2770                                          Previous.getFoundDecl()))
2771        D.setInvalidType();
2772
2773    // Just pretend that we didn't see the previous declaration.
2774    Previous.clear();
2775  }
2776
2777  // In C++, the previous declaration we find might be a tag type
2778  // (class or enum). In this case, the new declaration will hide the
2779  // tag type. Note that this does does not apply if we're declaring a
2780  // typedef (C++ [dcl.typedef]p4).
2781  if (Previous.isSingleTagDecl() &&
2782      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2783    Previous.clear();
2784
2785  bool Redeclaration = false;
2786  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2787    if (TemplateParamLists.size()) {
2788      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2789      return 0;
2790    }
2791
2792    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2793  } else if (R->isFunctionType()) {
2794    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2795                                  move(TemplateParamLists),
2796                                  IsFunctionDefinition, Redeclaration);
2797  } else {
2798    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2799                                  move(TemplateParamLists),
2800                                  Redeclaration);
2801  }
2802
2803  if (New == 0)
2804    return 0;
2805
2806  // If this has an identifier and is not an invalid redeclaration or
2807  // function template specialization, add it to the scope stack.
2808  if (New->getDeclName() && !(Redeclaration && New->isInvalidDecl()))
2809    PushOnScopeChains(New, S);
2810
2811  return New;
2812}
2813
2814/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2815/// types into constant array types in certain situations which would otherwise
2816/// be errors (for GCC compatibility).
2817static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2818                                                    ASTContext &Context,
2819                                                    bool &SizeIsNegative,
2820                                                    llvm::APSInt &Oversized) {
2821  // This method tries to turn a variable array into a constant
2822  // array even when the size isn't an ICE.  This is necessary
2823  // for compatibility with code that depends on gcc's buggy
2824  // constant expression folding, like struct {char x[(int)(char*)2];}
2825  SizeIsNegative = false;
2826  Oversized = 0;
2827
2828  if (T->isDependentType())
2829    return QualType();
2830
2831  QualifierCollector Qs;
2832  const Type *Ty = Qs.strip(T);
2833
2834  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2835    QualType Pointee = PTy->getPointeeType();
2836    QualType FixedType =
2837        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
2838                                            Oversized);
2839    if (FixedType.isNull()) return FixedType;
2840    FixedType = Context.getPointerType(FixedType);
2841    return Qs.apply(Context, FixedType);
2842  }
2843  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
2844    QualType Inner = PTy->getInnerType();
2845    QualType FixedType =
2846        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
2847                                            Oversized);
2848    if (FixedType.isNull()) return FixedType;
2849    FixedType = Context.getParenType(FixedType);
2850    return Qs.apply(Context, FixedType);
2851  }
2852
2853  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2854  if (!VLATy)
2855    return QualType();
2856  // FIXME: We should probably handle this case
2857  if (VLATy->getElementType()->isVariablyModifiedType())
2858    return QualType();
2859
2860  Expr::EvalResult EvalResult;
2861  if (!VLATy->getSizeExpr() ||
2862      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2863      !EvalResult.Val.isInt())
2864    return QualType();
2865
2866  // Check whether the array size is negative.
2867  llvm::APSInt &Res = EvalResult.Val.getInt();
2868  if (Res.isSigned() && Res.isNegative()) {
2869    SizeIsNegative = true;
2870    return QualType();
2871  }
2872
2873  // Check whether the array is too large to be addressed.
2874  unsigned ActiveSizeBits
2875    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
2876                                              Res);
2877  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
2878    Oversized = Res;
2879    return QualType();
2880  }
2881
2882  return Context.getConstantArrayType(VLATy->getElementType(),
2883                                      Res, ArrayType::Normal, 0);
2884}
2885
2886/// \brief Register the given locally-scoped external C declaration so
2887/// that it can be found later for redeclarations
2888void
2889Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2890                                       const LookupResult &Previous,
2891                                       Scope *S) {
2892  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2893         "Decl is not a locally-scoped decl!");
2894  // Note that we have a locally-scoped external with this name.
2895  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2896
2897  if (!Previous.isSingleResult())
2898    return;
2899
2900  NamedDecl *PrevDecl = Previous.getFoundDecl();
2901
2902  // If there was a previous declaration of this variable, it may be
2903  // in our identifier chain. Update the identifier chain with the new
2904  // declaration.
2905  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2906    // The previous declaration was found on the identifer resolver
2907    // chain, so remove it from its scope.
2908    while (S && !S->isDeclScope(PrevDecl))
2909      S = S->getParent();
2910
2911    if (S)
2912      S->RemoveDecl(PrevDecl);
2913  }
2914}
2915
2916/// \brief Diagnose function specifiers on a declaration of an identifier that
2917/// does not identify a function.
2918void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2919  // FIXME: We should probably indicate the identifier in question to avoid
2920  // confusion for constructs like "inline int a(), b;"
2921  if (D.getDeclSpec().isInlineSpecified())
2922    Diag(D.getDeclSpec().getInlineSpecLoc(),
2923         diag::err_inline_non_function);
2924
2925  if (D.getDeclSpec().isVirtualSpecified())
2926    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2927         diag::err_virtual_non_function);
2928
2929  if (D.getDeclSpec().isExplicitSpecified())
2930    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2931         diag::err_explicit_non_function);
2932}
2933
2934NamedDecl*
2935Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2936                             QualType R,  TypeSourceInfo *TInfo,
2937                             LookupResult &Previous, bool &Redeclaration) {
2938  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2939  if (D.getCXXScopeSpec().isSet()) {
2940    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2941      << D.getCXXScopeSpec().getRange();
2942    D.setInvalidType();
2943    // Pretend we didn't see the scope specifier.
2944    DC = CurContext;
2945    Previous.clear();
2946  }
2947
2948  if (getLangOptions().CPlusPlus) {
2949    // Check that there are no default arguments (C++ only).
2950    CheckExtraCXXDefaultArguments(D);
2951  }
2952
2953  DiagnoseFunctionSpecifiers(D);
2954
2955  if (D.getDeclSpec().isThreadSpecified())
2956    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2957
2958  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
2959    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
2960      << D.getName().getSourceRange();
2961    return 0;
2962  }
2963
2964  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2965  if (!NewTD) return 0;
2966
2967  // Handle attributes prior to checking for duplicates in MergeVarDecl
2968  ProcessDeclAttributes(S, NewTD, D);
2969
2970  return ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
2971}
2972
2973/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
2974/// declares a typedef-name, either using the 'typedef' type specifier or via
2975/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
2976NamedDecl*
2977Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
2978                           LookupResult &Previous, bool &Redeclaration) {
2979  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2980  // then it shall have block scope.
2981  // Note that variably modified types must be fixed before merging the decl so
2982  // that redeclarations will match.
2983  QualType T = NewTD->getUnderlyingType();
2984  if (T->isVariablyModifiedType()) {
2985    getCurFunction()->setHasBranchProtectedScope();
2986
2987    if (S->getFnParent() == 0) {
2988      bool SizeIsNegative;
2989      llvm::APSInt Oversized;
2990      QualType FixedTy =
2991          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
2992                                              Oversized);
2993      if (!FixedTy.isNull()) {
2994        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
2995        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2996      } else {
2997        if (SizeIsNegative)
2998          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
2999        else if (T->isVariableArrayType())
3000          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
3001        else if (Oversized.getBoolValue())
3002          Diag(NewTD->getLocation(), diag::err_array_too_large) << Oversized.toString(10);
3003        else
3004          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
3005        NewTD->setInvalidDecl();
3006      }
3007    }
3008  }
3009
3010  // Merge the decl with the existing one if appropriate. If the decl is
3011  // in an outer scope, it isn't the same thing.
3012  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false,
3013                       /*ExplicitInstantiationOrSpecialization=*/false);
3014  if (!Previous.empty()) {
3015    Redeclaration = true;
3016    MergeTypedefNameDecl(NewTD, Previous);
3017  }
3018
3019  // If this is the C FILE type, notify the AST context.
3020  if (IdentifierInfo *II = NewTD->getIdentifier())
3021    if (!NewTD->isInvalidDecl() &&
3022        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
3023      if (II->isStr("FILE"))
3024        Context.setFILEDecl(NewTD);
3025      else if (II->isStr("jmp_buf"))
3026        Context.setjmp_bufDecl(NewTD);
3027      else if (II->isStr("sigjmp_buf"))
3028        Context.setsigjmp_bufDecl(NewTD);
3029      else if (II->isStr("__builtin_va_list"))
3030        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
3031    }
3032
3033  return NewTD;
3034}
3035
3036/// \brief Determines whether the given declaration is an out-of-scope
3037/// previous declaration.
3038///
3039/// This routine should be invoked when name lookup has found a
3040/// previous declaration (PrevDecl) that is not in the scope where a
3041/// new declaration by the same name is being introduced. If the new
3042/// declaration occurs in a local scope, previous declarations with
3043/// linkage may still be considered previous declarations (C99
3044/// 6.2.2p4-5, C++ [basic.link]p6).
3045///
3046/// \param PrevDecl the previous declaration found by name
3047/// lookup
3048///
3049/// \param DC the context in which the new declaration is being
3050/// declared.
3051///
3052/// \returns true if PrevDecl is an out-of-scope previous declaration
3053/// for a new delcaration with the same name.
3054static bool
3055isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
3056                                ASTContext &Context) {
3057  if (!PrevDecl)
3058    return false;
3059
3060  if (!PrevDecl->hasLinkage())
3061    return false;
3062
3063  if (Context.getLangOptions().CPlusPlus) {
3064    // C++ [basic.link]p6:
3065    //   If there is a visible declaration of an entity with linkage
3066    //   having the same name and type, ignoring entities declared
3067    //   outside the innermost enclosing namespace scope, the block
3068    //   scope declaration declares that same entity and receives the
3069    //   linkage of the previous declaration.
3070    DeclContext *OuterContext = DC->getRedeclContext();
3071    if (!OuterContext->isFunctionOrMethod())
3072      // This rule only applies to block-scope declarations.
3073      return false;
3074
3075    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
3076    if (PrevOuterContext->isRecord())
3077      // We found a member function: ignore it.
3078      return false;
3079
3080    // Find the innermost enclosing namespace for the new and
3081    // previous declarations.
3082    OuterContext = OuterContext->getEnclosingNamespaceContext();
3083    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
3084
3085    // The previous declaration is in a different namespace, so it
3086    // isn't the same function.
3087    if (!OuterContext->Equals(PrevOuterContext))
3088      return false;
3089  }
3090
3091  return true;
3092}
3093
3094static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
3095  CXXScopeSpec &SS = D.getCXXScopeSpec();
3096  if (!SS.isSet()) return;
3097  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
3098}
3099
3100NamedDecl*
3101Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
3102                              QualType R, TypeSourceInfo *TInfo,
3103                              LookupResult &Previous,
3104                              MultiTemplateParamsArg TemplateParamLists,
3105                              bool &Redeclaration) {
3106  DeclarationName Name = GetNameForDeclarator(D).getName();
3107
3108  // Check that there are no default arguments (C++ only).
3109  if (getLangOptions().CPlusPlus)
3110    CheckExtraCXXDefaultArguments(D);
3111
3112  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
3113  assert(SCSpec != DeclSpec::SCS_typedef &&
3114         "Parser allowed 'typedef' as storage class VarDecl.");
3115  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3116  if (SCSpec == DeclSpec::SCS_mutable) {
3117    // mutable can only appear on non-static class members, so it's always
3118    // an error here
3119    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
3120    D.setInvalidType();
3121    SC = SC_None;
3122  }
3123  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3124  VarDecl::StorageClass SCAsWritten
3125    = StorageClassSpecToVarDeclStorageClass(SCSpec);
3126
3127  IdentifierInfo *II = Name.getAsIdentifierInfo();
3128  if (!II) {
3129    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
3130      << Name.getAsString();
3131    return 0;
3132  }
3133
3134  DiagnoseFunctionSpecifiers(D);
3135
3136  if (!DC->isRecord() && S->getFnParent() == 0) {
3137    // C99 6.9p2: The storage-class specifiers auto and register shall not
3138    // appear in the declaration specifiers in an external declaration.
3139    if (SC == SC_Auto || SC == SC_Register) {
3140
3141      // If this is a register variable with an asm label specified, then this
3142      // is a GNU extension.
3143      if (SC == SC_Register && D.getAsmLabel())
3144        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
3145      else
3146        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
3147      D.setInvalidType();
3148    }
3149  }
3150
3151  bool isExplicitSpecialization = false;
3152  VarDecl *NewVD;
3153  if (!getLangOptions().CPlusPlus) {
3154    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3155                            D.getIdentifierLoc(), II,
3156                            R, TInfo, SC, SCAsWritten);
3157
3158    if (D.isInvalidType())
3159      NewVD->setInvalidDecl();
3160  } else {
3161    if (DC->isRecord() && !CurContext->isRecord()) {
3162      // This is an out-of-line definition of a static data member.
3163      if (SC == SC_Static) {
3164        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3165             diag::err_static_out_of_line)
3166          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3167      } else if (SC == SC_None)
3168        SC = SC_Static;
3169    }
3170    if (SC == SC_Static) {
3171      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
3172        if (RD->isLocalClass())
3173          Diag(D.getIdentifierLoc(),
3174               diag::err_static_data_member_not_allowed_in_local_class)
3175            << Name << RD->getDeclName();
3176
3177        // C++ [class.union]p1: If a union contains a static data member,
3178        // the program is ill-formed.
3179        //
3180        // We also disallow static data members in anonymous structs.
3181        if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
3182          Diag(D.getIdentifierLoc(),
3183               diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
3184            << Name << RD->isUnion();
3185      }
3186    }
3187
3188    // Match up the template parameter lists with the scope specifier, then
3189    // determine whether we have a template or a template specialization.
3190    isExplicitSpecialization = false;
3191    bool Invalid = false;
3192    if (TemplateParameterList *TemplateParams
3193        = MatchTemplateParametersToScopeSpecifier(
3194                                                  D.getDeclSpec().getSourceRange().getBegin(),
3195                                                  D.getCXXScopeSpec(),
3196                                                  TemplateParamLists.get(),
3197                                                  TemplateParamLists.size(),
3198                                                  /*never a friend*/ false,
3199                                                  isExplicitSpecialization,
3200                                                  Invalid)) {
3201      if (TemplateParams->size() > 0) {
3202        // There is no such thing as a variable template.
3203        Diag(D.getIdentifierLoc(), diag::err_template_variable)
3204          << II
3205          << SourceRange(TemplateParams->getTemplateLoc(),
3206                         TemplateParams->getRAngleLoc());
3207        return 0;
3208      } else {
3209        // There is an extraneous 'template<>' for this variable. Complain
3210        // about it, but allow the declaration of the variable.
3211        Diag(TemplateParams->getTemplateLoc(),
3212             diag::err_template_variable_noparams)
3213          << II
3214          << SourceRange(TemplateParams->getTemplateLoc(),
3215                         TemplateParams->getRAngleLoc());
3216        isExplicitSpecialization = true;
3217      }
3218    }
3219
3220    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3221                            D.getIdentifierLoc(), II,
3222                            R, TInfo, SC, SCAsWritten);
3223
3224    // If this decl has an auto type in need of deduction, make a note of the
3225    // Decl so we can diagnose uses of it in its own initializer.
3226    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
3227        R->getContainedAutoType())
3228      ParsingInitForAutoVars.insert(NewVD);
3229
3230    if (D.isInvalidType() || Invalid)
3231      NewVD->setInvalidDecl();
3232
3233    SetNestedNameSpecifier(NewVD, D);
3234
3235    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
3236      NewVD->setTemplateParameterListsInfo(Context,
3237                                           TemplateParamLists.size(),
3238                                           TemplateParamLists.release());
3239    }
3240  }
3241
3242  if (D.getDeclSpec().isThreadSpecified()) {
3243    if (NewVD->hasLocalStorage())
3244      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
3245    else if (!Context.Target.isTLSSupported())
3246      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
3247    else
3248      NewVD->setThreadSpecified(true);
3249  }
3250
3251  // Set the lexical context. If the declarator has a C++ scope specifier, the
3252  // lexical context will be different from the semantic context.
3253  NewVD->setLexicalDeclContext(CurContext);
3254
3255  // Handle attributes prior to checking for duplicates in MergeVarDecl
3256  ProcessDeclAttributes(S, NewVD, D);
3257
3258  // Handle GNU asm-label extension (encoded as an attribute).
3259  if (Expr *E = (Expr*)D.getAsmLabel()) {
3260    // The parser guarantees this is a string.
3261    StringLiteral *SE = cast<StringLiteral>(E);
3262    llvm::StringRef Label = SE->getString();
3263    if (S->getFnParent() != 0) {
3264      switch (SC) {
3265      case SC_None:
3266      case SC_Auto:
3267        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
3268        break;
3269      case SC_Register:
3270        if (!Context.Target.isValidGCCRegisterName(Label))
3271          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
3272        break;
3273      case SC_Static:
3274      case SC_Extern:
3275      case SC_PrivateExtern:
3276        break;
3277      }
3278    }
3279
3280    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
3281                                                Context, Label));
3282  }
3283
3284  // Diagnose shadowed variables before filtering for scope.
3285  if (!D.getCXXScopeSpec().isSet())
3286    CheckShadow(S, NewVD, Previous);
3287
3288  // Don't consider existing declarations that are in a different
3289  // scope and are out-of-semantic-context declarations (if the new
3290  // declaration has linkage).
3291  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage(),
3292                       isExplicitSpecialization);
3293
3294  if (!getLangOptions().CPlusPlus)
3295    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3296  else {
3297    // Merge the decl with the existing one if appropriate.
3298    if (!Previous.empty()) {
3299      if (Previous.isSingleResult() &&
3300          isa<FieldDecl>(Previous.getFoundDecl()) &&
3301          D.getCXXScopeSpec().isSet()) {
3302        // The user tried to define a non-static data member
3303        // out-of-line (C++ [dcl.meaning]p1).
3304        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
3305          << D.getCXXScopeSpec().getRange();
3306        Previous.clear();
3307        NewVD->setInvalidDecl();
3308      }
3309    } else if (D.getCXXScopeSpec().isSet()) {
3310      // No previous declaration in the qualifying scope.
3311      Diag(D.getIdentifierLoc(), diag::err_no_member)
3312        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
3313        << D.getCXXScopeSpec().getRange();
3314      NewVD->setInvalidDecl();
3315    }
3316
3317    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3318
3319    // This is an explicit specialization of a static data member. Check it.
3320    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
3321        CheckMemberSpecialization(NewVD, Previous))
3322      NewVD->setInvalidDecl();
3323  }
3324
3325  // attributes declared post-definition are currently ignored
3326  // FIXME: This should be handled in attribute merging, not
3327  // here.
3328  if (Previous.isSingleResult()) {
3329    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
3330    if (Def && (Def = Def->getDefinition()) &&
3331        Def != NewVD && D.hasAttributes()) {
3332      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
3333      Diag(Def->getLocation(), diag::note_previous_definition);
3334    }
3335  }
3336
3337  // If this is a locally-scoped extern C variable, update the map of
3338  // such variables.
3339  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
3340      !NewVD->isInvalidDecl())
3341    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
3342
3343  // If there's a #pragma GCC visibility in scope, and this isn't a class
3344  // member, set the visibility of this variable.
3345  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
3346    AddPushedVisibilityAttribute(NewVD);
3347
3348  MarkUnusedFileScopedDecl(NewVD);
3349
3350  return NewVD;
3351}
3352
3353/// \brief Diagnose variable or built-in function shadowing.  Implements
3354/// -Wshadow.
3355///
3356/// This method is called whenever a VarDecl is added to a "useful"
3357/// scope.
3358///
3359/// \param S the scope in which the shadowing name is being declared
3360/// \param R the lookup of the name
3361///
3362void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
3363  // Return if warning is ignored.
3364  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
3365        Diagnostic::Ignored)
3366    return;
3367
3368  // Don't diagnose declarations at file scope.
3369  DeclContext *NewDC = D->getDeclContext();
3370  if (NewDC->isFileContext())
3371    return;
3372
3373  // Only diagnose if we're shadowing an unambiguous field or variable.
3374  if (R.getResultKind() != LookupResult::Found)
3375    return;
3376
3377  NamedDecl* ShadowedDecl = R.getFoundDecl();
3378  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
3379    return;
3380
3381  // Fields are not shadowed by variables in C++ static methods.
3382  if (isa<FieldDecl>(ShadowedDecl))
3383    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
3384      if (MD->isStatic())
3385        return;
3386
3387  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
3388    if (shadowedVar->isExternC()) {
3389      // Don't warn for this case:
3390      //
3391      // @code
3392      // extern int bob;
3393      // void f() {
3394      //   extern int bob;
3395      // }
3396      // @endcode
3397      if (D->isExternC())
3398        return;
3399
3400      // For shadowing external vars, make sure that we point to the global
3401      // declaration, not a locally scoped extern declaration.
3402      for (VarDecl::redecl_iterator
3403             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
3404           I != E; ++I)
3405        if (I->isFileVarDecl()) {
3406          ShadowedDecl = *I;
3407          break;
3408        }
3409    }
3410
3411  DeclContext *OldDC = ShadowedDecl->getDeclContext();
3412
3413  // Only warn about certain kinds of shadowing for class members.
3414  if (NewDC && NewDC->isRecord()) {
3415    // In particular, don't warn about shadowing non-class members.
3416    if (!OldDC->isRecord())
3417      return;
3418
3419    // TODO: should we warn about static data members shadowing
3420    // static data members from base classes?
3421
3422    // TODO: don't diagnose for inaccessible shadowed members.
3423    // This is hard to do perfectly because we might friend the
3424    // shadowing context, but that's just a false negative.
3425  }
3426
3427  // Determine what kind of declaration we're shadowing.
3428  unsigned Kind;
3429  if (isa<RecordDecl>(OldDC)) {
3430    if (isa<FieldDecl>(ShadowedDecl))
3431      Kind = 3; // field
3432    else
3433      Kind = 2; // static data member
3434  } else if (OldDC->isFileContext())
3435    Kind = 1; // global
3436  else
3437    Kind = 0; // local
3438
3439  DeclarationName Name = R.getLookupName();
3440
3441  // Emit warning and note.
3442  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
3443  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
3444}
3445
3446/// \brief Check -Wshadow without the advantage of a previous lookup.
3447void Sema::CheckShadow(Scope *S, VarDecl *D) {
3448  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
3449        Diagnostic::Ignored)
3450    return;
3451
3452  LookupResult R(*this, D->getDeclName(), D->getLocation(),
3453                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3454  LookupName(R, S);
3455  CheckShadow(S, D, R);
3456}
3457
3458/// \brief Perform semantic checking on a newly-created variable
3459/// declaration.
3460///
3461/// This routine performs all of the type-checking required for a
3462/// variable declaration once it has been built. It is used both to
3463/// check variables after they have been parsed and their declarators
3464/// have been translated into a declaration, and to check variables
3465/// that have been instantiated from a template.
3466///
3467/// Sets NewVD->isInvalidDecl() if an error was encountered.
3468void Sema::CheckVariableDeclaration(VarDecl *NewVD,
3469                                    LookupResult &Previous,
3470                                    bool &Redeclaration) {
3471  // If the decl is already known invalid, don't check it.
3472  if (NewVD->isInvalidDecl())
3473    return;
3474
3475  QualType T = NewVD->getType();
3476
3477  if (T->isObjCObjectType()) {
3478    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
3479    return NewVD->setInvalidDecl();
3480  }
3481
3482  // Emit an error if an address space was applied to decl with local storage.
3483  // This includes arrays of objects with address space qualifiers, but not
3484  // automatic variables that point to other address spaces.
3485  // ISO/IEC TR 18037 S5.1.2
3486  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
3487    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
3488    return NewVD->setInvalidDecl();
3489  }
3490
3491  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
3492      && !NewVD->hasAttr<BlocksAttr>())
3493    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
3494
3495  bool isVM = T->isVariablyModifiedType();
3496  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
3497      NewVD->hasAttr<BlocksAttr>())
3498    getCurFunction()->setHasBranchProtectedScope();
3499
3500  if ((isVM && NewVD->hasLinkage()) ||
3501      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
3502    bool SizeIsNegative;
3503    llvm::APSInt Oversized;
3504    QualType FixedTy =
3505        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3506                                            Oversized);
3507
3508    if (FixedTy.isNull() && T->isVariableArrayType()) {
3509      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
3510      // FIXME: This won't give the correct result for
3511      // int a[10][n];
3512      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
3513
3514      if (NewVD->isFileVarDecl())
3515        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
3516        << SizeRange;
3517      else if (NewVD->getStorageClass() == SC_Static)
3518        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
3519        << SizeRange;
3520      else
3521        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
3522        << SizeRange;
3523      return NewVD->setInvalidDecl();
3524    }
3525
3526    if (FixedTy.isNull()) {
3527      if (NewVD->isFileVarDecl())
3528        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
3529      else
3530        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
3531      return NewVD->setInvalidDecl();
3532    }
3533
3534    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
3535    NewVD->setType(FixedTy);
3536  }
3537
3538  if (Previous.empty() && NewVD->isExternC()) {
3539    // Since we did not find anything by this name and we're declaring
3540    // an extern "C" variable, look for a non-visible extern "C"
3541    // declaration with the same name.
3542    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3543      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
3544    if (Pos != LocallyScopedExternalDecls.end())
3545      Previous.addDecl(Pos->second);
3546  }
3547
3548  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
3549    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
3550      << T;
3551    return NewVD->setInvalidDecl();
3552  }
3553
3554  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
3555    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
3556    return NewVD->setInvalidDecl();
3557  }
3558
3559  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
3560    Diag(NewVD->getLocation(), diag::err_block_on_vm);
3561    return NewVD->setInvalidDecl();
3562  }
3563
3564  // Function pointers and references cannot have qualified function type, only
3565  // function pointer-to-members can do that.
3566  QualType Pointee;
3567  unsigned PtrOrRef = 0;
3568  if (const PointerType *Ptr = T->getAs<PointerType>())
3569    Pointee = Ptr->getPointeeType();
3570  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
3571    Pointee = Ref->getPointeeType();
3572    PtrOrRef = 1;
3573  }
3574  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
3575      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
3576    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
3577        << PtrOrRef;
3578    return NewVD->setInvalidDecl();
3579  }
3580
3581  if (!Previous.empty()) {
3582    Redeclaration = true;
3583    MergeVarDecl(NewVD, Previous);
3584  }
3585}
3586
3587/// \brief Data used with FindOverriddenMethod
3588struct FindOverriddenMethodData {
3589  Sema *S;
3590  CXXMethodDecl *Method;
3591};
3592
3593/// \brief Member lookup function that determines whether a given C++
3594/// method overrides a method in a base class, to be used with
3595/// CXXRecordDecl::lookupInBases().
3596static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
3597                                 CXXBasePath &Path,
3598                                 void *UserData) {
3599  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
3600
3601  FindOverriddenMethodData *Data
3602    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
3603
3604  DeclarationName Name = Data->Method->getDeclName();
3605
3606  // FIXME: Do we care about other names here too?
3607  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3608    // We really want to find the base class destructor here.
3609    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
3610    CanQualType CT = Data->S->Context.getCanonicalType(T);
3611
3612    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
3613  }
3614
3615  for (Path.Decls = BaseRecord->lookup(Name);
3616       Path.Decls.first != Path.Decls.second;
3617       ++Path.Decls.first) {
3618    NamedDecl *D = *Path.Decls.first;
3619    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
3620      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
3621        return true;
3622    }
3623  }
3624
3625  return false;
3626}
3627
3628/// AddOverriddenMethods - See if a method overrides any in the base classes,
3629/// and if so, check that it's a valid override and remember it.
3630bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
3631  // Look for virtual methods in base classes that this method might override.
3632  CXXBasePaths Paths;
3633  FindOverriddenMethodData Data;
3634  Data.Method = MD;
3635  Data.S = this;
3636  bool AddedAny = false;
3637  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
3638    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
3639         E = Paths.found_decls_end(); I != E; ++I) {
3640      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
3641        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
3642            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
3643            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
3644          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
3645          AddedAny = true;
3646        }
3647      }
3648    }
3649  }
3650
3651  return AddedAny;
3652}
3653
3654static void DiagnoseInvalidRedeclaration(Sema &S, FunctionDecl *NewFD) {
3655  LookupResult Prev(S, NewFD->getDeclName(), NewFD->getLocation(),
3656                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3657  S.LookupQualifiedName(Prev, NewFD->getDeclContext());
3658  assert(!Prev.isAmbiguous() &&
3659         "Cannot have an ambiguity in previous-declaration lookup");
3660  for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3661       Func != FuncEnd; ++Func) {
3662    if (isa<FunctionDecl>(*Func) &&
3663        isNearlyMatchingFunction(S.Context, cast<FunctionDecl>(*Func), NewFD))
3664      S.Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3665  }
3666}
3667
3668NamedDecl*
3669Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3670                              QualType R, TypeSourceInfo *TInfo,
3671                              LookupResult &Previous,
3672                              MultiTemplateParamsArg TemplateParamLists,
3673                              bool IsFunctionDefinition, bool &Redeclaration) {
3674  assert(R.getTypePtr()->isFunctionType());
3675
3676  // TODO: consider using NameInfo for diagnostic.
3677  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3678  DeclarationName Name = NameInfo.getName();
3679  FunctionDecl::StorageClass SC = SC_None;
3680  switch (D.getDeclSpec().getStorageClassSpec()) {
3681  default: assert(0 && "Unknown storage class!");
3682  case DeclSpec::SCS_auto:
3683  case DeclSpec::SCS_register:
3684  case DeclSpec::SCS_mutable:
3685    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3686         diag::err_typecheck_sclass_func);
3687    D.setInvalidType();
3688    break;
3689  case DeclSpec::SCS_unspecified: SC = SC_None; break;
3690  case DeclSpec::SCS_extern:      SC = SC_Extern; break;
3691  case DeclSpec::SCS_static: {
3692    if (CurContext->getRedeclContext()->isFunctionOrMethod()) {
3693      // C99 6.7.1p5:
3694      //   The declaration of an identifier for a function that has
3695      //   block scope shall have no explicit storage-class specifier
3696      //   other than extern
3697      // See also (C++ [dcl.stc]p4).
3698      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3699           diag::err_static_block_func);
3700      SC = SC_None;
3701    } else
3702      SC = SC_Static;
3703    break;
3704  }
3705  case DeclSpec::SCS_private_extern: SC = SC_PrivateExtern; break;
3706  }
3707
3708  if (D.getDeclSpec().isThreadSpecified())
3709    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3710
3711  // Do not allow returning a objc interface by-value.
3712  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
3713    Diag(D.getIdentifierLoc(),
3714         diag::err_object_cannot_be_passed_returned_by_value) << 0
3715    << R->getAs<FunctionType>()->getResultType();
3716    D.setInvalidType();
3717  }
3718
3719  FunctionDecl *NewFD;
3720  bool isInline = D.getDeclSpec().isInlineSpecified();
3721  bool isFriend = false;
3722  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3723  FunctionDecl::StorageClass SCAsWritten
3724    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
3725  FunctionTemplateDecl *FunctionTemplate = 0;
3726  bool isExplicitSpecialization = false;
3727  bool isFunctionTemplateSpecialization = false;
3728
3729  if (!getLangOptions().CPlusPlus) {
3730    // Determine whether the function was written with a
3731    // prototype. This true when:
3732    //   - there is a prototype in the declarator, or
3733    //   - the type R of the function is some kind of typedef or other reference
3734    //     to a type name (which eventually refers to a function type).
3735    bool HasPrototype =
3736    (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
3737    (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
3738
3739    NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3740                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
3741                                 HasPrototype);
3742    if (D.isInvalidType())
3743      NewFD->setInvalidDecl();
3744
3745    // Set the lexical context.
3746    NewFD->setLexicalDeclContext(CurContext);
3747    // Filter out previous declarations that don't match the scope.
3748    FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage(),
3749                         /*ExplicitInstantiationOrSpecialization=*/false);
3750  } else {
3751    isFriend = D.getDeclSpec().isFriendSpecified();
3752    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
3753    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
3754    bool isVirtualOkay = false;
3755
3756    // Check that the return type is not an abstract class type.
3757    // For record types, this is done by the AbstractClassUsageDiagnoser once
3758    // the class has been completely parsed.
3759    if (!DC->isRecord() &&
3760      RequireNonAbstractType(D.getIdentifierLoc(),
3761                             R->getAs<FunctionType>()->getResultType(),
3762                             diag::err_abstract_type_in_decl,
3763                             AbstractReturnType))
3764      D.setInvalidType();
3765
3766    if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
3767      // This is a C++ constructor declaration.
3768      assert(DC->isRecord() &&
3769             "Constructors can only be declared in a member context");
3770
3771      R = CheckConstructorDeclarator(D, R, SC);
3772
3773      // Create the new declaration
3774      NewFD = CXXConstructorDecl::Create(Context,
3775                                         cast<CXXRecordDecl>(DC),
3776                                         D.getSourceRange().getBegin(),
3777                                         NameInfo, R, TInfo,
3778                                         isExplicit, isInline,
3779                                         /*isImplicitlyDeclared=*/false);
3780    } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3781      // This is a C++ destructor declaration.
3782      if (DC->isRecord()) {
3783        R = CheckDestructorDeclarator(D, R, SC);
3784
3785        NewFD = CXXDestructorDecl::Create(Context,
3786                                          cast<CXXRecordDecl>(DC),
3787                                          D.getSourceRange().getBegin(),
3788                                          NameInfo, R, TInfo,
3789                                          isInline,
3790                                          /*isImplicitlyDeclared=*/false);
3791        isVirtualOkay = true;
3792      } else {
3793        Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
3794
3795        // Create a FunctionDecl to satisfy the function definition parsing
3796        // code path.
3797        NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3798                                     D.getIdentifierLoc(), Name, R, TInfo,
3799                                     SC, SCAsWritten, isInline,
3800                                     /*hasPrototype=*/true);
3801        D.setInvalidType();
3802      }
3803    } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
3804      if (!DC->isRecord()) {
3805        Diag(D.getIdentifierLoc(),
3806             diag::err_conv_function_not_member);
3807        return 0;
3808      }
3809
3810      CheckConversionDeclarator(D, R, SC);
3811      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
3812                                        D.getSourceRange().getBegin(),
3813                                        NameInfo, R, TInfo,
3814                                        isInline, isExplicit,
3815                                        SourceLocation());
3816
3817      isVirtualOkay = true;
3818    } else if (DC->isRecord()) {
3819      // If the of the function is the same as the name of the record, then this
3820      // must be an invalid constructor that has a return type.
3821      // (The parser checks for a return type and makes the declarator a
3822      // constructor if it has no return type).
3823      // must have an invalid constructor that has a return type
3824      if (Name.getAsIdentifierInfo() &&
3825          Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
3826        Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
3827          << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3828          << SourceRange(D.getIdentifierLoc());
3829        return 0;
3830      }
3831
3832      bool isStatic = SC == SC_Static;
3833
3834      // [class.free]p1:
3835      // Any allocation function for a class T is a static member
3836      // (even if not explicitly declared static).
3837      if (Name.getCXXOverloadedOperator() == OO_New ||
3838          Name.getCXXOverloadedOperator() == OO_Array_New)
3839        isStatic = true;
3840
3841      // [class.free]p6 Any deallocation function for a class X is a static member
3842      // (even if not explicitly declared static).
3843      if (Name.getCXXOverloadedOperator() == OO_Delete ||
3844          Name.getCXXOverloadedOperator() == OO_Array_Delete)
3845        isStatic = true;
3846
3847      // This is a C++ method declaration.
3848      NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
3849                                    D.getSourceRange().getBegin(),
3850                                    NameInfo, R, TInfo,
3851                                    isStatic, SCAsWritten, isInline,
3852                                    SourceLocation());
3853
3854      isVirtualOkay = !isStatic;
3855    } else {
3856      // Determine whether the function was written with a
3857      // prototype. This true when:
3858      //   - we're in C++ (where every function has a prototype),
3859      NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3860                                   NameInfo, R, TInfo, SC, SCAsWritten, isInline,
3861                                   true/*HasPrototype*/);
3862    }
3863
3864    if (isFriend && !isInline && IsFunctionDefinition) {
3865      // C++ [class.friend]p5
3866      //   A function can be defined in a friend declaration of a
3867      //   class . . . . Such a function is implicitly inline.
3868      NewFD->setImplicitlyInline();
3869    }
3870
3871    SetNestedNameSpecifier(NewFD, D);
3872    isExplicitSpecialization = false;
3873    isFunctionTemplateSpecialization = false;
3874    if (D.isInvalidType())
3875      NewFD->setInvalidDecl();
3876
3877    // Set the lexical context. If the declarator has a C++
3878    // scope specifier, or is the object of a friend declaration, the
3879    // lexical context will be different from the semantic context.
3880    NewFD->setLexicalDeclContext(CurContext);
3881
3882    // Match up the template parameter lists with the scope specifier, then
3883    // determine whether we have a template or a template specialization.
3884    bool Invalid = false;
3885    if (TemplateParameterList *TemplateParams
3886          = MatchTemplateParametersToScopeSpecifier(
3887                                  D.getDeclSpec().getSourceRange().getBegin(),
3888                                  D.getCXXScopeSpec(),
3889                                  TemplateParamLists.get(),
3890                                  TemplateParamLists.size(),
3891                                  isFriend,
3892                                  isExplicitSpecialization,
3893                                  Invalid)) {
3894      if (TemplateParams->size() > 0) {
3895        // This is a function template
3896
3897        // Check that we can declare a template here.
3898        if (CheckTemplateDeclScope(S, TemplateParams))
3899          return 0;
3900
3901        // A destructor cannot be a template.
3902        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3903          Diag(NewFD->getLocation(), diag::err_destructor_template);
3904          return 0;
3905        }
3906
3907        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
3908                                                        NewFD->getLocation(),
3909                                                        Name, TemplateParams,
3910                                                        NewFD);
3911        FunctionTemplate->setLexicalDeclContext(CurContext);
3912        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
3913
3914        // For source fidelity, store the other template param lists.
3915        if (TemplateParamLists.size() > 1) {
3916          NewFD->setTemplateParameterListsInfo(Context,
3917                                               TemplateParamLists.size() - 1,
3918                                               TemplateParamLists.release());
3919        }
3920      } else {
3921        // This is a function template specialization.
3922        isFunctionTemplateSpecialization = true;
3923        // For source fidelity, store all the template param lists.
3924        NewFD->setTemplateParameterListsInfo(Context,
3925                                             TemplateParamLists.size(),
3926                                             TemplateParamLists.release());
3927
3928        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
3929        if (isFriend) {
3930          // We want to remove the "template<>", found here.
3931          SourceRange RemoveRange = TemplateParams->getSourceRange();
3932
3933          // If we remove the template<> and the name is not a
3934          // template-id, we're actually silently creating a problem:
3935          // the friend declaration will refer to an untemplated decl,
3936          // and clearly the user wants a template specialization.  So
3937          // we need to insert '<>' after the name.
3938          SourceLocation InsertLoc;
3939          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
3940            InsertLoc = D.getName().getSourceRange().getEnd();
3941            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
3942          }
3943
3944          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
3945            << Name << RemoveRange
3946            << FixItHint::CreateRemoval(RemoveRange)
3947            << FixItHint::CreateInsertion(InsertLoc, "<>");
3948        }
3949      }
3950    }
3951    else {
3952      // All template param lists were matched against the scope specifier:
3953      // this is NOT (an explicit specialization of) a template.
3954      if (TemplateParamLists.size() > 0)
3955        // For source fidelity, store all the template param lists.
3956        NewFD->setTemplateParameterListsInfo(Context,
3957                                             TemplateParamLists.size(),
3958                                             TemplateParamLists.release());
3959    }
3960
3961    if (Invalid) {
3962      NewFD->setInvalidDecl();
3963      if (FunctionTemplate)
3964        FunctionTemplate->setInvalidDecl();
3965    }
3966
3967    // C++ [dcl.fct.spec]p5:
3968    //   The virtual specifier shall only be used in declarations of
3969    //   nonstatic class member functions that appear within a
3970    //   member-specification of a class declaration; see 10.3.
3971    //
3972    if (isVirtual && !NewFD->isInvalidDecl()) {
3973      if (!isVirtualOkay) {
3974        Diag(D.getDeclSpec().getVirtualSpecLoc(),
3975             diag::err_virtual_non_function);
3976      } else if (!CurContext->isRecord()) {
3977        // 'virtual' was specified outside of the class.
3978        Diag(D.getDeclSpec().getVirtualSpecLoc(),
3979             diag::err_virtual_out_of_class)
3980          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
3981      } else if (NewFD->getDescribedFunctionTemplate()) {
3982        // C++ [temp.mem]p3:
3983        //  A member function template shall not be virtual.
3984        Diag(D.getDeclSpec().getVirtualSpecLoc(),
3985             diag::err_virtual_member_function_template)
3986          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
3987      } else {
3988        // Okay: Add virtual to the method.
3989        NewFD->setVirtualAsWritten(true);
3990      }
3991    }
3992
3993    // C++ [dcl.fct.spec]p3:
3994    //  The inline specifier shall not appear on a block scope function declaration.
3995    if (isInline && !NewFD->isInvalidDecl()) {
3996      if (CurContext->isFunctionOrMethod()) {
3997        // 'inline' is not allowed on block scope function declaration.
3998        Diag(D.getDeclSpec().getInlineSpecLoc(),
3999             diag::err_inline_declaration_block_scope) << Name
4000          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
4001      }
4002    }
4003
4004    // C++ [dcl.fct.spec]p6:
4005    //  The explicit specifier shall be used only in the declaration of a
4006    //  constructor or conversion function within its class definition; see 12.3.1
4007    //  and 12.3.2.
4008    if (isExplicit && !NewFD->isInvalidDecl()) {
4009      if (!CurContext->isRecord()) {
4010        // 'explicit' was specified outside of the class.
4011        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4012             diag::err_explicit_out_of_class)
4013          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4014      } else if (!isa<CXXConstructorDecl>(NewFD) &&
4015                 !isa<CXXConversionDecl>(NewFD)) {
4016        // 'explicit' was specified on a function that wasn't a constructor
4017        // or conversion function.
4018        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4019             diag::err_explicit_non_ctor_or_conv_function)
4020          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4021      }
4022    }
4023
4024    // Filter out previous declarations that don't match the scope.
4025    FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage(),
4026                         isExplicitSpecialization ||
4027                         isFunctionTemplateSpecialization);
4028
4029    if (isFriend) {
4030      // For now, claim that the objects have no previous declaration.
4031      if (FunctionTemplate) {
4032        FunctionTemplate->setObjectOfFriendDecl(false);
4033        FunctionTemplate->setAccess(AS_public);
4034      }
4035      NewFD->setObjectOfFriendDecl(false);
4036      NewFD->setAccess(AS_public);
4037    }
4038
4039    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext && IsFunctionDefinition) {
4040      // A method is implicitly inline if it's defined in its class
4041      // definition.
4042      NewFD->setImplicitlyInline();
4043    }
4044
4045    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
4046        !CurContext->isRecord()) {
4047      // C++ [class.static]p1:
4048      //   A data or function member of a class may be declared static
4049      //   in a class definition, in which case it is a static member of
4050      //   the class.
4051
4052      // Complain about the 'static' specifier if it's on an out-of-line
4053      // member function definition.
4054      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4055           diag::err_static_out_of_line)
4056        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4057    }
4058  }
4059
4060  // Handle GNU asm-label extension (encoded as an attribute).
4061  if (Expr *E = (Expr*) D.getAsmLabel()) {
4062    // The parser guarantees this is a string.
4063    StringLiteral *SE = cast<StringLiteral>(E);
4064    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
4065                                                SE->getString()));
4066  }
4067
4068  // Copy the parameter declarations from the declarator D to the function
4069  // declaration NewFD, if they are available.  First scavenge them into Params.
4070  llvm::SmallVector<ParmVarDecl*, 16> Params;
4071  if (D.isFunctionDeclarator()) {
4072    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4073
4074    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
4075    // function that takes no arguments, not a function that takes a
4076    // single void argument.
4077    // We let through "const void" here because Sema::GetTypeForDeclarator
4078    // already checks for that case.
4079    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
4080        FTI.ArgInfo[0].Param &&
4081        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
4082      // Empty arg list, don't push any params.
4083      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
4084
4085      // In C++, the empty parameter-type-list must be spelled "void"; a
4086      // typedef of void is not permitted.
4087      if (getLangOptions().CPlusPlus &&
4088          Param->getType().getUnqualifiedType() != Context.VoidTy) {
4089        bool IsTypeAlias = false;
4090        if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
4091          IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
4092        Diag(Param->getLocation(), diag::err_param_typedef_of_void)
4093          << IsTypeAlias;
4094      }
4095    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
4096      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
4097        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
4098        assert(Param->getDeclContext() != NewFD && "Was set before ?");
4099        Param->setDeclContext(NewFD);
4100        Params.push_back(Param);
4101
4102        if (Param->isInvalidDecl())
4103          NewFD->setInvalidDecl();
4104      }
4105    }
4106
4107  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
4108    // When we're declaring a function with a typedef, typeof, etc as in the
4109    // following example, we'll need to synthesize (unnamed)
4110    // parameters for use in the declaration.
4111    //
4112    // @code
4113    // typedef void fn(int);
4114    // fn f;
4115    // @endcode
4116
4117    // Synthesize a parameter for each argument type.
4118    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
4119         AE = FT->arg_type_end(); AI != AE; ++AI) {
4120      ParmVarDecl *Param =
4121        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
4122      Params.push_back(Param);
4123    }
4124  } else {
4125    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
4126           "Should not need args for typedef of non-prototype fn");
4127  }
4128  // Finally, we know we have the right number of parameters, install them.
4129  NewFD->setParams(Params.data(), Params.size());
4130
4131  // Process the non-inheritable attributes on this declaration.
4132  ProcessDeclAttributes(S, NewFD, D,
4133                        /*NonInheritable=*/true, /*Inheritable=*/false);
4134
4135  if (!getLangOptions().CPlusPlus) {
4136    // Perform semantic checking on the function declaration.
4137    bool isExplctSpecialization=false;
4138    CheckFunctionDeclaration(S, NewFD, Previous, isExplctSpecialization,
4139                             Redeclaration);
4140    assert((NewFD->isInvalidDecl() || !Redeclaration ||
4141            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
4142           "previous declaration set still overloaded");
4143  } else {
4144    // If the declarator is a template-id, translate the parser's template
4145    // argument list into our AST format.
4146    bool HasExplicitTemplateArgs = false;
4147    TemplateArgumentListInfo TemplateArgs;
4148    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
4149      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
4150      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
4151      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
4152      ASTTemplateArgsPtr TemplateArgsPtr(*this,
4153                                         TemplateId->getTemplateArgs(),
4154                                         TemplateId->NumArgs);
4155      translateTemplateArguments(TemplateArgsPtr,
4156                                 TemplateArgs);
4157      TemplateArgsPtr.release();
4158
4159      HasExplicitTemplateArgs = true;
4160
4161      if (FunctionTemplate) {
4162        // Function template with explicit template arguments.
4163        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
4164          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
4165
4166        HasExplicitTemplateArgs = false;
4167      } else if (!isFunctionTemplateSpecialization &&
4168                 !D.getDeclSpec().isFriendSpecified()) {
4169        // We have encountered something that the user meant to be a
4170        // specialization (because it has explicitly-specified template
4171        // arguments) but that was not introduced with a "template<>" (or had
4172        // too few of them).
4173        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
4174          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
4175          << FixItHint::CreateInsertion(
4176                                        D.getDeclSpec().getSourceRange().getBegin(),
4177                                                  "template<> ");
4178        isFunctionTemplateSpecialization = true;
4179      } else {
4180        // "friend void foo<>(int);" is an implicit specialization decl.
4181        isFunctionTemplateSpecialization = true;
4182      }
4183    } else if (isFriend && isFunctionTemplateSpecialization) {
4184      // This combination is only possible in a recovery case;  the user
4185      // wrote something like:
4186      //   template <> friend void foo(int);
4187      // which we're recovering from as if the user had written:
4188      //   friend void foo<>(int);
4189      // Go ahead and fake up a template id.
4190      HasExplicitTemplateArgs = true;
4191        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
4192      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
4193    }
4194
4195    // If it's a friend (and only if it's a friend), it's possible
4196    // that either the specialized function type or the specialized
4197    // template is dependent, and therefore matching will fail.  In
4198    // this case, don't check the specialization yet.
4199    if (isFunctionTemplateSpecialization && isFriend &&
4200        (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
4201      assert(HasExplicitTemplateArgs &&
4202             "friend function specialization without template args");
4203      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
4204                                                       Previous))
4205        NewFD->setInvalidDecl();
4206    } else if (isFunctionTemplateSpecialization) {
4207      if (CurContext->isDependentContext() && CurContext->isRecord()
4208          && !isFriend) {
4209        Diag(NewFD->getLocation(), diag::err_function_specialization_in_class)
4210          << NewFD->getDeclName();
4211        NewFD->setInvalidDecl();
4212        return 0;
4213      } else if (CheckFunctionTemplateSpecialization(NewFD,
4214                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
4215                                                     Previous))
4216        NewFD->setInvalidDecl();
4217    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
4218      if (CheckMemberSpecialization(NewFD, Previous))
4219          NewFD->setInvalidDecl();
4220    }
4221
4222    // Perform semantic checking on the function declaration.
4223    CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
4224                             Redeclaration);
4225
4226    assert((NewFD->isInvalidDecl() || !Redeclaration ||
4227            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
4228           "previous declaration set still overloaded");
4229
4230    NamedDecl *PrincipalDecl = (FunctionTemplate
4231                                ? cast<NamedDecl>(FunctionTemplate)
4232                                : NewFD);
4233
4234    if (isFriend && Redeclaration) {
4235      AccessSpecifier Access = AS_public;
4236      if (!NewFD->isInvalidDecl())
4237        Access = NewFD->getPreviousDeclaration()->getAccess();
4238
4239      NewFD->setAccess(Access);
4240      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
4241
4242      PrincipalDecl->setObjectOfFriendDecl(true);
4243    }
4244
4245    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
4246        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
4247      PrincipalDecl->setNonMemberOperator();
4248
4249    // If we have a function template, check the template parameter
4250    // list. This will check and merge default template arguments.
4251    if (FunctionTemplate) {
4252      FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
4253      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
4254                                 PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
4255                            D.getDeclSpec().isFriendSpecified()
4256                              ? (IsFunctionDefinition
4257                                   ? TPC_FriendFunctionTemplateDefinition
4258                                   : TPC_FriendFunctionTemplate)
4259                              : (D.getCXXScopeSpec().isSet() &&
4260                                 DC && DC->isRecord() &&
4261                                 DC->isDependentContext())
4262                                  ? TPC_ClassTemplateMember
4263                                  : TPC_FunctionTemplate);
4264    }
4265
4266    if (NewFD->isInvalidDecl()) {
4267      // Ignore all the rest of this.
4268    } else if (!Redeclaration) {
4269      // Fake up an access specifier if it's supposed to be a class member.
4270      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
4271        NewFD->setAccess(AS_public);
4272
4273      // Qualified decls generally require a previous declaration.
4274      if (D.getCXXScopeSpec().isSet()) {
4275        // ...with the major exception of templated-scope or
4276        // dependent-scope friend declarations.
4277
4278        // TODO: we currently also suppress this check in dependent
4279        // contexts because (1) the parameter depth will be off when
4280        // matching friend templates and (2) we might actually be
4281        // selecting a friend based on a dependent factor.  But there
4282        // are situations where these conditions don't apply and we
4283        // can actually do this check immediately.
4284        if (isFriend &&
4285            (TemplateParamLists.size() ||
4286             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
4287             CurContext->isDependentContext())) {
4288              // ignore these
4289            } else {
4290              // The user tried to provide an out-of-line definition for a
4291              // function that is a member of a class or namespace, but there
4292              // was no such member function declared (C++ [class.mfct]p2,
4293              // C++ [namespace.memdef]p2). For example:
4294              //
4295              // class X {
4296              //   void f() const;
4297              // };
4298              //
4299              // void X::f() { } // ill-formed
4300              //
4301              // Complain about this problem, and attempt to suggest close
4302              // matches (e.g., those that differ only in cv-qualifiers and
4303              // whether the parameter types are references).
4304              Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
4305              << Name << DC << D.getCXXScopeSpec().getRange();
4306              NewFD->setInvalidDecl();
4307
4308              DiagnoseInvalidRedeclaration(*this, NewFD);
4309            }
4310
4311        // Unqualified local friend declarations are required to resolve
4312        // to something.
4313        } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
4314          Diag(D.getIdentifierLoc(), diag::err_no_matching_local_friend);
4315          NewFD->setInvalidDecl();
4316          DiagnoseInvalidRedeclaration(*this, NewFD);
4317        }
4318
4319    } else if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
4320               !isFriend && !isFunctionTemplateSpecialization &&
4321               !isExplicitSpecialization) {
4322      // An out-of-line member function declaration must also be a
4323      // definition (C++ [dcl.meaning]p1).
4324      // Note that this is not the case for explicit specializations of
4325      // function templates or member functions of class templates, per
4326      // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
4327      // for compatibility with old SWIG code which likes to generate them.
4328      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
4329        << D.getCXXScopeSpec().getRange();
4330    }
4331  }
4332
4333
4334  // Handle attributes. We need to have merged decls when handling attributes
4335  // (for example to check for conflicts, etc).
4336  // FIXME: This needs to happen before we merge declarations. Then,
4337  // let attribute merging cope with attribute conflicts.
4338  ProcessDeclAttributes(S, NewFD, D,
4339                        /*NonInheritable=*/false, /*Inheritable=*/true);
4340
4341  // attributes declared post-definition are currently ignored
4342  // FIXME: This should happen during attribute merging
4343  if (Redeclaration && Previous.isSingleResult()) {
4344    const FunctionDecl *Def;
4345    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
4346    if (PrevFD && PrevFD->hasBody(Def) && D.hasAttributes()) {
4347      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
4348      Diag(Def->getLocation(), diag::note_previous_definition);
4349    }
4350  }
4351
4352  AddKnownFunctionAttributes(NewFD);
4353
4354  if (NewFD->hasAttr<OverloadableAttr>() &&
4355      !NewFD->getType()->getAs<FunctionProtoType>()) {
4356    Diag(NewFD->getLocation(),
4357         diag::err_attribute_overloadable_no_prototype)
4358      << NewFD;
4359
4360    // Turn this into a variadic function with no parameters.
4361    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
4362    FunctionProtoType::ExtProtoInfo EPI;
4363    EPI.Variadic = true;
4364    EPI.ExtInfo = FT->getExtInfo();
4365
4366    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
4367    NewFD->setType(R);
4368  }
4369
4370  // If there's a #pragma GCC visibility in scope, and this isn't a class
4371  // member, set the visibility of this function.
4372  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
4373    AddPushedVisibilityAttribute(NewFD);
4374
4375  // If this is a locally-scoped extern C function, update the
4376  // map of such names.
4377  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
4378      && !NewFD->isInvalidDecl())
4379    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
4380
4381  // Set this FunctionDecl's range up to the right paren.
4382  NewFD->setRangeEnd(D.getSourceRange().getEnd());
4383
4384  if (getLangOptions().CPlusPlus) {
4385    if (FunctionTemplate) {
4386      if (NewFD->isInvalidDecl())
4387        FunctionTemplate->setInvalidDecl();
4388      return FunctionTemplate;
4389    }
4390  }
4391
4392  MarkUnusedFileScopedDecl(NewFD);
4393
4394  if (getLangOptions().CUDA)
4395    if (IdentifierInfo *II = NewFD->getIdentifier())
4396      if (!NewFD->isInvalidDecl() &&
4397          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
4398        if (II->isStr("cudaConfigureCall")) {
4399          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
4400            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
4401
4402          Context.setcudaConfigureCallDecl(NewFD);
4403        }
4404      }
4405
4406  return NewFD;
4407}
4408
4409/// \brief Perform semantic checking of a new function declaration.
4410///
4411/// Performs semantic analysis of the new function declaration
4412/// NewFD. This routine performs all semantic checking that does not
4413/// require the actual declarator involved in the declaration, and is
4414/// used both for the declaration of functions as they are parsed
4415/// (called via ActOnDeclarator) and for the declaration of functions
4416/// that have been instantiated via C++ template instantiation (called
4417/// via InstantiateDecl).
4418///
4419/// \param IsExplicitSpecialiation whether this new function declaration is
4420/// an explicit specialization of the previous declaration.
4421///
4422/// This sets NewFD->isInvalidDecl() to true if there was an error.
4423void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
4424                                    LookupResult &Previous,
4425                                    bool IsExplicitSpecialization,
4426                                    bool &Redeclaration) {
4427  // If NewFD is already known erroneous, don't do any of this checking.
4428  if (NewFD->isInvalidDecl()) {
4429    // If this is a class member, mark the class invalid immediately.
4430    // This avoids some consistency errors later.
4431    if (isa<CXXMethodDecl>(NewFD))
4432      cast<CXXMethodDecl>(NewFD)->getParent()->setInvalidDecl();
4433
4434    return;
4435  }
4436
4437  if (NewFD->getResultType()->isVariablyModifiedType()) {
4438    // Functions returning a variably modified type violate C99 6.7.5.2p2
4439    // because all functions have linkage.
4440    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
4441    return NewFD->setInvalidDecl();
4442  }
4443
4444  if (NewFD->isMain())
4445    CheckMain(NewFD);
4446
4447  // Check for a previous declaration of this name.
4448  if (Previous.empty() && NewFD->isExternC()) {
4449    // Since we did not find anything by this name and we're declaring
4450    // an extern "C" function, look for a non-visible extern "C"
4451    // declaration with the same name.
4452    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4453      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
4454    if (Pos != LocallyScopedExternalDecls.end())
4455      Previous.addDecl(Pos->second);
4456  }
4457
4458  // Merge or overload the declaration with an existing declaration of
4459  // the same name, if appropriate.
4460  if (!Previous.empty()) {
4461    // Determine whether NewFD is an overload of PrevDecl or
4462    // a declaration that requires merging. If it's an overload,
4463    // there's no more work to do here; we'll just add the new
4464    // function to the scope.
4465
4466    NamedDecl *OldDecl = 0;
4467    if (!AllowOverloadingOfFunction(Previous, Context)) {
4468      Redeclaration = true;
4469      OldDecl = Previous.getFoundDecl();
4470    } else {
4471      switch (CheckOverload(S, NewFD, Previous, OldDecl,
4472                            /*NewIsUsingDecl*/ false)) {
4473      case Ovl_Match:
4474        Redeclaration = true;
4475        break;
4476
4477      case Ovl_NonFunction:
4478        Redeclaration = true;
4479        break;
4480
4481      case Ovl_Overload:
4482        Redeclaration = false;
4483        break;
4484      }
4485
4486      if (!getLangOptions().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
4487        // If a function name is overloadable in C, then every function
4488        // with that name must be marked "overloadable".
4489        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
4490          << Redeclaration << NewFD;
4491        NamedDecl *OverloadedDecl = 0;
4492        if (Redeclaration)
4493          OverloadedDecl = OldDecl;
4494        else if (!Previous.empty())
4495          OverloadedDecl = Previous.getRepresentativeDecl();
4496        if (OverloadedDecl)
4497          Diag(OverloadedDecl->getLocation(),
4498               diag::note_attribute_overloadable_prev_overload);
4499        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
4500                                                        Context));
4501      }
4502    }
4503
4504    if (Redeclaration) {
4505      // NewFD and OldDecl represent declarations that need to be
4506      // merged.
4507      if (MergeFunctionDecl(NewFD, OldDecl))
4508        return NewFD->setInvalidDecl();
4509
4510      Previous.clear();
4511      Previous.addDecl(OldDecl);
4512
4513      if (FunctionTemplateDecl *OldTemplateDecl
4514                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
4515        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
4516        FunctionTemplateDecl *NewTemplateDecl
4517          = NewFD->getDescribedFunctionTemplate();
4518        assert(NewTemplateDecl && "Template/non-template mismatch");
4519        if (CXXMethodDecl *Method
4520              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
4521          Method->setAccess(OldTemplateDecl->getAccess());
4522          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
4523        }
4524
4525        // If this is an explicit specialization of a member that is a function
4526        // template, mark it as a member specialization.
4527        if (IsExplicitSpecialization &&
4528            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
4529          NewTemplateDecl->setMemberSpecialization();
4530          assert(OldTemplateDecl->isMemberSpecialization());
4531        }
4532      } else {
4533        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
4534          NewFD->setAccess(OldDecl->getAccess());
4535        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
4536      }
4537    }
4538  }
4539
4540  // Semantic checking for this function declaration (in isolation).
4541  if (getLangOptions().CPlusPlus) {
4542    // C++-specific checks.
4543    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
4544      CheckConstructor(Constructor);
4545    } else if (CXXDestructorDecl *Destructor =
4546                dyn_cast<CXXDestructorDecl>(NewFD)) {
4547      CXXRecordDecl *Record = Destructor->getParent();
4548      QualType ClassType = Context.getTypeDeclType(Record);
4549
4550      // FIXME: Shouldn't we be able to perform this check even when the class
4551      // type is dependent? Both gcc and edg can handle that.
4552      if (!ClassType->isDependentType()) {
4553        DeclarationName Name
4554          = Context.DeclarationNames.getCXXDestructorName(
4555                                        Context.getCanonicalType(ClassType));
4556        if (NewFD->getDeclName() != Name) {
4557          Diag(NewFD->getLocation(), diag::err_destructor_name);
4558          return NewFD->setInvalidDecl();
4559        }
4560      }
4561    } else if (CXXConversionDecl *Conversion
4562               = dyn_cast<CXXConversionDecl>(NewFD)) {
4563      ActOnConversionDeclarator(Conversion);
4564    }
4565
4566    // Find any virtual functions that this function overrides.
4567    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
4568      if (!Method->isFunctionTemplateSpecialization() &&
4569          !Method->getDescribedFunctionTemplate()) {
4570        if (AddOverriddenMethods(Method->getParent(), Method)) {
4571          // If the function was marked as "static", we have a problem.
4572          if (NewFD->getStorageClass() == SC_Static) {
4573            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
4574              << NewFD->getDeclName();
4575            for (CXXMethodDecl::method_iterator
4576                      Overridden = Method->begin_overridden_methods(),
4577                   OverriddenEnd = Method->end_overridden_methods();
4578                 Overridden != OverriddenEnd;
4579                 ++Overridden) {
4580              Diag((*Overridden)->getLocation(),
4581                   diag::note_overridden_virtual_function);
4582            }
4583          }
4584        }
4585      }
4586    }
4587
4588    // Extra checking for C++ overloaded operators (C++ [over.oper]).
4589    if (NewFD->isOverloadedOperator() &&
4590        CheckOverloadedOperatorDeclaration(NewFD))
4591      return NewFD->setInvalidDecl();
4592
4593    // Extra checking for C++0x literal operators (C++0x [over.literal]).
4594    if (NewFD->getLiteralIdentifier() &&
4595        CheckLiteralOperatorDeclaration(NewFD))
4596      return NewFD->setInvalidDecl();
4597
4598    // In C++, check default arguments now that we have merged decls. Unless
4599    // the lexical context is the class, because in this case this is done
4600    // during delayed parsing anyway.
4601    if (!CurContext->isRecord())
4602      CheckCXXDefaultArguments(NewFD);
4603
4604    // If this function declares a builtin function, check the type of this
4605    // declaration against the expected type for the builtin.
4606    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
4607      ASTContext::GetBuiltinTypeError Error;
4608      QualType T = Context.GetBuiltinType(BuiltinID, Error);
4609      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
4610        // The type of this function differs from the type of the builtin,
4611        // so forget about the builtin entirely.
4612        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
4613      }
4614    }
4615  }
4616}
4617
4618void Sema::CheckMain(FunctionDecl* FD) {
4619  // C++ [basic.start.main]p3:  A program that declares main to be inline
4620  //   or static is ill-formed.
4621  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
4622  //   shall not appear in a declaration of main.
4623  // static main is not an error under C99, but we should warn about it.
4624  bool isInline = FD->isInlineSpecified();
4625  bool isStatic = FD->getStorageClass() == SC_Static;
4626  if (isInline || isStatic) {
4627    unsigned diagID = diag::warn_unusual_main_decl;
4628    if (isInline || getLangOptions().CPlusPlus)
4629      diagID = diag::err_unusual_main_decl;
4630
4631    int which = isStatic + (isInline << 1) - 1;
4632    Diag(FD->getLocation(), diagID) << which;
4633  }
4634
4635  QualType T = FD->getType();
4636  assert(T->isFunctionType() && "function decl is not of function type");
4637  const FunctionType* FT = T->getAs<FunctionType>();
4638
4639  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
4640    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
4641    FD->setInvalidDecl(true);
4642  }
4643
4644  // Treat protoless main() as nullary.
4645  if (isa<FunctionNoProtoType>(FT)) return;
4646
4647  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
4648  unsigned nparams = FTP->getNumArgs();
4649  assert(FD->getNumParams() == nparams);
4650
4651  bool HasExtraParameters = (nparams > 3);
4652
4653  // Darwin passes an undocumented fourth argument of type char**.  If
4654  // other platforms start sprouting these, the logic below will start
4655  // getting shifty.
4656  if (nparams == 4 && Context.Target.getTriple().isOSDarwin())
4657    HasExtraParameters = false;
4658
4659  if (HasExtraParameters) {
4660    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
4661    FD->setInvalidDecl(true);
4662    nparams = 3;
4663  }
4664
4665  // FIXME: a lot of the following diagnostics would be improved
4666  // if we had some location information about types.
4667
4668  QualType CharPP =
4669    Context.getPointerType(Context.getPointerType(Context.CharTy));
4670  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
4671
4672  for (unsigned i = 0; i < nparams; ++i) {
4673    QualType AT = FTP->getArgType(i);
4674
4675    bool mismatch = true;
4676
4677    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
4678      mismatch = false;
4679    else if (Expected[i] == CharPP) {
4680      // As an extension, the following forms are okay:
4681      //   char const **
4682      //   char const * const *
4683      //   char * const *
4684
4685      QualifierCollector qs;
4686      const PointerType* PT;
4687      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
4688          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
4689          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
4690        qs.removeConst();
4691        mismatch = !qs.empty();
4692      }
4693    }
4694
4695    if (mismatch) {
4696      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
4697      // TODO: suggest replacing given type with expected type
4698      FD->setInvalidDecl(true);
4699    }
4700  }
4701
4702  if (nparams == 1 && !FD->isInvalidDecl()) {
4703    Diag(FD->getLocation(), diag::warn_main_one_arg);
4704  }
4705
4706  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
4707    Diag(FD->getLocation(), diag::err_main_template_decl);
4708    FD->setInvalidDecl();
4709  }
4710}
4711
4712bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
4713  // FIXME: Need strict checking.  In C89, we need to check for
4714  // any assignment, increment, decrement, function-calls, or
4715  // commas outside of a sizeof.  In C99, it's the same list,
4716  // except that the aforementioned are allowed in unevaluated
4717  // expressions.  Everything else falls under the
4718  // "may accept other forms of constant expressions" exception.
4719  // (We never end up here for C++, so the constant expression
4720  // rules there don't matter.)
4721  if (Init->isConstantInitializer(Context, false))
4722    return false;
4723  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
4724    << Init->getSourceRange();
4725  return true;
4726}
4727
4728namespace {
4729  // Visits an initialization expression to see if OrigDecl is evaluated in
4730  // its own initialization and throws a warning if it does.
4731  class SelfReferenceChecker
4732      : public EvaluatedExprVisitor<SelfReferenceChecker> {
4733    Sema &S;
4734    Decl *OrigDecl;
4735
4736  public:
4737    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
4738
4739    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
4740                                                    S(S), OrigDecl(OrigDecl) { }
4741
4742    void VisitExpr(Expr *E) {
4743      if (isa<ObjCMessageExpr>(*E)) return;
4744      Inherited::VisitExpr(E);
4745    }
4746
4747    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
4748      CheckForSelfReference(E);
4749      Inherited::VisitImplicitCastExpr(E);
4750    }
4751
4752    void CheckForSelfReference(ImplicitCastExpr *E) {
4753      if (E->getCastKind() != CK_LValueToRValue) return;
4754      Expr* SubExpr = E->getSubExpr()->IgnoreParenImpCasts();
4755      DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SubExpr);
4756      if (!DRE) return;
4757      Decl* ReferenceDecl = DRE->getDecl();
4758      if (OrigDecl != ReferenceDecl) return;
4759      LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
4760                          Sema::NotForRedeclaration);
4761      S.Diag(SubExpr->getLocStart(), diag::warn_uninit_self_reference_in_init)
4762        << Result.getLookupName() << OrigDecl->getLocation()
4763        << SubExpr->getSourceRange();
4764    }
4765  };
4766}
4767
4768/// AddInitializerToDecl - Adds the initializer Init to the
4769/// declaration dcl. If DirectInit is true, this is C++ direct
4770/// initialization rather than copy initialization.
4771void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
4772                                bool DirectInit, bool TypeMayContainAuto) {
4773  // If there is no declaration, there was an error parsing it.  Just ignore
4774  // the initializer.
4775  if (RealDecl == 0 || RealDecl->isInvalidDecl())
4776    return;
4777
4778  // Check for self-references within variable initializers.
4779  if (VarDecl *vd = dyn_cast<VarDecl>(RealDecl)) {
4780    // Variables declared within a function/method body are handled
4781    // by a dataflow analysis.
4782    if (!vd->hasLocalStorage() && !vd->isStaticLocal())
4783      SelfReferenceChecker(*this, RealDecl).VisitExpr(Init);
4784  }
4785  else {
4786    SelfReferenceChecker(*this, RealDecl).VisitExpr(Init);
4787  }
4788
4789  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
4790    // With declarators parsed the way they are, the parser cannot
4791    // distinguish between a normal initializer and a pure-specifier.
4792    // Thus this grotesque test.
4793    IntegerLiteral *IL;
4794    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
4795        Context.getCanonicalType(IL->getType()) == Context.IntTy)
4796      CheckPureMethod(Method, Init->getSourceRange());
4797    else {
4798      Diag(Method->getLocation(), diag::err_member_function_initialization)
4799        << Method->getDeclName() << Init->getSourceRange();
4800      Method->setInvalidDecl();
4801    }
4802    return;
4803  }
4804
4805  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
4806  if (!VDecl) {
4807    if (getLangOptions().CPlusPlus &&
4808        RealDecl->getLexicalDeclContext()->isRecord() &&
4809        isa<NamedDecl>(RealDecl))
4810      Diag(RealDecl->getLocation(), diag::err_member_initialization);
4811    else
4812      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
4813    RealDecl->setInvalidDecl();
4814    return;
4815  }
4816
4817  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
4818  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
4819    TypeSourceInfo *DeducedType = 0;
4820    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
4821      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
4822        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
4823        << Init->getSourceRange();
4824    if (!DeducedType) {
4825      RealDecl->setInvalidDecl();
4826      return;
4827    }
4828    VDecl->setTypeSourceInfo(DeducedType);
4829    VDecl->setType(DeducedType->getType());
4830
4831    // If this is a redeclaration, check that the type we just deduced matches
4832    // the previously declared type.
4833    if (VarDecl *Old = VDecl->getPreviousDeclaration())
4834      MergeVarDeclTypes(VDecl, Old);
4835  }
4836
4837
4838  // A definition must end up with a complete type, which means it must be
4839  // complete with the restriction that an array type might be completed by the
4840  // initializer; note that later code assumes this restriction.
4841  QualType BaseDeclType = VDecl->getType();
4842  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
4843    BaseDeclType = Array->getElementType();
4844  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
4845                          diag::err_typecheck_decl_incomplete_type)) {
4846    RealDecl->setInvalidDecl();
4847    return;
4848  }
4849
4850  // The variable can not have an abstract class type.
4851  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
4852                             diag::err_abstract_type_in_decl,
4853                             AbstractVariableType))
4854    VDecl->setInvalidDecl();
4855
4856  const VarDecl *Def;
4857  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
4858    Diag(VDecl->getLocation(), diag::err_redefinition)
4859      << VDecl->getDeclName();
4860    Diag(Def->getLocation(), diag::note_previous_definition);
4861    VDecl->setInvalidDecl();
4862    return;
4863  }
4864
4865  const VarDecl* PrevInit = 0;
4866  if (getLangOptions().CPlusPlus) {
4867    // C++ [class.static.data]p4
4868    //   If a static data member is of const integral or const
4869    //   enumeration type, its declaration in the class definition can
4870    //   specify a constant-initializer which shall be an integral
4871    //   constant expression (5.19). In that case, the member can appear
4872    //   in integral constant expressions. The member shall still be
4873    //   defined in a namespace scope if it is used in the program and the
4874    //   namespace scope definition shall not contain an initializer.
4875    //
4876    // We already performed a redefinition check above, but for static
4877    // data members we also need to check whether there was an in-class
4878    // declaration with an initializer.
4879    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
4880      Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
4881      Diag(PrevInit->getLocation(), diag::note_previous_definition);
4882      return;
4883    }
4884
4885    if (VDecl->hasLocalStorage())
4886      getCurFunction()->setHasBranchProtectedScope();
4887
4888    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
4889      VDecl->setInvalidDecl();
4890      return;
4891    }
4892  }
4893
4894  // Capture the variable that is being initialized and the style of
4895  // initialization.
4896  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
4897
4898  // FIXME: Poor source location information.
4899  InitializationKind Kind
4900    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
4901                                                   Init->getLocStart(),
4902                                                   Init->getLocEnd())
4903                : InitializationKind::CreateCopy(VDecl->getLocation(),
4904                                                 Init->getLocStart());
4905
4906  // Get the decls type and save a reference for later, since
4907  // CheckInitializerTypes may change it.
4908  QualType DclT = VDecl->getType(), SavT = DclT;
4909  if (VDecl->isLocalVarDecl()) {
4910    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
4911      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
4912      VDecl->setInvalidDecl();
4913    } else if (!VDecl->isInvalidDecl()) {
4914      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4915      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4916                                                MultiExprArg(*this, &Init, 1),
4917                                                &DclT);
4918      if (Result.isInvalid()) {
4919        VDecl->setInvalidDecl();
4920        return;
4921      }
4922
4923      Init = Result.takeAs<Expr>();
4924
4925      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4926      // Don't check invalid declarations to avoid emitting useless diagnostics.
4927      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4928        if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
4929          CheckForConstantInitializer(Init, DclT);
4930      }
4931    }
4932  } else if (VDecl->isStaticDataMember() &&
4933             VDecl->getLexicalDeclContext()->isRecord()) {
4934    // This is an in-class initialization for a static data member, e.g.,
4935    //
4936    // struct S {
4937    //   static const int value = 17;
4938    // };
4939
4940    // Try to perform the initialization regardless.
4941    if (!VDecl->isInvalidDecl()) {
4942      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4943      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4944                                          MultiExprArg(*this, &Init, 1),
4945                                          &DclT);
4946      if (Result.isInvalid()) {
4947        VDecl->setInvalidDecl();
4948        return;
4949      }
4950
4951      Init = Result.takeAs<Expr>();
4952    }
4953
4954    // C++ [class.mem]p4:
4955    //   A member-declarator can contain a constant-initializer only
4956    //   if it declares a static member (9.4) of const integral or
4957    //   const enumeration type, see 9.4.2.
4958    QualType T = VDecl->getType();
4959
4960    // Do nothing on dependent types.
4961    if (T->isDependentType()) {
4962
4963    // Require constness.
4964    } else if (!T.isConstQualified()) {
4965      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
4966        << Init->getSourceRange();
4967      VDecl->setInvalidDecl();
4968
4969    // We allow integer constant expressions in all cases.
4970    } else if (T->isIntegralOrEnumerationType()) {
4971      if (!Init->isValueDependent()) {
4972        // Check whether the expression is a constant expression.
4973        llvm::APSInt Value;
4974        SourceLocation Loc;
4975        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
4976          Diag(Loc, diag::err_in_class_initializer_non_constant)
4977            << Init->getSourceRange();
4978          VDecl->setInvalidDecl();
4979        }
4980      }
4981
4982    // We allow floating-point constants as an extension in C++03, and
4983    // C++0x has far more complicated rules that we don't really
4984    // implement fully.
4985    } else {
4986      bool Allowed = false;
4987      if (getLangOptions().CPlusPlus0x) {
4988        Allowed = T->isLiteralType();
4989      } else if (T->isFloatingType()) { // also permits complex, which is ok
4990        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
4991          << T << Init->getSourceRange();
4992        Allowed = true;
4993      }
4994
4995      if (!Allowed) {
4996        Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
4997          << T << Init->getSourceRange();
4998        VDecl->setInvalidDecl();
4999
5000      // TODO: there are probably expressions that pass here that shouldn't.
5001      } else if (!Init->isValueDependent() &&
5002                 !Init->isConstantInitializer(Context, false)) {
5003        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
5004          << Init->getSourceRange();
5005        VDecl->setInvalidDecl();
5006      }
5007    }
5008  } else if (VDecl->isFileVarDecl()) {
5009    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
5010        (!getLangOptions().CPlusPlus ||
5011         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
5012      Diag(VDecl->getLocation(), diag::warn_extern_init);
5013    if (!VDecl->isInvalidDecl()) {
5014      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5015      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5016                                                MultiExprArg(*this, &Init, 1),
5017                                                &DclT);
5018      if (Result.isInvalid()) {
5019        VDecl->setInvalidDecl();
5020        return;
5021      }
5022
5023      Init = Result.takeAs<Expr>();
5024    }
5025
5026    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
5027    // Don't check invalid declarations to avoid emitting useless diagnostics.
5028    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
5029      // C99 6.7.8p4. All file scoped initializers need to be constant.
5030      CheckForConstantInitializer(Init, DclT);
5031    }
5032  }
5033  // If the type changed, it means we had an incomplete type that was
5034  // completed by the initializer. For example:
5035  //   int ary[] = { 1, 3, 5 };
5036  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
5037  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
5038    VDecl->setType(DclT);
5039    Init->setType(DclT);
5040  }
5041
5042
5043  // If this variable is a local declaration with record type, make sure it
5044  // doesn't have a flexible member initialization.  We only support this as a
5045  // global/static definition.
5046  if (VDecl->hasLocalStorage())
5047    if (const RecordType *RT = VDecl->getType()->getAs<RecordType>())
5048      if (RT->getDecl()->hasFlexibleArrayMember()) {
5049        // Check whether the initializer tries to initialize the flexible
5050        // array member itself to anything other than an empty initializer list.
5051        if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
5052          unsigned Index = std::distance(RT->getDecl()->field_begin(),
5053                                         RT->getDecl()->field_end()) - 1;
5054          if (Index < ILE->getNumInits() &&
5055              !(isa<InitListExpr>(ILE->getInit(Index)) &&
5056                cast<InitListExpr>(ILE->getInit(Index))->getNumInits() == 0)) {
5057            Diag(VDecl->getLocation(), diag::err_nonstatic_flexible_variable);
5058            VDecl->setInvalidDecl();
5059          }
5060        }
5061      }
5062
5063  // Check any implicit conversions within the expression.
5064  CheckImplicitConversions(Init, VDecl->getLocation());
5065
5066  Init = MaybeCreateExprWithCleanups(Init);
5067  // Attach the initializer to the decl.
5068  VDecl->setInit(Init);
5069
5070  CheckCompleteVariableDeclaration(VDecl);
5071}
5072
5073/// ActOnInitializerError - Given that there was an error parsing an
5074/// initializer for the given declaration, try to return to some form
5075/// of sanity.
5076void Sema::ActOnInitializerError(Decl *D) {
5077  // Our main concern here is re-establishing invariants like "a
5078  // variable's type is either dependent or complete".
5079  if (!D || D->isInvalidDecl()) return;
5080
5081  VarDecl *VD = dyn_cast<VarDecl>(D);
5082  if (!VD) return;
5083
5084  // Auto types are meaningless if we can't make sense of the initializer.
5085  if (ParsingInitForAutoVars.count(D)) {
5086    D->setInvalidDecl();
5087    return;
5088  }
5089
5090  QualType Ty = VD->getType();
5091  if (Ty->isDependentType()) return;
5092
5093  // Require a complete type.
5094  if (RequireCompleteType(VD->getLocation(),
5095                          Context.getBaseElementType(Ty),
5096                          diag::err_typecheck_decl_incomplete_type)) {
5097    VD->setInvalidDecl();
5098    return;
5099  }
5100
5101  // Require an abstract type.
5102  if (RequireNonAbstractType(VD->getLocation(), Ty,
5103                             diag::err_abstract_type_in_decl,
5104                             AbstractVariableType)) {
5105    VD->setInvalidDecl();
5106    return;
5107  }
5108
5109  // Don't bother complaining about constructors or destructors,
5110  // though.
5111}
5112
5113void Sema::ActOnUninitializedDecl(Decl *RealDecl,
5114                                  bool TypeMayContainAuto) {
5115  // If there is no declaration, there was an error parsing it. Just ignore it.
5116  if (RealDecl == 0)
5117    return;
5118
5119  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
5120    QualType Type = Var->getType();
5121
5122    // C++0x [dcl.spec.auto]p3
5123    if (TypeMayContainAuto && Type->getContainedAutoType()) {
5124      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
5125        << Var->getDeclName() << Type;
5126      Var->setInvalidDecl();
5127      return;
5128    }
5129
5130    switch (Var->isThisDeclarationADefinition()) {
5131    case VarDecl::Definition:
5132      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
5133        break;
5134
5135      // We have an out-of-line definition of a static data member
5136      // that has an in-class initializer, so we type-check this like
5137      // a declaration.
5138      //
5139      // Fall through
5140
5141    case VarDecl::DeclarationOnly:
5142      // It's only a declaration.
5143
5144      // Block scope. C99 6.7p7: If an identifier for an object is
5145      // declared with no linkage (C99 6.2.2p6), the type for the
5146      // object shall be complete.
5147      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
5148          !Var->getLinkage() && !Var->isInvalidDecl() &&
5149          RequireCompleteType(Var->getLocation(), Type,
5150                              diag::err_typecheck_decl_incomplete_type))
5151        Var->setInvalidDecl();
5152
5153      // Make sure that the type is not abstract.
5154      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
5155          RequireNonAbstractType(Var->getLocation(), Type,
5156                                 diag::err_abstract_type_in_decl,
5157                                 AbstractVariableType))
5158        Var->setInvalidDecl();
5159      return;
5160
5161    case VarDecl::TentativeDefinition:
5162      // File scope. C99 6.9.2p2: A declaration of an identifier for an
5163      // object that has file scope without an initializer, and without a
5164      // storage-class specifier or with the storage-class specifier "static",
5165      // constitutes a tentative definition. Note: A tentative definition with
5166      // external linkage is valid (C99 6.2.2p5).
5167      if (!Var->isInvalidDecl()) {
5168        if (const IncompleteArrayType *ArrayT
5169                                    = Context.getAsIncompleteArrayType(Type)) {
5170          if (RequireCompleteType(Var->getLocation(),
5171                                  ArrayT->getElementType(),
5172                                  diag::err_illegal_decl_array_incomplete_type))
5173            Var->setInvalidDecl();
5174        } else if (Var->getStorageClass() == SC_Static) {
5175          // C99 6.9.2p3: If the declaration of an identifier for an object is
5176          // a tentative definition and has internal linkage (C99 6.2.2p3), the
5177          // declared type shall not be an incomplete type.
5178          // NOTE: code such as the following
5179          //     static struct s;
5180          //     struct s { int a; };
5181          // is accepted by gcc. Hence here we issue a warning instead of
5182          // an error and we do not invalidate the static declaration.
5183          // NOTE: to avoid multiple warnings, only check the first declaration.
5184          if (Var->getPreviousDeclaration() == 0)
5185            RequireCompleteType(Var->getLocation(), Type,
5186                                diag::ext_typecheck_decl_incomplete_type);
5187        }
5188      }
5189
5190      // Record the tentative definition; we're done.
5191      if (!Var->isInvalidDecl())
5192        TentativeDefinitions.push_back(Var);
5193      return;
5194    }
5195
5196    // Provide a specific diagnostic for uninitialized variable
5197    // definitions with incomplete array type.
5198    if (Type->isIncompleteArrayType()) {
5199      Diag(Var->getLocation(),
5200           diag::err_typecheck_incomplete_array_needs_initializer);
5201      Var->setInvalidDecl();
5202      return;
5203    }
5204
5205    // Provide a specific diagnostic for uninitialized variable
5206    // definitions with reference type.
5207    if (Type->isReferenceType()) {
5208      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
5209        << Var->getDeclName()
5210        << SourceRange(Var->getLocation(), Var->getLocation());
5211      Var->setInvalidDecl();
5212      return;
5213    }
5214
5215    // Do not attempt to type-check the default initializer for a
5216    // variable with dependent type.
5217    if (Type->isDependentType())
5218      return;
5219
5220    if (Var->isInvalidDecl())
5221      return;
5222
5223    if (RequireCompleteType(Var->getLocation(),
5224                            Context.getBaseElementType(Type),
5225                            diag::err_typecheck_decl_incomplete_type)) {
5226      Var->setInvalidDecl();
5227      return;
5228    }
5229
5230    // The variable can not have an abstract class type.
5231    if (RequireNonAbstractType(Var->getLocation(), Type,
5232                               diag::err_abstract_type_in_decl,
5233                               AbstractVariableType)) {
5234      Var->setInvalidDecl();
5235      return;
5236    }
5237
5238    const RecordType *Record
5239      = Context.getBaseElementType(Type)->getAs<RecordType>();
5240    if (Record && getLangOptions().CPlusPlus &&
5241        cast<CXXRecordDecl>(Record->getDecl())->isPOD()) {
5242      // C++03 [dcl.init]p9:
5243      //   If no initializer is specified for an object, and the
5244      //   object is of (possibly cv-qualified) non-POD class type (or
5245      //   array thereof), the object shall be default-initialized; if
5246      //   the object is of const-qualified type, the underlying class
5247      //   type shall have a user-declared default
5248      //   constructor. Otherwise, if no initializer is specified for
5249      //   a non- static object, the object and its subobjects, if
5250      //   any, have an indeterminate initial value); if the object
5251      //   or any of its subobjects are of const-qualified type, the
5252      //   program is ill-formed.
5253    } else {
5254      // Check for jumps past the implicit initializer.  C++0x
5255      // clarifies that this applies to a "variable with automatic
5256      // storage duration", not a "local variable".
5257      if (getLangOptions().CPlusPlus && Var->hasLocalStorage())
5258        getCurFunction()->setHasBranchProtectedScope();
5259
5260      InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
5261      InitializationKind Kind
5262        = InitializationKind::CreateDefault(Var->getLocation());
5263
5264      InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
5265      ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
5266                                        MultiExprArg(*this, 0, 0));
5267      if (Init.isInvalid())
5268        Var->setInvalidDecl();
5269      else if (Init.get())
5270        Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
5271    }
5272
5273    CheckCompleteVariableDeclaration(Var);
5274  }
5275}
5276
5277void Sema::ActOnCXXForRangeDecl(Decl *D) {
5278  VarDecl *VD = dyn_cast<VarDecl>(D);
5279  if (!VD) {
5280    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
5281    D->setInvalidDecl();
5282    return;
5283  }
5284
5285  VD->setCXXForRangeDecl(true);
5286
5287  // for-range-declaration cannot be given a storage class specifier.
5288  int Error = -1;
5289  switch (VD->getStorageClassAsWritten()) {
5290  case SC_None:
5291    break;
5292  case SC_Extern:
5293    Error = 0;
5294    break;
5295  case SC_Static:
5296    Error = 1;
5297    break;
5298  case SC_PrivateExtern:
5299    Error = 2;
5300    break;
5301  case SC_Auto:
5302    Error = 3;
5303    break;
5304  case SC_Register:
5305    Error = 4;
5306    break;
5307  }
5308  // FIXME: constexpr isn't allowed here.
5309  //if (DS.isConstexprSpecified())
5310  //  Error = 5;
5311  if (Error != -1) {
5312    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
5313      << VD->getDeclName() << Error;
5314    D->setInvalidDecl();
5315  }
5316}
5317
5318void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
5319  if (var->isInvalidDecl()) return;
5320
5321  // All the following checks are C++ only.
5322  if (!getLangOptions().CPlusPlus) return;
5323
5324  QualType baseType = Context.getBaseElementType(var->getType());
5325  if (baseType->isDependentType()) return;
5326
5327  // __block variables might require us to capture a copy-initializer.
5328  if (var->hasAttr<BlocksAttr>()) {
5329    // It's currently invalid to ever have a __block variable with an
5330    // array type; should we diagnose that here?
5331
5332    // Regardless, we don't want to ignore array nesting when
5333    // constructing this copy.
5334    QualType type = var->getType();
5335
5336    if (type->isStructureOrClassType()) {
5337      SourceLocation poi = var->getLocation();
5338      Expr *varRef = new (Context) DeclRefExpr(var, type, VK_LValue, poi);
5339      ExprResult result =
5340        PerformCopyInitialization(
5341                        InitializedEntity::InitializeBlock(poi, type, false),
5342                                  poi, Owned(varRef));
5343      if (!result.isInvalid()) {
5344        result = MaybeCreateExprWithCleanups(result);
5345        Expr *init = result.takeAs<Expr>();
5346        Context.setBlockVarCopyInits(var, init);
5347      }
5348    }
5349  }
5350
5351  // Check for global constructors.
5352  if (!var->getDeclContext()->isDependentContext() &&
5353      var->hasGlobalStorage() &&
5354      !var->isStaticLocal() &&
5355      var->getInit() &&
5356      !var->getInit()->isConstantInitializer(Context,
5357                                             baseType->isReferenceType()))
5358    Diag(var->getLocation(), diag::warn_global_constructor)
5359      << var->getInit()->getSourceRange();
5360
5361  // Require the destructor.
5362  if (const RecordType *recordType = baseType->getAs<RecordType>())
5363    FinalizeVarWithDestructor(var, recordType);
5364}
5365
5366/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
5367/// any semantic actions necessary after any initializer has been attached.
5368void
5369Sema::FinalizeDeclaration(Decl *ThisDecl) {
5370  // Note that we are no longer parsing the initializer for this declaration.
5371  ParsingInitForAutoVars.erase(ThisDecl);
5372}
5373
5374Sema::DeclGroupPtrTy
5375Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
5376                              Decl **Group, unsigned NumDecls) {
5377  llvm::SmallVector<Decl*, 8> Decls;
5378
5379  if (DS.isTypeSpecOwned())
5380    Decls.push_back(DS.getRepAsDecl());
5381
5382  for (unsigned i = 0; i != NumDecls; ++i)
5383    if (Decl *D = Group[i])
5384      Decls.push_back(D);
5385
5386  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
5387                              DS.getTypeSpecType() == DeclSpec::TST_auto);
5388}
5389
5390/// BuildDeclaratorGroup - convert a list of declarations into a declaration
5391/// group, performing any necessary semantic checking.
5392Sema::DeclGroupPtrTy
5393Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
5394                           bool TypeMayContainAuto) {
5395  // C++0x [dcl.spec.auto]p7:
5396  //   If the type deduced for the template parameter U is not the same in each
5397  //   deduction, the program is ill-formed.
5398  // FIXME: When initializer-list support is added, a distinction is needed
5399  // between the deduced type U and the deduced type which 'auto' stands for.
5400  //   auto a = 0, b = { 1, 2, 3 };
5401  // is legal because the deduced type U is 'int' in both cases.
5402  if (TypeMayContainAuto && NumDecls > 1) {
5403    QualType Deduced;
5404    CanQualType DeducedCanon;
5405    VarDecl *DeducedDecl = 0;
5406    for (unsigned i = 0; i != NumDecls; ++i) {
5407      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
5408        AutoType *AT = D->getType()->getContainedAutoType();
5409        // Don't reissue diagnostics when instantiating a template.
5410        if (AT && D->isInvalidDecl())
5411          break;
5412        if (AT && AT->isDeduced()) {
5413          QualType U = AT->getDeducedType();
5414          CanQualType UCanon = Context.getCanonicalType(U);
5415          if (Deduced.isNull()) {
5416            Deduced = U;
5417            DeducedCanon = UCanon;
5418            DeducedDecl = D;
5419          } else if (DeducedCanon != UCanon) {
5420            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
5421                 diag::err_auto_different_deductions)
5422              << Deduced << DeducedDecl->getDeclName()
5423              << U << D->getDeclName()
5424              << DeducedDecl->getInit()->getSourceRange()
5425              << D->getInit()->getSourceRange();
5426            D->setInvalidDecl();
5427            break;
5428          }
5429        }
5430      }
5431    }
5432  }
5433
5434  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
5435}
5436
5437
5438/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
5439/// to introduce parameters into function prototype scope.
5440Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
5441  const DeclSpec &DS = D.getDeclSpec();
5442
5443  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
5444  VarDecl::StorageClass StorageClass = SC_None;
5445  VarDecl::StorageClass StorageClassAsWritten = SC_None;
5446  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
5447    StorageClass = SC_Register;
5448    StorageClassAsWritten = SC_Register;
5449  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
5450    Diag(DS.getStorageClassSpecLoc(),
5451         diag::err_invalid_storage_class_in_func_decl);
5452    D.getMutableDeclSpec().ClearStorageClassSpecs();
5453  }
5454
5455  if (D.getDeclSpec().isThreadSpecified())
5456    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5457
5458  DiagnoseFunctionSpecifiers(D);
5459
5460  TagDecl *OwnedDecl = 0;
5461  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
5462  QualType parmDeclType = TInfo->getType();
5463
5464  if (getLangOptions().CPlusPlus) {
5465    // Check that there are no default arguments inside the type of this
5466    // parameter.
5467    CheckExtraCXXDefaultArguments(D);
5468
5469    if (OwnedDecl && OwnedDecl->isDefinition()) {
5470      // C++ [dcl.fct]p6:
5471      //   Types shall not be defined in return or parameter types.
5472      Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
5473        << Context.getTypeDeclType(OwnedDecl);
5474    }
5475
5476    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
5477    if (D.getCXXScopeSpec().isSet()) {
5478      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
5479        << D.getCXXScopeSpec().getRange();
5480      D.getCXXScopeSpec().clear();
5481    }
5482  }
5483
5484  // Ensure we have a valid name
5485  IdentifierInfo *II = 0;
5486  if (D.hasName()) {
5487    II = D.getIdentifier();
5488    if (!II) {
5489      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
5490        << GetNameForDeclarator(D).getName().getAsString();
5491      D.setInvalidType(true);
5492    }
5493  }
5494
5495  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
5496  if (II) {
5497    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
5498                   ForRedeclaration);
5499    LookupName(R, S);
5500    if (R.isSingleResult()) {
5501      NamedDecl *PrevDecl = R.getFoundDecl();
5502      if (PrevDecl->isTemplateParameter()) {
5503        // Maybe we will complain about the shadowed template parameter.
5504        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5505        // Just pretend that we didn't see the previous declaration.
5506        PrevDecl = 0;
5507      } else if (S->isDeclScope(PrevDecl)) {
5508        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
5509        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5510
5511        // Recover by removing the name
5512        II = 0;
5513        D.SetIdentifier(0, D.getIdentifierLoc());
5514        D.setInvalidType(true);
5515      }
5516    }
5517  }
5518
5519  // Temporarily put parameter variables in the translation unit, not
5520  // the enclosing context.  This prevents them from accidentally
5521  // looking like class members in C++.
5522  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
5523                                    D.getSourceRange().getBegin(),
5524                                    D.getIdentifierLoc(), II,
5525                                    parmDeclType, TInfo,
5526                                    StorageClass, StorageClassAsWritten);
5527
5528  if (D.isInvalidType())
5529    New->setInvalidDecl();
5530
5531  // Add the parameter declaration into this scope.
5532  S->AddDecl(New);
5533  if (II)
5534    IdResolver.AddDecl(New);
5535
5536  ProcessDeclAttributes(S, New, D);
5537
5538  if (New->hasAttr<BlocksAttr>()) {
5539    Diag(New->getLocation(), diag::err_block_on_nonlocal);
5540  }
5541  return New;
5542}
5543
5544/// \brief Synthesizes a variable for a parameter arising from a
5545/// typedef.
5546ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
5547                                              SourceLocation Loc,
5548                                              QualType T) {
5549  /* FIXME: setting StartLoc == Loc.
5550     Would it be worth to modify callers so as to provide proper source
5551     location for the unnamed parameters, embedding the parameter's type? */
5552  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
5553                                T, Context.getTrivialTypeSourceInfo(T, Loc),
5554                                           SC_None, SC_None, 0);
5555  Param->setImplicit();
5556  return Param;
5557}
5558
5559void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
5560                                    ParmVarDecl * const *ParamEnd) {
5561  // Don't diagnose unused-parameter errors in template instantiations; we
5562  // will already have done so in the template itself.
5563  if (!ActiveTemplateInstantiations.empty())
5564    return;
5565
5566  for (; Param != ParamEnd; ++Param) {
5567    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
5568        !(*Param)->hasAttr<UnusedAttr>()) {
5569      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
5570        << (*Param)->getDeclName();
5571    }
5572  }
5573}
5574
5575void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
5576                                                  ParmVarDecl * const *ParamEnd,
5577                                                  QualType ReturnTy,
5578                                                  NamedDecl *D) {
5579  if (LangOpts.NumLargeByValueCopy == 0) // No check.
5580    return;
5581
5582  // Warn if the return value is pass-by-value and larger than the specified
5583  // threshold.
5584  if (ReturnTy->isPODType()) {
5585    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
5586    if (Size > LangOpts.NumLargeByValueCopy)
5587      Diag(D->getLocation(), diag::warn_return_value_size)
5588          << D->getDeclName() << Size;
5589  }
5590
5591  // Warn if any parameter is pass-by-value and larger than the specified
5592  // threshold.
5593  for (; Param != ParamEnd; ++Param) {
5594    QualType T = (*Param)->getType();
5595    if (!T->isPODType())
5596      continue;
5597    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
5598    if (Size > LangOpts.NumLargeByValueCopy)
5599      Diag((*Param)->getLocation(), diag::warn_parameter_size)
5600          << (*Param)->getDeclName() << Size;
5601  }
5602}
5603
5604ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
5605                                  SourceLocation NameLoc, IdentifierInfo *Name,
5606                                  QualType T, TypeSourceInfo *TSInfo,
5607                                  VarDecl::StorageClass StorageClass,
5608                                  VarDecl::StorageClass StorageClassAsWritten) {
5609  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
5610                                         adjustParameterType(T), TSInfo,
5611                                         StorageClass, StorageClassAsWritten,
5612                                         0);
5613
5614  // Parameters can not be abstract class types.
5615  // For record types, this is done by the AbstractClassUsageDiagnoser once
5616  // the class has been completely parsed.
5617  if (!CurContext->isRecord() &&
5618      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
5619                             AbstractParamType))
5620    New->setInvalidDecl();
5621
5622  // Parameter declarators cannot be interface types. All ObjC objects are
5623  // passed by reference.
5624  if (T->isObjCObjectType()) {
5625    Diag(NameLoc,
5626         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
5627    New->setInvalidDecl();
5628  }
5629
5630  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
5631  // duration shall not be qualified by an address-space qualifier."
5632  // Since all parameters have automatic store duration, they can not have
5633  // an address space.
5634  if (T.getAddressSpace() != 0) {
5635    Diag(NameLoc, diag::err_arg_with_address_space);
5636    New->setInvalidDecl();
5637  }
5638
5639  return New;
5640}
5641
5642void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
5643                                           SourceLocation LocAfterDecls) {
5644  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5645
5646  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
5647  // for a K&R function.
5648  if (!FTI.hasPrototype) {
5649    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
5650      --i;
5651      if (FTI.ArgInfo[i].Param == 0) {
5652        llvm::SmallString<256> Code;
5653        llvm::raw_svector_ostream(Code) << "  int "
5654                                        << FTI.ArgInfo[i].Ident->getName()
5655                                        << ";\n";
5656        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
5657          << FTI.ArgInfo[i].Ident
5658          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
5659
5660        // Implicitly declare the argument as type 'int' for lack of a better
5661        // type.
5662        AttributeFactory attrs;
5663        DeclSpec DS(attrs);
5664        const char* PrevSpec; // unused
5665        unsigned DiagID; // unused
5666        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
5667                           PrevSpec, DiagID);
5668        Declarator ParamD(DS, Declarator::KNRTypeListContext);
5669        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
5670        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
5671      }
5672    }
5673  }
5674}
5675
5676Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
5677                                         Declarator &D) {
5678  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
5679  assert(D.isFunctionDeclarator() && "Not a function declarator!");
5680  Scope *ParentScope = FnBodyScope->getParent();
5681
5682  Decl *DP = HandleDeclarator(ParentScope, D,
5683                              MultiTemplateParamsArg(*this),
5684                              /*IsFunctionDefinition=*/true);
5685  return ActOnStartOfFunctionDef(FnBodyScope, DP);
5686}
5687
5688static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
5689  // Don't warn about invalid declarations.
5690  if (FD->isInvalidDecl())
5691    return false;
5692
5693  // Or declarations that aren't global.
5694  if (!FD->isGlobal())
5695    return false;
5696
5697  // Don't warn about C++ member functions.
5698  if (isa<CXXMethodDecl>(FD))
5699    return false;
5700
5701  // Don't warn about 'main'.
5702  if (FD->isMain())
5703    return false;
5704
5705  // Don't warn about inline functions.
5706  if (FD->isInlined())
5707    return false;
5708
5709  // Don't warn about function templates.
5710  if (FD->getDescribedFunctionTemplate())
5711    return false;
5712
5713  // Don't warn about function template specializations.
5714  if (FD->isFunctionTemplateSpecialization())
5715    return false;
5716
5717  bool MissingPrototype = true;
5718  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
5719       Prev; Prev = Prev->getPreviousDeclaration()) {
5720    // Ignore any declarations that occur in function or method
5721    // scope, because they aren't visible from the header.
5722    if (Prev->getDeclContext()->isFunctionOrMethod())
5723      continue;
5724
5725    MissingPrototype = !Prev->getType()->isFunctionProtoType();
5726    break;
5727  }
5728
5729  return MissingPrototype;
5730}
5731
5732void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
5733  // Don't complain if we're in GNU89 mode and the previous definition
5734  // was an extern inline function.
5735  const FunctionDecl *Definition;
5736  if (FD->hasBody(Definition) &&
5737      !canRedefineFunction(Definition, getLangOptions())) {
5738    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
5739        Definition->getStorageClass() == SC_Extern)
5740      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
5741        << FD->getDeclName() << getLangOptions().CPlusPlus;
5742    else
5743      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
5744    Diag(Definition->getLocation(), diag::note_previous_definition);
5745  }
5746}
5747
5748Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
5749  // Clear the last template instantiation error context.
5750  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
5751
5752  if (!D)
5753    return D;
5754  FunctionDecl *FD = 0;
5755
5756  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
5757    FD = FunTmpl->getTemplatedDecl();
5758  else
5759    FD = cast<FunctionDecl>(D);
5760
5761  // Enter a new function scope
5762  PushFunctionScope();
5763
5764  // See if this is a redefinition.
5765  if (!FD->isLateTemplateParsed())
5766    CheckForFunctionRedefinition(FD);
5767
5768  // Builtin functions cannot be defined.
5769  if (unsigned BuiltinID = FD->getBuiltinID()) {
5770    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
5771      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
5772      FD->setInvalidDecl();
5773    }
5774  }
5775
5776  // The return type of a function definition must be complete
5777  // (C99 6.9.1p3, C++ [dcl.fct]p6).
5778  QualType ResultType = FD->getResultType();
5779  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
5780      !FD->isInvalidDecl() &&
5781      RequireCompleteType(FD->getLocation(), ResultType,
5782                          diag::err_func_def_incomplete_result))
5783    FD->setInvalidDecl();
5784
5785  // GNU warning -Wmissing-prototypes:
5786  //   Warn if a global function is defined without a previous
5787  //   prototype declaration. This warning is issued even if the
5788  //   definition itself provides a prototype. The aim is to detect
5789  //   global functions that fail to be declared in header files.
5790  if (ShouldWarnAboutMissingPrototype(FD))
5791    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
5792
5793  if (FnBodyScope)
5794    PushDeclContext(FnBodyScope, FD);
5795
5796  // Check the validity of our function parameters
5797  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
5798                           /*CheckParameterNames=*/true);
5799
5800  // Introduce our parameters into the function scope
5801  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
5802    ParmVarDecl *Param = FD->getParamDecl(p);
5803    Param->setOwningFunction(FD);
5804
5805    // If this has an identifier, add it to the scope stack.
5806    if (Param->getIdentifier() && FnBodyScope) {
5807      CheckShadow(FnBodyScope, Param);
5808
5809      PushOnScopeChains(Param, FnBodyScope);
5810    }
5811  }
5812
5813  // Checking attributes of current function definition
5814  // dllimport attribute.
5815  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
5816  if (DA && (!FD->getAttr<DLLExportAttr>())) {
5817    // dllimport attribute cannot be directly applied to definition.
5818    // Microsoft accepts dllimport for functions defined within class scope.
5819    if (!DA->isInherited() &&
5820        !(LangOpts.Microsoft && FD->getLexicalDeclContext()->isRecord())) {
5821      Diag(FD->getLocation(),
5822           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
5823        << "dllimport";
5824      FD->setInvalidDecl();
5825      return FD;
5826    }
5827
5828    // Visual C++ appears to not think this is an issue, so only issue
5829    // a warning when Microsoft extensions are disabled.
5830    if (!LangOpts.Microsoft) {
5831      // If a symbol previously declared dllimport is later defined, the
5832      // attribute is ignored in subsequent references, and a warning is
5833      // emitted.
5834      Diag(FD->getLocation(),
5835           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
5836        << FD->getName() << "dllimport";
5837    }
5838  }
5839  return FD;
5840}
5841
5842/// \brief Given the set of return statements within a function body,
5843/// compute the variables that are subject to the named return value
5844/// optimization.
5845///
5846/// Each of the variables that is subject to the named return value
5847/// optimization will be marked as NRVO variables in the AST, and any
5848/// return statement that has a marked NRVO variable as its NRVO candidate can
5849/// use the named return value optimization.
5850///
5851/// This function applies a very simplistic algorithm for NRVO: if every return
5852/// statement in the function has the same NRVO candidate, that candidate is
5853/// the NRVO variable.
5854///
5855/// FIXME: Employ a smarter algorithm that accounts for multiple return
5856/// statements and the lifetimes of the NRVO candidates. We should be able to
5857/// find a maximal set of NRVO variables.
5858static void ComputeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
5859  ReturnStmt **Returns = Scope->Returns.data();
5860
5861  const VarDecl *NRVOCandidate = 0;
5862  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
5863    if (!Returns[I]->getNRVOCandidate())
5864      return;
5865
5866    if (!NRVOCandidate)
5867      NRVOCandidate = Returns[I]->getNRVOCandidate();
5868    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
5869      return;
5870  }
5871
5872  if (NRVOCandidate)
5873    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
5874}
5875
5876Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
5877  return ActOnFinishFunctionBody(D, move(BodyArg), false);
5878}
5879
5880Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
5881                                    bool IsInstantiation) {
5882  FunctionDecl *FD = 0;
5883  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
5884  if (FunTmpl)
5885    FD = FunTmpl->getTemplatedDecl();
5886  else
5887    FD = dyn_cast_or_null<FunctionDecl>(dcl);
5888
5889  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
5890  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
5891
5892  if (FD) {
5893    FD->setBody(Body);
5894    if (FD->isMain()) {
5895      // C and C++ allow for main to automagically return 0.
5896      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
5897      FD->setHasImplicitReturnZero(true);
5898      WP.disableCheckFallThrough();
5899    }
5900
5901    if (!FD->isInvalidDecl()) {
5902      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
5903      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
5904                                             FD->getResultType(), FD);
5905
5906      // If this is a constructor, we need a vtable.
5907      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
5908        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
5909
5910      ComputeNRVO(Body, getCurFunction());
5911    }
5912
5913    assert(FD == getCurFunctionDecl() && "Function parsing confused");
5914  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
5915    assert(MD == getCurMethodDecl() && "Method parsing confused");
5916    MD->setBody(Body);
5917    if (Body)
5918      MD->setEndLoc(Body->getLocEnd());
5919    if (!MD->isInvalidDecl()) {
5920      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
5921      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
5922                                             MD->getResultType(), MD);
5923    }
5924  } else {
5925    return 0;
5926  }
5927
5928  // Verify and clean out per-function state.
5929  if (Body) {
5930    // C++ constructors that have function-try-blocks can't have return
5931    // statements in the handlers of that block. (C++ [except.handle]p14)
5932    // Verify this.
5933    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
5934      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
5935
5936    // Verify that that gotos and switch cases don't jump into scopes illegally.
5937    // Verify that that gotos and switch cases don't jump into scopes illegally.
5938    if (getCurFunction()->NeedsScopeChecking() &&
5939        !dcl->isInvalidDecl() &&
5940        !hasAnyErrorsInThisFunction())
5941      DiagnoseInvalidJumps(Body);
5942
5943    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
5944      if (!Destructor->getParent()->isDependentType())
5945        CheckDestructor(Destructor);
5946
5947      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
5948                                             Destructor->getParent());
5949    }
5950
5951    // If any errors have occurred, clear out any temporaries that may have
5952    // been leftover. This ensures that these temporaries won't be picked up for
5953    // deletion in some later function.
5954    if (PP.getDiagnostics().hasErrorOccurred() ||
5955        PP.getDiagnostics().getSuppressAllDiagnostics())
5956      ExprTemporaries.clear();
5957    else if (!isa<FunctionTemplateDecl>(dcl)) {
5958      // Since the body is valid, issue any analysis-based warnings that are
5959      // enabled.
5960      ActivePolicy = &WP;
5961    }
5962
5963    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
5964  }
5965
5966  if (!IsInstantiation)
5967    PopDeclContext();
5968
5969  PopFunctionOrBlockScope(ActivePolicy, dcl);
5970
5971  // If any errors have occurred, clear out any temporaries that may have
5972  // been leftover. This ensures that these temporaries won't be picked up for
5973  // deletion in some later function.
5974  if (getDiagnostics().hasErrorOccurred())
5975    ExprTemporaries.clear();
5976
5977  return dcl;
5978}
5979
5980/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
5981/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
5982NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
5983                                          IdentifierInfo &II, Scope *S) {
5984  // Before we produce a declaration for an implicitly defined
5985  // function, see whether there was a locally-scoped declaration of
5986  // this name as a function or variable. If so, use that
5987  // (non-visible) declaration, and complain about it.
5988  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5989    = LocallyScopedExternalDecls.find(&II);
5990  if (Pos != LocallyScopedExternalDecls.end()) {
5991    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
5992    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
5993    return Pos->second;
5994  }
5995
5996  // Extension in C99.  Legal in C90, but warn about it.
5997  if (II.getName().startswith("__builtin_"))
5998    Diag(Loc, diag::warn_builtin_unknown) << &II;
5999  else if (getLangOptions().C99)
6000    Diag(Loc, diag::ext_implicit_function_decl) << &II;
6001  else
6002    Diag(Loc, diag::warn_implicit_function_decl) << &II;
6003
6004  // Set a Declarator for the implicit definition: int foo();
6005  const char *Dummy;
6006  AttributeFactory attrFactory;
6007  DeclSpec DS(attrFactory);
6008  unsigned DiagID;
6009  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
6010  (void)Error; // Silence warning.
6011  assert(!Error && "Error setting up implicit decl!");
6012  Declarator D(DS, Declarator::BlockContext);
6013  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
6014                                             0, 0, true, SourceLocation(),
6015                                             EST_None, SourceLocation(),
6016                                             0, 0, 0, 0, Loc, Loc, D),
6017                DS.getAttributes(),
6018                SourceLocation());
6019  D.SetIdentifier(&II, Loc);
6020
6021  // Insert this function into translation-unit scope.
6022
6023  DeclContext *PrevDC = CurContext;
6024  CurContext = Context.getTranslationUnitDecl();
6025
6026  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
6027  FD->setImplicit();
6028
6029  CurContext = PrevDC;
6030
6031  AddKnownFunctionAttributes(FD);
6032
6033  return FD;
6034}
6035
6036/// \brief Adds any function attributes that we know a priori based on
6037/// the declaration of this function.
6038///
6039/// These attributes can apply both to implicitly-declared builtins
6040/// (like __builtin___printf_chk) or to library-declared functions
6041/// like NSLog or printf.
6042void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
6043  if (FD->isInvalidDecl())
6044    return;
6045
6046  // If this is a built-in function, map its builtin attributes to
6047  // actual attributes.
6048  if (unsigned BuiltinID = FD->getBuiltinID()) {
6049    // Handle printf-formatting attributes.
6050    unsigned FormatIdx;
6051    bool HasVAListArg;
6052    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
6053      if (!FD->getAttr<FormatAttr>())
6054        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6055                                                "printf", FormatIdx+1,
6056                                               HasVAListArg ? 0 : FormatIdx+2));
6057    }
6058    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
6059                                             HasVAListArg)) {
6060     if (!FD->getAttr<FormatAttr>())
6061       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6062                                              "scanf", FormatIdx+1,
6063                                              HasVAListArg ? 0 : FormatIdx+2));
6064    }
6065
6066    // Mark const if we don't care about errno and that is the only
6067    // thing preventing the function from being const. This allows
6068    // IRgen to use LLVM intrinsics for such functions.
6069    if (!getLangOptions().MathErrno &&
6070        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
6071      if (!FD->getAttr<ConstAttr>())
6072        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
6073    }
6074
6075    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
6076      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
6077    if (Context.BuiltinInfo.isConst(BuiltinID))
6078      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
6079  }
6080
6081  IdentifierInfo *Name = FD->getIdentifier();
6082  if (!Name)
6083    return;
6084  if ((!getLangOptions().CPlusPlus &&
6085       FD->getDeclContext()->isTranslationUnit()) ||
6086      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
6087       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
6088       LinkageSpecDecl::lang_c)) {
6089    // Okay: this could be a libc/libm/Objective-C function we know
6090    // about.
6091  } else
6092    return;
6093
6094  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
6095    // FIXME: NSLog and NSLogv should be target specific
6096    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
6097      // FIXME: We known better than our headers.
6098      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
6099    } else
6100      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6101                                             "printf", 1,
6102                                             Name->isStr("NSLogv") ? 0 : 2));
6103  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
6104    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
6105    // target-specific builtins, perhaps?
6106    if (!FD->getAttr<FormatAttr>())
6107      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6108                                             "printf", 2,
6109                                             Name->isStr("vasprintf") ? 0 : 3));
6110  }
6111}
6112
6113TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
6114                                    TypeSourceInfo *TInfo) {
6115  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
6116  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
6117
6118  if (!TInfo) {
6119    assert(D.isInvalidType() && "no declarator info for valid type");
6120    TInfo = Context.getTrivialTypeSourceInfo(T);
6121  }
6122
6123  // Scope manipulation handled by caller.
6124  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
6125                                           D.getSourceRange().getBegin(),
6126                                           D.getIdentifierLoc(),
6127                                           D.getIdentifier(),
6128                                           TInfo);
6129
6130  // Bail out immediately if we have an invalid declaration.
6131  if (D.isInvalidType()) {
6132    NewTD->setInvalidDecl();
6133    return NewTD;
6134  }
6135
6136  // C++ [dcl.typedef]p8:
6137  //   If the typedef declaration defines an unnamed class (or
6138  //   enum), the first typedef-name declared by the declaration
6139  //   to be that class type (or enum type) is used to denote the
6140  //   class type (or enum type) for linkage purposes only.
6141  // We need to check whether the type was declared in the declaration.
6142  switch (D.getDeclSpec().getTypeSpecType()) {
6143  case TST_enum:
6144  case TST_struct:
6145  case TST_union:
6146  case TST_class: {
6147    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
6148
6149    // Do nothing if the tag is not anonymous or already has an
6150    // associated typedef (from an earlier typedef in this decl group).
6151    if (tagFromDeclSpec->getIdentifier()) break;
6152    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
6153
6154    // A well-formed anonymous tag must always be a TUK_Definition.
6155    assert(tagFromDeclSpec->isThisDeclarationADefinition());
6156
6157    // The type must match the tag exactly;  no qualifiers allowed.
6158    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
6159      break;
6160
6161    // Otherwise, set this is the anon-decl typedef for the tag.
6162    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
6163    break;
6164  }
6165
6166  default:
6167    break;
6168  }
6169
6170  return NewTD;
6171}
6172
6173
6174/// \brief Determine whether a tag with a given kind is acceptable
6175/// as a redeclaration of the given tag declaration.
6176///
6177/// \returns true if the new tag kind is acceptable, false otherwise.
6178bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
6179                                        TagTypeKind NewTag,
6180                                        SourceLocation NewTagLoc,
6181                                        const IdentifierInfo &Name) {
6182  // C++ [dcl.type.elab]p3:
6183  //   The class-key or enum keyword present in the
6184  //   elaborated-type-specifier shall agree in kind with the
6185  //   declaration to which the name in the elaborated-type-specifier
6186  //   refers. This rule also applies to the form of
6187  //   elaborated-type-specifier that declares a class-name or
6188  //   friend class since it can be construed as referring to the
6189  //   definition of the class. Thus, in any
6190  //   elaborated-type-specifier, the enum keyword shall be used to
6191  //   refer to an enumeration (7.2), the union class-key shall be
6192  //   used to refer to a union (clause 9), and either the class or
6193  //   struct class-key shall be used to refer to a class (clause 9)
6194  //   declared using the class or struct class-key.
6195  TagTypeKind OldTag = Previous->getTagKind();
6196  if (OldTag == NewTag)
6197    return true;
6198
6199  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
6200      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
6201    // Warn about the struct/class tag mismatch.
6202    bool isTemplate = false;
6203    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
6204      isTemplate = Record->getDescribedClassTemplate();
6205
6206    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
6207      << (NewTag == TTK_Class)
6208      << isTemplate << &Name
6209      << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
6210                              OldTag == TTK_Class? "class" : "struct");
6211    Diag(Previous->getLocation(), diag::note_previous_use);
6212    return true;
6213  }
6214  return false;
6215}
6216
6217/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
6218/// former case, Name will be non-null.  In the later case, Name will be null.
6219/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
6220/// reference/declaration/definition of a tag.
6221Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
6222                     SourceLocation KWLoc, CXXScopeSpec &SS,
6223                     IdentifierInfo *Name, SourceLocation NameLoc,
6224                     AttributeList *Attr, AccessSpecifier AS,
6225                     MultiTemplateParamsArg TemplateParameterLists,
6226                     bool &OwnedDecl, bool &IsDependent,
6227                     bool ScopedEnum, bool ScopedEnumUsesClassTag,
6228                     TypeResult UnderlyingType) {
6229  // If this is not a definition, it must have a name.
6230  assert((Name != 0 || TUK == TUK_Definition) &&
6231         "Nameless record must be a definition!");
6232  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
6233
6234  OwnedDecl = false;
6235  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6236
6237  // FIXME: Check explicit specializations more carefully.
6238  bool isExplicitSpecialization = false;
6239  bool Invalid = false;
6240
6241  // We only need to do this matching if we have template parameters
6242  // or a scope specifier, which also conveniently avoids this work
6243  // for non-C++ cases.
6244  if (TemplateParameterLists.size() > 0 ||
6245      (SS.isNotEmpty() && TUK != TUK_Reference)) {
6246    if (TemplateParameterList *TemplateParams
6247          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
6248                                                TemplateParameterLists.get(),
6249                                                TemplateParameterLists.size(),
6250                                                    TUK == TUK_Friend,
6251                                                    isExplicitSpecialization,
6252                                                    Invalid)) {
6253      if (TemplateParams->size() > 0) {
6254        // This is a declaration or definition of a class template (which may
6255        // be a member of another template).
6256
6257        if (Invalid)
6258          return 0;
6259
6260        OwnedDecl = false;
6261        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
6262                                               SS, Name, NameLoc, Attr,
6263                                               TemplateParams, AS,
6264                                           TemplateParameterLists.size() - 1,
6265                 (TemplateParameterList**) TemplateParameterLists.release());
6266        return Result.get();
6267      } else {
6268        // The "template<>" header is extraneous.
6269        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
6270          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
6271        isExplicitSpecialization = true;
6272      }
6273    }
6274  }
6275
6276  // Figure out the underlying type if this a enum declaration. We need to do
6277  // this early, because it's needed to detect if this is an incompatible
6278  // redeclaration.
6279  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
6280
6281  if (Kind == TTK_Enum) {
6282    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
6283      // No underlying type explicitly specified, or we failed to parse the
6284      // type, default to int.
6285      EnumUnderlying = Context.IntTy.getTypePtr();
6286    else if (UnderlyingType.get()) {
6287      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
6288      // integral type; any cv-qualification is ignored.
6289      TypeSourceInfo *TI = 0;
6290      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
6291      EnumUnderlying = TI;
6292
6293      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
6294
6295      if (!T->isDependentType() && !T->isIntegralType(Context)) {
6296        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
6297          << T;
6298        // Recover by falling back to int.
6299        EnumUnderlying = Context.IntTy.getTypePtr();
6300      }
6301
6302      if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI,
6303                                          UPPC_FixedUnderlyingType))
6304        EnumUnderlying = Context.IntTy.getTypePtr();
6305
6306    } else if (getLangOptions().Microsoft)
6307      // Microsoft enums are always of int type.
6308      EnumUnderlying = Context.IntTy.getTypePtr();
6309  }
6310
6311  DeclContext *SearchDC = CurContext;
6312  DeclContext *DC = CurContext;
6313  bool isStdBadAlloc = false;
6314
6315  RedeclarationKind Redecl = ForRedeclaration;
6316  if (TUK == TUK_Friend || TUK == TUK_Reference)
6317    Redecl = NotForRedeclaration;
6318
6319  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
6320
6321  if (Name && SS.isNotEmpty()) {
6322    // We have a nested-name tag ('struct foo::bar').
6323
6324    // Check for invalid 'foo::'.
6325    if (SS.isInvalid()) {
6326      Name = 0;
6327      goto CreateNewDecl;
6328    }
6329
6330    // If this is a friend or a reference to a class in a dependent
6331    // context, don't try to make a decl for it.
6332    if (TUK == TUK_Friend || TUK == TUK_Reference) {
6333      DC = computeDeclContext(SS, false);
6334      if (!DC) {
6335        IsDependent = true;
6336        return 0;
6337      }
6338    } else {
6339      DC = computeDeclContext(SS, true);
6340      if (!DC) {
6341        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
6342          << SS.getRange();
6343        return 0;
6344      }
6345    }
6346
6347    if (RequireCompleteDeclContext(SS, DC))
6348      return 0;
6349
6350    SearchDC = DC;
6351    // Look-up name inside 'foo::'.
6352    LookupQualifiedName(Previous, DC);
6353
6354    if (Previous.isAmbiguous())
6355      return 0;
6356
6357    if (Previous.empty()) {
6358      // Name lookup did not find anything. However, if the
6359      // nested-name-specifier refers to the current instantiation,
6360      // and that current instantiation has any dependent base
6361      // classes, we might find something at instantiation time: treat
6362      // this as a dependent elaborated-type-specifier.
6363      // But this only makes any sense for reference-like lookups.
6364      if (Previous.wasNotFoundInCurrentInstantiation() &&
6365          (TUK == TUK_Reference || TUK == TUK_Friend)) {
6366        IsDependent = true;
6367        return 0;
6368      }
6369
6370      // A tag 'foo::bar' must already exist.
6371      Diag(NameLoc, diag::err_not_tag_in_scope)
6372        << Kind << Name << DC << SS.getRange();
6373      Name = 0;
6374      Invalid = true;
6375      goto CreateNewDecl;
6376    }
6377  } else if (Name) {
6378    // If this is a named struct, check to see if there was a previous forward
6379    // declaration or definition.
6380    // FIXME: We're looking into outer scopes here, even when we
6381    // shouldn't be. Doing so can result in ambiguities that we
6382    // shouldn't be diagnosing.
6383    LookupName(Previous, S);
6384
6385    // Note:  there used to be some attempt at recovery here.
6386    if (Previous.isAmbiguous())
6387      return 0;
6388
6389    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
6390      // FIXME: This makes sure that we ignore the contexts associated
6391      // with C structs, unions, and enums when looking for a matching
6392      // tag declaration or definition. See the similar lookup tweak
6393      // in Sema::LookupName; is there a better way to deal with this?
6394      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
6395        SearchDC = SearchDC->getParent();
6396    }
6397  } else if (S->isFunctionPrototypeScope()) {
6398    // If this is an enum declaration in function prototype scope, set its
6399    // initial context to the translation unit.
6400    SearchDC = Context.getTranslationUnitDecl();
6401  }
6402
6403  if (Previous.isSingleResult() &&
6404      Previous.getFoundDecl()->isTemplateParameter()) {
6405    // Maybe we will complain about the shadowed template parameter.
6406    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
6407    // Just pretend that we didn't see the previous declaration.
6408    Previous.clear();
6409  }
6410
6411  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
6412      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
6413    // This is a declaration of or a reference to "std::bad_alloc".
6414    isStdBadAlloc = true;
6415
6416    if (Previous.empty() && StdBadAlloc) {
6417      // std::bad_alloc has been implicitly declared (but made invisible to
6418      // name lookup). Fill in this implicit declaration as the previous
6419      // declaration, so that the declarations get chained appropriately.
6420      Previous.addDecl(getStdBadAlloc());
6421    }
6422  }
6423
6424  // If we didn't find a previous declaration, and this is a reference
6425  // (or friend reference), move to the correct scope.  In C++, we
6426  // also need to do a redeclaration lookup there, just in case
6427  // there's a shadow friend decl.
6428  if (Name && Previous.empty() &&
6429      (TUK == TUK_Reference || TUK == TUK_Friend)) {
6430    if (Invalid) goto CreateNewDecl;
6431    assert(SS.isEmpty());
6432
6433    if (TUK == TUK_Reference) {
6434      // C++ [basic.scope.pdecl]p5:
6435      //   -- for an elaborated-type-specifier of the form
6436      //
6437      //          class-key identifier
6438      //
6439      //      if the elaborated-type-specifier is used in the
6440      //      decl-specifier-seq or parameter-declaration-clause of a
6441      //      function defined in namespace scope, the identifier is
6442      //      declared as a class-name in the namespace that contains
6443      //      the declaration; otherwise, except as a friend
6444      //      declaration, the identifier is declared in the smallest
6445      //      non-class, non-function-prototype scope that contains the
6446      //      declaration.
6447      //
6448      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
6449      // C structs and unions.
6450      //
6451      // It is an error in C++ to declare (rather than define) an enum
6452      // type, including via an elaborated type specifier.  We'll
6453      // diagnose that later; for now, declare the enum in the same
6454      // scope as we would have picked for any other tag type.
6455      //
6456      // GNU C also supports this behavior as part of its incomplete
6457      // enum types extension, while GNU C++ does not.
6458      //
6459      // Find the context where we'll be declaring the tag.
6460      // FIXME: We would like to maintain the current DeclContext as the
6461      // lexical context,
6462      while (SearchDC->isRecord() || SearchDC->isTransparentContext())
6463        SearchDC = SearchDC->getParent();
6464
6465      // Find the scope where we'll be declaring the tag.
6466      while (S->isClassScope() ||
6467             (getLangOptions().CPlusPlus &&
6468              S->isFunctionPrototypeScope()) ||
6469             ((S->getFlags() & Scope::DeclScope) == 0) ||
6470             (S->getEntity() &&
6471              ((DeclContext *)S->getEntity())->isTransparentContext()))
6472        S = S->getParent();
6473    } else {
6474      assert(TUK == TUK_Friend);
6475      // C++ [namespace.memdef]p3:
6476      //   If a friend declaration in a non-local class first declares a
6477      //   class or function, the friend class or function is a member of
6478      //   the innermost enclosing namespace.
6479      SearchDC = SearchDC->getEnclosingNamespaceContext();
6480    }
6481
6482    // In C++, we need to do a redeclaration lookup to properly
6483    // diagnose some problems.
6484    if (getLangOptions().CPlusPlus) {
6485      Previous.setRedeclarationKind(ForRedeclaration);
6486      LookupQualifiedName(Previous, SearchDC);
6487    }
6488  }
6489
6490  if (!Previous.empty()) {
6491    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
6492
6493    // It's okay to have a tag decl in the same scope as a typedef
6494    // which hides a tag decl in the same scope.  Finding this
6495    // insanity with a redeclaration lookup can only actually happen
6496    // in C++.
6497    //
6498    // This is also okay for elaborated-type-specifiers, which is
6499    // technically forbidden by the current standard but which is
6500    // okay according to the likely resolution of an open issue;
6501    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
6502    if (getLangOptions().CPlusPlus) {
6503      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
6504        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
6505          TagDecl *Tag = TT->getDecl();
6506          if (Tag->getDeclName() == Name &&
6507              Tag->getDeclContext()->getRedeclContext()
6508                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
6509            PrevDecl = Tag;
6510            Previous.clear();
6511            Previous.addDecl(Tag);
6512            Previous.resolveKind();
6513          }
6514        }
6515      }
6516    }
6517
6518    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
6519      // If this is a use of a previous tag, or if the tag is already declared
6520      // in the same scope (so that the definition/declaration completes or
6521      // rementions the tag), reuse the decl.
6522      if (TUK == TUK_Reference || TUK == TUK_Friend ||
6523          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
6524        // Make sure that this wasn't declared as an enum and now used as a
6525        // struct or something similar.
6526        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
6527          bool SafeToContinue
6528            = (PrevTagDecl->getTagKind() != TTK_Enum &&
6529               Kind != TTK_Enum);
6530          if (SafeToContinue)
6531            Diag(KWLoc, diag::err_use_with_wrong_tag)
6532              << Name
6533              << FixItHint::CreateReplacement(SourceRange(KWLoc),
6534                                              PrevTagDecl->getKindName());
6535          else
6536            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
6537          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6538
6539          if (SafeToContinue)
6540            Kind = PrevTagDecl->getTagKind();
6541          else {
6542            // Recover by making this an anonymous redefinition.
6543            Name = 0;
6544            Previous.clear();
6545            Invalid = true;
6546          }
6547        }
6548
6549        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
6550          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
6551
6552          // All conflicts with previous declarations are recovered by
6553          // returning the previous declaration.
6554          if (ScopedEnum != PrevEnum->isScoped()) {
6555            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
6556              << PrevEnum->isScoped();
6557            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6558            return PrevTagDecl;
6559          }
6560          else if (EnumUnderlying && PrevEnum->isFixed()) {
6561            QualType T;
6562            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
6563                T = TI->getType();
6564            else
6565                T = QualType(EnumUnderlying.get<const Type*>(), 0);
6566
6567            if (!Context.hasSameUnqualifiedType(T, PrevEnum->getIntegerType())) {
6568              Diag(NameLoc.isValid() ? NameLoc : KWLoc,
6569                   diag::err_enum_redeclare_type_mismatch)
6570                << T
6571                << PrevEnum->getIntegerType();
6572              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6573              return PrevTagDecl;
6574            }
6575          }
6576          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
6577            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
6578              << PrevEnum->isFixed();
6579            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6580            return PrevTagDecl;
6581          }
6582        }
6583
6584        if (!Invalid) {
6585          // If this is a use, just return the declaration we found.
6586
6587          // FIXME: In the future, return a variant or some other clue
6588          // for the consumer of this Decl to know it doesn't own it.
6589          // For our current ASTs this shouldn't be a problem, but will
6590          // need to be changed with DeclGroups.
6591          if ((TUK == TUK_Reference && !PrevTagDecl->getFriendObjectKind()) ||
6592              TUK == TUK_Friend)
6593            return PrevTagDecl;
6594
6595          // Diagnose attempts to redefine a tag.
6596          if (TUK == TUK_Definition) {
6597            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
6598              // If we're defining a specialization and the previous definition
6599              // is from an implicit instantiation, don't emit an error
6600              // here; we'll catch this in the general case below.
6601              if (!isExplicitSpecialization ||
6602                  !isa<CXXRecordDecl>(Def) ||
6603                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
6604                                               == TSK_ExplicitSpecialization) {
6605                Diag(NameLoc, diag::err_redefinition) << Name;
6606                Diag(Def->getLocation(), diag::note_previous_definition);
6607                // If this is a redefinition, recover by making this
6608                // struct be anonymous, which will make any later
6609                // references get the previous definition.
6610                Name = 0;
6611                Previous.clear();
6612                Invalid = true;
6613              }
6614            } else {
6615              // If the type is currently being defined, complain
6616              // about a nested redefinition.
6617              const TagType *Tag
6618                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
6619              if (Tag->isBeingDefined()) {
6620                Diag(NameLoc, diag::err_nested_redefinition) << Name;
6621                Diag(PrevTagDecl->getLocation(),
6622                     diag::note_previous_definition);
6623                Name = 0;
6624                Previous.clear();
6625                Invalid = true;
6626              }
6627            }
6628
6629            // Okay, this is definition of a previously declared or referenced
6630            // tag PrevDecl. We're going to create a new Decl for it.
6631          }
6632        }
6633        // If we get here we have (another) forward declaration or we
6634        // have a definition.  Just create a new decl.
6635
6636      } else {
6637        // If we get here, this is a definition of a new tag type in a nested
6638        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
6639        // new decl/type.  We set PrevDecl to NULL so that the entities
6640        // have distinct types.
6641        Previous.clear();
6642      }
6643      // If we get here, we're going to create a new Decl. If PrevDecl
6644      // is non-NULL, it's a definition of the tag declared by
6645      // PrevDecl. If it's NULL, we have a new definition.
6646
6647
6648    // Otherwise, PrevDecl is not a tag, but was found with tag
6649    // lookup.  This is only actually possible in C++, where a few
6650    // things like templates still live in the tag namespace.
6651    } else {
6652      assert(getLangOptions().CPlusPlus);
6653
6654      // Use a better diagnostic if an elaborated-type-specifier
6655      // found the wrong kind of type on the first
6656      // (non-redeclaration) lookup.
6657      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
6658          !Previous.isForRedeclaration()) {
6659        unsigned Kind = 0;
6660        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
6661        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
6662        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
6663        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
6664        Diag(PrevDecl->getLocation(), diag::note_declared_at);
6665        Invalid = true;
6666
6667      // Otherwise, only diagnose if the declaration is in scope.
6668      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
6669                                isExplicitSpecialization)) {
6670        // do nothing
6671
6672      // Diagnose implicit declarations introduced by elaborated types.
6673      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
6674        unsigned Kind = 0;
6675        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
6676        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
6677        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
6678        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
6679        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
6680        Invalid = true;
6681
6682      // Otherwise it's a declaration.  Call out a particularly common
6683      // case here.
6684      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
6685        unsigned Kind = 0;
6686        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
6687        Diag(NameLoc, diag::err_tag_definition_of_typedef)
6688          << Name << Kind << TND->getUnderlyingType();
6689        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
6690        Invalid = true;
6691
6692      // Otherwise, diagnose.
6693      } else {
6694        // The tag name clashes with something else in the target scope,
6695        // issue an error and recover by making this tag be anonymous.
6696        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
6697        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6698        Name = 0;
6699        Invalid = true;
6700      }
6701
6702      // The existing declaration isn't relevant to us; we're in a
6703      // new scope, so clear out the previous declaration.
6704      Previous.clear();
6705    }
6706  }
6707
6708CreateNewDecl:
6709
6710  TagDecl *PrevDecl = 0;
6711  if (Previous.isSingleResult())
6712    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
6713
6714  // If there is an identifier, use the location of the identifier as the
6715  // location of the decl, otherwise use the location of the struct/union
6716  // keyword.
6717  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
6718
6719  // Otherwise, create a new declaration. If there is a previous
6720  // declaration of the same entity, the two will be linked via
6721  // PrevDecl.
6722  TagDecl *New;
6723
6724  bool IsForwardReference = false;
6725  if (Kind == TTK_Enum) {
6726    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
6727    // enum X { A, B, C } D;    D should chain to X.
6728    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
6729                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
6730                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
6731    // If this is an undefined enum, warn.
6732    if (TUK != TUK_Definition && !Invalid) {
6733      TagDecl *Def;
6734      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
6735        // C++0x: 7.2p2: opaque-enum-declaration.
6736        // Conflicts are diagnosed above. Do nothing.
6737      }
6738      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
6739        Diag(Loc, diag::ext_forward_ref_enum_def)
6740          << New;
6741        Diag(Def->getLocation(), diag::note_previous_definition);
6742      } else {
6743        unsigned DiagID = diag::ext_forward_ref_enum;
6744        if (getLangOptions().Microsoft)
6745          DiagID = diag::ext_ms_forward_ref_enum;
6746        else if (getLangOptions().CPlusPlus)
6747          DiagID = diag::err_forward_ref_enum;
6748        Diag(Loc, DiagID);
6749
6750        // If this is a forward-declared reference to an enumeration, make a
6751        // note of it; we won't actually be introducing the declaration into
6752        // the declaration context.
6753        if (TUK == TUK_Reference)
6754          IsForwardReference = true;
6755      }
6756    }
6757
6758    if (EnumUnderlying) {
6759      EnumDecl *ED = cast<EnumDecl>(New);
6760      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
6761        ED->setIntegerTypeSourceInfo(TI);
6762      else
6763        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
6764      ED->setPromotionType(ED->getIntegerType());
6765    }
6766
6767  } else {
6768    // struct/union/class
6769
6770    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
6771    // struct X { int A; } D;    D should chain to X.
6772    if (getLangOptions().CPlusPlus) {
6773      // FIXME: Look for a way to use RecordDecl for simple structs.
6774      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
6775                                  cast_or_null<CXXRecordDecl>(PrevDecl));
6776
6777      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
6778        StdBadAlloc = cast<CXXRecordDecl>(New);
6779    } else
6780      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
6781                               cast_or_null<RecordDecl>(PrevDecl));
6782  }
6783
6784  // Maybe add qualifier info.
6785  if (SS.isNotEmpty()) {
6786    if (SS.isSet()) {
6787      New->setQualifierInfo(SS.getWithLocInContext(Context));
6788      if (TemplateParameterLists.size() > 0) {
6789        New->setTemplateParameterListsInfo(Context,
6790                                           TemplateParameterLists.size(),
6791                    (TemplateParameterList**) TemplateParameterLists.release());
6792      }
6793    }
6794    else
6795      Invalid = true;
6796  }
6797
6798  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
6799    // Add alignment attributes if necessary; these attributes are checked when
6800    // the ASTContext lays out the structure.
6801    //
6802    // It is important for implementing the correct semantics that this
6803    // happen here (in act on tag decl). The #pragma pack stack is
6804    // maintained as a result of parser callbacks which can occur at
6805    // many points during the parsing of a struct declaration (because
6806    // the #pragma tokens are effectively skipped over during the
6807    // parsing of the struct).
6808    AddAlignmentAttributesForRecord(RD);
6809  }
6810
6811  // If this is a specialization of a member class (of a class template),
6812  // check the specialization.
6813  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
6814    Invalid = true;
6815
6816  if (Invalid)
6817    New->setInvalidDecl();
6818
6819  if (Attr)
6820    ProcessDeclAttributeList(S, New, Attr);
6821
6822  // If we're declaring or defining a tag in function prototype scope
6823  // in C, note that this type can only be used within the function.
6824  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
6825    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
6826
6827  // Set the lexical context. If the tag has a C++ scope specifier, the
6828  // lexical context will be different from the semantic context.
6829  New->setLexicalDeclContext(CurContext);
6830
6831  // Mark this as a friend decl if applicable.
6832  if (TUK == TUK_Friend)
6833    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
6834
6835  // Set the access specifier.
6836  if (!Invalid && SearchDC->isRecord())
6837    SetMemberAccessSpecifier(New, PrevDecl, AS);
6838
6839  if (TUK == TUK_Definition)
6840    New->startDefinition();
6841
6842  // If this has an identifier, add it to the scope stack.
6843  if (TUK == TUK_Friend) {
6844    // We might be replacing an existing declaration in the lookup tables;
6845    // if so, borrow its access specifier.
6846    if (PrevDecl)
6847      New->setAccess(PrevDecl->getAccess());
6848
6849    DeclContext *DC = New->getDeclContext()->getRedeclContext();
6850    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
6851    if (Name) // can be null along some error paths
6852      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
6853        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
6854  } else if (Name) {
6855    S = getNonFieldDeclScope(S);
6856    PushOnScopeChains(New, S, !IsForwardReference);
6857    if (IsForwardReference)
6858      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
6859
6860  } else {
6861    CurContext->addDecl(New);
6862  }
6863
6864  // If this is the C FILE type, notify the AST context.
6865  if (IdentifierInfo *II = New->getIdentifier())
6866    if (!New->isInvalidDecl() &&
6867        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
6868        II->isStr("FILE"))
6869      Context.setFILEDecl(New);
6870
6871  OwnedDecl = true;
6872  return New;
6873}
6874
6875void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
6876  AdjustDeclIfTemplate(TagD);
6877  TagDecl *Tag = cast<TagDecl>(TagD);
6878
6879  // Enter the tag context.
6880  PushDeclContext(S, Tag);
6881}
6882
6883void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
6884                                           SourceLocation FinalLoc,
6885                                           SourceLocation LBraceLoc) {
6886  AdjustDeclIfTemplate(TagD);
6887  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
6888
6889  FieldCollector->StartClass();
6890
6891  if (!Record->getIdentifier())
6892    return;
6893
6894  if (FinalLoc.isValid())
6895    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
6896
6897  // C++ [class]p2:
6898  //   [...] The class-name is also inserted into the scope of the
6899  //   class itself; this is known as the injected-class-name. For
6900  //   purposes of access checking, the injected-class-name is treated
6901  //   as if it were a public member name.
6902  CXXRecordDecl *InjectedClassName
6903    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
6904                            Record->getLocStart(), Record->getLocation(),
6905                            Record->getIdentifier(),
6906                            /*PrevDecl=*/0,
6907                            /*DelayTypeCreation=*/true);
6908  Context.getTypeDeclType(InjectedClassName, Record);
6909  InjectedClassName->setImplicit();
6910  InjectedClassName->setAccess(AS_public);
6911  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
6912      InjectedClassName->setDescribedClassTemplate(Template);
6913  PushOnScopeChains(InjectedClassName, S);
6914  assert(InjectedClassName->isInjectedClassName() &&
6915         "Broken injected-class-name");
6916}
6917
6918void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
6919                                    SourceLocation RBraceLoc) {
6920  AdjustDeclIfTemplate(TagD);
6921  TagDecl *Tag = cast<TagDecl>(TagD);
6922  Tag->setRBraceLoc(RBraceLoc);
6923
6924  if (isa<CXXRecordDecl>(Tag))
6925    FieldCollector->FinishClass();
6926
6927  // Exit this scope of this tag's definition.
6928  PopDeclContext();
6929
6930  // Notify the consumer that we've defined a tag.
6931  Consumer.HandleTagDeclDefinition(Tag);
6932}
6933
6934void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
6935  AdjustDeclIfTemplate(TagD);
6936  TagDecl *Tag = cast<TagDecl>(TagD);
6937  Tag->setInvalidDecl();
6938
6939  // We're undoing ActOnTagStartDefinition here, not
6940  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
6941  // the FieldCollector.
6942
6943  PopDeclContext();
6944}
6945
6946// Note that FieldName may be null for anonymous bitfields.
6947bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
6948                          QualType FieldTy, const Expr *BitWidth,
6949                          bool *ZeroWidth) {
6950  // Default to true; that shouldn't confuse checks for emptiness
6951  if (ZeroWidth)
6952    *ZeroWidth = true;
6953
6954  // C99 6.7.2.1p4 - verify the field type.
6955  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
6956  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
6957    // Handle incomplete types with specific error.
6958    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
6959      return true;
6960    if (FieldName)
6961      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
6962        << FieldName << FieldTy << BitWidth->getSourceRange();
6963    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
6964      << FieldTy << BitWidth->getSourceRange();
6965  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
6966                                             UPPC_BitFieldWidth))
6967    return true;
6968
6969  // If the bit-width is type- or value-dependent, don't try to check
6970  // it now.
6971  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
6972    return false;
6973
6974  llvm::APSInt Value;
6975  if (VerifyIntegerConstantExpression(BitWidth, &Value))
6976    return true;
6977
6978  if (Value != 0 && ZeroWidth)
6979    *ZeroWidth = false;
6980
6981  // Zero-width bitfield is ok for anonymous field.
6982  if (Value == 0 && FieldName)
6983    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
6984
6985  if (Value.isSigned() && Value.isNegative()) {
6986    if (FieldName)
6987      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
6988               << FieldName << Value.toString(10);
6989    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
6990      << Value.toString(10);
6991  }
6992
6993  if (!FieldTy->isDependentType()) {
6994    uint64_t TypeSize = Context.getTypeSize(FieldTy);
6995    if (Value.getZExtValue() > TypeSize) {
6996      if (!getLangOptions().CPlusPlus) {
6997        if (FieldName)
6998          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
6999            << FieldName << (unsigned)Value.getZExtValue()
7000            << (unsigned)TypeSize;
7001
7002        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
7003          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
7004      }
7005
7006      if (FieldName)
7007        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
7008          << FieldName << (unsigned)Value.getZExtValue()
7009          << (unsigned)TypeSize;
7010      else
7011        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
7012          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
7013    }
7014  }
7015
7016  return false;
7017}
7018
7019/// ActOnField - Each field of a struct/union/class is passed into this in order
7020/// to create a FieldDecl object for it.
7021Decl *Sema::ActOnField(Scope *S, Decl *TagD,
7022                                 SourceLocation DeclStart,
7023                                 Declarator &D, ExprTy *BitfieldWidth) {
7024  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
7025                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
7026                               AS_public);
7027  return Res;
7028}
7029
7030/// HandleField - Analyze a field of a C struct or a C++ data member.
7031///
7032FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
7033                             SourceLocation DeclStart,
7034                             Declarator &D, Expr *BitWidth,
7035                             AccessSpecifier AS) {
7036  IdentifierInfo *II = D.getIdentifier();
7037  SourceLocation Loc = DeclStart;
7038  if (II) Loc = D.getIdentifierLoc();
7039
7040  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7041  QualType T = TInfo->getType();
7042  if (getLangOptions().CPlusPlus) {
7043    CheckExtraCXXDefaultArguments(D);
7044
7045    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
7046                                        UPPC_DataMemberType)) {
7047      D.setInvalidType();
7048      T = Context.IntTy;
7049      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
7050    }
7051  }
7052
7053  DiagnoseFunctionSpecifiers(D);
7054
7055  if (D.getDeclSpec().isThreadSpecified())
7056    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
7057
7058  // Check to see if this name was declared as a member previously
7059  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
7060  LookupName(Previous, S);
7061  assert((Previous.empty() || Previous.isOverloadedResult() ||
7062          Previous.isSingleResult())
7063    && "Lookup of member name should be either overloaded, single or null");
7064
7065  // If the name is overloaded then get any declaration else get the single result
7066  NamedDecl *PrevDecl = Previous.isOverloadedResult() ?
7067    Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>();
7068
7069  if (PrevDecl && PrevDecl->isTemplateParameter()) {
7070    // Maybe we will complain about the shadowed template parameter.
7071    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
7072    // Just pretend that we didn't see the previous declaration.
7073    PrevDecl = 0;
7074  }
7075
7076  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
7077    PrevDecl = 0;
7078
7079  bool Mutable
7080    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
7081  SourceLocation TSSL = D.getSourceRange().getBegin();
7082  FieldDecl *NewFD
7083    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
7084                     AS, PrevDecl, &D);
7085
7086  if (NewFD->isInvalidDecl())
7087    Record->setInvalidDecl();
7088
7089  if (NewFD->isInvalidDecl() && PrevDecl) {
7090    // Don't introduce NewFD into scope; there's already something
7091    // with the same name in the same scope.
7092  } else if (II) {
7093    PushOnScopeChains(NewFD, S);
7094  } else
7095    Record->addDecl(NewFD);
7096
7097  return NewFD;
7098}
7099
7100/// \brief Build a new FieldDecl and check its well-formedness.
7101///
7102/// This routine builds a new FieldDecl given the fields name, type,
7103/// record, etc. \p PrevDecl should refer to any previous declaration
7104/// with the same name and in the same scope as the field to be
7105/// created.
7106///
7107/// \returns a new FieldDecl.
7108///
7109/// \todo The Declarator argument is a hack. It will be removed once
7110FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
7111                                TypeSourceInfo *TInfo,
7112                                RecordDecl *Record, SourceLocation Loc,
7113                                bool Mutable, Expr *BitWidth,
7114                                SourceLocation TSSL,
7115                                AccessSpecifier AS, NamedDecl *PrevDecl,
7116                                Declarator *D) {
7117  IdentifierInfo *II = Name.getAsIdentifierInfo();
7118  bool InvalidDecl = false;
7119  if (D) InvalidDecl = D->isInvalidType();
7120
7121  // If we receive a broken type, recover by assuming 'int' and
7122  // marking this declaration as invalid.
7123  if (T.isNull()) {
7124    InvalidDecl = true;
7125    T = Context.IntTy;
7126  }
7127
7128  QualType EltTy = Context.getBaseElementType(T);
7129  if (!EltTy->isDependentType() &&
7130      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
7131    // Fields of incomplete type force their record to be invalid.
7132    Record->setInvalidDecl();
7133    InvalidDecl = true;
7134  }
7135
7136  // C99 6.7.2.1p8: A member of a structure or union may have any type other
7137  // than a variably modified type.
7138  if (!InvalidDecl && T->isVariablyModifiedType()) {
7139    bool SizeIsNegative;
7140    llvm::APSInt Oversized;
7141    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
7142                                                           SizeIsNegative,
7143                                                           Oversized);
7144    if (!FixedTy.isNull()) {
7145      Diag(Loc, diag::warn_illegal_constant_array_size);
7146      T = FixedTy;
7147    } else {
7148      if (SizeIsNegative)
7149        Diag(Loc, diag::err_typecheck_negative_array_size);
7150      else if (Oversized.getBoolValue())
7151        Diag(Loc, diag::err_array_too_large)
7152          << Oversized.toString(10);
7153      else
7154        Diag(Loc, diag::err_typecheck_field_variable_size);
7155      InvalidDecl = true;
7156    }
7157  }
7158
7159  // Fields can not have abstract class types
7160  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
7161                                             diag::err_abstract_type_in_decl,
7162                                             AbstractFieldType))
7163    InvalidDecl = true;
7164
7165  bool ZeroWidth = false;
7166  // If this is declared as a bit-field, check the bit-field.
7167  if (!InvalidDecl && BitWidth &&
7168      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
7169    InvalidDecl = true;
7170    BitWidth = 0;
7171    ZeroWidth = false;
7172  }
7173
7174  // Check that 'mutable' is consistent with the type of the declaration.
7175  if (!InvalidDecl && Mutable) {
7176    unsigned DiagID = 0;
7177    if (T->isReferenceType())
7178      DiagID = diag::err_mutable_reference;
7179    else if (T.isConstQualified())
7180      DiagID = diag::err_mutable_const;
7181
7182    if (DiagID) {
7183      SourceLocation ErrLoc = Loc;
7184      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
7185        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
7186      Diag(ErrLoc, DiagID);
7187      Mutable = false;
7188      InvalidDecl = true;
7189    }
7190  }
7191
7192  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
7193                                       BitWidth, Mutable);
7194  if (InvalidDecl)
7195    NewFD->setInvalidDecl();
7196
7197  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
7198    Diag(Loc, diag::err_duplicate_member) << II;
7199    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7200    NewFD->setInvalidDecl();
7201  }
7202
7203  if (!InvalidDecl && getLangOptions().CPlusPlus) {
7204    if (Record->isUnion()) {
7205      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
7206        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
7207        if (RDecl->getDefinition()) {
7208          // C++ [class.union]p1: An object of a class with a non-trivial
7209          // constructor, a non-trivial copy constructor, a non-trivial
7210          // destructor, or a non-trivial copy assignment operator
7211          // cannot be a member of a union, nor can an array of such
7212          // objects.
7213          // TODO: C++0x alters this restriction significantly.
7214          if (CheckNontrivialField(NewFD))
7215            NewFD->setInvalidDecl();
7216        }
7217      }
7218
7219      // C++ [class.union]p1: If a union contains a member of reference type,
7220      // the program is ill-formed.
7221      if (EltTy->isReferenceType()) {
7222        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
7223          << NewFD->getDeclName() << EltTy;
7224        NewFD->setInvalidDecl();
7225      }
7226    }
7227  }
7228
7229  // FIXME: We need to pass in the attributes given an AST
7230  // representation, not a parser representation.
7231  if (D)
7232    // FIXME: What to pass instead of TUScope?
7233    ProcessDeclAttributes(TUScope, NewFD, *D);
7234
7235  if (T.isObjCGCWeak())
7236    Diag(Loc, diag::warn_attribute_weak_on_field);
7237
7238  NewFD->setAccess(AS);
7239  return NewFD;
7240}
7241
7242bool Sema::CheckNontrivialField(FieldDecl *FD) {
7243  assert(FD);
7244  assert(getLangOptions().CPlusPlus && "valid check only for C++");
7245
7246  if (FD->isInvalidDecl())
7247    return true;
7248
7249  QualType EltTy = Context.getBaseElementType(FD->getType());
7250  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
7251    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
7252    if (RDecl->getDefinition()) {
7253      // We check for copy constructors before constructors
7254      // because otherwise we'll never get complaints about
7255      // copy constructors.
7256
7257      CXXSpecialMember member = CXXInvalid;
7258      if (!RDecl->hasTrivialCopyConstructor())
7259        member = CXXCopyConstructor;
7260      else if (!RDecl->hasTrivialConstructor())
7261        member = CXXConstructor;
7262      else if (!RDecl->hasTrivialCopyAssignment())
7263        member = CXXCopyAssignment;
7264      else if (!RDecl->hasTrivialDestructor())
7265        member = CXXDestructor;
7266
7267      if (member != CXXInvalid) {
7268        Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
7269              << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
7270        DiagnoseNontrivial(RT, member);
7271        return true;
7272      }
7273    }
7274  }
7275
7276  return false;
7277}
7278
7279/// DiagnoseNontrivial - Given that a class has a non-trivial
7280/// special member, figure out why.
7281void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
7282  QualType QT(T, 0U);
7283  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
7284
7285  // Check whether the member was user-declared.
7286  switch (member) {
7287  case CXXInvalid:
7288    break;
7289
7290  case CXXConstructor:
7291    if (RD->hasUserDeclaredConstructor()) {
7292      typedef CXXRecordDecl::ctor_iterator ctor_iter;
7293      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
7294        const FunctionDecl *body = 0;
7295        ci->hasBody(body);
7296        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
7297          SourceLocation CtorLoc = ci->getLocation();
7298          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7299          return;
7300        }
7301      }
7302
7303      assert(0 && "found no user-declared constructors");
7304      return;
7305    }
7306    break;
7307
7308  case CXXCopyConstructor:
7309    if (RD->hasUserDeclaredCopyConstructor()) {
7310      SourceLocation CtorLoc =
7311        RD->getCopyConstructor(Context, 0)->getLocation();
7312      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7313      return;
7314    }
7315    break;
7316
7317  case CXXCopyAssignment:
7318    if (RD->hasUserDeclaredCopyAssignment()) {
7319      // FIXME: this should use the location of the copy
7320      // assignment, not the type.
7321      SourceLocation TyLoc = RD->getSourceRange().getBegin();
7322      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
7323      return;
7324    }
7325    break;
7326
7327  case CXXDestructor:
7328    if (RD->hasUserDeclaredDestructor()) {
7329      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
7330      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7331      return;
7332    }
7333    break;
7334  }
7335
7336  typedef CXXRecordDecl::base_class_iterator base_iter;
7337
7338  // Virtual bases and members inhibit trivial copying/construction,
7339  // but not trivial destruction.
7340  if (member != CXXDestructor) {
7341    // Check for virtual bases.  vbases includes indirect virtual bases,
7342    // so we just iterate through the direct bases.
7343    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
7344      if (bi->isVirtual()) {
7345        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
7346        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
7347        return;
7348      }
7349
7350    // Check for virtual methods.
7351    typedef CXXRecordDecl::method_iterator meth_iter;
7352    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
7353         ++mi) {
7354      if (mi->isVirtual()) {
7355        SourceLocation MLoc = mi->getSourceRange().getBegin();
7356        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
7357        return;
7358      }
7359    }
7360  }
7361
7362  bool (CXXRecordDecl::*hasTrivial)() const;
7363  switch (member) {
7364  case CXXConstructor:
7365    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
7366  case CXXCopyConstructor:
7367    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
7368  case CXXCopyAssignment:
7369    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
7370  case CXXDestructor:
7371    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
7372  default:
7373    assert(0 && "unexpected special member"); return;
7374  }
7375
7376  // Check for nontrivial bases (and recurse).
7377  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
7378    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
7379    assert(BaseRT && "Don't know how to handle dependent bases");
7380    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
7381    if (!(BaseRecTy->*hasTrivial)()) {
7382      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
7383      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
7384      DiagnoseNontrivial(BaseRT, member);
7385      return;
7386    }
7387  }
7388
7389  // Check for nontrivial members (and recurse).
7390  typedef RecordDecl::field_iterator field_iter;
7391  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
7392       ++fi) {
7393    QualType EltTy = Context.getBaseElementType((*fi)->getType());
7394    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
7395      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
7396
7397      if (!(EltRD->*hasTrivial)()) {
7398        SourceLocation FLoc = (*fi)->getLocation();
7399        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
7400        DiagnoseNontrivial(EltRT, member);
7401        return;
7402      }
7403    }
7404  }
7405
7406  assert(0 && "found no explanation for non-trivial member");
7407}
7408
7409/// TranslateIvarVisibility - Translate visibility from a token ID to an
7410///  AST enum value.
7411static ObjCIvarDecl::AccessControl
7412TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
7413  switch (ivarVisibility) {
7414  default: assert(0 && "Unknown visitibility kind");
7415  case tok::objc_private: return ObjCIvarDecl::Private;
7416  case tok::objc_public: return ObjCIvarDecl::Public;
7417  case tok::objc_protected: return ObjCIvarDecl::Protected;
7418  case tok::objc_package: return ObjCIvarDecl::Package;
7419  }
7420}
7421
7422/// ActOnIvar - Each ivar field of an objective-c class is passed into this
7423/// in order to create an IvarDecl object for it.
7424Decl *Sema::ActOnIvar(Scope *S,
7425                                SourceLocation DeclStart,
7426                                Decl *IntfDecl,
7427                                Declarator &D, ExprTy *BitfieldWidth,
7428                                tok::ObjCKeywordKind Visibility) {
7429
7430  IdentifierInfo *II = D.getIdentifier();
7431  Expr *BitWidth = (Expr*)BitfieldWidth;
7432  SourceLocation Loc = DeclStart;
7433  if (II) Loc = D.getIdentifierLoc();
7434
7435  // FIXME: Unnamed fields can be handled in various different ways, for
7436  // example, unnamed unions inject all members into the struct namespace!
7437
7438  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7439  QualType T = TInfo->getType();
7440
7441  if (BitWidth) {
7442    // 6.7.2.1p3, 6.7.2.1p4
7443    if (VerifyBitField(Loc, II, T, BitWidth)) {
7444      D.setInvalidType();
7445      BitWidth = 0;
7446    }
7447  } else {
7448    // Not a bitfield.
7449
7450    // validate II.
7451
7452  }
7453  if (T->isReferenceType()) {
7454    Diag(Loc, diag::err_ivar_reference_type);
7455    D.setInvalidType();
7456  }
7457  // C99 6.7.2.1p8: A member of a structure or union may have any type other
7458  // than a variably modified type.
7459  else if (T->isVariablyModifiedType()) {
7460    Diag(Loc, diag::err_typecheck_ivar_variable_size);
7461    D.setInvalidType();
7462  }
7463
7464  // Get the visibility (access control) for this ivar.
7465  ObjCIvarDecl::AccessControl ac =
7466    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
7467                                        : ObjCIvarDecl::None;
7468  // Must set ivar's DeclContext to its enclosing interface.
7469  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(IntfDecl);
7470  ObjCContainerDecl *EnclosingContext;
7471  if (ObjCImplementationDecl *IMPDecl =
7472      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
7473    if (!LangOpts.ObjCNonFragileABI2) {
7474    // Case of ivar declared in an implementation. Context is that of its class.
7475      EnclosingContext = IMPDecl->getClassInterface();
7476      assert(EnclosingContext && "Implementation has no class interface!");
7477    }
7478    else
7479      EnclosingContext = EnclosingDecl;
7480  } else {
7481    if (ObjCCategoryDecl *CDecl =
7482        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7483      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
7484        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
7485        return 0;
7486      }
7487    }
7488    EnclosingContext = EnclosingDecl;
7489  }
7490
7491  // Construct the decl.
7492  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
7493                                             DeclStart, Loc, II, T,
7494                                             TInfo, ac, (Expr *)BitfieldWidth);
7495
7496  if (II) {
7497    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
7498                                           ForRedeclaration);
7499    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
7500        && !isa<TagDecl>(PrevDecl)) {
7501      Diag(Loc, diag::err_duplicate_member) << II;
7502      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7503      NewID->setInvalidDecl();
7504    }
7505  }
7506
7507  // Process attributes attached to the ivar.
7508  ProcessDeclAttributes(S, NewID, D);
7509
7510  if (D.isInvalidType())
7511    NewID->setInvalidDecl();
7512
7513  if (II) {
7514    // FIXME: When interfaces are DeclContexts, we'll need to add
7515    // these to the interface.
7516    S->AddDecl(NewID);
7517    IdResolver.AddDecl(NewID);
7518  }
7519
7520  return NewID;
7521}
7522
7523/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
7524/// class and class extensions. For every class @interface and class
7525/// extension @interface, if the last ivar is a bitfield of any type,
7526/// then add an implicit `char :0` ivar to the end of that interface.
7527void Sema::ActOnLastBitfield(SourceLocation DeclLoc, Decl *EnclosingDecl,
7528                             llvm::SmallVectorImpl<Decl *> &AllIvarDecls) {
7529  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
7530    return;
7531
7532  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
7533  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
7534
7535  if (!Ivar->isBitField())
7536    return;
7537  uint64_t BitFieldSize =
7538    Ivar->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
7539  if (BitFieldSize == 0)
7540    return;
7541  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl);
7542  if (!ID) {
7543    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7544      if (!CD->IsClassExtension())
7545        return;
7546    }
7547    // No need to add this to end of @implementation.
7548    else
7549      return;
7550  }
7551  // All conditions are met. Add a new bitfield to the tail end of ivars.
7552  llvm::APInt Zero(Context.getTypeSize(Context.CharTy), 0);
7553  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.CharTy, DeclLoc);
7554
7555  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(EnclosingDecl),
7556                              DeclLoc, DeclLoc, 0,
7557                              Context.CharTy,
7558                              Context.CreateTypeSourceInfo(Context.CharTy),
7559                              ObjCIvarDecl::Private, BW,
7560                              true);
7561  AllIvarDecls.push_back(Ivar);
7562}
7563
7564void Sema::ActOnFields(Scope* S,
7565                       SourceLocation RecLoc, Decl *EnclosingDecl,
7566                       Decl **Fields, unsigned NumFields,
7567                       SourceLocation LBrac, SourceLocation RBrac,
7568                       AttributeList *Attr) {
7569  assert(EnclosingDecl && "missing record or interface decl");
7570
7571  // If the decl this is being inserted into is invalid, then it may be a
7572  // redeclaration or some other bogus case.  Don't try to add fields to it.
7573  if (EnclosingDecl->isInvalidDecl()) {
7574    // FIXME: Deallocate fields?
7575    return;
7576  }
7577
7578
7579  // Verify that all the fields are okay.
7580  unsigned NumNamedMembers = 0;
7581  llvm::SmallVector<FieldDecl*, 32> RecFields;
7582
7583  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
7584  for (unsigned i = 0; i != NumFields; ++i) {
7585    FieldDecl *FD = cast<FieldDecl>(Fields[i]);
7586
7587    // Get the type for the field.
7588    const Type *FDTy = FD->getType().getTypePtr();
7589
7590    if (!FD->isAnonymousStructOrUnion()) {
7591      // Remember all fields written by the user.
7592      RecFields.push_back(FD);
7593    }
7594
7595    // If the field is already invalid for some reason, don't emit more
7596    // diagnostics about it.
7597    if (FD->isInvalidDecl()) {
7598      EnclosingDecl->setInvalidDecl();
7599      continue;
7600    }
7601
7602    // C99 6.7.2.1p2:
7603    //   A structure or union shall not contain a member with
7604    //   incomplete or function type (hence, a structure shall not
7605    //   contain an instance of itself, but may contain a pointer to
7606    //   an instance of itself), except that the last member of a
7607    //   structure with more than one named member may have incomplete
7608    //   array type; such a structure (and any union containing,
7609    //   possibly recursively, a member that is such a structure)
7610    //   shall not be a member of a structure or an element of an
7611    //   array.
7612    if (FDTy->isFunctionType()) {
7613      // Field declared as a function.
7614      Diag(FD->getLocation(), diag::err_field_declared_as_function)
7615        << FD->getDeclName();
7616      FD->setInvalidDecl();
7617      EnclosingDecl->setInvalidDecl();
7618      continue;
7619    } else if (FDTy->isIncompleteArrayType() && Record &&
7620               ((i == NumFields - 1 && !Record->isUnion()) ||
7621                ((getLangOptions().Microsoft || getLangOptions().CPlusPlus) &&
7622                 (i == NumFields - 1 || Record->isUnion())))) {
7623      // Flexible array member.
7624      // Microsoft and g++ is more permissive regarding flexible array.
7625      // It will accept flexible array in union and also
7626      // as the sole element of a struct/class.
7627      if (getLangOptions().Microsoft) {
7628        if (Record->isUnion())
7629          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
7630            << FD->getDeclName();
7631        else if (NumFields == 1)
7632          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
7633            << FD->getDeclName() << Record->getTagKind();
7634      } else if (getLangOptions().CPlusPlus) {
7635        if (Record->isUnion())
7636          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
7637            << FD->getDeclName();
7638        else if (NumFields == 1)
7639          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
7640            << FD->getDeclName() << Record->getTagKind();
7641      } else if (NumNamedMembers < 1) {
7642        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
7643          << FD->getDeclName();
7644        FD->setInvalidDecl();
7645        EnclosingDecl->setInvalidDecl();
7646        continue;
7647      }
7648      if (!FD->getType()->isDependentType() &&
7649          !Context.getBaseElementType(FD->getType())->isPODType()) {
7650        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
7651          << FD->getDeclName() << FD->getType();
7652        FD->setInvalidDecl();
7653        EnclosingDecl->setInvalidDecl();
7654        continue;
7655      }
7656      // Okay, we have a legal flexible array member at the end of the struct.
7657      if (Record)
7658        Record->setHasFlexibleArrayMember(true);
7659    } else if (!FDTy->isDependentType() &&
7660               RequireCompleteType(FD->getLocation(), FD->getType(),
7661                                   diag::err_field_incomplete)) {
7662      // Incomplete type
7663      FD->setInvalidDecl();
7664      EnclosingDecl->setInvalidDecl();
7665      continue;
7666    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
7667      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
7668        // If this is a member of a union, then entire union becomes "flexible".
7669        if (Record && Record->isUnion()) {
7670          Record->setHasFlexibleArrayMember(true);
7671        } else {
7672          // If this is a struct/class and this is not the last element, reject
7673          // it.  Note that GCC supports variable sized arrays in the middle of
7674          // structures.
7675          if (i != NumFields-1)
7676            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
7677              << FD->getDeclName() << FD->getType();
7678          else {
7679            // We support flexible arrays at the end of structs in
7680            // other structs as an extension.
7681            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
7682              << FD->getDeclName();
7683            if (Record)
7684              Record->setHasFlexibleArrayMember(true);
7685          }
7686        }
7687      }
7688      if (Record && FDTTy->getDecl()->hasObjectMember())
7689        Record->setHasObjectMember(true);
7690    } else if (FDTy->isObjCObjectType()) {
7691      /// A field cannot be an Objective-c object
7692      Diag(FD->getLocation(), diag::err_statically_allocated_object);
7693      FD->setInvalidDecl();
7694      EnclosingDecl->setInvalidDecl();
7695      continue;
7696    } else if (getLangOptions().ObjC1 &&
7697               getLangOptions().getGCMode() != LangOptions::NonGC &&
7698               Record &&
7699               (FD->getType()->isObjCObjectPointerType() ||
7700                FD->getType().isObjCGCStrong()))
7701      Record->setHasObjectMember(true);
7702    else if (Context.getAsArrayType(FD->getType())) {
7703      QualType BaseType = Context.getBaseElementType(FD->getType());
7704      if (Record && BaseType->isRecordType() &&
7705          BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
7706        Record->setHasObjectMember(true);
7707    }
7708    // Keep track of the number of named members.
7709    if (FD->getIdentifier())
7710      ++NumNamedMembers;
7711  }
7712
7713  // Okay, we successfully defined 'Record'.
7714  if (Record) {
7715    bool Completed = false;
7716    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
7717      if (!CXXRecord->isInvalidDecl()) {
7718        // Set access bits correctly on the directly-declared conversions.
7719        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
7720        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
7721             I != E; ++I)
7722          Convs->setAccess(I, (*I)->getAccess());
7723
7724        if (!CXXRecord->isDependentType()) {
7725          // Add any implicitly-declared members to this class.
7726          AddImplicitlyDeclaredMembersToClass(CXXRecord);
7727
7728          // If we have virtual base classes, we may end up finding multiple
7729          // final overriders for a given virtual function. Check for this
7730          // problem now.
7731          if (CXXRecord->getNumVBases()) {
7732            CXXFinalOverriderMap FinalOverriders;
7733            CXXRecord->getFinalOverriders(FinalOverriders);
7734
7735            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
7736                                             MEnd = FinalOverriders.end();
7737                 M != MEnd; ++M) {
7738              for (OverridingMethods::iterator SO = M->second.begin(),
7739                                            SOEnd = M->second.end();
7740                   SO != SOEnd; ++SO) {
7741                assert(SO->second.size() > 0 &&
7742                       "Virtual function without overridding functions?");
7743                if (SO->second.size() == 1)
7744                  continue;
7745
7746                // C++ [class.virtual]p2:
7747                //   In a derived class, if a virtual member function of a base
7748                //   class subobject has more than one final overrider the
7749                //   program is ill-formed.
7750                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
7751                  << (NamedDecl *)M->first << Record;
7752                Diag(M->first->getLocation(),
7753                     diag::note_overridden_virtual_function);
7754                for (OverridingMethods::overriding_iterator
7755                          OM = SO->second.begin(),
7756                       OMEnd = SO->second.end();
7757                     OM != OMEnd; ++OM)
7758                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
7759                    << (NamedDecl *)M->first << OM->Method->getParent();
7760
7761                Record->setInvalidDecl();
7762              }
7763            }
7764            CXXRecord->completeDefinition(&FinalOverriders);
7765            Completed = true;
7766          }
7767        }
7768      }
7769    }
7770
7771    if (!Completed)
7772      Record->completeDefinition();
7773  } else {
7774    ObjCIvarDecl **ClsFields =
7775      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
7776    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
7777      ID->setLocEnd(RBrac);
7778      // Add ivar's to class's DeclContext.
7779      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
7780        ClsFields[i]->setLexicalDeclContext(ID);
7781        ID->addDecl(ClsFields[i]);
7782      }
7783      // Must enforce the rule that ivars in the base classes may not be
7784      // duplicates.
7785      if (ID->getSuperClass())
7786        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
7787    } else if (ObjCImplementationDecl *IMPDecl =
7788                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
7789      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
7790      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
7791        // Ivar declared in @implementation never belongs to the implementation.
7792        // Only it is in implementation's lexical context.
7793        ClsFields[I]->setLexicalDeclContext(IMPDecl);
7794      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
7795    } else if (ObjCCategoryDecl *CDecl =
7796                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7797      // case of ivars in class extension; all other cases have been
7798      // reported as errors elsewhere.
7799      // FIXME. Class extension does not have a LocEnd field.
7800      // CDecl->setLocEnd(RBrac);
7801      // Add ivar's to class extension's DeclContext.
7802      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
7803        ClsFields[i]->setLexicalDeclContext(CDecl);
7804        CDecl->addDecl(ClsFields[i]);
7805      }
7806    }
7807  }
7808
7809  if (Attr)
7810    ProcessDeclAttributeList(S, Record, Attr);
7811
7812  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
7813  // set the visibility of this record.
7814  if (Record && !Record->getDeclContext()->isRecord())
7815    AddPushedVisibilityAttribute(Record);
7816}
7817
7818/// \brief Determine whether the given integral value is representable within
7819/// the given type T.
7820static bool isRepresentableIntegerValue(ASTContext &Context,
7821                                        llvm::APSInt &Value,
7822                                        QualType T) {
7823  assert(T->isIntegralType(Context) && "Integral type required!");
7824  unsigned BitWidth = Context.getIntWidth(T);
7825
7826  if (Value.isUnsigned() || Value.isNonNegative()) {
7827    if (T->isSignedIntegerType())
7828      --BitWidth;
7829    return Value.getActiveBits() <= BitWidth;
7830  }
7831  return Value.getMinSignedBits() <= BitWidth;
7832}
7833
7834// \brief Given an integral type, return the next larger integral type
7835// (or a NULL type of no such type exists).
7836static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
7837  // FIXME: Int128/UInt128 support, which also needs to be introduced into
7838  // enum checking below.
7839  assert(T->isIntegralType(Context) && "Integral type required!");
7840  const unsigned NumTypes = 4;
7841  QualType SignedIntegralTypes[NumTypes] = {
7842    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
7843  };
7844  QualType UnsignedIntegralTypes[NumTypes] = {
7845    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
7846    Context.UnsignedLongLongTy
7847  };
7848
7849  unsigned BitWidth = Context.getTypeSize(T);
7850  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
7851                                            : UnsignedIntegralTypes;
7852  for (unsigned I = 0; I != NumTypes; ++I)
7853    if (Context.getTypeSize(Types[I]) > BitWidth)
7854      return Types[I];
7855
7856  return QualType();
7857}
7858
7859EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
7860                                          EnumConstantDecl *LastEnumConst,
7861                                          SourceLocation IdLoc,
7862                                          IdentifierInfo *Id,
7863                                          Expr *Val) {
7864  unsigned IntWidth = Context.Target.getIntWidth();
7865  llvm::APSInt EnumVal(IntWidth);
7866  QualType EltTy;
7867
7868  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
7869    Val = 0;
7870
7871  if (Val) {
7872    if (Enum->isDependentType() || Val->isTypeDependent())
7873      EltTy = Context.DependentTy;
7874    else {
7875      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
7876      SourceLocation ExpLoc;
7877      if (!Val->isValueDependent() &&
7878          VerifyIntegerConstantExpression(Val, &EnumVal)) {
7879        Val = 0;
7880      } else {
7881        if (!getLangOptions().CPlusPlus) {
7882          // C99 6.7.2.2p2:
7883          //   The expression that defines the value of an enumeration constant
7884          //   shall be an integer constant expression that has a value
7885          //   representable as an int.
7886
7887          // Complain if the value is not representable in an int.
7888          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
7889            Diag(IdLoc, diag::ext_enum_value_not_int)
7890              << EnumVal.toString(10) << Val->getSourceRange()
7891              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
7892          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
7893            // Force the type of the expression to 'int'.
7894            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
7895          }
7896        }
7897
7898        if (Enum->isFixed()) {
7899          EltTy = Enum->getIntegerType();
7900
7901          // C++0x [dcl.enum]p5:
7902          //   ... if the initializing value of an enumerator cannot be
7903          //   represented by the underlying type, the program is ill-formed.
7904          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
7905            if (getLangOptions().Microsoft) {
7906              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
7907              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
7908            } else
7909              Diag(IdLoc, diag::err_enumerator_too_large)
7910                << EltTy;
7911          } else
7912            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
7913        }
7914        else {
7915          // C++0x [dcl.enum]p5:
7916          //   If the underlying type is not fixed, the type of each enumerator
7917          //   is the type of its initializing value:
7918          //     - If an initializer is specified for an enumerator, the
7919          //       initializing value has the same type as the expression.
7920          EltTy = Val->getType();
7921        }
7922      }
7923    }
7924  }
7925
7926  if (!Val) {
7927    if (Enum->isDependentType())
7928      EltTy = Context.DependentTy;
7929    else if (!LastEnumConst) {
7930      // C++0x [dcl.enum]p5:
7931      //   If the underlying type is not fixed, the type of each enumerator
7932      //   is the type of its initializing value:
7933      //     - If no initializer is specified for the first enumerator, the
7934      //       initializing value has an unspecified integral type.
7935      //
7936      // GCC uses 'int' for its unspecified integral type, as does
7937      // C99 6.7.2.2p3.
7938      if (Enum->isFixed()) {
7939        EltTy = Enum->getIntegerType();
7940      }
7941      else {
7942        EltTy = Context.IntTy;
7943      }
7944    } else {
7945      // Assign the last value + 1.
7946      EnumVal = LastEnumConst->getInitVal();
7947      ++EnumVal;
7948      EltTy = LastEnumConst->getType();
7949
7950      // Check for overflow on increment.
7951      if (EnumVal < LastEnumConst->getInitVal()) {
7952        // C++0x [dcl.enum]p5:
7953        //   If the underlying type is not fixed, the type of each enumerator
7954        //   is the type of its initializing value:
7955        //
7956        //     - Otherwise the type of the initializing value is the same as
7957        //       the type of the initializing value of the preceding enumerator
7958        //       unless the incremented value is not representable in that type,
7959        //       in which case the type is an unspecified integral type
7960        //       sufficient to contain the incremented value. If no such type
7961        //       exists, the program is ill-formed.
7962        QualType T = getNextLargerIntegralType(Context, EltTy);
7963        if (T.isNull() || Enum->isFixed()) {
7964          // There is no integral type larger enough to represent this
7965          // value. Complain, then allow the value to wrap around.
7966          EnumVal = LastEnumConst->getInitVal();
7967          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
7968          ++EnumVal;
7969          if (Enum->isFixed())
7970            // When the underlying type is fixed, this is ill-formed.
7971            Diag(IdLoc, diag::err_enumerator_wrapped)
7972              << EnumVal.toString(10)
7973              << EltTy;
7974          else
7975            Diag(IdLoc, diag::warn_enumerator_too_large)
7976              << EnumVal.toString(10);
7977        } else {
7978          EltTy = T;
7979        }
7980
7981        // Retrieve the last enumerator's value, extent that type to the
7982        // type that is supposed to be large enough to represent the incremented
7983        // value, then increment.
7984        EnumVal = LastEnumConst->getInitVal();
7985        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
7986        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
7987        ++EnumVal;
7988
7989        // If we're not in C++, diagnose the overflow of enumerator values,
7990        // which in C99 means that the enumerator value is not representable in
7991        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
7992        // permits enumerator values that are representable in some larger
7993        // integral type.
7994        if (!getLangOptions().CPlusPlus && !T.isNull())
7995          Diag(IdLoc, diag::warn_enum_value_overflow);
7996      } else if (!getLangOptions().CPlusPlus &&
7997                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
7998        // Enforce C99 6.7.2.2p2 even when we compute the next value.
7999        Diag(IdLoc, diag::ext_enum_value_not_int)
8000          << EnumVal.toString(10) << 1;
8001      }
8002    }
8003  }
8004
8005  if (!EltTy->isDependentType()) {
8006    // Make the enumerator value match the signedness and size of the
8007    // enumerator's type.
8008    EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
8009    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
8010  }
8011
8012  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
8013                                  Val, EnumVal);
8014}
8015
8016
8017Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
8018                              SourceLocation IdLoc, IdentifierInfo *Id,
8019                              AttributeList *Attr,
8020                              SourceLocation EqualLoc, ExprTy *val) {
8021  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
8022  EnumConstantDecl *LastEnumConst =
8023    cast_or_null<EnumConstantDecl>(lastEnumConst);
8024  Expr *Val = static_cast<Expr*>(val);
8025
8026  // The scope passed in may not be a decl scope.  Zip up the scope tree until
8027  // we find one that is.
8028  S = getNonFieldDeclScope(S);
8029
8030  // Verify that there isn't already something declared with this name in this
8031  // scope.
8032  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
8033                                         ForRedeclaration);
8034  if (PrevDecl && PrevDecl->isTemplateParameter()) {
8035    // Maybe we will complain about the shadowed template parameter.
8036    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
8037    // Just pretend that we didn't see the previous declaration.
8038    PrevDecl = 0;
8039  }
8040
8041  if (PrevDecl) {
8042    // When in C++, we may get a TagDecl with the same name; in this case the
8043    // enum constant will 'hide' the tag.
8044    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
8045           "Received TagDecl when not in C++!");
8046    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
8047      if (isa<EnumConstantDecl>(PrevDecl))
8048        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
8049      else
8050        Diag(IdLoc, diag::err_redefinition) << Id;
8051      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
8052      return 0;
8053    }
8054  }
8055
8056  // C++ [class.mem]p13:
8057  //   If T is the name of a class, then each of the following shall have a
8058  //   name different from T:
8059  //     - every enumerator of every member of class T that is an enumerated
8060  //       type
8061  if (CXXRecordDecl *Record
8062                      = dyn_cast<CXXRecordDecl>(
8063                             TheEnumDecl->getDeclContext()->getRedeclContext()))
8064    if (Record->getIdentifier() && Record->getIdentifier() == Id)
8065      Diag(IdLoc, diag::err_member_name_of_class) << Id;
8066
8067  EnumConstantDecl *New =
8068    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
8069
8070  if (New) {
8071    // Process attributes.
8072    if (Attr) ProcessDeclAttributeList(S, New, Attr);
8073
8074    // Register this decl in the current scope stack.
8075    New->setAccess(TheEnumDecl->getAccess());
8076    PushOnScopeChains(New, S);
8077  }
8078
8079  return New;
8080}
8081
8082void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
8083                         SourceLocation RBraceLoc, Decl *EnumDeclX,
8084                         Decl **Elements, unsigned NumElements,
8085                         Scope *S, AttributeList *Attr) {
8086  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
8087  QualType EnumType = Context.getTypeDeclType(Enum);
8088
8089  if (Attr)
8090    ProcessDeclAttributeList(S, Enum, Attr);
8091
8092  if (Enum->isDependentType()) {
8093    for (unsigned i = 0; i != NumElements; ++i) {
8094      EnumConstantDecl *ECD =
8095        cast_or_null<EnumConstantDecl>(Elements[i]);
8096      if (!ECD) continue;
8097
8098      ECD->setType(EnumType);
8099    }
8100
8101    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
8102    return;
8103  }
8104
8105  // TODO: If the result value doesn't fit in an int, it must be a long or long
8106  // long value.  ISO C does not support this, but GCC does as an extension,
8107  // emit a warning.
8108  unsigned IntWidth = Context.Target.getIntWidth();
8109  unsigned CharWidth = Context.Target.getCharWidth();
8110  unsigned ShortWidth = Context.Target.getShortWidth();
8111
8112  // Verify that all the values are okay, compute the size of the values, and
8113  // reverse the list.
8114  unsigned NumNegativeBits = 0;
8115  unsigned NumPositiveBits = 0;
8116
8117  // Keep track of whether all elements have type int.
8118  bool AllElementsInt = true;
8119
8120  for (unsigned i = 0; i != NumElements; ++i) {
8121    EnumConstantDecl *ECD =
8122      cast_or_null<EnumConstantDecl>(Elements[i]);
8123    if (!ECD) continue;  // Already issued a diagnostic.
8124
8125    const llvm::APSInt &InitVal = ECD->getInitVal();
8126
8127    // Keep track of the size of positive and negative values.
8128    if (InitVal.isUnsigned() || InitVal.isNonNegative())
8129      NumPositiveBits = std::max(NumPositiveBits,
8130                                 (unsigned)InitVal.getActiveBits());
8131    else
8132      NumNegativeBits = std::max(NumNegativeBits,
8133                                 (unsigned)InitVal.getMinSignedBits());
8134
8135    // Keep track of whether every enum element has type int (very commmon).
8136    if (AllElementsInt)
8137      AllElementsInt = ECD->getType() == Context.IntTy;
8138  }
8139
8140  // Figure out the type that should be used for this enum.
8141  QualType BestType;
8142  unsigned BestWidth;
8143
8144  // C++0x N3000 [conv.prom]p3:
8145  //   An rvalue of an unscoped enumeration type whose underlying
8146  //   type is not fixed can be converted to an rvalue of the first
8147  //   of the following types that can represent all the values of
8148  //   the enumeration: int, unsigned int, long int, unsigned long
8149  //   int, long long int, or unsigned long long int.
8150  // C99 6.4.4.3p2:
8151  //   An identifier declared as an enumeration constant has type int.
8152  // The C99 rule is modified by a gcc extension
8153  QualType BestPromotionType;
8154
8155  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
8156  // -fshort-enums is the equivalent to specifying the packed attribute on all
8157  // enum definitions.
8158  if (LangOpts.ShortEnums)
8159    Packed = true;
8160
8161  if (Enum->isFixed()) {
8162    BestType = BestPromotionType = Enum->getIntegerType();
8163    // We don't need to set BestWidth, because BestType is going to be the type
8164    // of the enumerators, but we do anyway because otherwise some compilers
8165    // warn that it might be used uninitialized.
8166    BestWidth = CharWidth;
8167  }
8168  else if (NumNegativeBits) {
8169    // If there is a negative value, figure out the smallest integer type (of
8170    // int/long/longlong) that fits.
8171    // If it's packed, check also if it fits a char or a short.
8172    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
8173      BestType = Context.SignedCharTy;
8174      BestWidth = CharWidth;
8175    } else if (Packed && NumNegativeBits <= ShortWidth &&
8176               NumPositiveBits < ShortWidth) {
8177      BestType = Context.ShortTy;
8178      BestWidth = ShortWidth;
8179    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
8180      BestType = Context.IntTy;
8181      BestWidth = IntWidth;
8182    } else {
8183      BestWidth = Context.Target.getLongWidth();
8184
8185      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
8186        BestType = Context.LongTy;
8187      } else {
8188        BestWidth = Context.Target.getLongLongWidth();
8189
8190        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
8191          Diag(Enum->getLocation(), diag::warn_enum_too_large);
8192        BestType = Context.LongLongTy;
8193      }
8194    }
8195    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
8196  } else {
8197    // If there is no negative value, figure out the smallest type that fits
8198    // all of the enumerator values.
8199    // If it's packed, check also if it fits a char or a short.
8200    if (Packed && NumPositiveBits <= CharWidth) {
8201      BestType = Context.UnsignedCharTy;
8202      BestPromotionType = Context.IntTy;
8203      BestWidth = CharWidth;
8204    } else if (Packed && NumPositiveBits <= ShortWidth) {
8205      BestType = Context.UnsignedShortTy;
8206      BestPromotionType = Context.IntTy;
8207      BestWidth = ShortWidth;
8208    } else if (NumPositiveBits <= IntWidth) {
8209      BestType = Context.UnsignedIntTy;
8210      BestWidth = IntWidth;
8211      BestPromotionType
8212        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8213                           ? Context.UnsignedIntTy : Context.IntTy;
8214    } else if (NumPositiveBits <=
8215               (BestWidth = Context.Target.getLongWidth())) {
8216      BestType = Context.UnsignedLongTy;
8217      BestPromotionType
8218        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8219                           ? Context.UnsignedLongTy : Context.LongTy;
8220    } else {
8221      BestWidth = Context.Target.getLongLongWidth();
8222      assert(NumPositiveBits <= BestWidth &&
8223             "How could an initializer get larger than ULL?");
8224      BestType = Context.UnsignedLongLongTy;
8225      BestPromotionType
8226        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8227                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
8228    }
8229  }
8230
8231  // Loop over all of the enumerator constants, changing their types to match
8232  // the type of the enum if needed.
8233  for (unsigned i = 0; i != NumElements; ++i) {
8234    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
8235    if (!ECD) continue;  // Already issued a diagnostic.
8236
8237    // Standard C says the enumerators have int type, but we allow, as an
8238    // extension, the enumerators to be larger than int size.  If each
8239    // enumerator value fits in an int, type it as an int, otherwise type it the
8240    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
8241    // that X has type 'int', not 'unsigned'.
8242
8243    // Determine whether the value fits into an int.
8244    llvm::APSInt InitVal = ECD->getInitVal();
8245
8246    // If it fits into an integer type, force it.  Otherwise force it to match
8247    // the enum decl type.
8248    QualType NewTy;
8249    unsigned NewWidth;
8250    bool NewSign;
8251    if (!getLangOptions().CPlusPlus &&
8252        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
8253      NewTy = Context.IntTy;
8254      NewWidth = IntWidth;
8255      NewSign = true;
8256    } else if (ECD->getType() == BestType) {
8257      // Already the right type!
8258      if (getLangOptions().CPlusPlus)
8259        // C++ [dcl.enum]p4: Following the closing brace of an
8260        // enum-specifier, each enumerator has the type of its
8261        // enumeration.
8262        ECD->setType(EnumType);
8263      continue;
8264    } else {
8265      NewTy = BestType;
8266      NewWidth = BestWidth;
8267      NewSign = BestType->isSignedIntegerType();
8268    }
8269
8270    // Adjust the APSInt value.
8271    InitVal = InitVal.extOrTrunc(NewWidth);
8272    InitVal.setIsSigned(NewSign);
8273    ECD->setInitVal(InitVal);
8274
8275    // Adjust the Expr initializer and type.
8276    if (ECD->getInitExpr() &&
8277	!Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
8278      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
8279                                                CK_IntegralCast,
8280                                                ECD->getInitExpr(),
8281                                                /*base paths*/ 0,
8282                                                VK_RValue));
8283    if (getLangOptions().CPlusPlus)
8284      // C++ [dcl.enum]p4: Following the closing brace of an
8285      // enum-specifier, each enumerator has the type of its
8286      // enumeration.
8287      ECD->setType(EnumType);
8288    else
8289      ECD->setType(NewTy);
8290  }
8291
8292  Enum->completeDefinition(BestType, BestPromotionType,
8293                           NumPositiveBits, NumNegativeBits);
8294}
8295
8296Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
8297                                  SourceLocation StartLoc,
8298                                  SourceLocation EndLoc) {
8299  StringLiteral *AsmString = cast<StringLiteral>(expr);
8300
8301  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
8302                                                   AsmString, StartLoc,
8303                                                   EndLoc);
8304  CurContext->addDecl(New);
8305  return New;
8306}
8307
8308void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
8309                             SourceLocation PragmaLoc,
8310                             SourceLocation NameLoc) {
8311  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
8312
8313  if (PrevDecl) {
8314    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
8315  } else {
8316    (void)WeakUndeclaredIdentifiers.insert(
8317      std::pair<IdentifierInfo*,WeakInfo>
8318        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
8319  }
8320}
8321
8322void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
8323                                IdentifierInfo* AliasName,
8324                                SourceLocation PragmaLoc,
8325                                SourceLocation NameLoc,
8326                                SourceLocation AliasNameLoc) {
8327  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
8328                                    LookupOrdinaryName);
8329  WeakInfo W = WeakInfo(Name, NameLoc);
8330
8331  if (PrevDecl) {
8332    if (!PrevDecl->hasAttr<AliasAttr>())
8333      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
8334        DeclApplyPragmaWeak(TUScope, ND, W);
8335  } else {
8336    (void)WeakUndeclaredIdentifiers.insert(
8337      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
8338  }
8339}
8340