ScalarEvolution.cpp revision 414de4df41bba7f9e2b06723ae2ddae51dac3e0f
1//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library.  First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle.  These classes are reference counted, managed by the SCEVHandle
18// class.  We only create one SCEV of a particular shape, so pointer-comparisons
19// for equality are legal.
20//
21// One important aspect of the SCEV objects is that they are never cyclic, even
22// if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
23// the PHI node is one of the idioms that we can represent (e.g., a polynomial
24// recurrence) then we represent it directly as a recurrence node, otherwise we
25// represent it as a SCEVUnknown node.
26//
27// In addition to being able to represent expressions of various types, we also
28// have folders that are used to build the *canonical* representation for a
29// particular expression.  These folders are capable of using a variety of
30// rewrite rules to simplify the expressions.
31//
32// Once the folders are defined, we can implement the more interesting
33// higher-level code, such as the code that recognizes PHI nodes of various
34// types, computes the execution count of a loop, etc.
35//
36// TODO: We should use these routines and value representations to implement
37// dependence analysis!
38//
39//===----------------------------------------------------------------------===//
40//
41// There are several good references for the techniques used in this analysis.
42//
43//  Chains of recurrences -- a method to expedite the evaluation
44//  of closed-form functions
45//  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
46//
47//  On computational properties of chains of recurrences
48//  Eugene V. Zima
49//
50//  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
51//  Robert A. van Engelen
52//
53//  Efficient Symbolic Analysis for Optimizing Compilers
54//  Robert A. van Engelen
55//
56//  Using the chains of recurrences algebra for data dependence testing and
57//  induction variable substitution
58//  MS Thesis, Johnie Birch
59//
60//===----------------------------------------------------------------------===//
61
62#define DEBUG_TYPE "scalar-evolution"
63#include "llvm/Analysis/ScalarEvolutionExpressions.h"
64#include "llvm/Constants.h"
65#include "llvm/DerivedTypes.h"
66#include "llvm/GlobalVariable.h"
67#include "llvm/Instructions.h"
68#include "llvm/Analysis/ConstantFolding.h"
69#include "llvm/Analysis/LoopInfo.h"
70#include "llvm/Assembly/Writer.h"
71#include "llvm/Transforms/Scalar.h"
72#include "llvm/Support/CFG.h"
73#include "llvm/Support/CommandLine.h"
74#include "llvm/Support/Compiler.h"
75#include "llvm/Support/ConstantRange.h"
76#include "llvm/Support/InstIterator.h"
77#include "llvm/Support/ManagedStatic.h"
78#include "llvm/Support/MathExtras.h"
79#include "llvm/Support/Streams.h"
80#include "llvm/ADT/Statistic.h"
81#include <ostream>
82#include <algorithm>
83#include <cmath>
84using namespace llvm;
85
86STATISTIC(NumBruteForceEvaluations,
87          "Number of brute force evaluations needed to "
88          "calculate high-order polynomial exit values");
89STATISTIC(NumArrayLenItCounts,
90          "Number of trip counts computed with array length");
91STATISTIC(NumTripCountsComputed,
92          "Number of loops with predictable loop counts");
93STATISTIC(NumTripCountsNotComputed,
94          "Number of loops without predictable loop counts");
95STATISTIC(NumBruteForceTripCountsComputed,
96          "Number of loops with trip counts computed by force");
97
98cl::opt<unsigned>
99MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
100                        cl::desc("Maximum number of iterations SCEV will "
101                                 "symbolically execute a constant derived loop"),
102                        cl::init(100));
103
104namespace {
105  RegisterPass<ScalarEvolution>
106  R("scalar-evolution", "Scalar Evolution Analysis");
107}
108
109//===----------------------------------------------------------------------===//
110//                           SCEV class definitions
111//===----------------------------------------------------------------------===//
112
113//===----------------------------------------------------------------------===//
114// Implementation of the SCEV class.
115//
116SCEV::~SCEV() {}
117void SCEV::dump() const {
118  print(cerr);
119}
120
121/// getValueRange - Return the tightest constant bounds that this value is
122/// known to have.  This method is only valid on integer SCEV objects.
123ConstantRange SCEV::getValueRange() const {
124  const Type *Ty = getType();
125  assert(Ty->isInteger() && "Can't get range for a non-integer SCEV!");
126  // Default to a full range if no better information is available.
127  return ConstantRange(getBitWidth());
128}
129
130uint32_t SCEV::getBitWidth() const {
131  if (const IntegerType* ITy = dyn_cast<IntegerType>(getType()))
132    return ITy->getBitWidth();
133  return 0;
134}
135
136
137SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {}
138
139bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
140  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
141  return false;
142}
143
144const Type *SCEVCouldNotCompute::getType() const {
145  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
146  return 0;
147}
148
149bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
150  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
151  return false;
152}
153
154SCEVHandle SCEVCouldNotCompute::
155replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
156                                  const SCEVHandle &Conc) const {
157  return this;
158}
159
160void SCEVCouldNotCompute::print(std::ostream &OS) const {
161  OS << "***COULDNOTCOMPUTE***";
162}
163
164bool SCEVCouldNotCompute::classof(const SCEV *S) {
165  return S->getSCEVType() == scCouldNotCompute;
166}
167
168
169// SCEVConstants - Only allow the creation of one SCEVConstant for any
170// particular value.  Don't use a SCEVHandle here, or else the object will
171// never be deleted!
172static ManagedStatic<std::map<ConstantInt*, SCEVConstant*> > SCEVConstants;
173
174
175SCEVConstant::~SCEVConstant() {
176  SCEVConstants->erase(V);
177}
178
179SCEVHandle SCEVConstant::get(ConstantInt *V) {
180  SCEVConstant *&R = (*SCEVConstants)[V];
181  if (R == 0) R = new SCEVConstant(V);
182  return R;
183}
184
185ConstantRange SCEVConstant::getValueRange() const {
186  return ConstantRange(V->getValue());
187}
188
189const Type *SCEVConstant::getType() const { return V->getType(); }
190
191void SCEVConstant::print(std::ostream &OS) const {
192  WriteAsOperand(OS, V, false);
193}
194
195// SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any
196// particular input.  Don't use a SCEVHandle here, or else the object will
197// never be deleted!
198static ManagedStatic<std::map<std::pair<SCEV*, const Type*>,
199                     SCEVTruncateExpr*> > SCEVTruncates;
200
201SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty)
202  : SCEV(scTruncate), Op(op), Ty(ty) {
203  assert(Op->getType()->isInteger() && Ty->isInteger() &&
204         "Cannot truncate non-integer value!");
205  assert(Op->getType()->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits()
206         && "This is not a truncating conversion!");
207}
208
209SCEVTruncateExpr::~SCEVTruncateExpr() {
210  SCEVTruncates->erase(std::make_pair(Op, Ty));
211}
212
213ConstantRange SCEVTruncateExpr::getValueRange() const {
214  return getOperand()->getValueRange().truncate(getBitWidth());
215}
216
217void SCEVTruncateExpr::print(std::ostream &OS) const {
218  OS << "(truncate " << *Op << " to " << *Ty << ")";
219}
220
221// SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any
222// particular input.  Don't use a SCEVHandle here, or else the object will never
223// be deleted!
224static ManagedStatic<std::map<std::pair<SCEV*, const Type*>,
225                     SCEVZeroExtendExpr*> > SCEVZeroExtends;
226
227SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty)
228  : SCEV(scZeroExtend), Op(op), Ty(ty) {
229  assert(Op->getType()->isInteger() && Ty->isInteger() &&
230         "Cannot zero extend non-integer value!");
231  assert(Op->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits()
232         && "This is not an extending conversion!");
233}
234
235SCEVZeroExtendExpr::~SCEVZeroExtendExpr() {
236  SCEVZeroExtends->erase(std::make_pair(Op, Ty));
237}
238
239ConstantRange SCEVZeroExtendExpr::getValueRange() const {
240  return getOperand()->getValueRange().zeroExtend(getBitWidth());
241}
242
243void SCEVZeroExtendExpr::print(std::ostream &OS) const {
244  OS << "(zeroextend " << *Op << " to " << *Ty << ")";
245}
246
247// SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any
248// particular input.  Don't use a SCEVHandle here, or else the object will never
249// be deleted!
250static ManagedStatic<std::map<std::pair<unsigned, std::vector<SCEV*> >,
251                     SCEVCommutativeExpr*> > SCEVCommExprs;
252
253SCEVCommutativeExpr::~SCEVCommutativeExpr() {
254  SCEVCommExprs->erase(std::make_pair(getSCEVType(),
255                                      std::vector<SCEV*>(Operands.begin(),
256                                                         Operands.end())));
257}
258
259void SCEVCommutativeExpr::print(std::ostream &OS) const {
260  assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
261  const char *OpStr = getOperationStr();
262  OS << "(" << *Operands[0];
263  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
264    OS << OpStr << *Operands[i];
265  OS << ")";
266}
267
268SCEVHandle SCEVCommutativeExpr::
269replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
270                                  const SCEVHandle &Conc) const {
271  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
272    SCEVHandle H = getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc);
273    if (H != getOperand(i)) {
274      std::vector<SCEVHandle> NewOps;
275      NewOps.reserve(getNumOperands());
276      for (unsigned j = 0; j != i; ++j)
277        NewOps.push_back(getOperand(j));
278      NewOps.push_back(H);
279      for (++i; i != e; ++i)
280        NewOps.push_back(getOperand(i)->
281                         replaceSymbolicValuesWithConcrete(Sym, Conc));
282
283      if (isa<SCEVAddExpr>(this))
284        return SCEVAddExpr::get(NewOps);
285      else if (isa<SCEVMulExpr>(this))
286        return SCEVMulExpr::get(NewOps);
287      else
288        assert(0 && "Unknown commutative expr!");
289    }
290  }
291  return this;
292}
293
294
295// SCEVSDivs - Only allow the creation of one SCEVSDivExpr for any particular
296// input.  Don't use a SCEVHandle here, or else the object will never be
297// deleted!
298static ManagedStatic<std::map<std::pair<SCEV*, SCEV*>,
299                     SCEVSDivExpr*> > SCEVSDivs;
300
301SCEVSDivExpr::~SCEVSDivExpr() {
302  SCEVSDivs->erase(std::make_pair(LHS, RHS));
303}
304
305void SCEVSDivExpr::print(std::ostream &OS) const {
306  OS << "(" << *LHS << " /s " << *RHS << ")";
307}
308
309const Type *SCEVSDivExpr::getType() const {
310  return LHS->getType();
311}
312
313// SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any
314// particular input.  Don't use a SCEVHandle here, or else the object will never
315// be deleted!
316static ManagedStatic<std::map<std::pair<const Loop *, std::vector<SCEV*> >,
317                     SCEVAddRecExpr*> > SCEVAddRecExprs;
318
319SCEVAddRecExpr::~SCEVAddRecExpr() {
320  SCEVAddRecExprs->erase(std::make_pair(L,
321                                        std::vector<SCEV*>(Operands.begin(),
322                                                           Operands.end())));
323}
324
325SCEVHandle SCEVAddRecExpr::
326replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
327                                  const SCEVHandle &Conc) const {
328  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
329    SCEVHandle H = getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc);
330    if (H != getOperand(i)) {
331      std::vector<SCEVHandle> NewOps;
332      NewOps.reserve(getNumOperands());
333      for (unsigned j = 0; j != i; ++j)
334        NewOps.push_back(getOperand(j));
335      NewOps.push_back(H);
336      for (++i; i != e; ++i)
337        NewOps.push_back(getOperand(i)->
338                         replaceSymbolicValuesWithConcrete(Sym, Conc));
339
340      return get(NewOps, L);
341    }
342  }
343  return this;
344}
345
346
347bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
348  // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't
349  // contain L and if the start is invariant.
350  return !QueryLoop->contains(L->getHeader()) &&
351         getOperand(0)->isLoopInvariant(QueryLoop);
352}
353
354
355void SCEVAddRecExpr::print(std::ostream &OS) const {
356  OS << "{" << *Operands[0];
357  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
358    OS << ",+," << *Operands[i];
359  OS << "}<" << L->getHeader()->getName() + ">";
360}
361
362// SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular
363// value.  Don't use a SCEVHandle here, or else the object will never be
364// deleted!
365static ManagedStatic<std::map<Value*, SCEVUnknown*> > SCEVUnknowns;
366
367SCEVUnknown::~SCEVUnknown() { SCEVUnknowns->erase(V); }
368
369bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
370  // All non-instruction values are loop invariant.  All instructions are loop
371  // invariant if they are not contained in the specified loop.
372  if (Instruction *I = dyn_cast<Instruction>(V))
373    return !L->contains(I->getParent());
374  return true;
375}
376
377const Type *SCEVUnknown::getType() const {
378  return V->getType();
379}
380
381void SCEVUnknown::print(std::ostream &OS) const {
382  WriteAsOperand(OS, V, false);
383}
384
385//===----------------------------------------------------------------------===//
386//                               SCEV Utilities
387//===----------------------------------------------------------------------===//
388
389namespace {
390  /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
391  /// than the complexity of the RHS.  This comparator is used to canonicalize
392  /// expressions.
393  struct VISIBILITY_HIDDEN SCEVComplexityCompare {
394    bool operator()(SCEV *LHS, SCEV *RHS) {
395      return LHS->getSCEVType() < RHS->getSCEVType();
396    }
397  };
398}
399
400/// GroupByComplexity - Given a list of SCEV objects, order them by their
401/// complexity, and group objects of the same complexity together by value.
402/// When this routine is finished, we know that any duplicates in the vector are
403/// consecutive and that complexity is monotonically increasing.
404///
405/// Note that we go take special precautions to ensure that we get determinstic
406/// results from this routine.  In other words, we don't want the results of
407/// this to depend on where the addresses of various SCEV objects happened to
408/// land in memory.
409///
410static void GroupByComplexity(std::vector<SCEVHandle> &Ops) {
411  if (Ops.size() < 2) return;  // Noop
412  if (Ops.size() == 2) {
413    // This is the common case, which also happens to be trivially simple.
414    // Special case it.
415    if (Ops[0]->getSCEVType() > Ops[1]->getSCEVType())
416      std::swap(Ops[0], Ops[1]);
417    return;
418  }
419
420  // Do the rough sort by complexity.
421  std::sort(Ops.begin(), Ops.end(), SCEVComplexityCompare());
422
423  // Now that we are sorted by complexity, group elements of the same
424  // complexity.  Note that this is, at worst, N^2, but the vector is likely to
425  // be extremely short in practice.  Note that we take this approach because we
426  // do not want to depend on the addresses of the objects we are grouping.
427  for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
428    SCEV *S = Ops[i];
429    unsigned Complexity = S->getSCEVType();
430
431    // If there are any objects of the same complexity and same value as this
432    // one, group them.
433    for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
434      if (Ops[j] == S) { // Found a duplicate.
435        // Move it to immediately after i'th element.
436        std::swap(Ops[i+1], Ops[j]);
437        ++i;   // no need to rescan it.
438        if (i == e-2) return;  // Done!
439      }
440    }
441  }
442}
443
444
445
446//===----------------------------------------------------------------------===//
447//                      Simple SCEV method implementations
448//===----------------------------------------------------------------------===//
449
450/// getIntegerSCEV - Given an integer or FP type, create a constant for the
451/// specified signed integer value and return a SCEV for the constant.
452SCEVHandle SCEVUnknown::getIntegerSCEV(int Val, const Type *Ty) {
453  Constant *C;
454  if (Val == 0)
455    C = Constant::getNullValue(Ty);
456  else if (Ty->isFloatingPoint())
457    C = ConstantFP::get(Ty, Val);
458  else
459    C = ConstantInt::get(Ty, Val);
460  return SCEVUnknown::get(C);
461}
462
463SCEVHandle SCEVUnknown::getIntegerSCEV(const APInt& Val) {
464  return SCEVUnknown::get(ConstantInt::get(Val));
465}
466
467/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
468/// input value to the specified type.  If the type must be extended, it is zero
469/// extended.
470static SCEVHandle getTruncateOrZeroExtend(const SCEVHandle &V, const Type *Ty) {
471  const Type *SrcTy = V->getType();
472  assert(SrcTy->isInteger() && Ty->isInteger() &&
473         "Cannot truncate or zero extend with non-integer arguments!");
474  if (SrcTy->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits())
475    return V;  // No conversion
476  if (SrcTy->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits())
477    return SCEVTruncateExpr::get(V, Ty);
478  return SCEVZeroExtendExpr::get(V, Ty);
479}
480
481/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
482///
483SCEVHandle SCEV::getNegativeSCEV(const SCEVHandle &V) {
484  if (SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
485    return SCEVUnknown::get(ConstantExpr::getNeg(VC->getValue()));
486
487  return SCEVMulExpr::get(V, SCEVUnknown::getIntegerSCEV(-1, V->getType()));
488}
489
490/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
491///
492SCEVHandle SCEV::getMinusSCEV(const SCEVHandle &LHS, const SCEVHandle &RHS) {
493  // X - Y --> X + -Y
494  return SCEVAddExpr::get(LHS, SCEV::getNegativeSCEV(RHS));
495}
496
497
498/// PartialFact - Compute V!/(V-NumSteps)!
499static SCEVHandle PartialFact(SCEVHandle V, unsigned NumSteps) {
500  // Handle this case efficiently, it is common to have constant iteration
501  // counts while computing loop exit values.
502  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(V)) {
503    const APInt& Val = SC->getValue()->getValue();
504    APInt Result(Val.getBitWidth(), 1);
505    for (; NumSteps; --NumSteps)
506      Result *= Val-(NumSteps-1);
507    return SCEVUnknown::get(ConstantInt::get(Result));
508  }
509
510  const Type *Ty = V->getType();
511  if (NumSteps == 0)
512    return SCEVUnknown::getIntegerSCEV(1, Ty);
513
514  SCEVHandle Result = V;
515  for (unsigned i = 1; i != NumSteps; ++i)
516    Result = SCEVMulExpr::get(Result, SCEV::getMinusSCEV(V,
517                                          SCEVUnknown::getIntegerSCEV(i, Ty)));
518  return Result;
519}
520
521
522/// evaluateAtIteration - Return the value of this chain of recurrences at
523/// the specified iteration number.  We can evaluate this recurrence by
524/// multiplying each element in the chain by the binomial coefficient
525/// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
526///
527///   A*choose(It, 0) + B*choose(It, 1) + C*choose(It, 2) + D*choose(It, 3)
528///
529/// FIXME/VERIFY: I don't trust that this is correct in the face of overflow.
530/// Is the binomial equation safe using modular arithmetic??
531///
532SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It) const {
533  SCEVHandle Result = getStart();
534  int Divisor = 1;
535  const Type *Ty = It->getType();
536  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
537    SCEVHandle BC = PartialFact(It, i);
538    Divisor *= i;
539    SCEVHandle Val = SCEVSDivExpr::get(SCEVMulExpr::get(BC, getOperand(i)),
540                                       SCEVUnknown::getIntegerSCEV(Divisor,Ty));
541    Result = SCEVAddExpr::get(Result, Val);
542  }
543  return Result;
544}
545
546
547//===----------------------------------------------------------------------===//
548//                    SCEV Expression folder implementations
549//===----------------------------------------------------------------------===//
550
551SCEVHandle SCEVTruncateExpr::get(const SCEVHandle &Op, const Type *Ty) {
552  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
553    return SCEVUnknown::get(
554        ConstantExpr::getTrunc(SC->getValue(), Ty));
555
556  // If the input value is a chrec scev made out of constants, truncate
557  // all of the constants.
558  if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
559    std::vector<SCEVHandle> Operands;
560    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
561      // FIXME: This should allow truncation of other expression types!
562      if (isa<SCEVConstant>(AddRec->getOperand(i)))
563        Operands.push_back(get(AddRec->getOperand(i), Ty));
564      else
565        break;
566    if (Operands.size() == AddRec->getNumOperands())
567      return SCEVAddRecExpr::get(Operands, AddRec->getLoop());
568  }
569
570  SCEVTruncateExpr *&Result = (*SCEVTruncates)[std::make_pair(Op, Ty)];
571  if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty);
572  return Result;
573}
574
575SCEVHandle SCEVZeroExtendExpr::get(const SCEVHandle &Op, const Type *Ty) {
576  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
577    return SCEVUnknown::get(
578        ConstantExpr::getZExt(SC->getValue(), Ty));
579
580  // FIXME: If the input value is a chrec scev, and we can prove that the value
581  // did not overflow the old, smaller, value, we can zero extend all of the
582  // operands (often constants).  This would allow analysis of something like
583  // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
584
585  SCEVZeroExtendExpr *&Result = (*SCEVZeroExtends)[std::make_pair(Op, Ty)];
586  if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty);
587  return Result;
588}
589
590// get - Get a canonical add expression, or something simpler if possible.
591SCEVHandle SCEVAddExpr::get(std::vector<SCEVHandle> &Ops) {
592  assert(!Ops.empty() && "Cannot get empty add!");
593  if (Ops.size() == 1) return Ops[0];
594
595  // Sort by complexity, this groups all similar expression types together.
596  GroupByComplexity(Ops);
597
598  // If there are any constants, fold them together.
599  unsigned Idx = 0;
600  if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
601    ++Idx;
602    assert(Idx < Ops.size());
603    while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
604      // We found two constants, fold them together!
605      Constant *Fold = ConstantInt::get(LHSC->getValue()->getValue() +
606                                        RHSC->getValue()->getValue());
607      if (ConstantInt *CI = dyn_cast<ConstantInt>(Fold)) {
608        Ops[0] = SCEVConstant::get(CI);
609        Ops.erase(Ops.begin()+1);  // Erase the folded element
610        if (Ops.size() == 1) return Ops[0];
611        LHSC = cast<SCEVConstant>(Ops[0]);
612      } else {
613        // If we couldn't fold the expression, move to the next constant.  Note
614        // that this is impossible to happen in practice because we always
615        // constant fold constant ints to constant ints.
616        ++Idx;
617      }
618    }
619
620    // If we are left with a constant zero being added, strip it off.
621    if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
622      Ops.erase(Ops.begin());
623      --Idx;
624    }
625  }
626
627  if (Ops.size() == 1) return Ops[0];
628
629  // Okay, check to see if the same value occurs in the operand list twice.  If
630  // so, merge them together into an multiply expression.  Since we sorted the
631  // list, these values are required to be adjacent.
632  const Type *Ty = Ops[0]->getType();
633  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
634    if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
635      // Found a match, merge the two values into a multiply, and add any
636      // remaining values to the result.
637      SCEVHandle Two = SCEVUnknown::getIntegerSCEV(2, Ty);
638      SCEVHandle Mul = SCEVMulExpr::get(Ops[i], Two);
639      if (Ops.size() == 2)
640        return Mul;
641      Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
642      Ops.push_back(Mul);
643      return SCEVAddExpr::get(Ops);
644    }
645
646  // Okay, now we know the first non-constant operand.  If there are add
647  // operands they would be next.
648  if (Idx < Ops.size()) {
649    bool DeletedAdd = false;
650    while (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
651      // If we have an add, expand the add operands onto the end of the operands
652      // list.
653      Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
654      Ops.erase(Ops.begin()+Idx);
655      DeletedAdd = true;
656    }
657
658    // If we deleted at least one add, we added operands to the end of the list,
659    // and they are not necessarily sorted.  Recurse to resort and resimplify
660    // any operands we just aquired.
661    if (DeletedAdd)
662      return get(Ops);
663  }
664
665  // Skip over the add expression until we get to a multiply.
666  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
667    ++Idx;
668
669  // If we are adding something to a multiply expression, make sure the
670  // something is not already an operand of the multiply.  If so, merge it into
671  // the multiply.
672  for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
673    SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
674    for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
675      SCEV *MulOpSCEV = Mul->getOperand(MulOp);
676      for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
677        if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(MulOpSCEV)) {
678          // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
679          SCEVHandle InnerMul = Mul->getOperand(MulOp == 0);
680          if (Mul->getNumOperands() != 2) {
681            // If the multiply has more than two operands, we must get the
682            // Y*Z term.
683            std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
684            MulOps.erase(MulOps.begin()+MulOp);
685            InnerMul = SCEVMulExpr::get(MulOps);
686          }
687          SCEVHandle One = SCEVUnknown::getIntegerSCEV(1, Ty);
688          SCEVHandle AddOne = SCEVAddExpr::get(InnerMul, One);
689          SCEVHandle OuterMul = SCEVMulExpr::get(AddOne, Ops[AddOp]);
690          if (Ops.size() == 2) return OuterMul;
691          if (AddOp < Idx) {
692            Ops.erase(Ops.begin()+AddOp);
693            Ops.erase(Ops.begin()+Idx-1);
694          } else {
695            Ops.erase(Ops.begin()+Idx);
696            Ops.erase(Ops.begin()+AddOp-1);
697          }
698          Ops.push_back(OuterMul);
699          return SCEVAddExpr::get(Ops);
700        }
701
702      // Check this multiply against other multiplies being added together.
703      for (unsigned OtherMulIdx = Idx+1;
704           OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
705           ++OtherMulIdx) {
706        SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
707        // If MulOp occurs in OtherMul, we can fold the two multiplies
708        // together.
709        for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
710             OMulOp != e; ++OMulOp)
711          if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
712            // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
713            SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0);
714            if (Mul->getNumOperands() != 2) {
715              std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
716              MulOps.erase(MulOps.begin()+MulOp);
717              InnerMul1 = SCEVMulExpr::get(MulOps);
718            }
719            SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0);
720            if (OtherMul->getNumOperands() != 2) {
721              std::vector<SCEVHandle> MulOps(OtherMul->op_begin(),
722                                             OtherMul->op_end());
723              MulOps.erase(MulOps.begin()+OMulOp);
724              InnerMul2 = SCEVMulExpr::get(MulOps);
725            }
726            SCEVHandle InnerMulSum = SCEVAddExpr::get(InnerMul1,InnerMul2);
727            SCEVHandle OuterMul = SCEVMulExpr::get(MulOpSCEV, InnerMulSum);
728            if (Ops.size() == 2) return OuterMul;
729            Ops.erase(Ops.begin()+Idx);
730            Ops.erase(Ops.begin()+OtherMulIdx-1);
731            Ops.push_back(OuterMul);
732            return SCEVAddExpr::get(Ops);
733          }
734      }
735    }
736  }
737
738  // If there are any add recurrences in the operands list, see if any other
739  // added values are loop invariant.  If so, we can fold them into the
740  // recurrence.
741  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
742    ++Idx;
743
744  // Scan over all recurrences, trying to fold loop invariants into them.
745  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
746    // Scan all of the other operands to this add and add them to the vector if
747    // they are loop invariant w.r.t. the recurrence.
748    std::vector<SCEVHandle> LIOps;
749    SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
750    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
751      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
752        LIOps.push_back(Ops[i]);
753        Ops.erase(Ops.begin()+i);
754        --i; --e;
755      }
756
757    // If we found some loop invariants, fold them into the recurrence.
758    if (!LIOps.empty()) {
759      //  NLI + LI + { Start,+,Step}  -->  NLI + { LI+Start,+,Step }
760      LIOps.push_back(AddRec->getStart());
761
762      std::vector<SCEVHandle> AddRecOps(AddRec->op_begin(), AddRec->op_end());
763      AddRecOps[0] = SCEVAddExpr::get(LIOps);
764
765      SCEVHandle NewRec = SCEVAddRecExpr::get(AddRecOps, AddRec->getLoop());
766      // If all of the other operands were loop invariant, we are done.
767      if (Ops.size() == 1) return NewRec;
768
769      // Otherwise, add the folded AddRec by the non-liv parts.
770      for (unsigned i = 0;; ++i)
771        if (Ops[i] == AddRec) {
772          Ops[i] = NewRec;
773          break;
774        }
775      return SCEVAddExpr::get(Ops);
776    }
777
778    // Okay, if there weren't any loop invariants to be folded, check to see if
779    // there are multiple AddRec's with the same loop induction variable being
780    // added together.  If so, we can fold them.
781    for (unsigned OtherIdx = Idx+1;
782         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
783      if (OtherIdx != Idx) {
784        SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
785        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
786          // Other + {A,+,B} + {C,+,D}  -->  Other + {A+C,+,B+D}
787          std::vector<SCEVHandle> NewOps(AddRec->op_begin(), AddRec->op_end());
788          for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
789            if (i >= NewOps.size()) {
790              NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
791                            OtherAddRec->op_end());
792              break;
793            }
794            NewOps[i] = SCEVAddExpr::get(NewOps[i], OtherAddRec->getOperand(i));
795          }
796          SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewOps, AddRec->getLoop());
797
798          if (Ops.size() == 2) return NewAddRec;
799
800          Ops.erase(Ops.begin()+Idx);
801          Ops.erase(Ops.begin()+OtherIdx-1);
802          Ops.push_back(NewAddRec);
803          return SCEVAddExpr::get(Ops);
804        }
805      }
806
807    // Otherwise couldn't fold anything into this recurrence.  Move onto the
808    // next one.
809  }
810
811  // Okay, it looks like we really DO need an add expr.  Check to see if we
812  // already have one, otherwise create a new one.
813  std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
814  SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scAddExpr,
815                                                                 SCEVOps)];
816  if (Result == 0) Result = new SCEVAddExpr(Ops);
817  return Result;
818}
819
820
821SCEVHandle SCEVMulExpr::get(std::vector<SCEVHandle> &Ops) {
822  assert(!Ops.empty() && "Cannot get empty mul!");
823
824  // Sort by complexity, this groups all similar expression types together.
825  GroupByComplexity(Ops);
826
827  // If there are any constants, fold them together.
828  unsigned Idx = 0;
829  if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
830
831    // C1*(C2+V) -> C1*C2 + C1*V
832    if (Ops.size() == 2)
833      if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
834        if (Add->getNumOperands() == 2 &&
835            isa<SCEVConstant>(Add->getOperand(0)))
836          return SCEVAddExpr::get(SCEVMulExpr::get(LHSC, Add->getOperand(0)),
837                                  SCEVMulExpr::get(LHSC, Add->getOperand(1)));
838
839
840    ++Idx;
841    while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
842      // We found two constants, fold them together!
843      Constant *Fold = ConstantInt::get(LHSC->getValue()->getValue() *
844                                        RHSC->getValue()->getValue());
845      if (ConstantInt *CI = dyn_cast<ConstantInt>(Fold)) {
846        Ops[0] = SCEVConstant::get(CI);
847        Ops.erase(Ops.begin()+1);  // Erase the folded element
848        if (Ops.size() == 1) return Ops[0];
849        LHSC = cast<SCEVConstant>(Ops[0]);
850      } else {
851        // If we couldn't fold the expression, move to the next constant.  Note
852        // that this is impossible to happen in practice because we always
853        // constant fold constant ints to constant ints.
854        ++Idx;
855      }
856    }
857
858    // If we are left with a constant one being multiplied, strip it off.
859    if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
860      Ops.erase(Ops.begin());
861      --Idx;
862    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
863      // If we have a multiply of zero, it will always be zero.
864      return Ops[0];
865    }
866  }
867
868  // Skip over the add expression until we get to a multiply.
869  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
870    ++Idx;
871
872  if (Ops.size() == 1)
873    return Ops[0];
874
875  // If there are mul operands inline them all into this expression.
876  if (Idx < Ops.size()) {
877    bool DeletedMul = false;
878    while (SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
879      // If we have an mul, expand the mul operands onto the end of the operands
880      // list.
881      Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
882      Ops.erase(Ops.begin()+Idx);
883      DeletedMul = true;
884    }
885
886    // If we deleted at least one mul, we added operands to the end of the list,
887    // and they are not necessarily sorted.  Recurse to resort and resimplify
888    // any operands we just aquired.
889    if (DeletedMul)
890      return get(Ops);
891  }
892
893  // If there are any add recurrences in the operands list, see if any other
894  // added values are loop invariant.  If so, we can fold them into the
895  // recurrence.
896  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
897    ++Idx;
898
899  // Scan over all recurrences, trying to fold loop invariants into them.
900  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
901    // Scan all of the other operands to this mul and add them to the vector if
902    // they are loop invariant w.r.t. the recurrence.
903    std::vector<SCEVHandle> LIOps;
904    SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
905    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
906      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
907        LIOps.push_back(Ops[i]);
908        Ops.erase(Ops.begin()+i);
909        --i; --e;
910      }
911
912    // If we found some loop invariants, fold them into the recurrence.
913    if (!LIOps.empty()) {
914      //  NLI * LI * { Start,+,Step}  -->  NLI * { LI*Start,+,LI*Step }
915      std::vector<SCEVHandle> NewOps;
916      NewOps.reserve(AddRec->getNumOperands());
917      if (LIOps.size() == 1) {
918        SCEV *Scale = LIOps[0];
919        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
920          NewOps.push_back(SCEVMulExpr::get(Scale, AddRec->getOperand(i)));
921      } else {
922        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
923          std::vector<SCEVHandle> MulOps(LIOps);
924          MulOps.push_back(AddRec->getOperand(i));
925          NewOps.push_back(SCEVMulExpr::get(MulOps));
926        }
927      }
928
929      SCEVHandle NewRec = SCEVAddRecExpr::get(NewOps, AddRec->getLoop());
930
931      // If all of the other operands were loop invariant, we are done.
932      if (Ops.size() == 1) return NewRec;
933
934      // Otherwise, multiply the folded AddRec by the non-liv parts.
935      for (unsigned i = 0;; ++i)
936        if (Ops[i] == AddRec) {
937          Ops[i] = NewRec;
938          break;
939        }
940      return SCEVMulExpr::get(Ops);
941    }
942
943    // Okay, if there weren't any loop invariants to be folded, check to see if
944    // there are multiple AddRec's with the same loop induction variable being
945    // multiplied together.  If so, we can fold them.
946    for (unsigned OtherIdx = Idx+1;
947         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
948      if (OtherIdx != Idx) {
949        SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
950        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
951          // F * G  -->  {A,+,B} * {C,+,D}  -->  {A*C,+,F*D + G*B + B*D}
952          SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
953          SCEVHandle NewStart = SCEVMulExpr::get(F->getStart(),
954                                                 G->getStart());
955          SCEVHandle B = F->getStepRecurrence();
956          SCEVHandle D = G->getStepRecurrence();
957          SCEVHandle NewStep = SCEVAddExpr::get(SCEVMulExpr::get(F, D),
958                                                SCEVMulExpr::get(G, B),
959                                                SCEVMulExpr::get(B, D));
960          SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewStart, NewStep,
961                                                     F->getLoop());
962          if (Ops.size() == 2) return NewAddRec;
963
964          Ops.erase(Ops.begin()+Idx);
965          Ops.erase(Ops.begin()+OtherIdx-1);
966          Ops.push_back(NewAddRec);
967          return SCEVMulExpr::get(Ops);
968        }
969      }
970
971    // Otherwise couldn't fold anything into this recurrence.  Move onto the
972    // next one.
973  }
974
975  // Okay, it looks like we really DO need an mul expr.  Check to see if we
976  // already have one, otherwise create a new one.
977  std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
978  SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scMulExpr,
979                                                                 SCEVOps)];
980  if (Result == 0)
981    Result = new SCEVMulExpr(Ops);
982  return Result;
983}
984
985SCEVHandle SCEVSDivExpr::get(const SCEVHandle &LHS, const SCEVHandle &RHS) {
986  if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
987    if (RHSC->getValue()->equalsInt(1))
988      return LHS;                            // X sdiv 1 --> x
989    if (RHSC->getValue()->isAllOnesValue())
990      return SCEV::getNegativeSCEV(LHS);           // X sdiv -1  -->  -x
991
992    if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
993      Constant *LHSCV = LHSC->getValue();
994      Constant *RHSCV = RHSC->getValue();
995      return SCEVUnknown::get(ConstantExpr::getSDiv(LHSCV, RHSCV));
996    }
997  }
998
999  // FIXME: implement folding of (X*4)/4 when we know X*4 doesn't overflow.
1000
1001  SCEVSDivExpr *&Result = (*SCEVSDivs)[std::make_pair(LHS, RHS)];
1002  if (Result == 0) Result = new SCEVSDivExpr(LHS, RHS);
1003  return Result;
1004}
1005
1006
1007/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1008/// specified loop.  Simplify the expression as much as possible.
1009SCEVHandle SCEVAddRecExpr::get(const SCEVHandle &Start,
1010                               const SCEVHandle &Step, const Loop *L) {
1011  std::vector<SCEVHandle> Operands;
1012  Operands.push_back(Start);
1013  if (SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
1014    if (StepChrec->getLoop() == L) {
1015      Operands.insert(Operands.end(), StepChrec->op_begin(),
1016                      StepChrec->op_end());
1017      return get(Operands, L);
1018    }
1019
1020  Operands.push_back(Step);
1021  return get(Operands, L);
1022}
1023
1024/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1025/// specified loop.  Simplify the expression as much as possible.
1026SCEVHandle SCEVAddRecExpr::get(std::vector<SCEVHandle> &Operands,
1027                               const Loop *L) {
1028  if (Operands.size() == 1) return Operands[0];
1029
1030  if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Operands.back()))
1031    if (StepC->getValue()->isZero()) {
1032      Operands.pop_back();
1033      return get(Operands, L);             // { X,+,0 }  -->  X
1034    }
1035
1036  SCEVAddRecExpr *&Result =
1037    (*SCEVAddRecExprs)[std::make_pair(L, std::vector<SCEV*>(Operands.begin(),
1038                                                            Operands.end()))];
1039  if (Result == 0) Result = new SCEVAddRecExpr(Operands, L);
1040  return Result;
1041}
1042
1043SCEVHandle SCEVUnknown::get(Value *V) {
1044  if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
1045    return SCEVConstant::get(CI);
1046  SCEVUnknown *&Result = (*SCEVUnknowns)[V];
1047  if (Result == 0) Result = new SCEVUnknown(V);
1048  return Result;
1049}
1050
1051
1052//===----------------------------------------------------------------------===//
1053//             ScalarEvolutionsImpl Definition and Implementation
1054//===----------------------------------------------------------------------===//
1055//
1056/// ScalarEvolutionsImpl - This class implements the main driver for the scalar
1057/// evolution code.
1058///
1059namespace {
1060  struct VISIBILITY_HIDDEN ScalarEvolutionsImpl {
1061    /// F - The function we are analyzing.
1062    ///
1063    Function &F;
1064
1065    /// LI - The loop information for the function we are currently analyzing.
1066    ///
1067    LoopInfo &LI;
1068
1069    /// UnknownValue - This SCEV is used to represent unknown trip counts and
1070    /// things.
1071    SCEVHandle UnknownValue;
1072
1073    /// Scalars - This is a cache of the scalars we have analyzed so far.
1074    ///
1075    std::map<Value*, SCEVHandle> Scalars;
1076
1077    /// IterationCounts - Cache the iteration count of the loops for this
1078    /// function as they are computed.
1079    std::map<const Loop*, SCEVHandle> IterationCounts;
1080
1081    /// ConstantEvolutionLoopExitValue - This map contains entries for all of
1082    /// the PHI instructions that we attempt to compute constant evolutions for.
1083    /// This allows us to avoid potentially expensive recomputation of these
1084    /// properties.  An instruction maps to null if we are unable to compute its
1085    /// exit value.
1086    std::map<PHINode*, Constant*> ConstantEvolutionLoopExitValue;
1087
1088  public:
1089    ScalarEvolutionsImpl(Function &f, LoopInfo &li)
1090      : F(f), LI(li), UnknownValue(new SCEVCouldNotCompute()) {}
1091
1092    /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1093    /// expression and create a new one.
1094    SCEVHandle getSCEV(Value *V);
1095
1096    /// hasSCEV - Return true if the SCEV for this value has already been
1097    /// computed.
1098    bool hasSCEV(Value *V) const {
1099      return Scalars.count(V);
1100    }
1101
1102    /// setSCEV - Insert the specified SCEV into the map of current SCEVs for
1103    /// the specified value.
1104    void setSCEV(Value *V, const SCEVHandle &H) {
1105      bool isNew = Scalars.insert(std::make_pair(V, H)).second;
1106      assert(isNew && "This entry already existed!");
1107    }
1108
1109
1110    /// getSCEVAtScope - Compute the value of the specified expression within
1111    /// the indicated loop (which may be null to indicate in no loop).  If the
1112    /// expression cannot be evaluated, return UnknownValue itself.
1113    SCEVHandle getSCEVAtScope(SCEV *V, const Loop *L);
1114
1115
1116    /// hasLoopInvariantIterationCount - Return true if the specified loop has
1117    /// an analyzable loop-invariant iteration count.
1118    bool hasLoopInvariantIterationCount(const Loop *L);
1119
1120    /// getIterationCount - If the specified loop has a predictable iteration
1121    /// count, return it.  Note that it is not valid to call this method on a
1122    /// loop without a loop-invariant iteration count.
1123    SCEVHandle getIterationCount(const Loop *L);
1124
1125    /// deleteInstructionFromRecords - This method should be called by the
1126    /// client before it removes an instruction from the program, to make sure
1127    /// that no dangling references are left around.
1128    void deleteInstructionFromRecords(Instruction *I);
1129
1130  private:
1131    /// createSCEV - We know that there is no SCEV for the specified value.
1132    /// Analyze the expression.
1133    SCEVHandle createSCEV(Value *V);
1134
1135    /// createNodeForPHI - Provide the special handling we need to analyze PHI
1136    /// SCEVs.
1137    SCEVHandle createNodeForPHI(PHINode *PN);
1138
1139    /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value
1140    /// for the specified instruction and replaces any references to the
1141    /// symbolic value SymName with the specified value.  This is used during
1142    /// PHI resolution.
1143    void ReplaceSymbolicValueWithConcrete(Instruction *I,
1144                                          const SCEVHandle &SymName,
1145                                          const SCEVHandle &NewVal);
1146
1147    /// ComputeIterationCount - Compute the number of times the specified loop
1148    /// will iterate.
1149    SCEVHandle ComputeIterationCount(const Loop *L);
1150
1151    /// ComputeLoadConstantCompareIterationCount - Given an exit condition of
1152    /// 'setcc load X, cst', try to see if we can compute the trip count.
1153    SCEVHandle ComputeLoadConstantCompareIterationCount(LoadInst *LI,
1154                                                        Constant *RHS,
1155                                                        const Loop *L,
1156                                                        ICmpInst::Predicate p);
1157
1158    /// ComputeIterationCountExhaustively - If the trip is known to execute a
1159    /// constant number of times (the condition evolves only from constants),
1160    /// try to evaluate a few iterations of the loop until we get the exit
1161    /// condition gets a value of ExitWhen (true or false).  If we cannot
1162    /// evaluate the trip count of the loop, return UnknownValue.
1163    SCEVHandle ComputeIterationCountExhaustively(const Loop *L, Value *Cond,
1164                                                 bool ExitWhen);
1165
1166    /// HowFarToZero - Return the number of times a backedge comparing the
1167    /// specified value to zero will execute.  If not computable, return
1168    /// UnknownValue.
1169    SCEVHandle HowFarToZero(SCEV *V, const Loop *L);
1170
1171    /// HowFarToNonZero - Return the number of times a backedge checking the
1172    /// specified value for nonzero will execute.  If not computable, return
1173    /// UnknownValue.
1174    SCEVHandle HowFarToNonZero(SCEV *V, const Loop *L);
1175
1176    /// HowManyLessThans - Return the number of times a backedge containing the
1177    /// specified less-than comparison will execute.  If not computable, return
1178    /// UnknownValue.
1179    SCEVHandle HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L);
1180
1181    /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
1182    /// in the header of its containing loop, we know the loop executes a
1183    /// constant number of times, and the PHI node is just a recurrence
1184    /// involving constants, fold it.
1185    Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& Its,
1186                                                const Loop *L);
1187  };
1188}
1189
1190//===----------------------------------------------------------------------===//
1191//            Basic SCEV Analysis and PHI Idiom Recognition Code
1192//
1193
1194/// deleteInstructionFromRecords - This method should be called by the
1195/// client before it removes an instruction from the program, to make sure
1196/// that no dangling references are left around.
1197void ScalarEvolutionsImpl::deleteInstructionFromRecords(Instruction *I) {
1198  Scalars.erase(I);
1199  if (PHINode *PN = dyn_cast<PHINode>(I))
1200    ConstantEvolutionLoopExitValue.erase(PN);
1201}
1202
1203
1204/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1205/// expression and create a new one.
1206SCEVHandle ScalarEvolutionsImpl::getSCEV(Value *V) {
1207  assert(V->getType() != Type::VoidTy && "Can't analyze void expressions!");
1208
1209  std::map<Value*, SCEVHandle>::iterator I = Scalars.find(V);
1210  if (I != Scalars.end()) return I->second;
1211  SCEVHandle S = createSCEV(V);
1212  Scalars.insert(std::make_pair(V, S));
1213  return S;
1214}
1215
1216/// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for
1217/// the specified instruction and replaces any references to the symbolic value
1218/// SymName with the specified value.  This is used during PHI resolution.
1219void ScalarEvolutionsImpl::
1220ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName,
1221                                 const SCEVHandle &NewVal) {
1222  std::map<Value*, SCEVHandle>::iterator SI = Scalars.find(I);
1223  if (SI == Scalars.end()) return;
1224
1225  SCEVHandle NV =
1226    SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal);
1227  if (NV == SI->second) return;  // No change.
1228
1229  SI->second = NV;       // Update the scalars map!
1230
1231  // Any instruction values that use this instruction might also need to be
1232  // updated!
1233  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1234       UI != E; ++UI)
1235    ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal);
1236}
1237
1238/// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
1239/// a loop header, making it a potential recurrence, or it doesn't.
1240///
1241SCEVHandle ScalarEvolutionsImpl::createNodeForPHI(PHINode *PN) {
1242  if (PN->getNumIncomingValues() == 2)  // The loops have been canonicalized.
1243    if (const Loop *L = LI.getLoopFor(PN->getParent()))
1244      if (L->getHeader() == PN->getParent()) {
1245        // If it lives in the loop header, it has two incoming values, one
1246        // from outside the loop, and one from inside.
1247        unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
1248        unsigned BackEdge     = IncomingEdge^1;
1249
1250        // While we are analyzing this PHI node, handle its value symbolically.
1251        SCEVHandle SymbolicName = SCEVUnknown::get(PN);
1252        assert(Scalars.find(PN) == Scalars.end() &&
1253               "PHI node already processed?");
1254        Scalars.insert(std::make_pair(PN, SymbolicName));
1255
1256        // Using this symbolic name for the PHI, analyze the value coming around
1257        // the back-edge.
1258        SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge));
1259
1260        // NOTE: If BEValue is loop invariant, we know that the PHI node just
1261        // has a special value for the first iteration of the loop.
1262
1263        // If the value coming around the backedge is an add with the symbolic
1264        // value we just inserted, then we found a simple induction variable!
1265        if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
1266          // If there is a single occurrence of the symbolic value, replace it
1267          // with a recurrence.
1268          unsigned FoundIndex = Add->getNumOperands();
1269          for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1270            if (Add->getOperand(i) == SymbolicName)
1271              if (FoundIndex == e) {
1272                FoundIndex = i;
1273                break;
1274              }
1275
1276          if (FoundIndex != Add->getNumOperands()) {
1277            // Create an add with everything but the specified operand.
1278            std::vector<SCEVHandle> Ops;
1279            for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1280              if (i != FoundIndex)
1281                Ops.push_back(Add->getOperand(i));
1282            SCEVHandle Accum = SCEVAddExpr::get(Ops);
1283
1284            // This is not a valid addrec if the step amount is varying each
1285            // loop iteration, but is not itself an addrec in this loop.
1286            if (Accum->isLoopInvariant(L) ||
1287                (isa<SCEVAddRecExpr>(Accum) &&
1288                 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
1289              SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
1290              SCEVHandle PHISCEV  = SCEVAddRecExpr::get(StartVal, Accum, L);
1291
1292              // Okay, for the entire analysis of this edge we assumed the PHI
1293              // to be symbolic.  We now need to go back and update all of the
1294              // entries for the scalars that use the PHI (except for the PHI
1295              // itself) to use the new analyzed value instead of the "symbolic"
1296              // value.
1297              ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
1298              return PHISCEV;
1299            }
1300          }
1301        } else if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(BEValue)) {
1302          // Otherwise, this could be a loop like this:
1303          //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
1304          // In this case, j = {1,+,1}  and BEValue is j.
1305          // Because the other in-value of i (0) fits the evolution of BEValue
1306          // i really is an addrec evolution.
1307          if (AddRec->getLoop() == L && AddRec->isAffine()) {
1308            SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
1309
1310            // If StartVal = j.start - j.stride, we can use StartVal as the
1311            // initial step of the addrec evolution.
1312            if (StartVal == SCEV::getMinusSCEV(AddRec->getOperand(0),
1313                                               AddRec->getOperand(1))) {
1314              SCEVHandle PHISCEV =
1315                 SCEVAddRecExpr::get(StartVal, AddRec->getOperand(1), L);
1316
1317              // Okay, for the entire analysis of this edge we assumed the PHI
1318              // to be symbolic.  We now need to go back and update all of the
1319              // entries for the scalars that use the PHI (except for the PHI
1320              // itself) to use the new analyzed value instead of the "symbolic"
1321              // value.
1322              ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
1323              return PHISCEV;
1324            }
1325          }
1326        }
1327
1328        return SymbolicName;
1329      }
1330
1331  // If it's not a loop phi, we can't handle it yet.
1332  return SCEVUnknown::get(PN);
1333}
1334
1335/// GetConstantFactor - Determine the largest constant factor that S has.  For
1336/// example, turn {4,+,8} -> 4.    (S umod result) should always equal zero.
1337static APInt GetConstantFactor(SCEVHandle S) {
1338  if (SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
1339    const APInt& V = C->getValue()->getValue();
1340    if (!V.isMinValue())
1341      return V;
1342    else   // Zero is a multiple of everything.
1343      return APInt(C->getBitWidth(), 1).shl(C->getBitWidth()-1);
1344  }
1345
1346  if (SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) {
1347    return GetConstantFactor(T->getOperand()).trunc(
1348                               cast<IntegerType>(T->getType())->getBitWidth());
1349  }
1350  if (SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S))
1351    return GetConstantFactor(E->getOperand()).zext(
1352                               cast<IntegerType>(E->getType())->getBitWidth());
1353
1354  if (SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
1355    // The result is the min of all operands.
1356    APInt Res(GetConstantFactor(A->getOperand(0)));
1357    for (unsigned i = 1, e = A->getNumOperands();
1358         i != e && Res.ugt(APInt(Res.getBitWidth(),1)); ++i) {
1359      APInt Tmp(GetConstantFactor(A->getOperand(i)));
1360      Res = APIntOps::umin(Res, Tmp);
1361    }
1362    return Res;
1363  }
1364
1365  if (SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
1366    // The result is the product of all the operands.
1367    APInt Res(GetConstantFactor(M->getOperand(0)));
1368    for (unsigned i = 1, e = M->getNumOperands(); i != e; ++i) {
1369      APInt Tmp(GetConstantFactor(M->getOperand(i)));
1370      Res *= Tmp;
1371    }
1372    return Res;
1373  }
1374
1375  if (SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
1376    // For now, we just handle linear expressions.
1377    if (A->getNumOperands() == 2) {
1378      // We want the GCD between the start and the stride value.
1379      APInt Start(GetConstantFactor(A->getOperand(0)));
1380      if (Start == 1)
1381        return Start;
1382      APInt Stride(GetConstantFactor(A->getOperand(1)));
1383      return APIntOps::GreatestCommonDivisor(Start, Stride);
1384    }
1385  }
1386
1387  // SCEVSDivExpr, SCEVUnknown.
1388  return APInt(S->getBitWidth(), 1);
1389}
1390
1391/// createSCEV - We know that there is no SCEV for the specified value.
1392/// Analyze the expression.
1393///
1394SCEVHandle ScalarEvolutionsImpl::createSCEV(Value *V) {
1395  if (Instruction *I = dyn_cast<Instruction>(V)) {
1396    switch (I->getOpcode()) {
1397    case Instruction::Add:
1398      return SCEVAddExpr::get(getSCEV(I->getOperand(0)),
1399                              getSCEV(I->getOperand(1)));
1400    case Instruction::Mul:
1401      return SCEVMulExpr::get(getSCEV(I->getOperand(0)),
1402                              getSCEV(I->getOperand(1)));
1403    case Instruction::SDiv:
1404      return SCEVSDivExpr::get(getSCEV(I->getOperand(0)),
1405                              getSCEV(I->getOperand(1)));
1406      break;
1407
1408    case Instruction::Sub:
1409      return SCEV::getMinusSCEV(getSCEV(I->getOperand(0)),
1410                                getSCEV(I->getOperand(1)));
1411    case Instruction::Or:
1412      // If the RHS of the Or is a constant, we may have something like:
1413      // X*4+1 which got turned into X*4|1.  Handle this as an add so loop
1414      // optimizations will transparently handle this case.
1415      if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
1416        SCEVHandle LHS = getSCEV(I->getOperand(0));
1417        APInt CommonFact(GetConstantFactor(LHS));
1418        assert(!CommonFact.isMinValue() &&
1419               "Common factor should at least be 1!");
1420        if (CommonFact.ugt(CI->getValue())) {
1421          // If the LHS is a multiple that is larger than the RHS, use +.
1422          return SCEVAddExpr::get(LHS,
1423                                  getSCEV(I->getOperand(1)));
1424        }
1425      }
1426      break;
1427    case Instruction::Xor:
1428      // If the RHS of the xor is a signbit, then this is just an add.
1429      // Instcombine turns add of signbit into xor as a strength reduction step.
1430      if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
1431        if (CI->getValue().isSignBit())
1432          return SCEVAddExpr::get(getSCEV(I->getOperand(0)),
1433                                  getSCEV(I->getOperand(1)));
1434      }
1435      break;
1436
1437    case Instruction::Shl:
1438      // Turn shift left of a constant amount into a multiply.
1439      if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1440        uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
1441        Constant *X = ConstantInt::get(
1442          APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
1443        return SCEVMulExpr::get(getSCEV(I->getOperand(0)), getSCEV(X));
1444      }
1445      break;
1446
1447    case Instruction::Trunc:
1448      return SCEVTruncateExpr::get(getSCEV(I->getOperand(0)), I->getType());
1449
1450    case Instruction::ZExt:
1451      return SCEVZeroExtendExpr::get(getSCEV(I->getOperand(0)), I->getType());
1452
1453    case Instruction::BitCast:
1454      // BitCasts are no-op casts so we just eliminate the cast.
1455      if (I->getType()->isInteger() &&
1456          I->getOperand(0)->getType()->isInteger())
1457        return getSCEV(I->getOperand(0));
1458      break;
1459
1460    case Instruction::PHI:
1461      return createNodeForPHI(cast<PHINode>(I));
1462
1463    default: // We cannot analyze this expression.
1464      break;
1465    }
1466  }
1467
1468  return SCEVUnknown::get(V);
1469}
1470
1471
1472
1473//===----------------------------------------------------------------------===//
1474//                   Iteration Count Computation Code
1475//
1476
1477/// getIterationCount - If the specified loop has a predictable iteration
1478/// count, return it.  Note that it is not valid to call this method on a
1479/// loop without a loop-invariant iteration count.
1480SCEVHandle ScalarEvolutionsImpl::getIterationCount(const Loop *L) {
1481  std::map<const Loop*, SCEVHandle>::iterator I = IterationCounts.find(L);
1482  if (I == IterationCounts.end()) {
1483    SCEVHandle ItCount = ComputeIterationCount(L);
1484    I = IterationCounts.insert(std::make_pair(L, ItCount)).first;
1485    if (ItCount != UnknownValue) {
1486      assert(ItCount->isLoopInvariant(L) &&
1487             "Computed trip count isn't loop invariant for loop!");
1488      ++NumTripCountsComputed;
1489    } else if (isa<PHINode>(L->getHeader()->begin())) {
1490      // Only count loops that have phi nodes as not being computable.
1491      ++NumTripCountsNotComputed;
1492    }
1493  }
1494  return I->second;
1495}
1496
1497/// ComputeIterationCount - Compute the number of times the specified loop
1498/// will iterate.
1499SCEVHandle ScalarEvolutionsImpl::ComputeIterationCount(const Loop *L) {
1500  // If the loop has a non-one exit block count, we can't analyze it.
1501  std::vector<BasicBlock*> ExitBlocks;
1502  L->getExitBlocks(ExitBlocks);
1503  if (ExitBlocks.size() != 1) return UnknownValue;
1504
1505  // Okay, there is one exit block.  Try to find the condition that causes the
1506  // loop to be exited.
1507  BasicBlock *ExitBlock = ExitBlocks[0];
1508
1509  BasicBlock *ExitingBlock = 0;
1510  for (pred_iterator PI = pred_begin(ExitBlock), E = pred_end(ExitBlock);
1511       PI != E; ++PI)
1512    if (L->contains(*PI)) {
1513      if (ExitingBlock == 0)
1514        ExitingBlock = *PI;
1515      else
1516        return UnknownValue;   // More than one block exiting!
1517    }
1518  assert(ExitingBlock && "No exits from loop, something is broken!");
1519
1520  // Okay, we've computed the exiting block.  See what condition causes us to
1521  // exit.
1522  //
1523  // FIXME: we should be able to handle switch instructions (with a single exit)
1524  BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
1525  if (ExitBr == 0) return UnknownValue;
1526  assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
1527
1528  // At this point, we know we have a conditional branch that determines whether
1529  // the loop is exited.  However, we don't know if the branch is executed each
1530  // time through the loop.  If not, then the execution count of the branch will
1531  // not be equal to the trip count of the loop.
1532  //
1533  // Currently we check for this by checking to see if the Exit branch goes to
1534  // the loop header.  If so, we know it will always execute the same number of
1535  // times as the loop.  We also handle the case where the exit block *is* the
1536  // loop header.  This is common for un-rotated loops.  More extensive analysis
1537  // could be done to handle more cases here.
1538  if (ExitBr->getSuccessor(0) != L->getHeader() &&
1539      ExitBr->getSuccessor(1) != L->getHeader() &&
1540      ExitBr->getParent() != L->getHeader())
1541    return UnknownValue;
1542
1543  ICmpInst *ExitCond = dyn_cast<ICmpInst>(ExitBr->getCondition());
1544
1545  // If its not an integer comparison then compute it the hard way.
1546  // Note that ICmpInst deals with pointer comparisons too so we must check
1547  // the type of the operand.
1548  if (ExitCond == 0 || isa<PointerType>(ExitCond->getOperand(0)->getType()))
1549    return ComputeIterationCountExhaustively(L, ExitBr->getCondition(),
1550                                          ExitBr->getSuccessor(0) == ExitBlock);
1551
1552  // If the condition was exit on true, convert the condition to exit on false
1553  ICmpInst::Predicate Cond;
1554  if (ExitBr->getSuccessor(1) == ExitBlock)
1555    Cond = ExitCond->getPredicate();
1556  else
1557    Cond = ExitCond->getInversePredicate();
1558
1559  // Handle common loops like: for (X = "string"; *X; ++X)
1560  if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
1561    if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
1562      SCEVHandle ItCnt =
1563        ComputeLoadConstantCompareIterationCount(LI, RHS, L, Cond);
1564      if (!isa<SCEVCouldNotCompute>(ItCnt)) return ItCnt;
1565    }
1566
1567  SCEVHandle LHS = getSCEV(ExitCond->getOperand(0));
1568  SCEVHandle RHS = getSCEV(ExitCond->getOperand(1));
1569
1570  // Try to evaluate any dependencies out of the loop.
1571  SCEVHandle Tmp = getSCEVAtScope(LHS, L);
1572  if (!isa<SCEVCouldNotCompute>(Tmp)) LHS = Tmp;
1573  Tmp = getSCEVAtScope(RHS, L);
1574  if (!isa<SCEVCouldNotCompute>(Tmp)) RHS = Tmp;
1575
1576  // At this point, we would like to compute how many iterations of the
1577  // loop the predicate will return true for these inputs.
1578  if (isa<SCEVConstant>(LHS) && !isa<SCEVConstant>(RHS)) {
1579    // If there is a constant, force it into the RHS.
1580    std::swap(LHS, RHS);
1581    Cond = ICmpInst::getSwappedPredicate(Cond);
1582  }
1583
1584  // FIXME: think about handling pointer comparisons!  i.e.:
1585  // while (P != P+100) ++P;
1586
1587  // If we have a comparison of a chrec against a constant, try to use value
1588  // ranges to answer this query.
1589  if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
1590    if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
1591      if (AddRec->getLoop() == L) {
1592        // Form the comparison range using the constant of the correct type so
1593        // that the ConstantRange class knows to do a signed or unsigned
1594        // comparison.
1595        ConstantInt *CompVal = RHSC->getValue();
1596        const Type *RealTy = ExitCond->getOperand(0)->getType();
1597        CompVal = dyn_cast<ConstantInt>(
1598          ConstantExpr::getBitCast(CompVal, RealTy));
1599        if (CompVal) {
1600          // Form the constant range.
1601          ConstantRange CompRange(
1602              ICmpInst::makeConstantRange(Cond, CompVal->getValue()));
1603
1604          SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange,
1605              false /*Always treat as unsigned range*/);
1606          if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
1607        }
1608      }
1609
1610  switch (Cond) {
1611  case ICmpInst::ICMP_NE: {                     // while (X != Y)
1612    // Convert to: while (X-Y != 0)
1613    SCEVHandle TC = HowFarToZero(SCEV::getMinusSCEV(LHS, RHS), L);
1614    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1615    break;
1616  }
1617  case ICmpInst::ICMP_EQ: {
1618    // Convert to: while (X-Y == 0)           // while (X == Y)
1619    SCEVHandle TC = HowFarToNonZero(SCEV::getMinusSCEV(LHS, RHS), L);
1620    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1621    break;
1622  }
1623  case ICmpInst::ICMP_SLT: {
1624    SCEVHandle TC = HowManyLessThans(LHS, RHS, L);
1625    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1626    break;
1627  }
1628  case ICmpInst::ICMP_SGT: {
1629    SCEVHandle TC = HowManyLessThans(RHS, LHS, L);
1630    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1631    break;
1632  }
1633  default:
1634#if 0
1635    cerr << "ComputeIterationCount ";
1636    if (ExitCond->getOperand(0)->getType()->isUnsigned())
1637      cerr << "[unsigned] ";
1638    cerr << *LHS << "   "
1639         << Instruction::getOpcodeName(Instruction::ICmp)
1640         << "   " << *RHS << "\n";
1641#endif
1642    break;
1643  }
1644  return ComputeIterationCountExhaustively(L, ExitCond,
1645                                       ExitBr->getSuccessor(0) == ExitBlock);
1646}
1647
1648static ConstantInt *
1649EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, Constant *C) {
1650  SCEVHandle InVal = SCEVConstant::get(cast<ConstantInt>(C));
1651  SCEVHandle Val = AddRec->evaluateAtIteration(InVal);
1652  assert(isa<SCEVConstant>(Val) &&
1653         "Evaluation of SCEV at constant didn't fold correctly?");
1654  return cast<SCEVConstant>(Val)->getValue();
1655}
1656
1657/// GetAddressedElementFromGlobal - Given a global variable with an initializer
1658/// and a GEP expression (missing the pointer index) indexing into it, return
1659/// the addressed element of the initializer or null if the index expression is
1660/// invalid.
1661static Constant *
1662GetAddressedElementFromGlobal(GlobalVariable *GV,
1663                              const std::vector<ConstantInt*> &Indices) {
1664  Constant *Init = GV->getInitializer();
1665  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
1666    uint64_t Idx = Indices[i]->getZExtValue();
1667    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
1668      assert(Idx < CS->getNumOperands() && "Bad struct index!");
1669      Init = cast<Constant>(CS->getOperand(Idx));
1670    } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
1671      if (Idx >= CA->getNumOperands()) return 0;  // Bogus program
1672      Init = cast<Constant>(CA->getOperand(Idx));
1673    } else if (isa<ConstantAggregateZero>(Init)) {
1674      if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
1675        assert(Idx < STy->getNumElements() && "Bad struct index!");
1676        Init = Constant::getNullValue(STy->getElementType(Idx));
1677      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
1678        if (Idx >= ATy->getNumElements()) return 0;  // Bogus program
1679        Init = Constant::getNullValue(ATy->getElementType());
1680      } else {
1681        assert(0 && "Unknown constant aggregate type!");
1682      }
1683      return 0;
1684    } else {
1685      return 0; // Unknown initializer type
1686    }
1687  }
1688  return Init;
1689}
1690
1691/// ComputeLoadConstantCompareIterationCount - Given an exit condition of
1692/// 'setcc load X, cst', try to se if we can compute the trip count.
1693SCEVHandle ScalarEvolutionsImpl::
1694ComputeLoadConstantCompareIterationCount(LoadInst *LI, Constant *RHS,
1695                                         const Loop *L,
1696                                         ICmpInst::Predicate predicate) {
1697  if (LI->isVolatile()) return UnknownValue;
1698
1699  // Check to see if the loaded pointer is a getelementptr of a global.
1700  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
1701  if (!GEP) return UnknownValue;
1702
1703  // Make sure that it is really a constant global we are gepping, with an
1704  // initializer, and make sure the first IDX is really 0.
1705  GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
1706  if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
1707      GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
1708      !cast<Constant>(GEP->getOperand(1))->isNullValue())
1709    return UnknownValue;
1710
1711  // Okay, we allow one non-constant index into the GEP instruction.
1712  Value *VarIdx = 0;
1713  std::vector<ConstantInt*> Indexes;
1714  unsigned VarIdxNum = 0;
1715  for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
1716    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
1717      Indexes.push_back(CI);
1718    } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
1719      if (VarIdx) return UnknownValue;  // Multiple non-constant idx's.
1720      VarIdx = GEP->getOperand(i);
1721      VarIdxNum = i-2;
1722      Indexes.push_back(0);
1723    }
1724
1725  // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
1726  // Check to see if X is a loop variant variable value now.
1727  SCEVHandle Idx = getSCEV(VarIdx);
1728  SCEVHandle Tmp = getSCEVAtScope(Idx, L);
1729  if (!isa<SCEVCouldNotCompute>(Tmp)) Idx = Tmp;
1730
1731  // We can only recognize very limited forms of loop index expressions, in
1732  // particular, only affine AddRec's like {C1,+,C2}.
1733  SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
1734  if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
1735      !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
1736      !isa<SCEVConstant>(IdxExpr->getOperand(1)))
1737    return UnknownValue;
1738
1739  unsigned MaxSteps = MaxBruteForceIterations;
1740  for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
1741    ConstantInt *ItCst =
1742      ConstantInt::get(IdxExpr->getType(), IterationNum);
1743    ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst);
1744
1745    // Form the GEP offset.
1746    Indexes[VarIdxNum] = Val;
1747
1748    Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
1749    if (Result == 0) break;  // Cannot compute!
1750
1751    // Evaluate the condition for this iteration.
1752    Result = ConstantExpr::getICmp(predicate, Result, RHS);
1753    if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
1754    if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
1755#if 0
1756      cerr << "\n***\n*** Computed loop count " << *ItCst
1757           << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
1758           << "***\n";
1759#endif
1760      ++NumArrayLenItCounts;
1761      return SCEVConstant::get(ItCst);   // Found terminating iteration!
1762    }
1763  }
1764  return UnknownValue;
1765}
1766
1767
1768/// CanConstantFold - Return true if we can constant fold an instruction of the
1769/// specified type, assuming that all operands were constants.
1770static bool CanConstantFold(const Instruction *I) {
1771  if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
1772      isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
1773    return true;
1774
1775  if (const CallInst *CI = dyn_cast<CallInst>(I))
1776    if (const Function *F = CI->getCalledFunction())
1777      return canConstantFoldCallTo((Function*)F);  // FIXME: elim cast
1778  return false;
1779}
1780
1781/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
1782/// in the loop that V is derived from.  We allow arbitrary operations along the
1783/// way, but the operands of an operation must either be constants or a value
1784/// derived from a constant PHI.  If this expression does not fit with these
1785/// constraints, return null.
1786static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
1787  // If this is not an instruction, or if this is an instruction outside of the
1788  // loop, it can't be derived from a loop PHI.
1789  Instruction *I = dyn_cast<Instruction>(V);
1790  if (I == 0 || !L->contains(I->getParent())) return 0;
1791
1792  if (PHINode *PN = dyn_cast<PHINode>(I))
1793    if (L->getHeader() == I->getParent())
1794      return PN;
1795    else
1796      // We don't currently keep track of the control flow needed to evaluate
1797      // PHIs, so we cannot handle PHIs inside of loops.
1798      return 0;
1799
1800  // If we won't be able to constant fold this expression even if the operands
1801  // are constants, return early.
1802  if (!CanConstantFold(I)) return 0;
1803
1804  // Otherwise, we can evaluate this instruction if all of its operands are
1805  // constant or derived from a PHI node themselves.
1806  PHINode *PHI = 0;
1807  for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
1808    if (!(isa<Constant>(I->getOperand(Op)) ||
1809          isa<GlobalValue>(I->getOperand(Op)))) {
1810      PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
1811      if (P == 0) return 0;  // Not evolving from PHI
1812      if (PHI == 0)
1813        PHI = P;
1814      else if (PHI != P)
1815        return 0;  // Evolving from multiple different PHIs.
1816    }
1817
1818  // This is a expression evolving from a constant PHI!
1819  return PHI;
1820}
1821
1822/// EvaluateExpression - Given an expression that passes the
1823/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
1824/// in the loop has the value PHIVal.  If we can't fold this expression for some
1825/// reason, return null.
1826static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
1827  if (isa<PHINode>(V)) return PHIVal;
1828  if (GlobalValue *GV = dyn_cast<GlobalValue>(V))
1829    return GV;
1830  if (Constant *C = dyn_cast<Constant>(V)) return C;
1831  Instruction *I = cast<Instruction>(V);
1832
1833  std::vector<Constant*> Operands;
1834  Operands.resize(I->getNumOperands());
1835
1836  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
1837    Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal);
1838    if (Operands[i] == 0) return 0;
1839  }
1840
1841  return ConstantFoldInstOperands(I, &Operands[0], Operands.size());
1842}
1843
1844/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
1845/// in the header of its containing loop, we know the loop executes a
1846/// constant number of times, and the PHI node is just a recurrence
1847/// involving constants, fold it.
1848Constant *ScalarEvolutionsImpl::
1849getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& Its, const Loop *L){
1850  std::map<PHINode*, Constant*>::iterator I =
1851    ConstantEvolutionLoopExitValue.find(PN);
1852  if (I != ConstantEvolutionLoopExitValue.end())
1853    return I->second;
1854
1855  if (Its.ugt(APInt(Its.getBitWidth(),MaxBruteForceIterations)))
1856    return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.
1857
1858  Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
1859
1860  // Since the loop is canonicalized, the PHI node must have two entries.  One
1861  // entry must be a constant (coming in from outside of the loop), and the
1862  // second must be derived from the same PHI.
1863  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
1864  Constant *StartCST =
1865    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
1866  if (StartCST == 0)
1867    return RetVal = 0;  // Must be a constant.
1868
1869  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
1870  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
1871  if (PN2 != PN)
1872    return RetVal = 0;  // Not derived from same PHI.
1873
1874  // Execute the loop symbolically to determine the exit value.
1875  if (Its.getActiveBits() >= 32)
1876    return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
1877
1878  unsigned NumIterations = Its.getZExtValue(); // must be in range
1879  unsigned IterationNum = 0;
1880  for (Constant *PHIVal = StartCST; ; ++IterationNum) {
1881    if (IterationNum == NumIterations)
1882      return RetVal = PHIVal;  // Got exit value!
1883
1884    // Compute the value of the PHI node for the next iteration.
1885    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
1886    if (NextPHI == PHIVal)
1887      return RetVal = NextPHI;  // Stopped evolving!
1888    if (NextPHI == 0)
1889      return 0;        // Couldn't evaluate!
1890    PHIVal = NextPHI;
1891  }
1892}
1893
1894/// ComputeIterationCountExhaustively - If the trip is known to execute a
1895/// constant number of times (the condition evolves only from constants),
1896/// try to evaluate a few iterations of the loop until we get the exit
1897/// condition gets a value of ExitWhen (true or false).  If we cannot
1898/// evaluate the trip count of the loop, return UnknownValue.
1899SCEVHandle ScalarEvolutionsImpl::
1900ComputeIterationCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) {
1901  PHINode *PN = getConstantEvolvingPHI(Cond, L);
1902  if (PN == 0) return UnknownValue;
1903
1904  // Since the loop is canonicalized, the PHI node must have two entries.  One
1905  // entry must be a constant (coming in from outside of the loop), and the
1906  // second must be derived from the same PHI.
1907  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
1908  Constant *StartCST =
1909    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
1910  if (StartCST == 0) return UnknownValue;  // Must be a constant.
1911
1912  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
1913  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
1914  if (PN2 != PN) return UnknownValue;  // Not derived from same PHI.
1915
1916  // Okay, we find a PHI node that defines the trip count of this loop.  Execute
1917  // the loop symbolically to determine when the condition gets a value of
1918  // "ExitWhen".
1919  unsigned IterationNum = 0;
1920  unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
1921  for (Constant *PHIVal = StartCST;
1922       IterationNum != MaxIterations; ++IterationNum) {
1923    ConstantInt *CondVal =
1924      dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal));
1925
1926    // Couldn't symbolically evaluate.
1927    if (!CondVal) return UnknownValue;
1928
1929    if (CondVal->getValue() == uint64_t(ExitWhen)) {
1930      ConstantEvolutionLoopExitValue[PN] = PHIVal;
1931      ++NumBruteForceTripCountsComputed;
1932      return SCEVConstant::get(ConstantInt::get(Type::Int32Ty, IterationNum));
1933    }
1934
1935    // Compute the value of the PHI node for the next iteration.
1936    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
1937    if (NextPHI == 0 || NextPHI == PHIVal)
1938      return UnknownValue;  // Couldn't evaluate or not making progress...
1939    PHIVal = NextPHI;
1940  }
1941
1942  // Too many iterations were needed to evaluate.
1943  return UnknownValue;
1944}
1945
1946/// getSCEVAtScope - Compute the value of the specified expression within the
1947/// indicated loop (which may be null to indicate in no loop).  If the
1948/// expression cannot be evaluated, return UnknownValue.
1949SCEVHandle ScalarEvolutionsImpl::getSCEVAtScope(SCEV *V, const Loop *L) {
1950  // FIXME: this should be turned into a virtual method on SCEV!
1951
1952  if (isa<SCEVConstant>(V)) return V;
1953
1954  // If this instruction is evolves from a constant-evolving PHI, compute the
1955  // exit value from the loop without using SCEVs.
1956  if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
1957    if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
1958      const Loop *LI = this->LI[I->getParent()];
1959      if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
1960        if (PHINode *PN = dyn_cast<PHINode>(I))
1961          if (PN->getParent() == LI->getHeader()) {
1962            // Okay, there is no closed form solution for the PHI node.  Check
1963            // to see if the loop that contains it has a known iteration count.
1964            // If so, we may be able to force computation of the exit value.
1965            SCEVHandle IterationCount = getIterationCount(LI);
1966            if (SCEVConstant *ICC = dyn_cast<SCEVConstant>(IterationCount)) {
1967              // Okay, we know how many times the containing loop executes.  If
1968              // this is a constant evolving PHI node, get the final value at
1969              // the specified iteration number.
1970              Constant *RV = getConstantEvolutionLoopExitValue(PN,
1971                                                    ICC->getValue()->getValue(),
1972                                                               LI);
1973              if (RV) return SCEVUnknown::get(RV);
1974            }
1975          }
1976
1977      // Okay, this is an expression that we cannot symbolically evaluate
1978      // into a SCEV.  Check to see if it's possible to symbolically evaluate
1979      // the arguments into constants, and if so, try to constant propagate the
1980      // result.  This is particularly useful for computing loop exit values.
1981      if (CanConstantFold(I)) {
1982        std::vector<Constant*> Operands;
1983        Operands.reserve(I->getNumOperands());
1984        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
1985          Value *Op = I->getOperand(i);
1986          if (Constant *C = dyn_cast<Constant>(Op)) {
1987            Operands.push_back(C);
1988          } else {
1989            SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L);
1990            if (SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
1991              Operands.push_back(ConstantExpr::getIntegerCast(SC->getValue(),
1992                                                              Op->getType(),
1993                                                              false));
1994            else if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
1995              if (Constant *C = dyn_cast<Constant>(SU->getValue()))
1996                Operands.push_back(ConstantExpr::getIntegerCast(C,
1997                                                                Op->getType(),
1998                                                                false));
1999              else
2000                return V;
2001            } else {
2002              return V;
2003            }
2004          }
2005        }
2006        Constant *C =ConstantFoldInstOperands(I, &Operands[0], Operands.size());
2007        return SCEVUnknown::get(C);
2008      }
2009    }
2010
2011    // This is some other type of SCEVUnknown, just return it.
2012    return V;
2013  }
2014
2015  if (SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
2016    // Avoid performing the look-up in the common case where the specified
2017    // expression has no loop-variant portions.
2018    for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
2019      SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
2020      if (OpAtScope != Comm->getOperand(i)) {
2021        if (OpAtScope == UnknownValue) return UnknownValue;
2022        // Okay, at least one of these operands is loop variant but might be
2023        // foldable.  Build a new instance of the folded commutative expression.
2024        std::vector<SCEVHandle> NewOps(Comm->op_begin(), Comm->op_begin()+i);
2025        NewOps.push_back(OpAtScope);
2026
2027        for (++i; i != e; ++i) {
2028          OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
2029          if (OpAtScope == UnknownValue) return UnknownValue;
2030          NewOps.push_back(OpAtScope);
2031        }
2032        if (isa<SCEVAddExpr>(Comm))
2033          return SCEVAddExpr::get(NewOps);
2034        assert(isa<SCEVMulExpr>(Comm) && "Only know about add and mul!");
2035        return SCEVMulExpr::get(NewOps);
2036      }
2037    }
2038    // If we got here, all operands are loop invariant.
2039    return Comm;
2040  }
2041
2042  if (SCEVSDivExpr *Div = dyn_cast<SCEVSDivExpr>(V)) {
2043    SCEVHandle LHS = getSCEVAtScope(Div->getLHS(), L);
2044    if (LHS == UnknownValue) return LHS;
2045    SCEVHandle RHS = getSCEVAtScope(Div->getRHS(), L);
2046    if (RHS == UnknownValue) return RHS;
2047    if (LHS == Div->getLHS() && RHS == Div->getRHS())
2048      return Div;   // must be loop invariant
2049    return SCEVSDivExpr::get(LHS, RHS);
2050  }
2051
2052  // If this is a loop recurrence for a loop that does not contain L, then we
2053  // are dealing with the final value computed by the loop.
2054  if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
2055    if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
2056      // To evaluate this recurrence, we need to know how many times the AddRec
2057      // loop iterates.  Compute this now.
2058      SCEVHandle IterationCount = getIterationCount(AddRec->getLoop());
2059      if (IterationCount == UnknownValue) return UnknownValue;
2060      IterationCount = getTruncateOrZeroExtend(IterationCount,
2061                                               AddRec->getType());
2062
2063      // If the value is affine, simplify the expression evaluation to just
2064      // Start + Step*IterationCount.
2065      if (AddRec->isAffine())
2066        return SCEVAddExpr::get(AddRec->getStart(),
2067                                SCEVMulExpr::get(IterationCount,
2068                                                 AddRec->getOperand(1)));
2069
2070      // Otherwise, evaluate it the hard way.
2071      return AddRec->evaluateAtIteration(IterationCount);
2072    }
2073    return UnknownValue;
2074  }
2075
2076  //assert(0 && "Unknown SCEV type!");
2077  return UnknownValue;
2078}
2079
2080
2081/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
2082/// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
2083/// might be the same) or two SCEVCouldNotCompute objects.
2084///
2085static std::pair<SCEVHandle,SCEVHandle>
2086SolveQuadraticEquation(const SCEVAddRecExpr *AddRec) {
2087  assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
2088  SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
2089  SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
2090  SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
2091
2092  // We currently can only solve this if the coefficients are constants.
2093  if (!LC || !MC || !NC) {
2094    SCEV *CNC = new SCEVCouldNotCompute();
2095    return std::make_pair(CNC, CNC);
2096  }
2097
2098  uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
2099  const APInt& L = LC->getValue()->getValue();
2100  const APInt& M = MC->getValue()->getValue();
2101  const APInt& N = MC->getValue()->getValue();
2102  APInt Two(BitWidth, 2);
2103  APInt Four(BitWidth, 4);
2104
2105  {
2106    using namespace APIntOps;
2107    const APInt& C = L;
2108    // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
2109    // The B coefficient is M-N/2
2110    APInt B(M);
2111    B -= sdiv(N,Two);
2112
2113    // The A coefficient is N/2
2114    APInt A(N.sdiv(Two));
2115
2116    // Compute the B^2-4ac term.
2117    APInt SqrtTerm(B);
2118    SqrtTerm *= B;
2119    SqrtTerm -= Four * (A * C);
2120
2121    // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
2122    // integer value or else APInt::sqrt() will assert.
2123    APInt SqrtVal(SqrtTerm.sqrt());
2124
2125    // Compute the two solutions for the quadratic formula.
2126    // The divisions must be performed as signed divisions.
2127    APInt NegB(-B);
2128    APInt TwoA( A * Two );
2129    ConstantInt *Solution1 = ConstantInt::get((NegB + SqrtVal).sdiv(TwoA));
2130    ConstantInt *Solution2 = ConstantInt::get((NegB - SqrtVal).sdiv(TwoA));
2131
2132    return std::make_pair(SCEVUnknown::get(Solution1),
2133                          SCEVUnknown::get(Solution2));
2134    } // end APIntOps namespace
2135}
2136
2137/// HowFarToZero - Return the number of times a backedge comparing the specified
2138/// value to zero will execute.  If not computable, return UnknownValue
2139SCEVHandle ScalarEvolutionsImpl::HowFarToZero(SCEV *V, const Loop *L) {
2140  // If the value is a constant
2141  if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
2142    // If the value is already zero, the branch will execute zero times.
2143    if (C->getValue()->isZero()) return C;
2144    return UnknownValue;  // Otherwise it will loop infinitely.
2145  }
2146
2147  SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
2148  if (!AddRec || AddRec->getLoop() != L)
2149    return UnknownValue;
2150
2151  if (AddRec->isAffine()) {
2152    // If this is an affine expression the execution count of this branch is
2153    // equal to:
2154    //
2155    //     (0 - Start/Step)    iff   Start % Step == 0
2156    //
2157    // Get the initial value for the loop.
2158    SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
2159    if (isa<SCEVCouldNotCompute>(Start)) return UnknownValue;
2160    SCEVHandle Step = AddRec->getOperand(1);
2161
2162    Step = getSCEVAtScope(Step, L->getParentLoop());
2163
2164    // Figure out if Start % Step == 0.
2165    // FIXME: We should add DivExpr and RemExpr operations to our AST.
2166    if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
2167      if (StepC->getValue()->equalsInt(1))      // N % 1 == 0
2168        return SCEV::getNegativeSCEV(Start);  // 0 - Start/1 == -Start
2169      if (StepC->getValue()->isAllOnesValue())  // N % -1 == 0
2170        return Start;                   // 0 - Start/-1 == Start
2171
2172      // Check to see if Start is divisible by SC with no remainder.
2173      if (SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) {
2174        ConstantInt *StartCC = StartC->getValue();
2175        Constant *StartNegC = ConstantExpr::getNeg(StartCC);
2176        Constant *Rem = ConstantExpr::getSRem(StartNegC, StepC->getValue());
2177        if (Rem->isNullValue()) {
2178          Constant *Result =ConstantExpr::getSDiv(StartNegC,StepC->getValue());
2179          return SCEVUnknown::get(Result);
2180        }
2181      }
2182    }
2183  } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
2184    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
2185    // the quadratic equation to solve it.
2186    std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec);
2187    SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
2188    SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
2189    if (R1) {
2190#if 0
2191      cerr << "HFTZ: " << *V << " - sol#1: " << *R1
2192           << "  sol#2: " << *R2 << "\n";
2193#endif
2194      // Pick the smallest positive root value.
2195      if (ConstantInt *CB =
2196          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
2197                                   R1->getValue(), R2->getValue()))) {
2198        if (CB->getZExtValue() == false)
2199          std::swap(R1, R2);   // R1 is the minimum root now.
2200
2201        // We can only use this value if the chrec ends up with an exact zero
2202        // value at this index.  When solving for "X*X != 5", for example, we
2203        // should not accept a root of 2.
2204        SCEVHandle Val = AddRec->evaluateAtIteration(R1);
2205        if (SCEVConstant *EvalVal = dyn_cast<SCEVConstant>(Val))
2206          if (EvalVal->getValue()->isZero())
2207            return R1;  // We found a quadratic root!
2208      }
2209    }
2210  }
2211
2212  return UnknownValue;
2213}
2214
2215/// HowFarToNonZero - Return the number of times a backedge checking the
2216/// specified value for nonzero will execute.  If not computable, return
2217/// UnknownValue
2218SCEVHandle ScalarEvolutionsImpl::HowFarToNonZero(SCEV *V, const Loop *L) {
2219  // Loops that look like: while (X == 0) are very strange indeed.  We don't
2220  // handle them yet except for the trivial case.  This could be expanded in the
2221  // future as needed.
2222
2223  // If the value is a constant, check to see if it is known to be non-zero
2224  // already.  If so, the backedge will execute zero times.
2225  if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
2226    Constant *Zero = Constant::getNullValue(C->getValue()->getType());
2227    Constant *NonZero =
2228      ConstantExpr::getICmp(ICmpInst::ICMP_NE, C->getValue(), Zero);
2229    if (NonZero == ConstantInt::getTrue())
2230      return getSCEV(Zero);
2231    return UnknownValue;  // Otherwise it will loop infinitely.
2232  }
2233
2234  // We could implement others, but I really doubt anyone writes loops like
2235  // this, and if they did, they would already be constant folded.
2236  return UnknownValue;
2237}
2238
2239/// HowManyLessThans - Return the number of times a backedge containing the
2240/// specified less-than comparison will execute.  If not computable, return
2241/// UnknownValue.
2242SCEVHandle ScalarEvolutionsImpl::
2243HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L) {
2244  // Only handle:  "ADDREC < LoopInvariant".
2245  if (!RHS->isLoopInvariant(L)) return UnknownValue;
2246
2247  SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
2248  if (!AddRec || AddRec->getLoop() != L)
2249    return UnknownValue;
2250
2251  if (AddRec->isAffine()) {
2252    // FORNOW: We only support unit strides.
2253    SCEVHandle One = SCEVUnknown::getIntegerSCEV(1, RHS->getType());
2254    if (AddRec->getOperand(1) != One)
2255      return UnknownValue;
2256
2257    // The number of iterations for "[n,+,1] < m", is m-n.  However, we don't
2258    // know that m is >= n on input to the loop.  If it is, the condition return
2259    // true zero times.  What we really should return, for full generality, is
2260    // SMAX(0, m-n).  Since we cannot check this, we will instead check for a
2261    // canonical loop form: most do-loops will have a check that dominates the
2262    // loop, that only enters the loop if [n-1]<m.  If we can find this check,
2263    // we know that the SMAX will evaluate to m-n, because we know that m >= n.
2264
2265    // Search for the check.
2266    BasicBlock *Preheader = L->getLoopPreheader();
2267    BasicBlock *PreheaderDest = L->getHeader();
2268    if (Preheader == 0) return UnknownValue;
2269
2270    BranchInst *LoopEntryPredicate =
2271      dyn_cast<BranchInst>(Preheader->getTerminator());
2272    if (!LoopEntryPredicate) return UnknownValue;
2273
2274    // This might be a critical edge broken out.  If the loop preheader ends in
2275    // an unconditional branch to the loop, check to see if the preheader has a
2276    // single predecessor, and if so, look for its terminator.
2277    while (LoopEntryPredicate->isUnconditional()) {
2278      PreheaderDest = Preheader;
2279      Preheader = Preheader->getSinglePredecessor();
2280      if (!Preheader) return UnknownValue;  // Multiple preds.
2281
2282      LoopEntryPredicate =
2283        dyn_cast<BranchInst>(Preheader->getTerminator());
2284      if (!LoopEntryPredicate) return UnknownValue;
2285    }
2286
2287    // Now that we found a conditional branch that dominates the loop, check to
2288    // see if it is the comparison we are looking for.
2289    if (ICmpInst *ICI = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition())){
2290      Value *PreCondLHS = ICI->getOperand(0);
2291      Value *PreCondRHS = ICI->getOperand(1);
2292      ICmpInst::Predicate Cond;
2293      if (LoopEntryPredicate->getSuccessor(0) == PreheaderDest)
2294        Cond = ICI->getPredicate();
2295      else
2296        Cond = ICI->getInversePredicate();
2297
2298      switch (Cond) {
2299      case ICmpInst::ICMP_UGT:
2300        std::swap(PreCondLHS, PreCondRHS);
2301        Cond = ICmpInst::ICMP_ULT;
2302        break;
2303      case ICmpInst::ICMP_SGT:
2304        std::swap(PreCondLHS, PreCondRHS);
2305        Cond = ICmpInst::ICMP_SLT;
2306        break;
2307      default: break;
2308      }
2309
2310      if (Cond == ICmpInst::ICMP_SLT) {
2311        if (PreCondLHS->getType()->isInteger()) {
2312          if (RHS != getSCEV(PreCondRHS))
2313            return UnknownValue;  // Not a comparison against 'm'.
2314
2315          if (SCEV::getMinusSCEV(AddRec->getOperand(0), One)
2316                      != getSCEV(PreCondLHS))
2317            return UnknownValue;  // Not a comparison against 'n-1'.
2318        }
2319        else return UnknownValue;
2320      } else if (Cond == ICmpInst::ICMP_ULT)
2321        return UnknownValue;
2322
2323      // cerr << "Computed Loop Trip Count as: "
2324      //      << //  *SCEV::getMinusSCEV(RHS, AddRec->getOperand(0)) << "\n";
2325      return SCEV::getMinusSCEV(RHS, AddRec->getOperand(0));
2326    }
2327    else
2328      return UnknownValue;
2329  }
2330
2331  return UnknownValue;
2332}
2333
2334/// getNumIterationsInRange - Return the number of iterations of this loop that
2335/// produce values in the specified constant range.  Another way of looking at
2336/// this is that it returns the first iteration number where the value is not in
2337/// the condition, thus computing the exit count. If the iteration count can't
2338/// be computed, an instance of SCEVCouldNotCompute is returned.
2339SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
2340                                                   bool isSigned) const {
2341  if (Range.isFullSet())  // Infinite loop.
2342    return new SCEVCouldNotCompute();
2343
2344  // If the start is a non-zero constant, shift the range to simplify things.
2345  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
2346    if (!SC->getValue()->isZero()) {
2347      std::vector<SCEVHandle> Operands(op_begin(), op_end());
2348      Operands[0] = SCEVUnknown::getIntegerSCEV(0, SC->getType());
2349      SCEVHandle Shifted = SCEVAddRecExpr::get(Operands, getLoop());
2350      if (SCEVAddRecExpr *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
2351        return ShiftedAddRec->getNumIterationsInRange(
2352                           Range.subtract(SC->getValue()->getValue()),isSigned);
2353      // This is strange and shouldn't happen.
2354      return new SCEVCouldNotCompute();
2355    }
2356
2357  // The only time we can solve this is when we have all constant indices.
2358  // Otherwise, we cannot determine the overflow conditions.
2359  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2360    if (!isa<SCEVConstant>(getOperand(i)))
2361      return new SCEVCouldNotCompute();
2362
2363
2364  // Okay at this point we know that all elements of the chrec are constants and
2365  // that the start element is zero.
2366
2367  // First check to see if the range contains zero.  If not, the first
2368  // iteration exits.
2369  if (!Range.contains(APInt(getBitWidth(),0)))
2370    return SCEVConstant::get(ConstantInt::get(getType(),0));
2371
2372  if (isAffine()) {
2373    // If this is an affine expression then we have this situation:
2374    //   Solve {0,+,A} in Range  ===  Ax in Range
2375
2376    // Since we know that zero is in the range, we know that the upper value of
2377    // the range must be the first possible exit value.  Also note that we
2378    // already checked for a full range.
2379    const APInt &Upper = Range.getUpper();
2380    APInt A     = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
2381    APInt One(getBitWidth(),1);
2382
2383    // The exit value should be (Upper+A-1)/A.
2384    APInt ExitVal(Upper);
2385    if (A != One)
2386      ExitVal = (Upper + A - One).sdiv(A);
2387    ConstantInt *ExitValue = ConstantInt::get(ExitVal);
2388
2389    // Evaluate at the exit value.  If we really did fall out of the valid
2390    // range, then we computed our trip count, otherwise wrap around or other
2391    // things must have happened.
2392    ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue);
2393    if (Range.contains(Val->getValue()))
2394      return new SCEVCouldNotCompute();  // Something strange happened
2395
2396    // Ensure that the previous value is in the range.  This is a sanity check.
2397    assert(Range.contains(
2398           EvaluateConstantChrecAtConstant(this,
2399           ConstantInt::get(ExitVal - One))->getValue()) &&
2400           "Linear scev computation is off in a bad way!");
2401    return SCEVConstant::get(cast<ConstantInt>(ExitValue));
2402  } else if (isQuadratic()) {
2403    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
2404    // quadratic equation to solve it.  To do this, we must frame our problem in
2405    // terms of figuring out when zero is crossed, instead of when
2406    // Range.getUpper() is crossed.
2407    std::vector<SCEVHandle> NewOps(op_begin(), op_end());
2408    NewOps[0] = SCEV::getNegativeSCEV(SCEVUnknown::get(
2409                                           ConstantInt::get(Range.getUpper())));
2410    SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewOps, getLoop());
2411
2412    // Next, solve the constructed addrec
2413    std::pair<SCEVHandle,SCEVHandle> Roots =
2414      SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec));
2415    SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
2416    SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
2417    if (R1) {
2418      // Pick the smallest positive root value.
2419      if (ConstantInt *CB =
2420          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
2421                                   R1->getValue(), R2->getValue()))) {
2422        if (CB->getZExtValue() == false)
2423          std::swap(R1, R2);   // R1 is the minimum root now.
2424
2425        // Make sure the root is not off by one.  The returned iteration should
2426        // not be in the range, but the previous one should be.  When solving
2427        // for "X*X < 5", for example, we should not return a root of 2.
2428        ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
2429                                                             R1->getValue());
2430        if (Range.contains(R1Val->getValue())) {
2431          // The next iteration must be out of the range...
2432          Constant *NextVal = ConstantInt::get(R1->getValue()->getValue()+1);
2433
2434          R1Val = EvaluateConstantChrecAtConstant(this, NextVal);
2435          if (!Range.contains(R1Val->getValue()))
2436            return SCEVUnknown::get(NextVal);
2437          return new SCEVCouldNotCompute();  // Something strange happened
2438        }
2439
2440        // If R1 was not in the range, then it is a good return value.  Make
2441        // sure that R1-1 WAS in the range though, just in case.
2442        Constant *NextVal = ConstantInt::get(R1->getValue()->getValue()-1);
2443        R1Val = EvaluateConstantChrecAtConstant(this, NextVal);
2444        if (Range.contains(R1Val->getValue()))
2445          return R1;
2446        return new SCEVCouldNotCompute();  // Something strange happened
2447      }
2448    }
2449  }
2450
2451  // Fallback, if this is a general polynomial, figure out the progression
2452  // through brute force: evaluate until we find an iteration that fails the
2453  // test.  This is likely to be slow, but getting an accurate trip count is
2454  // incredibly important, we will be able to simplify the exit test a lot, and
2455  // we are almost guaranteed to get a trip count in this case.
2456  ConstantInt *TestVal = ConstantInt::get(getType(), 0);
2457  ConstantInt *EndVal  = TestVal;  // Stop when we wrap around.
2458  do {
2459    ++NumBruteForceEvaluations;
2460    SCEVHandle Val = evaluateAtIteration(SCEVConstant::get(TestVal));
2461    if (!isa<SCEVConstant>(Val))  // This shouldn't happen.
2462      return new SCEVCouldNotCompute();
2463
2464    // Check to see if we found the value!
2465    if (!Range.contains(cast<SCEVConstant>(Val)->getValue()->getValue()))
2466      return SCEVConstant::get(TestVal);
2467
2468    // Increment to test the next index.
2469    TestVal = ConstantInt::get(TestVal->getValue()+1);
2470  } while (TestVal != EndVal);
2471
2472  return new SCEVCouldNotCompute();
2473}
2474
2475
2476
2477//===----------------------------------------------------------------------===//
2478//                   ScalarEvolution Class Implementation
2479//===----------------------------------------------------------------------===//
2480
2481bool ScalarEvolution::runOnFunction(Function &F) {
2482  Impl = new ScalarEvolutionsImpl(F, getAnalysis<LoopInfo>());
2483  return false;
2484}
2485
2486void ScalarEvolution::releaseMemory() {
2487  delete (ScalarEvolutionsImpl*)Impl;
2488  Impl = 0;
2489}
2490
2491void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
2492  AU.setPreservesAll();
2493  AU.addRequiredTransitive<LoopInfo>();
2494}
2495
2496SCEVHandle ScalarEvolution::getSCEV(Value *V) const {
2497  return ((ScalarEvolutionsImpl*)Impl)->getSCEV(V);
2498}
2499
2500/// hasSCEV - Return true if the SCEV for this value has already been
2501/// computed.
2502bool ScalarEvolution::hasSCEV(Value *V) const {
2503  return ((ScalarEvolutionsImpl*)Impl)->hasSCEV(V);
2504}
2505
2506
2507/// setSCEV - Insert the specified SCEV into the map of current SCEVs for
2508/// the specified value.
2509void ScalarEvolution::setSCEV(Value *V, const SCEVHandle &H) {
2510  ((ScalarEvolutionsImpl*)Impl)->setSCEV(V, H);
2511}
2512
2513
2514SCEVHandle ScalarEvolution::getIterationCount(const Loop *L) const {
2515  return ((ScalarEvolutionsImpl*)Impl)->getIterationCount(L);
2516}
2517
2518bool ScalarEvolution::hasLoopInvariantIterationCount(const Loop *L) const {
2519  return !isa<SCEVCouldNotCompute>(getIterationCount(L));
2520}
2521
2522SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) const {
2523  return ((ScalarEvolutionsImpl*)Impl)->getSCEVAtScope(getSCEV(V), L);
2524}
2525
2526void ScalarEvolution::deleteInstructionFromRecords(Instruction *I) const {
2527  return ((ScalarEvolutionsImpl*)Impl)->deleteInstructionFromRecords(I);
2528}
2529
2530static void PrintLoopInfo(std::ostream &OS, const ScalarEvolution *SE,
2531                          const Loop *L) {
2532  // Print all inner loops first
2533  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
2534    PrintLoopInfo(OS, SE, *I);
2535
2536  cerr << "Loop " << L->getHeader()->getName() << ": ";
2537
2538  std::vector<BasicBlock*> ExitBlocks;
2539  L->getExitBlocks(ExitBlocks);
2540  if (ExitBlocks.size() != 1)
2541    cerr << "<multiple exits> ";
2542
2543  if (SE->hasLoopInvariantIterationCount(L)) {
2544    cerr << *SE->getIterationCount(L) << " iterations! ";
2545  } else {
2546    cerr << "Unpredictable iteration count. ";
2547  }
2548
2549  cerr << "\n";
2550}
2551
2552void ScalarEvolution::print(std::ostream &OS, const Module* ) const {
2553  Function &F = ((ScalarEvolutionsImpl*)Impl)->F;
2554  LoopInfo &LI = ((ScalarEvolutionsImpl*)Impl)->LI;
2555
2556  OS << "Classifying expressions for: " << F.getName() << "\n";
2557  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
2558    if (I->getType()->isInteger()) {
2559      OS << *I;
2560      OS << "  --> ";
2561      SCEVHandle SV = getSCEV(&*I);
2562      SV->print(OS);
2563      OS << "\t\t";
2564
2565      if ((*I).getType()->isInteger()) {
2566        ConstantRange Bounds = SV->getValueRange();
2567        if (!Bounds.isFullSet())
2568          OS << "Bounds: " << Bounds << " ";
2569      }
2570
2571      if (const Loop *L = LI.getLoopFor((*I).getParent())) {
2572        OS << "Exits: ";
2573        SCEVHandle ExitValue = getSCEVAtScope(&*I, L->getParentLoop());
2574        if (isa<SCEVCouldNotCompute>(ExitValue)) {
2575          OS << "<<Unknown>>";
2576        } else {
2577          OS << *ExitValue;
2578        }
2579      }
2580
2581
2582      OS << "\n";
2583    }
2584
2585  OS << "Determining loop execution counts for: " << F.getName() << "\n";
2586  for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I)
2587    PrintLoopInfo(OS, this, *I);
2588}
2589
2590