ScalarEvolution.cpp revision 67ef74e0e5863e32e4d581d5e197bf00cccddd01
1//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library.  First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
19//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression.  These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
30//
31// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
35// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42//  Chains of recurrences -- a method to expedite the evaluation
43//  of closed-form functions
44//  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46//  On computational properties of chains of recurrences
47//  Eugene V. Zima
48//
49//  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50//  Robert A. van Engelen
51//
52//  Efficient Symbolic Analysis for Optimizing Compilers
53//  Robert A. van Engelen
54//
55//  Using the chains of recurrences algebra for data dependence testing and
56//  induction variable substitution
57//  MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
61#define DEBUG_TYPE "scalar-evolution"
62#include "llvm/Analysis/ScalarEvolutionExpressions.h"
63#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
65#include "llvm/GlobalVariable.h"
66#include "llvm/GlobalAlias.h"
67#include "llvm/Instructions.h"
68#include "llvm/LLVMContext.h"
69#include "llvm/Operator.h"
70#include "llvm/Analysis/ConstantFolding.h"
71#include "llvm/Analysis/Dominators.h"
72#include "llvm/Analysis/LoopInfo.h"
73#include "llvm/Analysis/ValueTracking.h"
74#include "llvm/Assembly/Writer.h"
75#include "llvm/Target/TargetData.h"
76#include "llvm/Support/CommandLine.h"
77#include "llvm/Support/ConstantRange.h"
78#include "llvm/Support/Debug.h"
79#include "llvm/Support/ErrorHandling.h"
80#include "llvm/Support/GetElementPtrTypeIterator.h"
81#include "llvm/Support/InstIterator.h"
82#include "llvm/Support/MathExtras.h"
83#include "llvm/Support/raw_ostream.h"
84#include "llvm/ADT/Statistic.h"
85#include "llvm/ADT/STLExtras.h"
86#include "llvm/ADT/SmallPtrSet.h"
87#include <algorithm>
88using namespace llvm;
89
90STATISTIC(NumArrayLenItCounts,
91          "Number of trip counts computed with array length");
92STATISTIC(NumTripCountsComputed,
93          "Number of loops with predictable loop counts");
94STATISTIC(NumTripCountsNotComputed,
95          "Number of loops without predictable loop counts");
96STATISTIC(NumBruteForceTripCountsComputed,
97          "Number of loops with trip counts computed by force");
98
99static cl::opt<unsigned>
100MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
101                        cl::desc("Maximum number of iterations SCEV will "
102                                 "symbolically execute a constant "
103                                 "derived loop"),
104                        cl::init(100));
105
106INITIALIZE_PASS(ScalarEvolution, "scalar-evolution",
107                "Scalar Evolution Analysis", false, true);
108char ScalarEvolution::ID = 0;
109
110//===----------------------------------------------------------------------===//
111//                           SCEV class definitions
112//===----------------------------------------------------------------------===//
113
114//===----------------------------------------------------------------------===//
115// Implementation of the SCEV class.
116//
117
118SCEV::~SCEV() {}
119
120void SCEV::dump() const {
121  print(dbgs());
122  dbgs() << '\n';
123}
124
125bool SCEV::isZero() const {
126  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
127    return SC->getValue()->isZero();
128  return false;
129}
130
131bool SCEV::isOne() const {
132  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
133    return SC->getValue()->isOne();
134  return false;
135}
136
137bool SCEV::isAllOnesValue() const {
138  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
139    return SC->getValue()->isAllOnesValue();
140  return false;
141}
142
143SCEVCouldNotCompute::SCEVCouldNotCompute() :
144  SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
145
146bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
147  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
148  return false;
149}
150
151const Type *SCEVCouldNotCompute::getType() const {
152  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
153  return 0;
154}
155
156bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
157  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
158  return false;
159}
160
161bool SCEVCouldNotCompute::hasOperand(const SCEV *) const {
162  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
163  return false;
164}
165
166void SCEVCouldNotCompute::print(raw_ostream &OS) const {
167  OS << "***COULDNOTCOMPUTE***";
168}
169
170bool SCEVCouldNotCompute::classof(const SCEV *S) {
171  return S->getSCEVType() == scCouldNotCompute;
172}
173
174const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
175  FoldingSetNodeID ID;
176  ID.AddInteger(scConstant);
177  ID.AddPointer(V);
178  void *IP = 0;
179  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
180  SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
181  UniqueSCEVs.InsertNode(S, IP);
182  return S;
183}
184
185const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
186  return getConstant(ConstantInt::get(getContext(), Val));
187}
188
189const SCEV *
190ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
191  const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
192  return getConstant(ConstantInt::get(ITy, V, isSigned));
193}
194
195const Type *SCEVConstant::getType() const { return V->getType(); }
196
197void SCEVConstant::print(raw_ostream &OS) const {
198  WriteAsOperand(OS, V, false);
199}
200
201SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
202                           unsigned SCEVTy, const SCEV *op, const Type *ty)
203  : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
204
205bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
206  return Op->dominates(BB, DT);
207}
208
209bool SCEVCastExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
210  return Op->properlyDominates(BB, DT);
211}
212
213SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
214                                   const SCEV *op, const Type *ty)
215  : SCEVCastExpr(ID, scTruncate, op, ty) {
216  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
217         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
218         "Cannot truncate non-integer value!");
219}
220
221void SCEVTruncateExpr::print(raw_ostream &OS) const {
222  OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
223}
224
225SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
226                                       const SCEV *op, const Type *ty)
227  : SCEVCastExpr(ID, scZeroExtend, op, ty) {
228  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
229         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
230         "Cannot zero extend non-integer value!");
231}
232
233void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
234  OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
235}
236
237SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
238                                       const SCEV *op, const Type *ty)
239  : SCEVCastExpr(ID, scSignExtend, op, ty) {
240  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
241         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
242         "Cannot sign extend non-integer value!");
243}
244
245void SCEVSignExtendExpr::print(raw_ostream &OS) const {
246  OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
247}
248
249void SCEVCommutativeExpr::print(raw_ostream &OS) const {
250  const char *OpStr = getOperationStr();
251  OS << "(";
252  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) {
253    OS << **I;
254    if (llvm::next(I) != E)
255      OS << OpStr;
256  }
257  OS << ")";
258}
259
260bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
261  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
262    if (!(*I)->dominates(BB, DT))
263      return false;
264  return true;
265}
266
267bool SCEVNAryExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
268  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
269    if (!(*I)->properlyDominates(BB, DT))
270      return false;
271  return true;
272}
273
274bool SCEVNAryExpr::isLoopInvariant(const Loop *L) const {
275  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
276    if (!(*I)->isLoopInvariant(L))
277      return false;
278  return true;
279}
280
281// hasComputableLoopEvolution - N-ary expressions have computable loop
282// evolutions iff they have at least one operand that varies with the loop,
283// but that all varying operands are computable.
284bool SCEVNAryExpr::hasComputableLoopEvolution(const Loop *L) const {
285  bool HasVarying = false;
286  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) {
287    const SCEV *S = *I;
288    if (!S->isLoopInvariant(L)) {
289      if (S->hasComputableLoopEvolution(L))
290        HasVarying = true;
291      else
292        return false;
293    }
294  }
295  return HasVarying;
296}
297
298bool SCEVNAryExpr::hasOperand(const SCEV *O) const {
299  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) {
300    const SCEV *S = *I;
301    if (O == S || S->hasOperand(O))
302      return true;
303  }
304  return false;
305}
306
307bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
308  return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
309}
310
311bool SCEVUDivExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
312  return LHS->properlyDominates(BB, DT) && RHS->properlyDominates(BB, DT);
313}
314
315void SCEVUDivExpr::print(raw_ostream &OS) const {
316  OS << "(" << *LHS << " /u " << *RHS << ")";
317}
318
319const Type *SCEVUDivExpr::getType() const {
320  // In most cases the types of LHS and RHS will be the same, but in some
321  // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
322  // depend on the type for correctness, but handling types carefully can
323  // avoid extra casts in the SCEVExpander. The LHS is more likely to be
324  // a pointer type than the RHS, so use the RHS' type here.
325  return RHS->getType();
326}
327
328bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
329  // Add recurrences are never invariant in the function-body (null loop).
330  if (!QueryLoop)
331    return false;
332
333  // This recurrence is variant w.r.t. QueryLoop if QueryLoop contains L.
334  if (QueryLoop->contains(L))
335    return false;
336
337  // This recurrence is invariant w.r.t. QueryLoop if L contains QueryLoop.
338  if (L->contains(QueryLoop))
339    return true;
340
341  // This recurrence is variant w.r.t. QueryLoop if any of its operands
342  // are variant.
343  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
344    if (!getOperand(i)->isLoopInvariant(QueryLoop))
345      return false;
346
347  // Otherwise it's loop-invariant.
348  return true;
349}
350
351bool
352SCEVAddRecExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
353  return DT->dominates(L->getHeader(), BB) &&
354         SCEVNAryExpr::dominates(BB, DT);
355}
356
357bool
358SCEVAddRecExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
359  // This uses a "dominates" query instead of "properly dominates" query because
360  // the instruction which produces the addrec's value is a PHI, and a PHI
361  // effectively properly dominates its entire containing block.
362  return DT->dominates(L->getHeader(), BB) &&
363         SCEVNAryExpr::properlyDominates(BB, DT);
364}
365
366void SCEVAddRecExpr::print(raw_ostream &OS) const {
367  OS << "{" << *Operands[0];
368  for (unsigned i = 1, e = NumOperands; i != e; ++i)
369    OS << ",+," << *Operands[i];
370  OS << "}<";
371  WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
372  OS << ">";
373}
374
375void SCEVUnknown::deleted() {
376  // Clear this SCEVUnknown from ValuesAtScopes.
377  SE->ValuesAtScopes.erase(this);
378
379  // Remove this SCEVUnknown from the uniquing map.
380  SE->UniqueSCEVs.RemoveNode(this);
381
382  // Release the value.
383  setValPtr(0);
384}
385
386void SCEVUnknown::allUsesReplacedWith(Value *New) {
387  // Clear this SCEVUnknown from ValuesAtScopes.
388  SE->ValuesAtScopes.erase(this);
389
390  // Remove this SCEVUnknown from the uniquing map.
391  SE->UniqueSCEVs.RemoveNode(this);
392
393  // Update this SCEVUnknown to point to the new value. This is needed
394  // because there may still be outstanding SCEVs which still point to
395  // this SCEVUnknown.
396  setValPtr(New);
397}
398
399bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
400  // All non-instruction values are loop invariant.  All instructions are loop
401  // invariant if they are not contained in the specified loop.
402  // Instructions are never considered invariant in the function body
403  // (null loop) because they are defined within the "loop".
404  if (Instruction *I = dyn_cast<Instruction>(getValue()))
405    return L && !L->contains(I);
406  return true;
407}
408
409bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
410  if (Instruction *I = dyn_cast<Instruction>(getValue()))
411    return DT->dominates(I->getParent(), BB);
412  return true;
413}
414
415bool SCEVUnknown::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
416  if (Instruction *I = dyn_cast<Instruction>(getValue()))
417    return DT->properlyDominates(I->getParent(), BB);
418  return true;
419}
420
421const Type *SCEVUnknown::getType() const {
422  return getValue()->getType();
423}
424
425bool SCEVUnknown::isSizeOf(const Type *&AllocTy) const {
426  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
427    if (VCE->getOpcode() == Instruction::PtrToInt)
428      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
429        if (CE->getOpcode() == Instruction::GetElementPtr &&
430            CE->getOperand(0)->isNullValue() &&
431            CE->getNumOperands() == 2)
432          if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
433            if (CI->isOne()) {
434              AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
435                                 ->getElementType();
436              return true;
437            }
438
439  return false;
440}
441
442bool SCEVUnknown::isAlignOf(const Type *&AllocTy) const {
443  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
444    if (VCE->getOpcode() == Instruction::PtrToInt)
445      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
446        if (CE->getOpcode() == Instruction::GetElementPtr &&
447            CE->getOperand(0)->isNullValue()) {
448          const Type *Ty =
449            cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
450          if (const StructType *STy = dyn_cast<StructType>(Ty))
451            if (!STy->isPacked() &&
452                CE->getNumOperands() == 3 &&
453                CE->getOperand(1)->isNullValue()) {
454              if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
455                if (CI->isOne() &&
456                    STy->getNumElements() == 2 &&
457                    STy->getElementType(0)->isIntegerTy(1)) {
458                  AllocTy = STy->getElementType(1);
459                  return true;
460                }
461            }
462        }
463
464  return false;
465}
466
467bool SCEVUnknown::isOffsetOf(const Type *&CTy, Constant *&FieldNo) const {
468  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
469    if (VCE->getOpcode() == Instruction::PtrToInt)
470      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
471        if (CE->getOpcode() == Instruction::GetElementPtr &&
472            CE->getNumOperands() == 3 &&
473            CE->getOperand(0)->isNullValue() &&
474            CE->getOperand(1)->isNullValue()) {
475          const Type *Ty =
476            cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
477          // Ignore vector types here so that ScalarEvolutionExpander doesn't
478          // emit getelementptrs that index into vectors.
479          if (Ty->isStructTy() || Ty->isArrayTy()) {
480            CTy = Ty;
481            FieldNo = CE->getOperand(2);
482            return true;
483          }
484        }
485
486  return false;
487}
488
489void SCEVUnknown::print(raw_ostream &OS) const {
490  const Type *AllocTy;
491  if (isSizeOf(AllocTy)) {
492    OS << "sizeof(" << *AllocTy << ")";
493    return;
494  }
495  if (isAlignOf(AllocTy)) {
496    OS << "alignof(" << *AllocTy << ")";
497    return;
498  }
499
500  const Type *CTy;
501  Constant *FieldNo;
502  if (isOffsetOf(CTy, FieldNo)) {
503    OS << "offsetof(" << *CTy << ", ";
504    WriteAsOperand(OS, FieldNo, false);
505    OS << ")";
506    return;
507  }
508
509  // Otherwise just print it normally.
510  WriteAsOperand(OS, getValue(), false);
511}
512
513//===----------------------------------------------------------------------===//
514//                               SCEV Utilities
515//===----------------------------------------------------------------------===//
516
517namespace {
518  /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
519  /// than the complexity of the RHS.  This comparator is used to canonicalize
520  /// expressions.
521  class SCEVComplexityCompare {
522    const LoopInfo *const LI;
523  public:
524    explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
525
526    // Return true or false if LHS is less than, or at least RHS, respectively.
527    bool operator()(const SCEV *LHS, const SCEV *RHS) const {
528      return compare(LHS, RHS) < 0;
529    }
530
531    // Return negative, zero, or positive, if LHS is less than, equal to, or
532    // greater than RHS, respectively. A three-way result allows recursive
533    // comparisons to be more efficient.
534    int compare(const SCEV *LHS, const SCEV *RHS) const {
535      // Fast-path: SCEVs are uniqued so we can do a quick equality check.
536      if (LHS == RHS)
537        return 0;
538
539      // Primarily, sort the SCEVs by their getSCEVType().
540      unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
541      if (LType != RType)
542        return (int)LType - (int)RType;
543
544      // Aside from the getSCEVType() ordering, the particular ordering
545      // isn't very important except that it's beneficial to be consistent,
546      // so that (a + b) and (b + a) don't end up as different expressions.
547      switch (LType) {
548      case scUnknown: {
549        const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
550        const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
551
552        // Sort SCEVUnknown values with some loose heuristics. TODO: This is
553        // not as complete as it could be.
554        const Value *LV = LU->getValue(), *RV = RU->getValue();
555
556        // Order pointer values after integer values. This helps SCEVExpander
557        // form GEPs.
558        bool LIsPointer = LV->getType()->isPointerTy(),
559             RIsPointer = RV->getType()->isPointerTy();
560        if (LIsPointer != RIsPointer)
561          return (int)LIsPointer - (int)RIsPointer;
562
563        // Compare getValueID values.
564        unsigned LID = LV->getValueID(),
565                 RID = RV->getValueID();
566        if (LID != RID)
567          return (int)LID - (int)RID;
568
569        // Sort arguments by their position.
570        if (const Argument *LA = dyn_cast<Argument>(LV)) {
571          const Argument *RA = cast<Argument>(RV);
572          unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
573          return (int)LArgNo - (int)RArgNo;
574        }
575
576        // For instructions, compare their loop depth, and their operand
577        // count.  This is pretty loose.
578        if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
579          const Instruction *RInst = cast<Instruction>(RV);
580
581          // Compare loop depths.
582          const BasicBlock *LParent = LInst->getParent(),
583                           *RParent = RInst->getParent();
584          if (LParent != RParent) {
585            unsigned LDepth = LI->getLoopDepth(LParent),
586                     RDepth = LI->getLoopDepth(RParent);
587            if (LDepth != RDepth)
588              return (int)LDepth - (int)RDepth;
589          }
590
591          // Compare the number of operands.
592          unsigned LNumOps = LInst->getNumOperands(),
593                   RNumOps = RInst->getNumOperands();
594          return (int)LNumOps - (int)RNumOps;
595        }
596
597        return 0;
598      }
599
600      case scConstant: {
601        const SCEVConstant *LC = cast<SCEVConstant>(LHS);
602        const SCEVConstant *RC = cast<SCEVConstant>(RHS);
603
604        // Compare constant values.
605        const APInt &LA = LC->getValue()->getValue();
606        const APInt &RA = RC->getValue()->getValue();
607        unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
608        if (LBitWidth != RBitWidth)
609          return (int)LBitWidth - (int)RBitWidth;
610        return LA.ult(RA) ? -1 : 1;
611      }
612
613      case scAddRecExpr: {
614        const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
615        const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
616
617        // Compare addrec loop depths.
618        const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
619        if (LLoop != RLoop) {
620          unsigned LDepth = LLoop->getLoopDepth(),
621                   RDepth = RLoop->getLoopDepth();
622          if (LDepth != RDepth)
623            return (int)LDepth - (int)RDepth;
624        }
625
626        // Addrec complexity grows with operand count.
627        unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
628        if (LNumOps != RNumOps)
629          return (int)LNumOps - (int)RNumOps;
630
631        // Lexicographically compare.
632        for (unsigned i = 0; i != LNumOps; ++i) {
633          long X = compare(LA->getOperand(i), RA->getOperand(i));
634          if (X != 0)
635            return X;
636        }
637
638        return 0;
639      }
640
641      case scAddExpr:
642      case scMulExpr:
643      case scSMaxExpr:
644      case scUMaxExpr: {
645        const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
646        const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
647
648        // Lexicographically compare n-ary expressions.
649        unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
650        for (unsigned i = 0; i != LNumOps; ++i) {
651          if (i >= RNumOps)
652            return 1;
653          long X = compare(LC->getOperand(i), RC->getOperand(i));
654          if (X != 0)
655            return X;
656        }
657        return (int)LNumOps - (int)RNumOps;
658      }
659
660      case scUDivExpr: {
661        const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
662        const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
663
664        // Lexicographically compare udiv expressions.
665        long X = compare(LC->getLHS(), RC->getLHS());
666        if (X != 0)
667          return X;
668        return compare(LC->getRHS(), RC->getRHS());
669      }
670
671      case scTruncate:
672      case scZeroExtend:
673      case scSignExtend: {
674        const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
675        const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
676
677        // Compare cast expressions by operand.
678        return compare(LC->getOperand(), RC->getOperand());
679      }
680
681      default:
682        break;
683      }
684
685      llvm_unreachable("Unknown SCEV kind!");
686      return 0;
687    }
688  };
689}
690
691/// GroupByComplexity - Given a list of SCEV objects, order them by their
692/// complexity, and group objects of the same complexity together by value.
693/// When this routine is finished, we know that any duplicates in the vector are
694/// consecutive and that complexity is monotonically increasing.
695///
696/// Note that we go take special precautions to ensure that we get deterministic
697/// results from this routine.  In other words, we don't want the results of
698/// this to depend on where the addresses of various SCEV objects happened to
699/// land in memory.
700///
701static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
702                              LoopInfo *LI) {
703  if (Ops.size() < 2) return;  // Noop
704  if (Ops.size() == 2) {
705    // This is the common case, which also happens to be trivially simple.
706    // Special case it.
707    if (SCEVComplexityCompare(LI)(Ops[1], Ops[0]))
708      std::swap(Ops[0], Ops[1]);
709    return;
710  }
711
712  // Do the rough sort by complexity.
713  std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
714
715  // Now that we are sorted by complexity, group elements of the same
716  // complexity.  Note that this is, at worst, N^2, but the vector is likely to
717  // be extremely short in practice.  Note that we take this approach because we
718  // do not want to depend on the addresses of the objects we are grouping.
719  for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
720    const SCEV *S = Ops[i];
721    unsigned Complexity = S->getSCEVType();
722
723    // If there are any objects of the same complexity and same value as this
724    // one, group them.
725    for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
726      if (Ops[j] == S) { // Found a duplicate.
727        // Move it to immediately after i'th element.
728        std::swap(Ops[i+1], Ops[j]);
729        ++i;   // no need to rescan it.
730        if (i == e-2) return;  // Done!
731      }
732    }
733  }
734}
735
736
737
738//===----------------------------------------------------------------------===//
739//                      Simple SCEV method implementations
740//===----------------------------------------------------------------------===//
741
742/// BinomialCoefficient - Compute BC(It, K).  The result has width W.
743/// Assume, K > 0.
744static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
745                                       ScalarEvolution &SE,
746                                       const Type* ResultTy) {
747  // Handle the simplest case efficiently.
748  if (K == 1)
749    return SE.getTruncateOrZeroExtend(It, ResultTy);
750
751  // We are using the following formula for BC(It, K):
752  //
753  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
754  //
755  // Suppose, W is the bitwidth of the return value.  We must be prepared for
756  // overflow.  Hence, we must assure that the result of our computation is
757  // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
758  // safe in modular arithmetic.
759  //
760  // However, this code doesn't use exactly that formula; the formula it uses
761  // is something like the following, where T is the number of factors of 2 in
762  // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
763  // exponentiation:
764  //
765  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
766  //
767  // This formula is trivially equivalent to the previous formula.  However,
768  // this formula can be implemented much more efficiently.  The trick is that
769  // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
770  // arithmetic.  To do exact division in modular arithmetic, all we have
771  // to do is multiply by the inverse.  Therefore, this step can be done at
772  // width W.
773  //
774  // The next issue is how to safely do the division by 2^T.  The way this
775  // is done is by doing the multiplication step at a width of at least W + T
776  // bits.  This way, the bottom W+T bits of the product are accurate. Then,
777  // when we perform the division by 2^T (which is equivalent to a right shift
778  // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
779  // truncated out after the division by 2^T.
780  //
781  // In comparison to just directly using the first formula, this technique
782  // is much more efficient; using the first formula requires W * K bits,
783  // but this formula less than W + K bits. Also, the first formula requires
784  // a division step, whereas this formula only requires multiplies and shifts.
785  //
786  // It doesn't matter whether the subtraction step is done in the calculation
787  // width or the input iteration count's width; if the subtraction overflows,
788  // the result must be zero anyway.  We prefer here to do it in the width of
789  // the induction variable because it helps a lot for certain cases; CodeGen
790  // isn't smart enough to ignore the overflow, which leads to much less
791  // efficient code if the width of the subtraction is wider than the native
792  // register width.
793  //
794  // (It's possible to not widen at all by pulling out factors of 2 before
795  // the multiplication; for example, K=2 can be calculated as
796  // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
797  // extra arithmetic, so it's not an obvious win, and it gets
798  // much more complicated for K > 3.)
799
800  // Protection from insane SCEVs; this bound is conservative,
801  // but it probably doesn't matter.
802  if (K > 1000)
803    return SE.getCouldNotCompute();
804
805  unsigned W = SE.getTypeSizeInBits(ResultTy);
806
807  // Calculate K! / 2^T and T; we divide out the factors of two before
808  // multiplying for calculating K! / 2^T to avoid overflow.
809  // Other overflow doesn't matter because we only care about the bottom
810  // W bits of the result.
811  APInt OddFactorial(W, 1);
812  unsigned T = 1;
813  for (unsigned i = 3; i <= K; ++i) {
814    APInt Mult(W, i);
815    unsigned TwoFactors = Mult.countTrailingZeros();
816    T += TwoFactors;
817    Mult = Mult.lshr(TwoFactors);
818    OddFactorial *= Mult;
819  }
820
821  // We need at least W + T bits for the multiplication step
822  unsigned CalculationBits = W + T;
823
824  // Calculate 2^T, at width T+W.
825  APInt DivFactor = APInt(CalculationBits, 1).shl(T);
826
827  // Calculate the multiplicative inverse of K! / 2^T;
828  // this multiplication factor will perform the exact division by
829  // K! / 2^T.
830  APInt Mod = APInt::getSignedMinValue(W+1);
831  APInt MultiplyFactor = OddFactorial.zext(W+1);
832  MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
833  MultiplyFactor = MultiplyFactor.trunc(W);
834
835  // Calculate the product, at width T+W
836  const IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
837                                                      CalculationBits);
838  const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
839  for (unsigned i = 1; i != K; ++i) {
840    const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
841    Dividend = SE.getMulExpr(Dividend,
842                             SE.getTruncateOrZeroExtend(S, CalculationTy));
843  }
844
845  // Divide by 2^T
846  const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
847
848  // Truncate the result, and divide by K! / 2^T.
849
850  return SE.getMulExpr(SE.getConstant(MultiplyFactor),
851                       SE.getTruncateOrZeroExtend(DivResult, ResultTy));
852}
853
854/// evaluateAtIteration - Return the value of this chain of recurrences at
855/// the specified iteration number.  We can evaluate this recurrence by
856/// multiplying each element in the chain by the binomial coefficient
857/// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
858///
859///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
860///
861/// where BC(It, k) stands for binomial coefficient.
862///
863const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
864                                                ScalarEvolution &SE) const {
865  const SCEV *Result = getStart();
866  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
867    // The computation is correct in the face of overflow provided that the
868    // multiplication is performed _after_ the evaluation of the binomial
869    // coefficient.
870    const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
871    if (isa<SCEVCouldNotCompute>(Coeff))
872      return Coeff;
873
874    Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
875  }
876  return Result;
877}
878
879//===----------------------------------------------------------------------===//
880//                    SCEV Expression folder implementations
881//===----------------------------------------------------------------------===//
882
883const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
884                                             const Type *Ty) {
885  assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
886         "This is not a truncating conversion!");
887  assert(isSCEVable(Ty) &&
888         "This is not a conversion to a SCEVable type!");
889  Ty = getEffectiveSCEVType(Ty);
890
891  FoldingSetNodeID ID;
892  ID.AddInteger(scTruncate);
893  ID.AddPointer(Op);
894  ID.AddPointer(Ty);
895  void *IP = 0;
896  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
897
898  // Fold if the operand is constant.
899  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
900    return getConstant(
901      cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(),
902                                               getEffectiveSCEVType(Ty))));
903
904  // trunc(trunc(x)) --> trunc(x)
905  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
906    return getTruncateExpr(ST->getOperand(), Ty);
907
908  // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
909  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
910    return getTruncateOrSignExtend(SS->getOperand(), Ty);
911
912  // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
913  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
914    return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
915
916  // If the input value is a chrec scev, truncate the chrec's operands.
917  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
918    SmallVector<const SCEV *, 4> Operands;
919    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
920      Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
921    return getAddRecExpr(Operands, AddRec->getLoop());
922  }
923
924  // As a special case, fold trunc(undef) to undef. We don't want to
925  // know too much about SCEVUnknowns, but this special case is handy
926  // and harmless.
927  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
928    if (isa<UndefValue>(U->getValue()))
929      return getSCEV(UndefValue::get(Ty));
930
931  // The cast wasn't folded; create an explicit cast node. We can reuse
932  // the existing insert position since if we get here, we won't have
933  // made any changes which would invalidate it.
934  SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
935                                                 Op, Ty);
936  UniqueSCEVs.InsertNode(S, IP);
937  return S;
938}
939
940const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
941                                               const Type *Ty) {
942  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
943         "This is not an extending conversion!");
944  assert(isSCEVable(Ty) &&
945         "This is not a conversion to a SCEVable type!");
946  Ty = getEffectiveSCEVType(Ty);
947
948  // Fold if the operand is constant.
949  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
950    return getConstant(
951      cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(),
952                                              getEffectiveSCEVType(Ty))));
953
954  // zext(zext(x)) --> zext(x)
955  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
956    return getZeroExtendExpr(SZ->getOperand(), Ty);
957
958  // Before doing any expensive analysis, check to see if we've already
959  // computed a SCEV for this Op and Ty.
960  FoldingSetNodeID ID;
961  ID.AddInteger(scZeroExtend);
962  ID.AddPointer(Op);
963  ID.AddPointer(Ty);
964  void *IP = 0;
965  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
966
967  // If the input value is a chrec scev, and we can prove that the value
968  // did not overflow the old, smaller, value, we can zero extend all of the
969  // operands (often constants).  This allows analysis of something like
970  // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
971  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
972    if (AR->isAffine()) {
973      const SCEV *Start = AR->getStart();
974      const SCEV *Step = AR->getStepRecurrence(*this);
975      unsigned BitWidth = getTypeSizeInBits(AR->getType());
976      const Loop *L = AR->getLoop();
977
978      // If we have special knowledge that this addrec won't overflow,
979      // we don't need to do any further analysis.
980      if (AR->hasNoUnsignedWrap())
981        return getAddRecExpr(getZeroExtendExpr(Start, Ty),
982                             getZeroExtendExpr(Step, Ty),
983                             L);
984
985      // Check whether the backedge-taken count is SCEVCouldNotCompute.
986      // Note that this serves two purposes: It filters out loops that are
987      // simply not analyzable, and it covers the case where this code is
988      // being called from within backedge-taken count analysis, such that
989      // attempting to ask for the backedge-taken count would likely result
990      // in infinite recursion. In the later case, the analysis code will
991      // cope with a conservative value, and it will take care to purge
992      // that value once it has finished.
993      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
994      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
995        // Manually compute the final value for AR, checking for
996        // overflow.
997
998        // Check whether the backedge-taken count can be losslessly casted to
999        // the addrec's type. The count is always unsigned.
1000        const SCEV *CastedMaxBECount =
1001          getTruncateOrZeroExtend(MaxBECount, Start->getType());
1002        const SCEV *RecastedMaxBECount =
1003          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1004        if (MaxBECount == RecastedMaxBECount) {
1005          const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1006          // Check whether Start+Step*MaxBECount has no unsigned overflow.
1007          const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
1008          const SCEV *Add = getAddExpr(Start, ZMul);
1009          const SCEV *OperandExtendedAdd =
1010            getAddExpr(getZeroExtendExpr(Start, WideTy),
1011                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1012                                  getZeroExtendExpr(Step, WideTy)));
1013          if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
1014            // Return the expression with the addrec on the outside.
1015            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1016                                 getZeroExtendExpr(Step, Ty),
1017                                 L);
1018
1019          // Similar to above, only this time treat the step value as signed.
1020          // This covers loops that count down.
1021          const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
1022          Add = getAddExpr(Start, SMul);
1023          OperandExtendedAdd =
1024            getAddExpr(getZeroExtendExpr(Start, WideTy),
1025                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1026                                  getSignExtendExpr(Step, WideTy)));
1027          if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
1028            // Return the expression with the addrec on the outside.
1029            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1030                                 getSignExtendExpr(Step, Ty),
1031                                 L);
1032        }
1033
1034        // If the backedge is guarded by a comparison with the pre-inc value
1035        // the addrec is safe. Also, if the entry is guarded by a comparison
1036        // with the start value and the backedge is guarded by a comparison
1037        // with the post-inc value, the addrec is safe.
1038        if (isKnownPositive(Step)) {
1039          const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1040                                      getUnsignedRange(Step).getUnsignedMax());
1041          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
1042              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
1043               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
1044                                           AR->getPostIncExpr(*this), N)))
1045            // Return the expression with the addrec on the outside.
1046            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1047                                 getZeroExtendExpr(Step, Ty),
1048                                 L);
1049        } else if (isKnownNegative(Step)) {
1050          const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1051                                      getSignedRange(Step).getSignedMin());
1052          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1053              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
1054               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
1055                                           AR->getPostIncExpr(*this), N)))
1056            // Return the expression with the addrec on the outside.
1057            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1058                                 getSignExtendExpr(Step, Ty),
1059                                 L);
1060        }
1061      }
1062    }
1063
1064  // The cast wasn't folded; create an explicit cast node.
1065  // Recompute the insert position, as it may have been invalidated.
1066  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1067  SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1068                                                   Op, Ty);
1069  UniqueSCEVs.InsertNode(S, IP);
1070  return S;
1071}
1072
1073const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
1074                                               const Type *Ty) {
1075  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1076         "This is not an extending conversion!");
1077  assert(isSCEVable(Ty) &&
1078         "This is not a conversion to a SCEVable type!");
1079  Ty = getEffectiveSCEVType(Ty);
1080
1081  // Fold if the operand is constant.
1082  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1083    return getConstant(
1084      cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(),
1085                                              getEffectiveSCEVType(Ty))));
1086
1087  // sext(sext(x)) --> sext(x)
1088  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1089    return getSignExtendExpr(SS->getOperand(), Ty);
1090
1091  // Before doing any expensive analysis, check to see if we've already
1092  // computed a SCEV for this Op and Ty.
1093  FoldingSetNodeID ID;
1094  ID.AddInteger(scSignExtend);
1095  ID.AddPointer(Op);
1096  ID.AddPointer(Ty);
1097  void *IP = 0;
1098  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1099
1100  // If the input value is a chrec scev, and we can prove that the value
1101  // did not overflow the old, smaller, value, we can sign extend all of the
1102  // operands (often constants).  This allows analysis of something like
1103  // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1104  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1105    if (AR->isAffine()) {
1106      const SCEV *Start = AR->getStart();
1107      const SCEV *Step = AR->getStepRecurrence(*this);
1108      unsigned BitWidth = getTypeSizeInBits(AR->getType());
1109      const Loop *L = AR->getLoop();
1110
1111      // If we have special knowledge that this addrec won't overflow,
1112      // we don't need to do any further analysis.
1113      if (AR->hasNoSignedWrap())
1114        return getAddRecExpr(getSignExtendExpr(Start, Ty),
1115                             getSignExtendExpr(Step, Ty),
1116                             L);
1117
1118      // Check whether the backedge-taken count is SCEVCouldNotCompute.
1119      // Note that this serves two purposes: It filters out loops that are
1120      // simply not analyzable, and it covers the case where this code is
1121      // being called from within backedge-taken count analysis, such that
1122      // attempting to ask for the backedge-taken count would likely result
1123      // in infinite recursion. In the later case, the analysis code will
1124      // cope with a conservative value, and it will take care to purge
1125      // that value once it has finished.
1126      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1127      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1128        // Manually compute the final value for AR, checking for
1129        // overflow.
1130
1131        // Check whether the backedge-taken count can be losslessly casted to
1132        // the addrec's type. The count is always unsigned.
1133        const SCEV *CastedMaxBECount =
1134          getTruncateOrZeroExtend(MaxBECount, Start->getType());
1135        const SCEV *RecastedMaxBECount =
1136          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1137        if (MaxBECount == RecastedMaxBECount) {
1138          const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1139          // Check whether Start+Step*MaxBECount has no signed overflow.
1140          const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
1141          const SCEV *Add = getAddExpr(Start, SMul);
1142          const SCEV *OperandExtendedAdd =
1143            getAddExpr(getSignExtendExpr(Start, WideTy),
1144                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1145                                  getSignExtendExpr(Step, WideTy)));
1146          if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
1147            // Return the expression with the addrec on the outside.
1148            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1149                                 getSignExtendExpr(Step, Ty),
1150                                 L);
1151
1152          // Similar to above, only this time treat the step value as unsigned.
1153          // This covers loops that count up with an unsigned step.
1154          const SCEV *UMul = getMulExpr(CastedMaxBECount, Step);
1155          Add = getAddExpr(Start, UMul);
1156          OperandExtendedAdd =
1157            getAddExpr(getSignExtendExpr(Start, WideTy),
1158                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1159                                  getZeroExtendExpr(Step, WideTy)));
1160          if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
1161            // Return the expression with the addrec on the outside.
1162            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1163                                 getZeroExtendExpr(Step, Ty),
1164                                 L);
1165        }
1166
1167        // If the backedge is guarded by a comparison with the pre-inc value
1168        // the addrec is safe. Also, if the entry is guarded by a comparison
1169        // with the start value and the backedge is guarded by a comparison
1170        // with the post-inc value, the addrec is safe.
1171        if (isKnownPositive(Step)) {
1172          const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) -
1173                                      getSignedRange(Step).getSignedMax());
1174          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) ||
1175              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) &&
1176               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT,
1177                                           AR->getPostIncExpr(*this), N)))
1178            // Return the expression with the addrec on the outside.
1179            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1180                                 getSignExtendExpr(Step, Ty),
1181                                 L);
1182        } else if (isKnownNegative(Step)) {
1183          const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) -
1184                                      getSignedRange(Step).getSignedMin());
1185          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) ||
1186              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) &&
1187               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT,
1188                                           AR->getPostIncExpr(*this), N)))
1189            // Return the expression with the addrec on the outside.
1190            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1191                                 getSignExtendExpr(Step, Ty),
1192                                 L);
1193        }
1194      }
1195    }
1196
1197  // The cast wasn't folded; create an explicit cast node.
1198  // Recompute the insert position, as it may have been invalidated.
1199  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1200  SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1201                                                   Op, Ty);
1202  UniqueSCEVs.InsertNode(S, IP);
1203  return S;
1204}
1205
1206/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1207/// unspecified bits out to the given type.
1208///
1209const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
1210                                              const Type *Ty) {
1211  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1212         "This is not an extending conversion!");
1213  assert(isSCEVable(Ty) &&
1214         "This is not a conversion to a SCEVable type!");
1215  Ty = getEffectiveSCEVType(Ty);
1216
1217  // Sign-extend negative constants.
1218  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1219    if (SC->getValue()->getValue().isNegative())
1220      return getSignExtendExpr(Op, Ty);
1221
1222  // Peel off a truncate cast.
1223  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
1224    const SCEV *NewOp = T->getOperand();
1225    if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1226      return getAnyExtendExpr(NewOp, Ty);
1227    return getTruncateOrNoop(NewOp, Ty);
1228  }
1229
1230  // Next try a zext cast. If the cast is folded, use it.
1231  const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
1232  if (!isa<SCEVZeroExtendExpr>(ZExt))
1233    return ZExt;
1234
1235  // Next try a sext cast. If the cast is folded, use it.
1236  const SCEV *SExt = getSignExtendExpr(Op, Ty);
1237  if (!isa<SCEVSignExtendExpr>(SExt))
1238    return SExt;
1239
1240  // Force the cast to be folded into the operands of an addrec.
1241  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1242    SmallVector<const SCEV *, 4> Ops;
1243    for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1244         I != E; ++I)
1245      Ops.push_back(getAnyExtendExpr(*I, Ty));
1246    return getAddRecExpr(Ops, AR->getLoop());
1247  }
1248
1249  // As a special case, fold anyext(undef) to undef. We don't want to
1250  // know too much about SCEVUnknowns, but this special case is handy
1251  // and harmless.
1252  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
1253    if (isa<UndefValue>(U->getValue()))
1254      return getSCEV(UndefValue::get(Ty));
1255
1256  // If the expression is obviously signed, use the sext cast value.
1257  if (isa<SCEVSMaxExpr>(Op))
1258    return SExt;
1259
1260  // Absent any other information, use the zext cast value.
1261  return ZExt;
1262}
1263
1264/// CollectAddOperandsWithScales - Process the given Ops list, which is
1265/// a list of operands to be added under the given scale, update the given
1266/// map. This is a helper function for getAddRecExpr. As an example of
1267/// what it does, given a sequence of operands that would form an add
1268/// expression like this:
1269///
1270///    m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1271///
1272/// where A and B are constants, update the map with these values:
1273///
1274///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1275///
1276/// and add 13 + A*B*29 to AccumulatedConstant.
1277/// This will allow getAddRecExpr to produce this:
1278///
1279///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1280///
1281/// This form often exposes folding opportunities that are hidden in
1282/// the original operand list.
1283///
1284/// Return true iff it appears that any interesting folding opportunities
1285/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1286/// the common case where no interesting opportunities are present, and
1287/// is also used as a check to avoid infinite recursion.
1288///
1289static bool
1290CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1291                             SmallVector<const SCEV *, 8> &NewOps,
1292                             APInt &AccumulatedConstant,
1293                             const SCEV *const *Ops, size_t NumOperands,
1294                             const APInt &Scale,
1295                             ScalarEvolution &SE) {
1296  bool Interesting = false;
1297
1298  // Iterate over the add operands. They are sorted, with constants first.
1299  unsigned i = 0;
1300  while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1301    ++i;
1302    // Pull a buried constant out to the outside.
1303    if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1304      Interesting = true;
1305    AccumulatedConstant += Scale * C->getValue()->getValue();
1306  }
1307
1308  // Next comes everything else. We're especially interested in multiplies
1309  // here, but they're in the middle, so just visit the rest with one loop.
1310  for (; i != NumOperands; ++i) {
1311    const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1312    if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1313      APInt NewScale =
1314        Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1315      if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1316        // A multiplication of a constant with another add; recurse.
1317        const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
1318        Interesting |=
1319          CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1320                                       Add->op_begin(), Add->getNumOperands(),
1321                                       NewScale, SE);
1322      } else {
1323        // A multiplication of a constant with some other value. Update
1324        // the map.
1325        SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1326        const SCEV *Key = SE.getMulExpr(MulOps);
1327        std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1328          M.insert(std::make_pair(Key, NewScale));
1329        if (Pair.second) {
1330          NewOps.push_back(Pair.first->first);
1331        } else {
1332          Pair.first->second += NewScale;
1333          // The map already had an entry for this value, which may indicate
1334          // a folding opportunity.
1335          Interesting = true;
1336        }
1337      }
1338    } else {
1339      // An ordinary operand. Update the map.
1340      std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1341        M.insert(std::make_pair(Ops[i], Scale));
1342      if (Pair.second) {
1343        NewOps.push_back(Pair.first->first);
1344      } else {
1345        Pair.first->second += Scale;
1346        // The map already had an entry for this value, which may indicate
1347        // a folding opportunity.
1348        Interesting = true;
1349      }
1350    }
1351  }
1352
1353  return Interesting;
1354}
1355
1356namespace {
1357  struct APIntCompare {
1358    bool operator()(const APInt &LHS, const APInt &RHS) const {
1359      return LHS.ult(RHS);
1360    }
1361  };
1362}
1363
1364/// getAddExpr - Get a canonical add expression, or something simpler if
1365/// possible.
1366const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1367                                        bool HasNUW, bool HasNSW) {
1368  assert(!Ops.empty() && "Cannot get empty add!");
1369  if (Ops.size() == 1) return Ops[0];
1370#ifndef NDEBUG
1371  const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
1372  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1373    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
1374           "SCEVAddExpr operand types don't match!");
1375#endif
1376
1377  // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1378  if (!HasNUW && HasNSW) {
1379    bool All = true;
1380    for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1381         E = Ops.end(); I != E; ++I)
1382      if (!isKnownNonNegative(*I)) {
1383        All = false;
1384        break;
1385      }
1386    if (All) HasNUW = true;
1387  }
1388
1389  // Sort by complexity, this groups all similar expression types together.
1390  GroupByComplexity(Ops, LI);
1391
1392  // If there are any constants, fold them together.
1393  unsigned Idx = 0;
1394  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1395    ++Idx;
1396    assert(Idx < Ops.size());
1397    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1398      // We found two constants, fold them together!
1399      Ops[0] = getConstant(LHSC->getValue()->getValue() +
1400                           RHSC->getValue()->getValue());
1401      if (Ops.size() == 2) return Ops[0];
1402      Ops.erase(Ops.begin()+1);  // Erase the folded element
1403      LHSC = cast<SCEVConstant>(Ops[0]);
1404    }
1405
1406    // If we are left with a constant zero being added, strip it off.
1407    if (LHSC->getValue()->isZero()) {
1408      Ops.erase(Ops.begin());
1409      --Idx;
1410    }
1411
1412    if (Ops.size() == 1) return Ops[0];
1413  }
1414
1415  // Okay, check to see if the same value occurs in the operand list twice.  If
1416  // so, merge them together into an multiply expression.  Since we sorted the
1417  // list, these values are required to be adjacent.
1418  const Type *Ty = Ops[0]->getType();
1419  bool FoundMatch = false;
1420  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1421    if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
1422      // Found a match, merge the two values into a multiply, and add any
1423      // remaining values to the result.
1424      const SCEV *Two = getConstant(Ty, 2);
1425      const SCEV *Mul = getMulExpr(Two, Ops[i]);
1426      if (Ops.size() == 2)
1427        return Mul;
1428      Ops[i] = Mul;
1429      Ops.erase(Ops.begin()+i+1);
1430      --i; --e;
1431      FoundMatch = true;
1432    }
1433  if (FoundMatch)
1434    return getAddExpr(Ops, HasNUW, HasNSW);
1435
1436  // Check for truncates. If all the operands are truncated from the same
1437  // type, see if factoring out the truncate would permit the result to be
1438  // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1439  // if the contents of the resulting outer trunc fold to something simple.
1440  for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1441    const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1442    const Type *DstType = Trunc->getType();
1443    const Type *SrcType = Trunc->getOperand()->getType();
1444    SmallVector<const SCEV *, 8> LargeOps;
1445    bool Ok = true;
1446    // Check all the operands to see if they can be represented in the
1447    // source type of the truncate.
1448    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1449      if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1450        if (T->getOperand()->getType() != SrcType) {
1451          Ok = false;
1452          break;
1453        }
1454        LargeOps.push_back(T->getOperand());
1455      } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1456        LargeOps.push_back(getAnyExtendExpr(C, SrcType));
1457      } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
1458        SmallVector<const SCEV *, 8> LargeMulOps;
1459        for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1460          if (const SCEVTruncateExpr *T =
1461                dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1462            if (T->getOperand()->getType() != SrcType) {
1463              Ok = false;
1464              break;
1465            }
1466            LargeMulOps.push_back(T->getOperand());
1467          } else if (const SCEVConstant *C =
1468                       dyn_cast<SCEVConstant>(M->getOperand(j))) {
1469            LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
1470          } else {
1471            Ok = false;
1472            break;
1473          }
1474        }
1475        if (Ok)
1476          LargeOps.push_back(getMulExpr(LargeMulOps));
1477      } else {
1478        Ok = false;
1479        break;
1480      }
1481    }
1482    if (Ok) {
1483      // Evaluate the expression in the larger type.
1484      const SCEV *Fold = getAddExpr(LargeOps, HasNUW, HasNSW);
1485      // If it folds to something simple, use it. Otherwise, don't.
1486      if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1487        return getTruncateExpr(Fold, DstType);
1488    }
1489  }
1490
1491  // Skip past any other cast SCEVs.
1492  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1493    ++Idx;
1494
1495  // If there are add operands they would be next.
1496  if (Idx < Ops.size()) {
1497    bool DeletedAdd = false;
1498    while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
1499      // If we have an add, expand the add operands onto the end of the operands
1500      // list.
1501      Ops.erase(Ops.begin()+Idx);
1502      Ops.append(Add->op_begin(), Add->op_end());
1503      DeletedAdd = true;
1504    }
1505
1506    // If we deleted at least one add, we added operands to the end of the list,
1507    // and they are not necessarily sorted.  Recurse to resort and resimplify
1508    // any operands we just acquired.
1509    if (DeletedAdd)
1510      return getAddExpr(Ops);
1511  }
1512
1513  // Skip over the add expression until we get to a multiply.
1514  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1515    ++Idx;
1516
1517  // Check to see if there are any folding opportunities present with
1518  // operands multiplied by constant values.
1519  if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1520    uint64_t BitWidth = getTypeSizeInBits(Ty);
1521    DenseMap<const SCEV *, APInt> M;
1522    SmallVector<const SCEV *, 8> NewOps;
1523    APInt AccumulatedConstant(BitWidth, 0);
1524    if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1525                                     Ops.data(), Ops.size(),
1526                                     APInt(BitWidth, 1), *this)) {
1527      // Some interesting folding opportunity is present, so its worthwhile to
1528      // re-generate the operands list. Group the operands by constant scale,
1529      // to avoid multiplying by the same constant scale multiple times.
1530      std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
1531      for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(),
1532           E = NewOps.end(); I != E; ++I)
1533        MulOpLists[M.find(*I)->second].push_back(*I);
1534      // Re-generate the operands list.
1535      Ops.clear();
1536      if (AccumulatedConstant != 0)
1537        Ops.push_back(getConstant(AccumulatedConstant));
1538      for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1539           I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
1540        if (I->first != 0)
1541          Ops.push_back(getMulExpr(getConstant(I->first),
1542                                   getAddExpr(I->second)));
1543      if (Ops.empty())
1544        return getConstant(Ty, 0);
1545      if (Ops.size() == 1)
1546        return Ops[0];
1547      return getAddExpr(Ops);
1548    }
1549  }
1550
1551  // If we are adding something to a multiply expression, make sure the
1552  // something is not already an operand of the multiply.  If so, merge it into
1553  // the multiply.
1554  for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
1555    const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
1556    for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
1557      const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
1558      if (isa<SCEVConstant>(MulOpSCEV))
1559        continue;
1560      for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
1561        if (MulOpSCEV == Ops[AddOp]) {
1562          // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
1563          const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
1564          if (Mul->getNumOperands() != 2) {
1565            // If the multiply has more than two operands, we must get the
1566            // Y*Z term.
1567            SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1568                                                Mul->op_begin()+MulOp);
1569            MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
1570            InnerMul = getMulExpr(MulOps);
1571          }
1572          const SCEV *One = getConstant(Ty, 1);
1573          const SCEV *AddOne = getAddExpr(One, InnerMul);
1574          const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
1575          if (Ops.size() == 2) return OuterMul;
1576          if (AddOp < Idx) {
1577            Ops.erase(Ops.begin()+AddOp);
1578            Ops.erase(Ops.begin()+Idx-1);
1579          } else {
1580            Ops.erase(Ops.begin()+Idx);
1581            Ops.erase(Ops.begin()+AddOp-1);
1582          }
1583          Ops.push_back(OuterMul);
1584          return getAddExpr(Ops);
1585        }
1586
1587      // Check this multiply against other multiplies being added together.
1588      bool AnyFold = false;
1589      for (unsigned OtherMulIdx = Idx+1;
1590           OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1591           ++OtherMulIdx) {
1592        const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
1593        // If MulOp occurs in OtherMul, we can fold the two multiplies
1594        // together.
1595        for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1596             OMulOp != e; ++OMulOp)
1597          if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1598            // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
1599            const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
1600            if (Mul->getNumOperands() != 2) {
1601              SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1602                                                  Mul->op_begin()+MulOp);
1603              MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
1604              InnerMul1 = getMulExpr(MulOps);
1605            }
1606            const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
1607            if (OtherMul->getNumOperands() != 2) {
1608              SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
1609                                                  OtherMul->op_begin()+OMulOp);
1610              MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
1611              InnerMul2 = getMulExpr(MulOps);
1612            }
1613            const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1614            const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
1615            if (Ops.size() == 2) return OuterMul;
1616            Ops[Idx] = OuterMul;
1617            Ops.erase(Ops.begin()+OtherMulIdx);
1618            OtherMulIdx = Idx;
1619            AnyFold = true;
1620          }
1621      }
1622      if (AnyFold)
1623        return getAddExpr(Ops);
1624    }
1625  }
1626
1627  // If there are any add recurrences in the operands list, see if any other
1628  // added values are loop invariant.  If so, we can fold them into the
1629  // recurrence.
1630  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1631    ++Idx;
1632
1633  // Scan over all recurrences, trying to fold loop invariants into them.
1634  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1635    // Scan all of the other operands to this add and add them to the vector if
1636    // they are loop invariant w.r.t. the recurrence.
1637    SmallVector<const SCEV *, 8> LIOps;
1638    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1639    const Loop *AddRecLoop = AddRec->getLoop();
1640    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1641      if (Ops[i]->isLoopInvariant(AddRecLoop)) {
1642        LIOps.push_back(Ops[i]);
1643        Ops.erase(Ops.begin()+i);
1644        --i; --e;
1645      }
1646
1647    // If we found some loop invariants, fold them into the recurrence.
1648    if (!LIOps.empty()) {
1649      //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
1650      LIOps.push_back(AddRec->getStart());
1651
1652      SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1653                                             AddRec->op_end());
1654      AddRecOps[0] = getAddExpr(LIOps);
1655
1656      // Build the new addrec. Propagate the NUW and NSW flags if both the
1657      // outer add and the inner addrec are guaranteed to have no overflow.
1658      const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop,
1659                                         HasNUW && AddRec->hasNoUnsignedWrap(),
1660                                         HasNSW && AddRec->hasNoSignedWrap());
1661
1662      // If all of the other operands were loop invariant, we are done.
1663      if (Ops.size() == 1) return NewRec;
1664
1665      // Otherwise, add the folded AddRec by the non-liv parts.
1666      for (unsigned i = 0;; ++i)
1667        if (Ops[i] == AddRec) {
1668          Ops[i] = NewRec;
1669          break;
1670        }
1671      return getAddExpr(Ops);
1672    }
1673
1674    // Okay, if there weren't any loop invariants to be folded, check to see if
1675    // there are multiple AddRec's with the same loop induction variable being
1676    // added together.  If so, we can fold them.
1677    for (unsigned OtherIdx = Idx+1;
1678         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1679      if (OtherIdx != Idx) {
1680        const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1681        if (AddRecLoop == OtherAddRec->getLoop()) {
1682          // Other + {A,+,B} + {C,+,D}  -->  Other + {A+C,+,B+D}
1683          SmallVector<const SCEV *, 4> NewOps(AddRec->op_begin(),
1684                                              AddRec->op_end());
1685          for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
1686            if (i >= NewOps.size()) {
1687              NewOps.append(OtherAddRec->op_begin()+i,
1688                            OtherAddRec->op_end());
1689              break;
1690            }
1691            NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
1692          }
1693          const SCEV *NewAddRec = getAddRecExpr(NewOps, AddRecLoop);
1694
1695          if (Ops.size() == 2) return NewAddRec;
1696
1697          Ops.erase(Ops.begin()+Idx);
1698          Ops.erase(Ops.begin()+OtherIdx-1);
1699          Ops.push_back(NewAddRec);
1700          return getAddExpr(Ops);
1701        }
1702      }
1703
1704    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1705    // next one.
1706  }
1707
1708  // Okay, it looks like we really DO need an add expr.  Check to see if we
1709  // already have one, otherwise create a new one.
1710  FoldingSetNodeID ID;
1711  ID.AddInteger(scAddExpr);
1712  ID.AddInteger(Ops.size());
1713  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1714    ID.AddPointer(Ops[i]);
1715  void *IP = 0;
1716  SCEVAddExpr *S =
1717    static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1718  if (!S) {
1719    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1720    std::uninitialized_copy(Ops.begin(), Ops.end(), O);
1721    S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1722                                        O, Ops.size());
1723    UniqueSCEVs.InsertNode(S, IP);
1724  }
1725  if (HasNUW) S->setHasNoUnsignedWrap(true);
1726  if (HasNSW) S->setHasNoSignedWrap(true);
1727  return S;
1728}
1729
1730/// getMulExpr - Get a canonical multiply expression, or something simpler if
1731/// possible.
1732const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
1733                                        bool HasNUW, bool HasNSW) {
1734  assert(!Ops.empty() && "Cannot get empty mul!");
1735  if (Ops.size() == 1) return Ops[0];
1736#ifndef NDEBUG
1737  const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
1738  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1739    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
1740           "SCEVMulExpr operand types don't match!");
1741#endif
1742
1743  // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1744  if (!HasNUW && HasNSW) {
1745    bool All = true;
1746    for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1747         E = Ops.end(); I != E; ++I)
1748      if (!isKnownNonNegative(*I)) {
1749        All = false;
1750        break;
1751      }
1752    if (All) HasNUW = true;
1753  }
1754
1755  // Sort by complexity, this groups all similar expression types together.
1756  GroupByComplexity(Ops, LI);
1757
1758  // If there are any constants, fold them together.
1759  unsigned Idx = 0;
1760  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1761
1762    // C1*(C2+V) -> C1*C2 + C1*V
1763    if (Ops.size() == 2)
1764      if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
1765        if (Add->getNumOperands() == 2 &&
1766            isa<SCEVConstant>(Add->getOperand(0)))
1767          return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1768                            getMulExpr(LHSC, Add->getOperand(1)));
1769
1770    ++Idx;
1771    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1772      // We found two constants, fold them together!
1773      ConstantInt *Fold = ConstantInt::get(getContext(),
1774                                           LHSC->getValue()->getValue() *
1775                                           RHSC->getValue()->getValue());
1776      Ops[0] = getConstant(Fold);
1777      Ops.erase(Ops.begin()+1);  // Erase the folded element
1778      if (Ops.size() == 1) return Ops[0];
1779      LHSC = cast<SCEVConstant>(Ops[0]);
1780    }
1781
1782    // If we are left with a constant one being multiplied, strip it off.
1783    if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1784      Ops.erase(Ops.begin());
1785      --Idx;
1786    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1787      // If we have a multiply of zero, it will always be zero.
1788      return Ops[0];
1789    } else if (Ops[0]->isAllOnesValue()) {
1790      // If we have a mul by -1 of an add, try distributing the -1 among the
1791      // add operands.
1792      if (Ops.size() == 2)
1793        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1794          SmallVector<const SCEV *, 4> NewOps;
1795          bool AnyFolded = false;
1796          for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1797               I != E; ++I) {
1798            const SCEV *Mul = getMulExpr(Ops[0], *I);
1799            if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1800            NewOps.push_back(Mul);
1801          }
1802          if (AnyFolded)
1803            return getAddExpr(NewOps);
1804        }
1805    }
1806
1807    if (Ops.size() == 1)
1808      return Ops[0];
1809  }
1810
1811  // Skip over the add expression until we get to a multiply.
1812  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1813    ++Idx;
1814
1815  // If there are mul operands inline them all into this expression.
1816  if (Idx < Ops.size()) {
1817    bool DeletedMul = false;
1818    while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
1819      // If we have an mul, expand the mul operands onto the end of the operands
1820      // list.
1821      Ops.erase(Ops.begin()+Idx);
1822      Ops.append(Mul->op_begin(), Mul->op_end());
1823      DeletedMul = true;
1824    }
1825
1826    // If we deleted at least one mul, we added operands to the end of the list,
1827    // and they are not necessarily sorted.  Recurse to resort and resimplify
1828    // any operands we just acquired.
1829    if (DeletedMul)
1830      return getMulExpr(Ops);
1831  }
1832
1833  // If there are any add recurrences in the operands list, see if any other
1834  // added values are loop invariant.  If so, we can fold them into the
1835  // recurrence.
1836  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1837    ++Idx;
1838
1839  // Scan over all recurrences, trying to fold loop invariants into them.
1840  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1841    // Scan all of the other operands to this mul and add them to the vector if
1842    // they are loop invariant w.r.t. the recurrence.
1843    SmallVector<const SCEV *, 8> LIOps;
1844    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1845    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1846      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1847        LIOps.push_back(Ops[i]);
1848        Ops.erase(Ops.begin()+i);
1849        --i; --e;
1850      }
1851
1852    // If we found some loop invariants, fold them into the recurrence.
1853    if (!LIOps.empty()) {
1854      //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
1855      SmallVector<const SCEV *, 4> NewOps;
1856      NewOps.reserve(AddRec->getNumOperands());
1857      const SCEV *Scale = getMulExpr(LIOps);
1858      for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1859        NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
1860
1861      // Build the new addrec. Propagate the NUW and NSW flags if both the
1862      // outer mul and the inner addrec are guaranteed to have no overflow.
1863      const SCEV *NewRec = getAddRecExpr(NewOps, AddRec->getLoop(),
1864                                         HasNUW && AddRec->hasNoUnsignedWrap(),
1865                                         HasNSW && AddRec->hasNoSignedWrap());
1866
1867      // If all of the other operands were loop invariant, we are done.
1868      if (Ops.size() == 1) return NewRec;
1869
1870      // Otherwise, multiply the folded AddRec by the non-liv parts.
1871      for (unsigned i = 0;; ++i)
1872        if (Ops[i] == AddRec) {
1873          Ops[i] = NewRec;
1874          break;
1875        }
1876      return getMulExpr(Ops);
1877    }
1878
1879    // Okay, if there weren't any loop invariants to be folded, check to see if
1880    // there are multiple AddRec's with the same loop induction variable being
1881    // multiplied together.  If so, we can fold them.
1882    for (unsigned OtherIdx = Idx+1;
1883         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1884      if (OtherIdx != Idx) {
1885        const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1886        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1887          // F * G  -->  {A,+,B} * {C,+,D}  -->  {A*C,+,F*D + G*B + B*D}
1888          const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
1889          const SCEV *NewStart = getMulExpr(F->getStart(), G->getStart());
1890          const SCEV *B = F->getStepRecurrence(*this);
1891          const SCEV *D = G->getStepRecurrence(*this);
1892          const SCEV *NewStep = getAddExpr(getMulExpr(F, D),
1893                                           getMulExpr(G, B),
1894                                           getMulExpr(B, D));
1895          const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep,
1896                                                F->getLoop());
1897          if (Ops.size() == 2) return NewAddRec;
1898
1899          Ops.erase(Ops.begin()+Idx);
1900          Ops.erase(Ops.begin()+OtherIdx-1);
1901          Ops.push_back(NewAddRec);
1902          return getMulExpr(Ops);
1903        }
1904      }
1905
1906    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1907    // next one.
1908  }
1909
1910  // Okay, it looks like we really DO need an mul expr.  Check to see if we
1911  // already have one, otherwise create a new one.
1912  FoldingSetNodeID ID;
1913  ID.AddInteger(scMulExpr);
1914  ID.AddInteger(Ops.size());
1915  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1916    ID.AddPointer(Ops[i]);
1917  void *IP = 0;
1918  SCEVMulExpr *S =
1919    static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1920  if (!S) {
1921    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1922    std::uninitialized_copy(Ops.begin(), Ops.end(), O);
1923    S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
1924                                        O, Ops.size());
1925    UniqueSCEVs.InsertNode(S, IP);
1926  }
1927  if (HasNUW) S->setHasNoUnsignedWrap(true);
1928  if (HasNSW) S->setHasNoSignedWrap(true);
1929  return S;
1930}
1931
1932/// getUDivExpr - Get a canonical unsigned division expression, or something
1933/// simpler if possible.
1934const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
1935                                         const SCEV *RHS) {
1936  assert(getEffectiveSCEVType(LHS->getType()) ==
1937         getEffectiveSCEVType(RHS->getType()) &&
1938         "SCEVUDivExpr operand types don't match!");
1939
1940  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
1941    if (RHSC->getValue()->equalsInt(1))
1942      return LHS;                               // X udiv 1 --> x
1943    // If the denominator is zero, the result of the udiv is undefined. Don't
1944    // try to analyze it, because the resolution chosen here may differ from
1945    // the resolution chosen in other parts of the compiler.
1946    if (!RHSC->getValue()->isZero()) {
1947      // Determine if the division can be folded into the operands of
1948      // its operands.
1949      // TODO: Generalize this to non-constants by using known-bits information.
1950      const Type *Ty = LHS->getType();
1951      unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
1952      unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
1953      // For non-power-of-two values, effectively round the value up to the
1954      // nearest power of two.
1955      if (!RHSC->getValue()->getValue().isPowerOf2())
1956        ++MaxShiftAmt;
1957      const IntegerType *ExtTy =
1958        IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
1959      // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1960      if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1961        if (const SCEVConstant *Step =
1962              dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1963          if (!Step->getValue()->getValue()
1964                .urem(RHSC->getValue()->getValue()) &&
1965              getZeroExtendExpr(AR, ExtTy) ==
1966              getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1967                            getZeroExtendExpr(Step, ExtTy),
1968                            AR->getLoop())) {
1969            SmallVector<const SCEV *, 4> Operands;
1970            for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1971              Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1972            return getAddRecExpr(Operands, AR->getLoop());
1973          }
1974      // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
1975      if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
1976        SmallVector<const SCEV *, 4> Operands;
1977        for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1978          Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1979        if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
1980          // Find an operand that's safely divisible.
1981          for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1982            const SCEV *Op = M->getOperand(i);
1983            const SCEV *Div = getUDivExpr(Op, RHSC);
1984            if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
1985              Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
1986                                                      M->op_end());
1987              Operands[i] = Div;
1988              return getMulExpr(Operands);
1989            }
1990          }
1991      }
1992      // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
1993      if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
1994        SmallVector<const SCEV *, 4> Operands;
1995        for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
1996          Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
1997        if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
1998          Operands.clear();
1999          for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2000            const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2001            if (isa<SCEVUDivExpr>(Op) ||
2002                getMulExpr(Op, RHS) != A->getOperand(i))
2003              break;
2004            Operands.push_back(Op);
2005          }
2006          if (Operands.size() == A->getNumOperands())
2007            return getAddExpr(Operands);
2008        }
2009      }
2010
2011      // Fold if both operands are constant.
2012      if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2013        Constant *LHSCV = LHSC->getValue();
2014        Constant *RHSCV = RHSC->getValue();
2015        return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2016                                                                   RHSCV)));
2017      }
2018    }
2019  }
2020
2021  FoldingSetNodeID ID;
2022  ID.AddInteger(scUDivExpr);
2023  ID.AddPointer(LHS);
2024  ID.AddPointer(RHS);
2025  void *IP = 0;
2026  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2027  SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2028                                             LHS, RHS);
2029  UniqueSCEVs.InsertNode(S, IP);
2030  return S;
2031}
2032
2033
2034/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2035/// Simplify the expression as much as possible.
2036const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start,
2037                                           const SCEV *Step, const Loop *L,
2038                                           bool HasNUW, bool HasNSW) {
2039  SmallVector<const SCEV *, 4> Operands;
2040  Operands.push_back(Start);
2041  if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
2042    if (StepChrec->getLoop() == L) {
2043      Operands.append(StepChrec->op_begin(), StepChrec->op_end());
2044      return getAddRecExpr(Operands, L);
2045    }
2046
2047  Operands.push_back(Step);
2048  return getAddRecExpr(Operands, L, HasNUW, HasNSW);
2049}
2050
2051/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2052/// Simplify the expression as much as possible.
2053const SCEV *
2054ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
2055                               const Loop *L,
2056                               bool HasNUW, bool HasNSW) {
2057  if (Operands.size() == 1) return Operands[0];
2058#ifndef NDEBUG
2059  const Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
2060  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
2061    assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
2062           "SCEVAddRecExpr operand types don't match!");
2063#endif
2064
2065  if (Operands.back()->isZero()) {
2066    Operands.pop_back();
2067    return getAddRecExpr(Operands, L, HasNUW, HasNSW); // {X,+,0}  -->  X
2068  }
2069
2070  // It's tempting to want to call getMaxBackedgeTakenCount count here and
2071  // use that information to infer NUW and NSW flags. However, computing a
2072  // BE count requires calling getAddRecExpr, so we may not yet have a
2073  // meaningful BE count at this point (and if we don't, we'd be stuck
2074  // with a SCEVCouldNotCompute as the cached BE count).
2075
2076  // If HasNSW is true and all the operands are non-negative, infer HasNUW.
2077  if (!HasNUW && HasNSW) {
2078    bool All = true;
2079    for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
2080         E = Operands.end(); I != E; ++I)
2081      if (!isKnownNonNegative(*I)) {
2082        All = false;
2083        break;
2084      }
2085    if (All) HasNUW = true;
2086  }
2087
2088  // Canonicalize nested AddRecs in by nesting them in order of loop depth.
2089  if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
2090    const Loop *NestedLoop = NestedAR->getLoop();
2091    if (L->contains(NestedLoop) ?
2092        (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
2093        (!NestedLoop->contains(L) &&
2094         DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
2095      SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
2096                                                  NestedAR->op_end());
2097      Operands[0] = NestedAR->getStart();
2098      // AddRecs require their operands be loop-invariant with respect to their
2099      // loops. Don't perform this transformation if it would break this
2100      // requirement.
2101      bool AllInvariant = true;
2102      for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2103        if (!Operands[i]->isLoopInvariant(L)) {
2104          AllInvariant = false;
2105          break;
2106        }
2107      if (AllInvariant) {
2108        NestedOperands[0] = getAddRecExpr(Operands, L);
2109        AllInvariant = true;
2110        for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
2111          if (!NestedOperands[i]->isLoopInvariant(NestedLoop)) {
2112            AllInvariant = false;
2113            break;
2114          }
2115        if (AllInvariant)
2116          // Ok, both add recurrences are valid after the transformation.
2117          return getAddRecExpr(NestedOperands, NestedLoop, HasNUW, HasNSW);
2118      }
2119      // Reset Operands to its original state.
2120      Operands[0] = NestedAR;
2121    }
2122  }
2123
2124  // Okay, it looks like we really DO need an addrec expr.  Check to see if we
2125  // already have one, otherwise create a new one.
2126  FoldingSetNodeID ID;
2127  ID.AddInteger(scAddRecExpr);
2128  ID.AddInteger(Operands.size());
2129  for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2130    ID.AddPointer(Operands[i]);
2131  ID.AddPointer(L);
2132  void *IP = 0;
2133  SCEVAddRecExpr *S =
2134    static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2135  if (!S) {
2136    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2137    std::uninitialized_copy(Operands.begin(), Operands.end(), O);
2138    S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2139                                           O, Operands.size(), L);
2140    UniqueSCEVs.InsertNode(S, IP);
2141  }
2142  if (HasNUW) S->setHasNoUnsignedWrap(true);
2143  if (HasNSW) S->setHasNoSignedWrap(true);
2144  return S;
2145}
2146
2147const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2148                                         const SCEV *RHS) {
2149  SmallVector<const SCEV *, 2> Ops;
2150  Ops.push_back(LHS);
2151  Ops.push_back(RHS);
2152  return getSMaxExpr(Ops);
2153}
2154
2155const SCEV *
2156ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2157  assert(!Ops.empty() && "Cannot get empty smax!");
2158  if (Ops.size() == 1) return Ops[0];
2159#ifndef NDEBUG
2160  const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2161  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2162    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2163           "SCEVSMaxExpr operand types don't match!");
2164#endif
2165
2166  // Sort by complexity, this groups all similar expression types together.
2167  GroupByComplexity(Ops, LI);
2168
2169  // If there are any constants, fold them together.
2170  unsigned Idx = 0;
2171  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2172    ++Idx;
2173    assert(Idx < Ops.size());
2174    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2175      // We found two constants, fold them together!
2176      ConstantInt *Fold = ConstantInt::get(getContext(),
2177                              APIntOps::smax(LHSC->getValue()->getValue(),
2178                                             RHSC->getValue()->getValue()));
2179      Ops[0] = getConstant(Fold);
2180      Ops.erase(Ops.begin()+1);  // Erase the folded element
2181      if (Ops.size() == 1) return Ops[0];
2182      LHSC = cast<SCEVConstant>(Ops[0]);
2183    }
2184
2185    // If we are left with a constant minimum-int, strip it off.
2186    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2187      Ops.erase(Ops.begin());
2188      --Idx;
2189    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2190      // If we have an smax with a constant maximum-int, it will always be
2191      // maximum-int.
2192      return Ops[0];
2193    }
2194
2195    if (Ops.size() == 1) return Ops[0];
2196  }
2197
2198  // Find the first SMax
2199  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2200    ++Idx;
2201
2202  // Check to see if one of the operands is an SMax. If so, expand its operands
2203  // onto our operand list, and recurse to simplify.
2204  if (Idx < Ops.size()) {
2205    bool DeletedSMax = false;
2206    while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
2207      Ops.erase(Ops.begin()+Idx);
2208      Ops.append(SMax->op_begin(), SMax->op_end());
2209      DeletedSMax = true;
2210    }
2211
2212    if (DeletedSMax)
2213      return getSMaxExpr(Ops);
2214  }
2215
2216  // Okay, check to see if the same value occurs in the operand list twice.  If
2217  // so, delete one.  Since we sorted the list, these values are required to
2218  // be adjacent.
2219  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2220    //  X smax Y smax Y  -->  X smax Y
2221    //  X smax Y         -->  X, if X is always greater than Y
2222    if (Ops[i] == Ops[i+1] ||
2223        isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2224      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2225      --i; --e;
2226    } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
2227      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2228      --i; --e;
2229    }
2230
2231  if (Ops.size() == 1) return Ops[0];
2232
2233  assert(!Ops.empty() && "Reduced smax down to nothing!");
2234
2235  // Okay, it looks like we really DO need an smax expr.  Check to see if we
2236  // already have one, otherwise create a new one.
2237  FoldingSetNodeID ID;
2238  ID.AddInteger(scSMaxExpr);
2239  ID.AddInteger(Ops.size());
2240  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2241    ID.AddPointer(Ops[i]);
2242  void *IP = 0;
2243  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2244  const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2245  std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2246  SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2247                                             O, Ops.size());
2248  UniqueSCEVs.InsertNode(S, IP);
2249  return S;
2250}
2251
2252const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2253                                         const SCEV *RHS) {
2254  SmallVector<const SCEV *, 2> Ops;
2255  Ops.push_back(LHS);
2256  Ops.push_back(RHS);
2257  return getUMaxExpr(Ops);
2258}
2259
2260const SCEV *
2261ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2262  assert(!Ops.empty() && "Cannot get empty umax!");
2263  if (Ops.size() == 1) return Ops[0];
2264#ifndef NDEBUG
2265  const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2266  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2267    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2268           "SCEVUMaxExpr operand types don't match!");
2269#endif
2270
2271  // Sort by complexity, this groups all similar expression types together.
2272  GroupByComplexity(Ops, LI);
2273
2274  // If there are any constants, fold them together.
2275  unsigned Idx = 0;
2276  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2277    ++Idx;
2278    assert(Idx < Ops.size());
2279    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2280      // We found two constants, fold them together!
2281      ConstantInt *Fold = ConstantInt::get(getContext(),
2282                              APIntOps::umax(LHSC->getValue()->getValue(),
2283                                             RHSC->getValue()->getValue()));
2284      Ops[0] = getConstant(Fold);
2285      Ops.erase(Ops.begin()+1);  // Erase the folded element
2286      if (Ops.size() == 1) return Ops[0];
2287      LHSC = cast<SCEVConstant>(Ops[0]);
2288    }
2289
2290    // If we are left with a constant minimum-int, strip it off.
2291    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2292      Ops.erase(Ops.begin());
2293      --Idx;
2294    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2295      // If we have an umax with a constant maximum-int, it will always be
2296      // maximum-int.
2297      return Ops[0];
2298    }
2299
2300    if (Ops.size() == 1) return Ops[0];
2301  }
2302
2303  // Find the first UMax
2304  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2305    ++Idx;
2306
2307  // Check to see if one of the operands is a UMax. If so, expand its operands
2308  // onto our operand list, and recurse to simplify.
2309  if (Idx < Ops.size()) {
2310    bool DeletedUMax = false;
2311    while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
2312      Ops.erase(Ops.begin()+Idx);
2313      Ops.append(UMax->op_begin(), UMax->op_end());
2314      DeletedUMax = true;
2315    }
2316
2317    if (DeletedUMax)
2318      return getUMaxExpr(Ops);
2319  }
2320
2321  // Okay, check to see if the same value occurs in the operand list twice.  If
2322  // so, delete one.  Since we sorted the list, these values are required to
2323  // be adjacent.
2324  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2325    //  X umax Y umax Y  -->  X umax Y
2326    //  X umax Y         -->  X, if X is always greater than Y
2327    if (Ops[i] == Ops[i+1] ||
2328        isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2329      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2330      --i; --e;
2331    } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
2332      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2333      --i; --e;
2334    }
2335
2336  if (Ops.size() == 1) return Ops[0];
2337
2338  assert(!Ops.empty() && "Reduced umax down to nothing!");
2339
2340  // Okay, it looks like we really DO need a umax expr.  Check to see if we
2341  // already have one, otherwise create a new one.
2342  FoldingSetNodeID ID;
2343  ID.AddInteger(scUMaxExpr);
2344  ID.AddInteger(Ops.size());
2345  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2346    ID.AddPointer(Ops[i]);
2347  void *IP = 0;
2348  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2349  const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2350  std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2351  SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2352                                             O, Ops.size());
2353  UniqueSCEVs.InsertNode(S, IP);
2354  return S;
2355}
2356
2357const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2358                                         const SCEV *RHS) {
2359  // ~smax(~x, ~y) == smin(x, y).
2360  return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2361}
2362
2363const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2364                                         const SCEV *RHS) {
2365  // ~umax(~x, ~y) == umin(x, y)
2366  return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2367}
2368
2369const SCEV *ScalarEvolution::getSizeOfExpr(const Type *AllocTy) {
2370  // If we have TargetData, we can bypass creating a target-independent
2371  // constant expression and then folding it back into a ConstantInt.
2372  // This is just a compile-time optimization.
2373  if (TD)
2374    return getConstant(TD->getIntPtrType(getContext()),
2375                       TD->getTypeAllocSize(AllocTy));
2376
2377  Constant *C = ConstantExpr::getSizeOf(AllocTy);
2378  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2379    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2380      C = Folded;
2381  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2382  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2383}
2384
2385const SCEV *ScalarEvolution::getAlignOfExpr(const Type *AllocTy) {
2386  Constant *C = ConstantExpr::getAlignOf(AllocTy);
2387  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2388    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2389      C = Folded;
2390  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2391  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2392}
2393
2394const SCEV *ScalarEvolution::getOffsetOfExpr(const StructType *STy,
2395                                             unsigned FieldNo) {
2396  // If we have TargetData, we can bypass creating a target-independent
2397  // constant expression and then folding it back into a ConstantInt.
2398  // This is just a compile-time optimization.
2399  if (TD)
2400    return getConstant(TD->getIntPtrType(getContext()),
2401                       TD->getStructLayout(STy)->getElementOffset(FieldNo));
2402
2403  Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2404  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2405    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2406      C = Folded;
2407  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
2408  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2409}
2410
2411const SCEV *ScalarEvolution::getOffsetOfExpr(const Type *CTy,
2412                                             Constant *FieldNo) {
2413  Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
2414  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2415    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2416      C = Folded;
2417  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
2418  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2419}
2420
2421const SCEV *ScalarEvolution::getUnknown(Value *V) {
2422  // Don't attempt to do anything other than create a SCEVUnknown object
2423  // here.  createSCEV only calls getUnknown after checking for all other
2424  // interesting possibilities, and any other code that calls getUnknown
2425  // is doing so in order to hide a value from SCEV canonicalization.
2426
2427  FoldingSetNodeID ID;
2428  ID.AddInteger(scUnknown);
2429  ID.AddPointer(V);
2430  void *IP = 0;
2431  if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2432    assert(cast<SCEVUnknown>(S)->getValue() == V &&
2433           "Stale SCEVUnknown in uniquing map!");
2434    return S;
2435  }
2436  SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
2437                                            FirstUnknown);
2438  FirstUnknown = cast<SCEVUnknown>(S);
2439  UniqueSCEVs.InsertNode(S, IP);
2440  return S;
2441}
2442
2443//===----------------------------------------------------------------------===//
2444//            Basic SCEV Analysis and PHI Idiom Recognition Code
2445//
2446
2447/// isSCEVable - Test if values of the given type are analyzable within
2448/// the SCEV framework. This primarily includes integer types, and it
2449/// can optionally include pointer types if the ScalarEvolution class
2450/// has access to target-specific information.
2451bool ScalarEvolution::isSCEVable(const Type *Ty) const {
2452  // Integers and pointers are always SCEVable.
2453  return Ty->isIntegerTy() || Ty->isPointerTy();
2454}
2455
2456/// getTypeSizeInBits - Return the size in bits of the specified type,
2457/// for which isSCEVable must return true.
2458uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
2459  assert(isSCEVable(Ty) && "Type is not SCEVable!");
2460
2461  // If we have a TargetData, use it!
2462  if (TD)
2463    return TD->getTypeSizeInBits(Ty);
2464
2465  // Integer types have fixed sizes.
2466  if (Ty->isIntegerTy())
2467    return Ty->getPrimitiveSizeInBits();
2468
2469  // The only other support type is pointer. Without TargetData, conservatively
2470  // assume pointers are 64-bit.
2471  assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
2472  return 64;
2473}
2474
2475/// getEffectiveSCEVType - Return a type with the same bitwidth as
2476/// the given type and which represents how SCEV will treat the given
2477/// type, for which isSCEVable must return true. For pointer types,
2478/// this is the pointer-sized integer type.
2479const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
2480  assert(isSCEVable(Ty) && "Type is not SCEVable!");
2481
2482  if (Ty->isIntegerTy())
2483    return Ty;
2484
2485  // The only other support type is pointer.
2486  assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
2487  if (TD) return TD->getIntPtrType(getContext());
2488
2489  // Without TargetData, conservatively assume pointers are 64-bit.
2490  return Type::getInt64Ty(getContext());
2491}
2492
2493const SCEV *ScalarEvolution::getCouldNotCompute() {
2494  return &CouldNotCompute;
2495}
2496
2497/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2498/// expression and create a new one.
2499const SCEV *ScalarEvolution::getSCEV(Value *V) {
2500  assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
2501
2502  std::map<SCEVCallbackVH, const SCEV *>::const_iterator I = Scalars.find(V);
2503  if (I != Scalars.end()) return I->second;
2504  const SCEV *S = createSCEV(V);
2505
2506  // The process of creating a SCEV for V may have caused other SCEVs
2507  // to have been created, so it's necessary to insert the new entry
2508  // from scratch, rather than trying to remember the insert position
2509  // above.
2510  Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S));
2511  return S;
2512}
2513
2514/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2515///
2516const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
2517  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2518    return getConstant(
2519               cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
2520
2521  const Type *Ty = V->getType();
2522  Ty = getEffectiveSCEVType(Ty);
2523  return getMulExpr(V,
2524                  getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
2525}
2526
2527/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
2528const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
2529  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2530    return getConstant(
2531                cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
2532
2533  const Type *Ty = V->getType();
2534  Ty = getEffectiveSCEVType(Ty);
2535  const SCEV *AllOnes =
2536                   getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
2537  return getMinusSCEV(AllOnes, V);
2538}
2539
2540/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
2541///
2542const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS,
2543                                          const SCEV *RHS) {
2544  // Fast path: X - X --> 0.
2545  if (LHS == RHS)
2546    return getConstant(LHS->getType(), 0);
2547
2548  // X - Y --> X + -Y
2549  return getAddExpr(LHS, getNegativeSCEV(RHS));
2550}
2551
2552/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2553/// input value to the specified type.  If the type must be extended, it is zero
2554/// extended.
2555const SCEV *
2556ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V,
2557                                         const Type *Ty) {
2558  const Type *SrcTy = V->getType();
2559  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2560         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2561         "Cannot truncate or zero extend with non-integer arguments!");
2562  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2563    return V;  // No conversion
2564  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2565    return getTruncateExpr(V, Ty);
2566  return getZeroExtendExpr(V, Ty);
2567}
2568
2569/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2570/// input value to the specified type.  If the type must be extended, it is sign
2571/// extended.
2572const SCEV *
2573ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
2574                                         const Type *Ty) {
2575  const Type *SrcTy = V->getType();
2576  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2577         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2578         "Cannot truncate or zero extend with non-integer arguments!");
2579  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2580    return V;  // No conversion
2581  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2582    return getTruncateExpr(V, Ty);
2583  return getSignExtendExpr(V, Ty);
2584}
2585
2586/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2587/// input value to the specified type.  If the type must be extended, it is zero
2588/// extended.  The conversion must not be narrowing.
2589const SCEV *
2590ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) {
2591  const Type *SrcTy = V->getType();
2592  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2593         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2594         "Cannot noop or zero extend with non-integer arguments!");
2595  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2596         "getNoopOrZeroExtend cannot truncate!");
2597  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2598    return V;  // No conversion
2599  return getZeroExtendExpr(V, Ty);
2600}
2601
2602/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2603/// input value to the specified type.  If the type must be extended, it is sign
2604/// extended.  The conversion must not be narrowing.
2605const SCEV *
2606ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) {
2607  const Type *SrcTy = V->getType();
2608  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2609         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2610         "Cannot noop or sign extend with non-integer arguments!");
2611  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2612         "getNoopOrSignExtend cannot truncate!");
2613  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2614    return V;  // No conversion
2615  return getSignExtendExpr(V, Ty);
2616}
2617
2618/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2619/// the input value to the specified type. If the type must be extended,
2620/// it is extended with unspecified bits. The conversion must not be
2621/// narrowing.
2622const SCEV *
2623ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) {
2624  const Type *SrcTy = V->getType();
2625  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2626         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2627         "Cannot noop or any extend with non-integer arguments!");
2628  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2629         "getNoopOrAnyExtend cannot truncate!");
2630  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2631    return V;  // No conversion
2632  return getAnyExtendExpr(V, Ty);
2633}
2634
2635/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2636/// input value to the specified type.  The conversion must not be widening.
2637const SCEV *
2638ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) {
2639  const Type *SrcTy = V->getType();
2640  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2641         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2642         "Cannot truncate or noop with non-integer arguments!");
2643  assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2644         "getTruncateOrNoop cannot extend!");
2645  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2646    return V;  // No conversion
2647  return getTruncateExpr(V, Ty);
2648}
2649
2650/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2651/// the types using zero-extension, and then perform a umax operation
2652/// with them.
2653const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2654                                                        const SCEV *RHS) {
2655  const SCEV *PromotedLHS = LHS;
2656  const SCEV *PromotedRHS = RHS;
2657
2658  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2659    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2660  else
2661    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2662
2663  return getUMaxExpr(PromotedLHS, PromotedRHS);
2664}
2665
2666/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2667/// the types using zero-extension, and then perform a umin operation
2668/// with them.
2669const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2670                                                        const SCEV *RHS) {
2671  const SCEV *PromotedLHS = LHS;
2672  const SCEV *PromotedRHS = RHS;
2673
2674  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2675    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2676  else
2677    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2678
2679  return getUMinExpr(PromotedLHS, PromotedRHS);
2680}
2681
2682/// PushDefUseChildren - Push users of the given Instruction
2683/// onto the given Worklist.
2684static void
2685PushDefUseChildren(Instruction *I,
2686                   SmallVectorImpl<Instruction *> &Worklist) {
2687  // Push the def-use children onto the Worklist stack.
2688  for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2689       UI != UE; ++UI)
2690    Worklist.push_back(cast<Instruction>(*UI));
2691}
2692
2693/// ForgetSymbolicValue - This looks up computed SCEV values for all
2694/// instructions that depend on the given instruction and removes them from
2695/// the Scalars map if they reference SymName. This is used during PHI
2696/// resolution.
2697void
2698ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
2699  SmallVector<Instruction *, 16> Worklist;
2700  PushDefUseChildren(PN, Worklist);
2701
2702  SmallPtrSet<Instruction *, 8> Visited;
2703  Visited.insert(PN);
2704  while (!Worklist.empty()) {
2705    Instruction *I = Worklist.pop_back_val();
2706    if (!Visited.insert(I)) continue;
2707
2708    std::map<SCEVCallbackVH, const SCEV *>::iterator It =
2709      Scalars.find(static_cast<Value *>(I));
2710    if (It != Scalars.end()) {
2711      // Short-circuit the def-use traversal if the symbolic name
2712      // ceases to appear in expressions.
2713      if (It->second != SymName && !It->second->hasOperand(SymName))
2714        continue;
2715
2716      // SCEVUnknown for a PHI either means that it has an unrecognized
2717      // structure, it's a PHI that's in the progress of being computed
2718      // by createNodeForPHI, or it's a single-value PHI. In the first case,
2719      // additional loop trip count information isn't going to change anything.
2720      // In the second case, createNodeForPHI will perform the necessary
2721      // updates on its own when it gets to that point. In the third, we do
2722      // want to forget the SCEVUnknown.
2723      if (!isa<PHINode>(I) ||
2724          !isa<SCEVUnknown>(It->second) ||
2725          (I != PN && It->second == SymName)) {
2726        ValuesAtScopes.erase(It->second);
2727        Scalars.erase(It);
2728      }
2729    }
2730
2731    PushDefUseChildren(I, Worklist);
2732  }
2733}
2734
2735/// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
2736/// a loop header, making it a potential recurrence, or it doesn't.
2737///
2738const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
2739  if (const Loop *L = LI->getLoopFor(PN->getParent()))
2740    if (L->getHeader() == PN->getParent()) {
2741      // The loop may have multiple entrances or multiple exits; we can analyze
2742      // this phi as an addrec if it has a unique entry value and a unique
2743      // backedge value.
2744      Value *BEValueV = 0, *StartValueV = 0;
2745      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2746        Value *V = PN->getIncomingValue(i);
2747        if (L->contains(PN->getIncomingBlock(i))) {
2748          if (!BEValueV) {
2749            BEValueV = V;
2750          } else if (BEValueV != V) {
2751            BEValueV = 0;
2752            break;
2753          }
2754        } else if (!StartValueV) {
2755          StartValueV = V;
2756        } else if (StartValueV != V) {
2757          StartValueV = 0;
2758          break;
2759        }
2760      }
2761      if (BEValueV && StartValueV) {
2762        // While we are analyzing this PHI node, handle its value symbolically.
2763        const SCEV *SymbolicName = getUnknown(PN);
2764        assert(Scalars.find(PN) == Scalars.end() &&
2765               "PHI node already processed?");
2766        Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
2767
2768        // Using this symbolic name for the PHI, analyze the value coming around
2769        // the back-edge.
2770        const SCEV *BEValue = getSCEV(BEValueV);
2771
2772        // NOTE: If BEValue is loop invariant, we know that the PHI node just
2773        // has a special value for the first iteration of the loop.
2774
2775        // If the value coming around the backedge is an add with the symbolic
2776        // value we just inserted, then we found a simple induction variable!
2777        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
2778          // If there is a single occurrence of the symbolic value, replace it
2779          // with a recurrence.
2780          unsigned FoundIndex = Add->getNumOperands();
2781          for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2782            if (Add->getOperand(i) == SymbolicName)
2783              if (FoundIndex == e) {
2784                FoundIndex = i;
2785                break;
2786              }
2787
2788          if (FoundIndex != Add->getNumOperands()) {
2789            // Create an add with everything but the specified operand.
2790            SmallVector<const SCEV *, 8> Ops;
2791            for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2792              if (i != FoundIndex)
2793                Ops.push_back(Add->getOperand(i));
2794            const SCEV *Accum = getAddExpr(Ops);
2795
2796            // This is not a valid addrec if the step amount is varying each
2797            // loop iteration, but is not itself an addrec in this loop.
2798            if (Accum->isLoopInvariant(L) ||
2799                (isa<SCEVAddRecExpr>(Accum) &&
2800                 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
2801              bool HasNUW = false;
2802              bool HasNSW = false;
2803
2804              // If the increment doesn't overflow, then neither the addrec nor
2805              // the post-increment will overflow.
2806              if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
2807                if (OBO->hasNoUnsignedWrap())
2808                  HasNUW = true;
2809                if (OBO->hasNoSignedWrap())
2810                  HasNSW = true;
2811              }
2812
2813              const SCEV *StartVal = getSCEV(StartValueV);
2814              const SCEV *PHISCEV =
2815                getAddRecExpr(StartVal, Accum, L, HasNUW, HasNSW);
2816
2817              // Since the no-wrap flags are on the increment, they apply to the
2818              // post-incremented value as well.
2819              if (Accum->isLoopInvariant(L))
2820                (void)getAddRecExpr(getAddExpr(StartVal, Accum),
2821                                    Accum, L, HasNUW, HasNSW);
2822
2823              // Okay, for the entire analysis of this edge we assumed the PHI
2824              // to be symbolic.  We now need to go back and purge all of the
2825              // entries for the scalars that use the symbolic expression.
2826              ForgetSymbolicName(PN, SymbolicName);
2827              Scalars[SCEVCallbackVH(PN, this)] = PHISCEV;
2828              return PHISCEV;
2829            }
2830          }
2831        } else if (const SCEVAddRecExpr *AddRec =
2832                     dyn_cast<SCEVAddRecExpr>(BEValue)) {
2833          // Otherwise, this could be a loop like this:
2834          //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
2835          // In this case, j = {1,+,1}  and BEValue is j.
2836          // Because the other in-value of i (0) fits the evolution of BEValue
2837          // i really is an addrec evolution.
2838          if (AddRec->getLoop() == L && AddRec->isAffine()) {
2839            const SCEV *StartVal = getSCEV(StartValueV);
2840
2841            // If StartVal = j.start - j.stride, we can use StartVal as the
2842            // initial step of the addrec evolution.
2843            if (StartVal == getMinusSCEV(AddRec->getOperand(0),
2844                                         AddRec->getOperand(1))) {
2845              const SCEV *PHISCEV =
2846                 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
2847
2848              // Okay, for the entire analysis of this edge we assumed the PHI
2849              // to be symbolic.  We now need to go back and purge all of the
2850              // entries for the scalars that use the symbolic expression.
2851              ForgetSymbolicName(PN, SymbolicName);
2852              Scalars[SCEVCallbackVH(PN, this)] = PHISCEV;
2853              return PHISCEV;
2854            }
2855          }
2856        }
2857      }
2858    }
2859
2860  // If the PHI has a single incoming value, follow that value, unless the
2861  // PHI's incoming blocks are in a different loop, in which case doing so
2862  // risks breaking LCSSA form. Instcombine would normally zap these, but
2863  // it doesn't have DominatorTree information, so it may miss cases.
2864  if (Value *V = PN->hasConstantValue(DT)) {
2865    bool AllSameLoop = true;
2866    Loop *PNLoop = LI->getLoopFor(PN->getParent());
2867    for (size_t i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
2868      if (LI->getLoopFor(PN->getIncomingBlock(i)) != PNLoop) {
2869        AllSameLoop = false;
2870        break;
2871      }
2872    if (AllSameLoop)
2873      return getSCEV(V);
2874  }
2875
2876  // If it's not a loop phi, we can't handle it yet.
2877  return getUnknown(PN);
2878}
2879
2880/// createNodeForGEP - Expand GEP instructions into add and multiply
2881/// operations. This allows them to be analyzed by regular SCEV code.
2882///
2883const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
2884
2885  // Don't blindly transfer the inbounds flag from the GEP instruction to the
2886  // Add expression, because the Instruction may be guarded by control flow
2887  // and the no-overflow bits may not be valid for the expression in any
2888  // context.
2889
2890  const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
2891  Value *Base = GEP->getOperand(0);
2892  // Don't attempt to analyze GEPs over unsized objects.
2893  if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2894    return getUnknown(GEP);
2895  const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
2896  gep_type_iterator GTI = gep_type_begin(GEP);
2897  for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()),
2898                                      E = GEP->op_end();
2899       I != E; ++I) {
2900    Value *Index = *I;
2901    // Compute the (potentially symbolic) offset in bytes for this index.
2902    if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2903      // For a struct, add the member offset.
2904      unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
2905      const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo);
2906
2907      // Add the field offset to the running total offset.
2908      TotalOffset = getAddExpr(TotalOffset, FieldOffset);
2909    } else {
2910      // For an array, add the element offset, explicitly scaled.
2911      const SCEV *ElementSize = getSizeOfExpr(*GTI);
2912      const SCEV *IndexS = getSCEV(Index);
2913      // Getelementptr indices are signed.
2914      IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
2915
2916      // Multiply the index by the element size to compute the element offset.
2917      const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize);
2918
2919      // Add the element offset to the running total offset.
2920      TotalOffset = getAddExpr(TotalOffset, LocalOffset);
2921    }
2922  }
2923
2924  // Get the SCEV for the GEP base.
2925  const SCEV *BaseS = getSCEV(Base);
2926
2927  // Add the total offset from all the GEP indices to the base.
2928  return getAddExpr(BaseS, TotalOffset);
2929}
2930
2931/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2932/// guaranteed to end in (at every loop iteration).  It is, at the same time,
2933/// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
2934/// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
2935uint32_t
2936ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
2937  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2938    return C->getValue()->getValue().countTrailingZeros();
2939
2940  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
2941    return std::min(GetMinTrailingZeros(T->getOperand()),
2942                    (uint32_t)getTypeSizeInBits(T->getType()));
2943
2944  if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
2945    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2946    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2947             getTypeSizeInBits(E->getType()) : OpRes;
2948  }
2949
2950  if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
2951    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2952    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2953             getTypeSizeInBits(E->getType()) : OpRes;
2954  }
2955
2956  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
2957    // The result is the min of all operands results.
2958    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
2959    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
2960      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
2961    return MinOpRes;
2962  }
2963
2964  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
2965    // The result is the sum of all operands results.
2966    uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
2967    uint32_t BitWidth = getTypeSizeInBits(M->getType());
2968    for (unsigned i = 1, e = M->getNumOperands();
2969         SumOpRes != BitWidth && i != e; ++i)
2970      SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
2971                          BitWidth);
2972    return SumOpRes;
2973  }
2974
2975  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
2976    // The result is the min of all operands results.
2977    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
2978    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
2979      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
2980    return MinOpRes;
2981  }
2982
2983  if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
2984    // The result is the min of all operands results.
2985    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
2986    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
2987      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
2988    return MinOpRes;
2989  }
2990
2991  if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
2992    // The result is the min of all operands results.
2993    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
2994    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
2995      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
2996    return MinOpRes;
2997  }
2998
2999  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3000    // For a SCEVUnknown, ask ValueTracking.
3001    unsigned BitWidth = getTypeSizeInBits(U->getType());
3002    APInt Mask = APInt::getAllOnesValue(BitWidth);
3003    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3004    ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
3005    return Zeros.countTrailingOnes();
3006  }
3007
3008  // SCEVUDivExpr
3009  return 0;
3010}
3011
3012/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
3013///
3014ConstantRange
3015ScalarEvolution::getUnsignedRange(const SCEV *S) {
3016
3017  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3018    return ConstantRange(C->getValue()->getValue());
3019
3020  unsigned BitWidth = getTypeSizeInBits(S->getType());
3021  ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3022
3023  // If the value has known zeros, the maximum unsigned value will have those
3024  // known zeros as well.
3025  uint32_t TZ = GetMinTrailingZeros(S);
3026  if (TZ != 0)
3027    ConservativeResult =
3028      ConstantRange(APInt::getMinValue(BitWidth),
3029                    APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3030
3031  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3032    ConstantRange X = getUnsignedRange(Add->getOperand(0));
3033    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3034      X = X.add(getUnsignedRange(Add->getOperand(i)));
3035    return ConservativeResult.intersectWith(X);
3036  }
3037
3038  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3039    ConstantRange X = getUnsignedRange(Mul->getOperand(0));
3040    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3041      X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
3042    return ConservativeResult.intersectWith(X);
3043  }
3044
3045  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3046    ConstantRange X = getUnsignedRange(SMax->getOperand(0));
3047    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3048      X = X.smax(getUnsignedRange(SMax->getOperand(i)));
3049    return ConservativeResult.intersectWith(X);
3050  }
3051
3052  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3053    ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3054    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3055      X = X.umax(getUnsignedRange(UMax->getOperand(i)));
3056    return ConservativeResult.intersectWith(X);
3057  }
3058
3059  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3060    ConstantRange X = getUnsignedRange(UDiv->getLHS());
3061    ConstantRange Y = getUnsignedRange(UDiv->getRHS());
3062    return ConservativeResult.intersectWith(X.udiv(Y));
3063  }
3064
3065  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3066    ConstantRange X = getUnsignedRange(ZExt->getOperand());
3067    return ConservativeResult.intersectWith(X.zeroExtend(BitWidth));
3068  }
3069
3070  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3071    ConstantRange X = getUnsignedRange(SExt->getOperand());
3072    return ConservativeResult.intersectWith(X.signExtend(BitWidth));
3073  }
3074
3075  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3076    ConstantRange X = getUnsignedRange(Trunc->getOperand());
3077    return ConservativeResult.intersectWith(X.truncate(BitWidth));
3078  }
3079
3080  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
3081    // If there's no unsigned wrap, the value will never be less than its
3082    // initial value.
3083    if (AddRec->hasNoUnsignedWrap())
3084      if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
3085        if (!C->getValue()->isZero())
3086          ConservativeResult =
3087            ConservativeResult.intersectWith(
3088              ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
3089
3090    // TODO: non-affine addrec
3091    if (AddRec->isAffine()) {
3092      const Type *Ty = AddRec->getType();
3093      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
3094      if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3095          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
3096        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3097
3098        const SCEV *Start = AddRec->getStart();
3099        const SCEV *Step = AddRec->getStepRecurrence(*this);
3100
3101        ConstantRange StartRange = getUnsignedRange(Start);
3102        ConstantRange StepRange = getSignedRange(Step);
3103        ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3104        ConstantRange EndRange =
3105          StartRange.add(MaxBECountRange.multiply(StepRange));
3106
3107        // Check for overflow. This must be done with ConstantRange arithmetic
3108        // because we could be called from within the ScalarEvolution overflow
3109        // checking code.
3110        ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3111        ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3112        ConstantRange ExtMaxBECountRange =
3113          MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3114        ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3115        if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3116            ExtEndRange)
3117          return ConservativeResult;
3118
3119        APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3120                                   EndRange.getUnsignedMin());
3121        APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3122                                   EndRange.getUnsignedMax());
3123        if (Min.isMinValue() && Max.isMaxValue())
3124          return ConservativeResult;
3125        return ConservativeResult.intersectWith(ConstantRange(Min, Max+1));
3126      }
3127    }
3128
3129    return ConservativeResult;
3130  }
3131
3132  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3133    // For a SCEVUnknown, ask ValueTracking.
3134    APInt Mask = APInt::getAllOnesValue(BitWidth);
3135    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3136    ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
3137    if (Ones == ~Zeros + 1)
3138      return ConservativeResult;
3139    return ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
3140  }
3141
3142  return ConservativeResult;
3143}
3144
3145/// getSignedRange - Determine the signed range for a particular SCEV.
3146///
3147ConstantRange
3148ScalarEvolution::getSignedRange(const SCEV *S) {
3149
3150  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3151    return ConstantRange(C->getValue()->getValue());
3152
3153  unsigned BitWidth = getTypeSizeInBits(S->getType());
3154  ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3155
3156  // If the value has known zeros, the maximum signed value will have those
3157  // known zeros as well.
3158  uint32_t TZ = GetMinTrailingZeros(S);
3159  if (TZ != 0)
3160    ConservativeResult =
3161      ConstantRange(APInt::getSignedMinValue(BitWidth),
3162                    APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3163
3164  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3165    ConstantRange X = getSignedRange(Add->getOperand(0));
3166    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3167      X = X.add(getSignedRange(Add->getOperand(i)));
3168    return ConservativeResult.intersectWith(X);
3169  }
3170
3171  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3172    ConstantRange X = getSignedRange(Mul->getOperand(0));
3173    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3174      X = X.multiply(getSignedRange(Mul->getOperand(i)));
3175    return ConservativeResult.intersectWith(X);
3176  }
3177
3178  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3179    ConstantRange X = getSignedRange(SMax->getOperand(0));
3180    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3181      X = X.smax(getSignedRange(SMax->getOperand(i)));
3182    return ConservativeResult.intersectWith(X);
3183  }
3184
3185  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3186    ConstantRange X = getSignedRange(UMax->getOperand(0));
3187    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3188      X = X.umax(getSignedRange(UMax->getOperand(i)));
3189    return ConservativeResult.intersectWith(X);
3190  }
3191
3192  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3193    ConstantRange X = getSignedRange(UDiv->getLHS());
3194    ConstantRange Y = getSignedRange(UDiv->getRHS());
3195    return ConservativeResult.intersectWith(X.udiv(Y));
3196  }
3197
3198  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3199    ConstantRange X = getSignedRange(ZExt->getOperand());
3200    return ConservativeResult.intersectWith(X.zeroExtend(BitWidth));
3201  }
3202
3203  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3204    ConstantRange X = getSignedRange(SExt->getOperand());
3205    return ConservativeResult.intersectWith(X.signExtend(BitWidth));
3206  }
3207
3208  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3209    ConstantRange X = getSignedRange(Trunc->getOperand());
3210    return ConservativeResult.intersectWith(X.truncate(BitWidth));
3211  }
3212
3213  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
3214    // If there's no signed wrap, and all the operands have the same sign or
3215    // zero, the value won't ever change sign.
3216    if (AddRec->hasNoSignedWrap()) {
3217      bool AllNonNeg = true;
3218      bool AllNonPos = true;
3219      for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3220        if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3221        if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3222      }
3223      if (AllNonNeg)
3224        ConservativeResult = ConservativeResult.intersectWith(
3225          ConstantRange(APInt(BitWidth, 0),
3226                        APInt::getSignedMinValue(BitWidth)));
3227      else if (AllNonPos)
3228        ConservativeResult = ConservativeResult.intersectWith(
3229          ConstantRange(APInt::getSignedMinValue(BitWidth),
3230                        APInt(BitWidth, 1)));
3231    }
3232
3233    // TODO: non-affine addrec
3234    if (AddRec->isAffine()) {
3235      const Type *Ty = AddRec->getType();
3236      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
3237      if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3238          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
3239        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3240
3241        const SCEV *Start = AddRec->getStart();
3242        const SCEV *Step = AddRec->getStepRecurrence(*this);
3243
3244        ConstantRange StartRange = getSignedRange(Start);
3245        ConstantRange StepRange = getSignedRange(Step);
3246        ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3247        ConstantRange EndRange =
3248          StartRange.add(MaxBECountRange.multiply(StepRange));
3249
3250        // Check for overflow. This must be done with ConstantRange arithmetic
3251        // because we could be called from within the ScalarEvolution overflow
3252        // checking code.
3253        ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3254        ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3255        ConstantRange ExtMaxBECountRange =
3256          MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3257        ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3258        if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3259            ExtEndRange)
3260          return ConservativeResult;
3261
3262        APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3263                                   EndRange.getSignedMin());
3264        APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3265                                   EndRange.getSignedMax());
3266        if (Min.isMinSignedValue() && Max.isMaxSignedValue())
3267          return ConservativeResult;
3268        return ConservativeResult.intersectWith(ConstantRange(Min, Max+1));
3269      }
3270    }
3271
3272    return ConservativeResult;
3273  }
3274
3275  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3276    // For a SCEVUnknown, ask ValueTracking.
3277    if (!U->getValue()->getType()->isIntegerTy() && !TD)
3278      return ConservativeResult;
3279    unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3280    if (NS == 1)
3281      return ConservativeResult;
3282    return ConservativeResult.intersectWith(
3283      ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
3284                    APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1));
3285  }
3286
3287  return ConservativeResult;
3288}
3289
3290/// createSCEV - We know that there is no SCEV for the specified value.
3291/// Analyze the expression.
3292///
3293const SCEV *ScalarEvolution::createSCEV(Value *V) {
3294  if (!isSCEVable(V->getType()))
3295    return getUnknown(V);
3296
3297  unsigned Opcode = Instruction::UserOp1;
3298  if (Instruction *I = dyn_cast<Instruction>(V)) {
3299    Opcode = I->getOpcode();
3300
3301    // Don't attempt to analyze instructions in blocks that aren't
3302    // reachable. Such instructions don't matter, and they aren't required
3303    // to obey basic rules for definitions dominating uses which this
3304    // analysis depends on.
3305    if (!DT->isReachableFromEntry(I->getParent()))
3306      return getUnknown(V);
3307  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
3308    Opcode = CE->getOpcode();
3309  else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3310    return getConstant(CI);
3311  else if (isa<ConstantPointerNull>(V))
3312    return getConstant(V->getType(), 0);
3313  else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3314    return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
3315  else
3316    return getUnknown(V);
3317
3318  Operator *U = cast<Operator>(V);
3319  switch (Opcode) {
3320  case Instruction::Add: {
3321    // The simple thing to do would be to just call getSCEV on both operands
3322    // and call getAddExpr with the result. However if we're looking at a
3323    // bunch of things all added together, this can be quite inefficient,
3324    // because it leads to N-1 getAddExpr calls for N ultimate operands.
3325    // Instead, gather up all the operands and make a single getAddExpr call.
3326    // LLVM IR canonical form means we need only traverse the left operands.
3327    SmallVector<const SCEV *, 4> AddOps;
3328    AddOps.push_back(getSCEV(U->getOperand(1)));
3329    for (Value *Op = U->getOperand(0);
3330         Op->getValueID() == Instruction::Add + Value::InstructionVal;
3331         Op = U->getOperand(0)) {
3332      U = cast<Operator>(Op);
3333      AddOps.push_back(getSCEV(U->getOperand(1)));
3334    }
3335    AddOps.push_back(getSCEV(U->getOperand(0)));
3336    return getAddExpr(AddOps);
3337  }
3338  case Instruction::Mul: {
3339    // See the Add code above.
3340    SmallVector<const SCEV *, 4> MulOps;
3341    MulOps.push_back(getSCEV(U->getOperand(1)));
3342    for (Value *Op = U->getOperand(0);
3343         Op->getValueID() == Instruction::Mul + Value::InstructionVal;
3344         Op = U->getOperand(0)) {
3345      U = cast<Operator>(Op);
3346      MulOps.push_back(getSCEV(U->getOperand(1)));
3347    }
3348    MulOps.push_back(getSCEV(U->getOperand(0)));
3349    return getMulExpr(MulOps);
3350  }
3351  case Instruction::UDiv:
3352    return getUDivExpr(getSCEV(U->getOperand(0)),
3353                       getSCEV(U->getOperand(1)));
3354  case Instruction::Sub:
3355    return getMinusSCEV(getSCEV(U->getOperand(0)),
3356                        getSCEV(U->getOperand(1)));
3357  case Instruction::And:
3358    // For an expression like x&255 that merely masks off the high bits,
3359    // use zext(trunc(x)) as the SCEV expression.
3360    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3361      if (CI->isNullValue())
3362        return getSCEV(U->getOperand(1));
3363      if (CI->isAllOnesValue())
3364        return getSCEV(U->getOperand(0));
3365      const APInt &A = CI->getValue();
3366
3367      // Instcombine's ShrinkDemandedConstant may strip bits out of
3368      // constants, obscuring what would otherwise be a low-bits mask.
3369      // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3370      // knew about to reconstruct a low-bits mask value.
3371      unsigned LZ = A.countLeadingZeros();
3372      unsigned BitWidth = A.getBitWidth();
3373      APInt AllOnes = APInt::getAllOnesValue(BitWidth);
3374      APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3375      ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
3376
3377      APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3378
3379      if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
3380        return
3381          getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
3382                                IntegerType::get(getContext(), BitWidth - LZ)),
3383                            U->getType());
3384    }
3385    break;
3386
3387  case Instruction::Or:
3388    // If the RHS of the Or is a constant, we may have something like:
3389    // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
3390    // optimizations will transparently handle this case.
3391    //
3392    // In order for this transformation to be safe, the LHS must be of the
3393    // form X*(2^n) and the Or constant must be less than 2^n.
3394    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3395      const SCEV *LHS = getSCEV(U->getOperand(0));
3396      const APInt &CIVal = CI->getValue();
3397      if (GetMinTrailingZeros(LHS) >=
3398          (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3399        // Build a plain add SCEV.
3400        const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3401        // If the LHS of the add was an addrec and it has no-wrap flags,
3402        // transfer the no-wrap flags, since an or won't introduce a wrap.
3403        if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3404          const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
3405          if (OldAR->hasNoUnsignedWrap())
3406            const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoUnsignedWrap(true);
3407          if (OldAR->hasNoSignedWrap())
3408            const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoSignedWrap(true);
3409        }
3410        return S;
3411      }
3412    }
3413    break;
3414  case Instruction::Xor:
3415    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3416      // If the RHS of the xor is a signbit, then this is just an add.
3417      // Instcombine turns add of signbit into xor as a strength reduction step.
3418      if (CI->getValue().isSignBit())
3419        return getAddExpr(getSCEV(U->getOperand(0)),
3420                          getSCEV(U->getOperand(1)));
3421
3422      // If the RHS of xor is -1, then this is a not operation.
3423      if (CI->isAllOnesValue())
3424        return getNotSCEV(getSCEV(U->getOperand(0)));
3425
3426      // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3427      // This is a variant of the check for xor with -1, and it handles
3428      // the case where instcombine has trimmed non-demanded bits out
3429      // of an xor with -1.
3430      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3431        if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3432          if (BO->getOpcode() == Instruction::And &&
3433              LCI->getValue() == CI->getValue())
3434            if (const SCEVZeroExtendExpr *Z =
3435                  dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
3436              const Type *UTy = U->getType();
3437              const SCEV *Z0 = Z->getOperand();
3438              const Type *Z0Ty = Z0->getType();
3439              unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3440
3441              // If C is a low-bits mask, the zero extend is serving to
3442              // mask off the high bits. Complement the operand and
3443              // re-apply the zext.
3444              if (APIntOps::isMask(Z0TySize, CI->getValue()))
3445                return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3446
3447              // If C is a single bit, it may be in the sign-bit position
3448              // before the zero-extend. In this case, represent the xor
3449              // using an add, which is equivalent, and re-apply the zext.
3450              APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize);
3451              if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
3452                  Trunc.isSignBit())
3453                return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3454                                         UTy);
3455            }
3456    }
3457    break;
3458
3459  case Instruction::Shl:
3460    // Turn shift left of a constant amount into a multiply.
3461    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3462      uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
3463
3464      // If the shift count is not less than the bitwidth, the result of
3465      // the shift is undefined. Don't try to analyze it, because the
3466      // resolution chosen here may differ from the resolution chosen in
3467      // other parts of the compiler.
3468      if (SA->getValue().uge(BitWidth))
3469        break;
3470
3471      Constant *X = ConstantInt::get(getContext(),
3472        APInt(BitWidth, 1).shl(SA->getZExtValue()));
3473      return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3474    }
3475    break;
3476
3477  case Instruction::LShr:
3478    // Turn logical shift right of a constant into a unsigned divide.
3479    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3480      uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
3481
3482      // If the shift count is not less than the bitwidth, the result of
3483      // the shift is undefined. Don't try to analyze it, because the
3484      // resolution chosen here may differ from the resolution chosen in
3485      // other parts of the compiler.
3486      if (SA->getValue().uge(BitWidth))
3487        break;
3488
3489      Constant *X = ConstantInt::get(getContext(),
3490        APInt(BitWidth, 1).shl(SA->getZExtValue()));
3491      return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3492    }
3493    break;
3494
3495  case Instruction::AShr:
3496    // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3497    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
3498      if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
3499        if (L->getOpcode() == Instruction::Shl &&
3500            L->getOperand(1) == U->getOperand(1)) {
3501          uint64_t BitWidth = getTypeSizeInBits(U->getType());
3502
3503          // If the shift count is not less than the bitwidth, the result of
3504          // the shift is undefined. Don't try to analyze it, because the
3505          // resolution chosen here may differ from the resolution chosen in
3506          // other parts of the compiler.
3507          if (CI->getValue().uge(BitWidth))
3508            break;
3509
3510          uint64_t Amt = BitWidth - CI->getZExtValue();
3511          if (Amt == BitWidth)
3512            return getSCEV(L->getOperand(0));       // shift by zero --> noop
3513          return
3514            getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
3515                                              IntegerType::get(getContext(),
3516                                                               Amt)),
3517                              U->getType());
3518        }
3519    break;
3520
3521  case Instruction::Trunc:
3522    return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
3523
3524  case Instruction::ZExt:
3525    return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3526
3527  case Instruction::SExt:
3528    return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3529
3530  case Instruction::BitCast:
3531    // BitCasts are no-op casts so we just eliminate the cast.
3532    if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
3533      return getSCEV(U->getOperand(0));
3534    break;
3535
3536  // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3537  // lead to pointer expressions which cannot safely be expanded to GEPs,
3538  // because ScalarEvolution doesn't respect the GEP aliasing rules when
3539  // simplifying integer expressions.
3540
3541  case Instruction::GetElementPtr:
3542    return createNodeForGEP(cast<GEPOperator>(U));
3543
3544  case Instruction::PHI:
3545    return createNodeForPHI(cast<PHINode>(U));
3546
3547  case Instruction::Select:
3548    // This could be a smax or umax that was lowered earlier.
3549    // Try to recover it.
3550    if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3551      Value *LHS = ICI->getOperand(0);
3552      Value *RHS = ICI->getOperand(1);
3553      switch (ICI->getPredicate()) {
3554      case ICmpInst::ICMP_SLT:
3555      case ICmpInst::ICMP_SLE:
3556        std::swap(LHS, RHS);
3557        // fall through
3558      case ICmpInst::ICMP_SGT:
3559      case ICmpInst::ICMP_SGE:
3560        // a >s b ? a+x : b+x  ->  smax(a, b)+x
3561        // a >s b ? b+x : a+x  ->  smin(a, b)+x
3562        if (LHS->getType() == U->getType()) {
3563          const SCEV *LS = getSCEV(LHS);
3564          const SCEV *RS = getSCEV(RHS);
3565          const SCEV *LA = getSCEV(U->getOperand(1));
3566          const SCEV *RA = getSCEV(U->getOperand(2));
3567          const SCEV *LDiff = getMinusSCEV(LA, LS);
3568          const SCEV *RDiff = getMinusSCEV(RA, RS);
3569          if (LDiff == RDiff)
3570            return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3571          LDiff = getMinusSCEV(LA, RS);
3572          RDiff = getMinusSCEV(RA, LS);
3573          if (LDiff == RDiff)
3574            return getAddExpr(getSMinExpr(LS, RS), LDiff);
3575        }
3576        break;
3577      case ICmpInst::ICMP_ULT:
3578      case ICmpInst::ICMP_ULE:
3579        std::swap(LHS, RHS);
3580        // fall through
3581      case ICmpInst::ICMP_UGT:
3582      case ICmpInst::ICMP_UGE:
3583        // a >u b ? a+x : b+x  ->  umax(a, b)+x
3584        // a >u b ? b+x : a+x  ->  umin(a, b)+x
3585        if (LHS->getType() == U->getType()) {
3586          const SCEV *LS = getSCEV(LHS);
3587          const SCEV *RS = getSCEV(RHS);
3588          const SCEV *LA = getSCEV(U->getOperand(1));
3589          const SCEV *RA = getSCEV(U->getOperand(2));
3590          const SCEV *LDiff = getMinusSCEV(LA, LS);
3591          const SCEV *RDiff = getMinusSCEV(RA, RS);
3592          if (LDiff == RDiff)
3593            return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3594          LDiff = getMinusSCEV(LA, RS);
3595          RDiff = getMinusSCEV(RA, LS);
3596          if (LDiff == RDiff)
3597            return getAddExpr(getUMinExpr(LS, RS), LDiff);
3598        }
3599        break;
3600      case ICmpInst::ICMP_NE:
3601        // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
3602        if (LHS->getType() == U->getType() &&
3603            isa<ConstantInt>(RHS) &&
3604            cast<ConstantInt>(RHS)->isZero()) {
3605          const SCEV *One = getConstant(LHS->getType(), 1);
3606          const SCEV *LS = getSCEV(LHS);
3607          const SCEV *LA = getSCEV(U->getOperand(1));
3608          const SCEV *RA = getSCEV(U->getOperand(2));
3609          const SCEV *LDiff = getMinusSCEV(LA, LS);
3610          const SCEV *RDiff = getMinusSCEV(RA, One);
3611          if (LDiff == RDiff)
3612            return getAddExpr(getUMaxExpr(One, LS), LDiff);
3613        }
3614        break;
3615      case ICmpInst::ICMP_EQ:
3616        // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
3617        if (LHS->getType() == U->getType() &&
3618            isa<ConstantInt>(RHS) &&
3619            cast<ConstantInt>(RHS)->isZero()) {
3620          const SCEV *One = getConstant(LHS->getType(), 1);
3621          const SCEV *LS = getSCEV(LHS);
3622          const SCEV *LA = getSCEV(U->getOperand(1));
3623          const SCEV *RA = getSCEV(U->getOperand(2));
3624          const SCEV *LDiff = getMinusSCEV(LA, One);
3625          const SCEV *RDiff = getMinusSCEV(RA, LS);
3626          if (LDiff == RDiff)
3627            return getAddExpr(getUMaxExpr(One, LS), LDiff);
3628        }
3629        break;
3630      default:
3631        break;
3632      }
3633    }
3634
3635  default: // We cannot analyze this expression.
3636    break;
3637  }
3638
3639  return getUnknown(V);
3640}
3641
3642
3643
3644//===----------------------------------------------------------------------===//
3645//                   Iteration Count Computation Code
3646//
3647
3648/// getBackedgeTakenCount - If the specified loop has a predictable
3649/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3650/// object. The backedge-taken count is the number of times the loop header
3651/// will be branched to from within the loop. This is one less than the
3652/// trip count of the loop, since it doesn't count the first iteration,
3653/// when the header is branched to from outside the loop.
3654///
3655/// Note that it is not valid to call this method on a loop without a
3656/// loop-invariant backedge-taken count (see
3657/// hasLoopInvariantBackedgeTakenCount).
3658///
3659const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
3660  return getBackedgeTakenInfo(L).Exact;
3661}
3662
3663/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3664/// return the least SCEV value that is known never to be less than the
3665/// actual backedge taken count.
3666const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
3667  return getBackedgeTakenInfo(L).Max;
3668}
3669
3670/// PushLoopPHIs - Push PHI nodes in the header of the given loop
3671/// onto the given Worklist.
3672static void
3673PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
3674  BasicBlock *Header = L->getHeader();
3675
3676  // Push all Loop-header PHIs onto the Worklist stack.
3677  for (BasicBlock::iterator I = Header->begin();
3678       PHINode *PN = dyn_cast<PHINode>(I); ++I)
3679    Worklist.push_back(PN);
3680}
3681
3682const ScalarEvolution::BackedgeTakenInfo &
3683ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
3684  // Initially insert a CouldNotCompute for this loop. If the insertion
3685  // succeeds, proceed to actually compute a backedge-taken count and
3686  // update the value. The temporary CouldNotCompute value tells SCEV
3687  // code elsewhere that it shouldn't attempt to request a new
3688  // backedge-taken count, which could result in infinite recursion.
3689  std::pair<std::map<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
3690    BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
3691  if (Pair.second) {
3692    BackedgeTakenInfo BECount = ComputeBackedgeTakenCount(L);
3693    if (BECount.Exact != getCouldNotCompute()) {
3694      assert(BECount.Exact->isLoopInvariant(L) &&
3695             BECount.Max->isLoopInvariant(L) &&
3696             "Computed backedge-taken count isn't loop invariant for loop!");
3697      ++NumTripCountsComputed;
3698
3699      // Update the value in the map.
3700      Pair.first->second = BECount;
3701    } else {
3702      if (BECount.Max != getCouldNotCompute())
3703        // Update the value in the map.
3704        Pair.first->second = BECount;
3705      if (isa<PHINode>(L->getHeader()->begin()))
3706        // Only count loops that have phi nodes as not being computable.
3707        ++NumTripCountsNotComputed;
3708    }
3709
3710    // Now that we know more about the trip count for this loop, forget any
3711    // existing SCEV values for PHI nodes in this loop since they are only
3712    // conservative estimates made without the benefit of trip count
3713    // information. This is similar to the code in forgetLoop, except that
3714    // it handles SCEVUnknown PHI nodes specially.
3715    if (BECount.hasAnyInfo()) {
3716      SmallVector<Instruction *, 16> Worklist;
3717      PushLoopPHIs(L, Worklist);
3718
3719      SmallPtrSet<Instruction *, 8> Visited;
3720      while (!Worklist.empty()) {
3721        Instruction *I = Worklist.pop_back_val();
3722        if (!Visited.insert(I)) continue;
3723
3724        std::map<SCEVCallbackVH, const SCEV *>::iterator It =
3725          Scalars.find(static_cast<Value *>(I));
3726        if (It != Scalars.end()) {
3727          // SCEVUnknown for a PHI either means that it has an unrecognized
3728          // structure, or it's a PHI that's in the progress of being computed
3729          // by createNodeForPHI.  In the former case, additional loop trip
3730          // count information isn't going to change anything. In the later
3731          // case, createNodeForPHI will perform the necessary updates on its
3732          // own when it gets to that point.
3733          if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) {
3734            ValuesAtScopes.erase(It->second);
3735            Scalars.erase(It);
3736          }
3737          if (PHINode *PN = dyn_cast<PHINode>(I))
3738            ConstantEvolutionLoopExitValue.erase(PN);
3739        }
3740
3741        PushDefUseChildren(I, Worklist);
3742      }
3743    }
3744  }
3745  return Pair.first->second;
3746}
3747
3748/// forgetLoop - This method should be called by the client when it has
3749/// changed a loop in a way that may effect ScalarEvolution's ability to
3750/// compute a trip count, or if the loop is deleted.
3751void ScalarEvolution::forgetLoop(const Loop *L) {
3752  // Drop any stored trip count value.
3753  BackedgeTakenCounts.erase(L);
3754
3755  // Drop information about expressions based on loop-header PHIs.
3756  SmallVector<Instruction *, 16> Worklist;
3757  PushLoopPHIs(L, Worklist);
3758
3759  SmallPtrSet<Instruction *, 8> Visited;
3760  while (!Worklist.empty()) {
3761    Instruction *I = Worklist.pop_back_val();
3762    if (!Visited.insert(I)) continue;
3763
3764    std::map<SCEVCallbackVH, const SCEV *>::iterator It =
3765      Scalars.find(static_cast<Value *>(I));
3766    if (It != Scalars.end()) {
3767      ValuesAtScopes.erase(It->second);
3768      Scalars.erase(It);
3769      if (PHINode *PN = dyn_cast<PHINode>(I))
3770        ConstantEvolutionLoopExitValue.erase(PN);
3771    }
3772
3773    PushDefUseChildren(I, Worklist);
3774  }
3775}
3776
3777/// forgetValue - This method should be called by the client when it has
3778/// changed a value in a way that may effect its value, or which may
3779/// disconnect it from a def-use chain linking it to a loop.
3780void ScalarEvolution::forgetValue(Value *V) {
3781  Instruction *I = dyn_cast<Instruction>(V);
3782  if (!I) return;
3783
3784  // Drop information about expressions based on loop-header PHIs.
3785  SmallVector<Instruction *, 16> Worklist;
3786  Worklist.push_back(I);
3787
3788  SmallPtrSet<Instruction *, 8> Visited;
3789  while (!Worklist.empty()) {
3790    I = Worklist.pop_back_val();
3791    if (!Visited.insert(I)) continue;
3792
3793    std::map<SCEVCallbackVH, const SCEV *>::iterator It =
3794      Scalars.find(static_cast<Value *>(I));
3795    if (It != Scalars.end()) {
3796      ValuesAtScopes.erase(It->second);
3797      Scalars.erase(It);
3798      if (PHINode *PN = dyn_cast<PHINode>(I))
3799        ConstantEvolutionLoopExitValue.erase(PN);
3800    }
3801
3802    PushDefUseChildren(I, Worklist);
3803  }
3804}
3805
3806/// ComputeBackedgeTakenCount - Compute the number of times the backedge
3807/// of the specified loop will execute.
3808ScalarEvolution::BackedgeTakenInfo
3809ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
3810  SmallVector<BasicBlock *, 8> ExitingBlocks;
3811  L->getExitingBlocks(ExitingBlocks);
3812
3813  // Examine all exits and pick the most conservative values.
3814  const SCEV *BECount = getCouldNotCompute();
3815  const SCEV *MaxBECount = getCouldNotCompute();
3816  bool CouldNotComputeBECount = false;
3817  for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
3818    BackedgeTakenInfo NewBTI =
3819      ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
3820
3821    if (NewBTI.Exact == getCouldNotCompute()) {
3822      // We couldn't compute an exact value for this exit, so
3823      // we won't be able to compute an exact value for the loop.
3824      CouldNotComputeBECount = true;
3825      BECount = getCouldNotCompute();
3826    } else if (!CouldNotComputeBECount) {
3827      if (BECount == getCouldNotCompute())
3828        BECount = NewBTI.Exact;
3829      else
3830        BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
3831    }
3832    if (MaxBECount == getCouldNotCompute())
3833      MaxBECount = NewBTI.Max;
3834    else if (NewBTI.Max != getCouldNotCompute())
3835      MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
3836  }
3837
3838  return BackedgeTakenInfo(BECount, MaxBECount);
3839}
3840
3841/// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
3842/// of the specified loop will execute if it exits via the specified block.
3843ScalarEvolution::BackedgeTakenInfo
3844ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
3845                                                   BasicBlock *ExitingBlock) {
3846
3847  // Okay, we've chosen an exiting block.  See what condition causes us to
3848  // exit at this block.
3849  //
3850  // FIXME: we should be able to handle switch instructions (with a single exit)
3851  BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
3852  if (ExitBr == 0) return getCouldNotCompute();
3853  assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
3854
3855  // At this point, we know we have a conditional branch that determines whether
3856  // the loop is exited.  However, we don't know if the branch is executed each
3857  // time through the loop.  If not, then the execution count of the branch will
3858  // not be equal to the trip count of the loop.
3859  //
3860  // Currently we check for this by checking to see if the Exit branch goes to
3861  // the loop header.  If so, we know it will always execute the same number of
3862  // times as the loop.  We also handle the case where the exit block *is* the
3863  // loop header.  This is common for un-rotated loops.
3864  //
3865  // If both of those tests fail, walk up the unique predecessor chain to the
3866  // header, stopping if there is an edge that doesn't exit the loop. If the
3867  // header is reached, the execution count of the branch will be equal to the
3868  // trip count of the loop.
3869  //
3870  //  More extensive analysis could be done to handle more cases here.
3871  //
3872  if (ExitBr->getSuccessor(0) != L->getHeader() &&
3873      ExitBr->getSuccessor(1) != L->getHeader() &&
3874      ExitBr->getParent() != L->getHeader()) {
3875    // The simple checks failed, try climbing the unique predecessor chain
3876    // up to the header.
3877    bool Ok = false;
3878    for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
3879      BasicBlock *Pred = BB->getUniquePredecessor();
3880      if (!Pred)
3881        return getCouldNotCompute();
3882      TerminatorInst *PredTerm = Pred->getTerminator();
3883      for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
3884        BasicBlock *PredSucc = PredTerm->getSuccessor(i);
3885        if (PredSucc == BB)
3886          continue;
3887        // If the predecessor has a successor that isn't BB and isn't
3888        // outside the loop, assume the worst.
3889        if (L->contains(PredSucc))
3890          return getCouldNotCompute();
3891      }
3892      if (Pred == L->getHeader()) {
3893        Ok = true;
3894        break;
3895      }
3896      BB = Pred;
3897    }
3898    if (!Ok)
3899      return getCouldNotCompute();
3900  }
3901
3902  // Proceed to the next level to examine the exit condition expression.
3903  return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
3904                                               ExitBr->getSuccessor(0),
3905                                               ExitBr->getSuccessor(1));
3906}
3907
3908/// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
3909/// backedge of the specified loop will execute if its exit condition
3910/// were a conditional branch of ExitCond, TBB, and FBB.
3911ScalarEvolution::BackedgeTakenInfo
3912ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
3913                                                       Value *ExitCond,
3914                                                       BasicBlock *TBB,
3915                                                       BasicBlock *FBB) {
3916  // Check if the controlling expression for this loop is an And or Or.
3917  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
3918    if (BO->getOpcode() == Instruction::And) {
3919      // Recurse on the operands of the and.
3920      BackedgeTakenInfo BTI0 =
3921        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3922      BackedgeTakenInfo BTI1 =
3923        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
3924      const SCEV *BECount = getCouldNotCompute();
3925      const SCEV *MaxBECount = getCouldNotCompute();
3926      if (L->contains(TBB)) {
3927        // Both conditions must be true for the loop to continue executing.
3928        // Choose the less conservative count.
3929        if (BTI0.Exact == getCouldNotCompute() ||
3930            BTI1.Exact == getCouldNotCompute())
3931          BECount = getCouldNotCompute();
3932        else
3933          BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3934        if (BTI0.Max == getCouldNotCompute())
3935          MaxBECount = BTI1.Max;
3936        else if (BTI1.Max == getCouldNotCompute())
3937          MaxBECount = BTI0.Max;
3938        else
3939          MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
3940      } else {
3941        // Both conditions must be true at the same time for the loop to exit.
3942        // For now, be conservative.
3943        assert(L->contains(FBB) && "Loop block has no successor in loop!");
3944        if (BTI0.Max == BTI1.Max)
3945          MaxBECount = BTI0.Max;
3946        if (BTI0.Exact == BTI1.Exact)
3947          BECount = BTI0.Exact;
3948      }
3949
3950      return BackedgeTakenInfo(BECount, MaxBECount);
3951    }
3952    if (BO->getOpcode() == Instruction::Or) {
3953      // Recurse on the operands of the or.
3954      BackedgeTakenInfo BTI0 =
3955        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3956      BackedgeTakenInfo BTI1 =
3957        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
3958      const SCEV *BECount = getCouldNotCompute();
3959      const SCEV *MaxBECount = getCouldNotCompute();
3960      if (L->contains(FBB)) {
3961        // Both conditions must be false for the loop to continue executing.
3962        // Choose the less conservative count.
3963        if (BTI0.Exact == getCouldNotCompute() ||
3964            BTI1.Exact == getCouldNotCompute())
3965          BECount = getCouldNotCompute();
3966        else
3967          BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3968        if (BTI0.Max == getCouldNotCompute())
3969          MaxBECount = BTI1.Max;
3970        else if (BTI1.Max == getCouldNotCompute())
3971          MaxBECount = BTI0.Max;
3972        else
3973          MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
3974      } else {
3975        // Both conditions must be false at the same time for the loop to exit.
3976        // For now, be conservative.
3977        assert(L->contains(TBB) && "Loop block has no successor in loop!");
3978        if (BTI0.Max == BTI1.Max)
3979          MaxBECount = BTI0.Max;
3980        if (BTI0.Exact == BTI1.Exact)
3981          BECount = BTI0.Exact;
3982      }
3983
3984      return BackedgeTakenInfo(BECount, MaxBECount);
3985    }
3986  }
3987
3988  // With an icmp, it may be feasible to compute an exact backedge-taken count.
3989  // Proceed to the next level to examine the icmp.
3990  if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
3991    return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
3992
3993  // Check for a constant condition. These are normally stripped out by
3994  // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
3995  // preserve the CFG and is temporarily leaving constant conditions
3996  // in place.
3997  if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
3998    if (L->contains(FBB) == !CI->getZExtValue())
3999      // The backedge is always taken.
4000      return getCouldNotCompute();
4001    else
4002      // The backedge is never taken.
4003      return getConstant(CI->getType(), 0);
4004  }
4005
4006  // If it's not an integer or pointer comparison then compute it the hard way.
4007  return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
4008}
4009
4010/// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
4011/// backedge of the specified loop will execute if its exit condition
4012/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
4013ScalarEvolution::BackedgeTakenInfo
4014ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
4015                                                           ICmpInst *ExitCond,
4016                                                           BasicBlock *TBB,
4017                                                           BasicBlock *FBB) {
4018
4019  // If the condition was exit on true, convert the condition to exit on false
4020  ICmpInst::Predicate Cond;
4021  if (!L->contains(FBB))
4022    Cond = ExitCond->getPredicate();
4023  else
4024    Cond = ExitCond->getInversePredicate();
4025
4026  // Handle common loops like: for (X = "string"; *X; ++X)
4027  if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
4028    if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
4029      BackedgeTakenInfo ItCnt =
4030        ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
4031      if (ItCnt.hasAnyInfo())
4032        return ItCnt;
4033    }
4034
4035  const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
4036  const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
4037
4038  // Try to evaluate any dependencies out of the loop.
4039  LHS = getSCEVAtScope(LHS, L);
4040  RHS = getSCEVAtScope(RHS, L);
4041
4042  // At this point, we would like to compute how many iterations of the
4043  // loop the predicate will return true for these inputs.
4044  if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
4045    // If there is a loop-invariant, force it into the RHS.
4046    std::swap(LHS, RHS);
4047    Cond = ICmpInst::getSwappedPredicate(Cond);
4048  }
4049
4050  // Simplify the operands before analyzing them.
4051  (void)SimplifyICmpOperands(Cond, LHS, RHS);
4052
4053  // If we have a comparison of a chrec against a constant, try to use value
4054  // ranges to answer this query.
4055  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
4056    if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
4057      if (AddRec->getLoop() == L) {
4058        // Form the constant range.
4059        ConstantRange CompRange(
4060            ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
4061
4062        const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
4063        if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
4064      }
4065
4066  switch (Cond) {
4067  case ICmpInst::ICMP_NE: {                     // while (X != Y)
4068    // Convert to: while (X-Y != 0)
4069    BackedgeTakenInfo BTI = HowFarToZero(getMinusSCEV(LHS, RHS), L);
4070    if (BTI.hasAnyInfo()) return BTI;
4071    break;
4072  }
4073  case ICmpInst::ICMP_EQ: {                     // while (X == Y)
4074    // Convert to: while (X-Y == 0)
4075    BackedgeTakenInfo BTI = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
4076    if (BTI.hasAnyInfo()) return BTI;
4077    break;
4078  }
4079  case ICmpInst::ICMP_SLT: {
4080    BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
4081    if (BTI.hasAnyInfo()) return BTI;
4082    break;
4083  }
4084  case ICmpInst::ICMP_SGT: {
4085    BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
4086                                             getNotSCEV(RHS), L, true);
4087    if (BTI.hasAnyInfo()) return BTI;
4088    break;
4089  }
4090  case ICmpInst::ICMP_ULT: {
4091    BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
4092    if (BTI.hasAnyInfo()) return BTI;
4093    break;
4094  }
4095  case ICmpInst::ICMP_UGT: {
4096    BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
4097                                             getNotSCEV(RHS), L, false);
4098    if (BTI.hasAnyInfo()) return BTI;
4099    break;
4100  }
4101  default:
4102#if 0
4103    dbgs() << "ComputeBackedgeTakenCount ";
4104    if (ExitCond->getOperand(0)->getType()->isUnsigned())
4105      dbgs() << "[unsigned] ";
4106    dbgs() << *LHS << "   "
4107         << Instruction::getOpcodeName(Instruction::ICmp)
4108         << "   " << *RHS << "\n";
4109#endif
4110    break;
4111  }
4112  return
4113    ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
4114}
4115
4116static ConstantInt *
4117EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4118                                ScalarEvolution &SE) {
4119  const SCEV *InVal = SE.getConstant(C);
4120  const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
4121  assert(isa<SCEVConstant>(Val) &&
4122         "Evaluation of SCEV at constant didn't fold correctly?");
4123  return cast<SCEVConstant>(Val)->getValue();
4124}
4125
4126/// GetAddressedElementFromGlobal - Given a global variable with an initializer
4127/// and a GEP expression (missing the pointer index) indexing into it, return
4128/// the addressed element of the initializer or null if the index expression is
4129/// invalid.
4130static Constant *
4131GetAddressedElementFromGlobal(GlobalVariable *GV,
4132                              const std::vector<ConstantInt*> &Indices) {
4133  Constant *Init = GV->getInitializer();
4134  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
4135    uint64_t Idx = Indices[i]->getZExtValue();
4136    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
4137      assert(Idx < CS->getNumOperands() && "Bad struct index!");
4138      Init = cast<Constant>(CS->getOperand(Idx));
4139    } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
4140      if (Idx >= CA->getNumOperands()) return 0;  // Bogus program
4141      Init = cast<Constant>(CA->getOperand(Idx));
4142    } else if (isa<ConstantAggregateZero>(Init)) {
4143      if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
4144        assert(Idx < STy->getNumElements() && "Bad struct index!");
4145        Init = Constant::getNullValue(STy->getElementType(Idx));
4146      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
4147        if (Idx >= ATy->getNumElements()) return 0;  // Bogus program
4148        Init = Constant::getNullValue(ATy->getElementType());
4149      } else {
4150        llvm_unreachable("Unknown constant aggregate type!");
4151      }
4152      return 0;
4153    } else {
4154      return 0; // Unknown initializer type
4155    }
4156  }
4157  return Init;
4158}
4159
4160/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
4161/// 'icmp op load X, cst', try to see if we can compute the backedge
4162/// execution count.
4163ScalarEvolution::BackedgeTakenInfo
4164ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
4165                                                LoadInst *LI,
4166                                                Constant *RHS,
4167                                                const Loop *L,
4168                                                ICmpInst::Predicate predicate) {
4169  if (LI->isVolatile()) return getCouldNotCompute();
4170
4171  // Check to see if the loaded pointer is a getelementptr of a global.
4172  // TODO: Use SCEV instead of manually grubbing with GEPs.
4173  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
4174  if (!GEP) return getCouldNotCompute();
4175
4176  // Make sure that it is really a constant global we are gepping, with an
4177  // initializer, and make sure the first IDX is really 0.
4178  GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
4179  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
4180      GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4181      !cast<Constant>(GEP->getOperand(1))->isNullValue())
4182    return getCouldNotCompute();
4183
4184  // Okay, we allow one non-constant index into the GEP instruction.
4185  Value *VarIdx = 0;
4186  std::vector<ConstantInt*> Indexes;
4187  unsigned VarIdxNum = 0;
4188  for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4189    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4190      Indexes.push_back(CI);
4191    } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
4192      if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
4193      VarIdx = GEP->getOperand(i);
4194      VarIdxNum = i-2;
4195      Indexes.push_back(0);
4196    }
4197
4198  // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4199  // Check to see if X is a loop variant variable value now.
4200  const SCEV *Idx = getSCEV(VarIdx);
4201  Idx = getSCEVAtScope(Idx, L);
4202
4203  // We can only recognize very limited forms of loop index expressions, in
4204  // particular, only affine AddRec's like {C1,+,C2}.
4205  const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
4206  if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
4207      !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4208      !isa<SCEVConstant>(IdxExpr->getOperand(1)))
4209    return getCouldNotCompute();
4210
4211  unsigned MaxSteps = MaxBruteForceIterations;
4212  for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
4213    ConstantInt *ItCst = ConstantInt::get(
4214                           cast<IntegerType>(IdxExpr->getType()), IterationNum);
4215    ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
4216
4217    // Form the GEP offset.
4218    Indexes[VarIdxNum] = Val;
4219
4220    Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
4221    if (Result == 0) break;  // Cannot compute!
4222
4223    // Evaluate the condition for this iteration.
4224    Result = ConstantExpr::getICmp(predicate, Result, RHS);
4225    if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
4226    if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
4227#if 0
4228      dbgs() << "\n***\n*** Computed loop count " << *ItCst
4229             << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4230             << "***\n";
4231#endif
4232      ++NumArrayLenItCounts;
4233      return getConstant(ItCst);   // Found terminating iteration!
4234    }
4235  }
4236  return getCouldNotCompute();
4237}
4238
4239
4240/// CanConstantFold - Return true if we can constant fold an instruction of the
4241/// specified type, assuming that all operands were constants.
4242static bool CanConstantFold(const Instruction *I) {
4243  if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
4244      isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
4245    return true;
4246
4247  if (const CallInst *CI = dyn_cast<CallInst>(I))
4248    if (const Function *F = CI->getCalledFunction())
4249      return canConstantFoldCallTo(F);
4250  return false;
4251}
4252
4253/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4254/// in the loop that V is derived from.  We allow arbitrary operations along the
4255/// way, but the operands of an operation must either be constants or a value
4256/// derived from a constant PHI.  If this expression does not fit with these
4257/// constraints, return null.
4258static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
4259  // If this is not an instruction, or if this is an instruction outside of the
4260  // loop, it can't be derived from a loop PHI.
4261  Instruction *I = dyn_cast<Instruction>(V);
4262  if (I == 0 || !L->contains(I)) return 0;
4263
4264  if (PHINode *PN = dyn_cast<PHINode>(I)) {
4265    if (L->getHeader() == I->getParent())
4266      return PN;
4267    else
4268      // We don't currently keep track of the control flow needed to evaluate
4269      // PHIs, so we cannot handle PHIs inside of loops.
4270      return 0;
4271  }
4272
4273  // If we won't be able to constant fold this expression even if the operands
4274  // are constants, return early.
4275  if (!CanConstantFold(I)) return 0;
4276
4277  // Otherwise, we can evaluate this instruction if all of its operands are
4278  // constant or derived from a PHI node themselves.
4279  PHINode *PHI = 0;
4280  for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
4281    if (!isa<Constant>(I->getOperand(Op))) {
4282      PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
4283      if (P == 0) return 0;  // Not evolving from PHI
4284      if (PHI == 0)
4285        PHI = P;
4286      else if (PHI != P)
4287        return 0;  // Evolving from multiple different PHIs.
4288    }
4289
4290  // This is a expression evolving from a constant PHI!
4291  return PHI;
4292}
4293
4294/// EvaluateExpression - Given an expression that passes the
4295/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4296/// in the loop has the value PHIVal.  If we can't fold this expression for some
4297/// reason, return null.
4298static Constant *EvaluateExpression(Value *V, Constant *PHIVal,
4299                                    const TargetData *TD) {
4300  if (isa<PHINode>(V)) return PHIVal;
4301  if (Constant *C = dyn_cast<Constant>(V)) return C;
4302  Instruction *I = cast<Instruction>(V);
4303
4304  std::vector<Constant*> Operands(I->getNumOperands());
4305
4306  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4307    Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD);
4308    if (Operands[i] == 0) return 0;
4309  }
4310
4311  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4312    return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
4313                                           Operands[1], TD);
4314  return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
4315                                  &Operands[0], Operands.size(), TD);
4316}
4317
4318/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4319/// in the header of its containing loop, we know the loop executes a
4320/// constant number of times, and the PHI node is just a recurrence
4321/// involving constants, fold it.
4322Constant *
4323ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
4324                                                   const APInt &BEs,
4325                                                   const Loop *L) {
4326  std::map<PHINode*, Constant*>::const_iterator I =
4327    ConstantEvolutionLoopExitValue.find(PN);
4328  if (I != ConstantEvolutionLoopExitValue.end())
4329    return I->second;
4330
4331  if (BEs.ugt(MaxBruteForceIterations))
4332    return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.
4333
4334  Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4335
4336  // Since the loop is canonicalized, the PHI node must have two entries.  One
4337  // entry must be a constant (coming in from outside of the loop), and the
4338  // second must be derived from the same PHI.
4339  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4340  Constant *StartCST =
4341    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4342  if (StartCST == 0)
4343    return RetVal = 0;  // Must be a constant.
4344
4345  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
4346  if (getConstantEvolvingPHI(BEValue, L) != PN &&
4347      !isa<Constant>(BEValue))
4348    return RetVal = 0;  // Not derived from same PHI.
4349
4350  // Execute the loop symbolically to determine the exit value.
4351  if (BEs.getActiveBits() >= 32)
4352    return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
4353
4354  unsigned NumIterations = BEs.getZExtValue(); // must be in range
4355  unsigned IterationNum = 0;
4356  for (Constant *PHIVal = StartCST; ; ++IterationNum) {
4357    if (IterationNum == NumIterations)
4358      return RetVal = PHIVal;  // Got exit value!
4359
4360    // Compute the value of the PHI node for the next iteration.
4361    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
4362    if (NextPHI == PHIVal)
4363      return RetVal = NextPHI;  // Stopped evolving!
4364    if (NextPHI == 0)
4365      return 0;        // Couldn't evaluate!
4366    PHIVal = NextPHI;
4367  }
4368}
4369
4370/// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a
4371/// constant number of times (the condition evolves only from constants),
4372/// try to evaluate a few iterations of the loop until we get the exit
4373/// condition gets a value of ExitWhen (true or false).  If we cannot
4374/// evaluate the trip count of the loop, return getCouldNotCompute().
4375const SCEV *
4376ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
4377                                                       Value *Cond,
4378                                                       bool ExitWhen) {
4379  PHINode *PN = getConstantEvolvingPHI(Cond, L);
4380  if (PN == 0) return getCouldNotCompute();
4381
4382  // If the loop is canonicalized, the PHI will have exactly two entries.
4383  // That's the only form we support here.
4384  if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
4385
4386  // One entry must be a constant (coming in from outside of the loop), and the
4387  // second must be derived from the same PHI.
4388  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4389  Constant *StartCST =
4390    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4391  if (StartCST == 0) return getCouldNotCompute();  // Must be a constant.
4392
4393  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
4394  if (getConstantEvolvingPHI(BEValue, L) != PN &&
4395      !isa<Constant>(BEValue))
4396    return getCouldNotCompute();  // Not derived from same PHI.
4397
4398  // Okay, we find a PHI node that defines the trip count of this loop.  Execute
4399  // the loop symbolically to determine when the condition gets a value of
4400  // "ExitWhen".
4401  unsigned IterationNum = 0;
4402  unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
4403  for (Constant *PHIVal = StartCST;
4404       IterationNum != MaxIterations; ++IterationNum) {
4405    ConstantInt *CondVal =
4406      dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD));
4407
4408    // Couldn't symbolically evaluate.
4409    if (!CondVal) return getCouldNotCompute();
4410
4411    if (CondVal->getValue() == uint64_t(ExitWhen)) {
4412      ++NumBruteForceTripCountsComputed;
4413      return getConstant(Type::getInt32Ty(getContext()), IterationNum);
4414    }
4415
4416    // Compute the value of the PHI node for the next iteration.
4417    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
4418    if (NextPHI == 0 || NextPHI == PHIVal)
4419      return getCouldNotCompute();// Couldn't evaluate or not making progress...
4420    PHIVal = NextPHI;
4421  }
4422
4423  // Too many iterations were needed to evaluate.
4424  return getCouldNotCompute();
4425}
4426
4427/// getSCEVAtScope - Return a SCEV expression for the specified value
4428/// at the specified scope in the program.  The L value specifies a loop
4429/// nest to evaluate the expression at, where null is the top-level or a
4430/// specified loop is immediately inside of the loop.
4431///
4432/// This method can be used to compute the exit value for a variable defined
4433/// in a loop by querying what the value will hold in the parent loop.
4434///
4435/// In the case that a relevant loop exit value cannot be computed, the
4436/// original value V is returned.
4437const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
4438  // Check to see if we've folded this expression at this loop before.
4439  std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
4440  std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
4441    Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
4442  if (!Pair.second)
4443    return Pair.first->second ? Pair.first->second : V;
4444
4445  // Otherwise compute it.
4446  const SCEV *C = computeSCEVAtScope(V, L);
4447  ValuesAtScopes[V][L] = C;
4448  return C;
4449}
4450
4451const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
4452  if (isa<SCEVConstant>(V)) return V;
4453
4454  // If this instruction is evolved from a constant-evolving PHI, compute the
4455  // exit value from the loop without using SCEVs.
4456  if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
4457    if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
4458      const Loop *LI = (*this->LI)[I->getParent()];
4459      if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
4460        if (PHINode *PN = dyn_cast<PHINode>(I))
4461          if (PN->getParent() == LI->getHeader()) {
4462            // Okay, there is no closed form solution for the PHI node.  Check
4463            // to see if the loop that contains it has a known backedge-taken
4464            // count.  If so, we may be able to force computation of the exit
4465            // value.
4466            const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
4467            if (const SCEVConstant *BTCC =
4468                  dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
4469              // Okay, we know how many times the containing loop executes.  If
4470              // this is a constant evolving PHI node, get the final value at
4471              // the specified iteration number.
4472              Constant *RV = getConstantEvolutionLoopExitValue(PN,
4473                                                   BTCC->getValue()->getValue(),
4474                                                               LI);
4475              if (RV) return getSCEV(RV);
4476            }
4477          }
4478
4479      // Okay, this is an expression that we cannot symbolically evaluate
4480      // into a SCEV.  Check to see if it's possible to symbolically evaluate
4481      // the arguments into constants, and if so, try to constant propagate the
4482      // result.  This is particularly useful for computing loop exit values.
4483      if (CanConstantFold(I)) {
4484        SmallVector<Constant *, 4> Operands;
4485        bool MadeImprovement = false;
4486        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4487          Value *Op = I->getOperand(i);
4488          if (Constant *C = dyn_cast<Constant>(Op)) {
4489            Operands.push_back(C);
4490            continue;
4491          }
4492
4493          // If any of the operands is non-constant and if they are
4494          // non-integer and non-pointer, don't even try to analyze them
4495          // with scev techniques.
4496          if (!isSCEVable(Op->getType()))
4497            return V;
4498
4499          const SCEV *OrigV = getSCEV(Op);
4500          const SCEV *OpV = getSCEVAtScope(OrigV, L);
4501          MadeImprovement |= OrigV != OpV;
4502
4503          Constant *C = 0;
4504          if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
4505            C = SC->getValue();
4506          if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV))
4507            C = dyn_cast<Constant>(SU->getValue());
4508          if (!C) return V;
4509          if (C->getType() != Op->getType())
4510            C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4511                                                              Op->getType(),
4512                                                              false),
4513                                      C, Op->getType());
4514          Operands.push_back(C);
4515        }
4516
4517        // Check to see if getSCEVAtScope actually made an improvement.
4518        if (MadeImprovement) {
4519          Constant *C = 0;
4520          if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4521            C = ConstantFoldCompareInstOperands(CI->getPredicate(),
4522                                                Operands[0], Operands[1], TD);
4523          else
4524            C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
4525                                         &Operands[0], Operands.size(), TD);
4526          if (!C) return V;
4527          return getSCEV(C);
4528        }
4529      }
4530    }
4531
4532    // This is some other type of SCEVUnknown, just return it.
4533    return V;
4534  }
4535
4536  if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
4537    // Avoid performing the look-up in the common case where the specified
4538    // expression has no loop-variant portions.
4539    for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
4540      const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
4541      if (OpAtScope != Comm->getOperand(i)) {
4542        // Okay, at least one of these operands is loop variant but might be
4543        // foldable.  Build a new instance of the folded commutative expression.
4544        SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
4545                                            Comm->op_begin()+i);
4546        NewOps.push_back(OpAtScope);
4547
4548        for (++i; i != e; ++i) {
4549          OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
4550          NewOps.push_back(OpAtScope);
4551        }
4552        if (isa<SCEVAddExpr>(Comm))
4553          return getAddExpr(NewOps);
4554        if (isa<SCEVMulExpr>(Comm))
4555          return getMulExpr(NewOps);
4556        if (isa<SCEVSMaxExpr>(Comm))
4557          return getSMaxExpr(NewOps);
4558        if (isa<SCEVUMaxExpr>(Comm))
4559          return getUMaxExpr(NewOps);
4560        llvm_unreachable("Unknown commutative SCEV type!");
4561      }
4562    }
4563    // If we got here, all operands are loop invariant.
4564    return Comm;
4565  }
4566
4567  if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
4568    const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
4569    const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
4570    if (LHS == Div->getLHS() && RHS == Div->getRHS())
4571      return Div;   // must be loop invariant
4572    return getUDivExpr(LHS, RHS);
4573  }
4574
4575  // If this is a loop recurrence for a loop that does not contain L, then we
4576  // are dealing with the final value computed by the loop.
4577  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
4578    // First, attempt to evaluate each operand.
4579    // Avoid performing the look-up in the common case where the specified
4580    // expression has no loop-variant portions.
4581    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4582      const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
4583      if (OpAtScope == AddRec->getOperand(i))
4584        continue;
4585
4586      // Okay, at least one of these operands is loop variant but might be
4587      // foldable.  Build a new instance of the folded commutative expression.
4588      SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
4589                                          AddRec->op_begin()+i);
4590      NewOps.push_back(OpAtScope);
4591      for (++i; i != e; ++i)
4592        NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
4593
4594      AddRec = cast<SCEVAddRecExpr>(getAddRecExpr(NewOps, AddRec->getLoop()));
4595      break;
4596    }
4597
4598    // If the scope is outside the addrec's loop, evaluate it by using the
4599    // loop exit value of the addrec.
4600    if (!AddRec->getLoop()->contains(L)) {
4601      // To evaluate this recurrence, we need to know how many times the AddRec
4602      // loop iterates.  Compute this now.
4603      const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
4604      if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
4605
4606      // Then, evaluate the AddRec.
4607      return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
4608    }
4609
4610    return AddRec;
4611  }
4612
4613  if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
4614    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4615    if (Op == Cast->getOperand())
4616      return Cast;  // must be loop invariant
4617    return getZeroExtendExpr(Op, Cast->getType());
4618  }
4619
4620  if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
4621    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4622    if (Op == Cast->getOperand())
4623      return Cast;  // must be loop invariant
4624    return getSignExtendExpr(Op, Cast->getType());
4625  }
4626
4627  if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
4628    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4629    if (Op == Cast->getOperand())
4630      return Cast;  // must be loop invariant
4631    return getTruncateExpr(Op, Cast->getType());
4632  }
4633
4634  llvm_unreachable("Unknown SCEV type!");
4635  return 0;
4636}
4637
4638/// getSCEVAtScope - This is a convenience function which does
4639/// getSCEVAtScope(getSCEV(V), L).
4640const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
4641  return getSCEVAtScope(getSCEV(V), L);
4642}
4643
4644/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
4645/// following equation:
4646///
4647///     A * X = B (mod N)
4648///
4649/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
4650/// A and B isn't important.
4651///
4652/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
4653static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
4654                                               ScalarEvolution &SE) {
4655  uint32_t BW = A.getBitWidth();
4656  assert(BW == B.getBitWidth() && "Bit widths must be the same.");
4657  assert(A != 0 && "A must be non-zero.");
4658
4659  // 1. D = gcd(A, N)
4660  //
4661  // The gcd of A and N may have only one prime factor: 2. The number of
4662  // trailing zeros in A is its multiplicity
4663  uint32_t Mult2 = A.countTrailingZeros();
4664  // D = 2^Mult2
4665
4666  // 2. Check if B is divisible by D.
4667  //
4668  // B is divisible by D if and only if the multiplicity of prime factor 2 for B
4669  // is not less than multiplicity of this prime factor for D.
4670  if (B.countTrailingZeros() < Mult2)
4671    return SE.getCouldNotCompute();
4672
4673  // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
4674  // modulo (N / D).
4675  //
4676  // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
4677  // bit width during computations.
4678  APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
4679  APInt Mod(BW + 1, 0);
4680  Mod.set(BW - Mult2);  // Mod = N / D
4681  APInt I = AD.multiplicativeInverse(Mod);
4682
4683  // 4. Compute the minimum unsigned root of the equation:
4684  // I * (B / D) mod (N / D)
4685  APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
4686
4687  // The result is guaranteed to be less than 2^BW so we may truncate it to BW
4688  // bits.
4689  return SE.getConstant(Result.trunc(BW));
4690}
4691
4692/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
4693/// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
4694/// might be the same) or two SCEVCouldNotCompute objects.
4695///
4696static std::pair<const SCEV *,const SCEV *>
4697SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
4698  assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
4699  const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
4700  const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
4701  const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
4702
4703  // We currently can only solve this if the coefficients are constants.
4704  if (!LC || !MC || !NC) {
4705    const SCEV *CNC = SE.getCouldNotCompute();
4706    return std::make_pair(CNC, CNC);
4707  }
4708
4709  uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
4710  const APInt &L = LC->getValue()->getValue();
4711  const APInt &M = MC->getValue()->getValue();
4712  const APInt &N = NC->getValue()->getValue();
4713  APInt Two(BitWidth, 2);
4714  APInt Four(BitWidth, 4);
4715
4716  {
4717    using namespace APIntOps;
4718    const APInt& C = L;
4719    // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
4720    // The B coefficient is M-N/2
4721    APInt B(M);
4722    B -= sdiv(N,Two);
4723
4724    // The A coefficient is N/2
4725    APInt A(N.sdiv(Two));
4726
4727    // Compute the B^2-4ac term.
4728    APInt SqrtTerm(B);
4729    SqrtTerm *= B;
4730    SqrtTerm -= Four * (A * C);
4731
4732    // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
4733    // integer value or else APInt::sqrt() will assert.
4734    APInt SqrtVal(SqrtTerm.sqrt());
4735
4736    // Compute the two solutions for the quadratic formula.
4737    // The divisions must be performed as signed divisions.
4738    APInt NegB(-B);
4739    APInt TwoA( A << 1 );
4740    if (TwoA.isMinValue()) {
4741      const SCEV *CNC = SE.getCouldNotCompute();
4742      return std::make_pair(CNC, CNC);
4743    }
4744
4745    LLVMContext &Context = SE.getContext();
4746
4747    ConstantInt *Solution1 =
4748      ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
4749    ConstantInt *Solution2 =
4750      ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
4751
4752    return std::make_pair(SE.getConstant(Solution1),
4753                          SE.getConstant(Solution2));
4754    } // end APIntOps namespace
4755}
4756
4757/// HowFarToZero - Return the number of times a backedge comparing the specified
4758/// value to zero will execute.  If not computable, return CouldNotCompute.
4759ScalarEvolution::BackedgeTakenInfo
4760ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
4761  // If the value is a constant
4762  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
4763    // If the value is already zero, the branch will execute zero times.
4764    if (C->getValue()->isZero()) return C;
4765    return getCouldNotCompute();  // Otherwise it will loop infinitely.
4766  }
4767
4768  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
4769  if (!AddRec || AddRec->getLoop() != L)
4770    return getCouldNotCompute();
4771
4772  if (AddRec->isAffine()) {
4773    // If this is an affine expression, the execution count of this branch is
4774    // the minimum unsigned root of the following equation:
4775    //
4776    //     Start + Step*N = 0 (mod 2^BW)
4777    //
4778    // equivalent to:
4779    //
4780    //             Step*N = -Start (mod 2^BW)
4781    //
4782    // where BW is the common bit width of Start and Step.
4783
4784    // Get the initial value for the loop.
4785    const SCEV *Start = getSCEVAtScope(AddRec->getStart(),
4786                                       L->getParentLoop());
4787    const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1),
4788                                      L->getParentLoop());
4789
4790    if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
4791      // For now we handle only constant steps.
4792
4793      // First, handle unitary steps.
4794      if (StepC->getValue()->equalsInt(1))      // 1*N = -Start (mod 2^BW), so:
4795        return getNegativeSCEV(Start);          //   N = -Start (as unsigned)
4796      if (StepC->getValue()->isAllOnesValue())  // -1*N = -Start (mod 2^BW), so:
4797        return Start;                           //    N = Start (as unsigned)
4798
4799      // Then, try to solve the above equation provided that Start is constant.
4800      if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
4801        return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
4802                                            -StartC->getValue()->getValue(),
4803                                            *this);
4804    }
4805  } else if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
4806    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
4807    // the quadratic equation to solve it.
4808    std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec,
4809                                                                    *this);
4810    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4811    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
4812    if (R1) {
4813#if 0
4814      dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
4815             << "  sol#2: " << *R2 << "\n";
4816#endif
4817      // Pick the smallest positive root value.
4818      if (ConstantInt *CB =
4819          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
4820                                   R1->getValue(), R2->getValue()))) {
4821        if (CB->getZExtValue() == false)
4822          std::swap(R1, R2);   // R1 is the minimum root now.
4823
4824        // We can only use this value if the chrec ends up with an exact zero
4825        // value at this index.  When solving for "X*X != 5", for example, we
4826        // should not accept a root of 2.
4827        const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
4828        if (Val->isZero())
4829          return R1;  // We found a quadratic root!
4830      }
4831    }
4832  }
4833
4834  return getCouldNotCompute();
4835}
4836
4837/// HowFarToNonZero - Return the number of times a backedge checking the
4838/// specified value for nonzero will execute.  If not computable, return
4839/// CouldNotCompute
4840ScalarEvolution::BackedgeTakenInfo
4841ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
4842  // Loops that look like: while (X == 0) are very strange indeed.  We don't
4843  // handle them yet except for the trivial case.  This could be expanded in the
4844  // future as needed.
4845
4846  // If the value is a constant, check to see if it is known to be non-zero
4847  // already.  If so, the backedge will execute zero times.
4848  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
4849    if (!C->getValue()->isNullValue())
4850      return getConstant(C->getType(), 0);
4851    return getCouldNotCompute();  // Otherwise it will loop infinitely.
4852  }
4853
4854  // We could implement others, but I really doubt anyone writes loops like
4855  // this, and if they did, they would already be constant folded.
4856  return getCouldNotCompute();
4857}
4858
4859/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
4860/// (which may not be an immediate predecessor) which has exactly one
4861/// successor from which BB is reachable, or null if no such block is
4862/// found.
4863///
4864std::pair<BasicBlock *, BasicBlock *>
4865ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
4866  // If the block has a unique predecessor, then there is no path from the
4867  // predecessor to the block that does not go through the direct edge
4868  // from the predecessor to the block.
4869  if (BasicBlock *Pred = BB->getSinglePredecessor())
4870    return std::make_pair(Pred, BB);
4871
4872  // A loop's header is defined to be a block that dominates the loop.
4873  // If the header has a unique predecessor outside the loop, it must be
4874  // a block that has exactly one successor that can reach the loop.
4875  if (Loop *L = LI->getLoopFor(BB))
4876    return std::make_pair(L->getLoopPredecessor(), L->getHeader());
4877
4878  return std::pair<BasicBlock *, BasicBlock *>();
4879}
4880
4881/// HasSameValue - SCEV structural equivalence is usually sufficient for
4882/// testing whether two expressions are equal, however for the purposes of
4883/// looking for a condition guarding a loop, it can be useful to be a little
4884/// more general, since a front-end may have replicated the controlling
4885/// expression.
4886///
4887static bool HasSameValue(const SCEV *A, const SCEV *B) {
4888  // Quick check to see if they are the same SCEV.
4889  if (A == B) return true;
4890
4891  // Otherwise, if they're both SCEVUnknown, it's possible that they hold
4892  // two different instructions with the same value. Check for this case.
4893  if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
4894    if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
4895      if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
4896        if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
4897          if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
4898            return true;
4899
4900  // Otherwise assume they may have a different value.
4901  return false;
4902}
4903
4904/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
4905/// predicate Pred. Return true iff any changes were made.
4906///
4907bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
4908                                           const SCEV *&LHS, const SCEV *&RHS) {
4909  bool Changed = false;
4910
4911  // Canonicalize a constant to the right side.
4912  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
4913    // Check for both operands constant.
4914    if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
4915      if (ConstantExpr::getICmp(Pred,
4916                                LHSC->getValue(),
4917                                RHSC->getValue())->isNullValue())
4918        goto trivially_false;
4919      else
4920        goto trivially_true;
4921    }
4922    // Otherwise swap the operands to put the constant on the right.
4923    std::swap(LHS, RHS);
4924    Pred = ICmpInst::getSwappedPredicate(Pred);
4925    Changed = true;
4926  }
4927
4928  // If we're comparing an addrec with a value which is loop-invariant in the
4929  // addrec's loop, put the addrec on the left. Also make a dominance check,
4930  // as both operands could be addrecs loop-invariant in each other's loop.
4931  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
4932    const Loop *L = AR->getLoop();
4933    if (LHS->isLoopInvariant(L) && LHS->properlyDominates(L->getHeader(), DT)) {
4934      std::swap(LHS, RHS);
4935      Pred = ICmpInst::getSwappedPredicate(Pred);
4936      Changed = true;
4937    }
4938  }
4939
4940  // If there's a constant operand, canonicalize comparisons with boundary
4941  // cases, and canonicalize *-or-equal comparisons to regular comparisons.
4942  if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
4943    const APInt &RA = RC->getValue()->getValue();
4944    switch (Pred) {
4945    default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4946    case ICmpInst::ICMP_EQ:
4947    case ICmpInst::ICMP_NE:
4948      break;
4949    case ICmpInst::ICMP_UGE:
4950      if ((RA - 1).isMinValue()) {
4951        Pred = ICmpInst::ICMP_NE;
4952        RHS = getConstant(RA - 1);
4953        Changed = true;
4954        break;
4955      }
4956      if (RA.isMaxValue()) {
4957        Pred = ICmpInst::ICMP_EQ;
4958        Changed = true;
4959        break;
4960      }
4961      if (RA.isMinValue()) goto trivially_true;
4962
4963      Pred = ICmpInst::ICMP_UGT;
4964      RHS = getConstant(RA - 1);
4965      Changed = true;
4966      break;
4967    case ICmpInst::ICMP_ULE:
4968      if ((RA + 1).isMaxValue()) {
4969        Pred = ICmpInst::ICMP_NE;
4970        RHS = getConstant(RA + 1);
4971        Changed = true;
4972        break;
4973      }
4974      if (RA.isMinValue()) {
4975        Pred = ICmpInst::ICMP_EQ;
4976        Changed = true;
4977        break;
4978      }
4979      if (RA.isMaxValue()) goto trivially_true;
4980
4981      Pred = ICmpInst::ICMP_ULT;
4982      RHS = getConstant(RA + 1);
4983      Changed = true;
4984      break;
4985    case ICmpInst::ICMP_SGE:
4986      if ((RA - 1).isMinSignedValue()) {
4987        Pred = ICmpInst::ICMP_NE;
4988        RHS = getConstant(RA - 1);
4989        Changed = true;
4990        break;
4991      }
4992      if (RA.isMaxSignedValue()) {
4993        Pred = ICmpInst::ICMP_EQ;
4994        Changed = true;
4995        break;
4996      }
4997      if (RA.isMinSignedValue()) goto trivially_true;
4998
4999      Pred = ICmpInst::ICMP_SGT;
5000      RHS = getConstant(RA - 1);
5001      Changed = true;
5002      break;
5003    case ICmpInst::ICMP_SLE:
5004      if ((RA + 1).isMaxSignedValue()) {
5005        Pred = ICmpInst::ICMP_NE;
5006        RHS = getConstant(RA + 1);
5007        Changed = true;
5008        break;
5009      }
5010      if (RA.isMinSignedValue()) {
5011        Pred = ICmpInst::ICMP_EQ;
5012        Changed = true;
5013        break;
5014      }
5015      if (RA.isMaxSignedValue()) goto trivially_true;
5016
5017      Pred = ICmpInst::ICMP_SLT;
5018      RHS = getConstant(RA + 1);
5019      Changed = true;
5020      break;
5021    case ICmpInst::ICMP_UGT:
5022      if (RA.isMinValue()) {
5023        Pred = ICmpInst::ICMP_NE;
5024        Changed = true;
5025        break;
5026      }
5027      if ((RA + 1).isMaxValue()) {
5028        Pred = ICmpInst::ICMP_EQ;
5029        RHS = getConstant(RA + 1);
5030        Changed = true;
5031        break;
5032      }
5033      if (RA.isMaxValue()) goto trivially_false;
5034      break;
5035    case ICmpInst::ICMP_ULT:
5036      if (RA.isMaxValue()) {
5037        Pred = ICmpInst::ICMP_NE;
5038        Changed = true;
5039        break;
5040      }
5041      if ((RA - 1).isMinValue()) {
5042        Pred = ICmpInst::ICMP_EQ;
5043        RHS = getConstant(RA - 1);
5044        Changed = true;
5045        break;
5046      }
5047      if (RA.isMinValue()) goto trivially_false;
5048      break;
5049    case ICmpInst::ICMP_SGT:
5050      if (RA.isMinSignedValue()) {
5051        Pred = ICmpInst::ICMP_NE;
5052        Changed = true;
5053        break;
5054      }
5055      if ((RA + 1).isMaxSignedValue()) {
5056        Pred = ICmpInst::ICMP_EQ;
5057        RHS = getConstant(RA + 1);
5058        Changed = true;
5059        break;
5060      }
5061      if (RA.isMaxSignedValue()) goto trivially_false;
5062      break;
5063    case ICmpInst::ICMP_SLT:
5064      if (RA.isMaxSignedValue()) {
5065        Pred = ICmpInst::ICMP_NE;
5066        Changed = true;
5067        break;
5068      }
5069      if ((RA - 1).isMinSignedValue()) {
5070       Pred = ICmpInst::ICMP_EQ;
5071       RHS = getConstant(RA - 1);
5072        Changed = true;
5073       break;
5074      }
5075      if (RA.isMinSignedValue()) goto trivially_false;
5076      break;
5077    }
5078  }
5079
5080  // Check for obvious equality.
5081  if (HasSameValue(LHS, RHS)) {
5082    if (ICmpInst::isTrueWhenEqual(Pred))
5083      goto trivially_true;
5084    if (ICmpInst::isFalseWhenEqual(Pred))
5085      goto trivially_false;
5086  }
5087
5088  // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
5089  // adding or subtracting 1 from one of the operands.
5090  switch (Pred) {
5091  case ICmpInst::ICMP_SLE:
5092    if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
5093      RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
5094                       /*HasNUW=*/false, /*HasNSW=*/true);
5095      Pred = ICmpInst::ICMP_SLT;
5096      Changed = true;
5097    } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
5098      LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
5099                       /*HasNUW=*/false, /*HasNSW=*/true);
5100      Pred = ICmpInst::ICMP_SLT;
5101      Changed = true;
5102    }
5103    break;
5104  case ICmpInst::ICMP_SGE:
5105    if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
5106      RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
5107                       /*HasNUW=*/false, /*HasNSW=*/true);
5108      Pred = ICmpInst::ICMP_SGT;
5109      Changed = true;
5110    } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
5111      LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5112                       /*HasNUW=*/false, /*HasNSW=*/true);
5113      Pred = ICmpInst::ICMP_SGT;
5114      Changed = true;
5115    }
5116    break;
5117  case ICmpInst::ICMP_ULE:
5118    if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
5119      RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
5120                       /*HasNUW=*/true, /*HasNSW=*/false);
5121      Pred = ICmpInst::ICMP_ULT;
5122      Changed = true;
5123    } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
5124      LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
5125                       /*HasNUW=*/true, /*HasNSW=*/false);
5126      Pred = ICmpInst::ICMP_ULT;
5127      Changed = true;
5128    }
5129    break;
5130  case ICmpInst::ICMP_UGE:
5131    if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
5132      RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
5133                       /*HasNUW=*/true, /*HasNSW=*/false);
5134      Pred = ICmpInst::ICMP_UGT;
5135      Changed = true;
5136    } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
5137      LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5138                       /*HasNUW=*/true, /*HasNSW=*/false);
5139      Pred = ICmpInst::ICMP_UGT;
5140      Changed = true;
5141    }
5142    break;
5143  default:
5144    break;
5145  }
5146
5147  // TODO: More simplifications are possible here.
5148
5149  return Changed;
5150
5151trivially_true:
5152  // Return 0 == 0.
5153  LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0);
5154  Pred = ICmpInst::ICMP_EQ;
5155  return true;
5156
5157trivially_false:
5158  // Return 0 != 0.
5159  LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0);
5160  Pred = ICmpInst::ICMP_NE;
5161  return true;
5162}
5163
5164bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5165  return getSignedRange(S).getSignedMax().isNegative();
5166}
5167
5168bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5169  return getSignedRange(S).getSignedMin().isStrictlyPositive();
5170}
5171
5172bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5173  return !getSignedRange(S).getSignedMin().isNegative();
5174}
5175
5176bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5177  return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5178}
5179
5180bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5181  return isKnownNegative(S) || isKnownPositive(S);
5182}
5183
5184bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5185                                       const SCEV *LHS, const SCEV *RHS) {
5186  // Canonicalize the inputs first.
5187  (void)SimplifyICmpOperands(Pred, LHS, RHS);
5188
5189  // If LHS or RHS is an addrec, check to see if the condition is true in
5190  // every iteration of the loop.
5191  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5192    if (isLoopEntryGuardedByCond(
5193          AR->getLoop(), Pred, AR->getStart(), RHS) &&
5194        isLoopBackedgeGuardedByCond(
5195          AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
5196      return true;
5197  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
5198    if (isLoopEntryGuardedByCond(
5199          AR->getLoop(), Pred, LHS, AR->getStart()) &&
5200        isLoopBackedgeGuardedByCond(
5201          AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
5202      return true;
5203
5204  // Otherwise see what can be done with known constant ranges.
5205  return isKnownPredicateWithRanges(Pred, LHS, RHS);
5206}
5207
5208bool
5209ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
5210                                            const SCEV *LHS, const SCEV *RHS) {
5211  if (HasSameValue(LHS, RHS))
5212    return ICmpInst::isTrueWhenEqual(Pred);
5213
5214  // This code is split out from isKnownPredicate because it is called from
5215  // within isLoopEntryGuardedByCond.
5216  switch (Pred) {
5217  default:
5218    llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5219    break;
5220  case ICmpInst::ICMP_SGT:
5221    Pred = ICmpInst::ICMP_SLT;
5222    std::swap(LHS, RHS);
5223  case ICmpInst::ICMP_SLT: {
5224    ConstantRange LHSRange = getSignedRange(LHS);
5225    ConstantRange RHSRange = getSignedRange(RHS);
5226    if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
5227      return true;
5228    if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
5229      return false;
5230    break;
5231  }
5232  case ICmpInst::ICMP_SGE:
5233    Pred = ICmpInst::ICMP_SLE;
5234    std::swap(LHS, RHS);
5235  case ICmpInst::ICMP_SLE: {
5236    ConstantRange LHSRange = getSignedRange(LHS);
5237    ConstantRange RHSRange = getSignedRange(RHS);
5238    if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
5239      return true;
5240    if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
5241      return false;
5242    break;
5243  }
5244  case ICmpInst::ICMP_UGT:
5245    Pred = ICmpInst::ICMP_ULT;
5246    std::swap(LHS, RHS);
5247  case ICmpInst::ICMP_ULT: {
5248    ConstantRange LHSRange = getUnsignedRange(LHS);
5249    ConstantRange RHSRange = getUnsignedRange(RHS);
5250    if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
5251      return true;
5252    if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
5253      return false;
5254    break;
5255  }
5256  case ICmpInst::ICMP_UGE:
5257    Pred = ICmpInst::ICMP_ULE;
5258    std::swap(LHS, RHS);
5259  case ICmpInst::ICMP_ULE: {
5260    ConstantRange LHSRange = getUnsignedRange(LHS);
5261    ConstantRange RHSRange = getUnsignedRange(RHS);
5262    if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
5263      return true;
5264    if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
5265      return false;
5266    break;
5267  }
5268  case ICmpInst::ICMP_NE: {
5269    if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
5270      return true;
5271    if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
5272      return true;
5273
5274    const SCEV *Diff = getMinusSCEV(LHS, RHS);
5275    if (isKnownNonZero(Diff))
5276      return true;
5277    break;
5278  }
5279  case ICmpInst::ICMP_EQ:
5280    // The check at the top of the function catches the case where
5281    // the values are known to be equal.
5282    break;
5283  }
5284  return false;
5285}
5286
5287/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
5288/// protected by a conditional between LHS and RHS.  This is used to
5289/// to eliminate casts.
5290bool
5291ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
5292                                             ICmpInst::Predicate Pred,
5293                                             const SCEV *LHS, const SCEV *RHS) {
5294  // Interpret a null as meaning no loop, where there is obviously no guard
5295  // (interprocedural conditions notwithstanding).
5296  if (!L) return true;
5297
5298  BasicBlock *Latch = L->getLoopLatch();
5299  if (!Latch)
5300    return false;
5301
5302  BranchInst *LoopContinuePredicate =
5303    dyn_cast<BranchInst>(Latch->getTerminator());
5304  if (!LoopContinuePredicate ||
5305      LoopContinuePredicate->isUnconditional())
5306    return false;
5307
5308  return isImpliedCond(Pred, LHS, RHS,
5309                       LoopContinuePredicate->getCondition(),
5310                       LoopContinuePredicate->getSuccessor(0) != L->getHeader());
5311}
5312
5313/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
5314/// by a conditional between LHS and RHS.  This is used to help avoid max
5315/// expressions in loop trip counts, and to eliminate casts.
5316bool
5317ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
5318                                          ICmpInst::Predicate Pred,
5319                                          const SCEV *LHS, const SCEV *RHS) {
5320  // Interpret a null as meaning no loop, where there is obviously no guard
5321  // (interprocedural conditions notwithstanding).
5322  if (!L) return false;
5323
5324  // Starting at the loop predecessor, climb up the predecessor chain, as long
5325  // as there are predecessors that can be found that have unique successors
5326  // leading to the original header.
5327  for (std::pair<BasicBlock *, BasicBlock *>
5328         Pair(L->getLoopPredecessor(), L->getHeader());
5329       Pair.first;
5330       Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
5331
5332    BranchInst *LoopEntryPredicate =
5333      dyn_cast<BranchInst>(Pair.first->getTerminator());
5334    if (!LoopEntryPredicate ||
5335        LoopEntryPredicate->isUnconditional())
5336      continue;
5337
5338    if (isImpliedCond(Pred, LHS, RHS,
5339                      LoopEntryPredicate->getCondition(),
5340                      LoopEntryPredicate->getSuccessor(0) != Pair.second))
5341      return true;
5342  }
5343
5344  return false;
5345}
5346
5347/// isImpliedCond - Test whether the condition described by Pred, LHS,
5348/// and RHS is true whenever the given Cond value evaluates to true.
5349bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
5350                                    const SCEV *LHS, const SCEV *RHS,
5351                                    Value *FoundCondValue,
5352                                    bool Inverse) {
5353  // Recursively handle And and Or conditions.
5354  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
5355    if (BO->getOpcode() == Instruction::And) {
5356      if (!Inverse)
5357        return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5358               isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
5359    } else if (BO->getOpcode() == Instruction::Or) {
5360      if (Inverse)
5361        return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5362               isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
5363    }
5364  }
5365
5366  ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
5367  if (!ICI) return false;
5368
5369  // Bail if the ICmp's operands' types are wider than the needed type
5370  // before attempting to call getSCEV on them. This avoids infinite
5371  // recursion, since the analysis of widening casts can require loop
5372  // exit condition information for overflow checking, which would
5373  // lead back here.
5374  if (getTypeSizeInBits(LHS->getType()) <
5375      getTypeSizeInBits(ICI->getOperand(0)->getType()))
5376    return false;
5377
5378  // Now that we found a conditional branch that dominates the loop, check to
5379  // see if it is the comparison we are looking for.
5380  ICmpInst::Predicate FoundPred;
5381  if (Inverse)
5382    FoundPred = ICI->getInversePredicate();
5383  else
5384    FoundPred = ICI->getPredicate();
5385
5386  const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
5387  const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
5388
5389  // Balance the types. The case where FoundLHS' type is wider than
5390  // LHS' type is checked for above.
5391  if (getTypeSizeInBits(LHS->getType()) >
5392      getTypeSizeInBits(FoundLHS->getType())) {
5393    if (CmpInst::isSigned(Pred)) {
5394      FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
5395      FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
5396    } else {
5397      FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
5398      FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
5399    }
5400  }
5401
5402  // Canonicalize the query to match the way instcombine will have
5403  // canonicalized the comparison.
5404  if (SimplifyICmpOperands(Pred, LHS, RHS))
5405    if (LHS == RHS)
5406      return CmpInst::isTrueWhenEqual(Pred);
5407  if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
5408    if (FoundLHS == FoundRHS)
5409      return CmpInst::isFalseWhenEqual(Pred);
5410
5411  // Check to see if we can make the LHS or RHS match.
5412  if (LHS == FoundRHS || RHS == FoundLHS) {
5413    if (isa<SCEVConstant>(RHS)) {
5414      std::swap(FoundLHS, FoundRHS);
5415      FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
5416    } else {
5417      std::swap(LHS, RHS);
5418      Pred = ICmpInst::getSwappedPredicate(Pred);
5419    }
5420  }
5421
5422  // Check whether the found predicate is the same as the desired predicate.
5423  if (FoundPred == Pred)
5424    return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
5425
5426  // Check whether swapping the found predicate makes it the same as the
5427  // desired predicate.
5428  if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
5429    if (isa<SCEVConstant>(RHS))
5430      return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
5431    else
5432      return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
5433                                   RHS, LHS, FoundLHS, FoundRHS);
5434  }
5435
5436  // Check whether the actual condition is beyond sufficient.
5437  if (FoundPred == ICmpInst::ICMP_EQ)
5438    if (ICmpInst::isTrueWhenEqual(Pred))
5439      if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
5440        return true;
5441  if (Pred == ICmpInst::ICMP_NE)
5442    if (!ICmpInst::isTrueWhenEqual(FoundPred))
5443      if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
5444        return true;
5445
5446  // Otherwise assume the worst.
5447  return false;
5448}
5449
5450/// isImpliedCondOperands - Test whether the condition described by Pred,
5451/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
5452/// and FoundRHS is true.
5453bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
5454                                            const SCEV *LHS, const SCEV *RHS,
5455                                            const SCEV *FoundLHS,
5456                                            const SCEV *FoundRHS) {
5457  return isImpliedCondOperandsHelper(Pred, LHS, RHS,
5458                                     FoundLHS, FoundRHS) ||
5459         // ~x < ~y --> x > y
5460         isImpliedCondOperandsHelper(Pred, LHS, RHS,
5461                                     getNotSCEV(FoundRHS),
5462                                     getNotSCEV(FoundLHS));
5463}
5464
5465/// isImpliedCondOperandsHelper - Test whether the condition described by
5466/// Pred, LHS, and RHS is true whenever the condition described by Pred,
5467/// FoundLHS, and FoundRHS is true.
5468bool
5469ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
5470                                             const SCEV *LHS, const SCEV *RHS,
5471                                             const SCEV *FoundLHS,
5472                                             const SCEV *FoundRHS) {
5473  switch (Pred) {
5474  default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5475  case ICmpInst::ICMP_EQ:
5476  case ICmpInst::ICMP_NE:
5477    if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
5478      return true;
5479    break;
5480  case ICmpInst::ICMP_SLT:
5481  case ICmpInst::ICMP_SLE:
5482    if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
5483        isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
5484      return true;
5485    break;
5486  case ICmpInst::ICMP_SGT:
5487  case ICmpInst::ICMP_SGE:
5488    if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
5489        isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
5490      return true;
5491    break;
5492  case ICmpInst::ICMP_ULT:
5493  case ICmpInst::ICMP_ULE:
5494    if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
5495        isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
5496      return true;
5497    break;
5498  case ICmpInst::ICMP_UGT:
5499  case ICmpInst::ICMP_UGE:
5500    if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
5501        isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
5502      return true;
5503    break;
5504  }
5505
5506  return false;
5507}
5508
5509/// getBECount - Subtract the end and start values and divide by the step,
5510/// rounding up, to get the number of times the backedge is executed. Return
5511/// CouldNotCompute if an intermediate computation overflows.
5512const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
5513                                        const SCEV *End,
5514                                        const SCEV *Step,
5515                                        bool NoWrap) {
5516  assert(!isKnownNegative(Step) &&
5517         "This code doesn't handle negative strides yet!");
5518
5519  const Type *Ty = Start->getType();
5520  const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
5521  const SCEV *Diff = getMinusSCEV(End, Start);
5522  const SCEV *RoundUp = getAddExpr(Step, NegOne);
5523
5524  // Add an adjustment to the difference between End and Start so that
5525  // the division will effectively round up.
5526  const SCEV *Add = getAddExpr(Diff, RoundUp);
5527
5528  if (!NoWrap) {
5529    // Check Add for unsigned overflow.
5530    // TODO: More sophisticated things could be done here.
5531    const Type *WideTy = IntegerType::get(getContext(),
5532                                          getTypeSizeInBits(Ty) + 1);
5533    const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
5534    const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
5535    const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
5536    if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
5537      return getCouldNotCompute();
5538  }
5539
5540  return getUDivExpr(Add, Step);
5541}
5542
5543/// HowManyLessThans - Return the number of times a backedge containing the
5544/// specified less-than comparison will execute.  If not computable, return
5545/// CouldNotCompute.
5546ScalarEvolution::BackedgeTakenInfo
5547ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
5548                                  const Loop *L, bool isSigned) {
5549  // Only handle:  "ADDREC < LoopInvariant".
5550  if (!RHS->isLoopInvariant(L)) return getCouldNotCompute();
5551
5552  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
5553  if (!AddRec || AddRec->getLoop() != L)
5554    return getCouldNotCompute();
5555
5556  // Check to see if we have a flag which makes analysis easy.
5557  bool NoWrap = isSigned ? AddRec->hasNoSignedWrap() :
5558                           AddRec->hasNoUnsignedWrap();
5559
5560  if (AddRec->isAffine()) {
5561    unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
5562    const SCEV *Step = AddRec->getStepRecurrence(*this);
5563
5564    if (Step->isZero())
5565      return getCouldNotCompute();
5566    if (Step->isOne()) {
5567      // With unit stride, the iteration never steps past the limit value.
5568    } else if (isKnownPositive(Step)) {
5569      // Test whether a positive iteration can step past the limit
5570      // value and past the maximum value for its type in a single step.
5571      // Note that it's not sufficient to check NoWrap here, because even
5572      // though the value after a wrap is undefined, it's not undefined
5573      // behavior, so if wrap does occur, the loop could either terminate or
5574      // loop infinitely, but in either case, the loop is guaranteed to
5575      // iterate at least until the iteration where the wrapping occurs.
5576      const SCEV *One = getConstant(Step->getType(), 1);
5577      if (isSigned) {
5578        APInt Max = APInt::getSignedMaxValue(BitWidth);
5579        if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
5580              .slt(getSignedRange(RHS).getSignedMax()))
5581          return getCouldNotCompute();
5582      } else {
5583        APInt Max = APInt::getMaxValue(BitWidth);
5584        if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
5585              .ult(getUnsignedRange(RHS).getUnsignedMax()))
5586          return getCouldNotCompute();
5587      }
5588    } else
5589      // TODO: Handle negative strides here and below.
5590      return getCouldNotCompute();
5591
5592    // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
5593    // m.  So, we count the number of iterations in which {n,+,s} < m is true.
5594    // Note that we cannot simply return max(m-n,0)/s because it's not safe to
5595    // treat m-n as signed nor unsigned due to overflow possibility.
5596
5597    // First, we get the value of the LHS in the first iteration: n
5598    const SCEV *Start = AddRec->getOperand(0);
5599
5600    // Determine the minimum constant start value.
5601    const SCEV *MinStart = getConstant(isSigned ?
5602      getSignedRange(Start).getSignedMin() :
5603      getUnsignedRange(Start).getUnsignedMin());
5604
5605    // If we know that the condition is true in order to enter the loop,
5606    // then we know that it will run exactly (m-n)/s times. Otherwise, we
5607    // only know that it will execute (max(m,n)-n)/s times. In both cases,
5608    // the division must round up.
5609    const SCEV *End = RHS;
5610    if (!isLoopEntryGuardedByCond(L,
5611                                  isSigned ? ICmpInst::ICMP_SLT :
5612                                             ICmpInst::ICMP_ULT,
5613                                  getMinusSCEV(Start, Step), RHS))
5614      End = isSigned ? getSMaxExpr(RHS, Start)
5615                     : getUMaxExpr(RHS, Start);
5616
5617    // Determine the maximum constant end value.
5618    const SCEV *MaxEnd = getConstant(isSigned ?
5619      getSignedRange(End).getSignedMax() :
5620      getUnsignedRange(End).getUnsignedMax());
5621
5622    // If MaxEnd is within a step of the maximum integer value in its type,
5623    // adjust it down to the minimum value which would produce the same effect.
5624    // This allows the subsequent ceiling division of (N+(step-1))/step to
5625    // compute the correct value.
5626    const SCEV *StepMinusOne = getMinusSCEV(Step,
5627                                            getConstant(Step->getType(), 1));
5628    MaxEnd = isSigned ?
5629      getSMinExpr(MaxEnd,
5630                  getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
5631                               StepMinusOne)) :
5632      getUMinExpr(MaxEnd,
5633                  getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
5634                               StepMinusOne));
5635
5636    // Finally, we subtract these two values and divide, rounding up, to get
5637    // the number of times the backedge is executed.
5638    const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
5639
5640    // The maximum backedge count is similar, except using the minimum start
5641    // value and the maximum end value.
5642    const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step, NoWrap);
5643
5644    return BackedgeTakenInfo(BECount, MaxBECount);
5645  }
5646
5647  return getCouldNotCompute();
5648}
5649
5650/// getNumIterationsInRange - Return the number of iterations of this loop that
5651/// produce values in the specified constant range.  Another way of looking at
5652/// this is that it returns the first iteration number where the value is not in
5653/// the condition, thus computing the exit count. If the iteration count can't
5654/// be computed, an instance of SCEVCouldNotCompute is returned.
5655const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
5656                                                    ScalarEvolution &SE) const {
5657  if (Range.isFullSet())  // Infinite loop.
5658    return SE.getCouldNotCompute();
5659
5660  // If the start is a non-zero constant, shift the range to simplify things.
5661  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
5662    if (!SC->getValue()->isZero()) {
5663      SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
5664      Operands[0] = SE.getConstant(SC->getType(), 0);
5665      const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop());
5666      if (const SCEVAddRecExpr *ShiftedAddRec =
5667            dyn_cast<SCEVAddRecExpr>(Shifted))
5668        return ShiftedAddRec->getNumIterationsInRange(
5669                           Range.subtract(SC->getValue()->getValue()), SE);
5670      // This is strange and shouldn't happen.
5671      return SE.getCouldNotCompute();
5672    }
5673
5674  // The only time we can solve this is when we have all constant indices.
5675  // Otherwise, we cannot determine the overflow conditions.
5676  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5677    if (!isa<SCEVConstant>(getOperand(i)))
5678      return SE.getCouldNotCompute();
5679
5680
5681  // Okay at this point we know that all elements of the chrec are constants and
5682  // that the start element is zero.
5683
5684  // First check to see if the range contains zero.  If not, the first
5685  // iteration exits.
5686  unsigned BitWidth = SE.getTypeSizeInBits(getType());
5687  if (!Range.contains(APInt(BitWidth, 0)))
5688    return SE.getConstant(getType(), 0);
5689
5690  if (isAffine()) {
5691    // If this is an affine expression then we have this situation:
5692    //   Solve {0,+,A} in Range  ===  Ax in Range
5693
5694    // We know that zero is in the range.  If A is positive then we know that
5695    // the upper value of the range must be the first possible exit value.
5696    // If A is negative then the lower of the range is the last possible loop
5697    // value.  Also note that we already checked for a full range.
5698    APInt One(BitWidth,1);
5699    APInt A     = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
5700    APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
5701
5702    // The exit value should be (End+A)/A.
5703    APInt ExitVal = (End + A).udiv(A);
5704    ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
5705
5706    // Evaluate at the exit value.  If we really did fall out of the valid
5707    // range, then we computed our trip count, otherwise wrap around or other
5708    // things must have happened.
5709    ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
5710    if (Range.contains(Val->getValue()))
5711      return SE.getCouldNotCompute();  // Something strange happened
5712
5713    // Ensure that the previous value is in the range.  This is a sanity check.
5714    assert(Range.contains(
5715           EvaluateConstantChrecAtConstant(this,
5716           ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
5717           "Linear scev computation is off in a bad way!");
5718    return SE.getConstant(ExitValue);
5719  } else if (isQuadratic()) {
5720    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
5721    // quadratic equation to solve it.  To do this, we must frame our problem in
5722    // terms of figuring out when zero is crossed, instead of when
5723    // Range.getUpper() is crossed.
5724    SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
5725    NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
5726    const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
5727
5728    // Next, solve the constructed addrec
5729    std::pair<const SCEV *,const SCEV *> Roots =
5730      SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
5731    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5732    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
5733    if (R1) {
5734      // Pick the smallest positive root value.
5735      if (ConstantInt *CB =
5736          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
5737                         R1->getValue(), R2->getValue()))) {
5738        if (CB->getZExtValue() == false)
5739          std::swap(R1, R2);   // R1 is the minimum root now.
5740
5741        // Make sure the root is not off by one.  The returned iteration should
5742        // not be in the range, but the previous one should be.  When solving
5743        // for "X*X < 5", for example, we should not return a root of 2.
5744        ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
5745                                                             R1->getValue(),
5746                                                             SE);
5747        if (Range.contains(R1Val->getValue())) {
5748          // The next iteration must be out of the range...
5749          ConstantInt *NextVal =
5750                ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
5751
5752          R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
5753          if (!Range.contains(R1Val->getValue()))
5754            return SE.getConstant(NextVal);
5755          return SE.getCouldNotCompute();  // Something strange happened
5756        }
5757
5758        // If R1 was not in the range, then it is a good return value.  Make
5759        // sure that R1-1 WAS in the range though, just in case.
5760        ConstantInt *NextVal =
5761               ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
5762        R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
5763        if (Range.contains(R1Val->getValue()))
5764          return R1;
5765        return SE.getCouldNotCompute();  // Something strange happened
5766      }
5767    }
5768  }
5769
5770  return SE.getCouldNotCompute();
5771}
5772
5773
5774
5775//===----------------------------------------------------------------------===//
5776//                   SCEVCallbackVH Class Implementation
5777//===----------------------------------------------------------------------===//
5778
5779void ScalarEvolution::SCEVCallbackVH::deleted() {
5780  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
5781  if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
5782    SE->ConstantEvolutionLoopExitValue.erase(PN);
5783  SE->Scalars.erase(getValPtr());
5784  // this now dangles!
5785}
5786
5787void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
5788  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
5789
5790  // Forget all the expressions associated with users of the old value,
5791  // so that future queries will recompute the expressions using the new
5792  // value.
5793  Value *Old = getValPtr();
5794  SmallVector<User *, 16> Worklist;
5795  SmallPtrSet<User *, 8> Visited;
5796  for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
5797       UI != UE; ++UI)
5798    Worklist.push_back(*UI);
5799  while (!Worklist.empty()) {
5800    User *U = Worklist.pop_back_val();
5801    // Deleting the Old value will cause this to dangle. Postpone
5802    // that until everything else is done.
5803    if (U == Old)
5804      continue;
5805    if (!Visited.insert(U))
5806      continue;
5807    if (PHINode *PN = dyn_cast<PHINode>(U))
5808      SE->ConstantEvolutionLoopExitValue.erase(PN);
5809    SE->Scalars.erase(U);
5810    for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
5811         UI != UE; ++UI)
5812      Worklist.push_back(*UI);
5813  }
5814  // Delete the Old value.
5815  if (PHINode *PN = dyn_cast<PHINode>(Old))
5816    SE->ConstantEvolutionLoopExitValue.erase(PN);
5817  SE->Scalars.erase(Old);
5818  // this now dangles!
5819}
5820
5821ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
5822  : CallbackVH(V), SE(se) {}
5823
5824//===----------------------------------------------------------------------===//
5825//                   ScalarEvolution Class Implementation
5826//===----------------------------------------------------------------------===//
5827
5828ScalarEvolution::ScalarEvolution()
5829  : FunctionPass(ID), FirstUnknown(0) {
5830}
5831
5832bool ScalarEvolution::runOnFunction(Function &F) {
5833  this->F = &F;
5834  LI = &getAnalysis<LoopInfo>();
5835  TD = getAnalysisIfAvailable<TargetData>();
5836  DT = &getAnalysis<DominatorTree>();
5837  return false;
5838}
5839
5840void ScalarEvolution::releaseMemory() {
5841  // Iterate through all the SCEVUnknown instances and call their
5842  // destructors, so that they release their references to their values.
5843  for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
5844    U->~SCEVUnknown();
5845  FirstUnknown = 0;
5846
5847  Scalars.clear();
5848  BackedgeTakenCounts.clear();
5849  ConstantEvolutionLoopExitValue.clear();
5850  ValuesAtScopes.clear();
5851  UniqueSCEVs.clear();
5852  SCEVAllocator.Reset();
5853}
5854
5855void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
5856  AU.setPreservesAll();
5857  AU.addRequiredTransitive<LoopInfo>();
5858  AU.addRequiredTransitive<DominatorTree>();
5859}
5860
5861bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
5862  return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
5863}
5864
5865static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
5866                          const Loop *L) {
5867  // Print all inner loops first
5868  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5869    PrintLoopInfo(OS, SE, *I);
5870
5871  OS << "Loop ";
5872  WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5873  OS << ": ";
5874
5875  SmallVector<BasicBlock *, 8> ExitBlocks;
5876  L->getExitBlocks(ExitBlocks);
5877  if (ExitBlocks.size() != 1)
5878    OS << "<multiple exits> ";
5879
5880  if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
5881    OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
5882  } else {
5883    OS << "Unpredictable backedge-taken count. ";
5884  }
5885
5886  OS << "\n"
5887        "Loop ";
5888  WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5889  OS << ": ";
5890
5891  if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
5892    OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
5893  } else {
5894    OS << "Unpredictable max backedge-taken count. ";
5895  }
5896
5897  OS << "\n";
5898}
5899
5900void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
5901  // ScalarEvolution's implementation of the print method is to print
5902  // out SCEV values of all instructions that are interesting. Doing
5903  // this potentially causes it to create new SCEV objects though,
5904  // which technically conflicts with the const qualifier. This isn't
5905  // observable from outside the class though, so casting away the
5906  // const isn't dangerous.
5907  ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
5908
5909  OS << "Classifying expressions for: ";
5910  WriteAsOperand(OS, F, /*PrintType=*/false);
5911  OS << "\n";
5912  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
5913    if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
5914      OS << *I << '\n';
5915      OS << "  -->  ";
5916      const SCEV *SV = SE.getSCEV(&*I);
5917      SV->print(OS);
5918
5919      const Loop *L = LI->getLoopFor((*I).getParent());
5920
5921      const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
5922      if (AtUse != SV) {
5923        OS << "  -->  ";
5924        AtUse->print(OS);
5925      }
5926
5927      if (L) {
5928        OS << "\t\t" "Exits: ";
5929        const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
5930        if (!ExitValue->isLoopInvariant(L)) {
5931          OS << "<<Unknown>>";
5932        } else {
5933          OS << *ExitValue;
5934        }
5935      }
5936
5937      OS << "\n";
5938    }
5939
5940  OS << "Determining loop execution counts for: ";
5941  WriteAsOperand(OS, F, /*PrintType=*/false);
5942  OS << "\n";
5943  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
5944    PrintLoopInfo(OS, &SE, *I);
5945}
5946
5947