TargetInstrInfo.h revision 4db3cffe94a5285239cc0056f939c6b74a5ca0b6
1//===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the target machine instruction set to the code generator.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_TARGET_TARGETINSTRINFO_H
15#define LLVM_TARGET_TARGETINSTRINFO_H
16
17#include "llvm/MC/MCInstrInfo.h"
18#include "llvm/CodeGen/MachineFunction.h"
19
20namespace llvm {
21
22class InstrItineraryData;
23class LiveVariables;
24class MCAsmInfo;
25class MachineMemOperand;
26class MachineRegisterInfo;
27class MDNode;
28class MCInst;
29class SDNode;
30class ScheduleHazardRecognizer;
31class SelectionDAG;
32class ScheduleDAG;
33class TargetRegisterClass;
34class TargetRegisterInfo;
35
36template<class T> class SmallVectorImpl;
37
38
39//---------------------------------------------------------------------------
40///
41/// TargetInstrInfo - Interface to description of machine instruction set
42///
43class TargetInstrInfo : public MCInstrInfo {
44  TargetInstrInfo(const TargetInstrInfo &);  // DO NOT IMPLEMENT
45  void operator=(const TargetInstrInfo &);   // DO NOT IMPLEMENT
46public:
47  TargetInstrInfo(int CFSetupOpcode = -1, int CFDestroyOpcode = -1)
48    : CallFrameSetupOpcode(CFSetupOpcode),
49      CallFrameDestroyOpcode(CFDestroyOpcode) {
50  }
51
52  virtual ~TargetInstrInfo();
53
54  /// getRegClass - Givem a machine instruction descriptor, returns the register
55  /// class constraint for OpNum, or NULL.
56  const TargetRegisterClass *getRegClass(const MCInstrDesc &TID,
57                                         unsigned OpNum,
58                                         const TargetRegisterInfo *TRI) const;
59
60  /// isTriviallyReMaterializable - Return true if the instruction is trivially
61  /// rematerializable, meaning it has no side effects and requires no operands
62  /// that aren't always available.
63  bool isTriviallyReMaterializable(const MachineInstr *MI,
64                                   AliasAnalysis *AA = 0) const {
65    return MI->getOpcode() == TargetOpcode::IMPLICIT_DEF ||
66           (MI->getDesc().isRematerializable() &&
67            (isReallyTriviallyReMaterializable(MI, AA) ||
68             isReallyTriviallyReMaterializableGeneric(MI, AA)));
69  }
70
71protected:
72  /// isReallyTriviallyReMaterializable - For instructions with opcodes for
73  /// which the M_REMATERIALIZABLE flag is set, this hook lets the target
74  /// specify whether the instruction is actually trivially rematerializable,
75  /// taking into consideration its operands. This predicate must return false
76  /// if the instruction has any side effects other than producing a value, or
77  /// if it requres any address registers that are not always available.
78  virtual bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
79                                                 AliasAnalysis *AA) const {
80    return false;
81  }
82
83private:
84  /// isReallyTriviallyReMaterializableGeneric - For instructions with opcodes
85  /// for which the M_REMATERIALIZABLE flag is set and the target hook
86  /// isReallyTriviallyReMaterializable returns false, this function does
87  /// target-independent tests to determine if the instruction is really
88  /// trivially rematerializable.
89  bool isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
90                                                AliasAnalysis *AA) const;
91
92public:
93  /// getCallFrameSetup/DestroyOpcode - These methods return the opcode of the
94  /// frame setup/destroy instructions if they exist (-1 otherwise).  Some
95  /// targets use pseudo instructions in order to abstract away the difference
96  /// between operating with a frame pointer and operating without, through the
97  /// use of these two instructions.
98  ///
99  int getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
100  int getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }
101
102  /// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
103  /// extension instruction. That is, it's like a copy where it's legal for the
104  /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
105  /// true, then it's expected the pre-extension value is available as a subreg
106  /// of the result register. This also returns the sub-register index in
107  /// SubIdx.
108  virtual bool isCoalescableExtInstr(const MachineInstr &MI,
109                                     unsigned &SrcReg, unsigned &DstReg,
110                                     unsigned &SubIdx) const {
111    return false;
112  }
113
114  /// isLoadFromStackSlot - If the specified machine instruction is a direct
115  /// load from a stack slot, return the virtual or physical register number of
116  /// the destination along with the FrameIndex of the loaded stack slot.  If
117  /// not, return 0.  This predicate must return 0 if the instruction has
118  /// any side effects other than loading from the stack slot.
119  virtual unsigned isLoadFromStackSlot(const MachineInstr *MI,
120                                       int &FrameIndex) const {
121    return 0;
122  }
123
124  /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
125  /// stack locations as well.  This uses a heuristic so it isn't
126  /// reliable for correctness.
127  virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI,
128                                             int &FrameIndex) const {
129    return 0;
130  }
131
132  /// hasLoadFromStackSlot - If the specified machine instruction has
133  /// a load from a stack slot, return true along with the FrameIndex
134  /// of the loaded stack slot and the machine mem operand containing
135  /// the reference.  If not, return false.  Unlike
136  /// isLoadFromStackSlot, this returns true for any instructions that
137  /// loads from the stack.  This is just a hint, as some cases may be
138  /// missed.
139  virtual bool hasLoadFromStackSlot(const MachineInstr *MI,
140                                    const MachineMemOperand *&MMO,
141                                    int &FrameIndex) const {
142    return 0;
143  }
144
145  /// isStoreToStackSlot - If the specified machine instruction is a direct
146  /// store to a stack slot, return the virtual or physical register number of
147  /// the source reg along with the FrameIndex of the loaded stack slot.  If
148  /// not, return 0.  This predicate must return 0 if the instruction has
149  /// any side effects other than storing to the stack slot.
150  virtual unsigned isStoreToStackSlot(const MachineInstr *MI,
151                                      int &FrameIndex) const {
152    return 0;
153  }
154
155  /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
156  /// stack locations as well.  This uses a heuristic so it isn't
157  /// reliable for correctness.
158  virtual unsigned isStoreToStackSlotPostFE(const MachineInstr *MI,
159                                            int &FrameIndex) const {
160    return 0;
161  }
162
163  /// hasStoreToStackSlot - If the specified machine instruction has a
164  /// store to a stack slot, return true along with the FrameIndex of
165  /// the loaded stack slot and the machine mem operand containing the
166  /// reference.  If not, return false.  Unlike isStoreToStackSlot,
167  /// this returns true for any instructions that stores to the
168  /// stack.  This is just a hint, as some cases may be missed.
169  virtual bool hasStoreToStackSlot(const MachineInstr *MI,
170                                   const MachineMemOperand *&MMO,
171                                   int &FrameIndex) const {
172    return 0;
173  }
174
175  /// reMaterialize - Re-issue the specified 'original' instruction at the
176  /// specific location targeting a new destination register.
177  /// The register in Orig->getOperand(0).getReg() will be substituted by
178  /// DestReg:SubIdx. Any existing subreg index is preserved or composed with
179  /// SubIdx.
180  virtual void reMaterialize(MachineBasicBlock &MBB,
181                             MachineBasicBlock::iterator MI,
182                             unsigned DestReg, unsigned SubIdx,
183                             const MachineInstr *Orig,
184                             const TargetRegisterInfo &TRI) const = 0;
185
186  /// scheduleTwoAddrSource - Schedule the copy / re-mat of the source of the
187  /// two-addrss instruction inserted by two-address pass.
188  virtual void scheduleTwoAddrSource(MachineInstr *SrcMI,
189                                     MachineInstr *UseMI,
190                                     const TargetRegisterInfo &TRI) const {
191    // Do nothing.
192  }
193
194  /// duplicate - Create a duplicate of the Orig instruction in MF. This is like
195  /// MachineFunction::CloneMachineInstr(), but the target may update operands
196  /// that are required to be unique.
197  ///
198  /// The instruction must be duplicable as indicated by isNotDuplicable().
199  virtual MachineInstr *duplicate(MachineInstr *Orig,
200                                  MachineFunction &MF) const = 0;
201
202  /// convertToThreeAddress - This method must be implemented by targets that
203  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
204  /// may be able to convert a two-address instruction into one or more true
205  /// three-address instructions on demand.  This allows the X86 target (for
206  /// example) to convert ADD and SHL instructions into LEA instructions if they
207  /// would require register copies due to two-addressness.
208  ///
209  /// This method returns a null pointer if the transformation cannot be
210  /// performed, otherwise it returns the last new instruction.
211  ///
212  virtual MachineInstr *
213  convertToThreeAddress(MachineFunction::iterator &MFI,
214                   MachineBasicBlock::iterator &MBBI, LiveVariables *LV) const {
215    return 0;
216  }
217
218  /// commuteInstruction - If a target has any instructions that are
219  /// commutable but require converting to different instructions or making
220  /// non-trivial changes to commute them, this method can overloaded to do
221  /// that.  The default implementation simply swaps the commutable operands.
222  /// If NewMI is false, MI is modified in place and returned; otherwise, a
223  /// new machine instruction is created and returned.  Do not call this
224  /// method for a non-commutable instruction, but there may be some cases
225  /// where this method fails and returns null.
226  virtual MachineInstr *commuteInstruction(MachineInstr *MI,
227                                           bool NewMI = false) const = 0;
228
229  /// findCommutedOpIndices - If specified MI is commutable, return the two
230  /// operand indices that would swap value. Return false if the instruction
231  /// is not in a form which this routine understands.
232  virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
233                                     unsigned &SrcOpIdx2) const = 0;
234
235  /// produceSameValue - Return true if two machine instructions would produce
236  /// identical values. By default, this is only true when the two instructions
237  /// are deemed identical except for defs. If this function is called when the
238  /// IR is still in SSA form, the caller can pass the MachineRegisterInfo for
239  /// aggressive checks.
240  virtual bool produceSameValue(const MachineInstr *MI0,
241                                const MachineInstr *MI1,
242                                const MachineRegisterInfo *MRI = 0) const = 0;
243
244  /// AnalyzeBranch - Analyze the branching code at the end of MBB, returning
245  /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
246  /// implemented for a target).  Upon success, this returns false and returns
247  /// with the following information in various cases:
248  ///
249  /// 1. If this block ends with no branches (it just falls through to its succ)
250  ///    just return false, leaving TBB/FBB null.
251  /// 2. If this block ends with only an unconditional branch, it sets TBB to be
252  ///    the destination block.
253  /// 3. If this block ends with a conditional branch and it falls through to a
254  ///    successor block, it sets TBB to be the branch destination block and a
255  ///    list of operands that evaluate the condition. These operands can be
256  ///    passed to other TargetInstrInfo methods to create new branches.
257  /// 4. If this block ends with a conditional branch followed by an
258  ///    unconditional branch, it returns the 'true' destination in TBB, the
259  ///    'false' destination in FBB, and a list of operands that evaluate the
260  ///    condition.  These operands can be passed to other TargetInstrInfo
261  ///    methods to create new branches.
262  ///
263  /// Note that RemoveBranch and InsertBranch must be implemented to support
264  /// cases where this method returns success.
265  ///
266  /// If AllowModify is true, then this routine is allowed to modify the basic
267  /// block (e.g. delete instructions after the unconditional branch).
268  ///
269  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
270                             MachineBasicBlock *&FBB,
271                             SmallVectorImpl<MachineOperand> &Cond,
272                             bool AllowModify = false) const {
273    return true;
274  }
275
276  /// RemoveBranch - Remove the branching code at the end of the specific MBB.
277  /// This is only invoked in cases where AnalyzeBranch returns success. It
278  /// returns the number of instructions that were removed.
279  virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const {
280    assert(0 && "Target didn't implement TargetInstrInfo::RemoveBranch!");
281    return 0;
282  }
283
284  /// InsertBranch - Insert branch code into the end of the specified
285  /// MachineBasicBlock.  The operands to this method are the same as those
286  /// returned by AnalyzeBranch.  This is only invoked in cases where
287  /// AnalyzeBranch returns success. It returns the number of instructions
288  /// inserted.
289  ///
290  /// It is also invoked by tail merging to add unconditional branches in
291  /// cases where AnalyzeBranch doesn't apply because there was no original
292  /// branch to analyze.  At least this much must be implemented, else tail
293  /// merging needs to be disabled.
294  virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
295                                MachineBasicBlock *FBB,
296                                const SmallVectorImpl<MachineOperand> &Cond,
297                                DebugLoc DL) const {
298    assert(0 && "Target didn't implement TargetInstrInfo::InsertBranch!");
299    return 0;
300  }
301
302  /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
303  /// after it, replacing it with an unconditional branch to NewDest. This is
304  /// used by the tail merging pass.
305  virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
306                                       MachineBasicBlock *NewDest) const = 0;
307
308  /// isLegalToSplitMBBAt - Return true if it's legal to split the given basic
309  /// block at the specified instruction (i.e. instruction would be the start
310  /// of a new basic block).
311  virtual bool isLegalToSplitMBBAt(MachineBasicBlock &MBB,
312                                   MachineBasicBlock::iterator MBBI) const {
313    return true;
314  }
315
316  /// isProfitableToIfCvt - Return true if it's profitable to predicate
317  /// instructions with accumulated instruction latency of "NumCycles"
318  /// of the specified basic block, where the probability of the instructions
319  /// being executed is given by Probability, and Confidence is a measure
320  /// of our confidence that it will be properly predicted.
321  virtual
322  bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCyles,
323                           unsigned ExtraPredCycles,
324                           float Probability, float Confidence) const {
325    return false;
326  }
327
328  /// isProfitableToIfCvt - Second variant of isProfitableToIfCvt, this one
329  /// checks for the case where two basic blocks from true and false path
330  /// of a if-then-else (diamond) are predicated on mutally exclusive
331  /// predicates, where the probability of the true path being taken is given
332  /// by Probability, and Confidence is a measure of our confidence that it
333  /// will be properly predicted.
334  virtual bool
335  isProfitableToIfCvt(MachineBasicBlock &TMBB,
336                      unsigned NumTCycles, unsigned ExtraTCycles,
337                      MachineBasicBlock &FMBB,
338                      unsigned NumFCycles, unsigned ExtraFCycles,
339                      float Probability, float Confidence) const {
340    return false;
341  }
342
343  /// isProfitableToDupForIfCvt - Return true if it's profitable for
344  /// if-converter to duplicate instructions of specified accumulated
345  /// instruction latencies in the specified MBB to enable if-conversion.
346  /// The probability of the instructions being executed is given by
347  /// Probability, and Confidence is a measure of our confidence that it
348  /// will be properly predicted.
349  virtual bool
350  isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCyles,
351                            float Probability, float Confidence) const {
352    return false;
353  }
354
355  /// copyPhysReg - Emit instructions to copy a pair of physical registers.
356  virtual void copyPhysReg(MachineBasicBlock &MBB,
357                           MachineBasicBlock::iterator MI, DebugLoc DL,
358                           unsigned DestReg, unsigned SrcReg,
359                           bool KillSrc) const {
360    assert(0 && "Target didn't implement TargetInstrInfo::copyPhysReg!");
361  }
362
363  /// storeRegToStackSlot - Store the specified register of the given register
364  /// class to the specified stack frame index. The store instruction is to be
365  /// added to the given machine basic block before the specified machine
366  /// instruction. If isKill is true, the register operand is the last use and
367  /// must be marked kill.
368  virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
369                                   MachineBasicBlock::iterator MI,
370                                   unsigned SrcReg, bool isKill, int FrameIndex,
371                                   const TargetRegisterClass *RC,
372                                   const TargetRegisterInfo *TRI) const {
373  assert(0 && "Target didn't implement TargetInstrInfo::storeRegToStackSlot!");
374  }
375
376  /// loadRegFromStackSlot - Load the specified register of the given register
377  /// class from the specified stack frame index. The load instruction is to be
378  /// added to the given machine basic block before the specified machine
379  /// instruction.
380  virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
381                                    MachineBasicBlock::iterator MI,
382                                    unsigned DestReg, int FrameIndex,
383                                    const TargetRegisterClass *RC,
384                                    const TargetRegisterInfo *TRI) const {
385  assert(0 && "Target didn't implement TargetInstrInfo::loadRegFromStackSlot!");
386  }
387
388  /// emitFrameIndexDebugValue - Emit a target-dependent form of
389  /// DBG_VALUE encoding the address of a frame index.  Addresses would
390  /// normally be lowered the same way as other addresses on the target,
391  /// e.g. in load instructions.  For targets that do not support this
392  /// the debug info is simply lost.
393  /// If you add this for a target you should handle this DBG_VALUE in the
394  /// target-specific AsmPrinter code as well; you will probably get invalid
395  /// assembly output if you don't.
396  virtual MachineInstr *emitFrameIndexDebugValue(MachineFunction &MF,
397                                                 int FrameIx,
398                                                 uint64_t Offset,
399                                                 const MDNode *MDPtr,
400                                                 DebugLoc dl) const {
401    return 0;
402  }
403
404  /// foldMemoryOperand - Attempt to fold a load or store of the specified stack
405  /// slot into the specified machine instruction for the specified operand(s).
406  /// If this is possible, a new instruction is returned with the specified
407  /// operand folded, otherwise NULL is returned.
408  /// The new instruction is inserted before MI, and the client is responsible
409  /// for removing the old instruction.
410  MachineInstr* foldMemoryOperand(MachineBasicBlock::iterator MI,
411                                  const SmallVectorImpl<unsigned> &Ops,
412                                  int FrameIndex) const;
413
414  /// foldMemoryOperand - Same as the previous version except it allows folding
415  /// of any load and store from / to any address, not just from a specific
416  /// stack slot.
417  MachineInstr* foldMemoryOperand(MachineBasicBlock::iterator MI,
418                                  const SmallVectorImpl<unsigned> &Ops,
419                                  MachineInstr* LoadMI) const;
420
421protected:
422  /// foldMemoryOperandImpl - Target-dependent implementation for
423  /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
424  /// take care of adding a MachineMemOperand to the newly created instruction.
425  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
426                                          MachineInstr* MI,
427                                          const SmallVectorImpl<unsigned> &Ops,
428                                          int FrameIndex) const {
429    return 0;
430  }
431
432  /// foldMemoryOperandImpl - Target-dependent implementation for
433  /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
434  /// take care of adding a MachineMemOperand to the newly created instruction.
435  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
436                                              MachineInstr* MI,
437                                          const SmallVectorImpl<unsigned> &Ops,
438                                              MachineInstr* LoadMI) const {
439    return 0;
440  }
441
442public:
443  /// canFoldMemoryOperand - Returns true for the specified load / store if
444  /// folding is possible.
445  virtual
446  bool canFoldMemoryOperand(const MachineInstr *MI,
447                            const SmallVectorImpl<unsigned> &Ops) const =0;
448
449  /// unfoldMemoryOperand - Separate a single instruction which folded a load or
450  /// a store or a load and a store into two or more instruction. If this is
451  /// possible, returns true as well as the new instructions by reference.
452  virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
453                                unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
454                                 SmallVectorImpl<MachineInstr*> &NewMIs) const{
455    return false;
456  }
457
458  virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
459                                   SmallVectorImpl<SDNode*> &NewNodes) const {
460    return false;
461  }
462
463  /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
464  /// instruction after load / store are unfolded from an instruction of the
465  /// specified opcode. It returns zero if the specified unfolding is not
466  /// possible. If LoadRegIndex is non-null, it is filled in with the operand
467  /// index of the operand which will hold the register holding the loaded
468  /// value.
469  virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
470                                      bool UnfoldLoad, bool UnfoldStore,
471                                      unsigned *LoadRegIndex = 0) const {
472    return 0;
473  }
474
475  /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
476  /// to determine if two loads are loading from the same base address. It
477  /// should only return true if the base pointers are the same and the
478  /// only differences between the two addresses are the offset. It also returns
479  /// the offsets by reference.
480  virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
481                                    int64_t &Offset1, int64_t &Offset2) const {
482    return false;
483  }
484
485  /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
486  /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
487  /// be scheduled togther. On some targets if two loads are loading from
488  /// addresses in the same cache line, it's better if they are scheduled
489  /// together. This function takes two integers that represent the load offsets
490  /// from the common base address. It returns true if it decides it's desirable
491  /// to schedule the two loads together. "NumLoads" is the number of loads that
492  /// have already been scheduled after Load1.
493  virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
494                                       int64_t Offset1, int64_t Offset2,
495                                       unsigned NumLoads) const {
496    return false;
497  }
498
499  /// ReverseBranchCondition - Reverses the branch condition of the specified
500  /// condition list, returning false on success and true if it cannot be
501  /// reversed.
502  virtual
503  bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
504    return true;
505  }
506
507  /// insertNoop - Insert a noop into the instruction stream at the specified
508  /// point.
509  virtual void insertNoop(MachineBasicBlock &MBB,
510                          MachineBasicBlock::iterator MI) const;
511
512
513  /// getNoopForMachoTarget - Return the noop instruction to use for a noop.
514  virtual void getNoopForMachoTarget(MCInst &NopInst) const {
515    // Default to just using 'nop' string.
516  }
517
518
519  /// isPredicated - Returns true if the instruction is already predicated.
520  ///
521  virtual bool isPredicated(const MachineInstr *MI) const {
522    return false;
523  }
524
525  /// isUnpredicatedTerminator - Returns true if the instruction is a
526  /// terminator instruction that has not been predicated.
527  virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const;
528
529  /// PredicateInstruction - Convert the instruction into a predicated
530  /// instruction. It returns true if the operation was successful.
531  virtual
532  bool PredicateInstruction(MachineInstr *MI,
533                        const SmallVectorImpl<MachineOperand> &Pred) const = 0;
534
535  /// SubsumesPredicate - Returns true if the first specified predicate
536  /// subsumes the second, e.g. GE subsumes GT.
537  virtual
538  bool SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
539                         const SmallVectorImpl<MachineOperand> &Pred2) const {
540    return false;
541  }
542
543  /// DefinesPredicate - If the specified instruction defines any predicate
544  /// or condition code register(s) used for predication, returns true as well
545  /// as the definition predicate(s) by reference.
546  virtual bool DefinesPredicate(MachineInstr *MI,
547                                std::vector<MachineOperand> &Pred) const {
548    return false;
549  }
550
551  /// isPredicable - Return true if the specified instruction can be predicated.
552  /// By default, this returns true for every instruction with a
553  /// PredicateOperand.
554  virtual bool isPredicable(MachineInstr *MI) const {
555    return MI->getDesc().isPredicable();
556  }
557
558  /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
559  /// instruction that defines the specified register class.
560  virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
561    return true;
562  }
563
564  /// isSchedulingBoundary - Test if the given instruction should be
565  /// considered a scheduling boundary. This primarily includes labels and
566  /// terminators.
567  virtual bool isSchedulingBoundary(const MachineInstr *MI,
568                                    const MachineBasicBlock *MBB,
569                                    const MachineFunction &MF) const = 0;
570
571  /// Measure the specified inline asm to determine an approximation of its
572  /// length.
573  virtual unsigned getInlineAsmLength(const char *Str,
574                                      const MCAsmInfo &MAI) const;
575
576  /// CreateTargetHazardRecognizer - Allocate and return a hazard recognizer to
577  /// use for this target when scheduling the machine instructions before
578  /// register allocation.
579  virtual ScheduleHazardRecognizer*
580  CreateTargetHazardRecognizer(const TargetMachine *TM,
581                               const ScheduleDAG *DAG) const = 0;
582
583  /// CreateTargetPostRAHazardRecognizer - Allocate and return a hazard
584  /// recognizer to use for this target when scheduling the machine instructions
585  /// after register allocation.
586  virtual ScheduleHazardRecognizer*
587  CreateTargetPostRAHazardRecognizer(const InstrItineraryData*,
588                                     const ScheduleDAG *DAG) const = 0;
589
590  /// AnalyzeCompare - For a comparison instruction, return the source register
591  /// in SrcReg and the value it compares against in CmpValue. Return true if
592  /// the comparison instruction can be analyzed.
593  virtual bool AnalyzeCompare(const MachineInstr *MI,
594                              unsigned &SrcReg, int &Mask, int &Value) const {
595    return false;
596  }
597
598  /// OptimizeCompareInstr - See if the comparison instruction can be converted
599  /// into something more efficient. E.g., on ARM most instructions can set the
600  /// flags register, obviating the need for a separate CMP.
601  virtual bool OptimizeCompareInstr(MachineInstr *CmpInstr,
602                                    unsigned SrcReg, int Mask, int Value,
603                                    const MachineRegisterInfo *MRI) const {
604    return false;
605  }
606
607  /// FoldImmediate - 'Reg' is known to be defined by a move immediate
608  /// instruction, try to fold the immediate into the use instruction.
609  virtual bool FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI,
610                             unsigned Reg, MachineRegisterInfo *MRI) const {
611    return false;
612  }
613
614  /// getNumMicroOps - Return the number of u-operations the given machine
615  /// instruction will be decoded to on the target cpu.
616  virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData,
617                                  const MachineInstr *MI) const;
618
619  /// isZeroCost - Return true for pseudo instructions that don't consume any
620  /// machine resources in their current form. These are common cases that the
621  /// scheduler should consider free, rather than conservatively handling them
622  /// as instructions with no itinerary.
623  bool isZeroCost(unsigned Opcode) const {
624    return Opcode <= TargetOpcode::COPY;
625  }
626
627  /// getOperandLatency - Compute and return the use operand latency of a given
628  /// pair of def and use.
629  /// In most cases, the static scheduling itinerary was enough to determine the
630  /// operand latency. But it may not be possible for instructions with variable
631  /// number of defs / uses.
632  virtual int getOperandLatency(const InstrItineraryData *ItinData,
633                              const MachineInstr *DefMI, unsigned DefIdx,
634                              const MachineInstr *UseMI, unsigned UseIdx) const;
635
636  virtual int getOperandLatency(const InstrItineraryData *ItinData,
637                                SDNode *DefNode, unsigned DefIdx,
638                                SDNode *UseNode, unsigned UseIdx) const;
639
640  /// getInstrLatency - Compute the instruction latency of a given instruction.
641  /// If the instruction has higher cost when predicated, it's returned via
642  /// PredCost.
643  virtual int getInstrLatency(const InstrItineraryData *ItinData,
644                              const MachineInstr *MI,
645                              unsigned *PredCost = 0) const;
646
647  virtual int getInstrLatency(const InstrItineraryData *ItinData,
648                              SDNode *Node) const;
649
650  /// isHighLatencyDef - Return true if this opcode has high latency to its
651  /// result.
652  virtual bool isHighLatencyDef(int opc) const { return false; }
653
654  /// hasHighOperandLatency - Compute operand latency between a def of 'Reg'
655  /// and an use in the current loop, return true if the target considered
656  /// it 'high'. This is used by optimization passes such as machine LICM to
657  /// determine whether it makes sense to hoist an instruction out even in
658  /// high register pressure situation.
659  virtual
660  bool hasHighOperandLatency(const InstrItineraryData *ItinData,
661                             const MachineRegisterInfo *MRI,
662                             const MachineInstr *DefMI, unsigned DefIdx,
663                             const MachineInstr *UseMI, unsigned UseIdx) const {
664    return false;
665  }
666
667  /// hasLowDefLatency - Compute operand latency of a def of 'Reg', return true
668  /// if the target considered it 'low'.
669  virtual
670  bool hasLowDefLatency(const InstrItineraryData *ItinData,
671                        const MachineInstr *DefMI, unsigned DefIdx) const;
672
673private:
674  int CallFrameSetupOpcode, CallFrameDestroyOpcode;
675};
676
677/// TargetInstrInfoImpl - This is the default implementation of
678/// TargetInstrInfo, which just provides a couple of default implementations
679/// for various methods.  This separated out because it is implemented in
680/// libcodegen, not in libtarget.
681class TargetInstrInfoImpl : public TargetInstrInfo {
682protected:
683  TargetInstrInfoImpl(int CallFrameSetupOpcode = -1,
684                      int CallFrameDestroyOpcode = -1)
685    : TargetInstrInfo(CallFrameSetupOpcode, CallFrameDestroyOpcode) {}
686public:
687  virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator OldInst,
688                                       MachineBasicBlock *NewDest) const;
689  virtual MachineInstr *commuteInstruction(MachineInstr *MI,
690                                           bool NewMI = false) const;
691  virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
692                                     unsigned &SrcOpIdx2) const;
693  virtual bool canFoldMemoryOperand(const MachineInstr *MI,
694                                    const SmallVectorImpl<unsigned> &Ops) const;
695  virtual bool PredicateInstruction(MachineInstr *MI,
696                            const SmallVectorImpl<MachineOperand> &Pred) const;
697  virtual void reMaterialize(MachineBasicBlock &MBB,
698                             MachineBasicBlock::iterator MI,
699                             unsigned DestReg, unsigned SubReg,
700                             const MachineInstr *Orig,
701                             const TargetRegisterInfo &TRI) const;
702  virtual MachineInstr *duplicate(MachineInstr *Orig,
703                                  MachineFunction &MF) const;
704  virtual bool produceSameValue(const MachineInstr *MI0,
705                                const MachineInstr *MI1,
706                                const MachineRegisterInfo *MRI) const;
707  virtual bool isSchedulingBoundary(const MachineInstr *MI,
708                                    const MachineBasicBlock *MBB,
709                                    const MachineFunction &MF) const;
710
711  bool usePreRAHazardRecognizer() const;
712
713  virtual ScheduleHazardRecognizer *
714  CreateTargetHazardRecognizer(const TargetMachine*, const ScheduleDAG*) const;
715
716  virtual ScheduleHazardRecognizer *
717  CreateTargetPostRAHazardRecognizer(const InstrItineraryData*,
718                                     const ScheduleDAG*) const;
719};
720
721} // End llvm namespace
722
723#endif
724