TargetInstrInfo.h revision 243a32f96b364811e2f9feadecfefb21b640321f
1//===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the target machine instruction set to the code generator.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_TARGET_TARGETINSTRINFO_H
15#define LLVM_TARGET_TARGETINSTRINFO_H
16
17#include "llvm/Target/TargetInstrDesc.h"
18#include "llvm/CodeGen/MachineFunction.h"
19
20namespace llvm {
21
22class MCAsmInfo;
23class TargetRegisterClass;
24class TargetRegisterInfo;
25class LiveVariables;
26class CalleeSavedInfo;
27class SDNode;
28class SelectionDAG;
29class MachineMemOperand;
30
31template<class T> class SmallVectorImpl;
32
33
34//---------------------------------------------------------------------------
35///
36/// TargetInstrInfo - Interface to description of machine instruction set
37///
38class TargetInstrInfo {
39  const TargetInstrDesc *Descriptors; // Raw array to allow static init'n
40  unsigned NumOpcodes;                // Number of entries in the desc array
41
42  TargetInstrInfo(const TargetInstrInfo &);  // DO NOT IMPLEMENT
43  void operator=(const TargetInstrInfo &);   // DO NOT IMPLEMENT
44public:
45  TargetInstrInfo(const TargetInstrDesc *desc, unsigned NumOpcodes);
46  virtual ~TargetInstrInfo();
47
48  // Invariant opcodes: All instruction sets have these as their low opcodes.
49  enum {
50    PHI = 0,
51    INLINEASM = 1,
52    DBG_LABEL = 2,
53    EH_LABEL = 3,
54    GC_LABEL = 4,
55
56    /// KILL - This instruction is a noop that is used only to adjust the liveness
57    /// of registers. This can be useful when dealing with sub-registers.
58    KILL = 5,
59
60    /// EXTRACT_SUBREG - This instruction takes two operands: a register
61    /// that has subregisters, and a subregister index. It returns the
62    /// extracted subregister value. This is commonly used to implement
63    /// truncation operations on target architectures which support it.
64    EXTRACT_SUBREG = 6,
65
66    /// INSERT_SUBREG - This instruction takes three operands: a register
67    /// that has subregisters, a register providing an insert value, and a
68    /// subregister index. It returns the value of the first register with
69    /// the value of the second register inserted. The first register is
70    /// often defined by an IMPLICIT_DEF, as is commonly used to implement
71    /// anyext operations on target architectures which support it.
72    INSERT_SUBREG = 7,
73
74    /// IMPLICIT_DEF - This is the MachineInstr-level equivalent of undef.
75    IMPLICIT_DEF = 8,
76
77    /// SUBREG_TO_REG - This instruction is similar to INSERT_SUBREG except
78    /// that the first operand is an immediate integer constant. This constant
79    /// is often zero, as is commonly used to implement zext operations on
80    /// target architectures which support it, such as with x86-64 (with
81    /// zext from i32 to i64 via implicit zero-extension).
82    SUBREG_TO_REG = 9,
83
84    /// COPY_TO_REGCLASS - This instruction is a placeholder for a plain
85    /// register-to-register copy into a specific register class. This is only
86    /// used between instruction selection and MachineInstr creation, before
87    /// virtual registers have been created for all the instructions, and it's
88    /// only needed in cases where the register classes implied by the
89    /// instructions are insufficient. The actual MachineInstrs to perform
90    /// the copy are emitted with the TargetInstrInfo::copyRegToReg hook.
91    COPY_TO_REGCLASS = 10,
92
93    // DEBUG_VALUE - a mapping of the llvm.dbg.value intrinsic
94    DEBUG_VALUE = 11
95  };
96
97  unsigned getNumOpcodes() const { return NumOpcodes; }
98
99  /// get - Return the machine instruction descriptor that corresponds to the
100  /// specified instruction opcode.
101  ///
102  const TargetInstrDesc &get(unsigned Opcode) const {
103    assert(Opcode < NumOpcodes && "Invalid opcode!");
104    return Descriptors[Opcode];
105  }
106
107  /// isTriviallyReMaterializable - Return true if the instruction is trivially
108  /// rematerializable, meaning it has no side effects and requires no operands
109  /// that aren't always available.
110  bool isTriviallyReMaterializable(const MachineInstr *MI,
111                                   AliasAnalysis *AA = 0) const {
112    return MI->getOpcode() == IMPLICIT_DEF ||
113           (MI->getDesc().isRematerializable() &&
114            (isReallyTriviallyReMaterializable(MI, AA) ||
115             isReallyTriviallyReMaterializableGeneric(MI, AA)));
116  }
117
118protected:
119  /// isReallyTriviallyReMaterializable - For instructions with opcodes for
120  /// which the M_REMATERIALIZABLE flag is set, this hook lets the target
121  /// specify whether the instruction is actually trivially rematerializable,
122  /// taking into consideration its operands. This predicate must return false
123  /// if the instruction has any side effects other than producing a value, or
124  /// if it requres any address registers that are not always available.
125  virtual bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
126                                                 AliasAnalysis *AA) const {
127    return false;
128  }
129
130private:
131  /// isReallyTriviallyReMaterializableGeneric - For instructions with opcodes
132  /// for which the M_REMATERIALIZABLE flag is set and the target hook
133  /// isReallyTriviallyReMaterializable returns false, this function does
134  /// target-independent tests to determine if the instruction is really
135  /// trivially rematerializable.
136  bool isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
137                                                AliasAnalysis *AA) const;
138
139public:
140  /// isMoveInstr - Return true if the instruction is a register to register
141  /// move and return the source and dest operands and their sub-register
142  /// indices by reference.
143  virtual bool isMoveInstr(const MachineInstr& MI,
144                           unsigned& SrcReg, unsigned& DstReg,
145                           unsigned& SrcSubIdx, unsigned& DstSubIdx) const {
146    return false;
147  }
148
149  /// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
150  /// extension instruction. That is, it's like a copy where it's legal for the
151  /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
152  /// true, then it's expected the pre-extension value is available as a subreg
153  /// of the result register. This also returns the sub-register index in
154  /// SubIdx.
155  virtual bool isCoalescableExtInstr(const MachineInstr &MI,
156                                     unsigned &SrcReg, unsigned &DstReg,
157                                     unsigned &SubIdx) const {
158    return false;
159  }
160
161  /// isIdentityCopy - Return true if the instruction is a copy (or
162  /// extract_subreg, insert_subreg, subreg_to_reg) where the source and
163  /// destination registers are the same.
164  bool isIdentityCopy(const MachineInstr &MI) const {
165    unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
166    if (isMoveInstr(MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) &&
167        SrcReg == DstReg)
168      return true;
169
170    if (MI.getOpcode() == TargetInstrInfo::EXTRACT_SUBREG &&
171        MI.getOperand(0).getReg() == MI.getOperand(1).getReg())
172    return true;
173
174    if ((MI.getOpcode() == TargetInstrInfo::INSERT_SUBREG ||
175         MI.getOpcode() == TargetInstrInfo::SUBREG_TO_REG) &&
176        MI.getOperand(0).getReg() == MI.getOperand(2).getReg())
177      return true;
178    return false;
179  }
180
181  /// isLoadFromStackSlot - If the specified machine instruction is a direct
182  /// load from a stack slot, return the virtual or physical register number of
183  /// the destination along with the FrameIndex of the loaded stack slot.  If
184  /// not, return 0.  This predicate must return 0 if the instruction has
185  /// any side effects other than loading from the stack slot.
186  virtual unsigned isLoadFromStackSlot(const MachineInstr *MI,
187                                       int &FrameIndex) const {
188    return 0;
189  }
190
191  /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
192  /// stack locations as well.  This uses a heuristic so it isn't
193  /// reliable for correctness.
194  virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI,
195                                             int &FrameIndex) const {
196    return 0;
197  }
198
199  /// hasLoadFromStackSlot - If the specified machine instruction has
200  /// a load from a stack slot, return true along with the FrameIndex
201  /// of the loaded stack slot and the machine mem operand containing
202  /// the reference.  If not, return false.  Unlike
203  /// isLoadFromStackSlot, this returns true for any instructions that
204  /// loads from the stack.  This is just a hint, as some cases may be
205  /// missed.
206  virtual bool hasLoadFromStackSlot(const MachineInstr *MI,
207                                    const MachineMemOperand *&MMO,
208                                    int &FrameIndex) const {
209    return 0;
210  }
211
212  /// isStoreToStackSlot - If the specified machine instruction is a direct
213  /// store to a stack slot, return the virtual or physical register number of
214  /// the source reg along with the FrameIndex of the loaded stack slot.  If
215  /// not, return 0.  This predicate must return 0 if the instruction has
216  /// any side effects other than storing to the stack slot.
217  virtual unsigned isStoreToStackSlot(const MachineInstr *MI,
218                                      int &FrameIndex) const {
219    return 0;
220  }
221
222  /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
223  /// stack locations as well.  This uses a heuristic so it isn't
224  /// reliable for correctness.
225  virtual unsigned isStoreToStackSlotPostFE(const MachineInstr *MI,
226                                            int &FrameIndex) const {
227    return 0;
228  }
229
230  /// hasStoreToStackSlot - If the specified machine instruction has a
231  /// store to a stack slot, return true along with the FrameIndex of
232  /// the loaded stack slot and the machine mem operand containing the
233  /// reference.  If not, return false.  Unlike isStoreToStackSlot,
234  /// this returns true for any instructions that loads from the
235  /// stack.  This is just a hint, as some cases may be missed.
236  virtual bool hasStoreToStackSlot(const MachineInstr *MI,
237                                   const MachineMemOperand *&MMO,
238                                   int &FrameIndex) const {
239    return 0;
240  }
241
242  /// reMaterialize - Re-issue the specified 'original' instruction at the
243  /// specific location targeting a new destination register.
244  virtual void reMaterialize(MachineBasicBlock &MBB,
245                             MachineBasicBlock::iterator MI,
246                             unsigned DestReg, unsigned SubIdx,
247                             const MachineInstr *Orig,
248                             const TargetRegisterInfo *TRI) const = 0;
249
250  /// duplicate - Create a duplicate of the Orig instruction in MF. This is like
251  /// MachineFunction::CloneMachineInstr(), but the target may update operands
252  /// that are required to be unique.
253  ///
254  /// The instruction must be duplicable as indicated by isNotDuplicable().
255  virtual MachineInstr *duplicate(MachineInstr *Orig,
256                                  MachineFunction &MF) const = 0;
257
258  /// convertToThreeAddress - This method must be implemented by targets that
259  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
260  /// may be able to convert a two-address instruction into one or more true
261  /// three-address instructions on demand.  This allows the X86 target (for
262  /// example) to convert ADD and SHL instructions into LEA instructions if they
263  /// would require register copies due to two-addressness.
264  ///
265  /// This method returns a null pointer if the transformation cannot be
266  /// performed, otherwise it returns the last new instruction.
267  ///
268  virtual MachineInstr *
269  convertToThreeAddress(MachineFunction::iterator &MFI,
270                   MachineBasicBlock::iterator &MBBI, LiveVariables *LV) const {
271    return 0;
272  }
273
274  /// commuteInstruction - If a target has any instructions that are commutable,
275  /// but require converting to a different instruction or making non-trivial
276  /// changes to commute them, this method can overloaded to do this.  The
277  /// default implementation of this method simply swaps the first two operands
278  /// of MI and returns it.
279  ///
280  /// If a target wants to make more aggressive changes, they can construct and
281  /// return a new machine instruction.  If an instruction cannot commute, it
282  /// can also return null.
283  ///
284  /// If NewMI is true, then a new machine instruction must be created.
285  ///
286  virtual MachineInstr *commuteInstruction(MachineInstr *MI,
287                                           bool NewMI = false) const = 0;
288
289  /// findCommutedOpIndices - If specified MI is commutable, return the two
290  /// operand indices that would swap value. Return true if the instruction
291  /// is not in a form which this routine understands.
292  virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
293                                     unsigned &SrcOpIdx2) const = 0;
294
295  /// isIdentical - Return true if two instructions are identical. This differs
296  /// from MachineInstr::isIdenticalTo() in that it does not require the
297  /// virtual destination registers to be the same. This is used by MachineLICM
298  /// and other MI passes to perform CSE.
299  virtual bool isIdentical(const MachineInstr *MI,
300                           const MachineInstr *Other,
301                           const MachineRegisterInfo *MRI) const = 0;
302
303  /// AnalyzeBranch - Analyze the branching code at the end of MBB, returning
304  /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
305  /// implemented for a target).  Upon success, this returns false and returns
306  /// with the following information in various cases:
307  ///
308  /// 1. If this block ends with no branches (it just falls through to its succ)
309  ///    just return false, leaving TBB/FBB null.
310  /// 2. If this block ends with only an unconditional branch, it sets TBB to be
311  ///    the destination block.
312  /// 3. If this block ends with a conditional branch and it falls through to a
313  ///    successor block, it sets TBB to be the branch destination block and a
314  ///    list of operands that evaluate the condition. These operands can be
315  ///    passed to other TargetInstrInfo methods to create new branches.
316  /// 4. If this block ends with a conditional branch followed by an
317  ///    unconditional branch, it returns the 'true' destination in TBB, the
318  ///    'false' destination in FBB, and a list of operands that evaluate the
319  ///    condition.  These operands can be passed to other TargetInstrInfo
320  ///    methods to create new branches.
321  ///
322  /// Note that RemoveBranch and InsertBranch must be implemented to support
323  /// cases where this method returns success.
324  ///
325  /// If AllowModify is true, then this routine is allowed to modify the basic
326  /// block (e.g. delete instructions after the unconditional branch).
327  ///
328  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
329                             MachineBasicBlock *&FBB,
330                             SmallVectorImpl<MachineOperand> &Cond,
331                             bool AllowModify = false) const {
332    return true;
333  }
334
335  /// RemoveBranch - Remove the branching code at the end of the specific MBB.
336  /// This is only invoked in cases where AnalyzeBranch returns success. It
337  /// returns the number of instructions that were removed.
338  virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const {
339    assert(0 && "Target didn't implement TargetInstrInfo::RemoveBranch!");
340    return 0;
341  }
342
343  /// InsertBranch - Insert branch code into the end of the specified
344  /// MachineBasicBlock.  The operands to this method are the same as those
345  /// returned by AnalyzeBranch.  This is only invoked in cases where
346  /// AnalyzeBranch returns success. It returns the number of instructions
347  /// inserted.
348  ///
349  /// It is also invoked by tail merging to add unconditional branches in
350  /// cases where AnalyzeBranch doesn't apply because there was no original
351  /// branch to analyze.  At least this much must be implemented, else tail
352  /// merging needs to be disabled.
353  virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
354                            MachineBasicBlock *FBB,
355                            const SmallVectorImpl<MachineOperand> &Cond) const {
356    assert(0 && "Target didn't implement TargetInstrInfo::InsertBranch!");
357    return 0;
358  }
359
360  /// copyRegToReg - Emit instructions to copy between a pair of registers. It
361  /// returns false if the target does not how to copy between the specified
362  /// registers.
363  virtual bool copyRegToReg(MachineBasicBlock &MBB,
364                            MachineBasicBlock::iterator MI,
365                            unsigned DestReg, unsigned SrcReg,
366                            const TargetRegisterClass *DestRC,
367                            const TargetRegisterClass *SrcRC) const {
368    assert(0 && "Target didn't implement TargetInstrInfo::copyRegToReg!");
369    return false;
370  }
371
372  /// storeRegToStackSlot - Store the specified register of the given register
373  /// class to the specified stack frame index. The store instruction is to be
374  /// added to the given machine basic block before the specified machine
375  /// instruction. If isKill is true, the register operand is the last use and
376  /// must be marked kill.
377  virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
378                                   MachineBasicBlock::iterator MI,
379                                   unsigned SrcReg, bool isKill, int FrameIndex,
380                                   const TargetRegisterClass *RC) const {
381    assert(0 && "Target didn't implement TargetInstrInfo::storeRegToStackSlot!");
382  }
383
384  /// loadRegFromStackSlot - Load the specified register of the given register
385  /// class from the specified stack frame index. The load instruction is to be
386  /// added to the given machine basic block before the specified machine
387  /// instruction.
388  virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
389                                    MachineBasicBlock::iterator MI,
390                                    unsigned DestReg, int FrameIndex,
391                                    const TargetRegisterClass *RC) const {
392    assert(0 && "Target didn't implement TargetInstrInfo::loadRegFromStackSlot!");
393  }
394
395  /// spillCalleeSavedRegisters - Issues instruction(s) to spill all callee
396  /// saved registers and returns true if it isn't possible / profitable to do
397  /// so by issuing a series of store instructions via
398  /// storeRegToStackSlot(). Returns false otherwise.
399  virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
400                                         MachineBasicBlock::iterator MI,
401                                const std::vector<CalleeSavedInfo> &CSI) const {
402    return false;
403  }
404
405  /// restoreCalleeSavedRegisters - Issues instruction(s) to restore all callee
406  /// saved registers and returns true if it isn't possible / profitable to do
407  /// so by issuing a series of load instructions via loadRegToStackSlot().
408  /// Returns false otherwise.
409  virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
410                                           MachineBasicBlock::iterator MI,
411                                const std::vector<CalleeSavedInfo> &CSI) const {
412    return false;
413  }
414
415  /// foldMemoryOperand - Attempt to fold a load or store of the specified stack
416  /// slot into the specified machine instruction for the specified operand(s).
417  /// If this is possible, a new instruction is returned with the specified
418  /// operand folded, otherwise NULL is returned. The client is responsible for
419  /// removing the old instruction and adding the new one in the instruction
420  /// stream.
421  MachineInstr* foldMemoryOperand(MachineFunction &MF,
422                                  MachineInstr* MI,
423                                  const SmallVectorImpl<unsigned> &Ops,
424                                  int FrameIndex) const;
425
426  /// foldMemoryOperand - Same as the previous version except it allows folding
427  /// of any load and store from / to any address, not just from a specific
428  /// stack slot.
429  MachineInstr* foldMemoryOperand(MachineFunction &MF,
430                                  MachineInstr* MI,
431                                  const SmallVectorImpl<unsigned> &Ops,
432                                  MachineInstr* LoadMI) const;
433
434protected:
435  /// foldMemoryOperandImpl - Target-dependent implementation for
436  /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
437  /// take care of adding a MachineMemOperand to the newly created instruction.
438  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
439                                          MachineInstr* MI,
440                                          const SmallVectorImpl<unsigned> &Ops,
441                                          int FrameIndex) const {
442    return 0;
443  }
444
445  /// foldMemoryOperandImpl - Target-dependent implementation for
446  /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
447  /// take care of adding a MachineMemOperand to the newly created instruction.
448  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
449                                              MachineInstr* MI,
450                                              const SmallVectorImpl<unsigned> &Ops,
451                                              MachineInstr* LoadMI) const {
452    return 0;
453  }
454
455public:
456  /// canFoldMemoryOperand - Returns true for the specified load / store if
457  /// folding is possible.
458  virtual
459  bool canFoldMemoryOperand(const MachineInstr *MI,
460                            const SmallVectorImpl<unsigned> &Ops) const {
461    return false;
462  }
463
464  /// unfoldMemoryOperand - Separate a single instruction which folded a load or
465  /// a store or a load and a store into two or more instruction. If this is
466  /// possible, returns true as well as the new instructions by reference.
467  virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
468                                unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
469                                 SmallVectorImpl<MachineInstr*> &NewMIs) const{
470    return false;
471  }
472
473  virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
474                                   SmallVectorImpl<SDNode*> &NewNodes) const {
475    return false;
476  }
477
478  /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
479  /// instruction after load / store are unfolded from an instruction of the
480  /// specified opcode. It returns zero if the specified unfolding is not
481  /// possible. If LoadRegIndex is non-null, it is filled in with the operand
482  /// index of the operand which will hold the register holding the loaded
483  /// value.
484  virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
485                                      bool UnfoldLoad, bool UnfoldStore,
486                                      unsigned *LoadRegIndex = 0) const {
487    return 0;
488  }
489
490  /// ReverseBranchCondition - Reverses the branch condition of the specified
491  /// condition list, returning false on success and true if it cannot be
492  /// reversed.
493  virtual
494  bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
495    return true;
496  }
497
498  /// insertNoop - Insert a noop into the instruction stream at the specified
499  /// point.
500  virtual void insertNoop(MachineBasicBlock &MBB,
501                          MachineBasicBlock::iterator MI) const;
502
503  /// isPredicated - Returns true if the instruction is already predicated.
504  ///
505  virtual bool isPredicated(const MachineInstr *MI) const {
506    return false;
507  }
508
509  /// isUnpredicatedTerminator - Returns true if the instruction is a
510  /// terminator instruction that has not been predicated.
511  virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const;
512
513  /// PredicateInstruction - Convert the instruction into a predicated
514  /// instruction. It returns true if the operation was successful.
515  virtual
516  bool PredicateInstruction(MachineInstr *MI,
517                        const SmallVectorImpl<MachineOperand> &Pred) const = 0;
518
519  /// SubsumesPredicate - Returns true if the first specified predicate
520  /// subsumes the second, e.g. GE subsumes GT.
521  virtual
522  bool SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
523                         const SmallVectorImpl<MachineOperand> &Pred2) const {
524    return false;
525  }
526
527  /// DefinesPredicate - If the specified instruction defines any predicate
528  /// or condition code register(s) used for predication, returns true as well
529  /// as the definition predicate(s) by reference.
530  virtual bool DefinesPredicate(MachineInstr *MI,
531                                std::vector<MachineOperand> &Pred) const {
532    return false;
533  }
534
535  /// isPredicable - Return true if the specified instruction can be predicated.
536  /// By default, this returns true for every instruction with a
537  /// PredicateOperand.
538  virtual bool isPredicable(MachineInstr *MI) const {
539    return MI->getDesc().isPredicable();
540  }
541
542  /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
543  /// instruction that defines the specified register class.
544  virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
545    return true;
546  }
547
548  /// GetInstSize - Returns the size of the specified Instruction.
549  ///
550  virtual unsigned GetInstSizeInBytes(const MachineInstr *MI) const {
551    assert(0 && "Target didn't implement TargetInstrInfo::GetInstSize!");
552    return 0;
553  }
554
555  /// GetFunctionSizeInBytes - Returns the size of the specified
556  /// MachineFunction.
557  ///
558  virtual unsigned GetFunctionSizeInBytes(const MachineFunction &MF) const = 0;
559
560  /// Measure the specified inline asm to determine an approximation of its
561  /// length.
562  virtual unsigned getInlineAsmLength(const char *Str,
563                                      const MCAsmInfo &MAI) const;
564};
565
566/// TargetInstrInfoImpl - This is the default implementation of
567/// TargetInstrInfo, which just provides a couple of default implementations
568/// for various methods.  This separated out because it is implemented in
569/// libcodegen, not in libtarget.
570class TargetInstrInfoImpl : public TargetInstrInfo {
571protected:
572  TargetInstrInfoImpl(const TargetInstrDesc *desc, unsigned NumOpcodes)
573  : TargetInstrInfo(desc, NumOpcodes) {}
574public:
575  virtual MachineInstr *commuteInstruction(MachineInstr *MI,
576                                           bool NewMI = false) const;
577  virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
578                                     unsigned &SrcOpIdx2) const;
579  virtual bool PredicateInstruction(MachineInstr *MI,
580                            const SmallVectorImpl<MachineOperand> &Pred) const;
581  virtual void reMaterialize(MachineBasicBlock &MBB,
582                             MachineBasicBlock::iterator MI,
583                             unsigned DestReg, unsigned SubReg,
584                             const MachineInstr *Orig,
585                             const TargetRegisterInfo *TRI) const;
586  virtual MachineInstr *duplicate(MachineInstr *Orig,
587                                  MachineFunction &MF) const;
588  virtual bool isIdentical(const MachineInstr *MI,
589                           const MachineInstr *Other,
590                           const MachineRegisterInfo *MRI) const;
591
592  virtual unsigned GetFunctionSizeInBytes(const MachineFunction &MF) const;
593};
594
595} // End llvm namespace
596
597#endif
598