TargetInstrInfo.h revision 58dcb0e0cd3fa973b5fd005aecab1df6aeea5cd6
1//===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the target machine instructions to the code generator.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_TARGET_TARGETINSTRINFO_H
15#define LLVM_TARGET_TARGETINSTRINFO_H
16
17#include "llvm/Target/TargetInstrDesc.h"
18#include "llvm/CodeGen/MachineFunction.h"
19
20namespace llvm {
21
22class TargetRegisterClass;
23class LiveVariables;
24class CalleeSavedInfo;
25class SDNode;
26class SelectionDAG;
27
28template<class T> class SmallVectorImpl;
29
30
31//---------------------------------------------------------------------------
32///
33/// TargetInstrInfo - Interface to description of machine instructions
34///
35class TargetInstrInfo {
36  const TargetInstrDesc *Descriptors; // Raw array to allow static init'n
37  unsigned NumOpcodes;                // Number of entries in the desc array
38
39  TargetInstrInfo(const TargetInstrInfo &);  // DO NOT IMPLEMENT
40  void operator=(const TargetInstrInfo &);   // DO NOT IMPLEMENT
41public:
42  TargetInstrInfo(const TargetInstrDesc *desc, unsigned NumOpcodes);
43  virtual ~TargetInstrInfo();
44
45  // Invariant opcodes: All instruction sets have these as their low opcodes.
46  enum {
47    PHI = 0,
48    INLINEASM = 1,
49    LABEL = 2,
50    DECLARE = 3,
51    EXTRACT_SUBREG = 4,
52    INSERT_SUBREG = 5,
53    IMPLICIT_DEF = 6,
54    SUBREG_TO_REG = 7
55  };
56
57  unsigned getNumOpcodes() const { return NumOpcodes; }
58
59  /// get - Return the machine instruction descriptor that corresponds to the
60  /// specified instruction opcode.
61  ///
62  const TargetInstrDesc &get(unsigned Opcode) const {
63    assert(Opcode < NumOpcodes && "Invalid opcode!");
64    return Descriptors[Opcode];
65  }
66
67  /// isTriviallyReMaterializable - Return true if the instruction is trivially
68  /// rematerializable, meaning it has no side effects and requires no operands
69  /// that aren't always available.
70  bool isTriviallyReMaterializable(const MachineInstr *MI) const {
71    return MI->getDesc().isRematerializable() &&
72           isReallyTriviallyReMaterializable(MI);
73  }
74
75protected:
76  /// isReallyTriviallyReMaterializable - For instructions with opcodes for
77  /// which the M_REMATERIALIZABLE flag is set, this function tests whether the
78  /// instruction itself is actually trivially rematerializable, considering
79  /// its operands.  This is used for targets that have instructions that are
80  /// only trivially rematerializable for specific uses.  This predicate must
81  /// return false if the instruction has any side effects other than
82  /// producing a value, or if it requres any address registers that are not
83  /// always available.
84  virtual bool isReallyTriviallyReMaterializable(const MachineInstr *MI) const {
85    return true;
86  }
87
88public:
89  /// Return true if the instruction is a register to register move
90  /// and leave the source and dest operands in the passed parameters.
91  virtual bool isMoveInstr(const MachineInstr& MI,
92                           unsigned& sourceReg,
93                           unsigned& destReg) const {
94    return false;
95  }
96
97  /// isLoadFromStackSlot - If the specified machine instruction is a direct
98  /// load from a stack slot, return the virtual or physical register number of
99  /// the destination along with the FrameIndex of the loaded stack slot.  If
100  /// not, return 0.  This predicate must return 0 if the instruction has
101  /// any side effects other than loading from the stack slot.
102  virtual unsigned isLoadFromStackSlot(MachineInstr *MI, int &FrameIndex) const{
103    return 0;
104  }
105
106  /// isStoreToStackSlot - If the specified machine instruction is a direct
107  /// store to a stack slot, return the virtual or physical register number of
108  /// the source reg along with the FrameIndex of the loaded stack slot.  If
109  /// not, return 0.  This predicate must return 0 if the instruction has
110  /// any side effects other than storing to the stack slot.
111  virtual unsigned isStoreToStackSlot(MachineInstr *MI, int &FrameIndex) const {
112    return 0;
113  }
114
115  /// reMaterialize - Re-issue the specified 'original' instruction at the
116  /// specific location targeting a new destination register.
117  virtual void reMaterialize(MachineBasicBlock &MBB,
118                             MachineBasicBlock::iterator MI,
119                             unsigned DestReg,
120                             const MachineInstr *Orig) const = 0;
121
122  /// isInvariantLoad - Return true if the specified instruction (which is
123  /// marked mayLoad) is loading from a location whose value is invariant across
124  /// the function.  For example, loading a value from the constant pool or from
125  /// from the argument area of a function if it does not change.  This should
126  /// only return true of *all* loads the instruction does are invariant (if it
127  /// does multiple loads).
128  virtual bool isInvariantLoad(MachineInstr *MI) const {
129    return false;
130  }
131
132  /// convertToThreeAddress - This method must be implemented by targets that
133  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
134  /// may be able to convert a two-address instruction into one or more true
135  /// three-address instructions on demand.  This allows the X86 target (for
136  /// example) to convert ADD and SHL instructions into LEA instructions if they
137  /// would require register copies due to two-addressness.
138  ///
139  /// This method returns a null pointer if the transformation cannot be
140  /// performed, otherwise it returns the last new instruction.
141  ///
142  virtual MachineInstr *
143  convertToThreeAddress(MachineFunction::iterator &MFI,
144                   MachineBasicBlock::iterator &MBBI, LiveVariables &LV) const {
145    return 0;
146  }
147
148  /// commuteInstruction - If a target has any instructions that are commutable,
149  /// but require converting to a different instruction or making non-trivial
150  /// changes to commute them, this method can overloaded to do this.  The
151  /// default implementation of this method simply swaps the first two operands
152  /// of MI and returns it.
153  ///
154  /// If a target wants to make more aggressive changes, they can construct and
155  /// return a new machine instruction.  If an instruction cannot commute, it
156  /// can also return null.
157  ///
158  /// If NewMI is true, then a new machine instruction must be created.
159  ///
160  virtual MachineInstr *commuteInstruction(MachineInstr *MI,
161                                           bool NewMI = false) const = 0;
162
163  /// CommuteChangesDestination - Return true if commuting the specified
164  /// instruction will also changes the destination operand. Also return the
165  /// current operand index of the would be new destination register by
166  /// reference. This can happen when the commutable instruction is also a
167  /// two-address instruction.
168  virtual bool CommuteChangesDestination(MachineInstr *MI,
169                                         unsigned &OpIdx) const = 0;
170
171  /// AnalyzeBranch - Analyze the branching code at the end of MBB, returning
172  /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
173  /// implemented for a target).  Upon success, this returns false and returns
174  /// with the following information in various cases:
175  ///
176  /// 1. If this block ends with no branches (it just falls through to its succ)
177  ///    just return false, leaving TBB/FBB null.
178  /// 2. If this block ends with only an unconditional branch, it sets TBB to be
179  ///    the destination block.
180  /// 3. If this block ends with an conditional branch and it falls through to
181  ///    an successor block, it sets TBB to be the branch destination block and a
182  ///    list of operands that evaluate the condition. These
183  ///    operands can be passed to other TargetInstrInfo methods to create new
184  ///    branches.
185  /// 4. If this block ends with an conditional branch and an unconditional
186  ///    block, it returns the 'true' destination in TBB, the 'false' destination
187  ///    in FBB, and a list of operands that evaluate the condition. These
188  ///    operands can be passed to other TargetInstrInfo methods to create new
189  ///    branches.
190  ///
191  /// Note that RemoveBranch and InsertBranch must be implemented to support
192  /// cases where this method returns success.
193  ///
194  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
195                             MachineBasicBlock *&FBB,
196                             std::vector<MachineOperand> &Cond) const {
197    return true;
198  }
199
200  /// RemoveBranch - Remove the branching code at the end of the specific MBB.
201  /// this is only invoked in cases where AnalyzeBranch returns success. It
202  /// returns the number of instructions that were removed.
203  virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const {
204    assert(0 && "Target didn't implement TargetInstrInfo::RemoveBranch!");
205    return 0;
206  }
207
208  /// InsertBranch - Insert a branch into the end of the specified
209  /// MachineBasicBlock.  This operands to this method are the same as those
210  /// returned by AnalyzeBranch.  This is invoked in cases where AnalyzeBranch
211  /// returns success and when an unconditional branch (TBB is non-null, FBB is
212  /// null, Cond is empty) needs to be inserted. It returns the number of
213  /// instructions inserted.
214  virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
215                            MachineBasicBlock *FBB,
216                            const std::vector<MachineOperand> &Cond) const {
217    assert(0 && "Target didn't implement TargetInstrInfo::InsertBranch!");
218    return 0;
219  }
220
221  /// copyRegToReg - Add a copy between a pair of registers
222  virtual void copyRegToReg(MachineBasicBlock &MBB,
223                            MachineBasicBlock::iterator MI,
224                            unsigned DestReg, unsigned SrcReg,
225                            const TargetRegisterClass *DestRC,
226                            const TargetRegisterClass *SrcRC) const {
227    assert(0 && "Target didn't implement TargetInstrInfo::copyRegToReg!");
228  }
229
230  virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
231                                   MachineBasicBlock::iterator MI,
232                                   unsigned SrcReg, bool isKill, int FrameIndex,
233                                   const TargetRegisterClass *RC) const {
234    assert(0 && "Target didn't implement TargetInstrInfo::storeRegToStackSlot!");
235  }
236
237  virtual void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
238                              SmallVectorImpl<MachineOperand> &Addr,
239                              const TargetRegisterClass *RC,
240                              SmallVectorImpl<MachineInstr*> &NewMIs) const {
241    assert(0 && "Target didn't implement TargetInstrInfo::storeRegToAddr!");
242  }
243
244  virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
245                                    MachineBasicBlock::iterator MI,
246                                    unsigned DestReg, int FrameIndex,
247                                    const TargetRegisterClass *RC) const {
248    assert(0 && "Target didn't implement TargetInstrInfo::loadRegFromStackSlot!");
249  }
250
251  virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
252                               SmallVectorImpl<MachineOperand> &Addr,
253                               const TargetRegisterClass *RC,
254                               SmallVectorImpl<MachineInstr*> &NewMIs) const {
255    assert(0 && "Target didn't implement TargetInstrInfo::loadRegFromAddr!");
256  }
257
258  /// spillCalleeSavedRegisters - Issues instruction(s) to spill all callee
259  /// saved registers and returns true if it isn't possible / profitable to do
260  /// so by issuing a series of store instructions via
261  /// storeRegToStackSlot(). Returns false otherwise.
262  virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
263                                         MachineBasicBlock::iterator MI,
264                                const std::vector<CalleeSavedInfo> &CSI) const {
265    return false;
266  }
267
268  /// restoreCalleeSavedRegisters - Issues instruction(s) to restore all callee
269  /// saved registers and returns true if it isn't possible / profitable to do
270  /// so by issuing a series of load instructions via loadRegToStackSlot().
271  /// Returns false otherwise.
272  virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
273                                           MachineBasicBlock::iterator MI,
274                                const std::vector<CalleeSavedInfo> &CSI) const {
275    return false;
276  }
277
278  /// foldMemoryOperand - Attempt to fold a load or store of the specified stack
279  /// slot into the specified machine instruction for the specified operand(s).
280  /// If this is possible, a new instruction is returned with the specified
281  /// operand folded, otherwise NULL is returned. The client is responsible for
282  /// removing the old instruction and adding the new one in the instruction
283  /// stream.
284  virtual MachineInstr* foldMemoryOperand(MachineFunction &MF,
285                                          MachineInstr* MI,
286                                          SmallVectorImpl<unsigned> &Ops,
287                                          int FrameIndex) const {
288    return 0;
289  }
290
291  /// foldMemoryOperand - Same as the previous version except it allows folding
292  /// of any load and store from / to any address, not just from a specific
293  /// stack slot.
294  virtual MachineInstr* foldMemoryOperand(MachineFunction &MF,
295                                          MachineInstr* MI,
296                                          SmallVectorImpl<unsigned> &Ops,
297                                          MachineInstr* LoadMI) const {
298    return 0;
299  }
300
301  /// canFoldMemoryOperand - Returns true if the specified load / store is
302  /// folding is possible.
303  virtual
304  bool canFoldMemoryOperand(MachineInstr *MI,
305                            SmallVectorImpl<unsigned> &Ops) const{
306    return false;
307  }
308
309  /// unfoldMemoryOperand - Separate a single instruction which folded a load or
310  /// a store or a load and a store into two or more instruction. If this is
311  /// possible, returns true as well as the new instructions by reference.
312  virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
313                                unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
314                                  SmallVectorImpl<MachineInstr*> &NewMIs) const{
315    return false;
316  }
317
318  virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
319                                   SmallVectorImpl<SDNode*> &NewNodes) const {
320    return false;
321  }
322
323  /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
324  /// instruction after load / store are unfolded from an instruction of the
325  /// specified opcode. It returns zero if the specified unfolding is not
326  /// possible.
327  virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
328                                      bool UnfoldLoad, bool UnfoldStore) const {
329    return 0;
330  }
331
332  /// BlockHasNoFallThrough - Return true if the specified block does not
333  /// fall-through into its successor block.  This is primarily used when a
334  /// branch is unanalyzable.  It is useful for things like unconditional
335  /// indirect branches (jump tables).
336  virtual bool BlockHasNoFallThrough(MachineBasicBlock &MBB) const {
337    return false;
338  }
339
340  /// ReverseBranchCondition - Reverses the branch condition of the specified
341  /// condition list, returning false on success and true if it cannot be
342  /// reversed.
343  virtual bool ReverseBranchCondition(std::vector<MachineOperand> &Cond) const {
344    return true;
345  }
346
347  /// insertNoop - Insert a noop into the instruction stream at the specified
348  /// point.
349  virtual void insertNoop(MachineBasicBlock &MBB,
350                          MachineBasicBlock::iterator MI) const {
351    assert(0 && "Target didn't implement insertNoop!");
352    abort();
353  }
354
355  /// isPredicated - Returns true if the instruction is already predicated.
356  ///
357  virtual bool isPredicated(const MachineInstr *MI) const {
358    return false;
359  }
360
361  /// isUnpredicatedTerminator - Returns true if the instruction is a
362  /// terminator instruction that has not been predicated.
363  virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const;
364
365  /// PredicateInstruction - Convert the instruction into a predicated
366  /// instruction. It returns true if the operation was successful.
367  virtual
368  bool PredicateInstruction(MachineInstr *MI,
369                            const std::vector<MachineOperand> &Pred) const = 0;
370
371  /// SubsumesPredicate - Returns true if the first specified predicate
372  /// subsumes the second, e.g. GE subsumes GT.
373  virtual
374  bool SubsumesPredicate(const std::vector<MachineOperand> &Pred1,
375                         const std::vector<MachineOperand> &Pred2) const {
376    return false;
377  }
378
379  /// DefinesPredicate - If the specified instruction defines any predicate
380  /// or condition code register(s) used for predication, returns true as well
381  /// as the definition predicate(s) by reference.
382  virtual bool DefinesPredicate(MachineInstr *MI,
383                                std::vector<MachineOperand> &Pred) const {
384    return false;
385  }
386
387  /// getPointerRegClass - Returns a TargetRegisterClass used for pointer
388  /// values.
389  virtual const TargetRegisterClass *getPointerRegClass() const {
390    assert(0 && "Target didn't implement getPointerRegClass!");
391    abort();
392    return 0; // Must return a value in order to compile with VS 2005
393  }
394
395  /// GetInstSize - Returns the size of the specified Instruction.
396  ///
397  virtual unsigned GetInstSizeInBytes(const MachineInstr *MI) const {
398    assert(0 && "Target didn't implement TargetInstrInfo::GetInstSize!");
399    return 0;
400  }
401
402  /// GetFunctionSizeInBytes - Returns the size of the specified MachineFunction.
403  ///
404  virtual unsigned GetFunctionSizeInBytes(const MachineFunction &MF) const = 0;
405
406};
407
408/// TargetInstrInfoImpl - This is the default implementation of
409/// TargetInstrInfo, which just provides a couple of default implementations
410/// for various methods.  This separated out because it is implemented in
411/// libcodegen, not in libtarget.
412class TargetInstrInfoImpl : public TargetInstrInfo {
413protected:
414  TargetInstrInfoImpl(const TargetInstrDesc *desc, unsigned NumOpcodes)
415  : TargetInstrInfo(desc, NumOpcodes) {}
416public:
417  virtual MachineInstr *commuteInstruction(MachineInstr *MI,
418                                           bool NewMI = false) const;
419  virtual bool CommuteChangesDestination(MachineInstr *MI,
420                                         unsigned &OpIdx) const;
421  virtual bool PredicateInstruction(MachineInstr *MI,
422                              const std::vector<MachineOperand> &Pred) const;
423  virtual void reMaterialize(MachineBasicBlock &MBB,
424                             MachineBasicBlock::iterator MI,
425                             unsigned DestReg,
426                             const MachineInstr *Orig) const;
427  virtual unsigned GetFunctionSizeInBytes(const MachineFunction &MF) const;
428};
429
430} // End llvm namespace
431
432#endif
433