SemaDecl.cpp revision e53060fa78ad7e98352049f72787bdb7543e2a48
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/StmtCXX.h"
23#include "clang/Parse/DeclSpec.h"
24#include "clang/Basic/TargetInfo.h"
25#include "clang/Basic/SourceManager.h"
26// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
27#include "clang/Lex/Preprocessor.h"
28#include "clang/Lex/HeaderSearch.h"
29#include "llvm/ADT/SmallSet.h"
30#include "llvm/ADT/STLExtras.h"
31#include <algorithm>
32#include <functional>
33using namespace clang;
34
35/// getDeclName - Return a pretty name for the specified decl if possible, or
36/// an empty string if not.  This is used for pretty crash reporting.
37std::string Sema::getDeclName(DeclPtrTy d) {
38  Decl *D = d.getAs<Decl>();
39  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
40    return DN->getQualifiedNameAsString();
41  return "";
42}
43
44Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
45  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
46}
47
48/// \brief If the identifier refers to a type name within this scope,
49/// return the declaration of that type.
50///
51/// This routine performs ordinary name lookup of the identifier II
52/// within the given scope, with optional C++ scope specifier SS, to
53/// determine whether the name refers to a type. If so, returns an
54/// opaque pointer (actually a QualType) corresponding to that
55/// type. Otherwise, returns NULL.
56///
57/// If name lookup results in an ambiguity, this routine will complain
58/// and then return NULL.
59Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
60                                Scope *S, const CXXScopeSpec *SS) {
61  // C++ [temp.res]p3:
62  //   A qualified-id that refers to a type and in which the
63  //   nested-name-specifier depends on a template-parameter (14.6.2)
64  //   shall be prefixed by the keyword typename to indicate that the
65  //   qualified-id denotes a type, forming an
66  //   elaborated-type-specifier (7.1.5.3).
67  //
68  // We therefore do not perform any name lookup if the result would
69  // refer to a member of an unknown specialization.
70  if (SS && isUnknownSpecialization(*SS))
71    return 0;
72
73  LookupResult Result
74    = LookupParsedName(S, SS, &II, LookupOrdinaryName, false, false);
75
76  NamedDecl *IIDecl = 0;
77  switch (Result.getKind()) {
78  case LookupResult::NotFound:
79  case LookupResult::FoundOverloaded:
80    return 0;
81
82  case LookupResult::AmbiguousBaseSubobjectTypes:
83  case LookupResult::AmbiguousBaseSubobjects:
84  case LookupResult::AmbiguousReference: {
85    // Look to see if we have a type anywhere in the list of results.
86    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
87         Res != ResEnd; ++Res) {
88      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
89        if (!IIDecl ||
90            (*Res)->getLocation().getRawEncoding() <
91              IIDecl->getLocation().getRawEncoding())
92          IIDecl = *Res;
93      }
94    }
95
96    if (!IIDecl) {
97      // None of the entities we found is a type, so there is no way
98      // to even assume that the result is a type. In this case, don't
99      // complain about the ambiguity. The parser will either try to
100      // perform this lookup again (e.g., as an object name), which
101      // will produce the ambiguity, or will complain that it expected
102      // a type name.
103      Result.Destroy();
104      return 0;
105    }
106
107    // We found a type within the ambiguous lookup; diagnose the
108    // ambiguity and then return that type. This might be the right
109    // answer, or it might not be, but it suppresses any attempt to
110    // perform the name lookup again.
111    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
112    break;
113  }
114
115  case LookupResult::Found:
116    IIDecl = Result.getAsDecl();
117    break;
118  }
119
120  if (IIDecl) {
121    QualType T;
122
123    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
124      // Check whether we can use this type
125      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
126
127      if (getLangOptions().CPlusPlus) {
128        // C++ [temp.local]p2:
129        //   Within the scope of a class template specialization or
130        //   partial specialization, when the injected-class-name is
131        //   not followed by a <, it is equivalent to the
132        //   injected-class-name followed by the template-argument s
133        //   of the class template specialization or partial
134        //   specialization enclosed in <>.
135        if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
136          if (RD->isInjectedClassName())
137            if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
138              T = Template->getInjectedClassNameType(Context);
139      }
140
141      if (T.isNull())
142        T = Context.getTypeDeclType(TD);
143    } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
144      // Check whether we can use this interface.
145      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
146
147      T = Context.getObjCInterfaceType(IDecl);
148    } else
149      return 0;
150
151    if (SS)
152      T = getQualifiedNameType(*SS, T);
153
154    return T.getAsOpaquePtr();
155  }
156
157  return 0;
158}
159
160/// isTagName() - This method is called *for error recovery purposes only*
161/// to determine if the specified name is a valid tag name ("struct foo").  If
162/// so, this returns the TST for the tag corresponding to it (TST_enum,
163/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
164/// where the user forgot to specify the tag.
165DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
166  // Do a tag name lookup in this scope.
167  LookupResult R = LookupName(S, &II, LookupTagName, false, false);
168  if (R.getKind() == LookupResult::Found)
169    if (const TagDecl *TD = dyn_cast<TagDecl>(R.getAsDecl())) {
170      switch (TD->getTagKind()) {
171      case TagDecl::TK_struct: return DeclSpec::TST_struct;
172      case TagDecl::TK_union:  return DeclSpec::TST_union;
173      case TagDecl::TK_class:  return DeclSpec::TST_class;
174      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
175      }
176    }
177
178  return DeclSpec::TST_unspecified;
179}
180
181
182
183DeclContext *Sema::getContainingDC(DeclContext *DC) {
184  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
185    // A C++ out-of-line method will return to the file declaration context.
186    if (MD->isOutOfLine())
187      return MD->getLexicalDeclContext();
188
189    // A C++ inline method is parsed *after* the topmost class it was declared
190    // in is fully parsed (it's "complete").
191    // The parsing of a C++ inline method happens at the declaration context of
192    // the topmost (non-nested) class it is lexically declared in.
193    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
194    DC = MD->getParent();
195    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
196      DC = RD;
197
198    // Return the declaration context of the topmost class the inline method is
199    // declared in.
200    return DC;
201  }
202
203  if (isa<ObjCMethodDecl>(DC))
204    return Context.getTranslationUnitDecl();
205
206  return DC->getLexicalParent();
207}
208
209void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
210  assert(getContainingDC(DC) == CurContext &&
211      "The next DeclContext should be lexically contained in the current one.");
212  CurContext = DC;
213  S->setEntity(DC);
214}
215
216void Sema::PopDeclContext() {
217  assert(CurContext && "DeclContext imbalance!");
218
219  CurContext = getContainingDC(CurContext);
220}
221
222/// EnterDeclaratorContext - Used when we must lookup names in the context
223/// of a declarator's nested name specifier.
224void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
225  assert(PreDeclaratorDC == 0 && "Previous declarator context not popped?");
226  PreDeclaratorDC = static_cast<DeclContext*>(S->getEntity());
227  CurContext = DC;
228  assert(CurContext && "No context?");
229  S->setEntity(CurContext);
230}
231
232void Sema::ExitDeclaratorContext(Scope *S) {
233  S->setEntity(PreDeclaratorDC);
234  PreDeclaratorDC = 0;
235
236  // Reset CurContext to the nearest enclosing context.
237  while (!S->getEntity() && S->getParent())
238    S = S->getParent();
239  CurContext = static_cast<DeclContext*>(S->getEntity());
240  assert(CurContext && "No context?");
241}
242
243/// \brief Determine whether we allow overloading of the function
244/// PrevDecl with another declaration.
245///
246/// This routine determines whether overloading is possible, not
247/// whether some new function is actually an overload. It will return
248/// true in C++ (where we can always provide overloads) or, as an
249/// extension, in C when the previous function is already an
250/// overloaded function declaration or has the "overloadable"
251/// attribute.
252static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
253  if (Context.getLangOptions().CPlusPlus)
254    return true;
255
256  if (isa<OverloadedFunctionDecl>(PrevDecl))
257    return true;
258
259  return PrevDecl->getAttr<OverloadableAttr>(Context) != 0;
260}
261
262/// Add this decl to the scope shadowed decl chains.
263void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
264  // Move up the scope chain until we find the nearest enclosing
265  // non-transparent context. The declaration will be introduced into this
266  // scope.
267  while (S->getEntity() &&
268         ((DeclContext *)S->getEntity())->isTransparentContext())
269    S = S->getParent();
270
271  S->AddDecl(DeclPtrTy::make(D));
272
273  // Add scoped declarations into their context, so that they can be
274  // found later. Declarations without a context won't be inserted
275  // into any context.
276  CurContext->addDecl(Context, D);
277
278  // C++ [basic.scope]p4:
279  //   -- exactly one declaration shall declare a class name or
280  //   enumeration name that is not a typedef name and the other
281  //   declarations shall all refer to the same object or
282  //   enumerator, or all refer to functions and function templates;
283  //   in this case the class name or enumeration name is hidden.
284  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
285    // We are pushing the name of a tag (enum or class).
286    if (CurContext->getLookupContext()
287          == TD->getDeclContext()->getLookupContext()) {
288      // We're pushing the tag into the current context, which might
289      // require some reshuffling in the identifier resolver.
290      IdentifierResolver::iterator
291        I = IdResolver.begin(TD->getDeclName()),
292        IEnd = IdResolver.end();
293      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
294        NamedDecl *PrevDecl = *I;
295        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
296             PrevDecl = *I, ++I) {
297          if (TD->declarationReplaces(*I)) {
298            // This is a redeclaration. Remove it from the chain and
299            // break out, so that we'll add in the shadowed
300            // declaration.
301            S->RemoveDecl(DeclPtrTy::make(*I));
302            if (PrevDecl == *I) {
303              IdResolver.RemoveDecl(*I);
304              IdResolver.AddDecl(TD);
305              return;
306            } else {
307              IdResolver.RemoveDecl(*I);
308              break;
309            }
310          }
311        }
312
313        // There is already a declaration with the same name in the same
314        // scope, which is not a tag declaration. It must be found
315        // before we find the new declaration, so insert the new
316        // declaration at the end of the chain.
317        IdResolver.AddShadowedDecl(TD, PrevDecl);
318
319        return;
320      }
321    }
322  } else if ((isa<FunctionDecl>(D) &&
323              AllowOverloadingOfFunction(D, Context)) ||
324             isa<FunctionTemplateDecl>(D)) {
325    // We are pushing the name of a function or function template,
326    // which might be an overloaded name.
327    IdentifierResolver::iterator Redecl
328      = std::find_if(IdResolver.begin(D->getDeclName()),
329                     IdResolver.end(),
330                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
331                                  D));
332    if (Redecl != IdResolver.end() &&
333        S->isDeclScope(DeclPtrTy::make(*Redecl))) {
334      // There is already a declaration of a function on our
335      // IdResolver chain. Replace it with this declaration.
336      S->RemoveDecl(DeclPtrTy::make(*Redecl));
337      IdResolver.RemoveDecl(*Redecl);
338    }
339  } else if (isa<ObjCInterfaceDecl>(D)) {
340    // We're pushing an Objective-C interface into the current
341    // context. If there is already an alias declaration, remove it first.
342    for (IdentifierResolver::iterator
343           I = IdResolver.begin(D->getDeclName()), IEnd = IdResolver.end();
344         I != IEnd; ++I) {
345      if (isa<ObjCCompatibleAliasDecl>(*I)) {
346        S->RemoveDecl(DeclPtrTy::make(*I));
347        IdResolver.RemoveDecl(*I);
348        break;
349      }
350    }
351  }
352
353  IdResolver.AddDecl(D);
354}
355
356void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
357  if (S->decl_empty()) return;
358  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
359	 "Scope shouldn't contain decls!");
360
361  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
362       I != E; ++I) {
363    Decl *TmpD = (*I).getAs<Decl>();
364    assert(TmpD && "This decl didn't get pushed??");
365
366    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
367    NamedDecl *D = cast<NamedDecl>(TmpD);
368
369    if (!D->getDeclName()) continue;
370
371    // Remove this name from our lexical scope.
372    IdResolver.RemoveDecl(D);
373  }
374}
375
376/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
377/// return 0 if one not found.
378ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
379  // The third "scope" argument is 0 since we aren't enabling lazy built-in
380  // creation from this context.
381  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
382
383  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
384}
385
386/// getNonFieldDeclScope - Retrieves the innermost scope, starting
387/// from S, where a non-field would be declared. This routine copes
388/// with the difference between C and C++ scoping rules in structs and
389/// unions. For example, the following code is well-formed in C but
390/// ill-formed in C++:
391/// @code
392/// struct S6 {
393///   enum { BAR } e;
394/// };
395///
396/// void test_S6() {
397///   struct S6 a;
398///   a.e = BAR;
399/// }
400/// @endcode
401/// For the declaration of BAR, this routine will return a different
402/// scope. The scope S will be the scope of the unnamed enumeration
403/// within S6. In C++, this routine will return the scope associated
404/// with S6, because the enumeration's scope is a transparent
405/// context but structures can contain non-field names. In C, this
406/// routine will return the translation unit scope, since the
407/// enumeration's scope is a transparent context and structures cannot
408/// contain non-field names.
409Scope *Sema::getNonFieldDeclScope(Scope *S) {
410  while (((S->getFlags() & Scope::DeclScope) == 0) ||
411         (S->getEntity() &&
412          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
413         (S->isClassScope() && !getLangOptions().CPlusPlus))
414    S = S->getParent();
415  return S;
416}
417
418void Sema::InitBuiltinVaListType() {
419  if (!Context.getBuiltinVaListType().isNull())
420    return;
421
422  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
423  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
424  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
425  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
426}
427
428/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
429/// file scope.  lazily create a decl for it. ForRedeclaration is true
430/// if we're creating this built-in in anticipation of redeclaring the
431/// built-in.
432NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
433                                     Scope *S, bool ForRedeclaration,
434                                     SourceLocation Loc) {
435  Builtin::ID BID = (Builtin::ID)bid;
436
437  if (Context.BuiltinInfo.hasVAListUse(BID))
438    InitBuiltinVaListType();
439
440  ASTContext::GetBuiltinTypeError Error;
441  QualType R = Context.GetBuiltinType(BID, Error);
442  switch (Error) {
443  case ASTContext::GE_None:
444    // Okay
445    break;
446
447  case ASTContext::GE_Missing_FILE:
448    if (ForRedeclaration)
449      Diag(Loc, diag::err_implicit_decl_requires_stdio)
450        << Context.BuiltinInfo.GetName(BID);
451    return 0;
452  }
453
454  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
455    Diag(Loc, diag::ext_implicit_lib_function_decl)
456      << Context.BuiltinInfo.GetName(BID)
457      << R;
458    if (Context.BuiltinInfo.getHeaderName(BID) &&
459        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
460          != Diagnostic::Ignored)
461      Diag(Loc, diag::note_please_include_header)
462        << Context.BuiltinInfo.getHeaderName(BID)
463        << Context.BuiltinInfo.GetName(BID);
464  }
465
466  FunctionDecl *New = FunctionDecl::Create(Context,
467                                           Context.getTranslationUnitDecl(),
468                                           Loc, II, R,
469                                           FunctionDecl::Extern, false,
470                                           /*hasPrototype=*/true);
471  New->setImplicit();
472
473  // Create Decl objects for each parameter, adding them to the
474  // FunctionDecl.
475  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
476    llvm::SmallVector<ParmVarDecl*, 16> Params;
477    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
478      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
479                                           FT->getArgType(i), VarDecl::None, 0));
480    New->setParams(Context, Params.data(), Params.size());
481  }
482
483  AddKnownFunctionAttributes(New);
484
485  // TUScope is the translation-unit scope to insert this function into.
486  // FIXME: This is hideous. We need to teach PushOnScopeChains to
487  // relate Scopes to DeclContexts, and probably eliminate CurContext
488  // entirely, but we're not there yet.
489  DeclContext *SavedContext = CurContext;
490  CurContext = Context.getTranslationUnitDecl();
491  PushOnScopeChains(New, TUScope);
492  CurContext = SavedContext;
493  return New;
494}
495
496/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
497/// everything from the standard library is defined.
498NamespaceDecl *Sema::GetStdNamespace() {
499  if (!StdNamespace) {
500    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
501    DeclContext *Global = Context.getTranslationUnitDecl();
502    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
503    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
504  }
505  return StdNamespace;
506}
507
508/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
509/// same name and scope as a previous declaration 'Old'.  Figure out
510/// how to resolve this situation, merging decls or emitting
511/// diagnostics as appropriate. If there was an error, set New to be invalid.
512///
513void Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
514  // If either decl is known invalid already, set the new one to be invalid and
515  // don't bother doing any merging checks.
516  if (New->isInvalidDecl() || OldD->isInvalidDecl())
517    return New->setInvalidDecl();
518
519  bool objc_types = false;
520
521  // Allow multiple definitions for ObjC built-in typedefs.
522  // FIXME: Verify the underlying types are equivalent!
523  if (getLangOptions().ObjC1) {
524    const IdentifierInfo *TypeID = New->getIdentifier();
525    switch (TypeID->getLength()) {
526    default: break;
527    case 2:
528      if (!TypeID->isStr("id"))
529        break;
530      Context.setObjCIdType(Context.getTypeDeclType(New));
531      objc_types = true;
532      break;
533    case 5:
534      if (!TypeID->isStr("Class"))
535        break;
536      Context.setObjCClassType(Context.getTypeDeclType(New));
537      return;
538    case 3:
539      if (!TypeID->isStr("SEL"))
540        break;
541      Context.setObjCSelType(Context.getTypeDeclType(New));
542      return;
543    case 8:
544      if (!TypeID->isStr("Protocol"))
545        break;
546      Context.setObjCProtoType(New->getUnderlyingType());
547      return;
548    }
549    // Fall through - the typedef name was not a builtin type.
550  }
551  // Verify the old decl was also a type.
552  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
553  if (!Old) {
554    Diag(New->getLocation(), diag::err_redefinition_different_kind)
555      << New->getDeclName();
556    if (OldD->getLocation().isValid())
557      Diag(OldD->getLocation(), diag::note_previous_definition);
558    return New->setInvalidDecl();
559  }
560
561  // Determine the "old" type we'll use for checking and diagnostics.
562  QualType OldType;
563  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
564    OldType = OldTypedef->getUnderlyingType();
565  else
566    OldType = Context.getTypeDeclType(Old);
567
568  // If the typedef types are not identical, reject them in all languages and
569  // with any extensions enabled.
570
571  if (OldType != New->getUnderlyingType() &&
572      Context.getCanonicalType(OldType) !=
573      Context.getCanonicalType(New->getUnderlyingType())) {
574    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
575      << New->getUnderlyingType() << OldType;
576    if (Old->getLocation().isValid())
577      Diag(Old->getLocation(), diag::note_previous_definition);
578    return New->setInvalidDecl();
579  }
580
581  if (objc_types || getLangOptions().Microsoft)
582    return;
583
584  // C++ [dcl.typedef]p2:
585  //   In a given non-class scope, a typedef specifier can be used to
586  //   redefine the name of any type declared in that scope to refer
587  //   to the type to which it already refers.
588  if (getLangOptions().CPlusPlus) {
589    if (!isa<CXXRecordDecl>(CurContext))
590      return;
591    Diag(New->getLocation(), diag::err_redefinition)
592      << New->getDeclName();
593    Diag(Old->getLocation(), diag::note_previous_definition);
594    return New->setInvalidDecl();
595  }
596
597  // If we have a redefinition of a typedef in C, emit a warning.  This warning
598  // is normally mapped to an error, but can be controlled with
599  // -Wtypedef-redefinition.  If either the original or the redefinition is
600  // in a system header, don't emit this for compatibility with GCC.
601  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
602      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
603       Context.getSourceManager().isInSystemHeader(New->getLocation())))
604    return;
605
606  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
607    << New->getDeclName();
608  Diag(Old->getLocation(), diag::note_previous_definition);
609  return;
610}
611
612/// DeclhasAttr - returns true if decl Declaration already has the target
613/// attribute.
614static bool
615DeclHasAttr(ASTContext &Context, const Decl *decl, const Attr *target) {
616  for (const Attr *attr = decl->getAttrs(Context); attr; attr = attr->getNext())
617    if (attr->getKind() == target->getKind())
618      return true;
619
620  return false;
621}
622
623/// MergeAttributes - append attributes from the Old decl to the New one.
624static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
625  for (const Attr *attr = Old->getAttrs(C); attr; attr = attr->getNext()) {
626    if (!DeclHasAttr(C, New, attr) && attr->isMerged()) {
627      Attr *NewAttr = attr->clone(C);
628      NewAttr->setInherited(true);
629      New->addAttr(C, NewAttr);
630    }
631  }
632}
633
634/// Used in MergeFunctionDecl to keep track of function parameters in
635/// C.
636struct GNUCompatibleParamWarning {
637  ParmVarDecl *OldParm;
638  ParmVarDecl *NewParm;
639  QualType PromotedType;
640};
641
642/// MergeFunctionDecl - We just parsed a function 'New' from
643/// declarator D which has the same name and scope as a previous
644/// declaration 'Old'.  Figure out how to resolve this situation,
645/// merging decls or emitting diagnostics as appropriate.
646///
647/// In C++, New and Old must be declarations that are not
648/// overloaded. Use IsOverload to determine whether New and Old are
649/// overloaded, and to select the Old declaration that New should be
650/// merged with.
651///
652/// Returns true if there was an error, false otherwise.
653bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
654  assert(!isa<OverloadedFunctionDecl>(OldD) &&
655         "Cannot merge with an overloaded function declaration");
656
657  // Verify the old decl was also a function.
658  FunctionDecl *Old = 0;
659  if (FunctionTemplateDecl *OldFunctionTemplate
660        = dyn_cast<FunctionTemplateDecl>(OldD))
661    Old = OldFunctionTemplate->getTemplatedDecl();
662  else
663    Old = dyn_cast<FunctionDecl>(OldD);
664  if (!Old) {
665    Diag(New->getLocation(), diag::err_redefinition_different_kind)
666      << New->getDeclName();
667    Diag(OldD->getLocation(), diag::note_previous_definition);
668    return true;
669  }
670
671  // Determine whether the previous declaration was a definition,
672  // implicit declaration, or a declaration.
673  diag::kind PrevDiag;
674  if (Old->isThisDeclarationADefinition())
675    PrevDiag = diag::note_previous_definition;
676  else if (Old->isImplicit())
677    PrevDiag = diag::note_previous_implicit_declaration;
678  else
679    PrevDiag = diag::note_previous_declaration;
680
681  QualType OldQType = Context.getCanonicalType(Old->getType());
682  QualType NewQType = Context.getCanonicalType(New->getType());
683
684  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
685      New->getStorageClass() == FunctionDecl::Static &&
686      Old->getStorageClass() != FunctionDecl::Static) {
687    Diag(New->getLocation(), diag::err_static_non_static)
688      << New;
689    Diag(Old->getLocation(), PrevDiag);
690    return true;
691  }
692
693  if (getLangOptions().CPlusPlus) {
694    // (C++98 13.1p2):
695    //   Certain function declarations cannot be overloaded:
696    //     -- Function declarations that differ only in the return type
697    //        cannot be overloaded.
698    QualType OldReturnType
699      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
700    QualType NewReturnType
701      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
702    if (OldReturnType != NewReturnType) {
703      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
704      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
705      return true;
706    }
707
708    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
709    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
710    if (OldMethod && NewMethod &&
711        OldMethod->getLexicalDeclContext() ==
712          NewMethod->getLexicalDeclContext()) {
713      //    -- Member function declarations with the same name and the
714      //       same parameter types cannot be overloaded if any of them
715      //       is a static member function declaration.
716      if (OldMethod->isStatic() || NewMethod->isStatic()) {
717        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
718        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
719        return true;
720      }
721
722      // C++ [class.mem]p1:
723      //   [...] A member shall not be declared twice in the
724      //   member-specification, except that a nested class or member
725      //   class template can be declared and then later defined.
726      unsigned NewDiag;
727      if (isa<CXXConstructorDecl>(OldMethod))
728        NewDiag = diag::err_constructor_redeclared;
729      else if (isa<CXXDestructorDecl>(NewMethod))
730        NewDiag = diag::err_destructor_redeclared;
731      else if (isa<CXXConversionDecl>(NewMethod))
732        NewDiag = diag::err_conv_function_redeclared;
733      else
734        NewDiag = diag::err_member_redeclared;
735
736      Diag(New->getLocation(), NewDiag);
737      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
738    }
739
740    // (C++98 8.3.5p3):
741    //   All declarations for a function shall agree exactly in both the
742    //   return type and the parameter-type-list.
743    if (OldQType == NewQType)
744      return MergeCompatibleFunctionDecls(New, Old);
745
746    // Fall through for conflicting redeclarations and redefinitions.
747  }
748
749  // C: Function types need to be compatible, not identical. This handles
750  // duplicate function decls like "void f(int); void f(enum X);" properly.
751  if (!getLangOptions().CPlusPlus &&
752      Context.typesAreCompatible(OldQType, NewQType)) {
753    const FunctionType *OldFuncType = OldQType->getAsFunctionType();
754    const FunctionType *NewFuncType = NewQType->getAsFunctionType();
755    const FunctionProtoType *OldProto = 0;
756    if (isa<FunctionNoProtoType>(NewFuncType) &&
757        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
758      // The old declaration provided a function prototype, but the
759      // new declaration does not. Merge in the prototype.
760      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
761      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
762                                                 OldProto->arg_type_end());
763      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
764                                         ParamTypes.data(), ParamTypes.size(),
765                                         OldProto->isVariadic(),
766                                         OldProto->getTypeQuals());
767      New->setType(NewQType);
768      New->setHasInheritedPrototype();
769
770      // Synthesize a parameter for each argument type.
771      llvm::SmallVector<ParmVarDecl*, 16> Params;
772      for (FunctionProtoType::arg_type_iterator
773             ParamType = OldProto->arg_type_begin(),
774             ParamEnd = OldProto->arg_type_end();
775           ParamType != ParamEnd; ++ParamType) {
776        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
777                                                 SourceLocation(), 0,
778                                                 *ParamType, VarDecl::None,
779                                                 0);
780        Param->setImplicit();
781        Params.push_back(Param);
782      }
783
784      New->setParams(Context, Params.data(), Params.size());
785    }
786
787    return MergeCompatibleFunctionDecls(New, Old);
788  }
789
790  // GNU C permits a K&R definition to follow a prototype declaration
791  // if the declared types of the parameters in the K&R definition
792  // match the types in the prototype declaration, even when the
793  // promoted types of the parameters from the K&R definition differ
794  // from the types in the prototype. GCC then keeps the types from
795  // the prototype.
796  //
797  // If a variadic prototype is followed by a non-variadic K&R definition,
798  // the K&R definition becomes variadic.  This is sort of an edge case, but
799  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
800  // C99 6.9.1p8.
801  if (!getLangOptions().CPlusPlus &&
802      Old->hasPrototype() && !New->hasPrototype() &&
803      New->getType()->getAsFunctionProtoType() &&
804      Old->getNumParams() == New->getNumParams()) {
805    llvm::SmallVector<QualType, 16> ArgTypes;
806    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
807    const FunctionProtoType *OldProto
808      = Old->getType()->getAsFunctionProtoType();
809    const FunctionProtoType *NewProto
810      = New->getType()->getAsFunctionProtoType();
811
812    // Determine whether this is the GNU C extension.
813    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
814                                               NewProto->getResultType());
815    bool LooseCompatible = !MergedReturn.isNull();
816    for (unsigned Idx = 0, End = Old->getNumParams();
817         LooseCompatible && Idx != End; ++Idx) {
818      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
819      ParmVarDecl *NewParm = New->getParamDecl(Idx);
820      if (Context.typesAreCompatible(OldParm->getType(),
821                                     NewProto->getArgType(Idx))) {
822        ArgTypes.push_back(NewParm->getType());
823      } else if (Context.typesAreCompatible(OldParm->getType(),
824                                            NewParm->getType())) {
825        GNUCompatibleParamWarning Warn
826          = { OldParm, NewParm, NewProto->getArgType(Idx) };
827        Warnings.push_back(Warn);
828        ArgTypes.push_back(NewParm->getType());
829      } else
830        LooseCompatible = false;
831    }
832
833    if (LooseCompatible) {
834      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
835        Diag(Warnings[Warn].NewParm->getLocation(),
836             diag::ext_param_promoted_not_compatible_with_prototype)
837          << Warnings[Warn].PromotedType
838          << Warnings[Warn].OldParm->getType();
839        Diag(Warnings[Warn].OldParm->getLocation(),
840             diag::note_previous_declaration);
841      }
842
843      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
844                                           ArgTypes.size(),
845                                           OldProto->isVariadic(), 0));
846      return MergeCompatibleFunctionDecls(New, Old);
847    }
848
849    // Fall through to diagnose conflicting types.
850  }
851
852  // A function that has already been declared has been redeclared or defined
853  // with a different type- show appropriate diagnostic
854  if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
855    // The user has declared a builtin function with an incompatible
856    // signature.
857    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
858      // The function the user is redeclaring is a library-defined
859      // function like 'malloc' or 'printf'. Warn about the
860      // redeclaration, then pretend that we don't know about this
861      // library built-in.
862      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
863      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
864        << Old << Old->getType();
865      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
866      Old->setInvalidDecl();
867      return false;
868    }
869
870    PrevDiag = diag::note_previous_builtin_declaration;
871  }
872
873  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
874  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
875  return true;
876}
877
878/// \brief Completes the merge of two function declarations that are
879/// known to be compatible.
880///
881/// This routine handles the merging of attributes and other
882/// properties of function declarations form the old declaration to
883/// the new declaration, once we know that New is in fact a
884/// redeclaration of Old.
885///
886/// \returns false
887bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
888  // Merge the attributes
889  MergeAttributes(New, Old, Context);
890
891  // Merge the storage class.
892  if (Old->getStorageClass() != FunctionDecl::Extern)
893    New->setStorageClass(Old->getStorageClass());
894
895  // Merge "inline"
896  if (Old->isInline())
897    New->setInline(true);
898
899  // If this function declaration by itself qualifies as a C99 inline
900  // definition (C99 6.7.4p6), but the previous definition did not,
901  // then the function is not a C99 inline definition.
902  if (New->isC99InlineDefinition() && !Old->isC99InlineDefinition())
903    New->setC99InlineDefinition(false);
904  else if (Old->isC99InlineDefinition() && !New->isC99InlineDefinition()) {
905    // Mark all preceding definitions as not being C99 inline definitions.
906    for (const FunctionDecl *Prev = Old; Prev;
907         Prev = Prev->getPreviousDeclaration())
908      const_cast<FunctionDecl *>(Prev)->setC99InlineDefinition(false);
909  }
910
911  // Merge "pure" flag.
912  if (Old->isPure())
913    New->setPure();
914
915  // Merge the "deleted" flag.
916  if (Old->isDeleted())
917    New->setDeleted();
918
919  if (getLangOptions().CPlusPlus)
920    return MergeCXXFunctionDecl(New, Old);
921
922  return false;
923}
924
925/// MergeVarDecl - We just parsed a variable 'New' which has the same name
926/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
927/// situation, merging decls or emitting diagnostics as appropriate.
928///
929/// Tentative definition rules (C99 6.9.2p2) are checked by
930/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
931/// definitions here, since the initializer hasn't been attached.
932///
933void Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
934  // If either decl is invalid, make sure the new one is marked invalid and
935  // don't do any other checking.
936  if (New->isInvalidDecl() || OldD->isInvalidDecl())
937    return New->setInvalidDecl();
938
939  // Verify the old decl was also a variable.
940  VarDecl *Old = dyn_cast<VarDecl>(OldD);
941  if (!Old) {
942    Diag(New->getLocation(), diag::err_redefinition_different_kind)
943      << New->getDeclName();
944    Diag(OldD->getLocation(), diag::note_previous_definition);
945    return New->setInvalidDecl();
946  }
947
948  MergeAttributes(New, Old, Context);
949
950  // Merge the types
951  QualType MergedT;
952  if (getLangOptions().CPlusPlus) {
953    if (Context.hasSameType(New->getType(), Old->getType()))
954      MergedT = New->getType();
955  } else {
956    MergedT = Context.mergeTypes(New->getType(), Old->getType());
957  }
958  if (MergedT.isNull()) {
959    Diag(New->getLocation(), diag::err_redefinition_different_type)
960      << New->getDeclName();
961    Diag(Old->getLocation(), diag::note_previous_definition);
962    return New->setInvalidDecl();
963  }
964  New->setType(MergedT);
965
966  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
967  if (New->getStorageClass() == VarDecl::Static &&
968      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
969    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
970    Diag(Old->getLocation(), diag::note_previous_definition);
971    return New->setInvalidDecl();
972  }
973  // C99 6.2.2p4:
974  //   For an identifier declared with the storage-class specifier
975  //   extern in a scope in which a prior declaration of that
976  //   identifier is visible,23) if the prior declaration specifies
977  //   internal or external linkage, the linkage of the identifier at
978  //   the later declaration is the same as the linkage specified at
979  //   the prior declaration. If no prior declaration is visible, or
980  //   if the prior declaration specifies no linkage, then the
981  //   identifier has external linkage.
982  if (New->hasExternalStorage() && Old->hasLinkage())
983    /* Okay */;
984  else if (New->getStorageClass() != VarDecl::Static &&
985           Old->getStorageClass() == VarDecl::Static) {
986    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
987    Diag(Old->getLocation(), diag::note_previous_definition);
988    return New->setInvalidDecl();
989  }
990
991  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
992
993  // FIXME: The test for external storage here seems wrong? We still
994  // need to check for mismatches.
995  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
996      // Don't complain about out-of-line definitions of static members.
997      !(Old->getLexicalDeclContext()->isRecord() &&
998        !New->getLexicalDeclContext()->isRecord())) {
999    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1000    Diag(Old->getLocation(), diag::note_previous_definition);
1001    return New->setInvalidDecl();
1002  }
1003
1004  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1005    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1006    Diag(Old->getLocation(), diag::note_previous_definition);
1007  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1008    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1009    Diag(Old->getLocation(), diag::note_previous_definition);
1010  }
1011
1012  // Keep a chain of previous declarations.
1013  New->setPreviousDeclaration(Old);
1014}
1015
1016/// CheckParmsForFunctionDef - Check that the parameters of the given
1017/// function are appropriate for the definition of a function. This
1018/// takes care of any checks that cannot be performed on the
1019/// declaration itself, e.g., that the types of each of the function
1020/// parameters are complete.
1021bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
1022  bool HasInvalidParm = false;
1023  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1024    ParmVarDecl *Param = FD->getParamDecl(p);
1025
1026    // C99 6.7.5.3p4: the parameters in a parameter type list in a
1027    // function declarator that is part of a function definition of
1028    // that function shall not have incomplete type.
1029    //
1030    // This is also C++ [dcl.fct]p6.
1031    if (!Param->isInvalidDecl() &&
1032        RequireCompleteType(Param->getLocation(), Param->getType(),
1033                               diag::err_typecheck_decl_incomplete_type)) {
1034      Param->setInvalidDecl();
1035      HasInvalidParm = true;
1036    }
1037
1038    // C99 6.9.1p5: If the declarator includes a parameter type list, the
1039    // declaration of each parameter shall include an identifier.
1040    if (Param->getIdentifier() == 0 &&
1041        !Param->isImplicit() &&
1042        !getLangOptions().CPlusPlus)
1043      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
1044  }
1045
1046  return HasInvalidParm;
1047}
1048
1049/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1050/// no declarator (e.g. "struct foo;") is parsed.
1051Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1052  // FIXME: Error on auto/register at file scope
1053  // FIXME: Error on inline/virtual/explicit
1054  // FIXME: Error on invalid restrict
1055  // FIXME: Warn on useless __thread
1056  // FIXME: Warn on useless const/volatile
1057  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1058  // FIXME: Warn on useless attributes
1059  TagDecl *Tag = 0;
1060  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1061      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1062      DS.getTypeSpecType() == DeclSpec::TST_union ||
1063      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1064    if (!DS.getTypeRep()) // We probably had an error
1065      return DeclPtrTy();
1066
1067    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
1068  }
1069
1070  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1071    if (!Record->getDeclName() && Record->isDefinition() &&
1072        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1073      if (getLangOptions().CPlusPlus ||
1074          Record->getDeclContext()->isRecord())
1075        return BuildAnonymousStructOrUnion(S, DS, Record);
1076
1077      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1078        << DS.getSourceRange();
1079    }
1080
1081    // Microsoft allows unnamed struct/union fields. Don't complain
1082    // about them.
1083    // FIXME: Should we support Microsoft's extensions in this area?
1084    if (Record->getDeclName() && getLangOptions().Microsoft)
1085      return DeclPtrTy::make(Tag);
1086  }
1087
1088  if (!DS.isMissingDeclaratorOk() &&
1089      DS.getTypeSpecType() != DeclSpec::TST_error) {
1090    // Warn about typedefs of enums without names, since this is an
1091    // extension in both Microsoft an GNU.
1092    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1093        Tag && isa<EnumDecl>(Tag)) {
1094      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1095        << DS.getSourceRange();
1096      return DeclPtrTy::make(Tag);
1097    }
1098
1099    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1100      << DS.getSourceRange();
1101    return DeclPtrTy();
1102  }
1103
1104  return DeclPtrTy::make(Tag);
1105}
1106
1107/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1108/// anonymous struct or union AnonRecord into the owning context Owner
1109/// and scope S. This routine will be invoked just after we realize
1110/// that an unnamed union or struct is actually an anonymous union or
1111/// struct, e.g.,
1112///
1113/// @code
1114/// union {
1115///   int i;
1116///   float f;
1117/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1118///    // f into the surrounding scope.x
1119/// @endcode
1120///
1121/// This routine is recursive, injecting the names of nested anonymous
1122/// structs/unions into the owning context and scope as well.
1123bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1124                                               RecordDecl *AnonRecord) {
1125  bool Invalid = false;
1126  for (RecordDecl::field_iterator F = AnonRecord->field_begin(Context),
1127                               FEnd = AnonRecord->field_end(Context);
1128       F != FEnd; ++F) {
1129    if ((*F)->getDeclName()) {
1130      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
1131                                                LookupOrdinaryName, true);
1132      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
1133        // C++ [class.union]p2:
1134        //   The names of the members of an anonymous union shall be
1135        //   distinct from the names of any other entity in the
1136        //   scope in which the anonymous union is declared.
1137        unsigned diagKind
1138          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
1139                                 : diag::err_anonymous_struct_member_redecl;
1140        Diag((*F)->getLocation(), diagKind)
1141          << (*F)->getDeclName();
1142        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1143        Invalid = true;
1144      } else {
1145        // C++ [class.union]p2:
1146        //   For the purpose of name lookup, after the anonymous union
1147        //   definition, the members of the anonymous union are
1148        //   considered to have been defined in the scope in which the
1149        //   anonymous union is declared.
1150        Owner->makeDeclVisibleInContext(Context, *F);
1151        S->AddDecl(DeclPtrTy::make(*F));
1152        IdResolver.AddDecl(*F);
1153      }
1154    } else if (const RecordType *InnerRecordType
1155                 = (*F)->getType()->getAsRecordType()) {
1156      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1157      if (InnerRecord->isAnonymousStructOrUnion())
1158        Invalid = Invalid ||
1159          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1160    }
1161  }
1162
1163  return Invalid;
1164}
1165
1166/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1167/// anonymous structure or union. Anonymous unions are a C++ feature
1168/// (C++ [class.union]) and a GNU C extension; anonymous structures
1169/// are a GNU C and GNU C++ extension.
1170Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1171                                                  RecordDecl *Record) {
1172  DeclContext *Owner = Record->getDeclContext();
1173
1174  // Diagnose whether this anonymous struct/union is an extension.
1175  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1176    Diag(Record->getLocation(), diag::ext_anonymous_union);
1177  else if (!Record->isUnion())
1178    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1179
1180  // C and C++ require different kinds of checks for anonymous
1181  // structs/unions.
1182  bool Invalid = false;
1183  if (getLangOptions().CPlusPlus) {
1184    const char* PrevSpec = 0;
1185    // C++ [class.union]p3:
1186    //   Anonymous unions declared in a named namespace or in the
1187    //   global namespace shall be declared static.
1188    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1189        (isa<TranslationUnitDecl>(Owner) ||
1190         (isa<NamespaceDecl>(Owner) &&
1191          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1192      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1193      Invalid = true;
1194
1195      // Recover by adding 'static'.
1196      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
1197    }
1198    // C++ [class.union]p3:
1199    //   A storage class is not allowed in a declaration of an
1200    //   anonymous union in a class scope.
1201    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1202             isa<RecordDecl>(Owner)) {
1203      Diag(DS.getStorageClassSpecLoc(),
1204           diag::err_anonymous_union_with_storage_spec);
1205      Invalid = true;
1206
1207      // Recover by removing the storage specifier.
1208      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1209                             PrevSpec);
1210    }
1211
1212    // C++ [class.union]p2:
1213    //   The member-specification of an anonymous union shall only
1214    //   define non-static data members. [Note: nested types and
1215    //   functions cannot be declared within an anonymous union. ]
1216    for (DeclContext::decl_iterator Mem = Record->decls_begin(Context),
1217                                 MemEnd = Record->decls_end(Context);
1218         Mem != MemEnd; ++Mem) {
1219      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1220        // C++ [class.union]p3:
1221        //   An anonymous union shall not have private or protected
1222        //   members (clause 11).
1223        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1224          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1225            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1226          Invalid = true;
1227        }
1228      } else if ((*Mem)->isImplicit()) {
1229        // Any implicit members are fine.
1230      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1231        // This is a type that showed up in an
1232        // elaborated-type-specifier inside the anonymous struct or
1233        // union, but which actually declares a type outside of the
1234        // anonymous struct or union. It's okay.
1235      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1236        if (!MemRecord->isAnonymousStructOrUnion() &&
1237            MemRecord->getDeclName()) {
1238          // This is a nested type declaration.
1239          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1240            << (int)Record->isUnion();
1241          Invalid = true;
1242        }
1243      } else {
1244        // We have something that isn't a non-static data
1245        // member. Complain about it.
1246        unsigned DK = diag::err_anonymous_record_bad_member;
1247        if (isa<TypeDecl>(*Mem))
1248          DK = diag::err_anonymous_record_with_type;
1249        else if (isa<FunctionDecl>(*Mem))
1250          DK = diag::err_anonymous_record_with_function;
1251        else if (isa<VarDecl>(*Mem))
1252          DK = diag::err_anonymous_record_with_static;
1253        Diag((*Mem)->getLocation(), DK)
1254            << (int)Record->isUnion();
1255          Invalid = true;
1256      }
1257    }
1258  }
1259
1260  if (!Record->isUnion() && !Owner->isRecord()) {
1261    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1262      << (int)getLangOptions().CPlusPlus;
1263    Invalid = true;
1264  }
1265
1266  // Create a declaration for this anonymous struct/union.
1267  NamedDecl *Anon = 0;
1268  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1269    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1270                             /*IdentifierInfo=*/0,
1271                             Context.getTypeDeclType(Record),
1272                             /*BitWidth=*/0, /*Mutable=*/false);
1273    Anon->setAccess(AS_public);
1274    if (getLangOptions().CPlusPlus)
1275      FieldCollector->Add(cast<FieldDecl>(Anon));
1276  } else {
1277    VarDecl::StorageClass SC;
1278    switch (DS.getStorageClassSpec()) {
1279    default: assert(0 && "Unknown storage class!");
1280    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1281    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1282    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1283    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1284    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1285    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1286    case DeclSpec::SCS_mutable:
1287      // mutable can only appear on non-static class members, so it's always
1288      // an error here
1289      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1290      Invalid = true;
1291      SC = VarDecl::None;
1292      break;
1293    }
1294
1295    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1296                           /*IdentifierInfo=*/0,
1297                           Context.getTypeDeclType(Record),
1298                           SC, DS.getSourceRange().getBegin());
1299  }
1300  Anon->setImplicit();
1301
1302  // Add the anonymous struct/union object to the current
1303  // context. We'll be referencing this object when we refer to one of
1304  // its members.
1305  Owner->addDecl(Context, Anon);
1306
1307  // Inject the members of the anonymous struct/union into the owning
1308  // context and into the identifier resolver chain for name lookup
1309  // purposes.
1310  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1311    Invalid = true;
1312
1313  // Mark this as an anonymous struct/union type. Note that we do not
1314  // do this until after we have already checked and injected the
1315  // members of this anonymous struct/union type, because otherwise
1316  // the members could be injected twice: once by DeclContext when it
1317  // builds its lookup table, and once by
1318  // InjectAnonymousStructOrUnionMembers.
1319  Record->setAnonymousStructOrUnion(true);
1320
1321  if (Invalid)
1322    Anon->setInvalidDecl();
1323
1324  return DeclPtrTy::make(Anon);
1325}
1326
1327
1328/// GetNameForDeclarator - Determine the full declaration name for the
1329/// given Declarator.
1330DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1331  switch (D.getKind()) {
1332  case Declarator::DK_Abstract:
1333    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1334    return DeclarationName();
1335
1336  case Declarator::DK_Normal:
1337    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1338    return DeclarationName(D.getIdentifier());
1339
1340  case Declarator::DK_Constructor: {
1341    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1342    Ty = Context.getCanonicalType(Ty);
1343    return Context.DeclarationNames.getCXXConstructorName(Ty);
1344  }
1345
1346  case Declarator::DK_Destructor: {
1347    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1348    Ty = Context.getCanonicalType(Ty);
1349    return Context.DeclarationNames.getCXXDestructorName(Ty);
1350  }
1351
1352  case Declarator::DK_Conversion: {
1353    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1354    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1355    Ty = Context.getCanonicalType(Ty);
1356    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1357  }
1358
1359  case Declarator::DK_Operator:
1360    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1361    return Context.DeclarationNames.getCXXOperatorName(
1362                                                D.getOverloadedOperator());
1363  }
1364
1365  assert(false && "Unknown name kind");
1366  return DeclarationName();
1367}
1368
1369/// isNearlyMatchingFunction - Determine whether the C++ functions
1370/// Declaration and Definition are "nearly" matching. This heuristic
1371/// is used to improve diagnostics in the case where an out-of-line
1372/// function definition doesn't match any declaration within
1373/// the class or namespace.
1374static bool isNearlyMatchingFunction(ASTContext &Context,
1375                                     FunctionDecl *Declaration,
1376                                     FunctionDecl *Definition) {
1377  if (Declaration->param_size() != Definition->param_size())
1378    return false;
1379  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1380    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1381    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1382
1383    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1384    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1385    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1386      return false;
1387  }
1388
1389  return true;
1390}
1391
1392Sema::DeclPtrTy
1393Sema::HandleDeclarator(Scope *S, Declarator &D,
1394                       MultiTemplateParamsArg TemplateParamLists,
1395                       bool IsFunctionDefinition) {
1396  DeclarationName Name = GetNameForDeclarator(D);
1397
1398  // All of these full declarators require an identifier.  If it doesn't have
1399  // one, the ParsedFreeStandingDeclSpec action should be used.
1400  if (!Name) {
1401    if (!D.isInvalidType())  // Reject this if we think it is valid.
1402      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1403           diag::err_declarator_need_ident)
1404        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1405    return DeclPtrTy();
1406  }
1407
1408  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1409  // we find one that is.
1410  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1411         (S->getFlags() & Scope::TemplateParamScope) != 0)
1412    S = S->getParent();
1413
1414  DeclContext *DC;
1415  NamedDecl *PrevDecl;
1416  NamedDecl *New;
1417
1418  QualType R = GetTypeForDeclarator(D, S);
1419
1420  // See if this is a redefinition of a variable in the same scope.
1421  if (D.getCXXScopeSpec().isInvalid()) {
1422    DC = CurContext;
1423    PrevDecl = 0;
1424    D.setInvalidType();
1425  } else if (!D.getCXXScopeSpec().isSet()) {
1426    LookupNameKind NameKind = LookupOrdinaryName;
1427
1428    // If the declaration we're planning to build will be a function
1429    // or object with linkage, then look for another declaration with
1430    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1431    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1432      /* Do nothing*/;
1433    else if (R->isFunctionType()) {
1434      if (CurContext->isFunctionOrMethod())
1435        NameKind = LookupRedeclarationWithLinkage;
1436    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1437      NameKind = LookupRedeclarationWithLinkage;
1438
1439    DC = CurContext;
1440    PrevDecl = LookupName(S, Name, NameKind, true,
1441                          D.getDeclSpec().getStorageClassSpec() !=
1442                            DeclSpec::SCS_static,
1443                          D.getIdentifierLoc());
1444  } else { // Something like "int foo::x;"
1445    DC = computeDeclContext(D.getCXXScopeSpec());
1446    // FIXME: RequireCompleteDeclContext(D.getCXXScopeSpec()); ?
1447    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1448
1449    // C++ 7.3.1.2p2:
1450    // Members (including explicit specializations of templates) of a named
1451    // namespace can also be defined outside that namespace by explicit
1452    // qualification of the name being defined, provided that the entity being
1453    // defined was already declared in the namespace and the definition appears
1454    // after the point of declaration in a namespace that encloses the
1455    // declarations namespace.
1456    //
1457    // Note that we only check the context at this point. We don't yet
1458    // have enough information to make sure that PrevDecl is actually
1459    // the declaration we want to match. For example, given:
1460    //
1461    //   class X {
1462    //     void f();
1463    //     void f(float);
1464    //   };
1465    //
1466    //   void X::f(int) { } // ill-formed
1467    //
1468    // In this case, PrevDecl will point to the overload set
1469    // containing the two f's declared in X, but neither of them
1470    // matches.
1471
1472    // First check whether we named the global scope.
1473    if (isa<TranslationUnitDecl>(DC)) {
1474      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1475        << Name << D.getCXXScopeSpec().getRange();
1476    } else if (!CurContext->Encloses(DC)) {
1477      // The qualifying scope doesn't enclose the original declaration.
1478      // Emit diagnostic based on current scope.
1479      SourceLocation L = D.getIdentifierLoc();
1480      SourceRange R = D.getCXXScopeSpec().getRange();
1481      if (isa<FunctionDecl>(CurContext))
1482        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1483      else
1484        Diag(L, diag::err_invalid_declarator_scope)
1485          << Name << cast<NamedDecl>(DC) << R;
1486      D.setInvalidType();
1487    }
1488  }
1489
1490  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1491    // Maybe we will complain about the shadowed template parameter.
1492    if (!D.isInvalidType())
1493      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl))
1494        D.setInvalidType();
1495
1496    // Just pretend that we didn't see the previous declaration.
1497    PrevDecl = 0;
1498  }
1499
1500  // In C++, the previous declaration we find might be a tag type
1501  // (class or enum). In this case, the new declaration will hide the
1502  // tag type. Note that this does does not apply if we're declaring a
1503  // typedef (C++ [dcl.typedef]p4).
1504  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1505      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1506    PrevDecl = 0;
1507
1508  bool Redeclaration = false;
1509  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1510    if (TemplateParamLists.size()) {
1511      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
1512      return DeclPtrTy();
1513    }
1514
1515    New = ActOnTypedefDeclarator(S, D, DC, R, PrevDecl, Redeclaration);
1516  } else if (R->isFunctionType()) {
1517    New = ActOnFunctionDeclarator(S, D, DC, R, PrevDecl,
1518                                  move(TemplateParamLists),
1519                                  IsFunctionDefinition, Redeclaration);
1520  } else {
1521    New = ActOnVariableDeclarator(S, D, DC, R, PrevDecl, Redeclaration);
1522  }
1523
1524  if (New == 0)
1525    return DeclPtrTy();
1526
1527  // If this has an identifier and is not an invalid redeclaration,
1528  // add it to the scope stack.
1529  if (Name && !(Redeclaration && New->isInvalidDecl()))
1530    PushOnScopeChains(New, S);
1531
1532  return DeclPtrTy::make(New);
1533}
1534
1535/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1536/// types into constant array types in certain situations which would otherwise
1537/// be errors (for GCC compatibility).
1538static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1539                                                    ASTContext &Context,
1540                                                    bool &SizeIsNegative) {
1541  // This method tries to turn a variable array into a constant
1542  // array even when the size isn't an ICE.  This is necessary
1543  // for compatibility with code that depends on gcc's buggy
1544  // constant expression folding, like struct {char x[(int)(char*)2];}
1545  SizeIsNegative = false;
1546
1547  if (const PointerType* PTy = dyn_cast<PointerType>(T)) {
1548    QualType Pointee = PTy->getPointeeType();
1549    QualType FixedType =
1550        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1551    if (FixedType.isNull()) return FixedType;
1552    FixedType = Context.getPointerType(FixedType);
1553    FixedType.setCVRQualifiers(T.getCVRQualifiers());
1554    return FixedType;
1555  }
1556
1557  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1558  if (!VLATy)
1559    return QualType();
1560  // FIXME: We should probably handle this case
1561  if (VLATy->getElementType()->isVariablyModifiedType())
1562    return QualType();
1563
1564  Expr::EvalResult EvalResult;
1565  if (!VLATy->getSizeExpr() ||
1566      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1567      !EvalResult.Val.isInt())
1568    return QualType();
1569
1570  llvm::APSInt &Res = EvalResult.Val.getInt();
1571  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
1572    return Context.getConstantArrayType(VLATy->getElementType(),
1573                                        Res, ArrayType::Normal, 0);
1574
1575  SizeIsNegative = true;
1576  return QualType();
1577}
1578
1579/// \brief Register the given locally-scoped external C declaration so
1580/// that it can be found later for redeclarations
1581void
1582Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1583                                       Scope *S) {
1584  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1585         "Decl is not a locally-scoped decl!");
1586  // Note that we have a locally-scoped external with this name.
1587  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1588
1589  if (!PrevDecl)
1590    return;
1591
1592  // If there was a previous declaration of this variable, it may be
1593  // in our identifier chain. Update the identifier chain with the new
1594  // declaration.
1595  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
1596    // The previous declaration was found on the identifer resolver
1597    // chain, so remove it from its scope.
1598    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
1599      S = S->getParent();
1600
1601    if (S)
1602      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
1603  }
1604}
1605
1606/// \brief Diagnose function specifiers on a declaration of an identifier that
1607/// does not identify a function.
1608void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
1609  // FIXME: We should probably indicate the identifier in question to avoid
1610  // confusion for constructs like "inline int a(), b;"
1611  if (D.getDeclSpec().isInlineSpecified())
1612    Diag(D.getDeclSpec().getInlineSpecLoc(),
1613         diag::err_inline_non_function);
1614
1615  if (D.getDeclSpec().isVirtualSpecified())
1616    Diag(D.getDeclSpec().getVirtualSpecLoc(),
1617         diag::err_virtual_non_function);
1618
1619  if (D.getDeclSpec().isExplicitSpecified())
1620    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1621         diag::err_explicit_non_function);
1622}
1623
1624NamedDecl*
1625Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1626                             QualType R, Decl* PrevDecl, bool &Redeclaration) {
1627  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1628  if (D.getCXXScopeSpec().isSet()) {
1629    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1630      << D.getCXXScopeSpec().getRange();
1631    D.setInvalidType();
1632    // Pretend we didn't see the scope specifier.
1633    DC = 0;
1634  }
1635
1636  if (getLangOptions().CPlusPlus) {
1637    // Check that there are no default arguments (C++ only).
1638    CheckExtraCXXDefaultArguments(D);
1639  }
1640
1641  DiagnoseFunctionSpecifiers(D);
1642
1643  if (D.getDeclSpec().isThreadSpecified())
1644    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
1645
1646  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R);
1647  if (!NewTD) return 0;
1648
1649  if (D.isInvalidType())
1650    NewTD->setInvalidDecl();
1651
1652  // Handle attributes prior to checking for duplicates in MergeVarDecl
1653  ProcessDeclAttributes(S, NewTD, D);
1654  // Merge the decl with the existing one if appropriate. If the decl is
1655  // in an outer scope, it isn't the same thing.
1656  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1657    Redeclaration = true;
1658    MergeTypeDefDecl(NewTD, PrevDecl);
1659  }
1660
1661  // C99 6.7.7p2: If a typedef name specifies a variably modified type
1662  // then it shall have block scope.
1663  QualType T = NewTD->getUnderlyingType();
1664  if (T->isVariablyModifiedType()) {
1665    CurFunctionNeedsScopeChecking = true;
1666
1667    if (S->getFnParent() == 0) {
1668      bool SizeIsNegative;
1669      QualType FixedTy =
1670          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1671      if (!FixedTy.isNull()) {
1672        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
1673        NewTD->setUnderlyingType(FixedTy);
1674      } else {
1675        if (SizeIsNegative)
1676          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
1677        else if (T->isVariableArrayType())
1678          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1679        else
1680          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1681        NewTD->setInvalidDecl();
1682      }
1683    }
1684  }
1685  return NewTD;
1686}
1687
1688/// \brief Determines whether the given declaration is an out-of-scope
1689/// previous declaration.
1690///
1691/// This routine should be invoked when name lookup has found a
1692/// previous declaration (PrevDecl) that is not in the scope where a
1693/// new declaration by the same name is being introduced. If the new
1694/// declaration occurs in a local scope, previous declarations with
1695/// linkage may still be considered previous declarations (C99
1696/// 6.2.2p4-5, C++ [basic.link]p6).
1697///
1698/// \param PrevDecl the previous declaration found by name
1699/// lookup
1700///
1701/// \param DC the context in which the new declaration is being
1702/// declared.
1703///
1704/// \returns true if PrevDecl is an out-of-scope previous declaration
1705/// for a new delcaration with the same name.
1706static bool
1707isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
1708                                ASTContext &Context) {
1709  if (!PrevDecl)
1710    return 0;
1711
1712  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
1713  // case we need to check each of the overloaded functions.
1714  if (!PrevDecl->hasLinkage())
1715    return false;
1716
1717  if (Context.getLangOptions().CPlusPlus) {
1718    // C++ [basic.link]p6:
1719    //   If there is a visible declaration of an entity with linkage
1720    //   having the same name and type, ignoring entities declared
1721    //   outside the innermost enclosing namespace scope, the block
1722    //   scope declaration declares that same entity and receives the
1723    //   linkage of the previous declaration.
1724    DeclContext *OuterContext = DC->getLookupContext();
1725    if (!OuterContext->isFunctionOrMethod())
1726      // This rule only applies to block-scope declarations.
1727      return false;
1728    else {
1729      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
1730      if (PrevOuterContext->isRecord())
1731        // We found a member function: ignore it.
1732        return false;
1733      else {
1734        // Find the innermost enclosing namespace for the new and
1735        // previous declarations.
1736        while (!OuterContext->isFileContext())
1737          OuterContext = OuterContext->getParent();
1738        while (!PrevOuterContext->isFileContext())
1739          PrevOuterContext = PrevOuterContext->getParent();
1740
1741        // The previous declaration is in a different namespace, so it
1742        // isn't the same function.
1743        if (OuterContext->getPrimaryContext() !=
1744            PrevOuterContext->getPrimaryContext())
1745          return false;
1746      }
1747    }
1748  }
1749
1750  return true;
1751}
1752
1753NamedDecl*
1754Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1755                              QualType R,NamedDecl* PrevDecl,
1756                              bool &Redeclaration) {
1757  DeclarationName Name = GetNameForDeclarator(D);
1758
1759  // Check that there are no default arguments (C++ only).
1760  if (getLangOptions().CPlusPlus)
1761    CheckExtraCXXDefaultArguments(D);
1762
1763  VarDecl *NewVD;
1764  VarDecl::StorageClass SC;
1765  switch (D.getDeclSpec().getStorageClassSpec()) {
1766  default: assert(0 && "Unknown storage class!");
1767  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1768  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1769  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1770  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1771  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1772  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1773  case DeclSpec::SCS_mutable:
1774    // mutable can only appear on non-static class members, so it's always
1775    // an error here
1776    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1777    D.setInvalidType();
1778    SC = VarDecl::None;
1779    break;
1780  }
1781
1782  IdentifierInfo *II = Name.getAsIdentifierInfo();
1783  if (!II) {
1784    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1785      << Name.getAsString();
1786    return 0;
1787  }
1788
1789  DiagnoseFunctionSpecifiers(D);
1790
1791  if (!DC->isRecord() && S->getFnParent() == 0) {
1792    // C99 6.9p2: The storage-class specifiers auto and register shall not
1793    // appear in the declaration specifiers in an external declaration.
1794    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1795
1796      // If this is a register variable with an asm label specified, then this
1797      // is a GNU extension.
1798      if (SC == VarDecl::Register && D.getAsmLabel())
1799        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
1800      else
1801        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1802      D.setInvalidType();
1803    }
1804  }
1805  if (DC->isRecord() && !CurContext->isRecord()) {
1806    // This is an out-of-line definition of a static data member.
1807    if (SC == VarDecl::Static) {
1808      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1809           diag::err_static_out_of_line)
1810        << CodeModificationHint::CreateRemoval(
1811                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
1812    } else if (SC == VarDecl::None)
1813      SC = VarDecl::Static;
1814  }
1815  if (SC == VarDecl::Static) {
1816    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
1817      if (RD->isLocalClass())
1818        Diag(D.getIdentifierLoc(),
1819             diag::err_static_data_member_not_allowed_in_local_class)
1820          << Name << RD->getDeclName();
1821    }
1822  }
1823
1824
1825  // The variable can not
1826  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1827                          II, R, SC,
1828                          // FIXME: Move to DeclGroup...
1829                          D.getDeclSpec().getSourceRange().getBegin());
1830
1831  if (D.isInvalidType())
1832    NewVD->setInvalidDecl();
1833
1834  if (D.getDeclSpec().isThreadSpecified()) {
1835    if (NewVD->hasLocalStorage())
1836      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
1837    else if (!Context.Target.isTLSSupported())
1838      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
1839    else
1840      NewVD->setThreadSpecified(true);
1841  }
1842
1843  // Set the lexical context. If the declarator has a C++ scope specifier, the
1844  // lexical context will be different from the semantic context.
1845  NewVD->setLexicalDeclContext(CurContext);
1846
1847  // Handle attributes prior to checking for duplicates in MergeVarDecl
1848  ProcessDeclAttributes(S, NewVD, D);
1849
1850  // Handle GNU asm-label extension (encoded as an attribute).
1851  if (Expr *E = (Expr*) D.getAsmLabel()) {
1852    // The parser guarantees this is a string.
1853    StringLiteral *SE = cast<StringLiteral>(E);
1854    NewVD->addAttr(Context,
1855                   ::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
1856                                                        SE->getByteLength())));
1857  }
1858
1859  // If name lookup finds a previous declaration that is not in the
1860  // same scope as the new declaration, this may still be an
1861  // acceptable redeclaration.
1862  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
1863      !(NewVD->hasLinkage() &&
1864        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
1865    PrevDecl = 0;
1866
1867  // Merge the decl with the existing one if appropriate.
1868  if (PrevDecl) {
1869    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
1870      // The user tried to define a non-static data member
1871      // out-of-line (C++ [dcl.meaning]p1).
1872      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
1873        << D.getCXXScopeSpec().getRange();
1874      PrevDecl = 0;
1875      NewVD->setInvalidDecl();
1876    }
1877  } else if (D.getCXXScopeSpec().isSet()) {
1878    // No previous declaration in the qualifying scope.
1879    Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
1880      << Name << D.getCXXScopeSpec().getRange();
1881    NewVD->setInvalidDecl();
1882  }
1883
1884  CheckVariableDeclaration(NewVD, PrevDecl, Redeclaration);
1885
1886  // If this is a locally-scoped extern C variable, update the map of
1887  // such variables.
1888  if (CurContext->isFunctionOrMethod() && NewVD->isExternC(Context) &&
1889      !NewVD->isInvalidDecl())
1890    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
1891
1892  return NewVD;
1893}
1894
1895/// \brief Perform semantic checking on a newly-created variable
1896/// declaration.
1897///
1898/// This routine performs all of the type-checking required for a
1899/// variable declaration once it has been built. It is used both to
1900/// check variables after they have been parsed and their declarators
1901/// have been translated into a declaration, and to check variables
1902/// that have been instantiated from a template.
1903///
1904/// Sets NewVD->isInvalidDecl() if an error was encountered.
1905void Sema::CheckVariableDeclaration(VarDecl *NewVD, NamedDecl *PrevDecl,
1906                                    bool &Redeclaration) {
1907  // If the decl is already known invalid, don't check it.
1908  if (NewVD->isInvalidDecl())
1909    return;
1910
1911  QualType T = NewVD->getType();
1912
1913  if (T->isObjCInterfaceType()) {
1914    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
1915    return NewVD->setInvalidDecl();
1916  }
1917
1918  // The variable can not have an abstract class type.
1919  if (RequireNonAbstractType(NewVD->getLocation(), T,
1920                             diag::err_abstract_type_in_decl,
1921                             AbstractVariableType))
1922    return NewVD->setInvalidDecl();
1923
1924  // Emit an error if an address space was applied to decl with local storage.
1925  // This includes arrays of objects with address space qualifiers, but not
1926  // automatic variables that point to other address spaces.
1927  // ISO/IEC TR 18037 S5.1.2
1928  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
1929    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
1930    return NewVD->setInvalidDecl();
1931  }
1932
1933  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
1934      && !NewVD->hasAttr<BlocksAttr>(Context))
1935    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
1936
1937  bool isVM = T->isVariablyModifiedType();
1938  if (isVM || NewVD->hasAttr<CleanupAttr>(Context))
1939    CurFunctionNeedsScopeChecking = true;
1940
1941  if ((isVM && NewVD->hasLinkage()) ||
1942      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
1943    bool SizeIsNegative;
1944    QualType FixedTy =
1945        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1946
1947    if (FixedTy.isNull() && T->isVariableArrayType()) {
1948      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
1949      // FIXME: This won't give the correct result for
1950      // int a[10][n];
1951      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
1952
1953      if (NewVD->isFileVarDecl())
1954        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
1955        << SizeRange;
1956      else if (NewVD->getStorageClass() == VarDecl::Static)
1957        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
1958        << SizeRange;
1959      else
1960        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
1961        << SizeRange;
1962      return NewVD->setInvalidDecl();
1963    }
1964
1965    if (FixedTy.isNull()) {
1966      if (NewVD->isFileVarDecl())
1967        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
1968      else
1969        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
1970      return NewVD->setInvalidDecl();
1971    }
1972
1973    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
1974    NewVD->setType(FixedTy);
1975  }
1976
1977  if (!PrevDecl && NewVD->isExternC(Context)) {
1978    // Since we did not find anything by this name and we're declaring
1979    // an extern "C" variable, look for a non-visible extern "C"
1980    // declaration with the same name.
1981    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
1982      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
1983    if (Pos != LocallyScopedExternalDecls.end())
1984      PrevDecl = Pos->second;
1985  }
1986
1987  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
1988    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
1989      << T;
1990    return NewVD->setInvalidDecl();
1991  }
1992
1993  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>(Context)) {
1994    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
1995    return NewVD->setInvalidDecl();
1996  }
1997
1998  if (isVM && NewVD->hasAttr<BlocksAttr>(Context)) {
1999    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2000    return NewVD->setInvalidDecl();
2001  }
2002
2003  if (PrevDecl) {
2004    Redeclaration = true;
2005    MergeVarDecl(NewVD, PrevDecl);
2006  }
2007}
2008
2009NamedDecl*
2010Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2011                              QualType R, NamedDecl* PrevDecl,
2012                              MultiTemplateParamsArg TemplateParamLists,
2013                              bool IsFunctionDefinition, bool &Redeclaration) {
2014  assert(R.getTypePtr()->isFunctionType());
2015
2016  DeclarationName Name = GetNameForDeclarator(D);
2017  FunctionDecl::StorageClass SC = FunctionDecl::None;
2018  switch (D.getDeclSpec().getStorageClassSpec()) {
2019  default: assert(0 && "Unknown storage class!");
2020  case DeclSpec::SCS_auto:
2021  case DeclSpec::SCS_register:
2022  case DeclSpec::SCS_mutable:
2023    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2024         diag::err_typecheck_sclass_func);
2025    D.setInvalidType();
2026    break;
2027  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2028  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2029  case DeclSpec::SCS_static: {
2030    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2031      // C99 6.7.1p5:
2032      //   The declaration of an identifier for a function that has
2033      //   block scope shall have no explicit storage-class specifier
2034      //   other than extern
2035      // See also (C++ [dcl.stc]p4).
2036      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2037           diag::err_static_block_func);
2038      SC = FunctionDecl::None;
2039    } else
2040      SC = FunctionDecl::Static;
2041    break;
2042  }
2043  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2044  }
2045
2046  if (D.getDeclSpec().isThreadSpecified())
2047    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2048
2049  bool isInline = D.getDeclSpec().isInlineSpecified();
2050  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2051  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2052
2053  // Check that the return type is not an abstract class type.
2054  // For record types, this is done by the AbstractClassUsageDiagnoser once
2055  // the class has been completely parsed.
2056  if (!DC->isRecord() &&
2057      RequireNonAbstractType(D.getIdentifierLoc(),
2058                             R->getAsFunctionType()->getResultType(),
2059                             diag::err_abstract_type_in_decl,
2060                             AbstractReturnType))
2061    D.setInvalidType();
2062
2063  // Do not allow returning a objc interface by-value.
2064  if (R->getAsFunctionType()->getResultType()->isObjCInterfaceType()) {
2065    Diag(D.getIdentifierLoc(),
2066         diag::err_object_cannot_be_passed_returned_by_value) << 0
2067      << R->getAsFunctionType()->getResultType();
2068    D.setInvalidType();
2069  }
2070
2071  // Check that we can declare a template here.
2072  if (TemplateParamLists.size() &&
2073      CheckTemplateDeclScope(S, TemplateParamLists))
2074    return 0;
2075
2076  bool isVirtualOkay = false;
2077  FunctionDecl *NewFD;
2078  if (D.getKind() == Declarator::DK_Constructor) {
2079    // This is a C++ constructor declaration.
2080    assert(DC->isRecord() &&
2081           "Constructors can only be declared in a member context");
2082
2083    R = CheckConstructorDeclarator(D, R, SC);
2084
2085    // Create the new declaration
2086    NewFD = CXXConstructorDecl::Create(Context,
2087                                       cast<CXXRecordDecl>(DC),
2088                                       D.getIdentifierLoc(), Name, R,
2089                                       isExplicit, isInline,
2090                                       /*isImplicitlyDeclared=*/false);
2091  } else if (D.getKind() == Declarator::DK_Destructor) {
2092    // This is a C++ destructor declaration.
2093    if (DC->isRecord()) {
2094      R = CheckDestructorDeclarator(D, SC);
2095
2096      NewFD = CXXDestructorDecl::Create(Context,
2097                                        cast<CXXRecordDecl>(DC),
2098                                        D.getIdentifierLoc(), Name, R,
2099                                        isInline,
2100                                        /*isImplicitlyDeclared=*/false);
2101
2102      isVirtualOkay = true;
2103    } else {
2104      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2105
2106      // Create a FunctionDecl to satisfy the function definition parsing
2107      // code path.
2108      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2109                                   Name, R, SC, isInline,
2110                                   /*hasPrototype=*/true,
2111                                   // FIXME: Move to DeclGroup...
2112                                   D.getDeclSpec().getSourceRange().getBegin());
2113      D.setInvalidType();
2114    }
2115  } else if (D.getKind() == Declarator::DK_Conversion) {
2116    if (!DC->isRecord()) {
2117      Diag(D.getIdentifierLoc(),
2118           diag::err_conv_function_not_member);
2119      return 0;
2120    }
2121
2122    CheckConversionDeclarator(D, R, SC);
2123    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2124                                      D.getIdentifierLoc(), Name, R,
2125                                      isInline, isExplicit);
2126
2127    isVirtualOkay = true;
2128  } else if (DC->isRecord()) {
2129    // If the of the function is the same as the name of the record, then this
2130    // must be an invalid constructor that has a return type.
2131    // (The parser checks for a return type and makes the declarator a
2132    // constructor if it has no return type).
2133    // must have an invalid constructor that has a return type
2134    if (Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2135      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2136        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2137        << SourceRange(D.getIdentifierLoc());
2138      return 0;
2139    }
2140
2141    // This is a C++ method declaration.
2142    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2143                                  D.getIdentifierLoc(), Name, R,
2144                                  (SC == FunctionDecl::Static), isInline);
2145
2146    isVirtualOkay = (SC != FunctionDecl::Static);
2147  } else {
2148    // Determine whether the function was written with a
2149    // prototype. This true when:
2150    //   - we're in C++ (where every function has a prototype),
2151    //   - there is a prototype in the declarator, or
2152    //   - the type R of the function is some kind of typedef or other reference
2153    //     to a type name (which eventually refers to a function type).
2154    bool HasPrototype =
2155       getLangOptions().CPlusPlus ||
2156       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2157       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2158
2159    NewFD = FunctionDecl::Create(Context, DC,
2160                                 D.getIdentifierLoc(),
2161                                 Name, R, SC, isInline, HasPrototype,
2162                                 // FIXME: Move to DeclGroup...
2163                                 D.getDeclSpec().getSourceRange().getBegin());
2164  }
2165
2166  if (D.isInvalidType())
2167    NewFD->setInvalidDecl();
2168
2169  // Set the lexical context. If the declarator has a C++
2170  // scope specifier, the lexical context will be different
2171  // from the semantic context.
2172  NewFD->setLexicalDeclContext(CurContext);
2173
2174  // If there is a template parameter list, then we are dealing with a
2175  // template declaration or specialization.
2176  FunctionTemplateDecl *FunctionTemplate = 0;
2177  if (TemplateParamLists.size()) {
2178    // FIXME: member templates!
2179    TemplateParameterList *TemplateParams
2180      = static_cast<TemplateParameterList *>(*TemplateParamLists.release());
2181
2182    if (TemplateParams->size() > 0) {
2183      // This is a function template
2184      FunctionTemplate = FunctionTemplateDecl::Create(Context, CurContext,
2185                                                      NewFD->getLocation(),
2186                                                      Name, TemplateParams,
2187                                                      NewFD);
2188      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
2189    } else {
2190      // FIXME: Handle function template specializations
2191    }
2192  }
2193
2194  // C++ [dcl.fct.spec]p5:
2195  //   The virtual specifier shall only be used in declarations of
2196  //   nonstatic class member functions that appear within a
2197  //   member-specification of a class declaration; see 10.3.
2198  //
2199  if (isVirtual && !NewFD->isInvalidDecl()) {
2200    if (!isVirtualOkay) {
2201       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2202           diag::err_virtual_non_function);
2203    } else if (!CurContext->isRecord()) {
2204      // 'virtual' was specified outside of the class.
2205      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2206        << CodeModificationHint::CreateRemoval(
2207                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
2208    } else {
2209      // Okay: Add virtual to the method.
2210      cast<CXXMethodDecl>(NewFD)->setVirtualAsWritten(true);
2211      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2212      CurClass->setAggregate(false);
2213      CurClass->setPOD(false);
2214      CurClass->setPolymorphic(true);
2215      CurClass->setHasTrivialConstructor(false);
2216    }
2217  }
2218
2219  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD)) {
2220    // Look for virtual methods in base classes that this method might override.
2221
2222    BasePaths Paths;
2223    if (LookupInBases(cast<CXXRecordDecl>(DC),
2224                      MemberLookupCriteria(NewMD), Paths)) {
2225      for (BasePaths::decl_iterator I = Paths.found_decls_begin(),
2226           E = Paths.found_decls_end(); I != E; ++I) {
2227        if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2228          if (!CheckOverridingFunctionReturnType(NewMD, OldMD))
2229            NewMD->addOverriddenMethod(OldMD);
2230        }
2231      }
2232    }
2233  }
2234
2235  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2236      !CurContext->isRecord()) {
2237    // C++ [class.static]p1:
2238    //   A data or function member of a class may be declared static
2239    //   in a class definition, in which case it is a static member of
2240    //   the class.
2241
2242    // Complain about the 'static' specifier if it's on an out-of-line
2243    // member function definition.
2244    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2245         diag::err_static_out_of_line)
2246      << CodeModificationHint::CreateRemoval(
2247                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2248  }
2249
2250  // Handle GNU asm-label extension (encoded as an attribute).
2251  if (Expr *E = (Expr*) D.getAsmLabel()) {
2252    // The parser guarantees this is a string.
2253    StringLiteral *SE = cast<StringLiteral>(E);
2254    NewFD->addAttr(Context,
2255                   ::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2256                                                        SE->getByteLength())));
2257  }
2258
2259  // Copy the parameter declarations from the declarator D to the function
2260  // declaration NewFD, if they are available.  First scavenge them into Params.
2261  llvm::SmallVector<ParmVarDecl*, 16> Params;
2262  if (D.getNumTypeObjects() > 0) {
2263    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2264
2265    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2266    // function that takes no arguments, not a function that takes a
2267    // single void argument.
2268    // We let through "const void" here because Sema::GetTypeForDeclarator
2269    // already checks for that case.
2270    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2271        FTI.ArgInfo[0].Param &&
2272        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2273      // Empty arg list, don't push any params.
2274      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2275
2276      // In C++, the empty parameter-type-list must be spelled "void"; a
2277      // typedef of void is not permitted.
2278      if (getLangOptions().CPlusPlus &&
2279          Param->getType().getUnqualifiedType() != Context.VoidTy)
2280        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2281      // FIXME: Leaks decl?
2282    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2283      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
2284        Params.push_back(FTI.ArgInfo[i].Param.getAs<ParmVarDecl>());
2285    }
2286
2287  } else if (const FunctionProtoType *FT = R->getAsFunctionProtoType()) {
2288    // When we're declaring a function with a typedef, typeof, etc as in the
2289    // following example, we'll need to synthesize (unnamed)
2290    // parameters for use in the declaration.
2291    //
2292    // @code
2293    // typedef void fn(int);
2294    // fn f;
2295    // @endcode
2296
2297    // Synthesize a parameter for each argument type.
2298    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2299         AE = FT->arg_type_end(); AI != AE; ++AI) {
2300      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2301                                               SourceLocation(), 0,
2302                                               *AI, VarDecl::None, 0);
2303      Param->setImplicit();
2304      Params.push_back(Param);
2305    }
2306  } else {
2307    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
2308           "Should not need args for typedef of non-prototype fn");
2309  }
2310  // Finally, we know we have the right number of parameters, install them.
2311  NewFD->setParams(Context, Params.data(), Params.size());
2312
2313  // If name lookup finds a previous declaration that is not in the
2314  // same scope as the new declaration, this may still be an
2315  // acceptable redeclaration.
2316  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2317      !(NewFD->hasLinkage() &&
2318        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2319    PrevDecl = 0;
2320
2321  // Perform semantic checking on the function declaration.
2322  bool OverloadableAttrRequired = false; // FIXME: HACK!
2323  CheckFunctionDeclaration(NewFD, PrevDecl, Redeclaration,
2324                           /*FIXME:*/OverloadableAttrRequired);
2325
2326  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
2327    // An out-of-line member function declaration must also be a
2328    // definition (C++ [dcl.meaning]p1).
2329    if (!IsFunctionDefinition) {
2330      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2331        << D.getCXXScopeSpec().getRange();
2332      NewFD->setInvalidDecl();
2333    } else if (!Redeclaration && (!PrevDecl || !isa<UsingDecl>(PrevDecl))) {
2334      // The user tried to provide an out-of-line definition for a
2335      // function that is a member of a class or namespace, but there
2336      // was no such member function declared (C++ [class.mfct]p2,
2337      // C++ [namespace.memdef]p2). For example:
2338      //
2339      // class X {
2340      //   void f() const;
2341      // };
2342      //
2343      // void X::f() { } // ill-formed
2344      //
2345      // Complain about this problem, and attempt to suggest close
2346      // matches (e.g., those that differ only in cv-qualifiers and
2347      // whether the parameter types are references).
2348      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2349        << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
2350      NewFD->setInvalidDecl();
2351
2352      LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
2353                                              true);
2354      assert(!Prev.isAmbiguous() &&
2355             "Cannot have an ambiguity in previous-declaration lookup");
2356      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2357           Func != FuncEnd; ++Func) {
2358        if (isa<FunctionDecl>(*Func) &&
2359            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2360          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2361      }
2362
2363      PrevDecl = 0;
2364    }
2365  }
2366
2367  // Handle attributes. We need to have merged decls when handling attributes
2368  // (for example to check for conflicts, etc).
2369  // FIXME: This needs to happen before we merge declarations. Then,
2370  // let attribute merging cope with attribute conflicts.
2371  ProcessDeclAttributes(S, NewFD, D);
2372  AddKnownFunctionAttributes(NewFD);
2373
2374  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>(Context)) {
2375    // If a function name is overloadable in C, then every function
2376    // with that name must be marked "overloadable".
2377    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2378      << Redeclaration << NewFD;
2379    if (PrevDecl)
2380      Diag(PrevDecl->getLocation(),
2381           diag::note_attribute_overloadable_prev_overload);
2382    NewFD->addAttr(Context, ::new (Context) OverloadableAttr());
2383  }
2384
2385  // If this is a locally-scoped extern C function, update the
2386  // map of such names.
2387  if (CurContext->isFunctionOrMethod() && NewFD->isExternC(Context)
2388      && !NewFD->isInvalidDecl())
2389    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2390
2391  // Set this FunctionDecl's range up to the right paren.
2392  NewFD->setLocEnd(D.getSourceRange().getEnd());
2393
2394  if (FunctionTemplate && NewFD->isInvalidDecl())
2395    FunctionTemplate->setInvalidDecl();
2396
2397  if (FunctionTemplate)
2398    return FunctionTemplate;
2399
2400  return NewFD;
2401}
2402
2403/// \brief Perform semantic checking of a new function declaration.
2404///
2405/// Performs semantic analysis of the new function declaration
2406/// NewFD. This routine performs all semantic checking that does not
2407/// require the actual declarator involved in the declaration, and is
2408/// used both for the declaration of functions as they are parsed
2409/// (called via ActOnDeclarator) and for the declaration of functions
2410/// that have been instantiated via C++ template instantiation (called
2411/// via InstantiateDecl).
2412///
2413/// This sets NewFD->isInvalidDecl() to true if there was an error.
2414void Sema::CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl,
2415                                    bool &Redeclaration,
2416                                    bool &OverloadableAttrRequired) {
2417  // If NewFD is already known erroneous, don't do any of this checking.
2418  if (NewFD->isInvalidDecl())
2419    return;
2420
2421  if (NewFD->getResultType()->isVariablyModifiedType()) {
2422    // Functions returning a variably modified type violate C99 6.7.5.2p2
2423    // because all functions have linkage.
2424    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
2425    return NewFD->setInvalidDecl();
2426  }
2427
2428  // Semantic checking for this function declaration (in isolation).
2429  if (getLangOptions().CPlusPlus) {
2430    // C++-specific checks.
2431    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
2432      CheckConstructor(Constructor);
2433    } else if (isa<CXXDestructorDecl>(NewFD)) {
2434      CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
2435      Record->setUserDeclaredDestructor(true);
2436      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
2437      // user-defined destructor.
2438      Record->setPOD(false);
2439
2440      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
2441      // declared destructor.
2442      Record->setHasTrivialDestructor(false);
2443    } else if (CXXConversionDecl *Conversion
2444               = dyn_cast<CXXConversionDecl>(NewFD))
2445      ActOnConversionDeclarator(Conversion);
2446
2447    // Extra checking for C++ overloaded operators (C++ [over.oper]).
2448    if (NewFD->isOverloadedOperator() &&
2449        CheckOverloadedOperatorDeclaration(NewFD))
2450      return NewFD->setInvalidDecl();
2451  }
2452
2453  // C99 6.7.4p6:
2454  //   [... ] For a function with external linkage, the following
2455  //   restrictions apply: [...] If all of the file scope declarations
2456  //   for a function in a translation unit include the inline
2457  //   function specifier without extern, then the definition in that
2458  //   translation unit is an inline definition. An inline definition
2459  //   does not provide an external definition for the function, and
2460  //   does not forbid an external definition in another translation
2461  //   unit.
2462  //
2463  // Here we determine whether this function, in isolation, would be a
2464  // C99 inline definition. MergeCompatibleFunctionDecls looks at
2465  // previous declarations.
2466  if (NewFD->isInline() && getLangOptions().C99 &&
2467      NewFD->getStorageClass() == FunctionDecl::None &&
2468      NewFD->getDeclContext()->getLookupContext()->isTranslationUnit())
2469    NewFD->setC99InlineDefinition(true);
2470
2471  // Check for a previous declaration of this name.
2472  if (!PrevDecl && NewFD->isExternC(Context)) {
2473    // Since we did not find anything by this name and we're declaring
2474    // an extern "C" function, look for a non-visible extern "C"
2475    // declaration with the same name.
2476    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2477      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
2478    if (Pos != LocallyScopedExternalDecls.end())
2479      PrevDecl = Pos->second;
2480  }
2481
2482  // Merge or overload the declaration with an existing declaration of
2483  // the same name, if appropriate.
2484  if (PrevDecl) {
2485    // Determine whether NewFD is an overload of PrevDecl or
2486    // a declaration that requires merging. If it's an overload,
2487    // there's no more work to do here; we'll just add the new
2488    // function to the scope.
2489    OverloadedFunctionDecl::function_iterator MatchedDecl;
2490
2491    if (!getLangOptions().CPlusPlus &&
2492        AllowOverloadingOfFunction(PrevDecl, Context)) {
2493      OverloadableAttrRequired = true;
2494
2495      // Functions marked "overloadable" must have a prototype (that
2496      // we can't get through declaration merging).
2497      if (!NewFD->getType()->getAsFunctionProtoType()) {
2498        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
2499          << NewFD;
2500        Redeclaration = true;
2501
2502        // Turn this into a variadic function with no parameters.
2503        QualType R = Context.getFunctionType(
2504                       NewFD->getType()->getAsFunctionType()->getResultType(),
2505                       0, 0, true, 0);
2506        NewFD->setType(R);
2507        return NewFD->setInvalidDecl();
2508      }
2509    }
2510
2511    if (PrevDecl &&
2512        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
2513         !IsOverload(NewFD, PrevDecl, MatchedDecl)) &&
2514        !isa<UsingDecl>(PrevDecl)) {
2515      Redeclaration = true;
2516      Decl *OldDecl = PrevDecl;
2517
2518      // If PrevDecl was an overloaded function, extract the
2519      // FunctionDecl that matched.
2520      if (isa<OverloadedFunctionDecl>(PrevDecl))
2521        OldDecl = *MatchedDecl;
2522
2523      // NewFD and OldDecl represent declarations that need to be
2524      // merged.
2525      if (MergeFunctionDecl(NewFD, OldDecl))
2526        return NewFD->setInvalidDecl();
2527
2528      if (FunctionTemplateDecl *OldTemplateDecl
2529            = dyn_cast<FunctionTemplateDecl>(OldDecl))
2530        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
2531      else
2532        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
2533    }
2534  }
2535
2536  // In C++, check default arguments now that we have merged decls. Unless
2537  // the lexical context is the class, because in this case this is done
2538  // during delayed parsing anyway.
2539  if (getLangOptions().CPlusPlus && !CurContext->isRecord())
2540    CheckCXXDefaultArguments(NewFD);
2541}
2542
2543bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2544  // FIXME: Need strict checking.  In C89, we need to check for
2545  // any assignment, increment, decrement, function-calls, or
2546  // commas outside of a sizeof.  In C99, it's the same list,
2547  // except that the aforementioned are allowed in unevaluated
2548  // expressions.  Everything else falls under the
2549  // "may accept other forms of constant expressions" exception.
2550  // (We never end up here for C++, so the constant expression
2551  // rules there don't matter.)
2552  if (Init->isConstantInitializer(Context))
2553    return false;
2554  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
2555    << Init->getSourceRange();
2556  return true;
2557}
2558
2559void Sema::AddInitializerToDecl(DeclPtrTy dcl, FullExprArg init) {
2560  AddInitializerToDecl(dcl, init.release(), /*DirectInit=*/false);
2561}
2562
2563/// AddInitializerToDecl - Adds the initializer Init to the
2564/// declaration dcl. If DirectInit is true, this is C++ direct
2565/// initialization rather than copy initialization.
2566void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
2567  Decl *RealDecl = dcl.getAs<Decl>();
2568  // If there is no declaration, there was an error parsing it.  Just ignore
2569  // the initializer.
2570  if (RealDecl == 0)
2571    return;
2572
2573  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
2574    // With declarators parsed the way they are, the parser cannot
2575    // distinguish between a normal initializer and a pure-specifier.
2576    // Thus this grotesque test.
2577    IntegerLiteral *IL;
2578    Expr *Init = static_cast<Expr *>(init.get());
2579    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
2580        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
2581      if (Method->isVirtualAsWritten()) {
2582        Method->setPure();
2583
2584        // A class is abstract if at least one function is pure virtual.
2585        cast<CXXRecordDecl>(CurContext)->setAbstract(true);
2586      } else if (!Method->isInvalidDecl()) {
2587        Diag(Method->getLocation(), diag::err_non_virtual_pure)
2588          << Method->getDeclName() << Init->getSourceRange();
2589        Method->setInvalidDecl();
2590      }
2591    } else {
2592      Diag(Method->getLocation(), diag::err_member_function_initialization)
2593        << Method->getDeclName() << Init->getSourceRange();
2594      Method->setInvalidDecl();
2595    }
2596    return;
2597  }
2598
2599  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2600  if (!VDecl) {
2601    if (getLangOptions().CPlusPlus &&
2602        RealDecl->getLexicalDeclContext()->isRecord() &&
2603        isa<NamedDecl>(RealDecl))
2604      Diag(RealDecl->getLocation(), diag::err_member_initialization)
2605        << cast<NamedDecl>(RealDecl)->getDeclName();
2606    else
2607      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2608    RealDecl->setInvalidDecl();
2609    return;
2610  }
2611
2612  if (!VDecl->getType()->isArrayType() &&
2613      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
2614                          diag::err_typecheck_decl_incomplete_type)) {
2615    RealDecl->setInvalidDecl();
2616    return;
2617  }
2618
2619  const VarDecl *Def = 0;
2620  if (VDecl->getDefinition(Def)) {
2621    Diag(VDecl->getLocation(), diag::err_redefinition)
2622      << VDecl->getDeclName();
2623    Diag(Def->getLocation(), diag::note_previous_definition);
2624    VDecl->setInvalidDecl();
2625    return;
2626  }
2627
2628  // Take ownership of the expression, now that we're sure we have somewhere
2629  // to put it.
2630  Expr *Init = init.takeAs<Expr>();
2631  assert(Init && "missing initializer");
2632
2633  // Get the decls type and save a reference for later, since
2634  // CheckInitializerTypes may change it.
2635  QualType DclT = VDecl->getType(), SavT = DclT;
2636  if (VDecl->isBlockVarDecl()) {
2637    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
2638      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2639      VDecl->setInvalidDecl();
2640    } else if (!VDecl->isInvalidDecl()) {
2641      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2642                                VDecl->getDeclName(), DirectInit))
2643        VDecl->setInvalidDecl();
2644
2645      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2646      // Don't check invalid declarations to avoid emitting useless diagnostics.
2647      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2648        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
2649          CheckForConstantInitializer(Init, DclT);
2650      }
2651    }
2652  } else if (VDecl->isStaticDataMember() &&
2653             VDecl->getLexicalDeclContext()->isRecord()) {
2654    // This is an in-class initialization for a static data member, e.g.,
2655    //
2656    // struct S {
2657    //   static const int value = 17;
2658    // };
2659
2660    // Attach the initializer
2661    VDecl->setInit(Context, Init);
2662
2663    // C++ [class.mem]p4:
2664    //   A member-declarator can contain a constant-initializer only
2665    //   if it declares a static member (9.4) of const integral or
2666    //   const enumeration type, see 9.4.2.
2667    QualType T = VDecl->getType();
2668    if (!T->isDependentType() &&
2669        (!Context.getCanonicalType(T).isConstQualified() ||
2670         !T->isIntegralType())) {
2671      Diag(VDecl->getLocation(), diag::err_member_initialization)
2672        << VDecl->getDeclName() << Init->getSourceRange();
2673      VDecl->setInvalidDecl();
2674    } else {
2675      // C++ [class.static.data]p4:
2676      //   If a static data member is of const integral or const
2677      //   enumeration type, its declaration in the class definition
2678      //   can specify a constant-initializer which shall be an
2679      //   integral constant expression (5.19).
2680      if (!Init->isTypeDependent() &&
2681          !Init->getType()->isIntegralType()) {
2682        // We have a non-dependent, non-integral or enumeration type.
2683        Diag(Init->getSourceRange().getBegin(),
2684             diag::err_in_class_initializer_non_integral_type)
2685          << Init->getType() << Init->getSourceRange();
2686        VDecl->setInvalidDecl();
2687      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
2688        // Check whether the expression is a constant expression.
2689        llvm::APSInt Value;
2690        SourceLocation Loc;
2691        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
2692          Diag(Loc, diag::err_in_class_initializer_non_constant)
2693            << Init->getSourceRange();
2694          VDecl->setInvalidDecl();
2695        } else if (!VDecl->getType()->isDependentType())
2696          ImpCastExprToType(Init, VDecl->getType());
2697      }
2698    }
2699  } else if (VDecl->isFileVarDecl()) {
2700    if (VDecl->getStorageClass() == VarDecl::Extern)
2701      Diag(VDecl->getLocation(), diag::warn_extern_init);
2702    if (!VDecl->isInvalidDecl())
2703      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2704                                VDecl->getDeclName(), DirectInit))
2705        VDecl->setInvalidDecl();
2706
2707    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2708    // Don't check invalid declarations to avoid emitting useless diagnostics.
2709    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2710      // C99 6.7.8p4. All file scoped initializers need to be constant.
2711      CheckForConstantInitializer(Init, DclT);
2712    }
2713  }
2714  // If the type changed, it means we had an incomplete type that was
2715  // completed by the initializer. For example:
2716  //   int ary[] = { 1, 3, 5 };
2717  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2718  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2719    VDecl->setType(DclT);
2720    Init->setType(DclT);
2721  }
2722
2723  // Attach the initializer to the decl.
2724  VDecl->setInit(Context, Init);
2725
2726  // If the previous declaration of VDecl was a tentative definition,
2727  // remove it from the set of tentative definitions.
2728  if (VDecl->getPreviousDeclaration() &&
2729      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
2730    llvm::DenseMap<DeclarationName, VarDecl *>::iterator Pos
2731      = TentativeDefinitions.find(VDecl->getDeclName());
2732    assert(Pos != TentativeDefinitions.end() &&
2733           "Unrecorded tentative definition?");
2734    TentativeDefinitions.erase(Pos);
2735  }
2736
2737  return;
2738}
2739
2740void Sema::ActOnUninitializedDecl(DeclPtrTy dcl) {
2741  Decl *RealDecl = dcl.getAs<Decl>();
2742
2743  // If there is no declaration, there was an error parsing it. Just ignore it.
2744  if (RealDecl == 0)
2745    return;
2746
2747  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2748    QualType Type = Var->getType();
2749
2750    // Record tentative definitions.
2751    if (Var->isTentativeDefinition(Context))
2752      TentativeDefinitions[Var->getDeclName()] = Var;
2753
2754    // C++ [dcl.init.ref]p3:
2755    //   The initializer can be omitted for a reference only in a
2756    //   parameter declaration (8.3.5), in the declaration of a
2757    //   function return type, in the declaration of a class member
2758    //   within its class declaration (9.2), and where the extern
2759    //   specifier is explicitly used.
2760    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
2761      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2762        << Var->getDeclName()
2763        << SourceRange(Var->getLocation(), Var->getLocation());
2764      Var->setInvalidDecl();
2765      return;
2766    }
2767
2768    // C++ [dcl.init]p9:
2769    //
2770    //   If no initializer is specified for an object, and the object
2771    //   is of (possibly cv-qualified) non-POD class type (or array
2772    //   thereof), the object shall be default-initialized; if the
2773    //   object is of const-qualified type, the underlying class type
2774    //   shall have a user-declared default constructor.
2775    if (getLangOptions().CPlusPlus) {
2776      QualType InitType = Type;
2777      if (const ArrayType *Array = Context.getAsArrayType(Type))
2778        InitType = Array->getElementType();
2779      if ((!Var->hasExternalStorage() && !Var->isExternC(Context)) &&
2780          InitType->isRecordType() && !InitType->isDependentType()) {
2781        CXXRecordDecl *RD =
2782          cast<CXXRecordDecl>(InitType->getAsRecordType()->getDecl());
2783        CXXConstructorDecl *Constructor = 0;
2784        if (!RequireCompleteType(Var->getLocation(), InitType,
2785                                    diag::err_invalid_incomplete_type_use))
2786          Constructor
2787            = PerformInitializationByConstructor(InitType, 0, 0,
2788                                                 Var->getLocation(),
2789                                               SourceRange(Var->getLocation(),
2790                                                           Var->getLocation()),
2791                                                 Var->getDeclName(),
2792                                                 IK_Default);
2793        if (!Constructor)
2794          Var->setInvalidDecl();
2795        else
2796          if (!RD->hasTrivialConstructor())
2797            InitializeVarWithConstructor(Var, Constructor, InitType, 0, 0);
2798      }
2799    }
2800
2801#if 0
2802    // FIXME: Temporarily disabled because we are not properly parsing
2803    // linkage specifications on declarations, e.g.,
2804    //
2805    //   extern "C" const CGPoint CGPointerZero;
2806    //
2807    // C++ [dcl.init]p9:
2808    //
2809    //     If no initializer is specified for an object, and the
2810    //     object is of (possibly cv-qualified) non-POD class type (or
2811    //     array thereof), the object shall be default-initialized; if
2812    //     the object is of const-qualified type, the underlying class
2813    //     type shall have a user-declared default
2814    //     constructor. Otherwise, if no initializer is specified for
2815    //     an object, the object and its subobjects, if any, have an
2816    //     indeterminate initial value; if the object or any of its
2817    //     subobjects are of const-qualified type, the program is
2818    //     ill-formed.
2819    //
2820    // This isn't technically an error in C, so we don't diagnose it.
2821    //
2822    // FIXME: Actually perform the POD/user-defined default
2823    // constructor check.
2824    if (getLangOptions().CPlusPlus &&
2825        Context.getCanonicalType(Type).isConstQualified() &&
2826        !Var->hasExternalStorage())
2827      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2828        << Var->getName()
2829        << SourceRange(Var->getLocation(), Var->getLocation());
2830#endif
2831  }
2832}
2833
2834Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
2835                                                   DeclPtrTy *Group,
2836                                                   unsigned NumDecls) {
2837  llvm::SmallVector<Decl*, 8> Decls;
2838
2839  if (DS.isTypeSpecOwned())
2840    Decls.push_back((Decl*)DS.getTypeRep());
2841
2842  for (unsigned i = 0; i != NumDecls; ++i)
2843    if (Decl *D = Group[i].getAs<Decl>())
2844      Decls.push_back(D);
2845
2846  // Perform semantic analysis that depends on having fully processed both
2847  // the declarator and initializer.
2848  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
2849    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
2850    if (!IDecl)
2851      continue;
2852    QualType T = IDecl->getType();
2853
2854    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2855    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2856    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
2857      if (!IDecl->isInvalidDecl() &&
2858          RequireCompleteType(IDecl->getLocation(), T,
2859                              diag::err_typecheck_decl_incomplete_type))
2860        IDecl->setInvalidDecl();
2861    }
2862    // File scope. C99 6.9.2p2: A declaration of an identifier for and
2863    // object that has file scope without an initializer, and without a
2864    // storage-class specifier or with the storage-class specifier "static",
2865    // constitutes a tentative definition. Note: A tentative definition with
2866    // external linkage is valid (C99 6.2.2p5).
2867    if (IDecl->isTentativeDefinition(Context)) {
2868      QualType CheckType = T;
2869      unsigned DiagID = diag::err_typecheck_decl_incomplete_type;
2870
2871      const IncompleteArrayType *ArrayT = Context.getAsIncompleteArrayType(T);
2872      if (ArrayT) {
2873        CheckType = ArrayT->getElementType();
2874        DiagID = diag::err_illegal_decl_array_incomplete_type;
2875      }
2876
2877      if (IDecl->isInvalidDecl()) {
2878        // Do nothing with invalid declarations
2879      } else if ((ArrayT || IDecl->getStorageClass() == VarDecl::Static) &&
2880                 RequireCompleteType(IDecl->getLocation(), CheckType, DiagID)) {
2881        // C99 6.9.2p3: If the declaration of an identifier for an object is
2882        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2883        // declared type shall not be an incomplete type.
2884        IDecl->setInvalidDecl();
2885      }
2886    }
2887  }
2888  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
2889                                                   Decls.data(), Decls.size()));
2890}
2891
2892
2893/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2894/// to introduce parameters into function prototype scope.
2895Sema::DeclPtrTy
2896Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2897  const DeclSpec &DS = D.getDeclSpec();
2898
2899  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2900  VarDecl::StorageClass StorageClass = VarDecl::None;
2901  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2902    StorageClass = VarDecl::Register;
2903  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2904    Diag(DS.getStorageClassSpecLoc(),
2905         diag::err_invalid_storage_class_in_func_decl);
2906    D.getMutableDeclSpec().ClearStorageClassSpecs();
2907  }
2908
2909  if (D.getDeclSpec().isThreadSpecified())
2910    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2911
2912  DiagnoseFunctionSpecifiers(D);
2913
2914  // Check that there are no default arguments inside the type of this
2915  // parameter (C++ only).
2916  if (getLangOptions().CPlusPlus)
2917    CheckExtraCXXDefaultArguments(D);
2918
2919  TagDecl *OwnedDecl = 0;
2920  QualType parmDeclType = GetTypeForDeclarator(D, S, /*Skip=*/0, &OwnedDecl);
2921
2922  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
2923    // C++ [dcl.fct]p6:
2924    //   Types shall not be defined in return or parameter types.
2925    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
2926      << Context.getTypeDeclType(OwnedDecl);
2927  }
2928
2929  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2930  // Can this happen for params?  We already checked that they don't conflict
2931  // among each other.  Here they can only shadow globals, which is ok.
2932  IdentifierInfo *II = D.getIdentifier();
2933  if (II) {
2934    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2935      if (PrevDecl->isTemplateParameter()) {
2936        // Maybe we will complain about the shadowed template parameter.
2937        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2938        // Just pretend that we didn't see the previous declaration.
2939        PrevDecl = 0;
2940      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
2941        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2942
2943        // Recover by removing the name
2944        II = 0;
2945        D.SetIdentifier(0, D.getIdentifierLoc());
2946      }
2947    }
2948  }
2949
2950  // Parameters can not be abstract class types.
2951  // For record types, this is done by the AbstractClassUsageDiagnoser once
2952  // the class has been completely parsed.
2953  if (!CurContext->isRecord() &&
2954      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
2955                             diag::err_abstract_type_in_decl,
2956                             AbstractParamType))
2957    D.setInvalidType(true);
2958
2959  QualType T = adjustParameterType(parmDeclType);
2960
2961  ParmVarDecl *New;
2962  if (T == parmDeclType) // parameter type did not need adjustment
2963    New = ParmVarDecl::Create(Context, CurContext,
2964                              D.getIdentifierLoc(), II,
2965                              parmDeclType, StorageClass,
2966                              0);
2967  else // keep track of both the adjusted and unadjusted types
2968    New = OriginalParmVarDecl::Create(Context, CurContext,
2969                                      D.getIdentifierLoc(), II, T,
2970                                      parmDeclType, StorageClass, 0);
2971
2972  if (D.isInvalidType())
2973    New->setInvalidDecl();
2974
2975  // Parameter declarators cannot be interface types. All ObjC objects are
2976  // passed by reference.
2977  if (T->isObjCInterfaceType()) {
2978    Diag(D.getIdentifierLoc(),
2979         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
2980    New->setInvalidDecl();
2981  }
2982
2983  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2984  if (D.getCXXScopeSpec().isSet()) {
2985    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
2986      << D.getCXXScopeSpec().getRange();
2987    New->setInvalidDecl();
2988  }
2989
2990  // Add the parameter declaration into this scope.
2991  S->AddDecl(DeclPtrTy::make(New));
2992  if (II)
2993    IdResolver.AddDecl(New);
2994
2995  ProcessDeclAttributes(S, New, D);
2996
2997  if (New->hasAttr<BlocksAttr>(Context)) {
2998    Diag(New->getLocation(), diag::err_block_on_nonlocal);
2999  }
3000  return DeclPtrTy::make(New);
3001}
3002
3003void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
3004                                           SourceLocation LocAfterDecls) {
3005  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3006         "Not a function declarator!");
3007  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3008
3009  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
3010  // for a K&R function.
3011  if (!FTI.hasPrototype) {
3012    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
3013      --i;
3014      if (FTI.ArgInfo[i].Param == 0) {
3015        std::string Code = "  int ";
3016        Code += FTI.ArgInfo[i].Ident->getName();
3017        Code += ";\n";
3018        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
3019          << FTI.ArgInfo[i].Ident
3020          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code);
3021
3022        // Implicitly declare the argument as type 'int' for lack of a better
3023        // type.
3024        DeclSpec DS;
3025        const char* PrevSpec; // unused
3026        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
3027                           PrevSpec);
3028        Declarator ParamD(DS, Declarator::KNRTypeListContext);
3029        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
3030        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
3031      }
3032    }
3033  }
3034}
3035
3036Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
3037                                              Declarator &D) {
3038  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
3039  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3040         "Not a function declarator!");
3041  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3042
3043  if (FTI.hasPrototype) {
3044    // FIXME: Diagnose arguments without names in C.
3045  }
3046
3047  Scope *ParentScope = FnBodyScope->getParent();
3048
3049  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
3050                                  MultiTemplateParamsArg(*this),
3051                                  /*IsFunctionDefinition=*/true);
3052  return ActOnStartOfFunctionDef(FnBodyScope, DP);
3053}
3054
3055Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
3056  if (!D)
3057    return D;
3058  FunctionDecl *FD = cast<FunctionDecl>(D.getAs<Decl>());
3059
3060  CurFunctionNeedsScopeChecking = false;
3061
3062  // See if this is a redefinition.
3063  const FunctionDecl *Definition;
3064  if (FD->getBody(Context, Definition)) {
3065    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
3066    Diag(Definition->getLocation(), diag::note_previous_definition);
3067  }
3068
3069  // Builtin functions cannot be defined.
3070  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3071    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3072      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
3073      FD->setInvalidDecl();
3074    }
3075  }
3076
3077  // The return type of a function definition must be complete
3078  // (C99 6.9.1p3, C++ [dcl.fct]p6).
3079  QualType ResultType = FD->getResultType();
3080  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
3081      !FD->isInvalidDecl() &&
3082      RequireCompleteType(FD->getLocation(), ResultType,
3083                          diag::err_func_def_incomplete_result))
3084    FD->setInvalidDecl();
3085
3086  // GNU warning -Wmissing-prototypes:
3087  //   Warn if a global function is defined without a previous
3088  //   prototype declaration. This warning is issued even if the
3089  //   definition itself provides a prototype. The aim is to detect
3090  //   global functions that fail to be declared in header files.
3091  if (!FD->isInvalidDecl() && FD->isGlobal() && !isa<CXXMethodDecl>(FD) &&
3092      !FD->isMain()) {
3093    bool MissingPrototype = true;
3094    for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
3095         Prev; Prev = Prev->getPreviousDeclaration()) {
3096      // Ignore any declarations that occur in function or method
3097      // scope, because they aren't visible from the header.
3098      if (Prev->getDeclContext()->isFunctionOrMethod())
3099        continue;
3100
3101      MissingPrototype = !Prev->getType()->isFunctionProtoType();
3102      break;
3103    }
3104
3105    if (MissingPrototype)
3106      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
3107  }
3108
3109  if (FnBodyScope)
3110    PushDeclContext(FnBodyScope, FD);
3111
3112  // Check the validity of our function parameters
3113  CheckParmsForFunctionDef(FD);
3114
3115  // Introduce our parameters into the function scope
3116  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
3117    ParmVarDecl *Param = FD->getParamDecl(p);
3118    Param->setOwningFunction(FD);
3119
3120    // If this has an identifier, add it to the scope stack.
3121    if (Param->getIdentifier() && FnBodyScope)
3122      PushOnScopeChains(Param, FnBodyScope);
3123  }
3124
3125  // Checking attributes of current function definition
3126  // dllimport attribute.
3127  if (FD->getAttr<DLLImportAttr>(Context) &&
3128      (!FD->getAttr<DLLExportAttr>(Context))) {
3129    // dllimport attribute cannot be applied to definition.
3130    if (!(FD->getAttr<DLLImportAttr>(Context))->isInherited()) {
3131      Diag(FD->getLocation(),
3132           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
3133        << "dllimport";
3134      FD->setInvalidDecl();
3135      return DeclPtrTy::make(FD);
3136    } else {
3137      // If a symbol previously declared dllimport is later defined, the
3138      // attribute is ignored in subsequent references, and a warning is
3139      // emitted.
3140      Diag(FD->getLocation(),
3141           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
3142        << FD->getNameAsCString() << "dllimport";
3143    }
3144  }
3145  return DeclPtrTy::make(FD);
3146}
3147
3148Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
3149  return ActOnFinishFunctionBody(D, move(BodyArg), false);
3150}
3151
3152Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
3153                                              bool IsInstantiation) {
3154  Decl *dcl = D.getAs<Decl>();
3155  Stmt *Body = BodyArg.takeAs<Stmt>();
3156  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
3157    FD->setBody(Body);
3158
3159    if (!FD->isInvalidDecl())
3160      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
3161
3162    // C++ [basic.def.odr]p2:
3163    //   [...] A virtual member function is used if it is not pure. [...]
3164    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
3165      if (Method->isVirtual() && !Method->isPure())
3166        MarkDeclarationReferenced(Method->getLocation(), Method);
3167
3168    assert(FD == getCurFunctionDecl() && "Function parsing confused");
3169  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
3170    assert(MD == getCurMethodDecl() && "Method parsing confused");
3171    MD->setBody(Body);
3172
3173    if (!MD->isInvalidDecl())
3174      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
3175  } else {
3176    Body->Destroy(Context);
3177    return DeclPtrTy();
3178  }
3179  if (!IsInstantiation)
3180    PopDeclContext();
3181
3182  // Verify and clean out per-function state.
3183
3184  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
3185
3186  // Check goto/label use.
3187  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
3188       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
3189    LabelStmt *L = I->second;
3190
3191    // Verify that we have no forward references left.  If so, there was a goto
3192    // or address of a label taken, but no definition of it.  Label fwd
3193    // definitions are indicated with a null substmt.
3194    if (L->getSubStmt() != 0)
3195      continue;
3196
3197    // Emit error.
3198    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
3199
3200    // At this point, we have gotos that use the bogus label.  Stitch it into
3201    // the function body so that they aren't leaked and that the AST is well
3202    // formed.
3203    if (Body == 0) {
3204      // The whole function wasn't parsed correctly, just delete this.
3205      L->Destroy(Context);
3206      continue;
3207    }
3208
3209    // Otherwise, the body is valid: we want to stitch the label decl into the
3210    // function somewhere so that it is properly owned and so that the goto
3211    // has a valid target.  Do this by creating a new compound stmt with the
3212    // label in it.
3213
3214    // Give the label a sub-statement.
3215    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
3216
3217    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
3218                               cast<CXXTryStmt>(Body)->getTryBlock() :
3219                               cast<CompoundStmt>(Body);
3220    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
3221    Elements.push_back(L);
3222    Compound->setStmts(Context, &Elements[0], Elements.size());
3223  }
3224  FunctionLabelMap.clear();
3225
3226  if (!Body) return D;
3227
3228  // Verify that that gotos and switch cases don't jump into scopes illegally.
3229  if (CurFunctionNeedsScopeChecking)
3230    DiagnoseInvalidJumps(Body);
3231
3232  // C++ constructors that have function-try-blocks can't have return statements
3233  // in the handlers of that block. (C++ [except.handle]p14) Verify this.
3234  if (isa<CXXConstructorDecl>(dcl) && isa<CXXTryStmt>(Body))
3235    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
3236
3237  return D;
3238}
3239
3240/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
3241/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
3242NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
3243                                          IdentifierInfo &II, Scope *S) {
3244  // Before we produce a declaration for an implicitly defined
3245  // function, see whether there was a locally-scoped declaration of
3246  // this name as a function or variable. If so, use that
3247  // (non-visible) declaration, and complain about it.
3248  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3249    = LocallyScopedExternalDecls.find(&II);
3250  if (Pos != LocallyScopedExternalDecls.end()) {
3251    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
3252    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
3253    return Pos->second;
3254  }
3255
3256  // Extension in C99.  Legal in C90, but warn about it.
3257  if (getLangOptions().C99)
3258    Diag(Loc, diag::ext_implicit_function_decl) << &II;
3259  else
3260    Diag(Loc, diag::warn_implicit_function_decl) << &II;
3261
3262  // FIXME: handle stuff like:
3263  // void foo() { extern float X(); }
3264  // void bar() { X(); }  <-- implicit decl for X in another scope.
3265
3266  // Set a Declarator for the implicit definition: int foo();
3267  const char *Dummy;
3268  DeclSpec DS;
3269  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
3270  Error = Error; // Silence warning.
3271  assert(!Error && "Error setting up implicit decl!");
3272  Declarator D(DS, Declarator::BlockContext);
3273  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
3274                                             0, 0, false, SourceLocation(),
3275                                             false, 0,0,0, Loc, D),
3276                SourceLocation());
3277  D.SetIdentifier(&II, Loc);
3278
3279  // Insert this function into translation-unit scope.
3280
3281  DeclContext *PrevDC = CurContext;
3282  CurContext = Context.getTranslationUnitDecl();
3283
3284  FunctionDecl *FD =
3285 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
3286  FD->setImplicit();
3287
3288  CurContext = PrevDC;
3289
3290  AddKnownFunctionAttributes(FD);
3291
3292  return FD;
3293}
3294
3295/// \brief Adds any function attributes that we know a priori based on
3296/// the declaration of this function.
3297///
3298/// These attributes can apply both to implicitly-declared builtins
3299/// (like __builtin___printf_chk) or to library-declared functions
3300/// like NSLog or printf.
3301void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
3302  if (FD->isInvalidDecl())
3303    return;
3304
3305  // If this is a built-in function, map its builtin attributes to
3306  // actual attributes.
3307  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3308    // Handle printf-formatting attributes.
3309    unsigned FormatIdx;
3310    bool HasVAListArg;
3311    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
3312      if (!FD->getAttr<FormatAttr>(Context))
3313        FD->addAttr(Context,
3314                    ::new (Context) FormatAttr("printf", FormatIdx + 1,
3315                                             HasVAListArg ? 0 : FormatIdx + 2));
3316    }
3317
3318    // Mark const if we don't care about errno and that is the only
3319    // thing preventing the function from being const. This allows
3320    // IRgen to use LLVM intrinsics for such functions.
3321    if (!getLangOptions().MathErrno &&
3322        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
3323      if (!FD->getAttr<ConstAttr>(Context))
3324        FD->addAttr(Context, ::new (Context) ConstAttr());
3325    }
3326  }
3327
3328  IdentifierInfo *Name = FD->getIdentifier();
3329  if (!Name)
3330    return;
3331  if ((!getLangOptions().CPlusPlus &&
3332       FD->getDeclContext()->isTranslationUnit()) ||
3333      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
3334       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
3335       LinkageSpecDecl::lang_c)) {
3336    // Okay: this could be a libc/libm/Objective-C function we know
3337    // about.
3338  } else
3339    return;
3340
3341  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
3342    if (const FormatAttr *Format = FD->getAttr<FormatAttr>(Context)) {
3343      // FIXME: We known better than our headers.
3344      const_cast<FormatAttr *>(Format)->setType("printf");
3345    } else
3346      FD->addAttr(Context,
3347                  ::new (Context) FormatAttr("printf", 1,
3348                                             Name->isStr("NSLogv") ? 0 : 2));
3349  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
3350    if (!FD->getAttr<FormatAttr>(Context))
3351      FD->addAttr(Context,
3352                  ::new (Context) FormatAttr("printf", 2,
3353                                             Name->isStr("vasprintf") ? 0 : 3));
3354  }
3355}
3356
3357TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T) {
3358  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
3359  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3360
3361  // Scope manipulation handled by caller.
3362  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
3363                                           D.getIdentifierLoc(),
3364                                           D.getIdentifier(),
3365                                           T);
3366
3367  if (TagType *TT = dyn_cast<TagType>(T)) {
3368    TagDecl *TD = TT->getDecl();
3369
3370    // If the TagDecl that the TypedefDecl points to is an anonymous decl
3371    // keep track of the TypedefDecl.
3372    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
3373      TD->setTypedefForAnonDecl(NewTD);
3374  }
3375
3376  if (D.isInvalidType())
3377    NewTD->setInvalidDecl();
3378  return NewTD;
3379}
3380
3381
3382/// \brief Determine whether a tag with a given kind is acceptable
3383/// as a redeclaration of the given tag declaration.
3384///
3385/// \returns true if the new tag kind is acceptable, false otherwise.
3386bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
3387                                        TagDecl::TagKind NewTag,
3388                                        SourceLocation NewTagLoc,
3389                                        const IdentifierInfo &Name) {
3390  // C++ [dcl.type.elab]p3:
3391  //   The class-key or enum keyword present in the
3392  //   elaborated-type-specifier shall agree in kind with the
3393  //   declaration to which the name in theelaborated-type-specifier
3394  //   refers. This rule also applies to the form of
3395  //   elaborated-type-specifier that declares a class-name or
3396  //   friend class since it can be construed as referring to the
3397  //   definition of the class. Thus, in any
3398  //   elaborated-type-specifier, the enum keyword shall be used to
3399  //   refer to an enumeration (7.2), the union class-keyshall be
3400  //   used to refer to a union (clause 9), and either the class or
3401  //   struct class-key shall be used to refer to a class (clause 9)
3402  //   declared using the class or struct class-key.
3403  TagDecl::TagKind OldTag = Previous->getTagKind();
3404  if (OldTag == NewTag)
3405    return true;
3406
3407  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
3408      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
3409    // Warn about the struct/class tag mismatch.
3410    bool isTemplate = false;
3411    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
3412      isTemplate = Record->getDescribedClassTemplate();
3413
3414    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
3415      << (NewTag == TagDecl::TK_class)
3416      << isTemplate << &Name
3417      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
3418                              OldTag == TagDecl::TK_class? "class" : "struct");
3419    Diag(Previous->getLocation(), diag::note_previous_use);
3420    return true;
3421  }
3422  return false;
3423}
3424
3425/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
3426/// former case, Name will be non-null.  In the later case, Name will be null.
3427/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
3428/// reference/declaration/definition of a tag.
3429Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
3430                               SourceLocation KWLoc, const CXXScopeSpec &SS,
3431                               IdentifierInfo *Name, SourceLocation NameLoc,
3432                               AttributeList *Attr, AccessSpecifier AS,
3433                               bool &OwnedDecl) {
3434  // If this is not a definition, it must have a name.
3435  assert((Name != 0 || TK == TK_Definition) &&
3436         "Nameless record must be a definition!");
3437
3438  OwnedDecl = false;
3439  TagDecl::TagKind Kind;
3440  switch (TagSpec) {
3441  default: assert(0 && "Unknown tag type!");
3442  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3443  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3444  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3445  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
3446  }
3447
3448  DeclContext *SearchDC = CurContext;
3449  DeclContext *DC = CurContext;
3450  NamedDecl *PrevDecl = 0;
3451
3452  bool Invalid = false;
3453
3454  if (Name && SS.isNotEmpty()) {
3455    // We have a nested-name tag ('struct foo::bar').
3456
3457    // Check for invalid 'foo::'.
3458    if (SS.isInvalid()) {
3459      Name = 0;
3460      goto CreateNewDecl;
3461    }
3462
3463    if (RequireCompleteDeclContext(SS))
3464      return DeclPtrTy::make((Decl *)0);
3465
3466    DC = computeDeclContext(SS);
3467    SearchDC = DC;
3468    // Look-up name inside 'foo::'.
3469    PrevDecl
3470      = dyn_cast_or_null<TagDecl>(
3471               LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
3472
3473    // A tag 'foo::bar' must already exist.
3474    if (PrevDecl == 0) {
3475      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
3476      Name = 0;
3477      Invalid = true;
3478      goto CreateNewDecl;
3479    }
3480  } else if (Name) {
3481    // If this is a named struct, check to see if there was a previous forward
3482    // declaration or definition.
3483    // FIXME: We're looking into outer scopes here, even when we
3484    // shouldn't be. Doing so can result in ambiguities that we
3485    // shouldn't be diagnosing.
3486    LookupResult R = LookupName(S, Name, LookupTagName,
3487                                /*RedeclarationOnly=*/(TK != TK_Reference));
3488    if (R.isAmbiguous()) {
3489      DiagnoseAmbiguousLookup(R, Name, NameLoc);
3490      // FIXME: This is not best way to recover from case like:
3491      //
3492      // struct S s;
3493      //
3494      // causes needless "incomplete type" error later.
3495      Name = 0;
3496      PrevDecl = 0;
3497      Invalid = true;
3498    }
3499    else
3500      PrevDecl = R;
3501
3502    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
3503      // FIXME: This makes sure that we ignore the contexts associated
3504      // with C structs, unions, and enums when looking for a matching
3505      // tag declaration or definition. See the similar lookup tweak
3506      // in Sema::LookupName; is there a better way to deal with this?
3507      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
3508        SearchDC = SearchDC->getParent();
3509    }
3510  }
3511
3512  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3513    // Maybe we will complain about the shadowed template parameter.
3514    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
3515    // Just pretend that we didn't see the previous declaration.
3516    PrevDecl = 0;
3517  }
3518
3519  if (PrevDecl) {
3520    // Check whether the previous declaration is usable.
3521    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
3522
3523    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
3524      // If this is a use of a previous tag, or if the tag is already declared
3525      // in the same scope (so that the definition/declaration completes or
3526      // rementions the tag), reuse the decl.
3527      if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
3528        // Make sure that this wasn't declared as an enum and now used as a
3529        // struct or something similar.
3530        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
3531          bool SafeToContinue
3532            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
3533               Kind != TagDecl::TK_enum);
3534          if (SafeToContinue)
3535            Diag(KWLoc, diag::err_use_with_wrong_tag)
3536              << Name
3537              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
3538                                                  PrevTagDecl->getKindName());
3539          else
3540            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
3541          Diag(PrevDecl->getLocation(), diag::note_previous_use);
3542
3543          if (SafeToContinue)
3544            Kind = PrevTagDecl->getTagKind();
3545          else {
3546            // Recover by making this an anonymous redefinition.
3547            Name = 0;
3548            PrevDecl = 0;
3549            Invalid = true;
3550          }
3551        }
3552
3553        if (!Invalid) {
3554          // If this is a use, just return the declaration we found.
3555
3556          // FIXME: In the future, return a variant or some other clue
3557          // for the consumer of this Decl to know it doesn't own it.
3558          // For our current ASTs this shouldn't be a problem, but will
3559          // need to be changed with DeclGroups.
3560          if (TK == TK_Reference)
3561            return DeclPtrTy::make(PrevDecl);
3562
3563          // Diagnose attempts to redefine a tag.
3564          if (TK == TK_Definition) {
3565            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
3566              Diag(NameLoc, diag::err_redefinition) << Name;
3567              Diag(Def->getLocation(), diag::note_previous_definition);
3568              // If this is a redefinition, recover by making this
3569              // struct be anonymous, which will make any later
3570              // references get the previous definition.
3571              Name = 0;
3572              PrevDecl = 0;
3573              Invalid = true;
3574            } else {
3575              // If the type is currently being defined, complain
3576              // about a nested redefinition.
3577              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
3578              if (Tag->isBeingDefined()) {
3579                Diag(NameLoc, diag::err_nested_redefinition) << Name;
3580                Diag(PrevTagDecl->getLocation(),
3581                     diag::note_previous_definition);
3582                Name = 0;
3583                PrevDecl = 0;
3584                Invalid = true;
3585              }
3586            }
3587
3588            // Okay, this is definition of a previously declared or referenced
3589            // tag PrevDecl. We're going to create a new Decl for it.
3590          }
3591        }
3592        // If we get here we have (another) forward declaration or we
3593        // have a definition.  Just create a new decl.
3594      } else {
3595        // If we get here, this is a definition of a new tag type in a nested
3596        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
3597        // new decl/type.  We set PrevDecl to NULL so that the entities
3598        // have distinct types.
3599        PrevDecl = 0;
3600      }
3601      // If we get here, we're going to create a new Decl. If PrevDecl
3602      // is non-NULL, it's a definition of the tag declared by
3603      // PrevDecl. If it's NULL, we have a new definition.
3604    } else {
3605      // PrevDecl is a namespace, template, or anything else
3606      // that lives in the IDNS_Tag identifier namespace.
3607      if (isDeclInScope(PrevDecl, SearchDC, S)) {
3608        // The tag name clashes with a namespace name, issue an error and
3609        // recover by making this tag be anonymous.
3610        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
3611        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3612        Name = 0;
3613        PrevDecl = 0;
3614        Invalid = true;
3615      } else {
3616        // The existing declaration isn't relevant to us; we're in a
3617        // new scope, so clear out the previous declaration.
3618        PrevDecl = 0;
3619      }
3620    }
3621  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
3622             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
3623    // C++ [basic.scope.pdecl]p5:
3624    //   -- for an elaborated-type-specifier of the form
3625    //
3626    //          class-key identifier
3627    //
3628    //      if the elaborated-type-specifier is used in the
3629    //      decl-specifier-seq or parameter-declaration-clause of a
3630    //      function defined in namespace scope, the identifier is
3631    //      declared as a class-name in the namespace that contains
3632    //      the declaration; otherwise, except as a friend
3633    //      declaration, the identifier is declared in the smallest
3634    //      non-class, non-function-prototype scope that contains the
3635    //      declaration.
3636    //
3637    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
3638    // C structs and unions.
3639    //
3640    // GNU C also supports this behavior as part of its incomplete
3641    // enum types extension, while GNU C++ does not.
3642    //
3643    // Find the context where we'll be declaring the tag.
3644    // FIXME: We would like to maintain the current DeclContext as the
3645    // lexical context,
3646    while (SearchDC->isRecord())
3647      SearchDC = SearchDC->getParent();
3648
3649    // Find the scope where we'll be declaring the tag.
3650    while (S->isClassScope() ||
3651           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
3652           ((S->getFlags() & Scope::DeclScope) == 0) ||
3653           (S->getEntity() &&
3654            ((DeclContext *)S->getEntity())->isTransparentContext()))
3655      S = S->getParent();
3656  }
3657
3658CreateNewDecl:
3659
3660  // If there is an identifier, use the location of the identifier as the
3661  // location of the decl, otherwise use the location of the struct/union
3662  // keyword.
3663  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
3664
3665  // Otherwise, create a new declaration. If there is a previous
3666  // declaration of the same entity, the two will be linked via
3667  // PrevDecl.
3668  TagDecl *New;
3669
3670  if (Kind == TagDecl::TK_enum) {
3671    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3672    // enum X { A, B, C } D;    D should chain to X.
3673    New = EnumDecl::Create(Context, SearchDC, Loc, Name,
3674                           cast_or_null<EnumDecl>(PrevDecl));
3675    // If this is an undefined enum, warn.
3676    if (TK != TK_Definition && !Invalid)  {
3677      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
3678                                              : diag::ext_forward_ref_enum;
3679      Diag(Loc, DK);
3680    }
3681  } else {
3682    // struct/union/class
3683
3684    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3685    // struct X { int A; } D;    D should chain to X.
3686    if (getLangOptions().CPlusPlus)
3687      // FIXME: Look for a way to use RecordDecl for simple structs.
3688      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3689                                  cast_or_null<CXXRecordDecl>(PrevDecl));
3690    else
3691      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3692                               cast_or_null<RecordDecl>(PrevDecl));
3693  }
3694
3695  if (Kind != TagDecl::TK_enum) {
3696    // Handle #pragma pack: if the #pragma pack stack has non-default
3697    // alignment, make up a packed attribute for this decl. These
3698    // attributes are checked when the ASTContext lays out the
3699    // structure.
3700    //
3701    // It is important for implementing the correct semantics that this
3702    // happen here (in act on tag decl). The #pragma pack stack is
3703    // maintained as a result of parser callbacks which can occur at
3704    // many points during the parsing of a struct declaration (because
3705    // the #pragma tokens are effectively skipped over during the
3706    // parsing of the struct).
3707    if (unsigned Alignment = getPragmaPackAlignment())
3708      New->addAttr(Context, ::new (Context) PackedAttr(Alignment * 8));
3709  }
3710
3711  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
3712    // C++ [dcl.typedef]p3:
3713    //   [...] Similarly, in a given scope, a class or enumeration
3714    //   shall not be declared with the same name as a typedef-name
3715    //   that is declared in that scope and refers to a type other
3716    //   than the class or enumeration itself.
3717    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
3718    TypedefDecl *PrevTypedef = 0;
3719    if (Lookup.getKind() == LookupResult::Found)
3720      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
3721
3722    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
3723        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
3724          Context.getCanonicalType(Context.getTypeDeclType(New))) {
3725      Diag(Loc, diag::err_tag_definition_of_typedef)
3726        << Context.getTypeDeclType(New)
3727        << PrevTypedef->getUnderlyingType();
3728      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
3729      Invalid = true;
3730    }
3731  }
3732
3733  if (Invalid)
3734    New->setInvalidDecl();
3735
3736  if (Attr)
3737    ProcessDeclAttributeList(S, New, Attr);
3738
3739  // If we're declaring or defining a tag in function prototype scope
3740  // in C, note that this type can only be used within the function.
3741  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
3742    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
3743
3744  // Set the lexical context. If the tag has a C++ scope specifier, the
3745  // lexical context will be different from the semantic context.
3746  New->setLexicalDeclContext(CurContext);
3747
3748  // Set the access specifier.
3749  if (!Invalid)
3750    SetMemberAccessSpecifier(New, PrevDecl, AS);
3751
3752  if (TK == TK_Definition)
3753    New->startDefinition();
3754
3755  // If this has an identifier, add it to the scope stack.
3756  if (Name) {
3757    S = getNonFieldDeclScope(S);
3758    PushOnScopeChains(New, S);
3759  } else {
3760    CurContext->addDecl(Context, New);
3761  }
3762
3763  OwnedDecl = true;
3764  return DeclPtrTy::make(New);
3765}
3766
3767void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
3768  AdjustDeclIfTemplate(TagD);
3769  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
3770
3771  // Enter the tag context.
3772  PushDeclContext(S, Tag);
3773
3774  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
3775    FieldCollector->StartClass();
3776
3777    if (Record->getIdentifier()) {
3778      // C++ [class]p2:
3779      //   [...] The class-name is also inserted into the scope of the
3780      //   class itself; this is known as the injected-class-name. For
3781      //   purposes of access checking, the injected-class-name is treated
3782      //   as if it were a public member name.
3783      CXXRecordDecl *InjectedClassName
3784        = CXXRecordDecl::Create(Context, Record->getTagKind(),
3785                                CurContext, Record->getLocation(),
3786                                Record->getIdentifier(), Record);
3787      InjectedClassName->setImplicit();
3788      InjectedClassName->setAccess(AS_public);
3789      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
3790        InjectedClassName->setDescribedClassTemplate(Template);
3791      PushOnScopeChains(InjectedClassName, S);
3792      assert(InjectedClassName->isInjectedClassName() &&
3793             "Broken injected-class-name");
3794    }
3795  }
3796}
3797
3798void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD) {
3799  AdjustDeclIfTemplate(TagD);
3800  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
3801
3802  if (isa<CXXRecordDecl>(Tag))
3803    FieldCollector->FinishClass();
3804
3805  // Exit this scope of this tag's definition.
3806  PopDeclContext();
3807
3808  // Notify the consumer that we've defined a tag.
3809  Consumer.HandleTagDeclDefinition(Tag);
3810}
3811
3812// Note that FieldName may be null for anonymous bitfields.
3813bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
3814                          QualType FieldTy, const Expr *BitWidth) {
3815
3816  // C99 6.7.2.1p4 - verify the field type.
3817  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
3818  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
3819    // Handle incomplete types with specific error.
3820    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
3821      return true;
3822    if (FieldName)
3823      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
3824        << FieldName << FieldTy << BitWidth->getSourceRange();
3825    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
3826      << FieldTy << BitWidth->getSourceRange();
3827  }
3828
3829  // If the bit-width is type- or value-dependent, don't try to check
3830  // it now.
3831  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
3832    return false;
3833
3834  llvm::APSInt Value;
3835  if (VerifyIntegerConstantExpression(BitWidth, &Value))
3836    return true;
3837
3838  // Zero-width bitfield is ok for anonymous field.
3839  if (Value == 0 && FieldName)
3840    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
3841
3842  if (Value.isSigned() && Value.isNegative()) {
3843    if (FieldName)
3844      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
3845               << FieldName << Value.toString(10);
3846    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
3847      << Value.toString(10);
3848  }
3849
3850  if (!FieldTy->isDependentType()) {
3851    uint64_t TypeSize = Context.getTypeSize(FieldTy);
3852    if (Value.getZExtValue() > TypeSize) {
3853      if (FieldName)
3854        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
3855          << FieldName << (unsigned)TypeSize;
3856      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
3857        << (unsigned)TypeSize;
3858    }
3859  }
3860
3861  return false;
3862}
3863
3864/// ActOnField - Each field of a struct/union/class is passed into this in order
3865/// to create a FieldDecl object for it.
3866Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
3867                                 SourceLocation DeclStart,
3868                                 Declarator &D, ExprTy *BitfieldWidth) {
3869  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
3870                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
3871                               AS_public);
3872  return DeclPtrTy::make(Res);
3873}
3874
3875/// HandleField - Analyze a field of a C struct or a C++ data member.
3876///
3877FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
3878                             SourceLocation DeclStart,
3879                             Declarator &D, Expr *BitWidth,
3880                             AccessSpecifier AS) {
3881  IdentifierInfo *II = D.getIdentifier();
3882  SourceLocation Loc = DeclStart;
3883  if (II) Loc = D.getIdentifierLoc();
3884
3885  QualType T = GetTypeForDeclarator(D, S);
3886  if (getLangOptions().CPlusPlus)
3887    CheckExtraCXXDefaultArguments(D);
3888
3889  DiagnoseFunctionSpecifiers(D);
3890
3891  if (D.getDeclSpec().isThreadSpecified())
3892    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3893
3894  NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3895
3896  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3897    // Maybe we will complain about the shadowed template parameter.
3898    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3899    // Just pretend that we didn't see the previous declaration.
3900    PrevDecl = 0;
3901  }
3902
3903  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
3904    PrevDecl = 0;
3905
3906  FieldDecl *NewFD
3907    = CheckFieldDecl(II, T, Record, Loc,
3908               D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable,
3909                     BitWidth, AS, PrevDecl, &D);
3910  if (NewFD->isInvalidDecl() && PrevDecl) {
3911    // Don't introduce NewFD into scope; there's already something
3912    // with the same name in the same scope.
3913  } else if (II) {
3914    PushOnScopeChains(NewFD, S);
3915  } else
3916    Record->addDecl(Context, NewFD);
3917
3918  return NewFD;
3919}
3920
3921/// \brief Build a new FieldDecl and check its well-formedness.
3922///
3923/// This routine builds a new FieldDecl given the fields name, type,
3924/// record, etc. \p PrevDecl should refer to any previous declaration
3925/// with the same name and in the same scope as the field to be
3926/// created.
3927///
3928/// \returns a new FieldDecl.
3929///
3930/// \todo The Declarator argument is a hack. It will be removed once
3931FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
3932                                RecordDecl *Record, SourceLocation Loc,
3933                                bool Mutable, Expr *BitWidth,
3934                                AccessSpecifier AS, NamedDecl *PrevDecl,
3935                                Declarator *D) {
3936  IdentifierInfo *II = Name.getAsIdentifierInfo();
3937  bool InvalidDecl = false;
3938  if (D) InvalidDecl = D->isInvalidType();
3939
3940  // If we receive a broken type, recover by assuming 'int' and
3941  // marking this declaration as invalid.
3942  if (T.isNull()) {
3943    InvalidDecl = true;
3944    T = Context.IntTy;
3945  }
3946
3947  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3948  // than a variably modified type.
3949  if (T->isVariablyModifiedType()) {
3950    bool SizeIsNegative;
3951    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
3952                                                           SizeIsNegative);
3953    if (!FixedTy.isNull()) {
3954      Diag(Loc, diag::warn_illegal_constant_array_size);
3955      T = FixedTy;
3956    } else {
3957      if (SizeIsNegative)
3958        Diag(Loc, diag::err_typecheck_negative_array_size);
3959      else
3960        Diag(Loc, diag::err_typecheck_field_variable_size);
3961      T = Context.IntTy;
3962      InvalidDecl = true;
3963    }
3964  }
3965
3966  // Fields can not have abstract class types
3967  if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl,
3968                             AbstractFieldType))
3969    InvalidDecl = true;
3970
3971  // If this is declared as a bit-field, check the bit-field.
3972  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth)) {
3973    InvalidDecl = true;
3974    DeleteExpr(BitWidth);
3975    BitWidth = 0;
3976  }
3977
3978  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, BitWidth,
3979                                       Mutable);
3980  if (InvalidDecl)
3981    NewFD->setInvalidDecl();
3982
3983  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
3984    Diag(Loc, diag::err_duplicate_member) << II;
3985    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3986    NewFD->setInvalidDecl();
3987  }
3988
3989  if (getLangOptions().CPlusPlus && !T->isPODType())
3990    cast<CXXRecordDecl>(Record)->setPOD(false);
3991
3992  // FIXME: We need to pass in the attributes given an AST
3993  // representation, not a parser representation.
3994  if (D)
3995    // FIXME: What to pass instead of TUScope?
3996    ProcessDeclAttributes(TUScope, NewFD, *D);
3997
3998  if (T.isObjCGCWeak())
3999    Diag(Loc, diag::warn_attribute_weak_on_field);
4000
4001  NewFD->setAccess(AS);
4002
4003  // C++ [dcl.init.aggr]p1:
4004  //   An aggregate is an array or a class (clause 9) with [...] no
4005  //   private or protected non-static data members (clause 11).
4006  // A POD must be an aggregate.
4007  if (getLangOptions().CPlusPlus &&
4008      (AS == AS_private || AS == AS_protected)) {
4009    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
4010    CXXRecord->setAggregate(false);
4011    CXXRecord->setPOD(false);
4012  }
4013
4014  return NewFD;
4015}
4016
4017/// TranslateIvarVisibility - Translate visibility from a token ID to an
4018///  AST enum value.
4019static ObjCIvarDecl::AccessControl
4020TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
4021  switch (ivarVisibility) {
4022  default: assert(0 && "Unknown visitibility kind");
4023  case tok::objc_private: return ObjCIvarDecl::Private;
4024  case tok::objc_public: return ObjCIvarDecl::Public;
4025  case tok::objc_protected: return ObjCIvarDecl::Protected;
4026  case tok::objc_package: return ObjCIvarDecl::Package;
4027  }
4028}
4029
4030/// ActOnIvar - Each ivar field of an objective-c class is passed into this
4031/// in order to create an IvarDecl object for it.
4032Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
4033                                SourceLocation DeclStart,
4034                                DeclPtrTy IntfDecl,
4035                                Declarator &D, ExprTy *BitfieldWidth,
4036                                tok::ObjCKeywordKind Visibility) {
4037
4038  IdentifierInfo *II = D.getIdentifier();
4039  Expr *BitWidth = (Expr*)BitfieldWidth;
4040  SourceLocation Loc = DeclStart;
4041  if (II) Loc = D.getIdentifierLoc();
4042
4043  // FIXME: Unnamed fields can be handled in various different ways, for
4044  // example, unnamed unions inject all members into the struct namespace!
4045
4046  QualType T = GetTypeForDeclarator(D, S);
4047
4048  if (BitWidth) {
4049    // 6.7.2.1p3, 6.7.2.1p4
4050    if (VerifyBitField(Loc, II, T, BitWidth)) {
4051      D.setInvalidType();
4052      DeleteExpr(BitWidth);
4053      BitWidth = 0;
4054    }
4055  } else {
4056    // Not a bitfield.
4057
4058    // validate II.
4059
4060  }
4061
4062  // C99 6.7.2.1p8: A member of a structure or union may have any type other
4063  // than a variably modified type.
4064  if (T->isVariablyModifiedType()) {
4065    Diag(Loc, diag::err_typecheck_ivar_variable_size);
4066    D.setInvalidType();
4067  }
4068
4069  // Get the visibility (access control) for this ivar.
4070  ObjCIvarDecl::AccessControl ac =
4071    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
4072                                        : ObjCIvarDecl::None;
4073  // Must set ivar's DeclContext to its enclosing interface.
4074  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
4075  DeclContext *EnclosingContext;
4076  if (ObjCImplementationDecl *IMPDecl =
4077      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
4078    // Case of ivar declared in an implementation. Context is that of its class.
4079    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
4080    assert(IDecl && "No class- ActOnIvar");
4081    EnclosingContext = cast_or_null<DeclContext>(IDecl);
4082  }
4083  else
4084    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
4085  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
4086
4087  // Construct the decl.
4088  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
4089                                             EnclosingContext, Loc, II, T,ac,
4090                                             (Expr *)BitfieldWidth);
4091
4092  if (II) {
4093    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
4094    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
4095        && !isa<TagDecl>(PrevDecl)) {
4096      Diag(Loc, diag::err_duplicate_member) << II;
4097      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4098      NewID->setInvalidDecl();
4099    }
4100  }
4101
4102  // Process attributes attached to the ivar.
4103  ProcessDeclAttributes(S, NewID, D);
4104
4105  if (D.isInvalidType())
4106    NewID->setInvalidDecl();
4107
4108  if (II) {
4109    // FIXME: When interfaces are DeclContexts, we'll need to add
4110    // these to the interface.
4111    S->AddDecl(DeclPtrTy::make(NewID));
4112    IdResolver.AddDecl(NewID);
4113  }
4114
4115  return DeclPtrTy::make(NewID);
4116}
4117
4118void Sema::ActOnFields(Scope* S,
4119                       SourceLocation RecLoc, DeclPtrTy RecDecl,
4120                       DeclPtrTy *Fields, unsigned NumFields,
4121                       SourceLocation LBrac, SourceLocation RBrac,
4122                       AttributeList *Attr) {
4123  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
4124  assert(EnclosingDecl && "missing record or interface decl");
4125
4126  // If the decl this is being inserted into is invalid, then it may be a
4127  // redeclaration or some other bogus case.  Don't try to add fields to it.
4128  if (EnclosingDecl->isInvalidDecl()) {
4129    // FIXME: Deallocate fields?
4130    return;
4131  }
4132
4133
4134  // Verify that all the fields are okay.
4135  unsigned NumNamedMembers = 0;
4136  llvm::SmallVector<FieldDecl*, 32> RecFields;
4137
4138  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
4139  for (unsigned i = 0; i != NumFields; ++i) {
4140    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
4141
4142    // Get the type for the field.
4143    Type *FDTy = FD->getType().getTypePtr();
4144
4145    if (!FD->isAnonymousStructOrUnion()) {
4146      // Remember all fields written by the user.
4147      RecFields.push_back(FD);
4148    }
4149
4150    // If the field is already invalid for some reason, don't emit more
4151    // diagnostics about it.
4152    if (FD->isInvalidDecl())
4153      continue;
4154
4155    // C99 6.7.2.1p2:
4156    //   A structure or union shall not contain a member with
4157    //   incomplete or function type (hence, a structure shall not
4158    //   contain an instance of itself, but may contain a pointer to
4159    //   an instance of itself), except that the last member of a
4160    //   structure with more than one named member may have incomplete
4161    //   array type; such a structure (and any union containing,
4162    //   possibly recursively, a member that is such a structure)
4163    //   shall not be a member of a structure or an element of an
4164    //   array.
4165    if (FDTy->isFunctionType()) {
4166      // Field declared as a function.
4167      Diag(FD->getLocation(), diag::err_field_declared_as_function)
4168        << FD->getDeclName();
4169      FD->setInvalidDecl();
4170      EnclosingDecl->setInvalidDecl();
4171      continue;
4172    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
4173               Record && Record->isStruct()) {
4174      // Flexible array member.
4175      if (NumNamedMembers < 1) {
4176        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
4177          << FD->getDeclName();
4178        FD->setInvalidDecl();
4179        EnclosingDecl->setInvalidDecl();
4180        continue;
4181      }
4182      // Okay, we have a legal flexible array member at the end of the struct.
4183      if (Record)
4184        Record->setHasFlexibleArrayMember(true);
4185    } else if (!FDTy->isDependentType() &&
4186               RequireCompleteType(FD->getLocation(), FD->getType(),
4187                                   diag::err_field_incomplete)) {
4188      // Incomplete type
4189      FD->setInvalidDecl();
4190      EnclosingDecl->setInvalidDecl();
4191      continue;
4192    } else if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
4193      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
4194        // If this is a member of a union, then entire union becomes "flexible".
4195        if (Record && Record->isUnion()) {
4196          Record->setHasFlexibleArrayMember(true);
4197        } else {
4198          // If this is a struct/class and this is not the last element, reject
4199          // it.  Note that GCC supports variable sized arrays in the middle of
4200          // structures.
4201          if (i != NumFields-1)
4202            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
4203              << FD->getDeclName() << FD->getType();
4204          else {
4205            // We support flexible arrays at the end of structs in
4206            // other structs as an extension.
4207            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
4208              << FD->getDeclName();
4209            if (Record)
4210              Record->setHasFlexibleArrayMember(true);
4211          }
4212        }
4213      }
4214    } else if (FDTy->isObjCInterfaceType()) {
4215      /// A field cannot be an Objective-c object
4216      Diag(FD->getLocation(), diag::err_statically_allocated_object);
4217      FD->setInvalidDecl();
4218      EnclosingDecl->setInvalidDecl();
4219      continue;
4220    }
4221    // Keep track of the number of named members.
4222    if (FD->getIdentifier())
4223      ++NumNamedMembers;
4224  }
4225
4226  // Okay, we successfully defined 'Record'.
4227  if (Record) {
4228    Record->completeDefinition(Context);
4229  } else {
4230    ObjCIvarDecl **ClsFields =
4231      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
4232    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
4233      ID->setIVarList(ClsFields, RecFields.size(), Context);
4234      ID->setLocEnd(RBrac);
4235      // Add ivar's to class's DeclContext.
4236      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
4237        ClsFields[i]->setLexicalDeclContext(ID);
4238        ID->addDecl(Context, ClsFields[i]);
4239      }
4240      // Must enforce the rule that ivars in the base classes may not be
4241      // duplicates.
4242      if (ID->getSuperClass()) {
4243        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
4244             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
4245          ObjCIvarDecl* Ivar = (*IVI);
4246
4247          if (IdentifierInfo *II = Ivar->getIdentifier()) {
4248            ObjCIvarDecl* prevIvar =
4249              ID->getSuperClass()->lookupInstanceVariable(Context, II);
4250            if (prevIvar) {
4251              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
4252              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
4253            }
4254          }
4255        }
4256      }
4257    } else if (ObjCImplementationDecl *IMPDecl =
4258                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
4259      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
4260      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
4261        // Ivar declared in @implementation never belongs to the implementation.
4262        // Only it is in implementation's lexical context.
4263        ClsFields[I]->setLexicalDeclContext(IMPDecl);
4264      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
4265    }
4266  }
4267
4268  if (Attr)
4269    ProcessDeclAttributeList(S, Record, Attr);
4270}
4271
4272EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
4273                                          EnumConstantDecl *LastEnumConst,
4274                                          SourceLocation IdLoc,
4275                                          IdentifierInfo *Id,
4276                                          ExprArg val) {
4277  Expr *Val = (Expr *)val.get();
4278
4279  llvm::APSInt EnumVal(32);
4280  QualType EltTy;
4281  if (Val && !Val->isTypeDependent()) {
4282    // Make sure to promote the operand type to int.
4283    UsualUnaryConversions(Val);
4284    if (Val != val.get()) {
4285      val.release();
4286      val = Val;
4287    }
4288
4289    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
4290    SourceLocation ExpLoc;
4291    if (!Val->isValueDependent() &&
4292        VerifyIntegerConstantExpression(Val, &EnumVal)) {
4293      Val = 0;
4294    } else {
4295      EltTy = Val->getType();
4296    }
4297  }
4298
4299  if (!Val) {
4300    if (LastEnumConst) {
4301      // Assign the last value + 1.
4302      EnumVal = LastEnumConst->getInitVal();
4303      ++EnumVal;
4304
4305      // Check for overflow on increment.
4306      if (EnumVal < LastEnumConst->getInitVal())
4307        Diag(IdLoc, diag::warn_enum_value_overflow);
4308
4309      EltTy = LastEnumConst->getType();
4310    } else {
4311      // First value, set to zero.
4312      EltTy = Context.IntTy;
4313      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
4314    }
4315  }
4316
4317  val.release();
4318  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
4319                                  Val, EnumVal);
4320}
4321
4322
4323Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
4324                                        DeclPtrTy lastEnumConst,
4325                                        SourceLocation IdLoc,
4326                                        IdentifierInfo *Id,
4327                                        SourceLocation EqualLoc, ExprTy *val) {
4328  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
4329  EnumConstantDecl *LastEnumConst =
4330    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
4331  Expr *Val = static_cast<Expr*>(val);
4332
4333  // The scope passed in may not be a decl scope.  Zip up the scope tree until
4334  // we find one that is.
4335  S = getNonFieldDeclScope(S);
4336
4337  // Verify that there isn't already something declared with this name in this
4338  // scope.
4339  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
4340  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4341    // Maybe we will complain about the shadowed template parameter.
4342    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
4343    // Just pretend that we didn't see the previous declaration.
4344    PrevDecl = 0;
4345  }
4346
4347  if (PrevDecl) {
4348    // When in C++, we may get a TagDecl with the same name; in this case the
4349    // enum constant will 'hide' the tag.
4350    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
4351           "Received TagDecl when not in C++!");
4352    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
4353      if (isa<EnumConstantDecl>(PrevDecl))
4354        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
4355      else
4356        Diag(IdLoc, diag::err_redefinition) << Id;
4357      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4358      if (Val) Val->Destroy(Context);
4359      return DeclPtrTy();
4360    }
4361  }
4362
4363  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
4364                                            IdLoc, Id, Owned(Val));
4365
4366  // Register this decl in the current scope stack.
4367  if (New)
4368    PushOnScopeChains(New, S);
4369
4370  return DeclPtrTy::make(New);
4371}
4372
4373void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
4374                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
4375                         DeclPtrTy *Elements, unsigned NumElements) {
4376  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
4377  QualType EnumType = Context.getTypeDeclType(Enum);
4378
4379  // TODO: If the result value doesn't fit in an int, it must be a long or long
4380  // long value.  ISO C does not support this, but GCC does as an extension,
4381  // emit a warning.
4382  unsigned IntWidth = Context.Target.getIntWidth();
4383
4384  // Verify that all the values are okay, compute the size of the values, and
4385  // reverse the list.
4386  unsigned NumNegativeBits = 0;
4387  unsigned NumPositiveBits = 0;
4388
4389  // Keep track of whether all elements have type int.
4390  bool AllElementsInt = true;
4391
4392  for (unsigned i = 0; i != NumElements; ++i) {
4393    EnumConstantDecl *ECD =
4394      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
4395    if (!ECD) continue;  // Already issued a diagnostic.
4396
4397    // If the enum value doesn't fit in an int, emit an extension warning.
4398    const llvm::APSInt &InitVal = ECD->getInitVal();
4399    assert(InitVal.getBitWidth() >= IntWidth &&
4400           "Should have promoted value to int");
4401    if (InitVal.getBitWidth() > IntWidth) {
4402      llvm::APSInt V(InitVal);
4403      V.trunc(IntWidth);
4404      V.extend(InitVal.getBitWidth());
4405      if (V != InitVal)
4406        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
4407          << InitVal.toString(10);
4408    }
4409
4410    // Keep track of the size of positive and negative values.
4411    if (InitVal.isUnsigned() || InitVal.isNonNegative())
4412      NumPositiveBits = std::max(NumPositiveBits,
4413                                 (unsigned)InitVal.getActiveBits());
4414    else
4415      NumNegativeBits = std::max(NumNegativeBits,
4416                                 (unsigned)InitVal.getMinSignedBits());
4417
4418    // Keep track of whether every enum element has type int (very commmon).
4419    if (AllElementsInt)
4420      AllElementsInt = ECD->getType() == Context.IntTy;
4421  }
4422
4423  // Figure out the type that should be used for this enum.
4424  // FIXME: Support attribute(packed) on enums and -fshort-enums.
4425  QualType BestType;
4426  unsigned BestWidth;
4427
4428  if (NumNegativeBits) {
4429    // If there is a negative value, figure out the smallest integer type (of
4430    // int/long/longlong) that fits.
4431    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
4432      BestType = Context.IntTy;
4433      BestWidth = IntWidth;
4434    } else {
4435      BestWidth = Context.Target.getLongWidth();
4436
4437      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
4438        BestType = Context.LongTy;
4439      else {
4440        BestWidth = Context.Target.getLongLongWidth();
4441
4442        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
4443          Diag(Enum->getLocation(), diag::warn_enum_too_large);
4444        BestType = Context.LongLongTy;
4445      }
4446    }
4447  } else {
4448    // If there is no negative value, figure out which of uint, ulong, ulonglong
4449    // fits.
4450    if (NumPositiveBits <= IntWidth) {
4451      BestType = Context.UnsignedIntTy;
4452      BestWidth = IntWidth;
4453    } else if (NumPositiveBits <=
4454               (BestWidth = Context.Target.getLongWidth())) {
4455      BestType = Context.UnsignedLongTy;
4456    } else {
4457      BestWidth = Context.Target.getLongLongWidth();
4458      assert(NumPositiveBits <= BestWidth &&
4459             "How could an initializer get larger than ULL?");
4460      BestType = Context.UnsignedLongLongTy;
4461    }
4462  }
4463
4464  // Loop over all of the enumerator constants, changing their types to match
4465  // the type of the enum if needed.
4466  for (unsigned i = 0; i != NumElements; ++i) {
4467    EnumConstantDecl *ECD =
4468      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
4469    if (!ECD) continue;  // Already issued a diagnostic.
4470
4471    // Standard C says the enumerators have int type, but we allow, as an
4472    // extension, the enumerators to be larger than int size.  If each
4473    // enumerator value fits in an int, type it as an int, otherwise type it the
4474    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
4475    // that X has type 'int', not 'unsigned'.
4476    if (ECD->getType() == Context.IntTy) {
4477      // Make sure the init value is signed.
4478      llvm::APSInt IV = ECD->getInitVal();
4479      IV.setIsSigned(true);
4480      ECD->setInitVal(IV);
4481
4482      if (getLangOptions().CPlusPlus)
4483        // C++ [dcl.enum]p4: Following the closing brace of an
4484        // enum-specifier, each enumerator has the type of its
4485        // enumeration.
4486        ECD->setType(EnumType);
4487      continue;  // Already int type.
4488    }
4489
4490    // Determine whether the value fits into an int.
4491    llvm::APSInt InitVal = ECD->getInitVal();
4492    bool FitsInInt;
4493    if (InitVal.isUnsigned() || !InitVal.isNegative())
4494      FitsInInt = InitVal.getActiveBits() < IntWidth;
4495    else
4496      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
4497
4498    // If it fits into an integer type, force it.  Otherwise force it to match
4499    // the enum decl type.
4500    QualType NewTy;
4501    unsigned NewWidth;
4502    bool NewSign;
4503    if (FitsInInt) {
4504      NewTy = Context.IntTy;
4505      NewWidth = IntWidth;
4506      NewSign = true;
4507    } else if (ECD->getType() == BestType) {
4508      // Already the right type!
4509      if (getLangOptions().CPlusPlus)
4510        // C++ [dcl.enum]p4: Following the closing brace of an
4511        // enum-specifier, each enumerator has the type of its
4512        // enumeration.
4513        ECD->setType(EnumType);
4514      continue;
4515    } else {
4516      NewTy = BestType;
4517      NewWidth = BestWidth;
4518      NewSign = BestType->isSignedIntegerType();
4519    }
4520
4521    // Adjust the APSInt value.
4522    InitVal.extOrTrunc(NewWidth);
4523    InitVal.setIsSigned(NewSign);
4524    ECD->setInitVal(InitVal);
4525
4526    // Adjust the Expr initializer and type.
4527    if (ECD->getInitExpr())
4528      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy, ECD->getInitExpr(),
4529                                                      /*isLvalue=*/false));
4530    if (getLangOptions().CPlusPlus)
4531      // C++ [dcl.enum]p4: Following the closing brace of an
4532      // enum-specifier, each enumerator has the type of its
4533      // enumeration.
4534      ECD->setType(EnumType);
4535    else
4536      ECD->setType(NewTy);
4537  }
4538
4539  Enum->completeDefinition(Context, BestType);
4540}
4541
4542Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
4543                                            ExprArg expr) {
4544  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
4545
4546  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
4547                                                   Loc, AsmString);
4548  CurContext->addDecl(Context, New);
4549  return DeclPtrTy::make(New);
4550}
4551
4552void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
4553                             SourceLocation PragmaLoc,
4554                             SourceLocation NameLoc) {
4555  Decl *PrevDecl = LookupName(TUScope, Name, LookupOrdinaryName);
4556
4557  // FIXME: This implementation is an ugly hack!
4558  if (PrevDecl) {
4559    PrevDecl->addAttr(Context, ::new (Context) WeakAttr());
4560    return;
4561  }
4562  Diag(PragmaLoc, diag::err_unsupported_pragma_weak);
4563  return;
4564}
4565
4566void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
4567                                IdentifierInfo* AliasName,
4568                                SourceLocation PragmaLoc,
4569                                SourceLocation NameLoc,
4570                                SourceLocation AliasNameLoc) {
4571  Decl *PrevDecl = LookupName(TUScope, Name, LookupOrdinaryName);
4572
4573  // FIXME: This implementation is an ugly hack!
4574  if (PrevDecl) {
4575    PrevDecl->addAttr(Context, ::new (Context) AliasAttr(AliasName->getName()));
4576    PrevDecl->addAttr(Context, ::new (Context) WeakAttr());
4577    return;
4578  }
4579  Diag(PragmaLoc, diag::err_unsupported_pragma_weak);
4580  return;
4581}
4582