SemaDecl.cpp revision eca3ed7490300ae31dab178d11d70953e96a9e4e
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "TypeLocBuilder.h"
21#include "clang/AST/APValue.h"
22#include "clang/AST/ASTConsumer.h"
23#include "clang/AST/ASTContext.h"
24#include "clang/AST/CXXInheritance.h"
25#include "clang/AST/DeclCXX.h"
26#include "clang/AST/DeclObjC.h"
27#include "clang/AST/DeclTemplate.h"
28#include "clang/AST/EvaluatedExprVisitor.h"
29#include "clang/AST/ExprCXX.h"
30#include "clang/AST/StmtCXX.h"
31#include "clang/AST/CharUnits.h"
32#include "clang/Sema/DeclSpec.h"
33#include "clang/Sema/ParsedTemplate.h"
34#include "clang/Parse/ParseDiagnostic.h"
35#include "clang/Basic/PartialDiagnostic.h"
36#include "clang/Basic/SourceManager.h"
37#include "clang/Basic/TargetInfo.h"
38// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
39#include "clang/Lex/Preprocessor.h"
40#include "clang/Lex/HeaderSearch.h"
41#include "llvm/ADT/Triple.h"
42#include <algorithm>
43#include <cstring>
44#include <functional>
45using namespace clang;
46using namespace sema;
47
48Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr) {
49  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
50}
51
52/// \brief If the identifier refers to a type name within this scope,
53/// return the declaration of that type.
54///
55/// This routine performs ordinary name lookup of the identifier II
56/// within the given scope, with optional C++ scope specifier SS, to
57/// determine whether the name refers to a type. If so, returns an
58/// opaque pointer (actually a QualType) corresponding to that
59/// type. Otherwise, returns NULL.
60///
61/// If name lookup results in an ambiguity, this routine will complain
62/// and then return NULL.
63ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
64                             Scope *S, CXXScopeSpec *SS,
65                             bool isClassName, bool HasTrailingDot,
66                             ParsedType ObjectTypePtr,
67                             bool WantNontrivialTypeSourceInfo) {
68  // Determine where we will perform name lookup.
69  DeclContext *LookupCtx = 0;
70  if (ObjectTypePtr) {
71    QualType ObjectType = ObjectTypePtr.get();
72    if (ObjectType->isRecordType())
73      LookupCtx = computeDeclContext(ObjectType);
74  } else if (SS && SS->isNotEmpty()) {
75    LookupCtx = computeDeclContext(*SS, false);
76
77    if (!LookupCtx) {
78      if (isDependentScopeSpecifier(*SS)) {
79        // C++ [temp.res]p3:
80        //   A qualified-id that refers to a type and in which the
81        //   nested-name-specifier depends on a template-parameter (14.6.2)
82        //   shall be prefixed by the keyword typename to indicate that the
83        //   qualified-id denotes a type, forming an
84        //   elaborated-type-specifier (7.1.5.3).
85        //
86        // We therefore do not perform any name lookup if the result would
87        // refer to a member of an unknown specialization.
88        if (!isClassName)
89          return ParsedType();
90
91        // We know from the grammar that this name refers to a type,
92        // so build a dependent node to describe the type.
93        if (WantNontrivialTypeSourceInfo)
94          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
95
96        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
97        QualType T =
98          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
99                            II, NameLoc);
100
101          return ParsedType::make(T);
102      }
103
104      return ParsedType();
105    }
106
107    if (!LookupCtx->isDependentContext() &&
108        RequireCompleteDeclContext(*SS, LookupCtx))
109      return ParsedType();
110  }
111
112  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
113  // lookup for class-names.
114  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
115                                      LookupOrdinaryName;
116  LookupResult Result(*this, &II, NameLoc, Kind);
117  if (LookupCtx) {
118    // Perform "qualified" name lookup into the declaration context we
119    // computed, which is either the type of the base of a member access
120    // expression or the declaration context associated with a prior
121    // nested-name-specifier.
122    LookupQualifiedName(Result, LookupCtx);
123
124    if (ObjectTypePtr && Result.empty()) {
125      // C++ [basic.lookup.classref]p3:
126      //   If the unqualified-id is ~type-name, the type-name is looked up
127      //   in the context of the entire postfix-expression. If the type T of
128      //   the object expression is of a class type C, the type-name is also
129      //   looked up in the scope of class C. At least one of the lookups shall
130      //   find a name that refers to (possibly cv-qualified) T.
131      LookupName(Result, S);
132    }
133  } else {
134    // Perform unqualified name lookup.
135    LookupName(Result, S);
136  }
137
138  NamedDecl *IIDecl = 0;
139  switch (Result.getResultKind()) {
140  case LookupResult::NotFound:
141  case LookupResult::NotFoundInCurrentInstantiation:
142  case LookupResult::FoundOverloaded:
143  case LookupResult::FoundUnresolvedValue:
144    Result.suppressDiagnostics();
145    return ParsedType();
146
147  case LookupResult::Ambiguous:
148    // Recover from type-hiding ambiguities by hiding the type.  We'll
149    // do the lookup again when looking for an object, and we can
150    // diagnose the error then.  If we don't do this, then the error
151    // about hiding the type will be immediately followed by an error
152    // that only makes sense if the identifier was treated like a type.
153    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
154      Result.suppressDiagnostics();
155      return ParsedType();
156    }
157
158    // Look to see if we have a type anywhere in the list of results.
159    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
160         Res != ResEnd; ++Res) {
161      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
162        if (!IIDecl ||
163            (*Res)->getLocation().getRawEncoding() <
164              IIDecl->getLocation().getRawEncoding())
165          IIDecl = *Res;
166      }
167    }
168
169    if (!IIDecl) {
170      // None of the entities we found is a type, so there is no way
171      // to even assume that the result is a type. In this case, don't
172      // complain about the ambiguity. The parser will either try to
173      // perform this lookup again (e.g., as an object name), which
174      // will produce the ambiguity, or will complain that it expected
175      // a type name.
176      Result.suppressDiagnostics();
177      return ParsedType();
178    }
179
180    // We found a type within the ambiguous lookup; diagnose the
181    // ambiguity and then return that type. This might be the right
182    // answer, or it might not be, but it suppresses any attempt to
183    // perform the name lookup again.
184    break;
185
186  case LookupResult::Found:
187    IIDecl = Result.getFoundDecl();
188    break;
189  }
190
191  assert(IIDecl && "Didn't find decl");
192
193  QualType T;
194  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
195    DiagnoseUseOfDecl(IIDecl, NameLoc);
196
197    if (T.isNull())
198      T = Context.getTypeDeclType(TD);
199
200    if (SS && SS->isNotEmpty()) {
201      if (WantNontrivialTypeSourceInfo) {
202        // Construct a type with type-source information.
203        TypeLocBuilder Builder;
204        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
205
206        T = getElaboratedType(ETK_None, *SS, T);
207        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
208        ElabTL.setKeywordLoc(SourceLocation());
209        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
210        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
211      } else {
212        T = getElaboratedType(ETK_None, *SS, T);
213      }
214    }
215  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
216    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
217    if (!HasTrailingDot)
218      T = Context.getObjCInterfaceType(IDecl);
219  }
220
221  if (T.isNull()) {
222    // If it's not plausibly a type, suppress diagnostics.
223    Result.suppressDiagnostics();
224    return ParsedType();
225  }
226  return ParsedType::make(T);
227}
228
229/// isTagName() - This method is called *for error recovery purposes only*
230/// to determine if the specified name is a valid tag name ("struct foo").  If
231/// so, this returns the TST for the tag corresponding to it (TST_enum,
232/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
233/// where the user forgot to specify the tag.
234DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
235  // Do a tag name lookup in this scope.
236  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
237  LookupName(R, S, false);
238  R.suppressDiagnostics();
239  if (R.getResultKind() == LookupResult::Found)
240    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
241      switch (TD->getTagKind()) {
242      default:         return DeclSpec::TST_unspecified;
243      case TTK_Struct: return DeclSpec::TST_struct;
244      case TTK_Union:  return DeclSpec::TST_union;
245      case TTK_Class:  return DeclSpec::TST_class;
246      case TTK_Enum:   return DeclSpec::TST_enum;
247      }
248    }
249
250  return DeclSpec::TST_unspecified;
251}
252
253/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
254/// if a CXXScopeSpec's type is equal to the type of one of the base classes
255/// then downgrade the missing typename error to a warning.
256/// This is needed for MSVC compatibility; Example:
257/// @code
258/// template<class T> class A {
259/// public:
260///   typedef int TYPE;
261/// };
262/// template<class T> class B : public A<T> {
263/// public:
264///   A<T>::TYPE a; // no typename required because A<T> is a base class.
265/// };
266/// @endcode
267bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS) {
268  if (CurContext->isRecord()) {
269    const Type *Ty = SS->getScopeRep()->getAsType();
270
271    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
272    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
273          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
274      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
275        return true;
276  }
277  return false;
278}
279
280bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
281                                   SourceLocation IILoc,
282                                   Scope *S,
283                                   CXXScopeSpec *SS,
284                                   ParsedType &SuggestedType) {
285  // We don't have anything to suggest (yet).
286  SuggestedType = ParsedType();
287
288  // There may have been a typo in the name of the type. Look up typo
289  // results, in case we have something that we can suggest.
290  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
291                      NotForRedeclaration);
292
293  if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
294    if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
295      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
296          !Result->isInvalidDecl()) {
297        // We found a similarly-named type or interface; suggest that.
298        if (!SS || !SS->isSet())
299          Diag(IILoc, diag::err_unknown_typename_suggest)
300            << &II << Lookup.getLookupName()
301            << FixItHint::CreateReplacement(SourceRange(IILoc),
302                                            Result->getNameAsString());
303        else if (DeclContext *DC = computeDeclContext(*SS, false))
304          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
305            << &II << DC << Lookup.getLookupName() << SS->getRange()
306            << FixItHint::CreateReplacement(SourceRange(IILoc),
307                                            Result->getNameAsString());
308        else
309          llvm_unreachable("could not have corrected a typo here");
310
311        Diag(Result->getLocation(), diag::note_previous_decl)
312          << Result->getDeclName();
313
314        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
315                                    false, false, ParsedType(),
316                                    /*NonTrivialTypeSourceInfo=*/true);
317        return true;
318      }
319    } else if (Lookup.empty()) {
320      // We corrected to a keyword.
321      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
322      Diag(IILoc, diag::err_unknown_typename_suggest)
323        << &II << Corrected;
324      return true;
325    }
326  }
327
328  if (getLangOptions().CPlusPlus) {
329    // See if II is a class template that the user forgot to pass arguments to.
330    UnqualifiedId Name;
331    Name.setIdentifier(&II, IILoc);
332    CXXScopeSpec EmptySS;
333    TemplateTy TemplateResult;
334    bool MemberOfUnknownSpecialization;
335    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
336                       Name, ParsedType(), true, TemplateResult,
337                       MemberOfUnknownSpecialization) == TNK_Type_template) {
338      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
339      Diag(IILoc, diag::err_template_missing_args) << TplName;
340      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
341        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
342          << TplDecl->getTemplateParameters()->getSourceRange();
343      }
344      return true;
345    }
346  }
347
348  // FIXME: Should we move the logic that tries to recover from a missing tag
349  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
350
351  if (!SS || (!SS->isSet() && !SS->isInvalid()))
352    Diag(IILoc, diag::err_unknown_typename) << &II;
353  else if (DeclContext *DC = computeDeclContext(*SS, false))
354    Diag(IILoc, diag::err_typename_nested_not_found)
355      << &II << DC << SS->getRange();
356  else if (isDependentScopeSpecifier(*SS)) {
357    unsigned DiagID = diag::err_typename_missing;
358    if (getLangOptions().Microsoft && isMicrosoftMissingTypename(SS))
359      DiagID = diag::warn_typename_missing;
360
361    Diag(SS->getRange().getBegin(), DiagID)
362      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
363      << SourceRange(SS->getRange().getBegin(), IILoc)
364      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
365    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
366  } else {
367    assert(SS && SS->isInvalid() &&
368           "Invalid scope specifier has already been diagnosed");
369  }
370
371  return true;
372}
373
374/// \brief Determine whether the given result set contains either a type name
375/// or
376static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
377  bool CheckTemplate = R.getSema().getLangOptions().CPlusPlus &&
378                       NextToken.is(tok::less);
379
380  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
381    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
382      return true;
383
384    if (CheckTemplate && isa<TemplateDecl>(*I))
385      return true;
386  }
387
388  return false;
389}
390
391Sema::NameClassification Sema::ClassifyName(Scope *S,
392                                            CXXScopeSpec &SS,
393                                            IdentifierInfo *&Name,
394                                            SourceLocation NameLoc,
395                                            const Token &NextToken) {
396  DeclarationNameInfo NameInfo(Name, NameLoc);
397  ObjCMethodDecl *CurMethod = getCurMethodDecl();
398
399  if (NextToken.is(tok::coloncolon)) {
400    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
401                                QualType(), false, SS, 0, false);
402
403  }
404
405  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
406  LookupParsedName(Result, S, &SS, !CurMethod);
407
408  // Perform lookup for Objective-C instance variables (including automatically
409  // synthesized instance variables), if we're in an Objective-C method.
410  // FIXME: This lookup really, really needs to be folded in to the normal
411  // unqualified lookup mechanism.
412  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
413    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
414    if (E.get() || E.isInvalid())
415      return E;
416
417    // Synthesize ivars lazily.
418    if (getLangOptions().ObjCDefaultSynthProperties &&
419        getLangOptions().ObjCNonFragileABI2) {
420      if (SynthesizeProvisionalIvar(Result, Name, NameLoc)) {
421        if (const ObjCPropertyDecl *Property =
422                                          canSynthesizeProvisionalIvar(Name)) {
423          Diag(NameLoc, diag::warn_synthesized_ivar_access) << Name;
424          Diag(Property->getLocation(), diag::note_property_declare);
425        }
426
427        // FIXME: This is strange. Shouldn't we just take the ivar returned
428        // from SynthesizeProvisionalIvar and continue with that?
429        E = LookupInObjCMethod(Result, S, Name, true);
430        if (E.get() || E.isInvalid())
431          return E;
432      }
433    }
434  }
435
436  bool SecondTry = false;
437  bool IsFilteredTemplateName = false;
438
439Corrected:
440  switch (Result.getResultKind()) {
441  case LookupResult::NotFound:
442    // If an unqualified-id is followed by a '(', then we have a function
443    // call.
444    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
445      // In C++, this is an ADL-only call.
446      // FIXME: Reference?
447      if (getLangOptions().CPlusPlus)
448        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
449
450      // C90 6.3.2.2:
451      //   If the expression that precedes the parenthesized argument list in a
452      //   function call consists solely of an identifier, and if no
453      //   declaration is visible for this identifier, the identifier is
454      //   implicitly declared exactly as if, in the innermost block containing
455      //   the function call, the declaration
456      //
457      //     extern int identifier ();
458      //
459      //   appeared.
460      //
461      // We also allow this in C99 as an extension.
462      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
463        Result.addDecl(D);
464        Result.resolveKind();
465        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
466      }
467    }
468
469    // In C, we first see whether there is a tag type by the same name, in
470    // which case it's likely that the user just forget to write "enum",
471    // "struct", or "union".
472    if (!getLangOptions().CPlusPlus && !SecondTry) {
473      Result.clear(LookupTagName);
474      LookupParsedName(Result, S, &SS);
475      if (TagDecl *Tag = Result.getAsSingle<TagDecl>()) {
476        const char *TagName = 0;
477        const char *FixItTagName = 0;
478        switch (Tag->getTagKind()) {
479          case TTK_Class:
480            TagName = "class";
481            FixItTagName = "class ";
482            break;
483
484          case TTK_Enum:
485            TagName = "enum";
486            FixItTagName = "enum ";
487            break;
488
489          case TTK_Struct:
490            TagName = "struct";
491            FixItTagName = "struct ";
492            break;
493
494          case TTK_Union:
495            TagName = "union";
496            FixItTagName = "union ";
497            break;
498        }
499
500        Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
501          << Name << TagName << getLangOptions().CPlusPlus
502          << FixItHint::CreateInsertion(NameLoc, FixItTagName);
503        break;
504      }
505
506      Result.clear(LookupOrdinaryName);
507    }
508
509    // Perform typo correction to determine if there is another name that is
510    // close to this name.
511    if (!SecondTry) {
512      if (DeclarationName Corrected = CorrectTypo(Result, S, &SS)) {
513        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
514        unsigned QualifiedDiag = diag::err_no_member_suggest;
515
516        NamedDecl *FirstDecl = Result.empty()? 0 : *Result.begin();
517        NamedDecl *UnderlyingFirstDecl
518          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
519        if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
520            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
521          UnqualifiedDiag = diag::err_no_template_suggest;
522          QualifiedDiag = diag::err_no_member_template_suggest;
523        } else if (UnderlyingFirstDecl &&
524                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
525                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
526                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
527           UnqualifiedDiag = diag::err_unknown_typename_suggest;
528           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
529         }
530
531        if (SS.isEmpty())
532          Diag(NameLoc, UnqualifiedDiag)
533            << Name << Corrected
534            << FixItHint::CreateReplacement(NameLoc, Corrected.getAsString());
535        else
536          Diag(NameLoc, QualifiedDiag)
537            << Name << computeDeclContext(SS, false) << Corrected
538            << SS.getRange()
539            << FixItHint::CreateReplacement(NameLoc, Corrected.getAsString());
540
541        // Update the name, so that the caller has the new name.
542        Name = Corrected.getAsIdentifierInfo();
543
544        // Typo correction corrected to a keyword.
545        if (Result.empty())
546          return Corrected.getAsIdentifierInfo();
547
548        Diag(FirstDecl->getLocation(), diag::note_previous_decl)
549          << FirstDecl->getDeclName();
550
551        // If we found an Objective-C instance variable, let
552        // LookupInObjCMethod build the appropriate expression to
553        // reference the ivar.
554        // FIXME: This is a gross hack.
555        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
556          Result.clear();
557          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
558          return move(E);
559        }
560
561        goto Corrected;
562      }
563    }
564
565    // We failed to correct; just fall through and let the parser deal with it.
566    Result.suppressDiagnostics();
567    return NameClassification::Unknown();
568
569  case LookupResult::NotFoundInCurrentInstantiation:
570    // We performed name lookup into the current instantiation, and there were
571    // dependent bases, so we treat this result the same way as any other
572    // dependent nested-name-specifier.
573
574    // C++ [temp.res]p2:
575    //   A name used in a template declaration or definition and that is
576    //   dependent on a template-parameter is assumed not to name a type
577    //   unless the applicable name lookup finds a type name or the name is
578    //   qualified by the keyword typename.
579    //
580    // FIXME: If the next token is '<', we might want to ask the parser to
581    // perform some heroics to see if we actually have a
582    // template-argument-list, which would indicate a missing 'template'
583    // keyword here.
584    return BuildDependentDeclRefExpr(SS, NameInfo, /*TemplateArgs=*/0);
585
586  case LookupResult::Found:
587  case LookupResult::FoundOverloaded:
588  case LookupResult::FoundUnresolvedValue:
589    break;
590
591  case LookupResult::Ambiguous:
592    if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
593        hasAnyAcceptableTemplateNames(Result)) {
594      // C++ [temp.local]p3:
595      //   A lookup that finds an injected-class-name (10.2) can result in an
596      //   ambiguity in certain cases (for example, if it is found in more than
597      //   one base class). If all of the injected-class-names that are found
598      //   refer to specializations of the same class template, and if the name
599      //   is followed by a template-argument-list, the reference refers to the
600      //   class template itself and not a specialization thereof, and is not
601      //   ambiguous.
602      //
603      // This filtering can make an ambiguous result into an unambiguous one,
604      // so try again after filtering out template names.
605      FilterAcceptableTemplateNames(Result);
606      if (!Result.isAmbiguous()) {
607        IsFilteredTemplateName = true;
608        break;
609      }
610    }
611
612    // Diagnose the ambiguity and return an error.
613    return NameClassification::Error();
614  }
615
616  if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
617      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
618    // C++ [temp.names]p3:
619    //   After name lookup (3.4) finds that a name is a template-name or that
620    //   an operator-function-id or a literal- operator-id refers to a set of
621    //   overloaded functions any member of which is a function template if
622    //   this is followed by a <, the < is always taken as the delimiter of a
623    //   template-argument-list and never as the less-than operator.
624    if (!IsFilteredTemplateName)
625      FilterAcceptableTemplateNames(Result);
626
627    if (!Result.empty()) {
628      bool IsFunctionTemplate;
629      TemplateName Template;
630      if (Result.end() - Result.begin() > 1) {
631        IsFunctionTemplate = true;
632        Template = Context.getOverloadedTemplateName(Result.begin(),
633                                                     Result.end());
634      } else {
635        TemplateDecl *TD
636          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
637        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
638
639        if (SS.isSet() && !SS.isInvalid())
640          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
641                                                    /*TemplateKeyword=*/false,
642                                                      TD);
643        else
644          Template = TemplateName(TD);
645      }
646
647      if (IsFunctionTemplate) {
648        // Function templates always go through overload resolution, at which
649        // point we'll perform the various checks (e.g., accessibility) we need
650        // to based on which function we selected.
651        Result.suppressDiagnostics();
652
653        return NameClassification::FunctionTemplate(Template);
654      }
655
656      return NameClassification::TypeTemplate(Template);
657    }
658  }
659
660  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
661  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
662    DiagnoseUseOfDecl(Type, NameLoc);
663    QualType T = Context.getTypeDeclType(Type);
664    return ParsedType::make(T);
665  }
666
667  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
668  if (!Class) {
669    // FIXME: It's unfortunate that we don't have a Type node for handling this.
670    if (ObjCCompatibleAliasDecl *Alias
671                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
672      Class = Alias->getClassInterface();
673  }
674
675  if (Class) {
676    DiagnoseUseOfDecl(Class, NameLoc);
677
678    if (NextToken.is(tok::period)) {
679      // Interface. <something> is parsed as a property reference expression.
680      // Just return "unknown" as a fall-through for now.
681      Result.suppressDiagnostics();
682      return NameClassification::Unknown();
683    }
684
685    QualType T = Context.getObjCInterfaceType(Class);
686    return ParsedType::make(T);
687  }
688
689  if (!Result.empty() && (*Result.begin())->isCXXClassMember())
690    return BuildPossibleImplicitMemberExpr(SS, Result, 0);
691
692  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
693  return BuildDeclarationNameExpr(SS, Result, ADL);
694}
695
696// Determines the context to return to after temporarily entering a
697// context.  This depends in an unnecessarily complicated way on the
698// exact ordering of callbacks from the parser.
699DeclContext *Sema::getContainingDC(DeclContext *DC) {
700
701  // Functions defined inline within classes aren't parsed until we've
702  // finished parsing the top-level class, so the top-level class is
703  // the context we'll need to return to.
704  if (isa<FunctionDecl>(DC)) {
705    DC = DC->getLexicalParent();
706
707    // A function not defined within a class will always return to its
708    // lexical context.
709    if (!isa<CXXRecordDecl>(DC))
710      return DC;
711
712    // A C++ inline method/friend is parsed *after* the topmost class
713    // it was declared in is fully parsed ("complete");  the topmost
714    // class is the context we need to return to.
715    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
716      DC = RD;
717
718    // Return the declaration context of the topmost class the inline method is
719    // declared in.
720    return DC;
721  }
722
723  // ObjCMethodDecls are parsed (for some reason) outside the context
724  // of the class.
725  if (isa<ObjCMethodDecl>(DC))
726    return DC->getLexicalParent()->getLexicalParent();
727
728  return DC->getLexicalParent();
729}
730
731void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
732  assert(getContainingDC(DC) == CurContext &&
733      "The next DeclContext should be lexically contained in the current one.");
734  CurContext = DC;
735  S->setEntity(DC);
736}
737
738void Sema::PopDeclContext() {
739  assert(CurContext && "DeclContext imbalance!");
740
741  CurContext = getContainingDC(CurContext);
742  assert(CurContext && "Popped translation unit!");
743}
744
745/// EnterDeclaratorContext - Used when we must lookup names in the context
746/// of a declarator's nested name specifier.
747///
748void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
749  // C++0x [basic.lookup.unqual]p13:
750  //   A name used in the definition of a static data member of class
751  //   X (after the qualified-id of the static member) is looked up as
752  //   if the name was used in a member function of X.
753  // C++0x [basic.lookup.unqual]p14:
754  //   If a variable member of a namespace is defined outside of the
755  //   scope of its namespace then any name used in the definition of
756  //   the variable member (after the declarator-id) is looked up as
757  //   if the definition of the variable member occurred in its
758  //   namespace.
759  // Both of these imply that we should push a scope whose context
760  // is the semantic context of the declaration.  We can't use
761  // PushDeclContext here because that context is not necessarily
762  // lexically contained in the current context.  Fortunately,
763  // the containing scope should have the appropriate information.
764
765  assert(!S->getEntity() && "scope already has entity");
766
767#ifndef NDEBUG
768  Scope *Ancestor = S->getParent();
769  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
770  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
771#endif
772
773  CurContext = DC;
774  S->setEntity(DC);
775}
776
777void Sema::ExitDeclaratorContext(Scope *S) {
778  assert(S->getEntity() == CurContext && "Context imbalance!");
779
780  // Switch back to the lexical context.  The safety of this is
781  // enforced by an assert in EnterDeclaratorContext.
782  Scope *Ancestor = S->getParent();
783  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
784  CurContext = (DeclContext*) Ancestor->getEntity();
785
786  // We don't need to do anything with the scope, which is going to
787  // disappear.
788}
789
790/// \brief Determine whether we allow overloading of the function
791/// PrevDecl with another declaration.
792///
793/// This routine determines whether overloading is possible, not
794/// whether some new function is actually an overload. It will return
795/// true in C++ (where we can always provide overloads) or, as an
796/// extension, in C when the previous function is already an
797/// overloaded function declaration or has the "overloadable"
798/// attribute.
799static bool AllowOverloadingOfFunction(LookupResult &Previous,
800                                       ASTContext &Context) {
801  if (Context.getLangOptions().CPlusPlus)
802    return true;
803
804  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
805    return true;
806
807  return (Previous.getResultKind() == LookupResult::Found
808          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
809}
810
811/// Add this decl to the scope shadowed decl chains.
812void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
813  // Move up the scope chain until we find the nearest enclosing
814  // non-transparent context. The declaration will be introduced into this
815  // scope.
816  while (S->getEntity() &&
817         ((DeclContext *)S->getEntity())->isTransparentContext())
818    S = S->getParent();
819
820  // Add scoped declarations into their context, so that they can be
821  // found later. Declarations without a context won't be inserted
822  // into any context.
823  if (AddToContext)
824    CurContext->addDecl(D);
825
826  // Out-of-line definitions shouldn't be pushed into scope in C++.
827  // Out-of-line variable and function definitions shouldn't even in C.
828  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
829      D->isOutOfLine())
830    return;
831
832  // Template instantiations should also not be pushed into scope.
833  if (isa<FunctionDecl>(D) &&
834      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
835    return;
836
837  // If this replaces anything in the current scope,
838  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
839                               IEnd = IdResolver.end();
840  for (; I != IEnd; ++I) {
841    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
842      S->RemoveDecl(*I);
843      IdResolver.RemoveDecl(*I);
844
845      // Should only need to replace one decl.
846      break;
847    }
848  }
849
850  S->AddDecl(D);
851
852  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
853    // Implicitly-generated labels may end up getting generated in an order that
854    // isn't strictly lexical, which breaks name lookup. Be careful to insert
855    // the label at the appropriate place in the identifier chain.
856    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
857      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
858      if (IDC == CurContext) {
859        if (!S->isDeclScope(*I))
860          continue;
861      } else if (IDC->Encloses(CurContext))
862        break;
863    }
864
865    IdResolver.InsertDeclAfter(I, D);
866  } else {
867    IdResolver.AddDecl(D);
868  }
869}
870
871bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
872                         bool ExplicitInstantiationOrSpecialization) {
873  return IdResolver.isDeclInScope(D, Ctx, Context, S,
874                                  ExplicitInstantiationOrSpecialization);
875}
876
877Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
878  DeclContext *TargetDC = DC->getPrimaryContext();
879  do {
880    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
881      if (ScopeDC->getPrimaryContext() == TargetDC)
882        return S;
883  } while ((S = S->getParent()));
884
885  return 0;
886}
887
888static bool isOutOfScopePreviousDeclaration(NamedDecl *,
889                                            DeclContext*,
890                                            ASTContext&);
891
892/// Filters out lookup results that don't fall within the given scope
893/// as determined by isDeclInScope.
894void Sema::FilterLookupForScope(LookupResult &R,
895                                DeclContext *Ctx, Scope *S,
896                                bool ConsiderLinkage,
897                                bool ExplicitInstantiationOrSpecialization) {
898  LookupResult::Filter F = R.makeFilter();
899  while (F.hasNext()) {
900    NamedDecl *D = F.next();
901
902    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
903      continue;
904
905    if (ConsiderLinkage &&
906        isOutOfScopePreviousDeclaration(D, Ctx, Context))
907      continue;
908
909    F.erase();
910  }
911
912  F.done();
913}
914
915static bool isUsingDecl(NamedDecl *D) {
916  return isa<UsingShadowDecl>(D) ||
917         isa<UnresolvedUsingTypenameDecl>(D) ||
918         isa<UnresolvedUsingValueDecl>(D);
919}
920
921/// Removes using shadow declarations from the lookup results.
922static void RemoveUsingDecls(LookupResult &R) {
923  LookupResult::Filter F = R.makeFilter();
924  while (F.hasNext())
925    if (isUsingDecl(F.next()))
926      F.erase();
927
928  F.done();
929}
930
931/// \brief Check for this common pattern:
932/// @code
933/// class S {
934///   S(const S&); // DO NOT IMPLEMENT
935///   void operator=(const S&); // DO NOT IMPLEMENT
936/// };
937/// @endcode
938static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
939  // FIXME: Should check for private access too but access is set after we get
940  // the decl here.
941  if (D->doesThisDeclarationHaveABody())
942    return false;
943
944  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
945    return CD->isCopyConstructor();
946  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
947    return Method->isCopyAssignmentOperator();
948  return false;
949}
950
951bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
952  assert(D);
953
954  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
955    return false;
956
957  // Ignore class templates.
958  if (D->getDeclContext()->isDependentContext() ||
959      D->getLexicalDeclContext()->isDependentContext())
960    return false;
961
962  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
963    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
964      return false;
965
966    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
967      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
968        return false;
969    } else {
970      // 'static inline' functions are used in headers; don't warn.
971      if (FD->getStorageClass() == SC_Static &&
972          FD->isInlineSpecified())
973        return false;
974    }
975
976    if (FD->doesThisDeclarationHaveABody() &&
977        Context.DeclMustBeEmitted(FD))
978      return false;
979  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
980    if (!VD->isFileVarDecl() ||
981        VD->getType().isConstant(Context) ||
982        Context.DeclMustBeEmitted(VD))
983      return false;
984
985    if (VD->isStaticDataMember() &&
986        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
987      return false;
988
989  } else {
990    return false;
991  }
992
993  // Only warn for unused decls internal to the translation unit.
994  if (D->getLinkage() == ExternalLinkage)
995    return false;
996
997  return true;
998}
999
1000void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1001  if (!D)
1002    return;
1003
1004  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1005    const FunctionDecl *First = FD->getFirstDeclaration();
1006    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1007      return; // First should already be in the vector.
1008  }
1009
1010  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1011    const VarDecl *First = VD->getFirstDeclaration();
1012    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1013      return; // First should already be in the vector.
1014  }
1015
1016   if (ShouldWarnIfUnusedFileScopedDecl(D))
1017     UnusedFileScopedDecls.push_back(D);
1018 }
1019
1020static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1021  if (D->isInvalidDecl())
1022    return false;
1023
1024  if (D->isUsed() || D->hasAttr<UnusedAttr>())
1025    return false;
1026
1027  if (isa<LabelDecl>(D))
1028    return true;
1029
1030  // White-list anything that isn't a local variable.
1031  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1032      !D->getDeclContext()->isFunctionOrMethod())
1033    return false;
1034
1035  // Types of valid local variables should be complete, so this should succeed.
1036  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1037
1038    // White-list anything with an __attribute__((unused)) type.
1039    QualType Ty = VD->getType();
1040
1041    // Only look at the outermost level of typedef.
1042    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
1043      if (TT->getDecl()->hasAttr<UnusedAttr>())
1044        return false;
1045    }
1046
1047    // If we failed to complete the type for some reason, or if the type is
1048    // dependent, don't diagnose the variable.
1049    if (Ty->isIncompleteType() || Ty->isDependentType())
1050      return false;
1051
1052    if (const TagType *TT = Ty->getAs<TagType>()) {
1053      const TagDecl *Tag = TT->getDecl();
1054      if (Tag->hasAttr<UnusedAttr>())
1055        return false;
1056
1057      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1058        // FIXME: Checking for the presence of a user-declared constructor
1059        // isn't completely accurate; we'd prefer to check that the initializer
1060        // has no side effects.
1061        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
1062          return false;
1063      }
1064    }
1065
1066    // TODO: __attribute__((unused)) templates?
1067  }
1068
1069  return true;
1070}
1071
1072/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1073/// unless they are marked attr(unused).
1074void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1075  if (!ShouldDiagnoseUnusedDecl(D))
1076    return;
1077
1078  unsigned DiagID;
1079  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1080    DiagID = diag::warn_unused_exception_param;
1081  else if (isa<LabelDecl>(D))
1082    DiagID = diag::warn_unused_label;
1083  else
1084    DiagID = diag::warn_unused_variable;
1085
1086  Diag(D->getLocation(), DiagID) << D->getDeclName();
1087}
1088
1089static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1090  // Verify that we have no forward references left.  If so, there was a goto
1091  // or address of a label taken, but no definition of it.  Label fwd
1092  // definitions are indicated with a null substmt.
1093  if (L->getStmt() == 0)
1094    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1095}
1096
1097void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1098  if (S->decl_empty()) return;
1099  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1100         "Scope shouldn't contain decls!");
1101
1102  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1103       I != E; ++I) {
1104    Decl *TmpD = (*I);
1105    assert(TmpD && "This decl didn't get pushed??");
1106
1107    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1108    NamedDecl *D = cast<NamedDecl>(TmpD);
1109
1110    if (!D->getDeclName()) continue;
1111
1112    // Diagnose unused variables in this scope.
1113    if (!S->hasErrorOccurred())
1114      DiagnoseUnusedDecl(D);
1115
1116    // If this was a forward reference to a label, verify it was defined.
1117    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1118      CheckPoppedLabel(LD, *this);
1119
1120    // Remove this name from our lexical scope.
1121    IdResolver.RemoveDecl(D);
1122  }
1123}
1124
1125/// \brief Look for an Objective-C class in the translation unit.
1126///
1127/// \param Id The name of the Objective-C class we're looking for. If
1128/// typo-correction fixes this name, the Id will be updated
1129/// to the fixed name.
1130///
1131/// \param IdLoc The location of the name in the translation unit.
1132///
1133/// \param TypoCorrection If true, this routine will attempt typo correction
1134/// if there is no class with the given name.
1135///
1136/// \returns The declaration of the named Objective-C class, or NULL if the
1137/// class could not be found.
1138ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1139                                              SourceLocation IdLoc,
1140                                              bool TypoCorrection) {
1141  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1142  // creation from this context.
1143  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1144
1145  if (!IDecl && TypoCorrection) {
1146    // Perform typo correction at the given location, but only if we
1147    // find an Objective-C class name.
1148    LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
1149    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
1150        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
1151      Diag(IdLoc, diag::err_undef_interface_suggest)
1152        << Id << IDecl->getDeclName()
1153        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1154      Diag(IDecl->getLocation(), diag::note_previous_decl)
1155        << IDecl->getDeclName();
1156
1157      Id = IDecl->getIdentifier();
1158    }
1159  }
1160
1161  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1162}
1163
1164/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1165/// from S, where a non-field would be declared. This routine copes
1166/// with the difference between C and C++ scoping rules in structs and
1167/// unions. For example, the following code is well-formed in C but
1168/// ill-formed in C++:
1169/// @code
1170/// struct S6 {
1171///   enum { BAR } e;
1172/// };
1173///
1174/// void test_S6() {
1175///   struct S6 a;
1176///   a.e = BAR;
1177/// }
1178/// @endcode
1179/// For the declaration of BAR, this routine will return a different
1180/// scope. The scope S will be the scope of the unnamed enumeration
1181/// within S6. In C++, this routine will return the scope associated
1182/// with S6, because the enumeration's scope is a transparent
1183/// context but structures can contain non-field names. In C, this
1184/// routine will return the translation unit scope, since the
1185/// enumeration's scope is a transparent context and structures cannot
1186/// contain non-field names.
1187Scope *Sema::getNonFieldDeclScope(Scope *S) {
1188  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1189         (S->getEntity() &&
1190          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1191         (S->isClassScope() && !getLangOptions().CPlusPlus))
1192    S = S->getParent();
1193  return S;
1194}
1195
1196/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1197/// file scope.  lazily create a decl for it. ForRedeclaration is true
1198/// if we're creating this built-in in anticipation of redeclaring the
1199/// built-in.
1200NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1201                                     Scope *S, bool ForRedeclaration,
1202                                     SourceLocation Loc) {
1203  Builtin::ID BID = (Builtin::ID)bid;
1204
1205  ASTContext::GetBuiltinTypeError Error;
1206  QualType R = Context.GetBuiltinType(BID, Error);
1207  switch (Error) {
1208  case ASTContext::GE_None:
1209    // Okay
1210    break;
1211
1212  case ASTContext::GE_Missing_stdio:
1213    if (ForRedeclaration)
1214      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1215        << Context.BuiltinInfo.GetName(BID);
1216    return 0;
1217
1218  case ASTContext::GE_Missing_setjmp:
1219    if (ForRedeclaration)
1220      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1221        << Context.BuiltinInfo.GetName(BID);
1222    return 0;
1223  }
1224
1225  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1226    Diag(Loc, diag::ext_implicit_lib_function_decl)
1227      << Context.BuiltinInfo.GetName(BID)
1228      << R;
1229    if (Context.BuiltinInfo.getHeaderName(BID) &&
1230        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1231          != Diagnostic::Ignored)
1232      Diag(Loc, diag::note_please_include_header)
1233        << Context.BuiltinInfo.getHeaderName(BID)
1234        << Context.BuiltinInfo.GetName(BID);
1235  }
1236
1237  FunctionDecl *New = FunctionDecl::Create(Context,
1238                                           Context.getTranslationUnitDecl(),
1239                                           Loc, Loc, II, R, /*TInfo=*/0,
1240                                           SC_Extern,
1241                                           SC_None, false,
1242                                           /*hasPrototype=*/true);
1243  New->setImplicit();
1244
1245  // Create Decl objects for each parameter, adding them to the
1246  // FunctionDecl.
1247  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1248    llvm::SmallVector<ParmVarDecl*, 16> Params;
1249    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1250      ParmVarDecl *parm =
1251        ParmVarDecl::Create(Context, New, SourceLocation(),
1252                            SourceLocation(), 0,
1253                            FT->getArgType(i), /*TInfo=*/0,
1254                            SC_None, SC_None, 0);
1255      parm->setScopeInfo(0, i);
1256      Params.push_back(parm);
1257    }
1258    New->setParams(Params.data(), Params.size());
1259  }
1260
1261  AddKnownFunctionAttributes(New);
1262
1263  // TUScope is the translation-unit scope to insert this function into.
1264  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1265  // relate Scopes to DeclContexts, and probably eliminate CurContext
1266  // entirely, but we're not there yet.
1267  DeclContext *SavedContext = CurContext;
1268  CurContext = Context.getTranslationUnitDecl();
1269  PushOnScopeChains(New, TUScope);
1270  CurContext = SavedContext;
1271  return New;
1272}
1273
1274/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1275/// same name and scope as a previous declaration 'Old'.  Figure out
1276/// how to resolve this situation, merging decls or emitting
1277/// diagnostics as appropriate. If there was an error, set New to be invalid.
1278///
1279void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1280  // If the new decl is known invalid already, don't bother doing any
1281  // merging checks.
1282  if (New->isInvalidDecl()) return;
1283
1284  // Allow multiple definitions for ObjC built-in typedefs.
1285  // FIXME: Verify the underlying types are equivalent!
1286  if (getLangOptions().ObjC1) {
1287    const IdentifierInfo *TypeID = New->getIdentifier();
1288    switch (TypeID->getLength()) {
1289    default: break;
1290    case 2:
1291      if (!TypeID->isStr("id"))
1292        break;
1293      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
1294      // Install the built-in type for 'id', ignoring the current definition.
1295      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1296      return;
1297    case 5:
1298      if (!TypeID->isStr("Class"))
1299        break;
1300      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
1301      // Install the built-in type for 'Class', ignoring the current definition.
1302      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1303      return;
1304    case 3:
1305      if (!TypeID->isStr("SEL"))
1306        break;
1307      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
1308      // Install the built-in type for 'SEL', ignoring the current definition.
1309      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1310      return;
1311    case 8:
1312      if (!TypeID->isStr("Protocol"))
1313        break;
1314      Context.setObjCProtoType(New->getUnderlyingType());
1315      return;
1316    }
1317    // Fall through - the typedef name was not a builtin type.
1318  }
1319
1320  // Verify the old decl was also a type.
1321  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1322  if (!Old) {
1323    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1324      << New->getDeclName();
1325
1326    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1327    if (OldD->getLocation().isValid())
1328      Diag(OldD->getLocation(), diag::note_previous_definition);
1329
1330    return New->setInvalidDecl();
1331  }
1332
1333  // If the old declaration is invalid, just give up here.
1334  if (Old->isInvalidDecl())
1335    return New->setInvalidDecl();
1336
1337  // Determine the "old" type we'll use for checking and diagnostics.
1338  QualType OldType;
1339  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1340    OldType = OldTypedef->getUnderlyingType();
1341  else
1342    OldType = Context.getTypeDeclType(Old);
1343
1344  // If the typedef types are not identical, reject them in all languages and
1345  // with any extensions enabled.
1346
1347  if (OldType != New->getUnderlyingType() &&
1348      Context.getCanonicalType(OldType) !=
1349      Context.getCanonicalType(New->getUnderlyingType())) {
1350    int Kind = 0;
1351    if (isa<TypeAliasDecl>(Old))
1352      Kind = 1;
1353    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1354      << Kind << New->getUnderlyingType() << OldType;
1355    if (Old->getLocation().isValid())
1356      Diag(Old->getLocation(), diag::note_previous_definition);
1357    return New->setInvalidDecl();
1358  }
1359
1360  // The types match.  Link up the redeclaration chain if the old
1361  // declaration was a typedef.
1362  // FIXME: this is a potential source of wierdness if the type
1363  // spellings don't match exactly.
1364  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1365    New->setPreviousDeclaration(Typedef);
1366
1367  if (getLangOptions().Microsoft)
1368    return;
1369
1370  if (getLangOptions().CPlusPlus) {
1371    // C++ [dcl.typedef]p2:
1372    //   In a given non-class scope, a typedef specifier can be used to
1373    //   redefine the name of any type declared in that scope to refer
1374    //   to the type to which it already refers.
1375    if (!isa<CXXRecordDecl>(CurContext))
1376      return;
1377
1378    // C++0x [dcl.typedef]p4:
1379    //   In a given class scope, a typedef specifier can be used to redefine
1380    //   any class-name declared in that scope that is not also a typedef-name
1381    //   to refer to the type to which it already refers.
1382    //
1383    // This wording came in via DR424, which was a correction to the
1384    // wording in DR56, which accidentally banned code like:
1385    //
1386    //   struct S {
1387    //     typedef struct A { } A;
1388    //   };
1389    //
1390    // in the C++03 standard. We implement the C++0x semantics, which
1391    // allow the above but disallow
1392    //
1393    //   struct S {
1394    //     typedef int I;
1395    //     typedef int I;
1396    //   };
1397    //
1398    // since that was the intent of DR56.
1399    if (!isa<TypedefNameDecl>(Old))
1400      return;
1401
1402    Diag(New->getLocation(), diag::err_redefinition)
1403      << New->getDeclName();
1404    Diag(Old->getLocation(), diag::note_previous_definition);
1405    return New->setInvalidDecl();
1406  }
1407
1408  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1409  // is normally mapped to an error, but can be controlled with
1410  // -Wtypedef-redefinition.  If either the original or the redefinition is
1411  // in a system header, don't emit this for compatibility with GCC.
1412  if (getDiagnostics().getSuppressSystemWarnings() &&
1413      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1414       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1415    return;
1416
1417  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1418    << New->getDeclName();
1419  Diag(Old->getLocation(), diag::note_previous_definition);
1420  return;
1421}
1422
1423/// DeclhasAttr - returns true if decl Declaration already has the target
1424/// attribute.
1425static bool
1426DeclHasAttr(const Decl *D, const Attr *A) {
1427  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1428  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1429    if ((*i)->getKind() == A->getKind()) {
1430      // FIXME: Don't hardcode this check
1431      if (OA && isa<OwnershipAttr>(*i))
1432        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1433      return true;
1434    }
1435
1436  return false;
1437}
1438
1439/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1440static void mergeDeclAttributes(Decl *newDecl, const Decl *oldDecl,
1441                                ASTContext &C) {
1442  if (!oldDecl->hasAttrs())
1443    return;
1444
1445  bool foundAny = newDecl->hasAttrs();
1446
1447  // Ensure that any moving of objects within the allocated map is done before
1448  // we process them.
1449  if (!foundAny) newDecl->setAttrs(AttrVec());
1450
1451  for (specific_attr_iterator<InheritableAttr>
1452       i = oldDecl->specific_attr_begin<InheritableAttr>(),
1453       e = oldDecl->specific_attr_end<InheritableAttr>(); i != e; ++i) {
1454    if (!DeclHasAttr(newDecl, *i)) {
1455      InheritableAttr *newAttr = cast<InheritableAttr>((*i)->clone(C));
1456      newAttr->setInherited(true);
1457      newDecl->addAttr(newAttr);
1458      foundAny = true;
1459    }
1460  }
1461
1462  if (!foundAny) newDecl->dropAttrs();
1463}
1464
1465/// mergeParamDeclAttributes - Copy attributes from the old parameter
1466/// to the new one.
1467static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1468                                     const ParmVarDecl *oldDecl,
1469                                     ASTContext &C) {
1470  if (!oldDecl->hasAttrs())
1471    return;
1472
1473  bool foundAny = newDecl->hasAttrs();
1474
1475  // Ensure that any moving of objects within the allocated map is
1476  // done before we process them.
1477  if (!foundAny) newDecl->setAttrs(AttrVec());
1478
1479  for (specific_attr_iterator<InheritableParamAttr>
1480       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1481       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1482    if (!DeclHasAttr(newDecl, *i)) {
1483      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1484      newAttr->setInherited(true);
1485      newDecl->addAttr(newAttr);
1486      foundAny = true;
1487    }
1488  }
1489
1490  if (!foundAny) newDecl->dropAttrs();
1491}
1492
1493namespace {
1494
1495/// Used in MergeFunctionDecl to keep track of function parameters in
1496/// C.
1497struct GNUCompatibleParamWarning {
1498  ParmVarDecl *OldParm;
1499  ParmVarDecl *NewParm;
1500  QualType PromotedType;
1501};
1502
1503}
1504
1505/// getSpecialMember - get the special member enum for a method.
1506Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1507  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1508    if (Ctor->isDefaultConstructor())
1509      return Sema::CXXDefaultConstructor;
1510
1511    if (Ctor->isCopyConstructor())
1512      return Sema::CXXCopyConstructor;
1513
1514    if (Ctor->isMoveConstructor())
1515      return Sema::CXXMoveConstructor;
1516  } else if (isa<CXXDestructorDecl>(MD)) {
1517    return Sema::CXXDestructor;
1518  } else if (MD->isCopyAssignmentOperator()) {
1519    return Sema::CXXCopyAssignment;
1520  }
1521
1522  return Sema::CXXInvalid;
1523}
1524
1525/// canRedefineFunction - checks if a function can be redefined. Currently,
1526/// only extern inline functions can be redefined, and even then only in
1527/// GNU89 mode.
1528static bool canRedefineFunction(const FunctionDecl *FD,
1529                                const LangOptions& LangOpts) {
1530  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
1531          !LangOpts.CPlusPlus &&
1532          FD->isInlineSpecified() &&
1533          FD->getStorageClass() == SC_Extern);
1534}
1535
1536/// MergeFunctionDecl - We just parsed a function 'New' from
1537/// declarator D which has the same name and scope as a previous
1538/// declaration 'Old'.  Figure out how to resolve this situation,
1539/// merging decls or emitting diagnostics as appropriate.
1540///
1541/// In C++, New and Old must be declarations that are not
1542/// overloaded. Use IsOverload to determine whether New and Old are
1543/// overloaded, and to select the Old declaration that New should be
1544/// merged with.
1545///
1546/// Returns true if there was an error, false otherwise.
1547bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1548  // Verify the old decl was also a function.
1549  FunctionDecl *Old = 0;
1550  if (FunctionTemplateDecl *OldFunctionTemplate
1551        = dyn_cast<FunctionTemplateDecl>(OldD))
1552    Old = OldFunctionTemplate->getTemplatedDecl();
1553  else
1554    Old = dyn_cast<FunctionDecl>(OldD);
1555  if (!Old) {
1556    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1557      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1558      Diag(Shadow->getTargetDecl()->getLocation(),
1559           diag::note_using_decl_target);
1560      Diag(Shadow->getUsingDecl()->getLocation(),
1561           diag::note_using_decl) << 0;
1562      return true;
1563    }
1564
1565    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1566      << New->getDeclName();
1567    Diag(OldD->getLocation(), diag::note_previous_definition);
1568    return true;
1569  }
1570
1571  // Determine whether the previous declaration was a definition,
1572  // implicit declaration, or a declaration.
1573  diag::kind PrevDiag;
1574  if (Old->isThisDeclarationADefinition())
1575    PrevDiag = diag::note_previous_definition;
1576  else if (Old->isImplicit())
1577    PrevDiag = diag::note_previous_implicit_declaration;
1578  else
1579    PrevDiag = diag::note_previous_declaration;
1580
1581  QualType OldQType = Context.getCanonicalType(Old->getType());
1582  QualType NewQType = Context.getCanonicalType(New->getType());
1583
1584  // Don't complain about this if we're in GNU89 mode and the old function
1585  // is an extern inline function.
1586  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1587      New->getStorageClass() == SC_Static &&
1588      Old->getStorageClass() != SC_Static &&
1589      !canRedefineFunction(Old, getLangOptions())) {
1590    if (getLangOptions().Microsoft) {
1591      Diag(New->getLocation(), diag::warn_static_non_static) << New;
1592      Diag(Old->getLocation(), PrevDiag);
1593    } else {
1594      Diag(New->getLocation(), diag::err_static_non_static) << New;
1595      Diag(Old->getLocation(), PrevDiag);
1596      return true;
1597    }
1598  }
1599
1600  // If a function is first declared with a calling convention, but is
1601  // later declared or defined without one, the second decl assumes the
1602  // calling convention of the first.
1603  //
1604  // For the new decl, we have to look at the NON-canonical type to tell the
1605  // difference between a function that really doesn't have a calling
1606  // convention and one that is declared cdecl. That's because in
1607  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1608  // because it is the default calling convention.
1609  //
1610  // Note also that we DO NOT return at this point, because we still have
1611  // other tests to run.
1612  const FunctionType *OldType = cast<FunctionType>(OldQType);
1613  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1614  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1615  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1616  bool RequiresAdjustment = false;
1617  if (OldTypeInfo.getCC() != CC_Default &&
1618      NewTypeInfo.getCC() == CC_Default) {
1619    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1620    RequiresAdjustment = true;
1621  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1622                                     NewTypeInfo.getCC())) {
1623    // Calling conventions really aren't compatible, so complain.
1624    Diag(New->getLocation(), diag::err_cconv_change)
1625      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1626      << (OldTypeInfo.getCC() == CC_Default)
1627      << (OldTypeInfo.getCC() == CC_Default ? "" :
1628          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1629    Diag(Old->getLocation(), diag::note_previous_declaration);
1630    return true;
1631  }
1632
1633  // FIXME: diagnose the other way around?
1634  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1635    NewTypeInfo = NewTypeInfo.withNoReturn(true);
1636    RequiresAdjustment = true;
1637  }
1638
1639  // Merge regparm attribute.
1640  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
1641      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1642    if (NewTypeInfo.getHasRegParm()) {
1643      Diag(New->getLocation(), diag::err_regparm_mismatch)
1644        << NewType->getRegParmType()
1645        << OldType->getRegParmType();
1646      Diag(Old->getLocation(), diag::note_previous_declaration);
1647      return true;
1648    }
1649
1650    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1651    RequiresAdjustment = true;
1652  }
1653
1654  if (RequiresAdjustment) {
1655    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1656    New->setType(QualType(NewType, 0));
1657    NewQType = Context.getCanonicalType(New->getType());
1658  }
1659
1660  if (getLangOptions().CPlusPlus) {
1661    // (C++98 13.1p2):
1662    //   Certain function declarations cannot be overloaded:
1663    //     -- Function declarations that differ only in the return type
1664    //        cannot be overloaded.
1665    QualType OldReturnType = OldType->getResultType();
1666    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1667    QualType ResQT;
1668    if (OldReturnType != NewReturnType) {
1669      if (NewReturnType->isObjCObjectPointerType()
1670          && OldReturnType->isObjCObjectPointerType())
1671        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1672      if (ResQT.isNull()) {
1673        if (New->isCXXClassMember() && New->isOutOfLine())
1674          Diag(New->getLocation(),
1675               diag::err_member_def_does_not_match_ret_type) << New;
1676        else
1677          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1678        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1679        return true;
1680      }
1681      else
1682        NewQType = ResQT;
1683    }
1684
1685    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1686    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1687    if (OldMethod && NewMethod) {
1688      // Preserve triviality.
1689      NewMethod->setTrivial(OldMethod->isTrivial());
1690
1691      bool isFriend = NewMethod->getFriendObjectKind();
1692
1693      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1694        //    -- Member function declarations with the same name and the
1695        //       same parameter types cannot be overloaded if any of them
1696        //       is a static member function declaration.
1697        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1698          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1699          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1700          return true;
1701        }
1702
1703        // C++ [class.mem]p1:
1704        //   [...] A member shall not be declared twice in the
1705        //   member-specification, except that a nested class or member
1706        //   class template can be declared and then later defined.
1707        unsigned NewDiag;
1708        if (isa<CXXConstructorDecl>(OldMethod))
1709          NewDiag = diag::err_constructor_redeclared;
1710        else if (isa<CXXDestructorDecl>(NewMethod))
1711          NewDiag = diag::err_destructor_redeclared;
1712        else if (isa<CXXConversionDecl>(NewMethod))
1713          NewDiag = diag::err_conv_function_redeclared;
1714        else
1715          NewDiag = diag::err_member_redeclared;
1716
1717        Diag(New->getLocation(), NewDiag);
1718        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1719
1720      // Complain if this is an explicit declaration of a special
1721      // member that was initially declared implicitly.
1722      //
1723      // As an exception, it's okay to befriend such methods in order
1724      // to permit the implicit constructor/destructor/operator calls.
1725      } else if (OldMethod->isImplicit()) {
1726        if (isFriend) {
1727          NewMethod->setImplicit();
1728        } else {
1729          Diag(NewMethod->getLocation(),
1730               diag::err_definition_of_implicitly_declared_member)
1731            << New << getSpecialMember(OldMethod);
1732          return true;
1733        }
1734      } else if (OldMethod->isExplicitlyDefaulted()) {
1735        Diag(NewMethod->getLocation(),
1736             diag::err_definition_of_explicitly_defaulted_member)
1737          << getSpecialMember(OldMethod);
1738        return true;
1739      }
1740    }
1741
1742    // (C++98 8.3.5p3):
1743    //   All declarations for a function shall agree exactly in both the
1744    //   return type and the parameter-type-list.
1745    // We also want to respect all the extended bits except noreturn.
1746
1747    // noreturn should now match unless the old type info didn't have it.
1748    QualType OldQTypeForComparison = OldQType;
1749    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
1750      assert(OldQType == QualType(OldType, 0));
1751      const FunctionType *OldTypeForComparison
1752        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
1753      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
1754      assert(OldQTypeForComparison.isCanonical());
1755    }
1756
1757    if (OldQTypeForComparison == NewQType)
1758      return MergeCompatibleFunctionDecls(New, Old);
1759
1760    // Fall through for conflicting redeclarations and redefinitions.
1761  }
1762
1763  // C: Function types need to be compatible, not identical. This handles
1764  // duplicate function decls like "void f(int); void f(enum X);" properly.
1765  if (!getLangOptions().CPlusPlus &&
1766      Context.typesAreCompatible(OldQType, NewQType)) {
1767    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1768    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1769    const FunctionProtoType *OldProto = 0;
1770    if (isa<FunctionNoProtoType>(NewFuncType) &&
1771        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1772      // The old declaration provided a function prototype, but the
1773      // new declaration does not. Merge in the prototype.
1774      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1775      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1776                                                 OldProto->arg_type_end());
1777      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1778                                         ParamTypes.data(), ParamTypes.size(),
1779                                         OldProto->getExtProtoInfo());
1780      New->setType(NewQType);
1781      New->setHasInheritedPrototype();
1782
1783      // Synthesize a parameter for each argument type.
1784      llvm::SmallVector<ParmVarDecl*, 16> Params;
1785      for (FunctionProtoType::arg_type_iterator
1786             ParamType = OldProto->arg_type_begin(),
1787             ParamEnd = OldProto->arg_type_end();
1788           ParamType != ParamEnd; ++ParamType) {
1789        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1790                                                 SourceLocation(),
1791                                                 SourceLocation(), 0,
1792                                                 *ParamType, /*TInfo=*/0,
1793                                                 SC_None, SC_None,
1794                                                 0);
1795        Param->setScopeInfo(0, Params.size());
1796        Param->setImplicit();
1797        Params.push_back(Param);
1798      }
1799
1800      New->setParams(Params.data(), Params.size());
1801    }
1802
1803    return MergeCompatibleFunctionDecls(New, Old);
1804  }
1805
1806  // GNU C permits a K&R definition to follow a prototype declaration
1807  // if the declared types of the parameters in the K&R definition
1808  // match the types in the prototype declaration, even when the
1809  // promoted types of the parameters from the K&R definition differ
1810  // from the types in the prototype. GCC then keeps the types from
1811  // the prototype.
1812  //
1813  // If a variadic prototype is followed by a non-variadic K&R definition,
1814  // the K&R definition becomes variadic.  This is sort of an edge case, but
1815  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1816  // C99 6.9.1p8.
1817  if (!getLangOptions().CPlusPlus &&
1818      Old->hasPrototype() && !New->hasPrototype() &&
1819      New->getType()->getAs<FunctionProtoType>() &&
1820      Old->getNumParams() == New->getNumParams()) {
1821    llvm::SmallVector<QualType, 16> ArgTypes;
1822    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1823    const FunctionProtoType *OldProto
1824      = Old->getType()->getAs<FunctionProtoType>();
1825    const FunctionProtoType *NewProto
1826      = New->getType()->getAs<FunctionProtoType>();
1827
1828    // Determine whether this is the GNU C extension.
1829    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1830                                               NewProto->getResultType());
1831    bool LooseCompatible = !MergedReturn.isNull();
1832    for (unsigned Idx = 0, End = Old->getNumParams();
1833         LooseCompatible && Idx != End; ++Idx) {
1834      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1835      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1836      if (Context.typesAreCompatible(OldParm->getType(),
1837                                     NewProto->getArgType(Idx))) {
1838        ArgTypes.push_back(NewParm->getType());
1839      } else if (Context.typesAreCompatible(OldParm->getType(),
1840                                            NewParm->getType(),
1841                                            /*CompareUnqualified=*/true)) {
1842        GNUCompatibleParamWarning Warn
1843          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1844        Warnings.push_back(Warn);
1845        ArgTypes.push_back(NewParm->getType());
1846      } else
1847        LooseCompatible = false;
1848    }
1849
1850    if (LooseCompatible) {
1851      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1852        Diag(Warnings[Warn].NewParm->getLocation(),
1853             diag::ext_param_promoted_not_compatible_with_prototype)
1854          << Warnings[Warn].PromotedType
1855          << Warnings[Warn].OldParm->getType();
1856        if (Warnings[Warn].OldParm->getLocation().isValid())
1857          Diag(Warnings[Warn].OldParm->getLocation(),
1858               diag::note_previous_declaration);
1859      }
1860
1861      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1862                                           ArgTypes.size(),
1863                                           OldProto->getExtProtoInfo()));
1864      return MergeCompatibleFunctionDecls(New, Old);
1865    }
1866
1867    // Fall through to diagnose conflicting types.
1868  }
1869
1870  // A function that has already been declared has been redeclared or defined
1871  // with a different type- show appropriate diagnostic
1872  if (unsigned BuiltinID = Old->getBuiltinID()) {
1873    // The user has declared a builtin function with an incompatible
1874    // signature.
1875    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1876      // The function the user is redeclaring is a library-defined
1877      // function like 'malloc' or 'printf'. Warn about the
1878      // redeclaration, then pretend that we don't know about this
1879      // library built-in.
1880      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1881      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1882        << Old << Old->getType();
1883      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1884      Old->setInvalidDecl();
1885      return false;
1886    }
1887
1888    PrevDiag = diag::note_previous_builtin_declaration;
1889  }
1890
1891  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1892  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1893  return true;
1894}
1895
1896/// \brief Completes the merge of two function declarations that are
1897/// known to be compatible.
1898///
1899/// This routine handles the merging of attributes and other
1900/// properties of function declarations form the old declaration to
1901/// the new declaration, once we know that New is in fact a
1902/// redeclaration of Old.
1903///
1904/// \returns false
1905bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1906  // Merge the attributes
1907  mergeDeclAttributes(New, Old, Context);
1908
1909  // Merge the storage class.
1910  if (Old->getStorageClass() != SC_Extern &&
1911      Old->getStorageClass() != SC_None)
1912    New->setStorageClass(Old->getStorageClass());
1913
1914  // Merge "pure" flag.
1915  if (Old->isPure())
1916    New->setPure();
1917
1918  // Merge attributes from the parameters.  These can mismatch with K&R
1919  // declarations.
1920  if (New->getNumParams() == Old->getNumParams())
1921    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
1922      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
1923                               Context);
1924
1925  if (getLangOptions().CPlusPlus)
1926    return MergeCXXFunctionDecl(New, Old);
1927
1928  return false;
1929}
1930
1931void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
1932                                const ObjCMethodDecl *oldMethod) {
1933  // Merge the attributes.
1934  mergeDeclAttributes(newMethod, oldMethod, Context);
1935
1936  // Merge attributes from the parameters.
1937  for (ObjCMethodDecl::param_iterator oi = oldMethod->param_begin(),
1938         ni = newMethod->param_begin(), ne = newMethod->param_end();
1939       ni != ne; ++ni, ++oi)
1940    mergeParamDeclAttributes(*ni, *oi, Context);
1941
1942  CheckObjCMethodOverride(newMethod, oldMethod, true);
1943}
1944
1945/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
1946/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
1947/// emitting diagnostics as appropriate.
1948///
1949/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
1950/// to here in AddInitializerToDecl and AddCXXDirectInitializerToDecl. We can't
1951/// check them before the initializer is attached.
1952///
1953void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
1954  if (New->isInvalidDecl() || Old->isInvalidDecl())
1955    return;
1956
1957  QualType MergedT;
1958  if (getLangOptions().CPlusPlus) {
1959    AutoType *AT = New->getType()->getContainedAutoType();
1960    if (AT && !AT->isDeduced()) {
1961      // We don't know what the new type is until the initializer is attached.
1962      return;
1963    } else if (Context.hasSameType(New->getType(), Old->getType())) {
1964      // These could still be something that needs exception specs checked.
1965      return MergeVarDeclExceptionSpecs(New, Old);
1966    }
1967    // C++ [basic.link]p10:
1968    //   [...] the types specified by all declarations referring to a given
1969    //   object or function shall be identical, except that declarations for an
1970    //   array object can specify array types that differ by the presence or
1971    //   absence of a major array bound (8.3.4).
1972    else if (Old->getType()->isIncompleteArrayType() &&
1973             New->getType()->isArrayType()) {
1974      CanQual<ArrayType> OldArray
1975        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1976      CanQual<ArrayType> NewArray
1977        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1978      if (OldArray->getElementType() == NewArray->getElementType())
1979        MergedT = New->getType();
1980    } else if (Old->getType()->isArrayType() &&
1981             New->getType()->isIncompleteArrayType()) {
1982      CanQual<ArrayType> OldArray
1983        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1984      CanQual<ArrayType> NewArray
1985        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1986      if (OldArray->getElementType() == NewArray->getElementType())
1987        MergedT = Old->getType();
1988    } else if (New->getType()->isObjCObjectPointerType()
1989               && Old->getType()->isObjCObjectPointerType()) {
1990        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
1991                                                        Old->getType());
1992    }
1993  } else {
1994    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1995  }
1996  if (MergedT.isNull()) {
1997    Diag(New->getLocation(), diag::err_redefinition_different_type)
1998      << New->getDeclName();
1999    Diag(Old->getLocation(), diag::note_previous_definition);
2000    return New->setInvalidDecl();
2001  }
2002  New->setType(MergedT);
2003}
2004
2005/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2006/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2007/// situation, merging decls or emitting diagnostics as appropriate.
2008///
2009/// Tentative definition rules (C99 6.9.2p2) are checked by
2010/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2011/// definitions here, since the initializer hasn't been attached.
2012///
2013void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2014  // If the new decl is already invalid, don't do any other checking.
2015  if (New->isInvalidDecl())
2016    return;
2017
2018  // Verify the old decl was also a variable.
2019  VarDecl *Old = 0;
2020  if (!Previous.isSingleResult() ||
2021      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2022    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2023      << New->getDeclName();
2024    Diag(Previous.getRepresentativeDecl()->getLocation(),
2025         diag::note_previous_definition);
2026    return New->setInvalidDecl();
2027  }
2028
2029  // C++ [class.mem]p1:
2030  //   A member shall not be declared twice in the member-specification [...]
2031  //
2032  // Here, we need only consider static data members.
2033  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2034    Diag(New->getLocation(), diag::err_duplicate_member)
2035      << New->getIdentifier();
2036    Diag(Old->getLocation(), diag::note_previous_declaration);
2037    New->setInvalidDecl();
2038  }
2039
2040  mergeDeclAttributes(New, Old, Context);
2041
2042  // Merge the types.
2043  MergeVarDeclTypes(New, Old);
2044  if (New->isInvalidDecl())
2045    return;
2046
2047  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2048  if (New->getStorageClass() == SC_Static &&
2049      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2050    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2051    Diag(Old->getLocation(), diag::note_previous_definition);
2052    return New->setInvalidDecl();
2053  }
2054  // C99 6.2.2p4:
2055  //   For an identifier declared with the storage-class specifier
2056  //   extern in a scope in which a prior declaration of that
2057  //   identifier is visible,23) if the prior declaration specifies
2058  //   internal or external linkage, the linkage of the identifier at
2059  //   the later declaration is the same as the linkage specified at
2060  //   the prior declaration. If no prior declaration is visible, or
2061  //   if the prior declaration specifies no linkage, then the
2062  //   identifier has external linkage.
2063  if (New->hasExternalStorage() && Old->hasLinkage())
2064    /* Okay */;
2065  else if (New->getStorageClass() != SC_Static &&
2066           Old->getStorageClass() == SC_Static) {
2067    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2068    Diag(Old->getLocation(), diag::note_previous_definition);
2069    return New->setInvalidDecl();
2070  }
2071
2072  // Check if extern is followed by non-extern and vice-versa.
2073  if (New->hasExternalStorage() &&
2074      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2075    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2076    Diag(Old->getLocation(), diag::note_previous_definition);
2077    return New->setInvalidDecl();
2078  }
2079  if (Old->hasExternalStorage() &&
2080      !New->hasLinkage() && New->isLocalVarDecl()) {
2081    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2082    Diag(Old->getLocation(), diag::note_previous_definition);
2083    return New->setInvalidDecl();
2084  }
2085
2086  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2087
2088  // FIXME: The test for external storage here seems wrong? We still
2089  // need to check for mismatches.
2090  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2091      // Don't complain about out-of-line definitions of static members.
2092      !(Old->getLexicalDeclContext()->isRecord() &&
2093        !New->getLexicalDeclContext()->isRecord())) {
2094    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2095    Diag(Old->getLocation(), diag::note_previous_definition);
2096    return New->setInvalidDecl();
2097  }
2098
2099  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2100    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2101    Diag(Old->getLocation(), diag::note_previous_definition);
2102  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2103    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2104    Diag(Old->getLocation(), diag::note_previous_definition);
2105  }
2106
2107  // C++ doesn't have tentative definitions, so go right ahead and check here.
2108  const VarDecl *Def;
2109  if (getLangOptions().CPlusPlus &&
2110      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2111      (Def = Old->getDefinition())) {
2112    Diag(New->getLocation(), diag::err_redefinition)
2113      << New->getDeclName();
2114    Diag(Def->getLocation(), diag::note_previous_definition);
2115    New->setInvalidDecl();
2116    return;
2117  }
2118  // c99 6.2.2 P4.
2119  // For an identifier declared with the storage-class specifier extern in a
2120  // scope in which a prior declaration of that identifier is visible, if
2121  // the prior declaration specifies internal or external linkage, the linkage
2122  // of the identifier at the later declaration is the same as the linkage
2123  // specified at the prior declaration.
2124  // FIXME. revisit this code.
2125  if (New->hasExternalStorage() &&
2126      Old->getLinkage() == InternalLinkage &&
2127      New->getDeclContext() == Old->getDeclContext())
2128    New->setStorageClass(Old->getStorageClass());
2129
2130  // Keep a chain of previous declarations.
2131  New->setPreviousDeclaration(Old);
2132
2133  // Inherit access appropriately.
2134  New->setAccess(Old->getAccess());
2135}
2136
2137/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2138/// no declarator (e.g. "struct foo;") is parsed.
2139Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2140                                       DeclSpec &DS) {
2141  return ParsedFreeStandingDeclSpec(S, AS, DS,
2142                                    MultiTemplateParamsArg(*this, 0, 0));
2143}
2144
2145/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2146/// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2147/// parameters to cope with template friend declarations.
2148Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2149                                       DeclSpec &DS,
2150                                       MultiTemplateParamsArg TemplateParams) {
2151  Decl *TagD = 0;
2152  TagDecl *Tag = 0;
2153  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2154      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2155      DS.getTypeSpecType() == DeclSpec::TST_union ||
2156      DS.getTypeSpecType() == DeclSpec::TST_enum) {
2157    TagD = DS.getRepAsDecl();
2158
2159    if (!TagD) // We probably had an error
2160      return 0;
2161
2162    // Note that the above type specs guarantee that the
2163    // type rep is a Decl, whereas in many of the others
2164    // it's a Type.
2165    Tag = dyn_cast<TagDecl>(TagD);
2166  }
2167
2168  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2169    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2170    // or incomplete types shall not be restrict-qualified."
2171    if (TypeQuals & DeclSpec::TQ_restrict)
2172      Diag(DS.getRestrictSpecLoc(),
2173           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2174           << DS.getSourceRange();
2175  }
2176
2177  if (DS.isFriendSpecified()) {
2178    // If we're dealing with a decl but not a TagDecl, assume that
2179    // whatever routines created it handled the friendship aspect.
2180    if (TagD && !Tag)
2181      return 0;
2182    return ActOnFriendTypeDecl(S, DS, TemplateParams);
2183  }
2184
2185  // Track whether we warned about the fact that there aren't any
2186  // declarators.
2187  bool emittedWarning = false;
2188
2189  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2190    ProcessDeclAttributeList(S, Record, DS.getAttributes().getList());
2191
2192    if (!Record->getDeclName() && Record->isDefinition() &&
2193        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2194      if (getLangOptions().CPlusPlus ||
2195          Record->getDeclContext()->isRecord())
2196        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2197
2198      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2199        << DS.getSourceRange();
2200      emittedWarning = true;
2201    }
2202  }
2203
2204  // Check for Microsoft C extension: anonymous struct.
2205  if (getLangOptions().Microsoft && !getLangOptions().CPlusPlus &&
2206      CurContext->isRecord() &&
2207      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2208    // Handle 2 kinds of anonymous struct:
2209    //   struct STRUCT;
2210    // and
2211    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
2212    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2213    if ((Record && Record->getDeclName() && !Record->isDefinition()) ||
2214        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2215         DS.getRepAsType().get()->isStructureType())) {
2216      Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
2217        << DS.getSourceRange();
2218      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2219    }
2220  }
2221
2222  if (getLangOptions().CPlusPlus &&
2223      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2224    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2225      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2226          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2227        Diag(Enum->getLocation(), diag::ext_no_declarators)
2228          << DS.getSourceRange();
2229        emittedWarning = true;
2230      }
2231
2232  // Skip all the checks below if we have a type error.
2233  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2234
2235  if (!DS.isMissingDeclaratorOk()) {
2236    // Warn about typedefs of enums without names, since this is an
2237    // extension in both Microsoft and GNU.
2238    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2239        Tag && isa<EnumDecl>(Tag)) {
2240      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
2241        << DS.getSourceRange();
2242      return Tag;
2243    }
2244
2245    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2246      << DS.getSourceRange();
2247    emittedWarning = true;
2248  }
2249
2250  // We're going to complain about a bunch of spurious specifiers;
2251  // only do this if we're declaring a tag, because otherwise we
2252  // should be getting diag::ext_no_declarators.
2253  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2254    return TagD;
2255
2256  // Note that a linkage-specification sets a storage class, but
2257  // 'extern "C" struct foo;' is actually valid and not theoretically
2258  // useless.
2259  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2260    if (!DS.isExternInLinkageSpec())
2261      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2262        << DeclSpec::getSpecifierName(scs);
2263
2264  if (DS.isThreadSpecified())
2265    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2266  if (DS.getTypeQualifiers()) {
2267    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2268      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2269    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2270      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2271    // Restrict is covered above.
2272  }
2273  if (DS.isInlineSpecified())
2274    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2275  if (DS.isVirtualSpecified())
2276    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2277  if (DS.isExplicitSpecified())
2278    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2279
2280  // FIXME: Warn on useless attributes
2281
2282  return TagD;
2283}
2284
2285/// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec.
2286/// builds a statement for it and returns it so it is evaluated.
2287StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) {
2288  StmtResult R;
2289  if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) {
2290    Expr *Exp = DS.getRepAsExpr();
2291    QualType Ty = Exp->getType();
2292    if (Ty->isPointerType()) {
2293      do
2294        Ty = Ty->getAs<PointerType>()->getPointeeType();
2295      while (Ty->isPointerType());
2296    }
2297    if (Ty->isVariableArrayType()) {
2298      R = ActOnExprStmt(MakeFullExpr(Exp));
2299    }
2300  }
2301  return R;
2302}
2303
2304/// We are trying to inject an anonymous member into the given scope;
2305/// check if there's an existing declaration that can't be overloaded.
2306///
2307/// \return true if this is a forbidden redeclaration
2308static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2309                                         Scope *S,
2310                                         DeclContext *Owner,
2311                                         DeclarationName Name,
2312                                         SourceLocation NameLoc,
2313                                         unsigned diagnostic) {
2314  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2315                 Sema::ForRedeclaration);
2316  if (!SemaRef.LookupName(R, S)) return false;
2317
2318  if (R.getAsSingle<TagDecl>())
2319    return false;
2320
2321  // Pick a representative declaration.
2322  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2323  assert(PrevDecl && "Expected a non-null Decl");
2324
2325  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2326    return false;
2327
2328  SemaRef.Diag(NameLoc, diagnostic) << Name;
2329  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2330
2331  return true;
2332}
2333
2334/// InjectAnonymousStructOrUnionMembers - Inject the members of the
2335/// anonymous struct or union AnonRecord into the owning context Owner
2336/// and scope S. This routine will be invoked just after we realize
2337/// that an unnamed union or struct is actually an anonymous union or
2338/// struct, e.g.,
2339///
2340/// @code
2341/// union {
2342///   int i;
2343///   float f;
2344/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
2345///    // f into the surrounding scope.x
2346/// @endcode
2347///
2348/// This routine is recursive, injecting the names of nested anonymous
2349/// structs/unions into the owning context and scope as well.
2350static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2351                                                DeclContext *Owner,
2352                                                RecordDecl *AnonRecord,
2353                                                AccessSpecifier AS,
2354                              llvm::SmallVector<NamedDecl*, 2> &Chaining,
2355                                                      bool MSAnonStruct) {
2356  unsigned diagKind
2357    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2358                            : diag::err_anonymous_struct_member_redecl;
2359
2360  bool Invalid = false;
2361
2362  // Look every FieldDecl and IndirectFieldDecl with a name.
2363  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2364                               DEnd = AnonRecord->decls_end();
2365       D != DEnd; ++D) {
2366    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2367        cast<NamedDecl>(*D)->getDeclName()) {
2368      ValueDecl *VD = cast<ValueDecl>(*D);
2369      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2370                                       VD->getLocation(), diagKind)) {
2371        // C++ [class.union]p2:
2372        //   The names of the members of an anonymous union shall be
2373        //   distinct from the names of any other entity in the
2374        //   scope in which the anonymous union is declared.
2375        Invalid = true;
2376      } else {
2377        // C++ [class.union]p2:
2378        //   For the purpose of name lookup, after the anonymous union
2379        //   definition, the members of the anonymous union are
2380        //   considered to have been defined in the scope in which the
2381        //   anonymous union is declared.
2382        unsigned OldChainingSize = Chaining.size();
2383        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2384          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2385               PE = IF->chain_end(); PI != PE; ++PI)
2386            Chaining.push_back(*PI);
2387        else
2388          Chaining.push_back(VD);
2389
2390        assert(Chaining.size() >= 2);
2391        NamedDecl **NamedChain =
2392          new (SemaRef.Context)NamedDecl*[Chaining.size()];
2393        for (unsigned i = 0; i < Chaining.size(); i++)
2394          NamedChain[i] = Chaining[i];
2395
2396        IndirectFieldDecl* IndirectField =
2397          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2398                                    VD->getIdentifier(), VD->getType(),
2399                                    NamedChain, Chaining.size());
2400
2401        IndirectField->setAccess(AS);
2402        IndirectField->setImplicit();
2403        SemaRef.PushOnScopeChains(IndirectField, S);
2404
2405        // That includes picking up the appropriate access specifier.
2406        if (AS != AS_none) IndirectField->setAccess(AS);
2407
2408        Chaining.resize(OldChainingSize);
2409      }
2410    }
2411  }
2412
2413  return Invalid;
2414}
2415
2416/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2417/// a VarDecl::StorageClass. Any error reporting is up to the caller:
2418/// illegal input values are mapped to SC_None.
2419static StorageClass
2420StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2421  switch (StorageClassSpec) {
2422  case DeclSpec::SCS_unspecified:    return SC_None;
2423  case DeclSpec::SCS_extern:         return SC_Extern;
2424  case DeclSpec::SCS_static:         return SC_Static;
2425  case DeclSpec::SCS_auto:           return SC_Auto;
2426  case DeclSpec::SCS_register:       return SC_Register;
2427  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2428    // Illegal SCSs map to None: error reporting is up to the caller.
2429  case DeclSpec::SCS_mutable:        // Fall through.
2430  case DeclSpec::SCS_typedef:        return SC_None;
2431  }
2432  llvm_unreachable("unknown storage class specifier");
2433}
2434
2435/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2436/// a StorageClass. Any error reporting is up to the caller:
2437/// illegal input values are mapped to SC_None.
2438static StorageClass
2439StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2440  switch (StorageClassSpec) {
2441  case DeclSpec::SCS_unspecified:    return SC_None;
2442  case DeclSpec::SCS_extern:         return SC_Extern;
2443  case DeclSpec::SCS_static:         return SC_Static;
2444  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2445    // Illegal SCSs map to None: error reporting is up to the caller.
2446  case DeclSpec::SCS_auto:           // Fall through.
2447  case DeclSpec::SCS_mutable:        // Fall through.
2448  case DeclSpec::SCS_register:       // Fall through.
2449  case DeclSpec::SCS_typedef:        return SC_None;
2450  }
2451  llvm_unreachable("unknown storage class specifier");
2452}
2453
2454/// BuildAnonymousStructOrUnion - Handle the declaration of an
2455/// anonymous structure or union. Anonymous unions are a C++ feature
2456/// (C++ [class.union]) and a GNU C extension; anonymous structures
2457/// are a GNU C and GNU C++ extension.
2458Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2459                                             AccessSpecifier AS,
2460                                             RecordDecl *Record) {
2461  DeclContext *Owner = Record->getDeclContext();
2462
2463  // Diagnose whether this anonymous struct/union is an extension.
2464  if (Record->isUnion() && !getLangOptions().CPlusPlus)
2465    Diag(Record->getLocation(), diag::ext_anonymous_union);
2466  else if (!Record->isUnion())
2467    Diag(Record->getLocation(), diag::ext_anonymous_struct);
2468
2469  // C and C++ require different kinds of checks for anonymous
2470  // structs/unions.
2471  bool Invalid = false;
2472  if (getLangOptions().CPlusPlus) {
2473    const char* PrevSpec = 0;
2474    unsigned DiagID;
2475    // C++ [class.union]p3:
2476    //   Anonymous unions declared in a named namespace or in the
2477    //   global namespace shall be declared static.
2478    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2479        (isa<TranslationUnitDecl>(Owner) ||
2480         (isa<NamespaceDecl>(Owner) &&
2481          cast<NamespaceDecl>(Owner)->getDeclName()))) {
2482      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
2483      Invalid = true;
2484
2485      // Recover by adding 'static'.
2486      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
2487                             PrevSpec, DiagID, getLangOptions());
2488    }
2489    // C++ [class.union]p3:
2490    //   A storage class is not allowed in a declaration of an
2491    //   anonymous union in a class scope.
2492    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2493             isa<RecordDecl>(Owner)) {
2494      Diag(DS.getStorageClassSpecLoc(),
2495           diag::err_anonymous_union_with_storage_spec);
2496      Invalid = true;
2497
2498      // Recover by removing the storage specifier.
2499      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
2500                             PrevSpec, DiagID, getLangOptions());
2501    }
2502
2503    // Ignore const/volatile/restrict qualifiers.
2504    if (DS.getTypeQualifiers()) {
2505      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2506        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2507          << Record->isUnion() << 0
2508          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
2509      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2510        Diag(DS.getVolatileSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2511          << Record->isUnion() << 1
2512          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
2513      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
2514        Diag(DS.getRestrictSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2515          << Record->isUnion() << 2
2516          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
2517
2518      DS.ClearTypeQualifiers();
2519    }
2520
2521    // C++ [class.union]p2:
2522    //   The member-specification of an anonymous union shall only
2523    //   define non-static data members. [Note: nested types and
2524    //   functions cannot be declared within an anonymous union. ]
2525    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
2526                                 MemEnd = Record->decls_end();
2527         Mem != MemEnd; ++Mem) {
2528      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
2529        // C++ [class.union]p3:
2530        //   An anonymous union shall not have private or protected
2531        //   members (clause 11).
2532        assert(FD->getAccess() != AS_none);
2533        if (FD->getAccess() != AS_public) {
2534          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
2535            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
2536          Invalid = true;
2537        }
2538
2539        // C++ [class.union]p1
2540        //   An object of a class with a non-trivial constructor, a non-trivial
2541        //   copy constructor, a non-trivial destructor, or a non-trivial copy
2542        //   assignment operator cannot be a member of a union, nor can an
2543        //   array of such objects.
2544        if (!getLangOptions().CPlusPlus0x && CheckNontrivialField(FD))
2545          Invalid = true;
2546      } else if ((*Mem)->isImplicit()) {
2547        // Any implicit members are fine.
2548      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
2549        // This is a type that showed up in an
2550        // elaborated-type-specifier inside the anonymous struct or
2551        // union, but which actually declares a type outside of the
2552        // anonymous struct or union. It's okay.
2553      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
2554        if (!MemRecord->isAnonymousStructOrUnion() &&
2555            MemRecord->getDeclName()) {
2556          // Visual C++ allows type definition in anonymous struct or union.
2557          if (getLangOptions().Microsoft)
2558            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
2559              << (int)Record->isUnion();
2560          else {
2561            // This is a nested type declaration.
2562            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
2563              << (int)Record->isUnion();
2564            Invalid = true;
2565          }
2566        }
2567      } else if (isa<AccessSpecDecl>(*Mem)) {
2568        // Any access specifier is fine.
2569      } else {
2570        // We have something that isn't a non-static data
2571        // member. Complain about it.
2572        unsigned DK = diag::err_anonymous_record_bad_member;
2573        if (isa<TypeDecl>(*Mem))
2574          DK = diag::err_anonymous_record_with_type;
2575        else if (isa<FunctionDecl>(*Mem))
2576          DK = diag::err_anonymous_record_with_function;
2577        else if (isa<VarDecl>(*Mem))
2578          DK = diag::err_anonymous_record_with_static;
2579
2580        // Visual C++ allows type definition in anonymous struct or union.
2581        if (getLangOptions().Microsoft &&
2582            DK == diag::err_anonymous_record_with_type)
2583          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
2584            << (int)Record->isUnion();
2585        else {
2586          Diag((*Mem)->getLocation(), DK)
2587              << (int)Record->isUnion();
2588          Invalid = true;
2589        }
2590      }
2591    }
2592  }
2593
2594  if (!Record->isUnion() && !Owner->isRecord()) {
2595    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
2596      << (int)getLangOptions().CPlusPlus;
2597    Invalid = true;
2598  }
2599
2600  // Mock up a declarator.
2601  Declarator Dc(DS, Declarator::TypeNameContext);
2602  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2603  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
2604
2605  // Create a declaration for this anonymous struct/union.
2606  NamedDecl *Anon = 0;
2607  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2608    Anon = FieldDecl::Create(Context, OwningClass,
2609                             DS.getSourceRange().getBegin(),
2610                             Record->getLocation(),
2611                             /*IdentifierInfo=*/0,
2612                             Context.getTypeDeclType(Record),
2613                             TInfo,
2614                             /*BitWidth=*/0, /*Mutable=*/false,
2615                             /*HasInit=*/false);
2616    Anon->setAccess(AS);
2617    if (getLangOptions().CPlusPlus)
2618      FieldCollector->Add(cast<FieldDecl>(Anon));
2619  } else {
2620    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2621    assert(SCSpec != DeclSpec::SCS_typedef &&
2622           "Parser allowed 'typedef' as storage class VarDecl.");
2623    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2624    if (SCSpec == DeclSpec::SCS_mutable) {
2625      // mutable can only appear on non-static class members, so it's always
2626      // an error here
2627      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2628      Invalid = true;
2629      SC = SC_None;
2630    }
2631    SCSpec = DS.getStorageClassSpecAsWritten();
2632    VarDecl::StorageClass SCAsWritten
2633      = StorageClassSpecToVarDeclStorageClass(SCSpec);
2634
2635    Anon = VarDecl::Create(Context, Owner,
2636                           DS.getSourceRange().getBegin(),
2637                           Record->getLocation(), /*IdentifierInfo=*/0,
2638                           Context.getTypeDeclType(Record),
2639                           TInfo, SC, SCAsWritten);
2640  }
2641  Anon->setImplicit();
2642
2643  // Add the anonymous struct/union object to the current
2644  // context. We'll be referencing this object when we refer to one of
2645  // its members.
2646  Owner->addDecl(Anon);
2647
2648  // Inject the members of the anonymous struct/union into the owning
2649  // context and into the identifier resolver chain for name lookup
2650  // purposes.
2651  llvm::SmallVector<NamedDecl*, 2> Chain;
2652  Chain.push_back(Anon);
2653
2654  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2655                                          Chain, false))
2656    Invalid = true;
2657
2658  // Mark this as an anonymous struct/union type. Note that we do not
2659  // do this until after we have already checked and injected the
2660  // members of this anonymous struct/union type, because otherwise
2661  // the members could be injected twice: once by DeclContext when it
2662  // builds its lookup table, and once by
2663  // InjectAnonymousStructOrUnionMembers.
2664  Record->setAnonymousStructOrUnion(true);
2665
2666  if (Invalid)
2667    Anon->setInvalidDecl();
2668
2669  return Anon;
2670}
2671
2672/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2673/// Microsoft C anonymous structure.
2674/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2675/// Example:
2676///
2677/// struct A { int a; };
2678/// struct B { struct A; int b; };
2679///
2680/// void foo() {
2681///   B var;
2682///   var.a = 3;
2683/// }
2684///
2685Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2686                                           RecordDecl *Record) {
2687
2688  // If there is no Record, get the record via the typedef.
2689  if (!Record)
2690    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2691
2692  // Mock up a declarator.
2693  Declarator Dc(DS, Declarator::TypeNameContext);
2694  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2695  assert(TInfo && "couldn't build declarator info for anonymous struct");
2696
2697  // Create a declaration for this anonymous struct.
2698  NamedDecl* Anon = FieldDecl::Create(Context,
2699                             cast<RecordDecl>(CurContext),
2700                             DS.getSourceRange().getBegin(),
2701                             DS.getSourceRange().getBegin(),
2702                             /*IdentifierInfo=*/0,
2703                             Context.getTypeDeclType(Record),
2704                             TInfo,
2705                             /*BitWidth=*/0, /*Mutable=*/false,
2706                             /*HasInit=*/false);
2707  Anon->setImplicit();
2708
2709  // Add the anonymous struct object to the current context.
2710  CurContext->addDecl(Anon);
2711
2712  // Inject the members of the anonymous struct into the current
2713  // context and into the identifier resolver chain for name lookup
2714  // purposes.
2715  llvm::SmallVector<NamedDecl*, 2> Chain;
2716  Chain.push_back(Anon);
2717
2718  if (InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2719                                          Record->getDefinition(),
2720                                          AS_none, Chain, true))
2721    Anon->setInvalidDecl();
2722
2723  return Anon;
2724}
2725
2726/// GetNameForDeclarator - Determine the full declaration name for the
2727/// given Declarator.
2728DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2729  return GetNameFromUnqualifiedId(D.getName());
2730}
2731
2732/// \brief Retrieves the declaration name from a parsed unqualified-id.
2733DeclarationNameInfo
2734Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2735  DeclarationNameInfo NameInfo;
2736  NameInfo.setLoc(Name.StartLocation);
2737
2738  switch (Name.getKind()) {
2739
2740  case UnqualifiedId::IK_Identifier:
2741    NameInfo.setName(Name.Identifier);
2742    NameInfo.setLoc(Name.StartLocation);
2743    return NameInfo;
2744
2745  case UnqualifiedId::IK_OperatorFunctionId:
2746    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2747                                           Name.OperatorFunctionId.Operator));
2748    NameInfo.setLoc(Name.StartLocation);
2749    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2750      = Name.OperatorFunctionId.SymbolLocations[0];
2751    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2752      = Name.EndLocation.getRawEncoding();
2753    return NameInfo;
2754
2755  case UnqualifiedId::IK_LiteralOperatorId:
2756    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2757                                                           Name.Identifier));
2758    NameInfo.setLoc(Name.StartLocation);
2759    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2760    return NameInfo;
2761
2762  case UnqualifiedId::IK_ConversionFunctionId: {
2763    TypeSourceInfo *TInfo;
2764    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2765    if (Ty.isNull())
2766      return DeclarationNameInfo();
2767    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2768                                               Context.getCanonicalType(Ty)));
2769    NameInfo.setLoc(Name.StartLocation);
2770    NameInfo.setNamedTypeInfo(TInfo);
2771    return NameInfo;
2772  }
2773
2774  case UnqualifiedId::IK_ConstructorName: {
2775    TypeSourceInfo *TInfo;
2776    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2777    if (Ty.isNull())
2778      return DeclarationNameInfo();
2779    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2780                                              Context.getCanonicalType(Ty)));
2781    NameInfo.setLoc(Name.StartLocation);
2782    NameInfo.setNamedTypeInfo(TInfo);
2783    return NameInfo;
2784  }
2785
2786  case UnqualifiedId::IK_ConstructorTemplateId: {
2787    // In well-formed code, we can only have a constructor
2788    // template-id that refers to the current context, so go there
2789    // to find the actual type being constructed.
2790    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2791    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2792      return DeclarationNameInfo();
2793
2794    // Determine the type of the class being constructed.
2795    QualType CurClassType = Context.getTypeDeclType(CurClass);
2796
2797    // FIXME: Check two things: that the template-id names the same type as
2798    // CurClassType, and that the template-id does not occur when the name
2799    // was qualified.
2800
2801    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2802                                    Context.getCanonicalType(CurClassType)));
2803    NameInfo.setLoc(Name.StartLocation);
2804    // FIXME: should we retrieve TypeSourceInfo?
2805    NameInfo.setNamedTypeInfo(0);
2806    return NameInfo;
2807  }
2808
2809  case UnqualifiedId::IK_DestructorName: {
2810    TypeSourceInfo *TInfo;
2811    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2812    if (Ty.isNull())
2813      return DeclarationNameInfo();
2814    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2815                                              Context.getCanonicalType(Ty)));
2816    NameInfo.setLoc(Name.StartLocation);
2817    NameInfo.setNamedTypeInfo(TInfo);
2818    return NameInfo;
2819  }
2820
2821  case UnqualifiedId::IK_TemplateId: {
2822    TemplateName TName = Name.TemplateId->Template.get();
2823    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
2824    return Context.getNameForTemplate(TName, TNameLoc);
2825  }
2826
2827  } // switch (Name.getKind())
2828
2829  assert(false && "Unknown name kind");
2830  return DeclarationNameInfo();
2831}
2832
2833/// isNearlyMatchingFunction - Determine whether the C++ functions
2834/// Declaration and Definition are "nearly" matching. This heuristic
2835/// is used to improve diagnostics in the case where an out-of-line
2836/// function definition doesn't match any declaration within
2837/// the class or namespace.
2838static bool isNearlyMatchingFunction(ASTContext &Context,
2839                                     FunctionDecl *Declaration,
2840                                     FunctionDecl *Definition) {
2841  if (Declaration->param_size() != Definition->param_size())
2842    return false;
2843  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2844    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2845    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2846
2847    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
2848                                        DefParamTy.getNonReferenceType()))
2849      return false;
2850  }
2851
2852  return true;
2853}
2854
2855/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
2856/// declarator needs to be rebuilt in the current instantiation.
2857/// Any bits of declarator which appear before the name are valid for
2858/// consideration here.  That's specifically the type in the decl spec
2859/// and the base type in any member-pointer chunks.
2860static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
2861                                                    DeclarationName Name) {
2862  // The types we specifically need to rebuild are:
2863  //   - typenames, typeofs, and decltypes
2864  //   - types which will become injected class names
2865  // Of course, we also need to rebuild any type referencing such a
2866  // type.  It's safest to just say "dependent", but we call out a
2867  // few cases here.
2868
2869  DeclSpec &DS = D.getMutableDeclSpec();
2870  switch (DS.getTypeSpecType()) {
2871  case DeclSpec::TST_typename:
2872  case DeclSpec::TST_typeofType:
2873  case DeclSpec::TST_decltype:
2874  case DeclSpec::TST_underlyingType: {
2875    // Grab the type from the parser.
2876    TypeSourceInfo *TSI = 0;
2877    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
2878    if (T.isNull() || !T->isDependentType()) break;
2879
2880    // Make sure there's a type source info.  This isn't really much
2881    // of a waste; most dependent types should have type source info
2882    // attached already.
2883    if (!TSI)
2884      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
2885
2886    // Rebuild the type in the current instantiation.
2887    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
2888    if (!TSI) return true;
2889
2890    // Store the new type back in the decl spec.
2891    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
2892    DS.UpdateTypeRep(LocType);
2893    break;
2894  }
2895
2896  case DeclSpec::TST_typeofExpr: {
2897    Expr *E = DS.getRepAsExpr();
2898    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
2899    if (Result.isInvalid()) return true;
2900    DS.UpdateExprRep(Result.get());
2901    break;
2902  }
2903
2904  default:
2905    // Nothing to do for these decl specs.
2906    break;
2907  }
2908
2909  // It doesn't matter what order we do this in.
2910  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2911    DeclaratorChunk &Chunk = D.getTypeObject(I);
2912
2913    // The only type information in the declarator which can come
2914    // before the declaration name is the base type of a member
2915    // pointer.
2916    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
2917      continue;
2918
2919    // Rebuild the scope specifier in-place.
2920    CXXScopeSpec &SS = Chunk.Mem.Scope();
2921    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2922      return true;
2923  }
2924
2925  return false;
2926}
2927
2928Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D,
2929                            bool IsFunctionDefinition) {
2930  return HandleDeclarator(S, D, MultiTemplateParamsArg(*this),
2931                          IsFunctionDefinition);
2932}
2933
2934/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
2935///   If T is the name of a class, then each of the following shall have a
2936///   name different from T:
2937///     - every static data member of class T;
2938///     - every member function of class T
2939///     - every member of class T that is itself a type;
2940/// \returns true if the declaration name violates these rules.
2941bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
2942                                   DeclarationNameInfo NameInfo) {
2943  DeclarationName Name = NameInfo.getName();
2944
2945  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
2946    if (Record->getIdentifier() && Record->getDeclName() == Name) {
2947      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
2948      return true;
2949    }
2950
2951  return false;
2952}
2953
2954Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
2955                             MultiTemplateParamsArg TemplateParamLists,
2956                             bool IsFunctionDefinition) {
2957  // TODO: consider using NameInfo for diagnostic.
2958  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2959  DeclarationName Name = NameInfo.getName();
2960
2961  // All of these full declarators require an identifier.  If it doesn't have
2962  // one, the ParsedFreeStandingDeclSpec action should be used.
2963  if (!Name) {
2964    if (!D.isInvalidType())  // Reject this if we think it is valid.
2965      Diag(D.getDeclSpec().getSourceRange().getBegin(),
2966           diag::err_declarator_need_ident)
2967        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2968    return 0;
2969  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
2970    return 0;
2971
2972  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2973  // we find one that is.
2974  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2975         (S->getFlags() & Scope::TemplateParamScope) != 0)
2976    S = S->getParent();
2977
2978  DeclContext *DC = CurContext;
2979  if (D.getCXXScopeSpec().isInvalid())
2980    D.setInvalidType();
2981  else if (D.getCXXScopeSpec().isSet()) {
2982    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
2983                                        UPPC_DeclarationQualifier))
2984      return 0;
2985
2986    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
2987    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
2988    if (!DC) {
2989      // If we could not compute the declaration context, it's because the
2990      // declaration context is dependent but does not refer to a class,
2991      // class template, or class template partial specialization. Complain
2992      // and return early, to avoid the coming semantic disaster.
2993      Diag(D.getIdentifierLoc(),
2994           diag::err_template_qualified_declarator_no_match)
2995        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2996        << D.getCXXScopeSpec().getRange();
2997      return 0;
2998    }
2999    bool IsDependentContext = DC->isDependentContext();
3000
3001    if (!IsDependentContext &&
3002        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
3003      return 0;
3004
3005    if (isa<CXXRecordDecl>(DC)) {
3006      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
3007        Diag(D.getIdentifierLoc(),
3008             diag::err_member_def_undefined_record)
3009          << Name << DC << D.getCXXScopeSpec().getRange();
3010        D.setInvalidType();
3011      } else if (isa<CXXRecordDecl>(CurContext) &&
3012                 !D.getDeclSpec().isFriendSpecified()) {
3013        // The user provided a superfluous scope specifier inside a class
3014        // definition:
3015        //
3016        // class X {
3017        //   void X::f();
3018        // };
3019        if (CurContext->Equals(DC))
3020          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
3021            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
3022        else
3023          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
3024            << Name << D.getCXXScopeSpec().getRange();
3025
3026        // Pretend that this qualifier was not here.
3027        D.getCXXScopeSpec().clear();
3028      }
3029    }
3030
3031    // Check whether we need to rebuild the type of the given
3032    // declaration in the current instantiation.
3033    if (EnteringContext && IsDependentContext &&
3034        TemplateParamLists.size() != 0) {
3035      ContextRAII SavedContext(*this, DC);
3036      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
3037        D.setInvalidType();
3038    }
3039  }
3040
3041  if (DiagnoseClassNameShadow(DC, NameInfo))
3042    // If this is a typedef, we'll end up spewing multiple diagnostics.
3043    // Just return early; it's safer.
3044    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3045      return 0;
3046
3047  NamedDecl *New;
3048
3049  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3050  QualType R = TInfo->getType();
3051
3052  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
3053                                      UPPC_DeclarationType))
3054    D.setInvalidType();
3055
3056  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
3057                        ForRedeclaration);
3058
3059  // See if this is a redefinition of a variable in the same scope.
3060  if (!D.getCXXScopeSpec().isSet()) {
3061    bool IsLinkageLookup = false;
3062
3063    // If the declaration we're planning to build will be a function
3064    // or object with linkage, then look for another declaration with
3065    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3066    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3067      /* Do nothing*/;
3068    else if (R->isFunctionType()) {
3069      if (CurContext->isFunctionOrMethod() ||
3070          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3071        IsLinkageLookup = true;
3072    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3073      IsLinkageLookup = true;
3074    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3075             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3076      IsLinkageLookup = true;
3077
3078    if (IsLinkageLookup)
3079      Previous.clear(LookupRedeclarationWithLinkage);
3080
3081    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3082  } else { // Something like "int foo::x;"
3083    LookupQualifiedName(Previous, DC);
3084
3085    // Don't consider using declarations as previous declarations for
3086    // out-of-line members.
3087    RemoveUsingDecls(Previous);
3088
3089    // C++ 7.3.1.2p2:
3090    // Members (including explicit specializations of templates) of a named
3091    // namespace can also be defined outside that namespace by explicit
3092    // qualification of the name being defined, provided that the entity being
3093    // defined was already declared in the namespace and the definition appears
3094    // after the point of declaration in a namespace that encloses the
3095    // declarations namespace.
3096    //
3097    // Note that we only check the context at this point. We don't yet
3098    // have enough information to make sure that PrevDecl is actually
3099    // the declaration we want to match. For example, given:
3100    //
3101    //   class X {
3102    //     void f();
3103    //     void f(float);
3104    //   };
3105    //
3106    //   void X::f(int) { } // ill-formed
3107    //
3108    // In this case, PrevDecl will point to the overload set
3109    // containing the two f's declared in X, but neither of them
3110    // matches.
3111
3112    // First check whether we named the global scope.
3113    if (isa<TranslationUnitDecl>(DC)) {
3114      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
3115        << Name << D.getCXXScopeSpec().getRange();
3116    } else {
3117      DeclContext *Cur = CurContext;
3118      while (isa<LinkageSpecDecl>(Cur))
3119        Cur = Cur->getParent();
3120      if (!Cur->Encloses(DC)) {
3121        // The qualifying scope doesn't enclose the original declaration.
3122        // Emit diagnostic based on current scope.
3123        SourceLocation L = D.getIdentifierLoc();
3124        SourceRange R = D.getCXXScopeSpec().getRange();
3125        if (isa<FunctionDecl>(Cur))
3126          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
3127        else
3128          Diag(L, diag::err_invalid_declarator_scope)
3129            << Name << cast<NamedDecl>(DC) << R;
3130        D.setInvalidType();
3131      }
3132    }
3133  }
3134
3135  if (Previous.isSingleResult() &&
3136      Previous.getFoundDecl()->isTemplateParameter()) {
3137    // Maybe we will complain about the shadowed template parameter.
3138    if (!D.isInvalidType())
3139      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3140                                          Previous.getFoundDecl()))
3141        D.setInvalidType();
3142
3143    // Just pretend that we didn't see the previous declaration.
3144    Previous.clear();
3145  }
3146
3147  // In C++, the previous declaration we find might be a tag type
3148  // (class or enum). In this case, the new declaration will hide the
3149  // tag type. Note that this does does not apply if we're declaring a
3150  // typedef (C++ [dcl.typedef]p4).
3151  if (Previous.isSingleTagDecl() &&
3152      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3153    Previous.clear();
3154
3155  bool Redeclaration = false;
3156  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3157    if (TemplateParamLists.size()) {
3158      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3159      return 0;
3160    }
3161
3162    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
3163  } else if (R->isFunctionType()) {
3164    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
3165                                  move(TemplateParamLists),
3166                                  IsFunctionDefinition, Redeclaration);
3167  } else {
3168    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
3169                                  move(TemplateParamLists),
3170                                  Redeclaration);
3171  }
3172
3173  if (New == 0)
3174    return 0;
3175
3176  // If this has an identifier and is not an invalid redeclaration or
3177  // function template specialization, add it to the scope stack.
3178  if (New->getDeclName() && !(Redeclaration && New->isInvalidDecl()))
3179    PushOnScopeChains(New, S);
3180
3181  return New;
3182}
3183
3184/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3185/// types into constant array types in certain situations which would otherwise
3186/// be errors (for GCC compatibility).
3187static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3188                                                    ASTContext &Context,
3189                                                    bool &SizeIsNegative,
3190                                                    llvm::APSInt &Oversized) {
3191  // This method tries to turn a variable array into a constant
3192  // array even when the size isn't an ICE.  This is necessary
3193  // for compatibility with code that depends on gcc's buggy
3194  // constant expression folding, like struct {char x[(int)(char*)2];}
3195  SizeIsNegative = false;
3196  Oversized = 0;
3197
3198  if (T->isDependentType())
3199    return QualType();
3200
3201  QualifierCollector Qs;
3202  const Type *Ty = Qs.strip(T);
3203
3204  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3205    QualType Pointee = PTy->getPointeeType();
3206    QualType FixedType =
3207        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3208                                            Oversized);
3209    if (FixedType.isNull()) return FixedType;
3210    FixedType = Context.getPointerType(FixedType);
3211    return Qs.apply(Context, FixedType);
3212  }
3213  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3214    QualType Inner = PTy->getInnerType();
3215    QualType FixedType =
3216        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3217                                            Oversized);
3218    if (FixedType.isNull()) return FixedType;
3219    FixedType = Context.getParenType(FixedType);
3220    return Qs.apply(Context, FixedType);
3221  }
3222
3223  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3224  if (!VLATy)
3225    return QualType();
3226  // FIXME: We should probably handle this case
3227  if (VLATy->getElementType()->isVariablyModifiedType())
3228    return QualType();
3229
3230  Expr::EvalResult EvalResult;
3231  if (!VLATy->getSizeExpr() ||
3232      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
3233      !EvalResult.Val.isInt())
3234    return QualType();
3235
3236  // Check whether the array size is negative.
3237  llvm::APSInt &Res = EvalResult.Val.getInt();
3238  if (Res.isSigned() && Res.isNegative()) {
3239    SizeIsNegative = true;
3240    return QualType();
3241  }
3242
3243  // Check whether the array is too large to be addressed.
3244  unsigned ActiveSizeBits
3245    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
3246                                              Res);
3247  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
3248    Oversized = Res;
3249    return QualType();
3250  }
3251
3252  return Context.getConstantArrayType(VLATy->getElementType(),
3253                                      Res, ArrayType::Normal, 0);
3254}
3255
3256/// \brief Register the given locally-scoped external C declaration so
3257/// that it can be found later for redeclarations
3258void
3259Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
3260                                       const LookupResult &Previous,
3261                                       Scope *S) {
3262  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
3263         "Decl is not a locally-scoped decl!");
3264  // Note that we have a locally-scoped external with this name.
3265  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
3266
3267  if (!Previous.isSingleResult())
3268    return;
3269
3270  NamedDecl *PrevDecl = Previous.getFoundDecl();
3271
3272  // If there was a previous declaration of this variable, it may be
3273  // in our identifier chain. Update the identifier chain with the new
3274  // declaration.
3275  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
3276    // The previous declaration was found on the identifer resolver
3277    // chain, so remove it from its scope.
3278    while (S && !S->isDeclScope(PrevDecl))
3279      S = S->getParent();
3280
3281    if (S)
3282      S->RemoveDecl(PrevDecl);
3283  }
3284}
3285
3286/// \brief Diagnose function specifiers on a declaration of an identifier that
3287/// does not identify a function.
3288void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
3289  // FIXME: We should probably indicate the identifier in question to avoid
3290  // confusion for constructs like "inline int a(), b;"
3291  if (D.getDeclSpec().isInlineSpecified())
3292    Diag(D.getDeclSpec().getInlineSpecLoc(),
3293         diag::err_inline_non_function);
3294
3295  if (D.getDeclSpec().isVirtualSpecified())
3296    Diag(D.getDeclSpec().getVirtualSpecLoc(),
3297         diag::err_virtual_non_function);
3298
3299  if (D.getDeclSpec().isExplicitSpecified())
3300    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3301         diag::err_explicit_non_function);
3302}
3303
3304NamedDecl*
3305Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3306                             QualType R,  TypeSourceInfo *TInfo,
3307                             LookupResult &Previous, bool &Redeclaration) {
3308  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
3309  if (D.getCXXScopeSpec().isSet()) {
3310    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
3311      << D.getCXXScopeSpec().getRange();
3312    D.setInvalidType();
3313    // Pretend we didn't see the scope specifier.
3314    DC = CurContext;
3315    Previous.clear();
3316  }
3317
3318  if (getLangOptions().CPlusPlus) {
3319    // Check that there are no default arguments (C++ only).
3320    CheckExtraCXXDefaultArguments(D);
3321  }
3322
3323  DiagnoseFunctionSpecifiers(D);
3324
3325  if (D.getDeclSpec().isThreadSpecified())
3326    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3327
3328  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
3329    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
3330      << D.getName().getSourceRange();
3331    return 0;
3332  }
3333
3334  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
3335  if (!NewTD) return 0;
3336
3337  // Handle attributes prior to checking for duplicates in MergeVarDecl
3338  ProcessDeclAttributes(S, NewTD, D);
3339
3340  CheckTypedefForVariablyModifiedType(S, NewTD);
3341
3342  return ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
3343}
3344
3345void
3346Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
3347  // C99 6.7.7p2: If a typedef name specifies a variably modified type
3348  // then it shall have block scope.
3349  // Note that variably modified types must be fixed before merging the decl so
3350  // that redeclarations will match.
3351  QualType T = NewTD->getUnderlyingType();
3352  if (T->isVariablyModifiedType()) {
3353    getCurFunction()->setHasBranchProtectedScope();
3354
3355    if (S->getFnParent() == 0) {
3356      bool SizeIsNegative;
3357      llvm::APSInt Oversized;
3358      QualType FixedTy =
3359          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3360                                              Oversized);
3361      if (!FixedTy.isNull()) {
3362        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
3363        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
3364      } else {
3365        if (SizeIsNegative)
3366          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
3367        else if (T->isVariableArrayType())
3368          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
3369        else if (Oversized.getBoolValue())
3370          Diag(NewTD->getLocation(), diag::err_array_too_large) << Oversized.toString(10);
3371        else
3372          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
3373        NewTD->setInvalidDecl();
3374      }
3375    }
3376  }
3377}
3378
3379
3380/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
3381/// declares a typedef-name, either using the 'typedef' type specifier or via
3382/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
3383NamedDecl*
3384Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
3385                           LookupResult &Previous, bool &Redeclaration) {
3386  // Merge the decl with the existing one if appropriate. If the decl is
3387  // in an outer scope, it isn't the same thing.
3388  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
3389                       /*ExplicitInstantiationOrSpecialization=*/false);
3390  if (!Previous.empty()) {
3391    Redeclaration = true;
3392    MergeTypedefNameDecl(NewTD, Previous);
3393  }
3394
3395  // If this is the C FILE type, notify the AST context.
3396  if (IdentifierInfo *II = NewTD->getIdentifier())
3397    if (!NewTD->isInvalidDecl() &&
3398        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
3399      if (II->isStr("FILE"))
3400        Context.setFILEDecl(NewTD);
3401      else if (II->isStr("jmp_buf"))
3402        Context.setjmp_bufDecl(NewTD);
3403      else if (II->isStr("sigjmp_buf"))
3404        Context.setsigjmp_bufDecl(NewTD);
3405      else if (II->isStr("__builtin_va_list"))
3406        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
3407    }
3408
3409  return NewTD;
3410}
3411
3412/// \brief Determines whether the given declaration is an out-of-scope
3413/// previous declaration.
3414///
3415/// This routine should be invoked when name lookup has found a
3416/// previous declaration (PrevDecl) that is not in the scope where a
3417/// new declaration by the same name is being introduced. If the new
3418/// declaration occurs in a local scope, previous declarations with
3419/// linkage may still be considered previous declarations (C99
3420/// 6.2.2p4-5, C++ [basic.link]p6).
3421///
3422/// \param PrevDecl the previous declaration found by name
3423/// lookup
3424///
3425/// \param DC the context in which the new declaration is being
3426/// declared.
3427///
3428/// \returns true if PrevDecl is an out-of-scope previous declaration
3429/// for a new delcaration with the same name.
3430static bool
3431isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
3432                                ASTContext &Context) {
3433  if (!PrevDecl)
3434    return false;
3435
3436  if (!PrevDecl->hasLinkage())
3437    return false;
3438
3439  if (Context.getLangOptions().CPlusPlus) {
3440    // C++ [basic.link]p6:
3441    //   If there is a visible declaration of an entity with linkage
3442    //   having the same name and type, ignoring entities declared
3443    //   outside the innermost enclosing namespace scope, the block
3444    //   scope declaration declares that same entity and receives the
3445    //   linkage of the previous declaration.
3446    DeclContext *OuterContext = DC->getRedeclContext();
3447    if (!OuterContext->isFunctionOrMethod())
3448      // This rule only applies to block-scope declarations.
3449      return false;
3450
3451    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
3452    if (PrevOuterContext->isRecord())
3453      // We found a member function: ignore it.
3454      return false;
3455
3456    // Find the innermost enclosing namespace for the new and
3457    // previous declarations.
3458    OuterContext = OuterContext->getEnclosingNamespaceContext();
3459    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
3460
3461    // The previous declaration is in a different namespace, so it
3462    // isn't the same function.
3463    if (!OuterContext->Equals(PrevOuterContext))
3464      return false;
3465  }
3466
3467  return true;
3468}
3469
3470static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
3471  CXXScopeSpec &SS = D.getCXXScopeSpec();
3472  if (!SS.isSet()) return;
3473  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
3474}
3475
3476NamedDecl*
3477Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
3478                              QualType R, TypeSourceInfo *TInfo,
3479                              LookupResult &Previous,
3480                              MultiTemplateParamsArg TemplateParamLists,
3481                              bool &Redeclaration) {
3482  DeclarationName Name = GetNameForDeclarator(D).getName();
3483
3484  // Check that there are no default arguments (C++ only).
3485  if (getLangOptions().CPlusPlus)
3486    CheckExtraCXXDefaultArguments(D);
3487
3488  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
3489  assert(SCSpec != DeclSpec::SCS_typedef &&
3490         "Parser allowed 'typedef' as storage class VarDecl.");
3491  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3492  if (SCSpec == DeclSpec::SCS_mutable) {
3493    // mutable can only appear on non-static class members, so it's always
3494    // an error here
3495    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
3496    D.setInvalidType();
3497    SC = SC_None;
3498  }
3499  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3500  VarDecl::StorageClass SCAsWritten
3501    = StorageClassSpecToVarDeclStorageClass(SCSpec);
3502
3503  IdentifierInfo *II = Name.getAsIdentifierInfo();
3504  if (!II) {
3505    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
3506      << Name.getAsString();
3507    return 0;
3508  }
3509
3510  DiagnoseFunctionSpecifiers(D);
3511
3512  if (!DC->isRecord() && S->getFnParent() == 0) {
3513    // C99 6.9p2: The storage-class specifiers auto and register shall not
3514    // appear in the declaration specifiers in an external declaration.
3515    if (SC == SC_Auto || SC == SC_Register) {
3516
3517      // If this is a register variable with an asm label specified, then this
3518      // is a GNU extension.
3519      if (SC == SC_Register && D.getAsmLabel())
3520        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
3521      else
3522        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
3523      D.setInvalidType();
3524    }
3525  }
3526
3527  bool isExplicitSpecialization = false;
3528  VarDecl *NewVD;
3529  if (!getLangOptions().CPlusPlus) {
3530    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3531                            D.getIdentifierLoc(), II,
3532                            R, TInfo, SC, SCAsWritten);
3533
3534    if (D.isInvalidType())
3535      NewVD->setInvalidDecl();
3536  } else {
3537    if (DC->isRecord() && !CurContext->isRecord()) {
3538      // This is an out-of-line definition of a static data member.
3539      if (SC == SC_Static) {
3540        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3541             diag::err_static_out_of_line)
3542          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3543      } else if (SC == SC_None)
3544        SC = SC_Static;
3545    }
3546    if (SC == SC_Static) {
3547      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
3548        if (RD->isLocalClass())
3549          Diag(D.getIdentifierLoc(),
3550               diag::err_static_data_member_not_allowed_in_local_class)
3551            << Name << RD->getDeclName();
3552
3553        // C++ [class.union]p1: If a union contains a static data member,
3554        // the program is ill-formed.
3555        //
3556        // We also disallow static data members in anonymous structs.
3557        if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
3558          Diag(D.getIdentifierLoc(),
3559               diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
3560            << Name << RD->isUnion();
3561      }
3562    }
3563
3564    // Match up the template parameter lists with the scope specifier, then
3565    // determine whether we have a template or a template specialization.
3566    isExplicitSpecialization = false;
3567    bool Invalid = false;
3568    if (TemplateParameterList *TemplateParams
3569        = MatchTemplateParametersToScopeSpecifier(
3570                                  D.getDeclSpec().getSourceRange().getBegin(),
3571                                                  D.getIdentifierLoc(),
3572                                                  D.getCXXScopeSpec(),
3573                                                  TemplateParamLists.get(),
3574                                                  TemplateParamLists.size(),
3575                                                  /*never a friend*/ false,
3576                                                  isExplicitSpecialization,
3577                                                  Invalid)) {
3578      if (TemplateParams->size() > 0) {
3579        // There is no such thing as a variable template.
3580        Diag(D.getIdentifierLoc(), diag::err_template_variable)
3581          << II
3582          << SourceRange(TemplateParams->getTemplateLoc(),
3583                         TemplateParams->getRAngleLoc());
3584        return 0;
3585      } else {
3586        // There is an extraneous 'template<>' for this variable. Complain
3587        // about it, but allow the declaration of the variable.
3588        Diag(TemplateParams->getTemplateLoc(),
3589             diag::err_template_variable_noparams)
3590          << II
3591          << SourceRange(TemplateParams->getTemplateLoc(),
3592                         TemplateParams->getRAngleLoc());
3593      }
3594    }
3595
3596    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3597                            D.getIdentifierLoc(), II,
3598                            R, TInfo, SC, SCAsWritten);
3599
3600    // If this decl has an auto type in need of deduction, make a note of the
3601    // Decl so we can diagnose uses of it in its own initializer.
3602    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
3603        R->getContainedAutoType())
3604      ParsingInitForAutoVars.insert(NewVD);
3605
3606    if (D.isInvalidType() || Invalid)
3607      NewVD->setInvalidDecl();
3608
3609    SetNestedNameSpecifier(NewVD, D);
3610
3611    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
3612      NewVD->setTemplateParameterListsInfo(Context,
3613                                           TemplateParamLists.size(),
3614                                           TemplateParamLists.release());
3615    }
3616  }
3617
3618  if (D.getDeclSpec().isThreadSpecified()) {
3619    if (NewVD->hasLocalStorage())
3620      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
3621    else if (!Context.Target.isTLSSupported())
3622      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
3623    else
3624      NewVD->setThreadSpecified(true);
3625  }
3626
3627  // Set the lexical context. If the declarator has a C++ scope specifier, the
3628  // lexical context will be different from the semantic context.
3629  NewVD->setLexicalDeclContext(CurContext);
3630
3631  // Handle attributes prior to checking for duplicates in MergeVarDecl
3632  ProcessDeclAttributes(S, NewVD, D);
3633
3634  // Handle GNU asm-label extension (encoded as an attribute).
3635  if (Expr *E = (Expr*)D.getAsmLabel()) {
3636    // The parser guarantees this is a string.
3637    StringLiteral *SE = cast<StringLiteral>(E);
3638    llvm::StringRef Label = SE->getString();
3639    if (S->getFnParent() != 0) {
3640      switch (SC) {
3641      case SC_None:
3642      case SC_Auto:
3643        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
3644        break;
3645      case SC_Register:
3646        if (!Context.Target.isValidGCCRegisterName(Label))
3647          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
3648        break;
3649      case SC_Static:
3650      case SC_Extern:
3651      case SC_PrivateExtern:
3652        break;
3653      }
3654    }
3655
3656    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
3657                                                Context, Label));
3658  }
3659
3660  // Diagnose shadowed variables before filtering for scope.
3661  if (!D.getCXXScopeSpec().isSet())
3662    CheckShadow(S, NewVD, Previous);
3663
3664  // Don't consider existing declarations that are in a different
3665  // scope and are out-of-semantic-context declarations (if the new
3666  // declaration has linkage).
3667  FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
3668                       isExplicitSpecialization);
3669
3670  if (!getLangOptions().CPlusPlus)
3671    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3672  else {
3673    // Merge the decl with the existing one if appropriate.
3674    if (!Previous.empty()) {
3675      if (Previous.isSingleResult() &&
3676          isa<FieldDecl>(Previous.getFoundDecl()) &&
3677          D.getCXXScopeSpec().isSet()) {
3678        // The user tried to define a non-static data member
3679        // out-of-line (C++ [dcl.meaning]p1).
3680        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
3681          << D.getCXXScopeSpec().getRange();
3682        Previous.clear();
3683        NewVD->setInvalidDecl();
3684      }
3685    } else if (D.getCXXScopeSpec().isSet()) {
3686      // No previous declaration in the qualifying scope.
3687      Diag(D.getIdentifierLoc(), diag::err_no_member)
3688        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
3689        << D.getCXXScopeSpec().getRange();
3690      NewVD->setInvalidDecl();
3691    }
3692
3693    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3694
3695    // This is an explicit specialization of a static data member. Check it.
3696    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
3697        CheckMemberSpecialization(NewVD, Previous))
3698      NewVD->setInvalidDecl();
3699  }
3700
3701  // attributes declared post-definition are currently ignored
3702  // FIXME: This should be handled in attribute merging, not
3703  // here.
3704  if (Previous.isSingleResult()) {
3705    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
3706    if (Def && (Def = Def->getDefinition()) &&
3707        Def != NewVD && D.hasAttributes()) {
3708      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
3709      Diag(Def->getLocation(), diag::note_previous_definition);
3710    }
3711  }
3712
3713  // If this is a locally-scoped extern C variable, update the map of
3714  // such variables.
3715  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
3716      !NewVD->isInvalidDecl())
3717    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
3718
3719  // If there's a #pragma GCC visibility in scope, and this isn't a class
3720  // member, set the visibility of this variable.
3721  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
3722    AddPushedVisibilityAttribute(NewVD);
3723
3724  MarkUnusedFileScopedDecl(NewVD);
3725
3726  return NewVD;
3727}
3728
3729/// \brief Diagnose variable or built-in function shadowing.  Implements
3730/// -Wshadow.
3731///
3732/// This method is called whenever a VarDecl is added to a "useful"
3733/// scope.
3734///
3735/// \param S the scope in which the shadowing name is being declared
3736/// \param R the lookup of the name
3737///
3738void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
3739  // Return if warning is ignored.
3740  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
3741        Diagnostic::Ignored)
3742    return;
3743
3744  // Don't diagnose declarations at file scope.
3745  if (D->hasGlobalStorage())
3746    return;
3747
3748  DeclContext *NewDC = D->getDeclContext();
3749
3750  // Only diagnose if we're shadowing an unambiguous field or variable.
3751  if (R.getResultKind() != LookupResult::Found)
3752    return;
3753
3754  NamedDecl* ShadowedDecl = R.getFoundDecl();
3755  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
3756    return;
3757
3758  // Fields are not shadowed by variables in C++ static methods.
3759  if (isa<FieldDecl>(ShadowedDecl))
3760    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
3761      if (MD->isStatic())
3762        return;
3763
3764  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
3765    if (shadowedVar->isExternC()) {
3766      // For shadowing external vars, make sure that we point to the global
3767      // declaration, not a locally scoped extern declaration.
3768      for (VarDecl::redecl_iterator
3769             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
3770           I != E; ++I)
3771        if (I->isFileVarDecl()) {
3772          ShadowedDecl = *I;
3773          break;
3774        }
3775    }
3776
3777  DeclContext *OldDC = ShadowedDecl->getDeclContext();
3778
3779  // Only warn about certain kinds of shadowing for class members.
3780  if (NewDC && NewDC->isRecord()) {
3781    // In particular, don't warn about shadowing non-class members.
3782    if (!OldDC->isRecord())
3783      return;
3784
3785    // TODO: should we warn about static data members shadowing
3786    // static data members from base classes?
3787
3788    // TODO: don't diagnose for inaccessible shadowed members.
3789    // This is hard to do perfectly because we might friend the
3790    // shadowing context, but that's just a false negative.
3791  }
3792
3793  // Determine what kind of declaration we're shadowing.
3794  unsigned Kind;
3795  if (isa<RecordDecl>(OldDC)) {
3796    if (isa<FieldDecl>(ShadowedDecl))
3797      Kind = 3; // field
3798    else
3799      Kind = 2; // static data member
3800  } else if (OldDC->isFileContext())
3801    Kind = 1; // global
3802  else
3803    Kind = 0; // local
3804
3805  DeclarationName Name = R.getLookupName();
3806
3807  // Emit warning and note.
3808  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
3809  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
3810}
3811
3812/// \brief Check -Wshadow without the advantage of a previous lookup.
3813void Sema::CheckShadow(Scope *S, VarDecl *D) {
3814  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
3815        Diagnostic::Ignored)
3816    return;
3817
3818  LookupResult R(*this, D->getDeclName(), D->getLocation(),
3819                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3820  LookupName(R, S);
3821  CheckShadow(S, D, R);
3822}
3823
3824/// \brief Perform semantic checking on a newly-created variable
3825/// declaration.
3826///
3827/// This routine performs all of the type-checking required for a
3828/// variable declaration once it has been built. It is used both to
3829/// check variables after they have been parsed and their declarators
3830/// have been translated into a declaration, and to check variables
3831/// that have been instantiated from a template.
3832///
3833/// Sets NewVD->isInvalidDecl() if an error was encountered.
3834void Sema::CheckVariableDeclaration(VarDecl *NewVD,
3835                                    LookupResult &Previous,
3836                                    bool &Redeclaration) {
3837  // If the decl is already known invalid, don't check it.
3838  if (NewVD->isInvalidDecl())
3839    return;
3840
3841  QualType T = NewVD->getType();
3842
3843  if (T->isObjCObjectType()) {
3844    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
3845    return NewVD->setInvalidDecl();
3846  }
3847
3848  // Emit an error if an address space was applied to decl with local storage.
3849  // This includes arrays of objects with address space qualifiers, but not
3850  // automatic variables that point to other address spaces.
3851  // ISO/IEC TR 18037 S5.1.2
3852  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
3853    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
3854    return NewVD->setInvalidDecl();
3855  }
3856
3857  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
3858      && !NewVD->hasAttr<BlocksAttr>()) {
3859    if (getLangOptions().getGCMode() != LangOptions::NonGC)
3860      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
3861    else
3862      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
3863  }
3864
3865  bool isVM = T->isVariablyModifiedType();
3866  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
3867      NewVD->hasAttr<BlocksAttr>())
3868    getCurFunction()->setHasBranchProtectedScope();
3869
3870  if ((isVM && NewVD->hasLinkage()) ||
3871      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
3872    bool SizeIsNegative;
3873    llvm::APSInt Oversized;
3874    QualType FixedTy =
3875        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3876                                            Oversized);
3877
3878    if (FixedTy.isNull() && T->isVariableArrayType()) {
3879      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
3880      // FIXME: This won't give the correct result for
3881      // int a[10][n];
3882      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
3883
3884      if (NewVD->isFileVarDecl())
3885        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
3886        << SizeRange;
3887      else if (NewVD->getStorageClass() == SC_Static)
3888        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
3889        << SizeRange;
3890      else
3891        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
3892        << SizeRange;
3893      return NewVD->setInvalidDecl();
3894    }
3895
3896    if (FixedTy.isNull()) {
3897      if (NewVD->isFileVarDecl())
3898        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
3899      else
3900        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
3901      return NewVD->setInvalidDecl();
3902    }
3903
3904    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
3905    NewVD->setType(FixedTy);
3906  }
3907
3908  if (Previous.empty() && NewVD->isExternC()) {
3909    // Since we did not find anything by this name and we're declaring
3910    // an extern "C" variable, look for a non-visible extern "C"
3911    // declaration with the same name.
3912    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3913      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
3914    if (Pos != LocallyScopedExternalDecls.end())
3915      Previous.addDecl(Pos->second);
3916  }
3917
3918  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
3919    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
3920      << T;
3921    return NewVD->setInvalidDecl();
3922  }
3923
3924  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
3925    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
3926    return NewVD->setInvalidDecl();
3927  }
3928
3929  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
3930    Diag(NewVD->getLocation(), diag::err_block_on_vm);
3931    return NewVD->setInvalidDecl();
3932  }
3933
3934  // Function pointers and references cannot have qualified function type, only
3935  // function pointer-to-members can do that.
3936  QualType Pointee;
3937  unsigned PtrOrRef = 0;
3938  if (const PointerType *Ptr = T->getAs<PointerType>())
3939    Pointee = Ptr->getPointeeType();
3940  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
3941    Pointee = Ref->getPointeeType();
3942    PtrOrRef = 1;
3943  }
3944  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
3945      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
3946    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
3947        << PtrOrRef;
3948    return NewVD->setInvalidDecl();
3949  }
3950
3951  if (!Previous.empty()) {
3952    Redeclaration = true;
3953    MergeVarDecl(NewVD, Previous);
3954  }
3955}
3956
3957/// \brief Data used with FindOverriddenMethod
3958struct FindOverriddenMethodData {
3959  Sema *S;
3960  CXXMethodDecl *Method;
3961};
3962
3963/// \brief Member lookup function that determines whether a given C++
3964/// method overrides a method in a base class, to be used with
3965/// CXXRecordDecl::lookupInBases().
3966static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
3967                                 CXXBasePath &Path,
3968                                 void *UserData) {
3969  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
3970
3971  FindOverriddenMethodData *Data
3972    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
3973
3974  DeclarationName Name = Data->Method->getDeclName();
3975
3976  // FIXME: Do we care about other names here too?
3977  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3978    // We really want to find the base class destructor here.
3979    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
3980    CanQualType CT = Data->S->Context.getCanonicalType(T);
3981
3982    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
3983  }
3984
3985  for (Path.Decls = BaseRecord->lookup(Name);
3986       Path.Decls.first != Path.Decls.second;
3987       ++Path.Decls.first) {
3988    NamedDecl *D = *Path.Decls.first;
3989    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
3990      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
3991        return true;
3992    }
3993  }
3994
3995  return false;
3996}
3997
3998/// AddOverriddenMethods - See if a method overrides any in the base classes,
3999/// and if so, check that it's a valid override and remember it.
4000bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4001  // Look for virtual methods in base classes that this method might override.
4002  CXXBasePaths Paths;
4003  FindOverriddenMethodData Data;
4004  Data.Method = MD;
4005  Data.S = this;
4006  bool AddedAny = false;
4007  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
4008    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
4009         E = Paths.found_decls_end(); I != E; ++I) {
4010      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
4011        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
4012            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
4013            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
4014          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
4015          AddedAny = true;
4016        }
4017      }
4018    }
4019  }
4020
4021  return AddedAny;
4022}
4023
4024static void DiagnoseInvalidRedeclaration(Sema &S, FunctionDecl *NewFD) {
4025  LookupResult Prev(S, NewFD->getDeclName(), NewFD->getLocation(),
4026                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4027  S.LookupQualifiedName(Prev, NewFD->getDeclContext());
4028  assert(!Prev.isAmbiguous() &&
4029         "Cannot have an ambiguity in previous-declaration lookup");
4030  for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
4031       Func != FuncEnd; ++Func) {
4032    if (isa<FunctionDecl>(*Func) &&
4033        isNearlyMatchingFunction(S.Context, cast<FunctionDecl>(*Func), NewFD))
4034      S.Diag((*Func)->getLocation(), diag::note_member_def_close_match);
4035  }
4036}
4037
4038NamedDecl*
4039Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
4040                              QualType R, TypeSourceInfo *TInfo,
4041                              LookupResult &Previous,
4042                              MultiTemplateParamsArg TemplateParamLists,
4043                              bool IsFunctionDefinition, bool &Redeclaration) {
4044  assert(R.getTypePtr()->isFunctionType());
4045
4046  // TODO: consider using NameInfo for diagnostic.
4047  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4048  DeclarationName Name = NameInfo.getName();
4049  FunctionDecl::StorageClass SC = SC_None;
4050  switch (D.getDeclSpec().getStorageClassSpec()) {
4051  default: assert(0 && "Unknown storage class!");
4052  case DeclSpec::SCS_auto:
4053  case DeclSpec::SCS_register:
4054  case DeclSpec::SCS_mutable:
4055    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4056         diag::err_typecheck_sclass_func);
4057    D.setInvalidType();
4058    break;
4059  case DeclSpec::SCS_unspecified: SC = SC_None; break;
4060  case DeclSpec::SCS_extern:      SC = SC_Extern; break;
4061  case DeclSpec::SCS_static: {
4062    if (CurContext->getRedeclContext()->isFunctionOrMethod()) {
4063      // C99 6.7.1p5:
4064      //   The declaration of an identifier for a function that has
4065      //   block scope shall have no explicit storage-class specifier
4066      //   other than extern
4067      // See also (C++ [dcl.stc]p4).
4068      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4069           diag::err_static_block_func);
4070      SC = SC_None;
4071    } else
4072      SC = SC_Static;
4073    break;
4074  }
4075  case DeclSpec::SCS_private_extern: SC = SC_PrivateExtern; break;
4076  }
4077
4078  if (D.getDeclSpec().isThreadSpecified())
4079    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4080
4081  // Do not allow returning a objc interface by-value.
4082  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
4083    Diag(D.getIdentifierLoc(),
4084         diag::err_object_cannot_be_passed_returned_by_value) << 0
4085    << R->getAs<FunctionType>()->getResultType();
4086    D.setInvalidType();
4087  }
4088
4089  FunctionDecl *NewFD;
4090  bool isInline = D.getDeclSpec().isInlineSpecified();
4091  bool isFriend = false;
4092  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4093  FunctionDecl::StorageClass SCAsWritten
4094    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
4095  FunctionTemplateDecl *FunctionTemplate = 0;
4096  bool isExplicitSpecialization = false;
4097  bool isFunctionTemplateSpecialization = false;
4098
4099  if (!getLangOptions().CPlusPlus) {
4100    // Determine whether the function was written with a
4101    // prototype. This true when:
4102    //   - there is a prototype in the declarator, or
4103    //   - the type R of the function is some kind of typedef or other reference
4104    //     to a type name (which eventually refers to a function type).
4105    bool HasPrototype =
4106    (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
4107    (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
4108
4109    NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4110                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4111                                 HasPrototype);
4112    if (D.isInvalidType())
4113      NewFD->setInvalidDecl();
4114
4115    // Set the lexical context.
4116    NewFD->setLexicalDeclContext(CurContext);
4117    // Filter out previous declarations that don't match the scope.
4118    FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
4119                         /*ExplicitInstantiationOrSpecialization=*/false);
4120  } else {
4121    isFriend = D.getDeclSpec().isFriendSpecified();
4122    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4123    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4124    bool isVirtualOkay = false;
4125
4126    // Check that the return type is not an abstract class type.
4127    // For record types, this is done by the AbstractClassUsageDiagnoser once
4128    // the class has been completely parsed.
4129    if (!DC->isRecord() &&
4130      RequireNonAbstractType(D.getIdentifierLoc(),
4131                             R->getAs<FunctionType>()->getResultType(),
4132                             diag::err_abstract_type_in_decl,
4133                             AbstractReturnType))
4134      D.setInvalidType();
4135
4136    if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
4137      // This is a C++ constructor declaration.
4138      assert(DC->isRecord() &&
4139             "Constructors can only be declared in a member context");
4140
4141      R = CheckConstructorDeclarator(D, R, SC);
4142
4143      // Create the new declaration
4144      CXXConstructorDecl *NewCD = CXXConstructorDecl::Create(
4145                                         Context,
4146                                         cast<CXXRecordDecl>(DC),
4147                                         D.getSourceRange().getBegin(),
4148                                         NameInfo, R, TInfo,
4149                                         isExplicit, isInline,
4150                                         /*isImplicitlyDeclared=*/false);
4151
4152      NewFD = NewCD;
4153    } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4154      // This is a C++ destructor declaration.
4155      if (DC->isRecord()) {
4156        R = CheckDestructorDeclarator(D, R, SC);
4157        CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
4158
4159        CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(Context, Record,
4160                                          D.getSourceRange().getBegin(),
4161                                          NameInfo, R, TInfo,
4162                                          isInline,
4163                                          /*isImplicitlyDeclared=*/false);
4164        NewFD = NewDD;
4165        isVirtualOkay = true;
4166
4167        // If the class is complete, then we now create the implicit exception
4168        // specification. If the class is incomplete or dependent, we can't do
4169        // it yet.
4170        if (getLangOptions().CPlusPlus0x && !Record->isDependentType() &&
4171            Record->getDefinition() && !Record->isBeingDefined() &&
4172            R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
4173          AdjustDestructorExceptionSpec(Record, NewDD);
4174        }
4175
4176      } else {
4177        Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
4178
4179        // Create a FunctionDecl to satisfy the function definition parsing
4180        // code path.
4181        NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4182                                     D.getIdentifierLoc(), Name, R, TInfo,
4183                                     SC, SCAsWritten, isInline,
4184                                     /*hasPrototype=*/true);
4185        D.setInvalidType();
4186      }
4187    } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
4188      if (!DC->isRecord()) {
4189        Diag(D.getIdentifierLoc(),
4190             diag::err_conv_function_not_member);
4191        return 0;
4192      }
4193
4194      CheckConversionDeclarator(D, R, SC);
4195      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
4196                                        D.getSourceRange().getBegin(),
4197                                        NameInfo, R, TInfo,
4198                                        isInline, isExplicit,
4199                                        SourceLocation());
4200
4201      isVirtualOkay = true;
4202    } else if (DC->isRecord()) {
4203      // If the of the function is the same as the name of the record, then this
4204      // must be an invalid constructor that has a return type.
4205      // (The parser checks for a return type and makes the declarator a
4206      // constructor if it has no return type).
4207      // must have an invalid constructor that has a return type
4208      if (Name.getAsIdentifierInfo() &&
4209          Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
4210        Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
4211          << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4212          << SourceRange(D.getIdentifierLoc());
4213        return 0;
4214      }
4215
4216      bool isStatic = SC == SC_Static;
4217
4218      // [class.free]p1:
4219      // Any allocation function for a class T is a static member
4220      // (even if not explicitly declared static).
4221      if (Name.getCXXOverloadedOperator() == OO_New ||
4222          Name.getCXXOverloadedOperator() == OO_Array_New)
4223        isStatic = true;
4224
4225      // [class.free]p6 Any deallocation function for a class X is a static member
4226      // (even if not explicitly declared static).
4227      if (Name.getCXXOverloadedOperator() == OO_Delete ||
4228          Name.getCXXOverloadedOperator() == OO_Array_Delete)
4229        isStatic = true;
4230
4231      // This is a C++ method declaration.
4232      CXXMethodDecl *NewMD = CXXMethodDecl::Create(
4233                                               Context, cast<CXXRecordDecl>(DC),
4234                                               D.getSourceRange().getBegin(),
4235                                               NameInfo, R, TInfo,
4236                                               isStatic, SCAsWritten, isInline,
4237                                               SourceLocation());
4238      NewFD = NewMD;
4239
4240      isVirtualOkay = !isStatic;
4241    } else {
4242      // Determine whether the function was written with a
4243      // prototype. This true when:
4244      //   - we're in C++ (where every function has a prototype),
4245      NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4246                                   NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4247                                   true/*HasPrototype*/);
4248    }
4249
4250    if (isFriend && !isInline && IsFunctionDefinition) {
4251      // C++ [class.friend]p5
4252      //   A function can be defined in a friend declaration of a
4253      //   class . . . . Such a function is implicitly inline.
4254      NewFD->setImplicitlyInline();
4255    }
4256
4257    SetNestedNameSpecifier(NewFD, D);
4258    isExplicitSpecialization = false;
4259    isFunctionTemplateSpecialization = false;
4260    if (D.isInvalidType())
4261      NewFD->setInvalidDecl();
4262
4263    // Set the lexical context. If the declarator has a C++
4264    // scope specifier, or is the object of a friend declaration, the
4265    // lexical context will be different from the semantic context.
4266    NewFD->setLexicalDeclContext(CurContext);
4267
4268    // Match up the template parameter lists with the scope specifier, then
4269    // determine whether we have a template or a template specialization.
4270    bool Invalid = false;
4271    if (TemplateParameterList *TemplateParams
4272          = MatchTemplateParametersToScopeSpecifier(
4273                                  D.getDeclSpec().getSourceRange().getBegin(),
4274                                  D.getIdentifierLoc(),
4275                                  D.getCXXScopeSpec(),
4276                                  TemplateParamLists.get(),
4277                                  TemplateParamLists.size(),
4278                                  isFriend,
4279                                  isExplicitSpecialization,
4280                                  Invalid)) {
4281      if (TemplateParams->size() > 0) {
4282        // This is a function template
4283
4284        // Check that we can declare a template here.
4285        if (CheckTemplateDeclScope(S, TemplateParams))
4286          return 0;
4287
4288        // A destructor cannot be a template.
4289        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4290          Diag(NewFD->getLocation(), diag::err_destructor_template);
4291          return 0;
4292        }
4293
4294        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
4295                                                        NewFD->getLocation(),
4296                                                        Name, TemplateParams,
4297                                                        NewFD);
4298        FunctionTemplate->setLexicalDeclContext(CurContext);
4299        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
4300
4301        // For source fidelity, store the other template param lists.
4302        if (TemplateParamLists.size() > 1) {
4303          NewFD->setTemplateParameterListsInfo(Context,
4304                                               TemplateParamLists.size() - 1,
4305                                               TemplateParamLists.release());
4306        }
4307      } else {
4308        // This is a function template specialization.
4309        isFunctionTemplateSpecialization = true;
4310        // For source fidelity, store all the template param lists.
4311        NewFD->setTemplateParameterListsInfo(Context,
4312                                             TemplateParamLists.size(),
4313                                             TemplateParamLists.release());
4314
4315        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
4316        if (isFriend) {
4317          // We want to remove the "template<>", found here.
4318          SourceRange RemoveRange = TemplateParams->getSourceRange();
4319
4320          // If we remove the template<> and the name is not a
4321          // template-id, we're actually silently creating a problem:
4322          // the friend declaration will refer to an untemplated decl,
4323          // and clearly the user wants a template specialization.  So
4324          // we need to insert '<>' after the name.
4325          SourceLocation InsertLoc;
4326          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
4327            InsertLoc = D.getName().getSourceRange().getEnd();
4328            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
4329          }
4330
4331          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
4332            << Name << RemoveRange
4333            << FixItHint::CreateRemoval(RemoveRange)
4334            << FixItHint::CreateInsertion(InsertLoc, "<>");
4335        }
4336      }
4337    }
4338    else {
4339      // All template param lists were matched against the scope specifier:
4340      // this is NOT (an explicit specialization of) a template.
4341      if (TemplateParamLists.size() > 0)
4342        // For source fidelity, store all the template param lists.
4343        NewFD->setTemplateParameterListsInfo(Context,
4344                                             TemplateParamLists.size(),
4345                                             TemplateParamLists.release());
4346    }
4347
4348    if (Invalid) {
4349      NewFD->setInvalidDecl();
4350      if (FunctionTemplate)
4351        FunctionTemplate->setInvalidDecl();
4352    }
4353
4354    // C++ [dcl.fct.spec]p5:
4355    //   The virtual specifier shall only be used in declarations of
4356    //   nonstatic class member functions that appear within a
4357    //   member-specification of a class declaration; see 10.3.
4358    //
4359    if (isVirtual && !NewFD->isInvalidDecl()) {
4360      if (!isVirtualOkay) {
4361        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4362             diag::err_virtual_non_function);
4363      } else if (!CurContext->isRecord()) {
4364        // 'virtual' was specified outside of the class.
4365        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4366             diag::err_virtual_out_of_class)
4367          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4368      } else if (NewFD->getDescribedFunctionTemplate()) {
4369        // C++ [temp.mem]p3:
4370        //  A member function template shall not be virtual.
4371        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4372             diag::err_virtual_member_function_template)
4373          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4374      } else {
4375        // Okay: Add virtual to the method.
4376        NewFD->setVirtualAsWritten(true);
4377      }
4378    }
4379
4380    // C++ [dcl.fct.spec]p3:
4381    //  The inline specifier shall not appear on a block scope function declaration.
4382    if (isInline && !NewFD->isInvalidDecl()) {
4383      if (CurContext->isFunctionOrMethod()) {
4384        // 'inline' is not allowed on block scope function declaration.
4385        Diag(D.getDeclSpec().getInlineSpecLoc(),
4386             diag::err_inline_declaration_block_scope) << Name
4387          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
4388      }
4389    }
4390
4391    // C++ [dcl.fct.spec]p6:
4392    //  The explicit specifier shall be used only in the declaration of a
4393    //  constructor or conversion function within its class definition; see 12.3.1
4394    //  and 12.3.2.
4395    if (isExplicit && !NewFD->isInvalidDecl()) {
4396      if (!CurContext->isRecord()) {
4397        // 'explicit' was specified outside of the class.
4398        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4399             diag::err_explicit_out_of_class)
4400          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4401      } else if (!isa<CXXConstructorDecl>(NewFD) &&
4402                 !isa<CXXConversionDecl>(NewFD)) {
4403        // 'explicit' was specified on a function that wasn't a constructor
4404        // or conversion function.
4405        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4406             diag::err_explicit_non_ctor_or_conv_function)
4407          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4408      }
4409    }
4410
4411    // Filter out previous declarations that don't match the scope.
4412    FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
4413                         isExplicitSpecialization ||
4414                         isFunctionTemplateSpecialization);
4415
4416    if (isFriend) {
4417      // For now, claim that the objects have no previous declaration.
4418      if (FunctionTemplate) {
4419        FunctionTemplate->setObjectOfFriendDecl(false);
4420        FunctionTemplate->setAccess(AS_public);
4421      }
4422      NewFD->setObjectOfFriendDecl(false);
4423      NewFD->setAccess(AS_public);
4424    }
4425
4426    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext && IsFunctionDefinition) {
4427      // A method is implicitly inline if it's defined in its class
4428      // definition.
4429      NewFD->setImplicitlyInline();
4430    }
4431
4432    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
4433        !CurContext->isRecord()) {
4434      // C++ [class.static]p1:
4435      //   A data or function member of a class may be declared static
4436      //   in a class definition, in which case it is a static member of
4437      //   the class.
4438
4439      // Complain about the 'static' specifier if it's on an out-of-line
4440      // member function definition.
4441      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4442           diag::err_static_out_of_line)
4443        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4444    }
4445  }
4446
4447  // Handle GNU asm-label extension (encoded as an attribute).
4448  if (Expr *E = (Expr*) D.getAsmLabel()) {
4449    // The parser guarantees this is a string.
4450    StringLiteral *SE = cast<StringLiteral>(E);
4451    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
4452                                                SE->getString()));
4453  }
4454
4455  // Copy the parameter declarations from the declarator D to the function
4456  // declaration NewFD, if they are available.  First scavenge them into Params.
4457  llvm::SmallVector<ParmVarDecl*, 16> Params;
4458  if (D.isFunctionDeclarator()) {
4459    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4460
4461    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
4462    // function that takes no arguments, not a function that takes a
4463    // single void argument.
4464    // We let through "const void" here because Sema::GetTypeForDeclarator
4465    // already checks for that case.
4466    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
4467        FTI.ArgInfo[0].Param &&
4468        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
4469      // Empty arg list, don't push any params.
4470      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
4471
4472      // In C++, the empty parameter-type-list must be spelled "void"; a
4473      // typedef of void is not permitted.
4474      if (getLangOptions().CPlusPlus &&
4475          Param->getType().getUnqualifiedType() != Context.VoidTy) {
4476        bool IsTypeAlias = false;
4477        if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
4478          IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
4479        else if (const TemplateSpecializationType *TST =
4480                   Param->getType()->getAs<TemplateSpecializationType>())
4481          IsTypeAlias = TST->isTypeAlias();
4482        Diag(Param->getLocation(), diag::err_param_typedef_of_void)
4483          << IsTypeAlias;
4484      }
4485    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
4486      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
4487        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
4488        assert(Param->getDeclContext() != NewFD && "Was set before ?");
4489        Param->setDeclContext(NewFD);
4490        Params.push_back(Param);
4491
4492        if (Param->isInvalidDecl())
4493          NewFD->setInvalidDecl();
4494      }
4495    }
4496
4497  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
4498    // When we're declaring a function with a typedef, typeof, etc as in the
4499    // following example, we'll need to synthesize (unnamed)
4500    // parameters for use in the declaration.
4501    //
4502    // @code
4503    // typedef void fn(int);
4504    // fn f;
4505    // @endcode
4506
4507    // Synthesize a parameter for each argument type.
4508    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
4509         AE = FT->arg_type_end(); AI != AE; ++AI) {
4510      ParmVarDecl *Param =
4511        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
4512      Param->setScopeInfo(0, Params.size());
4513      Params.push_back(Param);
4514    }
4515  } else {
4516    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
4517           "Should not need args for typedef of non-prototype fn");
4518  }
4519  // Finally, we know we have the right number of parameters, install them.
4520  NewFD->setParams(Params.data(), Params.size());
4521
4522  // Process the non-inheritable attributes on this declaration.
4523  ProcessDeclAttributes(S, NewFD, D,
4524                        /*NonInheritable=*/true, /*Inheritable=*/false);
4525
4526  if (!getLangOptions().CPlusPlus) {
4527    // Perform semantic checking on the function declaration.
4528    bool isExplicitSpecialization=false;
4529    CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
4530                             Redeclaration);
4531    assert((NewFD->isInvalidDecl() || !Redeclaration ||
4532            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
4533           "previous declaration set still overloaded");
4534  } else {
4535    // If the declarator is a template-id, translate the parser's template
4536    // argument list into our AST format.
4537    bool HasExplicitTemplateArgs = false;
4538    TemplateArgumentListInfo TemplateArgs;
4539    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
4540      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
4541      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
4542      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
4543      ASTTemplateArgsPtr TemplateArgsPtr(*this,
4544                                         TemplateId->getTemplateArgs(),
4545                                         TemplateId->NumArgs);
4546      translateTemplateArguments(TemplateArgsPtr,
4547                                 TemplateArgs);
4548      TemplateArgsPtr.release();
4549
4550      HasExplicitTemplateArgs = true;
4551
4552      if (NewFD->isInvalidDecl()) {
4553        HasExplicitTemplateArgs = false;
4554      } else if (FunctionTemplate) {
4555        // Function template with explicit template arguments.
4556        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
4557          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
4558
4559        HasExplicitTemplateArgs = false;
4560      } else if (!isFunctionTemplateSpecialization &&
4561                 !D.getDeclSpec().isFriendSpecified()) {
4562        // We have encountered something that the user meant to be a
4563        // specialization (because it has explicitly-specified template
4564        // arguments) but that was not introduced with a "template<>" (or had
4565        // too few of them).
4566        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
4567          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
4568          << FixItHint::CreateInsertion(
4569                                        D.getDeclSpec().getSourceRange().getBegin(),
4570                                                  "template<> ");
4571        isFunctionTemplateSpecialization = true;
4572      } else {
4573        // "friend void foo<>(int);" is an implicit specialization decl.
4574        isFunctionTemplateSpecialization = true;
4575      }
4576    } else if (isFriend && isFunctionTemplateSpecialization) {
4577      // This combination is only possible in a recovery case;  the user
4578      // wrote something like:
4579      //   template <> friend void foo(int);
4580      // which we're recovering from as if the user had written:
4581      //   friend void foo<>(int);
4582      // Go ahead and fake up a template id.
4583      HasExplicitTemplateArgs = true;
4584        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
4585      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
4586    }
4587
4588    // If it's a friend (and only if it's a friend), it's possible
4589    // that either the specialized function type or the specialized
4590    // template is dependent, and therefore matching will fail.  In
4591    // this case, don't check the specialization yet.
4592    if (isFunctionTemplateSpecialization && isFriend &&
4593        (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
4594      assert(HasExplicitTemplateArgs &&
4595             "friend function specialization without template args");
4596      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
4597                                                       Previous))
4598        NewFD->setInvalidDecl();
4599    } else if (isFunctionTemplateSpecialization) {
4600      if (CurContext->isDependentContext() && CurContext->isRecord()
4601          && !isFriend) {
4602        Diag(NewFD->getLocation(), diag::err_function_specialization_in_class)
4603          << NewFD->getDeclName();
4604        NewFD->setInvalidDecl();
4605        return 0;
4606      } else if (CheckFunctionTemplateSpecialization(NewFD,
4607                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
4608                                                     Previous))
4609        NewFD->setInvalidDecl();
4610
4611      // C++ [dcl.stc]p1:
4612      //   A storage-class-specifier shall not be specified in an explicit
4613      //   specialization (14.7.3)
4614      if (SC != SC_None) {
4615        Diag(NewFD->getLocation(),
4616             diag::err_explicit_specialization_storage_class)
4617          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4618      }
4619
4620    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
4621      if (CheckMemberSpecialization(NewFD, Previous))
4622          NewFD->setInvalidDecl();
4623    }
4624
4625    // Perform semantic checking on the function declaration.
4626    CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
4627                             Redeclaration);
4628
4629    assert((NewFD->isInvalidDecl() || !Redeclaration ||
4630            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
4631           "previous declaration set still overloaded");
4632
4633    NamedDecl *PrincipalDecl = (FunctionTemplate
4634                                ? cast<NamedDecl>(FunctionTemplate)
4635                                : NewFD);
4636
4637    if (isFriend && Redeclaration) {
4638      AccessSpecifier Access = AS_public;
4639      if (!NewFD->isInvalidDecl())
4640        Access = NewFD->getPreviousDeclaration()->getAccess();
4641
4642      NewFD->setAccess(Access);
4643      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
4644
4645      PrincipalDecl->setObjectOfFriendDecl(true);
4646    }
4647
4648    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
4649        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
4650      PrincipalDecl->setNonMemberOperator();
4651
4652    // If we have a function template, check the template parameter
4653    // list. This will check and merge default template arguments.
4654    if (FunctionTemplate) {
4655      FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
4656      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
4657                                 PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
4658                            D.getDeclSpec().isFriendSpecified()
4659                              ? (IsFunctionDefinition
4660                                   ? TPC_FriendFunctionTemplateDefinition
4661                                   : TPC_FriendFunctionTemplate)
4662                              : (D.getCXXScopeSpec().isSet() &&
4663                                 DC && DC->isRecord() &&
4664                                 DC->isDependentContext())
4665                                  ? TPC_ClassTemplateMember
4666                                  : TPC_FunctionTemplate);
4667    }
4668
4669    if (NewFD->isInvalidDecl()) {
4670      // Ignore all the rest of this.
4671    } else if (!Redeclaration) {
4672      // Fake up an access specifier if it's supposed to be a class member.
4673      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
4674        NewFD->setAccess(AS_public);
4675
4676      // Qualified decls generally require a previous declaration.
4677      if (D.getCXXScopeSpec().isSet()) {
4678        // ...with the major exception of templated-scope or
4679        // dependent-scope friend declarations.
4680
4681        // TODO: we currently also suppress this check in dependent
4682        // contexts because (1) the parameter depth will be off when
4683        // matching friend templates and (2) we might actually be
4684        // selecting a friend based on a dependent factor.  But there
4685        // are situations where these conditions don't apply and we
4686        // can actually do this check immediately.
4687        if (isFriend &&
4688            (TemplateParamLists.size() ||
4689             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
4690             CurContext->isDependentContext())) {
4691              // ignore these
4692            } else {
4693              // The user tried to provide an out-of-line definition for a
4694              // function that is a member of a class or namespace, but there
4695              // was no such member function declared (C++ [class.mfct]p2,
4696              // C++ [namespace.memdef]p2). For example:
4697              //
4698              // class X {
4699              //   void f() const;
4700              // };
4701              //
4702              // void X::f() { } // ill-formed
4703              //
4704              // Complain about this problem, and attempt to suggest close
4705              // matches (e.g., those that differ only in cv-qualifiers and
4706              // whether the parameter types are references).
4707              Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
4708              << Name << DC << D.getCXXScopeSpec().getRange();
4709              NewFD->setInvalidDecl();
4710
4711              DiagnoseInvalidRedeclaration(*this, NewFD);
4712            }
4713
4714        // Unqualified local friend declarations are required to resolve
4715        // to something.
4716        } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
4717          Diag(D.getIdentifierLoc(), diag::err_no_matching_local_friend);
4718          NewFD->setInvalidDecl();
4719          DiagnoseInvalidRedeclaration(*this, NewFD);
4720        }
4721
4722    } else if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
4723               !isFriend && !isFunctionTemplateSpecialization &&
4724               !isExplicitSpecialization) {
4725      // An out-of-line member function declaration must also be a
4726      // definition (C++ [dcl.meaning]p1).
4727      // Note that this is not the case for explicit specializations of
4728      // function templates or member functions of class templates, per
4729      // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
4730      // for compatibility with old SWIG code which likes to generate them.
4731      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
4732        << D.getCXXScopeSpec().getRange();
4733    }
4734  }
4735
4736
4737  // Handle attributes. We need to have merged decls when handling attributes
4738  // (for example to check for conflicts, etc).
4739  // FIXME: This needs to happen before we merge declarations. Then,
4740  // let attribute merging cope with attribute conflicts.
4741  ProcessDeclAttributes(S, NewFD, D,
4742                        /*NonInheritable=*/false, /*Inheritable=*/true);
4743
4744  // attributes declared post-definition are currently ignored
4745  // FIXME: This should happen during attribute merging
4746  if (Redeclaration && Previous.isSingleResult()) {
4747    const FunctionDecl *Def;
4748    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
4749    if (PrevFD && PrevFD->isDefined(Def) && D.hasAttributes()) {
4750      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
4751      Diag(Def->getLocation(), diag::note_previous_definition);
4752    }
4753  }
4754
4755  AddKnownFunctionAttributes(NewFD);
4756
4757  if (NewFD->hasAttr<OverloadableAttr>() &&
4758      !NewFD->getType()->getAs<FunctionProtoType>()) {
4759    Diag(NewFD->getLocation(),
4760         diag::err_attribute_overloadable_no_prototype)
4761      << NewFD;
4762
4763    // Turn this into a variadic function with no parameters.
4764    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
4765    FunctionProtoType::ExtProtoInfo EPI;
4766    EPI.Variadic = true;
4767    EPI.ExtInfo = FT->getExtInfo();
4768
4769    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
4770    NewFD->setType(R);
4771  }
4772
4773  // If there's a #pragma GCC visibility in scope, and this isn't a class
4774  // member, set the visibility of this function.
4775  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
4776    AddPushedVisibilityAttribute(NewFD);
4777
4778  // If this is a locally-scoped extern C function, update the
4779  // map of such names.
4780  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
4781      && !NewFD->isInvalidDecl())
4782    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
4783
4784  // Set this FunctionDecl's range up to the right paren.
4785  NewFD->setRangeEnd(D.getSourceRange().getEnd());
4786
4787  if (getLangOptions().CPlusPlus) {
4788    if (FunctionTemplate) {
4789      if (NewFD->isInvalidDecl())
4790        FunctionTemplate->setInvalidDecl();
4791      return FunctionTemplate;
4792    }
4793  }
4794
4795  MarkUnusedFileScopedDecl(NewFD);
4796
4797  if (getLangOptions().CUDA)
4798    if (IdentifierInfo *II = NewFD->getIdentifier())
4799      if (!NewFD->isInvalidDecl() &&
4800          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
4801        if (II->isStr("cudaConfigureCall")) {
4802          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
4803            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
4804
4805          Context.setcudaConfigureCallDecl(NewFD);
4806        }
4807      }
4808
4809  return NewFD;
4810}
4811
4812/// \brief Perform semantic checking of a new function declaration.
4813///
4814/// Performs semantic analysis of the new function declaration
4815/// NewFD. This routine performs all semantic checking that does not
4816/// require the actual declarator involved in the declaration, and is
4817/// used both for the declaration of functions as they are parsed
4818/// (called via ActOnDeclarator) and for the declaration of functions
4819/// that have been instantiated via C++ template instantiation (called
4820/// via InstantiateDecl).
4821///
4822/// \param IsExplicitSpecialiation whether this new function declaration is
4823/// an explicit specialization of the previous declaration.
4824///
4825/// This sets NewFD->isInvalidDecl() to true if there was an error.
4826void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
4827                                    LookupResult &Previous,
4828                                    bool IsExplicitSpecialization,
4829                                    bool &Redeclaration) {
4830  // If NewFD is already known erroneous, don't do any of this checking.
4831  if (NewFD->isInvalidDecl()) {
4832    // If this is a class member, mark the class invalid immediately.
4833    // This avoids some consistency errors later.
4834    if (isa<CXXMethodDecl>(NewFD))
4835      cast<CXXMethodDecl>(NewFD)->getParent()->setInvalidDecl();
4836
4837    return;
4838  }
4839
4840  if (NewFD->getResultType()->isVariablyModifiedType()) {
4841    // Functions returning a variably modified type violate C99 6.7.5.2p2
4842    // because all functions have linkage.
4843    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
4844    return NewFD->setInvalidDecl();
4845  }
4846
4847  if (NewFD->isMain())
4848    CheckMain(NewFD);
4849
4850  // Check for a previous declaration of this name.
4851  if (Previous.empty() && NewFD->isExternC()) {
4852    // Since we did not find anything by this name and we're declaring
4853    // an extern "C" function, look for a non-visible extern "C"
4854    // declaration with the same name.
4855    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4856      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
4857    if (Pos != LocallyScopedExternalDecls.end())
4858      Previous.addDecl(Pos->second);
4859  }
4860
4861  // Merge or overload the declaration with an existing declaration of
4862  // the same name, if appropriate.
4863  if (!Previous.empty()) {
4864    // Determine whether NewFD is an overload of PrevDecl or
4865    // a declaration that requires merging. If it's an overload,
4866    // there's no more work to do here; we'll just add the new
4867    // function to the scope.
4868
4869    NamedDecl *OldDecl = 0;
4870    if (!AllowOverloadingOfFunction(Previous, Context)) {
4871      Redeclaration = true;
4872      OldDecl = Previous.getFoundDecl();
4873    } else {
4874      switch (CheckOverload(S, NewFD, Previous, OldDecl,
4875                            /*NewIsUsingDecl*/ false)) {
4876      case Ovl_Match:
4877        Redeclaration = true;
4878        break;
4879
4880      case Ovl_NonFunction:
4881        Redeclaration = true;
4882        break;
4883
4884      case Ovl_Overload:
4885        Redeclaration = false;
4886        break;
4887      }
4888
4889      if (!getLangOptions().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
4890        // If a function name is overloadable in C, then every function
4891        // with that name must be marked "overloadable".
4892        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
4893          << Redeclaration << NewFD;
4894        NamedDecl *OverloadedDecl = 0;
4895        if (Redeclaration)
4896          OverloadedDecl = OldDecl;
4897        else if (!Previous.empty())
4898          OverloadedDecl = Previous.getRepresentativeDecl();
4899        if (OverloadedDecl)
4900          Diag(OverloadedDecl->getLocation(),
4901               diag::note_attribute_overloadable_prev_overload);
4902        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
4903                                                        Context));
4904      }
4905    }
4906
4907    if (Redeclaration) {
4908      // NewFD and OldDecl represent declarations that need to be
4909      // merged.
4910      if (MergeFunctionDecl(NewFD, OldDecl))
4911        return NewFD->setInvalidDecl();
4912
4913      Previous.clear();
4914      Previous.addDecl(OldDecl);
4915
4916      if (FunctionTemplateDecl *OldTemplateDecl
4917                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
4918        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
4919        FunctionTemplateDecl *NewTemplateDecl
4920          = NewFD->getDescribedFunctionTemplate();
4921        assert(NewTemplateDecl && "Template/non-template mismatch");
4922        if (CXXMethodDecl *Method
4923              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
4924          Method->setAccess(OldTemplateDecl->getAccess());
4925          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
4926        }
4927
4928        // If this is an explicit specialization of a member that is a function
4929        // template, mark it as a member specialization.
4930        if (IsExplicitSpecialization &&
4931            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
4932          NewTemplateDecl->setMemberSpecialization();
4933          assert(OldTemplateDecl->isMemberSpecialization());
4934        }
4935      } else {
4936        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
4937          NewFD->setAccess(OldDecl->getAccess());
4938        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
4939      }
4940    }
4941  }
4942
4943  // Semantic checking for this function declaration (in isolation).
4944  if (getLangOptions().CPlusPlus) {
4945    // C++-specific checks.
4946    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
4947      CheckConstructor(Constructor);
4948    } else if (CXXDestructorDecl *Destructor =
4949                dyn_cast<CXXDestructorDecl>(NewFD)) {
4950      CXXRecordDecl *Record = Destructor->getParent();
4951      QualType ClassType = Context.getTypeDeclType(Record);
4952
4953      // FIXME: Shouldn't we be able to perform this check even when the class
4954      // type is dependent? Both gcc and edg can handle that.
4955      if (!ClassType->isDependentType()) {
4956        DeclarationName Name
4957          = Context.DeclarationNames.getCXXDestructorName(
4958                                        Context.getCanonicalType(ClassType));
4959        if (NewFD->getDeclName() != Name) {
4960          Diag(NewFD->getLocation(), diag::err_destructor_name);
4961          return NewFD->setInvalidDecl();
4962        }
4963      }
4964    } else if (CXXConversionDecl *Conversion
4965               = dyn_cast<CXXConversionDecl>(NewFD)) {
4966      ActOnConversionDeclarator(Conversion);
4967    }
4968
4969    // Find any virtual functions that this function overrides.
4970    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
4971      if (!Method->isFunctionTemplateSpecialization() &&
4972          !Method->getDescribedFunctionTemplate()) {
4973        if (AddOverriddenMethods(Method->getParent(), Method)) {
4974          // If the function was marked as "static", we have a problem.
4975          if (NewFD->getStorageClass() == SC_Static) {
4976            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
4977              << NewFD->getDeclName();
4978            for (CXXMethodDecl::method_iterator
4979                      Overridden = Method->begin_overridden_methods(),
4980                   OverriddenEnd = Method->end_overridden_methods();
4981                 Overridden != OverriddenEnd;
4982                 ++Overridden) {
4983              Diag((*Overridden)->getLocation(),
4984                   diag::note_overridden_virtual_function);
4985            }
4986          }
4987        }
4988      }
4989    }
4990
4991    // Extra checking for C++ overloaded operators (C++ [over.oper]).
4992    if (NewFD->isOverloadedOperator() &&
4993        CheckOverloadedOperatorDeclaration(NewFD))
4994      return NewFD->setInvalidDecl();
4995
4996    // Extra checking for C++0x literal operators (C++0x [over.literal]).
4997    if (NewFD->getLiteralIdentifier() &&
4998        CheckLiteralOperatorDeclaration(NewFD))
4999      return NewFD->setInvalidDecl();
5000
5001    // In C++, check default arguments now that we have merged decls. Unless
5002    // the lexical context is the class, because in this case this is done
5003    // during delayed parsing anyway.
5004    if (!CurContext->isRecord())
5005      CheckCXXDefaultArguments(NewFD);
5006
5007    // If this function declares a builtin function, check the type of this
5008    // declaration against the expected type for the builtin.
5009    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
5010      ASTContext::GetBuiltinTypeError Error;
5011      QualType T = Context.GetBuiltinType(BuiltinID, Error);
5012      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
5013        // The type of this function differs from the type of the builtin,
5014        // so forget about the builtin entirely.
5015        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
5016      }
5017    }
5018  }
5019}
5020
5021void Sema::CheckMain(FunctionDecl* FD) {
5022  // C++ [basic.start.main]p3:  A program that declares main to be inline
5023  //   or static is ill-formed.
5024  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
5025  //   shall not appear in a declaration of main.
5026  // static main is not an error under C99, but we should warn about it.
5027  bool isInline = FD->isInlineSpecified();
5028  bool isStatic = FD->getStorageClass() == SC_Static;
5029  if (isInline || isStatic) {
5030    unsigned diagID = diag::warn_unusual_main_decl;
5031    if (isInline || getLangOptions().CPlusPlus)
5032      diagID = diag::err_unusual_main_decl;
5033
5034    int which = isStatic + (isInline << 1) - 1;
5035    Diag(FD->getLocation(), diagID) << which;
5036  }
5037
5038  QualType T = FD->getType();
5039  assert(T->isFunctionType() && "function decl is not of function type");
5040  const FunctionType* FT = T->getAs<FunctionType>();
5041
5042  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
5043    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
5044    FD->setInvalidDecl(true);
5045  }
5046
5047  // Treat protoless main() as nullary.
5048  if (isa<FunctionNoProtoType>(FT)) return;
5049
5050  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
5051  unsigned nparams = FTP->getNumArgs();
5052  assert(FD->getNumParams() == nparams);
5053
5054  bool HasExtraParameters = (nparams > 3);
5055
5056  // Darwin passes an undocumented fourth argument of type char**.  If
5057  // other platforms start sprouting these, the logic below will start
5058  // getting shifty.
5059  if (nparams == 4 && Context.Target.getTriple().isOSDarwin())
5060    HasExtraParameters = false;
5061
5062  if (HasExtraParameters) {
5063    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
5064    FD->setInvalidDecl(true);
5065    nparams = 3;
5066  }
5067
5068  // FIXME: a lot of the following diagnostics would be improved
5069  // if we had some location information about types.
5070
5071  QualType CharPP =
5072    Context.getPointerType(Context.getPointerType(Context.CharTy));
5073  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
5074
5075  for (unsigned i = 0; i < nparams; ++i) {
5076    QualType AT = FTP->getArgType(i);
5077
5078    bool mismatch = true;
5079
5080    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
5081      mismatch = false;
5082    else if (Expected[i] == CharPP) {
5083      // As an extension, the following forms are okay:
5084      //   char const **
5085      //   char const * const *
5086      //   char * const *
5087
5088      QualifierCollector qs;
5089      const PointerType* PT;
5090      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
5091          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
5092          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
5093        qs.removeConst();
5094        mismatch = !qs.empty();
5095      }
5096    }
5097
5098    if (mismatch) {
5099      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
5100      // TODO: suggest replacing given type with expected type
5101      FD->setInvalidDecl(true);
5102    }
5103  }
5104
5105  if (nparams == 1 && !FD->isInvalidDecl()) {
5106    Diag(FD->getLocation(), diag::warn_main_one_arg);
5107  }
5108
5109  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
5110    Diag(FD->getLocation(), diag::err_main_template_decl);
5111    FD->setInvalidDecl();
5112  }
5113}
5114
5115bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
5116  // FIXME: Need strict checking.  In C89, we need to check for
5117  // any assignment, increment, decrement, function-calls, or
5118  // commas outside of a sizeof.  In C99, it's the same list,
5119  // except that the aforementioned are allowed in unevaluated
5120  // expressions.  Everything else falls under the
5121  // "may accept other forms of constant expressions" exception.
5122  // (We never end up here for C++, so the constant expression
5123  // rules there don't matter.)
5124  if (Init->isConstantInitializer(Context, false))
5125    return false;
5126  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
5127    << Init->getSourceRange();
5128  return true;
5129}
5130
5131namespace {
5132  // Visits an initialization expression to see if OrigDecl is evaluated in
5133  // its own initialization and throws a warning if it does.
5134  class SelfReferenceChecker
5135      : public EvaluatedExprVisitor<SelfReferenceChecker> {
5136    Sema &S;
5137    Decl *OrigDecl;
5138
5139  public:
5140    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
5141
5142    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
5143                                                    S(S), OrigDecl(OrigDecl) { }
5144
5145    void VisitExpr(Expr *E) {
5146      if (isa<ObjCMessageExpr>(*E)) return;
5147      Inherited::VisitExpr(E);
5148    }
5149
5150    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
5151      CheckForSelfReference(E);
5152      Inherited::VisitImplicitCastExpr(E);
5153    }
5154
5155    void CheckForSelfReference(ImplicitCastExpr *E) {
5156      if (E->getCastKind() != CK_LValueToRValue) return;
5157      Expr* SubExpr = E->getSubExpr()->IgnoreParenImpCasts();
5158      DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SubExpr);
5159      if (!DRE) return;
5160      Decl* ReferenceDecl = DRE->getDecl();
5161      if (OrigDecl != ReferenceDecl) return;
5162      LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
5163                          Sema::NotForRedeclaration);
5164      S.DiagRuntimeBehavior(SubExpr->getLocStart(), SubExpr,
5165                            S.PDiag(diag::warn_uninit_self_reference_in_init)
5166                              << Result.getLookupName()
5167                              << OrigDecl->getLocation()
5168                              << SubExpr->getSourceRange());
5169    }
5170  };
5171}
5172
5173/// AddInitializerToDecl - Adds the initializer Init to the
5174/// declaration dcl. If DirectInit is true, this is C++ direct
5175/// initialization rather than copy initialization.
5176void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
5177                                bool DirectInit, bool TypeMayContainAuto) {
5178  // If there is no declaration, there was an error parsing it.  Just ignore
5179  // the initializer.
5180  if (RealDecl == 0 || RealDecl->isInvalidDecl())
5181    return;
5182
5183  // Check for self-references within variable initializers.
5184  if (VarDecl *vd = dyn_cast<VarDecl>(RealDecl)) {
5185    // Variables declared within a function/method body are handled
5186    // by a dataflow analysis.
5187    if (!vd->hasLocalStorage() && !vd->isStaticLocal())
5188      SelfReferenceChecker(*this, RealDecl).VisitExpr(Init);
5189  }
5190  else {
5191    SelfReferenceChecker(*this, RealDecl).VisitExpr(Init);
5192  }
5193
5194  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
5195    // With declarators parsed the way they are, the parser cannot
5196    // distinguish between a normal initializer and a pure-specifier.
5197    // Thus this grotesque test.
5198    IntegerLiteral *IL;
5199    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
5200        Context.getCanonicalType(IL->getType()) == Context.IntTy)
5201      CheckPureMethod(Method, Init->getSourceRange());
5202    else {
5203      Diag(Method->getLocation(), diag::err_member_function_initialization)
5204        << Method->getDeclName() << Init->getSourceRange();
5205      Method->setInvalidDecl();
5206    }
5207    return;
5208  }
5209
5210  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
5211  if (!VDecl) {
5212    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
5213    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
5214    RealDecl->setInvalidDecl();
5215    return;
5216  }
5217
5218  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
5219  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
5220    TypeSourceInfo *DeducedType = 0;
5221    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
5222      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
5223        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
5224        << Init->getSourceRange();
5225    if (!DeducedType) {
5226      RealDecl->setInvalidDecl();
5227      return;
5228    }
5229    VDecl->setTypeSourceInfo(DeducedType);
5230    VDecl->setType(DeducedType->getType());
5231
5232    // If this is a redeclaration, check that the type we just deduced matches
5233    // the previously declared type.
5234    if (VarDecl *Old = VDecl->getPreviousDeclaration())
5235      MergeVarDeclTypes(VDecl, Old);
5236  }
5237
5238
5239  // A definition must end up with a complete type, which means it must be
5240  // complete with the restriction that an array type might be completed by the
5241  // initializer; note that later code assumes this restriction.
5242  QualType BaseDeclType = VDecl->getType();
5243  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
5244    BaseDeclType = Array->getElementType();
5245  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
5246                          diag::err_typecheck_decl_incomplete_type)) {
5247    RealDecl->setInvalidDecl();
5248    return;
5249  }
5250
5251  // The variable can not have an abstract class type.
5252  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
5253                             diag::err_abstract_type_in_decl,
5254                             AbstractVariableType))
5255    VDecl->setInvalidDecl();
5256
5257  const VarDecl *Def;
5258  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
5259    Diag(VDecl->getLocation(), diag::err_redefinition)
5260      << VDecl->getDeclName();
5261    Diag(Def->getLocation(), diag::note_previous_definition);
5262    VDecl->setInvalidDecl();
5263    return;
5264  }
5265
5266  const VarDecl* PrevInit = 0;
5267  if (getLangOptions().CPlusPlus) {
5268    // C++ [class.static.data]p4
5269    //   If a static data member is of const integral or const
5270    //   enumeration type, its declaration in the class definition can
5271    //   specify a constant-initializer which shall be an integral
5272    //   constant expression (5.19). In that case, the member can appear
5273    //   in integral constant expressions. The member shall still be
5274    //   defined in a namespace scope if it is used in the program and the
5275    //   namespace scope definition shall not contain an initializer.
5276    //
5277    // We already performed a redefinition check above, but for static
5278    // data members we also need to check whether there was an in-class
5279    // declaration with an initializer.
5280    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
5281      Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
5282      Diag(PrevInit->getLocation(), diag::note_previous_definition);
5283      return;
5284    }
5285
5286    if (VDecl->hasLocalStorage())
5287      getCurFunction()->setHasBranchProtectedScope();
5288
5289    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
5290      VDecl->setInvalidDecl();
5291      return;
5292    }
5293  }
5294
5295  // Capture the variable that is being initialized and the style of
5296  // initialization.
5297  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
5298
5299  // FIXME: Poor source location information.
5300  InitializationKind Kind
5301    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
5302                                                   Init->getLocStart(),
5303                                                   Init->getLocEnd())
5304                : InitializationKind::CreateCopy(VDecl->getLocation(),
5305                                                 Init->getLocStart());
5306
5307  // Get the decls type and save a reference for later, since
5308  // CheckInitializerTypes may change it.
5309  QualType DclT = VDecl->getType(), SavT = DclT;
5310  if (VDecl->isLocalVarDecl()) {
5311    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
5312      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
5313      VDecl->setInvalidDecl();
5314    } else if (!VDecl->isInvalidDecl()) {
5315      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5316      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5317                                                MultiExprArg(*this, &Init, 1),
5318                                                &DclT);
5319      if (Result.isInvalid()) {
5320        VDecl->setInvalidDecl();
5321        return;
5322      }
5323
5324      Init = Result.takeAs<Expr>();
5325
5326      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
5327      // Don't check invalid declarations to avoid emitting useless diagnostics.
5328      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
5329        if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
5330          CheckForConstantInitializer(Init, DclT);
5331      }
5332    }
5333  } else if (VDecl->isStaticDataMember() &&
5334             VDecl->getLexicalDeclContext()->isRecord()) {
5335    // This is an in-class initialization for a static data member, e.g.,
5336    //
5337    // struct S {
5338    //   static const int value = 17;
5339    // };
5340
5341    // Try to perform the initialization regardless.
5342    if (!VDecl->isInvalidDecl()) {
5343      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5344      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5345                                          MultiExprArg(*this, &Init, 1),
5346                                          &DclT);
5347      if (Result.isInvalid()) {
5348        VDecl->setInvalidDecl();
5349        return;
5350      }
5351
5352      Init = Result.takeAs<Expr>();
5353    }
5354
5355    // C++ [class.mem]p4:
5356    //   A member-declarator can contain a constant-initializer only
5357    //   if it declares a static member (9.4) of const integral or
5358    //   const enumeration type, see 9.4.2.
5359    QualType T = VDecl->getType();
5360
5361    // Do nothing on dependent types.
5362    if (T->isDependentType()) {
5363
5364    // Require constness.
5365    } else if (!T.isConstQualified()) {
5366      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
5367        << Init->getSourceRange();
5368      VDecl->setInvalidDecl();
5369
5370    // We allow integer constant expressions in all cases.
5371    } else if (T->isIntegralOrEnumerationType()) {
5372      if (!Init->isValueDependent()) {
5373        // Check whether the expression is a constant expression.
5374        llvm::APSInt Value;
5375        SourceLocation Loc;
5376        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
5377          Diag(Loc, diag::err_in_class_initializer_non_constant)
5378            << Init->getSourceRange();
5379          VDecl->setInvalidDecl();
5380        }
5381      }
5382
5383    // We allow floating-point constants as an extension in C++03, and
5384    // C++0x has far more complicated rules that we don't really
5385    // implement fully.
5386    } else {
5387      bool Allowed = false;
5388      if (getLangOptions().CPlusPlus0x) {
5389        Allowed = T->isLiteralType();
5390      } else if (T->isFloatingType()) { // also permits complex, which is ok
5391        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
5392          << T << Init->getSourceRange();
5393        Allowed = true;
5394      }
5395
5396      if (!Allowed) {
5397        Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
5398          << T << Init->getSourceRange();
5399        VDecl->setInvalidDecl();
5400
5401      // TODO: there are probably expressions that pass here that shouldn't.
5402      } else if (!Init->isValueDependent() &&
5403                 !Init->isConstantInitializer(Context, false)) {
5404        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
5405          << Init->getSourceRange();
5406        VDecl->setInvalidDecl();
5407      }
5408    }
5409  } else if (VDecl->isFileVarDecl()) {
5410    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
5411        (!getLangOptions().CPlusPlus ||
5412         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
5413      Diag(VDecl->getLocation(), diag::warn_extern_init);
5414    if (!VDecl->isInvalidDecl()) {
5415      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5416      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5417                                                MultiExprArg(*this, &Init, 1),
5418                                                &DclT);
5419      if (Result.isInvalid()) {
5420        VDecl->setInvalidDecl();
5421        return;
5422      }
5423
5424      Init = Result.takeAs<Expr>();
5425    }
5426
5427    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
5428    // Don't check invalid declarations to avoid emitting useless diagnostics.
5429    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
5430      // C99 6.7.8p4. All file scoped initializers need to be constant.
5431      CheckForConstantInitializer(Init, DclT);
5432    }
5433  }
5434  // If the type changed, it means we had an incomplete type that was
5435  // completed by the initializer. For example:
5436  //   int ary[] = { 1, 3, 5 };
5437  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
5438  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
5439    VDecl->setType(DclT);
5440    Init->setType(DclT);
5441  }
5442
5443
5444  // If this variable is a local declaration with record type, make sure it
5445  // doesn't have a flexible member initialization.  We only support this as a
5446  // global/static definition.
5447  if (VDecl->hasLocalStorage())
5448    if (const RecordType *RT = VDecl->getType()->getAs<RecordType>())
5449      if (RT->getDecl()->hasFlexibleArrayMember()) {
5450        // Check whether the initializer tries to initialize the flexible
5451        // array member itself to anything other than an empty initializer list.
5452        if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
5453          unsigned Index = std::distance(RT->getDecl()->field_begin(),
5454                                         RT->getDecl()->field_end()) - 1;
5455          if (Index < ILE->getNumInits() &&
5456              !(isa<InitListExpr>(ILE->getInit(Index)) &&
5457                cast<InitListExpr>(ILE->getInit(Index))->getNumInits() == 0)) {
5458            Diag(VDecl->getLocation(), diag::err_nonstatic_flexible_variable);
5459            VDecl->setInvalidDecl();
5460          }
5461        }
5462      }
5463
5464  // Check any implicit conversions within the expression.
5465  CheckImplicitConversions(Init, VDecl->getLocation());
5466
5467  Init = MaybeCreateExprWithCleanups(Init);
5468  // Attach the initializer to the decl.
5469  VDecl->setInit(Init);
5470
5471  CheckCompleteVariableDeclaration(VDecl);
5472}
5473
5474/// ActOnInitializerError - Given that there was an error parsing an
5475/// initializer for the given declaration, try to return to some form
5476/// of sanity.
5477void Sema::ActOnInitializerError(Decl *D) {
5478  // Our main concern here is re-establishing invariants like "a
5479  // variable's type is either dependent or complete".
5480  if (!D || D->isInvalidDecl()) return;
5481
5482  VarDecl *VD = dyn_cast<VarDecl>(D);
5483  if (!VD) return;
5484
5485  // Auto types are meaningless if we can't make sense of the initializer.
5486  if (ParsingInitForAutoVars.count(D)) {
5487    D->setInvalidDecl();
5488    return;
5489  }
5490
5491  QualType Ty = VD->getType();
5492  if (Ty->isDependentType()) return;
5493
5494  // Require a complete type.
5495  if (RequireCompleteType(VD->getLocation(),
5496                          Context.getBaseElementType(Ty),
5497                          diag::err_typecheck_decl_incomplete_type)) {
5498    VD->setInvalidDecl();
5499    return;
5500  }
5501
5502  // Require an abstract type.
5503  if (RequireNonAbstractType(VD->getLocation(), Ty,
5504                             diag::err_abstract_type_in_decl,
5505                             AbstractVariableType)) {
5506    VD->setInvalidDecl();
5507    return;
5508  }
5509
5510  // Don't bother complaining about constructors or destructors,
5511  // though.
5512}
5513
5514void Sema::ActOnUninitializedDecl(Decl *RealDecl,
5515                                  bool TypeMayContainAuto) {
5516  // If there is no declaration, there was an error parsing it. Just ignore it.
5517  if (RealDecl == 0)
5518    return;
5519
5520  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
5521    QualType Type = Var->getType();
5522
5523    // C++0x [dcl.spec.auto]p3
5524    if (TypeMayContainAuto && Type->getContainedAutoType()) {
5525      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
5526        << Var->getDeclName() << Type;
5527      Var->setInvalidDecl();
5528      return;
5529    }
5530
5531    switch (Var->isThisDeclarationADefinition()) {
5532    case VarDecl::Definition:
5533      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
5534        break;
5535
5536      // We have an out-of-line definition of a static data member
5537      // that has an in-class initializer, so we type-check this like
5538      // a declaration.
5539      //
5540      // Fall through
5541
5542    case VarDecl::DeclarationOnly:
5543      // It's only a declaration.
5544
5545      // Block scope. C99 6.7p7: If an identifier for an object is
5546      // declared with no linkage (C99 6.2.2p6), the type for the
5547      // object shall be complete.
5548      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
5549          !Var->getLinkage() && !Var->isInvalidDecl() &&
5550          RequireCompleteType(Var->getLocation(), Type,
5551                              diag::err_typecheck_decl_incomplete_type))
5552        Var->setInvalidDecl();
5553
5554      // Make sure that the type is not abstract.
5555      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
5556          RequireNonAbstractType(Var->getLocation(), Type,
5557                                 diag::err_abstract_type_in_decl,
5558                                 AbstractVariableType))
5559        Var->setInvalidDecl();
5560      return;
5561
5562    case VarDecl::TentativeDefinition:
5563      // File scope. C99 6.9.2p2: A declaration of an identifier for an
5564      // object that has file scope without an initializer, and without a
5565      // storage-class specifier or with the storage-class specifier "static",
5566      // constitutes a tentative definition. Note: A tentative definition with
5567      // external linkage is valid (C99 6.2.2p5).
5568      if (!Var->isInvalidDecl()) {
5569        if (const IncompleteArrayType *ArrayT
5570                                    = Context.getAsIncompleteArrayType(Type)) {
5571          if (RequireCompleteType(Var->getLocation(),
5572                                  ArrayT->getElementType(),
5573                                  diag::err_illegal_decl_array_incomplete_type))
5574            Var->setInvalidDecl();
5575        } else if (Var->getStorageClass() == SC_Static) {
5576          // C99 6.9.2p3: If the declaration of an identifier for an object is
5577          // a tentative definition and has internal linkage (C99 6.2.2p3), the
5578          // declared type shall not be an incomplete type.
5579          // NOTE: code such as the following
5580          //     static struct s;
5581          //     struct s { int a; };
5582          // is accepted by gcc. Hence here we issue a warning instead of
5583          // an error and we do not invalidate the static declaration.
5584          // NOTE: to avoid multiple warnings, only check the first declaration.
5585          if (Var->getPreviousDeclaration() == 0)
5586            RequireCompleteType(Var->getLocation(), Type,
5587                                diag::ext_typecheck_decl_incomplete_type);
5588        }
5589      }
5590
5591      // Record the tentative definition; we're done.
5592      if (!Var->isInvalidDecl())
5593        TentativeDefinitions.push_back(Var);
5594      return;
5595    }
5596
5597    // Provide a specific diagnostic for uninitialized variable
5598    // definitions with incomplete array type.
5599    if (Type->isIncompleteArrayType()) {
5600      Diag(Var->getLocation(),
5601           diag::err_typecheck_incomplete_array_needs_initializer);
5602      Var->setInvalidDecl();
5603      return;
5604    }
5605
5606    // Provide a specific diagnostic for uninitialized variable
5607    // definitions with reference type.
5608    if (Type->isReferenceType()) {
5609      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
5610        << Var->getDeclName()
5611        << SourceRange(Var->getLocation(), Var->getLocation());
5612      Var->setInvalidDecl();
5613      return;
5614    }
5615
5616    // Do not attempt to type-check the default initializer for a
5617    // variable with dependent type.
5618    if (Type->isDependentType())
5619      return;
5620
5621    if (Var->isInvalidDecl())
5622      return;
5623
5624    if (RequireCompleteType(Var->getLocation(),
5625                            Context.getBaseElementType(Type),
5626                            diag::err_typecheck_decl_incomplete_type)) {
5627      Var->setInvalidDecl();
5628      return;
5629    }
5630
5631    // The variable can not have an abstract class type.
5632    if (RequireNonAbstractType(Var->getLocation(), Type,
5633                               diag::err_abstract_type_in_decl,
5634                               AbstractVariableType)) {
5635      Var->setInvalidDecl();
5636      return;
5637    }
5638
5639    // Check for jumps past the implicit initializer.  C++0x
5640    // clarifies that this applies to a "variable with automatic
5641    // storage duration", not a "local variable".
5642    // C++0x [stmt.dcl]p3
5643    //   A program that jumps from a point where a variable with automatic
5644    //   storage duration is not in scope to a point where it is in scope is
5645    //   ill-formed unless the variable has scalar type, class type with a
5646    //   trivial default constructor and a trivial destructor, a cv-qualified
5647    //   version of one of these types, or an array of one of the preceding
5648    //   types and is declared without an initializer.
5649    if (getLangOptions().CPlusPlus && Var->hasLocalStorage()) {
5650      if (const RecordType *Record
5651            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
5652        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
5653        if ((!getLangOptions().CPlusPlus0x && !CXXRecord->isPOD()) ||
5654            (getLangOptions().CPlusPlus0x &&
5655             (!CXXRecord->hasTrivialDefaultConstructor() ||
5656              !CXXRecord->hasTrivialDestructor())))
5657          getCurFunction()->setHasBranchProtectedScope();
5658      }
5659    }
5660
5661    // C++03 [dcl.init]p9:
5662    //   If no initializer is specified for an object, and the
5663    //   object is of (possibly cv-qualified) non-POD class type (or
5664    //   array thereof), the object shall be default-initialized; if
5665    //   the object is of const-qualified type, the underlying class
5666    //   type shall have a user-declared default
5667    //   constructor. Otherwise, if no initializer is specified for
5668    //   a non- static object, the object and its subobjects, if
5669    //   any, have an indeterminate initial value); if the object
5670    //   or any of its subobjects are of const-qualified type, the
5671    //   program is ill-formed.
5672    // C++0x [dcl.init]p11:
5673    //   If no initializer is specified for an object, the object is
5674    //   default-initialized; [...].
5675    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
5676    InitializationKind Kind
5677      = InitializationKind::CreateDefault(Var->getLocation());
5678
5679    InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
5680    ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
5681                                      MultiExprArg(*this, 0, 0));
5682    if (Init.isInvalid())
5683      Var->setInvalidDecl();
5684    else if (Init.get())
5685      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
5686
5687    CheckCompleteVariableDeclaration(Var);
5688  }
5689}
5690
5691void Sema::ActOnCXXForRangeDecl(Decl *D) {
5692  VarDecl *VD = dyn_cast<VarDecl>(D);
5693  if (!VD) {
5694    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
5695    D->setInvalidDecl();
5696    return;
5697  }
5698
5699  VD->setCXXForRangeDecl(true);
5700
5701  // for-range-declaration cannot be given a storage class specifier.
5702  int Error = -1;
5703  switch (VD->getStorageClassAsWritten()) {
5704  case SC_None:
5705    break;
5706  case SC_Extern:
5707    Error = 0;
5708    break;
5709  case SC_Static:
5710    Error = 1;
5711    break;
5712  case SC_PrivateExtern:
5713    Error = 2;
5714    break;
5715  case SC_Auto:
5716    Error = 3;
5717    break;
5718  case SC_Register:
5719    Error = 4;
5720    break;
5721  }
5722  // FIXME: constexpr isn't allowed here.
5723  //if (DS.isConstexprSpecified())
5724  //  Error = 5;
5725  if (Error != -1) {
5726    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
5727      << VD->getDeclName() << Error;
5728    D->setInvalidDecl();
5729  }
5730}
5731
5732void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
5733  if (var->isInvalidDecl()) return;
5734
5735  // All the following checks are C++ only.
5736  if (!getLangOptions().CPlusPlus) return;
5737
5738  QualType baseType = Context.getBaseElementType(var->getType());
5739  if (baseType->isDependentType()) return;
5740
5741  // __block variables might require us to capture a copy-initializer.
5742  if (var->hasAttr<BlocksAttr>()) {
5743    // It's currently invalid to ever have a __block variable with an
5744    // array type; should we diagnose that here?
5745
5746    // Regardless, we don't want to ignore array nesting when
5747    // constructing this copy.
5748    QualType type = var->getType();
5749
5750    if (type->isStructureOrClassType()) {
5751      SourceLocation poi = var->getLocation();
5752      Expr *varRef = new (Context) DeclRefExpr(var, type, VK_LValue, poi);
5753      ExprResult result =
5754        PerformCopyInitialization(
5755                        InitializedEntity::InitializeBlock(poi, type, false),
5756                                  poi, Owned(varRef));
5757      if (!result.isInvalid()) {
5758        result = MaybeCreateExprWithCleanups(result);
5759        Expr *init = result.takeAs<Expr>();
5760        Context.setBlockVarCopyInits(var, init);
5761      }
5762    }
5763  }
5764
5765  // Check for global constructors.
5766  if (!var->getDeclContext()->isDependentContext() &&
5767      var->hasGlobalStorage() &&
5768      !var->isStaticLocal() &&
5769      var->getInit() &&
5770      !var->getInit()->isConstantInitializer(Context,
5771                                             baseType->isReferenceType()))
5772    Diag(var->getLocation(), diag::warn_global_constructor)
5773      << var->getInit()->getSourceRange();
5774
5775  // Require the destructor.
5776  if (const RecordType *recordType = baseType->getAs<RecordType>())
5777    FinalizeVarWithDestructor(var, recordType);
5778}
5779
5780/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
5781/// any semantic actions necessary after any initializer has been attached.
5782void
5783Sema::FinalizeDeclaration(Decl *ThisDecl) {
5784  // Note that we are no longer parsing the initializer for this declaration.
5785  ParsingInitForAutoVars.erase(ThisDecl);
5786}
5787
5788Sema::DeclGroupPtrTy
5789Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
5790                              Decl **Group, unsigned NumDecls) {
5791  llvm::SmallVector<Decl*, 8> Decls;
5792
5793  if (DS.isTypeSpecOwned())
5794    Decls.push_back(DS.getRepAsDecl());
5795
5796  for (unsigned i = 0; i != NumDecls; ++i)
5797    if (Decl *D = Group[i])
5798      Decls.push_back(D);
5799
5800  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
5801                              DS.getTypeSpecType() == DeclSpec::TST_auto);
5802}
5803
5804/// BuildDeclaratorGroup - convert a list of declarations into a declaration
5805/// group, performing any necessary semantic checking.
5806Sema::DeclGroupPtrTy
5807Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
5808                           bool TypeMayContainAuto) {
5809  // C++0x [dcl.spec.auto]p7:
5810  //   If the type deduced for the template parameter U is not the same in each
5811  //   deduction, the program is ill-formed.
5812  // FIXME: When initializer-list support is added, a distinction is needed
5813  // between the deduced type U and the deduced type which 'auto' stands for.
5814  //   auto a = 0, b = { 1, 2, 3 };
5815  // is legal because the deduced type U is 'int' in both cases.
5816  if (TypeMayContainAuto && NumDecls > 1) {
5817    QualType Deduced;
5818    CanQualType DeducedCanon;
5819    VarDecl *DeducedDecl = 0;
5820    for (unsigned i = 0; i != NumDecls; ++i) {
5821      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
5822        AutoType *AT = D->getType()->getContainedAutoType();
5823        // Don't reissue diagnostics when instantiating a template.
5824        if (AT && D->isInvalidDecl())
5825          break;
5826        if (AT && AT->isDeduced()) {
5827          QualType U = AT->getDeducedType();
5828          CanQualType UCanon = Context.getCanonicalType(U);
5829          if (Deduced.isNull()) {
5830            Deduced = U;
5831            DeducedCanon = UCanon;
5832            DeducedDecl = D;
5833          } else if (DeducedCanon != UCanon) {
5834            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
5835                 diag::err_auto_different_deductions)
5836              << Deduced << DeducedDecl->getDeclName()
5837              << U << D->getDeclName()
5838              << DeducedDecl->getInit()->getSourceRange()
5839              << D->getInit()->getSourceRange();
5840            D->setInvalidDecl();
5841            break;
5842          }
5843        }
5844      }
5845    }
5846  }
5847
5848  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
5849}
5850
5851
5852/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
5853/// to introduce parameters into function prototype scope.
5854Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
5855  const DeclSpec &DS = D.getDeclSpec();
5856
5857  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
5858  VarDecl::StorageClass StorageClass = SC_None;
5859  VarDecl::StorageClass StorageClassAsWritten = SC_None;
5860  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
5861    StorageClass = SC_Register;
5862    StorageClassAsWritten = SC_Register;
5863  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
5864    Diag(DS.getStorageClassSpecLoc(),
5865         diag::err_invalid_storage_class_in_func_decl);
5866    D.getMutableDeclSpec().ClearStorageClassSpecs();
5867  }
5868
5869  if (D.getDeclSpec().isThreadSpecified())
5870    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5871
5872  DiagnoseFunctionSpecifiers(D);
5873
5874  TagDecl *OwnedDecl = 0;
5875  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
5876  QualType parmDeclType = TInfo->getType();
5877
5878  if (getLangOptions().CPlusPlus) {
5879    // Check that there are no default arguments inside the type of this
5880    // parameter.
5881    CheckExtraCXXDefaultArguments(D);
5882
5883    if (OwnedDecl && OwnedDecl->isDefinition()) {
5884      // C++ [dcl.fct]p6:
5885      //   Types shall not be defined in return or parameter types.
5886      Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
5887        << Context.getTypeDeclType(OwnedDecl);
5888    }
5889
5890    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
5891    if (D.getCXXScopeSpec().isSet()) {
5892      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
5893        << D.getCXXScopeSpec().getRange();
5894      D.getCXXScopeSpec().clear();
5895    }
5896  }
5897
5898  // Ensure we have a valid name
5899  IdentifierInfo *II = 0;
5900  if (D.hasName()) {
5901    II = D.getIdentifier();
5902    if (!II) {
5903      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
5904        << GetNameForDeclarator(D).getName().getAsString();
5905      D.setInvalidType(true);
5906    }
5907  }
5908
5909  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
5910  if (II) {
5911    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
5912                   ForRedeclaration);
5913    LookupName(R, S);
5914    if (R.isSingleResult()) {
5915      NamedDecl *PrevDecl = R.getFoundDecl();
5916      if (PrevDecl->isTemplateParameter()) {
5917        // Maybe we will complain about the shadowed template parameter.
5918        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5919        // Just pretend that we didn't see the previous declaration.
5920        PrevDecl = 0;
5921      } else if (S->isDeclScope(PrevDecl)) {
5922        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
5923        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5924
5925        // Recover by removing the name
5926        II = 0;
5927        D.SetIdentifier(0, D.getIdentifierLoc());
5928        D.setInvalidType(true);
5929      }
5930    }
5931  }
5932
5933  // Temporarily put parameter variables in the translation unit, not
5934  // the enclosing context.  This prevents them from accidentally
5935  // looking like class members in C++.
5936  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
5937                                    D.getSourceRange().getBegin(),
5938                                    D.getIdentifierLoc(), II,
5939                                    parmDeclType, TInfo,
5940                                    StorageClass, StorageClassAsWritten);
5941
5942  if (D.isInvalidType())
5943    New->setInvalidDecl();
5944
5945  assert(S->isFunctionPrototypeScope());
5946  assert(S->getFunctionPrototypeDepth() >= 1);
5947  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
5948                    S->getNextFunctionPrototypeIndex());
5949
5950  // Add the parameter declaration into this scope.
5951  S->AddDecl(New);
5952  if (II)
5953    IdResolver.AddDecl(New);
5954
5955  ProcessDeclAttributes(S, New, D);
5956
5957  if (New->hasAttr<BlocksAttr>()) {
5958    Diag(New->getLocation(), diag::err_block_on_nonlocal);
5959  }
5960  return New;
5961}
5962
5963/// \brief Synthesizes a variable for a parameter arising from a
5964/// typedef.
5965ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
5966                                              SourceLocation Loc,
5967                                              QualType T) {
5968  /* FIXME: setting StartLoc == Loc.
5969     Would it be worth to modify callers so as to provide proper source
5970     location for the unnamed parameters, embedding the parameter's type? */
5971  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
5972                                T, Context.getTrivialTypeSourceInfo(T, Loc),
5973                                           SC_None, SC_None, 0);
5974  Param->setImplicit();
5975  return Param;
5976}
5977
5978void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
5979                                    ParmVarDecl * const *ParamEnd) {
5980  // Don't diagnose unused-parameter errors in template instantiations; we
5981  // will already have done so in the template itself.
5982  if (!ActiveTemplateInstantiations.empty())
5983    return;
5984
5985  for (; Param != ParamEnd; ++Param) {
5986    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
5987        !(*Param)->hasAttr<UnusedAttr>()) {
5988      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
5989        << (*Param)->getDeclName();
5990    }
5991  }
5992}
5993
5994void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
5995                                                  ParmVarDecl * const *ParamEnd,
5996                                                  QualType ReturnTy,
5997                                                  NamedDecl *D) {
5998  if (LangOpts.NumLargeByValueCopy == 0) // No check.
5999    return;
6000
6001  // Warn if the return value is pass-by-value and larger than the specified
6002  // threshold.
6003  if (ReturnTy->isPODType()) {
6004    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
6005    if (Size > LangOpts.NumLargeByValueCopy)
6006      Diag(D->getLocation(), diag::warn_return_value_size)
6007          << D->getDeclName() << Size;
6008  }
6009
6010  // Warn if any parameter is pass-by-value and larger than the specified
6011  // threshold.
6012  for (; Param != ParamEnd; ++Param) {
6013    QualType T = (*Param)->getType();
6014    if (!T->isPODType())
6015      continue;
6016    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
6017    if (Size > LangOpts.NumLargeByValueCopy)
6018      Diag((*Param)->getLocation(), diag::warn_parameter_size)
6019          << (*Param)->getDeclName() << Size;
6020  }
6021}
6022
6023ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
6024                                  SourceLocation NameLoc, IdentifierInfo *Name,
6025                                  QualType T, TypeSourceInfo *TSInfo,
6026                                  VarDecl::StorageClass StorageClass,
6027                                  VarDecl::StorageClass StorageClassAsWritten) {
6028  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
6029                                         adjustParameterType(T), TSInfo,
6030                                         StorageClass, StorageClassAsWritten,
6031                                         0);
6032
6033  // Parameters can not be abstract class types.
6034  // For record types, this is done by the AbstractClassUsageDiagnoser once
6035  // the class has been completely parsed.
6036  if (!CurContext->isRecord() &&
6037      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
6038                             AbstractParamType))
6039    New->setInvalidDecl();
6040
6041  // Parameter declarators cannot be interface types. All ObjC objects are
6042  // passed by reference.
6043  if (T->isObjCObjectType()) {
6044    Diag(NameLoc,
6045         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
6046    New->setInvalidDecl();
6047  }
6048
6049  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
6050  // duration shall not be qualified by an address-space qualifier."
6051  // Since all parameters have automatic store duration, they can not have
6052  // an address space.
6053  if (T.getAddressSpace() != 0) {
6054    Diag(NameLoc, diag::err_arg_with_address_space);
6055    New->setInvalidDecl();
6056  }
6057
6058  return New;
6059}
6060
6061void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
6062                                           SourceLocation LocAfterDecls) {
6063  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6064
6065  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
6066  // for a K&R function.
6067  if (!FTI.hasPrototype) {
6068    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
6069      --i;
6070      if (FTI.ArgInfo[i].Param == 0) {
6071        llvm::SmallString<256> Code;
6072        llvm::raw_svector_ostream(Code) << "  int "
6073                                        << FTI.ArgInfo[i].Ident->getName()
6074                                        << ";\n";
6075        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
6076          << FTI.ArgInfo[i].Ident
6077          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
6078
6079        // Implicitly declare the argument as type 'int' for lack of a better
6080        // type.
6081        AttributeFactory attrs;
6082        DeclSpec DS(attrs);
6083        const char* PrevSpec; // unused
6084        unsigned DiagID; // unused
6085        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
6086                           PrevSpec, DiagID);
6087        Declarator ParamD(DS, Declarator::KNRTypeListContext);
6088        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
6089        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
6090      }
6091    }
6092  }
6093}
6094
6095Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
6096                                         Declarator &D) {
6097  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
6098  assert(D.isFunctionDeclarator() && "Not a function declarator!");
6099  Scope *ParentScope = FnBodyScope->getParent();
6100
6101  Decl *DP = HandleDeclarator(ParentScope, D,
6102                              MultiTemplateParamsArg(*this),
6103                              /*IsFunctionDefinition=*/true);
6104  return ActOnStartOfFunctionDef(FnBodyScope, DP);
6105}
6106
6107static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
6108  // Don't warn about invalid declarations.
6109  if (FD->isInvalidDecl())
6110    return false;
6111
6112  // Or declarations that aren't global.
6113  if (!FD->isGlobal())
6114    return false;
6115
6116  // Don't warn about C++ member functions.
6117  if (isa<CXXMethodDecl>(FD))
6118    return false;
6119
6120  // Don't warn about 'main'.
6121  if (FD->isMain())
6122    return false;
6123
6124  // Don't warn about inline functions.
6125  if (FD->isInlined())
6126    return false;
6127
6128  // Don't warn about function templates.
6129  if (FD->getDescribedFunctionTemplate())
6130    return false;
6131
6132  // Don't warn about function template specializations.
6133  if (FD->isFunctionTemplateSpecialization())
6134    return false;
6135
6136  bool MissingPrototype = true;
6137  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
6138       Prev; Prev = Prev->getPreviousDeclaration()) {
6139    // Ignore any declarations that occur in function or method
6140    // scope, because they aren't visible from the header.
6141    if (Prev->getDeclContext()->isFunctionOrMethod())
6142      continue;
6143
6144    MissingPrototype = !Prev->getType()->isFunctionProtoType();
6145    break;
6146  }
6147
6148  return MissingPrototype;
6149}
6150
6151void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
6152  // Don't complain if we're in GNU89 mode and the previous definition
6153  // was an extern inline function.
6154  const FunctionDecl *Definition;
6155  if (FD->isDefined(Definition) &&
6156      !canRedefineFunction(Definition, getLangOptions())) {
6157    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
6158        Definition->getStorageClass() == SC_Extern)
6159      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
6160        << FD->getDeclName() << getLangOptions().CPlusPlus;
6161    else
6162      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
6163    Diag(Definition->getLocation(), diag::note_previous_definition);
6164  }
6165}
6166
6167Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
6168  // Clear the last template instantiation error context.
6169  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
6170
6171  if (!D)
6172    return D;
6173  FunctionDecl *FD = 0;
6174
6175  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
6176    FD = FunTmpl->getTemplatedDecl();
6177  else
6178    FD = cast<FunctionDecl>(D);
6179
6180  // Enter a new function scope
6181  PushFunctionScope();
6182
6183  // See if this is a redefinition.
6184  if (!FD->isLateTemplateParsed())
6185    CheckForFunctionRedefinition(FD);
6186
6187  // Builtin functions cannot be defined.
6188  if (unsigned BuiltinID = FD->getBuiltinID()) {
6189    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
6190      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
6191      FD->setInvalidDecl();
6192    }
6193  }
6194
6195  // The return type of a function definition must be complete
6196  // (C99 6.9.1p3, C++ [dcl.fct]p6).
6197  QualType ResultType = FD->getResultType();
6198  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
6199      !FD->isInvalidDecl() &&
6200      RequireCompleteType(FD->getLocation(), ResultType,
6201                          diag::err_func_def_incomplete_result))
6202    FD->setInvalidDecl();
6203
6204  // GNU warning -Wmissing-prototypes:
6205  //   Warn if a global function is defined without a previous
6206  //   prototype declaration. This warning is issued even if the
6207  //   definition itself provides a prototype. The aim is to detect
6208  //   global functions that fail to be declared in header files.
6209  if (ShouldWarnAboutMissingPrototype(FD))
6210    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
6211
6212  if (FnBodyScope)
6213    PushDeclContext(FnBodyScope, FD);
6214
6215  // Check the validity of our function parameters
6216  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
6217                           /*CheckParameterNames=*/true);
6218
6219  // Introduce our parameters into the function scope
6220  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
6221    ParmVarDecl *Param = FD->getParamDecl(p);
6222    Param->setOwningFunction(FD);
6223
6224    // If this has an identifier, add it to the scope stack.
6225    if (Param->getIdentifier() && FnBodyScope) {
6226      CheckShadow(FnBodyScope, Param);
6227
6228      PushOnScopeChains(Param, FnBodyScope);
6229    }
6230  }
6231
6232  // Checking attributes of current function definition
6233  // dllimport attribute.
6234  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
6235  if (DA && (!FD->getAttr<DLLExportAttr>())) {
6236    // dllimport attribute cannot be directly applied to definition.
6237    // Microsoft accepts dllimport for functions defined within class scope.
6238    if (!DA->isInherited() &&
6239        !(LangOpts.Microsoft && FD->getLexicalDeclContext()->isRecord())) {
6240      Diag(FD->getLocation(),
6241           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
6242        << "dllimport";
6243      FD->setInvalidDecl();
6244      return FD;
6245    }
6246
6247    // Visual C++ appears to not think this is an issue, so only issue
6248    // a warning when Microsoft extensions are disabled.
6249    if (!LangOpts.Microsoft) {
6250      // If a symbol previously declared dllimport is later defined, the
6251      // attribute is ignored in subsequent references, and a warning is
6252      // emitted.
6253      Diag(FD->getLocation(),
6254           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
6255        << FD->getName() << "dllimport";
6256    }
6257  }
6258  return FD;
6259}
6260
6261/// \brief Given the set of return statements within a function body,
6262/// compute the variables that are subject to the named return value
6263/// optimization.
6264///
6265/// Each of the variables that is subject to the named return value
6266/// optimization will be marked as NRVO variables in the AST, and any
6267/// return statement that has a marked NRVO variable as its NRVO candidate can
6268/// use the named return value optimization.
6269///
6270/// This function applies a very simplistic algorithm for NRVO: if every return
6271/// statement in the function has the same NRVO candidate, that candidate is
6272/// the NRVO variable.
6273///
6274/// FIXME: Employ a smarter algorithm that accounts for multiple return
6275/// statements and the lifetimes of the NRVO candidates. We should be able to
6276/// find a maximal set of NRVO variables.
6277static void ComputeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
6278  ReturnStmt **Returns = Scope->Returns.data();
6279
6280  const VarDecl *NRVOCandidate = 0;
6281  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
6282    if (!Returns[I]->getNRVOCandidate())
6283      return;
6284
6285    if (!NRVOCandidate)
6286      NRVOCandidate = Returns[I]->getNRVOCandidate();
6287    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
6288      return;
6289  }
6290
6291  if (NRVOCandidate)
6292    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
6293}
6294
6295Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
6296  return ActOnFinishFunctionBody(D, move(BodyArg), false);
6297}
6298
6299Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
6300                                    bool IsInstantiation) {
6301  FunctionDecl *FD = 0;
6302  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
6303  if (FunTmpl)
6304    FD = FunTmpl->getTemplatedDecl();
6305  else
6306    FD = dyn_cast_or_null<FunctionDecl>(dcl);
6307
6308  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
6309  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
6310
6311  if (FD) {
6312    FD->setBody(Body);
6313    if (FD->isMain()) {
6314      // C and C++ allow for main to automagically return 0.
6315      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
6316      FD->setHasImplicitReturnZero(true);
6317      WP.disableCheckFallThrough();
6318    }
6319
6320    // MSVC permits the use of pure specifier (=0) on function definition,
6321    // defined at class scope, warn about this non standard construct.
6322    if (getLangOptions().Microsoft && FD->isPure())
6323      Diag(FD->getLocation(), diag::warn_pure_function_definition);
6324
6325    if (!FD->isInvalidDecl()) {
6326      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
6327      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
6328                                             FD->getResultType(), FD);
6329
6330      // If this is a constructor, we need a vtable.
6331      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
6332        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
6333
6334      ComputeNRVO(Body, getCurFunction());
6335    }
6336
6337    assert(FD == getCurFunctionDecl() && "Function parsing confused");
6338  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
6339    assert(MD == getCurMethodDecl() && "Method parsing confused");
6340    MD->setBody(Body);
6341    if (Body)
6342      MD->setEndLoc(Body->getLocEnd());
6343    if (!MD->isInvalidDecl()) {
6344      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
6345      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
6346                                             MD->getResultType(), MD);
6347    }
6348  } else {
6349    return 0;
6350  }
6351
6352  // Verify and clean out per-function state.
6353  if (Body) {
6354    // C++ constructors that have function-try-blocks can't have return
6355    // statements in the handlers of that block. (C++ [except.handle]p14)
6356    // Verify this.
6357    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
6358      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
6359
6360    // Verify that that gotos and switch cases don't jump into scopes illegally.
6361    // Verify that that gotos and switch cases don't jump into scopes illegally.
6362    if (getCurFunction()->NeedsScopeChecking() &&
6363        !dcl->isInvalidDecl() &&
6364        !hasAnyErrorsInThisFunction())
6365      DiagnoseInvalidJumps(Body);
6366
6367    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
6368      if (!Destructor->getParent()->isDependentType())
6369        CheckDestructor(Destructor);
6370
6371      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
6372                                             Destructor->getParent());
6373    }
6374
6375    // If any errors have occurred, clear out any temporaries that may have
6376    // been leftover. This ensures that these temporaries won't be picked up for
6377    // deletion in some later function.
6378    if (PP.getDiagnostics().hasErrorOccurred() ||
6379        PP.getDiagnostics().getSuppressAllDiagnostics())
6380      ExprTemporaries.clear();
6381    else if (!isa<FunctionTemplateDecl>(dcl)) {
6382      // Since the body is valid, issue any analysis-based warnings that are
6383      // enabled.
6384      ActivePolicy = &WP;
6385    }
6386
6387    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
6388  }
6389
6390  if (!IsInstantiation)
6391    PopDeclContext();
6392
6393  PopFunctionOrBlockScope(ActivePolicy, dcl);
6394
6395  // If any errors have occurred, clear out any temporaries that may have
6396  // been leftover. This ensures that these temporaries won't be picked up for
6397  // deletion in some later function.
6398  if (getDiagnostics().hasErrorOccurred())
6399    ExprTemporaries.clear();
6400
6401  return dcl;
6402}
6403
6404/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
6405/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
6406NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
6407                                          IdentifierInfo &II, Scope *S) {
6408  // Before we produce a declaration for an implicitly defined
6409  // function, see whether there was a locally-scoped declaration of
6410  // this name as a function or variable. If so, use that
6411  // (non-visible) declaration, and complain about it.
6412  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
6413    = LocallyScopedExternalDecls.find(&II);
6414  if (Pos != LocallyScopedExternalDecls.end()) {
6415    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
6416    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
6417    return Pos->second;
6418  }
6419
6420  // Extension in C99.  Legal in C90, but warn about it.
6421  if (II.getName().startswith("__builtin_"))
6422    Diag(Loc, diag::warn_builtin_unknown) << &II;
6423  else if (getLangOptions().C99)
6424    Diag(Loc, diag::ext_implicit_function_decl) << &II;
6425  else
6426    Diag(Loc, diag::warn_implicit_function_decl) << &II;
6427
6428  // Set a Declarator for the implicit definition: int foo();
6429  const char *Dummy;
6430  AttributeFactory attrFactory;
6431  DeclSpec DS(attrFactory);
6432  unsigned DiagID;
6433  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
6434  (void)Error; // Silence warning.
6435  assert(!Error && "Error setting up implicit decl!");
6436  Declarator D(DS, Declarator::BlockContext);
6437  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
6438                                             0, 0, true, SourceLocation(),
6439                                             EST_None, SourceLocation(),
6440                                             0, 0, 0, 0, Loc, Loc, D),
6441                DS.getAttributes(),
6442                SourceLocation());
6443  D.SetIdentifier(&II, Loc);
6444
6445  // Insert this function into translation-unit scope.
6446
6447  DeclContext *PrevDC = CurContext;
6448  CurContext = Context.getTranslationUnitDecl();
6449
6450  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
6451  FD->setImplicit();
6452
6453  CurContext = PrevDC;
6454
6455  AddKnownFunctionAttributes(FD);
6456
6457  return FD;
6458}
6459
6460/// \brief Adds any function attributes that we know a priori based on
6461/// the declaration of this function.
6462///
6463/// These attributes can apply both to implicitly-declared builtins
6464/// (like __builtin___printf_chk) or to library-declared functions
6465/// like NSLog or printf.
6466void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
6467  if (FD->isInvalidDecl())
6468    return;
6469
6470  // If this is a built-in function, map its builtin attributes to
6471  // actual attributes.
6472  if (unsigned BuiltinID = FD->getBuiltinID()) {
6473    // Handle printf-formatting attributes.
6474    unsigned FormatIdx;
6475    bool HasVAListArg;
6476    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
6477      if (!FD->getAttr<FormatAttr>())
6478        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6479                                                "printf", FormatIdx+1,
6480                                               HasVAListArg ? 0 : FormatIdx+2));
6481    }
6482    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
6483                                             HasVAListArg)) {
6484     if (!FD->getAttr<FormatAttr>())
6485       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6486                                              "scanf", FormatIdx+1,
6487                                              HasVAListArg ? 0 : FormatIdx+2));
6488    }
6489
6490    // Mark const if we don't care about errno and that is the only
6491    // thing preventing the function from being const. This allows
6492    // IRgen to use LLVM intrinsics for such functions.
6493    if (!getLangOptions().MathErrno &&
6494        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
6495      if (!FD->getAttr<ConstAttr>())
6496        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
6497    }
6498
6499    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
6500      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
6501    if (Context.BuiltinInfo.isConst(BuiltinID))
6502      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
6503  }
6504
6505  IdentifierInfo *Name = FD->getIdentifier();
6506  if (!Name)
6507    return;
6508  if ((!getLangOptions().CPlusPlus &&
6509       FD->getDeclContext()->isTranslationUnit()) ||
6510      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
6511       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
6512       LinkageSpecDecl::lang_c)) {
6513    // Okay: this could be a libc/libm/Objective-C function we know
6514    // about.
6515  } else
6516    return;
6517
6518  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
6519    // FIXME: NSLog and NSLogv should be target specific
6520    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
6521      // FIXME: We known better than our headers.
6522      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
6523    } else
6524      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6525                                             "printf", 1,
6526                                             Name->isStr("NSLogv") ? 0 : 2));
6527  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
6528    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
6529    // target-specific builtins, perhaps?
6530    if (!FD->getAttr<FormatAttr>())
6531      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6532                                             "printf", 2,
6533                                             Name->isStr("vasprintf") ? 0 : 3));
6534  }
6535}
6536
6537TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
6538                                    TypeSourceInfo *TInfo) {
6539  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
6540  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
6541
6542  if (!TInfo) {
6543    assert(D.isInvalidType() && "no declarator info for valid type");
6544    TInfo = Context.getTrivialTypeSourceInfo(T);
6545  }
6546
6547  // Scope manipulation handled by caller.
6548  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
6549                                           D.getSourceRange().getBegin(),
6550                                           D.getIdentifierLoc(),
6551                                           D.getIdentifier(),
6552                                           TInfo);
6553
6554  // Bail out immediately if we have an invalid declaration.
6555  if (D.isInvalidType()) {
6556    NewTD->setInvalidDecl();
6557    return NewTD;
6558  }
6559
6560  // C++ [dcl.typedef]p8:
6561  //   If the typedef declaration defines an unnamed class (or
6562  //   enum), the first typedef-name declared by the declaration
6563  //   to be that class type (or enum type) is used to denote the
6564  //   class type (or enum type) for linkage purposes only.
6565  // We need to check whether the type was declared in the declaration.
6566  switch (D.getDeclSpec().getTypeSpecType()) {
6567  case TST_enum:
6568  case TST_struct:
6569  case TST_union:
6570  case TST_class: {
6571    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
6572
6573    // Do nothing if the tag is not anonymous or already has an
6574    // associated typedef (from an earlier typedef in this decl group).
6575    if (tagFromDeclSpec->getIdentifier()) break;
6576    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
6577
6578    // A well-formed anonymous tag must always be a TUK_Definition.
6579    assert(tagFromDeclSpec->isThisDeclarationADefinition());
6580
6581    // The type must match the tag exactly;  no qualifiers allowed.
6582    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
6583      break;
6584
6585    // Otherwise, set this is the anon-decl typedef for the tag.
6586    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
6587    break;
6588  }
6589
6590  default:
6591    break;
6592  }
6593
6594  return NewTD;
6595}
6596
6597
6598/// \brief Determine whether a tag with a given kind is acceptable
6599/// as a redeclaration of the given tag declaration.
6600///
6601/// \returns true if the new tag kind is acceptable, false otherwise.
6602bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
6603                                        TagTypeKind NewTag, bool isDefinition,
6604                                        SourceLocation NewTagLoc,
6605                                        const IdentifierInfo &Name) {
6606  // C++ [dcl.type.elab]p3:
6607  //   The class-key or enum keyword present in the
6608  //   elaborated-type-specifier shall agree in kind with the
6609  //   declaration to which the name in the elaborated-type-specifier
6610  //   refers. This rule also applies to the form of
6611  //   elaborated-type-specifier that declares a class-name or
6612  //   friend class since it can be construed as referring to the
6613  //   definition of the class. Thus, in any
6614  //   elaborated-type-specifier, the enum keyword shall be used to
6615  //   refer to an enumeration (7.2), the union class-key shall be
6616  //   used to refer to a union (clause 9), and either the class or
6617  //   struct class-key shall be used to refer to a class (clause 9)
6618  //   declared using the class or struct class-key.
6619  TagTypeKind OldTag = Previous->getTagKind();
6620  if (!isDefinition || (NewTag != TTK_Class && NewTag != TTK_Struct))
6621    if (OldTag == NewTag)
6622      return true;
6623
6624  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
6625      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
6626    // Warn about the struct/class tag mismatch.
6627    bool isTemplate = false;
6628    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
6629      isTemplate = Record->getDescribedClassTemplate();
6630
6631    if (!ActiveTemplateInstantiations.empty()) {
6632      // In a template instantiation, do not offer fix-its for tag mismatches
6633      // since they usually mess up the template instead of fixing the problem.
6634      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
6635        << (NewTag == TTK_Class) << isTemplate << &Name;
6636      return true;
6637    }
6638
6639    if (isDefinition) {
6640      // On definitions, check previous tags and issue a fix-it for each
6641      // one that doesn't match the current tag.
6642      if (Previous->getDefinition()) {
6643        // Don't suggest fix-its for redefinitions.
6644        return true;
6645      }
6646
6647      bool previousMismatch = false;
6648      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
6649           E(Previous->redecls_end()); I != E; ++I) {
6650        if (I->getTagKind() != NewTag) {
6651          if (!previousMismatch) {
6652            previousMismatch = true;
6653            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
6654              << (NewTag == TTK_Class) << isTemplate << &Name;
6655          }
6656          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
6657            << (NewTag == TTK_Class)
6658            << FixItHint::CreateReplacement(I->getInnerLocStart(),
6659                                            NewTag == TTK_Class?
6660                                            "class" : "struct");
6661        }
6662      }
6663      return true;
6664    }
6665
6666    // Check for a previous definition.  If current tag and definition
6667    // are same type, do nothing.  If no definition, but disagree with
6668    // with previous tag type, give a warning, but no fix-it.
6669    const TagDecl *Redecl = Previous->getDefinition() ?
6670                            Previous->getDefinition() : Previous;
6671    if (Redecl->getTagKind() == NewTag) {
6672      return true;
6673    }
6674
6675    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
6676      << (NewTag == TTK_Class)
6677      << isTemplate << &Name;
6678    Diag(Redecl->getLocation(), diag::note_previous_use);
6679
6680    // If there is a previous defintion, suggest a fix-it.
6681    if (Previous->getDefinition()) {
6682        Diag(NewTagLoc, diag::note_struct_class_suggestion)
6683          << (Redecl->getTagKind() == TTK_Class)
6684          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
6685                        Redecl->getTagKind() == TTK_Class? "class" : "struct");
6686    }
6687
6688    return true;
6689  }
6690  return false;
6691}
6692
6693/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
6694/// former case, Name will be non-null.  In the later case, Name will be null.
6695/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
6696/// reference/declaration/definition of a tag.
6697Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
6698                     SourceLocation KWLoc, CXXScopeSpec &SS,
6699                     IdentifierInfo *Name, SourceLocation NameLoc,
6700                     AttributeList *Attr, AccessSpecifier AS,
6701                     MultiTemplateParamsArg TemplateParameterLists,
6702                     bool &OwnedDecl, bool &IsDependent,
6703                     bool ScopedEnum, bool ScopedEnumUsesClassTag,
6704                     TypeResult UnderlyingType) {
6705  // If this is not a definition, it must have a name.
6706  assert((Name != 0 || TUK == TUK_Definition) &&
6707         "Nameless record must be a definition!");
6708  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
6709
6710  OwnedDecl = false;
6711  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6712
6713  // FIXME: Check explicit specializations more carefully.
6714  bool isExplicitSpecialization = false;
6715  bool Invalid = false;
6716
6717  // We only need to do this matching if we have template parameters
6718  // or a scope specifier, which also conveniently avoids this work
6719  // for non-C++ cases.
6720  if (TemplateParameterLists.size() > 0 ||
6721      (SS.isNotEmpty() && TUK != TUK_Reference)) {
6722    if (TemplateParameterList *TemplateParams
6723          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
6724                                                TemplateParameterLists.get(),
6725                                                TemplateParameterLists.size(),
6726                                                    TUK == TUK_Friend,
6727                                                    isExplicitSpecialization,
6728                                                    Invalid)) {
6729      if (TemplateParams->size() > 0) {
6730        // This is a declaration or definition of a class template (which may
6731        // be a member of another template).
6732
6733        if (Invalid)
6734          return 0;
6735
6736        OwnedDecl = false;
6737        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
6738                                               SS, Name, NameLoc, Attr,
6739                                               TemplateParams, AS,
6740                                           TemplateParameterLists.size() - 1,
6741                 (TemplateParameterList**) TemplateParameterLists.release());
6742        return Result.get();
6743      } else {
6744        // The "template<>" header is extraneous.
6745        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
6746          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
6747        isExplicitSpecialization = true;
6748      }
6749    }
6750  }
6751
6752  // Figure out the underlying type if this a enum declaration. We need to do
6753  // this early, because it's needed to detect if this is an incompatible
6754  // redeclaration.
6755  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
6756
6757  if (Kind == TTK_Enum) {
6758    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
6759      // No underlying type explicitly specified, or we failed to parse the
6760      // type, default to int.
6761      EnumUnderlying = Context.IntTy.getTypePtr();
6762    else if (UnderlyingType.get()) {
6763      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
6764      // integral type; any cv-qualification is ignored.
6765      TypeSourceInfo *TI = 0;
6766      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
6767      EnumUnderlying = TI;
6768
6769      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
6770
6771      if (!T->isDependentType() && !T->isIntegralType(Context)) {
6772        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
6773          << T;
6774        // Recover by falling back to int.
6775        EnumUnderlying = Context.IntTy.getTypePtr();
6776      }
6777
6778      if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI,
6779                                          UPPC_FixedUnderlyingType))
6780        EnumUnderlying = Context.IntTy.getTypePtr();
6781
6782    } else if (getLangOptions().Microsoft)
6783      // Microsoft enums are always of int type.
6784      EnumUnderlying = Context.IntTy.getTypePtr();
6785  }
6786
6787  DeclContext *SearchDC = CurContext;
6788  DeclContext *DC = CurContext;
6789  bool isStdBadAlloc = false;
6790
6791  RedeclarationKind Redecl = ForRedeclaration;
6792  if (TUK == TUK_Friend || TUK == TUK_Reference)
6793    Redecl = NotForRedeclaration;
6794
6795  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
6796
6797  if (Name && SS.isNotEmpty()) {
6798    // We have a nested-name tag ('struct foo::bar').
6799
6800    // Check for invalid 'foo::'.
6801    if (SS.isInvalid()) {
6802      Name = 0;
6803      goto CreateNewDecl;
6804    }
6805
6806    // If this is a friend or a reference to a class in a dependent
6807    // context, don't try to make a decl for it.
6808    if (TUK == TUK_Friend || TUK == TUK_Reference) {
6809      DC = computeDeclContext(SS, false);
6810      if (!DC) {
6811        IsDependent = true;
6812        return 0;
6813      }
6814    } else {
6815      DC = computeDeclContext(SS, true);
6816      if (!DC) {
6817        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
6818          << SS.getRange();
6819        return 0;
6820      }
6821    }
6822
6823    if (RequireCompleteDeclContext(SS, DC))
6824      return 0;
6825
6826    SearchDC = DC;
6827    // Look-up name inside 'foo::'.
6828    LookupQualifiedName(Previous, DC);
6829
6830    if (Previous.isAmbiguous())
6831      return 0;
6832
6833    if (Previous.empty()) {
6834      // Name lookup did not find anything. However, if the
6835      // nested-name-specifier refers to the current instantiation,
6836      // and that current instantiation has any dependent base
6837      // classes, we might find something at instantiation time: treat
6838      // this as a dependent elaborated-type-specifier.
6839      // But this only makes any sense for reference-like lookups.
6840      if (Previous.wasNotFoundInCurrentInstantiation() &&
6841          (TUK == TUK_Reference || TUK == TUK_Friend)) {
6842        IsDependent = true;
6843        return 0;
6844      }
6845
6846      // A tag 'foo::bar' must already exist.
6847      Diag(NameLoc, diag::err_not_tag_in_scope)
6848        << Kind << Name << DC << SS.getRange();
6849      Name = 0;
6850      Invalid = true;
6851      goto CreateNewDecl;
6852    }
6853  } else if (Name) {
6854    // If this is a named struct, check to see if there was a previous forward
6855    // declaration or definition.
6856    // FIXME: We're looking into outer scopes here, even when we
6857    // shouldn't be. Doing so can result in ambiguities that we
6858    // shouldn't be diagnosing.
6859    LookupName(Previous, S);
6860
6861    if (Previous.isAmbiguous() &&
6862        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
6863      LookupResult::Filter F = Previous.makeFilter();
6864      while (F.hasNext()) {
6865        NamedDecl *ND = F.next();
6866        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
6867          F.erase();
6868      }
6869      F.done();
6870    }
6871
6872    // Note:  there used to be some attempt at recovery here.
6873    if (Previous.isAmbiguous())
6874      return 0;
6875
6876    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
6877      // FIXME: This makes sure that we ignore the contexts associated
6878      // with C structs, unions, and enums when looking for a matching
6879      // tag declaration or definition. See the similar lookup tweak
6880      // in Sema::LookupName; is there a better way to deal with this?
6881      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
6882        SearchDC = SearchDC->getParent();
6883    }
6884  } else if (S->isFunctionPrototypeScope()) {
6885    // If this is an enum declaration in function prototype scope, set its
6886    // initial context to the translation unit.
6887    SearchDC = Context.getTranslationUnitDecl();
6888  }
6889
6890  if (Previous.isSingleResult() &&
6891      Previous.getFoundDecl()->isTemplateParameter()) {
6892    // Maybe we will complain about the shadowed template parameter.
6893    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
6894    // Just pretend that we didn't see the previous declaration.
6895    Previous.clear();
6896  }
6897
6898  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
6899      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
6900    // This is a declaration of or a reference to "std::bad_alloc".
6901    isStdBadAlloc = true;
6902
6903    if (Previous.empty() && StdBadAlloc) {
6904      // std::bad_alloc has been implicitly declared (but made invisible to
6905      // name lookup). Fill in this implicit declaration as the previous
6906      // declaration, so that the declarations get chained appropriately.
6907      Previous.addDecl(getStdBadAlloc());
6908    }
6909  }
6910
6911  // If we didn't find a previous declaration, and this is a reference
6912  // (or friend reference), move to the correct scope.  In C++, we
6913  // also need to do a redeclaration lookup there, just in case
6914  // there's a shadow friend decl.
6915  if (Name && Previous.empty() &&
6916      (TUK == TUK_Reference || TUK == TUK_Friend)) {
6917    if (Invalid) goto CreateNewDecl;
6918    assert(SS.isEmpty());
6919
6920    if (TUK == TUK_Reference) {
6921      // C++ [basic.scope.pdecl]p5:
6922      //   -- for an elaborated-type-specifier of the form
6923      //
6924      //          class-key identifier
6925      //
6926      //      if the elaborated-type-specifier is used in the
6927      //      decl-specifier-seq or parameter-declaration-clause of a
6928      //      function defined in namespace scope, the identifier is
6929      //      declared as a class-name in the namespace that contains
6930      //      the declaration; otherwise, except as a friend
6931      //      declaration, the identifier is declared in the smallest
6932      //      non-class, non-function-prototype scope that contains the
6933      //      declaration.
6934      //
6935      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
6936      // C structs and unions.
6937      //
6938      // It is an error in C++ to declare (rather than define) an enum
6939      // type, including via an elaborated type specifier.  We'll
6940      // diagnose that later; for now, declare the enum in the same
6941      // scope as we would have picked for any other tag type.
6942      //
6943      // GNU C also supports this behavior as part of its incomplete
6944      // enum types extension, while GNU C++ does not.
6945      //
6946      // Find the context where we'll be declaring the tag.
6947      // FIXME: We would like to maintain the current DeclContext as the
6948      // lexical context,
6949      while (SearchDC->isRecord() || SearchDC->isTransparentContext())
6950        SearchDC = SearchDC->getParent();
6951
6952      // Find the scope where we'll be declaring the tag.
6953      while (S->isClassScope() ||
6954             (getLangOptions().CPlusPlus &&
6955              S->isFunctionPrototypeScope()) ||
6956             ((S->getFlags() & Scope::DeclScope) == 0) ||
6957             (S->getEntity() &&
6958              ((DeclContext *)S->getEntity())->isTransparentContext()))
6959        S = S->getParent();
6960    } else {
6961      assert(TUK == TUK_Friend);
6962      // C++ [namespace.memdef]p3:
6963      //   If a friend declaration in a non-local class first declares a
6964      //   class or function, the friend class or function is a member of
6965      //   the innermost enclosing namespace.
6966      SearchDC = SearchDC->getEnclosingNamespaceContext();
6967    }
6968
6969    // In C++, we need to do a redeclaration lookup to properly
6970    // diagnose some problems.
6971    if (getLangOptions().CPlusPlus) {
6972      Previous.setRedeclarationKind(ForRedeclaration);
6973      LookupQualifiedName(Previous, SearchDC);
6974    }
6975  }
6976
6977  if (!Previous.empty()) {
6978    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
6979
6980    // It's okay to have a tag decl in the same scope as a typedef
6981    // which hides a tag decl in the same scope.  Finding this
6982    // insanity with a redeclaration lookup can only actually happen
6983    // in C++.
6984    //
6985    // This is also okay for elaborated-type-specifiers, which is
6986    // technically forbidden by the current standard but which is
6987    // okay according to the likely resolution of an open issue;
6988    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
6989    if (getLangOptions().CPlusPlus) {
6990      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
6991        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
6992          TagDecl *Tag = TT->getDecl();
6993          if (Tag->getDeclName() == Name &&
6994              Tag->getDeclContext()->getRedeclContext()
6995                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
6996            PrevDecl = Tag;
6997            Previous.clear();
6998            Previous.addDecl(Tag);
6999            Previous.resolveKind();
7000          }
7001        }
7002      }
7003    }
7004
7005    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
7006      // If this is a use of a previous tag, or if the tag is already declared
7007      // in the same scope (so that the definition/declaration completes or
7008      // rementions the tag), reuse the decl.
7009      if (TUK == TUK_Reference || TUK == TUK_Friend ||
7010          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
7011        // Make sure that this wasn't declared as an enum and now used as a
7012        // struct or something similar.
7013        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
7014                                          TUK == TUK_Definition, KWLoc,
7015                                          *Name)) {
7016          bool SafeToContinue
7017            = (PrevTagDecl->getTagKind() != TTK_Enum &&
7018               Kind != TTK_Enum);
7019          if (SafeToContinue)
7020            Diag(KWLoc, diag::err_use_with_wrong_tag)
7021              << Name
7022              << FixItHint::CreateReplacement(SourceRange(KWLoc),
7023                                              PrevTagDecl->getKindName());
7024          else
7025            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
7026          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7027
7028          if (SafeToContinue)
7029            Kind = PrevTagDecl->getTagKind();
7030          else {
7031            // Recover by making this an anonymous redefinition.
7032            Name = 0;
7033            Previous.clear();
7034            Invalid = true;
7035          }
7036        }
7037
7038        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
7039          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
7040
7041          // All conflicts with previous declarations are recovered by
7042          // returning the previous declaration.
7043          if (ScopedEnum != PrevEnum->isScoped()) {
7044            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
7045              << PrevEnum->isScoped();
7046            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7047            return PrevTagDecl;
7048          }
7049          else if (EnumUnderlying && PrevEnum->isFixed()) {
7050            QualType T;
7051            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
7052                T = TI->getType();
7053            else
7054                T = QualType(EnumUnderlying.get<const Type*>(), 0);
7055
7056            if (!Context.hasSameUnqualifiedType(T, PrevEnum->getIntegerType())) {
7057              Diag(NameLoc.isValid() ? NameLoc : KWLoc,
7058                   diag::err_enum_redeclare_type_mismatch)
7059                << T
7060                << PrevEnum->getIntegerType();
7061              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7062              return PrevTagDecl;
7063            }
7064          }
7065          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
7066            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
7067              << PrevEnum->isFixed();
7068            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7069            return PrevTagDecl;
7070          }
7071        }
7072
7073        if (!Invalid) {
7074          // If this is a use, just return the declaration we found.
7075
7076          // FIXME: In the future, return a variant or some other clue
7077          // for the consumer of this Decl to know it doesn't own it.
7078          // For our current ASTs this shouldn't be a problem, but will
7079          // need to be changed with DeclGroups.
7080          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
7081               getLangOptions().Microsoft)) || TUK == TUK_Friend)
7082            return PrevTagDecl;
7083
7084          // Diagnose attempts to redefine a tag.
7085          if (TUK == TUK_Definition) {
7086            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
7087              // If we're defining a specialization and the previous definition
7088              // is from an implicit instantiation, don't emit an error
7089              // here; we'll catch this in the general case below.
7090              if (!isExplicitSpecialization ||
7091                  !isa<CXXRecordDecl>(Def) ||
7092                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
7093                                               == TSK_ExplicitSpecialization) {
7094                Diag(NameLoc, diag::err_redefinition) << Name;
7095                Diag(Def->getLocation(), diag::note_previous_definition);
7096                // If this is a redefinition, recover by making this
7097                // struct be anonymous, which will make any later
7098                // references get the previous definition.
7099                Name = 0;
7100                Previous.clear();
7101                Invalid = true;
7102              }
7103            } else {
7104              // If the type is currently being defined, complain
7105              // about a nested redefinition.
7106              const TagType *Tag
7107                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
7108              if (Tag->isBeingDefined()) {
7109                Diag(NameLoc, diag::err_nested_redefinition) << Name;
7110                Diag(PrevTagDecl->getLocation(),
7111                     diag::note_previous_definition);
7112                Name = 0;
7113                Previous.clear();
7114                Invalid = true;
7115              }
7116            }
7117
7118            // Okay, this is definition of a previously declared or referenced
7119            // tag PrevDecl. We're going to create a new Decl for it.
7120          }
7121        }
7122        // If we get here we have (another) forward declaration or we
7123        // have a definition.  Just create a new decl.
7124
7125      } else {
7126        // If we get here, this is a definition of a new tag type in a nested
7127        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
7128        // new decl/type.  We set PrevDecl to NULL so that the entities
7129        // have distinct types.
7130        Previous.clear();
7131      }
7132      // If we get here, we're going to create a new Decl. If PrevDecl
7133      // is non-NULL, it's a definition of the tag declared by
7134      // PrevDecl. If it's NULL, we have a new definition.
7135
7136
7137    // Otherwise, PrevDecl is not a tag, but was found with tag
7138    // lookup.  This is only actually possible in C++, where a few
7139    // things like templates still live in the tag namespace.
7140    } else {
7141      assert(getLangOptions().CPlusPlus);
7142
7143      // Use a better diagnostic if an elaborated-type-specifier
7144      // found the wrong kind of type on the first
7145      // (non-redeclaration) lookup.
7146      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
7147          !Previous.isForRedeclaration()) {
7148        unsigned Kind = 0;
7149        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
7150        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
7151        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
7152        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
7153        Diag(PrevDecl->getLocation(), diag::note_declared_at);
7154        Invalid = true;
7155
7156      // Otherwise, only diagnose if the declaration is in scope.
7157      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
7158                                isExplicitSpecialization)) {
7159        // do nothing
7160
7161      // Diagnose implicit declarations introduced by elaborated types.
7162      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
7163        unsigned Kind = 0;
7164        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
7165        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
7166        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
7167        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
7168        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
7169        Invalid = true;
7170
7171      // Otherwise it's a declaration.  Call out a particularly common
7172      // case here.
7173      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
7174        unsigned Kind = 0;
7175        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
7176        Diag(NameLoc, diag::err_tag_definition_of_typedef)
7177          << Name << Kind << TND->getUnderlyingType();
7178        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
7179        Invalid = true;
7180
7181      // Otherwise, diagnose.
7182      } else {
7183        // The tag name clashes with something else in the target scope,
7184        // issue an error and recover by making this tag be anonymous.
7185        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
7186        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7187        Name = 0;
7188        Invalid = true;
7189      }
7190
7191      // The existing declaration isn't relevant to us; we're in a
7192      // new scope, so clear out the previous declaration.
7193      Previous.clear();
7194    }
7195  }
7196
7197CreateNewDecl:
7198
7199  TagDecl *PrevDecl = 0;
7200  if (Previous.isSingleResult())
7201    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
7202
7203  // If there is an identifier, use the location of the identifier as the
7204  // location of the decl, otherwise use the location of the struct/union
7205  // keyword.
7206  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
7207
7208  // Otherwise, create a new declaration. If there is a previous
7209  // declaration of the same entity, the two will be linked via
7210  // PrevDecl.
7211  TagDecl *New;
7212
7213  bool IsForwardReference = false;
7214  if (Kind == TTK_Enum) {
7215    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
7216    // enum X { A, B, C } D;    D should chain to X.
7217    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
7218                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
7219                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
7220    // If this is an undefined enum, warn.
7221    if (TUK != TUK_Definition && !Invalid) {
7222      TagDecl *Def;
7223      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
7224        // C++0x: 7.2p2: opaque-enum-declaration.
7225        // Conflicts are diagnosed above. Do nothing.
7226      }
7227      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
7228        Diag(Loc, diag::ext_forward_ref_enum_def)
7229          << New;
7230        Diag(Def->getLocation(), diag::note_previous_definition);
7231      } else {
7232        unsigned DiagID = diag::ext_forward_ref_enum;
7233        if (getLangOptions().Microsoft)
7234          DiagID = diag::ext_ms_forward_ref_enum;
7235        else if (getLangOptions().CPlusPlus)
7236          DiagID = diag::err_forward_ref_enum;
7237        Diag(Loc, DiagID);
7238
7239        // If this is a forward-declared reference to an enumeration, make a
7240        // note of it; we won't actually be introducing the declaration into
7241        // the declaration context.
7242        if (TUK == TUK_Reference)
7243          IsForwardReference = true;
7244      }
7245    }
7246
7247    if (EnumUnderlying) {
7248      EnumDecl *ED = cast<EnumDecl>(New);
7249      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
7250        ED->setIntegerTypeSourceInfo(TI);
7251      else
7252        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
7253      ED->setPromotionType(ED->getIntegerType());
7254    }
7255
7256  } else {
7257    // struct/union/class
7258
7259    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
7260    // struct X { int A; } D;    D should chain to X.
7261    if (getLangOptions().CPlusPlus) {
7262      // FIXME: Look for a way to use RecordDecl for simple structs.
7263      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
7264                                  cast_or_null<CXXRecordDecl>(PrevDecl));
7265
7266      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
7267        StdBadAlloc = cast<CXXRecordDecl>(New);
7268    } else
7269      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
7270                               cast_or_null<RecordDecl>(PrevDecl));
7271  }
7272
7273  // Maybe add qualifier info.
7274  if (SS.isNotEmpty()) {
7275    if (SS.isSet()) {
7276      New->setQualifierInfo(SS.getWithLocInContext(Context));
7277      if (TemplateParameterLists.size() > 0) {
7278        New->setTemplateParameterListsInfo(Context,
7279                                           TemplateParameterLists.size(),
7280                    (TemplateParameterList**) TemplateParameterLists.release());
7281      }
7282    }
7283    else
7284      Invalid = true;
7285  }
7286
7287  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
7288    // Add alignment attributes if necessary; these attributes are checked when
7289    // the ASTContext lays out the structure.
7290    //
7291    // It is important for implementing the correct semantics that this
7292    // happen here (in act on tag decl). The #pragma pack stack is
7293    // maintained as a result of parser callbacks which can occur at
7294    // many points during the parsing of a struct declaration (because
7295    // the #pragma tokens are effectively skipped over during the
7296    // parsing of the struct).
7297    AddAlignmentAttributesForRecord(RD);
7298
7299    AddMsStructLayoutForRecord(RD);
7300  }
7301
7302  // If this is a specialization of a member class (of a class template),
7303  // check the specialization.
7304  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
7305    Invalid = true;
7306
7307  if (Invalid)
7308    New->setInvalidDecl();
7309
7310  if (Attr)
7311    ProcessDeclAttributeList(S, New, Attr);
7312
7313  // If we're declaring or defining a tag in function prototype scope
7314  // in C, note that this type can only be used within the function.
7315  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
7316    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
7317
7318  // Set the lexical context. If the tag has a C++ scope specifier, the
7319  // lexical context will be different from the semantic context.
7320  New->setLexicalDeclContext(CurContext);
7321
7322  // Mark this as a friend decl if applicable.
7323  // In Microsoft mode, a friend declaration also acts as a forward
7324  // declaration so we always pass true to setObjectOfFriendDecl to make
7325  // the tag name visible.
7326  if (TUK == TUK_Friend)
7327    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
7328                               getLangOptions().Microsoft);
7329
7330  // Set the access specifier.
7331  if (!Invalid && SearchDC->isRecord())
7332    SetMemberAccessSpecifier(New, PrevDecl, AS);
7333
7334  if (TUK == TUK_Definition)
7335    New->startDefinition();
7336
7337  // If this has an identifier, add it to the scope stack.
7338  if (TUK == TUK_Friend) {
7339    // We might be replacing an existing declaration in the lookup tables;
7340    // if so, borrow its access specifier.
7341    if (PrevDecl)
7342      New->setAccess(PrevDecl->getAccess());
7343
7344    DeclContext *DC = New->getDeclContext()->getRedeclContext();
7345    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
7346    if (Name) // can be null along some error paths
7347      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
7348        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
7349  } else if (Name) {
7350    S = getNonFieldDeclScope(S);
7351    PushOnScopeChains(New, S, !IsForwardReference);
7352    if (IsForwardReference)
7353      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
7354
7355  } else {
7356    CurContext->addDecl(New);
7357  }
7358
7359  // If this is the C FILE type, notify the AST context.
7360  if (IdentifierInfo *II = New->getIdentifier())
7361    if (!New->isInvalidDecl() &&
7362        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
7363        II->isStr("FILE"))
7364      Context.setFILEDecl(New);
7365
7366  OwnedDecl = true;
7367  return New;
7368}
7369
7370void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
7371  AdjustDeclIfTemplate(TagD);
7372  TagDecl *Tag = cast<TagDecl>(TagD);
7373
7374  // Enter the tag context.
7375  PushDeclContext(S, Tag);
7376}
7377
7378void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
7379                                           SourceLocation FinalLoc,
7380                                           SourceLocation LBraceLoc) {
7381  AdjustDeclIfTemplate(TagD);
7382  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
7383
7384  FieldCollector->StartClass();
7385
7386  if (!Record->getIdentifier())
7387    return;
7388
7389  if (FinalLoc.isValid())
7390    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
7391
7392  // C++ [class]p2:
7393  //   [...] The class-name is also inserted into the scope of the
7394  //   class itself; this is known as the injected-class-name. For
7395  //   purposes of access checking, the injected-class-name is treated
7396  //   as if it were a public member name.
7397  CXXRecordDecl *InjectedClassName
7398    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
7399                            Record->getLocStart(), Record->getLocation(),
7400                            Record->getIdentifier(),
7401                            /*PrevDecl=*/0,
7402                            /*DelayTypeCreation=*/true);
7403  Context.getTypeDeclType(InjectedClassName, Record);
7404  InjectedClassName->setImplicit();
7405  InjectedClassName->setAccess(AS_public);
7406  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
7407      InjectedClassName->setDescribedClassTemplate(Template);
7408  PushOnScopeChains(InjectedClassName, S);
7409  assert(InjectedClassName->isInjectedClassName() &&
7410         "Broken injected-class-name");
7411}
7412
7413void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
7414                                    SourceLocation RBraceLoc) {
7415  AdjustDeclIfTemplate(TagD);
7416  TagDecl *Tag = cast<TagDecl>(TagD);
7417  Tag->setRBraceLoc(RBraceLoc);
7418
7419  if (isa<CXXRecordDecl>(Tag))
7420    FieldCollector->FinishClass();
7421
7422  // Exit this scope of this tag's definition.
7423  PopDeclContext();
7424
7425  // Notify the consumer that we've defined a tag.
7426  Consumer.HandleTagDeclDefinition(Tag);
7427}
7428
7429void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
7430  AdjustDeclIfTemplate(TagD);
7431  TagDecl *Tag = cast<TagDecl>(TagD);
7432  Tag->setInvalidDecl();
7433
7434  // We're undoing ActOnTagStartDefinition here, not
7435  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
7436  // the FieldCollector.
7437
7438  PopDeclContext();
7439}
7440
7441// Note that FieldName may be null for anonymous bitfields.
7442bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
7443                          QualType FieldTy, const Expr *BitWidth,
7444                          bool *ZeroWidth) {
7445  // Default to true; that shouldn't confuse checks for emptiness
7446  if (ZeroWidth)
7447    *ZeroWidth = true;
7448
7449  // C99 6.7.2.1p4 - verify the field type.
7450  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
7451  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
7452    // Handle incomplete types with specific error.
7453    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
7454      return true;
7455    if (FieldName)
7456      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
7457        << FieldName << FieldTy << BitWidth->getSourceRange();
7458    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
7459      << FieldTy << BitWidth->getSourceRange();
7460  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
7461                                             UPPC_BitFieldWidth))
7462    return true;
7463
7464  // If the bit-width is type- or value-dependent, don't try to check
7465  // it now.
7466  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
7467    return false;
7468
7469  llvm::APSInt Value;
7470  if (VerifyIntegerConstantExpression(BitWidth, &Value))
7471    return true;
7472
7473  if (Value != 0 && ZeroWidth)
7474    *ZeroWidth = false;
7475
7476  // Zero-width bitfield is ok for anonymous field.
7477  if (Value == 0 && FieldName)
7478    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
7479
7480  if (Value.isSigned() && Value.isNegative()) {
7481    if (FieldName)
7482      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
7483               << FieldName << Value.toString(10);
7484    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
7485      << Value.toString(10);
7486  }
7487
7488  if (!FieldTy->isDependentType()) {
7489    uint64_t TypeSize = Context.getTypeSize(FieldTy);
7490    if (Value.getZExtValue() > TypeSize) {
7491      if (!getLangOptions().CPlusPlus) {
7492        if (FieldName)
7493          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
7494            << FieldName << (unsigned)Value.getZExtValue()
7495            << (unsigned)TypeSize;
7496
7497        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
7498          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
7499      }
7500
7501      if (FieldName)
7502        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
7503          << FieldName << (unsigned)Value.getZExtValue()
7504          << (unsigned)TypeSize;
7505      else
7506        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
7507          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
7508    }
7509  }
7510
7511  return false;
7512}
7513
7514/// ActOnField - Each field of a C struct/union is passed into this in order
7515/// to create a FieldDecl object for it.
7516Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
7517                       Declarator &D, ExprTy *BitfieldWidth) {
7518  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
7519                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
7520                               /*HasInit=*/false, AS_public);
7521  return Res;
7522}
7523
7524/// HandleField - Analyze a field of a C struct or a C++ data member.
7525///
7526FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
7527                             SourceLocation DeclStart,
7528                             Declarator &D, Expr *BitWidth, bool HasInit,
7529                             AccessSpecifier AS) {
7530  IdentifierInfo *II = D.getIdentifier();
7531  SourceLocation Loc = DeclStart;
7532  if (II) Loc = D.getIdentifierLoc();
7533
7534  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7535  QualType T = TInfo->getType();
7536  if (getLangOptions().CPlusPlus) {
7537    CheckExtraCXXDefaultArguments(D);
7538
7539    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
7540                                        UPPC_DataMemberType)) {
7541      D.setInvalidType();
7542      T = Context.IntTy;
7543      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
7544    }
7545  }
7546
7547  DiagnoseFunctionSpecifiers(D);
7548
7549  if (D.getDeclSpec().isThreadSpecified())
7550    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
7551
7552  // Check to see if this name was declared as a member previously
7553  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
7554  LookupName(Previous, S);
7555  assert((Previous.empty() || Previous.isOverloadedResult() ||
7556          Previous.isSingleResult())
7557    && "Lookup of member name should be either overloaded, single or null");
7558
7559  // If the name is overloaded then get any declaration else get the single result
7560  NamedDecl *PrevDecl = Previous.isOverloadedResult() ?
7561    Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>();
7562
7563  if (PrevDecl && PrevDecl->isTemplateParameter()) {
7564    // Maybe we will complain about the shadowed template parameter.
7565    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
7566    // Just pretend that we didn't see the previous declaration.
7567    PrevDecl = 0;
7568  }
7569
7570  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
7571    PrevDecl = 0;
7572
7573  bool Mutable
7574    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
7575  SourceLocation TSSL = D.getSourceRange().getBegin();
7576  FieldDecl *NewFD
7577    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, HasInit,
7578                     TSSL, AS, PrevDecl, &D);
7579
7580  if (NewFD->isInvalidDecl())
7581    Record->setInvalidDecl();
7582
7583  if (NewFD->isInvalidDecl() && PrevDecl) {
7584    // Don't introduce NewFD into scope; there's already something
7585    // with the same name in the same scope.
7586  } else if (II) {
7587    PushOnScopeChains(NewFD, S);
7588  } else
7589    Record->addDecl(NewFD);
7590
7591  return NewFD;
7592}
7593
7594/// \brief Build a new FieldDecl and check its well-formedness.
7595///
7596/// This routine builds a new FieldDecl given the fields name, type,
7597/// record, etc. \p PrevDecl should refer to any previous declaration
7598/// with the same name and in the same scope as the field to be
7599/// created.
7600///
7601/// \returns a new FieldDecl.
7602///
7603/// \todo The Declarator argument is a hack. It will be removed once
7604FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
7605                                TypeSourceInfo *TInfo,
7606                                RecordDecl *Record, SourceLocation Loc,
7607                                bool Mutable, Expr *BitWidth, bool HasInit,
7608                                SourceLocation TSSL,
7609                                AccessSpecifier AS, NamedDecl *PrevDecl,
7610                                Declarator *D) {
7611  IdentifierInfo *II = Name.getAsIdentifierInfo();
7612  bool InvalidDecl = false;
7613  if (D) InvalidDecl = D->isInvalidType();
7614
7615  // If we receive a broken type, recover by assuming 'int' and
7616  // marking this declaration as invalid.
7617  if (T.isNull()) {
7618    InvalidDecl = true;
7619    T = Context.IntTy;
7620  }
7621
7622  QualType EltTy = Context.getBaseElementType(T);
7623  if (!EltTy->isDependentType() &&
7624      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
7625    // Fields of incomplete type force their record to be invalid.
7626    Record->setInvalidDecl();
7627    InvalidDecl = true;
7628  }
7629
7630  // C99 6.7.2.1p8: A member of a structure or union may have any type other
7631  // than a variably modified type.
7632  if (!InvalidDecl && T->isVariablyModifiedType()) {
7633    bool SizeIsNegative;
7634    llvm::APSInt Oversized;
7635    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
7636                                                           SizeIsNegative,
7637                                                           Oversized);
7638    if (!FixedTy.isNull()) {
7639      Diag(Loc, diag::warn_illegal_constant_array_size);
7640      T = FixedTy;
7641    } else {
7642      if (SizeIsNegative)
7643        Diag(Loc, diag::err_typecheck_negative_array_size);
7644      else if (Oversized.getBoolValue())
7645        Diag(Loc, diag::err_array_too_large)
7646          << Oversized.toString(10);
7647      else
7648        Diag(Loc, diag::err_typecheck_field_variable_size);
7649      InvalidDecl = true;
7650    }
7651  }
7652
7653  // Fields can not have abstract class types
7654  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
7655                                             diag::err_abstract_type_in_decl,
7656                                             AbstractFieldType))
7657    InvalidDecl = true;
7658
7659  bool ZeroWidth = false;
7660  // If this is declared as a bit-field, check the bit-field.
7661  if (!InvalidDecl && BitWidth &&
7662      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
7663    InvalidDecl = true;
7664    BitWidth = 0;
7665    ZeroWidth = false;
7666  }
7667
7668  // Check that 'mutable' is consistent with the type of the declaration.
7669  if (!InvalidDecl && Mutable) {
7670    unsigned DiagID = 0;
7671    if (T->isReferenceType())
7672      DiagID = diag::err_mutable_reference;
7673    else if (T.isConstQualified())
7674      DiagID = diag::err_mutable_const;
7675
7676    if (DiagID) {
7677      SourceLocation ErrLoc = Loc;
7678      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
7679        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
7680      Diag(ErrLoc, DiagID);
7681      Mutable = false;
7682      InvalidDecl = true;
7683    }
7684  }
7685
7686  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
7687                                       BitWidth, Mutable, HasInit);
7688  if (InvalidDecl)
7689    NewFD->setInvalidDecl();
7690
7691  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
7692    Diag(Loc, diag::err_duplicate_member) << II;
7693    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7694    NewFD->setInvalidDecl();
7695  }
7696
7697  if (!InvalidDecl && getLangOptions().CPlusPlus) {
7698    if (Record->isUnion()) {
7699      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
7700        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
7701        if (RDecl->getDefinition()) {
7702          // C++ [class.union]p1: An object of a class with a non-trivial
7703          // constructor, a non-trivial copy constructor, a non-trivial
7704          // destructor, or a non-trivial copy assignment operator
7705          // cannot be a member of a union, nor can an array of such
7706          // objects.
7707          if (!getLangOptions().CPlusPlus0x && CheckNontrivialField(NewFD))
7708            NewFD->setInvalidDecl();
7709        }
7710      }
7711
7712      // C++ [class.union]p1: If a union contains a member of reference type,
7713      // the program is ill-formed.
7714      if (EltTy->isReferenceType()) {
7715        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
7716          << NewFD->getDeclName() << EltTy;
7717        NewFD->setInvalidDecl();
7718      }
7719    }
7720  }
7721
7722  // FIXME: We need to pass in the attributes given an AST
7723  // representation, not a parser representation.
7724  if (D)
7725    // FIXME: What to pass instead of TUScope?
7726    ProcessDeclAttributes(TUScope, NewFD, *D);
7727
7728  if (T.isObjCGCWeak())
7729    Diag(Loc, diag::warn_attribute_weak_on_field);
7730
7731  NewFD->setAccess(AS);
7732  return NewFD;
7733}
7734
7735bool Sema::CheckNontrivialField(FieldDecl *FD) {
7736  assert(FD);
7737  assert(getLangOptions().CPlusPlus && "valid check only for C++");
7738
7739  if (FD->isInvalidDecl())
7740    return true;
7741
7742  QualType EltTy = Context.getBaseElementType(FD->getType());
7743  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
7744    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
7745    if (RDecl->getDefinition()) {
7746      // We check for copy constructors before constructors
7747      // because otherwise we'll never get complaints about
7748      // copy constructors.
7749
7750      CXXSpecialMember member = CXXInvalid;
7751      if (!RDecl->hasTrivialCopyConstructor())
7752        member = CXXCopyConstructor;
7753      else if (!RDecl->hasTrivialDefaultConstructor())
7754        member = CXXDefaultConstructor;
7755      else if (!RDecl->hasTrivialCopyAssignment())
7756        member = CXXCopyAssignment;
7757      else if (!RDecl->hasTrivialDestructor())
7758        member = CXXDestructor;
7759
7760      if (member != CXXInvalid) {
7761        Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
7762              << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
7763        DiagnoseNontrivial(RT, member);
7764        return true;
7765      }
7766    }
7767  }
7768
7769  return false;
7770}
7771
7772/// DiagnoseNontrivial - Given that a class has a non-trivial
7773/// special member, figure out why.
7774void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
7775  QualType QT(T, 0U);
7776  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
7777
7778  // Check whether the member was user-declared.
7779  switch (member) {
7780  case CXXInvalid:
7781    break;
7782
7783  case CXXDefaultConstructor:
7784    if (RD->hasUserDeclaredConstructor()) {
7785      typedef CXXRecordDecl::ctor_iterator ctor_iter;
7786      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
7787        const FunctionDecl *body = 0;
7788        ci->hasBody(body);
7789        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
7790          SourceLocation CtorLoc = ci->getLocation();
7791          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7792          return;
7793        }
7794      }
7795
7796      assert(0 && "found no user-declared constructors");
7797      return;
7798    }
7799    break;
7800
7801  case CXXCopyConstructor:
7802    if (RD->hasUserDeclaredCopyConstructor()) {
7803      SourceLocation CtorLoc =
7804        RD->getCopyConstructor(0)->getLocation();
7805      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7806      return;
7807    }
7808    break;
7809
7810  case CXXMoveConstructor:
7811    if (RD->hasUserDeclaredMoveConstructor()) {
7812      SourceLocation CtorLoc = RD->getMoveConstructor()->getLocation();
7813      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7814      return;
7815    }
7816    break;
7817
7818  case CXXCopyAssignment:
7819    if (RD->hasUserDeclaredCopyAssignment()) {
7820      // FIXME: this should use the location of the copy
7821      // assignment, not the type.
7822      SourceLocation TyLoc = RD->getSourceRange().getBegin();
7823      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
7824      return;
7825    }
7826    break;
7827
7828  case CXXMoveAssignment:
7829    if (RD->hasUserDeclaredMoveAssignment()) {
7830      SourceLocation AssignLoc = RD->getMoveAssignmentOperator()->getLocation();
7831      Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
7832      return;
7833    }
7834    break;
7835
7836  case CXXDestructor:
7837    if (RD->hasUserDeclaredDestructor()) {
7838      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
7839      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7840      return;
7841    }
7842    break;
7843  }
7844
7845  typedef CXXRecordDecl::base_class_iterator base_iter;
7846
7847  // Virtual bases and members inhibit trivial copying/construction,
7848  // but not trivial destruction.
7849  if (member != CXXDestructor) {
7850    // Check for virtual bases.  vbases includes indirect virtual bases,
7851    // so we just iterate through the direct bases.
7852    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
7853      if (bi->isVirtual()) {
7854        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
7855        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
7856        return;
7857      }
7858
7859    // Check for virtual methods.
7860    typedef CXXRecordDecl::method_iterator meth_iter;
7861    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
7862         ++mi) {
7863      if (mi->isVirtual()) {
7864        SourceLocation MLoc = mi->getSourceRange().getBegin();
7865        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
7866        return;
7867      }
7868    }
7869  }
7870
7871  bool (CXXRecordDecl::*hasTrivial)() const;
7872  switch (member) {
7873  case CXXDefaultConstructor:
7874    hasTrivial = &CXXRecordDecl::hasTrivialDefaultConstructor; break;
7875  case CXXCopyConstructor:
7876    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
7877  case CXXCopyAssignment:
7878    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
7879  case CXXDestructor:
7880    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
7881  default:
7882    assert(0 && "unexpected special member"); return;
7883  }
7884
7885  // Check for nontrivial bases (and recurse).
7886  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
7887    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
7888    assert(BaseRT && "Don't know how to handle dependent bases");
7889    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
7890    if (!(BaseRecTy->*hasTrivial)()) {
7891      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
7892      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
7893      DiagnoseNontrivial(BaseRT, member);
7894      return;
7895    }
7896  }
7897
7898  // Check for nontrivial members (and recurse).
7899  typedef RecordDecl::field_iterator field_iter;
7900  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
7901       ++fi) {
7902    QualType EltTy = Context.getBaseElementType((*fi)->getType());
7903    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
7904      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
7905
7906      if (!(EltRD->*hasTrivial)()) {
7907        SourceLocation FLoc = (*fi)->getLocation();
7908        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
7909        DiagnoseNontrivial(EltRT, member);
7910        return;
7911      }
7912    }
7913  }
7914
7915  assert(0 && "found no explanation for non-trivial member");
7916}
7917
7918/// TranslateIvarVisibility - Translate visibility from a token ID to an
7919///  AST enum value.
7920static ObjCIvarDecl::AccessControl
7921TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
7922  switch (ivarVisibility) {
7923  default: assert(0 && "Unknown visitibility kind");
7924  case tok::objc_private: return ObjCIvarDecl::Private;
7925  case tok::objc_public: return ObjCIvarDecl::Public;
7926  case tok::objc_protected: return ObjCIvarDecl::Protected;
7927  case tok::objc_package: return ObjCIvarDecl::Package;
7928  }
7929}
7930
7931/// ActOnIvar - Each ivar field of an objective-c class is passed into this
7932/// in order to create an IvarDecl object for it.
7933Decl *Sema::ActOnIvar(Scope *S,
7934                                SourceLocation DeclStart,
7935                                Decl *IntfDecl,
7936                                Declarator &D, ExprTy *BitfieldWidth,
7937                                tok::ObjCKeywordKind Visibility) {
7938
7939  IdentifierInfo *II = D.getIdentifier();
7940  Expr *BitWidth = (Expr*)BitfieldWidth;
7941  SourceLocation Loc = DeclStart;
7942  if (II) Loc = D.getIdentifierLoc();
7943
7944  // FIXME: Unnamed fields can be handled in various different ways, for
7945  // example, unnamed unions inject all members into the struct namespace!
7946
7947  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7948  QualType T = TInfo->getType();
7949
7950  if (BitWidth) {
7951    // 6.7.2.1p3, 6.7.2.1p4
7952    if (VerifyBitField(Loc, II, T, BitWidth)) {
7953      D.setInvalidType();
7954      BitWidth = 0;
7955    }
7956  } else {
7957    // Not a bitfield.
7958
7959    // validate II.
7960
7961  }
7962  if (T->isReferenceType()) {
7963    Diag(Loc, diag::err_ivar_reference_type);
7964    D.setInvalidType();
7965  }
7966  // C99 6.7.2.1p8: A member of a structure or union may have any type other
7967  // than a variably modified type.
7968  else if (T->isVariablyModifiedType()) {
7969    Diag(Loc, diag::err_typecheck_ivar_variable_size);
7970    D.setInvalidType();
7971  }
7972
7973  // Get the visibility (access control) for this ivar.
7974  ObjCIvarDecl::AccessControl ac =
7975    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
7976                                        : ObjCIvarDecl::None;
7977  // Must set ivar's DeclContext to its enclosing interface.
7978  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(IntfDecl);
7979  ObjCContainerDecl *EnclosingContext;
7980  if (ObjCImplementationDecl *IMPDecl =
7981      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
7982    if (!LangOpts.ObjCNonFragileABI2) {
7983    // Case of ivar declared in an implementation. Context is that of its class.
7984      EnclosingContext = IMPDecl->getClassInterface();
7985      assert(EnclosingContext && "Implementation has no class interface!");
7986    }
7987    else
7988      EnclosingContext = EnclosingDecl;
7989  } else {
7990    if (ObjCCategoryDecl *CDecl =
7991        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7992      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
7993        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
7994        return 0;
7995      }
7996    }
7997    EnclosingContext = EnclosingDecl;
7998  }
7999
8000  // Construct the decl.
8001  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
8002                                             DeclStart, Loc, II, T,
8003                                             TInfo, ac, (Expr *)BitfieldWidth);
8004
8005  if (II) {
8006    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
8007                                           ForRedeclaration);
8008    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
8009        && !isa<TagDecl>(PrevDecl)) {
8010      Diag(Loc, diag::err_duplicate_member) << II;
8011      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8012      NewID->setInvalidDecl();
8013    }
8014  }
8015
8016  // Process attributes attached to the ivar.
8017  ProcessDeclAttributes(S, NewID, D);
8018
8019  if (D.isInvalidType())
8020    NewID->setInvalidDecl();
8021
8022  if (II) {
8023    // FIXME: When interfaces are DeclContexts, we'll need to add
8024    // these to the interface.
8025    S->AddDecl(NewID);
8026    IdResolver.AddDecl(NewID);
8027  }
8028
8029  return NewID;
8030}
8031
8032/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
8033/// class and class extensions. For every class @interface and class
8034/// extension @interface, if the last ivar is a bitfield of any type,
8035/// then add an implicit `char :0` ivar to the end of that interface.
8036void Sema::ActOnLastBitfield(SourceLocation DeclLoc, Decl *EnclosingDecl,
8037                             llvm::SmallVectorImpl<Decl *> &AllIvarDecls) {
8038  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
8039    return;
8040
8041  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
8042  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
8043
8044  if (!Ivar->isBitField())
8045    return;
8046  uint64_t BitFieldSize =
8047    Ivar->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
8048  if (BitFieldSize == 0)
8049    return;
8050  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl);
8051  if (!ID) {
8052    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
8053      if (!CD->IsClassExtension())
8054        return;
8055    }
8056    // No need to add this to end of @implementation.
8057    else
8058      return;
8059  }
8060  // All conditions are met. Add a new bitfield to the tail end of ivars.
8061  llvm::APInt Zero(Context.getTypeSize(Context.CharTy), 0);
8062  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.CharTy, DeclLoc);
8063
8064  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(EnclosingDecl),
8065                              DeclLoc, DeclLoc, 0,
8066                              Context.CharTy,
8067                              Context.CreateTypeSourceInfo(Context.CharTy),
8068                              ObjCIvarDecl::Private, BW,
8069                              true);
8070  AllIvarDecls.push_back(Ivar);
8071}
8072
8073void Sema::ActOnFields(Scope* S,
8074                       SourceLocation RecLoc, Decl *EnclosingDecl,
8075                       Decl **Fields, unsigned NumFields,
8076                       SourceLocation LBrac, SourceLocation RBrac,
8077                       AttributeList *Attr) {
8078  assert(EnclosingDecl && "missing record or interface decl");
8079
8080  // If the decl this is being inserted into is invalid, then it may be a
8081  // redeclaration or some other bogus case.  Don't try to add fields to it.
8082  if (EnclosingDecl->isInvalidDecl()) {
8083    // FIXME: Deallocate fields?
8084    return;
8085  }
8086
8087
8088  // Verify that all the fields are okay.
8089  unsigned NumNamedMembers = 0;
8090  llvm::SmallVector<FieldDecl*, 32> RecFields;
8091
8092  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
8093  for (unsigned i = 0; i != NumFields; ++i) {
8094    FieldDecl *FD = cast<FieldDecl>(Fields[i]);
8095
8096    // Get the type for the field.
8097    const Type *FDTy = FD->getType().getTypePtr();
8098
8099    if (!FD->isAnonymousStructOrUnion()) {
8100      // Remember all fields written by the user.
8101      RecFields.push_back(FD);
8102    }
8103
8104    // If the field is already invalid for some reason, don't emit more
8105    // diagnostics about it.
8106    if (FD->isInvalidDecl()) {
8107      EnclosingDecl->setInvalidDecl();
8108      continue;
8109    }
8110
8111    // C99 6.7.2.1p2:
8112    //   A structure or union shall not contain a member with
8113    //   incomplete or function type (hence, a structure shall not
8114    //   contain an instance of itself, but may contain a pointer to
8115    //   an instance of itself), except that the last member of a
8116    //   structure with more than one named member may have incomplete
8117    //   array type; such a structure (and any union containing,
8118    //   possibly recursively, a member that is such a structure)
8119    //   shall not be a member of a structure or an element of an
8120    //   array.
8121    if (FDTy->isFunctionType()) {
8122      // Field declared as a function.
8123      Diag(FD->getLocation(), diag::err_field_declared_as_function)
8124        << FD->getDeclName();
8125      FD->setInvalidDecl();
8126      EnclosingDecl->setInvalidDecl();
8127      continue;
8128    } else if (FDTy->isIncompleteArrayType() && Record &&
8129               ((i == NumFields - 1 && !Record->isUnion()) ||
8130                ((getLangOptions().Microsoft || getLangOptions().CPlusPlus) &&
8131                 (i == NumFields - 1 || Record->isUnion())))) {
8132      // Flexible array member.
8133      // Microsoft and g++ is more permissive regarding flexible array.
8134      // It will accept flexible array in union and also
8135      // as the sole element of a struct/class.
8136      if (getLangOptions().Microsoft) {
8137        if (Record->isUnion())
8138          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
8139            << FD->getDeclName();
8140        else if (NumFields == 1)
8141          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
8142            << FD->getDeclName() << Record->getTagKind();
8143      } else if (getLangOptions().CPlusPlus) {
8144        if (Record->isUnion())
8145          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
8146            << FD->getDeclName();
8147        else if (NumFields == 1)
8148          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
8149            << FD->getDeclName() << Record->getTagKind();
8150      } else if (NumNamedMembers < 1) {
8151        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
8152          << FD->getDeclName();
8153        FD->setInvalidDecl();
8154        EnclosingDecl->setInvalidDecl();
8155        continue;
8156      }
8157      if (!FD->getType()->isDependentType() &&
8158          !Context.getBaseElementType(FD->getType())->isPODType()) {
8159        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
8160          << FD->getDeclName() << FD->getType();
8161        FD->setInvalidDecl();
8162        EnclosingDecl->setInvalidDecl();
8163        continue;
8164      }
8165      // Okay, we have a legal flexible array member at the end of the struct.
8166      if (Record)
8167        Record->setHasFlexibleArrayMember(true);
8168    } else if (!FDTy->isDependentType() &&
8169               RequireCompleteType(FD->getLocation(), FD->getType(),
8170                                   diag::err_field_incomplete)) {
8171      // Incomplete type
8172      FD->setInvalidDecl();
8173      EnclosingDecl->setInvalidDecl();
8174      continue;
8175    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
8176      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
8177        // If this is a member of a union, then entire union becomes "flexible".
8178        if (Record && Record->isUnion()) {
8179          Record->setHasFlexibleArrayMember(true);
8180        } else {
8181          // If this is a struct/class and this is not the last element, reject
8182          // it.  Note that GCC supports variable sized arrays in the middle of
8183          // structures.
8184          if (i != NumFields-1)
8185            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
8186              << FD->getDeclName() << FD->getType();
8187          else {
8188            // We support flexible arrays at the end of structs in
8189            // other structs as an extension.
8190            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
8191              << FD->getDeclName();
8192            if (Record)
8193              Record->setHasFlexibleArrayMember(true);
8194          }
8195        }
8196      }
8197      if (Record && FDTTy->getDecl()->hasObjectMember())
8198        Record->setHasObjectMember(true);
8199    } else if (FDTy->isObjCObjectType()) {
8200      /// A field cannot be an Objective-c object
8201      Diag(FD->getLocation(), diag::err_statically_allocated_object);
8202      FD->setInvalidDecl();
8203      EnclosingDecl->setInvalidDecl();
8204      continue;
8205    } else if (getLangOptions().ObjC1 &&
8206               getLangOptions().getGCMode() != LangOptions::NonGC &&
8207               Record &&
8208               (FD->getType()->isObjCObjectPointerType() ||
8209                FD->getType().isObjCGCStrong()))
8210      Record->setHasObjectMember(true);
8211    else if (Context.getAsArrayType(FD->getType())) {
8212      QualType BaseType = Context.getBaseElementType(FD->getType());
8213      if (Record && BaseType->isRecordType() &&
8214          BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
8215        Record->setHasObjectMember(true);
8216    }
8217    // Keep track of the number of named members.
8218    if (FD->getIdentifier())
8219      ++NumNamedMembers;
8220  }
8221
8222  // Okay, we successfully defined 'Record'.
8223  if (Record) {
8224    bool Completed = false;
8225    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
8226      if (!CXXRecord->isInvalidDecl()) {
8227        // Set access bits correctly on the directly-declared conversions.
8228        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
8229        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
8230             I != E; ++I)
8231          Convs->setAccess(I, (*I)->getAccess());
8232
8233        if (!CXXRecord->isDependentType()) {
8234          // Adjust user-defined destructor exception spec.
8235          if (getLangOptions().CPlusPlus0x &&
8236              CXXRecord->hasUserDeclaredDestructor())
8237            AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
8238
8239          // Add any implicitly-declared members to this class.
8240          AddImplicitlyDeclaredMembersToClass(CXXRecord);
8241
8242          // If we have virtual base classes, we may end up finding multiple
8243          // final overriders for a given virtual function. Check for this
8244          // problem now.
8245          if (CXXRecord->getNumVBases()) {
8246            CXXFinalOverriderMap FinalOverriders;
8247            CXXRecord->getFinalOverriders(FinalOverriders);
8248
8249            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
8250                                             MEnd = FinalOverriders.end();
8251                 M != MEnd; ++M) {
8252              for (OverridingMethods::iterator SO = M->second.begin(),
8253                                            SOEnd = M->second.end();
8254                   SO != SOEnd; ++SO) {
8255                assert(SO->second.size() > 0 &&
8256                       "Virtual function without overridding functions?");
8257                if (SO->second.size() == 1)
8258                  continue;
8259
8260                // C++ [class.virtual]p2:
8261                //   In a derived class, if a virtual member function of a base
8262                //   class subobject has more than one final overrider the
8263                //   program is ill-formed.
8264                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
8265                  << (NamedDecl *)M->first << Record;
8266                Diag(M->first->getLocation(),
8267                     diag::note_overridden_virtual_function);
8268                for (OverridingMethods::overriding_iterator
8269                          OM = SO->second.begin(),
8270                       OMEnd = SO->second.end();
8271                     OM != OMEnd; ++OM)
8272                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
8273                    << (NamedDecl *)M->first << OM->Method->getParent();
8274
8275                Record->setInvalidDecl();
8276              }
8277            }
8278            CXXRecord->completeDefinition(&FinalOverriders);
8279            Completed = true;
8280          }
8281        }
8282      }
8283    }
8284
8285    if (!Completed)
8286      Record->completeDefinition();
8287
8288    // Now that the record is complete, do any delayed exception spec checks
8289    // we were missing.
8290    while (!DelayedDestructorExceptionSpecChecks.empty()) {
8291      const CXXDestructorDecl *Dtor =
8292              DelayedDestructorExceptionSpecChecks.back().first;
8293      if (Dtor->getParent() != Record)
8294        break;
8295
8296      assert(!Dtor->getParent()->isDependentType() &&
8297          "Should not ever add destructors of templates into the list.");
8298      CheckOverridingFunctionExceptionSpec(Dtor,
8299          DelayedDestructorExceptionSpecChecks.back().second);
8300      DelayedDestructorExceptionSpecChecks.pop_back();
8301    }
8302
8303  } else {
8304    ObjCIvarDecl **ClsFields =
8305      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
8306    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
8307      ID->setLocEnd(RBrac);
8308      // Add ivar's to class's DeclContext.
8309      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
8310        ClsFields[i]->setLexicalDeclContext(ID);
8311        ID->addDecl(ClsFields[i]);
8312      }
8313      // Must enforce the rule that ivars in the base classes may not be
8314      // duplicates.
8315      if (ID->getSuperClass())
8316        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
8317    } else if (ObjCImplementationDecl *IMPDecl =
8318                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
8319      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
8320      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
8321        // Ivar declared in @implementation never belongs to the implementation.
8322        // Only it is in implementation's lexical context.
8323        ClsFields[I]->setLexicalDeclContext(IMPDecl);
8324      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
8325    } else if (ObjCCategoryDecl *CDecl =
8326                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
8327      // case of ivars in class extension; all other cases have been
8328      // reported as errors elsewhere.
8329      // FIXME. Class extension does not have a LocEnd field.
8330      // CDecl->setLocEnd(RBrac);
8331      // Add ivar's to class extension's DeclContext.
8332      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
8333        ClsFields[i]->setLexicalDeclContext(CDecl);
8334        CDecl->addDecl(ClsFields[i]);
8335      }
8336    }
8337  }
8338
8339  if (Attr)
8340    ProcessDeclAttributeList(S, Record, Attr);
8341
8342  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
8343  // set the visibility of this record.
8344  if (Record && !Record->getDeclContext()->isRecord())
8345    AddPushedVisibilityAttribute(Record);
8346}
8347
8348/// \brief Determine whether the given integral value is representable within
8349/// the given type T.
8350static bool isRepresentableIntegerValue(ASTContext &Context,
8351                                        llvm::APSInt &Value,
8352                                        QualType T) {
8353  assert(T->isIntegralType(Context) && "Integral type required!");
8354  unsigned BitWidth = Context.getIntWidth(T);
8355
8356  if (Value.isUnsigned() || Value.isNonNegative()) {
8357    if (T->isSignedIntegerOrEnumerationType())
8358      --BitWidth;
8359    return Value.getActiveBits() <= BitWidth;
8360  }
8361  return Value.getMinSignedBits() <= BitWidth;
8362}
8363
8364// \brief Given an integral type, return the next larger integral type
8365// (or a NULL type of no such type exists).
8366static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
8367  // FIXME: Int128/UInt128 support, which also needs to be introduced into
8368  // enum checking below.
8369  assert(T->isIntegralType(Context) && "Integral type required!");
8370  const unsigned NumTypes = 4;
8371  QualType SignedIntegralTypes[NumTypes] = {
8372    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
8373  };
8374  QualType UnsignedIntegralTypes[NumTypes] = {
8375    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
8376    Context.UnsignedLongLongTy
8377  };
8378
8379  unsigned BitWidth = Context.getTypeSize(T);
8380  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
8381                                                        : UnsignedIntegralTypes;
8382  for (unsigned I = 0; I != NumTypes; ++I)
8383    if (Context.getTypeSize(Types[I]) > BitWidth)
8384      return Types[I];
8385
8386  return QualType();
8387}
8388
8389EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
8390                                          EnumConstantDecl *LastEnumConst,
8391                                          SourceLocation IdLoc,
8392                                          IdentifierInfo *Id,
8393                                          Expr *Val) {
8394  unsigned IntWidth = Context.Target.getIntWidth();
8395  llvm::APSInt EnumVal(IntWidth);
8396  QualType EltTy;
8397
8398  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
8399    Val = 0;
8400
8401  if (Val) {
8402    if (Enum->isDependentType() || Val->isTypeDependent())
8403      EltTy = Context.DependentTy;
8404    else {
8405      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
8406      SourceLocation ExpLoc;
8407      if (!Val->isValueDependent() &&
8408          VerifyIntegerConstantExpression(Val, &EnumVal)) {
8409        Val = 0;
8410      } else {
8411        if (!getLangOptions().CPlusPlus) {
8412          // C99 6.7.2.2p2:
8413          //   The expression that defines the value of an enumeration constant
8414          //   shall be an integer constant expression that has a value
8415          //   representable as an int.
8416
8417          // Complain if the value is not representable in an int.
8418          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
8419            Diag(IdLoc, diag::ext_enum_value_not_int)
8420              << EnumVal.toString(10) << Val->getSourceRange()
8421              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
8422          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
8423            // Force the type of the expression to 'int'.
8424            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
8425          }
8426        }
8427
8428        if (Enum->isFixed()) {
8429          EltTy = Enum->getIntegerType();
8430
8431          // C++0x [dcl.enum]p5:
8432          //   ... if the initializing value of an enumerator cannot be
8433          //   represented by the underlying type, the program is ill-formed.
8434          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
8435            if (getLangOptions().Microsoft) {
8436              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
8437              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
8438            } else
8439              Diag(IdLoc, diag::err_enumerator_too_large)
8440                << EltTy;
8441          } else
8442            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
8443        }
8444        else {
8445          // C++0x [dcl.enum]p5:
8446          //   If the underlying type is not fixed, the type of each enumerator
8447          //   is the type of its initializing value:
8448          //     - If an initializer is specified for an enumerator, the
8449          //       initializing value has the same type as the expression.
8450          EltTy = Val->getType();
8451        }
8452      }
8453    }
8454  }
8455
8456  if (!Val) {
8457    if (Enum->isDependentType())
8458      EltTy = Context.DependentTy;
8459    else if (!LastEnumConst) {
8460      // C++0x [dcl.enum]p5:
8461      //   If the underlying type is not fixed, the type of each enumerator
8462      //   is the type of its initializing value:
8463      //     - If no initializer is specified for the first enumerator, the
8464      //       initializing value has an unspecified integral type.
8465      //
8466      // GCC uses 'int' for its unspecified integral type, as does
8467      // C99 6.7.2.2p3.
8468      if (Enum->isFixed()) {
8469        EltTy = Enum->getIntegerType();
8470      }
8471      else {
8472        EltTy = Context.IntTy;
8473      }
8474    } else {
8475      // Assign the last value + 1.
8476      EnumVal = LastEnumConst->getInitVal();
8477      ++EnumVal;
8478      EltTy = LastEnumConst->getType();
8479
8480      // Check for overflow on increment.
8481      if (EnumVal < LastEnumConst->getInitVal()) {
8482        // C++0x [dcl.enum]p5:
8483        //   If the underlying type is not fixed, the type of each enumerator
8484        //   is the type of its initializing value:
8485        //
8486        //     - Otherwise the type of the initializing value is the same as
8487        //       the type of the initializing value of the preceding enumerator
8488        //       unless the incremented value is not representable in that type,
8489        //       in which case the type is an unspecified integral type
8490        //       sufficient to contain the incremented value. If no such type
8491        //       exists, the program is ill-formed.
8492        QualType T = getNextLargerIntegralType(Context, EltTy);
8493        if (T.isNull() || Enum->isFixed()) {
8494          // There is no integral type larger enough to represent this
8495          // value. Complain, then allow the value to wrap around.
8496          EnumVal = LastEnumConst->getInitVal();
8497          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
8498          ++EnumVal;
8499          if (Enum->isFixed())
8500            // When the underlying type is fixed, this is ill-formed.
8501            Diag(IdLoc, diag::err_enumerator_wrapped)
8502              << EnumVal.toString(10)
8503              << EltTy;
8504          else
8505            Diag(IdLoc, diag::warn_enumerator_too_large)
8506              << EnumVal.toString(10);
8507        } else {
8508          EltTy = T;
8509        }
8510
8511        // Retrieve the last enumerator's value, extent that type to the
8512        // type that is supposed to be large enough to represent the incremented
8513        // value, then increment.
8514        EnumVal = LastEnumConst->getInitVal();
8515        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
8516        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
8517        ++EnumVal;
8518
8519        // If we're not in C++, diagnose the overflow of enumerator values,
8520        // which in C99 means that the enumerator value is not representable in
8521        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
8522        // permits enumerator values that are representable in some larger
8523        // integral type.
8524        if (!getLangOptions().CPlusPlus && !T.isNull())
8525          Diag(IdLoc, diag::warn_enum_value_overflow);
8526      } else if (!getLangOptions().CPlusPlus &&
8527                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
8528        // Enforce C99 6.7.2.2p2 even when we compute the next value.
8529        Diag(IdLoc, diag::ext_enum_value_not_int)
8530          << EnumVal.toString(10) << 1;
8531      }
8532    }
8533  }
8534
8535  if (!EltTy->isDependentType()) {
8536    // Make the enumerator value match the signedness and size of the
8537    // enumerator's type.
8538    EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
8539    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
8540  }
8541
8542  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
8543                                  Val, EnumVal);
8544}
8545
8546
8547Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
8548                              SourceLocation IdLoc, IdentifierInfo *Id,
8549                              AttributeList *Attr,
8550                              SourceLocation EqualLoc, ExprTy *val) {
8551  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
8552  EnumConstantDecl *LastEnumConst =
8553    cast_or_null<EnumConstantDecl>(lastEnumConst);
8554  Expr *Val = static_cast<Expr*>(val);
8555
8556  // The scope passed in may not be a decl scope.  Zip up the scope tree until
8557  // we find one that is.
8558  S = getNonFieldDeclScope(S);
8559
8560  // Verify that there isn't already something declared with this name in this
8561  // scope.
8562  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
8563                                         ForRedeclaration);
8564  if (PrevDecl && PrevDecl->isTemplateParameter()) {
8565    // Maybe we will complain about the shadowed template parameter.
8566    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
8567    // Just pretend that we didn't see the previous declaration.
8568    PrevDecl = 0;
8569  }
8570
8571  if (PrevDecl) {
8572    // When in C++, we may get a TagDecl with the same name; in this case the
8573    // enum constant will 'hide' the tag.
8574    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
8575           "Received TagDecl when not in C++!");
8576    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
8577      if (isa<EnumConstantDecl>(PrevDecl))
8578        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
8579      else
8580        Diag(IdLoc, diag::err_redefinition) << Id;
8581      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
8582      return 0;
8583    }
8584  }
8585
8586  // C++ [class.mem]p13:
8587  //   If T is the name of a class, then each of the following shall have a
8588  //   name different from T:
8589  //     - every enumerator of every member of class T that is an enumerated
8590  //       type
8591  if (CXXRecordDecl *Record
8592                      = dyn_cast<CXXRecordDecl>(
8593                             TheEnumDecl->getDeclContext()->getRedeclContext()))
8594    if (Record->getIdentifier() && Record->getIdentifier() == Id)
8595      Diag(IdLoc, diag::err_member_name_of_class) << Id;
8596
8597  EnumConstantDecl *New =
8598    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
8599
8600  if (New) {
8601    // Process attributes.
8602    if (Attr) ProcessDeclAttributeList(S, New, Attr);
8603
8604    // Register this decl in the current scope stack.
8605    New->setAccess(TheEnumDecl->getAccess());
8606    PushOnScopeChains(New, S);
8607  }
8608
8609  return New;
8610}
8611
8612void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
8613                         SourceLocation RBraceLoc, Decl *EnumDeclX,
8614                         Decl **Elements, unsigned NumElements,
8615                         Scope *S, AttributeList *Attr) {
8616  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
8617  QualType EnumType = Context.getTypeDeclType(Enum);
8618
8619  if (Attr)
8620    ProcessDeclAttributeList(S, Enum, Attr);
8621
8622  if (Enum->isDependentType()) {
8623    for (unsigned i = 0; i != NumElements; ++i) {
8624      EnumConstantDecl *ECD =
8625        cast_or_null<EnumConstantDecl>(Elements[i]);
8626      if (!ECD) continue;
8627
8628      ECD->setType(EnumType);
8629    }
8630
8631    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
8632    return;
8633  }
8634
8635  // TODO: If the result value doesn't fit in an int, it must be a long or long
8636  // long value.  ISO C does not support this, but GCC does as an extension,
8637  // emit a warning.
8638  unsigned IntWidth = Context.Target.getIntWidth();
8639  unsigned CharWidth = Context.Target.getCharWidth();
8640  unsigned ShortWidth = Context.Target.getShortWidth();
8641
8642  // Verify that all the values are okay, compute the size of the values, and
8643  // reverse the list.
8644  unsigned NumNegativeBits = 0;
8645  unsigned NumPositiveBits = 0;
8646
8647  // Keep track of whether all elements have type int.
8648  bool AllElementsInt = true;
8649
8650  for (unsigned i = 0; i != NumElements; ++i) {
8651    EnumConstantDecl *ECD =
8652      cast_or_null<EnumConstantDecl>(Elements[i]);
8653    if (!ECD) continue;  // Already issued a diagnostic.
8654
8655    const llvm::APSInt &InitVal = ECD->getInitVal();
8656
8657    // Keep track of the size of positive and negative values.
8658    if (InitVal.isUnsigned() || InitVal.isNonNegative())
8659      NumPositiveBits = std::max(NumPositiveBits,
8660                                 (unsigned)InitVal.getActiveBits());
8661    else
8662      NumNegativeBits = std::max(NumNegativeBits,
8663                                 (unsigned)InitVal.getMinSignedBits());
8664
8665    // Keep track of whether every enum element has type int (very commmon).
8666    if (AllElementsInt)
8667      AllElementsInt = ECD->getType() == Context.IntTy;
8668  }
8669
8670  // Figure out the type that should be used for this enum.
8671  QualType BestType;
8672  unsigned BestWidth;
8673
8674  // C++0x N3000 [conv.prom]p3:
8675  //   An rvalue of an unscoped enumeration type whose underlying
8676  //   type is not fixed can be converted to an rvalue of the first
8677  //   of the following types that can represent all the values of
8678  //   the enumeration: int, unsigned int, long int, unsigned long
8679  //   int, long long int, or unsigned long long int.
8680  // C99 6.4.4.3p2:
8681  //   An identifier declared as an enumeration constant has type int.
8682  // The C99 rule is modified by a gcc extension
8683  QualType BestPromotionType;
8684
8685  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
8686  // -fshort-enums is the equivalent to specifying the packed attribute on all
8687  // enum definitions.
8688  if (LangOpts.ShortEnums)
8689    Packed = true;
8690
8691  if (Enum->isFixed()) {
8692    BestType = BestPromotionType = Enum->getIntegerType();
8693    // We don't need to set BestWidth, because BestType is going to be the type
8694    // of the enumerators, but we do anyway because otherwise some compilers
8695    // warn that it might be used uninitialized.
8696    BestWidth = CharWidth;
8697  }
8698  else if (NumNegativeBits) {
8699    // If there is a negative value, figure out the smallest integer type (of
8700    // int/long/longlong) that fits.
8701    // If it's packed, check also if it fits a char or a short.
8702    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
8703      BestType = Context.SignedCharTy;
8704      BestWidth = CharWidth;
8705    } else if (Packed && NumNegativeBits <= ShortWidth &&
8706               NumPositiveBits < ShortWidth) {
8707      BestType = Context.ShortTy;
8708      BestWidth = ShortWidth;
8709    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
8710      BestType = Context.IntTy;
8711      BestWidth = IntWidth;
8712    } else {
8713      BestWidth = Context.Target.getLongWidth();
8714
8715      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
8716        BestType = Context.LongTy;
8717      } else {
8718        BestWidth = Context.Target.getLongLongWidth();
8719
8720        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
8721          Diag(Enum->getLocation(), diag::warn_enum_too_large);
8722        BestType = Context.LongLongTy;
8723      }
8724    }
8725    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
8726  } else {
8727    // If there is no negative value, figure out the smallest type that fits
8728    // all of the enumerator values.
8729    // If it's packed, check also if it fits a char or a short.
8730    if (Packed && NumPositiveBits <= CharWidth) {
8731      BestType = Context.UnsignedCharTy;
8732      BestPromotionType = Context.IntTy;
8733      BestWidth = CharWidth;
8734    } else if (Packed && NumPositiveBits <= ShortWidth) {
8735      BestType = Context.UnsignedShortTy;
8736      BestPromotionType = Context.IntTy;
8737      BestWidth = ShortWidth;
8738    } else if (NumPositiveBits <= IntWidth) {
8739      BestType = Context.UnsignedIntTy;
8740      BestWidth = IntWidth;
8741      BestPromotionType
8742        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8743                           ? Context.UnsignedIntTy : Context.IntTy;
8744    } else if (NumPositiveBits <=
8745               (BestWidth = Context.Target.getLongWidth())) {
8746      BestType = Context.UnsignedLongTy;
8747      BestPromotionType
8748        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8749                           ? Context.UnsignedLongTy : Context.LongTy;
8750    } else {
8751      BestWidth = Context.Target.getLongLongWidth();
8752      assert(NumPositiveBits <= BestWidth &&
8753             "How could an initializer get larger than ULL?");
8754      BestType = Context.UnsignedLongLongTy;
8755      BestPromotionType
8756        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8757                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
8758    }
8759  }
8760
8761  // Loop over all of the enumerator constants, changing their types to match
8762  // the type of the enum if needed.
8763  for (unsigned i = 0; i != NumElements; ++i) {
8764    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
8765    if (!ECD) continue;  // Already issued a diagnostic.
8766
8767    // Standard C says the enumerators have int type, but we allow, as an
8768    // extension, the enumerators to be larger than int size.  If each
8769    // enumerator value fits in an int, type it as an int, otherwise type it the
8770    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
8771    // that X has type 'int', not 'unsigned'.
8772
8773    // Determine whether the value fits into an int.
8774    llvm::APSInt InitVal = ECD->getInitVal();
8775
8776    // If it fits into an integer type, force it.  Otherwise force it to match
8777    // the enum decl type.
8778    QualType NewTy;
8779    unsigned NewWidth;
8780    bool NewSign;
8781    if (!getLangOptions().CPlusPlus &&
8782        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
8783      NewTy = Context.IntTy;
8784      NewWidth = IntWidth;
8785      NewSign = true;
8786    } else if (ECD->getType() == BestType) {
8787      // Already the right type!
8788      if (getLangOptions().CPlusPlus)
8789        // C++ [dcl.enum]p4: Following the closing brace of an
8790        // enum-specifier, each enumerator has the type of its
8791        // enumeration.
8792        ECD->setType(EnumType);
8793      continue;
8794    } else {
8795      NewTy = BestType;
8796      NewWidth = BestWidth;
8797      NewSign = BestType->isSignedIntegerOrEnumerationType();
8798    }
8799
8800    // Adjust the APSInt value.
8801    InitVal = InitVal.extOrTrunc(NewWidth);
8802    InitVal.setIsSigned(NewSign);
8803    ECD->setInitVal(InitVal);
8804
8805    // Adjust the Expr initializer and type.
8806    if (ECD->getInitExpr() &&
8807	!Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
8808      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
8809                                                CK_IntegralCast,
8810                                                ECD->getInitExpr(),
8811                                                /*base paths*/ 0,
8812                                                VK_RValue));
8813    if (getLangOptions().CPlusPlus)
8814      // C++ [dcl.enum]p4: Following the closing brace of an
8815      // enum-specifier, each enumerator has the type of its
8816      // enumeration.
8817      ECD->setType(EnumType);
8818    else
8819      ECD->setType(NewTy);
8820  }
8821
8822  Enum->completeDefinition(BestType, BestPromotionType,
8823                           NumPositiveBits, NumNegativeBits);
8824}
8825
8826Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
8827                                  SourceLocation StartLoc,
8828                                  SourceLocation EndLoc) {
8829  StringLiteral *AsmString = cast<StringLiteral>(expr);
8830
8831  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
8832                                                   AsmString, StartLoc,
8833                                                   EndLoc);
8834  CurContext->addDecl(New);
8835  return New;
8836}
8837
8838void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
8839                             SourceLocation PragmaLoc,
8840                             SourceLocation NameLoc) {
8841  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
8842
8843  if (PrevDecl) {
8844    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
8845  } else {
8846    (void)WeakUndeclaredIdentifiers.insert(
8847      std::pair<IdentifierInfo*,WeakInfo>
8848        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
8849  }
8850}
8851
8852void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
8853                                IdentifierInfo* AliasName,
8854                                SourceLocation PragmaLoc,
8855                                SourceLocation NameLoc,
8856                                SourceLocation AliasNameLoc) {
8857  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
8858                                    LookupOrdinaryName);
8859  WeakInfo W = WeakInfo(Name, NameLoc);
8860
8861  if (PrevDecl) {
8862    if (!PrevDecl->hasAttr<AliasAttr>())
8863      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
8864        DeclApplyPragmaWeak(TUScope, ND, W);
8865  } else {
8866    (void)WeakUndeclaredIdentifiers.insert(
8867      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
8868  }
8869}
8870