TargetInstrInfo.h revision f6e8e6bace845cbbb6c1f6d859ffd8a3a154222b
1//===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the target machine instructions to the code generator.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_TARGET_TARGETINSTRINFO_H
15#define LLVM_TARGET_TARGETINSTRINFO_H
16
17#include "llvm/CodeGen/MachineBasicBlock.h"
18#include "llvm/Support/DataTypes.h"
19#include <vector>
20#include <cassert>
21
22namespace llvm {
23
24class MachineInstr;
25class TargetMachine;
26class Value;
27class Type;
28class Instruction;
29class Constant;
30class Function;
31class MachineCodeForInstruction;
32class TargetRegisterClass;
33
34//---------------------------------------------------------------------------
35// Data types used to define information about a single machine instruction
36//---------------------------------------------------------------------------
37
38typedef short MachineOpCode;
39typedef unsigned InstrSchedClass;
40
41//---------------------------------------------------------------------------
42// struct TargetInstrDescriptor:
43//  Predefined information about each machine instruction.
44//  Designed to initialized statically.
45//
46
47const unsigned M_BRANCH_FLAG           = 1 << 0;
48const unsigned M_CALL_FLAG             = 1 << 1;
49const unsigned M_RET_FLAG              = 1 << 2;
50const unsigned M_BARRIER_FLAG          = 1 << 3;
51const unsigned M_DELAY_SLOT_FLAG       = 1 << 4;
52const unsigned M_LOAD_FLAG             = 1 << 5;
53const unsigned M_STORE_FLAG            = 1 << 6;
54
55// M_2_ADDR_FLAG - 3-addr instructions which really work like 2-addr ones.
56const unsigned M_2_ADDR_FLAG           = 1 << 7;
57
58// M_CONVERTIBLE_TO_3_ADDR - This is a M_2_ADDR_FLAG instruction which can be
59// changed into a 3-address instruction if the first two operands cannot be
60// assigned to the same register.  The target must implement the
61// TargetInstrInfo::convertToThreeAddress method for this instruction.
62const unsigned M_CONVERTIBLE_TO_3_ADDR = 1 << 8;
63
64// This M_COMMUTABLE - is a 2- or 3-address instruction (of the form X = op Y,
65// Z), which produces the same result if Y and Z are exchanged.
66const unsigned M_COMMUTABLE            = 1 << 9;
67
68// M_TERMINATOR_FLAG - Is this instruction part of the terminator for a basic
69// block?  Typically this is things like return and branch instructions.
70// Various passes use this to insert code into the bottom of a basic block, but
71// before control flow occurs.
72const unsigned M_TERMINATOR_FLAG       = 1 << 10;
73
74// M_USES_CUSTOM_DAG_SCHED_INSERTION - Set if this instruction requires custom
75// insertion support when the DAG scheduler is inserting it into a machine basic
76// block.
77const unsigned M_USES_CUSTOM_DAG_SCHED_INSERTION = 1 << 11;
78
79// M_VARIABLE_OPS - Set if this instruction can have a variable number of extra
80// operands in addition to the minimum number operands specified.
81const unsigned M_VARIABLE_OPS = 1 << 12;
82
83// M_PREDICATED - Set if this instruction has a predicate that controls its
84// execution.
85const unsigned M_PREDICATED = 1 << 13;
86
87
88// Machine operand flags
89// M_LOOK_UP_PTR_REG_CLASS - Set if this operand is a pointer value and it
90// requires a callback to look up its register class.
91const unsigned M_LOOK_UP_PTR_REG_CLASS = 1 << 0;
92
93/// M_PREDICATE_OPERAND - Set if this is the first operand of a predicate
94/// operand that controls an M_PREDICATED instruction.
95const unsigned M_PREDICATE_OPERAND = 1 << 1;
96
97
98/// TargetOperandInfo - This holds information about one operand of a machine
99/// instruction, indicating the register class for register operands, etc.
100///
101class TargetOperandInfo {
102public:
103  /// RegClass - This specifies the register class enumeration of the operand
104  /// if the operand is a register.  If not, this contains 0.
105  unsigned short RegClass;
106  unsigned short Flags;
107  /// Lower 16 bits are used to specify which constraints are set. The higher 16
108  /// bits are used to specify the value of constraints (4 bits each).
109  unsigned int Constraints;
110  /// Currently no other information.
111};
112
113
114class TargetInstrDescriptor {
115public:
116  const char *    Name;          // Assembly language mnemonic for the opcode.
117  unsigned        numOperands;   // Num of args (may be more if variable_ops).
118  InstrSchedClass schedClass;    // enum  identifying instr sched class
119  unsigned        Flags;         // flags identifying machine instr class
120  unsigned        TSFlags;       // Target Specific Flag values
121  const unsigned *ImplicitUses;  // Registers implicitly read by this instr
122  const unsigned *ImplicitDefs;  // Registers implicitly defined by this instr
123  const TargetOperandInfo *OpInfo; // 'numOperands' entries about operands.
124};
125
126
127//---------------------------------------------------------------------------
128///
129/// TargetInstrInfo - Interface to description of machine instructions
130///
131class TargetInstrInfo {
132  const TargetInstrDescriptor* desc;    // raw array to allow static init'n
133  unsigned NumOpcodes;                  // number of entries in the desc array
134  unsigned numRealOpCodes;              // number of non-dummy op codes
135
136  TargetInstrInfo(const TargetInstrInfo &);  // DO NOT IMPLEMENT
137  void operator=(const TargetInstrInfo &);   // DO NOT IMPLEMENT
138public:
139  TargetInstrInfo(const TargetInstrDescriptor *desc, unsigned NumOpcodes);
140  virtual ~TargetInstrInfo();
141
142  // Invariant opcodes: All instruction sets have these as their low opcodes.
143  enum {
144    PHI = 0,
145    INLINEASM = 1
146  };
147
148  unsigned getNumOpcodes() const { return NumOpcodes; }
149
150  /// get - Return the machine instruction descriptor that corresponds to the
151  /// specified instruction opcode.
152  ///
153  const TargetInstrDescriptor& get(MachineOpCode Opcode) const {
154    assert((unsigned)Opcode < NumOpcodes);
155    return desc[Opcode];
156  }
157
158  const char *getName(MachineOpCode Opcode) const {
159    return get(Opcode).Name;
160  }
161
162  int getNumOperands(MachineOpCode Opcode) const {
163    return get(Opcode).numOperands;
164  }
165
166  InstrSchedClass getSchedClass(MachineOpCode Opcode) const {
167    return get(Opcode).schedClass;
168  }
169
170  const unsigned *getImplicitUses(MachineOpCode Opcode) const {
171    return get(Opcode).ImplicitUses;
172  }
173
174  const unsigned *getImplicitDefs(MachineOpCode Opcode) const {
175    return get(Opcode).ImplicitDefs;
176  }
177
178
179  //
180  // Query instruction class flags according to the machine-independent
181  // flags listed above.
182  //
183  bool isReturn(MachineOpCode Opcode) const {
184    return get(Opcode).Flags & M_RET_FLAG;
185  }
186
187  bool isTwoAddrInstr(MachineOpCode Opcode) const {
188    return get(Opcode).Flags & M_2_ADDR_FLAG;
189  }
190  bool isPredicated(MachineOpCode Opcode) const {
191    return get(Opcode).Flags & M_PREDICATED;
192  }
193  bool isCommutableInstr(MachineOpCode Opcode) const {
194    return get(Opcode).Flags & M_COMMUTABLE;
195  }
196  bool isTerminatorInstr(unsigned Opcode) const {
197    return get(Opcode).Flags & M_TERMINATOR_FLAG;
198  }
199
200  bool isBranch(MachineOpCode Opcode) const {
201    return get(Opcode).Flags & M_BRANCH_FLAG;
202  }
203
204  /// isBarrier - Returns true if the specified instruction stops control flow
205  /// from executing the instruction immediately following it.  Examples include
206  /// unconditional branches and return instructions.
207  bool isBarrier(MachineOpCode Opcode) const {
208    return get(Opcode).Flags & M_BARRIER_FLAG;
209  }
210
211  bool isCall(MachineOpCode Opcode) const {
212    return get(Opcode).Flags & M_CALL_FLAG;
213  }
214  bool isLoad(MachineOpCode Opcode) const {
215    return get(Opcode).Flags & M_LOAD_FLAG;
216  }
217  bool isStore(MachineOpCode Opcode) const {
218    return get(Opcode).Flags & M_STORE_FLAG;
219  }
220
221  /// hasDelaySlot - Returns true if the specified instruction has a delay slot
222  /// which must be filled by the code generator.
223  bool hasDelaySlot(unsigned Opcode) const {
224    return get(Opcode).Flags & M_DELAY_SLOT_FLAG;
225  }
226
227  /// usesCustomDAGSchedInsertionHook - Return true if this instruction requires
228  /// custom insertion support when the DAG scheduler is inserting it into a
229  /// machine basic block.
230  bool usesCustomDAGSchedInsertionHook(unsigned Opcode) const {
231    return get(Opcode).Flags & M_USES_CUSTOM_DAG_SCHED_INSERTION;
232  }
233
234  bool hasVariableOperands(MachineOpCode Opcode) const {
235    return get(Opcode).Flags & M_VARIABLE_OPS;
236  }
237
238  // Operand constraints: only "tied_to" for now.
239  enum OperandConstraint {
240    TIED_TO = 0  // Must be allocated the same register as.
241  };
242
243  /// getOperandConstraint - Returns the value of the specific constraint if
244  /// it is set. Returns -1 if it is not set.
245  int getOperandConstraint(MachineOpCode Opcode, unsigned OpNum,
246                           OperandConstraint Constraint) const {
247    assert(OpNum < get(Opcode).numOperands &&
248           "Invalid operand # of TargetInstrInfo");
249    if (get(Opcode).OpInfo[OpNum].Constraints & (1 << Constraint)) {
250      unsigned Pos = 16 + Constraint * 4;
251      return (int)(get(Opcode).OpInfo[OpNum].Constraints >> Pos) & 0xf;
252    }
253    return -1;
254  }
255
256  /// findTiedToSrcOperand - Returns the operand that is tied to the specified
257  /// dest operand. Returns -1 if there isn't one.
258  int findTiedToSrcOperand(MachineOpCode Opcode, unsigned OpNum) const;
259
260  /// getDWARF_LABELOpcode - Return the opcode of the target's DWARF_LABEL
261  /// instruction if it has one.  This is used by codegen passes that update
262  /// DWARF line number info as they modify the code.
263  virtual unsigned getDWARF_LABELOpcode() const {
264    return 0;
265  }
266
267  /// Return true if the instruction is a register to register move
268  /// and leave the source and dest operands in the passed parameters.
269  virtual bool isMoveInstr(const MachineInstr& MI,
270                           unsigned& sourceReg,
271                           unsigned& destReg) const {
272    return false;
273  }
274
275  /// isLoadFromStackSlot - If the specified machine instruction is a direct
276  /// load from a stack slot, return the virtual or physical register number of
277  /// the destination along with the FrameIndex of the loaded stack slot.  If
278  /// not, return 0.  This predicate must return 0 if the instruction has
279  /// any side effects other than loading from the stack slot.
280  virtual unsigned isLoadFromStackSlot(MachineInstr *MI, int &FrameIndex) const{
281    return 0;
282  }
283
284  /// isStoreToStackSlot - If the specified machine instruction is a direct
285  /// store to a stack slot, return the virtual or physical register number of
286  /// the source reg along with the FrameIndex of the loaded stack slot.  If
287  /// not, return 0.  This predicate must return 0 if the instruction has
288  /// any side effects other than storing to the stack slot.
289  virtual unsigned isStoreToStackSlot(MachineInstr *MI, int &FrameIndex) const {
290    return 0;
291  }
292
293  /// convertToThreeAddress - This method must be implemented by targets that
294  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
295  /// may be able to convert a two-address instruction into a true
296  /// three-address instruction on demand.  This allows the X86 target (for
297  /// example) to convert ADD and SHL instructions into LEA instructions if they
298  /// would require register copies due to two-addressness.
299  ///
300  /// This method returns a null pointer if the transformation cannot be
301  /// performed, otherwise it returns the new instruction.
302  ///
303  virtual MachineInstr *convertToThreeAddress(MachineInstr *TA) const {
304    return 0;
305  }
306
307  /// commuteInstruction - If a target has any instructions that are commutable,
308  /// but require converting to a different instruction or making non-trivial
309  /// changes to commute them, this method can overloaded to do this.  The
310  /// default implementation of this method simply swaps the first two operands
311  /// of MI and returns it.
312  ///
313  /// If a target wants to make more aggressive changes, they can construct and
314  /// return a new machine instruction.  If an instruction cannot commute, it
315  /// can also return null.
316  ///
317  virtual MachineInstr *commuteInstruction(MachineInstr *MI) const;
318
319  /// AnalyzeBranch - Analyze the branching code at the end of MBB, returning
320  /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
321  /// implemented for a target).  Upon success, this returns false and returns
322  /// with the following information in various cases:
323  ///
324  /// 1. If this block ends with no branches (it just falls through to its succ)
325  ///    just return false, leaving TBB/FBB null.
326  /// 2. If this block ends with only an unconditional branch, it sets TBB to be
327  ///    the destination block.
328  /// 3. If this block ends with an conditional branch, it returns the 'true'
329  ///    destination in TBB, the 'false' destination in FBB, and a list of
330  ///    operands that evaluate the condition.  These operands can be passed to
331  ///    other TargetInstrInfo methods to create new branches.
332  ///
333  /// Note that RemoveBranch and InsertBranch must be implemented to support
334  /// cases where this method returns success.
335  ///
336  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
337                             MachineBasicBlock *&FBB,
338                             std::vector<MachineOperand> &Cond) const {
339    return true;
340  }
341
342  /// RemoveBranch - Remove the branching code at the end of the specific MBB.
343  /// this is only invoked in cases where AnalyzeBranch returns success.
344  virtual void RemoveBranch(MachineBasicBlock &MBB) const {
345    assert(0 && "Target didn't implement TargetInstrInfo::RemoveBranch!");
346  }
347
348  /// InsertBranch - Insert a branch into the end of the specified
349  /// MachineBasicBlock.  This operands to this method are the same as those
350  /// returned by AnalyzeBranch.  This is invoked in cases where AnalyzeBranch
351  /// returns success and when an unconditional branch (TBB is non-null, FBB is
352  /// null, Cond is empty) needs to be inserted.
353  virtual void InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
354                            MachineBasicBlock *FBB,
355                            const std::vector<MachineOperand> &Cond) const {
356    assert(0 && "Target didn't implement TargetInstrInfo::InsertBranch!");
357  }
358
359  /// BlockHasNoFallThrough - Return true if the specified block does not
360  /// fall-through into its successor block.  This is primarily used when a
361  /// branch is unanalyzable.  It is useful for things like unconditional
362  /// indirect branches (jump tables).
363  virtual bool BlockHasNoFallThrough(MachineBasicBlock &MBB) const {
364    return false;
365  }
366
367  /// ReverseBranchCondition - Reverses the branch condition of the specified
368  /// condition list, returning false on success and true if it cannot be
369  /// reversed.
370  virtual bool ReverseBranchCondition(std::vector<MachineOperand> &Cond) const {
371    return true;
372  }
373
374  /// insertNoop - Insert a noop into the instruction stream at the specified
375  /// point.
376  virtual void insertNoop(MachineBasicBlock &MBB,
377                          MachineBasicBlock::iterator MI) const {
378    assert(0 && "Target didn't implement insertNoop!");
379    abort();
380  }
381
382  /// getPointerRegClass - Returns a TargetRegisterClass used for pointer
383  /// values.
384  virtual const TargetRegisterClass *getPointerRegClass() const {
385    assert(0 && "Target didn't implement getPointerRegClass!");
386    abort();
387  }
388};
389
390} // End llvm namespace
391
392#endif
393