SemaDecl.cpp revision ed9d84a2112e2bd56befb5f4fa8fc5bdf71fafa3
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "TypeLocBuilder.h"
21#include "clang/AST/APValue.h"
22#include "clang/AST/ASTConsumer.h"
23#include "clang/AST/ASTContext.h"
24#include "clang/AST/CXXInheritance.h"
25#include "clang/AST/DeclCXX.h"
26#include "clang/AST/DeclObjC.h"
27#include "clang/AST/DeclTemplate.h"
28#include "clang/AST/EvaluatedExprVisitor.h"
29#include "clang/AST/ExprCXX.h"
30#include "clang/AST/StmtCXX.h"
31#include "clang/AST/CharUnits.h"
32#include "clang/Sema/DeclSpec.h"
33#include "clang/Sema/ParsedTemplate.h"
34#include "clang/Parse/ParseDiagnostic.h"
35#include "clang/Basic/PartialDiagnostic.h"
36#include "clang/Basic/SourceManager.h"
37#include "clang/Basic/TargetInfo.h"
38// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
39#include "clang/Lex/Preprocessor.h"
40#include "clang/Lex/HeaderSearch.h"
41#include "clang/Lex/ModuleLoader.h"
42#include "llvm/ADT/Triple.h"
43#include <algorithm>
44#include <cstring>
45#include <functional>
46using namespace clang;
47using namespace sema;
48
49Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
50  if (OwnedType) {
51    Decl *Group[2] = { OwnedType, Ptr };
52    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
53  }
54
55  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
56}
57
58/// \brief If the identifier refers to a type name within this scope,
59/// return the declaration of that type.
60///
61/// This routine performs ordinary name lookup of the identifier II
62/// within the given scope, with optional C++ scope specifier SS, to
63/// determine whether the name refers to a type. If so, returns an
64/// opaque pointer (actually a QualType) corresponding to that
65/// type. Otherwise, returns NULL.
66///
67/// If name lookup results in an ambiguity, this routine will complain
68/// and then return NULL.
69ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
70                             Scope *S, CXXScopeSpec *SS,
71                             bool isClassName, bool HasTrailingDot,
72                             ParsedType ObjectTypePtr,
73                             bool WantNontrivialTypeSourceInfo) {
74  // Determine where we will perform name lookup.
75  DeclContext *LookupCtx = 0;
76  if (ObjectTypePtr) {
77    QualType ObjectType = ObjectTypePtr.get();
78    if (ObjectType->isRecordType())
79      LookupCtx = computeDeclContext(ObjectType);
80  } else if (SS && SS->isNotEmpty()) {
81    LookupCtx = computeDeclContext(*SS, false);
82
83    if (!LookupCtx) {
84      if (isDependentScopeSpecifier(*SS)) {
85        // C++ [temp.res]p3:
86        //   A qualified-id that refers to a type and in which the
87        //   nested-name-specifier depends on a template-parameter (14.6.2)
88        //   shall be prefixed by the keyword typename to indicate that the
89        //   qualified-id denotes a type, forming an
90        //   elaborated-type-specifier (7.1.5.3).
91        //
92        // We therefore do not perform any name lookup if the result would
93        // refer to a member of an unknown specialization.
94        if (!isClassName)
95          return ParsedType();
96
97        // We know from the grammar that this name refers to a type,
98        // so build a dependent node to describe the type.
99        if (WantNontrivialTypeSourceInfo)
100          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
101
102        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
103        QualType T =
104          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
105                            II, NameLoc);
106
107          return ParsedType::make(T);
108      }
109
110      return ParsedType();
111    }
112
113    if (!LookupCtx->isDependentContext() &&
114        RequireCompleteDeclContext(*SS, LookupCtx))
115      return ParsedType();
116  }
117
118  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
119  // lookup for class-names.
120  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
121                                      LookupOrdinaryName;
122  LookupResult Result(*this, &II, NameLoc, Kind);
123  if (LookupCtx) {
124    // Perform "qualified" name lookup into the declaration context we
125    // computed, which is either the type of the base of a member access
126    // expression or the declaration context associated with a prior
127    // nested-name-specifier.
128    LookupQualifiedName(Result, LookupCtx);
129
130    if (ObjectTypePtr && Result.empty()) {
131      // C++ [basic.lookup.classref]p3:
132      //   If the unqualified-id is ~type-name, the type-name is looked up
133      //   in the context of the entire postfix-expression. If the type T of
134      //   the object expression is of a class type C, the type-name is also
135      //   looked up in the scope of class C. At least one of the lookups shall
136      //   find a name that refers to (possibly cv-qualified) T.
137      LookupName(Result, S);
138    }
139  } else {
140    // Perform unqualified name lookup.
141    LookupName(Result, S);
142  }
143
144  NamedDecl *IIDecl = 0;
145  switch (Result.getResultKind()) {
146  case LookupResult::NotFound:
147  case LookupResult::NotFoundInCurrentInstantiation:
148  case LookupResult::FoundOverloaded:
149  case LookupResult::FoundUnresolvedValue:
150    Result.suppressDiagnostics();
151    return ParsedType();
152
153  case LookupResult::Ambiguous:
154    // Recover from type-hiding ambiguities by hiding the type.  We'll
155    // do the lookup again when looking for an object, and we can
156    // diagnose the error then.  If we don't do this, then the error
157    // about hiding the type will be immediately followed by an error
158    // that only makes sense if the identifier was treated like a type.
159    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
160      Result.suppressDiagnostics();
161      return ParsedType();
162    }
163
164    // Look to see if we have a type anywhere in the list of results.
165    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
166         Res != ResEnd; ++Res) {
167      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
168        if (!IIDecl ||
169            (*Res)->getLocation().getRawEncoding() <
170              IIDecl->getLocation().getRawEncoding())
171          IIDecl = *Res;
172      }
173    }
174
175    if (!IIDecl) {
176      // None of the entities we found is a type, so there is no way
177      // to even assume that the result is a type. In this case, don't
178      // complain about the ambiguity. The parser will either try to
179      // perform this lookup again (e.g., as an object name), which
180      // will produce the ambiguity, or will complain that it expected
181      // a type name.
182      Result.suppressDiagnostics();
183      return ParsedType();
184    }
185
186    // We found a type within the ambiguous lookup; diagnose the
187    // ambiguity and then return that type. This might be the right
188    // answer, or it might not be, but it suppresses any attempt to
189    // perform the name lookup again.
190    break;
191
192  case LookupResult::Found:
193    IIDecl = Result.getFoundDecl();
194    break;
195  }
196
197  assert(IIDecl && "Didn't find decl");
198
199  QualType T;
200  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
201    DiagnoseUseOfDecl(IIDecl, NameLoc);
202
203    if (T.isNull())
204      T = Context.getTypeDeclType(TD);
205
206    if (SS && SS->isNotEmpty()) {
207      if (WantNontrivialTypeSourceInfo) {
208        // Construct a type with type-source information.
209        TypeLocBuilder Builder;
210        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
211
212        T = getElaboratedType(ETK_None, *SS, T);
213        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
214        ElabTL.setKeywordLoc(SourceLocation());
215        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
216        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
217      } else {
218        T = getElaboratedType(ETK_None, *SS, T);
219      }
220    }
221  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
222    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
223    if (!HasTrailingDot)
224      T = Context.getObjCInterfaceType(IDecl);
225  }
226
227  if (T.isNull()) {
228    // If it's not plausibly a type, suppress diagnostics.
229    Result.suppressDiagnostics();
230    return ParsedType();
231  }
232  return ParsedType::make(T);
233}
234
235/// isTagName() - This method is called *for error recovery purposes only*
236/// to determine if the specified name is a valid tag name ("struct foo").  If
237/// so, this returns the TST for the tag corresponding to it (TST_enum,
238/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
239/// where the user forgot to specify the tag.
240DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
241  // Do a tag name lookup in this scope.
242  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
243  LookupName(R, S, false);
244  R.suppressDiagnostics();
245  if (R.getResultKind() == LookupResult::Found)
246    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
247      switch (TD->getTagKind()) {
248      default:         return DeclSpec::TST_unspecified;
249      case TTK_Struct: return DeclSpec::TST_struct;
250      case TTK_Union:  return DeclSpec::TST_union;
251      case TTK_Class:  return DeclSpec::TST_class;
252      case TTK_Enum:   return DeclSpec::TST_enum;
253      }
254    }
255
256  return DeclSpec::TST_unspecified;
257}
258
259/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
260/// if a CXXScopeSpec's type is equal to the type of one of the base classes
261/// then downgrade the missing typename error to a warning.
262/// This is needed for MSVC compatibility; Example:
263/// @code
264/// template<class T> class A {
265/// public:
266///   typedef int TYPE;
267/// };
268/// template<class T> class B : public A<T> {
269/// public:
270///   A<T>::TYPE a; // no typename required because A<T> is a base class.
271/// };
272/// @endcode
273bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS) {
274  if (CurContext->isRecord()) {
275    const Type *Ty = SS->getScopeRep()->getAsType();
276
277    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
278    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
279          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
280      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
281        return true;
282  }
283  return false;
284}
285
286bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
287                                   SourceLocation IILoc,
288                                   Scope *S,
289                                   CXXScopeSpec *SS,
290                                   ParsedType &SuggestedType) {
291  // We don't have anything to suggest (yet).
292  SuggestedType = ParsedType();
293
294  // There may have been a typo in the name of the type. Look up typo
295  // results, in case we have something that we can suggest.
296  if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(&II, IILoc),
297                                             LookupOrdinaryName, S, SS, NULL,
298                                             false, CTC_Type)) {
299    std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
300    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
301
302    if (Corrected.isKeyword()) {
303      // We corrected to a keyword.
304      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
305      Diag(IILoc, diag::err_unknown_typename_suggest)
306        << &II << CorrectedQuotedStr;
307      return true;
308    } else {
309      NamedDecl *Result = Corrected.getCorrectionDecl();
310      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
311          !Result->isInvalidDecl()) {
312        // We found a similarly-named type or interface; suggest that.
313        if (!SS || !SS->isSet())
314          Diag(IILoc, diag::err_unknown_typename_suggest)
315            << &II << CorrectedQuotedStr
316            << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
317        else if (DeclContext *DC = computeDeclContext(*SS, false))
318          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
319            << &II << DC << CorrectedQuotedStr << SS->getRange()
320            << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
321        else
322          llvm_unreachable("could not have corrected a typo here");
323
324        Diag(Result->getLocation(), diag::note_previous_decl)
325          << CorrectedQuotedStr;
326
327        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
328                                    false, false, ParsedType(),
329                                    /*NonTrivialTypeSourceInfo=*/true);
330        return true;
331      }
332    }
333  }
334
335  if (getLangOptions().CPlusPlus) {
336    // See if II is a class template that the user forgot to pass arguments to.
337    UnqualifiedId Name;
338    Name.setIdentifier(&II, IILoc);
339    CXXScopeSpec EmptySS;
340    TemplateTy TemplateResult;
341    bool MemberOfUnknownSpecialization;
342    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
343                       Name, ParsedType(), true, TemplateResult,
344                       MemberOfUnknownSpecialization) == TNK_Type_template) {
345      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
346      Diag(IILoc, diag::err_template_missing_args) << TplName;
347      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
348        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
349          << TplDecl->getTemplateParameters()->getSourceRange();
350      }
351      return true;
352    }
353  }
354
355  // FIXME: Should we move the logic that tries to recover from a missing tag
356  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
357
358  if (!SS || (!SS->isSet() && !SS->isInvalid()))
359    Diag(IILoc, diag::err_unknown_typename) << &II;
360  else if (DeclContext *DC = computeDeclContext(*SS, false))
361    Diag(IILoc, diag::err_typename_nested_not_found)
362      << &II << DC << SS->getRange();
363  else if (isDependentScopeSpecifier(*SS)) {
364    unsigned DiagID = diag::err_typename_missing;
365    if (getLangOptions().Microsoft && isMicrosoftMissingTypename(SS))
366      DiagID = diag::warn_typename_missing;
367
368    Diag(SS->getRange().getBegin(), DiagID)
369      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
370      << SourceRange(SS->getRange().getBegin(), IILoc)
371      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
372    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
373  } else {
374    assert(SS && SS->isInvalid() &&
375           "Invalid scope specifier has already been diagnosed");
376  }
377
378  return true;
379}
380
381/// \brief Determine whether the given result set contains either a type name
382/// or
383static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
384  bool CheckTemplate = R.getSema().getLangOptions().CPlusPlus &&
385                       NextToken.is(tok::less);
386
387  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
388    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
389      return true;
390
391    if (CheckTemplate && isa<TemplateDecl>(*I))
392      return true;
393  }
394
395  return false;
396}
397
398Sema::NameClassification Sema::ClassifyName(Scope *S,
399                                            CXXScopeSpec &SS,
400                                            IdentifierInfo *&Name,
401                                            SourceLocation NameLoc,
402                                            const Token &NextToken) {
403  DeclarationNameInfo NameInfo(Name, NameLoc);
404  ObjCMethodDecl *CurMethod = getCurMethodDecl();
405
406  if (NextToken.is(tok::coloncolon)) {
407    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
408                                QualType(), false, SS, 0, false);
409
410  }
411
412  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
413  LookupParsedName(Result, S, &SS, !CurMethod);
414
415  // Perform lookup for Objective-C instance variables (including automatically
416  // synthesized instance variables), if we're in an Objective-C method.
417  // FIXME: This lookup really, really needs to be folded in to the normal
418  // unqualified lookup mechanism.
419  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
420    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
421    if (E.get() || E.isInvalid())
422      return E;
423  }
424
425  bool SecondTry = false;
426  bool IsFilteredTemplateName = false;
427
428Corrected:
429  switch (Result.getResultKind()) {
430  case LookupResult::NotFound:
431    // If an unqualified-id is followed by a '(', then we have a function
432    // call.
433    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
434      // In C++, this is an ADL-only call.
435      // FIXME: Reference?
436      if (getLangOptions().CPlusPlus)
437        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
438
439      // C90 6.3.2.2:
440      //   If the expression that precedes the parenthesized argument list in a
441      //   function call consists solely of an identifier, and if no
442      //   declaration is visible for this identifier, the identifier is
443      //   implicitly declared exactly as if, in the innermost block containing
444      //   the function call, the declaration
445      //
446      //     extern int identifier ();
447      //
448      //   appeared.
449      //
450      // We also allow this in C99 as an extension.
451      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
452        Result.addDecl(D);
453        Result.resolveKind();
454        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
455      }
456    }
457
458    // In C, we first see whether there is a tag type by the same name, in
459    // which case it's likely that the user just forget to write "enum",
460    // "struct", or "union".
461    if (!getLangOptions().CPlusPlus && !SecondTry) {
462      Result.clear(LookupTagName);
463      LookupParsedName(Result, S, &SS);
464      if (TagDecl *Tag = Result.getAsSingle<TagDecl>()) {
465        const char *TagName = 0;
466        const char *FixItTagName = 0;
467        switch (Tag->getTagKind()) {
468          case TTK_Class:
469            TagName = "class";
470            FixItTagName = "class ";
471            break;
472
473          case TTK_Enum:
474            TagName = "enum";
475            FixItTagName = "enum ";
476            break;
477
478          case TTK_Struct:
479            TagName = "struct";
480            FixItTagName = "struct ";
481            break;
482
483          case TTK_Union:
484            TagName = "union";
485            FixItTagName = "union ";
486            break;
487        }
488
489        Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
490          << Name << TagName << getLangOptions().CPlusPlus
491          << FixItHint::CreateInsertion(NameLoc, FixItTagName);
492        break;
493      }
494
495      Result.clear(LookupOrdinaryName);
496    }
497
498    // Perform typo correction to determine if there is another name that is
499    // close to this name.
500    if (!SecondTry) {
501      SecondTry = true;
502      if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
503                                                 Result.getLookupKind(), S, &SS)) {
504        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
505        unsigned QualifiedDiag = diag::err_no_member_suggest;
506        std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
507        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
508
509        NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
510        NamedDecl *UnderlyingFirstDecl
511          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
512        if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
513            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
514          UnqualifiedDiag = diag::err_no_template_suggest;
515          QualifiedDiag = diag::err_no_member_template_suggest;
516        } else if (UnderlyingFirstDecl &&
517                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
518                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
519                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
520           UnqualifiedDiag = diag::err_unknown_typename_suggest;
521           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
522         }
523
524        if (SS.isEmpty())
525          Diag(NameLoc, UnqualifiedDiag)
526            << Name << CorrectedQuotedStr
527            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
528        else
529          Diag(NameLoc, QualifiedDiag)
530            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
531            << SS.getRange()
532            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
533
534        // Update the name, so that the caller has the new name.
535        Name = Corrected.getCorrectionAsIdentifierInfo();
536
537        // Also update the LookupResult...
538        // FIXME: This should probably go away at some point
539        Result.clear();
540        Result.setLookupName(Corrected.getCorrection());
541        if (FirstDecl) Result.addDecl(FirstDecl);
542
543        // Typo correction corrected to a keyword.
544        if (Corrected.isKeyword())
545          return Corrected.getCorrectionAsIdentifierInfo();
546
547        if (FirstDecl)
548          Diag(FirstDecl->getLocation(), diag::note_previous_decl)
549            << CorrectedQuotedStr;
550
551        // If we found an Objective-C instance variable, let
552        // LookupInObjCMethod build the appropriate expression to
553        // reference the ivar.
554        // FIXME: This is a gross hack.
555        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
556          Result.clear();
557          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
558          return move(E);
559        }
560
561        goto Corrected;
562      }
563    }
564
565    // We failed to correct; just fall through and let the parser deal with it.
566    Result.suppressDiagnostics();
567    return NameClassification::Unknown();
568
569  case LookupResult::NotFoundInCurrentInstantiation:
570    // We performed name lookup into the current instantiation, and there were
571    // dependent bases, so we treat this result the same way as any other
572    // dependent nested-name-specifier.
573
574    // C++ [temp.res]p2:
575    //   A name used in a template declaration or definition and that is
576    //   dependent on a template-parameter is assumed not to name a type
577    //   unless the applicable name lookup finds a type name or the name is
578    //   qualified by the keyword typename.
579    //
580    // FIXME: If the next token is '<', we might want to ask the parser to
581    // perform some heroics to see if we actually have a
582    // template-argument-list, which would indicate a missing 'template'
583    // keyword here.
584    return BuildDependentDeclRefExpr(SS, NameInfo, /*TemplateArgs=*/0);
585
586  case LookupResult::Found:
587  case LookupResult::FoundOverloaded:
588  case LookupResult::FoundUnresolvedValue:
589    break;
590
591  case LookupResult::Ambiguous:
592    if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
593        hasAnyAcceptableTemplateNames(Result)) {
594      // C++ [temp.local]p3:
595      //   A lookup that finds an injected-class-name (10.2) can result in an
596      //   ambiguity in certain cases (for example, if it is found in more than
597      //   one base class). If all of the injected-class-names that are found
598      //   refer to specializations of the same class template, and if the name
599      //   is followed by a template-argument-list, the reference refers to the
600      //   class template itself and not a specialization thereof, and is not
601      //   ambiguous.
602      //
603      // This filtering can make an ambiguous result into an unambiguous one,
604      // so try again after filtering out template names.
605      FilterAcceptableTemplateNames(Result);
606      if (!Result.isAmbiguous()) {
607        IsFilteredTemplateName = true;
608        break;
609      }
610    }
611
612    // Diagnose the ambiguity and return an error.
613    return NameClassification::Error();
614  }
615
616  if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
617      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
618    // C++ [temp.names]p3:
619    //   After name lookup (3.4) finds that a name is a template-name or that
620    //   an operator-function-id or a literal- operator-id refers to a set of
621    //   overloaded functions any member of which is a function template if
622    //   this is followed by a <, the < is always taken as the delimiter of a
623    //   template-argument-list and never as the less-than operator.
624    if (!IsFilteredTemplateName)
625      FilterAcceptableTemplateNames(Result);
626
627    if (!Result.empty()) {
628      bool IsFunctionTemplate;
629      TemplateName Template;
630      if (Result.end() - Result.begin() > 1) {
631        IsFunctionTemplate = true;
632        Template = Context.getOverloadedTemplateName(Result.begin(),
633                                                     Result.end());
634      } else {
635        TemplateDecl *TD
636          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
637        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
638
639        if (SS.isSet() && !SS.isInvalid())
640          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
641                                                    /*TemplateKeyword=*/false,
642                                                      TD);
643        else
644          Template = TemplateName(TD);
645      }
646
647      if (IsFunctionTemplate) {
648        // Function templates always go through overload resolution, at which
649        // point we'll perform the various checks (e.g., accessibility) we need
650        // to based on which function we selected.
651        Result.suppressDiagnostics();
652
653        return NameClassification::FunctionTemplate(Template);
654      }
655
656      return NameClassification::TypeTemplate(Template);
657    }
658  }
659
660  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
661  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
662    DiagnoseUseOfDecl(Type, NameLoc);
663    QualType T = Context.getTypeDeclType(Type);
664    return ParsedType::make(T);
665  }
666
667  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
668  if (!Class) {
669    // FIXME: It's unfortunate that we don't have a Type node for handling this.
670    if (ObjCCompatibleAliasDecl *Alias
671                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
672      Class = Alias->getClassInterface();
673  }
674
675  if (Class) {
676    DiagnoseUseOfDecl(Class, NameLoc);
677
678    if (NextToken.is(tok::period)) {
679      // Interface. <something> is parsed as a property reference expression.
680      // Just return "unknown" as a fall-through for now.
681      Result.suppressDiagnostics();
682      return NameClassification::Unknown();
683    }
684
685    QualType T = Context.getObjCInterfaceType(Class);
686    return ParsedType::make(T);
687  }
688
689  if (!Result.empty() && (*Result.begin())->isCXXClassMember())
690    return BuildPossibleImplicitMemberExpr(SS, Result, 0);
691
692  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
693  return BuildDeclarationNameExpr(SS, Result, ADL);
694}
695
696// Determines the context to return to after temporarily entering a
697// context.  This depends in an unnecessarily complicated way on the
698// exact ordering of callbacks from the parser.
699DeclContext *Sema::getContainingDC(DeclContext *DC) {
700
701  // Functions defined inline within classes aren't parsed until we've
702  // finished parsing the top-level class, so the top-level class is
703  // the context we'll need to return to.
704  if (isa<FunctionDecl>(DC)) {
705    DC = DC->getLexicalParent();
706
707    // A function not defined within a class will always return to its
708    // lexical context.
709    if (!isa<CXXRecordDecl>(DC))
710      return DC;
711
712    // A C++ inline method/friend is parsed *after* the topmost class
713    // it was declared in is fully parsed ("complete");  the topmost
714    // class is the context we need to return to.
715    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
716      DC = RD;
717
718    // Return the declaration context of the topmost class the inline method is
719    // declared in.
720    return DC;
721  }
722
723  return DC->getLexicalParent();
724}
725
726void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
727  assert(getContainingDC(DC) == CurContext &&
728      "The next DeclContext should be lexically contained in the current one.");
729  CurContext = DC;
730  S->setEntity(DC);
731}
732
733void Sema::PopDeclContext() {
734  assert(CurContext && "DeclContext imbalance!");
735
736  CurContext = getContainingDC(CurContext);
737  assert(CurContext && "Popped translation unit!");
738}
739
740/// EnterDeclaratorContext - Used when we must lookup names in the context
741/// of a declarator's nested name specifier.
742///
743void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
744  // C++0x [basic.lookup.unqual]p13:
745  //   A name used in the definition of a static data member of class
746  //   X (after the qualified-id of the static member) is looked up as
747  //   if the name was used in a member function of X.
748  // C++0x [basic.lookup.unqual]p14:
749  //   If a variable member of a namespace is defined outside of the
750  //   scope of its namespace then any name used in the definition of
751  //   the variable member (after the declarator-id) is looked up as
752  //   if the definition of the variable member occurred in its
753  //   namespace.
754  // Both of these imply that we should push a scope whose context
755  // is the semantic context of the declaration.  We can't use
756  // PushDeclContext here because that context is not necessarily
757  // lexically contained in the current context.  Fortunately,
758  // the containing scope should have the appropriate information.
759
760  assert(!S->getEntity() && "scope already has entity");
761
762#ifndef NDEBUG
763  Scope *Ancestor = S->getParent();
764  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
765  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
766#endif
767
768  CurContext = DC;
769  S->setEntity(DC);
770}
771
772void Sema::ExitDeclaratorContext(Scope *S) {
773  assert(S->getEntity() == CurContext && "Context imbalance!");
774
775  // Switch back to the lexical context.  The safety of this is
776  // enforced by an assert in EnterDeclaratorContext.
777  Scope *Ancestor = S->getParent();
778  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
779  CurContext = (DeclContext*) Ancestor->getEntity();
780
781  // We don't need to do anything with the scope, which is going to
782  // disappear.
783}
784
785
786void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
787  FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
788  if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
789    // We assume that the caller has already called
790    // ActOnReenterTemplateScope
791    FD = TFD->getTemplatedDecl();
792  }
793  if (!FD)
794    return;
795
796  PushDeclContext(S, FD);
797  for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
798    ParmVarDecl *Param = FD->getParamDecl(P);
799    // If the parameter has an identifier, then add it to the scope
800    if (Param->getIdentifier()) {
801      S->AddDecl(Param);
802      IdResolver.AddDecl(Param);
803    }
804  }
805}
806
807
808/// \brief Determine whether we allow overloading of the function
809/// PrevDecl with another declaration.
810///
811/// This routine determines whether overloading is possible, not
812/// whether some new function is actually an overload. It will return
813/// true in C++ (where we can always provide overloads) or, as an
814/// extension, in C when the previous function is already an
815/// overloaded function declaration or has the "overloadable"
816/// attribute.
817static bool AllowOverloadingOfFunction(LookupResult &Previous,
818                                       ASTContext &Context) {
819  if (Context.getLangOptions().CPlusPlus)
820    return true;
821
822  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
823    return true;
824
825  return (Previous.getResultKind() == LookupResult::Found
826          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
827}
828
829/// Add this decl to the scope shadowed decl chains.
830void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
831  // Move up the scope chain until we find the nearest enclosing
832  // non-transparent context. The declaration will be introduced into this
833  // scope.
834  while (S->getEntity() &&
835         ((DeclContext *)S->getEntity())->isTransparentContext())
836    S = S->getParent();
837
838  // Add scoped declarations into their context, so that they can be
839  // found later. Declarations without a context won't be inserted
840  // into any context.
841  if (AddToContext)
842    CurContext->addDecl(D);
843
844  // Out-of-line definitions shouldn't be pushed into scope in C++.
845  // Out-of-line variable and function definitions shouldn't even in C.
846  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
847      D->isOutOfLine())
848    return;
849
850  // Template instantiations should also not be pushed into scope.
851  if (isa<FunctionDecl>(D) &&
852      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
853    return;
854
855  // If this replaces anything in the current scope,
856  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
857                               IEnd = IdResolver.end();
858  for (; I != IEnd; ++I) {
859    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
860      S->RemoveDecl(*I);
861      IdResolver.RemoveDecl(*I);
862
863      // Should only need to replace one decl.
864      break;
865    }
866  }
867
868  S->AddDecl(D);
869
870  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
871    // Implicitly-generated labels may end up getting generated in an order that
872    // isn't strictly lexical, which breaks name lookup. Be careful to insert
873    // the label at the appropriate place in the identifier chain.
874    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
875      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
876      if (IDC == CurContext) {
877        if (!S->isDeclScope(*I))
878          continue;
879      } else if (IDC->Encloses(CurContext))
880        break;
881    }
882
883    IdResolver.InsertDeclAfter(I, D);
884  } else {
885    IdResolver.AddDecl(D);
886  }
887}
888
889bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
890                         bool ExplicitInstantiationOrSpecialization) {
891  return IdResolver.isDeclInScope(D, Ctx, Context, S,
892                                  ExplicitInstantiationOrSpecialization);
893}
894
895Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
896  DeclContext *TargetDC = DC->getPrimaryContext();
897  do {
898    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
899      if (ScopeDC->getPrimaryContext() == TargetDC)
900        return S;
901  } while ((S = S->getParent()));
902
903  return 0;
904}
905
906static bool isOutOfScopePreviousDeclaration(NamedDecl *,
907                                            DeclContext*,
908                                            ASTContext&);
909
910/// Filters out lookup results that don't fall within the given scope
911/// as determined by isDeclInScope.
912void Sema::FilterLookupForScope(LookupResult &R,
913                                DeclContext *Ctx, Scope *S,
914                                bool ConsiderLinkage,
915                                bool ExplicitInstantiationOrSpecialization) {
916  LookupResult::Filter F = R.makeFilter();
917  while (F.hasNext()) {
918    NamedDecl *D = F.next();
919
920    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
921      continue;
922
923    if (ConsiderLinkage &&
924        isOutOfScopePreviousDeclaration(D, Ctx, Context))
925      continue;
926
927    F.erase();
928  }
929
930  F.done();
931}
932
933static bool isUsingDecl(NamedDecl *D) {
934  return isa<UsingShadowDecl>(D) ||
935         isa<UnresolvedUsingTypenameDecl>(D) ||
936         isa<UnresolvedUsingValueDecl>(D);
937}
938
939/// Removes using shadow declarations from the lookup results.
940static void RemoveUsingDecls(LookupResult &R) {
941  LookupResult::Filter F = R.makeFilter();
942  while (F.hasNext())
943    if (isUsingDecl(F.next()))
944      F.erase();
945
946  F.done();
947}
948
949/// \brief Check for this common pattern:
950/// @code
951/// class S {
952///   S(const S&); // DO NOT IMPLEMENT
953///   void operator=(const S&); // DO NOT IMPLEMENT
954/// };
955/// @endcode
956static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
957  // FIXME: Should check for private access too but access is set after we get
958  // the decl here.
959  if (D->doesThisDeclarationHaveABody())
960    return false;
961
962  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
963    return CD->isCopyConstructor();
964  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
965    return Method->isCopyAssignmentOperator();
966  return false;
967}
968
969bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
970  assert(D);
971
972  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
973    return false;
974
975  // Ignore class templates.
976  if (D->getDeclContext()->isDependentContext() ||
977      D->getLexicalDeclContext()->isDependentContext())
978    return false;
979
980  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
981    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
982      return false;
983
984    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
985      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
986        return false;
987    } else {
988      // 'static inline' functions are used in headers; don't warn.
989      if (FD->getStorageClass() == SC_Static &&
990          FD->isInlineSpecified())
991        return false;
992    }
993
994    if (FD->doesThisDeclarationHaveABody() &&
995        Context.DeclMustBeEmitted(FD))
996      return false;
997  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
998    if (!VD->isFileVarDecl() ||
999        VD->getType().isConstant(Context) ||
1000        Context.DeclMustBeEmitted(VD))
1001      return false;
1002
1003    if (VD->isStaticDataMember() &&
1004        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1005      return false;
1006
1007  } else {
1008    return false;
1009  }
1010
1011  // Only warn for unused decls internal to the translation unit.
1012  if (D->getLinkage() == ExternalLinkage)
1013    return false;
1014
1015  return true;
1016}
1017
1018void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1019  if (!D)
1020    return;
1021
1022  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1023    const FunctionDecl *First = FD->getFirstDeclaration();
1024    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1025      return; // First should already be in the vector.
1026  }
1027
1028  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1029    const VarDecl *First = VD->getFirstDeclaration();
1030    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1031      return; // First should already be in the vector.
1032  }
1033
1034   if (ShouldWarnIfUnusedFileScopedDecl(D))
1035     UnusedFileScopedDecls.push_back(D);
1036 }
1037
1038static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1039  if (D->isInvalidDecl())
1040    return false;
1041
1042  if (D->isUsed() || D->hasAttr<UnusedAttr>())
1043    return false;
1044
1045  if (isa<LabelDecl>(D))
1046    return true;
1047
1048  // White-list anything that isn't a local variable.
1049  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1050      !D->getDeclContext()->isFunctionOrMethod())
1051    return false;
1052
1053  // Types of valid local variables should be complete, so this should succeed.
1054  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1055
1056    // White-list anything with an __attribute__((unused)) type.
1057    QualType Ty = VD->getType();
1058
1059    // Only look at the outermost level of typedef.
1060    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
1061      if (TT->getDecl()->hasAttr<UnusedAttr>())
1062        return false;
1063    }
1064
1065    // If we failed to complete the type for some reason, or if the type is
1066    // dependent, don't diagnose the variable.
1067    if (Ty->isIncompleteType() || Ty->isDependentType())
1068      return false;
1069
1070    if (const TagType *TT = Ty->getAs<TagType>()) {
1071      const TagDecl *Tag = TT->getDecl();
1072      if (Tag->hasAttr<UnusedAttr>())
1073        return false;
1074
1075      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1076        // FIXME: Checking for the presence of a user-declared constructor
1077        // isn't completely accurate; we'd prefer to check that the initializer
1078        // has no side effects.
1079        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
1080          return false;
1081      }
1082    }
1083
1084    // TODO: __attribute__((unused)) templates?
1085  }
1086
1087  return true;
1088}
1089
1090static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1091                                     FixItHint &Hint) {
1092  if (isa<LabelDecl>(D)) {
1093    SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1094                tok::colon, Ctx.getSourceManager(), Ctx.getLangOptions(), true);
1095    if (AfterColon.isInvalid())
1096      return;
1097    Hint = FixItHint::CreateRemoval(CharSourceRange::
1098                                    getCharRange(D->getLocStart(), AfterColon));
1099  }
1100  return;
1101}
1102
1103/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1104/// unless they are marked attr(unused).
1105void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1106  FixItHint Hint;
1107  if (!ShouldDiagnoseUnusedDecl(D))
1108    return;
1109
1110  GenerateFixForUnusedDecl(D, Context, Hint);
1111
1112  unsigned DiagID;
1113  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1114    DiagID = diag::warn_unused_exception_param;
1115  else if (isa<LabelDecl>(D))
1116    DiagID = diag::warn_unused_label;
1117  else
1118    DiagID = diag::warn_unused_variable;
1119
1120  Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1121}
1122
1123static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1124  // Verify that we have no forward references left.  If so, there was a goto
1125  // or address of a label taken, but no definition of it.  Label fwd
1126  // definitions are indicated with a null substmt.
1127  if (L->getStmt() == 0)
1128    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1129}
1130
1131void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1132  if (S->decl_empty()) return;
1133  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1134         "Scope shouldn't contain decls!");
1135
1136  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1137       I != E; ++I) {
1138    Decl *TmpD = (*I);
1139    assert(TmpD && "This decl didn't get pushed??");
1140
1141    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1142    NamedDecl *D = cast<NamedDecl>(TmpD);
1143
1144    if (!D->getDeclName()) continue;
1145
1146    // Diagnose unused variables in this scope.
1147    if (!S->hasErrorOccurred())
1148      DiagnoseUnusedDecl(D);
1149
1150    // If this was a forward reference to a label, verify it was defined.
1151    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1152      CheckPoppedLabel(LD, *this);
1153
1154    // Remove this name from our lexical scope.
1155    IdResolver.RemoveDecl(D);
1156  }
1157}
1158
1159/// \brief Look for an Objective-C class in the translation unit.
1160///
1161/// \param Id The name of the Objective-C class we're looking for. If
1162/// typo-correction fixes this name, the Id will be updated
1163/// to the fixed name.
1164///
1165/// \param IdLoc The location of the name in the translation unit.
1166///
1167/// \param TypoCorrection If true, this routine will attempt typo correction
1168/// if there is no class with the given name.
1169///
1170/// \returns The declaration of the named Objective-C class, or NULL if the
1171/// class could not be found.
1172ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1173                                              SourceLocation IdLoc,
1174                                              bool DoTypoCorrection) {
1175  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1176  // creation from this context.
1177  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1178
1179  if (!IDecl && DoTypoCorrection) {
1180    // Perform typo correction at the given location, but only if we
1181    // find an Objective-C class name.
1182    TypoCorrection C;
1183    if ((C = CorrectTypo(DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName,
1184                         TUScope, NULL, NULL, false, CTC_NoKeywords)) &&
1185        (IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>())) {
1186      Diag(IdLoc, diag::err_undef_interface_suggest)
1187        << Id << IDecl->getDeclName()
1188        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1189      Diag(IDecl->getLocation(), diag::note_previous_decl)
1190        << IDecl->getDeclName();
1191
1192      Id = IDecl->getIdentifier();
1193    }
1194  }
1195
1196  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1197}
1198
1199/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1200/// from S, where a non-field would be declared. This routine copes
1201/// with the difference between C and C++ scoping rules in structs and
1202/// unions. For example, the following code is well-formed in C but
1203/// ill-formed in C++:
1204/// @code
1205/// struct S6 {
1206///   enum { BAR } e;
1207/// };
1208///
1209/// void test_S6() {
1210///   struct S6 a;
1211///   a.e = BAR;
1212/// }
1213/// @endcode
1214/// For the declaration of BAR, this routine will return a different
1215/// scope. The scope S will be the scope of the unnamed enumeration
1216/// within S6. In C++, this routine will return the scope associated
1217/// with S6, because the enumeration's scope is a transparent
1218/// context but structures can contain non-field names. In C, this
1219/// routine will return the translation unit scope, since the
1220/// enumeration's scope is a transparent context and structures cannot
1221/// contain non-field names.
1222Scope *Sema::getNonFieldDeclScope(Scope *S) {
1223  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1224         (S->getEntity() &&
1225          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1226         (S->isClassScope() && !getLangOptions().CPlusPlus))
1227    S = S->getParent();
1228  return S;
1229}
1230
1231/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1232/// file scope.  lazily create a decl for it. ForRedeclaration is true
1233/// if we're creating this built-in in anticipation of redeclaring the
1234/// built-in.
1235NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1236                                     Scope *S, bool ForRedeclaration,
1237                                     SourceLocation Loc) {
1238  Builtin::ID BID = (Builtin::ID)bid;
1239
1240  ASTContext::GetBuiltinTypeError Error;
1241  QualType R = Context.GetBuiltinType(BID, Error);
1242  switch (Error) {
1243  case ASTContext::GE_None:
1244    // Okay
1245    break;
1246
1247  case ASTContext::GE_Missing_stdio:
1248    if (ForRedeclaration)
1249      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1250        << Context.BuiltinInfo.GetName(BID);
1251    return 0;
1252
1253  case ASTContext::GE_Missing_setjmp:
1254    if (ForRedeclaration)
1255      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1256        << Context.BuiltinInfo.GetName(BID);
1257    return 0;
1258  }
1259
1260  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1261    Diag(Loc, diag::ext_implicit_lib_function_decl)
1262      << Context.BuiltinInfo.GetName(BID)
1263      << R;
1264    if (Context.BuiltinInfo.getHeaderName(BID) &&
1265        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1266          != Diagnostic::Ignored)
1267      Diag(Loc, diag::note_please_include_header)
1268        << Context.BuiltinInfo.getHeaderName(BID)
1269        << Context.BuiltinInfo.GetName(BID);
1270  }
1271
1272  FunctionDecl *New = FunctionDecl::Create(Context,
1273                                           Context.getTranslationUnitDecl(),
1274                                           Loc, Loc, II, R, /*TInfo=*/0,
1275                                           SC_Extern,
1276                                           SC_None, false,
1277                                           /*hasPrototype=*/true);
1278  New->setImplicit();
1279
1280  // Create Decl objects for each parameter, adding them to the
1281  // FunctionDecl.
1282  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1283    SmallVector<ParmVarDecl*, 16> Params;
1284    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1285      ParmVarDecl *parm =
1286        ParmVarDecl::Create(Context, New, SourceLocation(),
1287                            SourceLocation(), 0,
1288                            FT->getArgType(i), /*TInfo=*/0,
1289                            SC_None, SC_None, 0);
1290      parm->setScopeInfo(0, i);
1291      Params.push_back(parm);
1292    }
1293    New->setParams(Params.data(), Params.size());
1294  }
1295
1296  AddKnownFunctionAttributes(New);
1297
1298  // TUScope is the translation-unit scope to insert this function into.
1299  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1300  // relate Scopes to DeclContexts, and probably eliminate CurContext
1301  // entirely, but we're not there yet.
1302  DeclContext *SavedContext = CurContext;
1303  CurContext = Context.getTranslationUnitDecl();
1304  PushOnScopeChains(New, TUScope);
1305  CurContext = SavedContext;
1306  return New;
1307}
1308
1309/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1310/// same name and scope as a previous declaration 'Old'.  Figure out
1311/// how to resolve this situation, merging decls or emitting
1312/// diagnostics as appropriate. If there was an error, set New to be invalid.
1313///
1314void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1315  // If the new decl is known invalid already, don't bother doing any
1316  // merging checks.
1317  if (New->isInvalidDecl()) return;
1318
1319  // Allow multiple definitions for ObjC built-in typedefs.
1320  // FIXME: Verify the underlying types are equivalent!
1321  if (getLangOptions().ObjC1) {
1322    const IdentifierInfo *TypeID = New->getIdentifier();
1323    switch (TypeID->getLength()) {
1324    default: break;
1325    case 2:
1326      if (!TypeID->isStr("id"))
1327        break;
1328      Context.setObjCIdRedefinitionType(New->getUnderlyingType());
1329      // Install the built-in type for 'id', ignoring the current definition.
1330      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1331      return;
1332    case 5:
1333      if (!TypeID->isStr("Class"))
1334        break;
1335      Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1336      // Install the built-in type for 'Class', ignoring the current definition.
1337      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1338      return;
1339    case 3:
1340      if (!TypeID->isStr("SEL"))
1341        break;
1342      Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1343      // Install the built-in type for 'SEL', ignoring the current definition.
1344      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1345      return;
1346    }
1347    // Fall through - the typedef name was not a builtin type.
1348  }
1349
1350  // Verify the old decl was also a type.
1351  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1352  if (!Old) {
1353    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1354      << New->getDeclName();
1355
1356    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1357    if (OldD->getLocation().isValid())
1358      Diag(OldD->getLocation(), diag::note_previous_definition);
1359
1360    return New->setInvalidDecl();
1361  }
1362
1363  // If the old declaration is invalid, just give up here.
1364  if (Old->isInvalidDecl())
1365    return New->setInvalidDecl();
1366
1367  // Determine the "old" type we'll use for checking and diagnostics.
1368  QualType OldType;
1369  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1370    OldType = OldTypedef->getUnderlyingType();
1371  else
1372    OldType = Context.getTypeDeclType(Old);
1373
1374  // If the typedef types are not identical, reject them in all languages and
1375  // with any extensions enabled.
1376
1377  if (OldType != New->getUnderlyingType() &&
1378      Context.getCanonicalType(OldType) !=
1379      Context.getCanonicalType(New->getUnderlyingType())) {
1380    int Kind = 0;
1381    if (isa<TypeAliasDecl>(Old))
1382      Kind = 1;
1383    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1384      << Kind << New->getUnderlyingType() << OldType;
1385    if (Old->getLocation().isValid())
1386      Diag(Old->getLocation(), diag::note_previous_definition);
1387    return New->setInvalidDecl();
1388  }
1389
1390  // The types match.  Link up the redeclaration chain if the old
1391  // declaration was a typedef.
1392  // FIXME: this is a potential source of weirdness if the type
1393  // spellings don't match exactly.
1394  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1395    New->setPreviousDeclaration(Typedef);
1396
1397  if (getLangOptions().Microsoft)
1398    return;
1399
1400  if (getLangOptions().CPlusPlus) {
1401    // C++ [dcl.typedef]p2:
1402    //   In a given non-class scope, a typedef specifier can be used to
1403    //   redefine the name of any type declared in that scope to refer
1404    //   to the type to which it already refers.
1405    if (!isa<CXXRecordDecl>(CurContext))
1406      return;
1407
1408    // C++0x [dcl.typedef]p4:
1409    //   In a given class scope, a typedef specifier can be used to redefine
1410    //   any class-name declared in that scope that is not also a typedef-name
1411    //   to refer to the type to which it already refers.
1412    //
1413    // This wording came in via DR424, which was a correction to the
1414    // wording in DR56, which accidentally banned code like:
1415    //
1416    //   struct S {
1417    //     typedef struct A { } A;
1418    //   };
1419    //
1420    // in the C++03 standard. We implement the C++0x semantics, which
1421    // allow the above but disallow
1422    //
1423    //   struct S {
1424    //     typedef int I;
1425    //     typedef int I;
1426    //   };
1427    //
1428    // since that was the intent of DR56.
1429    if (!isa<TypedefNameDecl>(Old))
1430      return;
1431
1432    Diag(New->getLocation(), diag::err_redefinition)
1433      << New->getDeclName();
1434    Diag(Old->getLocation(), diag::note_previous_definition);
1435    return New->setInvalidDecl();
1436  }
1437
1438  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1439  // is normally mapped to an error, but can be controlled with
1440  // -Wtypedef-redefinition.  If either the original or the redefinition is
1441  // in a system header, don't emit this for compatibility with GCC.
1442  if (getDiagnostics().getSuppressSystemWarnings() &&
1443      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1444       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1445    return;
1446
1447  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1448    << New->getDeclName();
1449  Diag(Old->getLocation(), diag::note_previous_definition);
1450  return;
1451}
1452
1453/// DeclhasAttr - returns true if decl Declaration already has the target
1454/// attribute.
1455static bool
1456DeclHasAttr(const Decl *D, const Attr *A) {
1457  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1458  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1459    if ((*i)->getKind() == A->getKind()) {
1460      // FIXME: Don't hardcode this check
1461      if (OA && isa<OwnershipAttr>(*i))
1462        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1463      return true;
1464    }
1465
1466  return false;
1467}
1468
1469/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1470static void mergeDeclAttributes(Decl *newDecl, const Decl *oldDecl,
1471                                ASTContext &C, bool mergeDeprecation = true) {
1472  if (!oldDecl->hasAttrs())
1473    return;
1474
1475  bool foundAny = newDecl->hasAttrs();
1476
1477  // Ensure that any moving of objects within the allocated map is done before
1478  // we process them.
1479  if (!foundAny) newDecl->setAttrs(AttrVec());
1480
1481  for (specific_attr_iterator<InheritableAttr>
1482       i = oldDecl->specific_attr_begin<InheritableAttr>(),
1483       e = oldDecl->specific_attr_end<InheritableAttr>(); i != e; ++i) {
1484    // Ignore deprecated and unavailable attributes if requested.
1485    if (!mergeDeprecation &&
1486        (isa<DeprecatedAttr>(*i) || isa<UnavailableAttr>(*i)))
1487      continue;
1488
1489    if (!DeclHasAttr(newDecl, *i)) {
1490      InheritableAttr *newAttr = cast<InheritableAttr>((*i)->clone(C));
1491      newAttr->setInherited(true);
1492      newDecl->addAttr(newAttr);
1493      foundAny = true;
1494    }
1495  }
1496
1497  if (!foundAny) newDecl->dropAttrs();
1498}
1499
1500/// mergeParamDeclAttributes - Copy attributes from the old parameter
1501/// to the new one.
1502static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1503                                     const ParmVarDecl *oldDecl,
1504                                     ASTContext &C) {
1505  if (!oldDecl->hasAttrs())
1506    return;
1507
1508  bool foundAny = newDecl->hasAttrs();
1509
1510  // Ensure that any moving of objects within the allocated map is
1511  // done before we process them.
1512  if (!foundAny) newDecl->setAttrs(AttrVec());
1513
1514  for (specific_attr_iterator<InheritableParamAttr>
1515       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1516       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1517    if (!DeclHasAttr(newDecl, *i)) {
1518      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1519      newAttr->setInherited(true);
1520      newDecl->addAttr(newAttr);
1521      foundAny = true;
1522    }
1523  }
1524
1525  if (!foundAny) newDecl->dropAttrs();
1526}
1527
1528namespace {
1529
1530/// Used in MergeFunctionDecl to keep track of function parameters in
1531/// C.
1532struct GNUCompatibleParamWarning {
1533  ParmVarDecl *OldParm;
1534  ParmVarDecl *NewParm;
1535  QualType PromotedType;
1536};
1537
1538}
1539
1540/// getSpecialMember - get the special member enum for a method.
1541Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1542  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1543    if (Ctor->isDefaultConstructor())
1544      return Sema::CXXDefaultConstructor;
1545
1546    if (Ctor->isCopyConstructor())
1547      return Sema::CXXCopyConstructor;
1548
1549    if (Ctor->isMoveConstructor())
1550      return Sema::CXXMoveConstructor;
1551  } else if (isa<CXXDestructorDecl>(MD)) {
1552    return Sema::CXXDestructor;
1553  } else if (MD->isCopyAssignmentOperator()) {
1554    return Sema::CXXCopyAssignment;
1555  } else if (MD->isMoveAssignmentOperator()) {
1556    return Sema::CXXMoveAssignment;
1557  }
1558
1559  return Sema::CXXInvalid;
1560}
1561
1562/// canRedefineFunction - checks if a function can be redefined. Currently,
1563/// only extern inline functions can be redefined, and even then only in
1564/// GNU89 mode.
1565static bool canRedefineFunction(const FunctionDecl *FD,
1566                                const LangOptions& LangOpts) {
1567  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
1568          !LangOpts.CPlusPlus &&
1569          FD->isInlineSpecified() &&
1570          FD->getStorageClass() == SC_Extern);
1571}
1572
1573/// MergeFunctionDecl - We just parsed a function 'New' from
1574/// declarator D which has the same name and scope as a previous
1575/// declaration 'Old'.  Figure out how to resolve this situation,
1576/// merging decls or emitting diagnostics as appropriate.
1577///
1578/// In C++, New and Old must be declarations that are not
1579/// overloaded. Use IsOverload to determine whether New and Old are
1580/// overloaded, and to select the Old declaration that New should be
1581/// merged with.
1582///
1583/// Returns true if there was an error, false otherwise.
1584bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1585  // Verify the old decl was also a function.
1586  FunctionDecl *Old = 0;
1587  if (FunctionTemplateDecl *OldFunctionTemplate
1588        = dyn_cast<FunctionTemplateDecl>(OldD))
1589    Old = OldFunctionTemplate->getTemplatedDecl();
1590  else
1591    Old = dyn_cast<FunctionDecl>(OldD);
1592  if (!Old) {
1593    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1594      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1595      Diag(Shadow->getTargetDecl()->getLocation(),
1596           diag::note_using_decl_target);
1597      Diag(Shadow->getUsingDecl()->getLocation(),
1598           diag::note_using_decl) << 0;
1599      return true;
1600    }
1601
1602    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1603      << New->getDeclName();
1604    Diag(OldD->getLocation(), diag::note_previous_definition);
1605    return true;
1606  }
1607
1608  // Determine whether the previous declaration was a definition,
1609  // implicit declaration, or a declaration.
1610  diag::kind PrevDiag;
1611  if (Old->isThisDeclarationADefinition())
1612    PrevDiag = diag::note_previous_definition;
1613  else if (Old->isImplicit())
1614    PrevDiag = diag::note_previous_implicit_declaration;
1615  else
1616    PrevDiag = diag::note_previous_declaration;
1617
1618  QualType OldQType = Context.getCanonicalType(Old->getType());
1619  QualType NewQType = Context.getCanonicalType(New->getType());
1620
1621  // Don't complain about this if we're in GNU89 mode and the old function
1622  // is an extern inline function.
1623  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1624      New->getStorageClass() == SC_Static &&
1625      Old->getStorageClass() != SC_Static &&
1626      !canRedefineFunction(Old, getLangOptions())) {
1627    if (getLangOptions().Microsoft) {
1628      Diag(New->getLocation(), diag::warn_static_non_static) << New;
1629      Diag(Old->getLocation(), PrevDiag);
1630    } else {
1631      Diag(New->getLocation(), diag::err_static_non_static) << New;
1632      Diag(Old->getLocation(), PrevDiag);
1633      return true;
1634    }
1635  }
1636
1637  // If a function is first declared with a calling convention, but is
1638  // later declared or defined without one, the second decl assumes the
1639  // calling convention of the first.
1640  //
1641  // For the new decl, we have to look at the NON-canonical type to tell the
1642  // difference between a function that really doesn't have a calling
1643  // convention and one that is declared cdecl. That's because in
1644  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1645  // because it is the default calling convention.
1646  //
1647  // Note also that we DO NOT return at this point, because we still have
1648  // other tests to run.
1649  const FunctionType *OldType = cast<FunctionType>(OldQType);
1650  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1651  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1652  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1653  bool RequiresAdjustment = false;
1654  if (OldTypeInfo.getCC() != CC_Default &&
1655      NewTypeInfo.getCC() == CC_Default) {
1656    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1657    RequiresAdjustment = true;
1658  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1659                                     NewTypeInfo.getCC())) {
1660    // Calling conventions really aren't compatible, so complain.
1661    Diag(New->getLocation(), diag::err_cconv_change)
1662      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1663      << (OldTypeInfo.getCC() == CC_Default)
1664      << (OldTypeInfo.getCC() == CC_Default ? "" :
1665          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1666    Diag(Old->getLocation(), diag::note_previous_declaration);
1667    return true;
1668  }
1669
1670  // FIXME: diagnose the other way around?
1671  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1672    NewTypeInfo = NewTypeInfo.withNoReturn(true);
1673    RequiresAdjustment = true;
1674  }
1675
1676  // Merge regparm attribute.
1677  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
1678      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1679    if (NewTypeInfo.getHasRegParm()) {
1680      Diag(New->getLocation(), diag::err_regparm_mismatch)
1681        << NewType->getRegParmType()
1682        << OldType->getRegParmType();
1683      Diag(Old->getLocation(), diag::note_previous_declaration);
1684      return true;
1685    }
1686
1687    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1688    RequiresAdjustment = true;
1689  }
1690
1691  if (RequiresAdjustment) {
1692    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1693    New->setType(QualType(NewType, 0));
1694    NewQType = Context.getCanonicalType(New->getType());
1695  }
1696
1697  if (getLangOptions().CPlusPlus) {
1698    // (C++98 13.1p2):
1699    //   Certain function declarations cannot be overloaded:
1700    //     -- Function declarations that differ only in the return type
1701    //        cannot be overloaded.
1702    QualType OldReturnType = OldType->getResultType();
1703    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1704    QualType ResQT;
1705    if (OldReturnType != NewReturnType) {
1706      if (NewReturnType->isObjCObjectPointerType()
1707          && OldReturnType->isObjCObjectPointerType())
1708        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1709      if (ResQT.isNull()) {
1710        if (New->isCXXClassMember() && New->isOutOfLine())
1711          Diag(New->getLocation(),
1712               diag::err_member_def_does_not_match_ret_type) << New;
1713        else
1714          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1715        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1716        return true;
1717      }
1718      else
1719        NewQType = ResQT;
1720    }
1721
1722    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1723    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1724    if (OldMethod && NewMethod) {
1725      // Preserve triviality.
1726      NewMethod->setTrivial(OldMethod->isTrivial());
1727
1728      // MSVC allows explicit template specialization at class scope:
1729      // 2 CXMethodDecls referring to the same function will be injected.
1730      // We don't want a redeclartion error.
1731      bool IsClassScopeExplicitSpecialization =
1732                              OldMethod->isFunctionTemplateSpecialization() &&
1733                              NewMethod->isFunctionTemplateSpecialization();
1734      bool isFriend = NewMethod->getFriendObjectKind();
1735
1736      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
1737          !IsClassScopeExplicitSpecialization) {
1738        //    -- Member function declarations with the same name and the
1739        //       same parameter types cannot be overloaded if any of them
1740        //       is a static member function declaration.
1741        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1742          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1743          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1744          return true;
1745        }
1746
1747        // C++ [class.mem]p1:
1748        //   [...] A member shall not be declared twice in the
1749        //   member-specification, except that a nested class or member
1750        //   class template can be declared and then later defined.
1751        unsigned NewDiag;
1752        if (isa<CXXConstructorDecl>(OldMethod))
1753          NewDiag = diag::err_constructor_redeclared;
1754        else if (isa<CXXDestructorDecl>(NewMethod))
1755          NewDiag = diag::err_destructor_redeclared;
1756        else if (isa<CXXConversionDecl>(NewMethod))
1757          NewDiag = diag::err_conv_function_redeclared;
1758        else
1759          NewDiag = diag::err_member_redeclared;
1760
1761        Diag(New->getLocation(), NewDiag);
1762        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1763
1764      // Complain if this is an explicit declaration of a special
1765      // member that was initially declared implicitly.
1766      //
1767      // As an exception, it's okay to befriend such methods in order
1768      // to permit the implicit constructor/destructor/operator calls.
1769      } else if (OldMethod->isImplicit()) {
1770        if (isFriend) {
1771          NewMethod->setImplicit();
1772        } else {
1773          Diag(NewMethod->getLocation(),
1774               diag::err_definition_of_implicitly_declared_member)
1775            << New << getSpecialMember(OldMethod);
1776          return true;
1777        }
1778      } else if (OldMethod->isExplicitlyDefaulted()) {
1779        Diag(NewMethod->getLocation(),
1780             diag::err_definition_of_explicitly_defaulted_member)
1781          << getSpecialMember(OldMethod);
1782        return true;
1783      }
1784    }
1785
1786    // (C++98 8.3.5p3):
1787    //   All declarations for a function shall agree exactly in both the
1788    //   return type and the parameter-type-list.
1789    // We also want to respect all the extended bits except noreturn.
1790
1791    // noreturn should now match unless the old type info didn't have it.
1792    QualType OldQTypeForComparison = OldQType;
1793    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
1794      assert(OldQType == QualType(OldType, 0));
1795      const FunctionType *OldTypeForComparison
1796        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
1797      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
1798      assert(OldQTypeForComparison.isCanonical());
1799    }
1800
1801    if (OldQTypeForComparison == NewQType)
1802      return MergeCompatibleFunctionDecls(New, Old);
1803
1804    // Fall through for conflicting redeclarations and redefinitions.
1805  }
1806
1807  // C: Function types need to be compatible, not identical. This handles
1808  // duplicate function decls like "void f(int); void f(enum X);" properly.
1809  if (!getLangOptions().CPlusPlus &&
1810      Context.typesAreCompatible(OldQType, NewQType)) {
1811    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1812    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1813    const FunctionProtoType *OldProto = 0;
1814    if (isa<FunctionNoProtoType>(NewFuncType) &&
1815        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1816      // The old declaration provided a function prototype, but the
1817      // new declaration does not. Merge in the prototype.
1818      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1819      SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1820                                                 OldProto->arg_type_end());
1821      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1822                                         ParamTypes.data(), ParamTypes.size(),
1823                                         OldProto->getExtProtoInfo());
1824      New->setType(NewQType);
1825      New->setHasInheritedPrototype();
1826
1827      // Synthesize a parameter for each argument type.
1828      SmallVector<ParmVarDecl*, 16> Params;
1829      for (FunctionProtoType::arg_type_iterator
1830             ParamType = OldProto->arg_type_begin(),
1831             ParamEnd = OldProto->arg_type_end();
1832           ParamType != ParamEnd; ++ParamType) {
1833        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1834                                                 SourceLocation(),
1835                                                 SourceLocation(), 0,
1836                                                 *ParamType, /*TInfo=*/0,
1837                                                 SC_None, SC_None,
1838                                                 0);
1839        Param->setScopeInfo(0, Params.size());
1840        Param->setImplicit();
1841        Params.push_back(Param);
1842      }
1843
1844      New->setParams(Params.data(), Params.size());
1845    }
1846
1847    return MergeCompatibleFunctionDecls(New, Old);
1848  }
1849
1850  // GNU C permits a K&R definition to follow a prototype declaration
1851  // if the declared types of the parameters in the K&R definition
1852  // match the types in the prototype declaration, even when the
1853  // promoted types of the parameters from the K&R definition differ
1854  // from the types in the prototype. GCC then keeps the types from
1855  // the prototype.
1856  //
1857  // If a variadic prototype is followed by a non-variadic K&R definition,
1858  // the K&R definition becomes variadic.  This is sort of an edge case, but
1859  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1860  // C99 6.9.1p8.
1861  if (!getLangOptions().CPlusPlus &&
1862      Old->hasPrototype() && !New->hasPrototype() &&
1863      New->getType()->getAs<FunctionProtoType>() &&
1864      Old->getNumParams() == New->getNumParams()) {
1865    SmallVector<QualType, 16> ArgTypes;
1866    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1867    const FunctionProtoType *OldProto
1868      = Old->getType()->getAs<FunctionProtoType>();
1869    const FunctionProtoType *NewProto
1870      = New->getType()->getAs<FunctionProtoType>();
1871
1872    // Determine whether this is the GNU C extension.
1873    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1874                                               NewProto->getResultType());
1875    bool LooseCompatible = !MergedReturn.isNull();
1876    for (unsigned Idx = 0, End = Old->getNumParams();
1877         LooseCompatible && Idx != End; ++Idx) {
1878      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1879      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1880      if (Context.typesAreCompatible(OldParm->getType(),
1881                                     NewProto->getArgType(Idx))) {
1882        ArgTypes.push_back(NewParm->getType());
1883      } else if (Context.typesAreCompatible(OldParm->getType(),
1884                                            NewParm->getType(),
1885                                            /*CompareUnqualified=*/true)) {
1886        GNUCompatibleParamWarning Warn
1887          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1888        Warnings.push_back(Warn);
1889        ArgTypes.push_back(NewParm->getType());
1890      } else
1891        LooseCompatible = false;
1892    }
1893
1894    if (LooseCompatible) {
1895      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1896        Diag(Warnings[Warn].NewParm->getLocation(),
1897             diag::ext_param_promoted_not_compatible_with_prototype)
1898          << Warnings[Warn].PromotedType
1899          << Warnings[Warn].OldParm->getType();
1900        if (Warnings[Warn].OldParm->getLocation().isValid())
1901          Diag(Warnings[Warn].OldParm->getLocation(),
1902               diag::note_previous_declaration);
1903      }
1904
1905      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1906                                           ArgTypes.size(),
1907                                           OldProto->getExtProtoInfo()));
1908      return MergeCompatibleFunctionDecls(New, Old);
1909    }
1910
1911    // Fall through to diagnose conflicting types.
1912  }
1913
1914  // A function that has already been declared has been redeclared or defined
1915  // with a different type- show appropriate diagnostic
1916  if (unsigned BuiltinID = Old->getBuiltinID()) {
1917    // The user has declared a builtin function with an incompatible
1918    // signature.
1919    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1920      // The function the user is redeclaring is a library-defined
1921      // function like 'malloc' or 'printf'. Warn about the
1922      // redeclaration, then pretend that we don't know about this
1923      // library built-in.
1924      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1925      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1926        << Old << Old->getType();
1927      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1928      Old->setInvalidDecl();
1929      return false;
1930    }
1931
1932    PrevDiag = diag::note_previous_builtin_declaration;
1933  }
1934
1935  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1936  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1937  return true;
1938}
1939
1940/// \brief Completes the merge of two function declarations that are
1941/// known to be compatible.
1942///
1943/// This routine handles the merging of attributes and other
1944/// properties of function declarations form the old declaration to
1945/// the new declaration, once we know that New is in fact a
1946/// redeclaration of Old.
1947///
1948/// \returns false
1949bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1950  // Merge the attributes
1951  mergeDeclAttributes(New, Old, Context);
1952
1953  // Merge the storage class.
1954  if (Old->getStorageClass() != SC_Extern &&
1955      Old->getStorageClass() != SC_None)
1956    New->setStorageClass(Old->getStorageClass());
1957
1958  // Merge "pure" flag.
1959  if (Old->isPure())
1960    New->setPure();
1961
1962  // Merge attributes from the parameters.  These can mismatch with K&R
1963  // declarations.
1964  if (New->getNumParams() == Old->getNumParams())
1965    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
1966      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
1967                               Context);
1968
1969  if (getLangOptions().CPlusPlus)
1970    return MergeCXXFunctionDecl(New, Old);
1971
1972  return false;
1973}
1974
1975
1976void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
1977                                const ObjCMethodDecl *oldMethod) {
1978  // We don't want to merge unavailable and deprecated attributes
1979  // except from interface to implementation.
1980  bool mergeDeprecation = isa<ObjCImplDecl>(newMethod->getDeclContext());
1981
1982  // Merge the attributes.
1983  mergeDeclAttributes(newMethod, oldMethod, Context, mergeDeprecation);
1984
1985  // Merge attributes from the parameters.
1986  for (ObjCMethodDecl::param_iterator oi = oldMethod->param_begin(),
1987         ni = newMethod->param_begin(), ne = newMethod->param_end();
1988       ni != ne; ++ni, ++oi)
1989    mergeParamDeclAttributes(*ni, *oi, Context);
1990
1991  CheckObjCMethodOverride(newMethod, oldMethod, true);
1992}
1993
1994/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
1995/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
1996/// emitting diagnostics as appropriate.
1997///
1998/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
1999/// to here in AddInitializerToDecl and AddCXXDirectInitializerToDecl. We can't
2000/// check them before the initializer is attached.
2001///
2002void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
2003  if (New->isInvalidDecl() || Old->isInvalidDecl())
2004    return;
2005
2006  QualType MergedT;
2007  if (getLangOptions().CPlusPlus) {
2008    AutoType *AT = New->getType()->getContainedAutoType();
2009    if (AT && !AT->isDeduced()) {
2010      // We don't know what the new type is until the initializer is attached.
2011      return;
2012    } else if (Context.hasSameType(New->getType(), Old->getType())) {
2013      // These could still be something that needs exception specs checked.
2014      return MergeVarDeclExceptionSpecs(New, Old);
2015    }
2016    // C++ [basic.link]p10:
2017    //   [...] the types specified by all declarations referring to a given
2018    //   object or function shall be identical, except that declarations for an
2019    //   array object can specify array types that differ by the presence or
2020    //   absence of a major array bound (8.3.4).
2021    else if (Old->getType()->isIncompleteArrayType() &&
2022             New->getType()->isArrayType()) {
2023      CanQual<ArrayType> OldArray
2024        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2025      CanQual<ArrayType> NewArray
2026        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2027      if (OldArray->getElementType() == NewArray->getElementType())
2028        MergedT = New->getType();
2029    } else if (Old->getType()->isArrayType() &&
2030             New->getType()->isIncompleteArrayType()) {
2031      CanQual<ArrayType> OldArray
2032        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2033      CanQual<ArrayType> NewArray
2034        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2035      if (OldArray->getElementType() == NewArray->getElementType())
2036        MergedT = Old->getType();
2037    } else if (New->getType()->isObjCObjectPointerType()
2038               && Old->getType()->isObjCObjectPointerType()) {
2039        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2040                                                        Old->getType());
2041    }
2042  } else {
2043    MergedT = Context.mergeTypes(New->getType(), Old->getType());
2044  }
2045  if (MergedT.isNull()) {
2046    Diag(New->getLocation(), diag::err_redefinition_different_type)
2047      << New->getDeclName();
2048    Diag(Old->getLocation(), diag::note_previous_definition);
2049    return New->setInvalidDecl();
2050  }
2051  New->setType(MergedT);
2052}
2053
2054/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2055/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2056/// situation, merging decls or emitting diagnostics as appropriate.
2057///
2058/// Tentative definition rules (C99 6.9.2p2) are checked by
2059/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2060/// definitions here, since the initializer hasn't been attached.
2061///
2062void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2063  // If the new decl is already invalid, don't do any other checking.
2064  if (New->isInvalidDecl())
2065    return;
2066
2067  // Verify the old decl was also a variable.
2068  VarDecl *Old = 0;
2069  if (!Previous.isSingleResult() ||
2070      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2071    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2072      << New->getDeclName();
2073    Diag(Previous.getRepresentativeDecl()->getLocation(),
2074         diag::note_previous_definition);
2075    return New->setInvalidDecl();
2076  }
2077
2078  // C++ [class.mem]p1:
2079  //   A member shall not be declared twice in the member-specification [...]
2080  //
2081  // Here, we need only consider static data members.
2082  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2083    Diag(New->getLocation(), diag::err_duplicate_member)
2084      << New->getIdentifier();
2085    Diag(Old->getLocation(), diag::note_previous_declaration);
2086    New->setInvalidDecl();
2087  }
2088
2089  mergeDeclAttributes(New, Old, Context);
2090  // Warn if an already-declared variable is made a weak_import in a subsequent declaration
2091  if (New->getAttr<WeakImportAttr>() &&
2092      Old->getStorageClass() == SC_None &&
2093      !Old->getAttr<WeakImportAttr>()) {
2094    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2095    Diag(Old->getLocation(), diag::note_previous_definition);
2096    // Remove weak_import attribute on new declaration.
2097    New->dropAttr<WeakImportAttr>();
2098  }
2099
2100  // Merge the types.
2101  MergeVarDeclTypes(New, Old);
2102  if (New->isInvalidDecl())
2103    return;
2104
2105  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2106  if (New->getStorageClass() == SC_Static &&
2107      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2108    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2109    Diag(Old->getLocation(), diag::note_previous_definition);
2110    return New->setInvalidDecl();
2111  }
2112  // C99 6.2.2p4:
2113  //   For an identifier declared with the storage-class specifier
2114  //   extern in a scope in which a prior declaration of that
2115  //   identifier is visible,23) if the prior declaration specifies
2116  //   internal or external linkage, the linkage of the identifier at
2117  //   the later declaration is the same as the linkage specified at
2118  //   the prior declaration. If no prior declaration is visible, or
2119  //   if the prior declaration specifies no linkage, then the
2120  //   identifier has external linkage.
2121  if (New->hasExternalStorage() && Old->hasLinkage())
2122    /* Okay */;
2123  else if (New->getStorageClass() != SC_Static &&
2124           Old->getStorageClass() == SC_Static) {
2125    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2126    Diag(Old->getLocation(), diag::note_previous_definition);
2127    return New->setInvalidDecl();
2128  }
2129
2130  // Check if extern is followed by non-extern and vice-versa.
2131  if (New->hasExternalStorage() &&
2132      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2133    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2134    Diag(Old->getLocation(), diag::note_previous_definition);
2135    return New->setInvalidDecl();
2136  }
2137  if (Old->hasExternalStorage() &&
2138      !New->hasLinkage() && New->isLocalVarDecl()) {
2139    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2140    Diag(Old->getLocation(), diag::note_previous_definition);
2141    return New->setInvalidDecl();
2142  }
2143
2144  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2145
2146  // FIXME: The test for external storage here seems wrong? We still
2147  // need to check for mismatches.
2148  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2149      // Don't complain about out-of-line definitions of static members.
2150      !(Old->getLexicalDeclContext()->isRecord() &&
2151        !New->getLexicalDeclContext()->isRecord())) {
2152    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2153    Diag(Old->getLocation(), diag::note_previous_definition);
2154    return New->setInvalidDecl();
2155  }
2156
2157  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2158    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2159    Diag(Old->getLocation(), diag::note_previous_definition);
2160  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2161    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2162    Diag(Old->getLocation(), diag::note_previous_definition);
2163  }
2164
2165  // C++ doesn't have tentative definitions, so go right ahead and check here.
2166  const VarDecl *Def;
2167  if (getLangOptions().CPlusPlus &&
2168      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2169      (Def = Old->getDefinition())) {
2170    Diag(New->getLocation(), diag::err_redefinition)
2171      << New->getDeclName();
2172    Diag(Def->getLocation(), diag::note_previous_definition);
2173    New->setInvalidDecl();
2174    return;
2175  }
2176  // c99 6.2.2 P4.
2177  // For an identifier declared with the storage-class specifier extern in a
2178  // scope in which a prior declaration of that identifier is visible, if
2179  // the prior declaration specifies internal or external linkage, the linkage
2180  // of the identifier at the later declaration is the same as the linkage
2181  // specified at the prior declaration.
2182  // FIXME. revisit this code.
2183  if (New->hasExternalStorage() &&
2184      Old->getLinkage() == InternalLinkage &&
2185      New->getDeclContext() == Old->getDeclContext())
2186    New->setStorageClass(Old->getStorageClass());
2187
2188  // Keep a chain of previous declarations.
2189  New->setPreviousDeclaration(Old);
2190
2191  // Inherit access appropriately.
2192  New->setAccess(Old->getAccess());
2193}
2194
2195/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2196/// no declarator (e.g. "struct foo;") is parsed.
2197Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2198                                       DeclSpec &DS) {
2199  return ParsedFreeStandingDeclSpec(S, AS, DS,
2200                                    MultiTemplateParamsArg(*this, 0, 0));
2201}
2202
2203/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2204/// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2205/// parameters to cope with template friend declarations.
2206Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2207                                       DeclSpec &DS,
2208                                       MultiTemplateParamsArg TemplateParams) {
2209  Decl *TagD = 0;
2210  TagDecl *Tag = 0;
2211  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2212      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2213      DS.getTypeSpecType() == DeclSpec::TST_union ||
2214      DS.getTypeSpecType() == DeclSpec::TST_enum) {
2215    TagD = DS.getRepAsDecl();
2216
2217    if (!TagD) // We probably had an error
2218      return 0;
2219
2220    // Note that the above type specs guarantee that the
2221    // type rep is a Decl, whereas in many of the others
2222    // it's a Type.
2223    Tag = dyn_cast<TagDecl>(TagD);
2224  }
2225
2226  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2227    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2228    // or incomplete types shall not be restrict-qualified."
2229    if (TypeQuals & DeclSpec::TQ_restrict)
2230      Diag(DS.getRestrictSpecLoc(),
2231           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2232           << DS.getSourceRange();
2233  }
2234
2235  if (DS.isConstexprSpecified()) {
2236    // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
2237    // and definitions of functions and variables.
2238    if (Tag)
2239      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
2240        << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
2241            DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
2242            DS.getTypeSpecType() == DeclSpec::TST_union ? 2 : 3);
2243    else
2244      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
2245    // Don't emit warnings after this error.
2246    return TagD;
2247  }
2248
2249  if (DS.isFriendSpecified()) {
2250    // If we're dealing with a decl but not a TagDecl, assume that
2251    // whatever routines created it handled the friendship aspect.
2252    if (TagD && !Tag)
2253      return 0;
2254    return ActOnFriendTypeDecl(S, DS, TemplateParams);
2255  }
2256
2257  // Track whether we warned about the fact that there aren't any
2258  // declarators.
2259  bool emittedWarning = false;
2260
2261  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2262    ProcessDeclAttributeList(S, Record, DS.getAttributes().getList());
2263
2264    if (!Record->getDeclName() && Record->isDefinition() &&
2265        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2266      if (getLangOptions().CPlusPlus ||
2267          Record->getDeclContext()->isRecord())
2268        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2269
2270      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2271        << DS.getSourceRange();
2272      emittedWarning = true;
2273    }
2274  }
2275
2276  // Check for Microsoft C extension: anonymous struct.
2277  if (getLangOptions().Microsoft && !getLangOptions().CPlusPlus &&
2278      CurContext->isRecord() &&
2279      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2280    // Handle 2 kinds of anonymous struct:
2281    //   struct STRUCT;
2282    // and
2283    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
2284    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2285    if ((Record && Record->getDeclName() && !Record->isDefinition()) ||
2286        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2287         DS.getRepAsType().get()->isStructureType())) {
2288      Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
2289        << DS.getSourceRange();
2290      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2291    }
2292  }
2293
2294  if (getLangOptions().CPlusPlus &&
2295      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2296    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2297      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2298          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2299        Diag(Enum->getLocation(), diag::ext_no_declarators)
2300          << DS.getSourceRange();
2301        emittedWarning = true;
2302      }
2303
2304  // Skip all the checks below if we have a type error.
2305  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2306
2307  if (!DS.isMissingDeclaratorOk()) {
2308    // Warn about typedefs of enums without names, since this is an
2309    // extension in both Microsoft and GNU.
2310    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2311        Tag && isa<EnumDecl>(Tag)) {
2312      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
2313        << DS.getSourceRange();
2314      return Tag;
2315    }
2316
2317    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2318      << DS.getSourceRange();
2319    emittedWarning = true;
2320  }
2321
2322  // We're going to complain about a bunch of spurious specifiers;
2323  // only do this if we're declaring a tag, because otherwise we
2324  // should be getting diag::ext_no_declarators.
2325  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2326    return TagD;
2327
2328  // Note that a linkage-specification sets a storage class, but
2329  // 'extern "C" struct foo;' is actually valid and not theoretically
2330  // useless.
2331  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2332    if (!DS.isExternInLinkageSpec())
2333      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2334        << DeclSpec::getSpecifierName(scs);
2335
2336  if (DS.isThreadSpecified())
2337    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2338  if (DS.getTypeQualifiers()) {
2339    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2340      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2341    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2342      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2343    // Restrict is covered above.
2344  }
2345  if (DS.isInlineSpecified())
2346    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2347  if (DS.isVirtualSpecified())
2348    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2349  if (DS.isExplicitSpecified())
2350    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2351
2352  // FIXME: Warn on useless attributes
2353
2354  return TagD;
2355}
2356
2357/// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec.
2358/// builds a statement for it and returns it so it is evaluated.
2359StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) {
2360  StmtResult R;
2361  if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) {
2362    Expr *Exp = DS.getRepAsExpr();
2363    QualType Ty = Exp->getType();
2364    if (Ty->isPointerType()) {
2365      do
2366        Ty = Ty->getAs<PointerType>()->getPointeeType();
2367      while (Ty->isPointerType());
2368    }
2369    if (Ty->isVariableArrayType()) {
2370      R = ActOnExprStmt(MakeFullExpr(Exp));
2371    }
2372  }
2373  return R;
2374}
2375
2376/// We are trying to inject an anonymous member into the given scope;
2377/// check if there's an existing declaration that can't be overloaded.
2378///
2379/// \return true if this is a forbidden redeclaration
2380static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2381                                         Scope *S,
2382                                         DeclContext *Owner,
2383                                         DeclarationName Name,
2384                                         SourceLocation NameLoc,
2385                                         unsigned diagnostic) {
2386  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2387                 Sema::ForRedeclaration);
2388  if (!SemaRef.LookupName(R, S)) return false;
2389
2390  if (R.getAsSingle<TagDecl>())
2391    return false;
2392
2393  // Pick a representative declaration.
2394  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2395  assert(PrevDecl && "Expected a non-null Decl");
2396
2397  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2398    return false;
2399
2400  SemaRef.Diag(NameLoc, diagnostic) << Name;
2401  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2402
2403  return true;
2404}
2405
2406/// InjectAnonymousStructOrUnionMembers - Inject the members of the
2407/// anonymous struct or union AnonRecord into the owning context Owner
2408/// and scope S. This routine will be invoked just after we realize
2409/// that an unnamed union or struct is actually an anonymous union or
2410/// struct, e.g.,
2411///
2412/// @code
2413/// union {
2414///   int i;
2415///   float f;
2416/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
2417///    // f into the surrounding scope.x
2418/// @endcode
2419///
2420/// This routine is recursive, injecting the names of nested anonymous
2421/// structs/unions into the owning context and scope as well.
2422static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2423                                                DeclContext *Owner,
2424                                                RecordDecl *AnonRecord,
2425                                                AccessSpecifier AS,
2426                              SmallVector<NamedDecl*, 2> &Chaining,
2427                                                      bool MSAnonStruct) {
2428  unsigned diagKind
2429    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2430                            : diag::err_anonymous_struct_member_redecl;
2431
2432  bool Invalid = false;
2433
2434  // Look every FieldDecl and IndirectFieldDecl with a name.
2435  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2436                               DEnd = AnonRecord->decls_end();
2437       D != DEnd; ++D) {
2438    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2439        cast<NamedDecl>(*D)->getDeclName()) {
2440      ValueDecl *VD = cast<ValueDecl>(*D);
2441      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2442                                       VD->getLocation(), diagKind)) {
2443        // C++ [class.union]p2:
2444        //   The names of the members of an anonymous union shall be
2445        //   distinct from the names of any other entity in the
2446        //   scope in which the anonymous union is declared.
2447        Invalid = true;
2448      } else {
2449        // C++ [class.union]p2:
2450        //   For the purpose of name lookup, after the anonymous union
2451        //   definition, the members of the anonymous union are
2452        //   considered to have been defined in the scope in which the
2453        //   anonymous union is declared.
2454        unsigned OldChainingSize = Chaining.size();
2455        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2456          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2457               PE = IF->chain_end(); PI != PE; ++PI)
2458            Chaining.push_back(*PI);
2459        else
2460          Chaining.push_back(VD);
2461
2462        assert(Chaining.size() >= 2);
2463        NamedDecl **NamedChain =
2464          new (SemaRef.Context)NamedDecl*[Chaining.size()];
2465        for (unsigned i = 0; i < Chaining.size(); i++)
2466          NamedChain[i] = Chaining[i];
2467
2468        IndirectFieldDecl* IndirectField =
2469          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2470                                    VD->getIdentifier(), VD->getType(),
2471                                    NamedChain, Chaining.size());
2472
2473        IndirectField->setAccess(AS);
2474        IndirectField->setImplicit();
2475        SemaRef.PushOnScopeChains(IndirectField, S);
2476
2477        // That includes picking up the appropriate access specifier.
2478        if (AS != AS_none) IndirectField->setAccess(AS);
2479
2480        Chaining.resize(OldChainingSize);
2481      }
2482    }
2483  }
2484
2485  return Invalid;
2486}
2487
2488/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2489/// a VarDecl::StorageClass. Any error reporting is up to the caller:
2490/// illegal input values are mapped to SC_None.
2491static StorageClass
2492StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2493  switch (StorageClassSpec) {
2494  case DeclSpec::SCS_unspecified:    return SC_None;
2495  case DeclSpec::SCS_extern:         return SC_Extern;
2496  case DeclSpec::SCS_static:         return SC_Static;
2497  case DeclSpec::SCS_auto:           return SC_Auto;
2498  case DeclSpec::SCS_register:       return SC_Register;
2499  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2500    // Illegal SCSs map to None: error reporting is up to the caller.
2501  case DeclSpec::SCS_mutable:        // Fall through.
2502  case DeclSpec::SCS_typedef:        return SC_None;
2503  }
2504  llvm_unreachable("unknown storage class specifier");
2505}
2506
2507/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2508/// a StorageClass. Any error reporting is up to the caller:
2509/// illegal input values are mapped to SC_None.
2510static StorageClass
2511StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2512  switch (StorageClassSpec) {
2513  case DeclSpec::SCS_unspecified:    return SC_None;
2514  case DeclSpec::SCS_extern:         return SC_Extern;
2515  case DeclSpec::SCS_static:         return SC_Static;
2516  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2517    // Illegal SCSs map to None: error reporting is up to the caller.
2518  case DeclSpec::SCS_auto:           // Fall through.
2519  case DeclSpec::SCS_mutable:        // Fall through.
2520  case DeclSpec::SCS_register:       // Fall through.
2521  case DeclSpec::SCS_typedef:        return SC_None;
2522  }
2523  llvm_unreachable("unknown storage class specifier");
2524}
2525
2526/// BuildAnonymousStructOrUnion - Handle the declaration of an
2527/// anonymous structure or union. Anonymous unions are a C++ feature
2528/// (C++ [class.union]) and a GNU C extension; anonymous structures
2529/// are a GNU C and GNU C++ extension.
2530Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2531                                             AccessSpecifier AS,
2532                                             RecordDecl *Record) {
2533  DeclContext *Owner = Record->getDeclContext();
2534
2535  // Diagnose whether this anonymous struct/union is an extension.
2536  if (Record->isUnion() && !getLangOptions().CPlusPlus)
2537    Diag(Record->getLocation(), diag::ext_anonymous_union);
2538  else if (!Record->isUnion())
2539    Diag(Record->getLocation(), diag::ext_anonymous_struct);
2540
2541  // C and C++ require different kinds of checks for anonymous
2542  // structs/unions.
2543  bool Invalid = false;
2544  if (getLangOptions().CPlusPlus) {
2545    const char* PrevSpec = 0;
2546    unsigned DiagID;
2547    // C++ [class.union]p3:
2548    //   Anonymous unions declared in a named namespace or in the
2549    //   global namespace shall be declared static.
2550    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2551        (isa<TranslationUnitDecl>(Owner) ||
2552         (isa<NamespaceDecl>(Owner) &&
2553          cast<NamespaceDecl>(Owner)->getDeclName()))) {
2554      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
2555      Invalid = true;
2556
2557      // Recover by adding 'static'.
2558      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
2559                             PrevSpec, DiagID, getLangOptions());
2560    }
2561    // C++ [class.union]p3:
2562    //   A storage class is not allowed in a declaration of an
2563    //   anonymous union in a class scope.
2564    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2565             isa<RecordDecl>(Owner)) {
2566      Diag(DS.getStorageClassSpecLoc(),
2567           diag::err_anonymous_union_with_storage_spec);
2568      Invalid = true;
2569
2570      // Recover by removing the storage specifier.
2571      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
2572                             PrevSpec, DiagID, getLangOptions());
2573    }
2574
2575    // Ignore const/volatile/restrict qualifiers.
2576    if (DS.getTypeQualifiers()) {
2577      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2578        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2579          << Record->isUnion() << 0
2580          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
2581      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2582        Diag(DS.getVolatileSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2583          << Record->isUnion() << 1
2584          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
2585      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
2586        Diag(DS.getRestrictSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2587          << Record->isUnion() << 2
2588          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
2589
2590      DS.ClearTypeQualifiers();
2591    }
2592
2593    // C++ [class.union]p2:
2594    //   The member-specification of an anonymous union shall only
2595    //   define non-static data members. [Note: nested types and
2596    //   functions cannot be declared within an anonymous union. ]
2597    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
2598                                 MemEnd = Record->decls_end();
2599         Mem != MemEnd; ++Mem) {
2600      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
2601        // C++ [class.union]p3:
2602        //   An anonymous union shall not have private or protected
2603        //   members (clause 11).
2604        assert(FD->getAccess() != AS_none);
2605        if (FD->getAccess() != AS_public) {
2606          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
2607            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
2608          Invalid = true;
2609        }
2610
2611        // C++ [class.union]p1
2612        //   An object of a class with a non-trivial constructor, a non-trivial
2613        //   copy constructor, a non-trivial destructor, or a non-trivial copy
2614        //   assignment operator cannot be a member of a union, nor can an
2615        //   array of such objects.
2616        if (!getLangOptions().CPlusPlus0x && CheckNontrivialField(FD))
2617          Invalid = true;
2618      } else if ((*Mem)->isImplicit()) {
2619        // Any implicit members are fine.
2620      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
2621        // This is a type that showed up in an
2622        // elaborated-type-specifier inside the anonymous struct or
2623        // union, but which actually declares a type outside of the
2624        // anonymous struct or union. It's okay.
2625      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
2626        if (!MemRecord->isAnonymousStructOrUnion() &&
2627            MemRecord->getDeclName()) {
2628          // Visual C++ allows type definition in anonymous struct or union.
2629          if (getLangOptions().Microsoft)
2630            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
2631              << (int)Record->isUnion();
2632          else {
2633            // This is a nested type declaration.
2634            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
2635              << (int)Record->isUnion();
2636            Invalid = true;
2637          }
2638        }
2639      } else if (isa<AccessSpecDecl>(*Mem)) {
2640        // Any access specifier is fine.
2641      } else {
2642        // We have something that isn't a non-static data
2643        // member. Complain about it.
2644        unsigned DK = diag::err_anonymous_record_bad_member;
2645        if (isa<TypeDecl>(*Mem))
2646          DK = diag::err_anonymous_record_with_type;
2647        else if (isa<FunctionDecl>(*Mem))
2648          DK = diag::err_anonymous_record_with_function;
2649        else if (isa<VarDecl>(*Mem))
2650          DK = diag::err_anonymous_record_with_static;
2651
2652        // Visual C++ allows type definition in anonymous struct or union.
2653        if (getLangOptions().Microsoft &&
2654            DK == diag::err_anonymous_record_with_type)
2655          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
2656            << (int)Record->isUnion();
2657        else {
2658          Diag((*Mem)->getLocation(), DK)
2659              << (int)Record->isUnion();
2660          Invalid = true;
2661        }
2662      }
2663    }
2664  }
2665
2666  if (!Record->isUnion() && !Owner->isRecord()) {
2667    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
2668      << (int)getLangOptions().CPlusPlus;
2669    Invalid = true;
2670  }
2671
2672  // Mock up a declarator.
2673  Declarator Dc(DS, Declarator::MemberContext);
2674  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2675  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
2676
2677  // Create a declaration for this anonymous struct/union.
2678  NamedDecl *Anon = 0;
2679  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2680    Anon = FieldDecl::Create(Context, OwningClass,
2681                             DS.getSourceRange().getBegin(),
2682                             Record->getLocation(),
2683                             /*IdentifierInfo=*/0,
2684                             Context.getTypeDeclType(Record),
2685                             TInfo,
2686                             /*BitWidth=*/0, /*Mutable=*/false,
2687                             /*HasInit=*/false);
2688    Anon->setAccess(AS);
2689    if (getLangOptions().CPlusPlus)
2690      FieldCollector->Add(cast<FieldDecl>(Anon));
2691  } else {
2692    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2693    assert(SCSpec != DeclSpec::SCS_typedef &&
2694           "Parser allowed 'typedef' as storage class VarDecl.");
2695    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2696    if (SCSpec == DeclSpec::SCS_mutable) {
2697      // mutable can only appear on non-static class members, so it's always
2698      // an error here
2699      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2700      Invalid = true;
2701      SC = SC_None;
2702    }
2703    SCSpec = DS.getStorageClassSpecAsWritten();
2704    VarDecl::StorageClass SCAsWritten
2705      = StorageClassSpecToVarDeclStorageClass(SCSpec);
2706
2707    Anon = VarDecl::Create(Context, Owner,
2708                           DS.getSourceRange().getBegin(),
2709                           Record->getLocation(), /*IdentifierInfo=*/0,
2710                           Context.getTypeDeclType(Record),
2711                           TInfo, SC, SCAsWritten);
2712  }
2713  Anon->setImplicit();
2714
2715  // Add the anonymous struct/union object to the current
2716  // context. We'll be referencing this object when we refer to one of
2717  // its members.
2718  Owner->addDecl(Anon);
2719
2720  // Inject the members of the anonymous struct/union into the owning
2721  // context and into the identifier resolver chain for name lookup
2722  // purposes.
2723  SmallVector<NamedDecl*, 2> Chain;
2724  Chain.push_back(Anon);
2725
2726  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2727                                          Chain, false))
2728    Invalid = true;
2729
2730  // Mark this as an anonymous struct/union type. Note that we do not
2731  // do this until after we have already checked and injected the
2732  // members of this anonymous struct/union type, because otherwise
2733  // the members could be injected twice: once by DeclContext when it
2734  // builds its lookup table, and once by
2735  // InjectAnonymousStructOrUnionMembers.
2736  Record->setAnonymousStructOrUnion(true);
2737
2738  if (Invalid)
2739    Anon->setInvalidDecl();
2740
2741  return Anon;
2742}
2743
2744/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2745/// Microsoft C anonymous structure.
2746/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2747/// Example:
2748///
2749/// struct A { int a; };
2750/// struct B { struct A; int b; };
2751///
2752/// void foo() {
2753///   B var;
2754///   var.a = 3;
2755/// }
2756///
2757Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2758                                           RecordDecl *Record) {
2759
2760  // If there is no Record, get the record via the typedef.
2761  if (!Record)
2762    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2763
2764  // Mock up a declarator.
2765  Declarator Dc(DS, Declarator::TypeNameContext);
2766  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2767  assert(TInfo && "couldn't build declarator info for anonymous struct");
2768
2769  // Create a declaration for this anonymous struct.
2770  NamedDecl* Anon = FieldDecl::Create(Context,
2771                             cast<RecordDecl>(CurContext),
2772                             DS.getSourceRange().getBegin(),
2773                             DS.getSourceRange().getBegin(),
2774                             /*IdentifierInfo=*/0,
2775                             Context.getTypeDeclType(Record),
2776                             TInfo,
2777                             /*BitWidth=*/0, /*Mutable=*/false,
2778                             /*HasInit=*/false);
2779  Anon->setImplicit();
2780
2781  // Add the anonymous struct object to the current context.
2782  CurContext->addDecl(Anon);
2783
2784  // Inject the members of the anonymous struct into the current
2785  // context and into the identifier resolver chain for name lookup
2786  // purposes.
2787  SmallVector<NamedDecl*, 2> Chain;
2788  Chain.push_back(Anon);
2789
2790  if (InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2791                                          Record->getDefinition(),
2792                                          AS_none, Chain, true))
2793    Anon->setInvalidDecl();
2794
2795  return Anon;
2796}
2797
2798/// GetNameForDeclarator - Determine the full declaration name for the
2799/// given Declarator.
2800DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2801  return GetNameFromUnqualifiedId(D.getName());
2802}
2803
2804/// \brief Retrieves the declaration name from a parsed unqualified-id.
2805DeclarationNameInfo
2806Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2807  DeclarationNameInfo NameInfo;
2808  NameInfo.setLoc(Name.StartLocation);
2809
2810  switch (Name.getKind()) {
2811
2812  case UnqualifiedId::IK_ImplicitSelfParam:
2813  case UnqualifiedId::IK_Identifier:
2814    NameInfo.setName(Name.Identifier);
2815    NameInfo.setLoc(Name.StartLocation);
2816    return NameInfo;
2817
2818  case UnqualifiedId::IK_OperatorFunctionId:
2819    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2820                                           Name.OperatorFunctionId.Operator));
2821    NameInfo.setLoc(Name.StartLocation);
2822    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2823      = Name.OperatorFunctionId.SymbolLocations[0];
2824    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2825      = Name.EndLocation.getRawEncoding();
2826    return NameInfo;
2827
2828  case UnqualifiedId::IK_LiteralOperatorId:
2829    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2830                                                           Name.Identifier));
2831    NameInfo.setLoc(Name.StartLocation);
2832    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2833    return NameInfo;
2834
2835  case UnqualifiedId::IK_ConversionFunctionId: {
2836    TypeSourceInfo *TInfo;
2837    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2838    if (Ty.isNull())
2839      return DeclarationNameInfo();
2840    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2841                                               Context.getCanonicalType(Ty)));
2842    NameInfo.setLoc(Name.StartLocation);
2843    NameInfo.setNamedTypeInfo(TInfo);
2844    return NameInfo;
2845  }
2846
2847  case UnqualifiedId::IK_ConstructorName: {
2848    TypeSourceInfo *TInfo;
2849    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2850    if (Ty.isNull())
2851      return DeclarationNameInfo();
2852    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2853                                              Context.getCanonicalType(Ty)));
2854    NameInfo.setLoc(Name.StartLocation);
2855    NameInfo.setNamedTypeInfo(TInfo);
2856    return NameInfo;
2857  }
2858
2859  case UnqualifiedId::IK_ConstructorTemplateId: {
2860    // In well-formed code, we can only have a constructor
2861    // template-id that refers to the current context, so go there
2862    // to find the actual type being constructed.
2863    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2864    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2865      return DeclarationNameInfo();
2866
2867    // Determine the type of the class being constructed.
2868    QualType CurClassType = Context.getTypeDeclType(CurClass);
2869
2870    // FIXME: Check two things: that the template-id names the same type as
2871    // CurClassType, and that the template-id does not occur when the name
2872    // was qualified.
2873
2874    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2875                                    Context.getCanonicalType(CurClassType)));
2876    NameInfo.setLoc(Name.StartLocation);
2877    // FIXME: should we retrieve TypeSourceInfo?
2878    NameInfo.setNamedTypeInfo(0);
2879    return NameInfo;
2880  }
2881
2882  case UnqualifiedId::IK_DestructorName: {
2883    TypeSourceInfo *TInfo;
2884    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2885    if (Ty.isNull())
2886      return DeclarationNameInfo();
2887    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2888                                              Context.getCanonicalType(Ty)));
2889    NameInfo.setLoc(Name.StartLocation);
2890    NameInfo.setNamedTypeInfo(TInfo);
2891    return NameInfo;
2892  }
2893
2894  case UnqualifiedId::IK_TemplateId: {
2895    TemplateName TName = Name.TemplateId->Template.get();
2896    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
2897    return Context.getNameForTemplate(TName, TNameLoc);
2898  }
2899
2900  } // switch (Name.getKind())
2901
2902  assert(false && "Unknown name kind");
2903  return DeclarationNameInfo();
2904}
2905
2906static QualType getCoreType(QualType Ty) {
2907  do {
2908    if (Ty->isPointerType() || Ty->isReferenceType())
2909      Ty = Ty->getPointeeType();
2910    else if (Ty->isArrayType())
2911      Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
2912    else
2913      return Ty.withoutLocalFastQualifiers();
2914  } while (true);
2915}
2916
2917/// isNearlyMatchingFunction - Determine whether the C++ functions
2918/// Declaration and Definition are "nearly" matching. This heuristic
2919/// is used to improve diagnostics in the case where an out-of-line
2920/// function definition doesn't match any declaration within the class
2921/// or namespace. Also sets Params to the list of indices to the
2922/// parameters that differ between the declaration and the definition.
2923static bool isNearlyMatchingFunction(ASTContext &Context,
2924                                     FunctionDecl *Declaration,
2925                                     FunctionDecl *Definition,
2926                                     llvm::SmallVectorImpl<unsigned> &Params) {
2927  Params.clear();
2928  if (Declaration->param_size() != Definition->param_size())
2929    return false;
2930  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2931    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2932    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2933
2934    // The parameter types are identical
2935    if (Context.hasSameType(DefParamTy, DeclParamTy))
2936      continue;
2937
2938    QualType DeclParamBaseTy = getCoreType(DeclParamTy);
2939    QualType DefParamBaseTy = getCoreType(DefParamTy);
2940    const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
2941    const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
2942
2943    if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
2944        (DeclTyName && DeclTyName == DefTyName))
2945      Params.push_back(Idx);
2946    else  // The two parameters aren't even close
2947      return false;
2948  }
2949
2950  return true;
2951}
2952
2953/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
2954/// declarator needs to be rebuilt in the current instantiation.
2955/// Any bits of declarator which appear before the name are valid for
2956/// consideration here.  That's specifically the type in the decl spec
2957/// and the base type in any member-pointer chunks.
2958static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
2959                                                    DeclarationName Name) {
2960  // The types we specifically need to rebuild are:
2961  //   - typenames, typeofs, and decltypes
2962  //   - types which will become injected class names
2963  // Of course, we also need to rebuild any type referencing such a
2964  // type.  It's safest to just say "dependent", but we call out a
2965  // few cases here.
2966
2967  DeclSpec &DS = D.getMutableDeclSpec();
2968  switch (DS.getTypeSpecType()) {
2969  case DeclSpec::TST_typename:
2970  case DeclSpec::TST_typeofType:
2971  case DeclSpec::TST_decltype:
2972  case DeclSpec::TST_underlyingType: {
2973    // Grab the type from the parser.
2974    TypeSourceInfo *TSI = 0;
2975    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
2976    if (T.isNull() || !T->isDependentType()) break;
2977
2978    // Make sure there's a type source info.  This isn't really much
2979    // of a waste; most dependent types should have type source info
2980    // attached already.
2981    if (!TSI)
2982      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
2983
2984    // Rebuild the type in the current instantiation.
2985    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
2986    if (!TSI) return true;
2987
2988    // Store the new type back in the decl spec.
2989    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
2990    DS.UpdateTypeRep(LocType);
2991    break;
2992  }
2993
2994  case DeclSpec::TST_typeofExpr: {
2995    Expr *E = DS.getRepAsExpr();
2996    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
2997    if (Result.isInvalid()) return true;
2998    DS.UpdateExprRep(Result.get());
2999    break;
3000  }
3001
3002  default:
3003    // Nothing to do for these decl specs.
3004    break;
3005  }
3006
3007  // It doesn't matter what order we do this in.
3008  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3009    DeclaratorChunk &Chunk = D.getTypeObject(I);
3010
3011    // The only type information in the declarator which can come
3012    // before the declaration name is the base type of a member
3013    // pointer.
3014    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
3015      continue;
3016
3017    // Rebuild the scope specifier in-place.
3018    CXXScopeSpec &SS = Chunk.Mem.Scope();
3019    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
3020      return true;
3021  }
3022
3023  return false;
3024}
3025
3026Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
3027  return HandleDeclarator(S, D, MultiTemplateParamsArg(*this),
3028                          /*IsFunctionDefinition=*/false);
3029}
3030
3031/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
3032///   If T is the name of a class, then each of the following shall have a
3033///   name different from T:
3034///     - every static data member of class T;
3035///     - every member function of class T
3036///     - every member of class T that is itself a type;
3037/// \returns true if the declaration name violates these rules.
3038bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
3039                                   DeclarationNameInfo NameInfo) {
3040  DeclarationName Name = NameInfo.getName();
3041
3042  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
3043    if (Record->getIdentifier() && Record->getDeclName() == Name) {
3044      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
3045      return true;
3046    }
3047
3048  return false;
3049}
3050
3051Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
3052                             MultiTemplateParamsArg TemplateParamLists,
3053                             bool IsFunctionDefinition) {
3054  // TODO: consider using NameInfo for diagnostic.
3055  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3056  DeclarationName Name = NameInfo.getName();
3057
3058  // All of these full declarators require an identifier.  If it doesn't have
3059  // one, the ParsedFreeStandingDeclSpec action should be used.
3060  if (!Name) {
3061    if (!D.isInvalidType())  // Reject this if we think it is valid.
3062      Diag(D.getDeclSpec().getSourceRange().getBegin(),
3063           diag::err_declarator_need_ident)
3064        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
3065    return 0;
3066  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
3067    return 0;
3068
3069  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3070  // we find one that is.
3071  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3072         (S->getFlags() & Scope::TemplateParamScope) != 0)
3073    S = S->getParent();
3074
3075  DeclContext *DC = CurContext;
3076  if (D.getCXXScopeSpec().isInvalid())
3077    D.setInvalidType();
3078  else if (D.getCXXScopeSpec().isSet()) {
3079    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
3080                                        UPPC_DeclarationQualifier))
3081      return 0;
3082
3083    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
3084    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
3085    if (!DC) {
3086      // If we could not compute the declaration context, it's because the
3087      // declaration context is dependent but does not refer to a class,
3088      // class template, or class template partial specialization. Complain
3089      // and return early, to avoid the coming semantic disaster.
3090      Diag(D.getIdentifierLoc(),
3091           diag::err_template_qualified_declarator_no_match)
3092        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
3093        << D.getCXXScopeSpec().getRange();
3094      return 0;
3095    }
3096    bool IsDependentContext = DC->isDependentContext();
3097
3098    if (!IsDependentContext &&
3099        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
3100      return 0;
3101
3102    if (isa<CXXRecordDecl>(DC)) {
3103      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
3104        Diag(D.getIdentifierLoc(),
3105             diag::err_member_def_undefined_record)
3106          << Name << DC << D.getCXXScopeSpec().getRange();
3107        D.setInvalidType();
3108      } else if (isa<CXXRecordDecl>(CurContext) &&
3109                 !D.getDeclSpec().isFriendSpecified()) {
3110        // The user provided a superfluous scope specifier inside a class
3111        // definition:
3112        //
3113        // class X {
3114        //   void X::f();
3115        // };
3116        if (CurContext->Equals(DC))
3117          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
3118            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
3119        else
3120          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
3121            << Name << D.getCXXScopeSpec().getRange();
3122
3123        // Pretend that this qualifier was not here.
3124        D.getCXXScopeSpec().clear();
3125      }
3126    }
3127
3128    // Check whether we need to rebuild the type of the given
3129    // declaration in the current instantiation.
3130    if (EnteringContext && IsDependentContext &&
3131        TemplateParamLists.size() != 0) {
3132      ContextRAII SavedContext(*this, DC);
3133      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
3134        D.setInvalidType();
3135    }
3136  }
3137
3138  if (DiagnoseClassNameShadow(DC, NameInfo))
3139    // If this is a typedef, we'll end up spewing multiple diagnostics.
3140    // Just return early; it's safer.
3141    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3142      return 0;
3143
3144  NamedDecl *New;
3145
3146  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3147  QualType R = TInfo->getType();
3148
3149  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
3150                                      UPPC_DeclarationType))
3151    D.setInvalidType();
3152
3153  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
3154                        ForRedeclaration);
3155
3156  // See if this is a redefinition of a variable in the same scope.
3157  if (!D.getCXXScopeSpec().isSet()) {
3158    bool IsLinkageLookup = false;
3159
3160    // If the declaration we're planning to build will be a function
3161    // or object with linkage, then look for another declaration with
3162    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3163    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3164      /* Do nothing*/;
3165    else if (R->isFunctionType()) {
3166      if (CurContext->isFunctionOrMethod() ||
3167          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3168        IsLinkageLookup = true;
3169    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3170      IsLinkageLookup = true;
3171    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3172             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3173      IsLinkageLookup = true;
3174
3175    if (IsLinkageLookup)
3176      Previous.clear(LookupRedeclarationWithLinkage);
3177
3178    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3179  } else { // Something like "int foo::x;"
3180    LookupQualifiedName(Previous, DC);
3181
3182    // Don't consider using declarations as previous declarations for
3183    // out-of-line members.
3184    RemoveUsingDecls(Previous);
3185
3186    // C++ 7.3.1.2p2:
3187    // Members (including explicit specializations of templates) of a named
3188    // namespace can also be defined outside that namespace by explicit
3189    // qualification of the name being defined, provided that the entity being
3190    // defined was already declared in the namespace and the definition appears
3191    // after the point of declaration in a namespace that encloses the
3192    // declarations namespace.
3193    //
3194    // Note that we only check the context at this point. We don't yet
3195    // have enough information to make sure that PrevDecl is actually
3196    // the declaration we want to match. For example, given:
3197    //
3198    //   class X {
3199    //     void f();
3200    //     void f(float);
3201    //   };
3202    //
3203    //   void X::f(int) { } // ill-formed
3204    //
3205    // In this case, PrevDecl will point to the overload set
3206    // containing the two f's declared in X, but neither of them
3207    // matches.
3208
3209    // First check whether we named the global scope.
3210    if (isa<TranslationUnitDecl>(DC)) {
3211      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
3212        << Name << D.getCXXScopeSpec().getRange();
3213    } else {
3214      DeclContext *Cur = CurContext;
3215      while (isa<LinkageSpecDecl>(Cur))
3216        Cur = Cur->getParent();
3217      if (!Cur->Encloses(DC)) {
3218        // The qualifying scope doesn't enclose the original declaration.
3219        // Emit diagnostic based on current scope.
3220        SourceLocation L = D.getIdentifierLoc();
3221        SourceRange R = D.getCXXScopeSpec().getRange();
3222        if (isa<FunctionDecl>(Cur))
3223          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
3224        else
3225          Diag(L, diag::err_invalid_declarator_scope)
3226            << Name << cast<NamedDecl>(DC) << R;
3227        D.setInvalidType();
3228      }
3229    }
3230  }
3231
3232  if (Previous.isSingleResult() &&
3233      Previous.getFoundDecl()->isTemplateParameter()) {
3234    // Maybe we will complain about the shadowed template parameter.
3235    if (!D.isInvalidType())
3236      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3237                                          Previous.getFoundDecl()))
3238        D.setInvalidType();
3239
3240    // Just pretend that we didn't see the previous declaration.
3241    Previous.clear();
3242  }
3243
3244  // In C++, the previous declaration we find might be a tag type
3245  // (class or enum). In this case, the new declaration will hide the
3246  // tag type. Note that this does does not apply if we're declaring a
3247  // typedef (C++ [dcl.typedef]p4).
3248  if (Previous.isSingleTagDecl() &&
3249      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3250    Previous.clear();
3251
3252  bool Redeclaration = false;
3253  bool AddToScope = true;
3254  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3255    if (TemplateParamLists.size()) {
3256      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3257      return 0;
3258    }
3259
3260    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
3261  } else if (R->isFunctionType()) {
3262    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
3263                                  move(TemplateParamLists),
3264                                  IsFunctionDefinition, Redeclaration,
3265                                  AddToScope);
3266  } else {
3267    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
3268                                  move(TemplateParamLists),
3269                                  Redeclaration);
3270  }
3271
3272  if (New == 0)
3273    return 0;
3274
3275  // If this has an identifier and is not an invalid redeclaration or
3276  // function template specialization, add it to the scope stack.
3277  if (New->getDeclName() && AddToScope &&
3278       !(Redeclaration && New->isInvalidDecl()))
3279    PushOnScopeChains(New, S);
3280
3281  return New;
3282}
3283
3284/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3285/// types into constant array types in certain situations which would otherwise
3286/// be errors (for GCC compatibility).
3287static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3288                                                    ASTContext &Context,
3289                                                    bool &SizeIsNegative,
3290                                                    llvm::APSInt &Oversized) {
3291  // This method tries to turn a variable array into a constant
3292  // array even when the size isn't an ICE.  This is necessary
3293  // for compatibility with code that depends on gcc's buggy
3294  // constant expression folding, like struct {char x[(int)(char*)2];}
3295  SizeIsNegative = false;
3296  Oversized = 0;
3297
3298  if (T->isDependentType())
3299    return QualType();
3300
3301  QualifierCollector Qs;
3302  const Type *Ty = Qs.strip(T);
3303
3304  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3305    QualType Pointee = PTy->getPointeeType();
3306    QualType FixedType =
3307        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3308                                            Oversized);
3309    if (FixedType.isNull()) return FixedType;
3310    FixedType = Context.getPointerType(FixedType);
3311    return Qs.apply(Context, FixedType);
3312  }
3313  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3314    QualType Inner = PTy->getInnerType();
3315    QualType FixedType =
3316        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3317                                            Oversized);
3318    if (FixedType.isNull()) return FixedType;
3319    FixedType = Context.getParenType(FixedType);
3320    return Qs.apply(Context, FixedType);
3321  }
3322
3323  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3324  if (!VLATy)
3325    return QualType();
3326  // FIXME: We should probably handle this case
3327  if (VLATy->getElementType()->isVariablyModifiedType())
3328    return QualType();
3329
3330  Expr::EvalResult EvalResult;
3331  if (!VLATy->getSizeExpr() ||
3332      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
3333      !EvalResult.Val.isInt())
3334    return QualType();
3335
3336  // Check whether the array size is negative.
3337  llvm::APSInt &Res = EvalResult.Val.getInt();
3338  if (Res.isSigned() && Res.isNegative()) {
3339    SizeIsNegative = true;
3340    return QualType();
3341  }
3342
3343  // Check whether the array is too large to be addressed.
3344  unsigned ActiveSizeBits
3345    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
3346                                              Res);
3347  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
3348    Oversized = Res;
3349    return QualType();
3350  }
3351
3352  return Context.getConstantArrayType(VLATy->getElementType(),
3353                                      Res, ArrayType::Normal, 0);
3354}
3355
3356/// \brief Register the given locally-scoped external C declaration so
3357/// that it can be found later for redeclarations
3358void
3359Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
3360                                       const LookupResult &Previous,
3361                                       Scope *S) {
3362  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
3363         "Decl is not a locally-scoped decl!");
3364  // Note that we have a locally-scoped external with this name.
3365  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
3366
3367  if (!Previous.isSingleResult())
3368    return;
3369
3370  NamedDecl *PrevDecl = Previous.getFoundDecl();
3371
3372  // If there was a previous declaration of this variable, it may be
3373  // in our identifier chain. Update the identifier chain with the new
3374  // declaration.
3375  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
3376    // The previous declaration was found on the identifer resolver
3377    // chain, so remove it from its scope.
3378
3379    if (S->isDeclScope(PrevDecl)) {
3380      // Special case for redeclarations in the SAME scope.
3381      // Because this declaration is going to be added to the identifier chain
3382      // later, we should temporarily take it OFF the chain.
3383      IdResolver.RemoveDecl(ND);
3384
3385    } else {
3386      // Find the scope for the original declaration.
3387      while (S && !S->isDeclScope(PrevDecl))
3388        S = S->getParent();
3389    }
3390
3391    if (S)
3392      S->RemoveDecl(PrevDecl);
3393  }
3394}
3395
3396llvm::DenseMap<DeclarationName, NamedDecl *>::iterator
3397Sema::findLocallyScopedExternalDecl(DeclarationName Name) {
3398  if (ExternalSource) {
3399    // Load locally-scoped external decls from the external source.
3400    SmallVector<NamedDecl *, 4> Decls;
3401    ExternalSource->ReadLocallyScopedExternalDecls(Decls);
3402    for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
3403      llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3404        = LocallyScopedExternalDecls.find(Decls[I]->getDeclName());
3405      if (Pos == LocallyScopedExternalDecls.end())
3406        LocallyScopedExternalDecls[Decls[I]->getDeclName()] = Decls[I];
3407    }
3408  }
3409
3410  return LocallyScopedExternalDecls.find(Name);
3411}
3412
3413/// \brief Diagnose function specifiers on a declaration of an identifier that
3414/// does not identify a function.
3415void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
3416  // FIXME: We should probably indicate the identifier in question to avoid
3417  // confusion for constructs like "inline int a(), b;"
3418  if (D.getDeclSpec().isInlineSpecified())
3419    Diag(D.getDeclSpec().getInlineSpecLoc(),
3420         diag::err_inline_non_function);
3421
3422  if (D.getDeclSpec().isVirtualSpecified())
3423    Diag(D.getDeclSpec().getVirtualSpecLoc(),
3424         diag::err_virtual_non_function);
3425
3426  if (D.getDeclSpec().isExplicitSpecified())
3427    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3428         diag::err_explicit_non_function);
3429}
3430
3431NamedDecl*
3432Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3433                             QualType R,  TypeSourceInfo *TInfo,
3434                             LookupResult &Previous, bool &Redeclaration) {
3435  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
3436  if (D.getCXXScopeSpec().isSet()) {
3437    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
3438      << D.getCXXScopeSpec().getRange();
3439    D.setInvalidType();
3440    // Pretend we didn't see the scope specifier.
3441    DC = CurContext;
3442    Previous.clear();
3443  }
3444
3445  if (getLangOptions().CPlusPlus) {
3446    // Check that there are no default arguments (C++ only).
3447    CheckExtraCXXDefaultArguments(D);
3448  }
3449
3450  DiagnoseFunctionSpecifiers(D);
3451
3452  if (D.getDeclSpec().isThreadSpecified())
3453    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3454  if (D.getDeclSpec().isConstexprSpecified())
3455    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
3456      << 1;
3457
3458  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
3459    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
3460      << D.getName().getSourceRange();
3461    return 0;
3462  }
3463
3464  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
3465  if (!NewTD) return 0;
3466
3467  // Handle attributes prior to checking for duplicates in MergeVarDecl
3468  ProcessDeclAttributes(S, NewTD, D);
3469
3470  CheckTypedefForVariablyModifiedType(S, NewTD);
3471
3472  return ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
3473}
3474
3475void
3476Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
3477  // C99 6.7.7p2: If a typedef name specifies a variably modified type
3478  // then it shall have block scope.
3479  // Note that variably modified types must be fixed before merging the decl so
3480  // that redeclarations will match.
3481  QualType T = NewTD->getUnderlyingType();
3482  if (T->isVariablyModifiedType()) {
3483    getCurFunction()->setHasBranchProtectedScope();
3484
3485    if (S->getFnParent() == 0) {
3486      bool SizeIsNegative;
3487      llvm::APSInt Oversized;
3488      QualType FixedTy =
3489          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3490                                              Oversized);
3491      if (!FixedTy.isNull()) {
3492        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
3493        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
3494      } else {
3495        if (SizeIsNegative)
3496          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
3497        else if (T->isVariableArrayType())
3498          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
3499        else if (Oversized.getBoolValue())
3500          Diag(NewTD->getLocation(), diag::err_array_too_large) << Oversized.toString(10);
3501        else
3502          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
3503        NewTD->setInvalidDecl();
3504      }
3505    }
3506  }
3507}
3508
3509
3510/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
3511/// declares a typedef-name, either using the 'typedef' type specifier or via
3512/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
3513NamedDecl*
3514Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
3515                           LookupResult &Previous, bool &Redeclaration) {
3516  // Merge the decl with the existing one if appropriate. If the decl is
3517  // in an outer scope, it isn't the same thing.
3518  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
3519                       /*ExplicitInstantiationOrSpecialization=*/false);
3520  if (!Previous.empty()) {
3521    Redeclaration = true;
3522    MergeTypedefNameDecl(NewTD, Previous);
3523  }
3524
3525  // If this is the C FILE type, notify the AST context.
3526  if (IdentifierInfo *II = NewTD->getIdentifier())
3527    if (!NewTD->isInvalidDecl() &&
3528        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
3529      if (II->isStr("FILE"))
3530        Context.setFILEDecl(NewTD);
3531      else if (II->isStr("jmp_buf"))
3532        Context.setjmp_bufDecl(NewTD);
3533      else if (II->isStr("sigjmp_buf"))
3534        Context.setsigjmp_bufDecl(NewTD);
3535      else if (II->isStr("__builtin_va_list"))
3536        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
3537    }
3538
3539  return NewTD;
3540}
3541
3542/// \brief Determines whether the given declaration is an out-of-scope
3543/// previous declaration.
3544///
3545/// This routine should be invoked when name lookup has found a
3546/// previous declaration (PrevDecl) that is not in the scope where a
3547/// new declaration by the same name is being introduced. If the new
3548/// declaration occurs in a local scope, previous declarations with
3549/// linkage may still be considered previous declarations (C99
3550/// 6.2.2p4-5, C++ [basic.link]p6).
3551///
3552/// \param PrevDecl the previous declaration found by name
3553/// lookup
3554///
3555/// \param DC the context in which the new declaration is being
3556/// declared.
3557///
3558/// \returns true if PrevDecl is an out-of-scope previous declaration
3559/// for a new delcaration with the same name.
3560static bool
3561isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
3562                                ASTContext &Context) {
3563  if (!PrevDecl)
3564    return false;
3565
3566  if (!PrevDecl->hasLinkage())
3567    return false;
3568
3569  if (Context.getLangOptions().CPlusPlus) {
3570    // C++ [basic.link]p6:
3571    //   If there is a visible declaration of an entity with linkage
3572    //   having the same name and type, ignoring entities declared
3573    //   outside the innermost enclosing namespace scope, the block
3574    //   scope declaration declares that same entity and receives the
3575    //   linkage of the previous declaration.
3576    DeclContext *OuterContext = DC->getRedeclContext();
3577    if (!OuterContext->isFunctionOrMethod())
3578      // This rule only applies to block-scope declarations.
3579      return false;
3580
3581    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
3582    if (PrevOuterContext->isRecord())
3583      // We found a member function: ignore it.
3584      return false;
3585
3586    // Find the innermost enclosing namespace for the new and
3587    // previous declarations.
3588    OuterContext = OuterContext->getEnclosingNamespaceContext();
3589    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
3590
3591    // The previous declaration is in a different namespace, so it
3592    // isn't the same function.
3593    if (!OuterContext->Equals(PrevOuterContext))
3594      return false;
3595  }
3596
3597  return true;
3598}
3599
3600static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
3601  CXXScopeSpec &SS = D.getCXXScopeSpec();
3602  if (!SS.isSet()) return;
3603  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
3604}
3605
3606bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
3607  QualType type = decl->getType();
3608  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
3609  if (lifetime == Qualifiers::OCL_Autoreleasing) {
3610    // Various kinds of declaration aren't allowed to be __autoreleasing.
3611    unsigned kind = -1U;
3612    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3613      if (var->hasAttr<BlocksAttr>())
3614        kind = 0; // __block
3615      else if (!var->hasLocalStorage())
3616        kind = 1; // global
3617    } else if (isa<ObjCIvarDecl>(decl)) {
3618      kind = 3; // ivar
3619    } else if (isa<FieldDecl>(decl)) {
3620      kind = 2; // field
3621    }
3622
3623    if (kind != -1U) {
3624      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
3625        << kind;
3626    }
3627  } else if (lifetime == Qualifiers::OCL_None) {
3628    // Try to infer lifetime.
3629    if (!type->isObjCLifetimeType())
3630      return false;
3631
3632    lifetime = type->getObjCARCImplicitLifetime();
3633    type = Context.getLifetimeQualifiedType(type, lifetime);
3634    decl->setType(type);
3635  }
3636
3637  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3638    // Thread-local variables cannot have lifetime.
3639    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
3640        var->isThreadSpecified()) {
3641      Diag(var->getLocation(), diag::err_arc_thread_ownership)
3642        << var->getType();
3643      return true;
3644    }
3645  }
3646
3647  return false;
3648}
3649
3650NamedDecl*
3651Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
3652                              QualType R, TypeSourceInfo *TInfo,
3653                              LookupResult &Previous,
3654                              MultiTemplateParamsArg TemplateParamLists,
3655                              bool &Redeclaration) {
3656  DeclarationName Name = GetNameForDeclarator(D).getName();
3657
3658  // Check that there are no default arguments (C++ only).
3659  if (getLangOptions().CPlusPlus)
3660    CheckExtraCXXDefaultArguments(D);
3661
3662  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
3663  assert(SCSpec != DeclSpec::SCS_typedef &&
3664         "Parser allowed 'typedef' as storage class VarDecl.");
3665  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3666  if (SCSpec == DeclSpec::SCS_mutable) {
3667    // mutable can only appear on non-static class members, so it's always
3668    // an error here
3669    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
3670    D.setInvalidType();
3671    SC = SC_None;
3672  }
3673  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3674  VarDecl::StorageClass SCAsWritten
3675    = StorageClassSpecToVarDeclStorageClass(SCSpec);
3676
3677  IdentifierInfo *II = Name.getAsIdentifierInfo();
3678  if (!II) {
3679    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
3680      << Name.getAsString();
3681    return 0;
3682  }
3683
3684  DiagnoseFunctionSpecifiers(D);
3685
3686  if (!DC->isRecord() && S->getFnParent() == 0) {
3687    // C99 6.9p2: The storage-class specifiers auto and register shall not
3688    // appear in the declaration specifiers in an external declaration.
3689    if (SC == SC_Auto || SC == SC_Register) {
3690
3691      // If this is a register variable with an asm label specified, then this
3692      // is a GNU extension.
3693      if (SC == SC_Register && D.getAsmLabel())
3694        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
3695      else
3696        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
3697      D.setInvalidType();
3698    }
3699  }
3700
3701  bool isExplicitSpecialization = false;
3702  VarDecl *NewVD;
3703  if (!getLangOptions().CPlusPlus) {
3704    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3705                            D.getIdentifierLoc(), II,
3706                            R, TInfo, SC, SCAsWritten);
3707
3708    if (D.isInvalidType())
3709      NewVD->setInvalidDecl();
3710  } else {
3711    if (DC->isRecord() && !CurContext->isRecord()) {
3712      // This is an out-of-line definition of a static data member.
3713      if (SC == SC_Static) {
3714        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3715             diag::err_static_out_of_line)
3716          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3717      } else if (SC == SC_None)
3718        SC = SC_Static;
3719    }
3720    if (SC == SC_Static) {
3721      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
3722        if (RD->isLocalClass())
3723          Diag(D.getIdentifierLoc(),
3724               diag::err_static_data_member_not_allowed_in_local_class)
3725            << Name << RD->getDeclName();
3726
3727        // C++ [class.union]p1: If a union contains a static data member,
3728        // the program is ill-formed.
3729        //
3730        // We also disallow static data members in anonymous structs.
3731        if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
3732          Diag(D.getIdentifierLoc(),
3733               diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
3734            << Name << RD->isUnion();
3735      }
3736    }
3737
3738    // Match up the template parameter lists with the scope specifier, then
3739    // determine whether we have a template or a template specialization.
3740    isExplicitSpecialization = false;
3741    bool Invalid = false;
3742    if (TemplateParameterList *TemplateParams
3743        = MatchTemplateParametersToScopeSpecifier(
3744                                  D.getDeclSpec().getSourceRange().getBegin(),
3745                                                  D.getIdentifierLoc(),
3746                                                  D.getCXXScopeSpec(),
3747                                                  TemplateParamLists.get(),
3748                                                  TemplateParamLists.size(),
3749                                                  /*never a friend*/ false,
3750                                                  isExplicitSpecialization,
3751                                                  Invalid)) {
3752      if (TemplateParams->size() > 0) {
3753        // There is no such thing as a variable template.
3754        Diag(D.getIdentifierLoc(), diag::err_template_variable)
3755          << II
3756          << SourceRange(TemplateParams->getTemplateLoc(),
3757                         TemplateParams->getRAngleLoc());
3758        return 0;
3759      } else {
3760        // There is an extraneous 'template<>' for this variable. Complain
3761        // about it, but allow the declaration of the variable.
3762        Diag(TemplateParams->getTemplateLoc(),
3763             diag::err_template_variable_noparams)
3764          << II
3765          << SourceRange(TemplateParams->getTemplateLoc(),
3766                         TemplateParams->getRAngleLoc());
3767      }
3768    }
3769
3770    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3771                            D.getIdentifierLoc(), II,
3772                            R, TInfo, SC, SCAsWritten);
3773
3774    // If this decl has an auto type in need of deduction, make a note of the
3775    // Decl so we can diagnose uses of it in its own initializer.
3776    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
3777        R->getContainedAutoType())
3778      ParsingInitForAutoVars.insert(NewVD);
3779
3780    if (D.isInvalidType() || Invalid)
3781      NewVD->setInvalidDecl();
3782
3783    SetNestedNameSpecifier(NewVD, D);
3784
3785    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
3786      NewVD->setTemplateParameterListsInfo(Context,
3787                                           TemplateParamLists.size(),
3788                                           TemplateParamLists.release());
3789    }
3790
3791    if (D.getDeclSpec().isConstexprSpecified()) {
3792      // FIXME: check this is a valid use of constexpr.
3793      NewVD->setConstexpr(true);
3794    }
3795  }
3796
3797  if (D.getDeclSpec().isThreadSpecified()) {
3798    if (NewVD->hasLocalStorage())
3799      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
3800    else if (!Context.getTargetInfo().isTLSSupported())
3801      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
3802    else
3803      NewVD->setThreadSpecified(true);
3804  }
3805
3806  // Set the lexical context. If the declarator has a C++ scope specifier, the
3807  // lexical context will be different from the semantic context.
3808  NewVD->setLexicalDeclContext(CurContext);
3809
3810  // Handle attributes prior to checking for duplicates in MergeVarDecl
3811  ProcessDeclAttributes(S, NewVD, D);
3812
3813  // In auto-retain/release, infer strong retension for variables of
3814  // retainable type.
3815  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
3816    NewVD->setInvalidDecl();
3817
3818  // Handle GNU asm-label extension (encoded as an attribute).
3819  if (Expr *E = (Expr*)D.getAsmLabel()) {
3820    // The parser guarantees this is a string.
3821    StringLiteral *SE = cast<StringLiteral>(E);
3822    StringRef Label = SE->getString();
3823    if (S->getFnParent() != 0) {
3824      switch (SC) {
3825      case SC_None:
3826      case SC_Auto:
3827        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
3828        break;
3829      case SC_Register:
3830        if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
3831          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
3832        break;
3833      case SC_Static:
3834      case SC_Extern:
3835      case SC_PrivateExtern:
3836        break;
3837      }
3838    }
3839
3840    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
3841                                                Context, Label));
3842  }
3843
3844  // Diagnose shadowed variables before filtering for scope.
3845  if (!D.getCXXScopeSpec().isSet())
3846    CheckShadow(S, NewVD, Previous);
3847
3848  // Don't consider existing declarations that are in a different
3849  // scope and are out-of-semantic-context declarations (if the new
3850  // declaration has linkage).
3851  FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
3852                       isExplicitSpecialization);
3853
3854  if (!getLangOptions().CPlusPlus)
3855    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3856  else {
3857    // Merge the decl with the existing one if appropriate.
3858    if (!Previous.empty()) {
3859      if (Previous.isSingleResult() &&
3860          isa<FieldDecl>(Previous.getFoundDecl()) &&
3861          D.getCXXScopeSpec().isSet()) {
3862        // The user tried to define a non-static data member
3863        // out-of-line (C++ [dcl.meaning]p1).
3864        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
3865          << D.getCXXScopeSpec().getRange();
3866        Previous.clear();
3867        NewVD->setInvalidDecl();
3868      }
3869    } else if (D.getCXXScopeSpec().isSet()) {
3870      // No previous declaration in the qualifying scope.
3871      Diag(D.getIdentifierLoc(), diag::err_no_member)
3872        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
3873        << D.getCXXScopeSpec().getRange();
3874      NewVD->setInvalidDecl();
3875    }
3876
3877    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3878
3879    // This is an explicit specialization of a static data member. Check it.
3880    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
3881        CheckMemberSpecialization(NewVD, Previous))
3882      NewVD->setInvalidDecl();
3883  }
3884
3885  // attributes declared post-definition are currently ignored
3886  // FIXME: This should be handled in attribute merging, not
3887  // here.
3888  if (Previous.isSingleResult()) {
3889    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
3890    if (Def && (Def = Def->getDefinition()) &&
3891        Def != NewVD && D.hasAttributes()) {
3892      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
3893      Diag(Def->getLocation(), diag::note_previous_definition);
3894    }
3895  }
3896
3897  // If this is a locally-scoped extern C variable, update the map of
3898  // such variables.
3899  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
3900      !NewVD->isInvalidDecl())
3901    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
3902
3903  // If there's a #pragma GCC visibility in scope, and this isn't a class
3904  // member, set the visibility of this variable.
3905  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
3906    AddPushedVisibilityAttribute(NewVD);
3907
3908  MarkUnusedFileScopedDecl(NewVD);
3909
3910  return NewVD;
3911}
3912
3913/// \brief Diagnose variable or built-in function shadowing.  Implements
3914/// -Wshadow.
3915///
3916/// This method is called whenever a VarDecl is added to a "useful"
3917/// scope.
3918///
3919/// \param S the scope in which the shadowing name is being declared
3920/// \param R the lookup of the name
3921///
3922void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
3923  // Return if warning is ignored.
3924  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
3925        Diagnostic::Ignored)
3926    return;
3927
3928  // Don't diagnose declarations at file scope.
3929  if (D->hasGlobalStorage())
3930    return;
3931
3932  DeclContext *NewDC = D->getDeclContext();
3933
3934  // Only diagnose if we're shadowing an unambiguous field or variable.
3935  if (R.getResultKind() != LookupResult::Found)
3936    return;
3937
3938  NamedDecl* ShadowedDecl = R.getFoundDecl();
3939  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
3940    return;
3941
3942  // Fields are not shadowed by variables in C++ static methods.
3943  if (isa<FieldDecl>(ShadowedDecl))
3944    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
3945      if (MD->isStatic())
3946        return;
3947
3948  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
3949    if (shadowedVar->isExternC()) {
3950      // For shadowing external vars, make sure that we point to the global
3951      // declaration, not a locally scoped extern declaration.
3952      for (VarDecl::redecl_iterator
3953             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
3954           I != E; ++I)
3955        if (I->isFileVarDecl()) {
3956          ShadowedDecl = *I;
3957          break;
3958        }
3959    }
3960
3961  DeclContext *OldDC = ShadowedDecl->getDeclContext();
3962
3963  // Only warn about certain kinds of shadowing for class members.
3964  if (NewDC && NewDC->isRecord()) {
3965    // In particular, don't warn about shadowing non-class members.
3966    if (!OldDC->isRecord())
3967      return;
3968
3969    // TODO: should we warn about static data members shadowing
3970    // static data members from base classes?
3971
3972    // TODO: don't diagnose for inaccessible shadowed members.
3973    // This is hard to do perfectly because we might friend the
3974    // shadowing context, but that's just a false negative.
3975  }
3976
3977  // Determine what kind of declaration we're shadowing.
3978  unsigned Kind;
3979  if (isa<RecordDecl>(OldDC)) {
3980    if (isa<FieldDecl>(ShadowedDecl))
3981      Kind = 3; // field
3982    else
3983      Kind = 2; // static data member
3984  } else if (OldDC->isFileContext())
3985    Kind = 1; // global
3986  else
3987    Kind = 0; // local
3988
3989  DeclarationName Name = R.getLookupName();
3990
3991  // Emit warning and note.
3992  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
3993  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
3994}
3995
3996/// \brief Check -Wshadow without the advantage of a previous lookup.
3997void Sema::CheckShadow(Scope *S, VarDecl *D) {
3998  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
3999        Diagnostic::Ignored)
4000    return;
4001
4002  LookupResult R(*this, D->getDeclName(), D->getLocation(),
4003                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4004  LookupName(R, S);
4005  CheckShadow(S, D, R);
4006}
4007
4008/// \brief Perform semantic checking on a newly-created variable
4009/// declaration.
4010///
4011/// This routine performs all of the type-checking required for a
4012/// variable declaration once it has been built. It is used both to
4013/// check variables after they have been parsed and their declarators
4014/// have been translated into a declaration, and to check variables
4015/// that have been instantiated from a template.
4016///
4017/// Sets NewVD->isInvalidDecl() if an error was encountered.
4018void Sema::CheckVariableDeclaration(VarDecl *NewVD,
4019                                    LookupResult &Previous,
4020                                    bool &Redeclaration) {
4021  // If the decl is already known invalid, don't check it.
4022  if (NewVD->isInvalidDecl())
4023    return;
4024
4025  QualType T = NewVD->getType();
4026
4027  if (T->isObjCObjectType()) {
4028    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
4029      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
4030    T = Context.getObjCObjectPointerType(T);
4031    NewVD->setType(T);
4032  }
4033
4034  // Emit an error if an address space was applied to decl with local storage.
4035  // This includes arrays of objects with address space qualifiers, but not
4036  // automatic variables that point to other address spaces.
4037  // ISO/IEC TR 18037 S5.1.2
4038  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
4039    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
4040    return NewVD->setInvalidDecl();
4041  }
4042
4043  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
4044      && !NewVD->hasAttr<BlocksAttr>()) {
4045    if (getLangOptions().getGCMode() != LangOptions::NonGC)
4046      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
4047    else
4048      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
4049  }
4050
4051  bool isVM = T->isVariablyModifiedType();
4052  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
4053      NewVD->hasAttr<BlocksAttr>())
4054    getCurFunction()->setHasBranchProtectedScope();
4055
4056  if ((isVM && NewVD->hasLinkage()) ||
4057      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
4058    bool SizeIsNegative;
4059    llvm::APSInt Oversized;
4060    QualType FixedTy =
4061        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
4062                                            Oversized);
4063
4064    if (FixedTy.isNull() && T->isVariableArrayType()) {
4065      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
4066      // FIXME: This won't give the correct result for
4067      // int a[10][n];
4068      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
4069
4070      if (NewVD->isFileVarDecl())
4071        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
4072        << SizeRange;
4073      else if (NewVD->getStorageClass() == SC_Static)
4074        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
4075        << SizeRange;
4076      else
4077        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
4078        << SizeRange;
4079      return NewVD->setInvalidDecl();
4080    }
4081
4082    if (FixedTy.isNull()) {
4083      if (NewVD->isFileVarDecl())
4084        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
4085      else
4086        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
4087      return NewVD->setInvalidDecl();
4088    }
4089
4090    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
4091    NewVD->setType(FixedTy);
4092  }
4093
4094  if (Previous.empty() && NewVD->isExternC()) {
4095    // Since we did not find anything by this name and we're declaring
4096    // an extern "C" variable, look for a non-visible extern "C"
4097    // declaration with the same name.
4098    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4099      = findLocallyScopedExternalDecl(NewVD->getDeclName());
4100    if (Pos != LocallyScopedExternalDecls.end())
4101      Previous.addDecl(Pos->second);
4102  }
4103
4104  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
4105    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
4106      << T;
4107    return NewVD->setInvalidDecl();
4108  }
4109
4110  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
4111    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
4112    return NewVD->setInvalidDecl();
4113  }
4114
4115  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
4116    Diag(NewVD->getLocation(), diag::err_block_on_vm);
4117    return NewVD->setInvalidDecl();
4118  }
4119
4120  // Function pointers and references cannot have qualified function type, only
4121  // function pointer-to-members can do that.
4122  QualType Pointee;
4123  unsigned PtrOrRef = 0;
4124  if (const PointerType *Ptr = T->getAs<PointerType>())
4125    Pointee = Ptr->getPointeeType();
4126  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
4127    Pointee = Ref->getPointeeType();
4128    PtrOrRef = 1;
4129  }
4130  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
4131      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
4132    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
4133        << PtrOrRef;
4134    return NewVD->setInvalidDecl();
4135  }
4136
4137  if (!Previous.empty()) {
4138    Redeclaration = true;
4139    MergeVarDecl(NewVD, Previous);
4140  }
4141}
4142
4143/// \brief Data used with FindOverriddenMethod
4144struct FindOverriddenMethodData {
4145  Sema *S;
4146  CXXMethodDecl *Method;
4147};
4148
4149/// \brief Member lookup function that determines whether a given C++
4150/// method overrides a method in a base class, to be used with
4151/// CXXRecordDecl::lookupInBases().
4152static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
4153                                 CXXBasePath &Path,
4154                                 void *UserData) {
4155  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4156
4157  FindOverriddenMethodData *Data
4158    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
4159
4160  DeclarationName Name = Data->Method->getDeclName();
4161
4162  // FIXME: Do we care about other names here too?
4163  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4164    // We really want to find the base class destructor here.
4165    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
4166    CanQualType CT = Data->S->Context.getCanonicalType(T);
4167
4168    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
4169  }
4170
4171  for (Path.Decls = BaseRecord->lookup(Name);
4172       Path.Decls.first != Path.Decls.second;
4173       ++Path.Decls.first) {
4174    NamedDecl *D = *Path.Decls.first;
4175    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4176      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
4177        return true;
4178    }
4179  }
4180
4181  return false;
4182}
4183
4184/// AddOverriddenMethods - See if a method overrides any in the base classes,
4185/// and if so, check that it's a valid override and remember it.
4186bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4187  // Look for virtual methods in base classes that this method might override.
4188  CXXBasePaths Paths;
4189  FindOverriddenMethodData Data;
4190  Data.Method = MD;
4191  Data.S = this;
4192  bool AddedAny = false;
4193  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
4194    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
4195         E = Paths.found_decls_end(); I != E; ++I) {
4196      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
4197        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
4198        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
4199            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
4200            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
4201          AddedAny = true;
4202        }
4203      }
4204    }
4205  }
4206
4207  return AddedAny;
4208}
4209
4210static void DiagnoseInvalidRedeclaration(Sema &S, FunctionDecl *NewFD,
4211                                         bool isFriendDecl) {
4212  DeclarationName Name = NewFD->getDeclName();
4213  DeclContext *DC = NewFD->getDeclContext();
4214  LookupResult Prev(S, Name, NewFD->getLocation(),
4215                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4216  llvm::SmallVector<unsigned, 1> MismatchedParams;
4217  llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1> NearMatches;
4218  TypoCorrection Correction;
4219  unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
4220                                  : diag::err_member_def_does_not_match;
4221
4222  NewFD->setInvalidDecl();
4223  S.LookupQualifiedName(Prev, DC);
4224  assert(!Prev.isAmbiguous() &&
4225         "Cannot have an ambiguity in previous-declaration lookup");
4226  if (!Prev.empty()) {
4227    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
4228         Func != FuncEnd; ++Func) {
4229      FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
4230      if (FD && isNearlyMatchingFunction(S.Context, FD, NewFD,
4231                                         MismatchedParams)) {
4232        // Add 1 to the index so that 0 can mean the mismatch didn't
4233        // involve a parameter
4234        unsigned ParamNum =
4235            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
4236        NearMatches.push_back(std::make_pair(FD, ParamNum));
4237      }
4238    }
4239  // If the qualified name lookup yielded nothing, try typo correction
4240  } else if ((Correction = S.CorrectTypo(Prev.getLookupNameInfo(),
4241                                         Prev.getLookupKind(), 0, 0, DC)) &&
4242             Correction.getCorrection() != Name) {
4243    DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
4244                           : diag::err_member_def_does_not_match_suggest;
4245    for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
4246                                    CDeclEnd = Correction.end();
4247         CDecl != CDeclEnd; ++CDecl) {
4248      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
4249      if (FD && isNearlyMatchingFunction(S.Context, FD, NewFD,
4250                                         MismatchedParams)) {
4251        // Add 1 to the index so that 0 can mean the mismatch didn't
4252        // involve a parameter
4253        unsigned ParamNum =
4254            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
4255        NearMatches.push_back(std::make_pair(FD, ParamNum));
4256      }
4257    }
4258  }
4259
4260  if (Correction)
4261    S.Diag(NewFD->getLocation(), DiagMsg)
4262        << Name << DC << Correction.getQuoted(S.getLangOptions())
4263        << FixItHint::CreateReplacement(
4264            NewFD->getLocation(), Correction.getAsString(S.getLangOptions()));
4265  else
4266    S.Diag(NewFD->getLocation(), DiagMsg) << Name << DC << NewFD->getLocation();
4267
4268  for (llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1>::iterator
4269       NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
4270       NearMatch != NearMatchEnd; ++NearMatch) {
4271    FunctionDecl *FD = NearMatch->first;
4272
4273    if (unsigned Idx = NearMatch->second) {
4274      ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
4275      S.Diag(FDParam->getTypeSpecStartLoc(),
4276             diag::note_member_def_close_param_match)
4277          << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
4278    } else if (Correction) {
4279      S.Diag(FD->getLocation(), diag::note_previous_decl)
4280        << Correction.getQuoted(S.getLangOptions());
4281    } else
4282      S.Diag(FD->getLocation(), diag::note_member_def_close_match);
4283  }
4284}
4285
4286NamedDecl*
4287Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4288                              QualType R, TypeSourceInfo *TInfo,
4289                              LookupResult &Previous,
4290                              MultiTemplateParamsArg TemplateParamLists,
4291                              bool IsFunctionDefinition, bool &Redeclaration,
4292                              bool &AddToScope) {
4293  assert(R.getTypePtr()->isFunctionType());
4294
4295  // TODO: consider using NameInfo for diagnostic.
4296  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4297  DeclarationName Name = NameInfo.getName();
4298  FunctionDecl::StorageClass SC = SC_None;
4299  switch (D.getDeclSpec().getStorageClassSpec()) {
4300  default: assert(0 && "Unknown storage class!");
4301  case DeclSpec::SCS_auto:
4302  case DeclSpec::SCS_register:
4303  case DeclSpec::SCS_mutable:
4304    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4305         diag::err_typecheck_sclass_func);
4306    D.setInvalidType();
4307    break;
4308  case DeclSpec::SCS_unspecified: SC = SC_None; break;
4309  case DeclSpec::SCS_extern:      SC = SC_Extern; break;
4310  case DeclSpec::SCS_static: {
4311    if (CurContext->getRedeclContext()->isFunctionOrMethod()) {
4312      // C99 6.7.1p5:
4313      //   The declaration of an identifier for a function that has
4314      //   block scope shall have no explicit storage-class specifier
4315      //   other than extern
4316      // See also (C++ [dcl.stc]p4).
4317      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4318           diag::err_static_block_func);
4319      SC = SC_None;
4320    } else
4321      SC = SC_Static;
4322    break;
4323  }
4324  case DeclSpec::SCS_private_extern: SC = SC_PrivateExtern; break;
4325  }
4326
4327  if (D.getDeclSpec().isThreadSpecified())
4328    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4329
4330  // Do not allow returning a objc interface by-value.
4331  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
4332    Diag(D.getIdentifierLoc(),
4333         diag::err_object_cannot_be_passed_returned_by_value) << 0
4334    << R->getAs<FunctionType>()->getResultType()
4335    << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
4336
4337    QualType T = R->getAs<FunctionType>()->getResultType();
4338    T = Context.getObjCObjectPointerType(T);
4339    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(R)) {
4340      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
4341      R = Context.getFunctionType(T, FPT->arg_type_begin(),
4342                                  FPT->getNumArgs(), EPI);
4343    }
4344    else if (isa<FunctionNoProtoType>(R))
4345      R = Context.getFunctionNoProtoType(T);
4346  }
4347
4348  FunctionDecl *NewFD;
4349  bool isInline = D.getDeclSpec().isInlineSpecified();
4350  bool isFriend = false;
4351  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4352  FunctionDecl::StorageClass SCAsWritten
4353    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
4354  FunctionTemplateDecl *FunctionTemplate = 0;
4355  bool isExplicitSpecialization = false;
4356  bool isFunctionTemplateSpecialization = false;
4357  bool isDependentClassScopeExplicitSpecialization = false;
4358
4359  if (!getLangOptions().CPlusPlus) {
4360    // Determine whether the function was written with a
4361    // prototype. This true when:
4362    //   - there is a prototype in the declarator, or
4363    //   - the type R of the function is some kind of typedef or other reference
4364    //     to a type name (which eventually refers to a function type).
4365    bool HasPrototype =
4366    (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
4367    (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
4368
4369    NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4370                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4371                                 HasPrototype);
4372    if (D.isInvalidType())
4373      NewFD->setInvalidDecl();
4374
4375    // Set the lexical context.
4376    NewFD->setLexicalDeclContext(CurContext);
4377    // Filter out previous declarations that don't match the scope.
4378    FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
4379                         /*ExplicitInstantiationOrSpecialization=*/false);
4380  } else {
4381    isFriend = D.getDeclSpec().isFriendSpecified();
4382    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4383    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4384    bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
4385    bool isVirtualOkay = false;
4386
4387    // Check that the return type is not an abstract class type.
4388    // For record types, this is done by the AbstractClassUsageDiagnoser once
4389    // the class has been completely parsed.
4390    if (!DC->isRecord() &&
4391      RequireNonAbstractType(D.getIdentifierLoc(),
4392                             R->getAs<FunctionType>()->getResultType(),
4393                             diag::err_abstract_type_in_decl,
4394                             AbstractReturnType))
4395      D.setInvalidType();
4396
4397    if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
4398      // This is a C++ constructor declaration.
4399      assert(DC->isRecord() &&
4400             "Constructors can only be declared in a member context");
4401
4402      R = CheckConstructorDeclarator(D, R, SC);
4403
4404      // Create the new declaration
4405      CXXConstructorDecl *NewCD = CXXConstructorDecl::Create(
4406                                         Context,
4407                                         cast<CXXRecordDecl>(DC),
4408                                         D.getSourceRange().getBegin(),
4409                                         NameInfo, R, TInfo,
4410                                         isExplicit, isInline,
4411                                         /*isImplicitlyDeclared=*/false,
4412                                         isConstexpr);
4413
4414      NewFD = NewCD;
4415    } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4416      // This is a C++ destructor declaration.
4417      if (DC->isRecord()) {
4418        R = CheckDestructorDeclarator(D, R, SC);
4419        CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
4420
4421        CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(Context, Record,
4422                                          D.getSourceRange().getBegin(),
4423                                          NameInfo, R, TInfo,
4424                                          isInline,
4425                                          /*isImplicitlyDeclared=*/false);
4426        NewFD = NewDD;
4427        isVirtualOkay = true;
4428
4429        // If the class is complete, then we now create the implicit exception
4430        // specification. If the class is incomplete or dependent, we can't do
4431        // it yet.
4432        if (getLangOptions().CPlusPlus0x && !Record->isDependentType() &&
4433            Record->getDefinition() && !Record->isBeingDefined() &&
4434            R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
4435          AdjustDestructorExceptionSpec(Record, NewDD);
4436        }
4437
4438      } else {
4439        Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
4440
4441        // Create a FunctionDecl to satisfy the function definition parsing
4442        // code path.
4443        NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4444                                     D.getIdentifierLoc(), Name, R, TInfo,
4445                                     SC, SCAsWritten, isInline,
4446                                     /*hasPrototype=*/true, isConstexpr);
4447        D.setInvalidType();
4448      }
4449    } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
4450      if (!DC->isRecord()) {
4451        Diag(D.getIdentifierLoc(),
4452             diag::err_conv_function_not_member);
4453        return 0;
4454      }
4455
4456      CheckConversionDeclarator(D, R, SC);
4457      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
4458                                        D.getSourceRange().getBegin(),
4459                                        NameInfo, R, TInfo,
4460                                        isInline, isExplicit, isConstexpr,
4461                                        SourceLocation());
4462
4463      isVirtualOkay = true;
4464    } else if (DC->isRecord()) {
4465      // If the name of the function is the same as the name of the record,
4466      // then this must be an invalid constructor that has a return type.
4467      // (The parser checks for a return type and makes the declarator a
4468      // constructor if it has no return type).
4469      if (Name.getAsIdentifierInfo() &&
4470          Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
4471        Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
4472          << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4473          << SourceRange(D.getIdentifierLoc());
4474        return 0;
4475      }
4476
4477      bool isStatic = SC == SC_Static;
4478
4479      // [class.free]p1:
4480      // Any allocation function for a class T is a static member
4481      // (even if not explicitly declared static).
4482      if (Name.getCXXOverloadedOperator() == OO_New ||
4483          Name.getCXXOverloadedOperator() == OO_Array_New)
4484        isStatic = true;
4485
4486      // [class.free]p6 Any deallocation function for a class X is a static member
4487      // (even if not explicitly declared static).
4488      if (Name.getCXXOverloadedOperator() == OO_Delete ||
4489          Name.getCXXOverloadedOperator() == OO_Array_Delete)
4490        isStatic = true;
4491
4492      // This is a C++ method declaration.
4493      CXXMethodDecl *NewMD = CXXMethodDecl::Create(
4494                                               Context, cast<CXXRecordDecl>(DC),
4495                                               D.getSourceRange().getBegin(),
4496                                               NameInfo, R, TInfo,
4497                                               isStatic, SCAsWritten, isInline,
4498                                               isConstexpr,
4499                                               SourceLocation());
4500      NewFD = NewMD;
4501
4502      isVirtualOkay = !isStatic;
4503    } else {
4504      // Determine whether the function was written with a
4505      // prototype. This true when:
4506      //   - we're in C++ (where every function has a prototype),
4507      NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4508                                   NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4509                                   true/*HasPrototype*/, isConstexpr);
4510    }
4511
4512    if (isFriend && !isInline && IsFunctionDefinition) {
4513      // C++ [class.friend]p5
4514      //   A function can be defined in a friend declaration of a
4515      //   class . . . . Such a function is implicitly inline.
4516      NewFD->setImplicitlyInline();
4517    }
4518
4519    SetNestedNameSpecifier(NewFD, D);
4520    isExplicitSpecialization = false;
4521    isFunctionTemplateSpecialization = false;
4522    if (D.isInvalidType())
4523      NewFD->setInvalidDecl();
4524
4525    // Set the lexical context. If the declarator has a C++
4526    // scope specifier, or is the object of a friend declaration, the
4527    // lexical context will be different from the semantic context.
4528    NewFD->setLexicalDeclContext(CurContext);
4529
4530    // Match up the template parameter lists with the scope specifier, then
4531    // determine whether we have a template or a template specialization.
4532    bool Invalid = false;
4533    if (TemplateParameterList *TemplateParams
4534          = MatchTemplateParametersToScopeSpecifier(
4535                                  D.getDeclSpec().getSourceRange().getBegin(),
4536                                  D.getIdentifierLoc(),
4537                                  D.getCXXScopeSpec(),
4538                                  TemplateParamLists.get(),
4539                                  TemplateParamLists.size(),
4540                                  isFriend,
4541                                  isExplicitSpecialization,
4542                                  Invalid)) {
4543      if (TemplateParams->size() > 0) {
4544        // This is a function template
4545
4546        // Check that we can declare a template here.
4547        if (CheckTemplateDeclScope(S, TemplateParams))
4548          return 0;
4549
4550        // A destructor cannot be a template.
4551        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4552          Diag(NewFD->getLocation(), diag::err_destructor_template);
4553          return 0;
4554        }
4555
4556        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
4557                                                        NewFD->getLocation(),
4558                                                        Name, TemplateParams,
4559                                                        NewFD);
4560        FunctionTemplate->setLexicalDeclContext(CurContext);
4561        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
4562
4563        // For source fidelity, store the other template param lists.
4564        if (TemplateParamLists.size() > 1) {
4565          NewFD->setTemplateParameterListsInfo(Context,
4566                                               TemplateParamLists.size() - 1,
4567                                               TemplateParamLists.release());
4568        }
4569      } else {
4570        // This is a function template specialization.
4571        isFunctionTemplateSpecialization = true;
4572        // For source fidelity, store all the template param lists.
4573        NewFD->setTemplateParameterListsInfo(Context,
4574                                             TemplateParamLists.size(),
4575                                             TemplateParamLists.release());
4576
4577        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
4578        if (isFriend) {
4579          // We want to remove the "template<>", found here.
4580          SourceRange RemoveRange = TemplateParams->getSourceRange();
4581
4582          // If we remove the template<> and the name is not a
4583          // template-id, we're actually silently creating a problem:
4584          // the friend declaration will refer to an untemplated decl,
4585          // and clearly the user wants a template specialization.  So
4586          // we need to insert '<>' after the name.
4587          SourceLocation InsertLoc;
4588          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
4589            InsertLoc = D.getName().getSourceRange().getEnd();
4590            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
4591          }
4592
4593          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
4594            << Name << RemoveRange
4595            << FixItHint::CreateRemoval(RemoveRange)
4596            << FixItHint::CreateInsertion(InsertLoc, "<>");
4597        }
4598      }
4599    }
4600    else {
4601      // All template param lists were matched against the scope specifier:
4602      // this is NOT (an explicit specialization of) a template.
4603      if (TemplateParamLists.size() > 0)
4604        // For source fidelity, store all the template param lists.
4605        NewFD->setTemplateParameterListsInfo(Context,
4606                                             TemplateParamLists.size(),
4607                                             TemplateParamLists.release());
4608    }
4609
4610    if (Invalid) {
4611      NewFD->setInvalidDecl();
4612      if (FunctionTemplate)
4613        FunctionTemplate->setInvalidDecl();
4614    }
4615
4616    // C++ [dcl.fct.spec]p5:
4617    //   The virtual specifier shall only be used in declarations of
4618    //   nonstatic class member functions that appear within a
4619    //   member-specification of a class declaration; see 10.3.
4620    //
4621    if (isVirtual && !NewFD->isInvalidDecl()) {
4622      if (!isVirtualOkay) {
4623        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4624             diag::err_virtual_non_function);
4625      } else if (!CurContext->isRecord()) {
4626        // 'virtual' was specified outside of the class.
4627        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4628             diag::err_virtual_out_of_class)
4629          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4630      } else if (NewFD->getDescribedFunctionTemplate()) {
4631        // C++ [temp.mem]p3:
4632        //  A member function template shall not be virtual.
4633        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4634             diag::err_virtual_member_function_template)
4635          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4636      } else {
4637        // Okay: Add virtual to the method.
4638        NewFD->setVirtualAsWritten(true);
4639      }
4640    }
4641
4642    // C++ [dcl.fct.spec]p3:
4643    //  The inline specifier shall not appear on a block scope function declaration.
4644    if (isInline && !NewFD->isInvalidDecl()) {
4645      if (CurContext->isFunctionOrMethod()) {
4646        // 'inline' is not allowed on block scope function declaration.
4647        Diag(D.getDeclSpec().getInlineSpecLoc(),
4648             diag::err_inline_declaration_block_scope) << Name
4649          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
4650      }
4651    }
4652
4653    // C++ [dcl.fct.spec]p6:
4654    //  The explicit specifier shall be used only in the declaration of a
4655    //  constructor or conversion function within its class definition; see 12.3.1
4656    //  and 12.3.2.
4657    if (isExplicit && !NewFD->isInvalidDecl()) {
4658      if (!CurContext->isRecord()) {
4659        // 'explicit' was specified outside of the class.
4660        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4661             diag::err_explicit_out_of_class)
4662          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4663      } else if (!isa<CXXConstructorDecl>(NewFD) &&
4664                 !isa<CXXConversionDecl>(NewFD)) {
4665        // 'explicit' was specified on a function that wasn't a constructor
4666        // or conversion function.
4667        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4668             diag::err_explicit_non_ctor_or_conv_function)
4669          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4670      }
4671    }
4672
4673    if (isConstexpr) {
4674      // C++0x [dcl.constexpr]p2: constexpr functions and constexpr constructors
4675      // are implicitly inline.
4676      NewFD->setImplicitlyInline();
4677
4678      // FIXME: If this is a redeclaration, check the original declaration was
4679      // marked constepr.
4680
4681      // C++0x [dcl.constexpr]p3: functions declared constexpr are required to
4682      // be either constructors or to return a literal type. Therefore,
4683      // destructors cannot be declared constexpr.
4684      if (isa<CXXDestructorDecl>(NewFD))
4685        Diag(D.getDeclSpec().getConstexprSpecLoc(),
4686             diag::err_constexpr_dtor);
4687    }
4688
4689
4690    // Filter out previous declarations that don't match the scope.
4691    FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
4692                         isExplicitSpecialization ||
4693                         isFunctionTemplateSpecialization);
4694
4695    if (isFriend) {
4696      // For now, claim that the objects have no previous declaration.
4697      if (FunctionTemplate) {
4698        FunctionTemplate->setObjectOfFriendDecl(false);
4699        FunctionTemplate->setAccess(AS_public);
4700      }
4701      NewFD->setObjectOfFriendDecl(false);
4702      NewFD->setAccess(AS_public);
4703    }
4704
4705    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext && IsFunctionDefinition) {
4706      // A method is implicitly inline if it's defined in its class
4707      // definition.
4708      NewFD->setImplicitlyInline();
4709    }
4710
4711    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
4712        !CurContext->isRecord()) {
4713      // C++ [class.static]p1:
4714      //   A data or function member of a class may be declared static
4715      //   in a class definition, in which case it is a static member of
4716      //   the class.
4717
4718      // Complain about the 'static' specifier if it's on an out-of-line
4719      // member function definition.
4720      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4721           diag::err_static_out_of_line)
4722        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4723    }
4724  }
4725
4726  // Handle GNU asm-label extension (encoded as an attribute).
4727  if (Expr *E = (Expr*) D.getAsmLabel()) {
4728    // The parser guarantees this is a string.
4729    StringLiteral *SE = cast<StringLiteral>(E);
4730    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
4731                                                SE->getString()));
4732  }
4733
4734  // Copy the parameter declarations from the declarator D to the function
4735  // declaration NewFD, if they are available.  First scavenge them into Params.
4736  SmallVector<ParmVarDecl*, 16> Params;
4737  if (D.isFunctionDeclarator()) {
4738    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4739
4740    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
4741    // function that takes no arguments, not a function that takes a
4742    // single void argument.
4743    // We let through "const void" here because Sema::GetTypeForDeclarator
4744    // already checks for that case.
4745    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
4746        FTI.ArgInfo[0].Param &&
4747        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
4748      // Empty arg list, don't push any params.
4749      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
4750
4751      // In C++, the empty parameter-type-list must be spelled "void"; a
4752      // typedef of void is not permitted.
4753      if (getLangOptions().CPlusPlus &&
4754          Param->getType().getUnqualifiedType() != Context.VoidTy) {
4755        bool IsTypeAlias = false;
4756        if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
4757          IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
4758        else if (const TemplateSpecializationType *TST =
4759                   Param->getType()->getAs<TemplateSpecializationType>())
4760          IsTypeAlias = TST->isTypeAlias();
4761        Diag(Param->getLocation(), diag::err_param_typedef_of_void)
4762          << IsTypeAlias;
4763      }
4764    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
4765      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
4766        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
4767        assert(Param->getDeclContext() != NewFD && "Was set before ?");
4768        Param->setDeclContext(NewFD);
4769        Params.push_back(Param);
4770
4771        if (Param->isInvalidDecl())
4772          NewFD->setInvalidDecl();
4773      }
4774    }
4775
4776  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
4777    // When we're declaring a function with a typedef, typeof, etc as in the
4778    // following example, we'll need to synthesize (unnamed)
4779    // parameters for use in the declaration.
4780    //
4781    // @code
4782    // typedef void fn(int);
4783    // fn f;
4784    // @endcode
4785
4786    // Synthesize a parameter for each argument type.
4787    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
4788         AE = FT->arg_type_end(); AI != AE; ++AI) {
4789      ParmVarDecl *Param =
4790        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
4791      Param->setScopeInfo(0, Params.size());
4792      Params.push_back(Param);
4793    }
4794  } else {
4795    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
4796           "Should not need args for typedef of non-prototype fn");
4797  }
4798  // Finally, we know we have the right number of parameters, install them.
4799  NewFD->setParams(Params.data(), Params.size());
4800
4801  // Process the non-inheritable attributes on this declaration.
4802  ProcessDeclAttributes(S, NewFD, D,
4803                        /*NonInheritable=*/true, /*Inheritable=*/false);
4804
4805  if (!getLangOptions().CPlusPlus) {
4806    // Perform semantic checking on the function declaration.
4807    bool isExplicitSpecialization=false;
4808    if (!NewFD->isInvalidDecl()) {
4809      if (NewFD->getResultType()->isVariablyModifiedType()) {
4810        // Functions returning a variably modified type violate C99 6.7.5.2p2
4811        // because all functions have linkage.
4812        Diag(NewFD->getLocation(), diag::err_vm_func_decl);
4813        NewFD->setInvalidDecl();
4814      } else {
4815        if (NewFD->isMain())
4816          CheckMain(NewFD, D.getDeclSpec());
4817        CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
4818                                 Redeclaration);
4819      }
4820    }
4821    assert((NewFD->isInvalidDecl() || !Redeclaration ||
4822            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
4823           "previous declaration set still overloaded");
4824  } else {
4825    // If the declarator is a template-id, translate the parser's template
4826    // argument list into our AST format.
4827    bool HasExplicitTemplateArgs = false;
4828    TemplateArgumentListInfo TemplateArgs;
4829    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
4830      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
4831      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
4832      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
4833      ASTTemplateArgsPtr TemplateArgsPtr(*this,
4834                                         TemplateId->getTemplateArgs(),
4835                                         TemplateId->NumArgs);
4836      translateTemplateArguments(TemplateArgsPtr,
4837                                 TemplateArgs);
4838      TemplateArgsPtr.release();
4839
4840      HasExplicitTemplateArgs = true;
4841
4842      if (NewFD->isInvalidDecl()) {
4843        HasExplicitTemplateArgs = false;
4844      } else if (FunctionTemplate) {
4845        // Function template with explicit template arguments.
4846        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
4847          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
4848
4849        HasExplicitTemplateArgs = false;
4850      } else if (!isFunctionTemplateSpecialization &&
4851                 !D.getDeclSpec().isFriendSpecified()) {
4852        // We have encountered something that the user meant to be a
4853        // specialization (because it has explicitly-specified template
4854        // arguments) but that was not introduced with a "template<>" (or had
4855        // too few of them).
4856        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
4857          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
4858          << FixItHint::CreateInsertion(
4859                                        D.getDeclSpec().getSourceRange().getBegin(),
4860                                                  "template<> ");
4861        isFunctionTemplateSpecialization = true;
4862      } else {
4863        // "friend void foo<>(int);" is an implicit specialization decl.
4864        isFunctionTemplateSpecialization = true;
4865      }
4866    } else if (isFriend && isFunctionTemplateSpecialization) {
4867      // This combination is only possible in a recovery case;  the user
4868      // wrote something like:
4869      //   template <> friend void foo(int);
4870      // which we're recovering from as if the user had written:
4871      //   friend void foo<>(int);
4872      // Go ahead and fake up a template id.
4873      HasExplicitTemplateArgs = true;
4874        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
4875      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
4876    }
4877
4878    // If it's a friend (and only if it's a friend), it's possible
4879    // that either the specialized function type or the specialized
4880    // template is dependent, and therefore matching will fail.  In
4881    // this case, don't check the specialization yet.
4882    if (isFunctionTemplateSpecialization && isFriend &&
4883        (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
4884      assert(HasExplicitTemplateArgs &&
4885             "friend function specialization without template args");
4886      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
4887                                                       Previous))
4888        NewFD->setInvalidDecl();
4889    } else if (isFunctionTemplateSpecialization) {
4890      if (CurContext->isDependentContext() && CurContext->isRecord()
4891          && !isFriend) {
4892        isDependentClassScopeExplicitSpecialization = true;
4893        Diag(NewFD->getLocation(), getLangOptions().Microsoft ?
4894          diag::ext_function_specialization_in_class :
4895          diag::err_function_specialization_in_class)
4896          << NewFD->getDeclName();
4897      } else if (CheckFunctionTemplateSpecialization(NewFD,
4898                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
4899                                                     Previous))
4900        NewFD->setInvalidDecl();
4901
4902      // C++ [dcl.stc]p1:
4903      //   A storage-class-specifier shall not be specified in an explicit
4904      //   specialization (14.7.3)
4905      if (SC != SC_None) {
4906        if (SC != NewFD->getStorageClass())
4907          Diag(NewFD->getLocation(),
4908               diag::err_explicit_specialization_inconsistent_storage_class)
4909            << SC
4910            << FixItHint::CreateRemoval(
4911                                      D.getDeclSpec().getStorageClassSpecLoc());
4912
4913        else
4914          Diag(NewFD->getLocation(),
4915               diag::ext_explicit_specialization_storage_class)
4916            << FixItHint::CreateRemoval(
4917                                      D.getDeclSpec().getStorageClassSpecLoc());
4918      }
4919
4920    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
4921      if (CheckMemberSpecialization(NewFD, Previous))
4922          NewFD->setInvalidDecl();
4923    }
4924
4925    // Perform semantic checking on the function declaration.
4926    if (!isDependentClassScopeExplicitSpecialization) {
4927      if (NewFD->isInvalidDecl()) {
4928        // If this is a class member, mark the class invalid immediately.
4929        // This avoids some consistency errors later.
4930        if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
4931          methodDecl->getParent()->setInvalidDecl();
4932      } else {
4933        if (NewFD->isMain())
4934          CheckMain(NewFD, D.getDeclSpec());
4935        CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
4936                                 Redeclaration);
4937      }
4938    }
4939
4940    assert((NewFD->isInvalidDecl() || !Redeclaration ||
4941            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
4942           "previous declaration set still overloaded");
4943
4944    NamedDecl *PrincipalDecl = (FunctionTemplate
4945                                ? cast<NamedDecl>(FunctionTemplate)
4946                                : NewFD);
4947
4948    if (isFriend && Redeclaration) {
4949      AccessSpecifier Access = AS_public;
4950      if (!NewFD->isInvalidDecl())
4951        Access = NewFD->getPreviousDeclaration()->getAccess();
4952
4953      NewFD->setAccess(Access);
4954      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
4955
4956      PrincipalDecl->setObjectOfFriendDecl(true);
4957    }
4958
4959    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
4960        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
4961      PrincipalDecl->setNonMemberOperator();
4962
4963    // If we have a function template, check the template parameter
4964    // list. This will check and merge default template arguments.
4965    if (FunctionTemplate) {
4966      FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
4967      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
4968                                 PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
4969                            D.getDeclSpec().isFriendSpecified()
4970                              ? (IsFunctionDefinition
4971                                   ? TPC_FriendFunctionTemplateDefinition
4972                                   : TPC_FriendFunctionTemplate)
4973                              : (D.getCXXScopeSpec().isSet() &&
4974                                 DC && DC->isRecord() &&
4975                                 DC->isDependentContext())
4976                                  ? TPC_ClassTemplateMember
4977                                  : TPC_FunctionTemplate);
4978    }
4979
4980    if (NewFD->isInvalidDecl()) {
4981      // Ignore all the rest of this.
4982    } else if (!Redeclaration) {
4983      // Fake up an access specifier if it's supposed to be a class member.
4984      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
4985        NewFD->setAccess(AS_public);
4986
4987      // Qualified decls generally require a previous declaration.
4988      if (D.getCXXScopeSpec().isSet()) {
4989        // ...with the major exception of templated-scope or
4990        // dependent-scope friend declarations.
4991
4992        // TODO: we currently also suppress this check in dependent
4993        // contexts because (1) the parameter depth will be off when
4994        // matching friend templates and (2) we might actually be
4995        // selecting a friend based on a dependent factor.  But there
4996        // are situations where these conditions don't apply and we
4997        // can actually do this check immediately.
4998        if (isFriend &&
4999            (TemplateParamLists.size() ||
5000             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
5001             CurContext->isDependentContext())) {
5002          // ignore these
5003        } else {
5004          // The user tried to provide an out-of-line definition for a
5005          // function that is a member of a class or namespace, but there
5006          // was no such member function declared (C++ [class.mfct]p2,
5007          // C++ [namespace.memdef]p2). For example:
5008          //
5009          // class X {
5010          //   void f() const;
5011          // };
5012          //
5013          // void X::f() { } // ill-formed
5014          //
5015          // Complain about this problem, and attempt to suggest close
5016          // matches (e.g., those that differ only in cv-qualifiers and
5017          // whether the parameter types are references).
5018
5019          DiagnoseInvalidRedeclaration(*this, NewFD, false);
5020        }
5021
5022        // Unqualified local friend declarations are required to resolve
5023        // to something.
5024      } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
5025        DiagnoseInvalidRedeclaration(*this, NewFD, true);
5026      }
5027
5028    } else if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
5029               !isFriend && !isFunctionTemplateSpecialization &&
5030               !isExplicitSpecialization) {
5031      // An out-of-line member function declaration must also be a
5032      // definition (C++ [dcl.meaning]p1).
5033      // Note that this is not the case for explicit specializations of
5034      // function templates or member functions of class templates, per
5035      // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
5036      // for compatibility with old SWIG code which likes to generate them.
5037      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
5038        << D.getCXXScopeSpec().getRange();
5039    }
5040  }
5041
5042
5043  // Handle attributes. We need to have merged decls when handling attributes
5044  // (for example to check for conflicts, etc).
5045  // FIXME: This needs to happen before we merge declarations. Then,
5046  // let attribute merging cope with attribute conflicts.
5047  ProcessDeclAttributes(S, NewFD, D,
5048                        /*NonInheritable=*/false, /*Inheritable=*/true);
5049
5050  // attributes declared post-definition are currently ignored
5051  // FIXME: This should happen during attribute merging
5052  if (Redeclaration && Previous.isSingleResult()) {
5053    const FunctionDecl *Def;
5054    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
5055    if (PrevFD && PrevFD->isDefined(Def) && D.hasAttributes()) {
5056      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
5057      Diag(Def->getLocation(), diag::note_previous_definition);
5058    }
5059  }
5060
5061  AddKnownFunctionAttributes(NewFD);
5062
5063  if (NewFD->hasAttr<OverloadableAttr>() &&
5064      !NewFD->getType()->getAs<FunctionProtoType>()) {
5065    Diag(NewFD->getLocation(),
5066         diag::err_attribute_overloadable_no_prototype)
5067      << NewFD;
5068
5069    // Turn this into a variadic function with no parameters.
5070    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
5071    FunctionProtoType::ExtProtoInfo EPI;
5072    EPI.Variadic = true;
5073    EPI.ExtInfo = FT->getExtInfo();
5074
5075    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
5076    NewFD->setType(R);
5077  }
5078
5079  // If there's a #pragma GCC visibility in scope, and this isn't a class
5080  // member, set the visibility of this function.
5081  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
5082    AddPushedVisibilityAttribute(NewFD);
5083
5084  // If this is a locally-scoped extern C function, update the
5085  // map of such names.
5086  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
5087      && !NewFD->isInvalidDecl())
5088    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
5089
5090  // Set this FunctionDecl's range up to the right paren.
5091  NewFD->setRangeEnd(D.getSourceRange().getEnd());
5092
5093  if (getLangOptions().CPlusPlus) {
5094    if (FunctionTemplate) {
5095      if (NewFD->isInvalidDecl())
5096        FunctionTemplate->setInvalidDecl();
5097      return FunctionTemplate;
5098    }
5099  }
5100
5101  MarkUnusedFileScopedDecl(NewFD);
5102
5103  if (getLangOptions().CUDA)
5104    if (IdentifierInfo *II = NewFD->getIdentifier())
5105      if (!NewFD->isInvalidDecl() &&
5106          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5107        if (II->isStr("cudaConfigureCall")) {
5108          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
5109            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
5110
5111          Context.setcudaConfigureCallDecl(NewFD);
5112        }
5113      }
5114
5115  // Here we have an function template explicit specialization at class scope.
5116  // The actually specialization will be postponed to template instatiation
5117  // time via the ClassScopeFunctionSpecializationDecl node.
5118  if (isDependentClassScopeExplicitSpecialization) {
5119    ClassScopeFunctionSpecializationDecl *NewSpec =
5120                         ClassScopeFunctionSpecializationDecl::Create(
5121                                Context, CurContext,  SourceLocation(),
5122                                cast<CXXMethodDecl>(NewFD));
5123    CurContext->addDecl(NewSpec);
5124    AddToScope = false;
5125  }
5126
5127  return NewFD;
5128}
5129
5130/// \brief Perform semantic checking of a new function declaration.
5131///
5132/// Performs semantic analysis of the new function declaration
5133/// NewFD. This routine performs all semantic checking that does not
5134/// require the actual declarator involved in the declaration, and is
5135/// used both for the declaration of functions as they are parsed
5136/// (called via ActOnDeclarator) and for the declaration of functions
5137/// that have been instantiated via C++ template instantiation (called
5138/// via InstantiateDecl).
5139///
5140/// \param IsExplicitSpecialiation whether this new function declaration is
5141/// an explicit specialization of the previous declaration.
5142///
5143/// This sets NewFD->isInvalidDecl() to true if there was an error.
5144void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
5145                                    LookupResult &Previous,
5146                                    bool IsExplicitSpecialization,
5147                                    bool &Redeclaration) {
5148  assert(!NewFD->getResultType()->isVariablyModifiedType()
5149         && "Variably modified return types are not handled here");
5150
5151  // Check for a previous declaration of this name.
5152  if (Previous.empty() && NewFD->isExternC()) {
5153    // Since we did not find anything by this name and we're declaring
5154    // an extern "C" function, look for a non-visible extern "C"
5155    // declaration with the same name.
5156    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5157      = findLocallyScopedExternalDecl(NewFD->getDeclName());
5158    if (Pos != LocallyScopedExternalDecls.end())
5159      Previous.addDecl(Pos->second);
5160  }
5161
5162  // Merge or overload the declaration with an existing declaration of
5163  // the same name, if appropriate.
5164  if (!Previous.empty()) {
5165    // Determine whether NewFD is an overload of PrevDecl or
5166    // a declaration that requires merging. If it's an overload,
5167    // there's no more work to do here; we'll just add the new
5168    // function to the scope.
5169
5170    NamedDecl *OldDecl = 0;
5171    if (!AllowOverloadingOfFunction(Previous, Context)) {
5172      Redeclaration = true;
5173      OldDecl = Previous.getFoundDecl();
5174    } else {
5175      switch (CheckOverload(S, NewFD, Previous, OldDecl,
5176                            /*NewIsUsingDecl*/ false)) {
5177      case Ovl_Match:
5178        Redeclaration = true;
5179        break;
5180
5181      case Ovl_NonFunction:
5182        Redeclaration = true;
5183        break;
5184
5185      case Ovl_Overload:
5186        Redeclaration = false;
5187        break;
5188      }
5189
5190      if (!getLangOptions().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
5191        // If a function name is overloadable in C, then every function
5192        // with that name must be marked "overloadable".
5193        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
5194          << Redeclaration << NewFD;
5195        NamedDecl *OverloadedDecl = 0;
5196        if (Redeclaration)
5197          OverloadedDecl = OldDecl;
5198        else if (!Previous.empty())
5199          OverloadedDecl = Previous.getRepresentativeDecl();
5200        if (OverloadedDecl)
5201          Diag(OverloadedDecl->getLocation(),
5202               diag::note_attribute_overloadable_prev_overload);
5203        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
5204                                                        Context));
5205      }
5206    }
5207
5208    if (Redeclaration) {
5209      // NewFD and OldDecl represent declarations that need to be
5210      // merged.
5211      if (MergeFunctionDecl(NewFD, OldDecl))
5212        return NewFD->setInvalidDecl();
5213
5214      Previous.clear();
5215      Previous.addDecl(OldDecl);
5216
5217      if (FunctionTemplateDecl *OldTemplateDecl
5218                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
5219        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
5220        FunctionTemplateDecl *NewTemplateDecl
5221          = NewFD->getDescribedFunctionTemplate();
5222        assert(NewTemplateDecl && "Template/non-template mismatch");
5223        if (CXXMethodDecl *Method
5224              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
5225          Method->setAccess(OldTemplateDecl->getAccess());
5226          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
5227        }
5228
5229        // If this is an explicit specialization of a member that is a function
5230        // template, mark it as a member specialization.
5231        if (IsExplicitSpecialization &&
5232            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
5233          NewTemplateDecl->setMemberSpecialization();
5234          assert(OldTemplateDecl->isMemberSpecialization());
5235        }
5236      } else {
5237        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
5238          NewFD->setAccess(OldDecl->getAccess());
5239        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
5240      }
5241    }
5242  }
5243
5244  // Semantic checking for this function declaration (in isolation).
5245  if (getLangOptions().CPlusPlus) {
5246    // C++-specific checks.
5247    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
5248      CheckConstructor(Constructor);
5249    } else if (CXXDestructorDecl *Destructor =
5250                dyn_cast<CXXDestructorDecl>(NewFD)) {
5251      CXXRecordDecl *Record = Destructor->getParent();
5252      QualType ClassType = Context.getTypeDeclType(Record);
5253
5254      // FIXME: Shouldn't we be able to perform this check even when the class
5255      // type is dependent? Both gcc and edg can handle that.
5256      if (!ClassType->isDependentType()) {
5257        DeclarationName Name
5258          = Context.DeclarationNames.getCXXDestructorName(
5259                                        Context.getCanonicalType(ClassType));
5260        if (NewFD->getDeclName() != Name) {
5261          Diag(NewFD->getLocation(), diag::err_destructor_name);
5262          return NewFD->setInvalidDecl();
5263        }
5264      }
5265    } else if (CXXConversionDecl *Conversion
5266               = dyn_cast<CXXConversionDecl>(NewFD)) {
5267      ActOnConversionDeclarator(Conversion);
5268    }
5269
5270    // Find any virtual functions that this function overrides.
5271    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
5272      if (!Method->isFunctionTemplateSpecialization() &&
5273          !Method->getDescribedFunctionTemplate()) {
5274        if (AddOverriddenMethods(Method->getParent(), Method)) {
5275          // If the function was marked as "static", we have a problem.
5276          if (NewFD->getStorageClass() == SC_Static) {
5277            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
5278              << NewFD->getDeclName();
5279            for (CXXMethodDecl::method_iterator
5280                      Overridden = Method->begin_overridden_methods(),
5281                   OverriddenEnd = Method->end_overridden_methods();
5282                 Overridden != OverriddenEnd;
5283                 ++Overridden) {
5284              Diag((*Overridden)->getLocation(),
5285                   diag::note_overridden_virtual_function);
5286            }
5287          }
5288        }
5289      }
5290    }
5291
5292    // Extra checking for C++ overloaded operators (C++ [over.oper]).
5293    if (NewFD->isOverloadedOperator() &&
5294        CheckOverloadedOperatorDeclaration(NewFD))
5295      return NewFD->setInvalidDecl();
5296
5297    // Extra checking for C++0x literal operators (C++0x [over.literal]).
5298    if (NewFD->getLiteralIdentifier() &&
5299        CheckLiteralOperatorDeclaration(NewFD))
5300      return NewFD->setInvalidDecl();
5301
5302    // In C++, check default arguments now that we have merged decls. Unless
5303    // the lexical context is the class, because in this case this is done
5304    // during delayed parsing anyway.
5305    if (!CurContext->isRecord())
5306      CheckCXXDefaultArguments(NewFD);
5307
5308    // If this function declares a builtin function, check the type of this
5309    // declaration against the expected type for the builtin.
5310    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
5311      ASTContext::GetBuiltinTypeError Error;
5312      QualType T = Context.GetBuiltinType(BuiltinID, Error);
5313      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
5314        // The type of this function differs from the type of the builtin,
5315        // so forget about the builtin entirely.
5316        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
5317      }
5318    }
5319  }
5320}
5321
5322void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
5323  // C++ [basic.start.main]p3:  A program that declares main to be inline
5324  //   or static is ill-formed.
5325  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
5326  //   shall not appear in a declaration of main.
5327  // static main is not an error under C99, but we should warn about it.
5328  if (FD->getStorageClass() == SC_Static)
5329    Diag(DS.getStorageClassSpecLoc(), getLangOptions().CPlusPlus
5330         ? diag::err_static_main : diag::warn_static_main)
5331      << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
5332  if (FD->isInlineSpecified())
5333    Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
5334      << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
5335
5336  QualType T = FD->getType();
5337  assert(T->isFunctionType() && "function decl is not of function type");
5338  const FunctionType* FT = T->getAs<FunctionType>();
5339
5340  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
5341    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
5342    FD->setInvalidDecl(true);
5343  }
5344
5345  // Treat protoless main() as nullary.
5346  if (isa<FunctionNoProtoType>(FT)) return;
5347
5348  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
5349  unsigned nparams = FTP->getNumArgs();
5350  assert(FD->getNumParams() == nparams);
5351
5352  bool HasExtraParameters = (nparams > 3);
5353
5354  // Darwin passes an undocumented fourth argument of type char**.  If
5355  // other platforms start sprouting these, the logic below will start
5356  // getting shifty.
5357  if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
5358    HasExtraParameters = false;
5359
5360  if (HasExtraParameters) {
5361    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
5362    FD->setInvalidDecl(true);
5363    nparams = 3;
5364  }
5365
5366  // FIXME: a lot of the following diagnostics would be improved
5367  // if we had some location information about types.
5368
5369  QualType CharPP =
5370    Context.getPointerType(Context.getPointerType(Context.CharTy));
5371  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
5372
5373  for (unsigned i = 0; i < nparams; ++i) {
5374    QualType AT = FTP->getArgType(i);
5375
5376    bool mismatch = true;
5377
5378    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
5379      mismatch = false;
5380    else if (Expected[i] == CharPP) {
5381      // As an extension, the following forms are okay:
5382      //   char const **
5383      //   char const * const *
5384      //   char * const *
5385
5386      QualifierCollector qs;
5387      const PointerType* PT;
5388      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
5389          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
5390          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
5391        qs.removeConst();
5392        mismatch = !qs.empty();
5393      }
5394    }
5395
5396    if (mismatch) {
5397      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
5398      // TODO: suggest replacing given type with expected type
5399      FD->setInvalidDecl(true);
5400    }
5401  }
5402
5403  if (nparams == 1 && !FD->isInvalidDecl()) {
5404    Diag(FD->getLocation(), diag::warn_main_one_arg);
5405  }
5406
5407  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
5408    Diag(FD->getLocation(), diag::err_main_template_decl);
5409    FD->setInvalidDecl();
5410  }
5411}
5412
5413bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
5414  // FIXME: Need strict checking.  In C89, we need to check for
5415  // any assignment, increment, decrement, function-calls, or
5416  // commas outside of a sizeof.  In C99, it's the same list,
5417  // except that the aforementioned are allowed in unevaluated
5418  // expressions.  Everything else falls under the
5419  // "may accept other forms of constant expressions" exception.
5420  // (We never end up here for C++, so the constant expression
5421  // rules there don't matter.)
5422  if (Init->isConstantInitializer(Context, false))
5423    return false;
5424  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
5425    << Init->getSourceRange();
5426  return true;
5427}
5428
5429namespace {
5430  // Visits an initialization expression to see if OrigDecl is evaluated in
5431  // its own initialization and throws a warning if it does.
5432  class SelfReferenceChecker
5433      : public EvaluatedExprVisitor<SelfReferenceChecker> {
5434    Sema &S;
5435    Decl *OrigDecl;
5436    bool isRecordType;
5437    bool isPODType;
5438
5439  public:
5440    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
5441
5442    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
5443                                                    S(S), OrigDecl(OrigDecl) {
5444      isPODType = false;
5445      isRecordType = false;
5446      if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
5447        isPODType = VD->getType().isPODType(S.Context);
5448        isRecordType = VD->getType()->isRecordType();
5449      }
5450    }
5451
5452    void VisitExpr(Expr *E) {
5453      if (isa<ObjCMessageExpr>(*E)) return;
5454      if (isRecordType) {
5455        Expr *expr = E;
5456        if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
5457          ValueDecl *VD = ME->getMemberDecl();
5458          if (isa<EnumConstantDecl>(VD) || isa<VarDecl>(VD)) return;
5459          expr = ME->getBase();
5460        }
5461        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(expr)) {
5462          HandleDeclRefExpr(DRE);
5463          return;
5464        }
5465      }
5466      Inherited::VisitExpr(E);
5467    }
5468
5469    void VisitMemberExpr(MemberExpr *E) {
5470      if (E->getType()->canDecayToPointerType()) return;
5471      if (isa<FieldDecl>(E->getMemberDecl()))
5472        if (DeclRefExpr *DRE
5473              = dyn_cast<DeclRefExpr>(E->getBase()->IgnoreParenImpCasts())) {
5474          HandleDeclRefExpr(DRE);
5475          return;
5476        }
5477      Inherited::VisitMemberExpr(E);
5478    }
5479
5480    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
5481      if ((!isRecordType &&E->getCastKind() == CK_LValueToRValue) ||
5482          (isRecordType && E->getCastKind() == CK_NoOp)) {
5483        Expr* SubExpr = E->getSubExpr()->IgnoreParenImpCasts();
5484        if (MemberExpr *ME = dyn_cast<MemberExpr>(SubExpr))
5485          SubExpr = ME->getBase()->IgnoreParenImpCasts();
5486        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SubExpr)) {
5487          HandleDeclRefExpr(DRE);
5488          return;
5489        }
5490      }
5491      Inherited::VisitImplicitCastExpr(E);
5492    }
5493
5494    void VisitUnaryOperator(UnaryOperator *E) {
5495      // For POD record types, addresses of its own members are well-defined.
5496      if (isRecordType && isPODType) return;
5497      Inherited::VisitUnaryOperator(E);
5498    }
5499
5500    void HandleDeclRefExpr(DeclRefExpr *DRE) {
5501      Decl* ReferenceDecl = DRE->getDecl();
5502      if (OrigDecl != ReferenceDecl) return;
5503      LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
5504                          Sema::NotForRedeclaration);
5505      S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
5506                            S.PDiag(diag::warn_uninit_self_reference_in_init)
5507                              << Result.getLookupName()
5508                              << OrigDecl->getLocation()
5509                              << DRE->getSourceRange());
5510    }
5511  };
5512}
5513
5514/// CheckSelfReference - Warns if OrigDecl is used in expression E.
5515void Sema::CheckSelfReference(Decl* OrigDecl, Expr *E) {
5516  SelfReferenceChecker(*this, OrigDecl).VisitExpr(E);
5517}
5518
5519/// AddInitializerToDecl - Adds the initializer Init to the
5520/// declaration dcl. If DirectInit is true, this is C++ direct
5521/// initialization rather than copy initialization.
5522void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
5523                                bool DirectInit, bool TypeMayContainAuto) {
5524  // If there is no declaration, there was an error parsing it.  Just ignore
5525  // the initializer.
5526  if (RealDecl == 0 || RealDecl->isInvalidDecl())
5527    return;
5528
5529  // Check for self-references within variable initializers.
5530  if (VarDecl *vd = dyn_cast<VarDecl>(RealDecl)) {
5531    // Variables declared within a function/method body are handled
5532    // by a dataflow analysis.
5533    if (!vd->hasLocalStorage() && !vd->isStaticLocal())
5534      CheckSelfReference(RealDecl, Init);
5535  }
5536  else {
5537    CheckSelfReference(RealDecl, Init);
5538  }
5539
5540  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
5541    // With declarators parsed the way they are, the parser cannot
5542    // distinguish between a normal initializer and a pure-specifier.
5543    // Thus this grotesque test.
5544    IntegerLiteral *IL;
5545    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
5546        Context.getCanonicalType(IL->getType()) == Context.IntTy)
5547      CheckPureMethod(Method, Init->getSourceRange());
5548    else {
5549      Diag(Method->getLocation(), diag::err_member_function_initialization)
5550        << Method->getDeclName() << Init->getSourceRange();
5551      Method->setInvalidDecl();
5552    }
5553    return;
5554  }
5555
5556  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
5557  if (!VDecl) {
5558    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
5559    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
5560    RealDecl->setInvalidDecl();
5561    return;
5562  }
5563
5564  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
5565  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
5566    TypeSourceInfo *DeducedType = 0;
5567    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
5568      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
5569        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
5570        << Init->getSourceRange();
5571    if (!DeducedType) {
5572      RealDecl->setInvalidDecl();
5573      return;
5574    }
5575    VDecl->setTypeSourceInfo(DeducedType);
5576    VDecl->setType(DeducedType->getType());
5577
5578    // In ARC, infer lifetime.
5579    if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
5580      VDecl->setInvalidDecl();
5581
5582    // If this is a redeclaration, check that the type we just deduced matches
5583    // the previously declared type.
5584    if (VarDecl *Old = VDecl->getPreviousDeclaration())
5585      MergeVarDeclTypes(VDecl, Old);
5586  }
5587
5588
5589  // A definition must end up with a complete type, which means it must be
5590  // complete with the restriction that an array type might be completed by the
5591  // initializer; note that later code assumes this restriction.
5592  QualType BaseDeclType = VDecl->getType();
5593  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
5594    BaseDeclType = Array->getElementType();
5595  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
5596                          diag::err_typecheck_decl_incomplete_type)) {
5597    RealDecl->setInvalidDecl();
5598    return;
5599  }
5600
5601  // The variable can not have an abstract class type.
5602  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
5603                             diag::err_abstract_type_in_decl,
5604                             AbstractVariableType))
5605    VDecl->setInvalidDecl();
5606
5607  const VarDecl *Def;
5608  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
5609    Diag(VDecl->getLocation(), diag::err_redefinition)
5610      << VDecl->getDeclName();
5611    Diag(Def->getLocation(), diag::note_previous_definition);
5612    VDecl->setInvalidDecl();
5613    return;
5614  }
5615
5616  const VarDecl* PrevInit = 0;
5617  if (getLangOptions().CPlusPlus) {
5618    // C++ [class.static.data]p4
5619    //   If a static data member is of const integral or const
5620    //   enumeration type, its declaration in the class definition can
5621    //   specify a constant-initializer which shall be an integral
5622    //   constant expression (5.19). In that case, the member can appear
5623    //   in integral constant expressions. The member shall still be
5624    //   defined in a namespace scope if it is used in the program and the
5625    //   namespace scope definition shall not contain an initializer.
5626    //
5627    // We already performed a redefinition check above, but for static
5628    // data members we also need to check whether there was an in-class
5629    // declaration with an initializer.
5630    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
5631      Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
5632      Diag(PrevInit->getLocation(), diag::note_previous_definition);
5633      return;
5634    }
5635
5636    if (VDecl->hasLocalStorage())
5637      getCurFunction()->setHasBranchProtectedScope();
5638
5639    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
5640      VDecl->setInvalidDecl();
5641      return;
5642    }
5643  }
5644
5645  // Capture the variable that is being initialized and the style of
5646  // initialization.
5647  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
5648
5649  // FIXME: Poor source location information.
5650  InitializationKind Kind
5651    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
5652                                                   Init->getLocStart(),
5653                                                   Init->getLocEnd())
5654                : InitializationKind::CreateCopy(VDecl->getLocation(),
5655                                                 Init->getLocStart());
5656
5657  // Get the decls type and save a reference for later, since
5658  // CheckInitializerTypes may change it.
5659  QualType DclT = VDecl->getType(), SavT = DclT;
5660  if (VDecl->isLocalVarDecl()) {
5661    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
5662      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
5663      VDecl->setInvalidDecl();
5664    } else if (!VDecl->isInvalidDecl()) {
5665      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5666      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5667                                                MultiExprArg(*this, &Init, 1),
5668                                                &DclT);
5669      if (Result.isInvalid()) {
5670        VDecl->setInvalidDecl();
5671        return;
5672      }
5673
5674      Init = Result.takeAs<Expr>();
5675
5676      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
5677      // Don't check invalid declarations to avoid emitting useless diagnostics.
5678      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
5679        if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
5680          CheckForConstantInitializer(Init, DclT);
5681      }
5682    }
5683  } else if (VDecl->isStaticDataMember() &&
5684             VDecl->getLexicalDeclContext()->isRecord()) {
5685    // This is an in-class initialization for a static data member, e.g.,
5686    //
5687    // struct S {
5688    //   static const int value = 17;
5689    // };
5690
5691    // Try to perform the initialization regardless.
5692    if (!VDecl->isInvalidDecl()) {
5693      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5694      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5695                                          MultiExprArg(*this, &Init, 1),
5696                                          &DclT);
5697      if (Result.isInvalid()) {
5698        VDecl->setInvalidDecl();
5699        return;
5700      }
5701
5702      Init = Result.takeAs<Expr>();
5703    }
5704
5705    // C++ [class.mem]p4:
5706    //   A member-declarator can contain a constant-initializer only
5707    //   if it declares a static member (9.4) of const integral or
5708    //   const enumeration type, see 9.4.2.
5709    QualType T = VDecl->getType();
5710
5711    // Do nothing on dependent types.
5712    if (T->isDependentType()) {
5713
5714    // Require constness.
5715    } else if (!T.isConstQualified()) {
5716      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
5717        << Init->getSourceRange();
5718      VDecl->setInvalidDecl();
5719
5720    // We allow integer constant expressions in all cases.
5721    } else if (T->isIntegralOrEnumerationType()) {
5722      // Check whether the expression is a constant expression.
5723      SourceLocation Loc;
5724      if (Init->isValueDependent())
5725        ; // Nothing to check.
5726      else if (Init->isIntegerConstantExpr(Context, &Loc))
5727        ; // Ok, it's an ICE!
5728      else if (Init->isEvaluatable(Context)) {
5729        // If we can constant fold the initializer through heroics, accept it,
5730        // but report this as a use of an extension for -pedantic.
5731        Diag(Loc, diag::ext_in_class_initializer_non_constant)
5732          << Init->getSourceRange();
5733      } else {
5734        // Otherwise, this is some crazy unknown case.  Report the issue at the
5735        // location provided by the isIntegerConstantExpr failed check.
5736        Diag(Loc, diag::err_in_class_initializer_non_constant)
5737          << Init->getSourceRange();
5738        VDecl->setInvalidDecl();
5739      }
5740
5741    // We allow floating-point constants as an extension in C++03, and
5742    // C++0x has far more complicated rules that we don't really
5743    // implement fully.
5744    } else {
5745      bool Allowed = false;
5746      if (getLangOptions().CPlusPlus0x) {
5747        Allowed = T->isLiteralType();
5748      } else if (T->isFloatingType()) { // also permits complex, which is ok
5749        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
5750          << T << Init->getSourceRange();
5751        Allowed = true;
5752      }
5753
5754      if (!Allowed) {
5755        Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
5756          << T << Init->getSourceRange();
5757        VDecl->setInvalidDecl();
5758
5759      // TODO: there are probably expressions that pass here that shouldn't.
5760      } else if (!Init->isValueDependent() &&
5761                 !Init->isConstantInitializer(Context, false)) {
5762        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
5763          << Init->getSourceRange();
5764        VDecl->setInvalidDecl();
5765      }
5766    }
5767  } else if (VDecl->isFileVarDecl()) {
5768    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
5769        (!getLangOptions().CPlusPlus ||
5770         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
5771      Diag(VDecl->getLocation(), diag::warn_extern_init);
5772    if (!VDecl->isInvalidDecl()) {
5773      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5774      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5775                                                MultiExprArg(*this, &Init, 1),
5776                                                &DclT);
5777      if (Result.isInvalid()) {
5778        VDecl->setInvalidDecl();
5779        return;
5780      }
5781
5782      Init = Result.takeAs<Expr>();
5783    }
5784
5785    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
5786    // Don't check invalid declarations to avoid emitting useless diagnostics.
5787    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
5788      // C99 6.7.8p4. All file scoped initializers need to be constant.
5789      CheckForConstantInitializer(Init, DclT);
5790    }
5791  }
5792  // If the type changed, it means we had an incomplete type that was
5793  // completed by the initializer. For example:
5794  //   int ary[] = { 1, 3, 5 };
5795  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
5796  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
5797    VDecl->setType(DclT);
5798    Init->setType(DclT);
5799  }
5800
5801  // Check any implicit conversions within the expression.
5802  CheckImplicitConversions(Init, VDecl->getLocation());
5803
5804  if (!VDecl->isInvalidDecl())
5805    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
5806
5807  Init = MaybeCreateExprWithCleanups(Init);
5808  // Attach the initializer to the decl.
5809  VDecl->setInit(Init);
5810
5811  CheckCompleteVariableDeclaration(VDecl);
5812}
5813
5814/// ActOnInitializerError - Given that there was an error parsing an
5815/// initializer for the given declaration, try to return to some form
5816/// of sanity.
5817void Sema::ActOnInitializerError(Decl *D) {
5818  // Our main concern here is re-establishing invariants like "a
5819  // variable's type is either dependent or complete".
5820  if (!D || D->isInvalidDecl()) return;
5821
5822  VarDecl *VD = dyn_cast<VarDecl>(D);
5823  if (!VD) return;
5824
5825  // Auto types are meaningless if we can't make sense of the initializer.
5826  if (ParsingInitForAutoVars.count(D)) {
5827    D->setInvalidDecl();
5828    return;
5829  }
5830
5831  QualType Ty = VD->getType();
5832  if (Ty->isDependentType()) return;
5833
5834  // Require a complete type.
5835  if (RequireCompleteType(VD->getLocation(),
5836                          Context.getBaseElementType(Ty),
5837                          diag::err_typecheck_decl_incomplete_type)) {
5838    VD->setInvalidDecl();
5839    return;
5840  }
5841
5842  // Require an abstract type.
5843  if (RequireNonAbstractType(VD->getLocation(), Ty,
5844                             diag::err_abstract_type_in_decl,
5845                             AbstractVariableType)) {
5846    VD->setInvalidDecl();
5847    return;
5848  }
5849
5850  // Don't bother complaining about constructors or destructors,
5851  // though.
5852}
5853
5854void Sema::ActOnUninitializedDecl(Decl *RealDecl,
5855                                  bool TypeMayContainAuto) {
5856  // If there is no declaration, there was an error parsing it. Just ignore it.
5857  if (RealDecl == 0)
5858    return;
5859
5860  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
5861    QualType Type = Var->getType();
5862
5863    // C++0x [dcl.spec.auto]p3
5864    if (TypeMayContainAuto && Type->getContainedAutoType()) {
5865      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
5866        << Var->getDeclName() << Type;
5867      Var->setInvalidDecl();
5868      return;
5869    }
5870
5871    switch (Var->isThisDeclarationADefinition()) {
5872    case VarDecl::Definition:
5873      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
5874        break;
5875
5876      // We have an out-of-line definition of a static data member
5877      // that has an in-class initializer, so we type-check this like
5878      // a declaration.
5879      //
5880      // Fall through
5881
5882    case VarDecl::DeclarationOnly:
5883      // It's only a declaration.
5884
5885      // Block scope. C99 6.7p7: If an identifier for an object is
5886      // declared with no linkage (C99 6.2.2p6), the type for the
5887      // object shall be complete.
5888      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
5889          !Var->getLinkage() && !Var->isInvalidDecl() &&
5890          RequireCompleteType(Var->getLocation(), Type,
5891                              diag::err_typecheck_decl_incomplete_type))
5892        Var->setInvalidDecl();
5893
5894      // Make sure that the type is not abstract.
5895      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
5896          RequireNonAbstractType(Var->getLocation(), Type,
5897                                 diag::err_abstract_type_in_decl,
5898                                 AbstractVariableType))
5899        Var->setInvalidDecl();
5900      return;
5901
5902    case VarDecl::TentativeDefinition:
5903      // File scope. C99 6.9.2p2: A declaration of an identifier for an
5904      // object that has file scope without an initializer, and without a
5905      // storage-class specifier or with the storage-class specifier "static",
5906      // constitutes a tentative definition. Note: A tentative definition with
5907      // external linkage is valid (C99 6.2.2p5).
5908      if (!Var->isInvalidDecl()) {
5909        if (const IncompleteArrayType *ArrayT
5910                                    = Context.getAsIncompleteArrayType(Type)) {
5911          if (RequireCompleteType(Var->getLocation(),
5912                                  ArrayT->getElementType(),
5913                                  diag::err_illegal_decl_array_incomplete_type))
5914            Var->setInvalidDecl();
5915        } else if (Var->getStorageClass() == SC_Static) {
5916          // C99 6.9.2p3: If the declaration of an identifier for an object is
5917          // a tentative definition and has internal linkage (C99 6.2.2p3), the
5918          // declared type shall not be an incomplete type.
5919          // NOTE: code such as the following
5920          //     static struct s;
5921          //     struct s { int a; };
5922          // is accepted by gcc. Hence here we issue a warning instead of
5923          // an error and we do not invalidate the static declaration.
5924          // NOTE: to avoid multiple warnings, only check the first declaration.
5925          if (Var->getPreviousDeclaration() == 0)
5926            RequireCompleteType(Var->getLocation(), Type,
5927                                diag::ext_typecheck_decl_incomplete_type);
5928        }
5929      }
5930
5931      // Record the tentative definition; we're done.
5932      if (!Var->isInvalidDecl())
5933        TentativeDefinitions.push_back(Var);
5934      return;
5935    }
5936
5937    // Provide a specific diagnostic for uninitialized variable
5938    // definitions with incomplete array type.
5939    if (Type->isIncompleteArrayType()) {
5940      Diag(Var->getLocation(),
5941           diag::err_typecheck_incomplete_array_needs_initializer);
5942      Var->setInvalidDecl();
5943      return;
5944    }
5945
5946    // Provide a specific diagnostic for uninitialized variable
5947    // definitions with reference type.
5948    if (Type->isReferenceType()) {
5949      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
5950        << Var->getDeclName()
5951        << SourceRange(Var->getLocation(), Var->getLocation());
5952      Var->setInvalidDecl();
5953      return;
5954    }
5955
5956    // Do not attempt to type-check the default initializer for a
5957    // variable with dependent type.
5958    if (Type->isDependentType())
5959      return;
5960
5961    if (Var->isInvalidDecl())
5962      return;
5963
5964    if (RequireCompleteType(Var->getLocation(),
5965                            Context.getBaseElementType(Type),
5966                            diag::err_typecheck_decl_incomplete_type)) {
5967      Var->setInvalidDecl();
5968      return;
5969    }
5970
5971    // The variable can not have an abstract class type.
5972    if (RequireNonAbstractType(Var->getLocation(), Type,
5973                               diag::err_abstract_type_in_decl,
5974                               AbstractVariableType)) {
5975      Var->setInvalidDecl();
5976      return;
5977    }
5978
5979    // Check for jumps past the implicit initializer.  C++0x
5980    // clarifies that this applies to a "variable with automatic
5981    // storage duration", not a "local variable".
5982    // C++0x [stmt.dcl]p3
5983    //   A program that jumps from a point where a variable with automatic
5984    //   storage duration is not in scope to a point where it is in scope is
5985    //   ill-formed unless the variable has scalar type, class type with a
5986    //   trivial default constructor and a trivial destructor, a cv-qualified
5987    //   version of one of these types, or an array of one of the preceding
5988    //   types and is declared without an initializer.
5989    if (getLangOptions().CPlusPlus && Var->hasLocalStorage()) {
5990      if (const RecordType *Record
5991            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
5992        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
5993        if ((!getLangOptions().CPlusPlus0x && !CXXRecord->isPOD()) ||
5994            (getLangOptions().CPlusPlus0x &&
5995             (!CXXRecord->hasTrivialDefaultConstructor() ||
5996              !CXXRecord->hasTrivialDestructor())))
5997          getCurFunction()->setHasBranchProtectedScope();
5998      }
5999    }
6000
6001    // C++03 [dcl.init]p9:
6002    //   If no initializer is specified for an object, and the
6003    //   object is of (possibly cv-qualified) non-POD class type (or
6004    //   array thereof), the object shall be default-initialized; if
6005    //   the object is of const-qualified type, the underlying class
6006    //   type shall have a user-declared default
6007    //   constructor. Otherwise, if no initializer is specified for
6008    //   a non- static object, the object and its subobjects, if
6009    //   any, have an indeterminate initial value); if the object
6010    //   or any of its subobjects are of const-qualified type, the
6011    //   program is ill-formed.
6012    // C++0x [dcl.init]p11:
6013    //   If no initializer is specified for an object, the object is
6014    //   default-initialized; [...].
6015    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
6016    InitializationKind Kind
6017      = InitializationKind::CreateDefault(Var->getLocation());
6018
6019    InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
6020    ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
6021                                      MultiExprArg(*this, 0, 0));
6022    if (Init.isInvalid())
6023      Var->setInvalidDecl();
6024    else if (Init.get())
6025      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
6026
6027    CheckCompleteVariableDeclaration(Var);
6028  }
6029}
6030
6031void Sema::ActOnCXXForRangeDecl(Decl *D) {
6032  VarDecl *VD = dyn_cast<VarDecl>(D);
6033  if (!VD) {
6034    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
6035    D->setInvalidDecl();
6036    return;
6037  }
6038
6039  VD->setCXXForRangeDecl(true);
6040
6041  // for-range-declaration cannot be given a storage class specifier.
6042  int Error = -1;
6043  switch (VD->getStorageClassAsWritten()) {
6044  case SC_None:
6045    break;
6046  case SC_Extern:
6047    Error = 0;
6048    break;
6049  case SC_Static:
6050    Error = 1;
6051    break;
6052  case SC_PrivateExtern:
6053    Error = 2;
6054    break;
6055  case SC_Auto:
6056    Error = 3;
6057    break;
6058  case SC_Register:
6059    Error = 4;
6060    break;
6061  }
6062  // FIXME: constexpr isn't allowed here.
6063  //if (DS.isConstexprSpecified())
6064  //  Error = 5;
6065  if (Error != -1) {
6066    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
6067      << VD->getDeclName() << Error;
6068    D->setInvalidDecl();
6069  }
6070}
6071
6072void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
6073  if (var->isInvalidDecl()) return;
6074
6075  // In ARC, don't allow jumps past the implicit initialization of a
6076  // local retaining variable.
6077  if (getLangOptions().ObjCAutoRefCount &&
6078      var->hasLocalStorage()) {
6079    switch (var->getType().getObjCLifetime()) {
6080    case Qualifiers::OCL_None:
6081    case Qualifiers::OCL_ExplicitNone:
6082    case Qualifiers::OCL_Autoreleasing:
6083      break;
6084
6085    case Qualifiers::OCL_Weak:
6086    case Qualifiers::OCL_Strong:
6087      getCurFunction()->setHasBranchProtectedScope();
6088      break;
6089    }
6090  }
6091
6092  // All the following checks are C++ only.
6093  if (!getLangOptions().CPlusPlus) return;
6094
6095  QualType baseType = Context.getBaseElementType(var->getType());
6096  if (baseType->isDependentType()) return;
6097
6098  // __block variables might require us to capture a copy-initializer.
6099  if (var->hasAttr<BlocksAttr>()) {
6100    // It's currently invalid to ever have a __block variable with an
6101    // array type; should we diagnose that here?
6102
6103    // Regardless, we don't want to ignore array nesting when
6104    // constructing this copy.
6105    QualType type = var->getType();
6106
6107    if (type->isStructureOrClassType()) {
6108      SourceLocation poi = var->getLocation();
6109      Expr *varRef = new (Context) DeclRefExpr(var, type, VK_LValue, poi);
6110      ExprResult result =
6111        PerformCopyInitialization(
6112                        InitializedEntity::InitializeBlock(poi, type, false),
6113                                  poi, Owned(varRef));
6114      if (!result.isInvalid()) {
6115        result = MaybeCreateExprWithCleanups(result);
6116        Expr *init = result.takeAs<Expr>();
6117        Context.setBlockVarCopyInits(var, init);
6118      }
6119    }
6120  }
6121
6122  // Check for global constructors.
6123  if (!var->getDeclContext()->isDependentContext() &&
6124      var->hasGlobalStorage() &&
6125      !var->isStaticLocal() &&
6126      var->getInit() &&
6127      !var->getInit()->isConstantInitializer(Context,
6128                                             baseType->isReferenceType()))
6129    Diag(var->getLocation(), diag::warn_global_constructor)
6130      << var->getInit()->getSourceRange();
6131
6132  // Require the destructor.
6133  if (const RecordType *recordType = baseType->getAs<RecordType>())
6134    FinalizeVarWithDestructor(var, recordType);
6135}
6136
6137/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
6138/// any semantic actions necessary after any initializer has been attached.
6139void
6140Sema::FinalizeDeclaration(Decl *ThisDecl) {
6141  // Note that we are no longer parsing the initializer for this declaration.
6142  ParsingInitForAutoVars.erase(ThisDecl);
6143}
6144
6145Sema::DeclGroupPtrTy
6146Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
6147                              Decl **Group, unsigned NumDecls) {
6148  SmallVector<Decl*, 8> Decls;
6149
6150  if (DS.isTypeSpecOwned())
6151    Decls.push_back(DS.getRepAsDecl());
6152
6153  for (unsigned i = 0; i != NumDecls; ++i)
6154    if (Decl *D = Group[i])
6155      Decls.push_back(D);
6156
6157  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
6158                              DS.getTypeSpecType() == DeclSpec::TST_auto);
6159}
6160
6161/// BuildDeclaratorGroup - convert a list of declarations into a declaration
6162/// group, performing any necessary semantic checking.
6163Sema::DeclGroupPtrTy
6164Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
6165                           bool TypeMayContainAuto) {
6166  // C++0x [dcl.spec.auto]p7:
6167  //   If the type deduced for the template parameter U is not the same in each
6168  //   deduction, the program is ill-formed.
6169  // FIXME: When initializer-list support is added, a distinction is needed
6170  // between the deduced type U and the deduced type which 'auto' stands for.
6171  //   auto a = 0, b = { 1, 2, 3 };
6172  // is legal because the deduced type U is 'int' in both cases.
6173  if (TypeMayContainAuto && NumDecls > 1) {
6174    QualType Deduced;
6175    CanQualType DeducedCanon;
6176    VarDecl *DeducedDecl = 0;
6177    for (unsigned i = 0; i != NumDecls; ++i) {
6178      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
6179        AutoType *AT = D->getType()->getContainedAutoType();
6180        // Don't reissue diagnostics when instantiating a template.
6181        if (AT && D->isInvalidDecl())
6182          break;
6183        if (AT && AT->isDeduced()) {
6184          QualType U = AT->getDeducedType();
6185          CanQualType UCanon = Context.getCanonicalType(U);
6186          if (Deduced.isNull()) {
6187            Deduced = U;
6188            DeducedCanon = UCanon;
6189            DeducedDecl = D;
6190          } else if (DeducedCanon != UCanon) {
6191            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
6192                 diag::err_auto_different_deductions)
6193              << Deduced << DeducedDecl->getDeclName()
6194              << U << D->getDeclName()
6195              << DeducedDecl->getInit()->getSourceRange()
6196              << D->getInit()->getSourceRange();
6197            D->setInvalidDecl();
6198            break;
6199          }
6200        }
6201      }
6202    }
6203  }
6204
6205  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
6206}
6207
6208
6209/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
6210/// to introduce parameters into function prototype scope.
6211Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
6212  const DeclSpec &DS = D.getDeclSpec();
6213
6214  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
6215  VarDecl::StorageClass StorageClass = SC_None;
6216  VarDecl::StorageClass StorageClassAsWritten = SC_None;
6217  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
6218    StorageClass = SC_Register;
6219    StorageClassAsWritten = SC_Register;
6220  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
6221    Diag(DS.getStorageClassSpecLoc(),
6222         diag::err_invalid_storage_class_in_func_decl);
6223    D.getMutableDeclSpec().ClearStorageClassSpecs();
6224  }
6225
6226  if (D.getDeclSpec().isThreadSpecified())
6227    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
6228  if (D.getDeclSpec().isConstexprSpecified())
6229    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
6230      << 0;
6231
6232  DiagnoseFunctionSpecifiers(D);
6233
6234  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6235  QualType parmDeclType = TInfo->getType();
6236
6237  if (getLangOptions().CPlusPlus) {
6238    // Check that there are no default arguments inside the type of this
6239    // parameter.
6240    CheckExtraCXXDefaultArguments(D);
6241
6242    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
6243    if (D.getCXXScopeSpec().isSet()) {
6244      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
6245        << D.getCXXScopeSpec().getRange();
6246      D.getCXXScopeSpec().clear();
6247    }
6248  }
6249
6250  // Ensure we have a valid name
6251  IdentifierInfo *II = 0;
6252  if (D.hasName()) {
6253    II = D.getIdentifier();
6254    if (!II) {
6255      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
6256        << GetNameForDeclarator(D).getName().getAsString();
6257      D.setInvalidType(true);
6258    }
6259  }
6260
6261  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
6262  if (II) {
6263    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
6264                   ForRedeclaration);
6265    LookupName(R, S);
6266    if (R.isSingleResult()) {
6267      NamedDecl *PrevDecl = R.getFoundDecl();
6268      if (PrevDecl->isTemplateParameter()) {
6269        // Maybe we will complain about the shadowed template parameter.
6270        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6271        // Just pretend that we didn't see the previous declaration.
6272        PrevDecl = 0;
6273      } else if (S->isDeclScope(PrevDecl)) {
6274        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
6275        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6276
6277        // Recover by removing the name
6278        II = 0;
6279        D.SetIdentifier(0, D.getIdentifierLoc());
6280        D.setInvalidType(true);
6281      }
6282    }
6283  }
6284
6285  // Temporarily put parameter variables in the translation unit, not
6286  // the enclosing context.  This prevents them from accidentally
6287  // looking like class members in C++.
6288  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
6289                                    D.getSourceRange().getBegin(),
6290                                    D.getIdentifierLoc(), II,
6291                                    parmDeclType, TInfo,
6292                                    StorageClass, StorageClassAsWritten);
6293
6294  if (D.isInvalidType())
6295    New->setInvalidDecl();
6296
6297  assert(S->isFunctionPrototypeScope());
6298  assert(S->getFunctionPrototypeDepth() >= 1);
6299  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
6300                    S->getNextFunctionPrototypeIndex());
6301
6302  // Add the parameter declaration into this scope.
6303  S->AddDecl(New);
6304  if (II)
6305    IdResolver.AddDecl(New);
6306
6307  ProcessDeclAttributes(S, New, D);
6308
6309  if (New->hasAttr<BlocksAttr>()) {
6310    Diag(New->getLocation(), diag::err_block_on_nonlocal);
6311  }
6312  return New;
6313}
6314
6315/// \brief Synthesizes a variable for a parameter arising from a
6316/// typedef.
6317ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
6318                                              SourceLocation Loc,
6319                                              QualType T) {
6320  /* FIXME: setting StartLoc == Loc.
6321     Would it be worth to modify callers so as to provide proper source
6322     location for the unnamed parameters, embedding the parameter's type? */
6323  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
6324                                T, Context.getTrivialTypeSourceInfo(T, Loc),
6325                                           SC_None, SC_None, 0);
6326  Param->setImplicit();
6327  return Param;
6328}
6329
6330void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
6331                                    ParmVarDecl * const *ParamEnd) {
6332  // Don't diagnose unused-parameter errors in template instantiations; we
6333  // will already have done so in the template itself.
6334  if (!ActiveTemplateInstantiations.empty())
6335    return;
6336
6337  for (; Param != ParamEnd; ++Param) {
6338    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
6339        !(*Param)->hasAttr<UnusedAttr>()) {
6340      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
6341        << (*Param)->getDeclName();
6342    }
6343  }
6344}
6345
6346void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
6347                                                  ParmVarDecl * const *ParamEnd,
6348                                                  QualType ReturnTy,
6349                                                  NamedDecl *D) {
6350  if (LangOpts.NumLargeByValueCopy == 0) // No check.
6351    return;
6352
6353  // Warn if the return value is pass-by-value and larger than the specified
6354  // threshold.
6355  if (ReturnTy.isPODType(Context)) {
6356    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
6357    if (Size > LangOpts.NumLargeByValueCopy)
6358      Diag(D->getLocation(), diag::warn_return_value_size)
6359          << D->getDeclName() << Size;
6360  }
6361
6362  // Warn if any parameter is pass-by-value and larger than the specified
6363  // threshold.
6364  for (; Param != ParamEnd; ++Param) {
6365    QualType T = (*Param)->getType();
6366    if (!T.isPODType(Context))
6367      continue;
6368    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
6369    if (Size > LangOpts.NumLargeByValueCopy)
6370      Diag((*Param)->getLocation(), diag::warn_parameter_size)
6371          << (*Param)->getDeclName() << Size;
6372  }
6373}
6374
6375ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
6376                                  SourceLocation NameLoc, IdentifierInfo *Name,
6377                                  QualType T, TypeSourceInfo *TSInfo,
6378                                  VarDecl::StorageClass StorageClass,
6379                                  VarDecl::StorageClass StorageClassAsWritten) {
6380  // In ARC, infer a lifetime qualifier for appropriate parameter types.
6381  if (getLangOptions().ObjCAutoRefCount &&
6382      T.getObjCLifetime() == Qualifiers::OCL_None &&
6383      T->isObjCLifetimeType()) {
6384
6385    Qualifiers::ObjCLifetime lifetime;
6386
6387    // Special cases for arrays:
6388    //   - if it's const, use __unsafe_unretained
6389    //   - otherwise, it's an error
6390    if (T->isArrayType()) {
6391      if (!T.isConstQualified()) {
6392        Diag(NameLoc, diag::err_arc_array_param_no_ownership)
6393          << TSInfo->getTypeLoc().getSourceRange();
6394      }
6395      lifetime = Qualifiers::OCL_ExplicitNone;
6396    } else {
6397      lifetime = T->getObjCARCImplicitLifetime();
6398    }
6399    T = Context.getLifetimeQualifiedType(T, lifetime);
6400  }
6401
6402  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
6403                                         Context.getAdjustedParameterType(T),
6404                                         TSInfo,
6405                                         StorageClass, StorageClassAsWritten,
6406                                         0);
6407
6408  // Parameters can not be abstract class types.
6409  // For record types, this is done by the AbstractClassUsageDiagnoser once
6410  // the class has been completely parsed.
6411  if (!CurContext->isRecord() &&
6412      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
6413                             AbstractParamType))
6414    New->setInvalidDecl();
6415
6416  // Parameter declarators cannot be interface types. All ObjC objects are
6417  // passed by reference.
6418  if (T->isObjCObjectType()) {
6419    Diag(NameLoc,
6420         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
6421      << FixItHint::CreateInsertion(NameLoc, "*");
6422    T = Context.getObjCObjectPointerType(T);
6423    New->setType(T);
6424  }
6425
6426  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
6427  // duration shall not be qualified by an address-space qualifier."
6428  // Since all parameters have automatic store duration, they can not have
6429  // an address space.
6430  if (T.getAddressSpace() != 0) {
6431    Diag(NameLoc, diag::err_arg_with_address_space);
6432    New->setInvalidDecl();
6433  }
6434
6435  return New;
6436}
6437
6438void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
6439                                           SourceLocation LocAfterDecls) {
6440  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6441
6442  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
6443  // for a K&R function.
6444  if (!FTI.hasPrototype) {
6445    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
6446      --i;
6447      if (FTI.ArgInfo[i].Param == 0) {
6448        llvm::SmallString<256> Code;
6449        llvm::raw_svector_ostream(Code) << "  int "
6450                                        << FTI.ArgInfo[i].Ident->getName()
6451                                        << ";\n";
6452        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
6453          << FTI.ArgInfo[i].Ident
6454          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
6455
6456        // Implicitly declare the argument as type 'int' for lack of a better
6457        // type.
6458        AttributeFactory attrs;
6459        DeclSpec DS(attrs);
6460        const char* PrevSpec; // unused
6461        unsigned DiagID; // unused
6462        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
6463                           PrevSpec, DiagID);
6464        Declarator ParamD(DS, Declarator::KNRTypeListContext);
6465        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
6466        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
6467      }
6468    }
6469  }
6470}
6471
6472Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
6473                                         Declarator &D) {
6474  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
6475  assert(D.isFunctionDeclarator() && "Not a function declarator!");
6476  Scope *ParentScope = FnBodyScope->getParent();
6477
6478  Decl *DP = HandleDeclarator(ParentScope, D,
6479                              MultiTemplateParamsArg(*this),
6480                              /*IsFunctionDefinition=*/true);
6481  return ActOnStartOfFunctionDef(FnBodyScope, DP);
6482}
6483
6484static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
6485  // Don't warn about invalid declarations.
6486  if (FD->isInvalidDecl())
6487    return false;
6488
6489  // Or declarations that aren't global.
6490  if (!FD->isGlobal())
6491    return false;
6492
6493  // Don't warn about C++ member functions.
6494  if (isa<CXXMethodDecl>(FD))
6495    return false;
6496
6497  // Don't warn about 'main'.
6498  if (FD->isMain())
6499    return false;
6500
6501  // Don't warn about inline functions.
6502  if (FD->isInlined())
6503    return false;
6504
6505  // Don't warn about function templates.
6506  if (FD->getDescribedFunctionTemplate())
6507    return false;
6508
6509  // Don't warn about function template specializations.
6510  if (FD->isFunctionTemplateSpecialization())
6511    return false;
6512
6513  bool MissingPrototype = true;
6514  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
6515       Prev; Prev = Prev->getPreviousDeclaration()) {
6516    // Ignore any declarations that occur in function or method
6517    // scope, because they aren't visible from the header.
6518    if (Prev->getDeclContext()->isFunctionOrMethod())
6519      continue;
6520
6521    MissingPrototype = !Prev->getType()->isFunctionProtoType();
6522    break;
6523  }
6524
6525  return MissingPrototype;
6526}
6527
6528void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
6529  // Don't complain if we're in GNU89 mode and the previous definition
6530  // was an extern inline function.
6531  const FunctionDecl *Definition;
6532  if (FD->isDefined(Definition) &&
6533      !canRedefineFunction(Definition, getLangOptions())) {
6534    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
6535        Definition->getStorageClass() == SC_Extern)
6536      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
6537        << FD->getDeclName() << getLangOptions().CPlusPlus;
6538    else
6539      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
6540    Diag(Definition->getLocation(), diag::note_previous_definition);
6541  }
6542}
6543
6544Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
6545  // Clear the last template instantiation error context.
6546  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
6547
6548  if (!D)
6549    return D;
6550  FunctionDecl *FD = 0;
6551
6552  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
6553    FD = FunTmpl->getTemplatedDecl();
6554  else
6555    FD = cast<FunctionDecl>(D);
6556
6557  // Enter a new function scope
6558  PushFunctionScope();
6559
6560  // See if this is a redefinition.
6561  if (!FD->isLateTemplateParsed())
6562    CheckForFunctionRedefinition(FD);
6563
6564  // Builtin functions cannot be defined.
6565  if (unsigned BuiltinID = FD->getBuiltinID()) {
6566    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
6567      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
6568      FD->setInvalidDecl();
6569    }
6570  }
6571
6572  // The return type of a function definition must be complete
6573  // (C99 6.9.1p3, C++ [dcl.fct]p6).
6574  QualType ResultType = FD->getResultType();
6575  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
6576      !FD->isInvalidDecl() &&
6577      RequireCompleteType(FD->getLocation(), ResultType,
6578                          diag::err_func_def_incomplete_result))
6579    FD->setInvalidDecl();
6580
6581  // GNU warning -Wmissing-prototypes:
6582  //   Warn if a global function is defined without a previous
6583  //   prototype declaration. This warning is issued even if the
6584  //   definition itself provides a prototype. The aim is to detect
6585  //   global functions that fail to be declared in header files.
6586  if (ShouldWarnAboutMissingPrototype(FD))
6587    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
6588
6589  if (FnBodyScope)
6590    PushDeclContext(FnBodyScope, FD);
6591
6592  // Check the validity of our function parameters
6593  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
6594                           /*CheckParameterNames=*/true);
6595
6596  // Introduce our parameters into the function scope
6597  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
6598    ParmVarDecl *Param = FD->getParamDecl(p);
6599    Param->setOwningFunction(FD);
6600
6601    // If this has an identifier, add it to the scope stack.
6602    if (Param->getIdentifier() && FnBodyScope) {
6603      CheckShadow(FnBodyScope, Param);
6604
6605      PushOnScopeChains(Param, FnBodyScope);
6606    }
6607  }
6608
6609  // Checking attributes of current function definition
6610  // dllimport attribute.
6611  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
6612  if (DA && (!FD->getAttr<DLLExportAttr>())) {
6613    // dllimport attribute cannot be directly applied to definition.
6614    // Microsoft accepts dllimport for functions defined within class scope.
6615    if (!DA->isInherited() &&
6616        !(LangOpts.Microsoft && FD->getLexicalDeclContext()->isRecord())) {
6617      Diag(FD->getLocation(),
6618           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
6619        << "dllimport";
6620      FD->setInvalidDecl();
6621      return FD;
6622    }
6623
6624    // Visual C++ appears to not think this is an issue, so only issue
6625    // a warning when Microsoft extensions are disabled.
6626    if (!LangOpts.Microsoft) {
6627      // If a symbol previously declared dllimport is later defined, the
6628      // attribute is ignored in subsequent references, and a warning is
6629      // emitted.
6630      Diag(FD->getLocation(),
6631           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
6632        << FD->getName() << "dllimport";
6633    }
6634  }
6635  return FD;
6636}
6637
6638/// \brief Given the set of return statements within a function body,
6639/// compute the variables that are subject to the named return value
6640/// optimization.
6641///
6642/// Each of the variables that is subject to the named return value
6643/// optimization will be marked as NRVO variables in the AST, and any
6644/// return statement that has a marked NRVO variable as its NRVO candidate can
6645/// use the named return value optimization.
6646///
6647/// This function applies a very simplistic algorithm for NRVO: if every return
6648/// statement in the function has the same NRVO candidate, that candidate is
6649/// the NRVO variable.
6650///
6651/// FIXME: Employ a smarter algorithm that accounts for multiple return
6652/// statements and the lifetimes of the NRVO candidates. We should be able to
6653/// find a maximal set of NRVO variables.
6654void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
6655  ReturnStmt **Returns = Scope->Returns.data();
6656
6657  const VarDecl *NRVOCandidate = 0;
6658  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
6659    if (!Returns[I]->getNRVOCandidate())
6660      return;
6661
6662    if (!NRVOCandidate)
6663      NRVOCandidate = Returns[I]->getNRVOCandidate();
6664    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
6665      return;
6666  }
6667
6668  if (NRVOCandidate)
6669    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
6670}
6671
6672Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
6673  return ActOnFinishFunctionBody(D, move(BodyArg), false);
6674}
6675
6676Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
6677                                    bool IsInstantiation) {
6678  FunctionDecl *FD = 0;
6679  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
6680  if (FunTmpl)
6681    FD = FunTmpl->getTemplatedDecl();
6682  else
6683    FD = dyn_cast_or_null<FunctionDecl>(dcl);
6684
6685  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
6686  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
6687
6688  if (FD) {
6689    FD->setBody(Body);
6690    if (FD->isMain()) {
6691      // C and C++ allow for main to automagically return 0.
6692      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
6693      FD->setHasImplicitReturnZero(true);
6694      WP.disableCheckFallThrough();
6695    } else if (FD->hasAttr<NakedAttr>()) {
6696      // If the function is marked 'naked', don't complain about missing return
6697      // statements.
6698      WP.disableCheckFallThrough();
6699    }
6700
6701    // MSVC permits the use of pure specifier (=0) on function definition,
6702    // defined at class scope, warn about this non standard construct.
6703    if (getLangOptions().Microsoft && FD->isPure())
6704      Diag(FD->getLocation(), diag::warn_pure_function_definition);
6705
6706    if (!FD->isInvalidDecl()) {
6707      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
6708      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
6709                                             FD->getResultType(), FD);
6710
6711      // If this is a constructor, we need a vtable.
6712      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
6713        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
6714
6715      computeNRVO(Body, getCurFunction());
6716    }
6717
6718    assert(FD == getCurFunctionDecl() && "Function parsing confused");
6719  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
6720    assert(MD == getCurMethodDecl() && "Method parsing confused");
6721    MD->setBody(Body);
6722    if (Body)
6723      MD->setEndLoc(Body->getLocEnd());
6724    if (!MD->isInvalidDecl()) {
6725      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
6726      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
6727                                             MD->getResultType(), MD);
6728
6729      if (Body)
6730        computeNRVO(Body, getCurFunction());
6731    }
6732    if (ObjCShouldCallSuperDealloc) {
6733      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_dealloc);
6734      ObjCShouldCallSuperDealloc = false;
6735    }
6736    if (ObjCShouldCallSuperFinalize) {
6737      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_finalize);
6738      ObjCShouldCallSuperFinalize = false;
6739    }
6740  } else {
6741    return 0;
6742  }
6743
6744  assert(!ObjCShouldCallSuperDealloc && "This should only be set for "
6745         "ObjC methods, which should have been handled in the block above.");
6746  assert(!ObjCShouldCallSuperFinalize && "This should only be set for "
6747         "ObjC methods, which should have been handled in the block above.");
6748
6749  // Verify and clean out per-function state.
6750  if (Body) {
6751    // C++ constructors that have function-try-blocks can't have return
6752    // statements in the handlers of that block. (C++ [except.handle]p14)
6753    // Verify this.
6754    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
6755      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
6756
6757    // Verify that gotos and switch cases don't jump into scopes illegally.
6758    if (getCurFunction()->NeedsScopeChecking() &&
6759        !dcl->isInvalidDecl() &&
6760        !hasAnyUnrecoverableErrorsInThisFunction())
6761      DiagnoseInvalidJumps(Body);
6762
6763    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
6764      if (!Destructor->getParent()->isDependentType())
6765        CheckDestructor(Destructor);
6766
6767      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
6768                                             Destructor->getParent());
6769    }
6770
6771    // If any errors have occurred, clear out any temporaries that may have
6772    // been leftover. This ensures that these temporaries won't be picked up for
6773    // deletion in some later function.
6774    if (PP.getDiagnostics().hasErrorOccurred() ||
6775        PP.getDiagnostics().getSuppressAllDiagnostics()) {
6776      ExprTemporaries.clear();
6777      ExprNeedsCleanups = false;
6778    } else if (!isa<FunctionTemplateDecl>(dcl)) {
6779      // Since the body is valid, issue any analysis-based warnings that are
6780      // enabled.
6781      ActivePolicy = &WP;
6782    }
6783
6784    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
6785    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
6786  }
6787
6788  if (!IsInstantiation)
6789    PopDeclContext();
6790
6791  PopFunctionOrBlockScope(ActivePolicy, dcl);
6792
6793  // If any errors have occurred, clear out any temporaries that may have
6794  // been leftover. This ensures that these temporaries won't be picked up for
6795  // deletion in some later function.
6796  if (getDiagnostics().hasErrorOccurred()) {
6797    ExprTemporaries.clear();
6798    ExprNeedsCleanups = false;
6799  }
6800
6801  return dcl;
6802}
6803
6804
6805/// When we finish delayed parsing of an attribute, we must attach it to the
6806/// relevant Decl.
6807void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
6808                                       ParsedAttributes &Attrs) {
6809  ProcessDeclAttributeList(S, D, Attrs.getList());
6810}
6811
6812
6813/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
6814/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
6815NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
6816                                          IdentifierInfo &II, Scope *S) {
6817  // Before we produce a declaration for an implicitly defined
6818  // function, see whether there was a locally-scoped declaration of
6819  // this name as a function or variable. If so, use that
6820  // (non-visible) declaration, and complain about it.
6821  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
6822    = findLocallyScopedExternalDecl(&II);
6823  if (Pos != LocallyScopedExternalDecls.end()) {
6824    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
6825    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
6826    return Pos->second;
6827  }
6828
6829  // Extension in C99.  Legal in C90, but warn about it.
6830  if (II.getName().startswith("__builtin_"))
6831    Diag(Loc, diag::warn_builtin_unknown) << &II;
6832  else if (getLangOptions().C99)
6833    Diag(Loc, diag::ext_implicit_function_decl) << &II;
6834  else
6835    Diag(Loc, diag::warn_implicit_function_decl) << &II;
6836
6837  // Set a Declarator for the implicit definition: int foo();
6838  const char *Dummy;
6839  AttributeFactory attrFactory;
6840  DeclSpec DS(attrFactory);
6841  unsigned DiagID;
6842  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
6843  (void)Error; // Silence warning.
6844  assert(!Error && "Error setting up implicit decl!");
6845  Declarator D(DS, Declarator::BlockContext);
6846  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
6847                                             0, 0, true, SourceLocation(),
6848                                             SourceLocation(),
6849                                             EST_None, SourceLocation(),
6850                                             0, 0, 0, 0, Loc, Loc, D),
6851                DS.getAttributes(),
6852                SourceLocation());
6853  D.SetIdentifier(&II, Loc);
6854
6855  // Insert this function into translation-unit scope.
6856
6857  DeclContext *PrevDC = CurContext;
6858  CurContext = Context.getTranslationUnitDecl();
6859
6860  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
6861  FD->setImplicit();
6862
6863  CurContext = PrevDC;
6864
6865  AddKnownFunctionAttributes(FD);
6866
6867  return FD;
6868}
6869
6870/// \brief Adds any function attributes that we know a priori based on
6871/// the declaration of this function.
6872///
6873/// These attributes can apply both to implicitly-declared builtins
6874/// (like __builtin___printf_chk) or to library-declared functions
6875/// like NSLog or printf.
6876///
6877/// We need to check for duplicate attributes both here and where user-written
6878/// attributes are applied to declarations.
6879void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
6880  if (FD->isInvalidDecl())
6881    return;
6882
6883  // If this is a built-in function, map its builtin attributes to
6884  // actual attributes.
6885  if (unsigned BuiltinID = FD->getBuiltinID()) {
6886    // Handle printf-formatting attributes.
6887    unsigned FormatIdx;
6888    bool HasVAListArg;
6889    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
6890      if (!FD->getAttr<FormatAttr>())
6891        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6892                                                "printf", FormatIdx+1,
6893                                               HasVAListArg ? 0 : FormatIdx+2));
6894    }
6895    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
6896                                             HasVAListArg)) {
6897     if (!FD->getAttr<FormatAttr>())
6898       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6899                                              "scanf", FormatIdx+1,
6900                                              HasVAListArg ? 0 : FormatIdx+2));
6901    }
6902
6903    // Mark const if we don't care about errno and that is the only
6904    // thing preventing the function from being const. This allows
6905    // IRgen to use LLVM intrinsics for such functions.
6906    if (!getLangOptions().MathErrno &&
6907        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
6908      if (!FD->getAttr<ConstAttr>())
6909        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
6910    }
6911
6912    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
6913      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
6914    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
6915      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
6916  }
6917
6918  IdentifierInfo *Name = FD->getIdentifier();
6919  if (!Name)
6920    return;
6921  if ((!getLangOptions().CPlusPlus &&
6922       FD->getDeclContext()->isTranslationUnit()) ||
6923      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
6924       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
6925       LinkageSpecDecl::lang_c)) {
6926    // Okay: this could be a libc/libm/Objective-C function we know
6927    // about.
6928  } else
6929    return;
6930
6931  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
6932    // FIXME: NSLog and NSLogv should be target specific
6933    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
6934      // FIXME: We known better than our headers.
6935      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
6936    } else
6937      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6938                                             "printf", 1,
6939                                             Name->isStr("NSLogv") ? 0 : 2));
6940  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
6941    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
6942    // target-specific builtins, perhaps?
6943    if (!FD->getAttr<FormatAttr>())
6944      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6945                                             "printf", 2,
6946                                             Name->isStr("vasprintf") ? 0 : 3));
6947  }
6948}
6949
6950TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
6951                                    TypeSourceInfo *TInfo) {
6952  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
6953  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
6954
6955  if (!TInfo) {
6956    assert(D.isInvalidType() && "no declarator info for valid type");
6957    TInfo = Context.getTrivialTypeSourceInfo(T);
6958  }
6959
6960  // Scope manipulation handled by caller.
6961  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
6962                                           D.getSourceRange().getBegin(),
6963                                           D.getIdentifierLoc(),
6964                                           D.getIdentifier(),
6965                                           TInfo);
6966
6967  // Bail out immediately if we have an invalid declaration.
6968  if (D.isInvalidType()) {
6969    NewTD->setInvalidDecl();
6970    return NewTD;
6971  }
6972
6973  // C++ [dcl.typedef]p8:
6974  //   If the typedef declaration defines an unnamed class (or
6975  //   enum), the first typedef-name declared by the declaration
6976  //   to be that class type (or enum type) is used to denote the
6977  //   class type (or enum type) for linkage purposes only.
6978  // We need to check whether the type was declared in the declaration.
6979  switch (D.getDeclSpec().getTypeSpecType()) {
6980  case TST_enum:
6981  case TST_struct:
6982  case TST_union:
6983  case TST_class: {
6984    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
6985
6986    // Do nothing if the tag is not anonymous or already has an
6987    // associated typedef (from an earlier typedef in this decl group).
6988    if (tagFromDeclSpec->getIdentifier()) break;
6989    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
6990
6991    // A well-formed anonymous tag must always be a TUK_Definition.
6992    assert(tagFromDeclSpec->isThisDeclarationADefinition());
6993
6994    // The type must match the tag exactly;  no qualifiers allowed.
6995    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
6996      break;
6997
6998    // Otherwise, set this is the anon-decl typedef for the tag.
6999    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
7000    break;
7001  }
7002
7003  default:
7004    break;
7005  }
7006
7007  return NewTD;
7008}
7009
7010
7011/// \brief Determine whether a tag with a given kind is acceptable
7012/// as a redeclaration of the given tag declaration.
7013///
7014/// \returns true if the new tag kind is acceptable, false otherwise.
7015bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
7016                                        TagTypeKind NewTag, bool isDefinition,
7017                                        SourceLocation NewTagLoc,
7018                                        const IdentifierInfo &Name) {
7019  // C++ [dcl.type.elab]p3:
7020  //   The class-key or enum keyword present in the
7021  //   elaborated-type-specifier shall agree in kind with the
7022  //   declaration to which the name in the elaborated-type-specifier
7023  //   refers. This rule also applies to the form of
7024  //   elaborated-type-specifier that declares a class-name or
7025  //   friend class since it can be construed as referring to the
7026  //   definition of the class. Thus, in any
7027  //   elaborated-type-specifier, the enum keyword shall be used to
7028  //   refer to an enumeration (7.2), the union class-key shall be
7029  //   used to refer to a union (clause 9), and either the class or
7030  //   struct class-key shall be used to refer to a class (clause 9)
7031  //   declared using the class or struct class-key.
7032  TagTypeKind OldTag = Previous->getTagKind();
7033  if (!isDefinition || (NewTag != TTK_Class && NewTag != TTK_Struct))
7034    if (OldTag == NewTag)
7035      return true;
7036
7037  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
7038      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
7039    // Warn about the struct/class tag mismatch.
7040    bool isTemplate = false;
7041    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
7042      isTemplate = Record->getDescribedClassTemplate();
7043
7044    if (!ActiveTemplateInstantiations.empty()) {
7045      // In a template instantiation, do not offer fix-its for tag mismatches
7046      // since they usually mess up the template instead of fixing the problem.
7047      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
7048        << (NewTag == TTK_Class) << isTemplate << &Name;
7049      return true;
7050    }
7051
7052    if (isDefinition) {
7053      // On definitions, check previous tags and issue a fix-it for each
7054      // one that doesn't match the current tag.
7055      if (Previous->getDefinition()) {
7056        // Don't suggest fix-its for redefinitions.
7057        return true;
7058      }
7059
7060      bool previousMismatch = false;
7061      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
7062           E(Previous->redecls_end()); I != E; ++I) {
7063        if (I->getTagKind() != NewTag) {
7064          if (!previousMismatch) {
7065            previousMismatch = true;
7066            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
7067              << (NewTag == TTK_Class) << isTemplate << &Name;
7068          }
7069          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
7070            << (NewTag == TTK_Class)
7071            << FixItHint::CreateReplacement(I->getInnerLocStart(),
7072                                            NewTag == TTK_Class?
7073                                            "class" : "struct");
7074        }
7075      }
7076      return true;
7077    }
7078
7079    // Check for a previous definition.  If current tag and definition
7080    // are same type, do nothing.  If no definition, but disagree with
7081    // with previous tag type, give a warning, but no fix-it.
7082    const TagDecl *Redecl = Previous->getDefinition() ?
7083                            Previous->getDefinition() : Previous;
7084    if (Redecl->getTagKind() == NewTag) {
7085      return true;
7086    }
7087
7088    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
7089      << (NewTag == TTK_Class)
7090      << isTemplate << &Name;
7091    Diag(Redecl->getLocation(), diag::note_previous_use);
7092
7093    // If there is a previous defintion, suggest a fix-it.
7094    if (Previous->getDefinition()) {
7095        Diag(NewTagLoc, diag::note_struct_class_suggestion)
7096          << (Redecl->getTagKind() == TTK_Class)
7097          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
7098                        Redecl->getTagKind() == TTK_Class? "class" : "struct");
7099    }
7100
7101    return true;
7102  }
7103  return false;
7104}
7105
7106/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
7107/// former case, Name will be non-null.  In the later case, Name will be null.
7108/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
7109/// reference/declaration/definition of a tag.
7110Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
7111                     SourceLocation KWLoc, CXXScopeSpec &SS,
7112                     IdentifierInfo *Name, SourceLocation NameLoc,
7113                     AttributeList *Attr, AccessSpecifier AS,
7114                     MultiTemplateParamsArg TemplateParameterLists,
7115                     bool &OwnedDecl, bool &IsDependent,
7116                     bool ScopedEnum, bool ScopedEnumUsesClassTag,
7117                     TypeResult UnderlyingType) {
7118  // If this is not a definition, it must have a name.
7119  assert((Name != 0 || TUK == TUK_Definition) &&
7120         "Nameless record must be a definition!");
7121  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
7122
7123  OwnedDecl = false;
7124  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
7125
7126  // FIXME: Check explicit specializations more carefully.
7127  bool isExplicitSpecialization = false;
7128  bool Invalid = false;
7129
7130  // We only need to do this matching if we have template parameters
7131  // or a scope specifier, which also conveniently avoids this work
7132  // for non-C++ cases.
7133  if (TemplateParameterLists.size() > 0 ||
7134      (SS.isNotEmpty() && TUK != TUK_Reference)) {
7135    if (TemplateParameterList *TemplateParams
7136          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
7137                                                TemplateParameterLists.get(),
7138                                                TemplateParameterLists.size(),
7139                                                    TUK == TUK_Friend,
7140                                                    isExplicitSpecialization,
7141                                                    Invalid)) {
7142      if (TemplateParams->size() > 0) {
7143        // This is a declaration or definition of a class template (which may
7144        // be a member of another template).
7145
7146        if (Invalid)
7147          return 0;
7148
7149        OwnedDecl = false;
7150        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
7151                                               SS, Name, NameLoc, Attr,
7152                                               TemplateParams, AS,
7153                                           TemplateParameterLists.size() - 1,
7154                 (TemplateParameterList**) TemplateParameterLists.release());
7155        return Result.get();
7156      } else {
7157        // The "template<>" header is extraneous.
7158        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
7159          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
7160        isExplicitSpecialization = true;
7161      }
7162    }
7163  }
7164
7165  // Figure out the underlying type if this a enum declaration. We need to do
7166  // this early, because it's needed to detect if this is an incompatible
7167  // redeclaration.
7168  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
7169
7170  if (Kind == TTK_Enum) {
7171    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
7172      // No underlying type explicitly specified, or we failed to parse the
7173      // type, default to int.
7174      EnumUnderlying = Context.IntTy.getTypePtr();
7175    else if (UnderlyingType.get()) {
7176      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
7177      // integral type; any cv-qualification is ignored.
7178      TypeSourceInfo *TI = 0;
7179      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
7180      EnumUnderlying = TI;
7181
7182      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
7183
7184      if (!T->isDependentType() && !T->isIntegralType(Context)) {
7185        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
7186          << T;
7187        // Recover by falling back to int.
7188        EnumUnderlying = Context.IntTy.getTypePtr();
7189      }
7190
7191      if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI,
7192                                          UPPC_FixedUnderlyingType))
7193        EnumUnderlying = Context.IntTy.getTypePtr();
7194
7195    } else if (getLangOptions().Microsoft)
7196      // Microsoft enums are always of int type.
7197      EnumUnderlying = Context.IntTy.getTypePtr();
7198  }
7199
7200  DeclContext *SearchDC = CurContext;
7201  DeclContext *DC = CurContext;
7202  bool isStdBadAlloc = false;
7203
7204  RedeclarationKind Redecl = ForRedeclaration;
7205  if (TUK == TUK_Friend || TUK == TUK_Reference)
7206    Redecl = NotForRedeclaration;
7207
7208  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
7209
7210  if (Name && SS.isNotEmpty()) {
7211    // We have a nested-name tag ('struct foo::bar').
7212
7213    // Check for invalid 'foo::'.
7214    if (SS.isInvalid()) {
7215      Name = 0;
7216      goto CreateNewDecl;
7217    }
7218
7219    // If this is a friend or a reference to a class in a dependent
7220    // context, don't try to make a decl for it.
7221    if (TUK == TUK_Friend || TUK == TUK_Reference) {
7222      DC = computeDeclContext(SS, false);
7223      if (!DC) {
7224        IsDependent = true;
7225        return 0;
7226      }
7227    } else {
7228      DC = computeDeclContext(SS, true);
7229      if (!DC) {
7230        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
7231          << SS.getRange();
7232        return 0;
7233      }
7234    }
7235
7236    if (RequireCompleteDeclContext(SS, DC))
7237      return 0;
7238
7239    SearchDC = DC;
7240    // Look-up name inside 'foo::'.
7241    LookupQualifiedName(Previous, DC);
7242
7243    if (Previous.isAmbiguous())
7244      return 0;
7245
7246    if (Previous.empty()) {
7247      // Name lookup did not find anything. However, if the
7248      // nested-name-specifier refers to the current instantiation,
7249      // and that current instantiation has any dependent base
7250      // classes, we might find something at instantiation time: treat
7251      // this as a dependent elaborated-type-specifier.
7252      // But this only makes any sense for reference-like lookups.
7253      if (Previous.wasNotFoundInCurrentInstantiation() &&
7254          (TUK == TUK_Reference || TUK == TUK_Friend)) {
7255        IsDependent = true;
7256        return 0;
7257      }
7258
7259      // A tag 'foo::bar' must already exist.
7260      Diag(NameLoc, diag::err_not_tag_in_scope)
7261        << Kind << Name << DC << SS.getRange();
7262      Name = 0;
7263      Invalid = true;
7264      goto CreateNewDecl;
7265    }
7266  } else if (Name) {
7267    // If this is a named struct, check to see if there was a previous forward
7268    // declaration or definition.
7269    // FIXME: We're looking into outer scopes here, even when we
7270    // shouldn't be. Doing so can result in ambiguities that we
7271    // shouldn't be diagnosing.
7272    LookupName(Previous, S);
7273
7274    if (Previous.isAmbiguous() &&
7275        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
7276      LookupResult::Filter F = Previous.makeFilter();
7277      while (F.hasNext()) {
7278        NamedDecl *ND = F.next();
7279        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
7280          F.erase();
7281      }
7282      F.done();
7283    }
7284
7285    // Note:  there used to be some attempt at recovery here.
7286    if (Previous.isAmbiguous())
7287      return 0;
7288
7289    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
7290      // FIXME: This makes sure that we ignore the contexts associated
7291      // with C structs, unions, and enums when looking for a matching
7292      // tag declaration or definition. See the similar lookup tweak
7293      // in Sema::LookupName; is there a better way to deal with this?
7294      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
7295        SearchDC = SearchDC->getParent();
7296    }
7297  } else if (S->isFunctionPrototypeScope()) {
7298    // If this is an enum declaration in function prototype scope, set its
7299    // initial context to the translation unit.
7300    SearchDC = Context.getTranslationUnitDecl();
7301  }
7302
7303  if (Previous.isSingleResult() &&
7304      Previous.getFoundDecl()->isTemplateParameter()) {
7305    // Maybe we will complain about the shadowed template parameter.
7306    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
7307    // Just pretend that we didn't see the previous declaration.
7308    Previous.clear();
7309  }
7310
7311  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
7312      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
7313    // This is a declaration of or a reference to "std::bad_alloc".
7314    isStdBadAlloc = true;
7315
7316    if (Previous.empty() && StdBadAlloc) {
7317      // std::bad_alloc has been implicitly declared (but made invisible to
7318      // name lookup). Fill in this implicit declaration as the previous
7319      // declaration, so that the declarations get chained appropriately.
7320      Previous.addDecl(getStdBadAlloc());
7321    }
7322  }
7323
7324  // If we didn't find a previous declaration, and this is a reference
7325  // (or friend reference), move to the correct scope.  In C++, we
7326  // also need to do a redeclaration lookup there, just in case
7327  // there's a shadow friend decl.
7328  if (Name && Previous.empty() &&
7329      (TUK == TUK_Reference || TUK == TUK_Friend)) {
7330    if (Invalid) goto CreateNewDecl;
7331    assert(SS.isEmpty());
7332
7333    if (TUK == TUK_Reference) {
7334      // C++ [basic.scope.pdecl]p5:
7335      //   -- for an elaborated-type-specifier of the form
7336      //
7337      //          class-key identifier
7338      //
7339      //      if the elaborated-type-specifier is used in the
7340      //      decl-specifier-seq or parameter-declaration-clause of a
7341      //      function defined in namespace scope, the identifier is
7342      //      declared as a class-name in the namespace that contains
7343      //      the declaration; otherwise, except as a friend
7344      //      declaration, the identifier is declared in the smallest
7345      //      non-class, non-function-prototype scope that contains the
7346      //      declaration.
7347      //
7348      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
7349      // C structs and unions.
7350      //
7351      // It is an error in C++ to declare (rather than define) an enum
7352      // type, including via an elaborated type specifier.  We'll
7353      // diagnose that later; for now, declare the enum in the same
7354      // scope as we would have picked for any other tag type.
7355      //
7356      // GNU C also supports this behavior as part of its incomplete
7357      // enum types extension, while GNU C++ does not.
7358      //
7359      // Find the context where we'll be declaring the tag.
7360      // FIXME: We would like to maintain the current DeclContext as the
7361      // lexical context,
7362      while (SearchDC->isRecord() || SearchDC->isTransparentContext())
7363        SearchDC = SearchDC->getParent();
7364
7365      // Find the scope where we'll be declaring the tag.
7366      while (S->isClassScope() ||
7367             (getLangOptions().CPlusPlus &&
7368              S->isFunctionPrototypeScope()) ||
7369             ((S->getFlags() & Scope::DeclScope) == 0) ||
7370             (S->getEntity() &&
7371              ((DeclContext *)S->getEntity())->isTransparentContext()))
7372        S = S->getParent();
7373    } else {
7374      assert(TUK == TUK_Friend);
7375      // C++ [namespace.memdef]p3:
7376      //   If a friend declaration in a non-local class first declares a
7377      //   class or function, the friend class or function is a member of
7378      //   the innermost enclosing namespace.
7379      SearchDC = SearchDC->getEnclosingNamespaceContext();
7380    }
7381
7382    // In C++, we need to do a redeclaration lookup to properly
7383    // diagnose some problems.
7384    if (getLangOptions().CPlusPlus) {
7385      Previous.setRedeclarationKind(ForRedeclaration);
7386      LookupQualifiedName(Previous, SearchDC);
7387    }
7388  }
7389
7390  if (!Previous.empty()) {
7391    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
7392
7393    // It's okay to have a tag decl in the same scope as a typedef
7394    // which hides a tag decl in the same scope.  Finding this
7395    // insanity with a redeclaration lookup can only actually happen
7396    // in C++.
7397    //
7398    // This is also okay for elaborated-type-specifiers, which is
7399    // technically forbidden by the current standard but which is
7400    // okay according to the likely resolution of an open issue;
7401    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
7402    if (getLangOptions().CPlusPlus) {
7403      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
7404        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
7405          TagDecl *Tag = TT->getDecl();
7406          if (Tag->getDeclName() == Name &&
7407              Tag->getDeclContext()->getRedeclContext()
7408                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
7409            PrevDecl = Tag;
7410            Previous.clear();
7411            Previous.addDecl(Tag);
7412            Previous.resolveKind();
7413          }
7414        }
7415      }
7416    }
7417
7418    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
7419      // If this is a use of a previous tag, or if the tag is already declared
7420      // in the same scope (so that the definition/declaration completes or
7421      // rementions the tag), reuse the decl.
7422      if (TUK == TUK_Reference || TUK == TUK_Friend ||
7423          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
7424        // Make sure that this wasn't declared as an enum and now used as a
7425        // struct or something similar.
7426        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
7427                                          TUK == TUK_Definition, KWLoc,
7428                                          *Name)) {
7429          bool SafeToContinue
7430            = (PrevTagDecl->getTagKind() != TTK_Enum &&
7431               Kind != TTK_Enum);
7432          if (SafeToContinue)
7433            Diag(KWLoc, diag::err_use_with_wrong_tag)
7434              << Name
7435              << FixItHint::CreateReplacement(SourceRange(KWLoc),
7436                                              PrevTagDecl->getKindName());
7437          else
7438            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
7439          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7440
7441          if (SafeToContinue)
7442            Kind = PrevTagDecl->getTagKind();
7443          else {
7444            // Recover by making this an anonymous redefinition.
7445            Name = 0;
7446            Previous.clear();
7447            Invalid = true;
7448          }
7449        }
7450
7451        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
7452          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
7453
7454          // All conflicts with previous declarations are recovered by
7455          // returning the previous declaration.
7456          if (ScopedEnum != PrevEnum->isScoped()) {
7457            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
7458              << PrevEnum->isScoped();
7459            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7460            return PrevTagDecl;
7461          }
7462          else if (EnumUnderlying && PrevEnum->isFixed()) {
7463            QualType T;
7464            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
7465                T = TI->getType();
7466            else
7467                T = QualType(EnumUnderlying.get<const Type*>(), 0);
7468
7469            if (!Context.hasSameUnqualifiedType(T, PrevEnum->getIntegerType())) {
7470              Diag(NameLoc.isValid() ? NameLoc : KWLoc,
7471                   diag::err_enum_redeclare_type_mismatch)
7472                << T
7473                << PrevEnum->getIntegerType();
7474              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7475              return PrevTagDecl;
7476            }
7477          }
7478          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
7479            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
7480              << PrevEnum->isFixed();
7481            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7482            return PrevTagDecl;
7483          }
7484        }
7485
7486        if (!Invalid) {
7487          // If this is a use, just return the declaration we found.
7488
7489          // FIXME: In the future, return a variant or some other clue
7490          // for the consumer of this Decl to know it doesn't own it.
7491          // For our current ASTs this shouldn't be a problem, but will
7492          // need to be changed with DeclGroups.
7493          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
7494               getLangOptions().Microsoft)) || TUK == TUK_Friend)
7495            return PrevTagDecl;
7496
7497          // Diagnose attempts to redefine a tag.
7498          if (TUK == TUK_Definition) {
7499            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
7500              // If we're defining a specialization and the previous definition
7501              // is from an implicit instantiation, don't emit an error
7502              // here; we'll catch this in the general case below.
7503              if (!isExplicitSpecialization ||
7504                  !isa<CXXRecordDecl>(Def) ||
7505                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
7506                                               == TSK_ExplicitSpecialization) {
7507                Diag(NameLoc, diag::err_redefinition) << Name;
7508                Diag(Def->getLocation(), diag::note_previous_definition);
7509                // If this is a redefinition, recover by making this
7510                // struct be anonymous, which will make any later
7511                // references get the previous definition.
7512                Name = 0;
7513                Previous.clear();
7514                Invalid = true;
7515              }
7516            } else {
7517              // If the type is currently being defined, complain
7518              // about a nested redefinition.
7519              const TagType *Tag
7520                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
7521              if (Tag->isBeingDefined()) {
7522                Diag(NameLoc, diag::err_nested_redefinition) << Name;
7523                Diag(PrevTagDecl->getLocation(),
7524                     diag::note_previous_definition);
7525                Name = 0;
7526                Previous.clear();
7527                Invalid = true;
7528              }
7529            }
7530
7531            // Okay, this is definition of a previously declared or referenced
7532            // tag PrevDecl. We're going to create a new Decl for it.
7533          }
7534        }
7535        // If we get here we have (another) forward declaration or we
7536        // have a definition.  Just create a new decl.
7537
7538      } else {
7539        // If we get here, this is a definition of a new tag type in a nested
7540        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
7541        // new decl/type.  We set PrevDecl to NULL so that the entities
7542        // have distinct types.
7543        Previous.clear();
7544      }
7545      // If we get here, we're going to create a new Decl. If PrevDecl
7546      // is non-NULL, it's a definition of the tag declared by
7547      // PrevDecl. If it's NULL, we have a new definition.
7548
7549
7550    // Otherwise, PrevDecl is not a tag, but was found with tag
7551    // lookup.  This is only actually possible in C++, where a few
7552    // things like templates still live in the tag namespace.
7553    } else {
7554      assert(getLangOptions().CPlusPlus);
7555
7556      // Use a better diagnostic if an elaborated-type-specifier
7557      // found the wrong kind of type on the first
7558      // (non-redeclaration) lookup.
7559      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
7560          !Previous.isForRedeclaration()) {
7561        unsigned Kind = 0;
7562        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
7563        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
7564        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
7565        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
7566        Diag(PrevDecl->getLocation(), diag::note_declared_at);
7567        Invalid = true;
7568
7569      // Otherwise, only diagnose if the declaration is in scope.
7570      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
7571                                isExplicitSpecialization)) {
7572        // do nothing
7573
7574      // Diagnose implicit declarations introduced by elaborated types.
7575      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
7576        unsigned Kind = 0;
7577        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
7578        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
7579        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
7580        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
7581        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
7582        Invalid = true;
7583
7584      // Otherwise it's a declaration.  Call out a particularly common
7585      // case here.
7586      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
7587        unsigned Kind = 0;
7588        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
7589        Diag(NameLoc, diag::err_tag_definition_of_typedef)
7590          << Name << Kind << TND->getUnderlyingType();
7591        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
7592        Invalid = true;
7593
7594      // Otherwise, diagnose.
7595      } else {
7596        // The tag name clashes with something else in the target scope,
7597        // issue an error and recover by making this tag be anonymous.
7598        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
7599        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7600        Name = 0;
7601        Invalid = true;
7602      }
7603
7604      // The existing declaration isn't relevant to us; we're in a
7605      // new scope, so clear out the previous declaration.
7606      Previous.clear();
7607    }
7608  }
7609
7610CreateNewDecl:
7611
7612  TagDecl *PrevDecl = 0;
7613  if (Previous.isSingleResult())
7614    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
7615
7616  // If there is an identifier, use the location of the identifier as the
7617  // location of the decl, otherwise use the location of the struct/union
7618  // keyword.
7619  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
7620
7621  // Otherwise, create a new declaration. If there is a previous
7622  // declaration of the same entity, the two will be linked via
7623  // PrevDecl.
7624  TagDecl *New;
7625
7626  bool IsForwardReference = false;
7627  if (Kind == TTK_Enum) {
7628    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
7629    // enum X { A, B, C } D;    D should chain to X.
7630    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
7631                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
7632                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
7633    // If this is an undefined enum, warn.
7634    if (TUK != TUK_Definition && !Invalid) {
7635      TagDecl *Def;
7636      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
7637        // C++0x: 7.2p2: opaque-enum-declaration.
7638        // Conflicts are diagnosed above. Do nothing.
7639      }
7640      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
7641        Diag(Loc, diag::ext_forward_ref_enum_def)
7642          << New;
7643        Diag(Def->getLocation(), diag::note_previous_definition);
7644      } else {
7645        unsigned DiagID = diag::ext_forward_ref_enum;
7646        if (getLangOptions().Microsoft)
7647          DiagID = diag::ext_ms_forward_ref_enum;
7648        else if (getLangOptions().CPlusPlus)
7649          DiagID = diag::err_forward_ref_enum;
7650        Diag(Loc, DiagID);
7651
7652        // If this is a forward-declared reference to an enumeration, make a
7653        // note of it; we won't actually be introducing the declaration into
7654        // the declaration context.
7655        if (TUK == TUK_Reference)
7656          IsForwardReference = true;
7657      }
7658    }
7659
7660    if (EnumUnderlying) {
7661      EnumDecl *ED = cast<EnumDecl>(New);
7662      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
7663        ED->setIntegerTypeSourceInfo(TI);
7664      else
7665        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
7666      ED->setPromotionType(ED->getIntegerType());
7667    }
7668
7669  } else {
7670    // struct/union/class
7671
7672    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
7673    // struct X { int A; } D;    D should chain to X.
7674    if (getLangOptions().CPlusPlus) {
7675      // FIXME: Look for a way to use RecordDecl for simple structs.
7676      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
7677                                  cast_or_null<CXXRecordDecl>(PrevDecl));
7678
7679      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
7680        StdBadAlloc = cast<CXXRecordDecl>(New);
7681    } else
7682      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
7683                               cast_or_null<RecordDecl>(PrevDecl));
7684  }
7685
7686  // Maybe add qualifier info.
7687  if (SS.isNotEmpty()) {
7688    if (SS.isSet()) {
7689      New->setQualifierInfo(SS.getWithLocInContext(Context));
7690      if (TemplateParameterLists.size() > 0) {
7691        New->setTemplateParameterListsInfo(Context,
7692                                           TemplateParameterLists.size(),
7693                    (TemplateParameterList**) TemplateParameterLists.release());
7694      }
7695    }
7696    else
7697      Invalid = true;
7698  }
7699
7700  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
7701    // Add alignment attributes if necessary; these attributes are checked when
7702    // the ASTContext lays out the structure.
7703    //
7704    // It is important for implementing the correct semantics that this
7705    // happen here (in act on tag decl). The #pragma pack stack is
7706    // maintained as a result of parser callbacks which can occur at
7707    // many points during the parsing of a struct declaration (because
7708    // the #pragma tokens are effectively skipped over during the
7709    // parsing of the struct).
7710    AddAlignmentAttributesForRecord(RD);
7711
7712    AddMsStructLayoutForRecord(RD);
7713  }
7714
7715  // If this is a specialization of a member class (of a class template),
7716  // check the specialization.
7717  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
7718    Invalid = true;
7719
7720  if (Invalid)
7721    New->setInvalidDecl();
7722
7723  if (Attr)
7724    ProcessDeclAttributeList(S, New, Attr);
7725
7726  // If we're declaring or defining a tag in function prototype scope
7727  // in C, note that this type can only be used within the function.
7728  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
7729    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
7730
7731  // Set the lexical context. If the tag has a C++ scope specifier, the
7732  // lexical context will be different from the semantic context.
7733  New->setLexicalDeclContext(CurContext);
7734
7735  // Mark this as a friend decl if applicable.
7736  // In Microsoft mode, a friend declaration also acts as a forward
7737  // declaration so we always pass true to setObjectOfFriendDecl to make
7738  // the tag name visible.
7739  if (TUK == TUK_Friend)
7740    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
7741                               getLangOptions().Microsoft);
7742
7743  // Set the access specifier.
7744  if (!Invalid && SearchDC->isRecord())
7745    SetMemberAccessSpecifier(New, PrevDecl, AS);
7746
7747  if (TUK == TUK_Definition)
7748    New->startDefinition();
7749
7750  // If this has an identifier, add it to the scope stack.
7751  if (TUK == TUK_Friend) {
7752    // We might be replacing an existing declaration in the lookup tables;
7753    // if so, borrow its access specifier.
7754    if (PrevDecl)
7755      New->setAccess(PrevDecl->getAccess());
7756
7757    DeclContext *DC = New->getDeclContext()->getRedeclContext();
7758    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
7759    if (Name) // can be null along some error paths
7760      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
7761        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
7762  } else if (Name) {
7763    S = getNonFieldDeclScope(S);
7764    PushOnScopeChains(New, S, !IsForwardReference);
7765    if (IsForwardReference)
7766      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
7767
7768  } else {
7769    CurContext->addDecl(New);
7770  }
7771
7772  // If this is the C FILE type, notify the AST context.
7773  if (IdentifierInfo *II = New->getIdentifier())
7774    if (!New->isInvalidDecl() &&
7775        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
7776        II->isStr("FILE"))
7777      Context.setFILEDecl(New);
7778
7779  OwnedDecl = true;
7780  return New;
7781}
7782
7783void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
7784  AdjustDeclIfTemplate(TagD);
7785  TagDecl *Tag = cast<TagDecl>(TagD);
7786
7787  // Enter the tag context.
7788  PushDeclContext(S, Tag);
7789}
7790
7791void Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
7792  assert(isa<ObjCContainerDecl>(IDecl) &&
7793         "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
7794  DeclContext *OCD = cast<DeclContext>(IDecl);
7795  assert(getContainingDC(OCD) == CurContext &&
7796      "The next DeclContext should be lexically contained in the current one.");
7797  CurContext = OCD;
7798}
7799
7800void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
7801                                           SourceLocation FinalLoc,
7802                                           SourceLocation LBraceLoc) {
7803  AdjustDeclIfTemplate(TagD);
7804  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
7805
7806  FieldCollector->StartClass();
7807
7808  if (!Record->getIdentifier())
7809    return;
7810
7811  if (FinalLoc.isValid())
7812    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
7813
7814  // C++ [class]p2:
7815  //   [...] The class-name is also inserted into the scope of the
7816  //   class itself; this is known as the injected-class-name. For
7817  //   purposes of access checking, the injected-class-name is treated
7818  //   as if it were a public member name.
7819  CXXRecordDecl *InjectedClassName
7820    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
7821                            Record->getLocStart(), Record->getLocation(),
7822                            Record->getIdentifier(),
7823                            /*PrevDecl=*/0,
7824                            /*DelayTypeCreation=*/true);
7825  Context.getTypeDeclType(InjectedClassName, Record);
7826  InjectedClassName->setImplicit();
7827  InjectedClassName->setAccess(AS_public);
7828  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
7829      InjectedClassName->setDescribedClassTemplate(Template);
7830  PushOnScopeChains(InjectedClassName, S);
7831  assert(InjectedClassName->isInjectedClassName() &&
7832         "Broken injected-class-name");
7833}
7834
7835void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
7836                                    SourceLocation RBraceLoc) {
7837  AdjustDeclIfTemplate(TagD);
7838  TagDecl *Tag = cast<TagDecl>(TagD);
7839  Tag->setRBraceLoc(RBraceLoc);
7840
7841  if (isa<CXXRecordDecl>(Tag))
7842    FieldCollector->FinishClass();
7843
7844  // Exit this scope of this tag's definition.
7845  PopDeclContext();
7846
7847  // Notify the consumer that we've defined a tag.
7848  Consumer.HandleTagDeclDefinition(Tag);
7849}
7850
7851void Sema::ActOnObjCContainerFinishDefinition() {
7852  // Exit this scope of this interface definition.
7853  PopDeclContext();
7854}
7855
7856void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
7857  AdjustDeclIfTemplate(TagD);
7858  TagDecl *Tag = cast<TagDecl>(TagD);
7859  Tag->setInvalidDecl();
7860
7861  // We're undoing ActOnTagStartDefinition here, not
7862  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
7863  // the FieldCollector.
7864
7865  PopDeclContext();
7866}
7867
7868// Note that FieldName may be null for anonymous bitfields.
7869bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
7870                          QualType FieldTy, const Expr *BitWidth,
7871                          bool *ZeroWidth) {
7872  // Default to true; that shouldn't confuse checks for emptiness
7873  if (ZeroWidth)
7874    *ZeroWidth = true;
7875
7876  // C99 6.7.2.1p4 - verify the field type.
7877  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
7878  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
7879    // Handle incomplete types with specific error.
7880    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
7881      return true;
7882    if (FieldName)
7883      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
7884        << FieldName << FieldTy << BitWidth->getSourceRange();
7885    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
7886      << FieldTy << BitWidth->getSourceRange();
7887  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
7888                                             UPPC_BitFieldWidth))
7889    return true;
7890
7891  // If the bit-width is type- or value-dependent, don't try to check
7892  // it now.
7893  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
7894    return false;
7895
7896  llvm::APSInt Value;
7897  if (VerifyIntegerConstantExpression(BitWidth, &Value))
7898    return true;
7899
7900  if (Value != 0 && ZeroWidth)
7901    *ZeroWidth = false;
7902
7903  // Zero-width bitfield is ok for anonymous field.
7904  if (Value == 0 && FieldName)
7905    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
7906
7907  if (Value.isSigned() && Value.isNegative()) {
7908    if (FieldName)
7909      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
7910               << FieldName << Value.toString(10);
7911    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
7912      << Value.toString(10);
7913  }
7914
7915  if (!FieldTy->isDependentType()) {
7916    uint64_t TypeSize = Context.getTypeSize(FieldTy);
7917    if (Value.getZExtValue() > TypeSize) {
7918      if (!getLangOptions().CPlusPlus) {
7919        if (FieldName)
7920          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
7921            << FieldName << (unsigned)Value.getZExtValue()
7922            << (unsigned)TypeSize;
7923
7924        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
7925          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
7926      }
7927
7928      if (FieldName)
7929        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
7930          << FieldName << (unsigned)Value.getZExtValue()
7931          << (unsigned)TypeSize;
7932      else
7933        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
7934          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
7935    }
7936  }
7937
7938  return false;
7939}
7940
7941/// ActOnField - Each field of a C struct/union is passed into this in order
7942/// to create a FieldDecl object for it.
7943Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
7944                       Declarator &D, ExprTy *BitfieldWidth) {
7945  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
7946                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
7947                               /*HasInit=*/false, AS_public);
7948  return Res;
7949}
7950
7951/// HandleField - Analyze a field of a C struct or a C++ data member.
7952///
7953FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
7954                             SourceLocation DeclStart,
7955                             Declarator &D, Expr *BitWidth, bool HasInit,
7956                             AccessSpecifier AS) {
7957  IdentifierInfo *II = D.getIdentifier();
7958  SourceLocation Loc = DeclStart;
7959  if (II) Loc = D.getIdentifierLoc();
7960
7961  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7962  QualType T = TInfo->getType();
7963  if (getLangOptions().CPlusPlus) {
7964    CheckExtraCXXDefaultArguments(D);
7965
7966    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
7967                                        UPPC_DataMemberType)) {
7968      D.setInvalidType();
7969      T = Context.IntTy;
7970      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
7971    }
7972  }
7973
7974  DiagnoseFunctionSpecifiers(D);
7975
7976  if (D.getDeclSpec().isThreadSpecified())
7977    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
7978  if (D.getDeclSpec().isConstexprSpecified())
7979    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
7980      << 2;
7981
7982  // Check to see if this name was declared as a member previously
7983  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
7984  LookupName(Previous, S);
7985  assert((Previous.empty() || Previous.isOverloadedResult() ||
7986          Previous.isSingleResult())
7987    && "Lookup of member name should be either overloaded, single or null");
7988
7989  // If the name is overloaded then get any declaration else get the single result
7990  NamedDecl *PrevDecl = Previous.isOverloadedResult() ?
7991    Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>();
7992
7993  if (PrevDecl && PrevDecl->isTemplateParameter()) {
7994    // Maybe we will complain about the shadowed template parameter.
7995    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
7996    // Just pretend that we didn't see the previous declaration.
7997    PrevDecl = 0;
7998  }
7999
8000  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
8001    PrevDecl = 0;
8002
8003  bool Mutable
8004    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
8005  SourceLocation TSSL = D.getSourceRange().getBegin();
8006  FieldDecl *NewFD
8007    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, HasInit,
8008                     TSSL, AS, PrevDecl, &D);
8009
8010  if (NewFD->isInvalidDecl())
8011    Record->setInvalidDecl();
8012
8013  if (NewFD->isInvalidDecl() && PrevDecl) {
8014    // Don't introduce NewFD into scope; there's already something
8015    // with the same name in the same scope.
8016  } else if (II) {
8017    PushOnScopeChains(NewFD, S);
8018  } else
8019    Record->addDecl(NewFD);
8020
8021  return NewFD;
8022}
8023
8024/// \brief Build a new FieldDecl and check its well-formedness.
8025///
8026/// This routine builds a new FieldDecl given the fields name, type,
8027/// record, etc. \p PrevDecl should refer to any previous declaration
8028/// with the same name and in the same scope as the field to be
8029/// created.
8030///
8031/// \returns a new FieldDecl.
8032///
8033/// \todo The Declarator argument is a hack. It will be removed once
8034FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
8035                                TypeSourceInfo *TInfo,
8036                                RecordDecl *Record, SourceLocation Loc,
8037                                bool Mutable, Expr *BitWidth, bool HasInit,
8038                                SourceLocation TSSL,
8039                                AccessSpecifier AS, NamedDecl *PrevDecl,
8040                                Declarator *D) {
8041  IdentifierInfo *II = Name.getAsIdentifierInfo();
8042  bool InvalidDecl = false;
8043  if (D) InvalidDecl = D->isInvalidType();
8044
8045  // If we receive a broken type, recover by assuming 'int' and
8046  // marking this declaration as invalid.
8047  if (T.isNull()) {
8048    InvalidDecl = true;
8049    T = Context.IntTy;
8050  }
8051
8052  QualType EltTy = Context.getBaseElementType(T);
8053  if (!EltTy->isDependentType() &&
8054      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
8055    // Fields of incomplete type force their record to be invalid.
8056    Record->setInvalidDecl();
8057    InvalidDecl = true;
8058  }
8059
8060  // C99 6.7.2.1p8: A member of a structure or union may have any type other
8061  // than a variably modified type.
8062  if (!InvalidDecl && T->isVariablyModifiedType()) {
8063    bool SizeIsNegative;
8064    llvm::APSInt Oversized;
8065    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
8066                                                           SizeIsNegative,
8067                                                           Oversized);
8068    if (!FixedTy.isNull()) {
8069      Diag(Loc, diag::warn_illegal_constant_array_size);
8070      T = FixedTy;
8071    } else {
8072      if (SizeIsNegative)
8073        Diag(Loc, diag::err_typecheck_negative_array_size);
8074      else if (Oversized.getBoolValue())
8075        Diag(Loc, diag::err_array_too_large)
8076          << Oversized.toString(10);
8077      else
8078        Diag(Loc, diag::err_typecheck_field_variable_size);
8079      InvalidDecl = true;
8080    }
8081  }
8082
8083  // Fields can not have abstract class types
8084  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
8085                                             diag::err_abstract_type_in_decl,
8086                                             AbstractFieldType))
8087    InvalidDecl = true;
8088
8089  bool ZeroWidth = false;
8090  // If this is declared as a bit-field, check the bit-field.
8091  if (!InvalidDecl && BitWidth &&
8092      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
8093    InvalidDecl = true;
8094    BitWidth = 0;
8095    ZeroWidth = false;
8096  }
8097
8098  // Check that 'mutable' is consistent with the type of the declaration.
8099  if (!InvalidDecl && Mutable) {
8100    unsigned DiagID = 0;
8101    if (T->isReferenceType())
8102      DiagID = diag::err_mutable_reference;
8103    else if (T.isConstQualified())
8104      DiagID = diag::err_mutable_const;
8105
8106    if (DiagID) {
8107      SourceLocation ErrLoc = Loc;
8108      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
8109        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
8110      Diag(ErrLoc, DiagID);
8111      Mutable = false;
8112      InvalidDecl = true;
8113    }
8114  }
8115
8116  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
8117                                       BitWidth, Mutable, HasInit);
8118  if (InvalidDecl)
8119    NewFD->setInvalidDecl();
8120
8121  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
8122    Diag(Loc, diag::err_duplicate_member) << II;
8123    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8124    NewFD->setInvalidDecl();
8125  }
8126
8127  if (!InvalidDecl && getLangOptions().CPlusPlus) {
8128    if (Record->isUnion()) {
8129      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
8130        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
8131        if (RDecl->getDefinition()) {
8132          // C++ [class.union]p1: An object of a class with a non-trivial
8133          // constructor, a non-trivial copy constructor, a non-trivial
8134          // destructor, or a non-trivial copy assignment operator
8135          // cannot be a member of a union, nor can an array of such
8136          // objects.
8137          if (!getLangOptions().CPlusPlus0x && CheckNontrivialField(NewFD))
8138            NewFD->setInvalidDecl();
8139        }
8140      }
8141
8142      // C++ [class.union]p1: If a union contains a member of reference type,
8143      // the program is ill-formed.
8144      if (EltTy->isReferenceType()) {
8145        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
8146          << NewFD->getDeclName() << EltTy;
8147        NewFD->setInvalidDecl();
8148      }
8149    }
8150  }
8151
8152  // FIXME: We need to pass in the attributes given an AST
8153  // representation, not a parser representation.
8154  if (D)
8155    // FIXME: What to pass instead of TUScope?
8156    ProcessDeclAttributes(TUScope, NewFD, *D);
8157
8158  // In auto-retain/release, infer strong retension for fields of
8159  // retainable type.
8160  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
8161    NewFD->setInvalidDecl();
8162
8163  if (T.isObjCGCWeak())
8164    Diag(Loc, diag::warn_attribute_weak_on_field);
8165
8166  NewFD->setAccess(AS);
8167  return NewFD;
8168}
8169
8170bool Sema::CheckNontrivialField(FieldDecl *FD) {
8171  assert(FD);
8172  assert(getLangOptions().CPlusPlus && "valid check only for C++");
8173
8174  if (FD->isInvalidDecl())
8175    return true;
8176
8177  QualType EltTy = Context.getBaseElementType(FD->getType());
8178  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
8179    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
8180    if (RDecl->getDefinition()) {
8181      // We check for copy constructors before constructors
8182      // because otherwise we'll never get complaints about
8183      // copy constructors.
8184
8185      CXXSpecialMember member = CXXInvalid;
8186      if (!RDecl->hasTrivialCopyConstructor())
8187        member = CXXCopyConstructor;
8188      else if (!RDecl->hasTrivialDefaultConstructor())
8189        member = CXXDefaultConstructor;
8190      else if (!RDecl->hasTrivialCopyAssignment())
8191        member = CXXCopyAssignment;
8192      else if (!RDecl->hasTrivialDestructor())
8193        member = CXXDestructor;
8194
8195      if (member != CXXInvalid) {
8196        if (getLangOptions().ObjCAutoRefCount && RDecl->hasObjectMember()) {
8197          // Objective-C++ ARC: it is an error to have a non-trivial field of
8198          // a union. However, system headers in Objective-C programs
8199          // occasionally have Objective-C lifetime objects within unions,
8200          // and rather than cause the program to fail, we make those
8201          // members unavailable.
8202          SourceLocation Loc = FD->getLocation();
8203          if (getSourceManager().isInSystemHeader(Loc)) {
8204            if (!FD->hasAttr<UnavailableAttr>())
8205              FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
8206                                  "this system field has retaining ownership"));
8207            return false;
8208          }
8209        }
8210
8211        Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
8212              << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
8213        DiagnoseNontrivial(RT, member);
8214        return true;
8215      }
8216    }
8217  }
8218
8219  return false;
8220}
8221
8222/// DiagnoseNontrivial - Given that a class has a non-trivial
8223/// special member, figure out why.
8224void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
8225  QualType QT(T, 0U);
8226  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
8227
8228  // Check whether the member was user-declared.
8229  switch (member) {
8230  case CXXInvalid:
8231    break;
8232
8233  case CXXDefaultConstructor:
8234    if (RD->hasUserDeclaredConstructor()) {
8235      typedef CXXRecordDecl::ctor_iterator ctor_iter;
8236      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
8237        const FunctionDecl *body = 0;
8238        ci->hasBody(body);
8239        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
8240          SourceLocation CtorLoc = ci->getLocation();
8241          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8242          return;
8243        }
8244      }
8245
8246      assert(0 && "found no user-declared constructors");
8247      return;
8248    }
8249    break;
8250
8251  case CXXCopyConstructor:
8252    if (RD->hasUserDeclaredCopyConstructor()) {
8253      SourceLocation CtorLoc =
8254        RD->getCopyConstructor(0)->getLocation();
8255      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8256      return;
8257    }
8258    break;
8259
8260  case CXXMoveConstructor:
8261    if (RD->hasUserDeclaredMoveConstructor()) {
8262      SourceLocation CtorLoc = RD->getMoveConstructor()->getLocation();
8263      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8264      return;
8265    }
8266    break;
8267
8268  case CXXCopyAssignment:
8269    if (RD->hasUserDeclaredCopyAssignment()) {
8270      // FIXME: this should use the location of the copy
8271      // assignment, not the type.
8272      SourceLocation TyLoc = RD->getSourceRange().getBegin();
8273      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
8274      return;
8275    }
8276    break;
8277
8278  case CXXMoveAssignment:
8279    if (RD->hasUserDeclaredMoveAssignment()) {
8280      SourceLocation AssignLoc = RD->getMoveAssignmentOperator()->getLocation();
8281      Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
8282      return;
8283    }
8284    break;
8285
8286  case CXXDestructor:
8287    if (RD->hasUserDeclaredDestructor()) {
8288      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
8289      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8290      return;
8291    }
8292    break;
8293  }
8294
8295  typedef CXXRecordDecl::base_class_iterator base_iter;
8296
8297  // Virtual bases and members inhibit trivial copying/construction,
8298  // but not trivial destruction.
8299  if (member != CXXDestructor) {
8300    // Check for virtual bases.  vbases includes indirect virtual bases,
8301    // so we just iterate through the direct bases.
8302    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
8303      if (bi->isVirtual()) {
8304        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
8305        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
8306        return;
8307      }
8308
8309    // Check for virtual methods.
8310    typedef CXXRecordDecl::method_iterator meth_iter;
8311    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
8312         ++mi) {
8313      if (mi->isVirtual()) {
8314        SourceLocation MLoc = mi->getSourceRange().getBegin();
8315        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
8316        return;
8317      }
8318    }
8319  }
8320
8321  bool (CXXRecordDecl::*hasTrivial)() const;
8322  switch (member) {
8323  case CXXDefaultConstructor:
8324    hasTrivial = &CXXRecordDecl::hasTrivialDefaultConstructor; break;
8325  case CXXCopyConstructor:
8326    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
8327  case CXXCopyAssignment:
8328    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
8329  case CXXDestructor:
8330    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
8331  default:
8332    assert(0 && "unexpected special member"); return;
8333  }
8334
8335  // Check for nontrivial bases (and recurse).
8336  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
8337    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
8338    assert(BaseRT && "Don't know how to handle dependent bases");
8339    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
8340    if (!(BaseRecTy->*hasTrivial)()) {
8341      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
8342      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
8343      DiagnoseNontrivial(BaseRT, member);
8344      return;
8345    }
8346  }
8347
8348  // Check for nontrivial members (and recurse).
8349  typedef RecordDecl::field_iterator field_iter;
8350  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
8351       ++fi) {
8352    QualType EltTy = Context.getBaseElementType((*fi)->getType());
8353    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
8354      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
8355
8356      if (!(EltRD->*hasTrivial)()) {
8357        SourceLocation FLoc = (*fi)->getLocation();
8358        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
8359        DiagnoseNontrivial(EltRT, member);
8360        return;
8361      }
8362    }
8363
8364    if (EltTy->isObjCLifetimeType()) {
8365      switch (EltTy.getObjCLifetime()) {
8366      case Qualifiers::OCL_None:
8367      case Qualifiers::OCL_ExplicitNone:
8368        break;
8369
8370      case Qualifiers::OCL_Autoreleasing:
8371      case Qualifiers::OCL_Weak:
8372      case Qualifiers::OCL_Strong:
8373        Diag((*fi)->getLocation(), diag::note_nontrivial_objc_ownership)
8374          << QT << EltTy.getObjCLifetime();
8375        return;
8376      }
8377    }
8378  }
8379
8380  assert(0 && "found no explanation for non-trivial member");
8381}
8382
8383/// TranslateIvarVisibility - Translate visibility from a token ID to an
8384///  AST enum value.
8385static ObjCIvarDecl::AccessControl
8386TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
8387  switch (ivarVisibility) {
8388  default: assert(0 && "Unknown visitibility kind");
8389  case tok::objc_private: return ObjCIvarDecl::Private;
8390  case tok::objc_public: return ObjCIvarDecl::Public;
8391  case tok::objc_protected: return ObjCIvarDecl::Protected;
8392  case tok::objc_package: return ObjCIvarDecl::Package;
8393  }
8394}
8395
8396/// ActOnIvar - Each ivar field of an objective-c class is passed into this
8397/// in order to create an IvarDecl object for it.
8398Decl *Sema::ActOnIvar(Scope *S,
8399                                SourceLocation DeclStart,
8400                                Declarator &D, ExprTy *BitfieldWidth,
8401                                tok::ObjCKeywordKind Visibility) {
8402
8403  IdentifierInfo *II = D.getIdentifier();
8404  Expr *BitWidth = (Expr*)BitfieldWidth;
8405  SourceLocation Loc = DeclStart;
8406  if (II) Loc = D.getIdentifierLoc();
8407
8408  // FIXME: Unnamed fields can be handled in various different ways, for
8409  // example, unnamed unions inject all members into the struct namespace!
8410
8411  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8412  QualType T = TInfo->getType();
8413
8414  if (BitWidth) {
8415    // 6.7.2.1p3, 6.7.2.1p4
8416    if (VerifyBitField(Loc, II, T, BitWidth)) {
8417      D.setInvalidType();
8418      BitWidth = 0;
8419    }
8420  } else {
8421    // Not a bitfield.
8422
8423    // validate II.
8424
8425  }
8426  if (T->isReferenceType()) {
8427    Diag(Loc, diag::err_ivar_reference_type);
8428    D.setInvalidType();
8429  }
8430  // C99 6.7.2.1p8: A member of a structure or union may have any type other
8431  // than a variably modified type.
8432  else if (T->isVariablyModifiedType()) {
8433    Diag(Loc, diag::err_typecheck_ivar_variable_size);
8434    D.setInvalidType();
8435  }
8436
8437  // Get the visibility (access control) for this ivar.
8438  ObjCIvarDecl::AccessControl ac =
8439    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
8440                                        : ObjCIvarDecl::None;
8441  // Must set ivar's DeclContext to its enclosing interface.
8442  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
8443  ObjCContainerDecl *EnclosingContext;
8444  if (ObjCImplementationDecl *IMPDecl =
8445      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
8446    if (!LangOpts.ObjCNonFragileABI2) {
8447    // Case of ivar declared in an implementation. Context is that of its class.
8448      EnclosingContext = IMPDecl->getClassInterface();
8449      assert(EnclosingContext && "Implementation has no class interface!");
8450    }
8451    else
8452      EnclosingContext = EnclosingDecl;
8453  } else {
8454    if (ObjCCategoryDecl *CDecl =
8455        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
8456      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
8457        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
8458        return 0;
8459      }
8460    }
8461    EnclosingContext = EnclosingDecl;
8462  }
8463
8464  // Construct the decl.
8465  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
8466                                             DeclStart, Loc, II, T,
8467                                             TInfo, ac, (Expr *)BitfieldWidth);
8468
8469  if (II) {
8470    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
8471                                           ForRedeclaration);
8472    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
8473        && !isa<TagDecl>(PrevDecl)) {
8474      Diag(Loc, diag::err_duplicate_member) << II;
8475      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8476      NewID->setInvalidDecl();
8477    }
8478  }
8479
8480  // Process attributes attached to the ivar.
8481  ProcessDeclAttributes(S, NewID, D);
8482
8483  if (D.isInvalidType())
8484    NewID->setInvalidDecl();
8485
8486  // In ARC, infer 'retaining' for ivars of retainable type.
8487  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
8488    NewID->setInvalidDecl();
8489
8490  if (II) {
8491    // FIXME: When interfaces are DeclContexts, we'll need to add
8492    // these to the interface.
8493    S->AddDecl(NewID);
8494    IdResolver.AddDecl(NewID);
8495  }
8496
8497  return NewID;
8498}
8499
8500/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
8501/// class and class extensions. For every class @interface and class
8502/// extension @interface, if the last ivar is a bitfield of any type,
8503/// then add an implicit `char :0` ivar to the end of that interface.
8504void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
8505                             SmallVectorImpl<Decl *> &AllIvarDecls) {
8506  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
8507    return;
8508
8509  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
8510  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
8511
8512  if (!Ivar->isBitField())
8513    return;
8514  uint64_t BitFieldSize =
8515    Ivar->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
8516  if (BitFieldSize == 0)
8517    return;
8518  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
8519  if (!ID) {
8520    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
8521      if (!CD->IsClassExtension())
8522        return;
8523    }
8524    // No need to add this to end of @implementation.
8525    else
8526      return;
8527  }
8528  // All conditions are met. Add a new bitfield to the tail end of ivars.
8529  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
8530  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
8531
8532  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
8533                              DeclLoc, DeclLoc, 0,
8534                              Context.CharTy,
8535                              Context.getTrivialTypeSourceInfo(Context.CharTy,
8536                                                               DeclLoc),
8537                              ObjCIvarDecl::Private, BW,
8538                              true);
8539  AllIvarDecls.push_back(Ivar);
8540}
8541
8542void Sema::ActOnFields(Scope* S,
8543                       SourceLocation RecLoc, Decl *EnclosingDecl,
8544                       Decl **Fields, unsigned NumFields,
8545                       SourceLocation LBrac, SourceLocation RBrac,
8546                       AttributeList *Attr) {
8547  assert(EnclosingDecl && "missing record or interface decl");
8548
8549  // If the decl this is being inserted into is invalid, then it may be a
8550  // redeclaration or some other bogus case.  Don't try to add fields to it.
8551  if (EnclosingDecl->isInvalidDecl()) {
8552    // FIXME: Deallocate fields?
8553    return;
8554  }
8555
8556
8557  // Verify that all the fields are okay.
8558  unsigned NumNamedMembers = 0;
8559  SmallVector<FieldDecl*, 32> RecFields;
8560
8561  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
8562  bool ARCErrReported = false;
8563  for (unsigned i = 0; i != NumFields; ++i) {
8564    FieldDecl *FD = cast<FieldDecl>(Fields[i]);
8565
8566    // Get the type for the field.
8567    const Type *FDTy = FD->getType().getTypePtr();
8568
8569    if (!FD->isAnonymousStructOrUnion()) {
8570      // Remember all fields written by the user.
8571      RecFields.push_back(FD);
8572    }
8573
8574    // If the field is already invalid for some reason, don't emit more
8575    // diagnostics about it.
8576    if (FD->isInvalidDecl()) {
8577      EnclosingDecl->setInvalidDecl();
8578      continue;
8579    }
8580
8581    // C99 6.7.2.1p2:
8582    //   A structure or union shall not contain a member with
8583    //   incomplete or function type (hence, a structure shall not
8584    //   contain an instance of itself, but may contain a pointer to
8585    //   an instance of itself), except that the last member of a
8586    //   structure with more than one named member may have incomplete
8587    //   array type; such a structure (and any union containing,
8588    //   possibly recursively, a member that is such a structure)
8589    //   shall not be a member of a structure or an element of an
8590    //   array.
8591    if (FDTy->isFunctionType()) {
8592      // Field declared as a function.
8593      Diag(FD->getLocation(), diag::err_field_declared_as_function)
8594        << FD->getDeclName();
8595      FD->setInvalidDecl();
8596      EnclosingDecl->setInvalidDecl();
8597      continue;
8598    } else if (FDTy->isIncompleteArrayType() && Record &&
8599               ((i == NumFields - 1 && !Record->isUnion()) ||
8600                ((getLangOptions().Microsoft || getLangOptions().CPlusPlus) &&
8601                 (i == NumFields - 1 || Record->isUnion())))) {
8602      // Flexible array member.
8603      // Microsoft and g++ is more permissive regarding flexible array.
8604      // It will accept flexible array in union and also
8605      // as the sole element of a struct/class.
8606      if (getLangOptions().Microsoft) {
8607        if (Record->isUnion())
8608          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
8609            << FD->getDeclName();
8610        else if (NumFields == 1)
8611          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
8612            << FD->getDeclName() << Record->getTagKind();
8613      } else if (getLangOptions().CPlusPlus) {
8614        if (Record->isUnion())
8615          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
8616            << FD->getDeclName();
8617        else if (NumFields == 1)
8618          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
8619            << FD->getDeclName() << Record->getTagKind();
8620      } else if (NumNamedMembers < 1) {
8621        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
8622          << FD->getDeclName();
8623        FD->setInvalidDecl();
8624        EnclosingDecl->setInvalidDecl();
8625        continue;
8626      }
8627      if (!FD->getType()->isDependentType() &&
8628          !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
8629        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
8630          << FD->getDeclName() << FD->getType();
8631        FD->setInvalidDecl();
8632        EnclosingDecl->setInvalidDecl();
8633        continue;
8634      }
8635      // Okay, we have a legal flexible array member at the end of the struct.
8636      if (Record)
8637        Record->setHasFlexibleArrayMember(true);
8638    } else if (!FDTy->isDependentType() &&
8639               RequireCompleteType(FD->getLocation(), FD->getType(),
8640                                   diag::err_field_incomplete)) {
8641      // Incomplete type
8642      FD->setInvalidDecl();
8643      EnclosingDecl->setInvalidDecl();
8644      continue;
8645    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
8646      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
8647        // If this is a member of a union, then entire union becomes "flexible".
8648        if (Record && Record->isUnion()) {
8649          Record->setHasFlexibleArrayMember(true);
8650        } else {
8651          // If this is a struct/class and this is not the last element, reject
8652          // it.  Note that GCC supports variable sized arrays in the middle of
8653          // structures.
8654          if (i != NumFields-1)
8655            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
8656              << FD->getDeclName() << FD->getType();
8657          else {
8658            // We support flexible arrays at the end of structs in
8659            // other structs as an extension.
8660            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
8661              << FD->getDeclName();
8662            if (Record)
8663              Record->setHasFlexibleArrayMember(true);
8664          }
8665        }
8666      }
8667      if (Record && FDTTy->getDecl()->hasObjectMember())
8668        Record->setHasObjectMember(true);
8669    } else if (FDTy->isObjCObjectType()) {
8670      /// A field cannot be an Objective-c object
8671      Diag(FD->getLocation(), diag::err_statically_allocated_object)
8672        << FixItHint::CreateInsertion(FD->getLocation(), "*");
8673      QualType T = Context.getObjCObjectPointerType(FD->getType());
8674      FD->setType(T);
8675    }
8676    else if (!getLangOptions().CPlusPlus) {
8677      if (getLangOptions().ObjCAutoRefCount && Record && !ARCErrReported) {
8678        // It's an error in ARC if a field has lifetime.
8679        // We don't want to report this in a system header, though,
8680        // so we just make the field unavailable.
8681        // FIXME: that's really not sufficient; we need to make the type
8682        // itself invalid to, say, initialize or copy.
8683        QualType T = FD->getType();
8684        Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
8685        if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
8686          SourceLocation loc = FD->getLocation();
8687          if (getSourceManager().isInSystemHeader(loc)) {
8688            if (!FD->hasAttr<UnavailableAttr>()) {
8689              FD->addAttr(new (Context) UnavailableAttr(loc, Context,
8690                                "this system field has retaining ownership"));
8691            }
8692          } else {
8693            Diag(FD->getLocation(), diag::err_arc_objc_object_in_struct);
8694          }
8695          ARCErrReported = true;
8696        }
8697      }
8698      else if (getLangOptions().ObjC1 &&
8699               getLangOptions().getGCMode() != LangOptions::NonGC &&
8700               Record && !Record->hasObjectMember()) {
8701        if (FD->getType()->isObjCObjectPointerType() ||
8702            FD->getType().isObjCGCStrong())
8703          Record->setHasObjectMember(true);
8704        else if (Context.getAsArrayType(FD->getType())) {
8705          QualType BaseType = Context.getBaseElementType(FD->getType());
8706          if (BaseType->isRecordType() &&
8707              BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
8708            Record->setHasObjectMember(true);
8709          else if (BaseType->isObjCObjectPointerType() ||
8710                   BaseType.isObjCGCStrong())
8711                 Record->setHasObjectMember(true);
8712        }
8713      }
8714    }
8715    // Keep track of the number of named members.
8716    if (FD->getIdentifier())
8717      ++NumNamedMembers;
8718  }
8719
8720  // Okay, we successfully defined 'Record'.
8721  if (Record) {
8722    bool Completed = false;
8723    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
8724      if (!CXXRecord->isInvalidDecl()) {
8725        // Set access bits correctly on the directly-declared conversions.
8726        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
8727        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
8728             I != E; ++I)
8729          Convs->setAccess(I, (*I)->getAccess());
8730
8731        if (!CXXRecord->isDependentType()) {
8732          // Objective-C Automatic Reference Counting:
8733          //   If a class has a non-static data member of Objective-C pointer
8734          //   type (or array thereof), it is a non-POD type and its
8735          //   default constructor (if any), copy constructor, copy assignment
8736          //   operator, and destructor are non-trivial.
8737          //
8738          // This rule is also handled by CXXRecordDecl::completeDefinition().
8739          // However, here we check whether this particular class is only
8740          // non-POD because of the presence of an Objective-C pointer member.
8741          // If so, objects of this type cannot be shared between code compiled
8742          // with instant objects and code compiled with manual retain/release.
8743          if (getLangOptions().ObjCAutoRefCount &&
8744              CXXRecord->hasObjectMember() &&
8745              CXXRecord->getLinkage() == ExternalLinkage) {
8746            if (CXXRecord->isPOD()) {
8747              Diag(CXXRecord->getLocation(),
8748                   diag::warn_arc_non_pod_class_with_object_member)
8749               << CXXRecord;
8750            } else {
8751              // FIXME: Fix-Its would be nice here, but finding a good location
8752              // for them is going to be tricky.
8753              if (CXXRecord->hasTrivialCopyConstructor())
8754                Diag(CXXRecord->getLocation(),
8755                     diag::warn_arc_trivial_member_function_with_object_member)
8756                  << CXXRecord << 0;
8757              if (CXXRecord->hasTrivialCopyAssignment())
8758                Diag(CXXRecord->getLocation(),
8759                     diag::warn_arc_trivial_member_function_with_object_member)
8760                << CXXRecord << 1;
8761              if (CXXRecord->hasTrivialDestructor())
8762                Diag(CXXRecord->getLocation(),
8763                     diag::warn_arc_trivial_member_function_with_object_member)
8764                << CXXRecord << 2;
8765            }
8766          }
8767
8768          // Adjust user-defined destructor exception spec.
8769          if (getLangOptions().CPlusPlus0x &&
8770              CXXRecord->hasUserDeclaredDestructor())
8771            AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
8772
8773          // Add any implicitly-declared members to this class.
8774          AddImplicitlyDeclaredMembersToClass(CXXRecord);
8775
8776          // If we have virtual base classes, we may end up finding multiple
8777          // final overriders for a given virtual function. Check for this
8778          // problem now.
8779          if (CXXRecord->getNumVBases()) {
8780            CXXFinalOverriderMap FinalOverriders;
8781            CXXRecord->getFinalOverriders(FinalOverriders);
8782
8783            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
8784                                             MEnd = FinalOverriders.end();
8785                 M != MEnd; ++M) {
8786              for (OverridingMethods::iterator SO = M->second.begin(),
8787                                            SOEnd = M->second.end();
8788                   SO != SOEnd; ++SO) {
8789                assert(SO->second.size() > 0 &&
8790                       "Virtual function without overridding functions?");
8791                if (SO->second.size() == 1)
8792                  continue;
8793
8794                // C++ [class.virtual]p2:
8795                //   In a derived class, if a virtual member function of a base
8796                //   class subobject has more than one final overrider the
8797                //   program is ill-formed.
8798                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
8799                  << (NamedDecl *)M->first << Record;
8800                Diag(M->first->getLocation(),
8801                     diag::note_overridden_virtual_function);
8802                for (OverridingMethods::overriding_iterator
8803                          OM = SO->second.begin(),
8804                       OMEnd = SO->second.end();
8805                     OM != OMEnd; ++OM)
8806                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
8807                    << (NamedDecl *)M->first << OM->Method->getParent();
8808
8809                Record->setInvalidDecl();
8810              }
8811            }
8812            CXXRecord->completeDefinition(&FinalOverriders);
8813            Completed = true;
8814          }
8815        }
8816      }
8817    }
8818
8819    if (!Completed)
8820      Record->completeDefinition();
8821
8822    // Now that the record is complete, do any delayed exception spec checks
8823    // we were missing.
8824    while (!DelayedDestructorExceptionSpecChecks.empty()) {
8825      const CXXDestructorDecl *Dtor =
8826              DelayedDestructorExceptionSpecChecks.back().first;
8827      if (Dtor->getParent() != Record)
8828        break;
8829
8830      assert(!Dtor->getParent()->isDependentType() &&
8831          "Should not ever add destructors of templates into the list.");
8832      CheckOverridingFunctionExceptionSpec(Dtor,
8833          DelayedDestructorExceptionSpecChecks.back().second);
8834      DelayedDestructorExceptionSpecChecks.pop_back();
8835    }
8836
8837  } else {
8838    ObjCIvarDecl **ClsFields =
8839      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
8840    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
8841      ID->setLocEnd(RBrac);
8842      // Add ivar's to class's DeclContext.
8843      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
8844        ClsFields[i]->setLexicalDeclContext(ID);
8845        ID->addDecl(ClsFields[i]);
8846      }
8847      // Must enforce the rule that ivars in the base classes may not be
8848      // duplicates.
8849      if (ID->getSuperClass())
8850        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
8851    } else if (ObjCImplementationDecl *IMPDecl =
8852                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
8853      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
8854      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
8855        // Ivar declared in @implementation never belongs to the implementation.
8856        // Only it is in implementation's lexical context.
8857        ClsFields[I]->setLexicalDeclContext(IMPDecl);
8858      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
8859    } else if (ObjCCategoryDecl *CDecl =
8860                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
8861      // case of ivars in class extension; all other cases have been
8862      // reported as errors elsewhere.
8863      // FIXME. Class extension does not have a LocEnd field.
8864      // CDecl->setLocEnd(RBrac);
8865      // Add ivar's to class extension's DeclContext.
8866      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
8867        ClsFields[i]->setLexicalDeclContext(CDecl);
8868        CDecl->addDecl(ClsFields[i]);
8869      }
8870    }
8871  }
8872
8873  if (Attr)
8874    ProcessDeclAttributeList(S, Record, Attr);
8875
8876  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
8877  // set the visibility of this record.
8878  if (Record && !Record->getDeclContext()->isRecord())
8879    AddPushedVisibilityAttribute(Record);
8880}
8881
8882/// \brief Determine whether the given integral value is representable within
8883/// the given type T.
8884static bool isRepresentableIntegerValue(ASTContext &Context,
8885                                        llvm::APSInt &Value,
8886                                        QualType T) {
8887  assert(T->isIntegralType(Context) && "Integral type required!");
8888  unsigned BitWidth = Context.getIntWidth(T);
8889
8890  if (Value.isUnsigned() || Value.isNonNegative()) {
8891    if (T->isSignedIntegerOrEnumerationType())
8892      --BitWidth;
8893    return Value.getActiveBits() <= BitWidth;
8894  }
8895  return Value.getMinSignedBits() <= BitWidth;
8896}
8897
8898// \brief Given an integral type, return the next larger integral type
8899// (or a NULL type of no such type exists).
8900static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
8901  // FIXME: Int128/UInt128 support, which also needs to be introduced into
8902  // enum checking below.
8903  assert(T->isIntegralType(Context) && "Integral type required!");
8904  const unsigned NumTypes = 4;
8905  QualType SignedIntegralTypes[NumTypes] = {
8906    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
8907  };
8908  QualType UnsignedIntegralTypes[NumTypes] = {
8909    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
8910    Context.UnsignedLongLongTy
8911  };
8912
8913  unsigned BitWidth = Context.getTypeSize(T);
8914  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
8915                                                        : UnsignedIntegralTypes;
8916  for (unsigned I = 0; I != NumTypes; ++I)
8917    if (Context.getTypeSize(Types[I]) > BitWidth)
8918      return Types[I];
8919
8920  return QualType();
8921}
8922
8923EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
8924                                          EnumConstantDecl *LastEnumConst,
8925                                          SourceLocation IdLoc,
8926                                          IdentifierInfo *Id,
8927                                          Expr *Val) {
8928  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
8929  llvm::APSInt EnumVal(IntWidth);
8930  QualType EltTy;
8931
8932  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
8933    Val = 0;
8934
8935  if (Val) {
8936    if (Enum->isDependentType() || Val->isTypeDependent())
8937      EltTy = Context.DependentTy;
8938    else {
8939      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
8940      SourceLocation ExpLoc;
8941      if (!Val->isValueDependent() &&
8942          VerifyIntegerConstantExpression(Val, &EnumVal)) {
8943        Val = 0;
8944      } else {
8945        if (!getLangOptions().CPlusPlus) {
8946          // C99 6.7.2.2p2:
8947          //   The expression that defines the value of an enumeration constant
8948          //   shall be an integer constant expression that has a value
8949          //   representable as an int.
8950
8951          // Complain if the value is not representable in an int.
8952          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
8953            Diag(IdLoc, diag::ext_enum_value_not_int)
8954              << EnumVal.toString(10) << Val->getSourceRange()
8955              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
8956          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
8957            // Force the type of the expression to 'int'.
8958            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
8959          }
8960        }
8961
8962        if (Enum->isFixed()) {
8963          EltTy = Enum->getIntegerType();
8964
8965          // C++0x [dcl.enum]p5:
8966          //   ... if the initializing value of an enumerator cannot be
8967          //   represented by the underlying type, the program is ill-formed.
8968          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
8969            if (getLangOptions().Microsoft) {
8970              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
8971              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
8972            } else
8973              Diag(IdLoc, diag::err_enumerator_too_large)
8974                << EltTy;
8975          } else
8976            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
8977        }
8978        else {
8979          // C++0x [dcl.enum]p5:
8980          //   If the underlying type is not fixed, the type of each enumerator
8981          //   is the type of its initializing value:
8982          //     - If an initializer is specified for an enumerator, the
8983          //       initializing value has the same type as the expression.
8984          EltTy = Val->getType();
8985        }
8986      }
8987    }
8988  }
8989
8990  if (!Val) {
8991    if (Enum->isDependentType())
8992      EltTy = Context.DependentTy;
8993    else if (!LastEnumConst) {
8994      // C++0x [dcl.enum]p5:
8995      //   If the underlying type is not fixed, the type of each enumerator
8996      //   is the type of its initializing value:
8997      //     - If no initializer is specified for the first enumerator, the
8998      //       initializing value has an unspecified integral type.
8999      //
9000      // GCC uses 'int' for its unspecified integral type, as does
9001      // C99 6.7.2.2p3.
9002      if (Enum->isFixed()) {
9003        EltTy = Enum->getIntegerType();
9004      }
9005      else {
9006        EltTy = Context.IntTy;
9007      }
9008    } else {
9009      // Assign the last value + 1.
9010      EnumVal = LastEnumConst->getInitVal();
9011      ++EnumVal;
9012      EltTy = LastEnumConst->getType();
9013
9014      // Check for overflow on increment.
9015      if (EnumVal < LastEnumConst->getInitVal()) {
9016        // C++0x [dcl.enum]p5:
9017        //   If the underlying type is not fixed, the type of each enumerator
9018        //   is the type of its initializing value:
9019        //
9020        //     - Otherwise the type of the initializing value is the same as
9021        //       the type of the initializing value of the preceding enumerator
9022        //       unless the incremented value is not representable in that type,
9023        //       in which case the type is an unspecified integral type
9024        //       sufficient to contain the incremented value. If no such type
9025        //       exists, the program is ill-formed.
9026        QualType T = getNextLargerIntegralType(Context, EltTy);
9027        if (T.isNull() || Enum->isFixed()) {
9028          // There is no integral type larger enough to represent this
9029          // value. Complain, then allow the value to wrap around.
9030          EnumVal = LastEnumConst->getInitVal();
9031          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
9032          ++EnumVal;
9033          if (Enum->isFixed())
9034            // When the underlying type is fixed, this is ill-formed.
9035            Diag(IdLoc, diag::err_enumerator_wrapped)
9036              << EnumVal.toString(10)
9037              << EltTy;
9038          else
9039            Diag(IdLoc, diag::warn_enumerator_too_large)
9040              << EnumVal.toString(10);
9041        } else {
9042          EltTy = T;
9043        }
9044
9045        // Retrieve the last enumerator's value, extent that type to the
9046        // type that is supposed to be large enough to represent the incremented
9047        // value, then increment.
9048        EnumVal = LastEnumConst->getInitVal();
9049        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
9050        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
9051        ++EnumVal;
9052
9053        // If we're not in C++, diagnose the overflow of enumerator values,
9054        // which in C99 means that the enumerator value is not representable in
9055        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
9056        // permits enumerator values that are representable in some larger
9057        // integral type.
9058        if (!getLangOptions().CPlusPlus && !T.isNull())
9059          Diag(IdLoc, diag::warn_enum_value_overflow);
9060      } else if (!getLangOptions().CPlusPlus &&
9061                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
9062        // Enforce C99 6.7.2.2p2 even when we compute the next value.
9063        Diag(IdLoc, diag::ext_enum_value_not_int)
9064          << EnumVal.toString(10) << 1;
9065      }
9066    }
9067  }
9068
9069  if (!EltTy->isDependentType()) {
9070    // Make the enumerator value match the signedness and size of the
9071    // enumerator's type.
9072    EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
9073    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
9074  }
9075
9076  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
9077                                  Val, EnumVal);
9078}
9079
9080
9081Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
9082                              SourceLocation IdLoc, IdentifierInfo *Id,
9083                              AttributeList *Attr,
9084                              SourceLocation EqualLoc, ExprTy *val) {
9085  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
9086  EnumConstantDecl *LastEnumConst =
9087    cast_or_null<EnumConstantDecl>(lastEnumConst);
9088  Expr *Val = static_cast<Expr*>(val);
9089
9090  // The scope passed in may not be a decl scope.  Zip up the scope tree until
9091  // we find one that is.
9092  S = getNonFieldDeclScope(S);
9093
9094  // Verify that there isn't already something declared with this name in this
9095  // scope.
9096  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
9097                                         ForRedeclaration);
9098  if (PrevDecl && PrevDecl->isTemplateParameter()) {
9099    // Maybe we will complain about the shadowed template parameter.
9100    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
9101    // Just pretend that we didn't see the previous declaration.
9102    PrevDecl = 0;
9103  }
9104
9105  if (PrevDecl) {
9106    // When in C++, we may get a TagDecl with the same name; in this case the
9107    // enum constant will 'hide' the tag.
9108    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
9109           "Received TagDecl when not in C++!");
9110    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
9111      if (isa<EnumConstantDecl>(PrevDecl))
9112        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
9113      else
9114        Diag(IdLoc, diag::err_redefinition) << Id;
9115      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
9116      return 0;
9117    }
9118  }
9119
9120  // C++ [class.mem]p13:
9121  //   If T is the name of a class, then each of the following shall have a
9122  //   name different from T:
9123  //     - every enumerator of every member of class T that is an enumerated
9124  //       type
9125  if (CXXRecordDecl *Record
9126                      = dyn_cast<CXXRecordDecl>(
9127                             TheEnumDecl->getDeclContext()->getRedeclContext()))
9128    if (Record->getIdentifier() && Record->getIdentifier() == Id)
9129      Diag(IdLoc, diag::err_member_name_of_class) << Id;
9130
9131  EnumConstantDecl *New =
9132    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
9133
9134  if (New) {
9135    // Process attributes.
9136    if (Attr) ProcessDeclAttributeList(S, New, Attr);
9137
9138    // Register this decl in the current scope stack.
9139    New->setAccess(TheEnumDecl->getAccess());
9140    PushOnScopeChains(New, S);
9141  }
9142
9143  return New;
9144}
9145
9146void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
9147                         SourceLocation RBraceLoc, Decl *EnumDeclX,
9148                         Decl **Elements, unsigned NumElements,
9149                         Scope *S, AttributeList *Attr) {
9150  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
9151  QualType EnumType = Context.getTypeDeclType(Enum);
9152
9153  if (Attr)
9154    ProcessDeclAttributeList(S, Enum, Attr);
9155
9156  if (Enum->isDependentType()) {
9157    for (unsigned i = 0; i != NumElements; ++i) {
9158      EnumConstantDecl *ECD =
9159        cast_or_null<EnumConstantDecl>(Elements[i]);
9160      if (!ECD) continue;
9161
9162      ECD->setType(EnumType);
9163    }
9164
9165    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
9166    return;
9167  }
9168
9169  // TODO: If the result value doesn't fit in an int, it must be a long or long
9170  // long value.  ISO C does not support this, but GCC does as an extension,
9171  // emit a warning.
9172  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
9173  unsigned CharWidth = Context.getTargetInfo().getCharWidth();
9174  unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
9175
9176  // Verify that all the values are okay, compute the size of the values, and
9177  // reverse the list.
9178  unsigned NumNegativeBits = 0;
9179  unsigned NumPositiveBits = 0;
9180
9181  // Keep track of whether all elements have type int.
9182  bool AllElementsInt = true;
9183
9184  for (unsigned i = 0; i != NumElements; ++i) {
9185    EnumConstantDecl *ECD =
9186      cast_or_null<EnumConstantDecl>(Elements[i]);
9187    if (!ECD) continue;  // Already issued a diagnostic.
9188
9189    const llvm::APSInt &InitVal = ECD->getInitVal();
9190
9191    // Keep track of the size of positive and negative values.
9192    if (InitVal.isUnsigned() || InitVal.isNonNegative())
9193      NumPositiveBits = std::max(NumPositiveBits,
9194                                 (unsigned)InitVal.getActiveBits());
9195    else
9196      NumNegativeBits = std::max(NumNegativeBits,
9197                                 (unsigned)InitVal.getMinSignedBits());
9198
9199    // Keep track of whether every enum element has type int (very commmon).
9200    if (AllElementsInt)
9201      AllElementsInt = ECD->getType() == Context.IntTy;
9202  }
9203
9204  // Figure out the type that should be used for this enum.
9205  QualType BestType;
9206  unsigned BestWidth;
9207
9208  // C++0x N3000 [conv.prom]p3:
9209  //   An rvalue of an unscoped enumeration type whose underlying
9210  //   type is not fixed can be converted to an rvalue of the first
9211  //   of the following types that can represent all the values of
9212  //   the enumeration: int, unsigned int, long int, unsigned long
9213  //   int, long long int, or unsigned long long int.
9214  // C99 6.4.4.3p2:
9215  //   An identifier declared as an enumeration constant has type int.
9216  // The C99 rule is modified by a gcc extension
9217  QualType BestPromotionType;
9218
9219  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
9220  // -fshort-enums is the equivalent to specifying the packed attribute on all
9221  // enum definitions.
9222  if (LangOpts.ShortEnums)
9223    Packed = true;
9224
9225  if (Enum->isFixed()) {
9226    BestType = BestPromotionType = Enum->getIntegerType();
9227    // We don't need to set BestWidth, because BestType is going to be the type
9228    // of the enumerators, but we do anyway because otherwise some compilers
9229    // warn that it might be used uninitialized.
9230    BestWidth = CharWidth;
9231  }
9232  else if (NumNegativeBits) {
9233    // If there is a negative value, figure out the smallest integer type (of
9234    // int/long/longlong) that fits.
9235    // If it's packed, check also if it fits a char or a short.
9236    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
9237      BestType = Context.SignedCharTy;
9238      BestWidth = CharWidth;
9239    } else if (Packed && NumNegativeBits <= ShortWidth &&
9240               NumPositiveBits < ShortWidth) {
9241      BestType = Context.ShortTy;
9242      BestWidth = ShortWidth;
9243    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
9244      BestType = Context.IntTy;
9245      BestWidth = IntWidth;
9246    } else {
9247      BestWidth = Context.getTargetInfo().getLongWidth();
9248
9249      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
9250        BestType = Context.LongTy;
9251      } else {
9252        BestWidth = Context.getTargetInfo().getLongLongWidth();
9253
9254        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
9255          Diag(Enum->getLocation(), diag::warn_enum_too_large);
9256        BestType = Context.LongLongTy;
9257      }
9258    }
9259    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
9260  } else {
9261    // If there is no negative value, figure out the smallest type that fits
9262    // all of the enumerator values.
9263    // If it's packed, check also if it fits a char or a short.
9264    if (Packed && NumPositiveBits <= CharWidth) {
9265      BestType = Context.UnsignedCharTy;
9266      BestPromotionType = Context.IntTy;
9267      BestWidth = CharWidth;
9268    } else if (Packed && NumPositiveBits <= ShortWidth) {
9269      BestType = Context.UnsignedShortTy;
9270      BestPromotionType = Context.IntTy;
9271      BestWidth = ShortWidth;
9272    } else if (NumPositiveBits <= IntWidth) {
9273      BestType = Context.UnsignedIntTy;
9274      BestWidth = IntWidth;
9275      BestPromotionType
9276        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9277                           ? Context.UnsignedIntTy : Context.IntTy;
9278    } else if (NumPositiveBits <=
9279               (BestWidth = Context.getTargetInfo().getLongWidth())) {
9280      BestType = Context.UnsignedLongTy;
9281      BestPromotionType
9282        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9283                           ? Context.UnsignedLongTy : Context.LongTy;
9284    } else {
9285      BestWidth = Context.getTargetInfo().getLongLongWidth();
9286      assert(NumPositiveBits <= BestWidth &&
9287             "How could an initializer get larger than ULL?");
9288      BestType = Context.UnsignedLongLongTy;
9289      BestPromotionType
9290        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9291                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
9292    }
9293  }
9294
9295  // Loop over all of the enumerator constants, changing their types to match
9296  // the type of the enum if needed.
9297  for (unsigned i = 0; i != NumElements; ++i) {
9298    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
9299    if (!ECD) continue;  // Already issued a diagnostic.
9300
9301    // Standard C says the enumerators have int type, but we allow, as an
9302    // extension, the enumerators to be larger than int size.  If each
9303    // enumerator value fits in an int, type it as an int, otherwise type it the
9304    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
9305    // that X has type 'int', not 'unsigned'.
9306
9307    // Determine whether the value fits into an int.
9308    llvm::APSInt InitVal = ECD->getInitVal();
9309
9310    // If it fits into an integer type, force it.  Otherwise force it to match
9311    // the enum decl type.
9312    QualType NewTy;
9313    unsigned NewWidth;
9314    bool NewSign;
9315    if (!getLangOptions().CPlusPlus &&
9316        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
9317      NewTy = Context.IntTy;
9318      NewWidth = IntWidth;
9319      NewSign = true;
9320    } else if (ECD->getType() == BestType) {
9321      // Already the right type!
9322      if (getLangOptions().CPlusPlus)
9323        // C++ [dcl.enum]p4: Following the closing brace of an
9324        // enum-specifier, each enumerator has the type of its
9325        // enumeration.
9326        ECD->setType(EnumType);
9327      continue;
9328    } else {
9329      NewTy = BestType;
9330      NewWidth = BestWidth;
9331      NewSign = BestType->isSignedIntegerOrEnumerationType();
9332    }
9333
9334    // Adjust the APSInt value.
9335    InitVal = InitVal.extOrTrunc(NewWidth);
9336    InitVal.setIsSigned(NewSign);
9337    ECD->setInitVal(InitVal);
9338
9339    // Adjust the Expr initializer and type.
9340    if (ECD->getInitExpr() &&
9341        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
9342      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
9343                                                CK_IntegralCast,
9344                                                ECD->getInitExpr(),
9345                                                /*base paths*/ 0,
9346                                                VK_RValue));
9347    if (getLangOptions().CPlusPlus)
9348      // C++ [dcl.enum]p4: Following the closing brace of an
9349      // enum-specifier, each enumerator has the type of its
9350      // enumeration.
9351      ECD->setType(EnumType);
9352    else
9353      ECD->setType(NewTy);
9354  }
9355
9356  Enum->completeDefinition(BestType, BestPromotionType,
9357                           NumPositiveBits, NumNegativeBits);
9358}
9359
9360Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
9361                                  SourceLocation StartLoc,
9362                                  SourceLocation EndLoc) {
9363  StringLiteral *AsmString = cast<StringLiteral>(expr);
9364
9365  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
9366                                                   AsmString, StartLoc,
9367                                                   EndLoc);
9368  CurContext->addDecl(New);
9369  return New;
9370}
9371
9372DeclResult Sema::ActOnModuleImport(SourceLocation ImportLoc,
9373                                   IdentifierInfo &ModuleName,
9374                                   SourceLocation ModuleNameLoc) {
9375  ModuleKey Module = PP.getModuleLoader().loadModule(ImportLoc,
9376                                                     ModuleName, ModuleNameLoc);
9377  if (!Module)
9378    return true;
9379
9380  // FIXME: Actually create a declaration to describe the module import.
9381  (void)Module;
9382  return DeclResult((Decl *)0);
9383}
9384
9385void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
9386                             SourceLocation PragmaLoc,
9387                             SourceLocation NameLoc) {
9388  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
9389
9390  if (PrevDecl) {
9391    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
9392  } else {
9393    (void)WeakUndeclaredIdentifiers.insert(
9394      std::pair<IdentifierInfo*,WeakInfo>
9395        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
9396  }
9397}
9398
9399void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
9400                                IdentifierInfo* AliasName,
9401                                SourceLocation PragmaLoc,
9402                                SourceLocation NameLoc,
9403                                SourceLocation AliasNameLoc) {
9404  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
9405                                    LookupOrdinaryName);
9406  WeakInfo W = WeakInfo(Name, NameLoc);
9407
9408  if (PrevDecl) {
9409    if (!PrevDecl->hasAttr<AliasAttr>())
9410      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
9411        DeclApplyPragmaWeak(TUScope, ND, W);
9412  } else {
9413    (void)WeakUndeclaredIdentifiers.insert(
9414      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
9415  }
9416}
9417
9418Decl *Sema::getObjCDeclContext() const {
9419  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
9420}
9421