TargetInstrInfo.h revision b6bbfebdc683a6a123410bca1175e14d264d4bc2
1//===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the target machine instruction set to the code generator.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_TARGET_TARGETINSTRINFO_H
15#define LLVM_TARGET_TARGETINSTRINFO_H
16
17#include "llvm/Target/TargetInstrDesc.h"
18#include "llvm/CodeGen/MachineFunction.h"
19
20namespace llvm {
21
22class TargetRegisterClass;
23class TargetRegisterInfo;
24class LiveVariables;
25class CalleeSavedInfo;
26class SDNode;
27class SelectionDAG;
28
29template<class T> class SmallVectorImpl;
30
31
32//---------------------------------------------------------------------------
33///
34/// TargetInstrInfo - Interface to description of machine instruction set
35///
36class TargetInstrInfo {
37  const TargetInstrDesc *Descriptors; // Raw array to allow static init'n
38  unsigned NumOpcodes;                // Number of entries in the desc array
39
40  TargetInstrInfo(const TargetInstrInfo &);  // DO NOT IMPLEMENT
41  void operator=(const TargetInstrInfo &);   // DO NOT IMPLEMENT
42public:
43  TargetInstrInfo(const TargetInstrDesc *desc, unsigned NumOpcodes);
44  virtual ~TargetInstrInfo();
45
46  // Invariant opcodes: All instruction sets have these as their low opcodes.
47  enum {
48    PHI = 0,
49    INLINEASM = 1,
50    DBG_LABEL = 2,
51    EH_LABEL = 3,
52    GC_LABEL = 4,
53    DECLARE = 5,
54
55    /// EXTRACT_SUBREG - This instruction takes two operands: a register
56    /// that has subregisters, and a subregister index. It returns the
57    /// extracted subregister value. This is commonly used to implement
58    /// truncation operations on target architectures which support it.
59    EXTRACT_SUBREG = 6,
60
61    /// INSERT_SUBREG - This instruction takes three operands: a register
62    /// that has subregisters, a register providing an insert value, and a
63    /// subregister index. It returns the value of the first register with
64    /// the value of the second register inserted. The first register is
65    /// often defined by an IMPLICIT_DEF, as is commonly used to implement
66    /// anyext operations on target architectures which support it.
67    INSERT_SUBREG = 7,
68
69    /// IMPLICIT_DEF - This is the MachineInstr-level equivalent of undef.
70    IMPLICIT_DEF = 8,
71
72    /// SUBREG_TO_REG - This instruction is similar to INSERT_SUBREG except
73    /// that the first operand is an immediate integer constant. This constant
74    /// is often zero, as is commonly used to implement zext operations on
75    /// target architectures which support it, such as with x86-64 (with
76    /// zext from i32 to i64 via implicit zero-extension).
77    SUBREG_TO_REG = 9,
78
79    /// COPY_TO_REGCLASS - This instruction is a placeholder for a plain
80    /// register-to-register copy into a specific register class. This is only
81    /// used between instruction selection and MachineInstr creation, before
82    /// virtual registers have been created for all the instructions, and it's
83    /// only needed in cases where the register classes implied by the
84    /// instructions are insufficient. The actual MachineInstrs to perform
85    /// the copy are emitted with the TargetInstrInfo::copyRegToReg hook.
86    COPY_TO_REGCLASS = 10
87  };
88
89  unsigned getNumOpcodes() const { return NumOpcodes; }
90
91  /// get - Return the machine instruction descriptor that corresponds to the
92  /// specified instruction opcode.
93  ///
94  const TargetInstrDesc &get(unsigned Opcode) const {
95    assert(Opcode < NumOpcodes && "Invalid opcode!");
96    return Descriptors[Opcode];
97  }
98
99  /// isTriviallyReMaterializable - Return true if the instruction is trivially
100  /// rematerializable, meaning it has no side effects and requires no operands
101  /// that aren't always available.
102  bool isTriviallyReMaterializable(const MachineInstr *MI) const {
103    return MI->getDesc().isRematerializable() &&
104           isReallyTriviallyReMaterializable(MI);
105  }
106
107protected:
108  /// isReallyTriviallyReMaterializable - For instructions with opcodes for
109  /// which the M_REMATERIALIZABLE flag is set, this function tests whether the
110  /// instruction itself is actually trivially rematerializable, considering
111  /// its operands.  This is used for targets that have instructions that are
112  /// only trivially rematerializable for specific uses.  This predicate must
113  /// return false if the instruction has any side effects other than
114  /// producing a value, or if it requres any address registers that are not
115  /// always available.
116  virtual bool isReallyTriviallyReMaterializable(const MachineInstr *MI) const {
117    return true;
118  }
119
120public:
121  /// Return true if the instruction is a register to register move and return
122  /// the source and dest operands and their sub-register indices by reference.
123  virtual bool isMoveInstr(const MachineInstr& MI,
124                           unsigned& SrcReg, unsigned& DstReg,
125                           unsigned& SrcSubIdx, unsigned& DstSubIdx) const {
126    return false;
127  }
128
129  /// isLoadFromStackSlot - If the specified machine instruction is a direct
130  /// load from a stack slot, return the virtual or physical register number of
131  /// the destination along with the FrameIndex of the loaded stack slot.  If
132  /// not, return 0.  This predicate must return 0 if the instruction has
133  /// any side effects other than loading from the stack slot.
134  virtual unsigned isLoadFromStackSlot(const MachineInstr *MI,
135                                       int &FrameIndex) const {
136    return 0;
137  }
138
139  /// isStoreToStackSlot - If the specified machine instruction is a direct
140  /// store to a stack slot, return the virtual or physical register number of
141  /// the source reg along with the FrameIndex of the loaded stack slot.  If
142  /// not, return 0.  This predicate must return 0 if the instruction has
143  /// any side effects other than storing to the stack slot.
144  virtual unsigned isStoreToStackSlot(const MachineInstr *MI,
145                                      int &FrameIndex) const {
146    return 0;
147  }
148
149  /// reMaterialize - Re-issue the specified 'original' instruction at the
150  /// specific location targeting a new destination register.
151  virtual void reMaterialize(MachineBasicBlock &MBB,
152                             MachineBasicBlock::iterator MI,
153                             unsigned DestReg, unsigned SubIdx,
154                             const MachineInstr *Orig) const = 0;
155
156  /// isInvariantLoad - Return true if the specified instruction (which is
157  /// marked mayLoad) is loading from a location whose value is invariant across
158  /// the function.  For example, loading a value from the constant pool or from
159  /// from the argument area of a function if it does not change.  This should
160  /// only return true of *all* loads the instruction does are invariant (if it
161  /// does multiple loads).
162  virtual bool isInvariantLoad(const MachineInstr *MI) const {
163    return false;
164  }
165
166  /// convertToThreeAddress - This method must be implemented by targets that
167  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
168  /// may be able to convert a two-address instruction into one or more true
169  /// three-address instructions on demand.  This allows the X86 target (for
170  /// example) to convert ADD and SHL instructions into LEA instructions if they
171  /// would require register copies due to two-addressness.
172  ///
173  /// This method returns a null pointer if the transformation cannot be
174  /// performed, otherwise it returns the last new instruction.
175  ///
176  virtual MachineInstr *
177  convertToThreeAddress(MachineFunction::iterator &MFI,
178                   MachineBasicBlock::iterator &MBBI, LiveVariables *LV) const {
179    return 0;
180  }
181
182  /// commuteInstruction - If a target has any instructions that are commutable,
183  /// but require converting to a different instruction or making non-trivial
184  /// changes to commute them, this method can overloaded to do this.  The
185  /// default implementation of this method simply swaps the first two operands
186  /// of MI and returns it.
187  ///
188  /// If a target wants to make more aggressive changes, they can construct and
189  /// return a new machine instruction.  If an instruction cannot commute, it
190  /// can also return null.
191  ///
192  /// If NewMI is true, then a new machine instruction must be created.
193  ///
194  virtual MachineInstr *commuteInstruction(MachineInstr *MI,
195                                           bool NewMI = false) const = 0;
196
197  /// findCommutedOpIndices - If specified MI is commutable, return the two
198  /// operand indices that would swap value. Return true if the instruction
199  /// is not in a form which this routine understands.
200  virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
201                                     unsigned &SrcOpIdx2) const = 0;
202
203  /// AnalyzeBranch - Analyze the branching code at the end of MBB, returning
204  /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
205  /// implemented for a target).  Upon success, this returns false and returns
206  /// with the following information in various cases:
207  ///
208  /// 1. If this block ends with no branches (it just falls through to its succ)
209  ///    just return false, leaving TBB/FBB null.
210  /// 2. If this block ends with only an unconditional branch, it sets TBB to be
211  ///    the destination block.
212  /// 3. If this block ends with an conditional branch and it falls through to
213  ///    an successor block, it sets TBB to be the branch destination block and
214  ///    a list of operands that evaluate the condition. These
215  ///    operands can be passed to other TargetInstrInfo methods to create new
216  ///    branches.
217  /// 4. If this block ends with an conditional branch and an unconditional
218  ///    block, it returns the 'true' destination in TBB, the 'false'
219  ///    destination in FBB, and a list of operands that evaluate the condition.
220  ///    These operands can be passed to other TargetInstrInfo methods to create
221  ///    new branches.
222  ///
223  /// Note that RemoveBranch and InsertBranch must be implemented to support
224  /// cases where this method returns success.
225  ///
226  /// If AllowModify is true, then this routine is allowed to modify the basic
227  /// block (e.g. delete instructions after the unconditional branch).
228  ///
229  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
230                             MachineBasicBlock *&FBB,
231                             SmallVectorImpl<MachineOperand> &Cond,
232                             bool AllowModify = false) const {
233    return true;
234  }
235
236  /// RemoveBranch - Remove the branching code at the end of the specific MBB.
237  /// This is only invoked in cases where AnalyzeBranch returns success. It
238  /// returns the number of instructions that were removed.
239  virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const {
240    assert(0 && "Target didn't implement TargetInstrInfo::RemoveBranch!");
241    return 0;
242  }
243
244  /// InsertBranch - Insert a branch into the end of the specified
245  /// MachineBasicBlock.  This operands to this method are the same as those
246  /// returned by AnalyzeBranch.  This is invoked in cases where AnalyzeBranch
247  /// returns success and when an unconditional branch (TBB is non-null, FBB is
248  /// null, Cond is empty) needs to be inserted. It returns the number of
249  /// instructions inserted.
250  ///
251  /// It is also invoked by tail merging to add unconditional branches in
252  /// cases where AnalyzeBranch doesn't apply because there was no original
253  /// branch to analyze.  At least this much must be implemented, else tail
254  /// merging needs to be disabled.
255  virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
256                            MachineBasicBlock *FBB,
257                            const SmallVectorImpl<MachineOperand> &Cond) const {
258    assert(0 && "Target didn't implement TargetInstrInfo::InsertBranch!");
259    return 0;
260  }
261
262  /// copyRegToReg - Emit instructions to copy between a pair of registers. It
263  /// returns false if the target does not how to copy between the specified
264  /// registers.
265  virtual bool copyRegToReg(MachineBasicBlock &MBB,
266                            MachineBasicBlock::iterator MI,
267                            unsigned DestReg, unsigned SrcReg,
268                            const TargetRegisterClass *DestRC,
269                            const TargetRegisterClass *SrcRC) const {
270    assert(0 && "Target didn't implement TargetInstrInfo::copyRegToReg!");
271    return false;
272  }
273
274  /// storeRegToStackSlot - Store the specified register of the given register
275  /// class to the specified stack frame index. The store instruction is to be
276  /// added to the given machine basic block before the specified machine
277  /// instruction. If isKill is true, the register operand is the last use and
278  /// must be marked kill.
279  virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
280                                   MachineBasicBlock::iterator MI,
281                                   unsigned SrcReg, bool isKill, int FrameIndex,
282                                   const TargetRegisterClass *RC) const {
283    assert(0 && "Target didn't implement TargetInstrInfo::storeRegToStackSlot!");
284  }
285
286  /// loadRegFromStackSlot - Load the specified register of the given register
287  /// class from the specified stack frame index. The load instruction is to be
288  /// added to the given machine basic block before the specified machine
289  /// instruction.
290  virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
291                                    MachineBasicBlock::iterator MI,
292                                    unsigned DestReg, int FrameIndex,
293                                    const TargetRegisterClass *RC) const {
294    assert(0 && "Target didn't implement TargetInstrInfo::loadRegFromStackSlot!");
295  }
296
297  /// spillCalleeSavedRegisters - Issues instruction(s) to spill all callee
298  /// saved registers and returns true if it isn't possible / profitable to do
299  /// so by issuing a series of store instructions via
300  /// storeRegToStackSlot(). Returns false otherwise.
301  virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
302                                         MachineBasicBlock::iterator MI,
303                                const std::vector<CalleeSavedInfo> &CSI) const {
304    return false;
305  }
306
307  /// restoreCalleeSavedRegisters - Issues instruction(s) to restore all callee
308  /// saved registers and returns true if it isn't possible / profitable to do
309  /// so by issuing a series of load instructions via loadRegToStackSlot().
310  /// Returns false otherwise.
311  virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
312                                           MachineBasicBlock::iterator MI,
313                                const std::vector<CalleeSavedInfo> &CSI) const {
314    return false;
315  }
316
317  /// foldMemoryOperand - Attempt to fold a load or store of the specified stack
318  /// slot into the specified machine instruction for the specified operand(s).
319  /// If this is possible, a new instruction is returned with the specified
320  /// operand folded, otherwise NULL is returned. The client is responsible for
321  /// removing the old instruction and adding the new one in the instruction
322  /// stream.
323  MachineInstr* foldMemoryOperand(MachineFunction &MF,
324                                  MachineInstr* MI,
325                                  const SmallVectorImpl<unsigned> &Ops,
326                                  int FrameIndex) const;
327
328  /// foldMemoryOperand - Same as the previous version except it allows folding
329  /// of any load and store from / to any address, not just from a specific
330  /// stack slot.
331  MachineInstr* foldMemoryOperand(MachineFunction &MF,
332                                  MachineInstr* MI,
333                                  const SmallVectorImpl<unsigned> &Ops,
334                                  MachineInstr* LoadMI) const;
335
336protected:
337  /// foldMemoryOperandImpl - Target-dependent implementation for
338  /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
339  /// take care of adding a MachineMemOperand to the newly created instruction.
340  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
341                                          MachineInstr* MI,
342                                          const SmallVectorImpl<unsigned> &Ops,
343                                          int FrameIndex) const {
344    return 0;
345  }
346
347  /// foldMemoryOperandImpl - Target-dependent implementation for
348  /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
349  /// take care of adding a MachineMemOperand to the newly created instruction.
350  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
351                                              MachineInstr* MI,
352                                              const SmallVectorImpl<unsigned> &Ops,
353                                              MachineInstr* LoadMI) const {
354    return 0;
355  }
356
357public:
358  /// canFoldMemoryOperand - Returns true for the specified load / store if
359  /// folding is possible.
360  virtual
361  bool canFoldMemoryOperand(const MachineInstr *MI,
362                            const SmallVectorImpl<unsigned> &Ops) const {
363    return false;
364  }
365
366  /// unfoldMemoryOperand - Separate a single instruction which folded a load or
367  /// a store or a load and a store into two or more instruction. If this is
368  /// possible, returns true as well as the new instructions by reference.
369  virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
370                                unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
371                                 SmallVectorImpl<MachineInstr*> &NewMIs) const{
372    return false;
373  }
374
375  virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
376                                   SmallVectorImpl<SDNode*> &NewNodes) const {
377    return false;
378  }
379
380  /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
381  /// instruction after load / store are unfolded from an instruction of the
382  /// specified opcode. It returns zero if the specified unfolding is not
383  /// possible.
384  virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
385                                      bool UnfoldLoad, bool UnfoldStore) const {
386    return 0;
387  }
388
389  /// BlockHasNoFallThrough - Return true if the specified block does not
390  /// fall-through into its successor block.  This is primarily used when a
391  /// branch is unanalyzable.  It is useful for things like unconditional
392  /// indirect branches (jump tables).
393  virtual bool BlockHasNoFallThrough(const MachineBasicBlock &MBB) const {
394    return false;
395  }
396
397  /// ReverseBranchCondition - Reverses the branch condition of the specified
398  /// condition list, returning false on success and true if it cannot be
399  /// reversed.
400  virtual
401  bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
402    return true;
403  }
404
405  /// insertNoop - Insert a noop into the instruction stream at the specified
406  /// point.
407  virtual void insertNoop(MachineBasicBlock &MBB,
408                          MachineBasicBlock::iterator MI) const;
409
410  /// isPredicated - Returns true if the instruction is already predicated.
411  ///
412  virtual bool isPredicated(const MachineInstr *MI) const {
413    return false;
414  }
415
416  /// isUnpredicatedTerminator - Returns true if the instruction is a
417  /// terminator instruction that has not been predicated.
418  virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const;
419
420  /// PredicateInstruction - Convert the instruction into a predicated
421  /// instruction. It returns true if the operation was successful.
422  virtual
423  bool PredicateInstruction(MachineInstr *MI,
424                        const SmallVectorImpl<MachineOperand> &Pred) const = 0;
425
426  /// SubsumesPredicate - Returns true if the first specified predicate
427  /// subsumes the second, e.g. GE subsumes GT.
428  virtual
429  bool SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
430                         const SmallVectorImpl<MachineOperand> &Pred2) const {
431    return false;
432  }
433
434  /// DefinesPredicate - If the specified instruction defines any predicate
435  /// or condition code register(s) used for predication, returns true as well
436  /// as the definition predicate(s) by reference.
437  virtual bool DefinesPredicate(MachineInstr *MI,
438                                std::vector<MachineOperand> &Pred) const {
439    return false;
440  }
441
442  /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
443  /// instruction that defines the specified register class.
444  virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
445    return true;
446  }
447
448  /// isDeadInstruction - Return true if the instruction is considered dead.
449  /// This allows some late codegen passes to delete them.
450  virtual bool isDeadInstruction(const MachineInstr *MI) const = 0;
451
452  /// GetInstSize - Returns the size of the specified Instruction.
453  ///
454  virtual unsigned GetInstSizeInBytes(const MachineInstr *MI) const {
455    assert(0 && "Target didn't implement TargetInstrInfo::GetInstSize!");
456    return 0;
457  }
458
459  /// GetFunctionSizeInBytes - Returns the size of the specified MachineFunction.
460  ///
461  virtual unsigned GetFunctionSizeInBytes(const MachineFunction &MF) const = 0;
462};
463
464/// TargetInstrInfoImpl - This is the default implementation of
465/// TargetInstrInfo, which just provides a couple of default implementations
466/// for various methods.  This separated out because it is implemented in
467/// libcodegen, not in libtarget.
468class TargetInstrInfoImpl : public TargetInstrInfo {
469protected:
470  TargetInstrInfoImpl(const TargetInstrDesc *desc, unsigned NumOpcodes)
471  : TargetInstrInfo(desc, NumOpcodes) {}
472public:
473  virtual MachineInstr *commuteInstruction(MachineInstr *MI,
474                                           bool NewMI = false) const;
475  virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
476                                     unsigned &SrcOpIdx2) const;
477  virtual bool PredicateInstruction(MachineInstr *MI,
478                            const SmallVectorImpl<MachineOperand> &Pred) const;
479  virtual void reMaterialize(MachineBasicBlock &MBB,
480                             MachineBasicBlock::iterator MI,
481                             unsigned DestReg, unsigned SubReg,
482                             const MachineInstr *Orig) const;
483  virtual bool isDeadInstruction(const MachineInstr *MI) const;
484
485  virtual unsigned GetFunctionSizeInBytes(const MachineFunction &MF) const;
486};
487
488} // End llvm namespace
489
490#endif
491