ScalarEvolution.cpp revision 63c9463c62fce8cbe02176dfa2d73f375a06f1f2
1//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library.  First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
19//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression.  These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
30//
31// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
35// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42//  Chains of recurrences -- a method to expedite the evaluation
43//  of closed-form functions
44//  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46//  On computational properties of chains of recurrences
47//  Eugene V. Zima
48//
49//  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50//  Robert A. van Engelen
51//
52//  Efficient Symbolic Analysis for Optimizing Compilers
53//  Robert A. van Engelen
54//
55//  Using the chains of recurrences algebra for data dependence testing and
56//  induction variable substitution
57//  MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
61#define DEBUG_TYPE "scalar-evolution"
62#include "llvm/Analysis/ScalarEvolutionExpressions.h"
63#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
65#include "llvm/GlobalVariable.h"
66#include "llvm/GlobalAlias.h"
67#include "llvm/Instructions.h"
68#include "llvm/LLVMContext.h"
69#include "llvm/Operator.h"
70#include "llvm/Analysis/ConstantFolding.h"
71#include "llvm/Analysis/Dominators.h"
72#include "llvm/Analysis/LoopInfo.h"
73#include "llvm/Analysis/ValueTracking.h"
74#include "llvm/Assembly/Writer.h"
75#include "llvm/Target/TargetData.h"
76#include "llvm/Support/CommandLine.h"
77#include "llvm/Support/ConstantRange.h"
78#include "llvm/Support/Debug.h"
79#include "llvm/Support/ErrorHandling.h"
80#include "llvm/Support/GetElementPtrTypeIterator.h"
81#include "llvm/Support/InstIterator.h"
82#include "llvm/Support/MathExtras.h"
83#include "llvm/Support/raw_ostream.h"
84#include "llvm/ADT/Statistic.h"
85#include "llvm/ADT/STLExtras.h"
86#include "llvm/ADT/SmallPtrSet.h"
87#include <algorithm>
88using namespace llvm;
89
90STATISTIC(NumArrayLenItCounts,
91          "Number of trip counts computed with array length");
92STATISTIC(NumTripCountsComputed,
93          "Number of loops with predictable loop counts");
94STATISTIC(NumTripCountsNotComputed,
95          "Number of loops without predictable loop counts");
96STATISTIC(NumBruteForceTripCountsComputed,
97          "Number of loops with trip counts computed by force");
98
99static cl::opt<unsigned>
100MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
101                        cl::desc("Maximum number of iterations SCEV will "
102                                 "symbolically execute a constant "
103                                 "derived loop"),
104                        cl::init(100));
105
106static RegisterPass<ScalarEvolution>
107R("scalar-evolution", "Scalar Evolution Analysis", false, true);
108char ScalarEvolution::ID = 0;
109
110//===----------------------------------------------------------------------===//
111//                           SCEV class definitions
112//===----------------------------------------------------------------------===//
113
114//===----------------------------------------------------------------------===//
115// Implementation of the SCEV class.
116//
117
118SCEV::~SCEV() {}
119
120void SCEV::dump() const {
121  print(dbgs());
122  dbgs() << '\n';
123}
124
125bool SCEV::isZero() const {
126  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
127    return SC->getValue()->isZero();
128  return false;
129}
130
131bool SCEV::isOne() const {
132  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
133    return SC->getValue()->isOne();
134  return false;
135}
136
137bool SCEV::isAllOnesValue() const {
138  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
139    return SC->getValue()->isAllOnesValue();
140  return false;
141}
142
143SCEVCouldNotCompute::SCEVCouldNotCompute() :
144  SCEV(FoldingSetNodeID(), scCouldNotCompute) {}
145
146bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
147  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
148  return false;
149}
150
151const Type *SCEVCouldNotCompute::getType() const {
152  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
153  return 0;
154}
155
156bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
157  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
158  return false;
159}
160
161bool SCEVCouldNotCompute::hasOperand(const SCEV *) const {
162  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
163  return false;
164}
165
166void SCEVCouldNotCompute::print(raw_ostream &OS) const {
167  OS << "***COULDNOTCOMPUTE***";
168}
169
170bool SCEVCouldNotCompute::classof(const SCEV *S) {
171  return S->getSCEVType() == scCouldNotCompute;
172}
173
174const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
175  FoldingSetNodeID ID;
176  ID.AddInteger(scConstant);
177  ID.AddPointer(V);
178  void *IP = 0;
179  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
180  SCEV *S = SCEVAllocator.Allocate<SCEVConstant>();
181  new (S) SCEVConstant(ID, V);
182  UniqueSCEVs.InsertNode(S, IP);
183  return S;
184}
185
186const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
187  return getConstant(ConstantInt::get(getContext(), Val));
188}
189
190const SCEV *
191ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
192  return getConstant(
193    ConstantInt::get(cast<IntegerType>(Ty), V, isSigned));
194}
195
196const Type *SCEVConstant::getType() const { return V->getType(); }
197
198void SCEVConstant::print(raw_ostream &OS) const {
199  WriteAsOperand(OS, V, false);
200}
201
202SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeID &ID,
203                           unsigned SCEVTy, const SCEV *op, const Type *ty)
204  : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
205
206bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
207  return Op->dominates(BB, DT);
208}
209
210bool SCEVCastExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
211  return Op->properlyDominates(BB, DT);
212}
213
214SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeID &ID,
215                                   const SCEV *op, const Type *ty)
216  : SCEVCastExpr(ID, scTruncate, op, ty) {
217  assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
218         (Ty->isInteger() || isa<PointerType>(Ty)) &&
219         "Cannot truncate non-integer value!");
220}
221
222void SCEVTruncateExpr::print(raw_ostream &OS) const {
223  OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
224}
225
226SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeID &ID,
227                                       const SCEV *op, const Type *ty)
228  : SCEVCastExpr(ID, scZeroExtend, op, ty) {
229  assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
230         (Ty->isInteger() || isa<PointerType>(Ty)) &&
231         "Cannot zero extend non-integer value!");
232}
233
234void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
235  OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
236}
237
238SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeID &ID,
239                                       const SCEV *op, const Type *ty)
240  : SCEVCastExpr(ID, scSignExtend, op, ty) {
241  assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
242         (Ty->isInteger() || isa<PointerType>(Ty)) &&
243         "Cannot sign extend non-integer value!");
244}
245
246void SCEVSignExtendExpr::print(raw_ostream &OS) const {
247  OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
248}
249
250void SCEVCommutativeExpr::print(raw_ostream &OS) const {
251  assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
252  const char *OpStr = getOperationStr();
253  OS << "(" << *Operands[0];
254  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
255    OS << OpStr << *Operands[i];
256  OS << ")";
257}
258
259bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
260  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
261    if (!getOperand(i)->dominates(BB, DT))
262      return false;
263  }
264  return true;
265}
266
267bool SCEVNAryExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
268  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
269    if (!getOperand(i)->properlyDominates(BB, DT))
270      return false;
271  }
272  return true;
273}
274
275bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
276  return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
277}
278
279bool SCEVUDivExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
280  return LHS->properlyDominates(BB, DT) && RHS->properlyDominates(BB, DT);
281}
282
283void SCEVUDivExpr::print(raw_ostream &OS) const {
284  OS << "(" << *LHS << " /u " << *RHS << ")";
285}
286
287const Type *SCEVUDivExpr::getType() const {
288  // In most cases the types of LHS and RHS will be the same, but in some
289  // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
290  // depend on the type for correctness, but handling types carefully can
291  // avoid extra casts in the SCEVExpander. The LHS is more likely to be
292  // a pointer type than the RHS, so use the RHS' type here.
293  return RHS->getType();
294}
295
296bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
297  // Add recurrences are never invariant in the function-body (null loop).
298  if (!QueryLoop)
299    return false;
300
301  // This recurrence is variant w.r.t. QueryLoop if QueryLoop contains L.
302  if (QueryLoop->contains(L))
303    return false;
304
305  // This recurrence is variant w.r.t. QueryLoop if any of its operands
306  // are variant.
307  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
308    if (!getOperand(i)->isLoopInvariant(QueryLoop))
309      return false;
310
311  // Otherwise it's loop-invariant.
312  return true;
313}
314
315void SCEVAddRecExpr::print(raw_ostream &OS) const {
316  OS << "{" << *Operands[0];
317  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
318    OS << ",+," << *Operands[i];
319  OS << "}<" << L->getHeader()->getName() + ">";
320}
321
322void SCEVFieldOffsetExpr::print(raw_ostream &OS) const {
323  // LLVM struct fields don't have names, so just print the field number.
324  OS << "offsetof(" << *STy << ", " << FieldNo << ")";
325}
326
327void SCEVAllocSizeExpr::print(raw_ostream &OS) const {
328  OS << "sizeof(" << *AllocTy << ")";
329}
330
331bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
332  // All non-instruction values are loop invariant.  All instructions are loop
333  // invariant if they are not contained in the specified loop.
334  // Instructions are never considered invariant in the function body
335  // (null loop) because they are defined within the "loop".
336  if (Instruction *I = dyn_cast<Instruction>(V))
337    return L && !L->contains(I);
338  return true;
339}
340
341bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
342  if (Instruction *I = dyn_cast<Instruction>(getValue()))
343    return DT->dominates(I->getParent(), BB);
344  return true;
345}
346
347bool SCEVUnknown::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
348  if (Instruction *I = dyn_cast<Instruction>(getValue()))
349    return DT->properlyDominates(I->getParent(), BB);
350  return true;
351}
352
353const Type *SCEVUnknown::getType() const {
354  return V->getType();
355}
356
357void SCEVUnknown::print(raw_ostream &OS) const {
358  WriteAsOperand(OS, V, false);
359}
360
361//===----------------------------------------------------------------------===//
362//                               SCEV Utilities
363//===----------------------------------------------------------------------===//
364
365static bool CompareTypes(const Type *A, const Type *B) {
366  if (A->getTypeID() != B->getTypeID())
367    return A->getTypeID() < B->getTypeID();
368  if (const IntegerType *AI = dyn_cast<IntegerType>(A)) {
369    const IntegerType *BI = cast<IntegerType>(B);
370    return AI->getBitWidth() < BI->getBitWidth();
371  }
372  if (const PointerType *AI = dyn_cast<PointerType>(A)) {
373    const PointerType *BI = cast<PointerType>(B);
374    return CompareTypes(AI->getElementType(), BI->getElementType());
375  }
376  if (const ArrayType *AI = dyn_cast<ArrayType>(A)) {
377    const ArrayType *BI = cast<ArrayType>(B);
378    if (AI->getNumElements() != BI->getNumElements())
379      return AI->getNumElements() < BI->getNumElements();
380    return CompareTypes(AI->getElementType(), BI->getElementType());
381  }
382  if (const VectorType *AI = dyn_cast<VectorType>(A)) {
383    const VectorType *BI = cast<VectorType>(B);
384    if (AI->getNumElements() != BI->getNumElements())
385      return AI->getNumElements() < BI->getNumElements();
386    return CompareTypes(AI->getElementType(), BI->getElementType());
387  }
388  if (const StructType *AI = dyn_cast<StructType>(A)) {
389    const StructType *BI = cast<StructType>(B);
390    if (AI->getNumElements() != BI->getNumElements())
391      return AI->getNumElements() < BI->getNumElements();
392    for (unsigned i = 0, e = AI->getNumElements(); i != e; ++i)
393      if (CompareTypes(AI->getElementType(i), BI->getElementType(i)) ||
394          CompareTypes(BI->getElementType(i), AI->getElementType(i)))
395        return CompareTypes(AI->getElementType(i), BI->getElementType(i));
396  }
397  return false;
398}
399
400namespace {
401  /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
402  /// than the complexity of the RHS.  This comparator is used to canonicalize
403  /// expressions.
404  class SCEVComplexityCompare {
405    LoopInfo *LI;
406  public:
407    explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {}
408
409    bool operator()(const SCEV *LHS, const SCEV *RHS) const {
410      // Fast-path: SCEVs are uniqued so we can do a quick equality check.
411      if (LHS == RHS)
412        return false;
413
414      // Primarily, sort the SCEVs by their getSCEVType().
415      if (LHS->getSCEVType() != RHS->getSCEVType())
416        return LHS->getSCEVType() < RHS->getSCEVType();
417
418      // Aside from the getSCEVType() ordering, the particular ordering
419      // isn't very important except that it's beneficial to be consistent,
420      // so that (a + b) and (b + a) don't end up as different expressions.
421
422      // Sort SCEVUnknown values with some loose heuristics. TODO: This is
423      // not as complete as it could be.
424      if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) {
425        const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
426
427        // Order pointer values after integer values. This helps SCEVExpander
428        // form GEPs.
429        if (isa<PointerType>(LU->getType()) && !isa<PointerType>(RU->getType()))
430          return false;
431        if (isa<PointerType>(RU->getType()) && !isa<PointerType>(LU->getType()))
432          return true;
433
434        // Compare getValueID values.
435        if (LU->getValue()->getValueID() != RU->getValue()->getValueID())
436          return LU->getValue()->getValueID() < RU->getValue()->getValueID();
437
438        // Sort arguments by their position.
439        if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) {
440          const Argument *RA = cast<Argument>(RU->getValue());
441          return LA->getArgNo() < RA->getArgNo();
442        }
443
444        // For instructions, compare their loop depth, and their opcode.
445        // This is pretty loose.
446        if (Instruction *LV = dyn_cast<Instruction>(LU->getValue())) {
447          Instruction *RV = cast<Instruction>(RU->getValue());
448
449          // Compare loop depths.
450          if (LI->getLoopDepth(LV->getParent()) !=
451              LI->getLoopDepth(RV->getParent()))
452            return LI->getLoopDepth(LV->getParent()) <
453                   LI->getLoopDepth(RV->getParent());
454
455          // Compare opcodes.
456          if (LV->getOpcode() != RV->getOpcode())
457            return LV->getOpcode() < RV->getOpcode();
458
459          // Compare the number of operands.
460          if (LV->getNumOperands() != RV->getNumOperands())
461            return LV->getNumOperands() < RV->getNumOperands();
462        }
463
464        return false;
465      }
466
467      // Compare constant values.
468      if (const SCEVConstant *LC = dyn_cast<SCEVConstant>(LHS)) {
469        const SCEVConstant *RC = cast<SCEVConstant>(RHS);
470        if (LC->getValue()->getBitWidth() != RC->getValue()->getBitWidth())
471          return LC->getValue()->getBitWidth() < RC->getValue()->getBitWidth();
472        return LC->getValue()->getValue().ult(RC->getValue()->getValue());
473      }
474
475      // Compare addrec loop depths.
476      if (const SCEVAddRecExpr *LA = dyn_cast<SCEVAddRecExpr>(LHS)) {
477        const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
478        if (LA->getLoop()->getLoopDepth() != RA->getLoop()->getLoopDepth())
479          return LA->getLoop()->getLoopDepth() < RA->getLoop()->getLoopDepth();
480      }
481
482      // Lexicographically compare n-ary expressions.
483      if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) {
484        const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
485        for (unsigned i = 0, e = LC->getNumOperands(); i != e; ++i) {
486          if (i >= RC->getNumOperands())
487            return false;
488          if (operator()(LC->getOperand(i), RC->getOperand(i)))
489            return true;
490          if (operator()(RC->getOperand(i), LC->getOperand(i)))
491            return false;
492        }
493        return LC->getNumOperands() < RC->getNumOperands();
494      }
495
496      // Lexicographically compare udiv expressions.
497      if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) {
498        const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
499        if (operator()(LC->getLHS(), RC->getLHS()))
500          return true;
501        if (operator()(RC->getLHS(), LC->getLHS()))
502          return false;
503        if (operator()(LC->getRHS(), RC->getRHS()))
504          return true;
505        if (operator()(RC->getRHS(), LC->getRHS()))
506          return false;
507        return false;
508      }
509
510      // Compare cast expressions by operand.
511      if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) {
512        const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
513        return operator()(LC->getOperand(), RC->getOperand());
514      }
515
516      // Compare offsetof expressions.
517      if (const SCEVFieldOffsetExpr *LA = dyn_cast<SCEVFieldOffsetExpr>(LHS)) {
518        const SCEVFieldOffsetExpr *RA = cast<SCEVFieldOffsetExpr>(RHS);
519        if (CompareTypes(LA->getStructType(), RA->getStructType()) ||
520            CompareTypes(RA->getStructType(), LA->getStructType()))
521          return CompareTypes(LA->getStructType(), RA->getStructType());
522        return LA->getFieldNo() < RA->getFieldNo();
523      }
524
525      // Compare sizeof expressions by the allocation type.
526      if (const SCEVAllocSizeExpr *LA = dyn_cast<SCEVAllocSizeExpr>(LHS)) {
527        const SCEVAllocSizeExpr *RA = cast<SCEVAllocSizeExpr>(RHS);
528        return CompareTypes(LA->getAllocType(), RA->getAllocType());
529      }
530
531      llvm_unreachable("Unknown SCEV kind!");
532      return false;
533    }
534  };
535}
536
537/// GroupByComplexity - Given a list of SCEV objects, order them by their
538/// complexity, and group objects of the same complexity together by value.
539/// When this routine is finished, we know that any duplicates in the vector are
540/// consecutive and that complexity is monotonically increasing.
541///
542/// Note that we go take special precautions to ensure that we get determinstic
543/// results from this routine.  In other words, we don't want the results of
544/// this to depend on where the addresses of various SCEV objects happened to
545/// land in memory.
546///
547static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
548                              LoopInfo *LI) {
549  if (Ops.size() < 2) return;  // Noop
550  if (Ops.size() == 2) {
551    // This is the common case, which also happens to be trivially simple.
552    // Special case it.
553    if (SCEVComplexityCompare(LI)(Ops[1], Ops[0]))
554      std::swap(Ops[0], Ops[1]);
555    return;
556  }
557
558  // Do the rough sort by complexity.
559  std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
560
561  // Now that we are sorted by complexity, group elements of the same
562  // complexity.  Note that this is, at worst, N^2, but the vector is likely to
563  // be extremely short in practice.  Note that we take this approach because we
564  // do not want to depend on the addresses of the objects we are grouping.
565  for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
566    const SCEV *S = Ops[i];
567    unsigned Complexity = S->getSCEVType();
568
569    // If there are any objects of the same complexity and same value as this
570    // one, group them.
571    for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
572      if (Ops[j] == S) { // Found a duplicate.
573        // Move it to immediately after i'th element.
574        std::swap(Ops[i+1], Ops[j]);
575        ++i;   // no need to rescan it.
576        if (i == e-2) return;  // Done!
577      }
578    }
579  }
580}
581
582
583
584//===----------------------------------------------------------------------===//
585//                      Simple SCEV method implementations
586//===----------------------------------------------------------------------===//
587
588/// BinomialCoefficient - Compute BC(It, K).  The result has width W.
589/// Assume, K > 0.
590static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
591                                       ScalarEvolution &SE,
592                                       const Type* ResultTy) {
593  // Handle the simplest case efficiently.
594  if (K == 1)
595    return SE.getTruncateOrZeroExtend(It, ResultTy);
596
597  // We are using the following formula for BC(It, K):
598  //
599  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
600  //
601  // Suppose, W is the bitwidth of the return value.  We must be prepared for
602  // overflow.  Hence, we must assure that the result of our computation is
603  // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
604  // safe in modular arithmetic.
605  //
606  // However, this code doesn't use exactly that formula; the formula it uses
607  // is something like the following, where T is the number of factors of 2 in
608  // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
609  // exponentiation:
610  //
611  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
612  //
613  // This formula is trivially equivalent to the previous formula.  However,
614  // this formula can be implemented much more efficiently.  The trick is that
615  // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
616  // arithmetic.  To do exact division in modular arithmetic, all we have
617  // to do is multiply by the inverse.  Therefore, this step can be done at
618  // width W.
619  //
620  // The next issue is how to safely do the division by 2^T.  The way this
621  // is done is by doing the multiplication step at a width of at least W + T
622  // bits.  This way, the bottom W+T bits of the product are accurate. Then,
623  // when we perform the division by 2^T (which is equivalent to a right shift
624  // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
625  // truncated out after the division by 2^T.
626  //
627  // In comparison to just directly using the first formula, this technique
628  // is much more efficient; using the first formula requires W * K bits,
629  // but this formula less than W + K bits. Also, the first formula requires
630  // a division step, whereas this formula only requires multiplies and shifts.
631  //
632  // It doesn't matter whether the subtraction step is done in the calculation
633  // width or the input iteration count's width; if the subtraction overflows,
634  // the result must be zero anyway.  We prefer here to do it in the width of
635  // the induction variable because it helps a lot for certain cases; CodeGen
636  // isn't smart enough to ignore the overflow, which leads to much less
637  // efficient code if the width of the subtraction is wider than the native
638  // register width.
639  //
640  // (It's possible to not widen at all by pulling out factors of 2 before
641  // the multiplication; for example, K=2 can be calculated as
642  // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
643  // extra arithmetic, so it's not an obvious win, and it gets
644  // much more complicated for K > 3.)
645
646  // Protection from insane SCEVs; this bound is conservative,
647  // but it probably doesn't matter.
648  if (K > 1000)
649    return SE.getCouldNotCompute();
650
651  unsigned W = SE.getTypeSizeInBits(ResultTy);
652
653  // Calculate K! / 2^T and T; we divide out the factors of two before
654  // multiplying for calculating K! / 2^T to avoid overflow.
655  // Other overflow doesn't matter because we only care about the bottom
656  // W bits of the result.
657  APInt OddFactorial(W, 1);
658  unsigned T = 1;
659  for (unsigned i = 3; i <= K; ++i) {
660    APInt Mult(W, i);
661    unsigned TwoFactors = Mult.countTrailingZeros();
662    T += TwoFactors;
663    Mult = Mult.lshr(TwoFactors);
664    OddFactorial *= Mult;
665  }
666
667  // We need at least W + T bits for the multiplication step
668  unsigned CalculationBits = W + T;
669
670  // Calcuate 2^T, at width T+W.
671  APInt DivFactor = APInt(CalculationBits, 1).shl(T);
672
673  // Calculate the multiplicative inverse of K! / 2^T;
674  // this multiplication factor will perform the exact division by
675  // K! / 2^T.
676  APInt Mod = APInt::getSignedMinValue(W+1);
677  APInt MultiplyFactor = OddFactorial.zext(W+1);
678  MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
679  MultiplyFactor = MultiplyFactor.trunc(W);
680
681  // Calculate the product, at width T+W
682  const IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
683                                                      CalculationBits);
684  const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
685  for (unsigned i = 1; i != K; ++i) {
686    const SCEV *S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType()));
687    Dividend = SE.getMulExpr(Dividend,
688                             SE.getTruncateOrZeroExtend(S, CalculationTy));
689  }
690
691  // Divide by 2^T
692  const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
693
694  // Truncate the result, and divide by K! / 2^T.
695
696  return SE.getMulExpr(SE.getConstant(MultiplyFactor),
697                       SE.getTruncateOrZeroExtend(DivResult, ResultTy));
698}
699
700/// evaluateAtIteration - Return the value of this chain of recurrences at
701/// the specified iteration number.  We can evaluate this recurrence by
702/// multiplying each element in the chain by the binomial coefficient
703/// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
704///
705///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
706///
707/// where BC(It, k) stands for binomial coefficient.
708///
709const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
710                                                ScalarEvolution &SE) const {
711  const SCEV *Result = getStart();
712  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
713    // The computation is correct in the face of overflow provided that the
714    // multiplication is performed _after_ the evaluation of the binomial
715    // coefficient.
716    const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
717    if (isa<SCEVCouldNotCompute>(Coeff))
718      return Coeff;
719
720    Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
721  }
722  return Result;
723}
724
725//===----------------------------------------------------------------------===//
726//                    SCEV Expression folder implementations
727//===----------------------------------------------------------------------===//
728
729const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
730                                             const Type *Ty) {
731  assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
732         "This is not a truncating conversion!");
733  assert(isSCEVable(Ty) &&
734         "This is not a conversion to a SCEVable type!");
735  Ty = getEffectiveSCEVType(Ty);
736
737  FoldingSetNodeID ID;
738  ID.AddInteger(scTruncate);
739  ID.AddPointer(Op);
740  ID.AddPointer(Ty);
741  void *IP = 0;
742  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
743
744  // Fold if the operand is constant.
745  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
746    return getConstant(
747      cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
748
749  // trunc(trunc(x)) --> trunc(x)
750  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
751    return getTruncateExpr(ST->getOperand(), Ty);
752
753  // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
754  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
755    return getTruncateOrSignExtend(SS->getOperand(), Ty);
756
757  // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
758  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
759    return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
760
761  // If the input value is a chrec scev, truncate the chrec's operands.
762  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
763    SmallVector<const SCEV *, 4> Operands;
764    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
765      Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
766    return getAddRecExpr(Operands, AddRec->getLoop());
767  }
768
769  // The cast wasn't folded; create an explicit cast node.
770  // Recompute the insert position, as it may have been invalidated.
771  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
772  SCEV *S = SCEVAllocator.Allocate<SCEVTruncateExpr>();
773  new (S) SCEVTruncateExpr(ID, Op, Ty);
774  UniqueSCEVs.InsertNode(S, IP);
775  return S;
776}
777
778const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
779                                               const Type *Ty) {
780  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
781         "This is not an extending conversion!");
782  assert(isSCEVable(Ty) &&
783         "This is not a conversion to a SCEVable type!");
784  Ty = getEffectiveSCEVType(Ty);
785
786  // Fold if the operand is constant.
787  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
788    const Type *IntTy = getEffectiveSCEVType(Ty);
789    Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy);
790    if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
791    return getConstant(cast<ConstantInt>(C));
792  }
793
794  // zext(zext(x)) --> zext(x)
795  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
796    return getZeroExtendExpr(SZ->getOperand(), Ty);
797
798  // Before doing any expensive analysis, check to see if we've already
799  // computed a SCEV for this Op and Ty.
800  FoldingSetNodeID ID;
801  ID.AddInteger(scZeroExtend);
802  ID.AddPointer(Op);
803  ID.AddPointer(Ty);
804  void *IP = 0;
805  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
806
807  // If the input value is a chrec scev, and we can prove that the value
808  // did not overflow the old, smaller, value, we can zero extend all of the
809  // operands (often constants).  This allows analysis of something like
810  // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
811  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
812    if (AR->isAffine()) {
813      const SCEV *Start = AR->getStart();
814      const SCEV *Step = AR->getStepRecurrence(*this);
815      unsigned BitWidth = getTypeSizeInBits(AR->getType());
816      const Loop *L = AR->getLoop();
817
818      // If we have special knowledge that this addrec won't overflow,
819      // we don't need to do any further analysis.
820      if (AR->hasNoUnsignedWrap())
821        return getAddRecExpr(getZeroExtendExpr(Start, Ty),
822                             getZeroExtendExpr(Step, Ty),
823                             L);
824
825      // Check whether the backedge-taken count is SCEVCouldNotCompute.
826      // Note that this serves two purposes: It filters out loops that are
827      // simply not analyzable, and it covers the case where this code is
828      // being called from within backedge-taken count analysis, such that
829      // attempting to ask for the backedge-taken count would likely result
830      // in infinite recursion. In the later case, the analysis code will
831      // cope with a conservative value, and it will take care to purge
832      // that value once it has finished.
833      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
834      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
835        // Manually compute the final value for AR, checking for
836        // overflow.
837
838        // Check whether the backedge-taken count can be losslessly casted to
839        // the addrec's type. The count is always unsigned.
840        const SCEV *CastedMaxBECount =
841          getTruncateOrZeroExtend(MaxBECount, Start->getType());
842        const SCEV *RecastedMaxBECount =
843          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
844        if (MaxBECount == RecastedMaxBECount) {
845          const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
846          // Check whether Start+Step*MaxBECount has no unsigned overflow.
847          const SCEV *ZMul =
848            getMulExpr(CastedMaxBECount,
849                       getTruncateOrZeroExtend(Step, Start->getType()));
850          const SCEV *Add = getAddExpr(Start, ZMul);
851          const SCEV *OperandExtendedAdd =
852            getAddExpr(getZeroExtendExpr(Start, WideTy),
853                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
854                                  getZeroExtendExpr(Step, WideTy)));
855          if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
856            // Return the expression with the addrec on the outside.
857            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
858                                 getZeroExtendExpr(Step, Ty),
859                                 L);
860
861          // Similar to above, only this time treat the step value as signed.
862          // This covers loops that count down.
863          const SCEV *SMul =
864            getMulExpr(CastedMaxBECount,
865                       getTruncateOrSignExtend(Step, Start->getType()));
866          Add = getAddExpr(Start, SMul);
867          OperandExtendedAdd =
868            getAddExpr(getZeroExtendExpr(Start, WideTy),
869                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
870                                  getSignExtendExpr(Step, WideTy)));
871          if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
872            // Return the expression with the addrec on the outside.
873            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
874                                 getSignExtendExpr(Step, Ty),
875                                 L);
876        }
877
878        // If the backedge is guarded by a comparison with the pre-inc value
879        // the addrec is safe. Also, if the entry is guarded by a comparison
880        // with the start value and the backedge is guarded by a comparison
881        // with the post-inc value, the addrec is safe.
882        if (isKnownPositive(Step)) {
883          const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
884                                      getUnsignedRange(Step).getUnsignedMax());
885          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
886              (isLoopGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
887               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
888                                           AR->getPostIncExpr(*this), N)))
889            // Return the expression with the addrec on the outside.
890            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
891                                 getZeroExtendExpr(Step, Ty),
892                                 L);
893        } else if (isKnownNegative(Step)) {
894          const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
895                                      getSignedRange(Step).getSignedMin());
896          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) &&
897              (isLoopGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) ||
898               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
899                                           AR->getPostIncExpr(*this), N)))
900            // Return the expression with the addrec on the outside.
901            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
902                                 getSignExtendExpr(Step, Ty),
903                                 L);
904        }
905      }
906    }
907
908  // The cast wasn't folded; create an explicit cast node.
909  // Recompute the insert position, as it may have been invalidated.
910  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
911  SCEV *S = SCEVAllocator.Allocate<SCEVZeroExtendExpr>();
912  new (S) SCEVZeroExtendExpr(ID, Op, Ty);
913  UniqueSCEVs.InsertNode(S, IP);
914  return S;
915}
916
917const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
918                                               const Type *Ty) {
919  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
920         "This is not an extending conversion!");
921  assert(isSCEVable(Ty) &&
922         "This is not a conversion to a SCEVable type!");
923  Ty = getEffectiveSCEVType(Ty);
924
925  // Fold if the operand is constant.
926  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
927    const Type *IntTy = getEffectiveSCEVType(Ty);
928    Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy);
929    if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
930    return getConstant(cast<ConstantInt>(C));
931  }
932
933  // sext(sext(x)) --> sext(x)
934  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
935    return getSignExtendExpr(SS->getOperand(), Ty);
936
937  // Before doing any expensive analysis, check to see if we've already
938  // computed a SCEV for this Op and Ty.
939  FoldingSetNodeID ID;
940  ID.AddInteger(scSignExtend);
941  ID.AddPointer(Op);
942  ID.AddPointer(Ty);
943  void *IP = 0;
944  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
945
946  // If the input value is a chrec scev, and we can prove that the value
947  // did not overflow the old, smaller, value, we can sign extend all of the
948  // operands (often constants).  This allows analysis of something like
949  // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
950  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
951    if (AR->isAffine()) {
952      const SCEV *Start = AR->getStart();
953      const SCEV *Step = AR->getStepRecurrence(*this);
954      unsigned BitWidth = getTypeSizeInBits(AR->getType());
955      const Loop *L = AR->getLoop();
956
957      // If we have special knowledge that this addrec won't overflow,
958      // we don't need to do any further analysis.
959      if (AR->hasNoSignedWrap())
960        return getAddRecExpr(getSignExtendExpr(Start, Ty),
961                             getSignExtendExpr(Step, Ty),
962                             L);
963
964      // Check whether the backedge-taken count is SCEVCouldNotCompute.
965      // Note that this serves two purposes: It filters out loops that are
966      // simply not analyzable, and it covers the case where this code is
967      // being called from within backedge-taken count analysis, such that
968      // attempting to ask for the backedge-taken count would likely result
969      // in infinite recursion. In the later case, the analysis code will
970      // cope with a conservative value, and it will take care to purge
971      // that value once it has finished.
972      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
973      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
974        // Manually compute the final value for AR, checking for
975        // overflow.
976
977        // Check whether the backedge-taken count can be losslessly casted to
978        // the addrec's type. The count is always unsigned.
979        const SCEV *CastedMaxBECount =
980          getTruncateOrZeroExtend(MaxBECount, Start->getType());
981        const SCEV *RecastedMaxBECount =
982          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
983        if (MaxBECount == RecastedMaxBECount) {
984          const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
985          // Check whether Start+Step*MaxBECount has no signed overflow.
986          const SCEV *SMul =
987            getMulExpr(CastedMaxBECount,
988                       getTruncateOrSignExtend(Step, Start->getType()));
989          const SCEV *Add = getAddExpr(Start, SMul);
990          const SCEV *OperandExtendedAdd =
991            getAddExpr(getSignExtendExpr(Start, WideTy),
992                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
993                                  getSignExtendExpr(Step, WideTy)));
994          if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
995            // Return the expression with the addrec on the outside.
996            return getAddRecExpr(getSignExtendExpr(Start, Ty),
997                                 getSignExtendExpr(Step, Ty),
998                                 L);
999
1000          // Similar to above, only this time treat the step value as unsigned.
1001          // This covers loops that count up with an unsigned step.
1002          const SCEV *UMul =
1003            getMulExpr(CastedMaxBECount,
1004                       getTruncateOrZeroExtend(Step, Start->getType()));
1005          Add = getAddExpr(Start, UMul);
1006          OperandExtendedAdd =
1007            getAddExpr(getSignExtendExpr(Start, WideTy),
1008                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1009                                  getZeroExtendExpr(Step, WideTy)));
1010          if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
1011            // Return the expression with the addrec on the outside.
1012            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1013                                 getZeroExtendExpr(Step, Ty),
1014                                 L);
1015        }
1016
1017        // If the backedge is guarded by a comparison with the pre-inc value
1018        // the addrec is safe. Also, if the entry is guarded by a comparison
1019        // with the start value and the backedge is guarded by a comparison
1020        // with the post-inc value, the addrec is safe.
1021        if (isKnownPositive(Step)) {
1022          const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) -
1023                                      getSignedRange(Step).getSignedMax());
1024          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) ||
1025              (isLoopGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) &&
1026               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT,
1027                                           AR->getPostIncExpr(*this), N)))
1028            // Return the expression with the addrec on the outside.
1029            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1030                                 getSignExtendExpr(Step, Ty),
1031                                 L);
1032        } else if (isKnownNegative(Step)) {
1033          const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) -
1034                                      getSignedRange(Step).getSignedMin());
1035          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) ||
1036              (isLoopGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) &&
1037               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT,
1038                                           AR->getPostIncExpr(*this), N)))
1039            // Return the expression with the addrec on the outside.
1040            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1041                                 getSignExtendExpr(Step, Ty),
1042                                 L);
1043        }
1044      }
1045    }
1046
1047  // The cast wasn't folded; create an explicit cast node.
1048  // Recompute the insert position, as it may have been invalidated.
1049  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1050  SCEV *S = SCEVAllocator.Allocate<SCEVSignExtendExpr>();
1051  new (S) SCEVSignExtendExpr(ID, Op, Ty);
1052  UniqueSCEVs.InsertNode(S, IP);
1053  return S;
1054}
1055
1056/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1057/// unspecified bits out to the given type.
1058///
1059const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
1060                                              const Type *Ty) {
1061  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1062         "This is not an extending conversion!");
1063  assert(isSCEVable(Ty) &&
1064         "This is not a conversion to a SCEVable type!");
1065  Ty = getEffectiveSCEVType(Ty);
1066
1067  // Sign-extend negative constants.
1068  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1069    if (SC->getValue()->getValue().isNegative())
1070      return getSignExtendExpr(Op, Ty);
1071
1072  // Peel off a truncate cast.
1073  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
1074    const SCEV *NewOp = T->getOperand();
1075    if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1076      return getAnyExtendExpr(NewOp, Ty);
1077    return getTruncateOrNoop(NewOp, Ty);
1078  }
1079
1080  // Next try a zext cast. If the cast is folded, use it.
1081  const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
1082  if (!isa<SCEVZeroExtendExpr>(ZExt))
1083    return ZExt;
1084
1085  // Next try a sext cast. If the cast is folded, use it.
1086  const SCEV *SExt = getSignExtendExpr(Op, Ty);
1087  if (!isa<SCEVSignExtendExpr>(SExt))
1088    return SExt;
1089
1090  // If the expression is obviously signed, use the sext cast value.
1091  if (isa<SCEVSMaxExpr>(Op))
1092    return SExt;
1093
1094  // Absent any other information, use the zext cast value.
1095  return ZExt;
1096}
1097
1098/// CollectAddOperandsWithScales - Process the given Ops list, which is
1099/// a list of operands to be added under the given scale, update the given
1100/// map. This is a helper function for getAddRecExpr. As an example of
1101/// what it does, given a sequence of operands that would form an add
1102/// expression like this:
1103///
1104///    m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1105///
1106/// where A and B are constants, update the map with these values:
1107///
1108///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1109///
1110/// and add 13 + A*B*29 to AccumulatedConstant.
1111/// This will allow getAddRecExpr to produce this:
1112///
1113///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1114///
1115/// This form often exposes folding opportunities that are hidden in
1116/// the original operand list.
1117///
1118/// Return true iff it appears that any interesting folding opportunities
1119/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1120/// the common case where no interesting opportunities are present, and
1121/// is also used as a check to avoid infinite recursion.
1122///
1123static bool
1124CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1125                             SmallVector<const SCEV *, 8> &NewOps,
1126                             APInt &AccumulatedConstant,
1127                             const SmallVectorImpl<const SCEV *> &Ops,
1128                             const APInt &Scale,
1129                             ScalarEvolution &SE) {
1130  bool Interesting = false;
1131
1132  // Iterate over the add operands.
1133  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1134    const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1135    if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1136      APInt NewScale =
1137        Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1138      if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1139        // A multiplication of a constant with another add; recurse.
1140        Interesting |=
1141          CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1142                                       cast<SCEVAddExpr>(Mul->getOperand(1))
1143                                         ->getOperands(),
1144                                       NewScale, SE);
1145      } else {
1146        // A multiplication of a constant with some other value. Update
1147        // the map.
1148        SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1149        const SCEV *Key = SE.getMulExpr(MulOps);
1150        std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1151          M.insert(std::make_pair(Key, NewScale));
1152        if (Pair.second) {
1153          NewOps.push_back(Pair.first->first);
1154        } else {
1155          Pair.first->second += NewScale;
1156          // The map already had an entry for this value, which may indicate
1157          // a folding opportunity.
1158          Interesting = true;
1159        }
1160      }
1161    } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1162      // Pull a buried constant out to the outside.
1163      if (Scale != 1 || AccumulatedConstant != 0 || C->isZero())
1164        Interesting = true;
1165      AccumulatedConstant += Scale * C->getValue()->getValue();
1166    } else {
1167      // An ordinary operand. Update the map.
1168      std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1169        M.insert(std::make_pair(Ops[i], Scale));
1170      if (Pair.second) {
1171        NewOps.push_back(Pair.first->first);
1172      } else {
1173        Pair.first->second += Scale;
1174        // The map already had an entry for this value, which may indicate
1175        // a folding opportunity.
1176        Interesting = true;
1177      }
1178    }
1179  }
1180
1181  return Interesting;
1182}
1183
1184namespace {
1185  struct APIntCompare {
1186    bool operator()(const APInt &LHS, const APInt &RHS) const {
1187      return LHS.ult(RHS);
1188    }
1189  };
1190}
1191
1192/// getAddExpr - Get a canonical add expression, or something simpler if
1193/// possible.
1194const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1195                                        bool HasNUW, bool HasNSW) {
1196  assert(!Ops.empty() && "Cannot get empty add!");
1197  if (Ops.size() == 1) return Ops[0];
1198#ifndef NDEBUG
1199  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1200    assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1201           getEffectiveSCEVType(Ops[0]->getType()) &&
1202           "SCEVAddExpr operand types don't match!");
1203#endif
1204
1205  // Sort by complexity, this groups all similar expression types together.
1206  GroupByComplexity(Ops, LI);
1207
1208  // If there are any constants, fold them together.
1209  unsigned Idx = 0;
1210  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1211    ++Idx;
1212    assert(Idx < Ops.size());
1213    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1214      // We found two constants, fold them together!
1215      Ops[0] = getConstant(LHSC->getValue()->getValue() +
1216                           RHSC->getValue()->getValue());
1217      if (Ops.size() == 2) return Ops[0];
1218      Ops.erase(Ops.begin()+1);  // Erase the folded element
1219      LHSC = cast<SCEVConstant>(Ops[0]);
1220    }
1221
1222    // If we are left with a constant zero being added, strip it off.
1223    if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1224      Ops.erase(Ops.begin());
1225      --Idx;
1226    }
1227  }
1228
1229  if (Ops.size() == 1) return Ops[0];
1230
1231  // Okay, check to see if the same value occurs in the operand list twice.  If
1232  // so, merge them together into an multiply expression.  Since we sorted the
1233  // list, these values are required to be adjacent.
1234  const Type *Ty = Ops[0]->getType();
1235  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1236    if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
1237      // Found a match, merge the two values into a multiply, and add any
1238      // remaining values to the result.
1239      const SCEV *Two = getIntegerSCEV(2, Ty);
1240      const SCEV *Mul = getMulExpr(Ops[i], Two);
1241      if (Ops.size() == 2)
1242        return Mul;
1243      Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1244      Ops.push_back(Mul);
1245      return getAddExpr(Ops, HasNUW, HasNSW);
1246    }
1247
1248  // Check for truncates. If all the operands are truncated from the same
1249  // type, see if factoring out the truncate would permit the result to be
1250  // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1251  // if the contents of the resulting outer trunc fold to something simple.
1252  for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1253    const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1254    const Type *DstType = Trunc->getType();
1255    const Type *SrcType = Trunc->getOperand()->getType();
1256    SmallVector<const SCEV *, 8> LargeOps;
1257    bool Ok = true;
1258    // Check all the operands to see if they can be represented in the
1259    // source type of the truncate.
1260    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1261      if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1262        if (T->getOperand()->getType() != SrcType) {
1263          Ok = false;
1264          break;
1265        }
1266        LargeOps.push_back(T->getOperand());
1267      } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1268        // This could be either sign or zero extension, but sign extension
1269        // is much more likely to be foldable here.
1270        LargeOps.push_back(getSignExtendExpr(C, SrcType));
1271      } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
1272        SmallVector<const SCEV *, 8> LargeMulOps;
1273        for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1274          if (const SCEVTruncateExpr *T =
1275                dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1276            if (T->getOperand()->getType() != SrcType) {
1277              Ok = false;
1278              break;
1279            }
1280            LargeMulOps.push_back(T->getOperand());
1281          } else if (const SCEVConstant *C =
1282                       dyn_cast<SCEVConstant>(M->getOperand(j))) {
1283            // This could be either sign or zero extension, but sign extension
1284            // is much more likely to be foldable here.
1285            LargeMulOps.push_back(getSignExtendExpr(C, SrcType));
1286          } else {
1287            Ok = false;
1288            break;
1289          }
1290        }
1291        if (Ok)
1292          LargeOps.push_back(getMulExpr(LargeMulOps));
1293      } else {
1294        Ok = false;
1295        break;
1296      }
1297    }
1298    if (Ok) {
1299      // Evaluate the expression in the larger type.
1300      const SCEV *Fold = getAddExpr(LargeOps, HasNUW, HasNSW);
1301      // If it folds to something simple, use it. Otherwise, don't.
1302      if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1303        return getTruncateExpr(Fold, DstType);
1304    }
1305  }
1306
1307  // Skip past any other cast SCEVs.
1308  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1309    ++Idx;
1310
1311  // If there are add operands they would be next.
1312  if (Idx < Ops.size()) {
1313    bool DeletedAdd = false;
1314    while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
1315      // If we have an add, expand the add operands onto the end of the operands
1316      // list.
1317      Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
1318      Ops.erase(Ops.begin()+Idx);
1319      DeletedAdd = true;
1320    }
1321
1322    // If we deleted at least one add, we added operands to the end of the list,
1323    // and they are not necessarily sorted.  Recurse to resort and resimplify
1324    // any operands we just aquired.
1325    if (DeletedAdd)
1326      return getAddExpr(Ops);
1327  }
1328
1329  // Skip over the add expression until we get to a multiply.
1330  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1331    ++Idx;
1332
1333  // Check to see if there are any folding opportunities present with
1334  // operands multiplied by constant values.
1335  if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1336    uint64_t BitWidth = getTypeSizeInBits(Ty);
1337    DenseMap<const SCEV *, APInt> M;
1338    SmallVector<const SCEV *, 8> NewOps;
1339    APInt AccumulatedConstant(BitWidth, 0);
1340    if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1341                                     Ops, APInt(BitWidth, 1), *this)) {
1342      // Some interesting folding opportunity is present, so its worthwhile to
1343      // re-generate the operands list. Group the operands by constant scale,
1344      // to avoid multiplying by the same constant scale multiple times.
1345      std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
1346      for (SmallVector<const SCEV *, 8>::iterator I = NewOps.begin(),
1347           E = NewOps.end(); I != E; ++I)
1348        MulOpLists[M.find(*I)->second].push_back(*I);
1349      // Re-generate the operands list.
1350      Ops.clear();
1351      if (AccumulatedConstant != 0)
1352        Ops.push_back(getConstant(AccumulatedConstant));
1353      for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1354           I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
1355        if (I->first != 0)
1356          Ops.push_back(getMulExpr(getConstant(I->first),
1357                                   getAddExpr(I->second)));
1358      if (Ops.empty())
1359        return getIntegerSCEV(0, Ty);
1360      if (Ops.size() == 1)
1361        return Ops[0];
1362      return getAddExpr(Ops);
1363    }
1364  }
1365
1366  // If we are adding something to a multiply expression, make sure the
1367  // something is not already an operand of the multiply.  If so, merge it into
1368  // the multiply.
1369  for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
1370    const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
1371    for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
1372      const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
1373      for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
1374        if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(Ops[AddOp])) {
1375          // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
1376          const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
1377          if (Mul->getNumOperands() != 2) {
1378            // If the multiply has more than two operands, we must get the
1379            // Y*Z term.
1380            SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), Mul->op_end());
1381            MulOps.erase(MulOps.begin()+MulOp);
1382            InnerMul = getMulExpr(MulOps);
1383          }
1384          const SCEV *One = getIntegerSCEV(1, Ty);
1385          const SCEV *AddOne = getAddExpr(InnerMul, One);
1386          const SCEV *OuterMul = getMulExpr(AddOne, Ops[AddOp]);
1387          if (Ops.size() == 2) return OuterMul;
1388          if (AddOp < Idx) {
1389            Ops.erase(Ops.begin()+AddOp);
1390            Ops.erase(Ops.begin()+Idx-1);
1391          } else {
1392            Ops.erase(Ops.begin()+Idx);
1393            Ops.erase(Ops.begin()+AddOp-1);
1394          }
1395          Ops.push_back(OuterMul);
1396          return getAddExpr(Ops);
1397        }
1398
1399      // Check this multiply against other multiplies being added together.
1400      for (unsigned OtherMulIdx = Idx+1;
1401           OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1402           ++OtherMulIdx) {
1403        const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
1404        // If MulOp occurs in OtherMul, we can fold the two multiplies
1405        // together.
1406        for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1407             OMulOp != e; ++OMulOp)
1408          if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1409            // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
1410            const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
1411            if (Mul->getNumOperands() != 2) {
1412              SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1413                                                  Mul->op_end());
1414              MulOps.erase(MulOps.begin()+MulOp);
1415              InnerMul1 = getMulExpr(MulOps);
1416            }
1417            const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
1418            if (OtherMul->getNumOperands() != 2) {
1419              SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
1420                                                  OtherMul->op_end());
1421              MulOps.erase(MulOps.begin()+OMulOp);
1422              InnerMul2 = getMulExpr(MulOps);
1423            }
1424            const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1425            const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
1426            if (Ops.size() == 2) return OuterMul;
1427            Ops.erase(Ops.begin()+Idx);
1428            Ops.erase(Ops.begin()+OtherMulIdx-1);
1429            Ops.push_back(OuterMul);
1430            return getAddExpr(Ops);
1431          }
1432      }
1433    }
1434  }
1435
1436  // If there are any add recurrences in the operands list, see if any other
1437  // added values are loop invariant.  If so, we can fold them into the
1438  // recurrence.
1439  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1440    ++Idx;
1441
1442  // Scan over all recurrences, trying to fold loop invariants into them.
1443  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1444    // Scan all of the other operands to this add and add them to the vector if
1445    // they are loop invariant w.r.t. the recurrence.
1446    SmallVector<const SCEV *, 8> LIOps;
1447    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1448    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1449      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1450        LIOps.push_back(Ops[i]);
1451        Ops.erase(Ops.begin()+i);
1452        --i; --e;
1453      }
1454
1455    // If we found some loop invariants, fold them into the recurrence.
1456    if (!LIOps.empty()) {
1457      //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
1458      LIOps.push_back(AddRec->getStart());
1459
1460      SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1461                                             AddRec->op_end());
1462      AddRecOps[0] = getAddExpr(LIOps);
1463
1464      // It's tempting to propagate NUW/NSW flags here, but nuw/nsw addition
1465      // is not associative so this isn't necessarily safe.
1466      const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop());
1467
1468      // If all of the other operands were loop invariant, we are done.
1469      if (Ops.size() == 1) return NewRec;
1470
1471      // Otherwise, add the folded AddRec by the non-liv parts.
1472      for (unsigned i = 0;; ++i)
1473        if (Ops[i] == AddRec) {
1474          Ops[i] = NewRec;
1475          break;
1476        }
1477      return getAddExpr(Ops);
1478    }
1479
1480    // Okay, if there weren't any loop invariants to be folded, check to see if
1481    // there are multiple AddRec's with the same loop induction variable being
1482    // added together.  If so, we can fold them.
1483    for (unsigned OtherIdx = Idx+1;
1484         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1485      if (OtherIdx != Idx) {
1486        const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1487        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1488          // Other + {A,+,B} + {C,+,D}  -->  Other + {A+C,+,B+D}
1489          SmallVector<const SCEV *, 4> NewOps(AddRec->op_begin(),
1490                                              AddRec->op_end());
1491          for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
1492            if (i >= NewOps.size()) {
1493              NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
1494                            OtherAddRec->op_end());
1495              break;
1496            }
1497            NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
1498          }
1499          const SCEV *NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop());
1500
1501          if (Ops.size() == 2) return NewAddRec;
1502
1503          Ops.erase(Ops.begin()+Idx);
1504          Ops.erase(Ops.begin()+OtherIdx-1);
1505          Ops.push_back(NewAddRec);
1506          return getAddExpr(Ops);
1507        }
1508      }
1509
1510    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1511    // next one.
1512  }
1513
1514  // Okay, it looks like we really DO need an add expr.  Check to see if we
1515  // already have one, otherwise create a new one.
1516  FoldingSetNodeID ID;
1517  ID.AddInteger(scAddExpr);
1518  ID.AddInteger(Ops.size());
1519  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1520    ID.AddPointer(Ops[i]);
1521  void *IP = 0;
1522  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1523  SCEVAddExpr *S = SCEVAllocator.Allocate<SCEVAddExpr>();
1524  new (S) SCEVAddExpr(ID, Ops);
1525  UniqueSCEVs.InsertNode(S, IP);
1526  if (HasNUW) S->setHasNoUnsignedWrap(true);
1527  if (HasNSW) S->setHasNoSignedWrap(true);
1528  return S;
1529}
1530
1531
1532/// getMulExpr - Get a canonical multiply expression, or something simpler if
1533/// possible.
1534const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
1535                                        bool HasNUW, bool HasNSW) {
1536  assert(!Ops.empty() && "Cannot get empty mul!");
1537#ifndef NDEBUG
1538  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1539    assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1540           getEffectiveSCEVType(Ops[0]->getType()) &&
1541           "SCEVMulExpr operand types don't match!");
1542#endif
1543
1544  // Sort by complexity, this groups all similar expression types together.
1545  GroupByComplexity(Ops, LI);
1546
1547  // If there are any constants, fold them together.
1548  unsigned Idx = 0;
1549  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1550
1551    // C1*(C2+V) -> C1*C2 + C1*V
1552    if (Ops.size() == 2)
1553      if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
1554        if (Add->getNumOperands() == 2 &&
1555            isa<SCEVConstant>(Add->getOperand(0)))
1556          return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1557                            getMulExpr(LHSC, Add->getOperand(1)));
1558
1559
1560    ++Idx;
1561    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1562      // We found two constants, fold them together!
1563      ConstantInt *Fold = ConstantInt::get(getContext(),
1564                                           LHSC->getValue()->getValue() *
1565                                           RHSC->getValue()->getValue());
1566      Ops[0] = getConstant(Fold);
1567      Ops.erase(Ops.begin()+1);  // Erase the folded element
1568      if (Ops.size() == 1) return Ops[0];
1569      LHSC = cast<SCEVConstant>(Ops[0]);
1570    }
1571
1572    // If we are left with a constant one being multiplied, strip it off.
1573    if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1574      Ops.erase(Ops.begin());
1575      --Idx;
1576    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1577      // If we have a multiply of zero, it will always be zero.
1578      return Ops[0];
1579    }
1580  }
1581
1582  // Skip over the add expression until we get to a multiply.
1583  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1584    ++Idx;
1585
1586  if (Ops.size() == 1)
1587    return Ops[0];
1588
1589  // If there are mul operands inline them all into this expression.
1590  if (Idx < Ops.size()) {
1591    bool DeletedMul = false;
1592    while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
1593      // If we have an mul, expand the mul operands onto the end of the operands
1594      // list.
1595      Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
1596      Ops.erase(Ops.begin()+Idx);
1597      DeletedMul = true;
1598    }
1599
1600    // If we deleted at least one mul, we added operands to the end of the list,
1601    // and they are not necessarily sorted.  Recurse to resort and resimplify
1602    // any operands we just aquired.
1603    if (DeletedMul)
1604      return getMulExpr(Ops);
1605  }
1606
1607  // If there are any add recurrences in the operands list, see if any other
1608  // added values are loop invariant.  If so, we can fold them into the
1609  // recurrence.
1610  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1611    ++Idx;
1612
1613  // Scan over all recurrences, trying to fold loop invariants into them.
1614  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1615    // Scan all of the other operands to this mul and add them to the vector if
1616    // they are loop invariant w.r.t. the recurrence.
1617    SmallVector<const SCEV *, 8> LIOps;
1618    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1619    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1620      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1621        LIOps.push_back(Ops[i]);
1622        Ops.erase(Ops.begin()+i);
1623        --i; --e;
1624      }
1625
1626    // If we found some loop invariants, fold them into the recurrence.
1627    if (!LIOps.empty()) {
1628      //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
1629      SmallVector<const SCEV *, 4> NewOps;
1630      NewOps.reserve(AddRec->getNumOperands());
1631      if (LIOps.size() == 1) {
1632        const SCEV *Scale = LIOps[0];
1633        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1634          NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
1635      } else {
1636        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
1637          SmallVector<const SCEV *, 4> MulOps(LIOps.begin(), LIOps.end());
1638          MulOps.push_back(AddRec->getOperand(i));
1639          NewOps.push_back(getMulExpr(MulOps));
1640        }
1641      }
1642
1643      // It's tempting to propagate the NSW flag here, but nsw multiplication
1644      // is not associative so this isn't necessarily safe.
1645      const SCEV *NewRec = getAddRecExpr(NewOps, AddRec->getLoop());
1646
1647      // If all of the other operands were loop invariant, we are done.
1648      if (Ops.size() == 1) return NewRec;
1649
1650      // Otherwise, multiply the folded AddRec by the non-liv parts.
1651      for (unsigned i = 0;; ++i)
1652        if (Ops[i] == AddRec) {
1653          Ops[i] = NewRec;
1654          break;
1655        }
1656      return getMulExpr(Ops);
1657    }
1658
1659    // Okay, if there weren't any loop invariants to be folded, check to see if
1660    // there are multiple AddRec's with the same loop induction variable being
1661    // multiplied together.  If so, we can fold them.
1662    for (unsigned OtherIdx = Idx+1;
1663         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1664      if (OtherIdx != Idx) {
1665        const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1666        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1667          // F * G  -->  {A,+,B} * {C,+,D}  -->  {A*C,+,F*D + G*B + B*D}
1668          const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
1669          const SCEV *NewStart = getMulExpr(F->getStart(),
1670                                                 G->getStart());
1671          const SCEV *B = F->getStepRecurrence(*this);
1672          const SCEV *D = G->getStepRecurrence(*this);
1673          const SCEV *NewStep = getAddExpr(getMulExpr(F, D),
1674                                          getMulExpr(G, B),
1675                                          getMulExpr(B, D));
1676          const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep,
1677                                               F->getLoop());
1678          if (Ops.size() == 2) return NewAddRec;
1679
1680          Ops.erase(Ops.begin()+Idx);
1681          Ops.erase(Ops.begin()+OtherIdx-1);
1682          Ops.push_back(NewAddRec);
1683          return getMulExpr(Ops);
1684        }
1685      }
1686
1687    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1688    // next one.
1689  }
1690
1691  // Okay, it looks like we really DO need an mul expr.  Check to see if we
1692  // already have one, otherwise create a new one.
1693  FoldingSetNodeID ID;
1694  ID.AddInteger(scMulExpr);
1695  ID.AddInteger(Ops.size());
1696  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1697    ID.AddPointer(Ops[i]);
1698  void *IP = 0;
1699  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1700  SCEVMulExpr *S = SCEVAllocator.Allocate<SCEVMulExpr>();
1701  new (S) SCEVMulExpr(ID, Ops);
1702  UniqueSCEVs.InsertNode(S, IP);
1703  if (HasNUW) S->setHasNoUnsignedWrap(true);
1704  if (HasNSW) S->setHasNoSignedWrap(true);
1705  return S;
1706}
1707
1708/// getUDivExpr - Get a canonical unsigned division expression, or something
1709/// simpler if possible.
1710const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
1711                                         const SCEV *RHS) {
1712  assert(getEffectiveSCEVType(LHS->getType()) ==
1713         getEffectiveSCEVType(RHS->getType()) &&
1714         "SCEVUDivExpr operand types don't match!");
1715
1716  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
1717    if (RHSC->getValue()->equalsInt(1))
1718      return LHS;                               // X udiv 1 --> x
1719    if (RHSC->isZero())
1720      return getIntegerSCEV(0, LHS->getType()); // value is undefined
1721
1722    // Determine if the division can be folded into the operands of
1723    // its operands.
1724    // TODO: Generalize this to non-constants by using known-bits information.
1725    const Type *Ty = LHS->getType();
1726    unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
1727    unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ;
1728    // For non-power-of-two values, effectively round the value up to the
1729    // nearest power of two.
1730    if (!RHSC->getValue()->getValue().isPowerOf2())
1731      ++MaxShiftAmt;
1732    const IntegerType *ExtTy =
1733      IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
1734    // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1735    if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1736      if (const SCEVConstant *Step =
1737            dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1738        if (!Step->getValue()->getValue()
1739              .urem(RHSC->getValue()->getValue()) &&
1740            getZeroExtendExpr(AR, ExtTy) ==
1741            getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1742                          getZeroExtendExpr(Step, ExtTy),
1743                          AR->getLoop())) {
1744          SmallVector<const SCEV *, 4> Operands;
1745          for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1746            Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1747          return getAddRecExpr(Operands, AR->getLoop());
1748        }
1749    // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
1750    if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
1751      SmallVector<const SCEV *, 4> Operands;
1752      for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1753        Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1754      if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
1755        // Find an operand that's safely divisible.
1756        for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1757          const SCEV *Op = M->getOperand(i);
1758          const SCEV *Div = getUDivExpr(Op, RHSC);
1759          if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
1760            const SmallVectorImpl<const SCEV *> &MOperands = M->getOperands();
1761            Operands = SmallVector<const SCEV *, 4>(MOperands.begin(),
1762                                                  MOperands.end());
1763            Operands[i] = Div;
1764            return getMulExpr(Operands);
1765          }
1766        }
1767    }
1768    // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
1769    if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
1770      SmallVector<const SCEV *, 4> Operands;
1771      for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
1772        Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
1773      if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
1774        Operands.clear();
1775        for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
1776          const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
1777          if (isa<SCEVUDivExpr>(Op) || getMulExpr(Op, RHS) != A->getOperand(i))
1778            break;
1779          Operands.push_back(Op);
1780        }
1781        if (Operands.size() == A->getNumOperands())
1782          return getAddExpr(Operands);
1783      }
1784    }
1785
1786    // Fold if both operands are constant.
1787    if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1788      Constant *LHSCV = LHSC->getValue();
1789      Constant *RHSCV = RHSC->getValue();
1790      return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
1791                                                                 RHSCV)));
1792    }
1793  }
1794
1795  FoldingSetNodeID ID;
1796  ID.AddInteger(scUDivExpr);
1797  ID.AddPointer(LHS);
1798  ID.AddPointer(RHS);
1799  void *IP = 0;
1800  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1801  SCEV *S = SCEVAllocator.Allocate<SCEVUDivExpr>();
1802  new (S) SCEVUDivExpr(ID, LHS, RHS);
1803  UniqueSCEVs.InsertNode(S, IP);
1804  return S;
1805}
1806
1807
1808/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1809/// Simplify the expression as much as possible.
1810const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start,
1811                                           const SCEV *Step, const Loop *L,
1812                                           bool HasNUW, bool HasNSW) {
1813  SmallVector<const SCEV *, 4> Operands;
1814  Operands.push_back(Start);
1815  if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
1816    if (StepChrec->getLoop() == L) {
1817      Operands.insert(Operands.end(), StepChrec->op_begin(),
1818                      StepChrec->op_end());
1819      return getAddRecExpr(Operands, L);
1820    }
1821
1822  Operands.push_back(Step);
1823  return getAddRecExpr(Operands, L, HasNUW, HasNSW);
1824}
1825
1826/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1827/// Simplify the expression as much as possible.
1828const SCEV *
1829ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
1830                               const Loop *L,
1831                               bool HasNUW, bool HasNSW) {
1832  if (Operands.size() == 1) return Operands[0];
1833#ifndef NDEBUG
1834  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
1835    assert(getEffectiveSCEVType(Operands[i]->getType()) ==
1836           getEffectiveSCEVType(Operands[0]->getType()) &&
1837           "SCEVAddRecExpr operand types don't match!");
1838#endif
1839
1840  if (Operands.back()->isZero()) {
1841    Operands.pop_back();
1842    return getAddRecExpr(Operands, L, HasNUW, HasNSW); // {X,+,0}  -->  X
1843  }
1844
1845  // Canonicalize nested AddRecs in by nesting them in order of loop depth.
1846  if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
1847    const Loop *NestedLoop = NestedAR->getLoop();
1848    if (L->getLoopDepth() < NestedLoop->getLoopDepth()) {
1849      SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
1850                                                  NestedAR->op_end());
1851      Operands[0] = NestedAR->getStart();
1852      // AddRecs require their operands be loop-invariant with respect to their
1853      // loops. Don't perform this transformation if it would break this
1854      // requirement.
1855      bool AllInvariant = true;
1856      for (unsigned i = 0, e = Operands.size(); i != e; ++i)
1857        if (!Operands[i]->isLoopInvariant(L)) {
1858          AllInvariant = false;
1859          break;
1860        }
1861      if (AllInvariant) {
1862        NestedOperands[0] = getAddRecExpr(Operands, L);
1863        AllInvariant = true;
1864        for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
1865          if (!NestedOperands[i]->isLoopInvariant(NestedLoop)) {
1866            AllInvariant = false;
1867            break;
1868          }
1869        if (AllInvariant)
1870          // Ok, both add recurrences are valid after the transformation.
1871          return getAddRecExpr(NestedOperands, NestedLoop, HasNUW, HasNSW);
1872      }
1873      // Reset Operands to its original state.
1874      Operands[0] = NestedAR;
1875    }
1876  }
1877
1878  FoldingSetNodeID ID;
1879  ID.AddInteger(scAddRecExpr);
1880  ID.AddInteger(Operands.size());
1881  for (unsigned i = 0, e = Operands.size(); i != e; ++i)
1882    ID.AddPointer(Operands[i]);
1883  ID.AddPointer(L);
1884  void *IP = 0;
1885  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1886  SCEVAddRecExpr *S = SCEVAllocator.Allocate<SCEVAddRecExpr>();
1887  new (S) SCEVAddRecExpr(ID, Operands, L);
1888  UniqueSCEVs.InsertNode(S, IP);
1889  if (HasNUW) S->setHasNoUnsignedWrap(true);
1890  if (HasNSW) S->setHasNoSignedWrap(true);
1891  return S;
1892}
1893
1894const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
1895                                         const SCEV *RHS) {
1896  SmallVector<const SCEV *, 2> Ops;
1897  Ops.push_back(LHS);
1898  Ops.push_back(RHS);
1899  return getSMaxExpr(Ops);
1900}
1901
1902const SCEV *
1903ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
1904  assert(!Ops.empty() && "Cannot get empty smax!");
1905  if (Ops.size() == 1) return Ops[0];
1906#ifndef NDEBUG
1907  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1908    assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1909           getEffectiveSCEVType(Ops[0]->getType()) &&
1910           "SCEVSMaxExpr operand types don't match!");
1911#endif
1912
1913  // Sort by complexity, this groups all similar expression types together.
1914  GroupByComplexity(Ops, LI);
1915
1916  // If there are any constants, fold them together.
1917  unsigned Idx = 0;
1918  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1919    ++Idx;
1920    assert(Idx < Ops.size());
1921    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1922      // We found two constants, fold them together!
1923      ConstantInt *Fold = ConstantInt::get(getContext(),
1924                              APIntOps::smax(LHSC->getValue()->getValue(),
1925                                             RHSC->getValue()->getValue()));
1926      Ops[0] = getConstant(Fold);
1927      Ops.erase(Ops.begin()+1);  // Erase the folded element
1928      if (Ops.size() == 1) return Ops[0];
1929      LHSC = cast<SCEVConstant>(Ops[0]);
1930    }
1931
1932    // If we are left with a constant minimum-int, strip it off.
1933    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
1934      Ops.erase(Ops.begin());
1935      --Idx;
1936    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
1937      // If we have an smax with a constant maximum-int, it will always be
1938      // maximum-int.
1939      return Ops[0];
1940    }
1941  }
1942
1943  if (Ops.size() == 1) return Ops[0];
1944
1945  // Find the first SMax
1946  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
1947    ++Idx;
1948
1949  // Check to see if one of the operands is an SMax. If so, expand its operands
1950  // onto our operand list, and recurse to simplify.
1951  if (Idx < Ops.size()) {
1952    bool DeletedSMax = false;
1953    while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
1954      Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end());
1955      Ops.erase(Ops.begin()+Idx);
1956      DeletedSMax = true;
1957    }
1958
1959    if (DeletedSMax)
1960      return getSMaxExpr(Ops);
1961  }
1962
1963  // Okay, check to see if the same value occurs in the operand list twice.  If
1964  // so, delete one.  Since we sorted the list, these values are required to
1965  // be adjacent.
1966  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1967    if (Ops[i] == Ops[i+1]) {      //  X smax Y smax Y  -->  X smax Y
1968      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1969      --i; --e;
1970    }
1971
1972  if (Ops.size() == 1) return Ops[0];
1973
1974  assert(!Ops.empty() && "Reduced smax down to nothing!");
1975
1976  // Okay, it looks like we really DO need an smax expr.  Check to see if we
1977  // already have one, otherwise create a new one.
1978  FoldingSetNodeID ID;
1979  ID.AddInteger(scSMaxExpr);
1980  ID.AddInteger(Ops.size());
1981  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1982    ID.AddPointer(Ops[i]);
1983  void *IP = 0;
1984  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1985  SCEV *S = SCEVAllocator.Allocate<SCEVSMaxExpr>();
1986  new (S) SCEVSMaxExpr(ID, Ops);
1987  UniqueSCEVs.InsertNode(S, IP);
1988  return S;
1989}
1990
1991const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
1992                                         const SCEV *RHS) {
1993  SmallVector<const SCEV *, 2> Ops;
1994  Ops.push_back(LHS);
1995  Ops.push_back(RHS);
1996  return getUMaxExpr(Ops);
1997}
1998
1999const SCEV *
2000ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2001  assert(!Ops.empty() && "Cannot get empty umax!");
2002  if (Ops.size() == 1) return Ops[0];
2003#ifndef NDEBUG
2004  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2005    assert(getEffectiveSCEVType(Ops[i]->getType()) ==
2006           getEffectiveSCEVType(Ops[0]->getType()) &&
2007           "SCEVUMaxExpr operand types don't match!");
2008#endif
2009
2010  // Sort by complexity, this groups all similar expression types together.
2011  GroupByComplexity(Ops, LI);
2012
2013  // If there are any constants, fold them together.
2014  unsigned Idx = 0;
2015  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2016    ++Idx;
2017    assert(Idx < Ops.size());
2018    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2019      // We found two constants, fold them together!
2020      ConstantInt *Fold = ConstantInt::get(getContext(),
2021                              APIntOps::umax(LHSC->getValue()->getValue(),
2022                                             RHSC->getValue()->getValue()));
2023      Ops[0] = getConstant(Fold);
2024      Ops.erase(Ops.begin()+1);  // Erase the folded element
2025      if (Ops.size() == 1) return Ops[0];
2026      LHSC = cast<SCEVConstant>(Ops[0]);
2027    }
2028
2029    // If we are left with a constant minimum-int, strip it off.
2030    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2031      Ops.erase(Ops.begin());
2032      --Idx;
2033    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2034      // If we have an umax with a constant maximum-int, it will always be
2035      // maximum-int.
2036      return Ops[0];
2037    }
2038  }
2039
2040  if (Ops.size() == 1) return Ops[0];
2041
2042  // Find the first UMax
2043  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2044    ++Idx;
2045
2046  // Check to see if one of the operands is a UMax. If so, expand its operands
2047  // onto our operand list, and recurse to simplify.
2048  if (Idx < Ops.size()) {
2049    bool DeletedUMax = false;
2050    while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
2051      Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end());
2052      Ops.erase(Ops.begin()+Idx);
2053      DeletedUMax = true;
2054    }
2055
2056    if (DeletedUMax)
2057      return getUMaxExpr(Ops);
2058  }
2059
2060  // Okay, check to see if the same value occurs in the operand list twice.  If
2061  // so, delete one.  Since we sorted the list, these values are required to
2062  // be adjacent.
2063  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2064    if (Ops[i] == Ops[i+1]) {      //  X umax Y umax Y  -->  X umax Y
2065      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2066      --i; --e;
2067    }
2068
2069  if (Ops.size() == 1) return Ops[0];
2070
2071  assert(!Ops.empty() && "Reduced umax down to nothing!");
2072
2073  // Okay, it looks like we really DO need a umax expr.  Check to see if we
2074  // already have one, otherwise create a new one.
2075  FoldingSetNodeID ID;
2076  ID.AddInteger(scUMaxExpr);
2077  ID.AddInteger(Ops.size());
2078  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2079    ID.AddPointer(Ops[i]);
2080  void *IP = 0;
2081  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2082  SCEV *S = SCEVAllocator.Allocate<SCEVUMaxExpr>();
2083  new (S) SCEVUMaxExpr(ID, Ops);
2084  UniqueSCEVs.InsertNode(S, IP);
2085  return S;
2086}
2087
2088const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2089                                         const SCEV *RHS) {
2090  // ~smax(~x, ~y) == smin(x, y).
2091  return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2092}
2093
2094const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2095                                         const SCEV *RHS) {
2096  // ~umax(~x, ~y) == umin(x, y)
2097  return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2098}
2099
2100const SCEV *ScalarEvolution::getFieldOffsetExpr(const StructType *STy,
2101                                                unsigned FieldNo) {
2102  // If we have TargetData we can determine the constant offset.
2103  if (TD) {
2104    const Type *IntPtrTy = TD->getIntPtrType(getContext());
2105    const StructLayout &SL = *TD->getStructLayout(STy);
2106    uint64_t Offset = SL.getElementOffset(FieldNo);
2107    return getIntegerSCEV(Offset, IntPtrTy);
2108  }
2109
2110  // Field 0 is always at offset 0.
2111  if (FieldNo == 0) {
2112    const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
2113    return getIntegerSCEV(0, Ty);
2114  }
2115
2116  // Okay, it looks like we really DO need an offsetof expr.  Check to see if we
2117  // already have one, otherwise create a new one.
2118  FoldingSetNodeID ID;
2119  ID.AddInteger(scFieldOffset);
2120  ID.AddPointer(STy);
2121  ID.AddInteger(FieldNo);
2122  void *IP = 0;
2123  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2124  SCEV *S = SCEVAllocator.Allocate<SCEVFieldOffsetExpr>();
2125  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
2126  new (S) SCEVFieldOffsetExpr(ID, Ty, STy, FieldNo);
2127  UniqueSCEVs.InsertNode(S, IP);
2128  return S;
2129}
2130
2131const SCEV *ScalarEvolution::getAllocSizeExpr(const Type *AllocTy) {
2132  // If we have TargetData we can determine the constant size.
2133  if (TD && AllocTy->isSized()) {
2134    const Type *IntPtrTy = TD->getIntPtrType(getContext());
2135    return getIntegerSCEV(TD->getTypeAllocSize(AllocTy), IntPtrTy);
2136  }
2137
2138  // Expand an array size into the element size times the number
2139  // of elements.
2140  if (const ArrayType *ATy = dyn_cast<ArrayType>(AllocTy)) {
2141    const SCEV *E = getAllocSizeExpr(ATy->getElementType());
2142    return getMulExpr(
2143      E, getConstant(ConstantInt::get(cast<IntegerType>(E->getType()),
2144                                      ATy->getNumElements())));
2145  }
2146
2147  // Expand a vector size into the element size times the number
2148  // of elements.
2149  if (const VectorType *VTy = dyn_cast<VectorType>(AllocTy)) {
2150    const SCEV *E = getAllocSizeExpr(VTy->getElementType());
2151    return getMulExpr(
2152      E, getConstant(ConstantInt::get(cast<IntegerType>(E->getType()),
2153                                      VTy->getNumElements())));
2154  }
2155
2156  // Okay, it looks like we really DO need a sizeof expr.  Check to see if we
2157  // already have one, otherwise create a new one.
2158  FoldingSetNodeID ID;
2159  ID.AddInteger(scAllocSize);
2160  ID.AddPointer(AllocTy);
2161  void *IP = 0;
2162  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2163  SCEV *S = SCEVAllocator.Allocate<SCEVAllocSizeExpr>();
2164  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2165  new (S) SCEVAllocSizeExpr(ID, Ty, AllocTy);
2166  UniqueSCEVs.InsertNode(S, IP);
2167  return S;
2168}
2169
2170const SCEV *ScalarEvolution::getUnknown(Value *V) {
2171  // Don't attempt to do anything other than create a SCEVUnknown object
2172  // here.  createSCEV only calls getUnknown after checking for all other
2173  // interesting possibilities, and any other code that calls getUnknown
2174  // is doing so in order to hide a value from SCEV canonicalization.
2175
2176  FoldingSetNodeID ID;
2177  ID.AddInteger(scUnknown);
2178  ID.AddPointer(V);
2179  void *IP = 0;
2180  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2181  SCEV *S = SCEVAllocator.Allocate<SCEVUnknown>();
2182  new (S) SCEVUnknown(ID, V);
2183  UniqueSCEVs.InsertNode(S, IP);
2184  return S;
2185}
2186
2187//===----------------------------------------------------------------------===//
2188//            Basic SCEV Analysis and PHI Idiom Recognition Code
2189//
2190
2191/// isSCEVable - Test if values of the given type are analyzable within
2192/// the SCEV framework. This primarily includes integer types, and it
2193/// can optionally include pointer types if the ScalarEvolution class
2194/// has access to target-specific information.
2195bool ScalarEvolution::isSCEVable(const Type *Ty) const {
2196  // Integers and pointers are always SCEVable.
2197  return Ty->isInteger() || isa<PointerType>(Ty);
2198}
2199
2200/// getTypeSizeInBits - Return the size in bits of the specified type,
2201/// for which isSCEVable must return true.
2202uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
2203  assert(isSCEVable(Ty) && "Type is not SCEVable!");
2204
2205  // If we have a TargetData, use it!
2206  if (TD)
2207    return TD->getTypeSizeInBits(Ty);
2208
2209  // Integer types have fixed sizes.
2210  if (Ty->isInteger())
2211    return Ty->getPrimitiveSizeInBits();
2212
2213  // The only other support type is pointer. Without TargetData, conservatively
2214  // assume pointers are 64-bit.
2215  assert(isa<PointerType>(Ty) && "isSCEVable permitted a non-SCEVable type!");
2216  return 64;
2217}
2218
2219/// getEffectiveSCEVType - Return a type with the same bitwidth as
2220/// the given type and which represents how SCEV will treat the given
2221/// type, for which isSCEVable must return true. For pointer types,
2222/// this is the pointer-sized integer type.
2223const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
2224  assert(isSCEVable(Ty) && "Type is not SCEVable!");
2225
2226  if (Ty->isInteger())
2227    return Ty;
2228
2229  // The only other support type is pointer.
2230  assert(isa<PointerType>(Ty) && "Unexpected non-pointer non-integer type!");
2231  if (TD) return TD->getIntPtrType(getContext());
2232
2233  // Without TargetData, conservatively assume pointers are 64-bit.
2234  return Type::getInt64Ty(getContext());
2235}
2236
2237const SCEV *ScalarEvolution::getCouldNotCompute() {
2238  return &CouldNotCompute;
2239}
2240
2241/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2242/// expression and create a new one.
2243const SCEV *ScalarEvolution::getSCEV(Value *V) {
2244  assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
2245
2246  std::map<SCEVCallbackVH, const SCEV *>::iterator I = Scalars.find(V);
2247  if (I != Scalars.end()) return I->second;
2248  const SCEV *S = createSCEV(V);
2249  Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S));
2250  return S;
2251}
2252
2253/// getIntegerSCEV - Given a SCEVable type, create a constant for the
2254/// specified signed integer value and return a SCEV for the constant.
2255const SCEV *ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) {
2256  const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
2257  return getConstant(ConstantInt::get(ITy, Val));
2258}
2259
2260/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2261///
2262const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
2263  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2264    return getConstant(
2265               cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
2266
2267  const Type *Ty = V->getType();
2268  Ty = getEffectiveSCEVType(Ty);
2269  return getMulExpr(V,
2270                  getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
2271}
2272
2273/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
2274const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
2275  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2276    return getConstant(
2277                cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
2278
2279  const Type *Ty = V->getType();
2280  Ty = getEffectiveSCEVType(Ty);
2281  const SCEV *AllOnes =
2282                   getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
2283  return getMinusSCEV(AllOnes, V);
2284}
2285
2286/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
2287///
2288const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS,
2289                                          const SCEV *RHS) {
2290  // X - Y --> X + -Y
2291  return getAddExpr(LHS, getNegativeSCEV(RHS));
2292}
2293
2294/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2295/// input value to the specified type.  If the type must be extended, it is zero
2296/// extended.
2297const SCEV *
2298ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V,
2299                                         const Type *Ty) {
2300  const Type *SrcTy = V->getType();
2301  assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
2302         (Ty->isInteger() || isa<PointerType>(Ty)) &&
2303         "Cannot truncate or zero extend with non-integer arguments!");
2304  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2305    return V;  // No conversion
2306  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2307    return getTruncateExpr(V, Ty);
2308  return getZeroExtendExpr(V, Ty);
2309}
2310
2311/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2312/// input value to the specified type.  If the type must be extended, it is sign
2313/// extended.
2314const SCEV *
2315ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
2316                                         const Type *Ty) {
2317  const Type *SrcTy = V->getType();
2318  assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
2319         (Ty->isInteger() || isa<PointerType>(Ty)) &&
2320         "Cannot truncate or zero extend with non-integer arguments!");
2321  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2322    return V;  // No conversion
2323  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2324    return getTruncateExpr(V, Ty);
2325  return getSignExtendExpr(V, Ty);
2326}
2327
2328/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2329/// input value to the specified type.  If the type must be extended, it is zero
2330/// extended.  The conversion must not be narrowing.
2331const SCEV *
2332ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) {
2333  const Type *SrcTy = V->getType();
2334  assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
2335         (Ty->isInteger() || isa<PointerType>(Ty)) &&
2336         "Cannot noop or zero extend with non-integer arguments!");
2337  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2338         "getNoopOrZeroExtend cannot truncate!");
2339  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2340    return V;  // No conversion
2341  return getZeroExtendExpr(V, Ty);
2342}
2343
2344/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2345/// input value to the specified type.  If the type must be extended, it is sign
2346/// extended.  The conversion must not be narrowing.
2347const SCEV *
2348ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) {
2349  const Type *SrcTy = V->getType();
2350  assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
2351         (Ty->isInteger() || isa<PointerType>(Ty)) &&
2352         "Cannot noop or sign extend with non-integer arguments!");
2353  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2354         "getNoopOrSignExtend cannot truncate!");
2355  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2356    return V;  // No conversion
2357  return getSignExtendExpr(V, Ty);
2358}
2359
2360/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2361/// the input value to the specified type. If the type must be extended,
2362/// it is extended with unspecified bits. The conversion must not be
2363/// narrowing.
2364const SCEV *
2365ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) {
2366  const Type *SrcTy = V->getType();
2367  assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
2368         (Ty->isInteger() || isa<PointerType>(Ty)) &&
2369         "Cannot noop or any extend with non-integer arguments!");
2370  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2371         "getNoopOrAnyExtend cannot truncate!");
2372  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2373    return V;  // No conversion
2374  return getAnyExtendExpr(V, Ty);
2375}
2376
2377/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2378/// input value to the specified type.  The conversion must not be widening.
2379const SCEV *
2380ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) {
2381  const Type *SrcTy = V->getType();
2382  assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
2383         (Ty->isInteger() || isa<PointerType>(Ty)) &&
2384         "Cannot truncate or noop with non-integer arguments!");
2385  assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2386         "getTruncateOrNoop cannot extend!");
2387  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2388    return V;  // No conversion
2389  return getTruncateExpr(V, Ty);
2390}
2391
2392/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2393/// the types using zero-extension, and then perform a umax operation
2394/// with them.
2395const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2396                                                        const SCEV *RHS) {
2397  const SCEV *PromotedLHS = LHS;
2398  const SCEV *PromotedRHS = RHS;
2399
2400  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2401    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2402  else
2403    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2404
2405  return getUMaxExpr(PromotedLHS, PromotedRHS);
2406}
2407
2408/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2409/// the types using zero-extension, and then perform a umin operation
2410/// with them.
2411const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2412                                                        const SCEV *RHS) {
2413  const SCEV *PromotedLHS = LHS;
2414  const SCEV *PromotedRHS = RHS;
2415
2416  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2417    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2418  else
2419    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2420
2421  return getUMinExpr(PromotedLHS, PromotedRHS);
2422}
2423
2424/// PushDefUseChildren - Push users of the given Instruction
2425/// onto the given Worklist.
2426static void
2427PushDefUseChildren(Instruction *I,
2428                   SmallVectorImpl<Instruction *> &Worklist) {
2429  // Push the def-use children onto the Worklist stack.
2430  for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2431       UI != UE; ++UI)
2432    Worklist.push_back(cast<Instruction>(UI));
2433}
2434
2435/// ForgetSymbolicValue - This looks up computed SCEV values for all
2436/// instructions that depend on the given instruction and removes them from
2437/// the Scalars map if they reference SymName. This is used during PHI
2438/// resolution.
2439void
2440ScalarEvolution::ForgetSymbolicName(Instruction *I, const SCEV *SymName) {
2441  SmallVector<Instruction *, 16> Worklist;
2442  PushDefUseChildren(I, Worklist);
2443
2444  SmallPtrSet<Instruction *, 8> Visited;
2445  Visited.insert(I);
2446  while (!Worklist.empty()) {
2447    Instruction *I = Worklist.pop_back_val();
2448    if (!Visited.insert(I)) continue;
2449
2450    std::map<SCEVCallbackVH, const SCEV *>::iterator It =
2451      Scalars.find(static_cast<Value *>(I));
2452    if (It != Scalars.end()) {
2453      // Short-circuit the def-use traversal if the symbolic name
2454      // ceases to appear in expressions.
2455      if (!It->second->hasOperand(SymName))
2456        continue;
2457
2458      // SCEVUnknown for a PHI either means that it has an unrecognized
2459      // structure, or it's a PHI that's in the progress of being computed
2460      // by createNodeForPHI.  In the former case, additional loop trip
2461      // count information isn't going to change anything. In the later
2462      // case, createNodeForPHI will perform the necessary updates on its
2463      // own when it gets to that point.
2464      if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) {
2465        ValuesAtScopes.erase(It->second);
2466        Scalars.erase(It);
2467      }
2468    }
2469
2470    PushDefUseChildren(I, Worklist);
2471  }
2472}
2473
2474/// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
2475/// a loop header, making it a potential recurrence, or it doesn't.
2476///
2477const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
2478  if (PN->getNumIncomingValues() == 2)  // The loops have been canonicalized.
2479    if (const Loop *L = LI->getLoopFor(PN->getParent()))
2480      if (L->getHeader() == PN->getParent()) {
2481        // If it lives in the loop header, it has two incoming values, one
2482        // from outside the loop, and one from inside.
2483        unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
2484        unsigned BackEdge     = IncomingEdge^1;
2485
2486        // While we are analyzing this PHI node, handle its value symbolically.
2487        const SCEV *SymbolicName = getUnknown(PN);
2488        assert(Scalars.find(PN) == Scalars.end() &&
2489               "PHI node already processed?");
2490        Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
2491
2492        // Using this symbolic name for the PHI, analyze the value coming around
2493        // the back-edge.
2494        Value *BEValueV = PN->getIncomingValue(BackEdge);
2495        const SCEV *BEValue = getSCEV(BEValueV);
2496
2497        // NOTE: If BEValue is loop invariant, we know that the PHI node just
2498        // has a special value for the first iteration of the loop.
2499
2500        // If the value coming around the backedge is an add with the symbolic
2501        // value we just inserted, then we found a simple induction variable!
2502        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
2503          // If there is a single occurrence of the symbolic value, replace it
2504          // with a recurrence.
2505          unsigned FoundIndex = Add->getNumOperands();
2506          for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2507            if (Add->getOperand(i) == SymbolicName)
2508              if (FoundIndex == e) {
2509                FoundIndex = i;
2510                break;
2511              }
2512
2513          if (FoundIndex != Add->getNumOperands()) {
2514            // Create an add with everything but the specified operand.
2515            SmallVector<const SCEV *, 8> Ops;
2516            for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2517              if (i != FoundIndex)
2518                Ops.push_back(Add->getOperand(i));
2519            const SCEV *Accum = getAddExpr(Ops);
2520
2521            // This is not a valid addrec if the step amount is varying each
2522            // loop iteration, but is not itself an addrec in this loop.
2523            if (Accum->isLoopInvariant(L) ||
2524                (isa<SCEVAddRecExpr>(Accum) &&
2525                 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
2526              const SCEV *StartVal =
2527                getSCEV(PN->getIncomingValue(IncomingEdge));
2528              const SCEVAddRecExpr *PHISCEV =
2529                cast<SCEVAddRecExpr>(getAddRecExpr(StartVal, Accum, L));
2530
2531              // If the increment doesn't overflow, then neither the addrec nor the
2532              // post-increment will overflow.
2533              if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV))
2534                if (OBO->getOperand(0) == PN &&
2535                    getSCEV(OBO->getOperand(1)) ==
2536                      PHISCEV->getStepRecurrence(*this)) {
2537                  const SCEVAddRecExpr *PostInc = PHISCEV->getPostIncExpr(*this);
2538                  if (OBO->hasNoUnsignedWrap()) {
2539                    const_cast<SCEVAddRecExpr *>(PHISCEV)
2540                      ->setHasNoUnsignedWrap(true);
2541                    const_cast<SCEVAddRecExpr *>(PostInc)
2542                      ->setHasNoUnsignedWrap(true);
2543                  }
2544                  if (OBO->hasNoSignedWrap()) {
2545                    const_cast<SCEVAddRecExpr *>(PHISCEV)
2546                      ->setHasNoSignedWrap(true);
2547                    const_cast<SCEVAddRecExpr *>(PostInc)
2548                      ->setHasNoSignedWrap(true);
2549                  }
2550                }
2551
2552              // Okay, for the entire analysis of this edge we assumed the PHI
2553              // to be symbolic.  We now need to go back and purge all of the
2554              // entries for the scalars that use the symbolic expression.
2555              ForgetSymbolicName(PN, SymbolicName);
2556              Scalars[SCEVCallbackVH(PN, this)] = PHISCEV;
2557              return PHISCEV;
2558            }
2559          }
2560        } else if (const SCEVAddRecExpr *AddRec =
2561                     dyn_cast<SCEVAddRecExpr>(BEValue)) {
2562          // Otherwise, this could be a loop like this:
2563          //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
2564          // In this case, j = {1,+,1}  and BEValue is j.
2565          // Because the other in-value of i (0) fits the evolution of BEValue
2566          // i really is an addrec evolution.
2567          if (AddRec->getLoop() == L && AddRec->isAffine()) {
2568            const SCEV *StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
2569
2570            // If StartVal = j.start - j.stride, we can use StartVal as the
2571            // initial step of the addrec evolution.
2572            if (StartVal == getMinusSCEV(AddRec->getOperand(0),
2573                                            AddRec->getOperand(1))) {
2574              const SCEV *PHISCEV =
2575                 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
2576
2577              // Okay, for the entire analysis of this edge we assumed the PHI
2578              // to be symbolic.  We now need to go back and purge all of the
2579              // entries for the scalars that use the symbolic expression.
2580              ForgetSymbolicName(PN, SymbolicName);
2581              Scalars[SCEVCallbackVH(PN, this)] = PHISCEV;
2582              return PHISCEV;
2583            }
2584          }
2585        }
2586
2587        return SymbolicName;
2588      }
2589
2590  // It's tempting to recognize PHIs with a unique incoming value, however
2591  // this leads passes like indvars to break LCSSA form. Fortunately, such
2592  // PHIs are rare, as instcombine zaps them.
2593
2594  // If it's not a loop phi, we can't handle it yet.
2595  return getUnknown(PN);
2596}
2597
2598/// createNodeForGEP - Expand GEP instructions into add and multiply
2599/// operations. This allows them to be analyzed by regular SCEV code.
2600///
2601const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
2602
2603  bool InBounds = GEP->isInBounds();
2604  const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
2605  Value *Base = GEP->getOperand(0);
2606  // Don't attempt to analyze GEPs over unsized objects.
2607  if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2608    return getUnknown(GEP);
2609  const SCEV *TotalOffset = getIntegerSCEV(0, IntPtrTy);
2610  gep_type_iterator GTI = gep_type_begin(GEP);
2611  for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()),
2612                                      E = GEP->op_end();
2613       I != E; ++I) {
2614    Value *Index = *I;
2615    // Compute the (potentially symbolic) offset in bytes for this index.
2616    if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2617      // For a struct, add the member offset.
2618      unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
2619      TotalOffset = getAddExpr(TotalOffset,
2620                               getFieldOffsetExpr(STy, FieldNo),
2621                               /*HasNUW=*/false, /*HasNSW=*/InBounds);
2622    } else {
2623      // For an array, add the element offset, explicitly scaled.
2624      const SCEV *LocalOffset = getSCEV(Index);
2625      if (!isa<PointerType>(LocalOffset->getType()))
2626        // Getelementptr indicies are signed.
2627        LocalOffset = getTruncateOrSignExtend(LocalOffset, IntPtrTy);
2628      // Lower "inbounds" GEPs to NSW arithmetic.
2629      LocalOffset = getMulExpr(LocalOffset, getAllocSizeExpr(*GTI),
2630                               /*HasNUW=*/false, /*HasNSW=*/InBounds);
2631      TotalOffset = getAddExpr(TotalOffset, LocalOffset,
2632                               /*HasNUW=*/false, /*HasNSW=*/InBounds);
2633    }
2634  }
2635  return getAddExpr(getSCEV(Base), TotalOffset,
2636                    /*HasNUW=*/false, /*HasNSW=*/InBounds);
2637}
2638
2639/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2640/// guaranteed to end in (at every loop iteration).  It is, at the same time,
2641/// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
2642/// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
2643uint32_t
2644ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
2645  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2646    return C->getValue()->getValue().countTrailingZeros();
2647
2648  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
2649    return std::min(GetMinTrailingZeros(T->getOperand()),
2650                    (uint32_t)getTypeSizeInBits(T->getType()));
2651
2652  if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
2653    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2654    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2655             getTypeSizeInBits(E->getType()) : OpRes;
2656  }
2657
2658  if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
2659    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2660    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2661             getTypeSizeInBits(E->getType()) : OpRes;
2662  }
2663
2664  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
2665    // The result is the min of all operands results.
2666    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
2667    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
2668      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
2669    return MinOpRes;
2670  }
2671
2672  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
2673    // The result is the sum of all operands results.
2674    uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
2675    uint32_t BitWidth = getTypeSizeInBits(M->getType());
2676    for (unsigned i = 1, e = M->getNumOperands();
2677         SumOpRes != BitWidth && i != e; ++i)
2678      SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
2679                          BitWidth);
2680    return SumOpRes;
2681  }
2682
2683  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
2684    // The result is the min of all operands results.
2685    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
2686    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
2687      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
2688    return MinOpRes;
2689  }
2690
2691  if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
2692    // The result is the min of all operands results.
2693    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
2694    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
2695      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
2696    return MinOpRes;
2697  }
2698
2699  if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
2700    // The result is the min of all operands results.
2701    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
2702    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
2703      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
2704    return MinOpRes;
2705  }
2706
2707  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2708    // For a SCEVUnknown, ask ValueTracking.
2709    unsigned BitWidth = getTypeSizeInBits(U->getType());
2710    APInt Mask = APInt::getAllOnesValue(BitWidth);
2711    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2712    ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
2713    return Zeros.countTrailingOnes();
2714  }
2715
2716  // SCEVUDivExpr
2717  return 0;
2718}
2719
2720/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
2721///
2722ConstantRange
2723ScalarEvolution::getUnsignedRange(const SCEV *S) {
2724
2725  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2726    return ConstantRange(C->getValue()->getValue());
2727
2728  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2729    ConstantRange X = getUnsignedRange(Add->getOperand(0));
2730    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
2731      X = X.add(getUnsignedRange(Add->getOperand(i)));
2732    return X;
2733  }
2734
2735  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2736    ConstantRange X = getUnsignedRange(Mul->getOperand(0));
2737    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
2738      X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
2739    return X;
2740  }
2741
2742  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
2743    ConstantRange X = getUnsignedRange(SMax->getOperand(0));
2744    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
2745      X = X.smax(getUnsignedRange(SMax->getOperand(i)));
2746    return X;
2747  }
2748
2749  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
2750    ConstantRange X = getUnsignedRange(UMax->getOperand(0));
2751    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
2752      X = X.umax(getUnsignedRange(UMax->getOperand(i)));
2753    return X;
2754  }
2755
2756  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
2757    ConstantRange X = getUnsignedRange(UDiv->getLHS());
2758    ConstantRange Y = getUnsignedRange(UDiv->getRHS());
2759    return X.udiv(Y);
2760  }
2761
2762  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
2763    ConstantRange X = getUnsignedRange(ZExt->getOperand());
2764    return X.zeroExtend(cast<IntegerType>(ZExt->getType())->getBitWidth());
2765  }
2766
2767  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
2768    ConstantRange X = getUnsignedRange(SExt->getOperand());
2769    return X.signExtend(cast<IntegerType>(SExt->getType())->getBitWidth());
2770  }
2771
2772  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
2773    ConstantRange X = getUnsignedRange(Trunc->getOperand());
2774    return X.truncate(cast<IntegerType>(Trunc->getType())->getBitWidth());
2775  }
2776
2777  ConstantRange FullSet(getTypeSizeInBits(S->getType()), true);
2778
2779  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
2780    const SCEV *T = getBackedgeTakenCount(AddRec->getLoop());
2781    const SCEVConstant *Trip = dyn_cast<SCEVConstant>(T);
2782    if (!Trip) return FullSet;
2783
2784    // TODO: non-affine addrec
2785    if (AddRec->isAffine()) {
2786      const Type *Ty = AddRec->getType();
2787      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
2788      if (getTypeSizeInBits(MaxBECount->getType()) <= getTypeSizeInBits(Ty)) {
2789        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
2790
2791        const SCEV *Start = AddRec->getStart();
2792        const SCEV *Step = AddRec->getStepRecurrence(*this);
2793        const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
2794
2795        // Check for overflow.
2796        // TODO: This is very conservative.
2797        if (!(Step->isOne() &&
2798              isKnownPredicate(ICmpInst::ICMP_ULT, Start, End)) &&
2799            !(Step->isAllOnesValue() &&
2800              isKnownPredicate(ICmpInst::ICMP_UGT, Start, End)))
2801          return FullSet;
2802
2803        ConstantRange StartRange = getUnsignedRange(Start);
2804        ConstantRange EndRange = getUnsignedRange(End);
2805        APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
2806                                   EndRange.getUnsignedMin());
2807        APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
2808                                   EndRange.getUnsignedMax());
2809        if (Min.isMinValue() && Max.isMaxValue())
2810          return FullSet;
2811        return ConstantRange(Min, Max+1);
2812      }
2813    }
2814  }
2815
2816  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2817    // For a SCEVUnknown, ask ValueTracking.
2818    unsigned BitWidth = getTypeSizeInBits(U->getType());
2819    APInt Mask = APInt::getAllOnesValue(BitWidth);
2820    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2821    ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
2822    if (Ones == ~Zeros + 1)
2823      return FullSet;
2824    return ConstantRange(Ones, ~Zeros + 1);
2825  }
2826
2827  return FullSet;
2828}
2829
2830/// getSignedRange - Determine the signed range for a particular SCEV.
2831///
2832ConstantRange
2833ScalarEvolution::getSignedRange(const SCEV *S) {
2834
2835  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2836    return ConstantRange(C->getValue()->getValue());
2837
2838  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2839    ConstantRange X = getSignedRange(Add->getOperand(0));
2840    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
2841      X = X.add(getSignedRange(Add->getOperand(i)));
2842    return X;
2843  }
2844
2845  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2846    ConstantRange X = getSignedRange(Mul->getOperand(0));
2847    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
2848      X = X.multiply(getSignedRange(Mul->getOperand(i)));
2849    return X;
2850  }
2851
2852  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
2853    ConstantRange X = getSignedRange(SMax->getOperand(0));
2854    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
2855      X = X.smax(getSignedRange(SMax->getOperand(i)));
2856    return X;
2857  }
2858
2859  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
2860    ConstantRange X = getSignedRange(UMax->getOperand(0));
2861    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
2862      X = X.umax(getSignedRange(UMax->getOperand(i)));
2863    return X;
2864  }
2865
2866  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
2867    ConstantRange X = getSignedRange(UDiv->getLHS());
2868    ConstantRange Y = getSignedRange(UDiv->getRHS());
2869    return X.udiv(Y);
2870  }
2871
2872  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
2873    ConstantRange X = getSignedRange(ZExt->getOperand());
2874    return X.zeroExtend(cast<IntegerType>(ZExt->getType())->getBitWidth());
2875  }
2876
2877  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
2878    ConstantRange X = getSignedRange(SExt->getOperand());
2879    return X.signExtend(cast<IntegerType>(SExt->getType())->getBitWidth());
2880  }
2881
2882  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
2883    ConstantRange X = getSignedRange(Trunc->getOperand());
2884    return X.truncate(cast<IntegerType>(Trunc->getType())->getBitWidth());
2885  }
2886
2887  ConstantRange FullSet(getTypeSizeInBits(S->getType()), true);
2888
2889  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
2890    const SCEV *T = getBackedgeTakenCount(AddRec->getLoop());
2891    const SCEVConstant *Trip = dyn_cast<SCEVConstant>(T);
2892    if (!Trip) return FullSet;
2893
2894    // TODO: non-affine addrec
2895    if (AddRec->isAffine()) {
2896      const Type *Ty = AddRec->getType();
2897      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
2898      if (getTypeSizeInBits(MaxBECount->getType()) <= getTypeSizeInBits(Ty)) {
2899        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
2900
2901        const SCEV *Start = AddRec->getStart();
2902        const SCEV *Step = AddRec->getStepRecurrence(*this);
2903        const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
2904
2905        // Check for overflow.
2906        // TODO: This is very conservative.
2907        if (!(Step->isOne() &&
2908              isKnownPredicate(ICmpInst::ICMP_SLT, Start, End)) &&
2909            !(Step->isAllOnesValue() &&
2910              isKnownPredicate(ICmpInst::ICMP_SGT, Start, End)))
2911          return FullSet;
2912
2913        ConstantRange StartRange = getSignedRange(Start);
2914        ConstantRange EndRange = getSignedRange(End);
2915        APInt Min = APIntOps::smin(StartRange.getSignedMin(),
2916                                   EndRange.getSignedMin());
2917        APInt Max = APIntOps::smax(StartRange.getSignedMax(),
2918                                   EndRange.getSignedMax());
2919        if (Min.isMinSignedValue() && Max.isMaxSignedValue())
2920          return FullSet;
2921        return ConstantRange(Min, Max+1);
2922      }
2923    }
2924  }
2925
2926  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2927    // For a SCEVUnknown, ask ValueTracking.
2928    unsigned BitWidth = getTypeSizeInBits(U->getType());
2929    unsigned NS = ComputeNumSignBits(U->getValue(), TD);
2930    if (NS == 1)
2931      return FullSet;
2932    return
2933      ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
2934                    APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1);
2935  }
2936
2937  return FullSet;
2938}
2939
2940/// createSCEV - We know that there is no SCEV for the specified value.
2941/// Analyze the expression.
2942///
2943const SCEV *ScalarEvolution::createSCEV(Value *V) {
2944  if (!isSCEVable(V->getType()))
2945    return getUnknown(V);
2946
2947  unsigned Opcode = Instruction::UserOp1;
2948  if (Instruction *I = dyn_cast<Instruction>(V))
2949    Opcode = I->getOpcode();
2950  else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
2951    Opcode = CE->getOpcode();
2952  else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
2953    return getConstant(CI);
2954  else if (isa<ConstantPointerNull>(V))
2955    return getIntegerSCEV(0, V->getType());
2956  else if (isa<UndefValue>(V))
2957    return getIntegerSCEV(0, V->getType());
2958  else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
2959    return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
2960  else
2961    return getUnknown(V);
2962
2963  Operator *U = cast<Operator>(V);
2964  switch (Opcode) {
2965  case Instruction::Add:
2966    // Don't transfer the NSW and NUW bits from the Add instruction to the
2967    // Add expression, because the Instruction may be guarded by control
2968    // flow and the no-overflow bits may not be valid for the expression in
2969    // any context.
2970    return getAddExpr(getSCEV(U->getOperand(0)),
2971                      getSCEV(U->getOperand(1)));
2972  case Instruction::Mul:
2973    // Don't transfer the NSW and NUW bits from the Mul instruction to the
2974    // Mul expression, as with Add.
2975    return getMulExpr(getSCEV(U->getOperand(0)),
2976                      getSCEV(U->getOperand(1)));
2977  case Instruction::UDiv:
2978    return getUDivExpr(getSCEV(U->getOperand(0)),
2979                       getSCEV(U->getOperand(1)));
2980  case Instruction::Sub:
2981    return getMinusSCEV(getSCEV(U->getOperand(0)),
2982                        getSCEV(U->getOperand(1)));
2983  case Instruction::And:
2984    // For an expression like x&255 that merely masks off the high bits,
2985    // use zext(trunc(x)) as the SCEV expression.
2986    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
2987      if (CI->isNullValue())
2988        return getSCEV(U->getOperand(1));
2989      if (CI->isAllOnesValue())
2990        return getSCEV(U->getOperand(0));
2991      const APInt &A = CI->getValue();
2992
2993      // Instcombine's ShrinkDemandedConstant may strip bits out of
2994      // constants, obscuring what would otherwise be a low-bits mask.
2995      // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
2996      // knew about to reconstruct a low-bits mask value.
2997      unsigned LZ = A.countLeadingZeros();
2998      unsigned BitWidth = A.getBitWidth();
2999      APInt AllOnes = APInt::getAllOnesValue(BitWidth);
3000      APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3001      ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
3002
3003      APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3004
3005      if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
3006        return
3007          getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
3008                                IntegerType::get(getContext(), BitWidth - LZ)),
3009                            U->getType());
3010    }
3011    break;
3012
3013  case Instruction::Or:
3014    // If the RHS of the Or is a constant, we may have something like:
3015    // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
3016    // optimizations will transparently handle this case.
3017    //
3018    // In order for this transformation to be safe, the LHS must be of the
3019    // form X*(2^n) and the Or constant must be less than 2^n.
3020    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3021      const SCEV *LHS = getSCEV(U->getOperand(0));
3022      const APInt &CIVal = CI->getValue();
3023      if (GetMinTrailingZeros(LHS) >=
3024          (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3025        // Build a plain add SCEV.
3026        const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3027        // If the LHS of the add was an addrec and it has no-wrap flags,
3028        // transfer the no-wrap flags, since an or won't introduce a wrap.
3029        if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3030          const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
3031          if (OldAR->hasNoUnsignedWrap())
3032            const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoUnsignedWrap(true);
3033          if (OldAR->hasNoSignedWrap())
3034            const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoSignedWrap(true);
3035        }
3036        return S;
3037      }
3038    }
3039    break;
3040  case Instruction::Xor:
3041    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3042      // If the RHS of the xor is a signbit, then this is just an add.
3043      // Instcombine turns add of signbit into xor as a strength reduction step.
3044      if (CI->getValue().isSignBit())
3045        return getAddExpr(getSCEV(U->getOperand(0)),
3046                          getSCEV(U->getOperand(1)));
3047
3048      // If the RHS of xor is -1, then this is a not operation.
3049      if (CI->isAllOnesValue())
3050        return getNotSCEV(getSCEV(U->getOperand(0)));
3051
3052      // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3053      // This is a variant of the check for xor with -1, and it handles
3054      // the case where instcombine has trimmed non-demanded bits out
3055      // of an xor with -1.
3056      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3057        if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3058          if (BO->getOpcode() == Instruction::And &&
3059              LCI->getValue() == CI->getValue())
3060            if (const SCEVZeroExtendExpr *Z =
3061                  dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
3062              const Type *UTy = U->getType();
3063              const SCEV *Z0 = Z->getOperand();
3064              const Type *Z0Ty = Z0->getType();
3065              unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3066
3067              // If C is a low-bits mask, the zero extend is zerving to
3068              // mask off the high bits. Complement the operand and
3069              // re-apply the zext.
3070              if (APIntOps::isMask(Z0TySize, CI->getValue()))
3071                return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3072
3073              // If C is a single bit, it may be in the sign-bit position
3074              // before the zero-extend. In this case, represent the xor
3075              // using an add, which is equivalent, and re-apply the zext.
3076              APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize);
3077              if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
3078                  Trunc.isSignBit())
3079                return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3080                                         UTy);
3081            }
3082    }
3083    break;
3084
3085  case Instruction::Shl:
3086    // Turn shift left of a constant amount into a multiply.
3087    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3088      uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
3089      Constant *X = ConstantInt::get(getContext(),
3090        APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
3091      return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3092    }
3093    break;
3094
3095  case Instruction::LShr:
3096    // Turn logical shift right of a constant into a unsigned divide.
3097    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3098      uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
3099      Constant *X = ConstantInt::get(getContext(),
3100        APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
3101      return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3102    }
3103    break;
3104
3105  case Instruction::AShr:
3106    // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3107    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
3108      if (Instruction *L = dyn_cast<Instruction>(U->getOperand(0)))
3109        if (L->getOpcode() == Instruction::Shl &&
3110            L->getOperand(1) == U->getOperand(1)) {
3111          unsigned BitWidth = getTypeSizeInBits(U->getType());
3112          uint64_t Amt = BitWidth - CI->getZExtValue();
3113          if (Amt == BitWidth)
3114            return getSCEV(L->getOperand(0));       // shift by zero --> noop
3115          if (Amt > BitWidth)
3116            return getIntegerSCEV(0, U->getType()); // value is undefined
3117          return
3118            getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
3119                                           IntegerType::get(getContext(), Amt)),
3120                                 U->getType());
3121        }
3122    break;
3123
3124  case Instruction::Trunc:
3125    return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
3126
3127  case Instruction::ZExt:
3128    return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3129
3130  case Instruction::SExt:
3131    return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3132
3133  case Instruction::BitCast:
3134    // BitCasts are no-op casts so we just eliminate the cast.
3135    if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
3136      return getSCEV(U->getOperand(0));
3137    break;
3138
3139    // It's tempting to handle inttoptr and ptrtoint, however this can
3140    // lead to pointer expressions which cannot be expanded to GEPs
3141    // (because they may overflow). For now, the only pointer-typed
3142    // expressions we handle are GEPs and address literals.
3143
3144  case Instruction::GetElementPtr:
3145    return createNodeForGEP(cast<GEPOperator>(U));
3146
3147  case Instruction::PHI:
3148    return createNodeForPHI(cast<PHINode>(U));
3149
3150  case Instruction::Select:
3151    // This could be a smax or umax that was lowered earlier.
3152    // Try to recover it.
3153    if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3154      Value *LHS = ICI->getOperand(0);
3155      Value *RHS = ICI->getOperand(1);
3156      switch (ICI->getPredicate()) {
3157      case ICmpInst::ICMP_SLT:
3158      case ICmpInst::ICMP_SLE:
3159        std::swap(LHS, RHS);
3160        // fall through
3161      case ICmpInst::ICMP_SGT:
3162      case ICmpInst::ICMP_SGE:
3163        if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
3164          return getSMaxExpr(getSCEV(LHS), getSCEV(RHS));
3165        else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
3166          return getSMinExpr(getSCEV(LHS), getSCEV(RHS));
3167        break;
3168      case ICmpInst::ICMP_ULT:
3169      case ICmpInst::ICMP_ULE:
3170        std::swap(LHS, RHS);
3171        // fall through
3172      case ICmpInst::ICMP_UGT:
3173      case ICmpInst::ICMP_UGE:
3174        if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
3175          return getUMaxExpr(getSCEV(LHS), getSCEV(RHS));
3176        else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
3177          return getUMinExpr(getSCEV(LHS), getSCEV(RHS));
3178        break;
3179      case ICmpInst::ICMP_NE:
3180        // n != 0 ? n : 1  ->  umax(n, 1)
3181        if (LHS == U->getOperand(1) &&
3182            isa<ConstantInt>(U->getOperand(2)) &&
3183            cast<ConstantInt>(U->getOperand(2))->isOne() &&
3184            isa<ConstantInt>(RHS) &&
3185            cast<ConstantInt>(RHS)->isZero())
3186          return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(2)));
3187        break;
3188      case ICmpInst::ICMP_EQ:
3189        // n == 0 ? 1 : n  ->  umax(n, 1)
3190        if (LHS == U->getOperand(2) &&
3191            isa<ConstantInt>(U->getOperand(1)) &&
3192            cast<ConstantInt>(U->getOperand(1))->isOne() &&
3193            isa<ConstantInt>(RHS) &&
3194            cast<ConstantInt>(RHS)->isZero())
3195          return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(1)));
3196        break;
3197      default:
3198        break;
3199      }
3200    }
3201
3202  default: // We cannot analyze this expression.
3203    break;
3204  }
3205
3206  return getUnknown(V);
3207}
3208
3209
3210
3211//===----------------------------------------------------------------------===//
3212//                   Iteration Count Computation Code
3213//
3214
3215/// getBackedgeTakenCount - If the specified loop has a predictable
3216/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3217/// object. The backedge-taken count is the number of times the loop header
3218/// will be branched to from within the loop. This is one less than the
3219/// trip count of the loop, since it doesn't count the first iteration,
3220/// when the header is branched to from outside the loop.
3221///
3222/// Note that it is not valid to call this method on a loop without a
3223/// loop-invariant backedge-taken count (see
3224/// hasLoopInvariantBackedgeTakenCount).
3225///
3226const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
3227  return getBackedgeTakenInfo(L).Exact;
3228}
3229
3230/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3231/// return the least SCEV value that is known never to be less than the
3232/// actual backedge taken count.
3233const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
3234  return getBackedgeTakenInfo(L).Max;
3235}
3236
3237/// PushLoopPHIs - Push PHI nodes in the header of the given loop
3238/// onto the given Worklist.
3239static void
3240PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
3241  BasicBlock *Header = L->getHeader();
3242
3243  // Push all Loop-header PHIs onto the Worklist stack.
3244  for (BasicBlock::iterator I = Header->begin();
3245       PHINode *PN = dyn_cast<PHINode>(I); ++I)
3246    Worklist.push_back(PN);
3247}
3248
3249const ScalarEvolution::BackedgeTakenInfo &
3250ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
3251  // Initially insert a CouldNotCompute for this loop. If the insertion
3252  // succeeds, procede to actually compute a backedge-taken count and
3253  // update the value. The temporary CouldNotCompute value tells SCEV
3254  // code elsewhere that it shouldn't attempt to request a new
3255  // backedge-taken count, which could result in infinite recursion.
3256  std::pair<std::map<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
3257    BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
3258  if (Pair.second) {
3259    BackedgeTakenInfo ItCount = ComputeBackedgeTakenCount(L);
3260    if (ItCount.Exact != getCouldNotCompute()) {
3261      assert(ItCount.Exact->isLoopInvariant(L) &&
3262             ItCount.Max->isLoopInvariant(L) &&
3263             "Computed trip count isn't loop invariant for loop!");
3264      ++NumTripCountsComputed;
3265
3266      // Update the value in the map.
3267      Pair.first->second = ItCount;
3268    } else {
3269      if (ItCount.Max != getCouldNotCompute())
3270        // Update the value in the map.
3271        Pair.first->second = ItCount;
3272      if (isa<PHINode>(L->getHeader()->begin()))
3273        // Only count loops that have phi nodes as not being computable.
3274        ++NumTripCountsNotComputed;
3275    }
3276
3277    // Now that we know more about the trip count for this loop, forget any
3278    // existing SCEV values for PHI nodes in this loop since they are only
3279    // conservative estimates made without the benefit of trip count
3280    // information. This is similar to the code in forgetLoop, except that
3281    // it handles SCEVUnknown PHI nodes specially.
3282    if (ItCount.hasAnyInfo()) {
3283      SmallVector<Instruction *, 16> Worklist;
3284      PushLoopPHIs(L, Worklist);
3285
3286      SmallPtrSet<Instruction *, 8> Visited;
3287      while (!Worklist.empty()) {
3288        Instruction *I = Worklist.pop_back_val();
3289        if (!Visited.insert(I)) continue;
3290
3291        std::map<SCEVCallbackVH, const SCEV *>::iterator It =
3292          Scalars.find(static_cast<Value *>(I));
3293        if (It != Scalars.end()) {
3294          // SCEVUnknown for a PHI either means that it has an unrecognized
3295          // structure, or it's a PHI that's in the progress of being computed
3296          // by createNodeForPHI.  In the former case, additional loop trip
3297          // count information isn't going to change anything. In the later
3298          // case, createNodeForPHI will perform the necessary updates on its
3299          // own when it gets to that point.
3300          if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) {
3301            ValuesAtScopes.erase(It->second);
3302            Scalars.erase(It);
3303          }
3304          if (PHINode *PN = dyn_cast<PHINode>(I))
3305            ConstantEvolutionLoopExitValue.erase(PN);
3306        }
3307
3308        PushDefUseChildren(I, Worklist);
3309      }
3310    }
3311  }
3312  return Pair.first->second;
3313}
3314
3315/// forgetLoop - This method should be called by the client when it has
3316/// changed a loop in a way that may effect ScalarEvolution's ability to
3317/// compute a trip count, or if the loop is deleted.
3318void ScalarEvolution::forgetLoop(const Loop *L) {
3319  // Drop any stored trip count value.
3320  BackedgeTakenCounts.erase(L);
3321
3322  // Drop information about expressions based on loop-header PHIs.
3323  SmallVector<Instruction *, 16> Worklist;
3324  PushLoopPHIs(L, Worklist);
3325
3326  SmallPtrSet<Instruction *, 8> Visited;
3327  while (!Worklist.empty()) {
3328    Instruction *I = Worklist.pop_back_val();
3329    if (!Visited.insert(I)) continue;
3330
3331    std::map<SCEVCallbackVH, const SCEV *>::iterator It =
3332      Scalars.find(static_cast<Value *>(I));
3333    if (It != Scalars.end()) {
3334      ValuesAtScopes.erase(It->second);
3335      Scalars.erase(It);
3336      if (PHINode *PN = dyn_cast<PHINode>(I))
3337        ConstantEvolutionLoopExitValue.erase(PN);
3338    }
3339
3340    PushDefUseChildren(I, Worklist);
3341  }
3342}
3343
3344/// ComputeBackedgeTakenCount - Compute the number of times the backedge
3345/// of the specified loop will execute.
3346ScalarEvolution::BackedgeTakenInfo
3347ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
3348  SmallVector<BasicBlock *, 8> ExitingBlocks;
3349  L->getExitingBlocks(ExitingBlocks);
3350
3351  // Examine all exits and pick the most conservative values.
3352  const SCEV *BECount = getCouldNotCompute();
3353  const SCEV *MaxBECount = getCouldNotCompute();
3354  bool CouldNotComputeBECount = false;
3355  for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
3356    BackedgeTakenInfo NewBTI =
3357      ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
3358
3359    if (NewBTI.Exact == getCouldNotCompute()) {
3360      // We couldn't compute an exact value for this exit, so
3361      // we won't be able to compute an exact value for the loop.
3362      CouldNotComputeBECount = true;
3363      BECount = getCouldNotCompute();
3364    } else if (!CouldNotComputeBECount) {
3365      if (BECount == getCouldNotCompute())
3366        BECount = NewBTI.Exact;
3367      else
3368        BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
3369    }
3370    if (MaxBECount == getCouldNotCompute())
3371      MaxBECount = NewBTI.Max;
3372    else if (NewBTI.Max != getCouldNotCompute())
3373      MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
3374  }
3375
3376  return BackedgeTakenInfo(BECount, MaxBECount);
3377}
3378
3379/// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
3380/// of the specified loop will execute if it exits via the specified block.
3381ScalarEvolution::BackedgeTakenInfo
3382ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
3383                                                   BasicBlock *ExitingBlock) {
3384
3385  // Okay, we've chosen an exiting block.  See what condition causes us to
3386  // exit at this block.
3387  //
3388  // FIXME: we should be able to handle switch instructions (with a single exit)
3389  BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
3390  if (ExitBr == 0) return getCouldNotCompute();
3391  assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
3392
3393  // At this point, we know we have a conditional branch that determines whether
3394  // the loop is exited.  However, we don't know if the branch is executed each
3395  // time through the loop.  If not, then the execution count of the branch will
3396  // not be equal to the trip count of the loop.
3397  //
3398  // Currently we check for this by checking to see if the Exit branch goes to
3399  // the loop header.  If so, we know it will always execute the same number of
3400  // times as the loop.  We also handle the case where the exit block *is* the
3401  // loop header.  This is common for un-rotated loops.
3402  //
3403  // If both of those tests fail, walk up the unique predecessor chain to the
3404  // header, stopping if there is an edge that doesn't exit the loop. If the
3405  // header is reached, the execution count of the branch will be equal to the
3406  // trip count of the loop.
3407  //
3408  //  More extensive analysis could be done to handle more cases here.
3409  //
3410  if (ExitBr->getSuccessor(0) != L->getHeader() &&
3411      ExitBr->getSuccessor(1) != L->getHeader() &&
3412      ExitBr->getParent() != L->getHeader()) {
3413    // The simple checks failed, try climbing the unique predecessor chain
3414    // up to the header.
3415    bool Ok = false;
3416    for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
3417      BasicBlock *Pred = BB->getUniquePredecessor();
3418      if (!Pred)
3419        return getCouldNotCompute();
3420      TerminatorInst *PredTerm = Pred->getTerminator();
3421      for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
3422        BasicBlock *PredSucc = PredTerm->getSuccessor(i);
3423        if (PredSucc == BB)
3424          continue;
3425        // If the predecessor has a successor that isn't BB and isn't
3426        // outside the loop, assume the worst.
3427        if (L->contains(PredSucc))
3428          return getCouldNotCompute();
3429      }
3430      if (Pred == L->getHeader()) {
3431        Ok = true;
3432        break;
3433      }
3434      BB = Pred;
3435    }
3436    if (!Ok)
3437      return getCouldNotCompute();
3438  }
3439
3440  // Procede to the next level to examine the exit condition expression.
3441  return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
3442                                               ExitBr->getSuccessor(0),
3443                                               ExitBr->getSuccessor(1));
3444}
3445
3446/// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
3447/// backedge of the specified loop will execute if its exit condition
3448/// were a conditional branch of ExitCond, TBB, and FBB.
3449ScalarEvolution::BackedgeTakenInfo
3450ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
3451                                                       Value *ExitCond,
3452                                                       BasicBlock *TBB,
3453                                                       BasicBlock *FBB) {
3454  // Check if the controlling expression for this loop is an And or Or.
3455  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
3456    if (BO->getOpcode() == Instruction::And) {
3457      // Recurse on the operands of the and.
3458      BackedgeTakenInfo BTI0 =
3459        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3460      BackedgeTakenInfo BTI1 =
3461        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
3462      const SCEV *BECount = getCouldNotCompute();
3463      const SCEV *MaxBECount = getCouldNotCompute();
3464      if (L->contains(TBB)) {
3465        // Both conditions must be true for the loop to continue executing.
3466        // Choose the less conservative count.
3467        if (BTI0.Exact == getCouldNotCompute() ||
3468            BTI1.Exact == getCouldNotCompute())
3469          BECount = getCouldNotCompute();
3470        else
3471          BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3472        if (BTI0.Max == getCouldNotCompute())
3473          MaxBECount = BTI1.Max;
3474        else if (BTI1.Max == getCouldNotCompute())
3475          MaxBECount = BTI0.Max;
3476        else
3477          MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
3478      } else {
3479        // Both conditions must be true for the loop to exit.
3480        assert(L->contains(FBB) && "Loop block has no successor in loop!");
3481        if (BTI0.Exact != getCouldNotCompute() &&
3482            BTI1.Exact != getCouldNotCompute())
3483          BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3484        if (BTI0.Max != getCouldNotCompute() &&
3485            BTI1.Max != getCouldNotCompute())
3486          MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
3487      }
3488
3489      return BackedgeTakenInfo(BECount, MaxBECount);
3490    }
3491    if (BO->getOpcode() == Instruction::Or) {
3492      // Recurse on the operands of the or.
3493      BackedgeTakenInfo BTI0 =
3494        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3495      BackedgeTakenInfo BTI1 =
3496        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
3497      const SCEV *BECount = getCouldNotCompute();
3498      const SCEV *MaxBECount = getCouldNotCompute();
3499      if (L->contains(FBB)) {
3500        // Both conditions must be false for the loop to continue executing.
3501        // Choose the less conservative count.
3502        if (BTI0.Exact == getCouldNotCompute() ||
3503            BTI1.Exact == getCouldNotCompute())
3504          BECount = getCouldNotCompute();
3505        else
3506          BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3507        if (BTI0.Max == getCouldNotCompute())
3508          MaxBECount = BTI1.Max;
3509        else if (BTI1.Max == getCouldNotCompute())
3510          MaxBECount = BTI0.Max;
3511        else
3512          MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
3513      } else {
3514        // Both conditions must be false for the loop to exit.
3515        assert(L->contains(TBB) && "Loop block has no successor in loop!");
3516        if (BTI0.Exact != getCouldNotCompute() &&
3517            BTI1.Exact != getCouldNotCompute())
3518          BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3519        if (BTI0.Max != getCouldNotCompute() &&
3520            BTI1.Max != getCouldNotCompute())
3521          MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
3522      }
3523
3524      return BackedgeTakenInfo(BECount, MaxBECount);
3525    }
3526  }
3527
3528  // With an icmp, it may be feasible to compute an exact backedge-taken count.
3529  // Procede to the next level to examine the icmp.
3530  if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
3531    return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
3532
3533  // If it's not an integer or pointer comparison then compute it the hard way.
3534  return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
3535}
3536
3537/// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
3538/// backedge of the specified loop will execute if its exit condition
3539/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
3540ScalarEvolution::BackedgeTakenInfo
3541ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
3542                                                           ICmpInst *ExitCond,
3543                                                           BasicBlock *TBB,
3544                                                           BasicBlock *FBB) {
3545
3546  // If the condition was exit on true, convert the condition to exit on false
3547  ICmpInst::Predicate Cond;
3548  if (!L->contains(FBB))
3549    Cond = ExitCond->getPredicate();
3550  else
3551    Cond = ExitCond->getInversePredicate();
3552
3553  // Handle common loops like: for (X = "string"; *X; ++X)
3554  if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
3555    if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
3556      const SCEV *ItCnt =
3557        ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
3558      if (!isa<SCEVCouldNotCompute>(ItCnt)) {
3559        unsigned BitWidth = getTypeSizeInBits(ItCnt->getType());
3560        return BackedgeTakenInfo(ItCnt,
3561                                 isa<SCEVConstant>(ItCnt) ? ItCnt :
3562                                   getConstant(APInt::getMaxValue(BitWidth)-1));
3563      }
3564    }
3565
3566  const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
3567  const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
3568
3569  // Try to evaluate any dependencies out of the loop.
3570  LHS = getSCEVAtScope(LHS, L);
3571  RHS = getSCEVAtScope(RHS, L);
3572
3573  // At this point, we would like to compute how many iterations of the
3574  // loop the predicate will return true for these inputs.
3575  if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
3576    // If there is a loop-invariant, force it into the RHS.
3577    std::swap(LHS, RHS);
3578    Cond = ICmpInst::getSwappedPredicate(Cond);
3579  }
3580
3581  // If we have a comparison of a chrec against a constant, try to use value
3582  // ranges to answer this query.
3583  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
3584    if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
3585      if (AddRec->getLoop() == L) {
3586        // Form the constant range.
3587        ConstantRange CompRange(
3588            ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
3589
3590        const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
3591        if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
3592      }
3593
3594  switch (Cond) {
3595  case ICmpInst::ICMP_NE: {                     // while (X != Y)
3596    // Convert to: while (X-Y != 0)
3597    const SCEV *TC = HowFarToZero(getMinusSCEV(LHS, RHS), L);
3598    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
3599    break;
3600  }
3601  case ICmpInst::ICMP_EQ: {                     // while (X == Y)
3602    // Convert to: while (X-Y == 0)
3603    const SCEV *TC = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
3604    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
3605    break;
3606  }
3607  case ICmpInst::ICMP_SLT: {
3608    BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
3609    if (BTI.hasAnyInfo()) return BTI;
3610    break;
3611  }
3612  case ICmpInst::ICMP_SGT: {
3613    BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
3614                                             getNotSCEV(RHS), L, true);
3615    if (BTI.hasAnyInfo()) return BTI;
3616    break;
3617  }
3618  case ICmpInst::ICMP_ULT: {
3619    BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
3620    if (BTI.hasAnyInfo()) return BTI;
3621    break;
3622  }
3623  case ICmpInst::ICMP_UGT: {
3624    BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
3625                                             getNotSCEV(RHS), L, false);
3626    if (BTI.hasAnyInfo()) return BTI;
3627    break;
3628  }
3629  default:
3630#if 0
3631    dbgs() << "ComputeBackedgeTakenCount ";
3632    if (ExitCond->getOperand(0)->getType()->isUnsigned())
3633      dbgs() << "[unsigned] ";
3634    dbgs() << *LHS << "   "
3635         << Instruction::getOpcodeName(Instruction::ICmp)
3636         << "   " << *RHS << "\n";
3637#endif
3638    break;
3639  }
3640  return
3641    ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
3642}
3643
3644static ConstantInt *
3645EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
3646                                ScalarEvolution &SE) {
3647  const SCEV *InVal = SE.getConstant(C);
3648  const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
3649  assert(isa<SCEVConstant>(Val) &&
3650         "Evaluation of SCEV at constant didn't fold correctly?");
3651  return cast<SCEVConstant>(Val)->getValue();
3652}
3653
3654/// GetAddressedElementFromGlobal - Given a global variable with an initializer
3655/// and a GEP expression (missing the pointer index) indexing into it, return
3656/// the addressed element of the initializer or null if the index expression is
3657/// invalid.
3658static Constant *
3659GetAddressedElementFromGlobal(GlobalVariable *GV,
3660                              const std::vector<ConstantInt*> &Indices) {
3661  Constant *Init = GV->getInitializer();
3662  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
3663    uint64_t Idx = Indices[i]->getZExtValue();
3664    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
3665      assert(Idx < CS->getNumOperands() && "Bad struct index!");
3666      Init = cast<Constant>(CS->getOperand(Idx));
3667    } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
3668      if (Idx >= CA->getNumOperands()) return 0;  // Bogus program
3669      Init = cast<Constant>(CA->getOperand(Idx));
3670    } else if (isa<ConstantAggregateZero>(Init)) {
3671      if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
3672        assert(Idx < STy->getNumElements() && "Bad struct index!");
3673        Init = Constant::getNullValue(STy->getElementType(Idx));
3674      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
3675        if (Idx >= ATy->getNumElements()) return 0;  // Bogus program
3676        Init = Constant::getNullValue(ATy->getElementType());
3677      } else {
3678        llvm_unreachable("Unknown constant aggregate type!");
3679      }
3680      return 0;
3681    } else {
3682      return 0; // Unknown initializer type
3683    }
3684  }
3685  return Init;
3686}
3687
3688/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
3689/// 'icmp op load X, cst', try to see if we can compute the backedge
3690/// execution count.
3691const SCEV *
3692ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
3693                                                LoadInst *LI,
3694                                                Constant *RHS,
3695                                                const Loop *L,
3696                                                ICmpInst::Predicate predicate) {
3697  if (LI->isVolatile()) return getCouldNotCompute();
3698
3699  // Check to see if the loaded pointer is a getelementptr of a global.
3700  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
3701  if (!GEP) return getCouldNotCompute();
3702
3703  // Make sure that it is really a constant global we are gepping, with an
3704  // initializer, and make sure the first IDX is really 0.
3705  GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
3706  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
3707      GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
3708      !cast<Constant>(GEP->getOperand(1))->isNullValue())
3709    return getCouldNotCompute();
3710
3711  // Okay, we allow one non-constant index into the GEP instruction.
3712  Value *VarIdx = 0;
3713  std::vector<ConstantInt*> Indexes;
3714  unsigned VarIdxNum = 0;
3715  for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
3716    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
3717      Indexes.push_back(CI);
3718    } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
3719      if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
3720      VarIdx = GEP->getOperand(i);
3721      VarIdxNum = i-2;
3722      Indexes.push_back(0);
3723    }
3724
3725  // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
3726  // Check to see if X is a loop variant variable value now.
3727  const SCEV *Idx = getSCEV(VarIdx);
3728  Idx = getSCEVAtScope(Idx, L);
3729
3730  // We can only recognize very limited forms of loop index expressions, in
3731  // particular, only affine AddRec's like {C1,+,C2}.
3732  const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
3733  if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
3734      !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
3735      !isa<SCEVConstant>(IdxExpr->getOperand(1)))
3736    return getCouldNotCompute();
3737
3738  unsigned MaxSteps = MaxBruteForceIterations;
3739  for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
3740    ConstantInt *ItCst = ConstantInt::get(
3741                           cast<IntegerType>(IdxExpr->getType()), IterationNum);
3742    ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
3743
3744    // Form the GEP offset.
3745    Indexes[VarIdxNum] = Val;
3746
3747    Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
3748    if (Result == 0) break;  // Cannot compute!
3749
3750    // Evaluate the condition for this iteration.
3751    Result = ConstantExpr::getICmp(predicate, Result, RHS);
3752    if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
3753    if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
3754#if 0
3755      dbgs() << "\n***\n*** Computed loop count " << *ItCst
3756             << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
3757             << "***\n";
3758#endif
3759      ++NumArrayLenItCounts;
3760      return getConstant(ItCst);   // Found terminating iteration!
3761    }
3762  }
3763  return getCouldNotCompute();
3764}
3765
3766
3767/// CanConstantFold - Return true if we can constant fold an instruction of the
3768/// specified type, assuming that all operands were constants.
3769static bool CanConstantFold(const Instruction *I) {
3770  if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
3771      isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
3772    return true;
3773
3774  if (const CallInst *CI = dyn_cast<CallInst>(I))
3775    if (const Function *F = CI->getCalledFunction())
3776      return canConstantFoldCallTo(F);
3777  return false;
3778}
3779
3780/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
3781/// in the loop that V is derived from.  We allow arbitrary operations along the
3782/// way, but the operands of an operation must either be constants or a value
3783/// derived from a constant PHI.  If this expression does not fit with these
3784/// constraints, return null.
3785static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
3786  // If this is not an instruction, or if this is an instruction outside of the
3787  // loop, it can't be derived from a loop PHI.
3788  Instruction *I = dyn_cast<Instruction>(V);
3789  if (I == 0 || !L->contains(I)) return 0;
3790
3791  if (PHINode *PN = dyn_cast<PHINode>(I)) {
3792    if (L->getHeader() == I->getParent())
3793      return PN;
3794    else
3795      // We don't currently keep track of the control flow needed to evaluate
3796      // PHIs, so we cannot handle PHIs inside of loops.
3797      return 0;
3798  }
3799
3800  // If we won't be able to constant fold this expression even if the operands
3801  // are constants, return early.
3802  if (!CanConstantFold(I)) return 0;
3803
3804  // Otherwise, we can evaluate this instruction if all of its operands are
3805  // constant or derived from a PHI node themselves.
3806  PHINode *PHI = 0;
3807  for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
3808    if (!(isa<Constant>(I->getOperand(Op)) ||
3809          isa<GlobalValue>(I->getOperand(Op)))) {
3810      PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
3811      if (P == 0) return 0;  // Not evolving from PHI
3812      if (PHI == 0)
3813        PHI = P;
3814      else if (PHI != P)
3815        return 0;  // Evolving from multiple different PHIs.
3816    }
3817
3818  // This is a expression evolving from a constant PHI!
3819  return PHI;
3820}
3821
3822/// EvaluateExpression - Given an expression that passes the
3823/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
3824/// in the loop has the value PHIVal.  If we can't fold this expression for some
3825/// reason, return null.
3826static Constant *EvaluateExpression(Value *V, Constant *PHIVal,
3827                                    const TargetData *TD) {
3828  if (isa<PHINode>(V)) return PHIVal;
3829  if (Constant *C = dyn_cast<Constant>(V)) return C;
3830  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV;
3831  Instruction *I = cast<Instruction>(V);
3832
3833  std::vector<Constant*> Operands;
3834  Operands.resize(I->getNumOperands());
3835
3836  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
3837    Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD);
3838    if (Operands[i] == 0) return 0;
3839  }
3840
3841  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
3842    return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
3843                                           Operands[1], TD);
3844  return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
3845                                  &Operands[0], Operands.size(), TD);
3846}
3847
3848/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
3849/// in the header of its containing loop, we know the loop executes a
3850/// constant number of times, and the PHI node is just a recurrence
3851/// involving constants, fold it.
3852Constant *
3853ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
3854                                                   const APInt &BEs,
3855                                                   const Loop *L) {
3856  std::map<PHINode*, Constant*>::iterator I =
3857    ConstantEvolutionLoopExitValue.find(PN);
3858  if (I != ConstantEvolutionLoopExitValue.end())
3859    return I->second;
3860
3861  if (BEs.ugt(APInt(BEs.getBitWidth(),MaxBruteForceIterations)))
3862    return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.
3863
3864  Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
3865
3866  // Since the loop is canonicalized, the PHI node must have two entries.  One
3867  // entry must be a constant (coming in from outside of the loop), and the
3868  // second must be derived from the same PHI.
3869  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
3870  Constant *StartCST =
3871    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
3872  if (StartCST == 0)
3873    return RetVal = 0;  // Must be a constant.
3874
3875  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
3876  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
3877  if (PN2 != PN)
3878    return RetVal = 0;  // Not derived from same PHI.
3879
3880  // Execute the loop symbolically to determine the exit value.
3881  if (BEs.getActiveBits() >= 32)
3882    return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
3883
3884  unsigned NumIterations = BEs.getZExtValue(); // must be in range
3885  unsigned IterationNum = 0;
3886  for (Constant *PHIVal = StartCST; ; ++IterationNum) {
3887    if (IterationNum == NumIterations)
3888      return RetVal = PHIVal;  // Got exit value!
3889
3890    // Compute the value of the PHI node for the next iteration.
3891    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
3892    if (NextPHI == PHIVal)
3893      return RetVal = NextPHI;  // Stopped evolving!
3894    if (NextPHI == 0)
3895      return 0;        // Couldn't evaluate!
3896    PHIVal = NextPHI;
3897  }
3898}
3899
3900/// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a
3901/// constant number of times (the condition evolves only from constants),
3902/// try to evaluate a few iterations of the loop until we get the exit
3903/// condition gets a value of ExitWhen (true or false).  If we cannot
3904/// evaluate the trip count of the loop, return getCouldNotCompute().
3905const SCEV *
3906ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
3907                                                       Value *Cond,
3908                                                       bool ExitWhen) {
3909  PHINode *PN = getConstantEvolvingPHI(Cond, L);
3910  if (PN == 0) return getCouldNotCompute();
3911
3912  // Since the loop is canonicalized, the PHI node must have two entries.  One
3913  // entry must be a constant (coming in from outside of the loop), and the
3914  // second must be derived from the same PHI.
3915  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
3916  Constant *StartCST =
3917    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
3918  if (StartCST == 0) return getCouldNotCompute();  // Must be a constant.
3919
3920  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
3921  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
3922  if (PN2 != PN) return getCouldNotCompute();  // Not derived from same PHI.
3923
3924  // Okay, we find a PHI node that defines the trip count of this loop.  Execute
3925  // the loop symbolically to determine when the condition gets a value of
3926  // "ExitWhen".
3927  unsigned IterationNum = 0;
3928  unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
3929  for (Constant *PHIVal = StartCST;
3930       IterationNum != MaxIterations; ++IterationNum) {
3931    ConstantInt *CondVal =
3932      dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD));
3933
3934    // Couldn't symbolically evaluate.
3935    if (!CondVal) return getCouldNotCompute();
3936
3937    if (CondVal->getValue() == uint64_t(ExitWhen)) {
3938      ++NumBruteForceTripCountsComputed;
3939      return getConstant(Type::getInt32Ty(getContext()), IterationNum);
3940    }
3941
3942    // Compute the value of the PHI node for the next iteration.
3943    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
3944    if (NextPHI == 0 || NextPHI == PHIVal)
3945      return getCouldNotCompute();// Couldn't evaluate or not making progress...
3946    PHIVal = NextPHI;
3947  }
3948
3949  // Too many iterations were needed to evaluate.
3950  return getCouldNotCompute();
3951}
3952
3953/// getSCEVAtScope - Return a SCEV expression for the specified value
3954/// at the specified scope in the program.  The L value specifies a loop
3955/// nest to evaluate the expression at, where null is the top-level or a
3956/// specified loop is immediately inside of the loop.
3957///
3958/// This method can be used to compute the exit value for a variable defined
3959/// in a loop by querying what the value will hold in the parent loop.
3960///
3961/// In the case that a relevant loop exit value cannot be computed, the
3962/// original value V is returned.
3963const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
3964  // Check to see if we've folded this expression at this loop before.
3965  std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
3966  std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
3967    Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
3968  if (!Pair.second)
3969    return Pair.first->second ? Pair.first->second : V;
3970
3971  // Otherwise compute it.
3972  const SCEV *C = computeSCEVAtScope(V, L);
3973  ValuesAtScopes[V][L] = C;
3974  return C;
3975}
3976
3977const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
3978  if (isa<SCEVConstant>(V)) return V;
3979
3980  // If this instruction is evolved from a constant-evolving PHI, compute the
3981  // exit value from the loop without using SCEVs.
3982  if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
3983    if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
3984      const Loop *LI = (*this->LI)[I->getParent()];
3985      if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
3986        if (PHINode *PN = dyn_cast<PHINode>(I))
3987          if (PN->getParent() == LI->getHeader()) {
3988            // Okay, there is no closed form solution for the PHI node.  Check
3989            // to see if the loop that contains it has a known backedge-taken
3990            // count.  If so, we may be able to force computation of the exit
3991            // value.
3992            const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
3993            if (const SCEVConstant *BTCC =
3994                  dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
3995              // Okay, we know how many times the containing loop executes.  If
3996              // this is a constant evolving PHI node, get the final value at
3997              // the specified iteration number.
3998              Constant *RV = getConstantEvolutionLoopExitValue(PN,
3999                                                   BTCC->getValue()->getValue(),
4000                                                               LI);
4001              if (RV) return getSCEV(RV);
4002            }
4003          }
4004
4005      // Okay, this is an expression that we cannot symbolically evaluate
4006      // into a SCEV.  Check to see if it's possible to symbolically evaluate
4007      // the arguments into constants, and if so, try to constant propagate the
4008      // result.  This is particularly useful for computing loop exit values.
4009      if (CanConstantFold(I)) {
4010        std::vector<Constant*> Operands;
4011        Operands.reserve(I->getNumOperands());
4012        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4013          Value *Op = I->getOperand(i);
4014          if (Constant *C = dyn_cast<Constant>(Op)) {
4015            Operands.push_back(C);
4016          } else {
4017            // If any of the operands is non-constant and if they are
4018            // non-integer and non-pointer, don't even try to analyze them
4019            // with scev techniques.
4020            if (!isSCEVable(Op->getType()))
4021              return V;
4022
4023            const SCEV *OpV = getSCEVAtScope(Op, L);
4024            if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) {
4025              Constant *C = SC->getValue();
4026              if (C->getType() != Op->getType())
4027                C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4028                                                                  Op->getType(),
4029                                                                  false),
4030                                          C, Op->getType());
4031              Operands.push_back(C);
4032            } else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
4033              if (Constant *C = dyn_cast<Constant>(SU->getValue())) {
4034                if (C->getType() != Op->getType())
4035                  C =
4036                    ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4037                                                                  Op->getType(),
4038                                                                  false),
4039                                          C, Op->getType());
4040                Operands.push_back(C);
4041              } else
4042                return V;
4043            } else {
4044              return V;
4045            }
4046          }
4047        }
4048
4049        Constant *C;
4050        if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4051          C = ConstantFoldCompareInstOperands(CI->getPredicate(),
4052                                              Operands[0], Operands[1], TD);
4053        else
4054          C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
4055                                       &Operands[0], Operands.size(), TD);
4056        return getSCEV(C);
4057      }
4058    }
4059
4060    // This is some other type of SCEVUnknown, just return it.
4061    return V;
4062  }
4063
4064  if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
4065    // Avoid performing the look-up in the common case where the specified
4066    // expression has no loop-variant portions.
4067    for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
4068      const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
4069      if (OpAtScope != Comm->getOperand(i)) {
4070        // Okay, at least one of these operands is loop variant but might be
4071        // foldable.  Build a new instance of the folded commutative expression.
4072        SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
4073                                            Comm->op_begin()+i);
4074        NewOps.push_back(OpAtScope);
4075
4076        for (++i; i != e; ++i) {
4077          OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
4078          NewOps.push_back(OpAtScope);
4079        }
4080        if (isa<SCEVAddExpr>(Comm))
4081          return getAddExpr(NewOps);
4082        if (isa<SCEVMulExpr>(Comm))
4083          return getMulExpr(NewOps);
4084        if (isa<SCEVSMaxExpr>(Comm))
4085          return getSMaxExpr(NewOps);
4086        if (isa<SCEVUMaxExpr>(Comm))
4087          return getUMaxExpr(NewOps);
4088        llvm_unreachable("Unknown commutative SCEV type!");
4089      }
4090    }
4091    // If we got here, all operands are loop invariant.
4092    return Comm;
4093  }
4094
4095  if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
4096    const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
4097    const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
4098    if (LHS == Div->getLHS() && RHS == Div->getRHS())
4099      return Div;   // must be loop invariant
4100    return getUDivExpr(LHS, RHS);
4101  }
4102
4103  // If this is a loop recurrence for a loop that does not contain L, then we
4104  // are dealing with the final value computed by the loop.
4105  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
4106    if (!L || !AddRec->getLoop()->contains(L)) {
4107      // To evaluate this recurrence, we need to know how many times the AddRec
4108      // loop iterates.  Compute this now.
4109      const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
4110      if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
4111
4112      // Then, evaluate the AddRec.
4113      return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
4114    }
4115    return AddRec;
4116  }
4117
4118  if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
4119    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4120    if (Op == Cast->getOperand())
4121      return Cast;  // must be loop invariant
4122    return getZeroExtendExpr(Op, Cast->getType());
4123  }
4124
4125  if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
4126    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4127    if (Op == Cast->getOperand())
4128      return Cast;  // must be loop invariant
4129    return getSignExtendExpr(Op, Cast->getType());
4130  }
4131
4132  if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
4133    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4134    if (Op == Cast->getOperand())
4135      return Cast;  // must be loop invariant
4136    return getTruncateExpr(Op, Cast->getType());
4137  }
4138
4139  if (isa<SCEVTargetDataConstant>(V))
4140    return V;
4141
4142  llvm_unreachable("Unknown SCEV type!");
4143  return 0;
4144}
4145
4146/// getSCEVAtScope - This is a convenience function which does
4147/// getSCEVAtScope(getSCEV(V), L).
4148const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
4149  return getSCEVAtScope(getSCEV(V), L);
4150}
4151
4152/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
4153/// following equation:
4154///
4155///     A * X = B (mod N)
4156///
4157/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
4158/// A and B isn't important.
4159///
4160/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
4161static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
4162                                               ScalarEvolution &SE) {
4163  uint32_t BW = A.getBitWidth();
4164  assert(BW == B.getBitWidth() && "Bit widths must be the same.");
4165  assert(A != 0 && "A must be non-zero.");
4166
4167  // 1. D = gcd(A, N)
4168  //
4169  // The gcd of A and N may have only one prime factor: 2. The number of
4170  // trailing zeros in A is its multiplicity
4171  uint32_t Mult2 = A.countTrailingZeros();
4172  // D = 2^Mult2
4173
4174  // 2. Check if B is divisible by D.
4175  //
4176  // B is divisible by D if and only if the multiplicity of prime factor 2 for B
4177  // is not less than multiplicity of this prime factor for D.
4178  if (B.countTrailingZeros() < Mult2)
4179    return SE.getCouldNotCompute();
4180
4181  // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
4182  // modulo (N / D).
4183  //
4184  // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
4185  // bit width during computations.
4186  APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
4187  APInt Mod(BW + 1, 0);
4188  Mod.set(BW - Mult2);  // Mod = N / D
4189  APInt I = AD.multiplicativeInverse(Mod);
4190
4191  // 4. Compute the minimum unsigned root of the equation:
4192  // I * (B / D) mod (N / D)
4193  APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
4194
4195  // The result is guaranteed to be less than 2^BW so we may truncate it to BW
4196  // bits.
4197  return SE.getConstant(Result.trunc(BW));
4198}
4199
4200/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
4201/// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
4202/// might be the same) or two SCEVCouldNotCompute objects.
4203///
4204static std::pair<const SCEV *,const SCEV *>
4205SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
4206  assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
4207  const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
4208  const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
4209  const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
4210
4211  // We currently can only solve this if the coefficients are constants.
4212  if (!LC || !MC || !NC) {
4213    const SCEV *CNC = SE.getCouldNotCompute();
4214    return std::make_pair(CNC, CNC);
4215  }
4216
4217  uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
4218  const APInt &L = LC->getValue()->getValue();
4219  const APInt &M = MC->getValue()->getValue();
4220  const APInt &N = NC->getValue()->getValue();
4221  APInt Two(BitWidth, 2);
4222  APInt Four(BitWidth, 4);
4223
4224  {
4225    using namespace APIntOps;
4226    const APInt& C = L;
4227    // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
4228    // The B coefficient is M-N/2
4229    APInt B(M);
4230    B -= sdiv(N,Two);
4231
4232    // The A coefficient is N/2
4233    APInt A(N.sdiv(Two));
4234
4235    // Compute the B^2-4ac term.
4236    APInt SqrtTerm(B);
4237    SqrtTerm *= B;
4238    SqrtTerm -= Four * (A * C);
4239
4240    // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
4241    // integer value or else APInt::sqrt() will assert.
4242    APInt SqrtVal(SqrtTerm.sqrt());
4243
4244    // Compute the two solutions for the quadratic formula.
4245    // The divisions must be performed as signed divisions.
4246    APInt NegB(-B);
4247    APInt TwoA( A << 1 );
4248    if (TwoA.isMinValue()) {
4249      const SCEV *CNC = SE.getCouldNotCompute();
4250      return std::make_pair(CNC, CNC);
4251    }
4252
4253    LLVMContext &Context = SE.getContext();
4254
4255    ConstantInt *Solution1 =
4256      ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
4257    ConstantInt *Solution2 =
4258      ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
4259
4260    return std::make_pair(SE.getConstant(Solution1),
4261                          SE.getConstant(Solution2));
4262    } // end APIntOps namespace
4263}
4264
4265/// HowFarToZero - Return the number of times a backedge comparing the specified
4266/// value to zero will execute.  If not computable, return CouldNotCompute.
4267const SCEV *ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
4268  // If the value is a constant
4269  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
4270    // If the value is already zero, the branch will execute zero times.
4271    if (C->getValue()->isZero()) return C;
4272    return getCouldNotCompute();  // Otherwise it will loop infinitely.
4273  }
4274
4275  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
4276  if (!AddRec || AddRec->getLoop() != L)
4277    return getCouldNotCompute();
4278
4279  if (AddRec->isAffine()) {
4280    // If this is an affine expression, the execution count of this branch is
4281    // the minimum unsigned root of the following equation:
4282    //
4283    //     Start + Step*N = 0 (mod 2^BW)
4284    //
4285    // equivalent to:
4286    //
4287    //             Step*N = -Start (mod 2^BW)
4288    //
4289    // where BW is the common bit width of Start and Step.
4290
4291    // Get the initial value for the loop.
4292    const SCEV *Start = getSCEVAtScope(AddRec->getStart(),
4293                                       L->getParentLoop());
4294    const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1),
4295                                      L->getParentLoop());
4296
4297    if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
4298      // For now we handle only constant steps.
4299
4300      // First, handle unitary steps.
4301      if (StepC->getValue()->equalsInt(1))      // 1*N = -Start (mod 2^BW), so:
4302        return getNegativeSCEV(Start);          //   N = -Start (as unsigned)
4303      if (StepC->getValue()->isAllOnesValue())  // -1*N = -Start (mod 2^BW), so:
4304        return Start;                           //    N = Start (as unsigned)
4305
4306      // Then, try to solve the above equation provided that Start is constant.
4307      if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
4308        return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
4309                                            -StartC->getValue()->getValue(),
4310                                            *this);
4311    }
4312  } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
4313    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
4314    // the quadratic equation to solve it.
4315    std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec,
4316                                                                    *this);
4317    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4318    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
4319    if (R1) {
4320#if 0
4321      dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
4322             << "  sol#2: " << *R2 << "\n";
4323#endif
4324      // Pick the smallest positive root value.
4325      if (ConstantInt *CB =
4326          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
4327                                   R1->getValue(), R2->getValue()))) {
4328        if (CB->getZExtValue() == false)
4329          std::swap(R1, R2);   // R1 is the minimum root now.
4330
4331        // We can only use this value if the chrec ends up with an exact zero
4332        // value at this index.  When solving for "X*X != 5", for example, we
4333        // should not accept a root of 2.
4334        const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
4335        if (Val->isZero())
4336          return R1;  // We found a quadratic root!
4337      }
4338    }
4339  }
4340
4341  return getCouldNotCompute();
4342}
4343
4344/// HowFarToNonZero - Return the number of times a backedge checking the
4345/// specified value for nonzero will execute.  If not computable, return
4346/// CouldNotCompute
4347const SCEV *ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
4348  // Loops that look like: while (X == 0) are very strange indeed.  We don't
4349  // handle them yet except for the trivial case.  This could be expanded in the
4350  // future as needed.
4351
4352  // If the value is a constant, check to see if it is known to be non-zero
4353  // already.  If so, the backedge will execute zero times.
4354  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
4355    if (!C->getValue()->isNullValue())
4356      return getIntegerSCEV(0, C->getType());
4357    return getCouldNotCompute();  // Otherwise it will loop infinitely.
4358  }
4359
4360  // We could implement others, but I really doubt anyone writes loops like
4361  // this, and if they did, they would already be constant folded.
4362  return getCouldNotCompute();
4363}
4364
4365/// getLoopPredecessor - If the given loop's header has exactly one unique
4366/// predecessor outside the loop, return it. Otherwise return null.
4367///
4368BasicBlock *ScalarEvolution::getLoopPredecessor(const Loop *L) {
4369  BasicBlock *Header = L->getHeader();
4370  BasicBlock *Pred = 0;
4371  for (pred_iterator PI = pred_begin(Header), E = pred_end(Header);
4372       PI != E; ++PI)
4373    if (!L->contains(*PI)) {
4374      if (Pred && Pred != *PI) return 0; // Multiple predecessors.
4375      Pred = *PI;
4376    }
4377  return Pred;
4378}
4379
4380/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
4381/// (which may not be an immediate predecessor) which has exactly one
4382/// successor from which BB is reachable, or null if no such block is
4383/// found.
4384///
4385BasicBlock *
4386ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
4387  // If the block has a unique predecessor, then there is no path from the
4388  // predecessor to the block that does not go through the direct edge
4389  // from the predecessor to the block.
4390  if (BasicBlock *Pred = BB->getSinglePredecessor())
4391    return Pred;
4392
4393  // A loop's header is defined to be a block that dominates the loop.
4394  // If the header has a unique predecessor outside the loop, it must be
4395  // a block that has exactly one successor that can reach the loop.
4396  if (Loop *L = LI->getLoopFor(BB))
4397    return getLoopPredecessor(L);
4398
4399  return 0;
4400}
4401
4402/// HasSameValue - SCEV structural equivalence is usually sufficient for
4403/// testing whether two expressions are equal, however for the purposes of
4404/// looking for a condition guarding a loop, it can be useful to be a little
4405/// more general, since a front-end may have replicated the controlling
4406/// expression.
4407///
4408static bool HasSameValue(const SCEV *A, const SCEV *B) {
4409  // Quick check to see if they are the same SCEV.
4410  if (A == B) return true;
4411
4412  // Otherwise, if they're both SCEVUnknown, it's possible that they hold
4413  // two different instructions with the same value. Check for this case.
4414  if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
4415    if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
4416      if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
4417        if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
4418          if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
4419            return true;
4420
4421  // Otherwise assume they may have a different value.
4422  return false;
4423}
4424
4425bool ScalarEvolution::isKnownNegative(const SCEV *S) {
4426  return getSignedRange(S).getSignedMax().isNegative();
4427}
4428
4429bool ScalarEvolution::isKnownPositive(const SCEV *S) {
4430  return getSignedRange(S).getSignedMin().isStrictlyPositive();
4431}
4432
4433bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
4434  return !getSignedRange(S).getSignedMin().isNegative();
4435}
4436
4437bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
4438  return !getSignedRange(S).getSignedMax().isStrictlyPositive();
4439}
4440
4441bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
4442  return isKnownNegative(S) || isKnownPositive(S);
4443}
4444
4445bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
4446                                       const SCEV *LHS, const SCEV *RHS) {
4447
4448  if (HasSameValue(LHS, RHS))
4449    return ICmpInst::isTrueWhenEqual(Pred);
4450
4451  switch (Pred) {
4452  default:
4453    llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4454    break;
4455  case ICmpInst::ICMP_SGT:
4456    Pred = ICmpInst::ICMP_SLT;
4457    std::swap(LHS, RHS);
4458  case ICmpInst::ICMP_SLT: {
4459    ConstantRange LHSRange = getSignedRange(LHS);
4460    ConstantRange RHSRange = getSignedRange(RHS);
4461    if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
4462      return true;
4463    if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
4464      return false;
4465    break;
4466  }
4467  case ICmpInst::ICMP_SGE:
4468    Pred = ICmpInst::ICMP_SLE;
4469    std::swap(LHS, RHS);
4470  case ICmpInst::ICMP_SLE: {
4471    ConstantRange LHSRange = getSignedRange(LHS);
4472    ConstantRange RHSRange = getSignedRange(RHS);
4473    if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
4474      return true;
4475    if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
4476      return false;
4477    break;
4478  }
4479  case ICmpInst::ICMP_UGT:
4480    Pred = ICmpInst::ICMP_ULT;
4481    std::swap(LHS, RHS);
4482  case ICmpInst::ICMP_ULT: {
4483    ConstantRange LHSRange = getUnsignedRange(LHS);
4484    ConstantRange RHSRange = getUnsignedRange(RHS);
4485    if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
4486      return true;
4487    if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
4488      return false;
4489    break;
4490  }
4491  case ICmpInst::ICMP_UGE:
4492    Pred = ICmpInst::ICMP_ULE;
4493    std::swap(LHS, RHS);
4494  case ICmpInst::ICMP_ULE: {
4495    ConstantRange LHSRange = getUnsignedRange(LHS);
4496    ConstantRange RHSRange = getUnsignedRange(RHS);
4497    if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
4498      return true;
4499    if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
4500      return false;
4501    break;
4502  }
4503  case ICmpInst::ICMP_NE: {
4504    if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
4505      return true;
4506    if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
4507      return true;
4508
4509    const SCEV *Diff = getMinusSCEV(LHS, RHS);
4510    if (isKnownNonZero(Diff))
4511      return true;
4512    break;
4513  }
4514  case ICmpInst::ICMP_EQ:
4515    // The check at the top of the function catches the case where
4516    // the values are known to be equal.
4517    break;
4518  }
4519  return false;
4520}
4521
4522/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
4523/// protected by a conditional between LHS and RHS.  This is used to
4524/// to eliminate casts.
4525bool
4526ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
4527                                             ICmpInst::Predicate Pred,
4528                                             const SCEV *LHS, const SCEV *RHS) {
4529  // Interpret a null as meaning no loop, where there is obviously no guard
4530  // (interprocedural conditions notwithstanding).
4531  if (!L) return true;
4532
4533  BasicBlock *Latch = L->getLoopLatch();
4534  if (!Latch)
4535    return false;
4536
4537  BranchInst *LoopContinuePredicate =
4538    dyn_cast<BranchInst>(Latch->getTerminator());
4539  if (!LoopContinuePredicate ||
4540      LoopContinuePredicate->isUnconditional())
4541    return false;
4542
4543  return isImpliedCond(LoopContinuePredicate->getCondition(), Pred, LHS, RHS,
4544                       LoopContinuePredicate->getSuccessor(0) != L->getHeader());
4545}
4546
4547/// isLoopGuardedByCond - Test whether entry to the loop is protected
4548/// by a conditional between LHS and RHS.  This is used to help avoid max
4549/// expressions in loop trip counts, and to eliminate casts.
4550bool
4551ScalarEvolution::isLoopGuardedByCond(const Loop *L,
4552                                     ICmpInst::Predicate Pred,
4553                                     const SCEV *LHS, const SCEV *RHS) {
4554  // Interpret a null as meaning no loop, where there is obviously no guard
4555  // (interprocedural conditions notwithstanding).
4556  if (!L) return false;
4557
4558  BasicBlock *Predecessor = getLoopPredecessor(L);
4559  BasicBlock *PredecessorDest = L->getHeader();
4560
4561  // Starting at the loop predecessor, climb up the predecessor chain, as long
4562  // as there are predecessors that can be found that have unique successors
4563  // leading to the original header.
4564  for (; Predecessor;
4565       PredecessorDest = Predecessor,
4566       Predecessor = getPredecessorWithUniqueSuccessorForBB(Predecessor)) {
4567
4568    BranchInst *LoopEntryPredicate =
4569      dyn_cast<BranchInst>(Predecessor->getTerminator());
4570    if (!LoopEntryPredicate ||
4571        LoopEntryPredicate->isUnconditional())
4572      continue;
4573
4574    if (isImpliedCond(LoopEntryPredicate->getCondition(), Pred, LHS, RHS,
4575                      LoopEntryPredicate->getSuccessor(0) != PredecessorDest))
4576      return true;
4577  }
4578
4579  return false;
4580}
4581
4582/// isImpliedCond - Test whether the condition described by Pred, LHS,
4583/// and RHS is true whenever the given Cond value evaluates to true.
4584bool ScalarEvolution::isImpliedCond(Value *CondValue,
4585                                    ICmpInst::Predicate Pred,
4586                                    const SCEV *LHS, const SCEV *RHS,
4587                                    bool Inverse) {
4588  // Recursivly handle And and Or conditions.
4589  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CondValue)) {
4590    if (BO->getOpcode() == Instruction::And) {
4591      if (!Inverse)
4592        return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
4593               isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
4594    } else if (BO->getOpcode() == Instruction::Or) {
4595      if (Inverse)
4596        return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
4597               isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
4598    }
4599  }
4600
4601  ICmpInst *ICI = dyn_cast<ICmpInst>(CondValue);
4602  if (!ICI) return false;
4603
4604  // Bail if the ICmp's operands' types are wider than the needed type
4605  // before attempting to call getSCEV on them. This avoids infinite
4606  // recursion, since the analysis of widening casts can require loop
4607  // exit condition information for overflow checking, which would
4608  // lead back here.
4609  if (getTypeSizeInBits(LHS->getType()) <
4610      getTypeSizeInBits(ICI->getOperand(0)->getType()))
4611    return false;
4612
4613  // Now that we found a conditional branch that dominates the loop, check to
4614  // see if it is the comparison we are looking for.
4615  ICmpInst::Predicate FoundPred;
4616  if (Inverse)
4617    FoundPred = ICI->getInversePredicate();
4618  else
4619    FoundPred = ICI->getPredicate();
4620
4621  const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
4622  const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
4623
4624  // Balance the types. The case where FoundLHS' type is wider than
4625  // LHS' type is checked for above.
4626  if (getTypeSizeInBits(LHS->getType()) >
4627      getTypeSizeInBits(FoundLHS->getType())) {
4628    if (CmpInst::isSigned(Pred)) {
4629      FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
4630      FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
4631    } else {
4632      FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
4633      FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
4634    }
4635  }
4636
4637  // Canonicalize the query to match the way instcombine will have
4638  // canonicalized the comparison.
4639  // First, put a constant operand on the right.
4640  if (isa<SCEVConstant>(LHS)) {
4641    std::swap(LHS, RHS);
4642    Pred = ICmpInst::getSwappedPredicate(Pred);
4643  }
4644  // Then, canonicalize comparisons with boundary cases.
4645  if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
4646    const APInt &RA = RC->getValue()->getValue();
4647    switch (Pred) {
4648    default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4649    case ICmpInst::ICMP_EQ:
4650    case ICmpInst::ICMP_NE:
4651      break;
4652    case ICmpInst::ICMP_UGE:
4653      if ((RA - 1).isMinValue()) {
4654        Pred = ICmpInst::ICMP_NE;
4655        RHS = getConstant(RA - 1);
4656        break;
4657      }
4658      if (RA.isMaxValue()) {
4659        Pred = ICmpInst::ICMP_EQ;
4660        break;
4661      }
4662      if (RA.isMinValue()) return true;
4663      break;
4664    case ICmpInst::ICMP_ULE:
4665      if ((RA + 1).isMaxValue()) {
4666        Pred = ICmpInst::ICMP_NE;
4667        RHS = getConstant(RA + 1);
4668        break;
4669      }
4670      if (RA.isMinValue()) {
4671        Pred = ICmpInst::ICMP_EQ;
4672        break;
4673      }
4674      if (RA.isMaxValue()) return true;
4675      break;
4676    case ICmpInst::ICMP_SGE:
4677      if ((RA - 1).isMinSignedValue()) {
4678        Pred = ICmpInst::ICMP_NE;
4679        RHS = getConstant(RA - 1);
4680        break;
4681      }
4682      if (RA.isMaxSignedValue()) {
4683        Pred = ICmpInst::ICMP_EQ;
4684        break;
4685      }
4686      if (RA.isMinSignedValue()) return true;
4687      break;
4688    case ICmpInst::ICMP_SLE:
4689      if ((RA + 1).isMaxSignedValue()) {
4690        Pred = ICmpInst::ICMP_NE;
4691        RHS = getConstant(RA + 1);
4692        break;
4693      }
4694      if (RA.isMinSignedValue()) {
4695        Pred = ICmpInst::ICMP_EQ;
4696        break;
4697      }
4698      if (RA.isMaxSignedValue()) return true;
4699      break;
4700    case ICmpInst::ICMP_UGT:
4701      if (RA.isMinValue()) {
4702        Pred = ICmpInst::ICMP_NE;
4703        break;
4704      }
4705      if ((RA + 1).isMaxValue()) {
4706        Pred = ICmpInst::ICMP_EQ;
4707        RHS = getConstant(RA + 1);
4708        break;
4709      }
4710      if (RA.isMaxValue()) return false;
4711      break;
4712    case ICmpInst::ICMP_ULT:
4713      if (RA.isMaxValue()) {
4714        Pred = ICmpInst::ICMP_NE;
4715        break;
4716      }
4717      if ((RA - 1).isMinValue()) {
4718        Pred = ICmpInst::ICMP_EQ;
4719        RHS = getConstant(RA - 1);
4720        break;
4721      }
4722      if (RA.isMinValue()) return false;
4723      break;
4724    case ICmpInst::ICMP_SGT:
4725      if (RA.isMinSignedValue()) {
4726        Pred = ICmpInst::ICMP_NE;
4727        break;
4728      }
4729      if ((RA + 1).isMaxSignedValue()) {
4730        Pred = ICmpInst::ICMP_EQ;
4731        RHS = getConstant(RA + 1);
4732        break;
4733      }
4734      if (RA.isMaxSignedValue()) return false;
4735      break;
4736    case ICmpInst::ICMP_SLT:
4737      if (RA.isMaxSignedValue()) {
4738        Pred = ICmpInst::ICMP_NE;
4739        break;
4740      }
4741      if ((RA - 1).isMinSignedValue()) {
4742       Pred = ICmpInst::ICMP_EQ;
4743       RHS = getConstant(RA - 1);
4744       break;
4745      }
4746      if (RA.isMinSignedValue()) return false;
4747      break;
4748    }
4749  }
4750
4751  // Check to see if we can make the LHS or RHS match.
4752  if (LHS == FoundRHS || RHS == FoundLHS) {
4753    if (isa<SCEVConstant>(RHS)) {
4754      std::swap(FoundLHS, FoundRHS);
4755      FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
4756    } else {
4757      std::swap(LHS, RHS);
4758      Pred = ICmpInst::getSwappedPredicate(Pred);
4759    }
4760  }
4761
4762  // Check whether the found predicate is the same as the desired predicate.
4763  if (FoundPred == Pred)
4764    return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
4765
4766  // Check whether swapping the found predicate makes it the same as the
4767  // desired predicate.
4768  if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
4769    if (isa<SCEVConstant>(RHS))
4770      return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
4771    else
4772      return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
4773                                   RHS, LHS, FoundLHS, FoundRHS);
4774  }
4775
4776  // Check whether the actual condition is beyond sufficient.
4777  if (FoundPred == ICmpInst::ICMP_EQ)
4778    if (ICmpInst::isTrueWhenEqual(Pred))
4779      if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
4780        return true;
4781  if (Pred == ICmpInst::ICMP_NE)
4782    if (!ICmpInst::isTrueWhenEqual(FoundPred))
4783      if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
4784        return true;
4785
4786  // Otherwise assume the worst.
4787  return false;
4788}
4789
4790/// isImpliedCondOperands - Test whether the condition described by Pred,
4791/// LHS, and RHS is true whenever the condition desribed by Pred, FoundLHS,
4792/// and FoundRHS is true.
4793bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
4794                                            const SCEV *LHS, const SCEV *RHS,
4795                                            const SCEV *FoundLHS,
4796                                            const SCEV *FoundRHS) {
4797  return isImpliedCondOperandsHelper(Pred, LHS, RHS,
4798                                     FoundLHS, FoundRHS) ||
4799         // ~x < ~y --> x > y
4800         isImpliedCondOperandsHelper(Pred, LHS, RHS,
4801                                     getNotSCEV(FoundRHS),
4802                                     getNotSCEV(FoundLHS));
4803}
4804
4805/// isImpliedCondOperandsHelper - Test whether the condition described by
4806/// Pred, LHS, and RHS is true whenever the condition desribed by Pred,
4807/// FoundLHS, and FoundRHS is true.
4808bool
4809ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
4810                                             const SCEV *LHS, const SCEV *RHS,
4811                                             const SCEV *FoundLHS,
4812                                             const SCEV *FoundRHS) {
4813  switch (Pred) {
4814  default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4815  case ICmpInst::ICMP_EQ:
4816  case ICmpInst::ICMP_NE:
4817    if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
4818      return true;
4819    break;
4820  case ICmpInst::ICMP_SLT:
4821  case ICmpInst::ICMP_SLE:
4822    if (isKnownPredicate(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
4823        isKnownPredicate(ICmpInst::ICMP_SGE, RHS, FoundRHS))
4824      return true;
4825    break;
4826  case ICmpInst::ICMP_SGT:
4827  case ICmpInst::ICMP_SGE:
4828    if (isKnownPredicate(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
4829        isKnownPredicate(ICmpInst::ICMP_SLE, RHS, FoundRHS))
4830      return true;
4831    break;
4832  case ICmpInst::ICMP_ULT:
4833  case ICmpInst::ICMP_ULE:
4834    if (isKnownPredicate(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
4835        isKnownPredicate(ICmpInst::ICMP_UGE, RHS, FoundRHS))
4836      return true;
4837    break;
4838  case ICmpInst::ICMP_UGT:
4839  case ICmpInst::ICMP_UGE:
4840    if (isKnownPredicate(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
4841        isKnownPredicate(ICmpInst::ICMP_ULE, RHS, FoundRHS))
4842      return true;
4843    break;
4844  }
4845
4846  return false;
4847}
4848
4849/// getBECount - Subtract the end and start values and divide by the step,
4850/// rounding up, to get the number of times the backedge is executed. Return
4851/// CouldNotCompute if an intermediate computation overflows.
4852const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
4853                                        const SCEV *End,
4854                                        const SCEV *Step,
4855                                        bool NoWrap) {
4856  const Type *Ty = Start->getType();
4857  const SCEV *NegOne = getIntegerSCEV(-1, Ty);
4858  const SCEV *Diff = getMinusSCEV(End, Start);
4859  const SCEV *RoundUp = getAddExpr(Step, NegOne);
4860
4861  // Add an adjustment to the difference between End and Start so that
4862  // the division will effectively round up.
4863  const SCEV *Add = getAddExpr(Diff, RoundUp);
4864
4865  if (!NoWrap) {
4866    // Check Add for unsigned overflow.
4867    // TODO: More sophisticated things could be done here.
4868    const Type *WideTy = IntegerType::get(getContext(),
4869                                          getTypeSizeInBits(Ty) + 1);
4870    const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
4871    const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
4872    const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
4873    if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
4874      return getCouldNotCompute();
4875  }
4876
4877  return getUDivExpr(Add, Step);
4878}
4879
4880/// HowManyLessThans - Return the number of times a backedge containing the
4881/// specified less-than comparison will execute.  If not computable, return
4882/// CouldNotCompute.
4883ScalarEvolution::BackedgeTakenInfo
4884ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
4885                                  const Loop *L, bool isSigned) {
4886  // Only handle:  "ADDREC < LoopInvariant".
4887  if (!RHS->isLoopInvariant(L)) return getCouldNotCompute();
4888
4889  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
4890  if (!AddRec || AddRec->getLoop() != L)
4891    return getCouldNotCompute();
4892
4893  // Check to see if we have a flag which makes analysis easy.
4894  bool NoWrap = isSigned ? AddRec->hasNoSignedWrap() :
4895                           AddRec->hasNoUnsignedWrap();
4896
4897  if (AddRec->isAffine()) {
4898    // FORNOW: We only support unit strides.
4899    unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
4900    const SCEV *Step = AddRec->getStepRecurrence(*this);
4901
4902    // TODO: handle non-constant strides.
4903    const SCEVConstant *CStep = dyn_cast<SCEVConstant>(Step);
4904    if (!CStep || CStep->isZero())
4905      return getCouldNotCompute();
4906    if (CStep->isOne()) {
4907      // With unit stride, the iteration never steps past the limit value.
4908    } else if (CStep->getValue()->getValue().isStrictlyPositive()) {
4909      if (NoWrap) {
4910        // We know the iteration won't step past the maximum value for its type.
4911        ;
4912      } else if (const SCEVConstant *CLimit = dyn_cast<SCEVConstant>(RHS)) {
4913        // Test whether a positive iteration iteration can step past the limit
4914        // value and past the maximum value for its type in a single step.
4915        if (isSigned) {
4916          APInt Max = APInt::getSignedMaxValue(BitWidth);
4917          if ((Max - CStep->getValue()->getValue())
4918                .slt(CLimit->getValue()->getValue()))
4919            return getCouldNotCompute();
4920        } else {
4921          APInt Max = APInt::getMaxValue(BitWidth);
4922          if ((Max - CStep->getValue()->getValue())
4923                .ult(CLimit->getValue()->getValue()))
4924            return getCouldNotCompute();
4925        }
4926      } else
4927        // TODO: handle non-constant limit values below.
4928        return getCouldNotCompute();
4929    } else
4930      // TODO: handle negative strides below.
4931      return getCouldNotCompute();
4932
4933    // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
4934    // m.  So, we count the number of iterations in which {n,+,s} < m is true.
4935    // Note that we cannot simply return max(m-n,0)/s because it's not safe to
4936    // treat m-n as signed nor unsigned due to overflow possibility.
4937
4938    // First, we get the value of the LHS in the first iteration: n
4939    const SCEV *Start = AddRec->getOperand(0);
4940
4941    // Determine the minimum constant start value.
4942    const SCEV *MinStart = getConstant(isSigned ?
4943      getSignedRange(Start).getSignedMin() :
4944      getUnsignedRange(Start).getUnsignedMin());
4945
4946    // If we know that the condition is true in order to enter the loop,
4947    // then we know that it will run exactly (m-n)/s times. Otherwise, we
4948    // only know that it will execute (max(m,n)-n)/s times. In both cases,
4949    // the division must round up.
4950    const SCEV *End = RHS;
4951    if (!isLoopGuardedByCond(L,
4952                             isSigned ? ICmpInst::ICMP_SLT :
4953                                        ICmpInst::ICMP_ULT,
4954                             getMinusSCEV(Start, Step), RHS))
4955      End = isSigned ? getSMaxExpr(RHS, Start)
4956                     : getUMaxExpr(RHS, Start);
4957
4958    // Determine the maximum constant end value.
4959    const SCEV *MaxEnd = getConstant(isSigned ?
4960      getSignedRange(End).getSignedMax() :
4961      getUnsignedRange(End).getUnsignedMax());
4962
4963    // Finally, we subtract these two values and divide, rounding up, to get
4964    // the number of times the backedge is executed.
4965    const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
4966
4967    // The maximum backedge count is similar, except using the minimum start
4968    // value and the maximum end value.
4969    const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step, NoWrap);
4970
4971    return BackedgeTakenInfo(BECount, MaxBECount);
4972  }
4973
4974  return getCouldNotCompute();
4975}
4976
4977/// getNumIterationsInRange - Return the number of iterations of this loop that
4978/// produce values in the specified constant range.  Another way of looking at
4979/// this is that it returns the first iteration number where the value is not in
4980/// the condition, thus computing the exit count. If the iteration count can't
4981/// be computed, an instance of SCEVCouldNotCompute is returned.
4982const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
4983                                                    ScalarEvolution &SE) const {
4984  if (Range.isFullSet())  // Infinite loop.
4985    return SE.getCouldNotCompute();
4986
4987  // If the start is a non-zero constant, shift the range to simplify things.
4988  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
4989    if (!SC->getValue()->isZero()) {
4990      SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
4991      Operands[0] = SE.getIntegerSCEV(0, SC->getType());
4992      const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop());
4993      if (const SCEVAddRecExpr *ShiftedAddRec =
4994            dyn_cast<SCEVAddRecExpr>(Shifted))
4995        return ShiftedAddRec->getNumIterationsInRange(
4996                           Range.subtract(SC->getValue()->getValue()), SE);
4997      // This is strange and shouldn't happen.
4998      return SE.getCouldNotCompute();
4999    }
5000
5001  // The only time we can solve this is when we have all constant indices.
5002  // Otherwise, we cannot determine the overflow conditions.
5003  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5004    if (!isa<SCEVConstant>(getOperand(i)))
5005      return SE.getCouldNotCompute();
5006
5007
5008  // Okay at this point we know that all elements of the chrec are constants and
5009  // that the start element is zero.
5010
5011  // First check to see if the range contains zero.  If not, the first
5012  // iteration exits.
5013  unsigned BitWidth = SE.getTypeSizeInBits(getType());
5014  if (!Range.contains(APInt(BitWidth, 0)))
5015    return SE.getIntegerSCEV(0, getType());
5016
5017  if (isAffine()) {
5018    // If this is an affine expression then we have this situation:
5019    //   Solve {0,+,A} in Range  ===  Ax in Range
5020
5021    // We know that zero is in the range.  If A is positive then we know that
5022    // the upper value of the range must be the first possible exit value.
5023    // If A is negative then the lower of the range is the last possible loop
5024    // value.  Also note that we already checked for a full range.
5025    APInt One(BitWidth,1);
5026    APInt A     = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
5027    APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
5028
5029    // The exit value should be (End+A)/A.
5030    APInt ExitVal = (End + A).udiv(A);
5031    ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
5032
5033    // Evaluate at the exit value.  If we really did fall out of the valid
5034    // range, then we computed our trip count, otherwise wrap around or other
5035    // things must have happened.
5036    ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
5037    if (Range.contains(Val->getValue()))
5038      return SE.getCouldNotCompute();  // Something strange happened
5039
5040    // Ensure that the previous value is in the range.  This is a sanity check.
5041    assert(Range.contains(
5042           EvaluateConstantChrecAtConstant(this,
5043           ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
5044           "Linear scev computation is off in a bad way!");
5045    return SE.getConstant(ExitValue);
5046  } else if (isQuadratic()) {
5047    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
5048    // quadratic equation to solve it.  To do this, we must frame our problem in
5049    // terms of figuring out when zero is crossed, instead of when
5050    // Range.getUpper() is crossed.
5051    SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
5052    NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
5053    const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
5054
5055    // Next, solve the constructed addrec
5056    std::pair<const SCEV *,const SCEV *> Roots =
5057      SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
5058    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5059    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
5060    if (R1) {
5061      // Pick the smallest positive root value.
5062      if (ConstantInt *CB =
5063          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
5064                         R1->getValue(), R2->getValue()))) {
5065        if (CB->getZExtValue() == false)
5066          std::swap(R1, R2);   // R1 is the minimum root now.
5067
5068        // Make sure the root is not off by one.  The returned iteration should
5069        // not be in the range, but the previous one should be.  When solving
5070        // for "X*X < 5", for example, we should not return a root of 2.
5071        ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
5072                                                             R1->getValue(),
5073                                                             SE);
5074        if (Range.contains(R1Val->getValue())) {
5075          // The next iteration must be out of the range...
5076          ConstantInt *NextVal =
5077                ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
5078
5079          R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
5080          if (!Range.contains(R1Val->getValue()))
5081            return SE.getConstant(NextVal);
5082          return SE.getCouldNotCompute();  // Something strange happened
5083        }
5084
5085        // If R1 was not in the range, then it is a good return value.  Make
5086        // sure that R1-1 WAS in the range though, just in case.
5087        ConstantInt *NextVal =
5088               ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
5089        R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
5090        if (Range.contains(R1Val->getValue()))
5091          return R1;
5092        return SE.getCouldNotCompute();  // Something strange happened
5093      }
5094    }
5095  }
5096
5097  return SE.getCouldNotCompute();
5098}
5099
5100
5101
5102//===----------------------------------------------------------------------===//
5103//                   SCEVCallbackVH Class Implementation
5104//===----------------------------------------------------------------------===//
5105
5106void ScalarEvolution::SCEVCallbackVH::deleted() {
5107  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
5108  if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
5109    SE->ConstantEvolutionLoopExitValue.erase(PN);
5110  SE->Scalars.erase(getValPtr());
5111  // this now dangles!
5112}
5113
5114void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *) {
5115  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
5116
5117  // Forget all the expressions associated with users of the old value,
5118  // so that future queries will recompute the expressions using the new
5119  // value.
5120  SmallVector<User *, 16> Worklist;
5121  SmallPtrSet<User *, 8> Visited;
5122  Value *Old = getValPtr();
5123  bool DeleteOld = false;
5124  for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
5125       UI != UE; ++UI)
5126    Worklist.push_back(*UI);
5127  while (!Worklist.empty()) {
5128    User *U = Worklist.pop_back_val();
5129    // Deleting the Old value will cause this to dangle. Postpone
5130    // that until everything else is done.
5131    if (U == Old) {
5132      DeleteOld = true;
5133      continue;
5134    }
5135    if (!Visited.insert(U))
5136      continue;
5137    if (PHINode *PN = dyn_cast<PHINode>(U))
5138      SE->ConstantEvolutionLoopExitValue.erase(PN);
5139    SE->Scalars.erase(U);
5140    for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
5141         UI != UE; ++UI)
5142      Worklist.push_back(*UI);
5143  }
5144  // Delete the Old value if it (indirectly) references itself.
5145  if (DeleteOld) {
5146    if (PHINode *PN = dyn_cast<PHINode>(Old))
5147      SE->ConstantEvolutionLoopExitValue.erase(PN);
5148    SE->Scalars.erase(Old);
5149    // this now dangles!
5150  }
5151  // this may dangle!
5152}
5153
5154ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
5155  : CallbackVH(V), SE(se) {}
5156
5157//===----------------------------------------------------------------------===//
5158//                   ScalarEvolution Class Implementation
5159//===----------------------------------------------------------------------===//
5160
5161ScalarEvolution::ScalarEvolution()
5162  : FunctionPass(&ID) {
5163}
5164
5165bool ScalarEvolution::runOnFunction(Function &F) {
5166  this->F = &F;
5167  LI = &getAnalysis<LoopInfo>();
5168  TD = getAnalysisIfAvailable<TargetData>();
5169  return false;
5170}
5171
5172void ScalarEvolution::releaseMemory() {
5173  Scalars.clear();
5174  BackedgeTakenCounts.clear();
5175  ConstantEvolutionLoopExitValue.clear();
5176  ValuesAtScopes.clear();
5177  UniqueSCEVs.clear();
5178  SCEVAllocator.Reset();
5179}
5180
5181void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
5182  AU.setPreservesAll();
5183  AU.addRequiredTransitive<LoopInfo>();
5184}
5185
5186bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
5187  return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
5188}
5189
5190static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
5191                          const Loop *L) {
5192  // Print all inner loops first
5193  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5194    PrintLoopInfo(OS, SE, *I);
5195
5196  OS << "Loop " << L->getHeader()->getName() << ": ";
5197
5198  SmallVector<BasicBlock *, 8> ExitBlocks;
5199  L->getExitBlocks(ExitBlocks);
5200  if (ExitBlocks.size() != 1)
5201    OS << "<multiple exits> ";
5202
5203  if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
5204    OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
5205  } else {
5206    OS << "Unpredictable backedge-taken count. ";
5207  }
5208
5209  OS << "\n";
5210  OS << "Loop " << L->getHeader()->getName() << ": ";
5211
5212  if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
5213    OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
5214  } else {
5215    OS << "Unpredictable max backedge-taken count. ";
5216  }
5217
5218  OS << "\n";
5219}
5220
5221void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
5222  // ScalarEvolution's implementaiton of the print method is to print
5223  // out SCEV values of all instructions that are interesting. Doing
5224  // this potentially causes it to create new SCEV objects though,
5225  // which technically conflicts with the const qualifier. This isn't
5226  // observable from outside the class though, so casting away the
5227  // const isn't dangerous.
5228  ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
5229
5230  OS << "Classifying expressions for: " << F->getName() << "\n";
5231  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
5232    if (isSCEVable(I->getType())) {
5233      OS << *I << '\n';
5234      OS << "  -->  ";
5235      const SCEV *SV = SE.getSCEV(&*I);
5236      SV->print(OS);
5237
5238      const Loop *L = LI->getLoopFor((*I).getParent());
5239
5240      const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
5241      if (AtUse != SV) {
5242        OS << "  -->  ";
5243        AtUse->print(OS);
5244      }
5245
5246      if (L) {
5247        OS << "\t\t" "Exits: ";
5248        const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
5249        if (!ExitValue->isLoopInvariant(L)) {
5250          OS << "<<Unknown>>";
5251        } else {
5252          OS << *ExitValue;
5253        }
5254      }
5255
5256      OS << "\n";
5257    }
5258
5259  OS << "Determining loop execution counts for: " << F->getName() << "\n";
5260  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
5261    PrintLoopInfo(OS, &SE, *I);
5262}
5263
5264