SemaDecl.cpp revision dcf1011876d8a472aeb05617c1a84c3d74fbd7ce
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "TypeLocBuilder.h"
21#include "clang/AST/APValue.h"
22#include "clang/AST/ASTConsumer.h"
23#include "clang/AST/ASTContext.h"
24#include "clang/AST/CXXInheritance.h"
25#include "clang/AST/DeclCXX.h"
26#include "clang/AST/DeclObjC.h"
27#include "clang/AST/DeclTemplate.h"
28#include "clang/AST/EvaluatedExprVisitor.h"
29#include "clang/AST/ExprCXX.h"
30#include "clang/AST/StmtCXX.h"
31#include "clang/AST/CharUnits.h"
32#include "clang/Sema/DeclSpec.h"
33#include "clang/Sema/ParsedTemplate.h"
34#include "clang/Parse/ParseDiagnostic.h"
35#include "clang/Basic/PartialDiagnostic.h"
36#include "clang/Basic/SourceManager.h"
37#include "clang/Basic/TargetInfo.h"
38// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
39#include "clang/Lex/Preprocessor.h"
40#include "clang/Lex/HeaderSearch.h"
41#include "llvm/ADT/Triple.h"
42#include <algorithm>
43#include <cstring>
44#include <functional>
45using namespace clang;
46using namespace sema;
47
48Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
49  if (OwnedType) {
50    Decl *Group[2] = { OwnedType, Ptr };
51    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
52  }
53
54  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
55}
56
57/// \brief If the identifier refers to a type name within this scope,
58/// return the declaration of that type.
59///
60/// This routine performs ordinary name lookup of the identifier II
61/// within the given scope, with optional C++ scope specifier SS, to
62/// determine whether the name refers to a type. If so, returns an
63/// opaque pointer (actually a QualType) corresponding to that
64/// type. Otherwise, returns NULL.
65///
66/// If name lookup results in an ambiguity, this routine will complain
67/// and then return NULL.
68ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
69                             Scope *S, CXXScopeSpec *SS,
70                             bool isClassName, bool HasTrailingDot,
71                             ParsedType ObjectTypePtr,
72                             bool WantNontrivialTypeSourceInfo) {
73  // Determine where we will perform name lookup.
74  DeclContext *LookupCtx = 0;
75  if (ObjectTypePtr) {
76    QualType ObjectType = ObjectTypePtr.get();
77    if (ObjectType->isRecordType())
78      LookupCtx = computeDeclContext(ObjectType);
79  } else if (SS && SS->isNotEmpty()) {
80    LookupCtx = computeDeclContext(*SS, false);
81
82    if (!LookupCtx) {
83      if (isDependentScopeSpecifier(*SS)) {
84        // C++ [temp.res]p3:
85        //   A qualified-id that refers to a type and in which the
86        //   nested-name-specifier depends on a template-parameter (14.6.2)
87        //   shall be prefixed by the keyword typename to indicate that the
88        //   qualified-id denotes a type, forming an
89        //   elaborated-type-specifier (7.1.5.3).
90        //
91        // We therefore do not perform any name lookup if the result would
92        // refer to a member of an unknown specialization.
93        if (!isClassName)
94          return ParsedType();
95
96        // We know from the grammar that this name refers to a type,
97        // so build a dependent node to describe the type.
98        if (WantNontrivialTypeSourceInfo)
99          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
100
101        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
102        QualType T =
103          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
104                            II, NameLoc);
105
106          return ParsedType::make(T);
107      }
108
109      return ParsedType();
110    }
111
112    if (!LookupCtx->isDependentContext() &&
113        RequireCompleteDeclContext(*SS, LookupCtx))
114      return ParsedType();
115  }
116
117  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
118  // lookup for class-names.
119  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
120                                      LookupOrdinaryName;
121  LookupResult Result(*this, &II, NameLoc, Kind);
122  if (LookupCtx) {
123    // Perform "qualified" name lookup into the declaration context we
124    // computed, which is either the type of the base of a member access
125    // expression or the declaration context associated with a prior
126    // nested-name-specifier.
127    LookupQualifiedName(Result, LookupCtx);
128
129    if (ObjectTypePtr && Result.empty()) {
130      // C++ [basic.lookup.classref]p3:
131      //   If the unqualified-id is ~type-name, the type-name is looked up
132      //   in the context of the entire postfix-expression. If the type T of
133      //   the object expression is of a class type C, the type-name is also
134      //   looked up in the scope of class C. At least one of the lookups shall
135      //   find a name that refers to (possibly cv-qualified) T.
136      LookupName(Result, S);
137    }
138  } else {
139    // Perform unqualified name lookup.
140    LookupName(Result, S);
141  }
142
143  NamedDecl *IIDecl = 0;
144  switch (Result.getResultKind()) {
145  case LookupResult::NotFound:
146  case LookupResult::NotFoundInCurrentInstantiation:
147  case LookupResult::FoundOverloaded:
148  case LookupResult::FoundUnresolvedValue:
149    Result.suppressDiagnostics();
150    return ParsedType();
151
152  case LookupResult::Ambiguous:
153    // Recover from type-hiding ambiguities by hiding the type.  We'll
154    // do the lookup again when looking for an object, and we can
155    // diagnose the error then.  If we don't do this, then the error
156    // about hiding the type will be immediately followed by an error
157    // that only makes sense if the identifier was treated like a type.
158    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
159      Result.suppressDiagnostics();
160      return ParsedType();
161    }
162
163    // Look to see if we have a type anywhere in the list of results.
164    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
165         Res != ResEnd; ++Res) {
166      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
167        if (!IIDecl ||
168            (*Res)->getLocation().getRawEncoding() <
169              IIDecl->getLocation().getRawEncoding())
170          IIDecl = *Res;
171      }
172    }
173
174    if (!IIDecl) {
175      // None of the entities we found is a type, so there is no way
176      // to even assume that the result is a type. In this case, don't
177      // complain about the ambiguity. The parser will either try to
178      // perform this lookup again (e.g., as an object name), which
179      // will produce the ambiguity, or will complain that it expected
180      // a type name.
181      Result.suppressDiagnostics();
182      return ParsedType();
183    }
184
185    // We found a type within the ambiguous lookup; diagnose the
186    // ambiguity and then return that type. This might be the right
187    // answer, or it might not be, but it suppresses any attempt to
188    // perform the name lookup again.
189    break;
190
191  case LookupResult::Found:
192    IIDecl = Result.getFoundDecl();
193    break;
194  }
195
196  assert(IIDecl && "Didn't find decl");
197
198  QualType T;
199  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
200    DiagnoseUseOfDecl(IIDecl, NameLoc);
201
202    if (T.isNull())
203      T = Context.getTypeDeclType(TD);
204
205    if (SS && SS->isNotEmpty()) {
206      if (WantNontrivialTypeSourceInfo) {
207        // Construct a type with type-source information.
208        TypeLocBuilder Builder;
209        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
210
211        T = getElaboratedType(ETK_None, *SS, T);
212        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
213        ElabTL.setKeywordLoc(SourceLocation());
214        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
215        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
216      } else {
217        T = getElaboratedType(ETK_None, *SS, T);
218      }
219    }
220  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
221    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
222    if (!HasTrailingDot)
223      T = Context.getObjCInterfaceType(IDecl);
224  }
225
226  if (T.isNull()) {
227    // If it's not plausibly a type, suppress diagnostics.
228    Result.suppressDiagnostics();
229    return ParsedType();
230  }
231  return ParsedType::make(T);
232}
233
234/// isTagName() - This method is called *for error recovery purposes only*
235/// to determine if the specified name is a valid tag name ("struct foo").  If
236/// so, this returns the TST for the tag corresponding to it (TST_enum,
237/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
238/// where the user forgot to specify the tag.
239DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
240  // Do a tag name lookup in this scope.
241  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
242  LookupName(R, S, false);
243  R.suppressDiagnostics();
244  if (R.getResultKind() == LookupResult::Found)
245    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
246      switch (TD->getTagKind()) {
247      default:         return DeclSpec::TST_unspecified;
248      case TTK_Struct: return DeclSpec::TST_struct;
249      case TTK_Union:  return DeclSpec::TST_union;
250      case TTK_Class:  return DeclSpec::TST_class;
251      case TTK_Enum:   return DeclSpec::TST_enum;
252      }
253    }
254
255  return DeclSpec::TST_unspecified;
256}
257
258/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
259/// if a CXXScopeSpec's type is equal to the type of one of the base classes
260/// then downgrade the missing typename error to a warning.
261/// This is needed for MSVC compatibility; Example:
262/// @code
263/// template<class T> class A {
264/// public:
265///   typedef int TYPE;
266/// };
267/// template<class T> class B : public A<T> {
268/// public:
269///   A<T>::TYPE a; // no typename required because A<T> is a base class.
270/// };
271/// @endcode
272bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS) {
273  if (CurContext->isRecord()) {
274    const Type *Ty = SS->getScopeRep()->getAsType();
275
276    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
277    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
278          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
279      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
280        return true;
281  }
282  return false;
283}
284
285bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
286                                   SourceLocation IILoc,
287                                   Scope *S,
288                                   CXXScopeSpec *SS,
289                                   ParsedType &SuggestedType) {
290  // We don't have anything to suggest (yet).
291  SuggestedType = ParsedType();
292
293  // There may have been a typo in the name of the type. Look up typo
294  // results, in case we have something that we can suggest.
295  if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(&II, IILoc),
296                                             LookupOrdinaryName, S, SS, NULL,
297                                             false, CTC_Type)) {
298    std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
299    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
300
301    if (Corrected.isKeyword()) {
302      // We corrected to a keyword.
303      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
304      Diag(IILoc, diag::err_unknown_typename_suggest)
305        << &II << CorrectedQuotedStr;
306      return true;
307    } else {
308      NamedDecl *Result = Corrected.getCorrectionDecl();
309      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
310          !Result->isInvalidDecl()) {
311        // We found a similarly-named type or interface; suggest that.
312        if (!SS || !SS->isSet())
313          Diag(IILoc, diag::err_unknown_typename_suggest)
314            << &II << CorrectedQuotedStr
315            << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
316        else if (DeclContext *DC = computeDeclContext(*SS, false))
317          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
318            << &II << DC << CorrectedQuotedStr << SS->getRange()
319            << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
320        else
321          llvm_unreachable("could not have corrected a typo here");
322
323        Diag(Result->getLocation(), diag::note_previous_decl)
324          << CorrectedQuotedStr;
325
326        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
327                                    false, false, ParsedType(),
328                                    /*NonTrivialTypeSourceInfo=*/true);
329        return true;
330      }
331    }
332  }
333
334  if (getLangOptions().CPlusPlus) {
335    // See if II is a class template that the user forgot to pass arguments to.
336    UnqualifiedId Name;
337    Name.setIdentifier(&II, IILoc);
338    CXXScopeSpec EmptySS;
339    TemplateTy TemplateResult;
340    bool MemberOfUnknownSpecialization;
341    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
342                       Name, ParsedType(), true, TemplateResult,
343                       MemberOfUnknownSpecialization) == TNK_Type_template) {
344      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
345      Diag(IILoc, diag::err_template_missing_args) << TplName;
346      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
347        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
348          << TplDecl->getTemplateParameters()->getSourceRange();
349      }
350      return true;
351    }
352  }
353
354  // FIXME: Should we move the logic that tries to recover from a missing tag
355  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
356
357  if (!SS || (!SS->isSet() && !SS->isInvalid()))
358    Diag(IILoc, diag::err_unknown_typename) << &II;
359  else if (DeclContext *DC = computeDeclContext(*SS, false))
360    Diag(IILoc, diag::err_typename_nested_not_found)
361      << &II << DC << SS->getRange();
362  else if (isDependentScopeSpecifier(*SS)) {
363    unsigned DiagID = diag::err_typename_missing;
364    if (getLangOptions().Microsoft && isMicrosoftMissingTypename(SS))
365      DiagID = diag::warn_typename_missing;
366
367    Diag(SS->getRange().getBegin(), DiagID)
368      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
369      << SourceRange(SS->getRange().getBegin(), IILoc)
370      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
371    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
372  } else {
373    assert(SS && SS->isInvalid() &&
374           "Invalid scope specifier has already been diagnosed");
375  }
376
377  return true;
378}
379
380/// \brief Determine whether the given result set contains either a type name
381/// or
382static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
383  bool CheckTemplate = R.getSema().getLangOptions().CPlusPlus &&
384                       NextToken.is(tok::less);
385
386  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
387    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
388      return true;
389
390    if (CheckTemplate && isa<TemplateDecl>(*I))
391      return true;
392  }
393
394  return false;
395}
396
397Sema::NameClassification Sema::ClassifyName(Scope *S,
398                                            CXXScopeSpec &SS,
399                                            IdentifierInfo *&Name,
400                                            SourceLocation NameLoc,
401                                            const Token &NextToken) {
402  DeclarationNameInfo NameInfo(Name, NameLoc);
403  ObjCMethodDecl *CurMethod = getCurMethodDecl();
404
405  if (NextToken.is(tok::coloncolon)) {
406    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
407                                QualType(), false, SS, 0, false);
408
409  }
410
411  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
412  LookupParsedName(Result, S, &SS, !CurMethod);
413
414  // Perform lookup for Objective-C instance variables (including automatically
415  // synthesized instance variables), if we're in an Objective-C method.
416  // FIXME: This lookup really, really needs to be folded in to the normal
417  // unqualified lookup mechanism.
418  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
419    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
420    if (E.get() || E.isInvalid())
421      return E;
422
423    // Synthesize ivars lazily.
424    if (getLangOptions().ObjCDefaultSynthProperties &&
425        getLangOptions().ObjCNonFragileABI2) {
426      if (SynthesizeProvisionalIvar(Result, Name, NameLoc)) {
427        if (const ObjCPropertyDecl *Property =
428                                          canSynthesizeProvisionalIvar(Name)) {
429          Diag(NameLoc, diag::warn_synthesized_ivar_access) << Name;
430          Diag(Property->getLocation(), diag::note_property_declare);
431        }
432
433        // FIXME: This is strange. Shouldn't we just take the ivar returned
434        // from SynthesizeProvisionalIvar and continue with that?
435        E = LookupInObjCMethod(Result, S, Name, true);
436        if (E.get() || E.isInvalid())
437          return E;
438      }
439    }
440  }
441
442  bool SecondTry = false;
443  bool IsFilteredTemplateName = false;
444
445Corrected:
446  switch (Result.getResultKind()) {
447  case LookupResult::NotFound:
448    // If an unqualified-id is followed by a '(', then we have a function
449    // call.
450    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
451      // In C++, this is an ADL-only call.
452      // FIXME: Reference?
453      if (getLangOptions().CPlusPlus)
454        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
455
456      // C90 6.3.2.2:
457      //   If the expression that precedes the parenthesized argument list in a
458      //   function call consists solely of an identifier, and if no
459      //   declaration is visible for this identifier, the identifier is
460      //   implicitly declared exactly as if, in the innermost block containing
461      //   the function call, the declaration
462      //
463      //     extern int identifier ();
464      //
465      //   appeared.
466      //
467      // We also allow this in C99 as an extension.
468      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
469        Result.addDecl(D);
470        Result.resolveKind();
471        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
472      }
473    }
474
475    // In C, we first see whether there is a tag type by the same name, in
476    // which case it's likely that the user just forget to write "enum",
477    // "struct", or "union".
478    if (!getLangOptions().CPlusPlus && !SecondTry) {
479      Result.clear(LookupTagName);
480      LookupParsedName(Result, S, &SS);
481      if (TagDecl *Tag = Result.getAsSingle<TagDecl>()) {
482        const char *TagName = 0;
483        const char *FixItTagName = 0;
484        switch (Tag->getTagKind()) {
485          case TTK_Class:
486            TagName = "class";
487            FixItTagName = "class ";
488            break;
489
490          case TTK_Enum:
491            TagName = "enum";
492            FixItTagName = "enum ";
493            break;
494
495          case TTK_Struct:
496            TagName = "struct";
497            FixItTagName = "struct ";
498            break;
499
500          case TTK_Union:
501            TagName = "union";
502            FixItTagName = "union ";
503            break;
504        }
505
506        Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
507          << Name << TagName << getLangOptions().CPlusPlus
508          << FixItHint::CreateInsertion(NameLoc, FixItTagName);
509        break;
510      }
511
512      Result.clear(LookupOrdinaryName);
513    }
514
515    // Perform typo correction to determine if there is another name that is
516    // close to this name.
517    if (!SecondTry) {
518      SecondTry = true;
519      if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
520                                                 Result.getLookupKind(), S, &SS)) {
521        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
522        unsigned QualifiedDiag = diag::err_no_member_suggest;
523        std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
524        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
525
526        NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
527        NamedDecl *UnderlyingFirstDecl
528          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
529        if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
530            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
531          UnqualifiedDiag = diag::err_no_template_suggest;
532          QualifiedDiag = diag::err_no_member_template_suggest;
533        } else if (UnderlyingFirstDecl &&
534                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
535                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
536                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
537           UnqualifiedDiag = diag::err_unknown_typename_suggest;
538           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
539         }
540
541        if (SS.isEmpty())
542          Diag(NameLoc, UnqualifiedDiag)
543            << Name << CorrectedQuotedStr
544            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
545        else
546          Diag(NameLoc, QualifiedDiag)
547            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
548            << SS.getRange()
549            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
550
551        // Update the name, so that the caller has the new name.
552        Name = Corrected.getCorrectionAsIdentifierInfo();
553
554        // Also update the LookupResult...
555        // FIXME: This should probably go away at some point
556        Result.clear();
557        Result.setLookupName(Corrected.getCorrection());
558        if (FirstDecl) Result.addDecl(FirstDecl);
559
560        // Typo correction corrected to a keyword.
561        if (Corrected.isKeyword())
562          return Corrected.getCorrectionAsIdentifierInfo();
563
564        if (FirstDecl)
565          Diag(FirstDecl->getLocation(), diag::note_previous_decl)
566            << CorrectedQuotedStr;
567
568        // If we found an Objective-C instance variable, let
569        // LookupInObjCMethod build the appropriate expression to
570        // reference the ivar.
571        // FIXME: This is a gross hack.
572        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
573          Result.clear();
574          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
575          return move(E);
576        }
577
578        goto Corrected;
579      }
580    }
581
582    // We failed to correct; just fall through and let the parser deal with it.
583    Result.suppressDiagnostics();
584    return NameClassification::Unknown();
585
586  case LookupResult::NotFoundInCurrentInstantiation:
587    // We performed name lookup into the current instantiation, and there were
588    // dependent bases, so we treat this result the same way as any other
589    // dependent nested-name-specifier.
590
591    // C++ [temp.res]p2:
592    //   A name used in a template declaration or definition and that is
593    //   dependent on a template-parameter is assumed not to name a type
594    //   unless the applicable name lookup finds a type name or the name is
595    //   qualified by the keyword typename.
596    //
597    // FIXME: If the next token is '<', we might want to ask the parser to
598    // perform some heroics to see if we actually have a
599    // template-argument-list, which would indicate a missing 'template'
600    // keyword here.
601    return BuildDependentDeclRefExpr(SS, NameInfo, /*TemplateArgs=*/0);
602
603  case LookupResult::Found:
604  case LookupResult::FoundOverloaded:
605  case LookupResult::FoundUnresolvedValue:
606    break;
607
608  case LookupResult::Ambiguous:
609    if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
610        hasAnyAcceptableTemplateNames(Result)) {
611      // C++ [temp.local]p3:
612      //   A lookup that finds an injected-class-name (10.2) can result in an
613      //   ambiguity in certain cases (for example, if it is found in more than
614      //   one base class). If all of the injected-class-names that are found
615      //   refer to specializations of the same class template, and if the name
616      //   is followed by a template-argument-list, the reference refers to the
617      //   class template itself and not a specialization thereof, and is not
618      //   ambiguous.
619      //
620      // This filtering can make an ambiguous result into an unambiguous one,
621      // so try again after filtering out template names.
622      FilterAcceptableTemplateNames(Result);
623      if (!Result.isAmbiguous()) {
624        IsFilteredTemplateName = true;
625        break;
626      }
627    }
628
629    // Diagnose the ambiguity and return an error.
630    return NameClassification::Error();
631  }
632
633  if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
634      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
635    // C++ [temp.names]p3:
636    //   After name lookup (3.4) finds that a name is a template-name or that
637    //   an operator-function-id or a literal- operator-id refers to a set of
638    //   overloaded functions any member of which is a function template if
639    //   this is followed by a <, the < is always taken as the delimiter of a
640    //   template-argument-list and never as the less-than operator.
641    if (!IsFilteredTemplateName)
642      FilterAcceptableTemplateNames(Result);
643
644    if (!Result.empty()) {
645      bool IsFunctionTemplate;
646      TemplateName Template;
647      if (Result.end() - Result.begin() > 1) {
648        IsFunctionTemplate = true;
649        Template = Context.getOverloadedTemplateName(Result.begin(),
650                                                     Result.end());
651      } else {
652        TemplateDecl *TD
653          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
654        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
655
656        if (SS.isSet() && !SS.isInvalid())
657          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
658                                                    /*TemplateKeyword=*/false,
659                                                      TD);
660        else
661          Template = TemplateName(TD);
662      }
663
664      if (IsFunctionTemplate) {
665        // Function templates always go through overload resolution, at which
666        // point we'll perform the various checks (e.g., accessibility) we need
667        // to based on which function we selected.
668        Result.suppressDiagnostics();
669
670        return NameClassification::FunctionTemplate(Template);
671      }
672
673      return NameClassification::TypeTemplate(Template);
674    }
675  }
676
677  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
678  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
679    DiagnoseUseOfDecl(Type, NameLoc);
680    QualType T = Context.getTypeDeclType(Type);
681    return ParsedType::make(T);
682  }
683
684  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
685  if (!Class) {
686    // FIXME: It's unfortunate that we don't have a Type node for handling this.
687    if (ObjCCompatibleAliasDecl *Alias
688                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
689      Class = Alias->getClassInterface();
690  }
691
692  if (Class) {
693    DiagnoseUseOfDecl(Class, NameLoc);
694
695    if (NextToken.is(tok::period)) {
696      // Interface. <something> is parsed as a property reference expression.
697      // Just return "unknown" as a fall-through for now.
698      Result.suppressDiagnostics();
699      return NameClassification::Unknown();
700    }
701
702    QualType T = Context.getObjCInterfaceType(Class);
703    return ParsedType::make(T);
704  }
705
706  if (!Result.empty() && (*Result.begin())->isCXXClassMember())
707    return BuildPossibleImplicitMemberExpr(SS, Result, 0);
708
709  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
710  return BuildDeclarationNameExpr(SS, Result, ADL);
711}
712
713// Determines the context to return to after temporarily entering a
714// context.  This depends in an unnecessarily complicated way on the
715// exact ordering of callbacks from the parser.
716DeclContext *Sema::getContainingDC(DeclContext *DC) {
717
718  // Functions defined inline within classes aren't parsed until we've
719  // finished parsing the top-level class, so the top-level class is
720  // the context we'll need to return to.
721  if (isa<FunctionDecl>(DC)) {
722    DC = DC->getLexicalParent();
723
724    // A function not defined within a class will always return to its
725    // lexical context.
726    if (!isa<CXXRecordDecl>(DC))
727      return DC;
728
729    // A C++ inline method/friend is parsed *after* the topmost class
730    // it was declared in is fully parsed ("complete");  the topmost
731    // class is the context we need to return to.
732    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
733      DC = RD;
734
735    // Return the declaration context of the topmost class the inline method is
736    // declared in.
737    return DC;
738  }
739
740  // ObjCMethodDecls are parsed (for some reason) outside the context
741  // of the class.
742  if (isa<ObjCMethodDecl>(DC))
743    return DC->getLexicalParent()->getLexicalParent();
744
745  return DC->getLexicalParent();
746}
747
748void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
749  assert(getContainingDC(DC) == CurContext &&
750      "The next DeclContext should be lexically contained in the current one.");
751  CurContext = DC;
752  S->setEntity(DC);
753}
754
755void Sema::PopDeclContext() {
756  assert(CurContext && "DeclContext imbalance!");
757
758  CurContext = getContainingDC(CurContext);
759  assert(CurContext && "Popped translation unit!");
760}
761
762/// EnterDeclaratorContext - Used when we must lookup names in the context
763/// of a declarator's nested name specifier.
764///
765void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
766  // C++0x [basic.lookup.unqual]p13:
767  //   A name used in the definition of a static data member of class
768  //   X (after the qualified-id of the static member) is looked up as
769  //   if the name was used in a member function of X.
770  // C++0x [basic.lookup.unqual]p14:
771  //   If a variable member of a namespace is defined outside of the
772  //   scope of its namespace then any name used in the definition of
773  //   the variable member (after the declarator-id) is looked up as
774  //   if the definition of the variable member occurred in its
775  //   namespace.
776  // Both of these imply that we should push a scope whose context
777  // is the semantic context of the declaration.  We can't use
778  // PushDeclContext here because that context is not necessarily
779  // lexically contained in the current context.  Fortunately,
780  // the containing scope should have the appropriate information.
781
782  assert(!S->getEntity() && "scope already has entity");
783
784#ifndef NDEBUG
785  Scope *Ancestor = S->getParent();
786  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
787  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
788#endif
789
790  CurContext = DC;
791  S->setEntity(DC);
792}
793
794void Sema::ExitDeclaratorContext(Scope *S) {
795  assert(S->getEntity() == CurContext && "Context imbalance!");
796
797  // Switch back to the lexical context.  The safety of this is
798  // enforced by an assert in EnterDeclaratorContext.
799  Scope *Ancestor = S->getParent();
800  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
801  CurContext = (DeclContext*) Ancestor->getEntity();
802
803  // We don't need to do anything with the scope, which is going to
804  // disappear.
805}
806
807/// \brief Determine whether we allow overloading of the function
808/// PrevDecl with another declaration.
809///
810/// This routine determines whether overloading is possible, not
811/// whether some new function is actually an overload. It will return
812/// true in C++ (where we can always provide overloads) or, as an
813/// extension, in C when the previous function is already an
814/// overloaded function declaration or has the "overloadable"
815/// attribute.
816static bool AllowOverloadingOfFunction(LookupResult &Previous,
817                                       ASTContext &Context) {
818  if (Context.getLangOptions().CPlusPlus)
819    return true;
820
821  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
822    return true;
823
824  return (Previous.getResultKind() == LookupResult::Found
825          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
826}
827
828/// Add this decl to the scope shadowed decl chains.
829void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
830  // Move up the scope chain until we find the nearest enclosing
831  // non-transparent context. The declaration will be introduced into this
832  // scope.
833  while (S->getEntity() &&
834         ((DeclContext *)S->getEntity())->isTransparentContext())
835    S = S->getParent();
836
837  // Add scoped declarations into their context, so that they can be
838  // found later. Declarations without a context won't be inserted
839  // into any context.
840  if (AddToContext)
841    CurContext->addDecl(D);
842
843  // Out-of-line definitions shouldn't be pushed into scope in C++.
844  // Out-of-line variable and function definitions shouldn't even in C.
845  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
846      D->isOutOfLine())
847    return;
848
849  // Template instantiations should also not be pushed into scope.
850  if (isa<FunctionDecl>(D) &&
851      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
852    return;
853
854  // If this replaces anything in the current scope,
855  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
856                               IEnd = IdResolver.end();
857  for (; I != IEnd; ++I) {
858    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
859      S->RemoveDecl(*I);
860      IdResolver.RemoveDecl(*I);
861
862      // Should only need to replace one decl.
863      break;
864    }
865  }
866
867  S->AddDecl(D);
868
869  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
870    // Implicitly-generated labels may end up getting generated in an order that
871    // isn't strictly lexical, which breaks name lookup. Be careful to insert
872    // the label at the appropriate place in the identifier chain.
873    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
874      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
875      if (IDC == CurContext) {
876        if (!S->isDeclScope(*I))
877          continue;
878      } else if (IDC->Encloses(CurContext))
879        break;
880    }
881
882    IdResolver.InsertDeclAfter(I, D);
883  } else {
884    IdResolver.AddDecl(D);
885  }
886}
887
888bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
889                         bool ExplicitInstantiationOrSpecialization) {
890  return IdResolver.isDeclInScope(D, Ctx, Context, S,
891                                  ExplicitInstantiationOrSpecialization);
892}
893
894Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
895  DeclContext *TargetDC = DC->getPrimaryContext();
896  do {
897    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
898      if (ScopeDC->getPrimaryContext() == TargetDC)
899        return S;
900  } while ((S = S->getParent()));
901
902  return 0;
903}
904
905static bool isOutOfScopePreviousDeclaration(NamedDecl *,
906                                            DeclContext*,
907                                            ASTContext&);
908
909/// Filters out lookup results that don't fall within the given scope
910/// as determined by isDeclInScope.
911void Sema::FilterLookupForScope(LookupResult &R,
912                                DeclContext *Ctx, Scope *S,
913                                bool ConsiderLinkage,
914                                bool ExplicitInstantiationOrSpecialization) {
915  LookupResult::Filter F = R.makeFilter();
916  while (F.hasNext()) {
917    NamedDecl *D = F.next();
918
919    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
920      continue;
921
922    if (ConsiderLinkage &&
923        isOutOfScopePreviousDeclaration(D, Ctx, Context))
924      continue;
925
926    F.erase();
927  }
928
929  F.done();
930}
931
932static bool isUsingDecl(NamedDecl *D) {
933  return isa<UsingShadowDecl>(D) ||
934         isa<UnresolvedUsingTypenameDecl>(D) ||
935         isa<UnresolvedUsingValueDecl>(D);
936}
937
938/// Removes using shadow declarations from the lookup results.
939static void RemoveUsingDecls(LookupResult &R) {
940  LookupResult::Filter F = R.makeFilter();
941  while (F.hasNext())
942    if (isUsingDecl(F.next()))
943      F.erase();
944
945  F.done();
946}
947
948/// \brief Check for this common pattern:
949/// @code
950/// class S {
951///   S(const S&); // DO NOT IMPLEMENT
952///   void operator=(const S&); // DO NOT IMPLEMENT
953/// };
954/// @endcode
955static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
956  // FIXME: Should check for private access too but access is set after we get
957  // the decl here.
958  if (D->doesThisDeclarationHaveABody())
959    return false;
960
961  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
962    return CD->isCopyConstructor();
963  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
964    return Method->isCopyAssignmentOperator();
965  return false;
966}
967
968bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
969  assert(D);
970
971  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
972    return false;
973
974  // Ignore class templates.
975  if (D->getDeclContext()->isDependentContext() ||
976      D->getLexicalDeclContext()->isDependentContext())
977    return false;
978
979  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
980    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
981      return false;
982
983    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
984      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
985        return false;
986    } else {
987      // 'static inline' functions are used in headers; don't warn.
988      if (FD->getStorageClass() == SC_Static &&
989          FD->isInlineSpecified())
990        return false;
991    }
992
993    if (FD->doesThisDeclarationHaveABody() &&
994        Context.DeclMustBeEmitted(FD))
995      return false;
996  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
997    if (!VD->isFileVarDecl() ||
998        VD->getType().isConstant(Context) ||
999        Context.DeclMustBeEmitted(VD))
1000      return false;
1001
1002    if (VD->isStaticDataMember() &&
1003        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1004      return false;
1005
1006  } else {
1007    return false;
1008  }
1009
1010  // Only warn for unused decls internal to the translation unit.
1011  if (D->getLinkage() == ExternalLinkage)
1012    return false;
1013
1014  return true;
1015}
1016
1017void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1018  if (!D)
1019    return;
1020
1021  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1022    const FunctionDecl *First = FD->getFirstDeclaration();
1023    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1024      return; // First should already be in the vector.
1025  }
1026
1027  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1028    const VarDecl *First = VD->getFirstDeclaration();
1029    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1030      return; // First should already be in the vector.
1031  }
1032
1033   if (ShouldWarnIfUnusedFileScopedDecl(D))
1034     UnusedFileScopedDecls.push_back(D);
1035 }
1036
1037static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1038  if (D->isInvalidDecl())
1039    return false;
1040
1041  if (D->isUsed() || D->hasAttr<UnusedAttr>())
1042    return false;
1043
1044  if (isa<LabelDecl>(D))
1045    return true;
1046
1047  // White-list anything that isn't a local variable.
1048  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1049      !D->getDeclContext()->isFunctionOrMethod())
1050    return false;
1051
1052  // Types of valid local variables should be complete, so this should succeed.
1053  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1054
1055    // White-list anything with an __attribute__((unused)) type.
1056    QualType Ty = VD->getType();
1057
1058    // Only look at the outermost level of typedef.
1059    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
1060      if (TT->getDecl()->hasAttr<UnusedAttr>())
1061        return false;
1062    }
1063
1064    // If we failed to complete the type for some reason, or if the type is
1065    // dependent, don't diagnose the variable.
1066    if (Ty->isIncompleteType() || Ty->isDependentType())
1067      return false;
1068
1069    if (const TagType *TT = Ty->getAs<TagType>()) {
1070      const TagDecl *Tag = TT->getDecl();
1071      if (Tag->hasAttr<UnusedAttr>())
1072        return false;
1073
1074      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1075        // FIXME: Checking for the presence of a user-declared constructor
1076        // isn't completely accurate; we'd prefer to check that the initializer
1077        // has no side effects.
1078        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
1079          return false;
1080      }
1081    }
1082
1083    // TODO: __attribute__((unused)) templates?
1084  }
1085
1086  return true;
1087}
1088
1089/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1090/// unless they are marked attr(unused).
1091void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1092  if (!ShouldDiagnoseUnusedDecl(D))
1093    return;
1094
1095  unsigned DiagID;
1096  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1097    DiagID = diag::warn_unused_exception_param;
1098  else if (isa<LabelDecl>(D))
1099    DiagID = diag::warn_unused_label;
1100  else
1101    DiagID = diag::warn_unused_variable;
1102
1103  Diag(D->getLocation(), DiagID) << D->getDeclName();
1104}
1105
1106static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1107  // Verify that we have no forward references left.  If so, there was a goto
1108  // or address of a label taken, but no definition of it.  Label fwd
1109  // definitions are indicated with a null substmt.
1110  if (L->getStmt() == 0)
1111    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1112}
1113
1114void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1115  if (S->decl_empty()) return;
1116  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1117         "Scope shouldn't contain decls!");
1118
1119  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1120       I != E; ++I) {
1121    Decl *TmpD = (*I);
1122    assert(TmpD && "This decl didn't get pushed??");
1123
1124    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1125    NamedDecl *D = cast<NamedDecl>(TmpD);
1126
1127    if (!D->getDeclName()) continue;
1128
1129    // Diagnose unused variables in this scope.
1130    if (!S->hasErrorOccurred())
1131      DiagnoseUnusedDecl(D);
1132
1133    // If this was a forward reference to a label, verify it was defined.
1134    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1135      CheckPoppedLabel(LD, *this);
1136
1137    // Remove this name from our lexical scope.
1138    IdResolver.RemoveDecl(D);
1139  }
1140}
1141
1142/// \brief Look for an Objective-C class in the translation unit.
1143///
1144/// \param Id The name of the Objective-C class we're looking for. If
1145/// typo-correction fixes this name, the Id will be updated
1146/// to the fixed name.
1147///
1148/// \param IdLoc The location of the name in the translation unit.
1149///
1150/// \param TypoCorrection If true, this routine will attempt typo correction
1151/// if there is no class with the given name.
1152///
1153/// \returns The declaration of the named Objective-C class, or NULL if the
1154/// class could not be found.
1155ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1156                                              SourceLocation IdLoc,
1157                                              bool DoTypoCorrection) {
1158  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1159  // creation from this context.
1160  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1161
1162  if (!IDecl && DoTypoCorrection) {
1163    // Perform typo correction at the given location, but only if we
1164    // find an Objective-C class name.
1165    TypoCorrection C;
1166    if ((C = CorrectTypo(DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName,
1167                         TUScope, NULL, NULL, false, CTC_NoKeywords)) &&
1168        (IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>())) {
1169      Diag(IdLoc, diag::err_undef_interface_suggest)
1170        << Id << IDecl->getDeclName()
1171        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1172      Diag(IDecl->getLocation(), diag::note_previous_decl)
1173        << IDecl->getDeclName();
1174
1175      Id = IDecl->getIdentifier();
1176    }
1177  }
1178
1179  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1180}
1181
1182/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1183/// from S, where a non-field would be declared. This routine copes
1184/// with the difference between C and C++ scoping rules in structs and
1185/// unions. For example, the following code is well-formed in C but
1186/// ill-formed in C++:
1187/// @code
1188/// struct S6 {
1189///   enum { BAR } e;
1190/// };
1191///
1192/// void test_S6() {
1193///   struct S6 a;
1194///   a.e = BAR;
1195/// }
1196/// @endcode
1197/// For the declaration of BAR, this routine will return a different
1198/// scope. The scope S will be the scope of the unnamed enumeration
1199/// within S6. In C++, this routine will return the scope associated
1200/// with S6, because the enumeration's scope is a transparent
1201/// context but structures can contain non-field names. In C, this
1202/// routine will return the translation unit scope, since the
1203/// enumeration's scope is a transparent context and structures cannot
1204/// contain non-field names.
1205Scope *Sema::getNonFieldDeclScope(Scope *S) {
1206  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1207         (S->getEntity() &&
1208          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1209         (S->isClassScope() && !getLangOptions().CPlusPlus))
1210    S = S->getParent();
1211  return S;
1212}
1213
1214/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1215/// file scope.  lazily create a decl for it. ForRedeclaration is true
1216/// if we're creating this built-in in anticipation of redeclaring the
1217/// built-in.
1218NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1219                                     Scope *S, bool ForRedeclaration,
1220                                     SourceLocation Loc) {
1221  Builtin::ID BID = (Builtin::ID)bid;
1222
1223  ASTContext::GetBuiltinTypeError Error;
1224  QualType R = Context.GetBuiltinType(BID, Error);
1225  switch (Error) {
1226  case ASTContext::GE_None:
1227    // Okay
1228    break;
1229
1230  case ASTContext::GE_Missing_stdio:
1231    if (ForRedeclaration)
1232      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1233        << Context.BuiltinInfo.GetName(BID);
1234    return 0;
1235
1236  case ASTContext::GE_Missing_setjmp:
1237    if (ForRedeclaration)
1238      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1239        << Context.BuiltinInfo.GetName(BID);
1240    return 0;
1241  }
1242
1243  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1244    Diag(Loc, diag::ext_implicit_lib_function_decl)
1245      << Context.BuiltinInfo.GetName(BID)
1246      << R;
1247    if (Context.BuiltinInfo.getHeaderName(BID) &&
1248        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1249          != Diagnostic::Ignored)
1250      Diag(Loc, diag::note_please_include_header)
1251        << Context.BuiltinInfo.getHeaderName(BID)
1252        << Context.BuiltinInfo.GetName(BID);
1253  }
1254
1255  FunctionDecl *New = FunctionDecl::Create(Context,
1256                                           Context.getTranslationUnitDecl(),
1257                                           Loc, Loc, II, R, /*TInfo=*/0,
1258                                           SC_Extern,
1259                                           SC_None, false,
1260                                           /*hasPrototype=*/true);
1261  New->setImplicit();
1262
1263  // Create Decl objects for each parameter, adding them to the
1264  // FunctionDecl.
1265  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1266    SmallVector<ParmVarDecl*, 16> Params;
1267    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1268      ParmVarDecl *parm =
1269        ParmVarDecl::Create(Context, New, SourceLocation(),
1270                            SourceLocation(), 0,
1271                            FT->getArgType(i), /*TInfo=*/0,
1272                            SC_None, SC_None, 0);
1273      parm->setScopeInfo(0, i);
1274      Params.push_back(parm);
1275    }
1276    New->setParams(Params.data(), Params.size());
1277  }
1278
1279  AddKnownFunctionAttributes(New);
1280
1281  // TUScope is the translation-unit scope to insert this function into.
1282  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1283  // relate Scopes to DeclContexts, and probably eliminate CurContext
1284  // entirely, but we're not there yet.
1285  DeclContext *SavedContext = CurContext;
1286  CurContext = Context.getTranslationUnitDecl();
1287  PushOnScopeChains(New, TUScope);
1288  CurContext = SavedContext;
1289  return New;
1290}
1291
1292/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1293/// same name and scope as a previous declaration 'Old'.  Figure out
1294/// how to resolve this situation, merging decls or emitting
1295/// diagnostics as appropriate. If there was an error, set New to be invalid.
1296///
1297void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1298  // If the new decl is known invalid already, don't bother doing any
1299  // merging checks.
1300  if (New->isInvalidDecl()) return;
1301
1302  // Allow multiple definitions for ObjC built-in typedefs.
1303  // FIXME: Verify the underlying types are equivalent!
1304  if (getLangOptions().ObjC1) {
1305    const IdentifierInfo *TypeID = New->getIdentifier();
1306    switch (TypeID->getLength()) {
1307    default: break;
1308    case 2:
1309      if (!TypeID->isStr("id"))
1310        break;
1311      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
1312      // Install the built-in type for 'id', ignoring the current definition.
1313      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1314      return;
1315    case 5:
1316      if (!TypeID->isStr("Class"))
1317        break;
1318      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
1319      // Install the built-in type for 'Class', ignoring the current definition.
1320      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1321      return;
1322    case 3:
1323      if (!TypeID->isStr("SEL"))
1324        break;
1325      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
1326      // Install the built-in type for 'SEL', ignoring the current definition.
1327      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1328      return;
1329    case 8:
1330      if (!TypeID->isStr("Protocol"))
1331        break;
1332      Context.setObjCProtoType(New->getUnderlyingType());
1333      return;
1334    }
1335    // Fall through - the typedef name was not a builtin type.
1336  }
1337
1338  // Verify the old decl was also a type.
1339  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1340  if (!Old) {
1341    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1342      << New->getDeclName();
1343
1344    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1345    if (OldD->getLocation().isValid())
1346      Diag(OldD->getLocation(), diag::note_previous_definition);
1347
1348    return New->setInvalidDecl();
1349  }
1350
1351  // If the old declaration is invalid, just give up here.
1352  if (Old->isInvalidDecl())
1353    return New->setInvalidDecl();
1354
1355  // Determine the "old" type we'll use for checking and diagnostics.
1356  QualType OldType;
1357  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1358    OldType = OldTypedef->getUnderlyingType();
1359  else
1360    OldType = Context.getTypeDeclType(Old);
1361
1362  // If the typedef types are not identical, reject them in all languages and
1363  // with any extensions enabled.
1364
1365  if (OldType != New->getUnderlyingType() &&
1366      Context.getCanonicalType(OldType) !=
1367      Context.getCanonicalType(New->getUnderlyingType())) {
1368    int Kind = 0;
1369    if (isa<TypeAliasDecl>(Old))
1370      Kind = 1;
1371    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1372      << Kind << New->getUnderlyingType() << OldType;
1373    if (Old->getLocation().isValid())
1374      Diag(Old->getLocation(), diag::note_previous_definition);
1375    return New->setInvalidDecl();
1376  }
1377
1378  // The types match.  Link up the redeclaration chain if the old
1379  // declaration was a typedef.
1380  // FIXME: this is a potential source of weirdness if the type
1381  // spellings don't match exactly.
1382  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1383    New->setPreviousDeclaration(Typedef);
1384
1385  if (getLangOptions().Microsoft)
1386    return;
1387
1388  if (getLangOptions().CPlusPlus) {
1389    // C++ [dcl.typedef]p2:
1390    //   In a given non-class scope, a typedef specifier can be used to
1391    //   redefine the name of any type declared in that scope to refer
1392    //   to the type to which it already refers.
1393    if (!isa<CXXRecordDecl>(CurContext))
1394      return;
1395
1396    // C++0x [dcl.typedef]p4:
1397    //   In a given class scope, a typedef specifier can be used to redefine
1398    //   any class-name declared in that scope that is not also a typedef-name
1399    //   to refer to the type to which it already refers.
1400    //
1401    // This wording came in via DR424, which was a correction to the
1402    // wording in DR56, which accidentally banned code like:
1403    //
1404    //   struct S {
1405    //     typedef struct A { } A;
1406    //   };
1407    //
1408    // in the C++03 standard. We implement the C++0x semantics, which
1409    // allow the above but disallow
1410    //
1411    //   struct S {
1412    //     typedef int I;
1413    //     typedef int I;
1414    //   };
1415    //
1416    // since that was the intent of DR56.
1417    if (!isa<TypedefNameDecl>(Old))
1418      return;
1419
1420    Diag(New->getLocation(), diag::err_redefinition)
1421      << New->getDeclName();
1422    Diag(Old->getLocation(), diag::note_previous_definition);
1423    return New->setInvalidDecl();
1424  }
1425
1426  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1427  // is normally mapped to an error, but can be controlled with
1428  // -Wtypedef-redefinition.  If either the original or the redefinition is
1429  // in a system header, don't emit this for compatibility with GCC.
1430  if (getDiagnostics().getSuppressSystemWarnings() &&
1431      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1432       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1433    return;
1434
1435  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1436    << New->getDeclName();
1437  Diag(Old->getLocation(), diag::note_previous_definition);
1438  return;
1439}
1440
1441/// DeclhasAttr - returns true if decl Declaration already has the target
1442/// attribute.
1443static bool
1444DeclHasAttr(const Decl *D, const Attr *A) {
1445  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1446  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1447    if ((*i)->getKind() == A->getKind()) {
1448      // FIXME: Don't hardcode this check
1449      if (OA && isa<OwnershipAttr>(*i))
1450        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1451      return true;
1452    }
1453
1454  return false;
1455}
1456
1457/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1458static void mergeDeclAttributes(Decl *newDecl, const Decl *oldDecl,
1459                                ASTContext &C, bool mergeDeprecation = true) {
1460  if (!oldDecl->hasAttrs())
1461    return;
1462
1463  bool foundAny = newDecl->hasAttrs();
1464
1465  // Ensure that any moving of objects within the allocated map is done before
1466  // we process them.
1467  if (!foundAny) newDecl->setAttrs(AttrVec());
1468
1469  for (specific_attr_iterator<InheritableAttr>
1470       i = oldDecl->specific_attr_begin<InheritableAttr>(),
1471       e = oldDecl->specific_attr_end<InheritableAttr>(); i != e; ++i) {
1472    // Ignore deprecated and unavailable attributes if requested.
1473    if (!mergeDeprecation &&
1474        (isa<DeprecatedAttr>(*i) || isa<UnavailableAttr>(*i)))
1475      continue;
1476
1477    if (!DeclHasAttr(newDecl, *i)) {
1478      InheritableAttr *newAttr = cast<InheritableAttr>((*i)->clone(C));
1479      newAttr->setInherited(true);
1480      newDecl->addAttr(newAttr);
1481      foundAny = true;
1482    }
1483  }
1484
1485  if (!foundAny) newDecl->dropAttrs();
1486}
1487
1488/// mergeParamDeclAttributes - Copy attributes from the old parameter
1489/// to the new one.
1490static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1491                                     const ParmVarDecl *oldDecl,
1492                                     ASTContext &C) {
1493  if (!oldDecl->hasAttrs())
1494    return;
1495
1496  bool foundAny = newDecl->hasAttrs();
1497
1498  // Ensure that any moving of objects within the allocated map is
1499  // done before we process them.
1500  if (!foundAny) newDecl->setAttrs(AttrVec());
1501
1502  for (specific_attr_iterator<InheritableParamAttr>
1503       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1504       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1505    if (!DeclHasAttr(newDecl, *i)) {
1506      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1507      newAttr->setInherited(true);
1508      newDecl->addAttr(newAttr);
1509      foundAny = true;
1510    }
1511  }
1512
1513  if (!foundAny) newDecl->dropAttrs();
1514}
1515
1516namespace {
1517
1518/// Used in MergeFunctionDecl to keep track of function parameters in
1519/// C.
1520struct GNUCompatibleParamWarning {
1521  ParmVarDecl *OldParm;
1522  ParmVarDecl *NewParm;
1523  QualType PromotedType;
1524};
1525
1526}
1527
1528/// getSpecialMember - get the special member enum for a method.
1529Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1530  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1531    if (Ctor->isDefaultConstructor())
1532      return Sema::CXXDefaultConstructor;
1533
1534    if (Ctor->isCopyConstructor())
1535      return Sema::CXXCopyConstructor;
1536
1537    if (Ctor->isMoveConstructor())
1538      return Sema::CXXMoveConstructor;
1539  } else if (isa<CXXDestructorDecl>(MD)) {
1540    return Sema::CXXDestructor;
1541  } else if (MD->isCopyAssignmentOperator()) {
1542    return Sema::CXXCopyAssignment;
1543  }
1544
1545  return Sema::CXXInvalid;
1546}
1547
1548/// canRedefineFunction - checks if a function can be redefined. Currently,
1549/// only extern inline functions can be redefined, and even then only in
1550/// GNU89 mode.
1551static bool canRedefineFunction(const FunctionDecl *FD,
1552                                const LangOptions& LangOpts) {
1553  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
1554          !LangOpts.CPlusPlus &&
1555          FD->isInlineSpecified() &&
1556          FD->getStorageClass() == SC_Extern);
1557}
1558
1559/// MergeFunctionDecl - We just parsed a function 'New' from
1560/// declarator D which has the same name and scope as a previous
1561/// declaration 'Old'.  Figure out how to resolve this situation,
1562/// merging decls or emitting diagnostics as appropriate.
1563///
1564/// In C++, New and Old must be declarations that are not
1565/// overloaded. Use IsOverload to determine whether New and Old are
1566/// overloaded, and to select the Old declaration that New should be
1567/// merged with.
1568///
1569/// Returns true if there was an error, false otherwise.
1570bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1571  // Verify the old decl was also a function.
1572  FunctionDecl *Old = 0;
1573  if (FunctionTemplateDecl *OldFunctionTemplate
1574        = dyn_cast<FunctionTemplateDecl>(OldD))
1575    Old = OldFunctionTemplate->getTemplatedDecl();
1576  else
1577    Old = dyn_cast<FunctionDecl>(OldD);
1578  if (!Old) {
1579    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1580      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1581      Diag(Shadow->getTargetDecl()->getLocation(),
1582           diag::note_using_decl_target);
1583      Diag(Shadow->getUsingDecl()->getLocation(),
1584           diag::note_using_decl) << 0;
1585      return true;
1586    }
1587
1588    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1589      << New->getDeclName();
1590    Diag(OldD->getLocation(), diag::note_previous_definition);
1591    return true;
1592  }
1593
1594  // Determine whether the previous declaration was a definition,
1595  // implicit declaration, or a declaration.
1596  diag::kind PrevDiag;
1597  if (Old->isThisDeclarationADefinition())
1598    PrevDiag = diag::note_previous_definition;
1599  else if (Old->isImplicit())
1600    PrevDiag = diag::note_previous_implicit_declaration;
1601  else
1602    PrevDiag = diag::note_previous_declaration;
1603
1604  QualType OldQType = Context.getCanonicalType(Old->getType());
1605  QualType NewQType = Context.getCanonicalType(New->getType());
1606
1607  // Don't complain about this if we're in GNU89 mode and the old function
1608  // is an extern inline function.
1609  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1610      New->getStorageClass() == SC_Static &&
1611      Old->getStorageClass() != SC_Static &&
1612      !canRedefineFunction(Old, getLangOptions())) {
1613    if (getLangOptions().Microsoft) {
1614      Diag(New->getLocation(), diag::warn_static_non_static) << New;
1615      Diag(Old->getLocation(), PrevDiag);
1616    } else {
1617      Diag(New->getLocation(), diag::err_static_non_static) << New;
1618      Diag(Old->getLocation(), PrevDiag);
1619      return true;
1620    }
1621  }
1622
1623  // If a function is first declared with a calling convention, but is
1624  // later declared or defined without one, the second decl assumes the
1625  // calling convention of the first.
1626  //
1627  // For the new decl, we have to look at the NON-canonical type to tell the
1628  // difference between a function that really doesn't have a calling
1629  // convention and one that is declared cdecl. That's because in
1630  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1631  // because it is the default calling convention.
1632  //
1633  // Note also that we DO NOT return at this point, because we still have
1634  // other tests to run.
1635  const FunctionType *OldType = cast<FunctionType>(OldQType);
1636  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1637  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1638  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1639  bool RequiresAdjustment = false;
1640  if (OldTypeInfo.getCC() != CC_Default &&
1641      NewTypeInfo.getCC() == CC_Default) {
1642    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1643    RequiresAdjustment = true;
1644  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1645                                     NewTypeInfo.getCC())) {
1646    // Calling conventions really aren't compatible, so complain.
1647    Diag(New->getLocation(), diag::err_cconv_change)
1648      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1649      << (OldTypeInfo.getCC() == CC_Default)
1650      << (OldTypeInfo.getCC() == CC_Default ? "" :
1651          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1652    Diag(Old->getLocation(), diag::note_previous_declaration);
1653    return true;
1654  }
1655
1656  // FIXME: diagnose the other way around?
1657  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1658    NewTypeInfo = NewTypeInfo.withNoReturn(true);
1659    RequiresAdjustment = true;
1660  }
1661
1662  // Merge regparm attribute.
1663  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
1664      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1665    if (NewTypeInfo.getHasRegParm()) {
1666      Diag(New->getLocation(), diag::err_regparm_mismatch)
1667        << NewType->getRegParmType()
1668        << OldType->getRegParmType();
1669      Diag(Old->getLocation(), diag::note_previous_declaration);
1670      return true;
1671    }
1672
1673    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1674    RequiresAdjustment = true;
1675  }
1676
1677  if (RequiresAdjustment) {
1678    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1679    New->setType(QualType(NewType, 0));
1680    NewQType = Context.getCanonicalType(New->getType());
1681  }
1682
1683  if (getLangOptions().CPlusPlus) {
1684    // (C++98 13.1p2):
1685    //   Certain function declarations cannot be overloaded:
1686    //     -- Function declarations that differ only in the return type
1687    //        cannot be overloaded.
1688    QualType OldReturnType = OldType->getResultType();
1689    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1690    QualType ResQT;
1691    if (OldReturnType != NewReturnType) {
1692      if (NewReturnType->isObjCObjectPointerType()
1693          && OldReturnType->isObjCObjectPointerType())
1694        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1695      if (ResQT.isNull()) {
1696        if (New->isCXXClassMember() && New->isOutOfLine())
1697          Diag(New->getLocation(),
1698               diag::err_member_def_does_not_match_ret_type) << New;
1699        else
1700          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1701        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1702        return true;
1703      }
1704      else
1705        NewQType = ResQT;
1706    }
1707
1708    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1709    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1710    if (OldMethod && NewMethod) {
1711      // Preserve triviality.
1712      NewMethod->setTrivial(OldMethod->isTrivial());
1713
1714      bool isFriend = NewMethod->getFriendObjectKind();
1715
1716      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1717        //    -- Member function declarations with the same name and the
1718        //       same parameter types cannot be overloaded if any of them
1719        //       is a static member function declaration.
1720        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1721          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1722          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1723          return true;
1724        }
1725
1726        // C++ [class.mem]p1:
1727        //   [...] A member shall not be declared twice in the
1728        //   member-specification, except that a nested class or member
1729        //   class template can be declared and then later defined.
1730        unsigned NewDiag;
1731        if (isa<CXXConstructorDecl>(OldMethod))
1732          NewDiag = diag::err_constructor_redeclared;
1733        else if (isa<CXXDestructorDecl>(NewMethod))
1734          NewDiag = diag::err_destructor_redeclared;
1735        else if (isa<CXXConversionDecl>(NewMethod))
1736          NewDiag = diag::err_conv_function_redeclared;
1737        else
1738          NewDiag = diag::err_member_redeclared;
1739
1740        Diag(New->getLocation(), NewDiag);
1741        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1742
1743      // Complain if this is an explicit declaration of a special
1744      // member that was initially declared implicitly.
1745      //
1746      // As an exception, it's okay to befriend such methods in order
1747      // to permit the implicit constructor/destructor/operator calls.
1748      } else if (OldMethod->isImplicit()) {
1749        if (isFriend) {
1750          NewMethod->setImplicit();
1751        } else {
1752          Diag(NewMethod->getLocation(),
1753               diag::err_definition_of_implicitly_declared_member)
1754            << New << getSpecialMember(OldMethod);
1755          return true;
1756        }
1757      } else if (OldMethod->isExplicitlyDefaulted()) {
1758        Diag(NewMethod->getLocation(),
1759             diag::err_definition_of_explicitly_defaulted_member)
1760          << getSpecialMember(OldMethod);
1761        return true;
1762      }
1763    }
1764
1765    // (C++98 8.3.5p3):
1766    //   All declarations for a function shall agree exactly in both the
1767    //   return type and the parameter-type-list.
1768    // We also want to respect all the extended bits except noreturn.
1769
1770    // noreturn should now match unless the old type info didn't have it.
1771    QualType OldQTypeForComparison = OldQType;
1772    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
1773      assert(OldQType == QualType(OldType, 0));
1774      const FunctionType *OldTypeForComparison
1775        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
1776      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
1777      assert(OldQTypeForComparison.isCanonical());
1778    }
1779
1780    if (OldQTypeForComparison == NewQType)
1781      return MergeCompatibleFunctionDecls(New, Old);
1782
1783    // Fall through for conflicting redeclarations and redefinitions.
1784  }
1785
1786  // C: Function types need to be compatible, not identical. This handles
1787  // duplicate function decls like "void f(int); void f(enum X);" properly.
1788  if (!getLangOptions().CPlusPlus &&
1789      Context.typesAreCompatible(OldQType, NewQType)) {
1790    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1791    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1792    const FunctionProtoType *OldProto = 0;
1793    if (isa<FunctionNoProtoType>(NewFuncType) &&
1794        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1795      // The old declaration provided a function prototype, but the
1796      // new declaration does not. Merge in the prototype.
1797      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1798      SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1799                                                 OldProto->arg_type_end());
1800      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1801                                         ParamTypes.data(), ParamTypes.size(),
1802                                         OldProto->getExtProtoInfo());
1803      New->setType(NewQType);
1804      New->setHasInheritedPrototype();
1805
1806      // Synthesize a parameter for each argument type.
1807      SmallVector<ParmVarDecl*, 16> Params;
1808      for (FunctionProtoType::arg_type_iterator
1809             ParamType = OldProto->arg_type_begin(),
1810             ParamEnd = OldProto->arg_type_end();
1811           ParamType != ParamEnd; ++ParamType) {
1812        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1813                                                 SourceLocation(),
1814                                                 SourceLocation(), 0,
1815                                                 *ParamType, /*TInfo=*/0,
1816                                                 SC_None, SC_None,
1817                                                 0);
1818        Param->setScopeInfo(0, Params.size());
1819        Param->setImplicit();
1820        Params.push_back(Param);
1821      }
1822
1823      New->setParams(Params.data(), Params.size());
1824    }
1825
1826    return MergeCompatibleFunctionDecls(New, Old);
1827  }
1828
1829  // GNU C permits a K&R definition to follow a prototype declaration
1830  // if the declared types of the parameters in the K&R definition
1831  // match the types in the prototype declaration, even when the
1832  // promoted types of the parameters from the K&R definition differ
1833  // from the types in the prototype. GCC then keeps the types from
1834  // the prototype.
1835  //
1836  // If a variadic prototype is followed by a non-variadic K&R definition,
1837  // the K&R definition becomes variadic.  This is sort of an edge case, but
1838  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1839  // C99 6.9.1p8.
1840  if (!getLangOptions().CPlusPlus &&
1841      Old->hasPrototype() && !New->hasPrototype() &&
1842      New->getType()->getAs<FunctionProtoType>() &&
1843      Old->getNumParams() == New->getNumParams()) {
1844    SmallVector<QualType, 16> ArgTypes;
1845    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1846    const FunctionProtoType *OldProto
1847      = Old->getType()->getAs<FunctionProtoType>();
1848    const FunctionProtoType *NewProto
1849      = New->getType()->getAs<FunctionProtoType>();
1850
1851    // Determine whether this is the GNU C extension.
1852    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1853                                               NewProto->getResultType());
1854    bool LooseCompatible = !MergedReturn.isNull();
1855    for (unsigned Idx = 0, End = Old->getNumParams();
1856         LooseCompatible && Idx != End; ++Idx) {
1857      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1858      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1859      if (Context.typesAreCompatible(OldParm->getType(),
1860                                     NewProto->getArgType(Idx))) {
1861        ArgTypes.push_back(NewParm->getType());
1862      } else if (Context.typesAreCompatible(OldParm->getType(),
1863                                            NewParm->getType(),
1864                                            /*CompareUnqualified=*/true)) {
1865        GNUCompatibleParamWarning Warn
1866          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1867        Warnings.push_back(Warn);
1868        ArgTypes.push_back(NewParm->getType());
1869      } else
1870        LooseCompatible = false;
1871    }
1872
1873    if (LooseCompatible) {
1874      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1875        Diag(Warnings[Warn].NewParm->getLocation(),
1876             diag::ext_param_promoted_not_compatible_with_prototype)
1877          << Warnings[Warn].PromotedType
1878          << Warnings[Warn].OldParm->getType();
1879        if (Warnings[Warn].OldParm->getLocation().isValid())
1880          Diag(Warnings[Warn].OldParm->getLocation(),
1881               diag::note_previous_declaration);
1882      }
1883
1884      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1885                                           ArgTypes.size(),
1886                                           OldProto->getExtProtoInfo()));
1887      return MergeCompatibleFunctionDecls(New, Old);
1888    }
1889
1890    // Fall through to diagnose conflicting types.
1891  }
1892
1893  // A function that has already been declared has been redeclared or defined
1894  // with a different type- show appropriate diagnostic
1895  if (unsigned BuiltinID = Old->getBuiltinID()) {
1896    // The user has declared a builtin function with an incompatible
1897    // signature.
1898    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1899      // The function the user is redeclaring is a library-defined
1900      // function like 'malloc' or 'printf'. Warn about the
1901      // redeclaration, then pretend that we don't know about this
1902      // library built-in.
1903      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1904      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1905        << Old << Old->getType();
1906      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1907      Old->setInvalidDecl();
1908      return false;
1909    }
1910
1911    PrevDiag = diag::note_previous_builtin_declaration;
1912  }
1913
1914  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1915  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1916  return true;
1917}
1918
1919/// \brief Completes the merge of two function declarations that are
1920/// known to be compatible.
1921///
1922/// This routine handles the merging of attributes and other
1923/// properties of function declarations form the old declaration to
1924/// the new declaration, once we know that New is in fact a
1925/// redeclaration of Old.
1926///
1927/// \returns false
1928bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1929  // Merge the attributes
1930  mergeDeclAttributes(New, Old, Context);
1931
1932  // Merge the storage class.
1933  if (Old->getStorageClass() != SC_Extern &&
1934      Old->getStorageClass() != SC_None)
1935    New->setStorageClass(Old->getStorageClass());
1936
1937  // Merge "pure" flag.
1938  if (Old->isPure())
1939    New->setPure();
1940
1941  // Merge attributes from the parameters.  These can mismatch with K&R
1942  // declarations.
1943  if (New->getNumParams() == Old->getNumParams())
1944    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
1945      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
1946                               Context);
1947
1948  if (getLangOptions().CPlusPlus)
1949    return MergeCXXFunctionDecl(New, Old);
1950
1951  return false;
1952}
1953
1954
1955void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
1956                                const ObjCMethodDecl *oldMethod) {
1957  // We don't want to merge unavailable and deprecated attributes
1958  // except from interface to implementation.
1959  bool mergeDeprecation = isa<ObjCImplDecl>(newMethod->getDeclContext());
1960
1961  // Merge the attributes.
1962  mergeDeclAttributes(newMethod, oldMethod, Context, mergeDeprecation);
1963
1964  // Merge attributes from the parameters.
1965  for (ObjCMethodDecl::param_iterator oi = oldMethod->param_begin(),
1966         ni = newMethod->param_begin(), ne = newMethod->param_end();
1967       ni != ne; ++ni, ++oi)
1968    mergeParamDeclAttributes(*ni, *oi, Context);
1969
1970  CheckObjCMethodOverride(newMethod, oldMethod, true);
1971}
1972
1973/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
1974/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
1975/// emitting diagnostics as appropriate.
1976///
1977/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
1978/// to here in AddInitializerToDecl and AddCXXDirectInitializerToDecl. We can't
1979/// check them before the initializer is attached.
1980///
1981void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
1982  if (New->isInvalidDecl() || Old->isInvalidDecl())
1983    return;
1984
1985  QualType MergedT;
1986  if (getLangOptions().CPlusPlus) {
1987    AutoType *AT = New->getType()->getContainedAutoType();
1988    if (AT && !AT->isDeduced()) {
1989      // We don't know what the new type is until the initializer is attached.
1990      return;
1991    } else if (Context.hasSameType(New->getType(), Old->getType())) {
1992      // These could still be something that needs exception specs checked.
1993      return MergeVarDeclExceptionSpecs(New, Old);
1994    }
1995    // C++ [basic.link]p10:
1996    //   [...] the types specified by all declarations referring to a given
1997    //   object or function shall be identical, except that declarations for an
1998    //   array object can specify array types that differ by the presence or
1999    //   absence of a major array bound (8.3.4).
2000    else if (Old->getType()->isIncompleteArrayType() &&
2001             New->getType()->isArrayType()) {
2002      CanQual<ArrayType> OldArray
2003        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2004      CanQual<ArrayType> NewArray
2005        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2006      if (OldArray->getElementType() == NewArray->getElementType())
2007        MergedT = New->getType();
2008    } else if (Old->getType()->isArrayType() &&
2009             New->getType()->isIncompleteArrayType()) {
2010      CanQual<ArrayType> OldArray
2011        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2012      CanQual<ArrayType> NewArray
2013        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2014      if (OldArray->getElementType() == NewArray->getElementType())
2015        MergedT = Old->getType();
2016    } else if (New->getType()->isObjCObjectPointerType()
2017               && Old->getType()->isObjCObjectPointerType()) {
2018        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2019                                                        Old->getType());
2020    }
2021  } else {
2022    MergedT = Context.mergeTypes(New->getType(), Old->getType());
2023  }
2024  if (MergedT.isNull()) {
2025    Diag(New->getLocation(), diag::err_redefinition_different_type)
2026      << New->getDeclName();
2027    Diag(Old->getLocation(), diag::note_previous_definition);
2028    return New->setInvalidDecl();
2029  }
2030  New->setType(MergedT);
2031}
2032
2033/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2034/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2035/// situation, merging decls or emitting diagnostics as appropriate.
2036///
2037/// Tentative definition rules (C99 6.9.2p2) are checked by
2038/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2039/// definitions here, since the initializer hasn't been attached.
2040///
2041void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2042  // If the new decl is already invalid, don't do any other checking.
2043  if (New->isInvalidDecl())
2044    return;
2045
2046  // Verify the old decl was also a variable.
2047  VarDecl *Old = 0;
2048  if (!Previous.isSingleResult() ||
2049      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2050    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2051      << New->getDeclName();
2052    Diag(Previous.getRepresentativeDecl()->getLocation(),
2053         diag::note_previous_definition);
2054    return New->setInvalidDecl();
2055  }
2056
2057  // C++ [class.mem]p1:
2058  //   A member shall not be declared twice in the member-specification [...]
2059  //
2060  // Here, we need only consider static data members.
2061  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2062    Diag(New->getLocation(), diag::err_duplicate_member)
2063      << New->getIdentifier();
2064    Diag(Old->getLocation(), diag::note_previous_declaration);
2065    New->setInvalidDecl();
2066  }
2067
2068  mergeDeclAttributes(New, Old, Context);
2069  // Warn if an already-declared variable is made a weak_import in a subsequent declaration
2070  if (New->getAttr<WeakImportAttr>() &&
2071      Old->getStorageClass() == SC_None &&
2072      !Old->getAttr<WeakImportAttr>()) {
2073    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2074    Diag(Old->getLocation(), diag::note_previous_definition);
2075    // Remove weak_import attribute on new declaration.
2076    New->dropAttr<WeakImportAttr>();
2077  }
2078
2079  // Merge the types.
2080  MergeVarDeclTypes(New, Old);
2081  if (New->isInvalidDecl())
2082    return;
2083
2084  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2085  if (New->getStorageClass() == SC_Static &&
2086      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2087    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2088    Diag(Old->getLocation(), diag::note_previous_definition);
2089    return New->setInvalidDecl();
2090  }
2091  // C99 6.2.2p4:
2092  //   For an identifier declared with the storage-class specifier
2093  //   extern in a scope in which a prior declaration of that
2094  //   identifier is visible,23) if the prior declaration specifies
2095  //   internal or external linkage, the linkage of the identifier at
2096  //   the later declaration is the same as the linkage specified at
2097  //   the prior declaration. If no prior declaration is visible, or
2098  //   if the prior declaration specifies no linkage, then the
2099  //   identifier has external linkage.
2100  if (New->hasExternalStorage() && Old->hasLinkage())
2101    /* Okay */;
2102  else if (New->getStorageClass() != SC_Static &&
2103           Old->getStorageClass() == SC_Static) {
2104    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2105    Diag(Old->getLocation(), diag::note_previous_definition);
2106    return New->setInvalidDecl();
2107  }
2108
2109  // Check if extern is followed by non-extern and vice-versa.
2110  if (New->hasExternalStorage() &&
2111      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2112    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2113    Diag(Old->getLocation(), diag::note_previous_definition);
2114    return New->setInvalidDecl();
2115  }
2116  if (Old->hasExternalStorage() &&
2117      !New->hasLinkage() && New->isLocalVarDecl()) {
2118    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2119    Diag(Old->getLocation(), diag::note_previous_definition);
2120    return New->setInvalidDecl();
2121  }
2122
2123  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2124
2125  // FIXME: The test for external storage here seems wrong? We still
2126  // need to check for mismatches.
2127  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2128      // Don't complain about out-of-line definitions of static members.
2129      !(Old->getLexicalDeclContext()->isRecord() &&
2130        !New->getLexicalDeclContext()->isRecord())) {
2131    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2132    Diag(Old->getLocation(), diag::note_previous_definition);
2133    return New->setInvalidDecl();
2134  }
2135
2136  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2137    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2138    Diag(Old->getLocation(), diag::note_previous_definition);
2139  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2140    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2141    Diag(Old->getLocation(), diag::note_previous_definition);
2142  }
2143
2144  // C++ doesn't have tentative definitions, so go right ahead and check here.
2145  const VarDecl *Def;
2146  if (getLangOptions().CPlusPlus &&
2147      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2148      (Def = Old->getDefinition())) {
2149    Diag(New->getLocation(), diag::err_redefinition)
2150      << New->getDeclName();
2151    Diag(Def->getLocation(), diag::note_previous_definition);
2152    New->setInvalidDecl();
2153    return;
2154  }
2155  // c99 6.2.2 P4.
2156  // For an identifier declared with the storage-class specifier extern in a
2157  // scope in which a prior declaration of that identifier is visible, if
2158  // the prior declaration specifies internal or external linkage, the linkage
2159  // of the identifier at the later declaration is the same as the linkage
2160  // specified at the prior declaration.
2161  // FIXME. revisit this code.
2162  if (New->hasExternalStorage() &&
2163      Old->getLinkage() == InternalLinkage &&
2164      New->getDeclContext() == Old->getDeclContext())
2165    New->setStorageClass(Old->getStorageClass());
2166
2167  // Keep a chain of previous declarations.
2168  New->setPreviousDeclaration(Old);
2169
2170  // Inherit access appropriately.
2171  New->setAccess(Old->getAccess());
2172}
2173
2174/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2175/// no declarator (e.g. "struct foo;") is parsed.
2176Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2177                                       DeclSpec &DS) {
2178  return ParsedFreeStandingDeclSpec(S, AS, DS,
2179                                    MultiTemplateParamsArg(*this, 0, 0));
2180}
2181
2182/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2183/// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2184/// parameters to cope with template friend declarations.
2185Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2186                                       DeclSpec &DS,
2187                                       MultiTemplateParamsArg TemplateParams) {
2188  Decl *TagD = 0;
2189  TagDecl *Tag = 0;
2190  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2191      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2192      DS.getTypeSpecType() == DeclSpec::TST_union ||
2193      DS.getTypeSpecType() == DeclSpec::TST_enum) {
2194    TagD = DS.getRepAsDecl();
2195
2196    if (!TagD) // We probably had an error
2197      return 0;
2198
2199    // Note that the above type specs guarantee that the
2200    // type rep is a Decl, whereas in many of the others
2201    // it's a Type.
2202    Tag = dyn_cast<TagDecl>(TagD);
2203  }
2204
2205  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2206    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2207    // or incomplete types shall not be restrict-qualified."
2208    if (TypeQuals & DeclSpec::TQ_restrict)
2209      Diag(DS.getRestrictSpecLoc(),
2210           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2211           << DS.getSourceRange();
2212  }
2213
2214  if (DS.isFriendSpecified()) {
2215    // If we're dealing with a decl but not a TagDecl, assume that
2216    // whatever routines created it handled the friendship aspect.
2217    if (TagD && !Tag)
2218      return 0;
2219    return ActOnFriendTypeDecl(S, DS, TemplateParams);
2220  }
2221
2222  // Track whether we warned about the fact that there aren't any
2223  // declarators.
2224  bool emittedWarning = false;
2225
2226  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2227    ProcessDeclAttributeList(S, Record, DS.getAttributes().getList());
2228
2229    if (!Record->getDeclName() && Record->isDefinition() &&
2230        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2231      if (getLangOptions().CPlusPlus ||
2232          Record->getDeclContext()->isRecord())
2233        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2234
2235      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2236        << DS.getSourceRange();
2237      emittedWarning = true;
2238    }
2239  }
2240
2241  // Check for Microsoft C extension: anonymous struct.
2242  if (getLangOptions().Microsoft && !getLangOptions().CPlusPlus &&
2243      CurContext->isRecord() &&
2244      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2245    // Handle 2 kinds of anonymous struct:
2246    //   struct STRUCT;
2247    // and
2248    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
2249    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2250    if ((Record && Record->getDeclName() && !Record->isDefinition()) ||
2251        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2252         DS.getRepAsType().get()->isStructureType())) {
2253      Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
2254        << DS.getSourceRange();
2255      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2256    }
2257  }
2258
2259  if (getLangOptions().CPlusPlus &&
2260      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2261    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2262      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2263          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2264        Diag(Enum->getLocation(), diag::ext_no_declarators)
2265          << DS.getSourceRange();
2266        emittedWarning = true;
2267      }
2268
2269  // Skip all the checks below if we have a type error.
2270  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2271
2272  if (!DS.isMissingDeclaratorOk()) {
2273    // Warn about typedefs of enums without names, since this is an
2274    // extension in both Microsoft and GNU.
2275    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2276        Tag && isa<EnumDecl>(Tag)) {
2277      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
2278        << DS.getSourceRange();
2279      return Tag;
2280    }
2281
2282    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2283      << DS.getSourceRange();
2284    emittedWarning = true;
2285  }
2286
2287  // We're going to complain about a bunch of spurious specifiers;
2288  // only do this if we're declaring a tag, because otherwise we
2289  // should be getting diag::ext_no_declarators.
2290  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2291    return TagD;
2292
2293  // Note that a linkage-specification sets a storage class, but
2294  // 'extern "C" struct foo;' is actually valid and not theoretically
2295  // useless.
2296  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2297    if (!DS.isExternInLinkageSpec())
2298      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2299        << DeclSpec::getSpecifierName(scs);
2300
2301  if (DS.isThreadSpecified())
2302    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2303  if (DS.getTypeQualifiers()) {
2304    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2305      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2306    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2307      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2308    // Restrict is covered above.
2309  }
2310  if (DS.isInlineSpecified())
2311    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2312  if (DS.isVirtualSpecified())
2313    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2314  if (DS.isExplicitSpecified())
2315    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2316
2317  // FIXME: Warn on useless attributes
2318
2319  return TagD;
2320}
2321
2322/// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec.
2323/// builds a statement for it and returns it so it is evaluated.
2324StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) {
2325  StmtResult R;
2326  if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) {
2327    Expr *Exp = DS.getRepAsExpr();
2328    QualType Ty = Exp->getType();
2329    if (Ty->isPointerType()) {
2330      do
2331        Ty = Ty->getAs<PointerType>()->getPointeeType();
2332      while (Ty->isPointerType());
2333    }
2334    if (Ty->isVariableArrayType()) {
2335      R = ActOnExprStmt(MakeFullExpr(Exp));
2336    }
2337  }
2338  return R;
2339}
2340
2341/// We are trying to inject an anonymous member into the given scope;
2342/// check if there's an existing declaration that can't be overloaded.
2343///
2344/// \return true if this is a forbidden redeclaration
2345static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2346                                         Scope *S,
2347                                         DeclContext *Owner,
2348                                         DeclarationName Name,
2349                                         SourceLocation NameLoc,
2350                                         unsigned diagnostic) {
2351  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2352                 Sema::ForRedeclaration);
2353  if (!SemaRef.LookupName(R, S)) return false;
2354
2355  if (R.getAsSingle<TagDecl>())
2356    return false;
2357
2358  // Pick a representative declaration.
2359  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2360  assert(PrevDecl && "Expected a non-null Decl");
2361
2362  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2363    return false;
2364
2365  SemaRef.Diag(NameLoc, diagnostic) << Name;
2366  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2367
2368  return true;
2369}
2370
2371/// InjectAnonymousStructOrUnionMembers - Inject the members of the
2372/// anonymous struct or union AnonRecord into the owning context Owner
2373/// and scope S. This routine will be invoked just after we realize
2374/// that an unnamed union or struct is actually an anonymous union or
2375/// struct, e.g.,
2376///
2377/// @code
2378/// union {
2379///   int i;
2380///   float f;
2381/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
2382///    // f into the surrounding scope.x
2383/// @endcode
2384///
2385/// This routine is recursive, injecting the names of nested anonymous
2386/// structs/unions into the owning context and scope as well.
2387static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2388                                                DeclContext *Owner,
2389                                                RecordDecl *AnonRecord,
2390                                                AccessSpecifier AS,
2391                              SmallVector<NamedDecl*, 2> &Chaining,
2392                                                      bool MSAnonStruct) {
2393  unsigned diagKind
2394    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2395                            : diag::err_anonymous_struct_member_redecl;
2396
2397  bool Invalid = false;
2398
2399  // Look every FieldDecl and IndirectFieldDecl with a name.
2400  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2401                               DEnd = AnonRecord->decls_end();
2402       D != DEnd; ++D) {
2403    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2404        cast<NamedDecl>(*D)->getDeclName()) {
2405      ValueDecl *VD = cast<ValueDecl>(*D);
2406      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2407                                       VD->getLocation(), diagKind)) {
2408        // C++ [class.union]p2:
2409        //   The names of the members of an anonymous union shall be
2410        //   distinct from the names of any other entity in the
2411        //   scope in which the anonymous union is declared.
2412        Invalid = true;
2413      } else {
2414        // C++ [class.union]p2:
2415        //   For the purpose of name lookup, after the anonymous union
2416        //   definition, the members of the anonymous union are
2417        //   considered to have been defined in the scope in which the
2418        //   anonymous union is declared.
2419        unsigned OldChainingSize = Chaining.size();
2420        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2421          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2422               PE = IF->chain_end(); PI != PE; ++PI)
2423            Chaining.push_back(*PI);
2424        else
2425          Chaining.push_back(VD);
2426
2427        assert(Chaining.size() >= 2);
2428        NamedDecl **NamedChain =
2429          new (SemaRef.Context)NamedDecl*[Chaining.size()];
2430        for (unsigned i = 0; i < Chaining.size(); i++)
2431          NamedChain[i] = Chaining[i];
2432
2433        IndirectFieldDecl* IndirectField =
2434          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2435                                    VD->getIdentifier(), VD->getType(),
2436                                    NamedChain, Chaining.size());
2437
2438        IndirectField->setAccess(AS);
2439        IndirectField->setImplicit();
2440        SemaRef.PushOnScopeChains(IndirectField, S);
2441
2442        // That includes picking up the appropriate access specifier.
2443        if (AS != AS_none) IndirectField->setAccess(AS);
2444
2445        Chaining.resize(OldChainingSize);
2446      }
2447    }
2448  }
2449
2450  return Invalid;
2451}
2452
2453/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2454/// a VarDecl::StorageClass. Any error reporting is up to the caller:
2455/// illegal input values are mapped to SC_None.
2456static StorageClass
2457StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2458  switch (StorageClassSpec) {
2459  case DeclSpec::SCS_unspecified:    return SC_None;
2460  case DeclSpec::SCS_extern:         return SC_Extern;
2461  case DeclSpec::SCS_static:         return SC_Static;
2462  case DeclSpec::SCS_auto:           return SC_Auto;
2463  case DeclSpec::SCS_register:       return SC_Register;
2464  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2465    // Illegal SCSs map to None: error reporting is up to the caller.
2466  case DeclSpec::SCS_mutable:        // Fall through.
2467  case DeclSpec::SCS_typedef:        return SC_None;
2468  }
2469  llvm_unreachable("unknown storage class specifier");
2470}
2471
2472/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2473/// a StorageClass. Any error reporting is up to the caller:
2474/// illegal input values are mapped to SC_None.
2475static StorageClass
2476StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2477  switch (StorageClassSpec) {
2478  case DeclSpec::SCS_unspecified:    return SC_None;
2479  case DeclSpec::SCS_extern:         return SC_Extern;
2480  case DeclSpec::SCS_static:         return SC_Static;
2481  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2482    // Illegal SCSs map to None: error reporting is up to the caller.
2483  case DeclSpec::SCS_auto:           // Fall through.
2484  case DeclSpec::SCS_mutable:        // Fall through.
2485  case DeclSpec::SCS_register:       // Fall through.
2486  case DeclSpec::SCS_typedef:        return SC_None;
2487  }
2488  llvm_unreachable("unknown storage class specifier");
2489}
2490
2491/// BuildAnonymousStructOrUnion - Handle the declaration of an
2492/// anonymous structure or union. Anonymous unions are a C++ feature
2493/// (C++ [class.union]) and a GNU C extension; anonymous structures
2494/// are a GNU C and GNU C++ extension.
2495Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2496                                             AccessSpecifier AS,
2497                                             RecordDecl *Record) {
2498  DeclContext *Owner = Record->getDeclContext();
2499
2500  // Diagnose whether this anonymous struct/union is an extension.
2501  if (Record->isUnion() && !getLangOptions().CPlusPlus)
2502    Diag(Record->getLocation(), diag::ext_anonymous_union);
2503  else if (!Record->isUnion())
2504    Diag(Record->getLocation(), diag::ext_anonymous_struct);
2505
2506  // C and C++ require different kinds of checks for anonymous
2507  // structs/unions.
2508  bool Invalid = false;
2509  if (getLangOptions().CPlusPlus) {
2510    const char* PrevSpec = 0;
2511    unsigned DiagID;
2512    // C++ [class.union]p3:
2513    //   Anonymous unions declared in a named namespace or in the
2514    //   global namespace shall be declared static.
2515    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2516        (isa<TranslationUnitDecl>(Owner) ||
2517         (isa<NamespaceDecl>(Owner) &&
2518          cast<NamespaceDecl>(Owner)->getDeclName()))) {
2519      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
2520      Invalid = true;
2521
2522      // Recover by adding 'static'.
2523      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
2524                             PrevSpec, DiagID, getLangOptions());
2525    }
2526    // C++ [class.union]p3:
2527    //   A storage class is not allowed in a declaration of an
2528    //   anonymous union in a class scope.
2529    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2530             isa<RecordDecl>(Owner)) {
2531      Diag(DS.getStorageClassSpecLoc(),
2532           diag::err_anonymous_union_with_storage_spec);
2533      Invalid = true;
2534
2535      // Recover by removing the storage specifier.
2536      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
2537                             PrevSpec, DiagID, getLangOptions());
2538    }
2539
2540    // Ignore const/volatile/restrict qualifiers.
2541    if (DS.getTypeQualifiers()) {
2542      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2543        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2544          << Record->isUnion() << 0
2545          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
2546      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2547        Diag(DS.getVolatileSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2548          << Record->isUnion() << 1
2549          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
2550      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
2551        Diag(DS.getRestrictSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2552          << Record->isUnion() << 2
2553          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
2554
2555      DS.ClearTypeQualifiers();
2556    }
2557
2558    // C++ [class.union]p2:
2559    //   The member-specification of an anonymous union shall only
2560    //   define non-static data members. [Note: nested types and
2561    //   functions cannot be declared within an anonymous union. ]
2562    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
2563                                 MemEnd = Record->decls_end();
2564         Mem != MemEnd; ++Mem) {
2565      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
2566        // C++ [class.union]p3:
2567        //   An anonymous union shall not have private or protected
2568        //   members (clause 11).
2569        assert(FD->getAccess() != AS_none);
2570        if (FD->getAccess() != AS_public) {
2571          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
2572            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
2573          Invalid = true;
2574        }
2575
2576        // C++ [class.union]p1
2577        //   An object of a class with a non-trivial constructor, a non-trivial
2578        //   copy constructor, a non-trivial destructor, or a non-trivial copy
2579        //   assignment operator cannot be a member of a union, nor can an
2580        //   array of such objects.
2581        if (!getLangOptions().CPlusPlus0x && CheckNontrivialField(FD))
2582          Invalid = true;
2583      } else if ((*Mem)->isImplicit()) {
2584        // Any implicit members are fine.
2585      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
2586        // This is a type that showed up in an
2587        // elaborated-type-specifier inside the anonymous struct or
2588        // union, but which actually declares a type outside of the
2589        // anonymous struct or union. It's okay.
2590      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
2591        if (!MemRecord->isAnonymousStructOrUnion() &&
2592            MemRecord->getDeclName()) {
2593          // Visual C++ allows type definition in anonymous struct or union.
2594          if (getLangOptions().Microsoft)
2595            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
2596              << (int)Record->isUnion();
2597          else {
2598            // This is a nested type declaration.
2599            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
2600              << (int)Record->isUnion();
2601            Invalid = true;
2602          }
2603        }
2604      } else if (isa<AccessSpecDecl>(*Mem)) {
2605        // Any access specifier is fine.
2606      } else {
2607        // We have something that isn't a non-static data
2608        // member. Complain about it.
2609        unsigned DK = diag::err_anonymous_record_bad_member;
2610        if (isa<TypeDecl>(*Mem))
2611          DK = diag::err_anonymous_record_with_type;
2612        else if (isa<FunctionDecl>(*Mem))
2613          DK = diag::err_anonymous_record_with_function;
2614        else if (isa<VarDecl>(*Mem))
2615          DK = diag::err_anonymous_record_with_static;
2616
2617        // Visual C++ allows type definition in anonymous struct or union.
2618        if (getLangOptions().Microsoft &&
2619            DK == diag::err_anonymous_record_with_type)
2620          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
2621            << (int)Record->isUnion();
2622        else {
2623          Diag((*Mem)->getLocation(), DK)
2624              << (int)Record->isUnion();
2625          Invalid = true;
2626        }
2627      }
2628    }
2629  }
2630
2631  if (!Record->isUnion() && !Owner->isRecord()) {
2632    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
2633      << (int)getLangOptions().CPlusPlus;
2634    Invalid = true;
2635  }
2636
2637  // Mock up a declarator.
2638  Declarator Dc(DS, Declarator::MemberContext);
2639  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2640  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
2641
2642  // Create a declaration for this anonymous struct/union.
2643  NamedDecl *Anon = 0;
2644  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2645    Anon = FieldDecl::Create(Context, OwningClass,
2646                             DS.getSourceRange().getBegin(),
2647                             Record->getLocation(),
2648                             /*IdentifierInfo=*/0,
2649                             Context.getTypeDeclType(Record),
2650                             TInfo,
2651                             /*BitWidth=*/0, /*Mutable=*/false,
2652                             /*HasInit=*/false);
2653    Anon->setAccess(AS);
2654    if (getLangOptions().CPlusPlus)
2655      FieldCollector->Add(cast<FieldDecl>(Anon));
2656  } else {
2657    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2658    assert(SCSpec != DeclSpec::SCS_typedef &&
2659           "Parser allowed 'typedef' as storage class VarDecl.");
2660    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2661    if (SCSpec == DeclSpec::SCS_mutable) {
2662      // mutable can only appear on non-static class members, so it's always
2663      // an error here
2664      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2665      Invalid = true;
2666      SC = SC_None;
2667    }
2668    SCSpec = DS.getStorageClassSpecAsWritten();
2669    VarDecl::StorageClass SCAsWritten
2670      = StorageClassSpecToVarDeclStorageClass(SCSpec);
2671
2672    Anon = VarDecl::Create(Context, Owner,
2673                           DS.getSourceRange().getBegin(),
2674                           Record->getLocation(), /*IdentifierInfo=*/0,
2675                           Context.getTypeDeclType(Record),
2676                           TInfo, SC, SCAsWritten);
2677  }
2678  Anon->setImplicit();
2679
2680  // Add the anonymous struct/union object to the current
2681  // context. We'll be referencing this object when we refer to one of
2682  // its members.
2683  Owner->addDecl(Anon);
2684
2685  // Inject the members of the anonymous struct/union into the owning
2686  // context and into the identifier resolver chain for name lookup
2687  // purposes.
2688  SmallVector<NamedDecl*, 2> Chain;
2689  Chain.push_back(Anon);
2690
2691  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2692                                          Chain, false))
2693    Invalid = true;
2694
2695  // Mark this as an anonymous struct/union type. Note that we do not
2696  // do this until after we have already checked and injected the
2697  // members of this anonymous struct/union type, because otherwise
2698  // the members could be injected twice: once by DeclContext when it
2699  // builds its lookup table, and once by
2700  // InjectAnonymousStructOrUnionMembers.
2701  Record->setAnonymousStructOrUnion(true);
2702
2703  if (Invalid)
2704    Anon->setInvalidDecl();
2705
2706  return Anon;
2707}
2708
2709/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2710/// Microsoft C anonymous structure.
2711/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2712/// Example:
2713///
2714/// struct A { int a; };
2715/// struct B { struct A; int b; };
2716///
2717/// void foo() {
2718///   B var;
2719///   var.a = 3;
2720/// }
2721///
2722Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2723                                           RecordDecl *Record) {
2724
2725  // If there is no Record, get the record via the typedef.
2726  if (!Record)
2727    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2728
2729  // Mock up a declarator.
2730  Declarator Dc(DS, Declarator::TypeNameContext);
2731  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2732  assert(TInfo && "couldn't build declarator info for anonymous struct");
2733
2734  // Create a declaration for this anonymous struct.
2735  NamedDecl* Anon = FieldDecl::Create(Context,
2736                             cast<RecordDecl>(CurContext),
2737                             DS.getSourceRange().getBegin(),
2738                             DS.getSourceRange().getBegin(),
2739                             /*IdentifierInfo=*/0,
2740                             Context.getTypeDeclType(Record),
2741                             TInfo,
2742                             /*BitWidth=*/0, /*Mutable=*/false,
2743                             /*HasInit=*/false);
2744  Anon->setImplicit();
2745
2746  // Add the anonymous struct object to the current context.
2747  CurContext->addDecl(Anon);
2748
2749  // Inject the members of the anonymous struct into the current
2750  // context and into the identifier resolver chain for name lookup
2751  // purposes.
2752  SmallVector<NamedDecl*, 2> Chain;
2753  Chain.push_back(Anon);
2754
2755  if (InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2756                                          Record->getDefinition(),
2757                                          AS_none, Chain, true))
2758    Anon->setInvalidDecl();
2759
2760  return Anon;
2761}
2762
2763/// GetNameForDeclarator - Determine the full declaration name for the
2764/// given Declarator.
2765DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2766  return GetNameFromUnqualifiedId(D.getName());
2767}
2768
2769/// \brief Retrieves the declaration name from a parsed unqualified-id.
2770DeclarationNameInfo
2771Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2772  DeclarationNameInfo NameInfo;
2773  NameInfo.setLoc(Name.StartLocation);
2774
2775  switch (Name.getKind()) {
2776
2777  case UnqualifiedId::IK_ImplicitSelfParam:
2778  case UnqualifiedId::IK_Identifier:
2779    NameInfo.setName(Name.Identifier);
2780    NameInfo.setLoc(Name.StartLocation);
2781    return NameInfo;
2782
2783  case UnqualifiedId::IK_OperatorFunctionId:
2784    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2785                                           Name.OperatorFunctionId.Operator));
2786    NameInfo.setLoc(Name.StartLocation);
2787    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2788      = Name.OperatorFunctionId.SymbolLocations[0];
2789    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2790      = Name.EndLocation.getRawEncoding();
2791    return NameInfo;
2792
2793  case UnqualifiedId::IK_LiteralOperatorId:
2794    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2795                                                           Name.Identifier));
2796    NameInfo.setLoc(Name.StartLocation);
2797    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2798    return NameInfo;
2799
2800  case UnqualifiedId::IK_ConversionFunctionId: {
2801    TypeSourceInfo *TInfo;
2802    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2803    if (Ty.isNull())
2804      return DeclarationNameInfo();
2805    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2806                                               Context.getCanonicalType(Ty)));
2807    NameInfo.setLoc(Name.StartLocation);
2808    NameInfo.setNamedTypeInfo(TInfo);
2809    return NameInfo;
2810  }
2811
2812  case UnqualifiedId::IK_ConstructorName: {
2813    TypeSourceInfo *TInfo;
2814    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2815    if (Ty.isNull())
2816      return DeclarationNameInfo();
2817    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2818                                              Context.getCanonicalType(Ty)));
2819    NameInfo.setLoc(Name.StartLocation);
2820    NameInfo.setNamedTypeInfo(TInfo);
2821    return NameInfo;
2822  }
2823
2824  case UnqualifiedId::IK_ConstructorTemplateId: {
2825    // In well-formed code, we can only have a constructor
2826    // template-id that refers to the current context, so go there
2827    // to find the actual type being constructed.
2828    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2829    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2830      return DeclarationNameInfo();
2831
2832    // Determine the type of the class being constructed.
2833    QualType CurClassType = Context.getTypeDeclType(CurClass);
2834
2835    // FIXME: Check two things: that the template-id names the same type as
2836    // CurClassType, and that the template-id does not occur when the name
2837    // was qualified.
2838
2839    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2840                                    Context.getCanonicalType(CurClassType)));
2841    NameInfo.setLoc(Name.StartLocation);
2842    // FIXME: should we retrieve TypeSourceInfo?
2843    NameInfo.setNamedTypeInfo(0);
2844    return NameInfo;
2845  }
2846
2847  case UnqualifiedId::IK_DestructorName: {
2848    TypeSourceInfo *TInfo;
2849    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2850    if (Ty.isNull())
2851      return DeclarationNameInfo();
2852    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2853                                              Context.getCanonicalType(Ty)));
2854    NameInfo.setLoc(Name.StartLocation);
2855    NameInfo.setNamedTypeInfo(TInfo);
2856    return NameInfo;
2857  }
2858
2859  case UnqualifiedId::IK_TemplateId: {
2860    TemplateName TName = Name.TemplateId->Template.get();
2861    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
2862    return Context.getNameForTemplate(TName, TNameLoc);
2863  }
2864
2865  } // switch (Name.getKind())
2866
2867  assert(false && "Unknown name kind");
2868  return DeclarationNameInfo();
2869}
2870
2871/// isNearlyMatchingFunction - Determine whether the C++ functions
2872/// Declaration and Definition are "nearly" matching. This heuristic
2873/// is used to improve diagnostics in the case where an out-of-line
2874/// function definition doesn't match any declaration within
2875/// the class or namespace.
2876static bool isNearlyMatchingFunction(ASTContext &Context,
2877                                     FunctionDecl *Declaration,
2878                                     FunctionDecl *Definition) {
2879  if (Declaration->param_size() != Definition->param_size())
2880    return false;
2881  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2882    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2883    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2884
2885    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
2886                                        DefParamTy.getNonReferenceType()))
2887      return false;
2888  }
2889
2890  return true;
2891}
2892
2893/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
2894/// declarator needs to be rebuilt in the current instantiation.
2895/// Any bits of declarator which appear before the name are valid for
2896/// consideration here.  That's specifically the type in the decl spec
2897/// and the base type in any member-pointer chunks.
2898static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
2899                                                    DeclarationName Name) {
2900  // The types we specifically need to rebuild are:
2901  //   - typenames, typeofs, and decltypes
2902  //   - types which will become injected class names
2903  // Of course, we also need to rebuild any type referencing such a
2904  // type.  It's safest to just say "dependent", but we call out a
2905  // few cases here.
2906
2907  DeclSpec &DS = D.getMutableDeclSpec();
2908  switch (DS.getTypeSpecType()) {
2909  case DeclSpec::TST_typename:
2910  case DeclSpec::TST_typeofType:
2911  case DeclSpec::TST_decltype:
2912  case DeclSpec::TST_underlyingType: {
2913    // Grab the type from the parser.
2914    TypeSourceInfo *TSI = 0;
2915    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
2916    if (T.isNull() || !T->isDependentType()) break;
2917
2918    // Make sure there's a type source info.  This isn't really much
2919    // of a waste; most dependent types should have type source info
2920    // attached already.
2921    if (!TSI)
2922      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
2923
2924    // Rebuild the type in the current instantiation.
2925    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
2926    if (!TSI) return true;
2927
2928    // Store the new type back in the decl spec.
2929    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
2930    DS.UpdateTypeRep(LocType);
2931    break;
2932  }
2933
2934  case DeclSpec::TST_typeofExpr: {
2935    Expr *E = DS.getRepAsExpr();
2936    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
2937    if (Result.isInvalid()) return true;
2938    DS.UpdateExprRep(Result.get());
2939    break;
2940  }
2941
2942  default:
2943    // Nothing to do for these decl specs.
2944    break;
2945  }
2946
2947  // It doesn't matter what order we do this in.
2948  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2949    DeclaratorChunk &Chunk = D.getTypeObject(I);
2950
2951    // The only type information in the declarator which can come
2952    // before the declaration name is the base type of a member
2953    // pointer.
2954    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
2955      continue;
2956
2957    // Rebuild the scope specifier in-place.
2958    CXXScopeSpec &SS = Chunk.Mem.Scope();
2959    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2960      return true;
2961  }
2962
2963  return false;
2964}
2965
2966Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
2967  return HandleDeclarator(S, D, MultiTemplateParamsArg(*this),
2968                          /*IsFunctionDefinition=*/false);
2969}
2970
2971/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
2972///   If T is the name of a class, then each of the following shall have a
2973///   name different from T:
2974///     - every static data member of class T;
2975///     - every member function of class T
2976///     - every member of class T that is itself a type;
2977/// \returns true if the declaration name violates these rules.
2978bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
2979                                   DeclarationNameInfo NameInfo) {
2980  DeclarationName Name = NameInfo.getName();
2981
2982  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
2983    if (Record->getIdentifier() && Record->getDeclName() == Name) {
2984      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
2985      return true;
2986    }
2987
2988  return false;
2989}
2990
2991Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
2992                             MultiTemplateParamsArg TemplateParamLists,
2993                             bool IsFunctionDefinition) {
2994  // TODO: consider using NameInfo for diagnostic.
2995  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2996  DeclarationName Name = NameInfo.getName();
2997
2998  // All of these full declarators require an identifier.  If it doesn't have
2999  // one, the ParsedFreeStandingDeclSpec action should be used.
3000  if (!Name) {
3001    if (!D.isInvalidType())  // Reject this if we think it is valid.
3002      Diag(D.getDeclSpec().getSourceRange().getBegin(),
3003           diag::err_declarator_need_ident)
3004        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
3005    return 0;
3006  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
3007    return 0;
3008
3009  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3010  // we find one that is.
3011  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3012         (S->getFlags() & Scope::TemplateParamScope) != 0)
3013    S = S->getParent();
3014
3015  DeclContext *DC = CurContext;
3016  if (D.getCXXScopeSpec().isInvalid())
3017    D.setInvalidType();
3018  else if (D.getCXXScopeSpec().isSet()) {
3019    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
3020                                        UPPC_DeclarationQualifier))
3021      return 0;
3022
3023    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
3024    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
3025    if (!DC) {
3026      // If we could not compute the declaration context, it's because the
3027      // declaration context is dependent but does not refer to a class,
3028      // class template, or class template partial specialization. Complain
3029      // and return early, to avoid the coming semantic disaster.
3030      Diag(D.getIdentifierLoc(),
3031           diag::err_template_qualified_declarator_no_match)
3032        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
3033        << D.getCXXScopeSpec().getRange();
3034      return 0;
3035    }
3036    bool IsDependentContext = DC->isDependentContext();
3037
3038    if (!IsDependentContext &&
3039        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
3040      return 0;
3041
3042    if (isa<CXXRecordDecl>(DC)) {
3043      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
3044        Diag(D.getIdentifierLoc(),
3045             diag::err_member_def_undefined_record)
3046          << Name << DC << D.getCXXScopeSpec().getRange();
3047        D.setInvalidType();
3048      } else if (isa<CXXRecordDecl>(CurContext) &&
3049                 !D.getDeclSpec().isFriendSpecified()) {
3050        // The user provided a superfluous scope specifier inside a class
3051        // definition:
3052        //
3053        // class X {
3054        //   void X::f();
3055        // };
3056        if (CurContext->Equals(DC))
3057          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
3058            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
3059        else
3060          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
3061            << Name << D.getCXXScopeSpec().getRange();
3062
3063        // Pretend that this qualifier was not here.
3064        D.getCXXScopeSpec().clear();
3065      }
3066    }
3067
3068    // Check whether we need to rebuild the type of the given
3069    // declaration in the current instantiation.
3070    if (EnteringContext && IsDependentContext &&
3071        TemplateParamLists.size() != 0) {
3072      ContextRAII SavedContext(*this, DC);
3073      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
3074        D.setInvalidType();
3075    }
3076  }
3077
3078  if (DiagnoseClassNameShadow(DC, NameInfo))
3079    // If this is a typedef, we'll end up spewing multiple diagnostics.
3080    // Just return early; it's safer.
3081    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3082      return 0;
3083
3084  NamedDecl *New;
3085
3086  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3087  QualType R = TInfo->getType();
3088
3089  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
3090                                      UPPC_DeclarationType))
3091    D.setInvalidType();
3092
3093  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
3094                        ForRedeclaration);
3095
3096  // See if this is a redefinition of a variable in the same scope.
3097  if (!D.getCXXScopeSpec().isSet()) {
3098    bool IsLinkageLookup = false;
3099
3100    // If the declaration we're planning to build will be a function
3101    // or object with linkage, then look for another declaration with
3102    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3103    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3104      /* Do nothing*/;
3105    else if (R->isFunctionType()) {
3106      if (CurContext->isFunctionOrMethod() ||
3107          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3108        IsLinkageLookup = true;
3109    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3110      IsLinkageLookup = true;
3111    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3112             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3113      IsLinkageLookup = true;
3114
3115    if (IsLinkageLookup)
3116      Previous.clear(LookupRedeclarationWithLinkage);
3117
3118    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3119  } else { // Something like "int foo::x;"
3120    LookupQualifiedName(Previous, DC);
3121
3122    // Don't consider using declarations as previous declarations for
3123    // out-of-line members.
3124    RemoveUsingDecls(Previous);
3125
3126    // C++ 7.3.1.2p2:
3127    // Members (including explicit specializations of templates) of a named
3128    // namespace can also be defined outside that namespace by explicit
3129    // qualification of the name being defined, provided that the entity being
3130    // defined was already declared in the namespace and the definition appears
3131    // after the point of declaration in a namespace that encloses the
3132    // declarations namespace.
3133    //
3134    // Note that we only check the context at this point. We don't yet
3135    // have enough information to make sure that PrevDecl is actually
3136    // the declaration we want to match. For example, given:
3137    //
3138    //   class X {
3139    //     void f();
3140    //     void f(float);
3141    //   };
3142    //
3143    //   void X::f(int) { } // ill-formed
3144    //
3145    // In this case, PrevDecl will point to the overload set
3146    // containing the two f's declared in X, but neither of them
3147    // matches.
3148
3149    // First check whether we named the global scope.
3150    if (isa<TranslationUnitDecl>(DC)) {
3151      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
3152        << Name << D.getCXXScopeSpec().getRange();
3153    } else {
3154      DeclContext *Cur = CurContext;
3155      while (isa<LinkageSpecDecl>(Cur))
3156        Cur = Cur->getParent();
3157      if (!Cur->Encloses(DC)) {
3158        // The qualifying scope doesn't enclose the original declaration.
3159        // Emit diagnostic based on current scope.
3160        SourceLocation L = D.getIdentifierLoc();
3161        SourceRange R = D.getCXXScopeSpec().getRange();
3162        if (isa<FunctionDecl>(Cur))
3163          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
3164        else
3165          Diag(L, diag::err_invalid_declarator_scope)
3166            << Name << cast<NamedDecl>(DC) << R;
3167        D.setInvalidType();
3168      }
3169    }
3170  }
3171
3172  if (Previous.isSingleResult() &&
3173      Previous.getFoundDecl()->isTemplateParameter()) {
3174    // Maybe we will complain about the shadowed template parameter.
3175    if (!D.isInvalidType())
3176      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3177                                          Previous.getFoundDecl()))
3178        D.setInvalidType();
3179
3180    // Just pretend that we didn't see the previous declaration.
3181    Previous.clear();
3182  }
3183
3184  // In C++, the previous declaration we find might be a tag type
3185  // (class or enum). In this case, the new declaration will hide the
3186  // tag type. Note that this does does not apply if we're declaring a
3187  // typedef (C++ [dcl.typedef]p4).
3188  if (Previous.isSingleTagDecl() &&
3189      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3190    Previous.clear();
3191
3192  bool Redeclaration = false;
3193  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3194    if (TemplateParamLists.size()) {
3195      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3196      return 0;
3197    }
3198
3199    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
3200  } else if (R->isFunctionType()) {
3201    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
3202                                  move(TemplateParamLists),
3203                                  IsFunctionDefinition, Redeclaration);
3204  } else {
3205    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
3206                                  move(TemplateParamLists),
3207                                  Redeclaration);
3208  }
3209
3210  if (New == 0)
3211    return 0;
3212
3213  // If this has an identifier and is not an invalid redeclaration or
3214  // function template specialization, add it to the scope stack.
3215  if (New->getDeclName() && !(Redeclaration && New->isInvalidDecl()))
3216    PushOnScopeChains(New, S);
3217
3218  return New;
3219}
3220
3221/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3222/// types into constant array types in certain situations which would otherwise
3223/// be errors (for GCC compatibility).
3224static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3225                                                    ASTContext &Context,
3226                                                    bool &SizeIsNegative,
3227                                                    llvm::APSInt &Oversized) {
3228  // This method tries to turn a variable array into a constant
3229  // array even when the size isn't an ICE.  This is necessary
3230  // for compatibility with code that depends on gcc's buggy
3231  // constant expression folding, like struct {char x[(int)(char*)2];}
3232  SizeIsNegative = false;
3233  Oversized = 0;
3234
3235  if (T->isDependentType())
3236    return QualType();
3237
3238  QualifierCollector Qs;
3239  const Type *Ty = Qs.strip(T);
3240
3241  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3242    QualType Pointee = PTy->getPointeeType();
3243    QualType FixedType =
3244        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3245                                            Oversized);
3246    if (FixedType.isNull()) return FixedType;
3247    FixedType = Context.getPointerType(FixedType);
3248    return Qs.apply(Context, FixedType);
3249  }
3250  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3251    QualType Inner = PTy->getInnerType();
3252    QualType FixedType =
3253        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3254                                            Oversized);
3255    if (FixedType.isNull()) return FixedType;
3256    FixedType = Context.getParenType(FixedType);
3257    return Qs.apply(Context, FixedType);
3258  }
3259
3260  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3261  if (!VLATy)
3262    return QualType();
3263  // FIXME: We should probably handle this case
3264  if (VLATy->getElementType()->isVariablyModifiedType())
3265    return QualType();
3266
3267  Expr::EvalResult EvalResult;
3268  if (!VLATy->getSizeExpr() ||
3269      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
3270      !EvalResult.Val.isInt())
3271    return QualType();
3272
3273  // Check whether the array size is negative.
3274  llvm::APSInt &Res = EvalResult.Val.getInt();
3275  if (Res.isSigned() && Res.isNegative()) {
3276    SizeIsNegative = true;
3277    return QualType();
3278  }
3279
3280  // Check whether the array is too large to be addressed.
3281  unsigned ActiveSizeBits
3282    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
3283                                              Res);
3284  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
3285    Oversized = Res;
3286    return QualType();
3287  }
3288
3289  return Context.getConstantArrayType(VLATy->getElementType(),
3290                                      Res, ArrayType::Normal, 0);
3291}
3292
3293/// \brief Register the given locally-scoped external C declaration so
3294/// that it can be found later for redeclarations
3295void
3296Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
3297                                       const LookupResult &Previous,
3298                                       Scope *S) {
3299  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
3300         "Decl is not a locally-scoped decl!");
3301  // Note that we have a locally-scoped external with this name.
3302  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
3303
3304  if (!Previous.isSingleResult())
3305    return;
3306
3307  NamedDecl *PrevDecl = Previous.getFoundDecl();
3308
3309  // If there was a previous declaration of this variable, it may be
3310  // in our identifier chain. Update the identifier chain with the new
3311  // declaration.
3312  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
3313    // The previous declaration was found on the identifer resolver
3314    // chain, so remove it from its scope.
3315
3316    if (S->isDeclScope(PrevDecl)) {
3317      // Special case for redeclarations in the SAME scope.
3318      // Because this declaration is going to be added to the identifier chain
3319      // later, we should temporarily take it OFF the chain.
3320      IdResolver.RemoveDecl(ND);
3321
3322    } else {
3323      // Find the scope for the original declaration.
3324      while (S && !S->isDeclScope(PrevDecl))
3325        S = S->getParent();
3326    }
3327
3328    if (S)
3329      S->RemoveDecl(PrevDecl);
3330  }
3331}
3332
3333/// \brief Diagnose function specifiers on a declaration of an identifier that
3334/// does not identify a function.
3335void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
3336  // FIXME: We should probably indicate the identifier in question to avoid
3337  // confusion for constructs like "inline int a(), b;"
3338  if (D.getDeclSpec().isInlineSpecified())
3339    Diag(D.getDeclSpec().getInlineSpecLoc(),
3340         diag::err_inline_non_function);
3341
3342  if (D.getDeclSpec().isVirtualSpecified())
3343    Diag(D.getDeclSpec().getVirtualSpecLoc(),
3344         diag::err_virtual_non_function);
3345
3346  if (D.getDeclSpec().isExplicitSpecified())
3347    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3348         diag::err_explicit_non_function);
3349}
3350
3351NamedDecl*
3352Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3353                             QualType R,  TypeSourceInfo *TInfo,
3354                             LookupResult &Previous, bool &Redeclaration) {
3355  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
3356  if (D.getCXXScopeSpec().isSet()) {
3357    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
3358      << D.getCXXScopeSpec().getRange();
3359    D.setInvalidType();
3360    // Pretend we didn't see the scope specifier.
3361    DC = CurContext;
3362    Previous.clear();
3363  }
3364
3365  if (getLangOptions().CPlusPlus) {
3366    // Check that there are no default arguments (C++ only).
3367    CheckExtraCXXDefaultArguments(D);
3368  }
3369
3370  DiagnoseFunctionSpecifiers(D);
3371
3372  if (D.getDeclSpec().isThreadSpecified())
3373    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3374
3375  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
3376    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
3377      << D.getName().getSourceRange();
3378    return 0;
3379  }
3380
3381  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
3382  if (!NewTD) return 0;
3383
3384  // Handle attributes prior to checking for duplicates in MergeVarDecl
3385  ProcessDeclAttributes(S, NewTD, D);
3386
3387  CheckTypedefForVariablyModifiedType(S, NewTD);
3388
3389  return ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
3390}
3391
3392void
3393Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
3394  // C99 6.7.7p2: If a typedef name specifies a variably modified type
3395  // then it shall have block scope.
3396  // Note that variably modified types must be fixed before merging the decl so
3397  // that redeclarations will match.
3398  QualType T = NewTD->getUnderlyingType();
3399  if (T->isVariablyModifiedType()) {
3400    getCurFunction()->setHasBranchProtectedScope();
3401
3402    if (S->getFnParent() == 0) {
3403      bool SizeIsNegative;
3404      llvm::APSInt Oversized;
3405      QualType FixedTy =
3406          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3407                                              Oversized);
3408      if (!FixedTy.isNull()) {
3409        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
3410        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
3411      } else {
3412        if (SizeIsNegative)
3413          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
3414        else if (T->isVariableArrayType())
3415          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
3416        else if (Oversized.getBoolValue())
3417          Diag(NewTD->getLocation(), diag::err_array_too_large) << Oversized.toString(10);
3418        else
3419          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
3420        NewTD->setInvalidDecl();
3421      }
3422    }
3423  }
3424}
3425
3426
3427/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
3428/// declares a typedef-name, either using the 'typedef' type specifier or via
3429/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
3430NamedDecl*
3431Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
3432                           LookupResult &Previous, bool &Redeclaration) {
3433  // Merge the decl with the existing one if appropriate. If the decl is
3434  // in an outer scope, it isn't the same thing.
3435  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
3436                       /*ExplicitInstantiationOrSpecialization=*/false);
3437  if (!Previous.empty()) {
3438    Redeclaration = true;
3439    MergeTypedefNameDecl(NewTD, Previous);
3440  }
3441
3442  // If this is the C FILE type, notify the AST context.
3443  if (IdentifierInfo *II = NewTD->getIdentifier())
3444    if (!NewTD->isInvalidDecl() &&
3445        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
3446      if (II->isStr("FILE"))
3447        Context.setFILEDecl(NewTD);
3448      else if (II->isStr("jmp_buf"))
3449        Context.setjmp_bufDecl(NewTD);
3450      else if (II->isStr("sigjmp_buf"))
3451        Context.setsigjmp_bufDecl(NewTD);
3452      else if (II->isStr("__builtin_va_list"))
3453        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
3454    }
3455
3456  return NewTD;
3457}
3458
3459/// \brief Determines whether the given declaration is an out-of-scope
3460/// previous declaration.
3461///
3462/// This routine should be invoked when name lookup has found a
3463/// previous declaration (PrevDecl) that is not in the scope where a
3464/// new declaration by the same name is being introduced. If the new
3465/// declaration occurs in a local scope, previous declarations with
3466/// linkage may still be considered previous declarations (C99
3467/// 6.2.2p4-5, C++ [basic.link]p6).
3468///
3469/// \param PrevDecl the previous declaration found by name
3470/// lookup
3471///
3472/// \param DC the context in which the new declaration is being
3473/// declared.
3474///
3475/// \returns true if PrevDecl is an out-of-scope previous declaration
3476/// for a new delcaration with the same name.
3477static bool
3478isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
3479                                ASTContext &Context) {
3480  if (!PrevDecl)
3481    return false;
3482
3483  if (!PrevDecl->hasLinkage())
3484    return false;
3485
3486  if (Context.getLangOptions().CPlusPlus) {
3487    // C++ [basic.link]p6:
3488    //   If there is a visible declaration of an entity with linkage
3489    //   having the same name and type, ignoring entities declared
3490    //   outside the innermost enclosing namespace scope, the block
3491    //   scope declaration declares that same entity and receives the
3492    //   linkage of the previous declaration.
3493    DeclContext *OuterContext = DC->getRedeclContext();
3494    if (!OuterContext->isFunctionOrMethod())
3495      // This rule only applies to block-scope declarations.
3496      return false;
3497
3498    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
3499    if (PrevOuterContext->isRecord())
3500      // We found a member function: ignore it.
3501      return false;
3502
3503    // Find the innermost enclosing namespace for the new and
3504    // previous declarations.
3505    OuterContext = OuterContext->getEnclosingNamespaceContext();
3506    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
3507
3508    // The previous declaration is in a different namespace, so it
3509    // isn't the same function.
3510    if (!OuterContext->Equals(PrevOuterContext))
3511      return false;
3512  }
3513
3514  return true;
3515}
3516
3517static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
3518  CXXScopeSpec &SS = D.getCXXScopeSpec();
3519  if (!SS.isSet()) return;
3520  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
3521}
3522
3523bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
3524  QualType type = decl->getType();
3525  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
3526  if (lifetime == Qualifiers::OCL_Autoreleasing) {
3527    // Various kinds of declaration aren't allowed to be __autoreleasing.
3528    unsigned kind = -1U;
3529    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3530      if (var->hasAttr<BlocksAttr>())
3531        kind = 0; // __block
3532      else if (!var->hasLocalStorage())
3533        kind = 1; // global
3534    } else if (isa<ObjCIvarDecl>(decl)) {
3535      kind = 3; // ivar
3536    } else if (isa<FieldDecl>(decl)) {
3537      kind = 2; // field
3538    }
3539
3540    if (kind != -1U) {
3541      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
3542        << kind;
3543    }
3544  } else if (lifetime == Qualifiers::OCL_None) {
3545    // Try to infer lifetime.
3546    if (!type->isObjCLifetimeType())
3547      return false;
3548
3549    lifetime = type->getObjCARCImplicitLifetime();
3550    type = Context.getLifetimeQualifiedType(type, lifetime);
3551    decl->setType(type);
3552  }
3553
3554  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3555    // Thread-local variables cannot have lifetime.
3556    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
3557        var->isThreadSpecified()) {
3558      Diag(var->getLocation(), diag::err_arc_thread_ownership)
3559        << var->getType();
3560      return true;
3561    }
3562  }
3563
3564  return false;
3565}
3566
3567NamedDecl*
3568Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
3569                              QualType R, TypeSourceInfo *TInfo,
3570                              LookupResult &Previous,
3571                              MultiTemplateParamsArg TemplateParamLists,
3572                              bool &Redeclaration) {
3573  DeclarationName Name = GetNameForDeclarator(D).getName();
3574
3575  // Check that there are no default arguments (C++ only).
3576  if (getLangOptions().CPlusPlus)
3577    CheckExtraCXXDefaultArguments(D);
3578
3579  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
3580  assert(SCSpec != DeclSpec::SCS_typedef &&
3581         "Parser allowed 'typedef' as storage class VarDecl.");
3582  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3583  if (SCSpec == DeclSpec::SCS_mutable) {
3584    // mutable can only appear on non-static class members, so it's always
3585    // an error here
3586    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
3587    D.setInvalidType();
3588    SC = SC_None;
3589  }
3590  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3591  VarDecl::StorageClass SCAsWritten
3592    = StorageClassSpecToVarDeclStorageClass(SCSpec);
3593
3594  IdentifierInfo *II = Name.getAsIdentifierInfo();
3595  if (!II) {
3596    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
3597      << Name.getAsString();
3598    return 0;
3599  }
3600
3601  DiagnoseFunctionSpecifiers(D);
3602
3603  if (!DC->isRecord() && S->getFnParent() == 0) {
3604    // C99 6.9p2: The storage-class specifiers auto and register shall not
3605    // appear in the declaration specifiers in an external declaration.
3606    if (SC == SC_Auto || SC == SC_Register) {
3607
3608      // If this is a register variable with an asm label specified, then this
3609      // is a GNU extension.
3610      if (SC == SC_Register && D.getAsmLabel())
3611        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
3612      else
3613        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
3614      D.setInvalidType();
3615    }
3616  }
3617
3618  bool isExplicitSpecialization = false;
3619  VarDecl *NewVD;
3620  if (!getLangOptions().CPlusPlus) {
3621    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3622                            D.getIdentifierLoc(), II,
3623                            R, TInfo, SC, SCAsWritten);
3624
3625    if (D.isInvalidType())
3626      NewVD->setInvalidDecl();
3627  } else {
3628    if (DC->isRecord() && !CurContext->isRecord()) {
3629      // This is an out-of-line definition of a static data member.
3630      if (SC == SC_Static) {
3631        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3632             diag::err_static_out_of_line)
3633          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3634      } else if (SC == SC_None)
3635        SC = SC_Static;
3636    }
3637    if (SC == SC_Static) {
3638      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
3639        if (RD->isLocalClass())
3640          Diag(D.getIdentifierLoc(),
3641               diag::err_static_data_member_not_allowed_in_local_class)
3642            << Name << RD->getDeclName();
3643
3644        // C++ [class.union]p1: If a union contains a static data member,
3645        // the program is ill-formed.
3646        //
3647        // We also disallow static data members in anonymous structs.
3648        if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
3649          Diag(D.getIdentifierLoc(),
3650               diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
3651            << Name << RD->isUnion();
3652      }
3653    }
3654
3655    // Match up the template parameter lists with the scope specifier, then
3656    // determine whether we have a template or a template specialization.
3657    isExplicitSpecialization = false;
3658    bool Invalid = false;
3659    if (TemplateParameterList *TemplateParams
3660        = MatchTemplateParametersToScopeSpecifier(
3661                                  D.getDeclSpec().getSourceRange().getBegin(),
3662                                                  D.getIdentifierLoc(),
3663                                                  D.getCXXScopeSpec(),
3664                                                  TemplateParamLists.get(),
3665                                                  TemplateParamLists.size(),
3666                                                  /*never a friend*/ false,
3667                                                  isExplicitSpecialization,
3668                                                  Invalid)) {
3669      if (TemplateParams->size() > 0) {
3670        // There is no such thing as a variable template.
3671        Diag(D.getIdentifierLoc(), diag::err_template_variable)
3672          << II
3673          << SourceRange(TemplateParams->getTemplateLoc(),
3674                         TemplateParams->getRAngleLoc());
3675        return 0;
3676      } else {
3677        // There is an extraneous 'template<>' for this variable. Complain
3678        // about it, but allow the declaration of the variable.
3679        Diag(TemplateParams->getTemplateLoc(),
3680             diag::err_template_variable_noparams)
3681          << II
3682          << SourceRange(TemplateParams->getTemplateLoc(),
3683                         TemplateParams->getRAngleLoc());
3684      }
3685    }
3686
3687    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3688                            D.getIdentifierLoc(), II,
3689                            R, TInfo, SC, SCAsWritten);
3690
3691    // If this decl has an auto type in need of deduction, make a note of the
3692    // Decl so we can diagnose uses of it in its own initializer.
3693    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
3694        R->getContainedAutoType())
3695      ParsingInitForAutoVars.insert(NewVD);
3696
3697    if (D.isInvalidType() || Invalid)
3698      NewVD->setInvalidDecl();
3699
3700    SetNestedNameSpecifier(NewVD, D);
3701
3702    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
3703      NewVD->setTemplateParameterListsInfo(Context,
3704                                           TemplateParamLists.size(),
3705                                           TemplateParamLists.release());
3706    }
3707  }
3708
3709  if (D.getDeclSpec().isThreadSpecified()) {
3710    if (NewVD->hasLocalStorage())
3711      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
3712    else if (!Context.Target.isTLSSupported())
3713      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
3714    else
3715      NewVD->setThreadSpecified(true);
3716  }
3717
3718  // Set the lexical context. If the declarator has a C++ scope specifier, the
3719  // lexical context will be different from the semantic context.
3720  NewVD->setLexicalDeclContext(CurContext);
3721
3722  // Handle attributes prior to checking for duplicates in MergeVarDecl
3723  ProcessDeclAttributes(S, NewVD, D);
3724
3725  // In auto-retain/release, infer strong retension for variables of
3726  // retainable type.
3727  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
3728    NewVD->setInvalidDecl();
3729
3730  // Handle GNU asm-label extension (encoded as an attribute).
3731  if (Expr *E = (Expr*)D.getAsmLabel()) {
3732    // The parser guarantees this is a string.
3733    StringLiteral *SE = cast<StringLiteral>(E);
3734    StringRef Label = SE->getString();
3735    if (S->getFnParent() != 0) {
3736      switch (SC) {
3737      case SC_None:
3738      case SC_Auto:
3739        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
3740        break;
3741      case SC_Register:
3742        if (!Context.Target.isValidGCCRegisterName(Label))
3743          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
3744        break;
3745      case SC_Static:
3746      case SC_Extern:
3747      case SC_PrivateExtern:
3748        break;
3749      }
3750    }
3751
3752    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
3753                                                Context, Label));
3754  }
3755
3756  // Diagnose shadowed variables before filtering for scope.
3757  if (!D.getCXXScopeSpec().isSet())
3758    CheckShadow(S, NewVD, Previous);
3759
3760  // Don't consider existing declarations that are in a different
3761  // scope and are out-of-semantic-context declarations (if the new
3762  // declaration has linkage).
3763  FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
3764                       isExplicitSpecialization);
3765
3766  if (!getLangOptions().CPlusPlus)
3767    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3768  else {
3769    // Merge the decl with the existing one if appropriate.
3770    if (!Previous.empty()) {
3771      if (Previous.isSingleResult() &&
3772          isa<FieldDecl>(Previous.getFoundDecl()) &&
3773          D.getCXXScopeSpec().isSet()) {
3774        // The user tried to define a non-static data member
3775        // out-of-line (C++ [dcl.meaning]p1).
3776        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
3777          << D.getCXXScopeSpec().getRange();
3778        Previous.clear();
3779        NewVD->setInvalidDecl();
3780      }
3781    } else if (D.getCXXScopeSpec().isSet()) {
3782      // No previous declaration in the qualifying scope.
3783      Diag(D.getIdentifierLoc(), diag::err_no_member)
3784        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
3785        << D.getCXXScopeSpec().getRange();
3786      NewVD->setInvalidDecl();
3787    }
3788
3789    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3790
3791    // This is an explicit specialization of a static data member. Check it.
3792    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
3793        CheckMemberSpecialization(NewVD, Previous))
3794      NewVD->setInvalidDecl();
3795  }
3796
3797  // attributes declared post-definition are currently ignored
3798  // FIXME: This should be handled in attribute merging, not
3799  // here.
3800  if (Previous.isSingleResult()) {
3801    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
3802    if (Def && (Def = Def->getDefinition()) &&
3803        Def != NewVD && D.hasAttributes()) {
3804      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
3805      Diag(Def->getLocation(), diag::note_previous_definition);
3806    }
3807  }
3808
3809  // If this is a locally-scoped extern C variable, update the map of
3810  // such variables.
3811  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
3812      !NewVD->isInvalidDecl())
3813    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
3814
3815  // If there's a #pragma GCC visibility in scope, and this isn't a class
3816  // member, set the visibility of this variable.
3817  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
3818    AddPushedVisibilityAttribute(NewVD);
3819
3820  MarkUnusedFileScopedDecl(NewVD);
3821
3822  return NewVD;
3823}
3824
3825/// \brief Diagnose variable or built-in function shadowing.  Implements
3826/// -Wshadow.
3827///
3828/// This method is called whenever a VarDecl is added to a "useful"
3829/// scope.
3830///
3831/// \param S the scope in which the shadowing name is being declared
3832/// \param R the lookup of the name
3833///
3834void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
3835  // Return if warning is ignored.
3836  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
3837        Diagnostic::Ignored)
3838    return;
3839
3840  // Don't diagnose declarations at file scope.
3841  if (D->hasGlobalStorage())
3842    return;
3843
3844  DeclContext *NewDC = D->getDeclContext();
3845
3846  // Only diagnose if we're shadowing an unambiguous field or variable.
3847  if (R.getResultKind() != LookupResult::Found)
3848    return;
3849
3850  NamedDecl* ShadowedDecl = R.getFoundDecl();
3851  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
3852    return;
3853
3854  // Fields are not shadowed by variables in C++ static methods.
3855  if (isa<FieldDecl>(ShadowedDecl))
3856    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
3857      if (MD->isStatic())
3858        return;
3859
3860  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
3861    if (shadowedVar->isExternC()) {
3862      // For shadowing external vars, make sure that we point to the global
3863      // declaration, not a locally scoped extern declaration.
3864      for (VarDecl::redecl_iterator
3865             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
3866           I != E; ++I)
3867        if (I->isFileVarDecl()) {
3868          ShadowedDecl = *I;
3869          break;
3870        }
3871    }
3872
3873  DeclContext *OldDC = ShadowedDecl->getDeclContext();
3874
3875  // Only warn about certain kinds of shadowing for class members.
3876  if (NewDC && NewDC->isRecord()) {
3877    // In particular, don't warn about shadowing non-class members.
3878    if (!OldDC->isRecord())
3879      return;
3880
3881    // TODO: should we warn about static data members shadowing
3882    // static data members from base classes?
3883
3884    // TODO: don't diagnose for inaccessible shadowed members.
3885    // This is hard to do perfectly because we might friend the
3886    // shadowing context, but that's just a false negative.
3887  }
3888
3889  // Determine what kind of declaration we're shadowing.
3890  unsigned Kind;
3891  if (isa<RecordDecl>(OldDC)) {
3892    if (isa<FieldDecl>(ShadowedDecl))
3893      Kind = 3; // field
3894    else
3895      Kind = 2; // static data member
3896  } else if (OldDC->isFileContext())
3897    Kind = 1; // global
3898  else
3899    Kind = 0; // local
3900
3901  DeclarationName Name = R.getLookupName();
3902
3903  // Emit warning and note.
3904  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
3905  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
3906}
3907
3908/// \brief Check -Wshadow without the advantage of a previous lookup.
3909void Sema::CheckShadow(Scope *S, VarDecl *D) {
3910  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
3911        Diagnostic::Ignored)
3912    return;
3913
3914  LookupResult R(*this, D->getDeclName(), D->getLocation(),
3915                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3916  LookupName(R, S);
3917  CheckShadow(S, D, R);
3918}
3919
3920/// \brief Perform semantic checking on a newly-created variable
3921/// declaration.
3922///
3923/// This routine performs all of the type-checking required for a
3924/// variable declaration once it has been built. It is used both to
3925/// check variables after they have been parsed and their declarators
3926/// have been translated into a declaration, and to check variables
3927/// that have been instantiated from a template.
3928///
3929/// Sets NewVD->isInvalidDecl() if an error was encountered.
3930void Sema::CheckVariableDeclaration(VarDecl *NewVD,
3931                                    LookupResult &Previous,
3932                                    bool &Redeclaration) {
3933  // If the decl is already known invalid, don't check it.
3934  if (NewVD->isInvalidDecl())
3935    return;
3936
3937  QualType T = NewVD->getType();
3938
3939  if (T->isObjCObjectType()) {
3940    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
3941      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
3942    return NewVD->setInvalidDecl();
3943  }
3944
3945  // Emit an error if an address space was applied to decl with local storage.
3946  // This includes arrays of objects with address space qualifiers, but not
3947  // automatic variables that point to other address spaces.
3948  // ISO/IEC TR 18037 S5.1.2
3949  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
3950    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
3951    return NewVD->setInvalidDecl();
3952  }
3953
3954  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
3955      && !NewVD->hasAttr<BlocksAttr>()) {
3956    if (getLangOptions().getGCMode() != LangOptions::NonGC)
3957      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
3958    else
3959      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
3960  }
3961
3962  bool isVM = T->isVariablyModifiedType();
3963  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
3964      NewVD->hasAttr<BlocksAttr>())
3965    getCurFunction()->setHasBranchProtectedScope();
3966
3967  if ((isVM && NewVD->hasLinkage()) ||
3968      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
3969    bool SizeIsNegative;
3970    llvm::APSInt Oversized;
3971    QualType FixedTy =
3972        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3973                                            Oversized);
3974
3975    if (FixedTy.isNull() && T->isVariableArrayType()) {
3976      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
3977      // FIXME: This won't give the correct result for
3978      // int a[10][n];
3979      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
3980
3981      if (NewVD->isFileVarDecl())
3982        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
3983        << SizeRange;
3984      else if (NewVD->getStorageClass() == SC_Static)
3985        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
3986        << SizeRange;
3987      else
3988        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
3989        << SizeRange;
3990      return NewVD->setInvalidDecl();
3991    }
3992
3993    if (FixedTy.isNull()) {
3994      if (NewVD->isFileVarDecl())
3995        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
3996      else
3997        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
3998      return NewVD->setInvalidDecl();
3999    }
4000
4001    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
4002    NewVD->setType(FixedTy);
4003  }
4004
4005  if (Previous.empty() && NewVD->isExternC()) {
4006    // Since we did not find anything by this name and we're declaring
4007    // an extern "C" variable, look for a non-visible extern "C"
4008    // declaration with the same name.
4009    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4010      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
4011    if (Pos != LocallyScopedExternalDecls.end())
4012      Previous.addDecl(Pos->second);
4013  }
4014
4015  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
4016    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
4017      << T;
4018    return NewVD->setInvalidDecl();
4019  }
4020
4021  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
4022    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
4023    return NewVD->setInvalidDecl();
4024  }
4025
4026  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
4027    Diag(NewVD->getLocation(), diag::err_block_on_vm);
4028    return NewVD->setInvalidDecl();
4029  }
4030
4031  // Function pointers and references cannot have qualified function type, only
4032  // function pointer-to-members can do that.
4033  QualType Pointee;
4034  unsigned PtrOrRef = 0;
4035  if (const PointerType *Ptr = T->getAs<PointerType>())
4036    Pointee = Ptr->getPointeeType();
4037  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
4038    Pointee = Ref->getPointeeType();
4039    PtrOrRef = 1;
4040  }
4041  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
4042      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
4043    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
4044        << PtrOrRef;
4045    return NewVD->setInvalidDecl();
4046  }
4047
4048  if (!Previous.empty()) {
4049    Redeclaration = true;
4050    MergeVarDecl(NewVD, Previous);
4051  }
4052}
4053
4054/// \brief Data used with FindOverriddenMethod
4055struct FindOverriddenMethodData {
4056  Sema *S;
4057  CXXMethodDecl *Method;
4058};
4059
4060/// \brief Member lookup function that determines whether a given C++
4061/// method overrides a method in a base class, to be used with
4062/// CXXRecordDecl::lookupInBases().
4063static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
4064                                 CXXBasePath &Path,
4065                                 void *UserData) {
4066  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4067
4068  FindOverriddenMethodData *Data
4069    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
4070
4071  DeclarationName Name = Data->Method->getDeclName();
4072
4073  // FIXME: Do we care about other names here too?
4074  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4075    // We really want to find the base class destructor here.
4076    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
4077    CanQualType CT = Data->S->Context.getCanonicalType(T);
4078
4079    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
4080  }
4081
4082  for (Path.Decls = BaseRecord->lookup(Name);
4083       Path.Decls.first != Path.Decls.second;
4084       ++Path.Decls.first) {
4085    NamedDecl *D = *Path.Decls.first;
4086    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4087      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
4088        return true;
4089    }
4090  }
4091
4092  return false;
4093}
4094
4095/// AddOverriddenMethods - See if a method overrides any in the base classes,
4096/// and if so, check that it's a valid override and remember it.
4097bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4098  // Look for virtual methods in base classes that this method might override.
4099  CXXBasePaths Paths;
4100  FindOverriddenMethodData Data;
4101  Data.Method = MD;
4102  Data.S = this;
4103  bool AddedAny = false;
4104  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
4105    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
4106         E = Paths.found_decls_end(); I != E; ++I) {
4107      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
4108        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
4109        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
4110            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
4111            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
4112          AddedAny = true;
4113        }
4114      }
4115    }
4116  }
4117
4118  return AddedAny;
4119}
4120
4121static void DiagnoseInvalidRedeclaration(Sema &S, FunctionDecl *NewFD) {
4122  LookupResult Prev(S, NewFD->getDeclName(), NewFD->getLocation(),
4123                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4124  S.LookupQualifiedName(Prev, NewFD->getDeclContext());
4125  assert(!Prev.isAmbiguous() &&
4126         "Cannot have an ambiguity in previous-declaration lookup");
4127  for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
4128       Func != FuncEnd; ++Func) {
4129    if (isa<FunctionDecl>(*Func) &&
4130        isNearlyMatchingFunction(S.Context, cast<FunctionDecl>(*Func), NewFD))
4131      S.Diag((*Func)->getLocation(), diag::note_member_def_close_match);
4132  }
4133}
4134
4135NamedDecl*
4136Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4137                              QualType R, TypeSourceInfo *TInfo,
4138                              LookupResult &Previous,
4139                              MultiTemplateParamsArg TemplateParamLists,
4140                              bool IsFunctionDefinition, bool &Redeclaration) {
4141  assert(R.getTypePtr()->isFunctionType());
4142
4143  // TODO: consider using NameInfo for diagnostic.
4144  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4145  DeclarationName Name = NameInfo.getName();
4146  FunctionDecl::StorageClass SC = SC_None;
4147  switch (D.getDeclSpec().getStorageClassSpec()) {
4148  default: assert(0 && "Unknown storage class!");
4149  case DeclSpec::SCS_auto:
4150  case DeclSpec::SCS_register:
4151  case DeclSpec::SCS_mutable:
4152    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4153         diag::err_typecheck_sclass_func);
4154    D.setInvalidType();
4155    break;
4156  case DeclSpec::SCS_unspecified: SC = SC_None; break;
4157  case DeclSpec::SCS_extern:      SC = SC_Extern; break;
4158  case DeclSpec::SCS_static: {
4159    if (CurContext->getRedeclContext()->isFunctionOrMethod()) {
4160      // C99 6.7.1p5:
4161      //   The declaration of an identifier for a function that has
4162      //   block scope shall have no explicit storage-class specifier
4163      //   other than extern
4164      // See also (C++ [dcl.stc]p4).
4165      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4166           diag::err_static_block_func);
4167      SC = SC_None;
4168    } else
4169      SC = SC_Static;
4170    break;
4171  }
4172  case DeclSpec::SCS_private_extern: SC = SC_PrivateExtern; break;
4173  }
4174
4175  if (D.getDeclSpec().isThreadSpecified())
4176    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4177
4178  // Do not allow returning a objc interface by-value.
4179  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
4180    Diag(D.getIdentifierLoc(),
4181         diag::err_object_cannot_be_passed_returned_by_value) << 0
4182    << R->getAs<FunctionType>()->getResultType();
4183    D.setInvalidType();
4184  }
4185
4186  FunctionDecl *NewFD;
4187  bool isInline = D.getDeclSpec().isInlineSpecified();
4188  bool isFriend = false;
4189  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4190  FunctionDecl::StorageClass SCAsWritten
4191    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
4192  FunctionTemplateDecl *FunctionTemplate = 0;
4193  bool isExplicitSpecialization = false;
4194  bool isFunctionTemplateSpecialization = false;
4195
4196  if (!getLangOptions().CPlusPlus) {
4197    // Determine whether the function was written with a
4198    // prototype. This true when:
4199    //   - there is a prototype in the declarator, or
4200    //   - the type R of the function is some kind of typedef or other reference
4201    //     to a type name (which eventually refers to a function type).
4202    bool HasPrototype =
4203    (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
4204    (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
4205
4206    NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4207                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4208                                 HasPrototype);
4209    if (D.isInvalidType())
4210      NewFD->setInvalidDecl();
4211
4212    // Set the lexical context.
4213    NewFD->setLexicalDeclContext(CurContext);
4214    // Filter out previous declarations that don't match the scope.
4215    FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
4216                         /*ExplicitInstantiationOrSpecialization=*/false);
4217  } else {
4218    isFriend = D.getDeclSpec().isFriendSpecified();
4219    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4220    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4221    bool isVirtualOkay = false;
4222
4223    // Check that the return type is not an abstract class type.
4224    // For record types, this is done by the AbstractClassUsageDiagnoser once
4225    // the class has been completely parsed.
4226    if (!DC->isRecord() &&
4227      RequireNonAbstractType(D.getIdentifierLoc(),
4228                             R->getAs<FunctionType>()->getResultType(),
4229                             diag::err_abstract_type_in_decl,
4230                             AbstractReturnType))
4231      D.setInvalidType();
4232
4233    if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
4234      // This is a C++ constructor declaration.
4235      assert(DC->isRecord() &&
4236             "Constructors can only be declared in a member context");
4237
4238      R = CheckConstructorDeclarator(D, R, SC);
4239
4240      // Create the new declaration
4241      CXXConstructorDecl *NewCD = CXXConstructorDecl::Create(
4242                                         Context,
4243                                         cast<CXXRecordDecl>(DC),
4244                                         D.getSourceRange().getBegin(),
4245                                         NameInfo, R, TInfo,
4246                                         isExplicit, isInline,
4247                                         /*isImplicitlyDeclared=*/false);
4248
4249      NewFD = NewCD;
4250    } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4251      // This is a C++ destructor declaration.
4252      if (DC->isRecord()) {
4253        R = CheckDestructorDeclarator(D, R, SC);
4254        CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
4255
4256        CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(Context, Record,
4257                                          D.getSourceRange().getBegin(),
4258                                          NameInfo, R, TInfo,
4259                                          isInline,
4260                                          /*isImplicitlyDeclared=*/false);
4261        NewFD = NewDD;
4262        isVirtualOkay = true;
4263
4264        // If the class is complete, then we now create the implicit exception
4265        // specification. If the class is incomplete or dependent, we can't do
4266        // it yet.
4267        if (getLangOptions().CPlusPlus0x && !Record->isDependentType() &&
4268            Record->getDefinition() && !Record->isBeingDefined() &&
4269            R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
4270          AdjustDestructorExceptionSpec(Record, NewDD);
4271        }
4272
4273      } else {
4274        Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
4275
4276        // Create a FunctionDecl to satisfy the function definition parsing
4277        // code path.
4278        NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4279                                     D.getIdentifierLoc(), Name, R, TInfo,
4280                                     SC, SCAsWritten, isInline,
4281                                     /*hasPrototype=*/true);
4282        D.setInvalidType();
4283      }
4284    } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
4285      if (!DC->isRecord()) {
4286        Diag(D.getIdentifierLoc(),
4287             diag::err_conv_function_not_member);
4288        return 0;
4289      }
4290
4291      CheckConversionDeclarator(D, R, SC);
4292      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
4293                                        D.getSourceRange().getBegin(),
4294                                        NameInfo, R, TInfo,
4295                                        isInline, isExplicit,
4296                                        SourceLocation());
4297
4298      isVirtualOkay = true;
4299    } else if (DC->isRecord()) {
4300      // If the of the function is the same as the name of the record, then this
4301      // must be an invalid constructor that has a return type.
4302      // (The parser checks for a return type and makes the declarator a
4303      // constructor if it has no return type).
4304      // must have an invalid constructor that has a return type
4305      if (Name.getAsIdentifierInfo() &&
4306          Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
4307        Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
4308          << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4309          << SourceRange(D.getIdentifierLoc());
4310        return 0;
4311      }
4312
4313      bool isStatic = SC == SC_Static;
4314
4315      // [class.free]p1:
4316      // Any allocation function for a class T is a static member
4317      // (even if not explicitly declared static).
4318      if (Name.getCXXOverloadedOperator() == OO_New ||
4319          Name.getCXXOverloadedOperator() == OO_Array_New)
4320        isStatic = true;
4321
4322      // [class.free]p6 Any deallocation function for a class X is a static member
4323      // (even if not explicitly declared static).
4324      if (Name.getCXXOverloadedOperator() == OO_Delete ||
4325          Name.getCXXOverloadedOperator() == OO_Array_Delete)
4326        isStatic = true;
4327
4328      // This is a C++ method declaration.
4329      CXXMethodDecl *NewMD = CXXMethodDecl::Create(
4330                                               Context, cast<CXXRecordDecl>(DC),
4331                                               D.getSourceRange().getBegin(),
4332                                               NameInfo, R, TInfo,
4333                                               isStatic, SCAsWritten, isInline,
4334                                               SourceLocation());
4335      NewFD = NewMD;
4336
4337      isVirtualOkay = !isStatic;
4338    } else {
4339      // Determine whether the function was written with a
4340      // prototype. This true when:
4341      //   - we're in C++ (where every function has a prototype),
4342      NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4343                                   NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4344                                   true/*HasPrototype*/);
4345    }
4346
4347    if (isFriend && !isInline && IsFunctionDefinition) {
4348      // C++ [class.friend]p5
4349      //   A function can be defined in a friend declaration of a
4350      //   class . . . . Such a function is implicitly inline.
4351      NewFD->setImplicitlyInline();
4352    }
4353
4354    SetNestedNameSpecifier(NewFD, D);
4355    isExplicitSpecialization = false;
4356    isFunctionTemplateSpecialization = false;
4357    if (D.isInvalidType())
4358      NewFD->setInvalidDecl();
4359
4360    // Set the lexical context. If the declarator has a C++
4361    // scope specifier, or is the object of a friend declaration, the
4362    // lexical context will be different from the semantic context.
4363    NewFD->setLexicalDeclContext(CurContext);
4364
4365    // Match up the template parameter lists with the scope specifier, then
4366    // determine whether we have a template or a template specialization.
4367    bool Invalid = false;
4368    if (TemplateParameterList *TemplateParams
4369          = MatchTemplateParametersToScopeSpecifier(
4370                                  D.getDeclSpec().getSourceRange().getBegin(),
4371                                  D.getIdentifierLoc(),
4372                                  D.getCXXScopeSpec(),
4373                                  TemplateParamLists.get(),
4374                                  TemplateParamLists.size(),
4375                                  isFriend,
4376                                  isExplicitSpecialization,
4377                                  Invalid)) {
4378      if (TemplateParams->size() > 0) {
4379        // This is a function template
4380
4381        // Check that we can declare a template here.
4382        if (CheckTemplateDeclScope(S, TemplateParams))
4383          return 0;
4384
4385        // A destructor cannot be a template.
4386        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4387          Diag(NewFD->getLocation(), diag::err_destructor_template);
4388          return 0;
4389        }
4390
4391        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
4392                                                        NewFD->getLocation(),
4393                                                        Name, TemplateParams,
4394                                                        NewFD);
4395        FunctionTemplate->setLexicalDeclContext(CurContext);
4396        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
4397
4398        // For source fidelity, store the other template param lists.
4399        if (TemplateParamLists.size() > 1) {
4400          NewFD->setTemplateParameterListsInfo(Context,
4401                                               TemplateParamLists.size() - 1,
4402                                               TemplateParamLists.release());
4403        }
4404      } else {
4405        // This is a function template specialization.
4406        isFunctionTemplateSpecialization = true;
4407        // For source fidelity, store all the template param lists.
4408        NewFD->setTemplateParameterListsInfo(Context,
4409                                             TemplateParamLists.size(),
4410                                             TemplateParamLists.release());
4411
4412        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
4413        if (isFriend) {
4414          // We want to remove the "template<>", found here.
4415          SourceRange RemoveRange = TemplateParams->getSourceRange();
4416
4417          // If we remove the template<> and the name is not a
4418          // template-id, we're actually silently creating a problem:
4419          // the friend declaration will refer to an untemplated decl,
4420          // and clearly the user wants a template specialization.  So
4421          // we need to insert '<>' after the name.
4422          SourceLocation InsertLoc;
4423          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
4424            InsertLoc = D.getName().getSourceRange().getEnd();
4425            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
4426          }
4427
4428          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
4429            << Name << RemoveRange
4430            << FixItHint::CreateRemoval(RemoveRange)
4431            << FixItHint::CreateInsertion(InsertLoc, "<>");
4432        }
4433      }
4434    }
4435    else {
4436      // All template param lists were matched against the scope specifier:
4437      // this is NOT (an explicit specialization of) a template.
4438      if (TemplateParamLists.size() > 0)
4439        // For source fidelity, store all the template param lists.
4440        NewFD->setTemplateParameterListsInfo(Context,
4441                                             TemplateParamLists.size(),
4442                                             TemplateParamLists.release());
4443    }
4444
4445    if (Invalid) {
4446      NewFD->setInvalidDecl();
4447      if (FunctionTemplate)
4448        FunctionTemplate->setInvalidDecl();
4449    }
4450
4451    // C++ [dcl.fct.spec]p5:
4452    //   The virtual specifier shall only be used in declarations of
4453    //   nonstatic class member functions that appear within a
4454    //   member-specification of a class declaration; see 10.3.
4455    //
4456    if (isVirtual && !NewFD->isInvalidDecl()) {
4457      if (!isVirtualOkay) {
4458        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4459             diag::err_virtual_non_function);
4460      } else if (!CurContext->isRecord()) {
4461        // 'virtual' was specified outside of the class.
4462        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4463             diag::err_virtual_out_of_class)
4464          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4465      } else if (NewFD->getDescribedFunctionTemplate()) {
4466        // C++ [temp.mem]p3:
4467        //  A member function template shall not be virtual.
4468        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4469             diag::err_virtual_member_function_template)
4470          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4471      } else {
4472        // Okay: Add virtual to the method.
4473        NewFD->setVirtualAsWritten(true);
4474      }
4475    }
4476
4477    // C++ [dcl.fct.spec]p3:
4478    //  The inline specifier shall not appear on a block scope function declaration.
4479    if (isInline && !NewFD->isInvalidDecl()) {
4480      if (CurContext->isFunctionOrMethod()) {
4481        // 'inline' is not allowed on block scope function declaration.
4482        Diag(D.getDeclSpec().getInlineSpecLoc(),
4483             diag::err_inline_declaration_block_scope) << Name
4484          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
4485      }
4486    }
4487
4488    // C++ [dcl.fct.spec]p6:
4489    //  The explicit specifier shall be used only in the declaration of a
4490    //  constructor or conversion function within its class definition; see 12.3.1
4491    //  and 12.3.2.
4492    if (isExplicit && !NewFD->isInvalidDecl()) {
4493      if (!CurContext->isRecord()) {
4494        // 'explicit' was specified outside of the class.
4495        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4496             diag::err_explicit_out_of_class)
4497          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4498      } else if (!isa<CXXConstructorDecl>(NewFD) &&
4499                 !isa<CXXConversionDecl>(NewFD)) {
4500        // 'explicit' was specified on a function that wasn't a constructor
4501        // or conversion function.
4502        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4503             diag::err_explicit_non_ctor_or_conv_function)
4504          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4505      }
4506    }
4507
4508    // Filter out previous declarations that don't match the scope.
4509    FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
4510                         isExplicitSpecialization ||
4511                         isFunctionTemplateSpecialization);
4512
4513    if (isFriend) {
4514      // For now, claim that the objects have no previous declaration.
4515      if (FunctionTemplate) {
4516        FunctionTemplate->setObjectOfFriendDecl(false);
4517        FunctionTemplate->setAccess(AS_public);
4518      }
4519      NewFD->setObjectOfFriendDecl(false);
4520      NewFD->setAccess(AS_public);
4521    }
4522
4523    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext && IsFunctionDefinition) {
4524      // A method is implicitly inline if it's defined in its class
4525      // definition.
4526      NewFD->setImplicitlyInline();
4527    }
4528
4529    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
4530        !CurContext->isRecord()) {
4531      // C++ [class.static]p1:
4532      //   A data or function member of a class may be declared static
4533      //   in a class definition, in which case it is a static member of
4534      //   the class.
4535
4536      // Complain about the 'static' specifier if it's on an out-of-line
4537      // member function definition.
4538      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4539           diag::err_static_out_of_line)
4540        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4541    }
4542  }
4543
4544  // Handle GNU asm-label extension (encoded as an attribute).
4545  if (Expr *E = (Expr*) D.getAsmLabel()) {
4546    // The parser guarantees this is a string.
4547    StringLiteral *SE = cast<StringLiteral>(E);
4548    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
4549                                                SE->getString()));
4550  }
4551
4552  // Copy the parameter declarations from the declarator D to the function
4553  // declaration NewFD, if they are available.  First scavenge them into Params.
4554  SmallVector<ParmVarDecl*, 16> Params;
4555  if (D.isFunctionDeclarator()) {
4556    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4557
4558    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
4559    // function that takes no arguments, not a function that takes a
4560    // single void argument.
4561    // We let through "const void" here because Sema::GetTypeForDeclarator
4562    // already checks for that case.
4563    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
4564        FTI.ArgInfo[0].Param &&
4565        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
4566      // Empty arg list, don't push any params.
4567      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
4568
4569      // In C++, the empty parameter-type-list must be spelled "void"; a
4570      // typedef of void is not permitted.
4571      if (getLangOptions().CPlusPlus &&
4572          Param->getType().getUnqualifiedType() != Context.VoidTy) {
4573        bool IsTypeAlias = false;
4574        if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
4575          IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
4576        else if (const TemplateSpecializationType *TST =
4577                   Param->getType()->getAs<TemplateSpecializationType>())
4578          IsTypeAlias = TST->isTypeAlias();
4579        Diag(Param->getLocation(), diag::err_param_typedef_of_void)
4580          << IsTypeAlias;
4581      }
4582    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
4583      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
4584        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
4585        assert(Param->getDeclContext() != NewFD && "Was set before ?");
4586        Param->setDeclContext(NewFD);
4587        Params.push_back(Param);
4588
4589        if (Param->isInvalidDecl())
4590          NewFD->setInvalidDecl();
4591      }
4592    }
4593
4594  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
4595    // When we're declaring a function with a typedef, typeof, etc as in the
4596    // following example, we'll need to synthesize (unnamed)
4597    // parameters for use in the declaration.
4598    //
4599    // @code
4600    // typedef void fn(int);
4601    // fn f;
4602    // @endcode
4603
4604    // Synthesize a parameter for each argument type.
4605    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
4606         AE = FT->arg_type_end(); AI != AE; ++AI) {
4607      ParmVarDecl *Param =
4608        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
4609      Param->setScopeInfo(0, Params.size());
4610      Params.push_back(Param);
4611    }
4612  } else {
4613    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
4614           "Should not need args for typedef of non-prototype fn");
4615  }
4616  // Finally, we know we have the right number of parameters, install them.
4617  NewFD->setParams(Params.data(), Params.size());
4618
4619  // Process the non-inheritable attributes on this declaration.
4620  ProcessDeclAttributes(S, NewFD, D,
4621                        /*NonInheritable=*/true, /*Inheritable=*/false);
4622
4623  if (!getLangOptions().CPlusPlus) {
4624    // Perform semantic checking on the function declaration.
4625    bool isExplicitSpecialization=false;
4626    CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
4627                             Redeclaration);
4628    assert((NewFD->isInvalidDecl() || !Redeclaration ||
4629            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
4630           "previous declaration set still overloaded");
4631  } else {
4632    // If the declarator is a template-id, translate the parser's template
4633    // argument list into our AST format.
4634    bool HasExplicitTemplateArgs = false;
4635    TemplateArgumentListInfo TemplateArgs;
4636    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
4637      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
4638      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
4639      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
4640      ASTTemplateArgsPtr TemplateArgsPtr(*this,
4641                                         TemplateId->getTemplateArgs(),
4642                                         TemplateId->NumArgs);
4643      translateTemplateArguments(TemplateArgsPtr,
4644                                 TemplateArgs);
4645      TemplateArgsPtr.release();
4646
4647      HasExplicitTemplateArgs = true;
4648
4649      if (NewFD->isInvalidDecl()) {
4650        HasExplicitTemplateArgs = false;
4651      } else if (FunctionTemplate) {
4652        // Function template with explicit template arguments.
4653        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
4654          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
4655
4656        HasExplicitTemplateArgs = false;
4657      } else if (!isFunctionTemplateSpecialization &&
4658                 !D.getDeclSpec().isFriendSpecified()) {
4659        // We have encountered something that the user meant to be a
4660        // specialization (because it has explicitly-specified template
4661        // arguments) but that was not introduced with a "template<>" (or had
4662        // too few of them).
4663        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
4664          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
4665          << FixItHint::CreateInsertion(
4666                                        D.getDeclSpec().getSourceRange().getBegin(),
4667                                                  "template<> ");
4668        isFunctionTemplateSpecialization = true;
4669      } else {
4670        // "friend void foo<>(int);" is an implicit specialization decl.
4671        isFunctionTemplateSpecialization = true;
4672      }
4673    } else if (isFriend && isFunctionTemplateSpecialization) {
4674      // This combination is only possible in a recovery case;  the user
4675      // wrote something like:
4676      //   template <> friend void foo(int);
4677      // which we're recovering from as if the user had written:
4678      //   friend void foo<>(int);
4679      // Go ahead and fake up a template id.
4680      HasExplicitTemplateArgs = true;
4681        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
4682      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
4683    }
4684
4685    // If it's a friend (and only if it's a friend), it's possible
4686    // that either the specialized function type or the specialized
4687    // template is dependent, and therefore matching will fail.  In
4688    // this case, don't check the specialization yet.
4689    if (isFunctionTemplateSpecialization && isFriend &&
4690        (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
4691      assert(HasExplicitTemplateArgs &&
4692             "friend function specialization without template args");
4693      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
4694                                                       Previous))
4695        NewFD->setInvalidDecl();
4696    } else if (isFunctionTemplateSpecialization) {
4697      if (CurContext->isDependentContext() && CurContext->isRecord()
4698          && !isFriend) {
4699        Diag(NewFD->getLocation(), diag::err_function_specialization_in_class)
4700          << NewFD->getDeclName();
4701        NewFD->setInvalidDecl();
4702        return 0;
4703      } else if (CheckFunctionTemplateSpecialization(NewFD,
4704                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
4705                                                     Previous))
4706        NewFD->setInvalidDecl();
4707
4708      // C++ [dcl.stc]p1:
4709      //   A storage-class-specifier shall not be specified in an explicit
4710      //   specialization (14.7.3)
4711      if (SC != SC_None) {
4712        if (SC != NewFD->getStorageClass())
4713          Diag(NewFD->getLocation(),
4714               diag::err_explicit_specialization_inconsistent_storage_class)
4715            << SC
4716            << FixItHint::CreateRemoval(
4717                                      D.getDeclSpec().getStorageClassSpecLoc());
4718
4719        else
4720          Diag(NewFD->getLocation(),
4721               diag::ext_explicit_specialization_storage_class)
4722            << FixItHint::CreateRemoval(
4723                                      D.getDeclSpec().getStorageClassSpecLoc());
4724      }
4725
4726    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
4727      if (CheckMemberSpecialization(NewFD, Previous))
4728          NewFD->setInvalidDecl();
4729    }
4730
4731    // Perform semantic checking on the function declaration.
4732    CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
4733                             Redeclaration);
4734
4735    assert((NewFD->isInvalidDecl() || !Redeclaration ||
4736            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
4737           "previous declaration set still overloaded");
4738
4739    NamedDecl *PrincipalDecl = (FunctionTemplate
4740                                ? cast<NamedDecl>(FunctionTemplate)
4741                                : NewFD);
4742
4743    if (isFriend && Redeclaration) {
4744      AccessSpecifier Access = AS_public;
4745      if (!NewFD->isInvalidDecl())
4746        Access = NewFD->getPreviousDeclaration()->getAccess();
4747
4748      NewFD->setAccess(Access);
4749      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
4750
4751      PrincipalDecl->setObjectOfFriendDecl(true);
4752    }
4753
4754    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
4755        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
4756      PrincipalDecl->setNonMemberOperator();
4757
4758    // If we have a function template, check the template parameter
4759    // list. This will check and merge default template arguments.
4760    if (FunctionTemplate) {
4761      FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
4762      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
4763                                 PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
4764                            D.getDeclSpec().isFriendSpecified()
4765                              ? (IsFunctionDefinition
4766                                   ? TPC_FriendFunctionTemplateDefinition
4767                                   : TPC_FriendFunctionTemplate)
4768                              : (D.getCXXScopeSpec().isSet() &&
4769                                 DC && DC->isRecord() &&
4770                                 DC->isDependentContext())
4771                                  ? TPC_ClassTemplateMember
4772                                  : TPC_FunctionTemplate);
4773    }
4774
4775    if (NewFD->isInvalidDecl()) {
4776      // Ignore all the rest of this.
4777    } else if (!Redeclaration) {
4778      // Fake up an access specifier if it's supposed to be a class member.
4779      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
4780        NewFD->setAccess(AS_public);
4781
4782      // Qualified decls generally require a previous declaration.
4783      if (D.getCXXScopeSpec().isSet()) {
4784        // ...with the major exception of templated-scope or
4785        // dependent-scope friend declarations.
4786
4787        // TODO: we currently also suppress this check in dependent
4788        // contexts because (1) the parameter depth will be off when
4789        // matching friend templates and (2) we might actually be
4790        // selecting a friend based on a dependent factor.  But there
4791        // are situations where these conditions don't apply and we
4792        // can actually do this check immediately.
4793        if (isFriend &&
4794            (TemplateParamLists.size() ||
4795             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
4796             CurContext->isDependentContext())) {
4797              // ignore these
4798            } else {
4799              // The user tried to provide an out-of-line definition for a
4800              // function that is a member of a class or namespace, but there
4801              // was no such member function declared (C++ [class.mfct]p2,
4802              // C++ [namespace.memdef]p2). For example:
4803              //
4804              // class X {
4805              //   void f() const;
4806              // };
4807              //
4808              // void X::f() { } // ill-formed
4809              //
4810              // Complain about this problem, and attempt to suggest close
4811              // matches (e.g., those that differ only in cv-qualifiers and
4812              // whether the parameter types are references).
4813              Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
4814              << Name << DC << D.getCXXScopeSpec().getRange();
4815              NewFD->setInvalidDecl();
4816
4817              DiagnoseInvalidRedeclaration(*this, NewFD);
4818            }
4819
4820        // Unqualified local friend declarations are required to resolve
4821        // to something.
4822        } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
4823          Diag(D.getIdentifierLoc(), diag::err_no_matching_local_friend);
4824          NewFD->setInvalidDecl();
4825          DiagnoseInvalidRedeclaration(*this, NewFD);
4826        }
4827
4828    } else if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
4829               !isFriend && !isFunctionTemplateSpecialization &&
4830               !isExplicitSpecialization) {
4831      // An out-of-line member function declaration must also be a
4832      // definition (C++ [dcl.meaning]p1).
4833      // Note that this is not the case for explicit specializations of
4834      // function templates or member functions of class templates, per
4835      // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
4836      // for compatibility with old SWIG code which likes to generate them.
4837      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
4838        << D.getCXXScopeSpec().getRange();
4839    }
4840  }
4841
4842
4843  // Handle attributes. We need to have merged decls when handling attributes
4844  // (for example to check for conflicts, etc).
4845  // FIXME: This needs to happen before we merge declarations. Then,
4846  // let attribute merging cope with attribute conflicts.
4847  ProcessDeclAttributes(S, NewFD, D,
4848                        /*NonInheritable=*/false, /*Inheritable=*/true);
4849
4850  // attributes declared post-definition are currently ignored
4851  // FIXME: This should happen during attribute merging
4852  if (Redeclaration && Previous.isSingleResult()) {
4853    const FunctionDecl *Def;
4854    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
4855    if (PrevFD && PrevFD->isDefined(Def) && D.hasAttributes()) {
4856      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
4857      Diag(Def->getLocation(), diag::note_previous_definition);
4858    }
4859  }
4860
4861  AddKnownFunctionAttributes(NewFD);
4862
4863  if (NewFD->hasAttr<OverloadableAttr>() &&
4864      !NewFD->getType()->getAs<FunctionProtoType>()) {
4865    Diag(NewFD->getLocation(),
4866         diag::err_attribute_overloadable_no_prototype)
4867      << NewFD;
4868
4869    // Turn this into a variadic function with no parameters.
4870    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
4871    FunctionProtoType::ExtProtoInfo EPI;
4872    EPI.Variadic = true;
4873    EPI.ExtInfo = FT->getExtInfo();
4874
4875    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
4876    NewFD->setType(R);
4877  }
4878
4879  // If there's a #pragma GCC visibility in scope, and this isn't a class
4880  // member, set the visibility of this function.
4881  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
4882    AddPushedVisibilityAttribute(NewFD);
4883
4884  // If this is a locally-scoped extern C function, update the
4885  // map of such names.
4886  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
4887      && !NewFD->isInvalidDecl())
4888    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
4889
4890  // Set this FunctionDecl's range up to the right paren.
4891  NewFD->setRangeEnd(D.getSourceRange().getEnd());
4892
4893  if (getLangOptions().CPlusPlus) {
4894    if (FunctionTemplate) {
4895      if (NewFD->isInvalidDecl())
4896        FunctionTemplate->setInvalidDecl();
4897      return FunctionTemplate;
4898    }
4899  }
4900
4901  MarkUnusedFileScopedDecl(NewFD);
4902
4903  if (getLangOptions().CUDA)
4904    if (IdentifierInfo *II = NewFD->getIdentifier())
4905      if (!NewFD->isInvalidDecl() &&
4906          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
4907        if (II->isStr("cudaConfigureCall")) {
4908          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
4909            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
4910
4911          Context.setcudaConfigureCallDecl(NewFD);
4912        }
4913      }
4914
4915  return NewFD;
4916}
4917
4918/// \brief Perform semantic checking of a new function declaration.
4919///
4920/// Performs semantic analysis of the new function declaration
4921/// NewFD. This routine performs all semantic checking that does not
4922/// require the actual declarator involved in the declaration, and is
4923/// used both for the declaration of functions as they are parsed
4924/// (called via ActOnDeclarator) and for the declaration of functions
4925/// that have been instantiated via C++ template instantiation (called
4926/// via InstantiateDecl).
4927///
4928/// \param IsExplicitSpecialiation whether this new function declaration is
4929/// an explicit specialization of the previous declaration.
4930///
4931/// This sets NewFD->isInvalidDecl() to true if there was an error.
4932void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
4933                                    LookupResult &Previous,
4934                                    bool IsExplicitSpecialization,
4935                                    bool &Redeclaration) {
4936  // If NewFD is already known erroneous, don't do any of this checking.
4937  if (NewFD->isInvalidDecl()) {
4938    // If this is a class member, mark the class invalid immediately.
4939    // This avoids some consistency errors later.
4940    if (isa<CXXMethodDecl>(NewFD))
4941      cast<CXXMethodDecl>(NewFD)->getParent()->setInvalidDecl();
4942
4943    return;
4944  }
4945
4946  if (NewFD->getResultType()->isVariablyModifiedType()) {
4947    // Functions returning a variably modified type violate C99 6.7.5.2p2
4948    // because all functions have linkage.
4949    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
4950    return NewFD->setInvalidDecl();
4951  }
4952
4953  if (NewFD->isMain())
4954    CheckMain(NewFD);
4955
4956  // Check for a previous declaration of this name.
4957  if (Previous.empty() && NewFD->isExternC()) {
4958    // Since we did not find anything by this name and we're declaring
4959    // an extern "C" function, look for a non-visible extern "C"
4960    // declaration with the same name.
4961    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4962      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
4963    if (Pos != LocallyScopedExternalDecls.end())
4964      Previous.addDecl(Pos->second);
4965  }
4966
4967  // Merge or overload the declaration with an existing declaration of
4968  // the same name, if appropriate.
4969  if (!Previous.empty()) {
4970    // Determine whether NewFD is an overload of PrevDecl or
4971    // a declaration that requires merging. If it's an overload,
4972    // there's no more work to do here; we'll just add the new
4973    // function to the scope.
4974
4975    NamedDecl *OldDecl = 0;
4976    if (!AllowOverloadingOfFunction(Previous, Context)) {
4977      Redeclaration = true;
4978      OldDecl = Previous.getFoundDecl();
4979    } else {
4980      switch (CheckOverload(S, NewFD, Previous, OldDecl,
4981                            /*NewIsUsingDecl*/ false)) {
4982      case Ovl_Match:
4983        Redeclaration = true;
4984        break;
4985
4986      case Ovl_NonFunction:
4987        Redeclaration = true;
4988        break;
4989
4990      case Ovl_Overload:
4991        Redeclaration = false;
4992        break;
4993      }
4994
4995      if (!getLangOptions().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
4996        // If a function name is overloadable in C, then every function
4997        // with that name must be marked "overloadable".
4998        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
4999          << Redeclaration << NewFD;
5000        NamedDecl *OverloadedDecl = 0;
5001        if (Redeclaration)
5002          OverloadedDecl = OldDecl;
5003        else if (!Previous.empty())
5004          OverloadedDecl = Previous.getRepresentativeDecl();
5005        if (OverloadedDecl)
5006          Diag(OverloadedDecl->getLocation(),
5007               diag::note_attribute_overloadable_prev_overload);
5008        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
5009                                                        Context));
5010      }
5011    }
5012
5013    if (Redeclaration) {
5014      // NewFD and OldDecl represent declarations that need to be
5015      // merged.
5016      if (MergeFunctionDecl(NewFD, OldDecl))
5017        return NewFD->setInvalidDecl();
5018
5019      Previous.clear();
5020      Previous.addDecl(OldDecl);
5021
5022      if (FunctionTemplateDecl *OldTemplateDecl
5023                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
5024        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
5025        FunctionTemplateDecl *NewTemplateDecl
5026          = NewFD->getDescribedFunctionTemplate();
5027        assert(NewTemplateDecl && "Template/non-template mismatch");
5028        if (CXXMethodDecl *Method
5029              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
5030          Method->setAccess(OldTemplateDecl->getAccess());
5031          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
5032        }
5033
5034        // If this is an explicit specialization of a member that is a function
5035        // template, mark it as a member specialization.
5036        if (IsExplicitSpecialization &&
5037            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
5038          NewTemplateDecl->setMemberSpecialization();
5039          assert(OldTemplateDecl->isMemberSpecialization());
5040        }
5041      } else {
5042        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
5043          NewFD->setAccess(OldDecl->getAccess());
5044        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
5045      }
5046    }
5047  }
5048
5049  // Semantic checking for this function declaration (in isolation).
5050  if (getLangOptions().CPlusPlus) {
5051    // C++-specific checks.
5052    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
5053      CheckConstructor(Constructor);
5054    } else if (CXXDestructorDecl *Destructor =
5055                dyn_cast<CXXDestructorDecl>(NewFD)) {
5056      CXXRecordDecl *Record = Destructor->getParent();
5057      QualType ClassType = Context.getTypeDeclType(Record);
5058
5059      // FIXME: Shouldn't we be able to perform this check even when the class
5060      // type is dependent? Both gcc and edg can handle that.
5061      if (!ClassType->isDependentType()) {
5062        DeclarationName Name
5063          = Context.DeclarationNames.getCXXDestructorName(
5064                                        Context.getCanonicalType(ClassType));
5065        if (NewFD->getDeclName() != Name) {
5066          Diag(NewFD->getLocation(), diag::err_destructor_name);
5067          return NewFD->setInvalidDecl();
5068        }
5069      }
5070    } else if (CXXConversionDecl *Conversion
5071               = dyn_cast<CXXConversionDecl>(NewFD)) {
5072      ActOnConversionDeclarator(Conversion);
5073    }
5074
5075    // Find any virtual functions that this function overrides.
5076    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
5077      if (!Method->isFunctionTemplateSpecialization() &&
5078          !Method->getDescribedFunctionTemplate()) {
5079        if (AddOverriddenMethods(Method->getParent(), Method)) {
5080          // If the function was marked as "static", we have a problem.
5081          if (NewFD->getStorageClass() == SC_Static) {
5082            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
5083              << NewFD->getDeclName();
5084            for (CXXMethodDecl::method_iterator
5085                      Overridden = Method->begin_overridden_methods(),
5086                   OverriddenEnd = Method->end_overridden_methods();
5087                 Overridden != OverriddenEnd;
5088                 ++Overridden) {
5089              Diag((*Overridden)->getLocation(),
5090                   diag::note_overridden_virtual_function);
5091            }
5092          }
5093        }
5094      }
5095    }
5096
5097    // Extra checking for C++ overloaded operators (C++ [over.oper]).
5098    if (NewFD->isOverloadedOperator() &&
5099        CheckOverloadedOperatorDeclaration(NewFD))
5100      return NewFD->setInvalidDecl();
5101
5102    // Extra checking for C++0x literal operators (C++0x [over.literal]).
5103    if (NewFD->getLiteralIdentifier() &&
5104        CheckLiteralOperatorDeclaration(NewFD))
5105      return NewFD->setInvalidDecl();
5106
5107    // In C++, check default arguments now that we have merged decls. Unless
5108    // the lexical context is the class, because in this case this is done
5109    // during delayed parsing anyway.
5110    if (!CurContext->isRecord())
5111      CheckCXXDefaultArguments(NewFD);
5112
5113    // If this function declares a builtin function, check the type of this
5114    // declaration against the expected type for the builtin.
5115    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
5116      ASTContext::GetBuiltinTypeError Error;
5117      QualType T = Context.GetBuiltinType(BuiltinID, Error);
5118      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
5119        // The type of this function differs from the type of the builtin,
5120        // so forget about the builtin entirely.
5121        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
5122      }
5123    }
5124  }
5125}
5126
5127void Sema::CheckMain(FunctionDecl* FD) {
5128  // C++ [basic.start.main]p3:  A program that declares main to be inline
5129  //   or static is ill-formed.
5130  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
5131  //   shall not appear in a declaration of main.
5132  // static main is not an error under C99, but we should warn about it.
5133  bool isInline = FD->isInlineSpecified();
5134  bool isStatic = FD->getStorageClass() == SC_Static;
5135  if (isInline || isStatic) {
5136    unsigned diagID = diag::warn_unusual_main_decl;
5137    if (isInline || getLangOptions().CPlusPlus)
5138      diagID = diag::err_unusual_main_decl;
5139
5140    int which = isStatic + (isInline << 1) - 1;
5141    Diag(FD->getLocation(), diagID) << which;
5142  }
5143
5144  QualType T = FD->getType();
5145  assert(T->isFunctionType() && "function decl is not of function type");
5146  const FunctionType* FT = T->getAs<FunctionType>();
5147
5148  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
5149    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
5150    FD->setInvalidDecl(true);
5151  }
5152
5153  // Treat protoless main() as nullary.
5154  if (isa<FunctionNoProtoType>(FT)) return;
5155
5156  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
5157  unsigned nparams = FTP->getNumArgs();
5158  assert(FD->getNumParams() == nparams);
5159
5160  bool HasExtraParameters = (nparams > 3);
5161
5162  // Darwin passes an undocumented fourth argument of type char**.  If
5163  // other platforms start sprouting these, the logic below will start
5164  // getting shifty.
5165  if (nparams == 4 && Context.Target.getTriple().isOSDarwin())
5166    HasExtraParameters = false;
5167
5168  if (HasExtraParameters) {
5169    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
5170    FD->setInvalidDecl(true);
5171    nparams = 3;
5172  }
5173
5174  // FIXME: a lot of the following diagnostics would be improved
5175  // if we had some location information about types.
5176
5177  QualType CharPP =
5178    Context.getPointerType(Context.getPointerType(Context.CharTy));
5179  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
5180
5181  for (unsigned i = 0; i < nparams; ++i) {
5182    QualType AT = FTP->getArgType(i);
5183
5184    bool mismatch = true;
5185
5186    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
5187      mismatch = false;
5188    else if (Expected[i] == CharPP) {
5189      // As an extension, the following forms are okay:
5190      //   char const **
5191      //   char const * const *
5192      //   char * const *
5193
5194      QualifierCollector qs;
5195      const PointerType* PT;
5196      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
5197          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
5198          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
5199        qs.removeConst();
5200        mismatch = !qs.empty();
5201      }
5202    }
5203
5204    if (mismatch) {
5205      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
5206      // TODO: suggest replacing given type with expected type
5207      FD->setInvalidDecl(true);
5208    }
5209  }
5210
5211  if (nparams == 1 && !FD->isInvalidDecl()) {
5212    Diag(FD->getLocation(), diag::warn_main_one_arg);
5213  }
5214
5215  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
5216    Diag(FD->getLocation(), diag::err_main_template_decl);
5217    FD->setInvalidDecl();
5218  }
5219}
5220
5221bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
5222  // FIXME: Need strict checking.  In C89, we need to check for
5223  // any assignment, increment, decrement, function-calls, or
5224  // commas outside of a sizeof.  In C99, it's the same list,
5225  // except that the aforementioned are allowed in unevaluated
5226  // expressions.  Everything else falls under the
5227  // "may accept other forms of constant expressions" exception.
5228  // (We never end up here for C++, so the constant expression
5229  // rules there don't matter.)
5230  if (Init->isConstantInitializer(Context, false))
5231    return false;
5232  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
5233    << Init->getSourceRange();
5234  return true;
5235}
5236
5237namespace {
5238  // Visits an initialization expression to see if OrigDecl is evaluated in
5239  // its own initialization and throws a warning if it does.
5240  class SelfReferenceChecker
5241      : public EvaluatedExprVisitor<SelfReferenceChecker> {
5242    Sema &S;
5243    Decl *OrigDecl;
5244
5245  public:
5246    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
5247
5248    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
5249                                                    S(S), OrigDecl(OrigDecl) { }
5250
5251    void VisitExpr(Expr *E) {
5252      if (isa<ObjCMessageExpr>(*E)) return;
5253      Inherited::VisitExpr(E);
5254    }
5255
5256    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
5257      CheckForSelfReference(E);
5258      Inherited::VisitImplicitCastExpr(E);
5259    }
5260
5261    void CheckForSelfReference(ImplicitCastExpr *E) {
5262      if (E->getCastKind() != CK_LValueToRValue) return;
5263      Expr* SubExpr = E->getSubExpr()->IgnoreParenImpCasts();
5264      DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SubExpr);
5265      if (!DRE) return;
5266      Decl* ReferenceDecl = DRE->getDecl();
5267      if (OrigDecl != ReferenceDecl) return;
5268      LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
5269                          Sema::NotForRedeclaration);
5270      S.DiagRuntimeBehavior(SubExpr->getLocStart(), SubExpr,
5271                            S.PDiag(diag::warn_uninit_self_reference_in_init)
5272                              << Result.getLookupName()
5273                              << OrigDecl->getLocation()
5274                              << SubExpr->getSourceRange());
5275    }
5276  };
5277}
5278
5279/// AddInitializerToDecl - Adds the initializer Init to the
5280/// declaration dcl. If DirectInit is true, this is C++ direct
5281/// initialization rather than copy initialization.
5282void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
5283                                bool DirectInit, bool TypeMayContainAuto) {
5284  // If there is no declaration, there was an error parsing it.  Just ignore
5285  // the initializer.
5286  if (RealDecl == 0 || RealDecl->isInvalidDecl())
5287    return;
5288
5289  // Check for self-references within variable initializers.
5290  if (VarDecl *vd = dyn_cast<VarDecl>(RealDecl)) {
5291    // Variables declared within a function/method body are handled
5292    // by a dataflow analysis.
5293    if (!vd->hasLocalStorage() && !vd->isStaticLocal())
5294      SelfReferenceChecker(*this, RealDecl).VisitExpr(Init);
5295  }
5296  else {
5297    SelfReferenceChecker(*this, RealDecl).VisitExpr(Init);
5298  }
5299
5300  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
5301    // With declarators parsed the way they are, the parser cannot
5302    // distinguish between a normal initializer and a pure-specifier.
5303    // Thus this grotesque test.
5304    IntegerLiteral *IL;
5305    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
5306        Context.getCanonicalType(IL->getType()) == Context.IntTy)
5307      CheckPureMethod(Method, Init->getSourceRange());
5308    else {
5309      Diag(Method->getLocation(), diag::err_member_function_initialization)
5310        << Method->getDeclName() << Init->getSourceRange();
5311      Method->setInvalidDecl();
5312    }
5313    return;
5314  }
5315
5316  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
5317  if (!VDecl) {
5318    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
5319    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
5320    RealDecl->setInvalidDecl();
5321    return;
5322  }
5323
5324  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
5325  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
5326    TypeSourceInfo *DeducedType = 0;
5327    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
5328      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
5329        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
5330        << Init->getSourceRange();
5331    if (!DeducedType) {
5332      RealDecl->setInvalidDecl();
5333      return;
5334    }
5335    VDecl->setTypeSourceInfo(DeducedType);
5336    VDecl->setType(DeducedType->getType());
5337
5338    // In ARC, infer lifetime.
5339    if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
5340      VDecl->setInvalidDecl();
5341
5342    // If this is a redeclaration, check that the type we just deduced matches
5343    // the previously declared type.
5344    if (VarDecl *Old = VDecl->getPreviousDeclaration())
5345      MergeVarDeclTypes(VDecl, Old);
5346  }
5347
5348
5349  // A definition must end up with a complete type, which means it must be
5350  // complete with the restriction that an array type might be completed by the
5351  // initializer; note that later code assumes this restriction.
5352  QualType BaseDeclType = VDecl->getType();
5353  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
5354    BaseDeclType = Array->getElementType();
5355  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
5356                          diag::err_typecheck_decl_incomplete_type)) {
5357    RealDecl->setInvalidDecl();
5358    return;
5359  }
5360
5361  // The variable can not have an abstract class type.
5362  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
5363                             diag::err_abstract_type_in_decl,
5364                             AbstractVariableType))
5365    VDecl->setInvalidDecl();
5366
5367  const VarDecl *Def;
5368  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
5369    Diag(VDecl->getLocation(), diag::err_redefinition)
5370      << VDecl->getDeclName();
5371    Diag(Def->getLocation(), diag::note_previous_definition);
5372    VDecl->setInvalidDecl();
5373    return;
5374  }
5375
5376  const VarDecl* PrevInit = 0;
5377  if (getLangOptions().CPlusPlus) {
5378    // C++ [class.static.data]p4
5379    //   If a static data member is of const integral or const
5380    //   enumeration type, its declaration in the class definition can
5381    //   specify a constant-initializer which shall be an integral
5382    //   constant expression (5.19). In that case, the member can appear
5383    //   in integral constant expressions. The member shall still be
5384    //   defined in a namespace scope if it is used in the program and the
5385    //   namespace scope definition shall not contain an initializer.
5386    //
5387    // We already performed a redefinition check above, but for static
5388    // data members we also need to check whether there was an in-class
5389    // declaration with an initializer.
5390    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
5391      Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
5392      Diag(PrevInit->getLocation(), diag::note_previous_definition);
5393      return;
5394    }
5395
5396    if (VDecl->hasLocalStorage())
5397      getCurFunction()->setHasBranchProtectedScope();
5398
5399    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
5400      VDecl->setInvalidDecl();
5401      return;
5402    }
5403  }
5404
5405  // Capture the variable that is being initialized and the style of
5406  // initialization.
5407  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
5408
5409  // FIXME: Poor source location information.
5410  InitializationKind Kind
5411    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
5412                                                   Init->getLocStart(),
5413                                                   Init->getLocEnd())
5414                : InitializationKind::CreateCopy(VDecl->getLocation(),
5415                                                 Init->getLocStart());
5416
5417  // Get the decls type and save a reference for later, since
5418  // CheckInitializerTypes may change it.
5419  QualType DclT = VDecl->getType(), SavT = DclT;
5420  if (VDecl->isLocalVarDecl()) {
5421    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
5422      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
5423      VDecl->setInvalidDecl();
5424    } else if (!VDecl->isInvalidDecl()) {
5425      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5426      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5427                                                MultiExprArg(*this, &Init, 1),
5428                                                &DclT);
5429      if (Result.isInvalid()) {
5430        VDecl->setInvalidDecl();
5431        return;
5432      }
5433
5434      Init = Result.takeAs<Expr>();
5435
5436      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
5437      // Don't check invalid declarations to avoid emitting useless diagnostics.
5438      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
5439        if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
5440          CheckForConstantInitializer(Init, DclT);
5441      }
5442    }
5443  } else if (VDecl->isStaticDataMember() &&
5444             VDecl->getLexicalDeclContext()->isRecord()) {
5445    // This is an in-class initialization for a static data member, e.g.,
5446    //
5447    // struct S {
5448    //   static const int value = 17;
5449    // };
5450
5451    // Try to perform the initialization regardless.
5452    if (!VDecl->isInvalidDecl()) {
5453      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5454      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5455                                          MultiExprArg(*this, &Init, 1),
5456                                          &DclT);
5457      if (Result.isInvalid()) {
5458        VDecl->setInvalidDecl();
5459        return;
5460      }
5461
5462      Init = Result.takeAs<Expr>();
5463    }
5464
5465    // C++ [class.mem]p4:
5466    //   A member-declarator can contain a constant-initializer only
5467    //   if it declares a static member (9.4) of const integral or
5468    //   const enumeration type, see 9.4.2.
5469    QualType T = VDecl->getType();
5470
5471    // Do nothing on dependent types.
5472    if (T->isDependentType()) {
5473
5474    // Require constness.
5475    } else if (!T.isConstQualified()) {
5476      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
5477        << Init->getSourceRange();
5478      VDecl->setInvalidDecl();
5479
5480    // We allow integer constant expressions in all cases.
5481    } else if (T->isIntegralOrEnumerationType()) {
5482      // Check whether the expression is a constant expression.
5483      SourceLocation Loc;
5484      if (Init->isValueDependent())
5485        ; // Nothing to check.
5486      else if (Init->isIntegerConstantExpr(Context, &Loc))
5487        ; // Ok, it's an ICE!
5488      else if (Init->isEvaluatable(Context)) {
5489        // If we can constant fold the initializer through heroics, accept it,
5490        // but report this as a use of an extension for -pedantic.
5491        Diag(Loc, diag::ext_in_class_initializer_non_constant)
5492          << Init->getSourceRange();
5493      } else {
5494        // Otherwise, this is some crazy unknown case.  Report the issue at the
5495        // location provided by the isIntegerConstantExpr failed check.
5496        Diag(Loc, diag::err_in_class_initializer_non_constant)
5497          << Init->getSourceRange();
5498        VDecl->setInvalidDecl();
5499      }
5500
5501    // We allow floating-point constants as an extension in C++03, and
5502    // C++0x has far more complicated rules that we don't really
5503    // implement fully.
5504    } else {
5505      bool Allowed = false;
5506      if (getLangOptions().CPlusPlus0x) {
5507        Allowed = T->isLiteralType();
5508      } else if (T->isFloatingType()) { // also permits complex, which is ok
5509        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
5510          << T << Init->getSourceRange();
5511        Allowed = true;
5512      }
5513
5514      if (!Allowed) {
5515        Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
5516          << T << Init->getSourceRange();
5517        VDecl->setInvalidDecl();
5518
5519      // TODO: there are probably expressions that pass here that shouldn't.
5520      } else if (!Init->isValueDependent() &&
5521                 !Init->isConstantInitializer(Context, false)) {
5522        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
5523          << Init->getSourceRange();
5524        VDecl->setInvalidDecl();
5525      }
5526    }
5527  } else if (VDecl->isFileVarDecl()) {
5528    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
5529        (!getLangOptions().CPlusPlus ||
5530         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
5531      Diag(VDecl->getLocation(), diag::warn_extern_init);
5532    if (!VDecl->isInvalidDecl()) {
5533      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5534      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5535                                                MultiExprArg(*this, &Init, 1),
5536                                                &DclT);
5537      if (Result.isInvalid()) {
5538        VDecl->setInvalidDecl();
5539        return;
5540      }
5541
5542      Init = Result.takeAs<Expr>();
5543    }
5544
5545    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
5546    // Don't check invalid declarations to avoid emitting useless diagnostics.
5547    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
5548      // C99 6.7.8p4. All file scoped initializers need to be constant.
5549      CheckForConstantInitializer(Init, DclT);
5550    }
5551  }
5552  // If the type changed, it means we had an incomplete type that was
5553  // completed by the initializer. For example:
5554  //   int ary[] = { 1, 3, 5 };
5555  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
5556  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
5557    VDecl->setType(DclT);
5558    Init->setType(DclT);
5559  }
5560
5561
5562  // If this variable is a local declaration with record type, make sure it
5563  // doesn't have a flexible member initialization.  We only support this as a
5564  // global/static definition.
5565  if (VDecl->hasLocalStorage())
5566    if (const RecordType *RT = VDecl->getType()->getAs<RecordType>())
5567      if (RT->getDecl()->hasFlexibleArrayMember()) {
5568        // Check whether the initializer tries to initialize the flexible
5569        // array member itself to anything other than an empty initializer list.
5570        if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
5571          unsigned Index = std::distance(RT->getDecl()->field_begin(),
5572                                         RT->getDecl()->field_end()) - 1;
5573          if (Index < ILE->getNumInits() &&
5574              !(isa<InitListExpr>(ILE->getInit(Index)) &&
5575                cast<InitListExpr>(ILE->getInit(Index))->getNumInits() == 0)) {
5576            Diag(VDecl->getLocation(), diag::err_nonstatic_flexible_variable);
5577            VDecl->setInvalidDecl();
5578          }
5579        }
5580      }
5581
5582  // Check any implicit conversions within the expression.
5583  CheckImplicitConversions(Init, VDecl->getLocation());
5584
5585  if (!VDecl->isInvalidDecl())
5586    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
5587
5588  Init = MaybeCreateExprWithCleanups(Init);
5589  // Attach the initializer to the decl.
5590  VDecl->setInit(Init);
5591
5592  CheckCompleteVariableDeclaration(VDecl);
5593}
5594
5595/// ActOnInitializerError - Given that there was an error parsing an
5596/// initializer for the given declaration, try to return to some form
5597/// of sanity.
5598void Sema::ActOnInitializerError(Decl *D) {
5599  // Our main concern here is re-establishing invariants like "a
5600  // variable's type is either dependent or complete".
5601  if (!D || D->isInvalidDecl()) return;
5602
5603  VarDecl *VD = dyn_cast<VarDecl>(D);
5604  if (!VD) return;
5605
5606  // Auto types are meaningless if we can't make sense of the initializer.
5607  if (ParsingInitForAutoVars.count(D)) {
5608    D->setInvalidDecl();
5609    return;
5610  }
5611
5612  QualType Ty = VD->getType();
5613  if (Ty->isDependentType()) return;
5614
5615  // Require a complete type.
5616  if (RequireCompleteType(VD->getLocation(),
5617                          Context.getBaseElementType(Ty),
5618                          diag::err_typecheck_decl_incomplete_type)) {
5619    VD->setInvalidDecl();
5620    return;
5621  }
5622
5623  // Require an abstract type.
5624  if (RequireNonAbstractType(VD->getLocation(), Ty,
5625                             diag::err_abstract_type_in_decl,
5626                             AbstractVariableType)) {
5627    VD->setInvalidDecl();
5628    return;
5629  }
5630
5631  // Don't bother complaining about constructors or destructors,
5632  // though.
5633}
5634
5635void Sema::ActOnUninitializedDecl(Decl *RealDecl,
5636                                  bool TypeMayContainAuto) {
5637  // If there is no declaration, there was an error parsing it. Just ignore it.
5638  if (RealDecl == 0)
5639    return;
5640
5641  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
5642    QualType Type = Var->getType();
5643
5644    // C++0x [dcl.spec.auto]p3
5645    if (TypeMayContainAuto && Type->getContainedAutoType()) {
5646      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
5647        << Var->getDeclName() << Type;
5648      Var->setInvalidDecl();
5649      return;
5650    }
5651
5652    switch (Var->isThisDeclarationADefinition()) {
5653    case VarDecl::Definition:
5654      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
5655        break;
5656
5657      // We have an out-of-line definition of a static data member
5658      // that has an in-class initializer, so we type-check this like
5659      // a declaration.
5660      //
5661      // Fall through
5662
5663    case VarDecl::DeclarationOnly:
5664      // It's only a declaration.
5665
5666      // Block scope. C99 6.7p7: If an identifier for an object is
5667      // declared with no linkage (C99 6.2.2p6), the type for the
5668      // object shall be complete.
5669      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
5670          !Var->getLinkage() && !Var->isInvalidDecl() &&
5671          RequireCompleteType(Var->getLocation(), Type,
5672                              diag::err_typecheck_decl_incomplete_type))
5673        Var->setInvalidDecl();
5674
5675      // Make sure that the type is not abstract.
5676      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
5677          RequireNonAbstractType(Var->getLocation(), Type,
5678                                 diag::err_abstract_type_in_decl,
5679                                 AbstractVariableType))
5680        Var->setInvalidDecl();
5681      return;
5682
5683    case VarDecl::TentativeDefinition:
5684      // File scope. C99 6.9.2p2: A declaration of an identifier for an
5685      // object that has file scope without an initializer, and without a
5686      // storage-class specifier or with the storage-class specifier "static",
5687      // constitutes a tentative definition. Note: A tentative definition with
5688      // external linkage is valid (C99 6.2.2p5).
5689      if (!Var->isInvalidDecl()) {
5690        if (const IncompleteArrayType *ArrayT
5691                                    = Context.getAsIncompleteArrayType(Type)) {
5692          if (RequireCompleteType(Var->getLocation(),
5693                                  ArrayT->getElementType(),
5694                                  diag::err_illegal_decl_array_incomplete_type))
5695            Var->setInvalidDecl();
5696        } else if (Var->getStorageClass() == SC_Static) {
5697          // C99 6.9.2p3: If the declaration of an identifier for an object is
5698          // a tentative definition and has internal linkage (C99 6.2.2p3), the
5699          // declared type shall not be an incomplete type.
5700          // NOTE: code such as the following
5701          //     static struct s;
5702          //     struct s { int a; };
5703          // is accepted by gcc. Hence here we issue a warning instead of
5704          // an error and we do not invalidate the static declaration.
5705          // NOTE: to avoid multiple warnings, only check the first declaration.
5706          if (Var->getPreviousDeclaration() == 0)
5707            RequireCompleteType(Var->getLocation(), Type,
5708                                diag::ext_typecheck_decl_incomplete_type);
5709        }
5710      }
5711
5712      // Record the tentative definition; we're done.
5713      if (!Var->isInvalidDecl())
5714        TentativeDefinitions.push_back(Var);
5715      return;
5716    }
5717
5718    // Provide a specific diagnostic for uninitialized variable
5719    // definitions with incomplete array type.
5720    if (Type->isIncompleteArrayType()) {
5721      Diag(Var->getLocation(),
5722           diag::err_typecheck_incomplete_array_needs_initializer);
5723      Var->setInvalidDecl();
5724      return;
5725    }
5726
5727    // Provide a specific diagnostic for uninitialized variable
5728    // definitions with reference type.
5729    if (Type->isReferenceType()) {
5730      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
5731        << Var->getDeclName()
5732        << SourceRange(Var->getLocation(), Var->getLocation());
5733      Var->setInvalidDecl();
5734      return;
5735    }
5736
5737    // Do not attempt to type-check the default initializer for a
5738    // variable with dependent type.
5739    if (Type->isDependentType())
5740      return;
5741
5742    if (Var->isInvalidDecl())
5743      return;
5744
5745    if (RequireCompleteType(Var->getLocation(),
5746                            Context.getBaseElementType(Type),
5747                            diag::err_typecheck_decl_incomplete_type)) {
5748      Var->setInvalidDecl();
5749      return;
5750    }
5751
5752    // The variable can not have an abstract class type.
5753    if (RequireNonAbstractType(Var->getLocation(), Type,
5754                               diag::err_abstract_type_in_decl,
5755                               AbstractVariableType)) {
5756      Var->setInvalidDecl();
5757      return;
5758    }
5759
5760    // Check for jumps past the implicit initializer.  C++0x
5761    // clarifies that this applies to a "variable with automatic
5762    // storage duration", not a "local variable".
5763    // C++0x [stmt.dcl]p3
5764    //   A program that jumps from a point where a variable with automatic
5765    //   storage duration is not in scope to a point where it is in scope is
5766    //   ill-formed unless the variable has scalar type, class type with a
5767    //   trivial default constructor and a trivial destructor, a cv-qualified
5768    //   version of one of these types, or an array of one of the preceding
5769    //   types and is declared without an initializer.
5770    if (getLangOptions().CPlusPlus && Var->hasLocalStorage()) {
5771      if (const RecordType *Record
5772            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
5773        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
5774        if ((!getLangOptions().CPlusPlus0x && !CXXRecord->isPOD()) ||
5775            (getLangOptions().CPlusPlus0x &&
5776             (!CXXRecord->hasTrivialDefaultConstructor() ||
5777              !CXXRecord->hasTrivialDestructor())))
5778          getCurFunction()->setHasBranchProtectedScope();
5779      }
5780    }
5781
5782    // C++03 [dcl.init]p9:
5783    //   If no initializer is specified for an object, and the
5784    //   object is of (possibly cv-qualified) non-POD class type (or
5785    //   array thereof), the object shall be default-initialized; if
5786    //   the object is of const-qualified type, the underlying class
5787    //   type shall have a user-declared default
5788    //   constructor. Otherwise, if no initializer is specified for
5789    //   a non- static object, the object and its subobjects, if
5790    //   any, have an indeterminate initial value); if the object
5791    //   or any of its subobjects are of const-qualified type, the
5792    //   program is ill-formed.
5793    // C++0x [dcl.init]p11:
5794    //   If no initializer is specified for an object, the object is
5795    //   default-initialized; [...].
5796    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
5797    InitializationKind Kind
5798      = InitializationKind::CreateDefault(Var->getLocation());
5799
5800    InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
5801    ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
5802                                      MultiExprArg(*this, 0, 0));
5803    if (Init.isInvalid())
5804      Var->setInvalidDecl();
5805    else if (Init.get())
5806      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
5807
5808    CheckCompleteVariableDeclaration(Var);
5809  }
5810}
5811
5812void Sema::ActOnCXXForRangeDecl(Decl *D) {
5813  VarDecl *VD = dyn_cast<VarDecl>(D);
5814  if (!VD) {
5815    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
5816    D->setInvalidDecl();
5817    return;
5818  }
5819
5820  VD->setCXXForRangeDecl(true);
5821
5822  // for-range-declaration cannot be given a storage class specifier.
5823  int Error = -1;
5824  switch (VD->getStorageClassAsWritten()) {
5825  case SC_None:
5826    break;
5827  case SC_Extern:
5828    Error = 0;
5829    break;
5830  case SC_Static:
5831    Error = 1;
5832    break;
5833  case SC_PrivateExtern:
5834    Error = 2;
5835    break;
5836  case SC_Auto:
5837    Error = 3;
5838    break;
5839  case SC_Register:
5840    Error = 4;
5841    break;
5842  }
5843  // FIXME: constexpr isn't allowed here.
5844  //if (DS.isConstexprSpecified())
5845  //  Error = 5;
5846  if (Error != -1) {
5847    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
5848      << VD->getDeclName() << Error;
5849    D->setInvalidDecl();
5850  }
5851}
5852
5853void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
5854  if (var->isInvalidDecl()) return;
5855
5856  // In ARC, don't allow jumps past the implicit initialization of a
5857  // local retaining variable.
5858  if (getLangOptions().ObjCAutoRefCount &&
5859      var->hasLocalStorage()) {
5860    switch (var->getType().getObjCLifetime()) {
5861    case Qualifiers::OCL_None:
5862    case Qualifiers::OCL_ExplicitNone:
5863    case Qualifiers::OCL_Autoreleasing:
5864      break;
5865
5866    case Qualifiers::OCL_Weak:
5867    case Qualifiers::OCL_Strong:
5868      getCurFunction()->setHasBranchProtectedScope();
5869      break;
5870    }
5871  }
5872
5873  // All the following checks are C++ only.
5874  if (!getLangOptions().CPlusPlus) return;
5875
5876  QualType baseType = Context.getBaseElementType(var->getType());
5877  if (baseType->isDependentType()) return;
5878
5879  // __block variables might require us to capture a copy-initializer.
5880  if (var->hasAttr<BlocksAttr>()) {
5881    // It's currently invalid to ever have a __block variable with an
5882    // array type; should we diagnose that here?
5883
5884    // Regardless, we don't want to ignore array nesting when
5885    // constructing this copy.
5886    QualType type = var->getType();
5887
5888    if (type->isStructureOrClassType()) {
5889      SourceLocation poi = var->getLocation();
5890      Expr *varRef = new (Context) DeclRefExpr(var, type, VK_LValue, poi);
5891      ExprResult result =
5892        PerformCopyInitialization(
5893                        InitializedEntity::InitializeBlock(poi, type, false),
5894                                  poi, Owned(varRef));
5895      if (!result.isInvalid()) {
5896        result = MaybeCreateExprWithCleanups(result);
5897        Expr *init = result.takeAs<Expr>();
5898        Context.setBlockVarCopyInits(var, init);
5899      }
5900    }
5901  }
5902
5903  // Check for global constructors.
5904  if (!var->getDeclContext()->isDependentContext() &&
5905      var->hasGlobalStorage() &&
5906      !var->isStaticLocal() &&
5907      var->getInit() &&
5908      !var->getInit()->isConstantInitializer(Context,
5909                                             baseType->isReferenceType()))
5910    Diag(var->getLocation(), diag::warn_global_constructor)
5911      << var->getInit()->getSourceRange();
5912
5913  // Require the destructor.
5914  if (const RecordType *recordType = baseType->getAs<RecordType>())
5915    FinalizeVarWithDestructor(var, recordType);
5916}
5917
5918/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
5919/// any semantic actions necessary after any initializer has been attached.
5920void
5921Sema::FinalizeDeclaration(Decl *ThisDecl) {
5922  // Note that we are no longer parsing the initializer for this declaration.
5923  ParsingInitForAutoVars.erase(ThisDecl);
5924}
5925
5926Sema::DeclGroupPtrTy
5927Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
5928                              Decl **Group, unsigned NumDecls) {
5929  SmallVector<Decl*, 8> Decls;
5930
5931  if (DS.isTypeSpecOwned())
5932    Decls.push_back(DS.getRepAsDecl());
5933
5934  for (unsigned i = 0; i != NumDecls; ++i)
5935    if (Decl *D = Group[i])
5936      Decls.push_back(D);
5937
5938  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
5939                              DS.getTypeSpecType() == DeclSpec::TST_auto);
5940}
5941
5942/// BuildDeclaratorGroup - convert a list of declarations into a declaration
5943/// group, performing any necessary semantic checking.
5944Sema::DeclGroupPtrTy
5945Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
5946                           bool TypeMayContainAuto) {
5947  // C++0x [dcl.spec.auto]p7:
5948  //   If the type deduced for the template parameter U is not the same in each
5949  //   deduction, the program is ill-formed.
5950  // FIXME: When initializer-list support is added, a distinction is needed
5951  // between the deduced type U and the deduced type which 'auto' stands for.
5952  //   auto a = 0, b = { 1, 2, 3 };
5953  // is legal because the deduced type U is 'int' in both cases.
5954  if (TypeMayContainAuto && NumDecls > 1) {
5955    QualType Deduced;
5956    CanQualType DeducedCanon;
5957    VarDecl *DeducedDecl = 0;
5958    for (unsigned i = 0; i != NumDecls; ++i) {
5959      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
5960        AutoType *AT = D->getType()->getContainedAutoType();
5961        // Don't reissue diagnostics when instantiating a template.
5962        if (AT && D->isInvalidDecl())
5963          break;
5964        if (AT && AT->isDeduced()) {
5965          QualType U = AT->getDeducedType();
5966          CanQualType UCanon = Context.getCanonicalType(U);
5967          if (Deduced.isNull()) {
5968            Deduced = U;
5969            DeducedCanon = UCanon;
5970            DeducedDecl = D;
5971          } else if (DeducedCanon != UCanon) {
5972            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
5973                 diag::err_auto_different_deductions)
5974              << Deduced << DeducedDecl->getDeclName()
5975              << U << D->getDeclName()
5976              << DeducedDecl->getInit()->getSourceRange()
5977              << D->getInit()->getSourceRange();
5978            D->setInvalidDecl();
5979            break;
5980          }
5981        }
5982      }
5983    }
5984  }
5985
5986  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
5987}
5988
5989
5990/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
5991/// to introduce parameters into function prototype scope.
5992Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
5993  const DeclSpec &DS = D.getDeclSpec();
5994
5995  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
5996  VarDecl::StorageClass StorageClass = SC_None;
5997  VarDecl::StorageClass StorageClassAsWritten = SC_None;
5998  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
5999    StorageClass = SC_Register;
6000    StorageClassAsWritten = SC_Register;
6001  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
6002    Diag(DS.getStorageClassSpecLoc(),
6003         diag::err_invalid_storage_class_in_func_decl);
6004    D.getMutableDeclSpec().ClearStorageClassSpecs();
6005  }
6006
6007  if (D.getDeclSpec().isThreadSpecified())
6008    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
6009
6010  DiagnoseFunctionSpecifiers(D);
6011
6012  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6013  QualType parmDeclType = TInfo->getType();
6014
6015  if (getLangOptions().CPlusPlus) {
6016    // Check that there are no default arguments inside the type of this
6017    // parameter.
6018    CheckExtraCXXDefaultArguments(D);
6019
6020    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
6021    if (D.getCXXScopeSpec().isSet()) {
6022      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
6023        << D.getCXXScopeSpec().getRange();
6024      D.getCXXScopeSpec().clear();
6025    }
6026  }
6027
6028  // Ensure we have a valid name
6029  IdentifierInfo *II = 0;
6030  if (D.hasName()) {
6031    II = D.getIdentifier();
6032    if (!II) {
6033      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
6034        << GetNameForDeclarator(D).getName().getAsString();
6035      D.setInvalidType(true);
6036    }
6037  }
6038
6039  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
6040  if (II) {
6041    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
6042                   ForRedeclaration);
6043    LookupName(R, S);
6044    if (R.isSingleResult()) {
6045      NamedDecl *PrevDecl = R.getFoundDecl();
6046      if (PrevDecl->isTemplateParameter()) {
6047        // Maybe we will complain about the shadowed template parameter.
6048        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6049        // Just pretend that we didn't see the previous declaration.
6050        PrevDecl = 0;
6051      } else if (S->isDeclScope(PrevDecl)) {
6052        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
6053        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6054
6055        // Recover by removing the name
6056        II = 0;
6057        D.SetIdentifier(0, D.getIdentifierLoc());
6058        D.setInvalidType(true);
6059      }
6060    }
6061  }
6062
6063  // Temporarily put parameter variables in the translation unit, not
6064  // the enclosing context.  This prevents them from accidentally
6065  // looking like class members in C++.
6066  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
6067                                    D.getSourceRange().getBegin(),
6068                                    D.getIdentifierLoc(), II,
6069                                    parmDeclType, TInfo,
6070                                    StorageClass, StorageClassAsWritten);
6071
6072  if (D.isInvalidType())
6073    New->setInvalidDecl();
6074
6075  assert(S->isFunctionPrototypeScope());
6076  assert(S->getFunctionPrototypeDepth() >= 1);
6077  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
6078                    S->getNextFunctionPrototypeIndex());
6079
6080  // Add the parameter declaration into this scope.
6081  S->AddDecl(New);
6082  if (II)
6083    IdResolver.AddDecl(New);
6084
6085  ProcessDeclAttributes(S, New, D);
6086
6087  if (New->hasAttr<BlocksAttr>()) {
6088    Diag(New->getLocation(), diag::err_block_on_nonlocal);
6089  }
6090  return New;
6091}
6092
6093/// \brief Synthesizes a variable for a parameter arising from a
6094/// typedef.
6095ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
6096                                              SourceLocation Loc,
6097                                              QualType T) {
6098  /* FIXME: setting StartLoc == Loc.
6099     Would it be worth to modify callers so as to provide proper source
6100     location for the unnamed parameters, embedding the parameter's type? */
6101  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
6102                                T, Context.getTrivialTypeSourceInfo(T, Loc),
6103                                           SC_None, SC_None, 0);
6104  Param->setImplicit();
6105  return Param;
6106}
6107
6108void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
6109                                    ParmVarDecl * const *ParamEnd) {
6110  // Don't diagnose unused-parameter errors in template instantiations; we
6111  // will already have done so in the template itself.
6112  if (!ActiveTemplateInstantiations.empty())
6113    return;
6114
6115  for (; Param != ParamEnd; ++Param) {
6116    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
6117        !(*Param)->hasAttr<UnusedAttr>()) {
6118      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
6119        << (*Param)->getDeclName();
6120    }
6121  }
6122}
6123
6124void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
6125                                                  ParmVarDecl * const *ParamEnd,
6126                                                  QualType ReturnTy,
6127                                                  NamedDecl *D) {
6128  if (LangOpts.NumLargeByValueCopy == 0) // No check.
6129    return;
6130
6131  // Warn if the return value is pass-by-value and larger than the specified
6132  // threshold.
6133  if (ReturnTy.isPODType(Context)) {
6134    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
6135    if (Size > LangOpts.NumLargeByValueCopy)
6136      Diag(D->getLocation(), diag::warn_return_value_size)
6137          << D->getDeclName() << Size;
6138  }
6139
6140  // Warn if any parameter is pass-by-value and larger than the specified
6141  // threshold.
6142  for (; Param != ParamEnd; ++Param) {
6143    QualType T = (*Param)->getType();
6144    if (!T.isPODType(Context))
6145      continue;
6146    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
6147    if (Size > LangOpts.NumLargeByValueCopy)
6148      Diag((*Param)->getLocation(), diag::warn_parameter_size)
6149          << (*Param)->getDeclName() << Size;
6150  }
6151}
6152
6153ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
6154                                  SourceLocation NameLoc, IdentifierInfo *Name,
6155                                  QualType T, TypeSourceInfo *TSInfo,
6156                                  VarDecl::StorageClass StorageClass,
6157                                  VarDecl::StorageClass StorageClassAsWritten) {
6158  // In ARC, infer a lifetime qualifier for appropriate parameter types.
6159  if (getLangOptions().ObjCAutoRefCount &&
6160      T.getObjCLifetime() == Qualifiers::OCL_None &&
6161      T->isObjCLifetimeType()) {
6162
6163    Qualifiers::ObjCLifetime lifetime;
6164
6165    // Special cases for arrays:
6166    //   - if it's const, use __unsafe_unretained
6167    //   - otherwise, it's an error
6168    if (T->isArrayType()) {
6169      if (!T.isConstQualified()) {
6170        Diag(NameLoc, diag::err_arc_array_param_no_ownership)
6171          << TSInfo->getTypeLoc().getSourceRange();
6172      }
6173      lifetime = Qualifiers::OCL_ExplicitNone;
6174    } else {
6175      lifetime = T->getObjCARCImplicitLifetime();
6176    }
6177    T = Context.getLifetimeQualifiedType(T, lifetime);
6178  }
6179
6180  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
6181                                         Context.getAdjustedParameterType(T),
6182                                         TSInfo,
6183                                         StorageClass, StorageClassAsWritten,
6184                                         0);
6185
6186  // Parameters can not be abstract class types.
6187  // For record types, this is done by the AbstractClassUsageDiagnoser once
6188  // the class has been completely parsed.
6189  if (!CurContext->isRecord() &&
6190      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
6191                             AbstractParamType))
6192    New->setInvalidDecl();
6193
6194  // Parameter declarators cannot be interface types. All ObjC objects are
6195  // passed by reference.
6196  if (T->isObjCObjectType()) {
6197    Diag(NameLoc,
6198         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
6199    New->setInvalidDecl();
6200  }
6201
6202  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
6203  // duration shall not be qualified by an address-space qualifier."
6204  // Since all parameters have automatic store duration, they can not have
6205  // an address space.
6206  if (T.getAddressSpace() != 0) {
6207    Diag(NameLoc, diag::err_arg_with_address_space);
6208    New->setInvalidDecl();
6209  }
6210
6211  return New;
6212}
6213
6214void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
6215                                           SourceLocation LocAfterDecls) {
6216  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6217
6218  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
6219  // for a K&R function.
6220  if (!FTI.hasPrototype) {
6221    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
6222      --i;
6223      if (FTI.ArgInfo[i].Param == 0) {
6224        llvm::SmallString<256> Code;
6225        llvm::raw_svector_ostream(Code) << "  int "
6226                                        << FTI.ArgInfo[i].Ident->getName()
6227                                        << ";\n";
6228        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
6229          << FTI.ArgInfo[i].Ident
6230          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
6231
6232        // Implicitly declare the argument as type 'int' for lack of a better
6233        // type.
6234        AttributeFactory attrs;
6235        DeclSpec DS(attrs);
6236        const char* PrevSpec; // unused
6237        unsigned DiagID; // unused
6238        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
6239                           PrevSpec, DiagID);
6240        Declarator ParamD(DS, Declarator::KNRTypeListContext);
6241        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
6242        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
6243      }
6244    }
6245  }
6246}
6247
6248Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
6249                                         Declarator &D) {
6250  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
6251  assert(D.isFunctionDeclarator() && "Not a function declarator!");
6252  Scope *ParentScope = FnBodyScope->getParent();
6253
6254  Decl *DP = HandleDeclarator(ParentScope, D,
6255                              MultiTemplateParamsArg(*this),
6256                              /*IsFunctionDefinition=*/true);
6257  return ActOnStartOfFunctionDef(FnBodyScope, DP);
6258}
6259
6260static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
6261  // Don't warn about invalid declarations.
6262  if (FD->isInvalidDecl())
6263    return false;
6264
6265  // Or declarations that aren't global.
6266  if (!FD->isGlobal())
6267    return false;
6268
6269  // Don't warn about C++ member functions.
6270  if (isa<CXXMethodDecl>(FD))
6271    return false;
6272
6273  // Don't warn about 'main'.
6274  if (FD->isMain())
6275    return false;
6276
6277  // Don't warn about inline functions.
6278  if (FD->isInlined())
6279    return false;
6280
6281  // Don't warn about function templates.
6282  if (FD->getDescribedFunctionTemplate())
6283    return false;
6284
6285  // Don't warn about function template specializations.
6286  if (FD->isFunctionTemplateSpecialization())
6287    return false;
6288
6289  bool MissingPrototype = true;
6290  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
6291       Prev; Prev = Prev->getPreviousDeclaration()) {
6292    // Ignore any declarations that occur in function or method
6293    // scope, because they aren't visible from the header.
6294    if (Prev->getDeclContext()->isFunctionOrMethod())
6295      continue;
6296
6297    MissingPrototype = !Prev->getType()->isFunctionProtoType();
6298    break;
6299  }
6300
6301  return MissingPrototype;
6302}
6303
6304void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
6305  // Don't complain if we're in GNU89 mode and the previous definition
6306  // was an extern inline function.
6307  const FunctionDecl *Definition;
6308  if (FD->isDefined(Definition) &&
6309      !canRedefineFunction(Definition, getLangOptions())) {
6310    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
6311        Definition->getStorageClass() == SC_Extern)
6312      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
6313        << FD->getDeclName() << getLangOptions().CPlusPlus;
6314    else
6315      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
6316    Diag(Definition->getLocation(), diag::note_previous_definition);
6317  }
6318}
6319
6320Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
6321  // Clear the last template instantiation error context.
6322  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
6323
6324  if (!D)
6325    return D;
6326  FunctionDecl *FD = 0;
6327
6328  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
6329    FD = FunTmpl->getTemplatedDecl();
6330  else
6331    FD = cast<FunctionDecl>(D);
6332
6333  // Enter a new function scope
6334  PushFunctionScope();
6335
6336  // See if this is a redefinition.
6337  if (!FD->isLateTemplateParsed())
6338    CheckForFunctionRedefinition(FD);
6339
6340  // Builtin functions cannot be defined.
6341  if (unsigned BuiltinID = FD->getBuiltinID()) {
6342    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
6343      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
6344      FD->setInvalidDecl();
6345    }
6346  }
6347
6348  // The return type of a function definition must be complete
6349  // (C99 6.9.1p3, C++ [dcl.fct]p6).
6350  QualType ResultType = FD->getResultType();
6351  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
6352      !FD->isInvalidDecl() &&
6353      RequireCompleteType(FD->getLocation(), ResultType,
6354                          diag::err_func_def_incomplete_result))
6355    FD->setInvalidDecl();
6356
6357  // GNU warning -Wmissing-prototypes:
6358  //   Warn if a global function is defined without a previous
6359  //   prototype declaration. This warning is issued even if the
6360  //   definition itself provides a prototype. The aim is to detect
6361  //   global functions that fail to be declared in header files.
6362  if (ShouldWarnAboutMissingPrototype(FD))
6363    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
6364
6365  if (FnBodyScope)
6366    PushDeclContext(FnBodyScope, FD);
6367
6368  // Check the validity of our function parameters
6369  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
6370                           /*CheckParameterNames=*/true);
6371
6372  // Introduce our parameters into the function scope
6373  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
6374    ParmVarDecl *Param = FD->getParamDecl(p);
6375    Param->setOwningFunction(FD);
6376
6377    // If this has an identifier, add it to the scope stack.
6378    if (Param->getIdentifier() && FnBodyScope) {
6379      CheckShadow(FnBodyScope, Param);
6380
6381      PushOnScopeChains(Param, FnBodyScope);
6382    }
6383  }
6384
6385  // Checking attributes of current function definition
6386  // dllimport attribute.
6387  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
6388  if (DA && (!FD->getAttr<DLLExportAttr>())) {
6389    // dllimport attribute cannot be directly applied to definition.
6390    // Microsoft accepts dllimport for functions defined within class scope.
6391    if (!DA->isInherited() &&
6392        !(LangOpts.Microsoft && FD->getLexicalDeclContext()->isRecord())) {
6393      Diag(FD->getLocation(),
6394           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
6395        << "dllimport";
6396      FD->setInvalidDecl();
6397      return FD;
6398    }
6399
6400    // Visual C++ appears to not think this is an issue, so only issue
6401    // a warning when Microsoft extensions are disabled.
6402    if (!LangOpts.Microsoft) {
6403      // If a symbol previously declared dllimport is later defined, the
6404      // attribute is ignored in subsequent references, and a warning is
6405      // emitted.
6406      Diag(FD->getLocation(),
6407           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
6408        << FD->getName() << "dllimport";
6409    }
6410  }
6411  return FD;
6412}
6413
6414/// \brief Given the set of return statements within a function body,
6415/// compute the variables that are subject to the named return value
6416/// optimization.
6417///
6418/// Each of the variables that is subject to the named return value
6419/// optimization will be marked as NRVO variables in the AST, and any
6420/// return statement that has a marked NRVO variable as its NRVO candidate can
6421/// use the named return value optimization.
6422///
6423/// This function applies a very simplistic algorithm for NRVO: if every return
6424/// statement in the function has the same NRVO candidate, that candidate is
6425/// the NRVO variable.
6426///
6427/// FIXME: Employ a smarter algorithm that accounts for multiple return
6428/// statements and the lifetimes of the NRVO candidates. We should be able to
6429/// find a maximal set of NRVO variables.
6430static void ComputeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
6431  ReturnStmt **Returns = Scope->Returns.data();
6432
6433  const VarDecl *NRVOCandidate = 0;
6434  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
6435    if (!Returns[I]->getNRVOCandidate())
6436      return;
6437
6438    if (!NRVOCandidate)
6439      NRVOCandidate = Returns[I]->getNRVOCandidate();
6440    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
6441      return;
6442  }
6443
6444  if (NRVOCandidate)
6445    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
6446}
6447
6448Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
6449  return ActOnFinishFunctionBody(D, move(BodyArg), false);
6450}
6451
6452Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
6453                                    bool IsInstantiation) {
6454  FunctionDecl *FD = 0;
6455  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
6456  if (FunTmpl)
6457    FD = FunTmpl->getTemplatedDecl();
6458  else
6459    FD = dyn_cast_or_null<FunctionDecl>(dcl);
6460
6461  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
6462  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
6463
6464  if (FD) {
6465    FD->setBody(Body);
6466    if (FD->isMain()) {
6467      // C and C++ allow for main to automagically return 0.
6468      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
6469      FD->setHasImplicitReturnZero(true);
6470      WP.disableCheckFallThrough();
6471    } else if (FD->hasAttr<NakedAttr>()) {
6472      // If the function is marked 'naked', don't complain about missing return
6473      // statements.
6474      WP.disableCheckFallThrough();
6475    }
6476
6477    // MSVC permits the use of pure specifier (=0) on function definition,
6478    // defined at class scope, warn about this non standard construct.
6479    if (getLangOptions().Microsoft && FD->isPure())
6480      Diag(FD->getLocation(), diag::warn_pure_function_definition);
6481
6482    if (!FD->isInvalidDecl()) {
6483      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
6484      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
6485                                             FD->getResultType(), FD);
6486
6487      // If this is a constructor, we need a vtable.
6488      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
6489        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
6490
6491      ComputeNRVO(Body, getCurFunction());
6492    }
6493
6494    assert(FD == getCurFunctionDecl() && "Function parsing confused");
6495  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
6496    assert(MD == getCurMethodDecl() && "Method parsing confused");
6497    MD->setBody(Body);
6498    if (Body)
6499      MD->setEndLoc(Body->getLocEnd());
6500    if (!MD->isInvalidDecl()) {
6501      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
6502      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
6503                                             MD->getResultType(), MD);
6504    }
6505  } else {
6506    return 0;
6507  }
6508
6509  // Verify and clean out per-function state.
6510  if (Body) {
6511    // C++ constructors that have function-try-blocks can't have return
6512    // statements in the handlers of that block. (C++ [except.handle]p14)
6513    // Verify this.
6514    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
6515      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
6516
6517    // Verify that that gotos and switch cases don't jump into scopes illegally.
6518    // Verify that that gotos and switch cases don't jump into scopes illegally.
6519    if (getCurFunction()->NeedsScopeChecking() &&
6520        !dcl->isInvalidDecl() &&
6521        !hasAnyUnrecoverableErrorsInThisFunction())
6522      DiagnoseInvalidJumps(Body);
6523
6524    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
6525      if (!Destructor->getParent()->isDependentType())
6526        CheckDestructor(Destructor);
6527
6528      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
6529                                             Destructor->getParent());
6530    }
6531
6532    // If any errors have occurred, clear out any temporaries that may have
6533    // been leftover. This ensures that these temporaries won't be picked up for
6534    // deletion in some later function.
6535    if (PP.getDiagnostics().hasErrorOccurred() ||
6536        PP.getDiagnostics().getSuppressAllDiagnostics()) {
6537      ExprTemporaries.clear();
6538      ExprNeedsCleanups = false;
6539    } else if (!isa<FunctionTemplateDecl>(dcl)) {
6540      // Since the body is valid, issue any analysis-based warnings that are
6541      // enabled.
6542      ActivePolicy = &WP;
6543    }
6544
6545    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
6546    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
6547  }
6548
6549  if (!IsInstantiation)
6550    PopDeclContext();
6551
6552  PopFunctionOrBlockScope(ActivePolicy, dcl);
6553
6554  // If any errors have occurred, clear out any temporaries that may have
6555  // been leftover. This ensures that these temporaries won't be picked up for
6556  // deletion in some later function.
6557  if (getDiagnostics().hasErrorOccurred()) {
6558    ExprTemporaries.clear();
6559    ExprNeedsCleanups = false;
6560  }
6561
6562  return dcl;
6563}
6564
6565/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
6566/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
6567NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
6568                                          IdentifierInfo &II, Scope *S) {
6569  // Before we produce a declaration for an implicitly defined
6570  // function, see whether there was a locally-scoped declaration of
6571  // this name as a function or variable. If so, use that
6572  // (non-visible) declaration, and complain about it.
6573  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
6574    = LocallyScopedExternalDecls.find(&II);
6575  if (Pos != LocallyScopedExternalDecls.end()) {
6576    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
6577    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
6578    return Pos->second;
6579  }
6580
6581  // Extension in C99.  Legal in C90, but warn about it.
6582  if (II.getName().startswith("__builtin_"))
6583    Diag(Loc, diag::warn_builtin_unknown) << &II;
6584  else if (getLangOptions().C99)
6585    Diag(Loc, diag::ext_implicit_function_decl) << &II;
6586  else
6587    Diag(Loc, diag::warn_implicit_function_decl) << &II;
6588
6589  // Set a Declarator for the implicit definition: int foo();
6590  const char *Dummy;
6591  AttributeFactory attrFactory;
6592  DeclSpec DS(attrFactory);
6593  unsigned DiagID;
6594  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
6595  (void)Error; // Silence warning.
6596  assert(!Error && "Error setting up implicit decl!");
6597  Declarator D(DS, Declarator::BlockContext);
6598  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
6599                                             0, 0, true, SourceLocation(),
6600                                             SourceLocation(),
6601                                             EST_None, SourceLocation(),
6602                                             0, 0, 0, 0, Loc, Loc, D),
6603                DS.getAttributes(),
6604                SourceLocation());
6605  D.SetIdentifier(&II, Loc);
6606
6607  // Insert this function into translation-unit scope.
6608
6609  DeclContext *PrevDC = CurContext;
6610  CurContext = Context.getTranslationUnitDecl();
6611
6612  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
6613  FD->setImplicit();
6614
6615  CurContext = PrevDC;
6616
6617  AddKnownFunctionAttributes(FD);
6618
6619  return FD;
6620}
6621
6622/// \brief Adds any function attributes that we know a priori based on
6623/// the declaration of this function.
6624///
6625/// These attributes can apply both to implicitly-declared builtins
6626/// (like __builtin___printf_chk) or to library-declared functions
6627/// like NSLog or printf.
6628///
6629/// We need to check for duplicate attributes both here and where user-written
6630/// attributes are applied to declarations.
6631void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
6632  if (FD->isInvalidDecl())
6633    return;
6634
6635  // If this is a built-in function, map its builtin attributes to
6636  // actual attributes.
6637  if (unsigned BuiltinID = FD->getBuiltinID()) {
6638    // Handle printf-formatting attributes.
6639    unsigned FormatIdx;
6640    bool HasVAListArg;
6641    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
6642      if (!FD->getAttr<FormatAttr>())
6643        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6644                                                "printf", FormatIdx+1,
6645                                               HasVAListArg ? 0 : FormatIdx+2));
6646    }
6647    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
6648                                             HasVAListArg)) {
6649     if (!FD->getAttr<FormatAttr>())
6650       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6651                                              "scanf", FormatIdx+1,
6652                                              HasVAListArg ? 0 : FormatIdx+2));
6653    }
6654
6655    // Mark const if we don't care about errno and that is the only
6656    // thing preventing the function from being const. This allows
6657    // IRgen to use LLVM intrinsics for such functions.
6658    if (!getLangOptions().MathErrno &&
6659        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
6660      if (!FD->getAttr<ConstAttr>())
6661        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
6662    }
6663
6664    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
6665      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
6666    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
6667      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
6668  }
6669
6670  IdentifierInfo *Name = FD->getIdentifier();
6671  if (!Name)
6672    return;
6673  if ((!getLangOptions().CPlusPlus &&
6674       FD->getDeclContext()->isTranslationUnit()) ||
6675      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
6676       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
6677       LinkageSpecDecl::lang_c)) {
6678    // Okay: this could be a libc/libm/Objective-C function we know
6679    // about.
6680  } else
6681    return;
6682
6683  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
6684    // FIXME: NSLog and NSLogv should be target specific
6685    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
6686      // FIXME: We known better than our headers.
6687      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
6688    } else
6689      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6690                                             "printf", 1,
6691                                             Name->isStr("NSLogv") ? 0 : 2));
6692  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
6693    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
6694    // target-specific builtins, perhaps?
6695    if (!FD->getAttr<FormatAttr>())
6696      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6697                                             "printf", 2,
6698                                             Name->isStr("vasprintf") ? 0 : 3));
6699  }
6700}
6701
6702TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
6703                                    TypeSourceInfo *TInfo) {
6704  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
6705  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
6706
6707  if (!TInfo) {
6708    assert(D.isInvalidType() && "no declarator info for valid type");
6709    TInfo = Context.getTrivialTypeSourceInfo(T);
6710  }
6711
6712  // Scope manipulation handled by caller.
6713  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
6714                                           D.getSourceRange().getBegin(),
6715                                           D.getIdentifierLoc(),
6716                                           D.getIdentifier(),
6717                                           TInfo);
6718
6719  // Bail out immediately if we have an invalid declaration.
6720  if (D.isInvalidType()) {
6721    NewTD->setInvalidDecl();
6722    return NewTD;
6723  }
6724
6725  // C++ [dcl.typedef]p8:
6726  //   If the typedef declaration defines an unnamed class (or
6727  //   enum), the first typedef-name declared by the declaration
6728  //   to be that class type (or enum type) is used to denote the
6729  //   class type (or enum type) for linkage purposes only.
6730  // We need to check whether the type was declared in the declaration.
6731  switch (D.getDeclSpec().getTypeSpecType()) {
6732  case TST_enum:
6733  case TST_struct:
6734  case TST_union:
6735  case TST_class: {
6736    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
6737
6738    // Do nothing if the tag is not anonymous or already has an
6739    // associated typedef (from an earlier typedef in this decl group).
6740    if (tagFromDeclSpec->getIdentifier()) break;
6741    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
6742
6743    // A well-formed anonymous tag must always be a TUK_Definition.
6744    assert(tagFromDeclSpec->isThisDeclarationADefinition());
6745
6746    // The type must match the tag exactly;  no qualifiers allowed.
6747    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
6748      break;
6749
6750    // Otherwise, set this is the anon-decl typedef for the tag.
6751    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
6752    break;
6753  }
6754
6755  default:
6756    break;
6757  }
6758
6759  return NewTD;
6760}
6761
6762
6763/// \brief Determine whether a tag with a given kind is acceptable
6764/// as a redeclaration of the given tag declaration.
6765///
6766/// \returns true if the new tag kind is acceptable, false otherwise.
6767bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
6768                                        TagTypeKind NewTag, bool isDefinition,
6769                                        SourceLocation NewTagLoc,
6770                                        const IdentifierInfo &Name) {
6771  // C++ [dcl.type.elab]p3:
6772  //   The class-key or enum keyword present in the
6773  //   elaborated-type-specifier shall agree in kind with the
6774  //   declaration to which the name in the elaborated-type-specifier
6775  //   refers. This rule also applies to the form of
6776  //   elaborated-type-specifier that declares a class-name or
6777  //   friend class since it can be construed as referring to the
6778  //   definition of the class. Thus, in any
6779  //   elaborated-type-specifier, the enum keyword shall be used to
6780  //   refer to an enumeration (7.2), the union class-key shall be
6781  //   used to refer to a union (clause 9), and either the class or
6782  //   struct class-key shall be used to refer to a class (clause 9)
6783  //   declared using the class or struct class-key.
6784  TagTypeKind OldTag = Previous->getTagKind();
6785  if (!isDefinition || (NewTag != TTK_Class && NewTag != TTK_Struct))
6786    if (OldTag == NewTag)
6787      return true;
6788
6789  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
6790      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
6791    // Warn about the struct/class tag mismatch.
6792    bool isTemplate = false;
6793    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
6794      isTemplate = Record->getDescribedClassTemplate();
6795
6796    if (!ActiveTemplateInstantiations.empty()) {
6797      // In a template instantiation, do not offer fix-its for tag mismatches
6798      // since they usually mess up the template instead of fixing the problem.
6799      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
6800        << (NewTag == TTK_Class) << isTemplate << &Name;
6801      return true;
6802    }
6803
6804    if (isDefinition) {
6805      // On definitions, check previous tags and issue a fix-it for each
6806      // one that doesn't match the current tag.
6807      if (Previous->getDefinition()) {
6808        // Don't suggest fix-its for redefinitions.
6809        return true;
6810      }
6811
6812      bool previousMismatch = false;
6813      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
6814           E(Previous->redecls_end()); I != E; ++I) {
6815        if (I->getTagKind() != NewTag) {
6816          if (!previousMismatch) {
6817            previousMismatch = true;
6818            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
6819              << (NewTag == TTK_Class) << isTemplate << &Name;
6820          }
6821          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
6822            << (NewTag == TTK_Class)
6823            << FixItHint::CreateReplacement(I->getInnerLocStart(),
6824                                            NewTag == TTK_Class?
6825                                            "class" : "struct");
6826        }
6827      }
6828      return true;
6829    }
6830
6831    // Check for a previous definition.  If current tag and definition
6832    // are same type, do nothing.  If no definition, but disagree with
6833    // with previous tag type, give a warning, but no fix-it.
6834    const TagDecl *Redecl = Previous->getDefinition() ?
6835                            Previous->getDefinition() : Previous;
6836    if (Redecl->getTagKind() == NewTag) {
6837      return true;
6838    }
6839
6840    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
6841      << (NewTag == TTK_Class)
6842      << isTemplate << &Name;
6843    Diag(Redecl->getLocation(), diag::note_previous_use);
6844
6845    // If there is a previous defintion, suggest a fix-it.
6846    if (Previous->getDefinition()) {
6847        Diag(NewTagLoc, diag::note_struct_class_suggestion)
6848          << (Redecl->getTagKind() == TTK_Class)
6849          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
6850                        Redecl->getTagKind() == TTK_Class? "class" : "struct");
6851    }
6852
6853    return true;
6854  }
6855  return false;
6856}
6857
6858/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
6859/// former case, Name will be non-null.  In the later case, Name will be null.
6860/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
6861/// reference/declaration/definition of a tag.
6862Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
6863                     SourceLocation KWLoc, CXXScopeSpec &SS,
6864                     IdentifierInfo *Name, SourceLocation NameLoc,
6865                     AttributeList *Attr, AccessSpecifier AS,
6866                     MultiTemplateParamsArg TemplateParameterLists,
6867                     bool &OwnedDecl, bool &IsDependent,
6868                     bool ScopedEnum, bool ScopedEnumUsesClassTag,
6869                     TypeResult UnderlyingType) {
6870  // If this is not a definition, it must have a name.
6871  assert((Name != 0 || TUK == TUK_Definition) &&
6872         "Nameless record must be a definition!");
6873  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
6874
6875  OwnedDecl = false;
6876  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6877
6878  // FIXME: Check explicit specializations more carefully.
6879  bool isExplicitSpecialization = false;
6880  bool Invalid = false;
6881
6882  // We only need to do this matching if we have template parameters
6883  // or a scope specifier, which also conveniently avoids this work
6884  // for non-C++ cases.
6885  if (TemplateParameterLists.size() > 0 ||
6886      (SS.isNotEmpty() && TUK != TUK_Reference)) {
6887    if (TemplateParameterList *TemplateParams
6888          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
6889                                                TemplateParameterLists.get(),
6890                                                TemplateParameterLists.size(),
6891                                                    TUK == TUK_Friend,
6892                                                    isExplicitSpecialization,
6893                                                    Invalid)) {
6894      if (TemplateParams->size() > 0) {
6895        // This is a declaration or definition of a class template (which may
6896        // be a member of another template).
6897
6898        if (Invalid)
6899          return 0;
6900
6901        OwnedDecl = false;
6902        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
6903                                               SS, Name, NameLoc, Attr,
6904                                               TemplateParams, AS,
6905                                           TemplateParameterLists.size() - 1,
6906                 (TemplateParameterList**) TemplateParameterLists.release());
6907        return Result.get();
6908      } else {
6909        // The "template<>" header is extraneous.
6910        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
6911          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
6912        isExplicitSpecialization = true;
6913      }
6914    }
6915  }
6916
6917  // Figure out the underlying type if this a enum declaration. We need to do
6918  // this early, because it's needed to detect if this is an incompatible
6919  // redeclaration.
6920  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
6921
6922  if (Kind == TTK_Enum) {
6923    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
6924      // No underlying type explicitly specified, or we failed to parse the
6925      // type, default to int.
6926      EnumUnderlying = Context.IntTy.getTypePtr();
6927    else if (UnderlyingType.get()) {
6928      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
6929      // integral type; any cv-qualification is ignored.
6930      TypeSourceInfo *TI = 0;
6931      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
6932      EnumUnderlying = TI;
6933
6934      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
6935
6936      if (!T->isDependentType() && !T->isIntegralType(Context)) {
6937        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
6938          << T;
6939        // Recover by falling back to int.
6940        EnumUnderlying = Context.IntTy.getTypePtr();
6941      }
6942
6943      if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI,
6944                                          UPPC_FixedUnderlyingType))
6945        EnumUnderlying = Context.IntTy.getTypePtr();
6946
6947    } else if (getLangOptions().Microsoft)
6948      // Microsoft enums are always of int type.
6949      EnumUnderlying = Context.IntTy.getTypePtr();
6950  }
6951
6952  DeclContext *SearchDC = CurContext;
6953  DeclContext *DC = CurContext;
6954  bool isStdBadAlloc = false;
6955
6956  RedeclarationKind Redecl = ForRedeclaration;
6957  if (TUK == TUK_Friend || TUK == TUK_Reference)
6958    Redecl = NotForRedeclaration;
6959
6960  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
6961
6962  if (Name && SS.isNotEmpty()) {
6963    // We have a nested-name tag ('struct foo::bar').
6964
6965    // Check for invalid 'foo::'.
6966    if (SS.isInvalid()) {
6967      Name = 0;
6968      goto CreateNewDecl;
6969    }
6970
6971    // If this is a friend or a reference to a class in a dependent
6972    // context, don't try to make a decl for it.
6973    if (TUK == TUK_Friend || TUK == TUK_Reference) {
6974      DC = computeDeclContext(SS, false);
6975      if (!DC) {
6976        IsDependent = true;
6977        return 0;
6978      }
6979    } else {
6980      DC = computeDeclContext(SS, true);
6981      if (!DC) {
6982        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
6983          << SS.getRange();
6984        return 0;
6985      }
6986    }
6987
6988    if (RequireCompleteDeclContext(SS, DC))
6989      return 0;
6990
6991    SearchDC = DC;
6992    // Look-up name inside 'foo::'.
6993    LookupQualifiedName(Previous, DC);
6994
6995    if (Previous.isAmbiguous())
6996      return 0;
6997
6998    if (Previous.empty()) {
6999      // Name lookup did not find anything. However, if the
7000      // nested-name-specifier refers to the current instantiation,
7001      // and that current instantiation has any dependent base
7002      // classes, we might find something at instantiation time: treat
7003      // this as a dependent elaborated-type-specifier.
7004      // But this only makes any sense for reference-like lookups.
7005      if (Previous.wasNotFoundInCurrentInstantiation() &&
7006          (TUK == TUK_Reference || TUK == TUK_Friend)) {
7007        IsDependent = true;
7008        return 0;
7009      }
7010
7011      // A tag 'foo::bar' must already exist.
7012      Diag(NameLoc, diag::err_not_tag_in_scope)
7013        << Kind << Name << DC << SS.getRange();
7014      Name = 0;
7015      Invalid = true;
7016      goto CreateNewDecl;
7017    }
7018  } else if (Name) {
7019    // If this is a named struct, check to see if there was a previous forward
7020    // declaration or definition.
7021    // FIXME: We're looking into outer scopes here, even when we
7022    // shouldn't be. Doing so can result in ambiguities that we
7023    // shouldn't be diagnosing.
7024    LookupName(Previous, S);
7025
7026    if (Previous.isAmbiguous() &&
7027        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
7028      LookupResult::Filter F = Previous.makeFilter();
7029      while (F.hasNext()) {
7030        NamedDecl *ND = F.next();
7031        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
7032          F.erase();
7033      }
7034      F.done();
7035    }
7036
7037    // Note:  there used to be some attempt at recovery here.
7038    if (Previous.isAmbiguous())
7039      return 0;
7040
7041    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
7042      // FIXME: This makes sure that we ignore the contexts associated
7043      // with C structs, unions, and enums when looking for a matching
7044      // tag declaration or definition. See the similar lookup tweak
7045      // in Sema::LookupName; is there a better way to deal with this?
7046      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
7047        SearchDC = SearchDC->getParent();
7048    }
7049  } else if (S->isFunctionPrototypeScope()) {
7050    // If this is an enum declaration in function prototype scope, set its
7051    // initial context to the translation unit.
7052    SearchDC = Context.getTranslationUnitDecl();
7053  }
7054
7055  if (Previous.isSingleResult() &&
7056      Previous.getFoundDecl()->isTemplateParameter()) {
7057    // Maybe we will complain about the shadowed template parameter.
7058    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
7059    // Just pretend that we didn't see the previous declaration.
7060    Previous.clear();
7061  }
7062
7063  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
7064      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
7065    // This is a declaration of or a reference to "std::bad_alloc".
7066    isStdBadAlloc = true;
7067
7068    if (Previous.empty() && StdBadAlloc) {
7069      // std::bad_alloc has been implicitly declared (but made invisible to
7070      // name lookup). Fill in this implicit declaration as the previous
7071      // declaration, so that the declarations get chained appropriately.
7072      Previous.addDecl(getStdBadAlloc());
7073    }
7074  }
7075
7076  // If we didn't find a previous declaration, and this is a reference
7077  // (or friend reference), move to the correct scope.  In C++, we
7078  // also need to do a redeclaration lookup there, just in case
7079  // there's a shadow friend decl.
7080  if (Name && Previous.empty() &&
7081      (TUK == TUK_Reference || TUK == TUK_Friend)) {
7082    if (Invalid) goto CreateNewDecl;
7083    assert(SS.isEmpty());
7084
7085    if (TUK == TUK_Reference) {
7086      // C++ [basic.scope.pdecl]p5:
7087      //   -- for an elaborated-type-specifier of the form
7088      //
7089      //          class-key identifier
7090      //
7091      //      if the elaborated-type-specifier is used in the
7092      //      decl-specifier-seq or parameter-declaration-clause of a
7093      //      function defined in namespace scope, the identifier is
7094      //      declared as a class-name in the namespace that contains
7095      //      the declaration; otherwise, except as a friend
7096      //      declaration, the identifier is declared in the smallest
7097      //      non-class, non-function-prototype scope that contains the
7098      //      declaration.
7099      //
7100      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
7101      // C structs and unions.
7102      //
7103      // It is an error in C++ to declare (rather than define) an enum
7104      // type, including via an elaborated type specifier.  We'll
7105      // diagnose that later; for now, declare the enum in the same
7106      // scope as we would have picked for any other tag type.
7107      //
7108      // GNU C also supports this behavior as part of its incomplete
7109      // enum types extension, while GNU C++ does not.
7110      //
7111      // Find the context where we'll be declaring the tag.
7112      // FIXME: We would like to maintain the current DeclContext as the
7113      // lexical context,
7114      while (SearchDC->isRecord() || SearchDC->isTransparentContext())
7115        SearchDC = SearchDC->getParent();
7116
7117      // Find the scope where we'll be declaring the tag.
7118      while (S->isClassScope() ||
7119             (getLangOptions().CPlusPlus &&
7120              S->isFunctionPrototypeScope()) ||
7121             ((S->getFlags() & Scope::DeclScope) == 0) ||
7122             (S->getEntity() &&
7123              ((DeclContext *)S->getEntity())->isTransparentContext()))
7124        S = S->getParent();
7125    } else {
7126      assert(TUK == TUK_Friend);
7127      // C++ [namespace.memdef]p3:
7128      //   If a friend declaration in a non-local class first declares a
7129      //   class or function, the friend class or function is a member of
7130      //   the innermost enclosing namespace.
7131      SearchDC = SearchDC->getEnclosingNamespaceContext();
7132    }
7133
7134    // In C++, we need to do a redeclaration lookup to properly
7135    // diagnose some problems.
7136    if (getLangOptions().CPlusPlus) {
7137      Previous.setRedeclarationKind(ForRedeclaration);
7138      LookupQualifiedName(Previous, SearchDC);
7139    }
7140  }
7141
7142  if (!Previous.empty()) {
7143    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
7144
7145    // It's okay to have a tag decl in the same scope as a typedef
7146    // which hides a tag decl in the same scope.  Finding this
7147    // insanity with a redeclaration lookup can only actually happen
7148    // in C++.
7149    //
7150    // This is also okay for elaborated-type-specifiers, which is
7151    // technically forbidden by the current standard but which is
7152    // okay according to the likely resolution of an open issue;
7153    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
7154    if (getLangOptions().CPlusPlus) {
7155      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
7156        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
7157          TagDecl *Tag = TT->getDecl();
7158          if (Tag->getDeclName() == Name &&
7159              Tag->getDeclContext()->getRedeclContext()
7160                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
7161            PrevDecl = Tag;
7162            Previous.clear();
7163            Previous.addDecl(Tag);
7164            Previous.resolveKind();
7165          }
7166        }
7167      }
7168    }
7169
7170    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
7171      // If this is a use of a previous tag, or if the tag is already declared
7172      // in the same scope (so that the definition/declaration completes or
7173      // rementions the tag), reuse the decl.
7174      if (TUK == TUK_Reference || TUK == TUK_Friend ||
7175          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
7176        // Make sure that this wasn't declared as an enum and now used as a
7177        // struct or something similar.
7178        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
7179                                          TUK == TUK_Definition, KWLoc,
7180                                          *Name)) {
7181          bool SafeToContinue
7182            = (PrevTagDecl->getTagKind() != TTK_Enum &&
7183               Kind != TTK_Enum);
7184          if (SafeToContinue)
7185            Diag(KWLoc, diag::err_use_with_wrong_tag)
7186              << Name
7187              << FixItHint::CreateReplacement(SourceRange(KWLoc),
7188                                              PrevTagDecl->getKindName());
7189          else
7190            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
7191          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7192
7193          if (SafeToContinue)
7194            Kind = PrevTagDecl->getTagKind();
7195          else {
7196            // Recover by making this an anonymous redefinition.
7197            Name = 0;
7198            Previous.clear();
7199            Invalid = true;
7200          }
7201        }
7202
7203        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
7204          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
7205
7206          // All conflicts with previous declarations are recovered by
7207          // returning the previous declaration.
7208          if (ScopedEnum != PrevEnum->isScoped()) {
7209            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
7210              << PrevEnum->isScoped();
7211            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7212            return PrevTagDecl;
7213          }
7214          else if (EnumUnderlying && PrevEnum->isFixed()) {
7215            QualType T;
7216            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
7217                T = TI->getType();
7218            else
7219                T = QualType(EnumUnderlying.get<const Type*>(), 0);
7220
7221            if (!Context.hasSameUnqualifiedType(T, PrevEnum->getIntegerType())) {
7222              Diag(NameLoc.isValid() ? NameLoc : KWLoc,
7223                   diag::err_enum_redeclare_type_mismatch)
7224                << T
7225                << PrevEnum->getIntegerType();
7226              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7227              return PrevTagDecl;
7228            }
7229          }
7230          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
7231            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
7232              << PrevEnum->isFixed();
7233            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7234            return PrevTagDecl;
7235          }
7236        }
7237
7238        if (!Invalid) {
7239          // If this is a use, just return the declaration we found.
7240
7241          // FIXME: In the future, return a variant or some other clue
7242          // for the consumer of this Decl to know it doesn't own it.
7243          // For our current ASTs this shouldn't be a problem, but will
7244          // need to be changed with DeclGroups.
7245          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
7246               getLangOptions().Microsoft)) || TUK == TUK_Friend)
7247            return PrevTagDecl;
7248
7249          // Diagnose attempts to redefine a tag.
7250          if (TUK == TUK_Definition) {
7251            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
7252              // If we're defining a specialization and the previous definition
7253              // is from an implicit instantiation, don't emit an error
7254              // here; we'll catch this in the general case below.
7255              if (!isExplicitSpecialization ||
7256                  !isa<CXXRecordDecl>(Def) ||
7257                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
7258                                               == TSK_ExplicitSpecialization) {
7259                Diag(NameLoc, diag::err_redefinition) << Name;
7260                Diag(Def->getLocation(), diag::note_previous_definition);
7261                // If this is a redefinition, recover by making this
7262                // struct be anonymous, which will make any later
7263                // references get the previous definition.
7264                Name = 0;
7265                Previous.clear();
7266                Invalid = true;
7267              }
7268            } else {
7269              // If the type is currently being defined, complain
7270              // about a nested redefinition.
7271              const TagType *Tag
7272                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
7273              if (Tag->isBeingDefined()) {
7274                Diag(NameLoc, diag::err_nested_redefinition) << Name;
7275                Diag(PrevTagDecl->getLocation(),
7276                     diag::note_previous_definition);
7277                Name = 0;
7278                Previous.clear();
7279                Invalid = true;
7280              }
7281            }
7282
7283            // Okay, this is definition of a previously declared or referenced
7284            // tag PrevDecl. We're going to create a new Decl for it.
7285          }
7286        }
7287        // If we get here we have (another) forward declaration or we
7288        // have a definition.  Just create a new decl.
7289
7290      } else {
7291        // If we get here, this is a definition of a new tag type in a nested
7292        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
7293        // new decl/type.  We set PrevDecl to NULL so that the entities
7294        // have distinct types.
7295        Previous.clear();
7296      }
7297      // If we get here, we're going to create a new Decl. If PrevDecl
7298      // is non-NULL, it's a definition of the tag declared by
7299      // PrevDecl. If it's NULL, we have a new definition.
7300
7301
7302    // Otherwise, PrevDecl is not a tag, but was found with tag
7303    // lookup.  This is only actually possible in C++, where a few
7304    // things like templates still live in the tag namespace.
7305    } else {
7306      assert(getLangOptions().CPlusPlus);
7307
7308      // Use a better diagnostic if an elaborated-type-specifier
7309      // found the wrong kind of type on the first
7310      // (non-redeclaration) lookup.
7311      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
7312          !Previous.isForRedeclaration()) {
7313        unsigned Kind = 0;
7314        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
7315        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
7316        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
7317        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
7318        Diag(PrevDecl->getLocation(), diag::note_declared_at);
7319        Invalid = true;
7320
7321      // Otherwise, only diagnose if the declaration is in scope.
7322      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
7323                                isExplicitSpecialization)) {
7324        // do nothing
7325
7326      // Diagnose implicit declarations introduced by elaborated types.
7327      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
7328        unsigned Kind = 0;
7329        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
7330        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
7331        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
7332        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
7333        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
7334        Invalid = true;
7335
7336      // Otherwise it's a declaration.  Call out a particularly common
7337      // case here.
7338      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
7339        unsigned Kind = 0;
7340        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
7341        Diag(NameLoc, diag::err_tag_definition_of_typedef)
7342          << Name << Kind << TND->getUnderlyingType();
7343        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
7344        Invalid = true;
7345
7346      // Otherwise, diagnose.
7347      } else {
7348        // The tag name clashes with something else in the target scope,
7349        // issue an error and recover by making this tag be anonymous.
7350        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
7351        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7352        Name = 0;
7353        Invalid = true;
7354      }
7355
7356      // The existing declaration isn't relevant to us; we're in a
7357      // new scope, so clear out the previous declaration.
7358      Previous.clear();
7359    }
7360  }
7361
7362CreateNewDecl:
7363
7364  TagDecl *PrevDecl = 0;
7365  if (Previous.isSingleResult())
7366    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
7367
7368  // If there is an identifier, use the location of the identifier as the
7369  // location of the decl, otherwise use the location of the struct/union
7370  // keyword.
7371  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
7372
7373  // Otherwise, create a new declaration. If there is a previous
7374  // declaration of the same entity, the two will be linked via
7375  // PrevDecl.
7376  TagDecl *New;
7377
7378  bool IsForwardReference = false;
7379  if (Kind == TTK_Enum) {
7380    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
7381    // enum X { A, B, C } D;    D should chain to X.
7382    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
7383                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
7384                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
7385    // If this is an undefined enum, warn.
7386    if (TUK != TUK_Definition && !Invalid) {
7387      TagDecl *Def;
7388      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
7389        // C++0x: 7.2p2: opaque-enum-declaration.
7390        // Conflicts are diagnosed above. Do nothing.
7391      }
7392      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
7393        Diag(Loc, diag::ext_forward_ref_enum_def)
7394          << New;
7395        Diag(Def->getLocation(), diag::note_previous_definition);
7396      } else {
7397        unsigned DiagID = diag::ext_forward_ref_enum;
7398        if (getLangOptions().Microsoft)
7399          DiagID = diag::ext_ms_forward_ref_enum;
7400        else if (getLangOptions().CPlusPlus)
7401          DiagID = diag::err_forward_ref_enum;
7402        Diag(Loc, DiagID);
7403
7404        // If this is a forward-declared reference to an enumeration, make a
7405        // note of it; we won't actually be introducing the declaration into
7406        // the declaration context.
7407        if (TUK == TUK_Reference)
7408          IsForwardReference = true;
7409      }
7410    }
7411
7412    if (EnumUnderlying) {
7413      EnumDecl *ED = cast<EnumDecl>(New);
7414      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
7415        ED->setIntegerTypeSourceInfo(TI);
7416      else
7417        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
7418      ED->setPromotionType(ED->getIntegerType());
7419    }
7420
7421  } else {
7422    // struct/union/class
7423
7424    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
7425    // struct X { int A; } D;    D should chain to X.
7426    if (getLangOptions().CPlusPlus) {
7427      // FIXME: Look for a way to use RecordDecl for simple structs.
7428      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
7429                                  cast_or_null<CXXRecordDecl>(PrevDecl));
7430
7431      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
7432        StdBadAlloc = cast<CXXRecordDecl>(New);
7433    } else
7434      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
7435                               cast_or_null<RecordDecl>(PrevDecl));
7436  }
7437
7438  // Maybe add qualifier info.
7439  if (SS.isNotEmpty()) {
7440    if (SS.isSet()) {
7441      New->setQualifierInfo(SS.getWithLocInContext(Context));
7442      if (TemplateParameterLists.size() > 0) {
7443        New->setTemplateParameterListsInfo(Context,
7444                                           TemplateParameterLists.size(),
7445                    (TemplateParameterList**) TemplateParameterLists.release());
7446      }
7447    }
7448    else
7449      Invalid = true;
7450  }
7451
7452  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
7453    // Add alignment attributes if necessary; these attributes are checked when
7454    // the ASTContext lays out the structure.
7455    //
7456    // It is important for implementing the correct semantics that this
7457    // happen here (in act on tag decl). The #pragma pack stack is
7458    // maintained as a result of parser callbacks which can occur at
7459    // many points during the parsing of a struct declaration (because
7460    // the #pragma tokens are effectively skipped over during the
7461    // parsing of the struct).
7462    AddAlignmentAttributesForRecord(RD);
7463
7464    AddMsStructLayoutForRecord(RD);
7465  }
7466
7467  // If this is a specialization of a member class (of a class template),
7468  // check the specialization.
7469  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
7470    Invalid = true;
7471
7472  if (Invalid)
7473    New->setInvalidDecl();
7474
7475  if (Attr)
7476    ProcessDeclAttributeList(S, New, Attr);
7477
7478  // If we're declaring or defining a tag in function prototype scope
7479  // in C, note that this type can only be used within the function.
7480  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
7481    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
7482
7483  // Set the lexical context. If the tag has a C++ scope specifier, the
7484  // lexical context will be different from the semantic context.
7485  New->setLexicalDeclContext(CurContext);
7486
7487  // Mark this as a friend decl if applicable.
7488  // In Microsoft mode, a friend declaration also acts as a forward
7489  // declaration so we always pass true to setObjectOfFriendDecl to make
7490  // the tag name visible.
7491  if (TUK == TUK_Friend)
7492    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
7493                               getLangOptions().Microsoft);
7494
7495  // Set the access specifier.
7496  if (!Invalid && SearchDC->isRecord())
7497    SetMemberAccessSpecifier(New, PrevDecl, AS);
7498
7499  if (TUK == TUK_Definition)
7500    New->startDefinition();
7501
7502  // If this has an identifier, add it to the scope stack.
7503  if (TUK == TUK_Friend) {
7504    // We might be replacing an existing declaration in the lookup tables;
7505    // if so, borrow its access specifier.
7506    if (PrevDecl)
7507      New->setAccess(PrevDecl->getAccess());
7508
7509    DeclContext *DC = New->getDeclContext()->getRedeclContext();
7510    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
7511    if (Name) // can be null along some error paths
7512      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
7513        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
7514  } else if (Name) {
7515    S = getNonFieldDeclScope(S);
7516    PushOnScopeChains(New, S, !IsForwardReference);
7517    if (IsForwardReference)
7518      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
7519
7520  } else {
7521    CurContext->addDecl(New);
7522  }
7523
7524  // If this is the C FILE type, notify the AST context.
7525  if (IdentifierInfo *II = New->getIdentifier())
7526    if (!New->isInvalidDecl() &&
7527        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
7528        II->isStr("FILE"))
7529      Context.setFILEDecl(New);
7530
7531  OwnedDecl = true;
7532  return New;
7533}
7534
7535void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
7536  AdjustDeclIfTemplate(TagD);
7537  TagDecl *Tag = cast<TagDecl>(TagD);
7538
7539  // Enter the tag context.
7540  PushDeclContext(S, Tag);
7541}
7542
7543void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
7544                                           SourceLocation FinalLoc,
7545                                           SourceLocation LBraceLoc) {
7546  AdjustDeclIfTemplate(TagD);
7547  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
7548
7549  FieldCollector->StartClass();
7550
7551  if (!Record->getIdentifier())
7552    return;
7553
7554  if (FinalLoc.isValid())
7555    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
7556
7557  // C++ [class]p2:
7558  //   [...] The class-name is also inserted into the scope of the
7559  //   class itself; this is known as the injected-class-name. For
7560  //   purposes of access checking, the injected-class-name is treated
7561  //   as if it were a public member name.
7562  CXXRecordDecl *InjectedClassName
7563    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
7564                            Record->getLocStart(), Record->getLocation(),
7565                            Record->getIdentifier(),
7566                            /*PrevDecl=*/0,
7567                            /*DelayTypeCreation=*/true);
7568  Context.getTypeDeclType(InjectedClassName, Record);
7569  InjectedClassName->setImplicit();
7570  InjectedClassName->setAccess(AS_public);
7571  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
7572      InjectedClassName->setDescribedClassTemplate(Template);
7573  PushOnScopeChains(InjectedClassName, S);
7574  assert(InjectedClassName->isInjectedClassName() &&
7575         "Broken injected-class-name");
7576}
7577
7578void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
7579                                    SourceLocation RBraceLoc) {
7580  AdjustDeclIfTemplate(TagD);
7581  TagDecl *Tag = cast<TagDecl>(TagD);
7582  Tag->setRBraceLoc(RBraceLoc);
7583
7584  if (isa<CXXRecordDecl>(Tag))
7585    FieldCollector->FinishClass();
7586
7587  // Exit this scope of this tag's definition.
7588  PopDeclContext();
7589
7590  // Notify the consumer that we've defined a tag.
7591  Consumer.HandleTagDeclDefinition(Tag);
7592}
7593
7594void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
7595  AdjustDeclIfTemplate(TagD);
7596  TagDecl *Tag = cast<TagDecl>(TagD);
7597  Tag->setInvalidDecl();
7598
7599  // We're undoing ActOnTagStartDefinition here, not
7600  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
7601  // the FieldCollector.
7602
7603  PopDeclContext();
7604}
7605
7606// Note that FieldName may be null for anonymous bitfields.
7607bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
7608                          QualType FieldTy, const Expr *BitWidth,
7609                          bool *ZeroWidth) {
7610  // Default to true; that shouldn't confuse checks for emptiness
7611  if (ZeroWidth)
7612    *ZeroWidth = true;
7613
7614  // C99 6.7.2.1p4 - verify the field type.
7615  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
7616  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
7617    // Handle incomplete types with specific error.
7618    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
7619      return true;
7620    if (FieldName)
7621      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
7622        << FieldName << FieldTy << BitWidth->getSourceRange();
7623    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
7624      << FieldTy << BitWidth->getSourceRange();
7625  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
7626                                             UPPC_BitFieldWidth))
7627    return true;
7628
7629  // If the bit-width is type- or value-dependent, don't try to check
7630  // it now.
7631  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
7632    return false;
7633
7634  llvm::APSInt Value;
7635  if (VerifyIntegerConstantExpression(BitWidth, &Value))
7636    return true;
7637
7638  if (Value != 0 && ZeroWidth)
7639    *ZeroWidth = false;
7640
7641  // Zero-width bitfield is ok for anonymous field.
7642  if (Value == 0 && FieldName)
7643    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
7644
7645  if (Value.isSigned() && Value.isNegative()) {
7646    if (FieldName)
7647      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
7648               << FieldName << Value.toString(10);
7649    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
7650      << Value.toString(10);
7651  }
7652
7653  if (!FieldTy->isDependentType()) {
7654    uint64_t TypeSize = Context.getTypeSize(FieldTy);
7655    if (Value.getZExtValue() > TypeSize) {
7656      if (!getLangOptions().CPlusPlus) {
7657        if (FieldName)
7658          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
7659            << FieldName << (unsigned)Value.getZExtValue()
7660            << (unsigned)TypeSize;
7661
7662        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
7663          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
7664      }
7665
7666      if (FieldName)
7667        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
7668          << FieldName << (unsigned)Value.getZExtValue()
7669          << (unsigned)TypeSize;
7670      else
7671        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
7672          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
7673    }
7674  }
7675
7676  return false;
7677}
7678
7679/// ActOnField - Each field of a C struct/union is passed into this in order
7680/// to create a FieldDecl object for it.
7681Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
7682                       Declarator &D, ExprTy *BitfieldWidth) {
7683  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
7684                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
7685                               /*HasInit=*/false, AS_public);
7686  return Res;
7687}
7688
7689/// HandleField - Analyze a field of a C struct or a C++ data member.
7690///
7691FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
7692                             SourceLocation DeclStart,
7693                             Declarator &D, Expr *BitWidth, bool HasInit,
7694                             AccessSpecifier AS) {
7695  IdentifierInfo *II = D.getIdentifier();
7696  SourceLocation Loc = DeclStart;
7697  if (II) Loc = D.getIdentifierLoc();
7698
7699  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7700  QualType T = TInfo->getType();
7701  if (getLangOptions().CPlusPlus) {
7702    CheckExtraCXXDefaultArguments(D);
7703
7704    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
7705                                        UPPC_DataMemberType)) {
7706      D.setInvalidType();
7707      T = Context.IntTy;
7708      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
7709    }
7710  }
7711
7712  DiagnoseFunctionSpecifiers(D);
7713
7714  if (D.getDeclSpec().isThreadSpecified())
7715    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
7716
7717  // Check to see if this name was declared as a member previously
7718  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
7719  LookupName(Previous, S);
7720  assert((Previous.empty() || Previous.isOverloadedResult() ||
7721          Previous.isSingleResult())
7722    && "Lookup of member name should be either overloaded, single or null");
7723
7724  // If the name is overloaded then get any declaration else get the single result
7725  NamedDecl *PrevDecl = Previous.isOverloadedResult() ?
7726    Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>();
7727
7728  if (PrevDecl && PrevDecl->isTemplateParameter()) {
7729    // Maybe we will complain about the shadowed template parameter.
7730    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
7731    // Just pretend that we didn't see the previous declaration.
7732    PrevDecl = 0;
7733  }
7734
7735  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
7736    PrevDecl = 0;
7737
7738  bool Mutable
7739    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
7740  SourceLocation TSSL = D.getSourceRange().getBegin();
7741  FieldDecl *NewFD
7742    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, HasInit,
7743                     TSSL, AS, PrevDecl, &D);
7744
7745  if (NewFD->isInvalidDecl())
7746    Record->setInvalidDecl();
7747
7748  if (NewFD->isInvalidDecl() && PrevDecl) {
7749    // Don't introduce NewFD into scope; there's already something
7750    // with the same name in the same scope.
7751  } else if (II) {
7752    PushOnScopeChains(NewFD, S);
7753  } else
7754    Record->addDecl(NewFD);
7755
7756  return NewFD;
7757}
7758
7759/// \brief Build a new FieldDecl and check its well-formedness.
7760///
7761/// This routine builds a new FieldDecl given the fields name, type,
7762/// record, etc. \p PrevDecl should refer to any previous declaration
7763/// with the same name and in the same scope as the field to be
7764/// created.
7765///
7766/// \returns a new FieldDecl.
7767///
7768/// \todo The Declarator argument is a hack. It will be removed once
7769FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
7770                                TypeSourceInfo *TInfo,
7771                                RecordDecl *Record, SourceLocation Loc,
7772                                bool Mutable, Expr *BitWidth, bool HasInit,
7773                                SourceLocation TSSL,
7774                                AccessSpecifier AS, NamedDecl *PrevDecl,
7775                                Declarator *D) {
7776  IdentifierInfo *II = Name.getAsIdentifierInfo();
7777  bool InvalidDecl = false;
7778  if (D) InvalidDecl = D->isInvalidType();
7779
7780  // If we receive a broken type, recover by assuming 'int' and
7781  // marking this declaration as invalid.
7782  if (T.isNull()) {
7783    InvalidDecl = true;
7784    T = Context.IntTy;
7785  }
7786
7787  QualType EltTy = Context.getBaseElementType(T);
7788  if (!EltTy->isDependentType() &&
7789      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
7790    // Fields of incomplete type force their record to be invalid.
7791    Record->setInvalidDecl();
7792    InvalidDecl = true;
7793  }
7794
7795  // C99 6.7.2.1p8: A member of a structure or union may have any type other
7796  // than a variably modified type.
7797  if (!InvalidDecl && T->isVariablyModifiedType()) {
7798    bool SizeIsNegative;
7799    llvm::APSInt Oversized;
7800    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
7801                                                           SizeIsNegative,
7802                                                           Oversized);
7803    if (!FixedTy.isNull()) {
7804      Diag(Loc, diag::warn_illegal_constant_array_size);
7805      T = FixedTy;
7806    } else {
7807      if (SizeIsNegative)
7808        Diag(Loc, diag::err_typecheck_negative_array_size);
7809      else if (Oversized.getBoolValue())
7810        Diag(Loc, diag::err_array_too_large)
7811          << Oversized.toString(10);
7812      else
7813        Diag(Loc, diag::err_typecheck_field_variable_size);
7814      InvalidDecl = true;
7815    }
7816  }
7817
7818  // Fields can not have abstract class types
7819  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
7820                                             diag::err_abstract_type_in_decl,
7821                                             AbstractFieldType))
7822    InvalidDecl = true;
7823
7824  bool ZeroWidth = false;
7825  // If this is declared as a bit-field, check the bit-field.
7826  if (!InvalidDecl && BitWidth &&
7827      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
7828    InvalidDecl = true;
7829    BitWidth = 0;
7830    ZeroWidth = false;
7831  }
7832
7833  // Check that 'mutable' is consistent with the type of the declaration.
7834  if (!InvalidDecl && Mutable) {
7835    unsigned DiagID = 0;
7836    if (T->isReferenceType())
7837      DiagID = diag::err_mutable_reference;
7838    else if (T.isConstQualified())
7839      DiagID = diag::err_mutable_const;
7840
7841    if (DiagID) {
7842      SourceLocation ErrLoc = Loc;
7843      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
7844        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
7845      Diag(ErrLoc, DiagID);
7846      Mutable = false;
7847      InvalidDecl = true;
7848    }
7849  }
7850
7851  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
7852                                       BitWidth, Mutable, HasInit);
7853  if (InvalidDecl)
7854    NewFD->setInvalidDecl();
7855
7856  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
7857    Diag(Loc, diag::err_duplicate_member) << II;
7858    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7859    NewFD->setInvalidDecl();
7860  }
7861
7862  if (!InvalidDecl && getLangOptions().CPlusPlus) {
7863    if (Record->isUnion()) {
7864      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
7865        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
7866        if (RDecl->getDefinition()) {
7867          // C++ [class.union]p1: An object of a class with a non-trivial
7868          // constructor, a non-trivial copy constructor, a non-trivial
7869          // destructor, or a non-trivial copy assignment operator
7870          // cannot be a member of a union, nor can an array of such
7871          // objects.
7872          if (!getLangOptions().CPlusPlus0x && CheckNontrivialField(NewFD))
7873            NewFD->setInvalidDecl();
7874        }
7875      }
7876
7877      // C++ [class.union]p1: If a union contains a member of reference type,
7878      // the program is ill-formed.
7879      if (EltTy->isReferenceType()) {
7880        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
7881          << NewFD->getDeclName() << EltTy;
7882        NewFD->setInvalidDecl();
7883      }
7884    }
7885  }
7886
7887  // FIXME: We need to pass in the attributes given an AST
7888  // representation, not a parser representation.
7889  if (D)
7890    // FIXME: What to pass instead of TUScope?
7891    ProcessDeclAttributes(TUScope, NewFD, *D);
7892
7893  // In auto-retain/release, infer strong retension for fields of
7894  // retainable type.
7895  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
7896    NewFD->setInvalidDecl();
7897
7898  if (T.isObjCGCWeak())
7899    Diag(Loc, diag::warn_attribute_weak_on_field);
7900
7901  NewFD->setAccess(AS);
7902  return NewFD;
7903}
7904
7905bool Sema::CheckNontrivialField(FieldDecl *FD) {
7906  assert(FD);
7907  assert(getLangOptions().CPlusPlus && "valid check only for C++");
7908
7909  if (FD->isInvalidDecl())
7910    return true;
7911
7912  QualType EltTy = Context.getBaseElementType(FD->getType());
7913  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
7914    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
7915    if (RDecl->getDefinition()) {
7916      // We check for copy constructors before constructors
7917      // because otherwise we'll never get complaints about
7918      // copy constructors.
7919
7920      CXXSpecialMember member = CXXInvalid;
7921      if (!RDecl->hasTrivialCopyConstructor())
7922        member = CXXCopyConstructor;
7923      else if (!RDecl->hasTrivialDefaultConstructor())
7924        member = CXXDefaultConstructor;
7925      else if (!RDecl->hasTrivialCopyAssignment())
7926        member = CXXCopyAssignment;
7927      else if (!RDecl->hasTrivialDestructor())
7928        member = CXXDestructor;
7929
7930      if (member != CXXInvalid) {
7931        if (getLangOptions().ObjCAutoRefCount && RDecl->hasObjectMember()) {
7932          // Objective-C++ ARC: it is an error to have a non-trivial field of
7933          // a union. However, system headers in Objective-C programs
7934          // occasionally have Objective-C lifetime objects within unions,
7935          // and rather than cause the program to fail, we make those
7936          // members unavailable.
7937          SourceLocation Loc = FD->getLocation();
7938          if (getSourceManager().isInSystemHeader(Loc)) {
7939            if (!FD->hasAttr<UnavailableAttr>())
7940              FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
7941                                  "this system field has retaining ownership"));
7942            return false;
7943          }
7944        }
7945
7946        Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
7947              << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
7948        DiagnoseNontrivial(RT, member);
7949        return true;
7950      }
7951    }
7952  }
7953
7954  return false;
7955}
7956
7957/// DiagnoseNontrivial - Given that a class has a non-trivial
7958/// special member, figure out why.
7959void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
7960  QualType QT(T, 0U);
7961  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
7962
7963  // Check whether the member was user-declared.
7964  switch (member) {
7965  case CXXInvalid:
7966    break;
7967
7968  case CXXDefaultConstructor:
7969    if (RD->hasUserDeclaredConstructor()) {
7970      typedef CXXRecordDecl::ctor_iterator ctor_iter;
7971      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
7972        const FunctionDecl *body = 0;
7973        ci->hasBody(body);
7974        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
7975          SourceLocation CtorLoc = ci->getLocation();
7976          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7977          return;
7978        }
7979      }
7980
7981      assert(0 && "found no user-declared constructors");
7982      return;
7983    }
7984    break;
7985
7986  case CXXCopyConstructor:
7987    if (RD->hasUserDeclaredCopyConstructor()) {
7988      SourceLocation CtorLoc =
7989        RD->getCopyConstructor(0)->getLocation();
7990      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7991      return;
7992    }
7993    break;
7994
7995  case CXXMoveConstructor:
7996    if (RD->hasUserDeclaredMoveConstructor()) {
7997      SourceLocation CtorLoc = RD->getMoveConstructor()->getLocation();
7998      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7999      return;
8000    }
8001    break;
8002
8003  case CXXCopyAssignment:
8004    if (RD->hasUserDeclaredCopyAssignment()) {
8005      // FIXME: this should use the location of the copy
8006      // assignment, not the type.
8007      SourceLocation TyLoc = RD->getSourceRange().getBegin();
8008      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
8009      return;
8010    }
8011    break;
8012
8013  case CXXMoveAssignment:
8014    if (RD->hasUserDeclaredMoveAssignment()) {
8015      SourceLocation AssignLoc = RD->getMoveAssignmentOperator()->getLocation();
8016      Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
8017      return;
8018    }
8019    break;
8020
8021  case CXXDestructor:
8022    if (RD->hasUserDeclaredDestructor()) {
8023      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
8024      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8025      return;
8026    }
8027    break;
8028  }
8029
8030  typedef CXXRecordDecl::base_class_iterator base_iter;
8031
8032  // Virtual bases and members inhibit trivial copying/construction,
8033  // but not trivial destruction.
8034  if (member != CXXDestructor) {
8035    // Check for virtual bases.  vbases includes indirect virtual bases,
8036    // so we just iterate through the direct bases.
8037    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
8038      if (bi->isVirtual()) {
8039        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
8040        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
8041        return;
8042      }
8043
8044    // Check for virtual methods.
8045    typedef CXXRecordDecl::method_iterator meth_iter;
8046    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
8047         ++mi) {
8048      if (mi->isVirtual()) {
8049        SourceLocation MLoc = mi->getSourceRange().getBegin();
8050        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
8051        return;
8052      }
8053    }
8054  }
8055
8056  bool (CXXRecordDecl::*hasTrivial)() const;
8057  switch (member) {
8058  case CXXDefaultConstructor:
8059    hasTrivial = &CXXRecordDecl::hasTrivialDefaultConstructor; break;
8060  case CXXCopyConstructor:
8061    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
8062  case CXXCopyAssignment:
8063    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
8064  case CXXDestructor:
8065    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
8066  default:
8067    assert(0 && "unexpected special member"); return;
8068  }
8069
8070  // Check for nontrivial bases (and recurse).
8071  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
8072    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
8073    assert(BaseRT && "Don't know how to handle dependent bases");
8074    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
8075    if (!(BaseRecTy->*hasTrivial)()) {
8076      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
8077      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
8078      DiagnoseNontrivial(BaseRT, member);
8079      return;
8080    }
8081  }
8082
8083  // Check for nontrivial members (and recurse).
8084  typedef RecordDecl::field_iterator field_iter;
8085  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
8086       ++fi) {
8087    QualType EltTy = Context.getBaseElementType((*fi)->getType());
8088    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
8089      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
8090
8091      if (!(EltRD->*hasTrivial)()) {
8092        SourceLocation FLoc = (*fi)->getLocation();
8093        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
8094        DiagnoseNontrivial(EltRT, member);
8095        return;
8096      }
8097    }
8098
8099    if (EltTy->isObjCLifetimeType()) {
8100      switch (EltTy.getObjCLifetime()) {
8101      case Qualifiers::OCL_None:
8102      case Qualifiers::OCL_ExplicitNone:
8103        break;
8104
8105      case Qualifiers::OCL_Autoreleasing:
8106      case Qualifiers::OCL_Weak:
8107      case Qualifiers::OCL_Strong:
8108        Diag((*fi)->getLocation(), diag::note_nontrivial_objc_ownership)
8109          << QT << EltTy.getObjCLifetime();
8110        return;
8111      }
8112    }
8113  }
8114
8115  assert(0 && "found no explanation for non-trivial member");
8116}
8117
8118/// TranslateIvarVisibility - Translate visibility from a token ID to an
8119///  AST enum value.
8120static ObjCIvarDecl::AccessControl
8121TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
8122  switch (ivarVisibility) {
8123  default: assert(0 && "Unknown visitibility kind");
8124  case tok::objc_private: return ObjCIvarDecl::Private;
8125  case tok::objc_public: return ObjCIvarDecl::Public;
8126  case tok::objc_protected: return ObjCIvarDecl::Protected;
8127  case tok::objc_package: return ObjCIvarDecl::Package;
8128  }
8129}
8130
8131/// ActOnIvar - Each ivar field of an objective-c class is passed into this
8132/// in order to create an IvarDecl object for it.
8133Decl *Sema::ActOnIvar(Scope *S,
8134                                SourceLocation DeclStart,
8135                                Decl *IntfDecl,
8136                                Declarator &D, ExprTy *BitfieldWidth,
8137                                tok::ObjCKeywordKind Visibility) {
8138
8139  IdentifierInfo *II = D.getIdentifier();
8140  Expr *BitWidth = (Expr*)BitfieldWidth;
8141  SourceLocation Loc = DeclStart;
8142  if (II) Loc = D.getIdentifierLoc();
8143
8144  // FIXME: Unnamed fields can be handled in various different ways, for
8145  // example, unnamed unions inject all members into the struct namespace!
8146
8147  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8148  QualType T = TInfo->getType();
8149
8150  if (BitWidth) {
8151    // 6.7.2.1p3, 6.7.2.1p4
8152    if (VerifyBitField(Loc, II, T, BitWidth)) {
8153      D.setInvalidType();
8154      BitWidth = 0;
8155    }
8156  } else {
8157    // Not a bitfield.
8158
8159    // validate II.
8160
8161  }
8162  if (T->isReferenceType()) {
8163    Diag(Loc, diag::err_ivar_reference_type);
8164    D.setInvalidType();
8165  }
8166  // C99 6.7.2.1p8: A member of a structure or union may have any type other
8167  // than a variably modified type.
8168  else if (T->isVariablyModifiedType()) {
8169    Diag(Loc, diag::err_typecheck_ivar_variable_size);
8170    D.setInvalidType();
8171  }
8172
8173  // Get the visibility (access control) for this ivar.
8174  ObjCIvarDecl::AccessControl ac =
8175    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
8176                                        : ObjCIvarDecl::None;
8177  // Must set ivar's DeclContext to its enclosing interface.
8178  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(IntfDecl);
8179  ObjCContainerDecl *EnclosingContext;
8180  if (ObjCImplementationDecl *IMPDecl =
8181      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
8182    if (!LangOpts.ObjCNonFragileABI2) {
8183    // Case of ivar declared in an implementation. Context is that of its class.
8184      EnclosingContext = IMPDecl->getClassInterface();
8185      assert(EnclosingContext && "Implementation has no class interface!");
8186    }
8187    else
8188      EnclosingContext = EnclosingDecl;
8189  } else {
8190    if (ObjCCategoryDecl *CDecl =
8191        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
8192      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
8193        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
8194        return 0;
8195      }
8196    }
8197    EnclosingContext = EnclosingDecl;
8198  }
8199
8200  // Construct the decl.
8201  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
8202                                             DeclStart, Loc, II, T,
8203                                             TInfo, ac, (Expr *)BitfieldWidth);
8204
8205  if (II) {
8206    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
8207                                           ForRedeclaration);
8208    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
8209        && !isa<TagDecl>(PrevDecl)) {
8210      Diag(Loc, diag::err_duplicate_member) << II;
8211      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8212      NewID->setInvalidDecl();
8213    }
8214  }
8215
8216  // Process attributes attached to the ivar.
8217  ProcessDeclAttributes(S, NewID, D);
8218
8219  if (D.isInvalidType())
8220    NewID->setInvalidDecl();
8221
8222  // In ARC, infer 'retaining' for ivars of retainable type.
8223  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
8224    NewID->setInvalidDecl();
8225
8226  if (II) {
8227    // FIXME: When interfaces are DeclContexts, we'll need to add
8228    // these to the interface.
8229    S->AddDecl(NewID);
8230    IdResolver.AddDecl(NewID);
8231  }
8232
8233  return NewID;
8234}
8235
8236/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
8237/// class and class extensions. For every class @interface and class
8238/// extension @interface, if the last ivar is a bitfield of any type,
8239/// then add an implicit `char :0` ivar to the end of that interface.
8240void Sema::ActOnLastBitfield(SourceLocation DeclLoc, Decl *EnclosingDecl,
8241                             SmallVectorImpl<Decl *> &AllIvarDecls) {
8242  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
8243    return;
8244
8245  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
8246  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
8247
8248  if (!Ivar->isBitField())
8249    return;
8250  uint64_t BitFieldSize =
8251    Ivar->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
8252  if (BitFieldSize == 0)
8253    return;
8254  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl);
8255  if (!ID) {
8256    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
8257      if (!CD->IsClassExtension())
8258        return;
8259    }
8260    // No need to add this to end of @implementation.
8261    else
8262      return;
8263  }
8264  // All conditions are met. Add a new bitfield to the tail end of ivars.
8265  llvm::APInt Zero(Context.getTypeSize(Context.CharTy), 0);
8266  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.CharTy, DeclLoc);
8267
8268  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(EnclosingDecl),
8269                              DeclLoc, DeclLoc, 0,
8270                              Context.CharTy,
8271                              Context.CreateTypeSourceInfo(Context.CharTy),
8272                              ObjCIvarDecl::Private, BW,
8273                              true);
8274  AllIvarDecls.push_back(Ivar);
8275}
8276
8277void Sema::ActOnFields(Scope* S,
8278                       SourceLocation RecLoc, Decl *EnclosingDecl,
8279                       Decl **Fields, unsigned NumFields,
8280                       SourceLocation LBrac, SourceLocation RBrac,
8281                       AttributeList *Attr) {
8282  assert(EnclosingDecl && "missing record or interface decl");
8283
8284  // If the decl this is being inserted into is invalid, then it may be a
8285  // redeclaration or some other bogus case.  Don't try to add fields to it.
8286  if (EnclosingDecl->isInvalidDecl()) {
8287    // FIXME: Deallocate fields?
8288    return;
8289  }
8290
8291
8292  // Verify that all the fields are okay.
8293  unsigned NumNamedMembers = 0;
8294  SmallVector<FieldDecl*, 32> RecFields;
8295
8296  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
8297  bool ARCErrReported = false;
8298  for (unsigned i = 0; i != NumFields; ++i) {
8299    FieldDecl *FD = cast<FieldDecl>(Fields[i]);
8300
8301    // Get the type for the field.
8302    const Type *FDTy = FD->getType().getTypePtr();
8303
8304    if (!FD->isAnonymousStructOrUnion()) {
8305      // Remember all fields written by the user.
8306      RecFields.push_back(FD);
8307    }
8308
8309    // If the field is already invalid for some reason, don't emit more
8310    // diagnostics about it.
8311    if (FD->isInvalidDecl()) {
8312      EnclosingDecl->setInvalidDecl();
8313      continue;
8314    }
8315
8316    // C99 6.7.2.1p2:
8317    //   A structure or union shall not contain a member with
8318    //   incomplete or function type (hence, a structure shall not
8319    //   contain an instance of itself, but may contain a pointer to
8320    //   an instance of itself), except that the last member of a
8321    //   structure with more than one named member may have incomplete
8322    //   array type; such a structure (and any union containing,
8323    //   possibly recursively, a member that is such a structure)
8324    //   shall not be a member of a structure or an element of an
8325    //   array.
8326    if (FDTy->isFunctionType()) {
8327      // Field declared as a function.
8328      Diag(FD->getLocation(), diag::err_field_declared_as_function)
8329        << FD->getDeclName();
8330      FD->setInvalidDecl();
8331      EnclosingDecl->setInvalidDecl();
8332      continue;
8333    } else if (FDTy->isIncompleteArrayType() && Record &&
8334               ((i == NumFields - 1 && !Record->isUnion()) ||
8335                ((getLangOptions().Microsoft || getLangOptions().CPlusPlus) &&
8336                 (i == NumFields - 1 || Record->isUnion())))) {
8337      // Flexible array member.
8338      // Microsoft and g++ is more permissive regarding flexible array.
8339      // It will accept flexible array in union and also
8340      // as the sole element of a struct/class.
8341      if (getLangOptions().Microsoft) {
8342        if (Record->isUnion())
8343          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
8344            << FD->getDeclName();
8345        else if (NumFields == 1)
8346          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
8347            << FD->getDeclName() << Record->getTagKind();
8348      } else if (getLangOptions().CPlusPlus) {
8349        if (Record->isUnion())
8350          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
8351            << FD->getDeclName();
8352        else if (NumFields == 1)
8353          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
8354            << FD->getDeclName() << Record->getTagKind();
8355      } else if (NumNamedMembers < 1) {
8356        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
8357          << FD->getDeclName();
8358        FD->setInvalidDecl();
8359        EnclosingDecl->setInvalidDecl();
8360        continue;
8361      }
8362      if (!FD->getType()->isDependentType() &&
8363          !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
8364        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
8365          << FD->getDeclName() << FD->getType();
8366        FD->setInvalidDecl();
8367        EnclosingDecl->setInvalidDecl();
8368        continue;
8369      }
8370      // Okay, we have a legal flexible array member at the end of the struct.
8371      if (Record)
8372        Record->setHasFlexibleArrayMember(true);
8373    } else if (!FDTy->isDependentType() &&
8374               RequireCompleteType(FD->getLocation(), FD->getType(),
8375                                   diag::err_field_incomplete)) {
8376      // Incomplete type
8377      FD->setInvalidDecl();
8378      EnclosingDecl->setInvalidDecl();
8379      continue;
8380    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
8381      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
8382        // If this is a member of a union, then entire union becomes "flexible".
8383        if (Record && Record->isUnion()) {
8384          Record->setHasFlexibleArrayMember(true);
8385        } else {
8386          // If this is a struct/class and this is not the last element, reject
8387          // it.  Note that GCC supports variable sized arrays in the middle of
8388          // structures.
8389          if (i != NumFields-1)
8390            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
8391              << FD->getDeclName() << FD->getType();
8392          else {
8393            // We support flexible arrays at the end of structs in
8394            // other structs as an extension.
8395            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
8396              << FD->getDeclName();
8397            if (Record)
8398              Record->setHasFlexibleArrayMember(true);
8399          }
8400        }
8401      }
8402      if (Record && FDTTy->getDecl()->hasObjectMember())
8403        Record->setHasObjectMember(true);
8404    } else if (FDTy->isObjCObjectType()) {
8405      /// A field cannot be an Objective-c object
8406      Diag(FD->getLocation(), diag::err_statically_allocated_object);
8407      FD->setInvalidDecl();
8408      EnclosingDecl->setInvalidDecl();
8409      continue;
8410    }
8411    else if (!getLangOptions().CPlusPlus) {
8412      if (getLangOptions().ObjCAutoRefCount && Record && !ARCErrReported) {
8413        // It's an error in ARC if a field has lifetime.
8414        // We don't want to report this in a system header, though,
8415        // so we just make the field unavailable.
8416        // FIXME: that's really not sufficient; we need to make the type
8417        // itself invalid to, say, initialize or copy.
8418        QualType T = FD->getType();
8419        Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
8420        if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
8421          SourceLocation loc = FD->getLocation();
8422          if (getSourceManager().isInSystemHeader(loc)) {
8423            if (!FD->hasAttr<UnavailableAttr>()) {
8424              FD->addAttr(new (Context) UnavailableAttr(loc, Context,
8425                                "this system field has retaining ownership"));
8426            }
8427          } else {
8428            Diag(FD->getLocation(), diag::err_arc_objc_object_in_struct);
8429          }
8430          ARCErrReported = true;
8431        }
8432      }
8433      else if (getLangOptions().ObjC1 &&
8434               getLangOptions().getGCMode() != LangOptions::NonGC &&
8435               Record && !Record->hasObjectMember()) {
8436        if (FD->getType()->isObjCObjectPointerType() ||
8437            FD->getType().isObjCGCStrong())
8438          Record->setHasObjectMember(true);
8439        else if (Context.getAsArrayType(FD->getType())) {
8440          QualType BaseType = Context.getBaseElementType(FD->getType());
8441          if (BaseType->isRecordType() &&
8442              BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
8443            Record->setHasObjectMember(true);
8444          else if (BaseType->isObjCObjectPointerType() ||
8445                   BaseType.isObjCGCStrong())
8446                 Record->setHasObjectMember(true);
8447        }
8448      }
8449    }
8450    // Keep track of the number of named members.
8451    if (FD->getIdentifier())
8452      ++NumNamedMembers;
8453  }
8454
8455  // Okay, we successfully defined 'Record'.
8456  if (Record) {
8457    bool Completed = false;
8458    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
8459      if (!CXXRecord->isInvalidDecl()) {
8460        // Set access bits correctly on the directly-declared conversions.
8461        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
8462        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
8463             I != E; ++I)
8464          Convs->setAccess(I, (*I)->getAccess());
8465
8466        if (!CXXRecord->isDependentType()) {
8467          // Objective-C Automatic Reference Counting:
8468          //   If a class has a non-static data member of Objective-C pointer
8469          //   type (or array thereof), it is a non-POD type and its
8470          //   default constructor (if any), copy constructor, copy assignment
8471          //   operator, and destructor are non-trivial.
8472          //
8473          // This rule is also handled by CXXRecordDecl::completeDefinition().
8474          // However, here we check whether this particular class is only
8475          // non-POD because of the presence of an Objective-C pointer member.
8476          // If so, objects of this type cannot be shared between code compiled
8477          // with instant objects and code compiled with manual retain/release.
8478          if (getLangOptions().ObjCAutoRefCount &&
8479              CXXRecord->hasObjectMember() &&
8480              CXXRecord->getLinkage() == ExternalLinkage) {
8481            if (CXXRecord->isPOD()) {
8482              Diag(CXXRecord->getLocation(),
8483                   diag::warn_arc_non_pod_class_with_object_member)
8484               << CXXRecord;
8485            } else {
8486              // FIXME: Fix-Its would be nice here, but finding a good location
8487              // for them is going to be tricky.
8488              if (CXXRecord->hasTrivialCopyConstructor())
8489                Diag(CXXRecord->getLocation(),
8490                     diag::warn_arc_trivial_member_function_with_object_member)
8491                  << CXXRecord << 0;
8492              if (CXXRecord->hasTrivialCopyAssignment())
8493                Diag(CXXRecord->getLocation(),
8494                     diag::warn_arc_trivial_member_function_with_object_member)
8495                << CXXRecord << 1;
8496              if (CXXRecord->hasTrivialDestructor())
8497                Diag(CXXRecord->getLocation(),
8498                     diag::warn_arc_trivial_member_function_with_object_member)
8499                << CXXRecord << 2;
8500            }
8501          }
8502
8503          // Adjust user-defined destructor exception spec.
8504          if (getLangOptions().CPlusPlus0x &&
8505              CXXRecord->hasUserDeclaredDestructor())
8506            AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
8507
8508          // Add any implicitly-declared members to this class.
8509          AddImplicitlyDeclaredMembersToClass(CXXRecord);
8510
8511          // If we have virtual base classes, we may end up finding multiple
8512          // final overriders for a given virtual function. Check for this
8513          // problem now.
8514          if (CXXRecord->getNumVBases()) {
8515            CXXFinalOverriderMap FinalOverriders;
8516            CXXRecord->getFinalOverriders(FinalOverriders);
8517
8518            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
8519                                             MEnd = FinalOverriders.end();
8520                 M != MEnd; ++M) {
8521              for (OverridingMethods::iterator SO = M->second.begin(),
8522                                            SOEnd = M->second.end();
8523                   SO != SOEnd; ++SO) {
8524                assert(SO->second.size() > 0 &&
8525                       "Virtual function without overridding functions?");
8526                if (SO->second.size() == 1)
8527                  continue;
8528
8529                // C++ [class.virtual]p2:
8530                //   In a derived class, if a virtual member function of a base
8531                //   class subobject has more than one final overrider the
8532                //   program is ill-formed.
8533                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
8534                  << (NamedDecl *)M->first << Record;
8535                Diag(M->first->getLocation(),
8536                     diag::note_overridden_virtual_function);
8537                for (OverridingMethods::overriding_iterator
8538                          OM = SO->second.begin(),
8539                       OMEnd = SO->second.end();
8540                     OM != OMEnd; ++OM)
8541                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
8542                    << (NamedDecl *)M->first << OM->Method->getParent();
8543
8544                Record->setInvalidDecl();
8545              }
8546            }
8547            CXXRecord->completeDefinition(&FinalOverriders);
8548            Completed = true;
8549          }
8550        }
8551      }
8552    }
8553
8554    if (!Completed)
8555      Record->completeDefinition();
8556
8557    // Now that the record is complete, do any delayed exception spec checks
8558    // we were missing.
8559    while (!DelayedDestructorExceptionSpecChecks.empty()) {
8560      const CXXDestructorDecl *Dtor =
8561              DelayedDestructorExceptionSpecChecks.back().first;
8562      if (Dtor->getParent() != Record)
8563        break;
8564
8565      assert(!Dtor->getParent()->isDependentType() &&
8566          "Should not ever add destructors of templates into the list.");
8567      CheckOverridingFunctionExceptionSpec(Dtor,
8568          DelayedDestructorExceptionSpecChecks.back().second);
8569      DelayedDestructorExceptionSpecChecks.pop_back();
8570    }
8571
8572  } else {
8573    ObjCIvarDecl **ClsFields =
8574      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
8575    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
8576      ID->setLocEnd(RBrac);
8577      // Add ivar's to class's DeclContext.
8578      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
8579        ClsFields[i]->setLexicalDeclContext(ID);
8580        ID->addDecl(ClsFields[i]);
8581      }
8582      // Must enforce the rule that ivars in the base classes may not be
8583      // duplicates.
8584      if (ID->getSuperClass())
8585        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
8586    } else if (ObjCImplementationDecl *IMPDecl =
8587                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
8588      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
8589      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
8590        // Ivar declared in @implementation never belongs to the implementation.
8591        // Only it is in implementation's lexical context.
8592        ClsFields[I]->setLexicalDeclContext(IMPDecl);
8593      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
8594    } else if (ObjCCategoryDecl *CDecl =
8595                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
8596      // case of ivars in class extension; all other cases have been
8597      // reported as errors elsewhere.
8598      // FIXME. Class extension does not have a LocEnd field.
8599      // CDecl->setLocEnd(RBrac);
8600      // Add ivar's to class extension's DeclContext.
8601      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
8602        ClsFields[i]->setLexicalDeclContext(CDecl);
8603        CDecl->addDecl(ClsFields[i]);
8604      }
8605    }
8606  }
8607
8608  if (Attr)
8609    ProcessDeclAttributeList(S, Record, Attr);
8610
8611  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
8612  // set the visibility of this record.
8613  if (Record && !Record->getDeclContext()->isRecord())
8614    AddPushedVisibilityAttribute(Record);
8615}
8616
8617/// \brief Determine whether the given integral value is representable within
8618/// the given type T.
8619static bool isRepresentableIntegerValue(ASTContext &Context,
8620                                        llvm::APSInt &Value,
8621                                        QualType T) {
8622  assert(T->isIntegralType(Context) && "Integral type required!");
8623  unsigned BitWidth = Context.getIntWidth(T);
8624
8625  if (Value.isUnsigned() || Value.isNonNegative()) {
8626    if (T->isSignedIntegerOrEnumerationType())
8627      --BitWidth;
8628    return Value.getActiveBits() <= BitWidth;
8629  }
8630  return Value.getMinSignedBits() <= BitWidth;
8631}
8632
8633// \brief Given an integral type, return the next larger integral type
8634// (or a NULL type of no such type exists).
8635static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
8636  // FIXME: Int128/UInt128 support, which also needs to be introduced into
8637  // enum checking below.
8638  assert(T->isIntegralType(Context) && "Integral type required!");
8639  const unsigned NumTypes = 4;
8640  QualType SignedIntegralTypes[NumTypes] = {
8641    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
8642  };
8643  QualType UnsignedIntegralTypes[NumTypes] = {
8644    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
8645    Context.UnsignedLongLongTy
8646  };
8647
8648  unsigned BitWidth = Context.getTypeSize(T);
8649  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
8650                                                        : UnsignedIntegralTypes;
8651  for (unsigned I = 0; I != NumTypes; ++I)
8652    if (Context.getTypeSize(Types[I]) > BitWidth)
8653      return Types[I];
8654
8655  return QualType();
8656}
8657
8658EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
8659                                          EnumConstantDecl *LastEnumConst,
8660                                          SourceLocation IdLoc,
8661                                          IdentifierInfo *Id,
8662                                          Expr *Val) {
8663  unsigned IntWidth = Context.Target.getIntWidth();
8664  llvm::APSInt EnumVal(IntWidth);
8665  QualType EltTy;
8666
8667  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
8668    Val = 0;
8669
8670  if (Val) {
8671    if (Enum->isDependentType() || Val->isTypeDependent())
8672      EltTy = Context.DependentTy;
8673    else {
8674      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
8675      SourceLocation ExpLoc;
8676      if (!Val->isValueDependent() &&
8677          VerifyIntegerConstantExpression(Val, &EnumVal)) {
8678        Val = 0;
8679      } else {
8680        if (!getLangOptions().CPlusPlus) {
8681          // C99 6.7.2.2p2:
8682          //   The expression that defines the value of an enumeration constant
8683          //   shall be an integer constant expression that has a value
8684          //   representable as an int.
8685
8686          // Complain if the value is not representable in an int.
8687          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
8688            Diag(IdLoc, diag::ext_enum_value_not_int)
8689              << EnumVal.toString(10) << Val->getSourceRange()
8690              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
8691          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
8692            // Force the type of the expression to 'int'.
8693            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
8694          }
8695        }
8696
8697        if (Enum->isFixed()) {
8698          EltTy = Enum->getIntegerType();
8699
8700          // C++0x [dcl.enum]p5:
8701          //   ... if the initializing value of an enumerator cannot be
8702          //   represented by the underlying type, the program is ill-formed.
8703          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
8704            if (getLangOptions().Microsoft) {
8705              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
8706              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
8707            } else
8708              Diag(IdLoc, diag::err_enumerator_too_large)
8709                << EltTy;
8710          } else
8711            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
8712        }
8713        else {
8714          // C++0x [dcl.enum]p5:
8715          //   If the underlying type is not fixed, the type of each enumerator
8716          //   is the type of its initializing value:
8717          //     - If an initializer is specified for an enumerator, the
8718          //       initializing value has the same type as the expression.
8719          EltTy = Val->getType();
8720        }
8721      }
8722    }
8723  }
8724
8725  if (!Val) {
8726    if (Enum->isDependentType())
8727      EltTy = Context.DependentTy;
8728    else if (!LastEnumConst) {
8729      // C++0x [dcl.enum]p5:
8730      //   If the underlying type is not fixed, the type of each enumerator
8731      //   is the type of its initializing value:
8732      //     - If no initializer is specified for the first enumerator, the
8733      //       initializing value has an unspecified integral type.
8734      //
8735      // GCC uses 'int' for its unspecified integral type, as does
8736      // C99 6.7.2.2p3.
8737      if (Enum->isFixed()) {
8738        EltTy = Enum->getIntegerType();
8739      }
8740      else {
8741        EltTy = Context.IntTy;
8742      }
8743    } else {
8744      // Assign the last value + 1.
8745      EnumVal = LastEnumConst->getInitVal();
8746      ++EnumVal;
8747      EltTy = LastEnumConst->getType();
8748
8749      // Check for overflow on increment.
8750      if (EnumVal < LastEnumConst->getInitVal()) {
8751        // C++0x [dcl.enum]p5:
8752        //   If the underlying type is not fixed, the type of each enumerator
8753        //   is the type of its initializing value:
8754        //
8755        //     - Otherwise the type of the initializing value is the same as
8756        //       the type of the initializing value of the preceding enumerator
8757        //       unless the incremented value is not representable in that type,
8758        //       in which case the type is an unspecified integral type
8759        //       sufficient to contain the incremented value. If no such type
8760        //       exists, the program is ill-formed.
8761        QualType T = getNextLargerIntegralType(Context, EltTy);
8762        if (T.isNull() || Enum->isFixed()) {
8763          // There is no integral type larger enough to represent this
8764          // value. Complain, then allow the value to wrap around.
8765          EnumVal = LastEnumConst->getInitVal();
8766          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
8767          ++EnumVal;
8768          if (Enum->isFixed())
8769            // When the underlying type is fixed, this is ill-formed.
8770            Diag(IdLoc, diag::err_enumerator_wrapped)
8771              << EnumVal.toString(10)
8772              << EltTy;
8773          else
8774            Diag(IdLoc, diag::warn_enumerator_too_large)
8775              << EnumVal.toString(10);
8776        } else {
8777          EltTy = T;
8778        }
8779
8780        // Retrieve the last enumerator's value, extent that type to the
8781        // type that is supposed to be large enough to represent the incremented
8782        // value, then increment.
8783        EnumVal = LastEnumConst->getInitVal();
8784        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
8785        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
8786        ++EnumVal;
8787
8788        // If we're not in C++, diagnose the overflow of enumerator values,
8789        // which in C99 means that the enumerator value is not representable in
8790        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
8791        // permits enumerator values that are representable in some larger
8792        // integral type.
8793        if (!getLangOptions().CPlusPlus && !T.isNull())
8794          Diag(IdLoc, diag::warn_enum_value_overflow);
8795      } else if (!getLangOptions().CPlusPlus &&
8796                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
8797        // Enforce C99 6.7.2.2p2 even when we compute the next value.
8798        Diag(IdLoc, diag::ext_enum_value_not_int)
8799          << EnumVal.toString(10) << 1;
8800      }
8801    }
8802  }
8803
8804  if (!EltTy->isDependentType()) {
8805    // Make the enumerator value match the signedness and size of the
8806    // enumerator's type.
8807    EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
8808    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
8809  }
8810
8811  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
8812                                  Val, EnumVal);
8813}
8814
8815
8816Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
8817                              SourceLocation IdLoc, IdentifierInfo *Id,
8818                              AttributeList *Attr,
8819                              SourceLocation EqualLoc, ExprTy *val) {
8820  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
8821  EnumConstantDecl *LastEnumConst =
8822    cast_or_null<EnumConstantDecl>(lastEnumConst);
8823  Expr *Val = static_cast<Expr*>(val);
8824
8825  // The scope passed in may not be a decl scope.  Zip up the scope tree until
8826  // we find one that is.
8827  S = getNonFieldDeclScope(S);
8828
8829  // Verify that there isn't already something declared with this name in this
8830  // scope.
8831  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
8832                                         ForRedeclaration);
8833  if (PrevDecl && PrevDecl->isTemplateParameter()) {
8834    // Maybe we will complain about the shadowed template parameter.
8835    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
8836    // Just pretend that we didn't see the previous declaration.
8837    PrevDecl = 0;
8838  }
8839
8840  if (PrevDecl) {
8841    // When in C++, we may get a TagDecl with the same name; in this case the
8842    // enum constant will 'hide' the tag.
8843    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
8844           "Received TagDecl when not in C++!");
8845    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
8846      if (isa<EnumConstantDecl>(PrevDecl))
8847        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
8848      else
8849        Diag(IdLoc, diag::err_redefinition) << Id;
8850      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
8851      return 0;
8852    }
8853  }
8854
8855  // C++ [class.mem]p13:
8856  //   If T is the name of a class, then each of the following shall have a
8857  //   name different from T:
8858  //     - every enumerator of every member of class T that is an enumerated
8859  //       type
8860  if (CXXRecordDecl *Record
8861                      = dyn_cast<CXXRecordDecl>(
8862                             TheEnumDecl->getDeclContext()->getRedeclContext()))
8863    if (Record->getIdentifier() && Record->getIdentifier() == Id)
8864      Diag(IdLoc, diag::err_member_name_of_class) << Id;
8865
8866  EnumConstantDecl *New =
8867    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
8868
8869  if (New) {
8870    // Process attributes.
8871    if (Attr) ProcessDeclAttributeList(S, New, Attr);
8872
8873    // Register this decl in the current scope stack.
8874    New->setAccess(TheEnumDecl->getAccess());
8875    PushOnScopeChains(New, S);
8876  }
8877
8878  return New;
8879}
8880
8881void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
8882                         SourceLocation RBraceLoc, Decl *EnumDeclX,
8883                         Decl **Elements, unsigned NumElements,
8884                         Scope *S, AttributeList *Attr) {
8885  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
8886  QualType EnumType = Context.getTypeDeclType(Enum);
8887
8888  if (Attr)
8889    ProcessDeclAttributeList(S, Enum, Attr);
8890
8891  if (Enum->isDependentType()) {
8892    for (unsigned i = 0; i != NumElements; ++i) {
8893      EnumConstantDecl *ECD =
8894        cast_or_null<EnumConstantDecl>(Elements[i]);
8895      if (!ECD) continue;
8896
8897      ECD->setType(EnumType);
8898    }
8899
8900    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
8901    return;
8902  }
8903
8904  // TODO: If the result value doesn't fit in an int, it must be a long or long
8905  // long value.  ISO C does not support this, but GCC does as an extension,
8906  // emit a warning.
8907  unsigned IntWidth = Context.Target.getIntWidth();
8908  unsigned CharWidth = Context.Target.getCharWidth();
8909  unsigned ShortWidth = Context.Target.getShortWidth();
8910
8911  // Verify that all the values are okay, compute the size of the values, and
8912  // reverse the list.
8913  unsigned NumNegativeBits = 0;
8914  unsigned NumPositiveBits = 0;
8915
8916  // Keep track of whether all elements have type int.
8917  bool AllElementsInt = true;
8918
8919  for (unsigned i = 0; i != NumElements; ++i) {
8920    EnumConstantDecl *ECD =
8921      cast_or_null<EnumConstantDecl>(Elements[i]);
8922    if (!ECD) continue;  // Already issued a diagnostic.
8923
8924    const llvm::APSInt &InitVal = ECD->getInitVal();
8925
8926    // Keep track of the size of positive and negative values.
8927    if (InitVal.isUnsigned() || InitVal.isNonNegative())
8928      NumPositiveBits = std::max(NumPositiveBits,
8929                                 (unsigned)InitVal.getActiveBits());
8930    else
8931      NumNegativeBits = std::max(NumNegativeBits,
8932                                 (unsigned)InitVal.getMinSignedBits());
8933
8934    // Keep track of whether every enum element has type int (very commmon).
8935    if (AllElementsInt)
8936      AllElementsInt = ECD->getType() == Context.IntTy;
8937  }
8938
8939  // Figure out the type that should be used for this enum.
8940  QualType BestType;
8941  unsigned BestWidth;
8942
8943  // C++0x N3000 [conv.prom]p3:
8944  //   An rvalue of an unscoped enumeration type whose underlying
8945  //   type is not fixed can be converted to an rvalue of the first
8946  //   of the following types that can represent all the values of
8947  //   the enumeration: int, unsigned int, long int, unsigned long
8948  //   int, long long int, or unsigned long long int.
8949  // C99 6.4.4.3p2:
8950  //   An identifier declared as an enumeration constant has type int.
8951  // The C99 rule is modified by a gcc extension
8952  QualType BestPromotionType;
8953
8954  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
8955  // -fshort-enums is the equivalent to specifying the packed attribute on all
8956  // enum definitions.
8957  if (LangOpts.ShortEnums)
8958    Packed = true;
8959
8960  if (Enum->isFixed()) {
8961    BestType = BestPromotionType = Enum->getIntegerType();
8962    // We don't need to set BestWidth, because BestType is going to be the type
8963    // of the enumerators, but we do anyway because otherwise some compilers
8964    // warn that it might be used uninitialized.
8965    BestWidth = CharWidth;
8966  }
8967  else if (NumNegativeBits) {
8968    // If there is a negative value, figure out the smallest integer type (of
8969    // int/long/longlong) that fits.
8970    // If it's packed, check also if it fits a char or a short.
8971    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
8972      BestType = Context.SignedCharTy;
8973      BestWidth = CharWidth;
8974    } else if (Packed && NumNegativeBits <= ShortWidth &&
8975               NumPositiveBits < ShortWidth) {
8976      BestType = Context.ShortTy;
8977      BestWidth = ShortWidth;
8978    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
8979      BestType = Context.IntTy;
8980      BestWidth = IntWidth;
8981    } else {
8982      BestWidth = Context.Target.getLongWidth();
8983
8984      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
8985        BestType = Context.LongTy;
8986      } else {
8987        BestWidth = Context.Target.getLongLongWidth();
8988
8989        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
8990          Diag(Enum->getLocation(), diag::warn_enum_too_large);
8991        BestType = Context.LongLongTy;
8992      }
8993    }
8994    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
8995  } else {
8996    // If there is no negative value, figure out the smallest type that fits
8997    // all of the enumerator values.
8998    // If it's packed, check also if it fits a char or a short.
8999    if (Packed && NumPositiveBits <= CharWidth) {
9000      BestType = Context.UnsignedCharTy;
9001      BestPromotionType = Context.IntTy;
9002      BestWidth = CharWidth;
9003    } else if (Packed && NumPositiveBits <= ShortWidth) {
9004      BestType = Context.UnsignedShortTy;
9005      BestPromotionType = Context.IntTy;
9006      BestWidth = ShortWidth;
9007    } else if (NumPositiveBits <= IntWidth) {
9008      BestType = Context.UnsignedIntTy;
9009      BestWidth = IntWidth;
9010      BestPromotionType
9011        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9012                           ? Context.UnsignedIntTy : Context.IntTy;
9013    } else if (NumPositiveBits <=
9014               (BestWidth = Context.Target.getLongWidth())) {
9015      BestType = Context.UnsignedLongTy;
9016      BestPromotionType
9017        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9018                           ? Context.UnsignedLongTy : Context.LongTy;
9019    } else {
9020      BestWidth = Context.Target.getLongLongWidth();
9021      assert(NumPositiveBits <= BestWidth &&
9022             "How could an initializer get larger than ULL?");
9023      BestType = Context.UnsignedLongLongTy;
9024      BestPromotionType
9025        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9026                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
9027    }
9028  }
9029
9030  // Loop over all of the enumerator constants, changing their types to match
9031  // the type of the enum if needed.
9032  for (unsigned i = 0; i != NumElements; ++i) {
9033    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
9034    if (!ECD) continue;  // Already issued a diagnostic.
9035
9036    // Standard C says the enumerators have int type, but we allow, as an
9037    // extension, the enumerators to be larger than int size.  If each
9038    // enumerator value fits in an int, type it as an int, otherwise type it the
9039    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
9040    // that X has type 'int', not 'unsigned'.
9041
9042    // Determine whether the value fits into an int.
9043    llvm::APSInt InitVal = ECD->getInitVal();
9044
9045    // If it fits into an integer type, force it.  Otherwise force it to match
9046    // the enum decl type.
9047    QualType NewTy;
9048    unsigned NewWidth;
9049    bool NewSign;
9050    if (!getLangOptions().CPlusPlus &&
9051        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
9052      NewTy = Context.IntTy;
9053      NewWidth = IntWidth;
9054      NewSign = true;
9055    } else if (ECD->getType() == BestType) {
9056      // Already the right type!
9057      if (getLangOptions().CPlusPlus)
9058        // C++ [dcl.enum]p4: Following the closing brace of an
9059        // enum-specifier, each enumerator has the type of its
9060        // enumeration.
9061        ECD->setType(EnumType);
9062      continue;
9063    } else {
9064      NewTy = BestType;
9065      NewWidth = BestWidth;
9066      NewSign = BestType->isSignedIntegerOrEnumerationType();
9067    }
9068
9069    // Adjust the APSInt value.
9070    InitVal = InitVal.extOrTrunc(NewWidth);
9071    InitVal.setIsSigned(NewSign);
9072    ECD->setInitVal(InitVal);
9073
9074    // Adjust the Expr initializer and type.
9075    if (ECD->getInitExpr() &&
9076        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
9077      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
9078                                                CK_IntegralCast,
9079                                                ECD->getInitExpr(),
9080                                                /*base paths*/ 0,
9081                                                VK_RValue));
9082    if (getLangOptions().CPlusPlus)
9083      // C++ [dcl.enum]p4: Following the closing brace of an
9084      // enum-specifier, each enumerator has the type of its
9085      // enumeration.
9086      ECD->setType(EnumType);
9087    else
9088      ECD->setType(NewTy);
9089  }
9090
9091  Enum->completeDefinition(BestType, BestPromotionType,
9092                           NumPositiveBits, NumNegativeBits);
9093}
9094
9095Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
9096                                  SourceLocation StartLoc,
9097                                  SourceLocation EndLoc) {
9098  StringLiteral *AsmString = cast<StringLiteral>(expr);
9099
9100  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
9101                                                   AsmString, StartLoc,
9102                                                   EndLoc);
9103  CurContext->addDecl(New);
9104  return New;
9105}
9106
9107void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
9108                             SourceLocation PragmaLoc,
9109                             SourceLocation NameLoc) {
9110  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
9111
9112  if (PrevDecl) {
9113    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
9114  } else {
9115    (void)WeakUndeclaredIdentifiers.insert(
9116      std::pair<IdentifierInfo*,WeakInfo>
9117        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
9118  }
9119}
9120
9121void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
9122                                IdentifierInfo* AliasName,
9123                                SourceLocation PragmaLoc,
9124                                SourceLocation NameLoc,
9125                                SourceLocation AliasNameLoc) {
9126  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
9127                                    LookupOrdinaryName);
9128  WeakInfo W = WeakInfo(Name, NameLoc);
9129
9130  if (PrevDecl) {
9131    if (!PrevDecl->hasAttr<AliasAttr>())
9132      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
9133        DeclApplyPragmaWeak(TUScope, ND, W);
9134  } else {
9135    (void)WeakUndeclaredIdentifiers.insert(
9136      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
9137  }
9138}
9139