SemaDecl.cpp revision f36e02d4aff98bf2e52e342e0038d4172fbb5e64
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/Analysis/CFG.h"
19#include "clang/AST/CXXInheritance.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/AST/StmtObjC.h"
25#include "clang/Parse/DeclSpec.h"
26#include "clang/Basic/PartialDiagnostic.h"
27#include "clang/Basic/SourceManager.h"
28#include "clang/Basic/TargetInfo.h"
29// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
30#include "clang/Lex/Preprocessor.h"
31#include "clang/Lex/HeaderSearch.h"
32#include "llvm/ADT/BitVector.h"
33#include "llvm/ADT/STLExtras.h"
34#include <algorithm>
35#include <cstring>
36#include <functional>
37#include <queue>
38using namespace clang;
39
40/// getDeclName - Return a pretty name for the specified decl if possible, or
41/// an empty string if not.  This is used for pretty crash reporting.
42std::string Sema::getDeclName(DeclPtrTy d) {
43  Decl *D = d.getAs<Decl>();
44  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
45    return DN->getQualifiedNameAsString();
46  return "";
47}
48
49Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
50  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
51}
52
53/// \brief If the identifier refers to a type name within this scope,
54/// return the declaration of that type.
55///
56/// This routine performs ordinary name lookup of the identifier II
57/// within the given scope, with optional C++ scope specifier SS, to
58/// determine whether the name refers to a type. If so, returns an
59/// opaque pointer (actually a QualType) corresponding to that
60/// type. Otherwise, returns NULL.
61///
62/// If name lookup results in an ambiguity, this routine will complain
63/// and then return NULL.
64Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
65                                Scope *S, const CXXScopeSpec *SS,
66                                bool isClassName) {
67  // C++ [temp.res]p3:
68  //   A qualified-id that refers to a type and in which the
69  //   nested-name-specifier depends on a template-parameter (14.6.2)
70  //   shall be prefixed by the keyword typename to indicate that the
71  //   qualified-id denotes a type, forming an
72  //   elaborated-type-specifier (7.1.5.3).
73  //
74  // We therefore do not perform any name lookup if the result would
75  // refer to a member of an unknown specialization.
76  if (SS && isUnknownSpecialization(*SS)) {
77    if (!isClassName)
78      return 0;
79
80    // We know from the grammar that this name refers to a type, so build a
81    // TypenameType node to describe the type.
82    // FIXME: Record somewhere that this TypenameType node has no "typename"
83    // keyword associated with it.
84    return CheckTypenameType((NestedNameSpecifier *)SS->getScopeRep(),
85                             II, SS->getRange()).getAsOpaquePtr();
86  }
87
88  LookupResult Result;
89  LookupParsedName(Result, S, SS, &II, LookupOrdinaryName, false, false);
90
91  NamedDecl *IIDecl = 0;
92  switch (Result.getKind()) {
93  case LookupResult::NotFound:
94  case LookupResult::FoundOverloaded:
95    return 0;
96
97  case LookupResult::AmbiguousBaseSubobjectTypes:
98  case LookupResult::AmbiguousBaseSubobjects:
99  case LookupResult::AmbiguousReference: {
100    // Look to see if we have a type anywhere in the list of results.
101    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
102         Res != ResEnd; ++Res) {
103      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
104        if (!IIDecl ||
105            (*Res)->getLocation().getRawEncoding() <
106              IIDecl->getLocation().getRawEncoding())
107          IIDecl = *Res;
108      }
109    }
110
111    if (!IIDecl) {
112      // None of the entities we found is a type, so there is no way
113      // to even assume that the result is a type. In this case, don't
114      // complain about the ambiguity. The parser will either try to
115      // perform this lookup again (e.g., as an object name), which
116      // will produce the ambiguity, or will complain that it expected
117      // a type name.
118      return 0;
119    }
120
121    // We found a type within the ambiguous lookup; diagnose the
122    // ambiguity and then return that type. This might be the right
123    // answer, or it might not be, but it suppresses any attempt to
124    // perform the name lookup again.
125    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
126    break;
127  }
128
129  case LookupResult::Found:
130    IIDecl = Result.getFoundDecl();
131    break;
132  }
133
134  if (IIDecl) {
135    QualType T;
136
137    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
138      // Check whether we can use this type
139      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
140
141      if (getLangOptions().CPlusPlus) {
142        // C++ [temp.local]p2:
143        //   Within the scope of a class template specialization or
144        //   partial specialization, when the injected-class-name is
145        //   not followed by a <, it is equivalent to the
146        //   injected-class-name followed by the template-argument s
147        //   of the class template specialization or partial
148        //   specialization enclosed in <>.
149        if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
150          if (RD->isInjectedClassName())
151            if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
152              T = Template->getInjectedClassNameType(Context);
153      }
154
155      if (T.isNull())
156        T = Context.getTypeDeclType(TD);
157    } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
158      // Check whether we can use this interface.
159      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
160
161      T = Context.getObjCInterfaceType(IDecl);
162    } else
163      return 0;
164
165    if (SS)
166      T = getQualifiedNameType(*SS, T);
167
168    return T.getAsOpaquePtr();
169  }
170
171  return 0;
172}
173
174/// isTagName() - This method is called *for error recovery purposes only*
175/// to determine if the specified name is a valid tag name ("struct foo").  If
176/// so, this returns the TST for the tag corresponding to it (TST_enum,
177/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
178/// where the user forgot to specify the tag.
179DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
180  // Do a tag name lookup in this scope.
181  LookupResult R;
182  LookupName(R, S, &II, LookupTagName, false, false);
183  if (R.getKind() == LookupResult::Found)
184    if (const TagDecl *TD = dyn_cast<TagDecl>(R.getAsSingleDecl(Context))) {
185      switch (TD->getTagKind()) {
186      case TagDecl::TK_struct: return DeclSpec::TST_struct;
187      case TagDecl::TK_union:  return DeclSpec::TST_union;
188      case TagDecl::TK_class:  return DeclSpec::TST_class;
189      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
190      }
191    }
192
193  return DeclSpec::TST_unspecified;
194}
195
196
197// Determines the context to return to after temporarily entering a
198// context.  This depends in an unnecessarily complicated way on the
199// exact ordering of callbacks from the parser.
200DeclContext *Sema::getContainingDC(DeclContext *DC) {
201
202  // Functions defined inline within classes aren't parsed until we've
203  // finished parsing the top-level class, so the top-level class is
204  // the context we'll need to return to.
205  if (isa<FunctionDecl>(DC)) {
206    DC = DC->getLexicalParent();
207
208    // A function not defined within a class will always return to its
209    // lexical context.
210    if (!isa<CXXRecordDecl>(DC))
211      return DC;
212
213    // A C++ inline method/friend is parsed *after* the topmost class
214    // it was declared in is fully parsed ("complete");  the topmost
215    // class is the context we need to return to.
216    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
217      DC = RD;
218
219    // Return the declaration context of the topmost class the inline method is
220    // declared in.
221    return DC;
222  }
223
224  if (isa<ObjCMethodDecl>(DC))
225    return Context.getTranslationUnitDecl();
226
227  return DC->getLexicalParent();
228}
229
230void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
231  assert(getContainingDC(DC) == CurContext &&
232      "The next DeclContext should be lexically contained in the current one.");
233  CurContext = DC;
234  S->setEntity(DC);
235}
236
237void Sema::PopDeclContext() {
238  assert(CurContext && "DeclContext imbalance!");
239
240  CurContext = getContainingDC(CurContext);
241}
242
243/// EnterDeclaratorContext - Used when we must lookup names in the context
244/// of a declarator's nested name specifier.
245void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
246  assert(PreDeclaratorDC == 0 && "Previous declarator context not popped?");
247  PreDeclaratorDC = static_cast<DeclContext*>(S->getEntity());
248  CurContext = DC;
249  assert(CurContext && "No context?");
250  S->setEntity(CurContext);
251}
252
253void Sema::ExitDeclaratorContext(Scope *S) {
254  S->setEntity(PreDeclaratorDC);
255  PreDeclaratorDC = 0;
256
257  // Reset CurContext to the nearest enclosing context.
258  while (!S->getEntity() && S->getParent())
259    S = S->getParent();
260  CurContext = static_cast<DeclContext*>(S->getEntity());
261  assert(CurContext && "No context?");
262}
263
264/// \brief Determine whether we allow overloading of the function
265/// PrevDecl with another declaration.
266///
267/// This routine determines whether overloading is possible, not
268/// whether some new function is actually an overload. It will return
269/// true in C++ (where we can always provide overloads) or, as an
270/// extension, in C when the previous function is already an
271/// overloaded function declaration or has the "overloadable"
272/// attribute.
273static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
274  if (Context.getLangOptions().CPlusPlus)
275    return true;
276
277  if (isa<OverloadedFunctionDecl>(PrevDecl))
278    return true;
279
280  return PrevDecl->getAttr<OverloadableAttr>() != 0;
281}
282
283/// Add this decl to the scope shadowed decl chains.
284void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
285  // Move up the scope chain until we find the nearest enclosing
286  // non-transparent context. The declaration will be introduced into this
287  // scope.
288  while (S->getEntity() &&
289         ((DeclContext *)S->getEntity())->isTransparentContext())
290    S = S->getParent();
291
292  // Add scoped declarations into their context, so that they can be
293  // found later. Declarations without a context won't be inserted
294  // into any context.
295  if (AddToContext)
296    CurContext->addDecl(D);
297
298  // Out-of-line function and variable definitions should not be pushed into
299  // scope.
300  if ((isa<FunctionTemplateDecl>(D) &&
301       cast<FunctionTemplateDecl>(D)->getTemplatedDecl()->isOutOfLine()) ||
302      (isa<FunctionDecl>(D) && cast<FunctionDecl>(D)->isOutOfLine()) ||
303      (isa<VarDecl>(D) && cast<VarDecl>(D)->isOutOfLine()))
304    return;
305
306  // If this replaces anything in the current scope,
307  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
308                               IEnd = IdResolver.end();
309  for (; I != IEnd; ++I) {
310    if (S->isDeclScope(DeclPtrTy::make(*I)) && D->declarationReplaces(*I)) {
311      S->RemoveDecl(DeclPtrTy::make(*I));
312      IdResolver.RemoveDecl(*I);
313
314      // Should only need to replace one decl.
315      break;
316    }
317  }
318
319  S->AddDecl(DeclPtrTy::make(D));
320  IdResolver.AddDecl(D);
321}
322
323bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
324  if (OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D)) {
325    // Look inside the overload set to determine if any of the declarations
326    // are in scope. (Possibly) build a new overload set containing only
327    // those declarations that are in scope.
328    OverloadedFunctionDecl *NewOvl = 0;
329    bool FoundInScope = false;
330    for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
331         FEnd = Ovl->function_end();
332         F != FEnd; ++F) {
333      NamedDecl *FD = F->get();
334      if (!isDeclInScope(FD, Ctx, S)) {
335        if (!NewOvl && F != Ovl->function_begin()) {
336          NewOvl = OverloadedFunctionDecl::Create(Context,
337                                                  F->get()->getDeclContext(),
338                                                  F->get()->getDeclName());
339          D = NewOvl;
340          for (OverloadedFunctionDecl::function_iterator
341               First = Ovl->function_begin();
342               First != F; ++First)
343            NewOvl->addOverload(*First);
344        }
345      } else {
346        FoundInScope = true;
347        if (NewOvl)
348          NewOvl->addOverload(*F);
349      }
350    }
351
352    return FoundInScope;
353  }
354
355  return IdResolver.isDeclInScope(D, Ctx, Context, S);
356}
357
358void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
359  if (S->decl_empty()) return;
360  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
361         "Scope shouldn't contain decls!");
362
363  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
364       I != E; ++I) {
365    Decl *TmpD = (*I).getAs<Decl>();
366    assert(TmpD && "This decl didn't get pushed??");
367
368    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
369    NamedDecl *D = cast<NamedDecl>(TmpD);
370
371    if (!D->getDeclName()) continue;
372
373    // Diagnose unused variables in this scope.
374    if (!D->isUsed() && !D->hasAttr<UnusedAttr>() && isa<VarDecl>(D) &&
375        !isa<ParmVarDecl>(D) && !isa<ImplicitParamDecl>(D) &&
376        D->getDeclContext()->isFunctionOrMethod())
377	    Diag(D->getLocation(), diag::warn_unused_variable) << D->getDeclName();
378
379    // Remove this name from our lexical scope.
380    IdResolver.RemoveDecl(D);
381  }
382}
383
384/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
385/// return 0 if one not found.
386ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
387  // The third "scope" argument is 0 since we aren't enabling lazy built-in
388  // creation from this context.
389  NamedDecl *IDecl = LookupSingleName(TUScope, Id, LookupOrdinaryName);
390
391  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
392}
393
394/// getNonFieldDeclScope - Retrieves the innermost scope, starting
395/// from S, where a non-field would be declared. This routine copes
396/// with the difference between C and C++ scoping rules in structs and
397/// unions. For example, the following code is well-formed in C but
398/// ill-formed in C++:
399/// @code
400/// struct S6 {
401///   enum { BAR } e;
402/// };
403///
404/// void test_S6() {
405///   struct S6 a;
406///   a.e = BAR;
407/// }
408/// @endcode
409/// For the declaration of BAR, this routine will return a different
410/// scope. The scope S will be the scope of the unnamed enumeration
411/// within S6. In C++, this routine will return the scope associated
412/// with S6, because the enumeration's scope is a transparent
413/// context but structures can contain non-field names. In C, this
414/// routine will return the translation unit scope, since the
415/// enumeration's scope is a transparent context and structures cannot
416/// contain non-field names.
417Scope *Sema::getNonFieldDeclScope(Scope *S) {
418  while (((S->getFlags() & Scope::DeclScope) == 0) ||
419         (S->getEntity() &&
420          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
421         (S->isClassScope() && !getLangOptions().CPlusPlus))
422    S = S->getParent();
423  return S;
424}
425
426void Sema::InitBuiltinVaListType() {
427  if (!Context.getBuiltinVaListType().isNull())
428    return;
429
430  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
431  NamedDecl *VaDecl = LookupSingleName(TUScope, VaIdent, LookupOrdinaryName);
432  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
433  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
434}
435
436/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
437/// file scope.  lazily create a decl for it. ForRedeclaration is true
438/// if we're creating this built-in in anticipation of redeclaring the
439/// built-in.
440NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
441                                     Scope *S, bool ForRedeclaration,
442                                     SourceLocation Loc) {
443  Builtin::ID BID = (Builtin::ID)bid;
444
445  if (Context.BuiltinInfo.hasVAListUse(BID))
446    InitBuiltinVaListType();
447
448  ASTContext::GetBuiltinTypeError Error;
449  QualType R = Context.GetBuiltinType(BID, Error);
450  switch (Error) {
451  case ASTContext::GE_None:
452    // Okay
453    break;
454
455  case ASTContext::GE_Missing_stdio:
456    if (ForRedeclaration)
457      Diag(Loc, diag::err_implicit_decl_requires_stdio)
458        << Context.BuiltinInfo.GetName(BID);
459    return 0;
460
461  case ASTContext::GE_Missing_setjmp:
462    if (ForRedeclaration)
463      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
464        << Context.BuiltinInfo.GetName(BID);
465    return 0;
466  }
467
468  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
469    Diag(Loc, diag::ext_implicit_lib_function_decl)
470      << Context.BuiltinInfo.GetName(BID)
471      << R;
472    if (Context.BuiltinInfo.getHeaderName(BID) &&
473        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
474          != Diagnostic::Ignored)
475      Diag(Loc, diag::note_please_include_header)
476        << Context.BuiltinInfo.getHeaderName(BID)
477        << Context.BuiltinInfo.GetName(BID);
478  }
479
480  FunctionDecl *New = FunctionDecl::Create(Context,
481                                           Context.getTranslationUnitDecl(),
482                                           Loc, II, R, /*DInfo=*/0,
483                                           FunctionDecl::Extern, false,
484                                           /*hasPrototype=*/true);
485  New->setImplicit();
486
487  // Create Decl objects for each parameter, adding them to the
488  // FunctionDecl.
489  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
490    llvm::SmallVector<ParmVarDecl*, 16> Params;
491    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
492      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
493                                           FT->getArgType(i), /*DInfo=*/0,
494                                           VarDecl::None, 0));
495    New->setParams(Context, Params.data(), Params.size());
496  }
497
498  AddKnownFunctionAttributes(New);
499
500  // TUScope is the translation-unit scope to insert this function into.
501  // FIXME: This is hideous. We need to teach PushOnScopeChains to
502  // relate Scopes to DeclContexts, and probably eliminate CurContext
503  // entirely, but we're not there yet.
504  DeclContext *SavedContext = CurContext;
505  CurContext = Context.getTranslationUnitDecl();
506  PushOnScopeChains(New, TUScope);
507  CurContext = SavedContext;
508  return New;
509}
510
511/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
512/// same name and scope as a previous declaration 'Old'.  Figure out
513/// how to resolve this situation, merging decls or emitting
514/// diagnostics as appropriate. If there was an error, set New to be invalid.
515///
516void Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
517  // If either decl is known invalid already, set the new one to be invalid and
518  // don't bother doing any merging checks.
519  if (New->isInvalidDecl() || OldD->isInvalidDecl())
520    return New->setInvalidDecl();
521
522  // Allow multiple definitions for ObjC built-in typedefs.
523  // FIXME: Verify the underlying types are equivalent!
524  if (getLangOptions().ObjC1) {
525    const IdentifierInfo *TypeID = New->getIdentifier();
526    switch (TypeID->getLength()) {
527    default: break;
528    case 2:
529      if (!TypeID->isStr("id"))
530        break;
531      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
532      // Install the built-in type for 'id', ignoring the current definition.
533      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
534      return;
535    case 5:
536      if (!TypeID->isStr("Class"))
537        break;
538      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
539      // Install the built-in type for 'Class', ignoring the current definition.
540      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
541      return;
542    case 3:
543      if (!TypeID->isStr("SEL"))
544        break;
545      Context.setObjCSelType(Context.getTypeDeclType(New));
546      return;
547    case 8:
548      if (!TypeID->isStr("Protocol"))
549        break;
550      Context.setObjCProtoType(New->getUnderlyingType());
551      return;
552    }
553    // Fall through - the typedef name was not a builtin type.
554  }
555  // Verify the old decl was also a type.
556  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
557  if (!Old) {
558    Diag(New->getLocation(), diag::err_redefinition_different_kind)
559      << New->getDeclName();
560    if (OldD->getLocation().isValid())
561      Diag(OldD->getLocation(), diag::note_previous_definition);
562    return New->setInvalidDecl();
563  }
564
565  // Determine the "old" type we'll use for checking and diagnostics.
566  QualType OldType;
567  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
568    OldType = OldTypedef->getUnderlyingType();
569  else
570    OldType = Context.getTypeDeclType(Old);
571
572  // If the typedef types are not identical, reject them in all languages and
573  // with any extensions enabled.
574
575  if (OldType != New->getUnderlyingType() &&
576      Context.getCanonicalType(OldType) !=
577      Context.getCanonicalType(New->getUnderlyingType())) {
578    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
579      << New->getUnderlyingType() << OldType;
580    if (Old->getLocation().isValid())
581      Diag(Old->getLocation(), diag::note_previous_definition);
582    return New->setInvalidDecl();
583  }
584
585  if (getLangOptions().Microsoft)
586    return;
587
588  // C++ [dcl.typedef]p2:
589  //   In a given non-class scope, a typedef specifier can be used to
590  //   redefine the name of any type declared in that scope to refer
591  //   to the type to which it already refers.
592  if (getLangOptions().CPlusPlus) {
593    if (!isa<CXXRecordDecl>(CurContext))
594      return;
595    Diag(New->getLocation(), diag::err_redefinition)
596      << New->getDeclName();
597    Diag(Old->getLocation(), diag::note_previous_definition);
598    return New->setInvalidDecl();
599  }
600
601  // If we have a redefinition of a typedef in C, emit a warning.  This warning
602  // is normally mapped to an error, but can be controlled with
603  // -Wtypedef-redefinition.  If either the original or the redefinition is
604  // in a system header, don't emit this for compatibility with GCC.
605  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
606      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
607       Context.getSourceManager().isInSystemHeader(New->getLocation())))
608    return;
609
610  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
611    << New->getDeclName();
612  Diag(Old->getLocation(), diag::note_previous_definition);
613  return;
614}
615
616/// DeclhasAttr - returns true if decl Declaration already has the target
617/// attribute.
618static bool
619DeclHasAttr(const Decl *decl, const Attr *target) {
620  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
621    if (attr->getKind() == target->getKind())
622      return true;
623
624  return false;
625}
626
627/// MergeAttributes - append attributes from the Old decl to the New one.
628static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
629  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
630    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
631      Attr *NewAttr = attr->clone(C);
632      NewAttr->setInherited(true);
633      New->addAttr(NewAttr);
634    }
635  }
636}
637
638/// Used in MergeFunctionDecl to keep track of function parameters in
639/// C.
640struct GNUCompatibleParamWarning {
641  ParmVarDecl *OldParm;
642  ParmVarDecl *NewParm;
643  QualType PromotedType;
644};
645
646/// MergeFunctionDecl - We just parsed a function 'New' from
647/// declarator D which has the same name and scope as a previous
648/// declaration 'Old'.  Figure out how to resolve this situation,
649/// merging decls or emitting diagnostics as appropriate.
650///
651/// In C++, New and Old must be declarations that are not
652/// overloaded. Use IsOverload to determine whether New and Old are
653/// overloaded, and to select the Old declaration that New should be
654/// merged with.
655///
656/// Returns true if there was an error, false otherwise.
657bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
658  assert(!isa<OverloadedFunctionDecl>(OldD) &&
659         "Cannot merge with an overloaded function declaration");
660
661  // Verify the old decl was also a function.
662  FunctionDecl *Old = 0;
663  if (FunctionTemplateDecl *OldFunctionTemplate
664        = dyn_cast<FunctionTemplateDecl>(OldD))
665    Old = OldFunctionTemplate->getTemplatedDecl();
666  else
667    Old = dyn_cast<FunctionDecl>(OldD);
668  if (!Old) {
669    Diag(New->getLocation(), diag::err_redefinition_different_kind)
670      << New->getDeclName();
671    Diag(OldD->getLocation(), diag::note_previous_definition);
672    return true;
673  }
674
675  // Determine whether the previous declaration was a definition,
676  // implicit declaration, or a declaration.
677  diag::kind PrevDiag;
678  if (Old->isThisDeclarationADefinition())
679    PrevDiag = diag::note_previous_definition;
680  else if (Old->isImplicit())
681    PrevDiag = diag::note_previous_implicit_declaration;
682  else
683    PrevDiag = diag::note_previous_declaration;
684
685  QualType OldQType = Context.getCanonicalType(Old->getType());
686  QualType NewQType = Context.getCanonicalType(New->getType());
687
688  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
689      New->getStorageClass() == FunctionDecl::Static &&
690      Old->getStorageClass() != FunctionDecl::Static) {
691    Diag(New->getLocation(), diag::err_static_non_static)
692      << New;
693    Diag(Old->getLocation(), PrevDiag);
694    return true;
695  }
696
697  if (getLangOptions().CPlusPlus) {
698    // (C++98 13.1p2):
699    //   Certain function declarations cannot be overloaded:
700    //     -- Function declarations that differ only in the return type
701    //        cannot be overloaded.
702    QualType OldReturnType
703      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
704    QualType NewReturnType
705      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
706    if (OldReturnType != NewReturnType) {
707      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
708      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
709      return true;
710    }
711
712    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
713    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
714    if (OldMethod && NewMethod && !NewMethod->getFriendObjectKind() &&
715        NewMethod->getLexicalDeclContext()->isRecord()) {
716      //    -- Member function declarations with the same name and the
717      //       same parameter types cannot be overloaded if any of them
718      //       is a static member function declaration.
719      if (OldMethod->isStatic() || NewMethod->isStatic()) {
720        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
721        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
722        return true;
723      }
724
725      // C++ [class.mem]p1:
726      //   [...] A member shall not be declared twice in the
727      //   member-specification, except that a nested class or member
728      //   class template can be declared and then later defined.
729      unsigned NewDiag;
730      if (isa<CXXConstructorDecl>(OldMethod))
731        NewDiag = diag::err_constructor_redeclared;
732      else if (isa<CXXDestructorDecl>(NewMethod))
733        NewDiag = diag::err_destructor_redeclared;
734      else if (isa<CXXConversionDecl>(NewMethod))
735        NewDiag = diag::err_conv_function_redeclared;
736      else
737        NewDiag = diag::err_member_redeclared;
738
739      Diag(New->getLocation(), NewDiag);
740      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
741    }
742
743    // (C++98 8.3.5p3):
744    //   All declarations for a function shall agree exactly in both the
745    //   return type and the parameter-type-list.
746    if (OldQType == NewQType)
747      return MergeCompatibleFunctionDecls(New, Old);
748
749    // Fall through for conflicting redeclarations and redefinitions.
750  }
751
752  // C: Function types need to be compatible, not identical. This handles
753  // duplicate function decls like "void f(int); void f(enum X);" properly.
754  if (!getLangOptions().CPlusPlus &&
755      Context.typesAreCompatible(OldQType, NewQType)) {
756    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
757    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
758    const FunctionProtoType *OldProto = 0;
759    if (isa<FunctionNoProtoType>(NewFuncType) &&
760        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
761      // The old declaration provided a function prototype, but the
762      // new declaration does not. Merge in the prototype.
763      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
764      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
765                                                 OldProto->arg_type_end());
766      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
767                                         ParamTypes.data(), ParamTypes.size(),
768                                         OldProto->isVariadic(),
769                                         OldProto->getTypeQuals());
770      New->setType(NewQType);
771      New->setHasInheritedPrototype();
772
773      // Synthesize a parameter for each argument type.
774      llvm::SmallVector<ParmVarDecl*, 16> Params;
775      for (FunctionProtoType::arg_type_iterator
776             ParamType = OldProto->arg_type_begin(),
777             ParamEnd = OldProto->arg_type_end();
778           ParamType != ParamEnd; ++ParamType) {
779        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
780                                                 SourceLocation(), 0,
781                                                 *ParamType, /*DInfo=*/0,
782                                                 VarDecl::None, 0);
783        Param->setImplicit();
784        Params.push_back(Param);
785      }
786
787      New->setParams(Context, Params.data(), Params.size());
788    }
789
790    return MergeCompatibleFunctionDecls(New, Old);
791  }
792
793  // GNU C permits a K&R definition to follow a prototype declaration
794  // if the declared types of the parameters in the K&R definition
795  // match the types in the prototype declaration, even when the
796  // promoted types of the parameters from the K&R definition differ
797  // from the types in the prototype. GCC then keeps the types from
798  // the prototype.
799  //
800  // If a variadic prototype is followed by a non-variadic K&R definition,
801  // the K&R definition becomes variadic.  This is sort of an edge case, but
802  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
803  // C99 6.9.1p8.
804  if (!getLangOptions().CPlusPlus &&
805      Old->hasPrototype() && !New->hasPrototype() &&
806      New->getType()->getAs<FunctionProtoType>() &&
807      Old->getNumParams() == New->getNumParams()) {
808    llvm::SmallVector<QualType, 16> ArgTypes;
809    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
810    const FunctionProtoType *OldProto
811      = Old->getType()->getAs<FunctionProtoType>();
812    const FunctionProtoType *NewProto
813      = New->getType()->getAs<FunctionProtoType>();
814
815    // Determine whether this is the GNU C extension.
816    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
817                                               NewProto->getResultType());
818    bool LooseCompatible = !MergedReturn.isNull();
819    for (unsigned Idx = 0, End = Old->getNumParams();
820         LooseCompatible && Idx != End; ++Idx) {
821      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
822      ParmVarDecl *NewParm = New->getParamDecl(Idx);
823      if (Context.typesAreCompatible(OldParm->getType(),
824                                     NewProto->getArgType(Idx))) {
825        ArgTypes.push_back(NewParm->getType());
826      } else if (Context.typesAreCompatible(OldParm->getType(),
827                                            NewParm->getType())) {
828        GNUCompatibleParamWarning Warn
829          = { OldParm, NewParm, NewProto->getArgType(Idx) };
830        Warnings.push_back(Warn);
831        ArgTypes.push_back(NewParm->getType());
832      } else
833        LooseCompatible = false;
834    }
835
836    if (LooseCompatible) {
837      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
838        Diag(Warnings[Warn].NewParm->getLocation(),
839             diag::ext_param_promoted_not_compatible_with_prototype)
840          << Warnings[Warn].PromotedType
841          << Warnings[Warn].OldParm->getType();
842        Diag(Warnings[Warn].OldParm->getLocation(),
843             diag::note_previous_declaration);
844      }
845
846      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
847                                           ArgTypes.size(),
848                                           OldProto->isVariadic(), 0));
849      return MergeCompatibleFunctionDecls(New, Old);
850    }
851
852    // Fall through to diagnose conflicting types.
853  }
854
855  // A function that has already been declared has been redeclared or defined
856  // with a different type- show appropriate diagnostic
857  if (unsigned BuiltinID = Old->getBuiltinID()) {
858    // The user has declared a builtin function with an incompatible
859    // signature.
860    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
861      // The function the user is redeclaring is a library-defined
862      // function like 'malloc' or 'printf'. Warn about the
863      // redeclaration, then pretend that we don't know about this
864      // library built-in.
865      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
866      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
867        << Old << Old->getType();
868      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
869      Old->setInvalidDecl();
870      return false;
871    }
872
873    PrevDiag = diag::note_previous_builtin_declaration;
874  }
875
876  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
877  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
878  return true;
879}
880
881/// \brief Completes the merge of two function declarations that are
882/// known to be compatible.
883///
884/// This routine handles the merging of attributes and other
885/// properties of function declarations form the old declaration to
886/// the new declaration, once we know that New is in fact a
887/// redeclaration of Old.
888///
889/// \returns false
890bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
891  // Merge the attributes
892  MergeAttributes(New, Old, Context);
893
894  // Merge the storage class.
895  if (Old->getStorageClass() != FunctionDecl::Extern &&
896      Old->getStorageClass() != FunctionDecl::None)
897    New->setStorageClass(Old->getStorageClass());
898
899  // Merge "pure" flag.
900  if (Old->isPure())
901    New->setPure();
902
903  // Merge the "deleted" flag.
904  if (Old->isDeleted())
905    New->setDeleted();
906
907  if (getLangOptions().CPlusPlus)
908    return MergeCXXFunctionDecl(New, Old);
909
910  return false;
911}
912
913/// MergeVarDecl - We just parsed a variable 'New' which has the same name
914/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
915/// situation, merging decls or emitting diagnostics as appropriate.
916///
917/// Tentative definition rules (C99 6.9.2p2) are checked by
918/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
919/// definitions here, since the initializer hasn't been attached.
920///
921void Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
922  // If either decl is invalid, make sure the new one is marked invalid and
923  // don't do any other checking.
924  if (New->isInvalidDecl() || OldD->isInvalidDecl())
925    return New->setInvalidDecl();
926
927  // Verify the old decl was also a variable.
928  VarDecl *Old = dyn_cast<VarDecl>(OldD);
929  if (!Old) {
930    Diag(New->getLocation(), diag::err_redefinition_different_kind)
931      << New->getDeclName();
932    Diag(OldD->getLocation(), diag::note_previous_definition);
933    return New->setInvalidDecl();
934  }
935
936  MergeAttributes(New, Old, Context);
937
938  // Merge the types
939  QualType MergedT;
940  if (getLangOptions().CPlusPlus) {
941    if (Context.hasSameType(New->getType(), Old->getType()))
942      MergedT = New->getType();
943    // C++ [basic.types]p7:
944    //   [...] The declared type of an array object might be an array of
945    //   unknown size and therefore be incomplete at one point in a
946    //   translation unit and complete later on; [...]
947    else if (Old->getType()->isIncompleteArrayType() &&
948             New->getType()->isArrayType()) {
949      CanQual<ArrayType> OldArray
950        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
951      CanQual<ArrayType> NewArray
952        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
953      if (OldArray->getElementType() == NewArray->getElementType())
954        MergedT = New->getType();
955    }
956  } else {
957    MergedT = Context.mergeTypes(New->getType(), Old->getType());
958  }
959  if (MergedT.isNull()) {
960    Diag(New->getLocation(), diag::err_redefinition_different_type)
961      << New->getDeclName();
962    Diag(Old->getLocation(), diag::note_previous_definition);
963    return New->setInvalidDecl();
964  }
965  New->setType(MergedT);
966
967  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
968  if (New->getStorageClass() == VarDecl::Static &&
969      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
970    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
971    Diag(Old->getLocation(), diag::note_previous_definition);
972    return New->setInvalidDecl();
973  }
974  // C99 6.2.2p4:
975  //   For an identifier declared with the storage-class specifier
976  //   extern in a scope in which a prior declaration of that
977  //   identifier is visible,23) if the prior declaration specifies
978  //   internal or external linkage, the linkage of the identifier at
979  //   the later declaration is the same as the linkage specified at
980  //   the prior declaration. If no prior declaration is visible, or
981  //   if the prior declaration specifies no linkage, then the
982  //   identifier has external linkage.
983  if (New->hasExternalStorage() && Old->hasLinkage())
984    /* Okay */;
985  else if (New->getStorageClass() != VarDecl::Static &&
986           Old->getStorageClass() == VarDecl::Static) {
987    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
988    Diag(Old->getLocation(), diag::note_previous_definition);
989    return New->setInvalidDecl();
990  }
991
992  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
993
994  // FIXME: The test for external storage here seems wrong? We still
995  // need to check for mismatches.
996  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
997      // Don't complain about out-of-line definitions of static members.
998      !(Old->getLexicalDeclContext()->isRecord() &&
999        !New->getLexicalDeclContext()->isRecord())) {
1000    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1001    Diag(Old->getLocation(), diag::note_previous_definition);
1002    return New->setInvalidDecl();
1003  }
1004
1005  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1006    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1007    Diag(Old->getLocation(), diag::note_previous_definition);
1008  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1009    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1010    Diag(Old->getLocation(), diag::note_previous_definition);
1011  }
1012
1013  // Keep a chain of previous declarations.
1014  New->setPreviousDeclaration(Old);
1015}
1016
1017/// CheckFallThrough - Check that we don't fall off the end of a
1018/// Statement that should return a value.
1019///
1020/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
1021/// MaybeFallThrough iff we might or might not fall off the end and
1022/// NeverFallThrough iff we never fall off the end of the statement.  We assume
1023/// that functions not marked noreturn will return.
1024Sema::ControlFlowKind Sema::CheckFallThrough(Stmt *Root) {
1025  llvm::OwningPtr<CFG> cfg (CFG::buildCFG(Root, &Context));
1026
1027  // FIXME: They should never return 0, fix that, delete this code.
1028  if (cfg == 0)
1029    return NeverFallThrough;
1030  // The CFG leaves in dead things, and we don't want to dead code paths to
1031  // confuse us, so we mark all live things first.
1032  std::queue<CFGBlock*> workq;
1033  llvm::BitVector live(cfg->getNumBlockIDs());
1034  // Prep work queue
1035  workq.push(&cfg->getEntry());
1036  // Solve
1037  while (!workq.empty()) {
1038    CFGBlock *item = workq.front();
1039    workq.pop();
1040    live.set(item->getBlockID());
1041    for (CFGBlock::succ_iterator I=item->succ_begin(),
1042           E=item->succ_end();
1043         I != E;
1044         ++I) {
1045      if ((*I) && !live[(*I)->getBlockID()]) {
1046        live.set((*I)->getBlockID());
1047        workq.push(*I);
1048      }
1049    }
1050  }
1051
1052  // Now we know what is live, we check the live precessors of the exit block
1053  // and look for fall through paths, being careful to ignore normal returns,
1054  // and exceptional paths.
1055  bool HasLiveReturn = false;
1056  bool HasFakeEdge = false;
1057  bool HasPlainEdge = false;
1058  for (CFGBlock::succ_iterator I=cfg->getExit().pred_begin(),
1059         E = cfg->getExit().pred_end();
1060       I != E;
1061       ++I) {
1062    CFGBlock& B = **I;
1063    if (!live[B.getBlockID()])
1064      continue;
1065    if (B.size() == 0) {
1066      // A labeled empty statement, or the entry block...
1067      HasPlainEdge = true;
1068      continue;
1069    }
1070    Stmt *S = B[B.size()-1];
1071    if (isa<ReturnStmt>(S)) {
1072      HasLiveReturn = true;
1073      continue;
1074    }
1075    if (isa<ObjCAtThrowStmt>(S)) {
1076      HasFakeEdge = true;
1077      continue;
1078    }
1079    if (isa<CXXThrowExpr>(S)) {
1080      HasFakeEdge = true;
1081      continue;
1082    }
1083    bool NoReturnEdge = false;
1084    if (CallExpr *C = dyn_cast<CallExpr>(S)) {
1085      Expr *CEE = C->getCallee()->IgnoreParenCasts();
1086      if (CEE->getType().getNoReturnAttr()) {
1087        NoReturnEdge = true;
1088        HasFakeEdge = true;
1089      } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) {
1090        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1091          if (FD->hasAttr<NoReturnAttr>()) {
1092            NoReturnEdge = true;
1093            HasFakeEdge = true;
1094          }
1095        }
1096      }
1097    }
1098    // FIXME: Add noreturn message sends.
1099    if (NoReturnEdge == false)
1100      HasPlainEdge = true;
1101  }
1102  if (!HasPlainEdge)
1103    return NeverFallThrough;
1104  if (HasFakeEdge || HasLiveReturn)
1105    return MaybeFallThrough;
1106  // This says AlwaysFallThrough for calls to functions that are not marked
1107  // noreturn, that don't return.  If people would like this warning to be more
1108  // accurate, such functions should be marked as noreturn.
1109  return AlwaysFallThrough;
1110}
1111
1112/// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
1113/// function that should return a value.  Check that we don't fall off the end
1114/// of a noreturn function.  We assume that functions and blocks not marked
1115/// noreturn will return.
1116void Sema::CheckFallThroughForFunctionDef(Decl *D, Stmt *Body) {
1117  // FIXME: Would be nice if we had a better way to control cascading errors,
1118  // but for now, avoid them.  The problem is that when Parse sees:
1119  //   int foo() { return a; }
1120  // The return is eaten and the Sema code sees just:
1121  //   int foo() { }
1122  // which this code would then warn about.
1123  if (getDiagnostics().hasErrorOccurred())
1124    return;
1125  bool ReturnsVoid = false;
1126  bool HasNoReturn = false;
1127  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1128    // If the result type of the function is a dependent type, we don't know
1129    // whether it will be void or not, so don't
1130    if (FD->getResultType()->isDependentType())
1131      return;
1132    if (FD->getResultType()->isVoidType())
1133      ReturnsVoid = true;
1134    if (FD->hasAttr<NoReturnAttr>())
1135      HasNoReturn = true;
1136  } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
1137    if (MD->getResultType()->isVoidType())
1138      ReturnsVoid = true;
1139    if (MD->hasAttr<NoReturnAttr>())
1140      HasNoReturn = true;
1141  }
1142
1143  // Short circuit for compilation speed.
1144  if ((Diags.getDiagnosticLevel(diag::warn_maybe_falloff_nonvoid_function)
1145       == Diagnostic::Ignored || ReturnsVoid)
1146      && (Diags.getDiagnosticLevel(diag::warn_noreturn_function_has_return_expr)
1147          == Diagnostic::Ignored || !HasNoReturn)
1148      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1149          == Diagnostic::Ignored || !ReturnsVoid))
1150    return;
1151  // FIXME: Function try block
1152  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1153    switch (CheckFallThrough(Body)) {
1154    case MaybeFallThrough:
1155      if (HasNoReturn)
1156        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1157      else if (!ReturnsVoid)
1158        Diag(Compound->getRBracLoc(),diag::warn_maybe_falloff_nonvoid_function);
1159      break;
1160    case AlwaysFallThrough:
1161      if (HasNoReturn)
1162        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1163      else if (!ReturnsVoid)
1164        Diag(Compound->getRBracLoc(), diag::warn_falloff_nonvoid_function);
1165      break;
1166    case NeverFallThrough:
1167      if (ReturnsVoid)
1168        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_function);
1169      break;
1170    }
1171  }
1172}
1173
1174/// CheckFallThroughForBlock - Check that we don't fall off the end of a block
1175/// that should return a value.  Check that we don't fall off the end of a
1176/// noreturn block.  We assume that functions and blocks not marked noreturn
1177/// will return.
1178void Sema::CheckFallThroughForBlock(QualType BlockTy, Stmt *Body) {
1179  // FIXME: Would be nice if we had a better way to control cascading errors,
1180  // but for now, avoid them.  The problem is that when Parse sees:
1181  //   int foo() { return a; }
1182  // The return is eaten and the Sema code sees just:
1183  //   int foo() { }
1184  // which this code would then warn about.
1185  if (getDiagnostics().hasErrorOccurred())
1186    return;
1187  bool ReturnsVoid = false;
1188  bool HasNoReturn = false;
1189  if (const FunctionType *FT = BlockTy->getPointeeType()->getAs<FunctionType>()) {
1190    if (FT->getResultType()->isVoidType())
1191      ReturnsVoid = true;
1192    if (FT->getNoReturnAttr())
1193      HasNoReturn = true;
1194  }
1195
1196  // Short circuit for compilation speed.
1197  if (ReturnsVoid
1198      && !HasNoReturn
1199      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1200          == Diagnostic::Ignored || !ReturnsVoid))
1201    return;
1202  // FIXME: Funtion try block
1203  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1204    switch (CheckFallThrough(Body)) {
1205    case MaybeFallThrough:
1206      if (HasNoReturn)
1207        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1208      else if (!ReturnsVoid)
1209        Diag(Compound->getRBracLoc(), diag::err_maybe_falloff_nonvoid_block);
1210      break;
1211    case AlwaysFallThrough:
1212      if (HasNoReturn)
1213        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1214      else if (!ReturnsVoid)
1215        Diag(Compound->getRBracLoc(), diag::err_falloff_nonvoid_block);
1216      break;
1217    case NeverFallThrough:
1218      if (ReturnsVoid)
1219        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_block);
1220      break;
1221    }
1222  }
1223}
1224
1225/// CheckParmsForFunctionDef - Check that the parameters of the given
1226/// function are appropriate for the definition of a function. This
1227/// takes care of any checks that cannot be performed on the
1228/// declaration itself, e.g., that the types of each of the function
1229/// parameters are complete.
1230bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
1231  bool HasInvalidParm = false;
1232  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1233    ParmVarDecl *Param = FD->getParamDecl(p);
1234
1235    // C99 6.7.5.3p4: the parameters in a parameter type list in a
1236    // function declarator that is part of a function definition of
1237    // that function shall not have incomplete type.
1238    //
1239    // This is also C++ [dcl.fct]p6.
1240    if (!Param->isInvalidDecl() &&
1241        RequireCompleteType(Param->getLocation(), Param->getType(),
1242                               diag::err_typecheck_decl_incomplete_type)) {
1243      Param->setInvalidDecl();
1244      HasInvalidParm = true;
1245    }
1246
1247    // C99 6.9.1p5: If the declarator includes a parameter type list, the
1248    // declaration of each parameter shall include an identifier.
1249    if (Param->getIdentifier() == 0 &&
1250        !Param->isImplicit() &&
1251        !getLangOptions().CPlusPlus)
1252      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
1253  }
1254
1255  return HasInvalidParm;
1256}
1257
1258/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1259/// no declarator (e.g. "struct foo;") is parsed.
1260Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1261  // FIXME: Error on auto/register at file scope
1262  // FIXME: Error on inline/virtual/explicit
1263  // FIXME: Error on invalid restrict
1264  // FIXME: Warn on useless __thread
1265  // FIXME: Warn on useless const/volatile
1266  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1267  // FIXME: Warn on useless attributes
1268  Decl *TagD = 0;
1269  TagDecl *Tag = 0;
1270  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1271      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1272      DS.getTypeSpecType() == DeclSpec::TST_union ||
1273      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1274    TagD = static_cast<Decl *>(DS.getTypeRep());
1275
1276    if (!TagD) // We probably had an error
1277      return DeclPtrTy();
1278
1279    // Note that the above type specs guarantee that the
1280    // type rep is a Decl, whereas in many of the others
1281    // it's a Type.
1282    Tag = dyn_cast<TagDecl>(TagD);
1283  }
1284
1285  if (DS.isFriendSpecified()) {
1286    // If we're dealing with a class template decl, assume that the
1287    // template routines are handling it.
1288    if (TagD && isa<ClassTemplateDecl>(TagD))
1289      return DeclPtrTy();
1290    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1291  }
1292
1293  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1294    if (!Record->getDeclName() && Record->isDefinition() &&
1295        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1296      if (getLangOptions().CPlusPlus ||
1297          Record->getDeclContext()->isRecord())
1298        return BuildAnonymousStructOrUnion(S, DS, Record);
1299
1300      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1301        << DS.getSourceRange();
1302    }
1303
1304    // Microsoft allows unnamed struct/union fields. Don't complain
1305    // about them.
1306    // FIXME: Should we support Microsoft's extensions in this area?
1307    if (Record->getDeclName() && getLangOptions().Microsoft)
1308      return DeclPtrTy::make(Tag);
1309  }
1310
1311  if (!DS.isMissingDeclaratorOk() &&
1312      DS.getTypeSpecType() != DeclSpec::TST_error) {
1313    // Warn about typedefs of enums without names, since this is an
1314    // extension in both Microsoft an GNU.
1315    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1316        Tag && isa<EnumDecl>(Tag)) {
1317      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1318        << DS.getSourceRange();
1319      return DeclPtrTy::make(Tag);
1320    }
1321
1322    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1323      << DS.getSourceRange();
1324    return DeclPtrTy();
1325  }
1326
1327  return DeclPtrTy::make(Tag);
1328}
1329
1330/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1331/// anonymous struct or union AnonRecord into the owning context Owner
1332/// and scope S. This routine will be invoked just after we realize
1333/// that an unnamed union or struct is actually an anonymous union or
1334/// struct, e.g.,
1335///
1336/// @code
1337/// union {
1338///   int i;
1339///   float f;
1340/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1341///    // f into the surrounding scope.x
1342/// @endcode
1343///
1344/// This routine is recursive, injecting the names of nested anonymous
1345/// structs/unions into the owning context and scope as well.
1346bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1347                                               RecordDecl *AnonRecord) {
1348  bool Invalid = false;
1349  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1350                               FEnd = AnonRecord->field_end();
1351       F != FEnd; ++F) {
1352    if ((*F)->getDeclName()) {
1353      LookupResult R;
1354      LookupQualifiedName(R, Owner, (*F)->getDeclName(),
1355                          LookupOrdinaryName, true);
1356      NamedDecl *PrevDecl = R.getAsSingleDecl(Context);
1357      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
1358        // C++ [class.union]p2:
1359        //   The names of the members of an anonymous union shall be
1360        //   distinct from the names of any other entity in the
1361        //   scope in which the anonymous union is declared.
1362        unsigned diagKind
1363          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
1364                                 : diag::err_anonymous_struct_member_redecl;
1365        Diag((*F)->getLocation(), diagKind)
1366          << (*F)->getDeclName();
1367        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1368        Invalid = true;
1369      } else {
1370        // C++ [class.union]p2:
1371        //   For the purpose of name lookup, after the anonymous union
1372        //   definition, the members of the anonymous union are
1373        //   considered to have been defined in the scope in which the
1374        //   anonymous union is declared.
1375        Owner->makeDeclVisibleInContext(*F);
1376        S->AddDecl(DeclPtrTy::make(*F));
1377        IdResolver.AddDecl(*F);
1378      }
1379    } else if (const RecordType *InnerRecordType
1380                 = (*F)->getType()->getAs<RecordType>()) {
1381      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1382      if (InnerRecord->isAnonymousStructOrUnion())
1383        Invalid = Invalid ||
1384          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1385    }
1386  }
1387
1388  return Invalid;
1389}
1390
1391/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1392/// anonymous structure or union. Anonymous unions are a C++ feature
1393/// (C++ [class.union]) and a GNU C extension; anonymous structures
1394/// are a GNU C and GNU C++ extension.
1395Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1396                                                  RecordDecl *Record) {
1397  DeclContext *Owner = Record->getDeclContext();
1398
1399  // Diagnose whether this anonymous struct/union is an extension.
1400  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1401    Diag(Record->getLocation(), diag::ext_anonymous_union);
1402  else if (!Record->isUnion())
1403    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1404
1405  // C and C++ require different kinds of checks for anonymous
1406  // structs/unions.
1407  bool Invalid = false;
1408  if (getLangOptions().CPlusPlus) {
1409    const char* PrevSpec = 0;
1410    unsigned DiagID;
1411    // C++ [class.union]p3:
1412    //   Anonymous unions declared in a named namespace or in the
1413    //   global namespace shall be declared static.
1414    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1415        (isa<TranslationUnitDecl>(Owner) ||
1416         (isa<NamespaceDecl>(Owner) &&
1417          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1418      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1419      Invalid = true;
1420
1421      // Recover by adding 'static'.
1422      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1423                             PrevSpec, DiagID);
1424    }
1425    // C++ [class.union]p3:
1426    //   A storage class is not allowed in a declaration of an
1427    //   anonymous union in a class scope.
1428    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1429             isa<RecordDecl>(Owner)) {
1430      Diag(DS.getStorageClassSpecLoc(),
1431           diag::err_anonymous_union_with_storage_spec);
1432      Invalid = true;
1433
1434      // Recover by removing the storage specifier.
1435      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1436                             PrevSpec, DiagID);
1437    }
1438
1439    // C++ [class.union]p2:
1440    //   The member-specification of an anonymous union shall only
1441    //   define non-static data members. [Note: nested types and
1442    //   functions cannot be declared within an anonymous union. ]
1443    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1444                                 MemEnd = Record->decls_end();
1445         Mem != MemEnd; ++Mem) {
1446      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1447        // C++ [class.union]p3:
1448        //   An anonymous union shall not have private or protected
1449        //   members (clause 11).
1450        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1451          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1452            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1453          Invalid = true;
1454        }
1455      } else if ((*Mem)->isImplicit()) {
1456        // Any implicit members are fine.
1457      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1458        // This is a type that showed up in an
1459        // elaborated-type-specifier inside the anonymous struct or
1460        // union, but which actually declares a type outside of the
1461        // anonymous struct or union. It's okay.
1462      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1463        if (!MemRecord->isAnonymousStructOrUnion() &&
1464            MemRecord->getDeclName()) {
1465          // This is a nested type declaration.
1466          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1467            << (int)Record->isUnion();
1468          Invalid = true;
1469        }
1470      } else {
1471        // We have something that isn't a non-static data
1472        // member. Complain about it.
1473        unsigned DK = diag::err_anonymous_record_bad_member;
1474        if (isa<TypeDecl>(*Mem))
1475          DK = diag::err_anonymous_record_with_type;
1476        else if (isa<FunctionDecl>(*Mem))
1477          DK = diag::err_anonymous_record_with_function;
1478        else if (isa<VarDecl>(*Mem))
1479          DK = diag::err_anonymous_record_with_static;
1480        Diag((*Mem)->getLocation(), DK)
1481            << (int)Record->isUnion();
1482          Invalid = true;
1483      }
1484    }
1485  }
1486
1487  if (!Record->isUnion() && !Owner->isRecord()) {
1488    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1489      << (int)getLangOptions().CPlusPlus;
1490    Invalid = true;
1491  }
1492
1493  // Create a declaration for this anonymous struct/union.
1494  NamedDecl *Anon = 0;
1495  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1496    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1497                             /*IdentifierInfo=*/0,
1498                             Context.getTypeDeclType(Record),
1499                             // FIXME: Type source info.
1500                             /*DInfo=*/0,
1501                             /*BitWidth=*/0, /*Mutable=*/false);
1502    Anon->setAccess(AS_public);
1503    if (getLangOptions().CPlusPlus)
1504      FieldCollector->Add(cast<FieldDecl>(Anon));
1505  } else {
1506    VarDecl::StorageClass SC;
1507    switch (DS.getStorageClassSpec()) {
1508    default: assert(0 && "Unknown storage class!");
1509    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1510    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1511    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1512    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1513    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1514    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1515    case DeclSpec::SCS_mutable:
1516      // mutable can only appear on non-static class members, so it's always
1517      // an error here
1518      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1519      Invalid = true;
1520      SC = VarDecl::None;
1521      break;
1522    }
1523
1524    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1525                           /*IdentifierInfo=*/0,
1526                           Context.getTypeDeclType(Record),
1527                           // FIXME: Type source info.
1528                           /*DInfo=*/0,
1529                           SC);
1530  }
1531  Anon->setImplicit();
1532
1533  // Add the anonymous struct/union object to the current
1534  // context. We'll be referencing this object when we refer to one of
1535  // its members.
1536  Owner->addDecl(Anon);
1537
1538  // Inject the members of the anonymous struct/union into the owning
1539  // context and into the identifier resolver chain for name lookup
1540  // purposes.
1541  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1542    Invalid = true;
1543
1544  // Mark this as an anonymous struct/union type. Note that we do not
1545  // do this until after we have already checked and injected the
1546  // members of this anonymous struct/union type, because otherwise
1547  // the members could be injected twice: once by DeclContext when it
1548  // builds its lookup table, and once by
1549  // InjectAnonymousStructOrUnionMembers.
1550  Record->setAnonymousStructOrUnion(true);
1551
1552  if (Invalid)
1553    Anon->setInvalidDecl();
1554
1555  return DeclPtrTy::make(Anon);
1556}
1557
1558
1559/// GetNameForDeclarator - Determine the full declaration name for the
1560/// given Declarator.
1561DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1562  switch (D.getKind()) {
1563  case Declarator::DK_Abstract:
1564    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1565    return DeclarationName();
1566
1567  case Declarator::DK_Normal:
1568    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1569    return DeclarationName(D.getIdentifier());
1570
1571  case Declarator::DK_Constructor: {
1572    QualType Ty = GetTypeFromParser(D.getDeclaratorIdType());
1573    return Context.DeclarationNames.getCXXConstructorName(
1574                                                Context.getCanonicalType(Ty));
1575  }
1576
1577  case Declarator::DK_Destructor: {
1578    QualType Ty = GetTypeFromParser(D.getDeclaratorIdType());
1579    return Context.DeclarationNames.getCXXDestructorName(
1580                                                Context.getCanonicalType(Ty));
1581  }
1582
1583  case Declarator::DK_Conversion: {
1584    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1585    QualType Ty = GetTypeFromParser(D.getDeclaratorIdType());
1586    return Context.DeclarationNames.getCXXConversionFunctionName(
1587                                                Context.getCanonicalType(Ty));
1588  }
1589
1590  case Declarator::DK_Operator:
1591    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1592    return Context.DeclarationNames.getCXXOperatorName(
1593                                                D.getOverloadedOperator());
1594
1595  case Declarator::DK_TemplateId: {
1596    TemplateName Name
1597      = TemplateName::getFromVoidPointer(D.getTemplateId()->Template);
1598    if (TemplateDecl *Template = Name.getAsTemplateDecl())
1599      return Template->getDeclName();
1600    if (OverloadedFunctionDecl *Ovl = Name.getAsOverloadedFunctionDecl())
1601      return Ovl->getDeclName();
1602
1603    return DeclarationName();
1604  }
1605  }
1606
1607  assert(false && "Unknown name kind");
1608  return DeclarationName();
1609}
1610
1611/// isNearlyMatchingFunction - Determine whether the C++ functions
1612/// Declaration and Definition are "nearly" matching. This heuristic
1613/// is used to improve diagnostics in the case where an out-of-line
1614/// function definition doesn't match any declaration within
1615/// the class or namespace.
1616static bool isNearlyMatchingFunction(ASTContext &Context,
1617                                     FunctionDecl *Declaration,
1618                                     FunctionDecl *Definition) {
1619  if (Declaration->param_size() != Definition->param_size())
1620    return false;
1621  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1622    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1623    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1624
1625    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1626    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1627    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1628      return false;
1629  }
1630
1631  return true;
1632}
1633
1634Sema::DeclPtrTy
1635Sema::HandleDeclarator(Scope *S, Declarator &D,
1636                       MultiTemplateParamsArg TemplateParamLists,
1637                       bool IsFunctionDefinition) {
1638  DeclarationName Name = GetNameForDeclarator(D);
1639
1640  // All of these full declarators require an identifier.  If it doesn't have
1641  // one, the ParsedFreeStandingDeclSpec action should be used.
1642  if (!Name) {
1643    if (!D.isInvalidType())  // Reject this if we think it is valid.
1644      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1645           diag::err_declarator_need_ident)
1646        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1647    return DeclPtrTy();
1648  }
1649
1650  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1651  // we find one that is.
1652  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1653         (S->getFlags() & Scope::TemplateParamScope) != 0)
1654    S = S->getParent();
1655
1656  // If this is an out-of-line definition of a member of a class template
1657  // or class template partial specialization, we may need to rebuild the
1658  // type specifier in the declarator. See RebuildTypeInCurrentInstantiation()
1659  // for more information.
1660  // FIXME: cope with decltype(expr) and typeof(expr) once the rebuilder can
1661  // handle expressions properly.
1662  DeclSpec &DS = const_cast<DeclSpec&>(D.getDeclSpec());
1663  if (D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid() &&
1664      isDependentScopeSpecifier(D.getCXXScopeSpec()) &&
1665      (DS.getTypeSpecType() == DeclSpec::TST_typename ||
1666       DS.getTypeSpecType() == DeclSpec::TST_typeofType ||
1667       DS.getTypeSpecType() == DeclSpec::TST_typeofExpr ||
1668       DS.getTypeSpecType() == DeclSpec::TST_decltype)) {
1669    if (DeclContext *DC = computeDeclContext(D.getCXXScopeSpec(), true)) {
1670      // FIXME: Preserve type source info.
1671      QualType T = GetTypeFromParser(DS.getTypeRep());
1672      EnterDeclaratorContext(S, DC);
1673      T = RebuildTypeInCurrentInstantiation(T, D.getIdentifierLoc(), Name);
1674      ExitDeclaratorContext(S);
1675      if (T.isNull())
1676        return DeclPtrTy();
1677      DS.UpdateTypeRep(T.getAsOpaquePtr());
1678    }
1679  }
1680
1681  DeclContext *DC;
1682  NamedDecl *PrevDecl;
1683  NamedDecl *New;
1684
1685  DeclaratorInfo *DInfo = 0;
1686  QualType R = GetTypeForDeclarator(D, S, &DInfo);
1687
1688  // See if this is a redefinition of a variable in the same scope.
1689  if (D.getCXXScopeSpec().isInvalid()) {
1690    DC = CurContext;
1691    PrevDecl = 0;
1692    D.setInvalidType();
1693  } else if (!D.getCXXScopeSpec().isSet()) {
1694    LookupNameKind NameKind = LookupOrdinaryName;
1695
1696    // If the declaration we're planning to build will be a function
1697    // or object with linkage, then look for another declaration with
1698    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1699    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1700      /* Do nothing*/;
1701    else if (R->isFunctionType()) {
1702      if (CurContext->isFunctionOrMethod() ||
1703          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1704        NameKind = LookupRedeclarationWithLinkage;
1705    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1706      NameKind = LookupRedeclarationWithLinkage;
1707    else if (CurContext->getLookupContext()->isTranslationUnit() &&
1708             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1709      NameKind = LookupRedeclarationWithLinkage;
1710
1711    DC = CurContext;
1712    LookupResult R;
1713    LookupName(R, S, Name, NameKind, true,
1714               NameKind == LookupRedeclarationWithLinkage,
1715               D.getIdentifierLoc());
1716    PrevDecl = R.getAsSingleDecl(Context);
1717  } else { // Something like "int foo::x;"
1718    DC = computeDeclContext(D.getCXXScopeSpec(), true);
1719
1720    if (!DC) {
1721      // If we could not compute the declaration context, it's because the
1722      // declaration context is dependent but does not refer to a class,
1723      // class template, or class template partial specialization. Complain
1724      // and return early, to avoid the coming semantic disaster.
1725      Diag(D.getIdentifierLoc(),
1726           diag::err_template_qualified_declarator_no_match)
1727        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
1728        << D.getCXXScopeSpec().getRange();
1729      return DeclPtrTy();
1730    }
1731
1732    LookupResult Res;
1733    LookupQualifiedName(Res, DC, Name, LookupOrdinaryName, true);
1734    PrevDecl = Res.getAsSingleDecl(Context);
1735
1736    // C++ 7.3.1.2p2:
1737    // Members (including explicit specializations of templates) of a named
1738    // namespace can also be defined outside that namespace by explicit
1739    // qualification of the name being defined, provided that the entity being
1740    // defined was already declared in the namespace and the definition appears
1741    // after the point of declaration in a namespace that encloses the
1742    // declarations namespace.
1743    //
1744    // Note that we only check the context at this point. We don't yet
1745    // have enough information to make sure that PrevDecl is actually
1746    // the declaration we want to match. For example, given:
1747    //
1748    //   class X {
1749    //     void f();
1750    //     void f(float);
1751    //   };
1752    //
1753    //   void X::f(int) { } // ill-formed
1754    //
1755    // In this case, PrevDecl will point to the overload set
1756    // containing the two f's declared in X, but neither of them
1757    // matches.
1758
1759    // First check whether we named the global scope.
1760    if (isa<TranslationUnitDecl>(DC)) {
1761      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1762        << Name << D.getCXXScopeSpec().getRange();
1763    } else if (!CurContext->Encloses(DC)) {
1764      // The qualifying scope doesn't enclose the original declaration.
1765      // Emit diagnostic based on current scope.
1766      SourceLocation L = D.getIdentifierLoc();
1767      SourceRange R = D.getCXXScopeSpec().getRange();
1768      if (isa<FunctionDecl>(CurContext))
1769        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1770      else
1771        Diag(L, diag::err_invalid_declarator_scope)
1772          << Name << cast<NamedDecl>(DC) << R;
1773      D.setInvalidType();
1774    }
1775  }
1776
1777  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1778    // Maybe we will complain about the shadowed template parameter.
1779    if (!D.isInvalidType())
1780      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl))
1781        D.setInvalidType();
1782
1783    // Just pretend that we didn't see the previous declaration.
1784    PrevDecl = 0;
1785  }
1786
1787  // In C++, the previous declaration we find might be a tag type
1788  // (class or enum). In this case, the new declaration will hide the
1789  // tag type. Note that this does does not apply if we're declaring a
1790  // typedef (C++ [dcl.typedef]p4).
1791  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1792      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1793    PrevDecl = 0;
1794
1795  bool Redeclaration = false;
1796  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1797    if (TemplateParamLists.size()) {
1798      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
1799      return DeclPtrTy();
1800    }
1801
1802    New = ActOnTypedefDeclarator(S, D, DC, R, DInfo, PrevDecl, Redeclaration);
1803  } else if (R->isFunctionType()) {
1804    New = ActOnFunctionDeclarator(S, D, DC, R, DInfo, PrevDecl,
1805                                  move(TemplateParamLists),
1806                                  IsFunctionDefinition, Redeclaration);
1807  } else {
1808    New = ActOnVariableDeclarator(S, D, DC, R, DInfo, PrevDecl,
1809                                  move(TemplateParamLists),
1810                                  Redeclaration);
1811  }
1812
1813  if (New == 0)
1814    return DeclPtrTy();
1815
1816  // If this has an identifier and is not an invalid redeclaration or
1817  // function template specialization, add it to the scope stack.
1818  if (Name && !(Redeclaration && New->isInvalidDecl()) &&
1819      !(isa<FunctionDecl>(New) &&
1820        cast<FunctionDecl>(New)->isFunctionTemplateSpecialization()))
1821    PushOnScopeChains(New, S);
1822
1823  return DeclPtrTy::make(New);
1824}
1825
1826/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1827/// types into constant array types in certain situations which would otherwise
1828/// be errors (for GCC compatibility).
1829static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1830                                                    ASTContext &Context,
1831                                                    bool &SizeIsNegative) {
1832  // This method tries to turn a variable array into a constant
1833  // array even when the size isn't an ICE.  This is necessary
1834  // for compatibility with code that depends on gcc's buggy
1835  // constant expression folding, like struct {char x[(int)(char*)2];}
1836  SizeIsNegative = false;
1837
1838  QualifierCollector Qs;
1839  const Type *Ty = Qs.strip(T);
1840
1841  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
1842    QualType Pointee = PTy->getPointeeType();
1843    QualType FixedType =
1844        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1845    if (FixedType.isNull()) return FixedType;
1846    FixedType = Context.getPointerType(FixedType);
1847    return Qs.apply(FixedType);
1848  }
1849
1850  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1851  if (!VLATy)
1852    return QualType();
1853  // FIXME: We should probably handle this case
1854  if (VLATy->getElementType()->isVariablyModifiedType())
1855    return QualType();
1856
1857  Expr::EvalResult EvalResult;
1858  if (!VLATy->getSizeExpr() ||
1859      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1860      !EvalResult.Val.isInt())
1861    return QualType();
1862
1863  llvm::APSInt &Res = EvalResult.Val.getInt();
1864  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
1865    Expr* ArySizeExpr = VLATy->getSizeExpr();
1866    // FIXME: here we could "steal" (how?) ArySizeExpr from the VLA,
1867    // so as to transfer ownership to the ConstantArrayWithExpr.
1868    // Alternatively, we could "clone" it (how?).
1869    // Since we don't know how to do things above, we just use the
1870    // very same Expr*.
1871    return Context.getConstantArrayWithExprType(VLATy->getElementType(),
1872                                                Res, ArySizeExpr,
1873                                                ArrayType::Normal, 0,
1874                                                VLATy->getBracketsRange());
1875  }
1876
1877  SizeIsNegative = true;
1878  return QualType();
1879}
1880
1881/// \brief Register the given locally-scoped external C declaration so
1882/// that it can be found later for redeclarations
1883void
1884Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1885                                       Scope *S) {
1886  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1887         "Decl is not a locally-scoped decl!");
1888  // Note that we have a locally-scoped external with this name.
1889  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1890
1891  if (!PrevDecl)
1892    return;
1893
1894  // If there was a previous declaration of this variable, it may be
1895  // in our identifier chain. Update the identifier chain with the new
1896  // declaration.
1897  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
1898    // The previous declaration was found on the identifer resolver
1899    // chain, so remove it from its scope.
1900    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
1901      S = S->getParent();
1902
1903    if (S)
1904      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
1905  }
1906}
1907
1908/// \brief Diagnose function specifiers on a declaration of an identifier that
1909/// does not identify a function.
1910void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
1911  // FIXME: We should probably indicate the identifier in question to avoid
1912  // confusion for constructs like "inline int a(), b;"
1913  if (D.getDeclSpec().isInlineSpecified())
1914    Diag(D.getDeclSpec().getInlineSpecLoc(),
1915         diag::err_inline_non_function);
1916
1917  if (D.getDeclSpec().isVirtualSpecified())
1918    Diag(D.getDeclSpec().getVirtualSpecLoc(),
1919         diag::err_virtual_non_function);
1920
1921  if (D.getDeclSpec().isExplicitSpecified())
1922    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1923         diag::err_explicit_non_function);
1924}
1925
1926NamedDecl*
1927Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1928                             QualType R,  DeclaratorInfo *DInfo,
1929                             NamedDecl* PrevDecl, bool &Redeclaration) {
1930  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1931  if (D.getCXXScopeSpec().isSet()) {
1932    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1933      << D.getCXXScopeSpec().getRange();
1934    D.setInvalidType();
1935    // Pretend we didn't see the scope specifier.
1936    DC = 0;
1937  }
1938
1939  if (getLangOptions().CPlusPlus) {
1940    // Check that there are no default arguments (C++ only).
1941    CheckExtraCXXDefaultArguments(D);
1942  }
1943
1944  DiagnoseFunctionSpecifiers(D);
1945
1946  if (D.getDeclSpec().isThreadSpecified())
1947    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
1948
1949  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R);
1950  if (!NewTD) return 0;
1951
1952  if (D.isInvalidType())
1953    NewTD->setInvalidDecl();
1954
1955  // Handle attributes prior to checking for duplicates in MergeVarDecl
1956  ProcessDeclAttributes(S, NewTD, D);
1957  // Merge the decl with the existing one if appropriate. If the decl is
1958  // in an outer scope, it isn't the same thing.
1959  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1960    Redeclaration = true;
1961    MergeTypeDefDecl(NewTD, PrevDecl);
1962  }
1963
1964  // C99 6.7.7p2: If a typedef name specifies a variably modified type
1965  // then it shall have block scope.
1966  QualType T = NewTD->getUnderlyingType();
1967  if (T->isVariablyModifiedType()) {
1968    CurFunctionNeedsScopeChecking = true;
1969
1970    if (S->getFnParent() == 0) {
1971      bool SizeIsNegative;
1972      QualType FixedTy =
1973          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1974      if (!FixedTy.isNull()) {
1975        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
1976        NewTD->setUnderlyingType(FixedTy);
1977      } else {
1978        if (SizeIsNegative)
1979          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
1980        else if (T->isVariableArrayType())
1981          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1982        else
1983          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1984        NewTD->setInvalidDecl();
1985      }
1986    }
1987  }
1988
1989  // If this is the C FILE type, notify the AST context.
1990  if (IdentifierInfo *II = NewTD->getIdentifier())
1991    if (!NewTD->isInvalidDecl() &&
1992        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
1993      if (II->isStr("FILE"))
1994        Context.setFILEDecl(NewTD);
1995      else if (II->isStr("jmp_buf"))
1996        Context.setjmp_bufDecl(NewTD);
1997      else if (II->isStr("sigjmp_buf"))
1998        Context.setsigjmp_bufDecl(NewTD);
1999    }
2000
2001  return NewTD;
2002}
2003
2004/// \brief Determines whether the given declaration is an out-of-scope
2005/// previous declaration.
2006///
2007/// This routine should be invoked when name lookup has found a
2008/// previous declaration (PrevDecl) that is not in the scope where a
2009/// new declaration by the same name is being introduced. If the new
2010/// declaration occurs in a local scope, previous declarations with
2011/// linkage may still be considered previous declarations (C99
2012/// 6.2.2p4-5, C++ [basic.link]p6).
2013///
2014/// \param PrevDecl the previous declaration found by name
2015/// lookup
2016///
2017/// \param DC the context in which the new declaration is being
2018/// declared.
2019///
2020/// \returns true if PrevDecl is an out-of-scope previous declaration
2021/// for a new delcaration with the same name.
2022static bool
2023isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2024                                ASTContext &Context) {
2025  if (!PrevDecl)
2026    return 0;
2027
2028  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
2029  // case we need to check each of the overloaded functions.
2030  if (!PrevDecl->hasLinkage())
2031    return false;
2032
2033  if (Context.getLangOptions().CPlusPlus) {
2034    // C++ [basic.link]p6:
2035    //   If there is a visible declaration of an entity with linkage
2036    //   having the same name and type, ignoring entities declared
2037    //   outside the innermost enclosing namespace scope, the block
2038    //   scope declaration declares that same entity and receives the
2039    //   linkage of the previous declaration.
2040    DeclContext *OuterContext = DC->getLookupContext();
2041    if (!OuterContext->isFunctionOrMethod())
2042      // This rule only applies to block-scope declarations.
2043      return false;
2044    else {
2045      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2046      if (PrevOuterContext->isRecord())
2047        // We found a member function: ignore it.
2048        return false;
2049      else {
2050        // Find the innermost enclosing namespace for the new and
2051        // previous declarations.
2052        while (!OuterContext->isFileContext())
2053          OuterContext = OuterContext->getParent();
2054        while (!PrevOuterContext->isFileContext())
2055          PrevOuterContext = PrevOuterContext->getParent();
2056
2057        // The previous declaration is in a different namespace, so it
2058        // isn't the same function.
2059        if (OuterContext->getPrimaryContext() !=
2060            PrevOuterContext->getPrimaryContext())
2061          return false;
2062      }
2063    }
2064  }
2065
2066  return true;
2067}
2068
2069NamedDecl*
2070Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2071                              QualType R, DeclaratorInfo *DInfo,
2072                              NamedDecl* PrevDecl,
2073                              MultiTemplateParamsArg TemplateParamLists,
2074                              bool &Redeclaration) {
2075  DeclarationName Name = GetNameForDeclarator(D);
2076
2077  // Check that there are no default arguments (C++ only).
2078  if (getLangOptions().CPlusPlus)
2079    CheckExtraCXXDefaultArguments(D);
2080
2081  VarDecl *NewVD;
2082  VarDecl::StorageClass SC;
2083  switch (D.getDeclSpec().getStorageClassSpec()) {
2084  default: assert(0 && "Unknown storage class!");
2085  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
2086  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
2087  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
2088  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
2089  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
2090  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
2091  case DeclSpec::SCS_mutable:
2092    // mutable can only appear on non-static class members, so it's always
2093    // an error here
2094    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2095    D.setInvalidType();
2096    SC = VarDecl::None;
2097    break;
2098  }
2099
2100  IdentifierInfo *II = Name.getAsIdentifierInfo();
2101  if (!II) {
2102    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2103      << Name.getAsString();
2104    return 0;
2105  }
2106
2107  DiagnoseFunctionSpecifiers(D);
2108
2109  if (!DC->isRecord() && S->getFnParent() == 0) {
2110    // C99 6.9p2: The storage-class specifiers auto and register shall not
2111    // appear in the declaration specifiers in an external declaration.
2112    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2113
2114      // If this is a register variable with an asm label specified, then this
2115      // is a GNU extension.
2116      if (SC == VarDecl::Register && D.getAsmLabel())
2117        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2118      else
2119        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2120      D.setInvalidType();
2121    }
2122  }
2123  if (DC->isRecord() && !CurContext->isRecord()) {
2124    // This is an out-of-line definition of a static data member.
2125    if (SC == VarDecl::Static) {
2126      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2127           diag::err_static_out_of_line)
2128        << CodeModificationHint::CreateRemoval(
2129                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2130    } else if (SC == VarDecl::None)
2131      SC = VarDecl::Static;
2132  }
2133  if (SC == VarDecl::Static) {
2134    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2135      if (RD->isLocalClass())
2136        Diag(D.getIdentifierLoc(),
2137             diag::err_static_data_member_not_allowed_in_local_class)
2138          << Name << RD->getDeclName();
2139    }
2140  }
2141
2142  // Match up the template parameter lists with the scope specifier, then
2143  // determine whether we have a template or a template specialization.
2144  bool isExplicitSpecialization = false;
2145  if (TemplateParameterList *TemplateParams
2146        = MatchTemplateParametersToScopeSpecifier(
2147                                  D.getDeclSpec().getSourceRange().getBegin(),
2148                                                  D.getCXXScopeSpec(),
2149                        (TemplateParameterList**)TemplateParamLists.get(),
2150                                                   TemplateParamLists.size(),
2151                                                  isExplicitSpecialization)) {
2152    if (TemplateParams->size() > 0) {
2153      // There is no such thing as a variable template.
2154      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2155        << II
2156        << SourceRange(TemplateParams->getTemplateLoc(),
2157                       TemplateParams->getRAngleLoc());
2158      return 0;
2159    } else {
2160      // There is an extraneous 'template<>' for this variable. Complain
2161      // about it, but allow the declaration of the variable.
2162      Diag(TemplateParams->getTemplateLoc(),
2163           diag::err_template_variable_noparams)
2164        << II
2165        << SourceRange(TemplateParams->getTemplateLoc(),
2166                       TemplateParams->getRAngleLoc());
2167
2168      isExplicitSpecialization = true;
2169    }
2170  }
2171
2172  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2173                          II, R, DInfo, SC);
2174
2175  if (D.isInvalidType())
2176    NewVD->setInvalidDecl();
2177
2178  if (D.getDeclSpec().isThreadSpecified()) {
2179    if (NewVD->hasLocalStorage())
2180      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2181    else if (!Context.Target.isTLSSupported())
2182      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2183    else
2184      NewVD->setThreadSpecified(true);
2185  }
2186
2187  // Set the lexical context. If the declarator has a C++ scope specifier, the
2188  // lexical context will be different from the semantic context.
2189  NewVD->setLexicalDeclContext(CurContext);
2190
2191  // Handle attributes prior to checking for duplicates in MergeVarDecl
2192  ProcessDeclAttributes(S, NewVD, D);
2193
2194  // Handle GNU asm-label extension (encoded as an attribute).
2195  if (Expr *E = (Expr*) D.getAsmLabel()) {
2196    // The parser guarantees this is a string.
2197    StringLiteral *SE = cast<StringLiteral>(E);
2198    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2199                                                        SE->getByteLength())));
2200  }
2201
2202  // If name lookup finds a previous declaration that is not in the
2203  // same scope as the new declaration, this may still be an
2204  // acceptable redeclaration.
2205  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2206      !(NewVD->hasLinkage() &&
2207        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2208    PrevDecl = 0;
2209
2210  // Merge the decl with the existing one if appropriate.
2211  if (PrevDecl) {
2212    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
2213      // The user tried to define a non-static data member
2214      // out-of-line (C++ [dcl.meaning]p1).
2215      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2216        << D.getCXXScopeSpec().getRange();
2217      PrevDecl = 0;
2218      NewVD->setInvalidDecl();
2219    }
2220  } else if (D.getCXXScopeSpec().isSet()) {
2221    // No previous declaration in the qualifying scope.
2222    NestedNameSpecifier *NNS =
2223      (NestedNameSpecifier *)D.getCXXScopeSpec().getScopeRep();
2224    DiagnoseMissingMember(D.getIdentifierLoc(), Name, NNS,
2225                          D.getCXXScopeSpec().getRange());
2226    NewVD->setInvalidDecl();
2227  }
2228
2229  CheckVariableDeclaration(NewVD, PrevDecl, Redeclaration);
2230
2231  // This is an explicit specialization of a static data member. Check it.
2232  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2233      CheckMemberSpecialization(NewVD, PrevDecl))
2234    NewVD->setInvalidDecl();
2235
2236  // attributes declared post-definition are currently ignored
2237  if (PrevDecl) {
2238    const VarDecl *Def = 0, *PrevVD = dyn_cast<VarDecl>(PrevDecl);
2239    if (PrevVD->getDefinition(Def) && D.hasAttributes()) {
2240      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2241      Diag(Def->getLocation(), diag::note_previous_definition);
2242    }
2243  }
2244
2245  // If this is a locally-scoped extern C variable, update the map of
2246  // such variables.
2247  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2248      !NewVD->isInvalidDecl())
2249    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
2250
2251  return NewVD;
2252}
2253
2254/// \brief Perform semantic checking on a newly-created variable
2255/// declaration.
2256///
2257/// This routine performs all of the type-checking required for a
2258/// variable declaration once it has been built. It is used both to
2259/// check variables after they have been parsed and their declarators
2260/// have been translated into a declaration, and to check variables
2261/// that have been instantiated from a template.
2262///
2263/// Sets NewVD->isInvalidDecl() if an error was encountered.
2264void Sema::CheckVariableDeclaration(VarDecl *NewVD, NamedDecl *PrevDecl,
2265                                    bool &Redeclaration) {
2266  // If the decl is already known invalid, don't check it.
2267  if (NewVD->isInvalidDecl())
2268    return;
2269
2270  QualType T = NewVD->getType();
2271
2272  if (T->isObjCInterfaceType()) {
2273    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2274    return NewVD->setInvalidDecl();
2275  }
2276
2277  // The variable can not have an abstract class type.
2278  if (RequireNonAbstractType(NewVD->getLocation(), T,
2279                             diag::err_abstract_type_in_decl,
2280                             AbstractVariableType))
2281    return NewVD->setInvalidDecl();
2282
2283  // Emit an error if an address space was applied to decl with local storage.
2284  // This includes arrays of objects with address space qualifiers, but not
2285  // automatic variables that point to other address spaces.
2286  // ISO/IEC TR 18037 S5.1.2
2287  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2288    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2289    return NewVD->setInvalidDecl();
2290  }
2291
2292  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2293      && !NewVD->hasAttr<BlocksAttr>())
2294    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2295
2296  bool isVM = T->isVariablyModifiedType();
2297  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2298      NewVD->hasAttr<BlocksAttr>())
2299    CurFunctionNeedsScopeChecking = true;
2300
2301  if ((isVM && NewVD->hasLinkage()) ||
2302      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2303    bool SizeIsNegative;
2304    QualType FixedTy =
2305        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2306
2307    if (FixedTy.isNull() && T->isVariableArrayType()) {
2308      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2309      // FIXME: This won't give the correct result for
2310      // int a[10][n];
2311      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2312
2313      if (NewVD->isFileVarDecl())
2314        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2315        << SizeRange;
2316      else if (NewVD->getStorageClass() == VarDecl::Static)
2317        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2318        << SizeRange;
2319      else
2320        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2321        << SizeRange;
2322      return NewVD->setInvalidDecl();
2323    }
2324
2325    if (FixedTy.isNull()) {
2326      if (NewVD->isFileVarDecl())
2327        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2328      else
2329        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2330      return NewVD->setInvalidDecl();
2331    }
2332
2333    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2334    NewVD->setType(FixedTy);
2335  }
2336
2337  if (!PrevDecl && NewVD->isExternC()) {
2338    // Since we did not find anything by this name and we're declaring
2339    // an extern "C" variable, look for a non-visible extern "C"
2340    // declaration with the same name.
2341    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2342      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2343    if (Pos != LocallyScopedExternalDecls.end())
2344      PrevDecl = Pos->second;
2345  }
2346
2347  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2348    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2349      << T;
2350    return NewVD->setInvalidDecl();
2351  }
2352
2353  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2354    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2355    return NewVD->setInvalidDecl();
2356  }
2357
2358  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2359    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2360    return NewVD->setInvalidDecl();
2361  }
2362
2363  if (PrevDecl) {
2364    Redeclaration = true;
2365    MergeVarDecl(NewVD, PrevDecl);
2366  }
2367}
2368
2369static bool isUsingDecl(Decl *D) {
2370  return isa<UsingDecl>(D) || isa<UnresolvedUsingDecl>(D);
2371}
2372
2373/// \brief Data used with FindOverriddenMethod
2374struct FindOverriddenMethodData {
2375  Sema *S;
2376  CXXMethodDecl *Method;
2377};
2378
2379/// \brief Member lookup function that determines whether a given C++
2380/// method overrides a method in a base class, to be used with
2381/// CXXRecordDecl::lookupInBases().
2382static bool FindOverriddenMethod(CXXBaseSpecifier *Specifier,
2383                                 CXXBasePath &Path,
2384                                 void *UserData) {
2385  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
2386
2387  FindOverriddenMethodData *Data
2388    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
2389  for (Path.Decls = BaseRecord->lookup(Data->Method->getDeclName());
2390       Path.Decls.first != Path.Decls.second;
2391       ++Path.Decls.first) {
2392    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*Path.Decls.first)) {
2393      OverloadedFunctionDecl::function_iterator MatchedDecl;
2394      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, MatchedDecl))
2395        return true;
2396    }
2397  }
2398
2399  return false;
2400}
2401
2402NamedDecl*
2403Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2404                              QualType R, DeclaratorInfo *DInfo,
2405                              NamedDecl* PrevDecl,
2406                              MultiTemplateParamsArg TemplateParamLists,
2407                              bool IsFunctionDefinition, bool &Redeclaration) {
2408  assert(R.getTypePtr()->isFunctionType());
2409
2410  DeclarationName Name = GetNameForDeclarator(D);
2411  FunctionDecl::StorageClass SC = FunctionDecl::None;
2412  switch (D.getDeclSpec().getStorageClassSpec()) {
2413  default: assert(0 && "Unknown storage class!");
2414  case DeclSpec::SCS_auto:
2415  case DeclSpec::SCS_register:
2416  case DeclSpec::SCS_mutable:
2417    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2418         diag::err_typecheck_sclass_func);
2419    D.setInvalidType();
2420    break;
2421  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2422  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2423  case DeclSpec::SCS_static: {
2424    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2425      // C99 6.7.1p5:
2426      //   The declaration of an identifier for a function that has
2427      //   block scope shall have no explicit storage-class specifier
2428      //   other than extern
2429      // See also (C++ [dcl.stc]p4).
2430      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2431           diag::err_static_block_func);
2432      SC = FunctionDecl::None;
2433    } else
2434      SC = FunctionDecl::Static;
2435    break;
2436  }
2437  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2438  }
2439
2440  if (D.getDeclSpec().isThreadSpecified())
2441    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2442
2443  bool isFriend = D.getDeclSpec().isFriendSpecified();
2444  bool isInline = D.getDeclSpec().isInlineSpecified();
2445  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2446  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2447
2448  // Check that the return type is not an abstract class type.
2449  // For record types, this is done by the AbstractClassUsageDiagnoser once
2450  // the class has been completely parsed.
2451  if (!DC->isRecord() &&
2452      RequireNonAbstractType(D.getIdentifierLoc(),
2453                             R->getAs<FunctionType>()->getResultType(),
2454                             diag::err_abstract_type_in_decl,
2455                             AbstractReturnType))
2456    D.setInvalidType();
2457
2458  // Do not allow returning a objc interface by-value.
2459  if (R->getAs<FunctionType>()->getResultType()->isObjCInterfaceType()) {
2460    Diag(D.getIdentifierLoc(),
2461         diag::err_object_cannot_be_passed_returned_by_value) << 0
2462      << R->getAs<FunctionType>()->getResultType();
2463    D.setInvalidType();
2464  }
2465
2466  bool isVirtualOkay = false;
2467  FunctionDecl *NewFD;
2468
2469  if (isFriend) {
2470    // DC is the namespace in which the function is being declared.
2471    assert((DC->isFileContext() || PrevDecl) && "previously-undeclared "
2472           "friend function being created in a non-namespace context");
2473
2474    // C++ [class.friend]p5
2475    //   A function can be defined in a friend declaration of a
2476    //   class . . . . Such a function is implicitly inline.
2477    isInline |= IsFunctionDefinition;
2478  }
2479
2480  if (D.getKind() == Declarator::DK_Constructor) {
2481    // This is a C++ constructor declaration.
2482    assert(DC->isRecord() &&
2483           "Constructors can only be declared in a member context");
2484
2485    R = CheckConstructorDeclarator(D, R, SC);
2486
2487    // Create the new declaration
2488    NewFD = CXXConstructorDecl::Create(Context,
2489                                       cast<CXXRecordDecl>(DC),
2490                                       D.getIdentifierLoc(), Name, R, DInfo,
2491                                       isExplicit, isInline,
2492                                       /*isImplicitlyDeclared=*/false);
2493  } else if (D.getKind() == Declarator::DK_Destructor) {
2494    // This is a C++ destructor declaration.
2495    if (DC->isRecord()) {
2496      R = CheckDestructorDeclarator(D, SC);
2497
2498      NewFD = CXXDestructorDecl::Create(Context,
2499                                        cast<CXXRecordDecl>(DC),
2500                                        D.getIdentifierLoc(), Name, R,
2501                                        isInline,
2502                                        /*isImplicitlyDeclared=*/false);
2503
2504      isVirtualOkay = true;
2505    } else {
2506      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2507
2508      // Create a FunctionDecl to satisfy the function definition parsing
2509      // code path.
2510      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2511                                   Name, R, DInfo, SC, isInline,
2512                                   /*hasPrototype=*/true);
2513      D.setInvalidType();
2514    }
2515  } else if (D.getKind() == Declarator::DK_Conversion) {
2516    if (!DC->isRecord()) {
2517      Diag(D.getIdentifierLoc(),
2518           diag::err_conv_function_not_member);
2519      return 0;
2520    }
2521
2522    CheckConversionDeclarator(D, R, SC);
2523    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2524                                      D.getIdentifierLoc(), Name, R, DInfo,
2525                                      isInline, isExplicit);
2526
2527    isVirtualOkay = true;
2528  } else if (DC->isRecord()) {
2529    // If the of the function is the same as the name of the record, then this
2530    // must be an invalid constructor that has a return type.
2531    // (The parser checks for a return type and makes the declarator a
2532    // constructor if it has no return type).
2533    // must have an invalid constructor that has a return type
2534    if (Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2535      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2536        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2537        << SourceRange(D.getIdentifierLoc());
2538      return 0;
2539    }
2540
2541    // This is a C++ method declaration.
2542    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2543                                  D.getIdentifierLoc(), Name, R, DInfo,
2544                                  (SC == FunctionDecl::Static), isInline);
2545
2546    isVirtualOkay = (SC != FunctionDecl::Static);
2547  } else {
2548    // Determine whether the function was written with a
2549    // prototype. This true when:
2550    //   - we're in C++ (where every function has a prototype),
2551    //   - there is a prototype in the declarator, or
2552    //   - the type R of the function is some kind of typedef or other reference
2553    //     to a type name (which eventually refers to a function type).
2554    bool HasPrototype =
2555       getLangOptions().CPlusPlus ||
2556       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2557       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2558
2559    NewFD = FunctionDecl::Create(Context, DC,
2560                                 D.getIdentifierLoc(),
2561                                 Name, R, DInfo, SC, isInline, HasPrototype);
2562  }
2563
2564  if (D.isInvalidType())
2565    NewFD->setInvalidDecl();
2566
2567  // Set the lexical context. If the declarator has a C++
2568  // scope specifier, or is the object of a friend declaration, the
2569  // lexical context will be different from the semantic context.
2570  NewFD->setLexicalDeclContext(CurContext);
2571
2572  if (isFriend)
2573    NewFD->setObjectOfFriendDecl(/* PreviouslyDeclared= */ PrevDecl != NULL);
2574
2575  // Match up the template parameter lists with the scope specifier, then
2576  // determine whether we have a template or a template specialization.
2577  FunctionTemplateDecl *FunctionTemplate = 0;
2578  bool isExplicitSpecialization = false;
2579  bool isFunctionTemplateSpecialization = false;
2580  if (TemplateParameterList *TemplateParams
2581        = MatchTemplateParametersToScopeSpecifier(
2582                                  D.getDeclSpec().getSourceRange().getBegin(),
2583                                  D.getCXXScopeSpec(),
2584                           (TemplateParameterList**)TemplateParamLists.get(),
2585                                                  TemplateParamLists.size(),
2586                                                  isExplicitSpecialization)) {
2587    if (TemplateParams->size() > 0) {
2588      // This is a function template
2589
2590      // Check that we can declare a template here.
2591      if (CheckTemplateDeclScope(S, TemplateParams))
2592        return 0;
2593
2594      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
2595                                                      NewFD->getLocation(),
2596                                                      Name, TemplateParams,
2597                                                      NewFD);
2598      FunctionTemplate->setLexicalDeclContext(CurContext);
2599      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
2600    } else {
2601      // This is a function template specialization.
2602      isFunctionTemplateSpecialization = true;
2603    }
2604
2605    // FIXME: Free this memory properly.
2606    TemplateParamLists.release();
2607  }
2608
2609  // C++ [dcl.fct.spec]p5:
2610  //   The virtual specifier shall only be used in declarations of
2611  //   nonstatic class member functions that appear within a
2612  //   member-specification of a class declaration; see 10.3.
2613  //
2614  if (isVirtual && !NewFD->isInvalidDecl()) {
2615    if (!isVirtualOkay) {
2616       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2617           diag::err_virtual_non_function);
2618    } else if (!CurContext->isRecord()) {
2619      // 'virtual' was specified outside of the class.
2620      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2621        << CodeModificationHint::CreateRemoval(
2622                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
2623    } else {
2624      // Okay: Add virtual to the method.
2625      cast<CXXMethodDecl>(NewFD)->setVirtualAsWritten(true);
2626      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2627      CurClass->setAggregate(false);
2628      CurClass->setPOD(false);
2629      CurClass->setEmpty(false);
2630      CurClass->setPolymorphic(true);
2631      CurClass->setHasTrivialConstructor(false);
2632      CurClass->setHasTrivialCopyConstructor(false);
2633      CurClass->setHasTrivialCopyAssignment(false);
2634    }
2635  }
2636
2637  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD)) {
2638    // Look for virtual methods in base classes that this method might override.
2639    CXXBasePaths Paths;
2640    FindOverriddenMethodData Data;
2641    Data.Method = NewMD;
2642    Data.S = this;
2643    if (cast<CXXRecordDecl>(DC)->lookupInBases(&FindOverriddenMethod, &Data,
2644                                                Paths)) {
2645      for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
2646           E = Paths.found_decls_end(); I != E; ++I) {
2647        if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2648          if (!CheckOverridingFunctionReturnType(NewMD, OldMD) &&
2649              !CheckOverridingFunctionExceptionSpec(NewMD, OldMD))
2650            NewMD->addOverriddenMethod(OldMD);
2651        }
2652      }
2653    }
2654  }
2655
2656  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2657      !CurContext->isRecord()) {
2658    // C++ [class.static]p1:
2659    //   A data or function member of a class may be declared static
2660    //   in a class definition, in which case it is a static member of
2661    //   the class.
2662
2663    // Complain about the 'static' specifier if it's on an out-of-line
2664    // member function definition.
2665    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2666         diag::err_static_out_of_line)
2667      << CodeModificationHint::CreateRemoval(
2668                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2669  }
2670
2671  // Handle GNU asm-label extension (encoded as an attribute).
2672  if (Expr *E = (Expr*) D.getAsmLabel()) {
2673    // The parser guarantees this is a string.
2674    StringLiteral *SE = cast<StringLiteral>(E);
2675    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2676                                                        SE->getByteLength())));
2677  }
2678
2679  // Copy the parameter declarations from the declarator D to the function
2680  // declaration NewFD, if they are available.  First scavenge them into Params.
2681  llvm::SmallVector<ParmVarDecl*, 16> Params;
2682  if (D.getNumTypeObjects() > 0) {
2683    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2684
2685    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2686    // function that takes no arguments, not a function that takes a
2687    // single void argument.
2688    // We let through "const void" here because Sema::GetTypeForDeclarator
2689    // already checks for that case.
2690    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2691        FTI.ArgInfo[0].Param &&
2692        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2693      // Empty arg list, don't push any params.
2694      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2695
2696      // In C++, the empty parameter-type-list must be spelled "void"; a
2697      // typedef of void is not permitted.
2698      if (getLangOptions().CPlusPlus &&
2699          Param->getType().getUnqualifiedType() != Context.VoidTy)
2700        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2701      // FIXME: Leaks decl?
2702    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2703      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2704        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
2705        assert(Param->getDeclContext() != NewFD && "Was set before ?");
2706        Param->setDeclContext(NewFD);
2707        Params.push_back(Param);
2708      }
2709    }
2710
2711  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
2712    // When we're declaring a function with a typedef, typeof, etc as in the
2713    // following example, we'll need to synthesize (unnamed)
2714    // parameters for use in the declaration.
2715    //
2716    // @code
2717    // typedef void fn(int);
2718    // fn f;
2719    // @endcode
2720
2721    // Synthesize a parameter for each argument type.
2722    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2723         AE = FT->arg_type_end(); AI != AE; ++AI) {
2724      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2725                                               SourceLocation(), 0,
2726                                               *AI, /*DInfo=*/0,
2727                                               VarDecl::None, 0);
2728      Param->setImplicit();
2729      Params.push_back(Param);
2730    }
2731  } else {
2732    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
2733           "Should not need args for typedef of non-prototype fn");
2734  }
2735  // Finally, we know we have the right number of parameters, install them.
2736  NewFD->setParams(Context, Params.data(), Params.size());
2737
2738  // If name lookup finds a previous declaration that is not in the
2739  // same scope as the new declaration, this may still be an
2740  // acceptable redeclaration.
2741  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2742      !(NewFD->hasLinkage() &&
2743        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2744    PrevDecl = 0;
2745
2746  // If the declarator is a template-id, translate the parser's template
2747  // argument list into our AST format.
2748  bool HasExplicitTemplateArgs = false;
2749  llvm::SmallVector<TemplateArgument, 16> TemplateArgs;
2750  SourceLocation LAngleLoc, RAngleLoc;
2751  if (D.getKind() == Declarator::DK_TemplateId) {
2752    TemplateIdAnnotation *TemplateId = D.getTemplateId();
2753    ASTTemplateArgsPtr TemplateArgsPtr(*this,
2754                                       TemplateId->getTemplateArgs(),
2755                                       TemplateId->getTemplateArgIsType(),
2756                                       TemplateId->NumArgs);
2757    translateTemplateArguments(TemplateArgsPtr,
2758                               TemplateId->getTemplateArgLocations(),
2759                               TemplateArgs);
2760    TemplateArgsPtr.release();
2761
2762    HasExplicitTemplateArgs = true;
2763    LAngleLoc = TemplateId->LAngleLoc;
2764    RAngleLoc = TemplateId->RAngleLoc;
2765
2766    if (FunctionTemplate) {
2767      // FIXME: Diagnose function template with explicit template
2768      // arguments.
2769      HasExplicitTemplateArgs = false;
2770    } else if (!isFunctionTemplateSpecialization &&
2771               !D.getDeclSpec().isFriendSpecified()) {
2772      // We have encountered something that the user meant to be a
2773      // specialization (because it has explicitly-specified template
2774      // arguments) but that was not introduced with a "template<>" (or had
2775      // too few of them).
2776      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
2777        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
2778        << CodeModificationHint::CreateInsertion(
2779                                   D.getDeclSpec().getSourceRange().getBegin(),
2780                                                 "template<> ");
2781      isFunctionTemplateSpecialization = true;
2782    }
2783  }
2784
2785  if (isFunctionTemplateSpecialization) {
2786      if (CheckFunctionTemplateSpecialization(NewFD, HasExplicitTemplateArgs,
2787                                              LAngleLoc, TemplateArgs.data(),
2788                                              TemplateArgs.size(), RAngleLoc,
2789                                              PrevDecl))
2790        NewFD->setInvalidDecl();
2791  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD) &&
2792             CheckMemberSpecialization(NewFD, PrevDecl))
2793    NewFD->setInvalidDecl();
2794
2795  // Perform semantic checking on the function declaration.
2796  bool OverloadableAttrRequired = false; // FIXME: HACK!
2797  CheckFunctionDeclaration(NewFD, PrevDecl, Redeclaration,
2798                           /*FIXME:*/OverloadableAttrRequired);
2799
2800  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
2801    // An out-of-line member function declaration must also be a
2802    // definition (C++ [dcl.meaning]p1).
2803    // Note that this is not the case for explicit specializations of
2804    // function templates or member functions of class templates, per
2805    // C++ [temp.expl.spec]p2.
2806    if (!IsFunctionDefinition && !isFriend &&
2807        NewFD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization) {
2808      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2809        << D.getCXXScopeSpec().getRange();
2810      NewFD->setInvalidDecl();
2811    } else if (!Redeclaration && (!PrevDecl || !isUsingDecl(PrevDecl))) {
2812      // The user tried to provide an out-of-line definition for a
2813      // function that is a member of a class or namespace, but there
2814      // was no such member function declared (C++ [class.mfct]p2,
2815      // C++ [namespace.memdef]p2). For example:
2816      //
2817      // class X {
2818      //   void f() const;
2819      // };
2820      //
2821      // void X::f() { } // ill-formed
2822      //
2823      // Complain about this problem, and attempt to suggest close
2824      // matches (e.g., those that differ only in cv-qualifiers and
2825      // whether the parameter types are references).
2826      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2827        << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
2828      NewFD->setInvalidDecl();
2829
2830      LookupResult Prev;
2831      LookupQualifiedName(Prev, DC, Name, LookupOrdinaryName, true);
2832      assert(!Prev.isAmbiguous() &&
2833             "Cannot have an ambiguity in previous-declaration lookup");
2834      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2835           Func != FuncEnd; ++Func) {
2836        if (isa<FunctionDecl>(*Func) &&
2837            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2838          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2839      }
2840
2841      PrevDecl = 0;
2842    }
2843  }
2844
2845  // Handle attributes. We need to have merged decls when handling attributes
2846  // (for example to check for conflicts, etc).
2847  // FIXME: This needs to happen before we merge declarations. Then,
2848  // let attribute merging cope with attribute conflicts.
2849  ProcessDeclAttributes(S, NewFD, D);
2850
2851  // attributes declared post-definition are currently ignored
2852  if (Redeclaration && PrevDecl) {
2853    const FunctionDecl *Def, *PrevFD = dyn_cast<FunctionDecl>(PrevDecl);
2854    if (PrevFD && PrevFD->getBody(Def) && D.hasAttributes()) {
2855      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
2856      Diag(Def->getLocation(), diag::note_previous_definition);
2857    }
2858  }
2859
2860  AddKnownFunctionAttributes(NewFD);
2861
2862  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2863    // If a function name is overloadable in C, then every function
2864    // with that name must be marked "overloadable".
2865    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2866      << Redeclaration << NewFD;
2867    if (PrevDecl)
2868      Diag(PrevDecl->getLocation(),
2869           diag::note_attribute_overloadable_prev_overload);
2870    NewFD->addAttr(::new (Context) OverloadableAttr());
2871  }
2872
2873  // If this is a locally-scoped extern C function, update the
2874  // map of such names.
2875  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
2876      && !NewFD->isInvalidDecl())
2877    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2878
2879  // Set this FunctionDecl's range up to the right paren.
2880  NewFD->setLocEnd(D.getSourceRange().getEnd());
2881
2882  if (FunctionTemplate && NewFD->isInvalidDecl())
2883    FunctionTemplate->setInvalidDecl();
2884
2885  if (FunctionTemplate)
2886    return FunctionTemplate;
2887
2888  return NewFD;
2889}
2890
2891/// \brief Perform semantic checking of a new function declaration.
2892///
2893/// Performs semantic analysis of the new function declaration
2894/// NewFD. This routine performs all semantic checking that does not
2895/// require the actual declarator involved in the declaration, and is
2896/// used both for the declaration of functions as they are parsed
2897/// (called via ActOnDeclarator) and for the declaration of functions
2898/// that have been instantiated via C++ template instantiation (called
2899/// via InstantiateDecl).
2900///
2901/// This sets NewFD->isInvalidDecl() to true if there was an error.
2902void Sema::CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl,
2903                                    bool &Redeclaration,
2904                                    bool &OverloadableAttrRequired) {
2905  // If NewFD is already known erroneous, don't do any of this checking.
2906  if (NewFD->isInvalidDecl())
2907    return;
2908
2909  if (NewFD->getResultType()->isVariablyModifiedType()) {
2910    // Functions returning a variably modified type violate C99 6.7.5.2p2
2911    // because all functions have linkage.
2912    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
2913    return NewFD->setInvalidDecl();
2914  }
2915
2916  if (NewFD->isMain())
2917    CheckMain(NewFD);
2918
2919  // Check for a previous declaration of this name.
2920  if (!PrevDecl && NewFD->isExternC()) {
2921    // Since we did not find anything by this name and we're declaring
2922    // an extern "C" function, look for a non-visible extern "C"
2923    // declaration with the same name.
2924    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2925      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
2926    if (Pos != LocallyScopedExternalDecls.end())
2927      PrevDecl = Pos->second;
2928  }
2929
2930  // Merge or overload the declaration with an existing declaration of
2931  // the same name, if appropriate.
2932  if (PrevDecl) {
2933    // Determine whether NewFD is an overload of PrevDecl or
2934    // a declaration that requires merging. If it's an overload,
2935    // there's no more work to do here; we'll just add the new
2936    // function to the scope.
2937    OverloadedFunctionDecl::function_iterator MatchedDecl;
2938
2939    if (!getLangOptions().CPlusPlus &&
2940        AllowOverloadingOfFunction(PrevDecl, Context)) {
2941      OverloadableAttrRequired = true;
2942
2943      // Functions marked "overloadable" must have a prototype (that
2944      // we can't get through declaration merging).
2945      if (!NewFD->getType()->getAs<FunctionProtoType>()) {
2946        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
2947          << NewFD;
2948        Redeclaration = true;
2949
2950        // Turn this into a variadic function with no parameters.
2951        QualType R = Context.getFunctionType(
2952                       NewFD->getType()->getAs<FunctionType>()->getResultType(),
2953                       0, 0, true, 0);
2954        NewFD->setType(R);
2955        return NewFD->setInvalidDecl();
2956      }
2957    }
2958
2959    if (PrevDecl &&
2960        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
2961         !IsOverload(NewFD, PrevDecl, MatchedDecl)) && !isUsingDecl(PrevDecl)) {
2962      Redeclaration = true;
2963      Decl *OldDecl = PrevDecl;
2964
2965      // If PrevDecl was an overloaded function, extract the
2966      // FunctionDecl that matched.
2967      if (isa<OverloadedFunctionDecl>(PrevDecl))
2968        OldDecl = *MatchedDecl;
2969
2970      // NewFD and OldDecl represent declarations that need to be
2971      // merged.
2972      if (MergeFunctionDecl(NewFD, OldDecl))
2973        return NewFD->setInvalidDecl();
2974
2975      if (FunctionTemplateDecl *OldTemplateDecl
2976            = dyn_cast<FunctionTemplateDecl>(OldDecl))
2977        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
2978      else {
2979        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
2980          NewFD->setAccess(OldDecl->getAccess());
2981        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
2982      }
2983    }
2984  }
2985
2986  // Semantic checking for this function declaration (in isolation).
2987  if (getLangOptions().CPlusPlus) {
2988    // C++-specific checks.
2989    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
2990      CheckConstructor(Constructor);
2991    } else if (isa<CXXDestructorDecl>(NewFD)) {
2992      CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
2993      QualType ClassType = Context.getTypeDeclType(Record);
2994      if (!ClassType->isDependentType()) {
2995        DeclarationName Name
2996          = Context.DeclarationNames.getCXXDestructorName(
2997                                        Context.getCanonicalType(ClassType));
2998        if (NewFD->getDeclName() != Name) {
2999          Diag(NewFD->getLocation(), diag::err_destructor_name);
3000          return NewFD->setInvalidDecl();
3001        }
3002      }
3003      Record->setUserDeclaredDestructor(true);
3004      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
3005      // user-defined destructor.
3006      Record->setPOD(false);
3007
3008      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
3009      // declared destructor.
3010      // FIXME: C++0x: don't do this for "= default" destructors
3011      Record->setHasTrivialDestructor(false);
3012    } else if (CXXConversionDecl *Conversion
3013               = dyn_cast<CXXConversionDecl>(NewFD))
3014      ActOnConversionDeclarator(Conversion);
3015
3016    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3017    if (NewFD->isOverloadedOperator() &&
3018        CheckOverloadedOperatorDeclaration(NewFD))
3019      return NewFD->setInvalidDecl();
3020
3021    // In C++, check default arguments now that we have merged decls. Unless
3022    // the lexical context is the class, because in this case this is done
3023    // during delayed parsing anyway.
3024    if (!CurContext->isRecord())
3025      CheckCXXDefaultArguments(NewFD);
3026  }
3027}
3028
3029void Sema::CheckMain(FunctionDecl* FD) {
3030  // C++ [basic.start.main]p3:  A program that declares main to be inline
3031  //   or static is ill-formed.
3032  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3033  //   shall not appear in a declaration of main.
3034  // static main is not an error under C99, but we should warn about it.
3035  bool isInline = FD->isInline();
3036  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
3037  if (isInline || isStatic) {
3038    unsigned diagID = diag::warn_unusual_main_decl;
3039    if (isInline || getLangOptions().CPlusPlus)
3040      diagID = diag::err_unusual_main_decl;
3041
3042    int which = isStatic + (isInline << 1) - 1;
3043    Diag(FD->getLocation(), diagID) << which;
3044  }
3045
3046  QualType T = FD->getType();
3047  assert(T->isFunctionType() && "function decl is not of function type");
3048  const FunctionType* FT = T->getAs<FunctionType>();
3049
3050  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3051    // TODO: add a replacement fixit to turn the return type into 'int'.
3052    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
3053    FD->setInvalidDecl(true);
3054  }
3055
3056  // Treat protoless main() as nullary.
3057  if (isa<FunctionNoProtoType>(FT)) return;
3058
3059  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
3060  unsigned nparams = FTP->getNumArgs();
3061  assert(FD->getNumParams() == nparams);
3062
3063  if (nparams > 3) {
3064    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
3065    FD->setInvalidDecl(true);
3066    nparams = 3;
3067  }
3068
3069  // FIXME: a lot of the following diagnostics would be improved
3070  // if we had some location information about types.
3071
3072  QualType CharPP =
3073    Context.getPointerType(Context.getPointerType(Context.CharTy));
3074  QualType Expected[] = { Context.IntTy, CharPP, CharPP };
3075
3076  for (unsigned i = 0; i < nparams; ++i) {
3077    QualType AT = FTP->getArgType(i);
3078
3079    bool mismatch = true;
3080
3081    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
3082      mismatch = false;
3083    else if (Expected[i] == CharPP) {
3084      // As an extension, the following forms are okay:
3085      //   char const **
3086      //   char const * const *
3087      //   char * const *
3088
3089      QualifierCollector qs;
3090      const PointerType* PT;
3091      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
3092          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
3093          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
3094        qs.removeConst();
3095        mismatch = !qs.empty();
3096      }
3097    }
3098
3099    if (mismatch) {
3100      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
3101      // TODO: suggest replacing given type with expected type
3102      FD->setInvalidDecl(true);
3103    }
3104  }
3105
3106  if (nparams == 1 && !FD->isInvalidDecl()) {
3107    Diag(FD->getLocation(), diag::warn_main_one_arg);
3108  }
3109}
3110
3111bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
3112  // FIXME: Need strict checking.  In C89, we need to check for
3113  // any assignment, increment, decrement, function-calls, or
3114  // commas outside of a sizeof.  In C99, it's the same list,
3115  // except that the aforementioned are allowed in unevaluated
3116  // expressions.  Everything else falls under the
3117  // "may accept other forms of constant expressions" exception.
3118  // (We never end up here for C++, so the constant expression
3119  // rules there don't matter.)
3120  if (Init->isConstantInitializer(Context))
3121    return false;
3122  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
3123    << Init->getSourceRange();
3124  return true;
3125}
3126
3127void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
3128  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
3129}
3130
3131/// AddInitializerToDecl - Adds the initializer Init to the
3132/// declaration dcl. If DirectInit is true, this is C++ direct
3133/// initialization rather than copy initialization.
3134void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
3135  Decl *RealDecl = dcl.getAs<Decl>();
3136  // If there is no declaration, there was an error parsing it.  Just ignore
3137  // the initializer.
3138  if (RealDecl == 0)
3139    return;
3140
3141  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
3142    // With declarators parsed the way they are, the parser cannot
3143    // distinguish between a normal initializer and a pure-specifier.
3144    // Thus this grotesque test.
3145    IntegerLiteral *IL;
3146    Expr *Init = static_cast<Expr *>(init.get());
3147    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
3148        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
3149      if (Method->isVirtualAsWritten()) {
3150        Method->setPure();
3151
3152        // A class is abstract if at least one function is pure virtual.
3153        cast<CXXRecordDecl>(CurContext)->setAbstract(true);
3154      } else if (!Method->isInvalidDecl()) {
3155        Diag(Method->getLocation(), diag::err_non_virtual_pure)
3156          << Method->getDeclName() << Init->getSourceRange();
3157        Method->setInvalidDecl();
3158      }
3159    } else {
3160      Diag(Method->getLocation(), diag::err_member_function_initialization)
3161        << Method->getDeclName() << Init->getSourceRange();
3162      Method->setInvalidDecl();
3163    }
3164    return;
3165  }
3166
3167  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3168  if (!VDecl) {
3169    if (getLangOptions().CPlusPlus &&
3170        RealDecl->getLexicalDeclContext()->isRecord() &&
3171        isa<NamedDecl>(RealDecl))
3172      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3173        << cast<NamedDecl>(RealDecl)->getDeclName();
3174    else
3175      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3176    RealDecl->setInvalidDecl();
3177    return;
3178  }
3179
3180  if (!VDecl->getType()->isArrayType() &&
3181      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
3182                          diag::err_typecheck_decl_incomplete_type)) {
3183    RealDecl->setInvalidDecl();
3184    return;
3185  }
3186
3187  const VarDecl *Def = 0;
3188  if (VDecl->getDefinition(Def)) {
3189    Diag(VDecl->getLocation(), diag::err_redefinition)
3190      << VDecl->getDeclName();
3191    Diag(Def->getLocation(), diag::note_previous_definition);
3192    VDecl->setInvalidDecl();
3193    return;
3194  }
3195
3196  // Take ownership of the expression, now that we're sure we have somewhere
3197  // to put it.
3198  Expr *Init = init.takeAs<Expr>();
3199  assert(Init && "missing initializer");
3200
3201  // Get the decls type and save a reference for later, since
3202  // CheckInitializerTypes may change it.
3203  QualType DclT = VDecl->getType(), SavT = DclT;
3204  if (VDecl->isBlockVarDecl()) {
3205    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
3206      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
3207      VDecl->setInvalidDecl();
3208    } else if (!VDecl->isInvalidDecl()) {
3209      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3210                                VDecl->getDeclName(), DirectInit))
3211        VDecl->setInvalidDecl();
3212
3213      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3214      // Don't check invalid declarations to avoid emitting useless diagnostics.
3215      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3216        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
3217          CheckForConstantInitializer(Init, DclT);
3218      }
3219    }
3220  } else if (VDecl->isStaticDataMember() &&
3221             VDecl->getLexicalDeclContext()->isRecord()) {
3222    // This is an in-class initialization for a static data member, e.g.,
3223    //
3224    // struct S {
3225    //   static const int value = 17;
3226    // };
3227
3228    // Attach the initializer
3229    VDecl->setInit(Context, Init);
3230
3231    // C++ [class.mem]p4:
3232    //   A member-declarator can contain a constant-initializer only
3233    //   if it declares a static member (9.4) of const integral or
3234    //   const enumeration type, see 9.4.2.
3235    QualType T = VDecl->getType();
3236    if (!T->isDependentType() &&
3237        (!Context.getCanonicalType(T).isConstQualified() ||
3238         !T->isIntegralType())) {
3239      Diag(VDecl->getLocation(), diag::err_member_initialization)
3240        << VDecl->getDeclName() << Init->getSourceRange();
3241      VDecl->setInvalidDecl();
3242    } else {
3243      // C++ [class.static.data]p4:
3244      //   If a static data member is of const integral or const
3245      //   enumeration type, its declaration in the class definition
3246      //   can specify a constant-initializer which shall be an
3247      //   integral constant expression (5.19).
3248      if (!Init->isTypeDependent() &&
3249          !Init->getType()->isIntegralType()) {
3250        // We have a non-dependent, non-integral or enumeration type.
3251        Diag(Init->getSourceRange().getBegin(),
3252             diag::err_in_class_initializer_non_integral_type)
3253          << Init->getType() << Init->getSourceRange();
3254        VDecl->setInvalidDecl();
3255      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
3256        // Check whether the expression is a constant expression.
3257        llvm::APSInt Value;
3258        SourceLocation Loc;
3259        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
3260          Diag(Loc, diag::err_in_class_initializer_non_constant)
3261            << Init->getSourceRange();
3262          VDecl->setInvalidDecl();
3263        } else if (!VDecl->getType()->isDependentType())
3264          ImpCastExprToType(Init, VDecl->getType());
3265      }
3266    }
3267  } else if (VDecl->isFileVarDecl()) {
3268    if (VDecl->getStorageClass() == VarDecl::Extern)
3269      Diag(VDecl->getLocation(), diag::warn_extern_init);
3270    if (!VDecl->isInvalidDecl())
3271      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3272                                VDecl->getDeclName(), DirectInit))
3273        VDecl->setInvalidDecl();
3274
3275    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3276    // Don't check invalid declarations to avoid emitting useless diagnostics.
3277    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3278      // C99 6.7.8p4. All file scoped initializers need to be constant.
3279      CheckForConstantInitializer(Init, DclT);
3280    }
3281  }
3282  // If the type changed, it means we had an incomplete type that was
3283  // completed by the initializer. For example:
3284  //   int ary[] = { 1, 3, 5 };
3285  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
3286  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
3287    VDecl->setType(DclT);
3288    Init->setType(DclT);
3289  }
3290
3291  Init = MaybeCreateCXXExprWithTemporaries(Init,
3292                                           /*ShouldDestroyTemporaries=*/true);
3293  // Attach the initializer to the decl.
3294  VDecl->setInit(Context, Init);
3295
3296  // If the previous declaration of VDecl was a tentative definition,
3297  // remove it from the set of tentative definitions.
3298  if (VDecl->getPreviousDeclaration() &&
3299      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
3300    bool Deleted = TentativeDefinitions.erase(VDecl->getDeclName());
3301    assert(Deleted && "Unrecorded tentative definition?"); Deleted=Deleted;
3302  }
3303
3304  return;
3305}
3306
3307void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
3308                                  bool TypeContainsUndeducedAuto) {
3309  Decl *RealDecl = dcl.getAs<Decl>();
3310
3311  // If there is no declaration, there was an error parsing it. Just ignore it.
3312  if (RealDecl == 0)
3313    return;
3314
3315  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
3316    QualType Type = Var->getType();
3317
3318    // Record tentative definitions.
3319    if (Var->isTentativeDefinition(Context)) {
3320      std::pair<llvm::DenseMap<DeclarationName, VarDecl *>::iterator, bool>
3321        InsertPair =
3322           TentativeDefinitions.insert(std::make_pair(Var->getDeclName(), Var));
3323
3324      // Keep the latest definition in the map.  If we see 'int i; int i;' we
3325      // want the second one in the map.
3326      InsertPair.first->second = Var;
3327
3328      // However, for the list, we don't care about the order, just make sure
3329      // that there are no dupes for a given declaration name.
3330      if (InsertPair.second)
3331        TentativeDefinitionList.push_back(Var->getDeclName());
3332    }
3333
3334    // C++ [dcl.init.ref]p3:
3335    //   The initializer can be omitted for a reference only in a
3336    //   parameter declaration (8.3.5), in the declaration of a
3337    //   function return type, in the declaration of a class member
3338    //   within its class declaration (9.2), and where the extern
3339    //   specifier is explicitly used.
3340    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
3341      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
3342        << Var->getDeclName()
3343        << SourceRange(Var->getLocation(), Var->getLocation());
3344      Var->setInvalidDecl();
3345      return;
3346    }
3347
3348    // C++0x [dcl.spec.auto]p3
3349    if (TypeContainsUndeducedAuto) {
3350      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
3351        << Var->getDeclName() << Type;
3352      Var->setInvalidDecl();
3353      return;
3354    }
3355
3356    // C++ [temp.expl.spec]p15:
3357    //   An explicit specialization of a static data member of a template is a
3358    //   definition if the declaration includes an initializer; otherwise, it
3359    //   is a declaration.
3360    if (Var->isStaticDataMember() &&
3361        Var->getInstantiatedFromStaticDataMember() &&
3362        Var->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
3363      return;
3364
3365    // C++ [dcl.init]p9:
3366    //   If no initializer is specified for an object, and the object
3367    //   is of (possibly cv-qualified) non-POD class type (or array
3368    //   thereof), the object shall be default-initialized; if the
3369    //   object is of const-qualified type, the underlying class type
3370    //   shall have a user-declared default constructor.
3371    //
3372    // FIXME: Diagnose the "user-declared default constructor" bit.
3373    if (getLangOptions().CPlusPlus) {
3374      QualType InitType = Type;
3375      if (const ArrayType *Array = Context.getAsArrayType(Type))
3376        InitType = Array->getElementType();
3377      if ((!Var->hasExternalStorage() && !Var->isExternC()) &&
3378          InitType->isRecordType() && !InitType->isDependentType()) {
3379        if (!RequireCompleteType(Var->getLocation(), InitType,
3380                                 diag::err_invalid_incomplete_type_use)) {
3381          ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
3382
3383          CXXConstructorDecl *Constructor
3384            = PerformInitializationByConstructor(InitType,
3385                                                 MultiExprArg(*this, 0, 0),
3386                                                 Var->getLocation(),
3387                                               SourceRange(Var->getLocation(),
3388                                                           Var->getLocation()),
3389                                                 Var->getDeclName(),
3390                                                 IK_Default,
3391                                                 ConstructorArgs);
3392
3393          // FIXME: Location info for the variable initialization?
3394          if (!Constructor)
3395            Var->setInvalidDecl();
3396          else {
3397            // FIXME: Cope with initialization of arrays
3398            if (!Constructor->isTrivial() &&
3399                InitializeVarWithConstructor(Var, Constructor, InitType,
3400                                             move_arg(ConstructorArgs)))
3401              Var->setInvalidDecl();
3402
3403            FinalizeVarWithDestructor(Var, InitType);
3404          }
3405        } else {
3406          Var->setInvalidDecl();
3407        }
3408      }
3409    }
3410
3411#if 0
3412    // FIXME: Temporarily disabled because we are not properly parsing
3413    // linkage specifications on declarations, e.g.,
3414    //
3415    //   extern "C" const CGPoint CGPointerZero;
3416    //
3417    // C++ [dcl.init]p9:
3418    //
3419    //     If no initializer is specified for an object, and the
3420    //     object is of (possibly cv-qualified) non-POD class type (or
3421    //     array thereof), the object shall be default-initialized; if
3422    //     the object is of const-qualified type, the underlying class
3423    //     type shall have a user-declared default
3424    //     constructor. Otherwise, if no initializer is specified for
3425    //     an object, the object and its subobjects, if any, have an
3426    //     indeterminate initial value; if the object or any of its
3427    //     subobjects are of const-qualified type, the program is
3428    //     ill-formed.
3429    //
3430    // This isn't technically an error in C, so we don't diagnose it.
3431    //
3432    // FIXME: Actually perform the POD/user-defined default
3433    // constructor check.
3434    if (getLangOptions().CPlusPlus &&
3435        Context.getCanonicalType(Type).isConstQualified() &&
3436        !Var->hasExternalStorage())
3437      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
3438        << Var->getName()
3439        << SourceRange(Var->getLocation(), Var->getLocation());
3440#endif
3441  }
3442}
3443
3444Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
3445                                                   DeclPtrTy *Group,
3446                                                   unsigned NumDecls) {
3447  llvm::SmallVector<Decl*, 8> Decls;
3448
3449  if (DS.isTypeSpecOwned())
3450    Decls.push_back((Decl*)DS.getTypeRep());
3451
3452  for (unsigned i = 0; i != NumDecls; ++i)
3453    if (Decl *D = Group[i].getAs<Decl>())
3454      Decls.push_back(D);
3455
3456  // Perform semantic analysis that depends on having fully processed both
3457  // the declarator and initializer.
3458  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
3459    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
3460    if (!IDecl)
3461      continue;
3462    QualType T = IDecl->getType();
3463
3464    // Block scope. C99 6.7p7: If an identifier for an object is declared with
3465    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
3466    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
3467      if (!IDecl->isInvalidDecl() &&
3468          RequireCompleteType(IDecl->getLocation(), T,
3469                              diag::err_typecheck_decl_incomplete_type))
3470        IDecl->setInvalidDecl();
3471    }
3472    // File scope. C99 6.9.2p2: A declaration of an identifier for an
3473    // object that has file scope without an initializer, and without a
3474    // storage-class specifier or with the storage-class specifier "static",
3475    // constitutes a tentative definition. Note: A tentative definition with
3476    // external linkage is valid (C99 6.2.2p5).
3477    if (IDecl->isTentativeDefinition(Context) && !IDecl->isInvalidDecl()) {
3478      if (const IncompleteArrayType *ArrayT
3479          = Context.getAsIncompleteArrayType(T)) {
3480        if (RequireCompleteType(IDecl->getLocation(),
3481                                ArrayT->getElementType(),
3482                                diag::err_illegal_decl_array_incomplete_type))
3483          IDecl->setInvalidDecl();
3484      } else if (IDecl->getStorageClass() == VarDecl::Static) {
3485        // C99 6.9.2p3: If the declaration of an identifier for an object is
3486        // a tentative definition and has internal linkage (C99 6.2.2p3), the
3487        // declared type shall not be an incomplete type.
3488        // NOTE: code such as the following
3489        //     static struct s;
3490        //     struct s { int a; };
3491        // is accepted by gcc. Hence here we issue a warning instead of
3492        // an error and we do not invalidate the static declaration.
3493        // NOTE: to avoid multiple warnings, only check the first declaration.
3494        if (IDecl->getPreviousDeclaration() == 0)
3495          RequireCompleteType(IDecl->getLocation(), T,
3496                              diag::ext_typecheck_decl_incomplete_type);
3497      }
3498    }
3499  }
3500  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
3501                                                   Decls.data(), Decls.size()));
3502}
3503
3504
3505/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
3506/// to introduce parameters into function prototype scope.
3507Sema::DeclPtrTy
3508Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
3509  const DeclSpec &DS = D.getDeclSpec();
3510
3511  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
3512  VarDecl::StorageClass StorageClass = VarDecl::None;
3513  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
3514    StorageClass = VarDecl::Register;
3515  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
3516    Diag(DS.getStorageClassSpecLoc(),
3517         diag::err_invalid_storage_class_in_func_decl);
3518    D.getMutableDeclSpec().ClearStorageClassSpecs();
3519  }
3520
3521  if (D.getDeclSpec().isThreadSpecified())
3522    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3523
3524  DiagnoseFunctionSpecifiers(D);
3525
3526  // Check that there are no default arguments inside the type of this
3527  // parameter (C++ only).
3528  if (getLangOptions().CPlusPlus)
3529    CheckExtraCXXDefaultArguments(D);
3530
3531  DeclaratorInfo *DInfo = 0;
3532  TagDecl *OwnedDecl = 0;
3533  QualType parmDeclType = GetTypeForDeclarator(D, S, &DInfo, /*Skip=*/0,
3534                                               &OwnedDecl);
3535
3536  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
3537    // C++ [dcl.fct]p6:
3538    //   Types shall not be defined in return or parameter types.
3539    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
3540      << Context.getTypeDeclType(OwnedDecl);
3541  }
3542
3543  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
3544  // Can this happen for params?  We already checked that they don't conflict
3545  // among each other.  Here they can only shadow globals, which is ok.
3546  IdentifierInfo *II = D.getIdentifier();
3547  if (II) {
3548    if (NamedDecl *PrevDecl = LookupSingleName(S, II, LookupOrdinaryName)) {
3549      if (PrevDecl->isTemplateParameter()) {
3550        // Maybe we will complain about the shadowed template parameter.
3551        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3552        // Just pretend that we didn't see the previous declaration.
3553        PrevDecl = 0;
3554      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
3555        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
3556
3557        // Recover by removing the name
3558        II = 0;
3559        D.SetIdentifier(0, D.getIdentifierLoc());
3560      }
3561    }
3562  }
3563
3564  // Parameters can not be abstract class types.
3565  // For record types, this is done by the AbstractClassUsageDiagnoser once
3566  // the class has been completely parsed.
3567  if (!CurContext->isRecord() &&
3568      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
3569                             diag::err_abstract_type_in_decl,
3570                             AbstractParamType))
3571    D.setInvalidType(true);
3572
3573  QualType T = adjustParameterType(parmDeclType);
3574
3575  ParmVarDecl *New;
3576  if (T == parmDeclType) // parameter type did not need adjustment
3577    New = ParmVarDecl::Create(Context, CurContext,
3578                              D.getIdentifierLoc(), II,
3579                              parmDeclType, DInfo, StorageClass,
3580                              0);
3581  else // keep track of both the adjusted and unadjusted types
3582    New = OriginalParmVarDecl::Create(Context, CurContext,
3583                                      D.getIdentifierLoc(), II, T, DInfo,
3584                                      parmDeclType, StorageClass, 0);
3585
3586  if (D.isInvalidType())
3587    New->setInvalidDecl();
3588
3589  // Parameter declarators cannot be interface types. All ObjC objects are
3590  // passed by reference.
3591  if (T->isObjCInterfaceType()) {
3592    Diag(D.getIdentifierLoc(),
3593         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
3594    New->setInvalidDecl();
3595  }
3596
3597  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
3598  if (D.getCXXScopeSpec().isSet()) {
3599    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
3600      << D.getCXXScopeSpec().getRange();
3601    New->setInvalidDecl();
3602  }
3603
3604  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
3605  // duration shall not be qualified by an address-space qualifier."
3606  // Since all parameters have automatic store duration, they can not have
3607  // an address space.
3608  if (T.getAddressSpace() != 0) {
3609    Diag(D.getIdentifierLoc(),
3610         diag::err_arg_with_address_space);
3611    New->setInvalidDecl();
3612  }
3613
3614
3615  // Add the parameter declaration into this scope.
3616  S->AddDecl(DeclPtrTy::make(New));
3617  if (II)
3618    IdResolver.AddDecl(New);
3619
3620  ProcessDeclAttributes(S, New, D);
3621
3622  if (New->hasAttr<BlocksAttr>()) {
3623    Diag(New->getLocation(), diag::err_block_on_nonlocal);
3624  }
3625  return DeclPtrTy::make(New);
3626}
3627
3628void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
3629                                           SourceLocation LocAfterDecls) {
3630  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3631         "Not a function declarator!");
3632  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3633
3634  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
3635  // for a K&R function.
3636  if (!FTI.hasPrototype) {
3637    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
3638      --i;
3639      if (FTI.ArgInfo[i].Param == 0) {
3640        std::string Code = "  int ";
3641        Code += FTI.ArgInfo[i].Ident->getName();
3642        Code += ";\n";
3643        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
3644          << FTI.ArgInfo[i].Ident
3645          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code);
3646
3647        // Implicitly declare the argument as type 'int' for lack of a better
3648        // type.
3649        DeclSpec DS;
3650        const char* PrevSpec; // unused
3651        unsigned DiagID; // unused
3652        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
3653                           PrevSpec, DiagID);
3654        Declarator ParamD(DS, Declarator::KNRTypeListContext);
3655        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
3656        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
3657      }
3658    }
3659  }
3660}
3661
3662Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
3663                                              Declarator &D) {
3664  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
3665  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3666         "Not a function declarator!");
3667  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3668
3669  if (FTI.hasPrototype) {
3670    // FIXME: Diagnose arguments without names in C.
3671  }
3672
3673  Scope *ParentScope = FnBodyScope->getParent();
3674
3675  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
3676                                  MultiTemplateParamsArg(*this),
3677                                  /*IsFunctionDefinition=*/true);
3678  return ActOnStartOfFunctionDef(FnBodyScope, DP);
3679}
3680
3681Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
3682  if (!D)
3683    return D;
3684  FunctionDecl *FD = 0;
3685
3686  if (FunctionTemplateDecl *FunTmpl
3687        = dyn_cast<FunctionTemplateDecl>(D.getAs<Decl>()))
3688    FD = FunTmpl->getTemplatedDecl();
3689  else
3690    FD = cast<FunctionDecl>(D.getAs<Decl>());
3691
3692  CurFunctionNeedsScopeChecking = false;
3693
3694  // See if this is a redefinition.
3695  const FunctionDecl *Definition;
3696  if (FD->getBody(Definition)) {
3697    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
3698    Diag(Definition->getLocation(), diag::note_previous_definition);
3699  }
3700
3701  // Builtin functions cannot be defined.
3702  if (unsigned BuiltinID = FD->getBuiltinID()) {
3703    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3704      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
3705      FD->setInvalidDecl();
3706    }
3707  }
3708
3709  // The return type of a function definition must be complete
3710  // (C99 6.9.1p3, C++ [dcl.fct]p6).
3711  QualType ResultType = FD->getResultType();
3712  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
3713      !FD->isInvalidDecl() &&
3714      RequireCompleteType(FD->getLocation(), ResultType,
3715                          diag::err_func_def_incomplete_result))
3716    FD->setInvalidDecl();
3717
3718  // GNU warning -Wmissing-prototypes:
3719  //   Warn if a global function is defined without a previous
3720  //   prototype declaration. This warning is issued even if the
3721  //   definition itself provides a prototype. The aim is to detect
3722  //   global functions that fail to be declared in header files.
3723  if (!FD->isInvalidDecl() && FD->isGlobal() && !isa<CXXMethodDecl>(FD) &&
3724      !FD->isMain()) {
3725    bool MissingPrototype = true;
3726    for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
3727         Prev; Prev = Prev->getPreviousDeclaration()) {
3728      // Ignore any declarations that occur in function or method
3729      // scope, because they aren't visible from the header.
3730      if (Prev->getDeclContext()->isFunctionOrMethod())
3731        continue;
3732
3733      MissingPrototype = !Prev->getType()->isFunctionProtoType();
3734      break;
3735    }
3736
3737    if (MissingPrototype)
3738      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
3739  }
3740
3741  if (FnBodyScope)
3742    PushDeclContext(FnBodyScope, FD);
3743
3744  // Check the validity of our function parameters
3745  CheckParmsForFunctionDef(FD);
3746
3747  // Introduce our parameters into the function scope
3748  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
3749    ParmVarDecl *Param = FD->getParamDecl(p);
3750    Param->setOwningFunction(FD);
3751
3752    // If this has an identifier, add it to the scope stack.
3753    if (Param->getIdentifier() && FnBodyScope)
3754      PushOnScopeChains(Param, FnBodyScope);
3755  }
3756
3757  // Checking attributes of current function definition
3758  // dllimport attribute.
3759  if (FD->getAttr<DLLImportAttr>() &&
3760      (!FD->getAttr<DLLExportAttr>())) {
3761    // dllimport attribute cannot be applied to definition.
3762    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
3763      Diag(FD->getLocation(),
3764           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
3765        << "dllimport";
3766      FD->setInvalidDecl();
3767      return DeclPtrTy::make(FD);
3768    } else {
3769      // If a symbol previously declared dllimport is later defined, the
3770      // attribute is ignored in subsequent references, and a warning is
3771      // emitted.
3772      Diag(FD->getLocation(),
3773           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
3774        << FD->getNameAsCString() << "dllimport";
3775    }
3776  }
3777  return DeclPtrTy::make(FD);
3778}
3779
3780Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
3781  return ActOnFinishFunctionBody(D, move(BodyArg), false);
3782}
3783
3784Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
3785                                              bool IsInstantiation) {
3786  Decl *dcl = D.getAs<Decl>();
3787  Stmt *Body = BodyArg.takeAs<Stmt>();
3788
3789  FunctionDecl *FD = 0;
3790  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
3791  if (FunTmpl)
3792    FD = FunTmpl->getTemplatedDecl();
3793  else
3794    FD = dyn_cast_or_null<FunctionDecl>(dcl);
3795
3796  if (FD) {
3797    FD->setBody(Body);
3798    if (FD->isMain())
3799      // C and C++ allow for main to automagically return 0.
3800      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
3801      FD->setHasImplicitReturnZero(true);
3802    else
3803      CheckFallThroughForFunctionDef(FD, Body);
3804
3805    if (!FD->isInvalidDecl())
3806      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
3807
3808    // C++ [basic.def.odr]p2:
3809    //   [...] A virtual member function is used if it is not pure. [...]
3810    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
3811      if (Method->isVirtual() && !Method->isPure())
3812        MarkDeclarationReferenced(Method->getLocation(), Method);
3813
3814    assert(FD == getCurFunctionDecl() && "Function parsing confused");
3815  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
3816    assert(MD == getCurMethodDecl() && "Method parsing confused");
3817    MD->setBody(Body);
3818    CheckFallThroughForFunctionDef(MD, Body);
3819    MD->setEndLoc(Body->getLocEnd());
3820
3821    if (!MD->isInvalidDecl())
3822      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
3823  } else {
3824    Body->Destroy(Context);
3825    return DeclPtrTy();
3826  }
3827  if (!IsInstantiation)
3828    PopDeclContext();
3829
3830  // Verify and clean out per-function state.
3831
3832  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
3833
3834  // Check goto/label use.
3835  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
3836       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
3837    LabelStmt *L = I->second;
3838
3839    // Verify that we have no forward references left.  If so, there was a goto
3840    // or address of a label taken, but no definition of it.  Label fwd
3841    // definitions are indicated with a null substmt.
3842    if (L->getSubStmt() != 0)
3843      continue;
3844
3845    // Emit error.
3846    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
3847
3848    // At this point, we have gotos that use the bogus label.  Stitch it into
3849    // the function body so that they aren't leaked and that the AST is well
3850    // formed.
3851    if (Body == 0) {
3852      // The whole function wasn't parsed correctly, just delete this.
3853      L->Destroy(Context);
3854      continue;
3855    }
3856
3857    // Otherwise, the body is valid: we want to stitch the label decl into the
3858    // function somewhere so that it is properly owned and so that the goto
3859    // has a valid target.  Do this by creating a new compound stmt with the
3860    // label in it.
3861
3862    // Give the label a sub-statement.
3863    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
3864
3865    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
3866                               cast<CXXTryStmt>(Body)->getTryBlock() :
3867                               cast<CompoundStmt>(Body);
3868    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
3869    Elements.push_back(L);
3870    Compound->setStmts(Context, &Elements[0], Elements.size());
3871  }
3872  FunctionLabelMap.clear();
3873
3874  if (!Body) return D;
3875
3876  // Verify that that gotos and switch cases don't jump into scopes illegally.
3877  if (CurFunctionNeedsScopeChecking)
3878    DiagnoseInvalidJumps(Body);
3879
3880  // C++ constructors that have function-try-blocks can't have return
3881  // statements in the handlers of that block. (C++ [except.handle]p14)
3882  // Verify this.
3883  if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
3884    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
3885
3886  if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
3887    computeBaseOrMembersToDestroy(Destructor);
3888  return D;
3889}
3890
3891/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
3892/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
3893NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
3894                                          IdentifierInfo &II, Scope *S) {
3895  // Before we produce a declaration for an implicitly defined
3896  // function, see whether there was a locally-scoped declaration of
3897  // this name as a function or variable. If so, use that
3898  // (non-visible) declaration, and complain about it.
3899  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3900    = LocallyScopedExternalDecls.find(&II);
3901  if (Pos != LocallyScopedExternalDecls.end()) {
3902    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
3903    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
3904    return Pos->second;
3905  }
3906
3907  // Extension in C99.  Legal in C90, but warn about it.
3908  static const unsigned int BuiltinLen = strlen("__builtin_");
3909  if (II.getLength() > BuiltinLen &&
3910      std::equal(II.getName(), II.getName() + BuiltinLen, "__builtin_"))
3911    Diag(Loc, diag::warn_builtin_unknown) << &II;
3912  else if (getLangOptions().C99)
3913    Diag(Loc, diag::ext_implicit_function_decl) << &II;
3914  else
3915    Diag(Loc, diag::warn_implicit_function_decl) << &II;
3916
3917  // Set a Declarator for the implicit definition: int foo();
3918  const char *Dummy;
3919  DeclSpec DS;
3920  unsigned DiagID;
3921  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
3922  Error = Error; // Silence warning.
3923  assert(!Error && "Error setting up implicit decl!");
3924  Declarator D(DS, Declarator::BlockContext);
3925  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
3926                                             0, 0, false, SourceLocation(),
3927                                             false, 0,0,0, Loc, Loc, D),
3928                SourceLocation());
3929  D.SetIdentifier(&II, Loc);
3930
3931  // Insert this function into translation-unit scope.
3932
3933  DeclContext *PrevDC = CurContext;
3934  CurContext = Context.getTranslationUnitDecl();
3935
3936  FunctionDecl *FD =
3937 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
3938  FD->setImplicit();
3939
3940  CurContext = PrevDC;
3941
3942  AddKnownFunctionAttributes(FD);
3943
3944  return FD;
3945}
3946
3947/// \brief Adds any function attributes that we know a priori based on
3948/// the declaration of this function.
3949///
3950/// These attributes can apply both to implicitly-declared builtins
3951/// (like __builtin___printf_chk) or to library-declared functions
3952/// like NSLog or printf.
3953void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
3954  if (FD->isInvalidDecl())
3955    return;
3956
3957  // If this is a built-in function, map its builtin attributes to
3958  // actual attributes.
3959  if (unsigned BuiltinID = FD->getBuiltinID()) {
3960    // Handle printf-formatting attributes.
3961    unsigned FormatIdx;
3962    bool HasVAListArg;
3963    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
3964      if (!FD->getAttr<FormatAttr>())
3965        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
3966                                             HasVAListArg ? 0 : FormatIdx + 2));
3967    }
3968
3969    // Mark const if we don't care about errno and that is the only
3970    // thing preventing the function from being const. This allows
3971    // IRgen to use LLVM intrinsics for such functions.
3972    if (!getLangOptions().MathErrno &&
3973        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
3974      if (!FD->getAttr<ConstAttr>())
3975        FD->addAttr(::new (Context) ConstAttr());
3976    }
3977
3978    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
3979      FD->addAttr(::new (Context) NoReturnAttr());
3980  }
3981
3982  IdentifierInfo *Name = FD->getIdentifier();
3983  if (!Name)
3984    return;
3985  if ((!getLangOptions().CPlusPlus &&
3986       FD->getDeclContext()->isTranslationUnit()) ||
3987      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
3988       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
3989       LinkageSpecDecl::lang_c)) {
3990    // Okay: this could be a libc/libm/Objective-C function we know
3991    // about.
3992  } else
3993    return;
3994
3995  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
3996    // FIXME: NSLog and NSLogv should be target specific
3997    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
3998      // FIXME: We known better than our headers.
3999      const_cast<FormatAttr *>(Format)->setType("printf");
4000    } else
4001      FD->addAttr(::new (Context) FormatAttr("printf", 1,
4002                                             Name->isStr("NSLogv") ? 0 : 2));
4003  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
4004    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
4005    // target-specific builtins, perhaps?
4006    if (!FD->getAttr<FormatAttr>())
4007      FD->addAttr(::new (Context) FormatAttr("printf", 2,
4008                                             Name->isStr("vasprintf") ? 0 : 3));
4009  }
4010}
4011
4012TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T) {
4013  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
4014  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
4015
4016  // Scope manipulation handled by caller.
4017  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
4018                                           D.getIdentifierLoc(),
4019                                           D.getIdentifier(),
4020                                           T);
4021
4022  if (const TagType *TT = T->getAs<TagType>()) {
4023    TagDecl *TD = TT->getDecl();
4024
4025    // If the TagDecl that the TypedefDecl points to is an anonymous decl
4026    // keep track of the TypedefDecl.
4027    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
4028      TD->setTypedefForAnonDecl(NewTD);
4029  }
4030
4031  if (D.isInvalidType())
4032    NewTD->setInvalidDecl();
4033  return NewTD;
4034}
4035
4036
4037/// \brief Determine whether a tag with a given kind is acceptable
4038/// as a redeclaration of the given tag declaration.
4039///
4040/// \returns true if the new tag kind is acceptable, false otherwise.
4041bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
4042                                        TagDecl::TagKind NewTag,
4043                                        SourceLocation NewTagLoc,
4044                                        const IdentifierInfo &Name) {
4045  // C++ [dcl.type.elab]p3:
4046  //   The class-key or enum keyword present in the
4047  //   elaborated-type-specifier shall agree in kind with the
4048  //   declaration to which the name in theelaborated-type-specifier
4049  //   refers. This rule also applies to the form of
4050  //   elaborated-type-specifier that declares a class-name or
4051  //   friend class since it can be construed as referring to the
4052  //   definition of the class. Thus, in any
4053  //   elaborated-type-specifier, the enum keyword shall be used to
4054  //   refer to an enumeration (7.2), the union class-keyshall be
4055  //   used to refer to a union (clause 9), and either the class or
4056  //   struct class-key shall be used to refer to a class (clause 9)
4057  //   declared using the class or struct class-key.
4058  TagDecl::TagKind OldTag = Previous->getTagKind();
4059  if (OldTag == NewTag)
4060    return true;
4061
4062  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
4063      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
4064    // Warn about the struct/class tag mismatch.
4065    bool isTemplate = false;
4066    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
4067      isTemplate = Record->getDescribedClassTemplate();
4068
4069    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
4070      << (NewTag == TagDecl::TK_class)
4071      << isTemplate << &Name
4072      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
4073                              OldTag == TagDecl::TK_class? "class" : "struct");
4074    Diag(Previous->getLocation(), diag::note_previous_use);
4075    return true;
4076  }
4077  return false;
4078}
4079
4080/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
4081/// former case, Name will be non-null.  In the later case, Name will be null.
4082/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
4083/// reference/declaration/definition of a tag.
4084Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
4085                               SourceLocation KWLoc, const CXXScopeSpec &SS,
4086                               IdentifierInfo *Name, SourceLocation NameLoc,
4087                               AttributeList *Attr, AccessSpecifier AS,
4088                               MultiTemplateParamsArg TemplateParameterLists,
4089                               bool &OwnedDecl, bool &IsDependent) {
4090  // If this is not a definition, it must have a name.
4091  assert((Name != 0 || TUK == TUK_Definition) &&
4092         "Nameless record must be a definition!");
4093
4094  OwnedDecl = false;
4095  TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec);
4096
4097  // FIXME: Check explicit specializations more carefully.
4098  bool isExplicitSpecialization = false;
4099  if (TUK != TUK_Reference) {
4100    if (TemplateParameterList *TemplateParams
4101          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
4102                        (TemplateParameterList**)TemplateParameterLists.get(),
4103                                              TemplateParameterLists.size(),
4104                                                    isExplicitSpecialization)) {
4105      if (TemplateParams->size() > 0) {
4106        // This is a declaration or definition of a class template (which may
4107        // be a member of another template).
4108        OwnedDecl = false;
4109        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
4110                                               SS, Name, NameLoc, Attr,
4111                                               TemplateParams,
4112                                               AS);
4113        TemplateParameterLists.release();
4114        return Result.get();
4115      } else {
4116        // The "template<>" header is extraneous.
4117        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
4118          << ElaboratedType::getNameForTagKind(Kind) << Name;
4119        isExplicitSpecialization = true;
4120      }
4121    }
4122
4123    TemplateParameterLists.release();
4124  }
4125
4126  DeclContext *SearchDC = CurContext;
4127  DeclContext *DC = CurContext;
4128  NamedDecl *PrevDecl = 0;
4129  bool isStdBadAlloc = false;
4130  bool Invalid = false;
4131
4132  if (Name && SS.isNotEmpty()) {
4133    // We have a nested-name tag ('struct foo::bar').
4134
4135    // Check for invalid 'foo::'.
4136    if (SS.isInvalid()) {
4137      Name = 0;
4138      goto CreateNewDecl;
4139    }
4140
4141    // If this is a friend or a reference to a class in a dependent
4142    // context, don't try to make a decl for it.
4143    if (TUK == TUK_Friend || TUK == TUK_Reference) {
4144      DC = computeDeclContext(SS, false);
4145      if (!DC) {
4146        IsDependent = true;
4147        return DeclPtrTy();
4148      }
4149    }
4150
4151    if (RequireCompleteDeclContext(SS))
4152      return DeclPtrTy::make((Decl *)0);
4153
4154    DC = computeDeclContext(SS, true);
4155    SearchDC = DC;
4156    // Look-up name inside 'foo::'.
4157    LookupResult R;
4158    LookupQualifiedName(R, DC, Name, LookupTagName, true);
4159    PrevDecl = dyn_cast_or_null<TagDecl>(R.getAsSingleDecl(Context));
4160
4161    // A tag 'foo::bar' must already exist.
4162    if (PrevDecl == 0) {
4163      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
4164      Name = 0;
4165      Invalid = true;
4166      goto CreateNewDecl;
4167    }
4168  } else if (Name) {
4169    // If this is a named struct, check to see if there was a previous forward
4170    // declaration or definition.
4171    // FIXME: We're looking into outer scopes here, even when we
4172    // shouldn't be. Doing so can result in ambiguities that we
4173    // shouldn't be diagnosing.
4174    LookupResult R;
4175    LookupName(R, S, Name, LookupTagName,
4176                                /*RedeclarationOnly=*/(TUK != TUK_Reference));
4177    if (R.isAmbiguous()) {
4178      DiagnoseAmbiguousLookup(R, Name, NameLoc);
4179      // FIXME: This is not best way to recover from case like:
4180      //
4181      // struct S s;
4182      //
4183      // causes needless "incomplete type" error later.
4184      Name = 0;
4185      PrevDecl = 0;
4186      Invalid = true;
4187    } else
4188      PrevDecl = R.getAsSingleDecl(Context);
4189
4190    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
4191      // FIXME: This makes sure that we ignore the contexts associated
4192      // with C structs, unions, and enums when looking for a matching
4193      // tag declaration or definition. See the similar lookup tweak
4194      // in Sema::LookupName; is there a better way to deal with this?
4195      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
4196        SearchDC = SearchDC->getParent();
4197    }
4198  }
4199
4200  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4201    // Maybe we will complain about the shadowed template parameter.
4202    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
4203    // Just pretend that we didn't see the previous declaration.
4204    PrevDecl = 0;
4205  }
4206
4207  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
4208      DC->Equals(StdNamespace) && Name->isStr("bad_alloc")) {
4209    // This is a declaration of or a reference to "std::bad_alloc".
4210    isStdBadAlloc = true;
4211
4212    if (!PrevDecl && StdBadAlloc) {
4213      // std::bad_alloc has been implicitly declared (but made invisible to
4214      // name lookup). Fill in this implicit declaration as the previous
4215      // declaration, so that the declarations get chained appropriately.
4216      PrevDecl = StdBadAlloc;
4217    }
4218  }
4219
4220  if (PrevDecl) {
4221    // Check whether the previous declaration is usable.
4222    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
4223
4224    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
4225      // If this is a use of a previous tag, or if the tag is already declared
4226      // in the same scope (so that the definition/declaration completes or
4227      // rementions the tag), reuse the decl.
4228      if (TUK == TUK_Reference || TUK == TUK_Friend ||
4229          isDeclInScope(PrevDecl, SearchDC, S)) {
4230        // Make sure that this wasn't declared as an enum and now used as a
4231        // struct or something similar.
4232        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
4233          bool SafeToContinue
4234            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
4235               Kind != TagDecl::TK_enum);
4236          if (SafeToContinue)
4237            Diag(KWLoc, diag::err_use_with_wrong_tag)
4238              << Name
4239              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
4240                                                  PrevTagDecl->getKindName());
4241          else
4242            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
4243          Diag(PrevDecl->getLocation(), diag::note_previous_use);
4244
4245          if (SafeToContinue)
4246            Kind = PrevTagDecl->getTagKind();
4247          else {
4248            // Recover by making this an anonymous redefinition.
4249            Name = 0;
4250            PrevDecl = 0;
4251            Invalid = true;
4252          }
4253        }
4254
4255        if (!Invalid) {
4256          // If this is a use, just return the declaration we found.
4257
4258          // FIXME: In the future, return a variant or some other clue
4259          // for the consumer of this Decl to know it doesn't own it.
4260          // For our current ASTs this shouldn't be a problem, but will
4261          // need to be changed with DeclGroups.
4262          if (TUK == TUK_Reference || TUK == TUK_Friend)
4263            return DeclPtrTy::make(PrevDecl);
4264
4265          // Diagnose attempts to redefine a tag.
4266          if (TUK == TUK_Definition) {
4267            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
4268              Diag(NameLoc, diag::err_redefinition) << Name;
4269              Diag(Def->getLocation(), diag::note_previous_definition);
4270              // If this is a redefinition, recover by making this
4271              // struct be anonymous, which will make any later
4272              // references get the previous definition.
4273              Name = 0;
4274              PrevDecl = 0;
4275              Invalid = true;
4276            } else {
4277              // If the type is currently being defined, complain
4278              // about a nested redefinition.
4279              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
4280              if (Tag->isBeingDefined()) {
4281                Diag(NameLoc, diag::err_nested_redefinition) << Name;
4282                Diag(PrevTagDecl->getLocation(),
4283                     diag::note_previous_definition);
4284                Name = 0;
4285                PrevDecl = 0;
4286                Invalid = true;
4287              }
4288            }
4289
4290            // Okay, this is definition of a previously declared or referenced
4291            // tag PrevDecl. We're going to create a new Decl for it.
4292          }
4293        }
4294        // If we get here we have (another) forward declaration or we
4295        // have a definition.  Just create a new decl.
4296
4297      } else {
4298        // If we get here, this is a definition of a new tag type in a nested
4299        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
4300        // new decl/type.  We set PrevDecl to NULL so that the entities
4301        // have distinct types.
4302        PrevDecl = 0;
4303      }
4304      // If we get here, we're going to create a new Decl. If PrevDecl
4305      // is non-NULL, it's a definition of the tag declared by
4306      // PrevDecl. If it's NULL, we have a new definition.
4307    } else {
4308      // PrevDecl is a namespace, template, or anything else
4309      // that lives in the IDNS_Tag identifier namespace.
4310      if (isDeclInScope(PrevDecl, SearchDC, S)) {
4311        // The tag name clashes with a namespace name, issue an error and
4312        // recover by making this tag be anonymous.
4313        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
4314        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4315        Name = 0;
4316        PrevDecl = 0;
4317        Invalid = true;
4318      } else {
4319        // The existing declaration isn't relevant to us; we're in a
4320        // new scope, so clear out the previous declaration.
4321        PrevDecl = 0;
4322      }
4323    }
4324  } else if (TUK == TUK_Reference && SS.isEmpty() && Name &&
4325             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
4326    // C++ [basic.scope.pdecl]p5:
4327    //   -- for an elaborated-type-specifier of the form
4328    //
4329    //          class-key identifier
4330    //
4331    //      if the elaborated-type-specifier is used in the
4332    //      decl-specifier-seq or parameter-declaration-clause of a
4333    //      function defined in namespace scope, the identifier is
4334    //      declared as a class-name in the namespace that contains
4335    //      the declaration; otherwise, except as a friend
4336    //      declaration, the identifier is declared in the smallest
4337    //      non-class, non-function-prototype scope that contains the
4338    //      declaration.
4339    //
4340    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
4341    // C structs and unions.
4342    //
4343    // GNU C also supports this behavior as part of its incomplete
4344    // enum types extension, while GNU C++ does not.
4345    //
4346    // Find the context where we'll be declaring the tag.
4347    // FIXME: We would like to maintain the current DeclContext as the
4348    // lexical context,
4349    while (SearchDC->isRecord())
4350      SearchDC = SearchDC->getParent();
4351
4352    // Find the scope where we'll be declaring the tag.
4353    while (S->isClassScope() ||
4354           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
4355           ((S->getFlags() & Scope::DeclScope) == 0) ||
4356           (S->getEntity() &&
4357            ((DeclContext *)S->getEntity())->isTransparentContext()))
4358      S = S->getParent();
4359
4360  } else if (TUK == TUK_Friend && SS.isEmpty() && Name) {
4361    // C++ [namespace.memdef]p3:
4362    //   If a friend declaration in a non-local class first declares a
4363    //   class or function, the friend class or function is a member of
4364    //   the innermost enclosing namespace.
4365    while (!SearchDC->isFileContext())
4366      SearchDC = SearchDC->getParent();
4367
4368    // The entity of a decl scope is a DeclContext; see PushDeclContext.
4369    while (S->getEntity() != SearchDC)
4370      S = S->getParent();
4371  }
4372
4373CreateNewDecl:
4374
4375  // If there is an identifier, use the location of the identifier as the
4376  // location of the decl, otherwise use the location of the struct/union
4377  // keyword.
4378  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
4379
4380  // Otherwise, create a new declaration. If there is a previous
4381  // declaration of the same entity, the two will be linked via
4382  // PrevDecl.
4383  TagDecl *New;
4384
4385  if (Kind == TagDecl::TK_enum) {
4386    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4387    // enum X { A, B, C } D;    D should chain to X.
4388    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
4389                           cast_or_null<EnumDecl>(PrevDecl));
4390    // If this is an undefined enum, warn.
4391    if (TUK != TUK_Definition && !Invalid)  {
4392      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
4393                                              : diag::ext_forward_ref_enum;
4394      Diag(Loc, DK);
4395    }
4396  } else {
4397    // struct/union/class
4398
4399    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4400    // struct X { int A; } D;    D should chain to X.
4401    if (getLangOptions().CPlusPlus) {
4402      // FIXME: Look for a way to use RecordDecl for simple structs.
4403      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4404                                  cast_or_null<CXXRecordDecl>(PrevDecl));
4405
4406      if (isStdBadAlloc && (!StdBadAlloc || StdBadAlloc->isImplicit()))
4407        StdBadAlloc = cast<CXXRecordDecl>(New);
4408    } else
4409      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4410                               cast_or_null<RecordDecl>(PrevDecl));
4411  }
4412
4413  if (Kind != TagDecl::TK_enum) {
4414    // Handle #pragma pack: if the #pragma pack stack has non-default
4415    // alignment, make up a packed attribute for this decl. These
4416    // attributes are checked when the ASTContext lays out the
4417    // structure.
4418    //
4419    // It is important for implementing the correct semantics that this
4420    // happen here (in act on tag decl). The #pragma pack stack is
4421    // maintained as a result of parser callbacks which can occur at
4422    // many points during the parsing of a struct declaration (because
4423    // the #pragma tokens are effectively skipped over during the
4424    // parsing of the struct).
4425    if (unsigned Alignment = getPragmaPackAlignment())
4426      New->addAttr(::new (Context) PragmaPackAttr(Alignment * 8));
4427  }
4428
4429  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
4430    // C++ [dcl.typedef]p3:
4431    //   [...] Similarly, in a given scope, a class or enumeration
4432    //   shall not be declared with the same name as a typedef-name
4433    //   that is declared in that scope and refers to a type other
4434    //   than the class or enumeration itself.
4435    LookupResult Lookup;
4436    LookupName(Lookup, S, Name, LookupOrdinaryName, true);
4437    TypedefDecl *PrevTypedef = 0;
4438    if (NamedDecl *Prev = Lookup.getAsSingleDecl(Context))
4439      PrevTypedef = dyn_cast<TypedefDecl>(Prev);
4440
4441    NamedDecl *PrevTypedefNamed = PrevTypedef;
4442    if (PrevTypedef && isDeclInScope(PrevTypedefNamed, SearchDC, S) &&
4443        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
4444          Context.getCanonicalType(Context.getTypeDeclType(New))) {
4445      Diag(Loc, diag::err_tag_definition_of_typedef)
4446        << Context.getTypeDeclType(New)
4447        << PrevTypedef->getUnderlyingType();
4448      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
4449      Invalid = true;
4450    }
4451  }
4452
4453  // If this is a specialization of a member class (of a class template),
4454  // check the specialization.
4455  if (isExplicitSpecialization && CheckMemberSpecialization(New, PrevDecl))
4456    Invalid = true;
4457
4458  if (Invalid)
4459    New->setInvalidDecl();
4460
4461  if (Attr)
4462    ProcessDeclAttributeList(S, New, Attr);
4463
4464  // If we're declaring or defining a tag in function prototype scope
4465  // in C, note that this type can only be used within the function.
4466  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
4467    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
4468
4469  // Set the lexical context. If the tag has a C++ scope specifier, the
4470  // lexical context will be different from the semantic context.
4471  New->setLexicalDeclContext(CurContext);
4472
4473  // Mark this as a friend decl if applicable.
4474  if (TUK == TUK_Friend)
4475    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ PrevDecl != NULL);
4476
4477  // Set the access specifier.
4478  if (!Invalid && TUK != TUK_Friend)
4479    SetMemberAccessSpecifier(New, PrevDecl, AS);
4480
4481  if (TUK == TUK_Definition)
4482    New->startDefinition();
4483
4484  // If this has an identifier, add it to the scope stack.
4485  if (TUK == TUK_Friend) {
4486    // We might be replacing an existing declaration in the lookup tables;
4487    // if so, borrow its access specifier.
4488    if (PrevDecl)
4489      New->setAccess(PrevDecl->getAccess());
4490
4491    // Friend tag decls are visible in fairly strange ways.
4492    if (!CurContext->isDependentContext()) {
4493      DeclContext *DC = New->getDeclContext()->getLookupContext();
4494      DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
4495      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
4496        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
4497    }
4498  } else if (Name) {
4499    S = getNonFieldDeclScope(S);
4500    PushOnScopeChains(New, S);
4501  } else {
4502    CurContext->addDecl(New);
4503  }
4504
4505  // If this is the C FILE type, notify the AST context.
4506  if (IdentifierInfo *II = New->getIdentifier())
4507    if (!New->isInvalidDecl() &&
4508        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
4509        II->isStr("FILE"))
4510      Context.setFILEDecl(New);
4511
4512  OwnedDecl = true;
4513  return DeclPtrTy::make(New);
4514}
4515
4516void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
4517  AdjustDeclIfTemplate(TagD);
4518  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4519
4520  // Enter the tag context.
4521  PushDeclContext(S, Tag);
4522
4523  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
4524    FieldCollector->StartClass();
4525
4526    if (Record->getIdentifier()) {
4527      // C++ [class]p2:
4528      //   [...] The class-name is also inserted into the scope of the
4529      //   class itself; this is known as the injected-class-name. For
4530      //   purposes of access checking, the injected-class-name is treated
4531      //   as if it were a public member name.
4532      CXXRecordDecl *InjectedClassName
4533        = CXXRecordDecl::Create(Context, Record->getTagKind(),
4534                                CurContext, Record->getLocation(),
4535                                Record->getIdentifier(),
4536                                Record->getTagKeywordLoc(),
4537                                Record);
4538      InjectedClassName->setImplicit();
4539      InjectedClassName->setAccess(AS_public);
4540      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
4541        InjectedClassName->setDescribedClassTemplate(Template);
4542      PushOnScopeChains(InjectedClassName, S);
4543      assert(InjectedClassName->isInjectedClassName() &&
4544             "Broken injected-class-name");
4545    }
4546  }
4547}
4548
4549void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
4550                                    SourceLocation RBraceLoc) {
4551  AdjustDeclIfTemplate(TagD);
4552  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4553  Tag->setRBraceLoc(RBraceLoc);
4554
4555  if (isa<CXXRecordDecl>(Tag))
4556    FieldCollector->FinishClass();
4557
4558  // Exit this scope of this tag's definition.
4559  PopDeclContext();
4560
4561  // Notify the consumer that we've defined a tag.
4562  Consumer.HandleTagDeclDefinition(Tag);
4563}
4564
4565// Note that FieldName may be null for anonymous bitfields.
4566bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
4567                          QualType FieldTy, const Expr *BitWidth,
4568                          bool *ZeroWidth) {
4569  // Default to true; that shouldn't confuse checks for emptiness
4570  if (ZeroWidth)
4571    *ZeroWidth = true;
4572
4573  // C99 6.7.2.1p4 - verify the field type.
4574  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
4575  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
4576    // Handle incomplete types with specific error.
4577    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
4578      return true;
4579    if (FieldName)
4580      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
4581        << FieldName << FieldTy << BitWidth->getSourceRange();
4582    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
4583      << FieldTy << BitWidth->getSourceRange();
4584  }
4585
4586  // If the bit-width is type- or value-dependent, don't try to check
4587  // it now.
4588  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
4589    return false;
4590
4591  llvm::APSInt Value;
4592  if (VerifyIntegerConstantExpression(BitWidth, &Value))
4593    return true;
4594
4595  if (Value != 0 && ZeroWidth)
4596    *ZeroWidth = false;
4597
4598  // Zero-width bitfield is ok for anonymous field.
4599  if (Value == 0 && FieldName)
4600    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
4601
4602  if (Value.isSigned() && Value.isNegative()) {
4603    if (FieldName)
4604      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
4605               << FieldName << Value.toString(10);
4606    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
4607      << Value.toString(10);
4608  }
4609
4610  if (!FieldTy->isDependentType()) {
4611    uint64_t TypeSize = Context.getTypeSize(FieldTy);
4612    if (Value.getZExtValue() > TypeSize) {
4613      if (FieldName)
4614        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
4615          << FieldName << (unsigned)TypeSize;
4616      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
4617        << (unsigned)TypeSize;
4618    }
4619  }
4620
4621  return false;
4622}
4623
4624/// ActOnField - Each field of a struct/union/class is passed into this in order
4625/// to create a FieldDecl object for it.
4626Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
4627                                 SourceLocation DeclStart,
4628                                 Declarator &D, ExprTy *BitfieldWidth) {
4629  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
4630                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
4631                               AS_public);
4632  return DeclPtrTy::make(Res);
4633}
4634
4635/// HandleField - Analyze a field of a C struct or a C++ data member.
4636///
4637FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
4638                             SourceLocation DeclStart,
4639                             Declarator &D, Expr *BitWidth,
4640                             AccessSpecifier AS) {
4641  IdentifierInfo *II = D.getIdentifier();
4642  SourceLocation Loc = DeclStart;
4643  if (II) Loc = D.getIdentifierLoc();
4644
4645  DeclaratorInfo *DInfo = 0;
4646  QualType T = GetTypeForDeclarator(D, S, &DInfo);
4647  if (getLangOptions().CPlusPlus)
4648    CheckExtraCXXDefaultArguments(D);
4649
4650  DiagnoseFunctionSpecifiers(D);
4651
4652  if (D.getDeclSpec().isThreadSpecified())
4653    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4654
4655  NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName, true);
4656
4657  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4658    // Maybe we will complain about the shadowed template parameter.
4659    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4660    // Just pretend that we didn't see the previous declaration.
4661    PrevDecl = 0;
4662  }
4663
4664  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
4665    PrevDecl = 0;
4666
4667  bool Mutable
4668    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
4669  SourceLocation TSSL = D.getSourceRange().getBegin();
4670  FieldDecl *NewFD
4671    = CheckFieldDecl(II, T, DInfo, Record, Loc, Mutable, BitWidth, TSSL,
4672                     AS, PrevDecl, &D);
4673  if (NewFD->isInvalidDecl() && PrevDecl) {
4674    // Don't introduce NewFD into scope; there's already something
4675    // with the same name in the same scope.
4676  } else if (II) {
4677    PushOnScopeChains(NewFD, S);
4678  } else
4679    Record->addDecl(NewFD);
4680
4681  return NewFD;
4682}
4683
4684/// \brief Build a new FieldDecl and check its well-formedness.
4685///
4686/// This routine builds a new FieldDecl given the fields name, type,
4687/// record, etc. \p PrevDecl should refer to any previous declaration
4688/// with the same name and in the same scope as the field to be
4689/// created.
4690///
4691/// \returns a new FieldDecl.
4692///
4693/// \todo The Declarator argument is a hack. It will be removed once
4694FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
4695                                DeclaratorInfo *DInfo,
4696                                RecordDecl *Record, SourceLocation Loc,
4697                                bool Mutable, Expr *BitWidth,
4698                                SourceLocation TSSL,
4699                                AccessSpecifier AS, NamedDecl *PrevDecl,
4700                                Declarator *D) {
4701  IdentifierInfo *II = Name.getAsIdentifierInfo();
4702  bool InvalidDecl = false;
4703  if (D) InvalidDecl = D->isInvalidType();
4704
4705  // If we receive a broken type, recover by assuming 'int' and
4706  // marking this declaration as invalid.
4707  if (T.isNull()) {
4708    InvalidDecl = true;
4709    T = Context.IntTy;
4710  }
4711
4712  // C99 6.7.2.1p8: A member of a structure or union may have any type other
4713  // than a variably modified type.
4714  if (T->isVariablyModifiedType()) {
4715    bool SizeIsNegative;
4716    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
4717                                                           SizeIsNegative);
4718    if (!FixedTy.isNull()) {
4719      Diag(Loc, diag::warn_illegal_constant_array_size);
4720      T = FixedTy;
4721    } else {
4722      if (SizeIsNegative)
4723        Diag(Loc, diag::err_typecheck_negative_array_size);
4724      else
4725        Diag(Loc, diag::err_typecheck_field_variable_size);
4726      InvalidDecl = true;
4727    }
4728  }
4729
4730  // Fields can not have abstract class types
4731  if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl,
4732                             AbstractFieldType))
4733    InvalidDecl = true;
4734
4735  bool ZeroWidth = false;
4736  // If this is declared as a bit-field, check the bit-field.
4737  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
4738    InvalidDecl = true;
4739    DeleteExpr(BitWidth);
4740    BitWidth = 0;
4741    ZeroWidth = false;
4742  }
4743
4744  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, DInfo,
4745                                       BitWidth, Mutable);
4746  if (InvalidDecl)
4747    NewFD->setInvalidDecl();
4748
4749  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
4750    Diag(Loc, diag::err_duplicate_member) << II;
4751    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4752    NewFD->setInvalidDecl();
4753  }
4754
4755  if (getLangOptions().CPlusPlus) {
4756    QualType EltTy = Context.getBaseElementType(T);
4757
4758    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
4759
4760    if (!T->isPODType())
4761      CXXRecord->setPOD(false);
4762    if (!ZeroWidth)
4763      CXXRecord->setEmpty(false);
4764
4765    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
4766      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
4767
4768      if (!RDecl->hasTrivialConstructor())
4769        CXXRecord->setHasTrivialConstructor(false);
4770      if (!RDecl->hasTrivialCopyConstructor())
4771        CXXRecord->setHasTrivialCopyConstructor(false);
4772      if (!RDecl->hasTrivialCopyAssignment())
4773        CXXRecord->setHasTrivialCopyAssignment(false);
4774      if (!RDecl->hasTrivialDestructor())
4775        CXXRecord->setHasTrivialDestructor(false);
4776
4777      // C++ 9.5p1: An object of a class with a non-trivial
4778      // constructor, a non-trivial copy constructor, a non-trivial
4779      // destructor, or a non-trivial copy assignment operator
4780      // cannot be a member of a union, nor can an array of such
4781      // objects.
4782      // TODO: C++0x alters this restriction significantly.
4783      if (Record->isUnion()) {
4784        // We check for copy constructors before constructors
4785        // because otherwise we'll never get complaints about
4786        // copy constructors.
4787
4788        const CXXSpecialMember invalid = (CXXSpecialMember) -1;
4789
4790        CXXSpecialMember member;
4791        if (!RDecl->hasTrivialCopyConstructor())
4792          member = CXXCopyConstructor;
4793        else if (!RDecl->hasTrivialConstructor())
4794          member = CXXDefaultConstructor;
4795        else if (!RDecl->hasTrivialCopyAssignment())
4796          member = CXXCopyAssignment;
4797        else if (!RDecl->hasTrivialDestructor())
4798          member = CXXDestructor;
4799        else
4800          member = invalid;
4801
4802        if (member != invalid) {
4803          Diag(Loc, diag::err_illegal_union_member) << Name << member;
4804          DiagnoseNontrivial(RT, member);
4805          NewFD->setInvalidDecl();
4806        }
4807      }
4808    }
4809  }
4810
4811  // FIXME: We need to pass in the attributes given an AST
4812  // representation, not a parser representation.
4813  if (D)
4814    // FIXME: What to pass instead of TUScope?
4815    ProcessDeclAttributes(TUScope, NewFD, *D);
4816
4817  if (T.isObjCGCWeak())
4818    Diag(Loc, diag::warn_attribute_weak_on_field);
4819
4820  NewFD->setAccess(AS);
4821
4822  // C++ [dcl.init.aggr]p1:
4823  //   An aggregate is an array or a class (clause 9) with [...] no
4824  //   private or protected non-static data members (clause 11).
4825  // A POD must be an aggregate.
4826  if (getLangOptions().CPlusPlus &&
4827      (AS == AS_private || AS == AS_protected)) {
4828    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
4829    CXXRecord->setAggregate(false);
4830    CXXRecord->setPOD(false);
4831  }
4832
4833  return NewFD;
4834}
4835
4836/// DiagnoseNontrivial - Given that a class has a non-trivial
4837/// special member, figure out why.
4838void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
4839  QualType QT(T, 0U);
4840  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
4841
4842  // Check whether the member was user-declared.
4843  switch (member) {
4844  case CXXDefaultConstructor:
4845    if (RD->hasUserDeclaredConstructor()) {
4846      typedef CXXRecordDecl::ctor_iterator ctor_iter;
4847      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce; ++ci)
4848        if (!ci->isImplicitlyDefined(Context)) {
4849          SourceLocation CtorLoc = ci->getLocation();
4850          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4851          return;
4852        }
4853
4854      assert(0 && "found no user-declared constructors");
4855      return;
4856    }
4857    break;
4858
4859  case CXXCopyConstructor:
4860    if (RD->hasUserDeclaredCopyConstructor()) {
4861      SourceLocation CtorLoc =
4862        RD->getCopyConstructor(Context, 0)->getLocation();
4863      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4864      return;
4865    }
4866    break;
4867
4868  case CXXCopyAssignment:
4869    if (RD->hasUserDeclaredCopyAssignment()) {
4870      // FIXME: this should use the location of the copy
4871      // assignment, not the type.
4872      SourceLocation TyLoc = RD->getSourceRange().getBegin();
4873      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
4874      return;
4875    }
4876    break;
4877
4878  case CXXDestructor:
4879    if (RD->hasUserDeclaredDestructor()) {
4880      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
4881      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4882      return;
4883    }
4884    break;
4885  }
4886
4887  typedef CXXRecordDecl::base_class_iterator base_iter;
4888
4889  // Virtual bases and members inhibit trivial copying/construction,
4890  // but not trivial destruction.
4891  if (member != CXXDestructor) {
4892    // Check for virtual bases.  vbases includes indirect virtual bases,
4893    // so we just iterate through the direct bases.
4894    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
4895      if (bi->isVirtual()) {
4896        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
4897        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
4898        return;
4899      }
4900
4901    // Check for virtual methods.
4902    typedef CXXRecordDecl::method_iterator meth_iter;
4903    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
4904         ++mi) {
4905      if (mi->isVirtual()) {
4906        SourceLocation MLoc = mi->getSourceRange().getBegin();
4907        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
4908        return;
4909      }
4910    }
4911  }
4912
4913  bool (CXXRecordDecl::*hasTrivial)() const;
4914  switch (member) {
4915  case CXXDefaultConstructor:
4916    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
4917  case CXXCopyConstructor:
4918    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
4919  case CXXCopyAssignment:
4920    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
4921  case CXXDestructor:
4922    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
4923  default:
4924    assert(0 && "unexpected special member"); return;
4925  }
4926
4927  // Check for nontrivial bases (and recurse).
4928  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
4929    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
4930    assert(BaseRT);
4931    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
4932    if (!(BaseRecTy->*hasTrivial)()) {
4933      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
4934      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
4935      DiagnoseNontrivial(BaseRT, member);
4936      return;
4937    }
4938  }
4939
4940  // Check for nontrivial members (and recurse).
4941  typedef RecordDecl::field_iterator field_iter;
4942  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
4943       ++fi) {
4944    QualType EltTy = Context.getBaseElementType((*fi)->getType());
4945    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
4946      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
4947
4948      if (!(EltRD->*hasTrivial)()) {
4949        SourceLocation FLoc = (*fi)->getLocation();
4950        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
4951        DiagnoseNontrivial(EltRT, member);
4952        return;
4953      }
4954    }
4955  }
4956
4957  assert(0 && "found no explanation for non-trivial member");
4958}
4959
4960/// TranslateIvarVisibility - Translate visibility from a token ID to an
4961///  AST enum value.
4962static ObjCIvarDecl::AccessControl
4963TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
4964  switch (ivarVisibility) {
4965  default: assert(0 && "Unknown visitibility kind");
4966  case tok::objc_private: return ObjCIvarDecl::Private;
4967  case tok::objc_public: return ObjCIvarDecl::Public;
4968  case tok::objc_protected: return ObjCIvarDecl::Protected;
4969  case tok::objc_package: return ObjCIvarDecl::Package;
4970  }
4971}
4972
4973/// ActOnIvar - Each ivar field of an objective-c class is passed into this
4974/// in order to create an IvarDecl object for it.
4975Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
4976                                SourceLocation DeclStart,
4977                                DeclPtrTy IntfDecl,
4978                                Declarator &D, ExprTy *BitfieldWidth,
4979                                tok::ObjCKeywordKind Visibility) {
4980
4981  IdentifierInfo *II = D.getIdentifier();
4982  Expr *BitWidth = (Expr*)BitfieldWidth;
4983  SourceLocation Loc = DeclStart;
4984  if (II) Loc = D.getIdentifierLoc();
4985
4986  // FIXME: Unnamed fields can be handled in various different ways, for
4987  // example, unnamed unions inject all members into the struct namespace!
4988
4989  DeclaratorInfo *DInfo = 0;
4990  QualType T = GetTypeForDeclarator(D, S, &DInfo);
4991
4992  if (BitWidth) {
4993    // 6.7.2.1p3, 6.7.2.1p4
4994    if (VerifyBitField(Loc, II, T, BitWidth)) {
4995      D.setInvalidType();
4996      DeleteExpr(BitWidth);
4997      BitWidth = 0;
4998    }
4999  } else {
5000    // Not a bitfield.
5001
5002    // validate II.
5003
5004  }
5005
5006  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5007  // than a variably modified type.
5008  if (T->isVariablyModifiedType()) {
5009    Diag(Loc, diag::err_typecheck_ivar_variable_size);
5010    D.setInvalidType();
5011  }
5012
5013  // Get the visibility (access control) for this ivar.
5014  ObjCIvarDecl::AccessControl ac =
5015    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
5016                                        : ObjCIvarDecl::None;
5017  // Must set ivar's DeclContext to its enclosing interface.
5018  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
5019  DeclContext *EnclosingContext;
5020  if (ObjCImplementationDecl *IMPDecl =
5021      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5022    // Case of ivar declared in an implementation. Context is that of its class.
5023    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
5024    assert(IDecl && "No class- ActOnIvar");
5025    EnclosingContext = cast_or_null<DeclContext>(IDecl);
5026  } else
5027    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
5028  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
5029
5030  // Construct the decl.
5031  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
5032                                             EnclosingContext, Loc, II, T,
5033                                             DInfo, ac, (Expr *)BitfieldWidth);
5034
5035  if (II) {
5036    NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName, true);
5037    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
5038        && !isa<TagDecl>(PrevDecl)) {
5039      Diag(Loc, diag::err_duplicate_member) << II;
5040      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5041      NewID->setInvalidDecl();
5042    }
5043  }
5044
5045  // Process attributes attached to the ivar.
5046  ProcessDeclAttributes(S, NewID, D);
5047
5048  if (D.isInvalidType())
5049    NewID->setInvalidDecl();
5050
5051  if (II) {
5052    // FIXME: When interfaces are DeclContexts, we'll need to add
5053    // these to the interface.
5054    S->AddDecl(DeclPtrTy::make(NewID));
5055    IdResolver.AddDecl(NewID);
5056  }
5057
5058  return DeclPtrTy::make(NewID);
5059}
5060
5061void Sema::ActOnFields(Scope* S,
5062                       SourceLocation RecLoc, DeclPtrTy RecDecl,
5063                       DeclPtrTy *Fields, unsigned NumFields,
5064                       SourceLocation LBrac, SourceLocation RBrac,
5065                       AttributeList *Attr) {
5066  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
5067  assert(EnclosingDecl && "missing record or interface decl");
5068
5069  // If the decl this is being inserted into is invalid, then it may be a
5070  // redeclaration or some other bogus case.  Don't try to add fields to it.
5071  if (EnclosingDecl->isInvalidDecl()) {
5072    // FIXME: Deallocate fields?
5073    return;
5074  }
5075
5076
5077  // Verify that all the fields are okay.
5078  unsigned NumNamedMembers = 0;
5079  llvm::SmallVector<FieldDecl*, 32> RecFields;
5080
5081  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
5082  for (unsigned i = 0; i != NumFields; ++i) {
5083    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
5084
5085    // Get the type for the field.
5086    Type *FDTy = FD->getType().getTypePtr();
5087
5088    if (!FD->isAnonymousStructOrUnion()) {
5089      // Remember all fields written by the user.
5090      RecFields.push_back(FD);
5091    }
5092
5093    // If the field is already invalid for some reason, don't emit more
5094    // diagnostics about it.
5095    if (FD->isInvalidDecl())
5096      continue;
5097
5098    // C99 6.7.2.1p2:
5099    //   A structure or union shall not contain a member with
5100    //   incomplete or function type (hence, a structure shall not
5101    //   contain an instance of itself, but may contain a pointer to
5102    //   an instance of itself), except that the last member of a
5103    //   structure with more than one named member may have incomplete
5104    //   array type; such a structure (and any union containing,
5105    //   possibly recursively, a member that is such a structure)
5106    //   shall not be a member of a structure or an element of an
5107    //   array.
5108    if (FDTy->isFunctionType()) {
5109      // Field declared as a function.
5110      Diag(FD->getLocation(), diag::err_field_declared_as_function)
5111        << FD->getDeclName();
5112      FD->setInvalidDecl();
5113      EnclosingDecl->setInvalidDecl();
5114      continue;
5115    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
5116               Record && Record->isStruct()) {
5117      // Flexible array member.
5118      if (NumNamedMembers < 1) {
5119        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
5120          << FD->getDeclName();
5121        FD->setInvalidDecl();
5122        EnclosingDecl->setInvalidDecl();
5123        continue;
5124      }
5125      // Okay, we have a legal flexible array member at the end of the struct.
5126      if (Record)
5127        Record->setHasFlexibleArrayMember(true);
5128    } else if (!FDTy->isDependentType() &&
5129               RequireCompleteType(FD->getLocation(), FD->getType(),
5130                                   diag::err_field_incomplete)) {
5131      // Incomplete type
5132      FD->setInvalidDecl();
5133      EnclosingDecl->setInvalidDecl();
5134      continue;
5135    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
5136      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
5137        // If this is a member of a union, then entire union becomes "flexible".
5138        if (Record && Record->isUnion()) {
5139          Record->setHasFlexibleArrayMember(true);
5140        } else {
5141          // If this is a struct/class and this is not the last element, reject
5142          // it.  Note that GCC supports variable sized arrays in the middle of
5143          // structures.
5144          if (i != NumFields-1)
5145            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
5146              << FD->getDeclName() << FD->getType();
5147          else {
5148            // We support flexible arrays at the end of structs in
5149            // other structs as an extension.
5150            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
5151              << FD->getDeclName();
5152            if (Record)
5153              Record->setHasFlexibleArrayMember(true);
5154          }
5155        }
5156      }
5157      if (Record && FDTTy->getDecl()->hasObjectMember())
5158        Record->setHasObjectMember(true);
5159    } else if (FDTy->isObjCInterfaceType()) {
5160      /// A field cannot be an Objective-c object
5161      Diag(FD->getLocation(), diag::err_statically_allocated_object);
5162      FD->setInvalidDecl();
5163      EnclosingDecl->setInvalidDecl();
5164      continue;
5165    } else if (getLangOptions().ObjC1 &&
5166               getLangOptions().getGCMode() != LangOptions::NonGC &&
5167               Record &&
5168               (FD->getType()->isObjCObjectPointerType() ||
5169                FD->getType().isObjCGCStrong()))
5170      Record->setHasObjectMember(true);
5171    // Keep track of the number of named members.
5172    if (FD->getIdentifier())
5173      ++NumNamedMembers;
5174  }
5175
5176  // Okay, we successfully defined 'Record'.
5177  if (Record) {
5178    Record->completeDefinition(Context);
5179  } else {
5180    ObjCIvarDecl **ClsFields =
5181      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
5182    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
5183      ID->setIVarList(ClsFields, RecFields.size(), Context);
5184      ID->setLocEnd(RBrac);
5185      // Add ivar's to class's DeclContext.
5186      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
5187        ClsFields[i]->setLexicalDeclContext(ID);
5188        ID->addDecl(ClsFields[i]);
5189      }
5190      // Must enforce the rule that ivars in the base classes may not be
5191      // duplicates.
5192      if (ID->getSuperClass()) {
5193        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
5194             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
5195          ObjCIvarDecl* Ivar = (*IVI);
5196
5197          if (IdentifierInfo *II = Ivar->getIdentifier()) {
5198            ObjCIvarDecl* prevIvar =
5199              ID->getSuperClass()->lookupInstanceVariable(II);
5200            if (prevIvar) {
5201              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
5202              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
5203            }
5204          }
5205        }
5206      }
5207    } else if (ObjCImplementationDecl *IMPDecl =
5208                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5209      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
5210      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
5211        // Ivar declared in @implementation never belongs to the implementation.
5212        // Only it is in implementation's lexical context.
5213        ClsFields[I]->setLexicalDeclContext(IMPDecl);
5214      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
5215    }
5216  }
5217
5218  if (Attr)
5219    ProcessDeclAttributeList(S, Record, Attr);
5220}
5221
5222EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
5223                                          EnumConstantDecl *LastEnumConst,
5224                                          SourceLocation IdLoc,
5225                                          IdentifierInfo *Id,
5226                                          ExprArg val) {
5227  Expr *Val = (Expr *)val.get();
5228
5229  llvm::APSInt EnumVal(32);
5230  QualType EltTy;
5231  if (Val && !Val->isTypeDependent()) {
5232    // Make sure to promote the operand type to int.
5233    UsualUnaryConversions(Val);
5234    if (Val != val.get()) {
5235      val.release();
5236      val = Val;
5237    }
5238
5239    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
5240    SourceLocation ExpLoc;
5241    if (!Val->isValueDependent() &&
5242        VerifyIntegerConstantExpression(Val, &EnumVal)) {
5243      Val = 0;
5244    } else {
5245      EltTy = Val->getType();
5246    }
5247  }
5248
5249  if (!Val) {
5250    if (LastEnumConst) {
5251      // Assign the last value + 1.
5252      EnumVal = LastEnumConst->getInitVal();
5253      ++EnumVal;
5254
5255      // Check for overflow on increment.
5256      if (EnumVal < LastEnumConst->getInitVal())
5257        Diag(IdLoc, diag::warn_enum_value_overflow);
5258
5259      EltTy = LastEnumConst->getType();
5260    } else {
5261      // First value, set to zero.
5262      EltTy = Context.IntTy;
5263      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
5264    }
5265  }
5266
5267  val.release();
5268  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
5269                                  Val, EnumVal);
5270}
5271
5272
5273Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
5274                                        DeclPtrTy lastEnumConst,
5275                                        SourceLocation IdLoc,
5276                                        IdentifierInfo *Id,
5277                                        SourceLocation EqualLoc, ExprTy *val) {
5278  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
5279  EnumConstantDecl *LastEnumConst =
5280    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
5281  Expr *Val = static_cast<Expr*>(val);
5282
5283  // The scope passed in may not be a decl scope.  Zip up the scope tree until
5284  // we find one that is.
5285  S = getNonFieldDeclScope(S);
5286
5287  // Verify that there isn't already something declared with this name in this
5288  // scope.
5289  NamedDecl *PrevDecl = LookupSingleName(S, Id, LookupOrdinaryName);
5290  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5291    // Maybe we will complain about the shadowed template parameter.
5292    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
5293    // Just pretend that we didn't see the previous declaration.
5294    PrevDecl = 0;
5295  }
5296
5297  if (PrevDecl) {
5298    // When in C++, we may get a TagDecl with the same name; in this case the
5299    // enum constant will 'hide' the tag.
5300    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
5301           "Received TagDecl when not in C++!");
5302    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
5303      if (isa<EnumConstantDecl>(PrevDecl))
5304        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
5305      else
5306        Diag(IdLoc, diag::err_redefinition) << Id;
5307      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5308      if (Val) Val->Destroy(Context);
5309      return DeclPtrTy();
5310    }
5311  }
5312
5313  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
5314                                            IdLoc, Id, Owned(Val));
5315
5316  // Register this decl in the current scope stack.
5317  if (New)
5318    PushOnScopeChains(New, S);
5319
5320  return DeclPtrTy::make(New);
5321}
5322
5323void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
5324                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
5325                         DeclPtrTy *Elements, unsigned NumElements,
5326                         Scope *S, AttributeList *Attr) {
5327  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
5328  QualType EnumType = Context.getTypeDeclType(Enum);
5329
5330  if (Attr)
5331    ProcessDeclAttributeList(S, Enum, Attr);
5332
5333  // TODO: If the result value doesn't fit in an int, it must be a long or long
5334  // long value.  ISO C does not support this, but GCC does as an extension,
5335  // emit a warning.
5336  unsigned IntWidth = Context.Target.getIntWidth();
5337  unsigned CharWidth = Context.Target.getCharWidth();
5338  unsigned ShortWidth = Context.Target.getShortWidth();
5339
5340  // Verify that all the values are okay, compute the size of the values, and
5341  // reverse the list.
5342  unsigned NumNegativeBits = 0;
5343  unsigned NumPositiveBits = 0;
5344
5345  // Keep track of whether all elements have type int.
5346  bool AllElementsInt = true;
5347
5348  for (unsigned i = 0; i != NumElements; ++i) {
5349    EnumConstantDecl *ECD =
5350      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5351    if (!ECD) continue;  // Already issued a diagnostic.
5352
5353    // If the enum value doesn't fit in an int, emit an extension warning.
5354    const llvm::APSInt &InitVal = ECD->getInitVal();
5355    assert(InitVal.getBitWidth() >= IntWidth &&
5356           "Should have promoted value to int");
5357    if (InitVal.getBitWidth() > IntWidth) {
5358      llvm::APSInt V(InitVal);
5359      V.trunc(IntWidth);
5360      V.extend(InitVal.getBitWidth());
5361      if (V != InitVal)
5362        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
5363          << InitVal.toString(10);
5364    }
5365
5366    // Keep track of the size of positive and negative values.
5367    if (InitVal.isUnsigned() || InitVal.isNonNegative())
5368      NumPositiveBits = std::max(NumPositiveBits,
5369                                 (unsigned)InitVal.getActiveBits());
5370    else
5371      NumNegativeBits = std::max(NumNegativeBits,
5372                                 (unsigned)InitVal.getMinSignedBits());
5373
5374    // Keep track of whether every enum element has type int (very commmon).
5375    if (AllElementsInt)
5376      AllElementsInt = ECD->getType() == Context.IntTy;
5377  }
5378
5379  // Figure out the type that should be used for this enum.
5380  // FIXME: Support -fshort-enums.
5381  QualType BestType;
5382  unsigned BestWidth;
5383
5384  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
5385
5386  if (NumNegativeBits) {
5387    // If there is a negative value, figure out the smallest integer type (of
5388    // int/long/longlong) that fits.
5389    // If it's packed, check also if it fits a char or a short.
5390    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
5391        BestType = Context.SignedCharTy;
5392        BestWidth = CharWidth;
5393    } else if (Packed && NumNegativeBits <= ShortWidth &&
5394               NumPositiveBits < ShortWidth) {
5395        BestType = Context.ShortTy;
5396        BestWidth = ShortWidth;
5397    }
5398    else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
5399      BestType = Context.IntTy;
5400      BestWidth = IntWidth;
5401    } else {
5402      BestWidth = Context.Target.getLongWidth();
5403
5404      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
5405        BestType = Context.LongTy;
5406      else {
5407        BestWidth = Context.Target.getLongLongWidth();
5408
5409        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
5410          Diag(Enum->getLocation(), diag::warn_enum_too_large);
5411        BestType = Context.LongLongTy;
5412      }
5413    }
5414  } else {
5415    // If there is no negative value, figure out which of uint, ulong, ulonglong
5416    // fits.
5417    // If it's packed, check also if it fits a char or a short.
5418    if (Packed && NumPositiveBits <= CharWidth) {
5419        BestType = Context.UnsignedCharTy;
5420        BestWidth = CharWidth;
5421    } else if (Packed && NumPositiveBits <= ShortWidth) {
5422        BestType = Context.UnsignedShortTy;
5423        BestWidth = ShortWidth;
5424    }
5425    else if (NumPositiveBits <= IntWidth) {
5426      BestType = Context.UnsignedIntTy;
5427      BestWidth = IntWidth;
5428    } else if (NumPositiveBits <=
5429               (BestWidth = Context.Target.getLongWidth())) {
5430      BestType = Context.UnsignedLongTy;
5431    } else {
5432      BestWidth = Context.Target.getLongLongWidth();
5433      assert(NumPositiveBits <= BestWidth &&
5434             "How could an initializer get larger than ULL?");
5435      BestType = Context.UnsignedLongLongTy;
5436    }
5437  }
5438
5439  // Loop over all of the enumerator constants, changing their types to match
5440  // the type of the enum if needed.
5441  for (unsigned i = 0; i != NumElements; ++i) {
5442    EnumConstantDecl *ECD =
5443      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5444    if (!ECD) continue;  // Already issued a diagnostic.
5445
5446    // Standard C says the enumerators have int type, but we allow, as an
5447    // extension, the enumerators to be larger than int size.  If each
5448    // enumerator value fits in an int, type it as an int, otherwise type it the
5449    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
5450    // that X has type 'int', not 'unsigned'.
5451    if (ECD->getType() == Context.IntTy) {
5452      // Make sure the init value is signed.
5453      llvm::APSInt IV = ECD->getInitVal();
5454      IV.setIsSigned(true);
5455      ECD->setInitVal(IV);
5456
5457      if (getLangOptions().CPlusPlus)
5458        // C++ [dcl.enum]p4: Following the closing brace of an
5459        // enum-specifier, each enumerator has the type of its
5460        // enumeration.
5461        ECD->setType(EnumType);
5462      continue;  // Already int type.
5463    }
5464
5465    // Determine whether the value fits into an int.
5466    llvm::APSInt InitVal = ECD->getInitVal();
5467    bool FitsInInt;
5468    if (InitVal.isUnsigned() || !InitVal.isNegative())
5469      FitsInInt = InitVal.getActiveBits() < IntWidth;
5470    else
5471      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
5472
5473    // If it fits into an integer type, force it.  Otherwise force it to match
5474    // the enum decl type.
5475    QualType NewTy;
5476    unsigned NewWidth;
5477    bool NewSign;
5478    if (FitsInInt) {
5479      NewTy = Context.IntTy;
5480      NewWidth = IntWidth;
5481      NewSign = true;
5482    } else if (ECD->getType() == BestType) {
5483      // Already the right type!
5484      if (getLangOptions().CPlusPlus)
5485        // C++ [dcl.enum]p4: Following the closing brace of an
5486        // enum-specifier, each enumerator has the type of its
5487        // enumeration.
5488        ECD->setType(EnumType);
5489      continue;
5490    } else {
5491      NewTy = BestType;
5492      NewWidth = BestWidth;
5493      NewSign = BestType->isSignedIntegerType();
5494    }
5495
5496    // Adjust the APSInt value.
5497    InitVal.extOrTrunc(NewWidth);
5498    InitVal.setIsSigned(NewSign);
5499    ECD->setInitVal(InitVal);
5500
5501    // Adjust the Expr initializer and type.
5502    if (ECD->getInitExpr())
5503      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
5504                                                      CastExpr::CK_Unknown,
5505                                                      ECD->getInitExpr(),
5506                                                      /*isLvalue=*/false));
5507    if (getLangOptions().CPlusPlus)
5508      // C++ [dcl.enum]p4: Following the closing brace of an
5509      // enum-specifier, each enumerator has the type of its
5510      // enumeration.
5511      ECD->setType(EnumType);
5512    else
5513      ECD->setType(NewTy);
5514  }
5515
5516  Enum->completeDefinition(Context, BestType);
5517}
5518
5519Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
5520                                            ExprArg expr) {
5521  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
5522
5523  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
5524                                                   Loc, AsmString);
5525  CurContext->addDecl(New);
5526  return DeclPtrTy::make(New);
5527}
5528
5529void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
5530                             SourceLocation PragmaLoc,
5531                             SourceLocation NameLoc) {
5532  Decl *PrevDecl = LookupSingleName(TUScope, Name, LookupOrdinaryName);
5533
5534  if (PrevDecl) {
5535    PrevDecl->addAttr(::new (Context) WeakAttr());
5536  } else {
5537    (void)WeakUndeclaredIdentifiers.insert(
5538      std::pair<IdentifierInfo*,WeakInfo>
5539        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
5540  }
5541}
5542
5543void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
5544                                IdentifierInfo* AliasName,
5545                                SourceLocation PragmaLoc,
5546                                SourceLocation NameLoc,
5547                                SourceLocation AliasNameLoc) {
5548  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, LookupOrdinaryName);
5549  WeakInfo W = WeakInfo(Name, NameLoc);
5550
5551  if (PrevDecl) {
5552    if (!PrevDecl->hasAttr<AliasAttr>())
5553      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
5554        DeclApplyPragmaWeak(TUScope, ND, W);
5555  } else {
5556    (void)WeakUndeclaredIdentifiers.insert(
5557      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
5558  }
5559}
5560