TargetInstrInfo.h revision 15f63ad2e59998f0bf1a3a23547582074391f650
1//===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the target machine instructions to the code generator.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_TARGET_TARGETINSTRINFO_H
15#define LLVM_TARGET_TARGETINSTRINFO_H
16
17#include "llvm/CodeGen/MachineBasicBlock.h"
18#include "llvm/Support/DataTypes.h"
19#include <vector>
20#include <cassert>
21
22namespace llvm {
23
24class MachineInstr;
25class TargetMachine;
26class Value;
27class Type;
28class Instruction;
29class Constant;
30class Function;
31class MachineCodeForInstruction;
32
33//---------------------------------------------------------------------------
34// Data types used to define information about a single machine instruction
35//---------------------------------------------------------------------------
36
37typedef short MachineOpCode;
38typedef unsigned InstrSchedClass;
39
40//---------------------------------------------------------------------------
41// struct TargetInstrDescriptor:
42//	Predefined information about each machine instruction.
43//	Designed to initialized statically.
44//
45
46const unsigned M_NOP_FLAG		= 1 << 0;
47const unsigned M_BRANCH_FLAG		= 1 << 1;
48const unsigned M_CALL_FLAG		= 1 << 2;
49const unsigned M_RET_FLAG		= 1 << 3;
50const unsigned M_BARRIER_FLAG           = 1 << 4;
51const unsigned M_DELAY_SLOT_FLAG        = 1 << 5;
52const unsigned M_CC_FLAG		= 1 << 6;
53const unsigned M_LOAD_FLAG		= 1 << 7;
54const unsigned M_STORE_FLAG		= 1 << 8;
55
56// M_2_ADDR_FLAG - 3-addr instructions which really work like 2-addr ones.
57const unsigned M_2_ADDR_FLAG            = 1 << 9;
58
59// M_CONVERTIBLE_TO_3_ADDR - This is a M_2_ADDR_FLAG instruction which can be
60// changed into a 3-address instruction if the first two operands cannot be
61// assigned to the same register.  The target must implement the
62// TargetInstrInfo::convertToThreeAddress method for this instruction.
63const unsigned M_CONVERTIBLE_TO_3_ADDR = 1 << 10;
64
65// This M_COMMUTABLE - is a 2- or 3-address instruction (of the form X = op Y,
66// Z), which produces the same result if Y and Z are exchanged.
67const unsigned M_COMMUTABLE            = 1 << 11;
68
69// M_TERMINATOR_FLAG - Is this instruction part of the terminator for a basic
70// block?  Typically this is things like return and branch instructions.
71// Various passes use this to insert code into the bottom of a basic block, but
72// before control flow occurs.
73const unsigned M_TERMINATOR_FLAG       = 1 << 12;
74
75class TargetInstrDescriptor {
76public:
77  const char *    Name;          // Assembly language mnemonic for the opcode.
78  int             numOperands;   // Number of args; -1 if variable #args
79  int             resultPos;     // Position of the result; -1 if no result
80  unsigned        maxImmedConst; // Largest +ve constant in IMMED field or 0.
81  bool	          immedIsSignExtended; // Is IMMED field sign-extended? If so,
82                                 //   smallest -ve value is -(maxImmedConst+1).
83  unsigned        numDelaySlots; // Number of delay slots after instruction
84  unsigned        latency;       // Latency in machine cycles
85  InstrSchedClass schedClass;    // enum  identifying instr sched class
86  unsigned        Flags;         // flags identifying machine instr class
87  unsigned        TSFlags;       // Target Specific Flag values
88  const unsigned *ImplicitUses;  // Registers implicitly read by this instr
89  const unsigned *ImplicitDefs;  // Registers implicitly defined by this instr
90};
91
92
93//---------------------------------------------------------------------------
94///
95/// TargetInstrInfo - Interface to description of machine instructions
96///
97class TargetInstrInfo {
98  const TargetInstrDescriptor* desc;    // raw array to allow static init'n
99  unsigned NumOpcodes;                  // number of entries in the desc array
100  unsigned numRealOpCodes;              // number of non-dummy op codes
101
102  TargetInstrInfo(const TargetInstrInfo &);  // DO NOT IMPLEMENT
103  void operator=(const TargetInstrInfo &);   // DO NOT IMPLEMENT
104public:
105  TargetInstrInfo(const TargetInstrDescriptor *desc, unsigned NumOpcodes);
106  virtual ~TargetInstrInfo();
107
108  // Invariant: All instruction sets use opcode #0 as the PHI instruction
109  enum { PHI = 0 };
110
111  unsigned getNumOpcodes() const { return NumOpcodes; }
112
113  /// get - Return the machine instruction descriptor that corresponds to the
114  /// specified instruction opcode.
115  ///
116  const TargetInstrDescriptor& get(MachineOpCode Opcode) const {
117    assert((unsigned)Opcode < NumOpcodes);
118    return desc[Opcode];
119  }
120
121  const char *getName(MachineOpCode Opcode) const {
122    return get(Opcode).Name;
123  }
124
125  int getNumOperands(MachineOpCode Opcode) const {
126    return get(Opcode).numOperands;
127  }
128
129
130  InstrSchedClass getSchedClass(MachineOpCode Opcode) const {
131    return get(Opcode).schedClass;
132  }
133
134  const unsigned *getImplicitUses(MachineOpCode Opcode) const {
135    return get(Opcode).ImplicitUses;
136  }
137
138  const unsigned *getImplicitDefs(MachineOpCode Opcode) const {
139    return get(Opcode).ImplicitDefs;
140  }
141
142
143  //
144  // Query instruction class flags according to the machine-independent
145  // flags listed above.
146  //
147  bool isReturn(MachineOpCode Opcode) const {
148    return get(Opcode).Flags & M_RET_FLAG;
149  }
150
151  bool isTwoAddrInstr(MachineOpCode Opcode) const {
152    return get(Opcode).Flags & M_2_ADDR_FLAG;
153  }
154  bool isTerminatorInstr(unsigned Opcode) const {
155    return get(Opcode).Flags & M_TERMINATOR_FLAG;
156  }
157
158  /// Return true if the instruction is a register to register move
159  /// and leave the source and dest operands in the passed parameters.
160  virtual bool isMoveInstr(const MachineInstr& MI,
161                           unsigned& sourceReg,
162                           unsigned& destReg) const {
163    return false;
164  }
165
166  /// convertToThreeAddress - This method must be implemented by targets that
167  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
168  /// may be able to convert a two-address instruction into a true
169  /// three-address instruction on demand.  This allows the X86 target (for
170  /// example) to convert ADD and SHL instructions into LEA instructions if they
171  /// would require register copies due to two-addressness.
172  ///
173  /// This method returns a null pointer if the transformation cannot be
174  /// performed, otherwise it returns the new instruction.
175  ///
176  virtual MachineInstr *convertToThreeAddress(MachineInstr *TA) const {
177    return 0;
178  }
179
180  /// Insert a goto (unconditional branch) sequence to TMBB, at the
181  /// end of MBB
182  virtual void insertGoto(MachineBasicBlock& MBB,
183                          MachineBasicBlock& TMBB) const {
184    assert(0 && "Target didn't implement insertGoto!");
185  }
186
187  /// Reverses the branch condition of the MachineInstr pointed by
188  /// MI. The instruction is replaced and the new MI is returned.
189  virtual MachineBasicBlock::iterator
190  reverseBranchCondition(MachineBasicBlock::iterator MI) const {
191    assert(0 && "Target didn't implement reverseBranchCondition!");
192    abort();
193    return MI;
194  }
195
196  //-------------------------------------------------------------------------
197  // Code generation support for creating individual machine instructions
198  //
199  // WARNING: These methods are Sparc specific
200  //
201  // DO NOT USE ANY OF THESE METHODS THEY ARE DEPRECATED!
202  //
203  //-------------------------------------------------------------------------
204
205  unsigned getNumDelaySlots(MachineOpCode Opcode) const {
206    return get(Opcode).numDelaySlots;
207  }
208  bool isCCInstr(MachineOpCode Opcode) const {
209    return get(Opcode).Flags & M_CC_FLAG;
210  }
211  bool isNop(MachineOpCode Opcode) const {
212    return get(Opcode).Flags & M_NOP_FLAG;
213  }
214  bool isBranch(MachineOpCode Opcode) const {
215    return get(Opcode).Flags & M_BRANCH_FLAG;
216  }
217  /// isBarrier - Returns true if the specified instruction stops control flow
218  /// from executing the instruction immediately following it.  Examples include
219  /// unconditional branches and return instructions.
220  bool isBarrier(MachineOpCode Opcode) const {
221    return get(Opcode).Flags & M_BARRIER_FLAG;
222  }
223
224  bool isCall(MachineOpCode Opcode) const {
225    return get(Opcode).Flags & M_CALL_FLAG;
226  }
227  bool isLoad(MachineOpCode Opcode) const {
228    return get(Opcode).Flags & M_LOAD_FLAG;
229  }
230  bool isStore(MachineOpCode Opcode) const {
231    return get(Opcode).Flags & M_STORE_FLAG;
232  }
233
234  /// hasDelaySlot - Returns true if the specified instruction has a delay slot
235  /// which must be filled by the code generator.
236  bool hasDelaySlot(unsigned Opcode) const {
237    return get(Opcode).Flags & M_DELAY_SLOT_FLAG;
238  }
239
240  virtual bool hasResultInterlock(MachineOpCode Opcode) const {
241    return true;
242  }
243
244  //
245  // Latencies for individual instructions and instruction pairs
246  //
247  virtual int minLatency(MachineOpCode Opcode) const {
248    return get(Opcode).latency;
249  }
250
251  virtual int maxLatency(MachineOpCode Opcode) const {
252    return get(Opcode).latency;
253  }
254
255  //
256  // Which operand holds an immediate constant?  Returns -1 if none
257  //
258  virtual int getImmedConstantPos(MachineOpCode Opcode) const {
259    return -1; // immediate position is machine specific, so say -1 == "none"
260  }
261
262  // Check if the specified constant fits in the immediate field
263  // of this machine instruction
264  //
265  virtual bool constantFitsInImmedField(MachineOpCode Opcode,
266					int64_t intValue) const;
267
268  // Return the largest positive constant that can be held in the IMMED field
269  // of this machine instruction.
270  // isSignExtended is set to true if the value is sign-extended before use
271  // (this is true for all immediate fields in SPARC instructions).
272  // Return 0 if the instruction has no IMMED field.
273  //
274  virtual uint64_t maxImmedConstant(MachineOpCode Opcode,
275				    bool &isSignExtended) const {
276    isSignExtended = get(Opcode).immedIsSignExtended;
277    return get(Opcode).maxImmedConst;
278  }
279};
280
281} // End llvm namespace
282
283#endif
284