ScalarEvolution.cpp revision 70a1fe704831f9b842be0b2a2af5f7082b0e540c
1//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library.  First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle.  These classes are reference counted, managed by the SCEVHandle
18// class.  We only create one SCEV of a particular shape, so pointer-comparisons
19// for equality are legal.
20//
21// One important aspect of the SCEV objects is that they are never cyclic, even
22// if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
23// the PHI node is one of the idioms that we can represent (e.g., a polynomial
24// recurrence) then we represent it directly as a recurrence node, otherwise we
25// represent it as a SCEVUnknown node.
26//
27// In addition to being able to represent expressions of various types, we also
28// have folders that are used to build the *canonical* representation for a
29// particular expression.  These folders are capable of using a variety of
30// rewrite rules to simplify the expressions.
31//
32// Once the folders are defined, we can implement the more interesting
33// higher-level code, such as the code that recognizes PHI nodes of various
34// types, computes the execution count of a loop, etc.
35//
36// TODO: We should use these routines and value representations to implement
37// dependence analysis!
38//
39//===----------------------------------------------------------------------===//
40//
41// There are several good references for the techniques used in this analysis.
42//
43//  Chains of recurrences -- a method to expedite the evaluation
44//  of closed-form functions
45//  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
46//
47//  On computational properties of chains of recurrences
48//  Eugene V. Zima
49//
50//  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
51//  Robert A. van Engelen
52//
53//  Efficient Symbolic Analysis for Optimizing Compilers
54//  Robert A. van Engelen
55//
56//  Using the chains of recurrences algebra for data dependence testing and
57//  induction variable substitution
58//  MS Thesis, Johnie Birch
59//
60//===----------------------------------------------------------------------===//
61
62#define DEBUG_TYPE "scalar-evolution"
63#include "llvm/Analysis/ScalarEvolutionExpressions.h"
64#include "llvm/Constants.h"
65#include "llvm/DerivedTypes.h"
66#include "llvm/GlobalVariable.h"
67#include "llvm/Instructions.h"
68#include "llvm/Analysis/ConstantFolding.h"
69#include "llvm/Analysis/Dominators.h"
70#include "llvm/Analysis/LoopInfo.h"
71#include "llvm/Assembly/Writer.h"
72#include "llvm/Target/TargetData.h"
73#include "llvm/Support/CommandLine.h"
74#include "llvm/Support/Compiler.h"
75#include "llvm/Support/ConstantRange.h"
76#include "llvm/Support/GetElementPtrTypeIterator.h"
77#include "llvm/Support/InstIterator.h"
78#include "llvm/Support/ManagedStatic.h"
79#include "llvm/Support/MathExtras.h"
80#include "llvm/Support/raw_ostream.h"
81#include "llvm/ADT/Statistic.h"
82#include "llvm/ADT/STLExtras.h"
83#include <ostream>
84#include <algorithm>
85using namespace llvm;
86
87STATISTIC(NumArrayLenItCounts,
88          "Number of trip counts computed with array length");
89STATISTIC(NumTripCountsComputed,
90          "Number of loops with predictable loop counts");
91STATISTIC(NumTripCountsNotComputed,
92          "Number of loops without predictable loop counts");
93STATISTIC(NumBruteForceTripCountsComputed,
94          "Number of loops with trip counts computed by force");
95
96static cl::opt<unsigned>
97MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
98                        cl::desc("Maximum number of iterations SCEV will "
99                                 "symbolically execute a constant derived loop"),
100                        cl::init(100));
101
102static RegisterPass<ScalarEvolution>
103R("scalar-evolution", "Scalar Evolution Analysis", false, true);
104char ScalarEvolution::ID = 0;
105
106//===----------------------------------------------------------------------===//
107//                           SCEV class definitions
108//===----------------------------------------------------------------------===//
109
110//===----------------------------------------------------------------------===//
111// Implementation of the SCEV class.
112//
113SCEV::~SCEV() {}
114void SCEV::dump() const {
115  print(errs());
116  errs() << '\n';
117}
118
119void SCEV::print(std::ostream &o) const {
120  raw_os_ostream OS(o);
121  print(OS);
122}
123
124bool SCEV::isZero() const {
125  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
126    return SC->getValue()->isZero();
127  return false;
128}
129
130bool SCEV::isOne() const {
131  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
132    return SC->getValue()->isOne();
133  return false;
134}
135
136SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {}
137SCEVCouldNotCompute::~SCEVCouldNotCompute() {}
138
139bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
140  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
141  return false;
142}
143
144const Type *SCEVCouldNotCompute::getType() const {
145  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
146  return 0;
147}
148
149bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
150  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
151  return false;
152}
153
154SCEVHandle SCEVCouldNotCompute::
155replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
156                                  const SCEVHandle &Conc,
157                                  ScalarEvolution &SE) const {
158  return this;
159}
160
161void SCEVCouldNotCompute::print(raw_ostream &OS) const {
162  OS << "***COULDNOTCOMPUTE***";
163}
164
165bool SCEVCouldNotCompute::classof(const SCEV *S) {
166  return S->getSCEVType() == scCouldNotCompute;
167}
168
169
170// SCEVConstants - Only allow the creation of one SCEVConstant for any
171// particular value.  Don't use a SCEVHandle here, or else the object will
172// never be deleted!
173static ManagedStatic<std::map<ConstantInt*, SCEVConstant*> > SCEVConstants;
174
175
176SCEVConstant::~SCEVConstant() {
177  SCEVConstants->erase(V);
178}
179
180SCEVHandle ScalarEvolution::getConstant(ConstantInt *V) {
181  SCEVConstant *&R = (*SCEVConstants)[V];
182  if (R == 0) R = new SCEVConstant(V);
183  return R;
184}
185
186SCEVHandle ScalarEvolution::getConstant(const APInt& Val) {
187  return getConstant(ConstantInt::get(Val));
188}
189
190const Type *SCEVConstant::getType() const { return V->getType(); }
191
192void SCEVConstant::print(raw_ostream &OS) const {
193  WriteAsOperand(OS, V, false);
194}
195
196SCEVCastExpr::SCEVCastExpr(unsigned SCEVTy,
197                           const SCEVHandle &op, const Type *ty)
198  : SCEV(SCEVTy), Op(op), Ty(ty) {}
199
200SCEVCastExpr::~SCEVCastExpr() {}
201
202bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
203  return Op->dominates(BB, DT);
204}
205
206// SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any
207// particular input.  Don't use a SCEVHandle here, or else the object will
208// never be deleted!
209static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>,
210                     SCEVTruncateExpr*> > SCEVTruncates;
211
212SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty)
213  : SCEVCastExpr(scTruncate, op, ty) {
214  assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
215         (Ty->isInteger() || isa<PointerType>(Ty)) &&
216         "Cannot truncate non-integer value!");
217}
218
219SCEVTruncateExpr::~SCEVTruncateExpr() {
220  SCEVTruncates->erase(std::make_pair(Op, Ty));
221}
222
223void SCEVTruncateExpr::print(raw_ostream &OS) const {
224  OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
225}
226
227// SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any
228// particular input.  Don't use a SCEVHandle here, or else the object will never
229// be deleted!
230static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>,
231                     SCEVZeroExtendExpr*> > SCEVZeroExtends;
232
233SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty)
234  : SCEVCastExpr(scZeroExtend, op, ty) {
235  assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
236         (Ty->isInteger() || isa<PointerType>(Ty)) &&
237         "Cannot zero extend non-integer value!");
238}
239
240SCEVZeroExtendExpr::~SCEVZeroExtendExpr() {
241  SCEVZeroExtends->erase(std::make_pair(Op, Ty));
242}
243
244void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
245  OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
246}
247
248// SCEVSignExtends - Only allow the creation of one SCEVSignExtendExpr for any
249// particular input.  Don't use a SCEVHandle here, or else the object will never
250// be deleted!
251static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>,
252                     SCEVSignExtendExpr*> > SCEVSignExtends;
253
254SCEVSignExtendExpr::SCEVSignExtendExpr(const SCEVHandle &op, const Type *ty)
255  : SCEVCastExpr(scSignExtend, op, ty) {
256  assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
257         (Ty->isInteger() || isa<PointerType>(Ty)) &&
258         "Cannot sign extend non-integer value!");
259}
260
261SCEVSignExtendExpr::~SCEVSignExtendExpr() {
262  SCEVSignExtends->erase(std::make_pair(Op, Ty));
263}
264
265void SCEVSignExtendExpr::print(raw_ostream &OS) const {
266  OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
267}
268
269// SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any
270// particular input.  Don't use a SCEVHandle here, or else the object will never
271// be deleted!
272static ManagedStatic<std::map<std::pair<unsigned, std::vector<const SCEV*> >,
273                     SCEVCommutativeExpr*> > SCEVCommExprs;
274
275SCEVCommutativeExpr::~SCEVCommutativeExpr() {
276  std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end());
277  SCEVCommExprs->erase(std::make_pair(getSCEVType(), SCEVOps));
278}
279
280void SCEVCommutativeExpr::print(raw_ostream &OS) const {
281  assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
282  const char *OpStr = getOperationStr();
283  OS << "(" << *Operands[0];
284  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
285    OS << OpStr << *Operands[i];
286  OS << ")";
287}
288
289SCEVHandle SCEVCommutativeExpr::
290replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
291                                  const SCEVHandle &Conc,
292                                  ScalarEvolution &SE) const {
293  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
294    SCEVHandle H =
295      getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
296    if (H != getOperand(i)) {
297      std::vector<SCEVHandle> NewOps;
298      NewOps.reserve(getNumOperands());
299      for (unsigned j = 0; j != i; ++j)
300        NewOps.push_back(getOperand(j));
301      NewOps.push_back(H);
302      for (++i; i != e; ++i)
303        NewOps.push_back(getOperand(i)->
304                         replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
305
306      if (isa<SCEVAddExpr>(this))
307        return SE.getAddExpr(NewOps);
308      else if (isa<SCEVMulExpr>(this))
309        return SE.getMulExpr(NewOps);
310      else if (isa<SCEVSMaxExpr>(this))
311        return SE.getSMaxExpr(NewOps);
312      else if (isa<SCEVUMaxExpr>(this))
313        return SE.getUMaxExpr(NewOps);
314      else
315        assert(0 && "Unknown commutative expr!");
316    }
317  }
318  return this;
319}
320
321bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
322  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
323    if (!getOperand(i)->dominates(BB, DT))
324      return false;
325  }
326  return true;
327}
328
329
330// SCEVUDivs - Only allow the creation of one SCEVUDivExpr for any particular
331// input.  Don't use a SCEVHandle here, or else the object will never be
332// deleted!
333static ManagedStatic<std::map<std::pair<const SCEV*, const SCEV*>,
334                     SCEVUDivExpr*> > SCEVUDivs;
335
336SCEVUDivExpr::~SCEVUDivExpr() {
337  SCEVUDivs->erase(std::make_pair(LHS, RHS));
338}
339
340bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
341  return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
342}
343
344void SCEVUDivExpr::print(raw_ostream &OS) const {
345  OS << "(" << *LHS << " /u " << *RHS << ")";
346}
347
348const Type *SCEVUDivExpr::getType() const {
349  return LHS->getType();
350}
351
352// SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any
353// particular input.  Don't use a SCEVHandle here, or else the object will never
354// be deleted!
355static ManagedStatic<std::map<std::pair<const Loop *,
356                                        std::vector<const SCEV*> >,
357                     SCEVAddRecExpr*> > SCEVAddRecExprs;
358
359SCEVAddRecExpr::~SCEVAddRecExpr() {
360  std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end());
361  SCEVAddRecExprs->erase(std::make_pair(L, SCEVOps));
362}
363
364SCEVHandle SCEVAddRecExpr::
365replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
366                                  const SCEVHandle &Conc,
367                                  ScalarEvolution &SE) const {
368  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
369    SCEVHandle H =
370      getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
371    if (H != getOperand(i)) {
372      std::vector<SCEVHandle> NewOps;
373      NewOps.reserve(getNumOperands());
374      for (unsigned j = 0; j != i; ++j)
375        NewOps.push_back(getOperand(j));
376      NewOps.push_back(H);
377      for (++i; i != e; ++i)
378        NewOps.push_back(getOperand(i)->
379                         replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
380
381      return SE.getAddRecExpr(NewOps, L);
382    }
383  }
384  return this;
385}
386
387
388bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
389  // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't
390  // contain L and if the start is invariant.
391  return !QueryLoop->contains(L->getHeader()) &&
392         getOperand(0)->isLoopInvariant(QueryLoop);
393}
394
395
396void SCEVAddRecExpr::print(raw_ostream &OS) const {
397  OS << "{" << *Operands[0];
398  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
399    OS << ",+," << *Operands[i];
400  OS << "}<" << L->getHeader()->getName() + ">";
401}
402
403// SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular
404// value.  Don't use a SCEVHandle here, or else the object will never be
405// deleted!
406static ManagedStatic<std::map<Value*, SCEVUnknown*> > SCEVUnknowns;
407
408SCEVUnknown::~SCEVUnknown() { SCEVUnknowns->erase(V); }
409
410bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
411  // All non-instruction values are loop invariant.  All instructions are loop
412  // invariant if they are not contained in the specified loop.
413  if (Instruction *I = dyn_cast<Instruction>(V))
414    return !L->contains(I->getParent());
415  return true;
416}
417
418bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
419  if (Instruction *I = dyn_cast<Instruction>(getValue()))
420    return DT->dominates(I->getParent(), BB);
421  return true;
422}
423
424const Type *SCEVUnknown::getType() const {
425  return V->getType();
426}
427
428void SCEVUnknown::print(raw_ostream &OS) const {
429  WriteAsOperand(OS, V, false);
430}
431
432//===----------------------------------------------------------------------===//
433//                               SCEV Utilities
434//===----------------------------------------------------------------------===//
435
436namespace {
437  /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
438  /// than the complexity of the RHS.  This comparator is used to canonicalize
439  /// expressions.
440  class VISIBILITY_HIDDEN SCEVComplexityCompare {
441    LoopInfo *LI;
442  public:
443    explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {}
444
445    bool operator()(const SCEV *LHS, const SCEV *RHS) const {
446      // Primarily, sort the SCEVs by their getSCEVType().
447      if (LHS->getSCEVType() != RHS->getSCEVType())
448        return LHS->getSCEVType() < RHS->getSCEVType();
449
450      // Aside from the getSCEVType() ordering, the particular ordering
451      // isn't very important except that it's beneficial to be consistent,
452      // so that (a + b) and (b + a) don't end up as different expressions.
453
454      // Sort SCEVUnknown values with some loose heuristics. TODO: This is
455      // not as complete as it could be.
456      if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) {
457        const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
458
459        // Compare getValueID values.
460        if (LU->getValue()->getValueID() != RU->getValue()->getValueID())
461          return LU->getValue()->getValueID() < RU->getValue()->getValueID();
462
463        // Sort arguments by their position.
464        if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) {
465          const Argument *RA = cast<Argument>(RU->getValue());
466          return LA->getArgNo() < RA->getArgNo();
467        }
468
469        // For instructions, compare their loop depth, and their opcode.
470        // This is pretty loose.
471        if (Instruction *LV = dyn_cast<Instruction>(LU->getValue())) {
472          Instruction *RV = cast<Instruction>(RU->getValue());
473
474          // Compare loop depths.
475          if (LI->getLoopDepth(LV->getParent()) !=
476              LI->getLoopDepth(RV->getParent()))
477            return LI->getLoopDepth(LV->getParent()) <
478                   LI->getLoopDepth(RV->getParent());
479
480          // Compare opcodes.
481          if (LV->getOpcode() != RV->getOpcode())
482            return LV->getOpcode() < RV->getOpcode();
483
484          // Compare the number of operands.
485          if (LV->getNumOperands() != RV->getNumOperands())
486            return LV->getNumOperands() < RV->getNumOperands();
487        }
488
489        return false;
490      }
491
492      // Constant sorting doesn't matter since they'll be folded.
493      if (isa<SCEVConstant>(LHS))
494        return false;
495
496      // Lexicographically compare n-ary expressions.
497      if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) {
498        const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
499        for (unsigned i = 0, e = LC->getNumOperands(); i != e; ++i) {
500          if (i >= RC->getNumOperands())
501            return false;
502          if (operator()(LC->getOperand(i), RC->getOperand(i)))
503            return true;
504          if (operator()(RC->getOperand(i), LC->getOperand(i)))
505            return false;
506        }
507        return LC->getNumOperands() < RC->getNumOperands();
508      }
509
510      // Lexicographically compare udiv expressions.
511      if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) {
512        const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
513        if (operator()(LC->getLHS(), RC->getLHS()))
514          return true;
515        if (operator()(RC->getLHS(), LC->getLHS()))
516          return false;
517        if (operator()(LC->getRHS(), RC->getRHS()))
518          return true;
519        if (operator()(RC->getRHS(), LC->getRHS()))
520          return false;
521        return false;
522      }
523
524      // Compare cast expressions by operand.
525      if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) {
526        const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
527        return operator()(LC->getOperand(), RC->getOperand());
528      }
529
530      assert(0 && "Unknown SCEV kind!");
531      return false;
532    }
533  };
534}
535
536/// GroupByComplexity - Given a list of SCEV objects, order them by their
537/// complexity, and group objects of the same complexity together by value.
538/// When this routine is finished, we know that any duplicates in the vector are
539/// consecutive and that complexity is monotonically increasing.
540///
541/// Note that we go take special precautions to ensure that we get determinstic
542/// results from this routine.  In other words, we don't want the results of
543/// this to depend on where the addresses of various SCEV objects happened to
544/// land in memory.
545///
546static void GroupByComplexity(std::vector<SCEVHandle> &Ops,
547                              LoopInfo *LI) {
548  if (Ops.size() < 2) return;  // Noop
549  if (Ops.size() == 2) {
550    // This is the common case, which also happens to be trivially simple.
551    // Special case it.
552    if (SCEVComplexityCompare(LI)(Ops[1], Ops[0]))
553      std::swap(Ops[0], Ops[1]);
554    return;
555  }
556
557  // Do the rough sort by complexity.
558  std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
559
560  // Now that we are sorted by complexity, group elements of the same
561  // complexity.  Note that this is, at worst, N^2, but the vector is likely to
562  // be extremely short in practice.  Note that we take this approach because we
563  // do not want to depend on the addresses of the objects we are grouping.
564  for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
565    const SCEV *S = Ops[i];
566    unsigned Complexity = S->getSCEVType();
567
568    // If there are any objects of the same complexity and same value as this
569    // one, group them.
570    for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
571      if (Ops[j] == S) { // Found a duplicate.
572        // Move it to immediately after i'th element.
573        std::swap(Ops[i+1], Ops[j]);
574        ++i;   // no need to rescan it.
575        if (i == e-2) return;  // Done!
576      }
577    }
578  }
579}
580
581
582
583//===----------------------------------------------------------------------===//
584//                      Simple SCEV method implementations
585//===----------------------------------------------------------------------===//
586
587/// BinomialCoefficient - Compute BC(It, K).  The result has width W.
588// Assume, K > 0.
589static SCEVHandle BinomialCoefficient(SCEVHandle It, unsigned K,
590                                      ScalarEvolution &SE,
591                                      const Type* ResultTy) {
592  // Handle the simplest case efficiently.
593  if (K == 1)
594    return SE.getTruncateOrZeroExtend(It, ResultTy);
595
596  // We are using the following formula for BC(It, K):
597  //
598  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
599  //
600  // Suppose, W is the bitwidth of the return value.  We must be prepared for
601  // overflow.  Hence, we must assure that the result of our computation is
602  // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
603  // safe in modular arithmetic.
604  //
605  // However, this code doesn't use exactly that formula; the formula it uses
606  // is something like the following, where T is the number of factors of 2 in
607  // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
608  // exponentiation:
609  //
610  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
611  //
612  // This formula is trivially equivalent to the previous formula.  However,
613  // this formula can be implemented much more efficiently.  The trick is that
614  // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
615  // arithmetic.  To do exact division in modular arithmetic, all we have
616  // to do is multiply by the inverse.  Therefore, this step can be done at
617  // width W.
618  //
619  // The next issue is how to safely do the division by 2^T.  The way this
620  // is done is by doing the multiplication step at a width of at least W + T
621  // bits.  This way, the bottom W+T bits of the product are accurate. Then,
622  // when we perform the division by 2^T (which is equivalent to a right shift
623  // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
624  // truncated out after the division by 2^T.
625  //
626  // In comparison to just directly using the first formula, this technique
627  // is much more efficient; using the first formula requires W * K bits,
628  // but this formula less than W + K bits. Also, the first formula requires
629  // a division step, whereas this formula only requires multiplies and shifts.
630  //
631  // It doesn't matter whether the subtraction step is done in the calculation
632  // width or the input iteration count's width; if the subtraction overflows,
633  // the result must be zero anyway.  We prefer here to do it in the width of
634  // the induction variable because it helps a lot for certain cases; CodeGen
635  // isn't smart enough to ignore the overflow, which leads to much less
636  // efficient code if the width of the subtraction is wider than the native
637  // register width.
638  //
639  // (It's possible to not widen at all by pulling out factors of 2 before
640  // the multiplication; for example, K=2 can be calculated as
641  // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
642  // extra arithmetic, so it's not an obvious win, and it gets
643  // much more complicated for K > 3.)
644
645  // Protection from insane SCEVs; this bound is conservative,
646  // but it probably doesn't matter.
647  if (K > 1000)
648    return SE.getCouldNotCompute();
649
650  unsigned W = SE.getTypeSizeInBits(ResultTy);
651
652  // Calculate K! / 2^T and T; we divide out the factors of two before
653  // multiplying for calculating K! / 2^T to avoid overflow.
654  // Other overflow doesn't matter because we only care about the bottom
655  // W bits of the result.
656  APInt OddFactorial(W, 1);
657  unsigned T = 1;
658  for (unsigned i = 3; i <= K; ++i) {
659    APInt Mult(W, i);
660    unsigned TwoFactors = Mult.countTrailingZeros();
661    T += TwoFactors;
662    Mult = Mult.lshr(TwoFactors);
663    OddFactorial *= Mult;
664  }
665
666  // We need at least W + T bits for the multiplication step
667  unsigned CalculationBits = W + T;
668
669  // Calcuate 2^T, at width T+W.
670  APInt DivFactor = APInt(CalculationBits, 1).shl(T);
671
672  // Calculate the multiplicative inverse of K! / 2^T;
673  // this multiplication factor will perform the exact division by
674  // K! / 2^T.
675  APInt Mod = APInt::getSignedMinValue(W+1);
676  APInt MultiplyFactor = OddFactorial.zext(W+1);
677  MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
678  MultiplyFactor = MultiplyFactor.trunc(W);
679
680  // Calculate the product, at width T+W
681  const IntegerType *CalculationTy = IntegerType::get(CalculationBits);
682  SCEVHandle Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
683  for (unsigned i = 1; i != K; ++i) {
684    SCEVHandle S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType()));
685    Dividend = SE.getMulExpr(Dividend,
686                             SE.getTruncateOrZeroExtend(S, CalculationTy));
687  }
688
689  // Divide by 2^T
690  SCEVHandle DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
691
692  // Truncate the result, and divide by K! / 2^T.
693
694  return SE.getMulExpr(SE.getConstant(MultiplyFactor),
695                       SE.getTruncateOrZeroExtend(DivResult, ResultTy));
696}
697
698/// evaluateAtIteration - Return the value of this chain of recurrences at
699/// the specified iteration number.  We can evaluate this recurrence by
700/// multiplying each element in the chain by the binomial coefficient
701/// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
702///
703///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
704///
705/// where BC(It, k) stands for binomial coefficient.
706///
707SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It,
708                                               ScalarEvolution &SE) const {
709  SCEVHandle Result = getStart();
710  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
711    // The computation is correct in the face of overflow provided that the
712    // multiplication is performed _after_ the evaluation of the binomial
713    // coefficient.
714    SCEVHandle Coeff = BinomialCoefficient(It, i, SE, getType());
715    if (isa<SCEVCouldNotCompute>(Coeff))
716      return Coeff;
717
718    Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
719  }
720  return Result;
721}
722
723//===----------------------------------------------------------------------===//
724//                    SCEV Expression folder implementations
725//===----------------------------------------------------------------------===//
726
727SCEVHandle ScalarEvolution::getTruncateExpr(const SCEVHandle &Op,
728                                            const Type *Ty) {
729  assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
730         "This is not a truncating conversion!");
731  assert(isSCEVable(Ty) &&
732         "This is not a conversion to a SCEVable type!");
733  Ty = getEffectiveSCEVType(Ty);
734
735  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
736    return getUnknown(
737        ConstantExpr::getTrunc(SC->getValue(), Ty));
738
739  // trunc(trunc(x)) --> trunc(x)
740  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
741    return getTruncateExpr(ST->getOperand(), Ty);
742
743  // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
744  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
745    return getTruncateOrSignExtend(SS->getOperand(), Ty);
746
747  // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
748  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
749    return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
750
751  // If the input value is a chrec scev made out of constants, truncate
752  // all of the constants.
753  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
754    std::vector<SCEVHandle> Operands;
755    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
756      Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
757    return getAddRecExpr(Operands, AddRec->getLoop());
758  }
759
760  SCEVTruncateExpr *&Result = (*SCEVTruncates)[std::make_pair(Op, Ty)];
761  if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty);
762  return Result;
763}
764
765SCEVHandle ScalarEvolution::getZeroExtendExpr(const SCEVHandle &Op,
766                                              const Type *Ty) {
767  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
768         "This is not an extending conversion!");
769  assert(isSCEVable(Ty) &&
770         "This is not a conversion to a SCEVable type!");
771  Ty = getEffectiveSCEVType(Ty);
772
773  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
774    const Type *IntTy = getEffectiveSCEVType(Ty);
775    Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy);
776    if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
777    return getUnknown(C);
778  }
779
780  // zext(zext(x)) --> zext(x)
781  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
782    return getZeroExtendExpr(SZ->getOperand(), Ty);
783
784  // If the input value is a chrec scev, and we can prove that the value
785  // did not overflow the old, smaller, value, we can zero extend all of the
786  // operands (often constants).  This allows analysis of something like
787  // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
788  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
789    if (AR->isAffine()) {
790      // Check whether the backedge-taken count is SCEVCouldNotCompute.
791      // Note that this serves two purposes: It filters out loops that are
792      // simply not analyzable, and it covers the case where this code is
793      // being called from within backedge-taken count analysis, such that
794      // attempting to ask for the backedge-taken count would likely result
795      // in infinite recursion. In the later case, the analysis code will
796      // cope with a conservative value, and it will take care to purge
797      // that value once it has finished.
798      SCEVHandle MaxBECount = getMaxBackedgeTakenCount(AR->getLoop());
799      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
800        // Manually compute the final value for AR, checking for
801        // overflow.
802        SCEVHandle Start = AR->getStart();
803        SCEVHandle Step = AR->getStepRecurrence(*this);
804
805        // Check whether the backedge-taken count can be losslessly casted to
806        // the addrec's type. The count is always unsigned.
807        SCEVHandle CastedMaxBECount =
808          getTruncateOrZeroExtend(MaxBECount, Start->getType());
809        if (MaxBECount ==
810            getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType())) {
811          const Type *WideTy =
812            IntegerType::get(getTypeSizeInBits(Start->getType()) * 2);
813          // Check whether Start+Step*MaxBECount has no unsigned overflow.
814          SCEVHandle ZMul =
815            getMulExpr(CastedMaxBECount,
816                       getTruncateOrZeroExtend(Step, Start->getType()));
817          SCEVHandle Add = getAddExpr(Start, ZMul);
818          if (getZeroExtendExpr(Add, WideTy) ==
819              getAddExpr(getZeroExtendExpr(Start, WideTy),
820                         getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
821                                    getZeroExtendExpr(Step, WideTy))))
822            // Return the expression with the addrec on the outside.
823            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
824                                 getZeroExtendExpr(Step, Ty),
825                                 AR->getLoop());
826
827          // Similar to above, only this time treat the step value as signed.
828          // This covers loops that count down.
829          SCEVHandle SMul =
830            getMulExpr(CastedMaxBECount,
831                       getTruncateOrSignExtend(Step, Start->getType()));
832          Add = getAddExpr(Start, SMul);
833          if (getZeroExtendExpr(Add, WideTy) ==
834              getAddExpr(getZeroExtendExpr(Start, WideTy),
835                         getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
836                                    getSignExtendExpr(Step, WideTy))))
837            // Return the expression with the addrec on the outside.
838            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
839                                 getSignExtendExpr(Step, Ty),
840                                 AR->getLoop());
841        }
842      }
843    }
844
845  SCEVZeroExtendExpr *&Result = (*SCEVZeroExtends)[std::make_pair(Op, Ty)];
846  if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty);
847  return Result;
848}
849
850SCEVHandle ScalarEvolution::getSignExtendExpr(const SCEVHandle &Op,
851                                              const Type *Ty) {
852  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
853         "This is not an extending conversion!");
854  assert(isSCEVable(Ty) &&
855         "This is not a conversion to a SCEVable type!");
856  Ty = getEffectiveSCEVType(Ty);
857
858  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
859    const Type *IntTy = getEffectiveSCEVType(Ty);
860    Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy);
861    if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
862    return getUnknown(C);
863  }
864
865  // sext(sext(x)) --> sext(x)
866  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
867    return getSignExtendExpr(SS->getOperand(), Ty);
868
869  // If the input value is a chrec scev, and we can prove that the value
870  // did not overflow the old, smaller, value, we can sign extend all of the
871  // operands (often constants).  This allows analysis of something like
872  // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
873  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
874    if (AR->isAffine()) {
875      // Check whether the backedge-taken count is SCEVCouldNotCompute.
876      // Note that this serves two purposes: It filters out loops that are
877      // simply not analyzable, and it covers the case where this code is
878      // being called from within backedge-taken count analysis, such that
879      // attempting to ask for the backedge-taken count would likely result
880      // in infinite recursion. In the later case, the analysis code will
881      // cope with a conservative value, and it will take care to purge
882      // that value once it has finished.
883      SCEVHandle MaxBECount = getMaxBackedgeTakenCount(AR->getLoop());
884      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
885        // Manually compute the final value for AR, checking for
886        // overflow.
887        SCEVHandle Start = AR->getStart();
888        SCEVHandle Step = AR->getStepRecurrence(*this);
889
890        // Check whether the backedge-taken count can be losslessly casted to
891        // the addrec's type. The count is always unsigned.
892        SCEVHandle CastedMaxBECount =
893          getTruncateOrZeroExtend(MaxBECount, Start->getType());
894        if (MaxBECount ==
895            getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType())) {
896          const Type *WideTy =
897            IntegerType::get(getTypeSizeInBits(Start->getType()) * 2);
898          // Check whether Start+Step*MaxBECount has no signed overflow.
899          SCEVHandle SMul =
900            getMulExpr(CastedMaxBECount,
901                       getTruncateOrSignExtend(Step, Start->getType()));
902          SCEVHandle Add = getAddExpr(Start, SMul);
903          if (getSignExtendExpr(Add, WideTy) ==
904              getAddExpr(getSignExtendExpr(Start, WideTy),
905                         getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
906                                    getSignExtendExpr(Step, WideTy))))
907            // Return the expression with the addrec on the outside.
908            return getAddRecExpr(getSignExtendExpr(Start, Ty),
909                                 getSignExtendExpr(Step, Ty),
910                                 AR->getLoop());
911        }
912      }
913    }
914
915  SCEVSignExtendExpr *&Result = (*SCEVSignExtends)[std::make_pair(Op, Ty)];
916  if (Result == 0) Result = new SCEVSignExtendExpr(Op, Ty);
917  return Result;
918}
919
920// get - Get a canonical add expression, or something simpler if possible.
921SCEVHandle ScalarEvolution::getAddExpr(std::vector<SCEVHandle> &Ops) {
922  assert(!Ops.empty() && "Cannot get empty add!");
923  if (Ops.size() == 1) return Ops[0];
924
925  // Sort by complexity, this groups all similar expression types together.
926  GroupByComplexity(Ops, LI);
927
928  // If there are any constants, fold them together.
929  unsigned Idx = 0;
930  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
931    ++Idx;
932    assert(Idx < Ops.size());
933    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
934      // We found two constants, fold them together!
935      ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() +
936                                           RHSC->getValue()->getValue());
937      Ops[0] = getConstant(Fold);
938      Ops.erase(Ops.begin()+1);  // Erase the folded element
939      if (Ops.size() == 1) return Ops[0];
940      LHSC = cast<SCEVConstant>(Ops[0]);
941    }
942
943    // If we are left with a constant zero being added, strip it off.
944    if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
945      Ops.erase(Ops.begin());
946      --Idx;
947    }
948  }
949
950  if (Ops.size() == 1) return Ops[0];
951
952  // Okay, check to see if the same value occurs in the operand list twice.  If
953  // so, merge them together into an multiply expression.  Since we sorted the
954  // list, these values are required to be adjacent.
955  const Type *Ty = Ops[0]->getType();
956  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
957    if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
958      // Found a match, merge the two values into a multiply, and add any
959      // remaining values to the result.
960      SCEVHandle Two = getIntegerSCEV(2, Ty);
961      SCEVHandle Mul = getMulExpr(Ops[i], Two);
962      if (Ops.size() == 2)
963        return Mul;
964      Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
965      Ops.push_back(Mul);
966      return getAddExpr(Ops);
967    }
968
969  // Check for truncates. If all the operands are truncated from the same
970  // type, see if factoring out the truncate would permit the result to be
971  // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
972  // if the contents of the resulting outer trunc fold to something simple.
973  for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
974    const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
975    const Type *DstType = Trunc->getType();
976    const Type *SrcType = Trunc->getOperand()->getType();
977    std::vector<SCEVHandle> LargeOps;
978    bool Ok = true;
979    // Check all the operands to see if they can be represented in the
980    // source type of the truncate.
981    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
982      if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
983        if (T->getOperand()->getType() != SrcType) {
984          Ok = false;
985          break;
986        }
987        LargeOps.push_back(T->getOperand());
988      } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
989        // This could be either sign or zero extension, but sign extension
990        // is much more likely to be foldable here.
991        LargeOps.push_back(getSignExtendExpr(C, SrcType));
992      } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
993        std::vector<SCEVHandle> LargeMulOps;
994        for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
995          if (const SCEVTruncateExpr *T =
996                dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
997            if (T->getOperand()->getType() != SrcType) {
998              Ok = false;
999              break;
1000            }
1001            LargeMulOps.push_back(T->getOperand());
1002          } else if (const SCEVConstant *C =
1003                       dyn_cast<SCEVConstant>(M->getOperand(j))) {
1004            // This could be either sign or zero extension, but sign extension
1005            // is much more likely to be foldable here.
1006            LargeMulOps.push_back(getSignExtendExpr(C, SrcType));
1007          } else {
1008            Ok = false;
1009            break;
1010          }
1011        }
1012        if (Ok)
1013          LargeOps.push_back(getMulExpr(LargeMulOps));
1014      } else {
1015        Ok = false;
1016        break;
1017      }
1018    }
1019    if (Ok) {
1020      // Evaluate the expression in the larger type.
1021      SCEVHandle Fold = getAddExpr(LargeOps);
1022      // If it folds to something simple, use it. Otherwise, don't.
1023      if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1024        return getTruncateExpr(Fold, DstType);
1025    }
1026  }
1027
1028  // Skip past any other cast SCEVs.
1029  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1030    ++Idx;
1031
1032  // If there are add operands they would be next.
1033  if (Idx < Ops.size()) {
1034    bool DeletedAdd = false;
1035    while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
1036      // If we have an add, expand the add operands onto the end of the operands
1037      // list.
1038      Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
1039      Ops.erase(Ops.begin()+Idx);
1040      DeletedAdd = true;
1041    }
1042
1043    // If we deleted at least one add, we added operands to the end of the list,
1044    // and they are not necessarily sorted.  Recurse to resort and resimplify
1045    // any operands we just aquired.
1046    if (DeletedAdd)
1047      return getAddExpr(Ops);
1048  }
1049
1050  // Skip over the add expression until we get to a multiply.
1051  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1052    ++Idx;
1053
1054  // If we are adding something to a multiply expression, make sure the
1055  // something is not already an operand of the multiply.  If so, merge it into
1056  // the multiply.
1057  for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
1058    const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
1059    for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
1060      const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
1061      for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
1062        if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(MulOpSCEV)) {
1063          // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
1064          SCEVHandle InnerMul = Mul->getOperand(MulOp == 0);
1065          if (Mul->getNumOperands() != 2) {
1066            // If the multiply has more than two operands, we must get the
1067            // Y*Z term.
1068            std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
1069            MulOps.erase(MulOps.begin()+MulOp);
1070            InnerMul = getMulExpr(MulOps);
1071          }
1072          SCEVHandle One = getIntegerSCEV(1, Ty);
1073          SCEVHandle AddOne = getAddExpr(InnerMul, One);
1074          SCEVHandle OuterMul = getMulExpr(AddOne, Ops[AddOp]);
1075          if (Ops.size() == 2) return OuterMul;
1076          if (AddOp < Idx) {
1077            Ops.erase(Ops.begin()+AddOp);
1078            Ops.erase(Ops.begin()+Idx-1);
1079          } else {
1080            Ops.erase(Ops.begin()+Idx);
1081            Ops.erase(Ops.begin()+AddOp-1);
1082          }
1083          Ops.push_back(OuterMul);
1084          return getAddExpr(Ops);
1085        }
1086
1087      // Check this multiply against other multiplies being added together.
1088      for (unsigned OtherMulIdx = Idx+1;
1089           OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1090           ++OtherMulIdx) {
1091        const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
1092        // If MulOp occurs in OtherMul, we can fold the two multiplies
1093        // together.
1094        for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1095             OMulOp != e; ++OMulOp)
1096          if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1097            // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
1098            SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0);
1099            if (Mul->getNumOperands() != 2) {
1100              std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
1101              MulOps.erase(MulOps.begin()+MulOp);
1102              InnerMul1 = getMulExpr(MulOps);
1103            }
1104            SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0);
1105            if (OtherMul->getNumOperands() != 2) {
1106              std::vector<SCEVHandle> MulOps(OtherMul->op_begin(),
1107                                             OtherMul->op_end());
1108              MulOps.erase(MulOps.begin()+OMulOp);
1109              InnerMul2 = getMulExpr(MulOps);
1110            }
1111            SCEVHandle InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1112            SCEVHandle OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
1113            if (Ops.size() == 2) return OuterMul;
1114            Ops.erase(Ops.begin()+Idx);
1115            Ops.erase(Ops.begin()+OtherMulIdx-1);
1116            Ops.push_back(OuterMul);
1117            return getAddExpr(Ops);
1118          }
1119      }
1120    }
1121  }
1122
1123  // If there are any add recurrences in the operands list, see if any other
1124  // added values are loop invariant.  If so, we can fold them into the
1125  // recurrence.
1126  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1127    ++Idx;
1128
1129  // Scan over all recurrences, trying to fold loop invariants into them.
1130  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1131    // Scan all of the other operands to this add and add them to the vector if
1132    // they are loop invariant w.r.t. the recurrence.
1133    std::vector<SCEVHandle> LIOps;
1134    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1135    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1136      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1137        LIOps.push_back(Ops[i]);
1138        Ops.erase(Ops.begin()+i);
1139        --i; --e;
1140      }
1141
1142    // If we found some loop invariants, fold them into the recurrence.
1143    if (!LIOps.empty()) {
1144      //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
1145      LIOps.push_back(AddRec->getStart());
1146
1147      std::vector<SCEVHandle> AddRecOps(AddRec->op_begin(), AddRec->op_end());
1148      AddRecOps[0] = getAddExpr(LIOps);
1149
1150      SCEVHandle NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop());
1151      // If all of the other operands were loop invariant, we are done.
1152      if (Ops.size() == 1) return NewRec;
1153
1154      // Otherwise, add the folded AddRec by the non-liv parts.
1155      for (unsigned i = 0;; ++i)
1156        if (Ops[i] == AddRec) {
1157          Ops[i] = NewRec;
1158          break;
1159        }
1160      return getAddExpr(Ops);
1161    }
1162
1163    // Okay, if there weren't any loop invariants to be folded, check to see if
1164    // there are multiple AddRec's with the same loop induction variable being
1165    // added together.  If so, we can fold them.
1166    for (unsigned OtherIdx = Idx+1;
1167         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1168      if (OtherIdx != Idx) {
1169        const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1170        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1171          // Other + {A,+,B} + {C,+,D}  -->  Other + {A+C,+,B+D}
1172          std::vector<SCEVHandle> NewOps(AddRec->op_begin(), AddRec->op_end());
1173          for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
1174            if (i >= NewOps.size()) {
1175              NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
1176                            OtherAddRec->op_end());
1177              break;
1178            }
1179            NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
1180          }
1181          SCEVHandle NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop());
1182
1183          if (Ops.size() == 2) return NewAddRec;
1184
1185          Ops.erase(Ops.begin()+Idx);
1186          Ops.erase(Ops.begin()+OtherIdx-1);
1187          Ops.push_back(NewAddRec);
1188          return getAddExpr(Ops);
1189        }
1190      }
1191
1192    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1193    // next one.
1194  }
1195
1196  // Okay, it looks like we really DO need an add expr.  Check to see if we
1197  // already have one, otherwise create a new one.
1198  std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
1199  SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scAddExpr,
1200                                                                 SCEVOps)];
1201  if (Result == 0) Result = new SCEVAddExpr(Ops);
1202  return Result;
1203}
1204
1205
1206SCEVHandle ScalarEvolution::getMulExpr(std::vector<SCEVHandle> &Ops) {
1207  assert(!Ops.empty() && "Cannot get empty mul!");
1208
1209  // Sort by complexity, this groups all similar expression types together.
1210  GroupByComplexity(Ops, LI);
1211
1212  // If there are any constants, fold them together.
1213  unsigned Idx = 0;
1214  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1215
1216    // C1*(C2+V) -> C1*C2 + C1*V
1217    if (Ops.size() == 2)
1218      if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
1219        if (Add->getNumOperands() == 2 &&
1220            isa<SCEVConstant>(Add->getOperand(0)))
1221          return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1222                            getMulExpr(LHSC, Add->getOperand(1)));
1223
1224
1225    ++Idx;
1226    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1227      // We found two constants, fold them together!
1228      ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() *
1229                                           RHSC->getValue()->getValue());
1230      Ops[0] = getConstant(Fold);
1231      Ops.erase(Ops.begin()+1);  // Erase the folded element
1232      if (Ops.size() == 1) return Ops[0];
1233      LHSC = cast<SCEVConstant>(Ops[0]);
1234    }
1235
1236    // If we are left with a constant one being multiplied, strip it off.
1237    if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1238      Ops.erase(Ops.begin());
1239      --Idx;
1240    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1241      // If we have a multiply of zero, it will always be zero.
1242      return Ops[0];
1243    }
1244  }
1245
1246  // Skip over the add expression until we get to a multiply.
1247  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1248    ++Idx;
1249
1250  if (Ops.size() == 1)
1251    return Ops[0];
1252
1253  // If there are mul operands inline them all into this expression.
1254  if (Idx < Ops.size()) {
1255    bool DeletedMul = false;
1256    while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
1257      // If we have an mul, expand the mul operands onto the end of the operands
1258      // list.
1259      Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
1260      Ops.erase(Ops.begin()+Idx);
1261      DeletedMul = true;
1262    }
1263
1264    // If we deleted at least one mul, we added operands to the end of the list,
1265    // and they are not necessarily sorted.  Recurse to resort and resimplify
1266    // any operands we just aquired.
1267    if (DeletedMul)
1268      return getMulExpr(Ops);
1269  }
1270
1271  // If there are any add recurrences in the operands list, see if any other
1272  // added values are loop invariant.  If so, we can fold them into the
1273  // recurrence.
1274  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1275    ++Idx;
1276
1277  // Scan over all recurrences, trying to fold loop invariants into them.
1278  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1279    // Scan all of the other operands to this mul and add them to the vector if
1280    // they are loop invariant w.r.t. the recurrence.
1281    std::vector<SCEVHandle> LIOps;
1282    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1283    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1284      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1285        LIOps.push_back(Ops[i]);
1286        Ops.erase(Ops.begin()+i);
1287        --i; --e;
1288      }
1289
1290    // If we found some loop invariants, fold them into the recurrence.
1291    if (!LIOps.empty()) {
1292      //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
1293      std::vector<SCEVHandle> NewOps;
1294      NewOps.reserve(AddRec->getNumOperands());
1295      if (LIOps.size() == 1) {
1296        const SCEV *Scale = LIOps[0];
1297        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1298          NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
1299      } else {
1300        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
1301          std::vector<SCEVHandle> MulOps(LIOps);
1302          MulOps.push_back(AddRec->getOperand(i));
1303          NewOps.push_back(getMulExpr(MulOps));
1304        }
1305      }
1306
1307      SCEVHandle NewRec = getAddRecExpr(NewOps, AddRec->getLoop());
1308
1309      // If all of the other operands were loop invariant, we are done.
1310      if (Ops.size() == 1) return NewRec;
1311
1312      // Otherwise, multiply the folded AddRec by the non-liv parts.
1313      for (unsigned i = 0;; ++i)
1314        if (Ops[i] == AddRec) {
1315          Ops[i] = NewRec;
1316          break;
1317        }
1318      return getMulExpr(Ops);
1319    }
1320
1321    // Okay, if there weren't any loop invariants to be folded, check to see if
1322    // there are multiple AddRec's with the same loop induction variable being
1323    // multiplied together.  If so, we can fold them.
1324    for (unsigned OtherIdx = Idx+1;
1325         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1326      if (OtherIdx != Idx) {
1327        const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1328        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1329          // F * G  -->  {A,+,B} * {C,+,D}  -->  {A*C,+,F*D + G*B + B*D}
1330          const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
1331          SCEVHandle NewStart = getMulExpr(F->getStart(),
1332                                                 G->getStart());
1333          SCEVHandle B = F->getStepRecurrence(*this);
1334          SCEVHandle D = G->getStepRecurrence(*this);
1335          SCEVHandle NewStep = getAddExpr(getMulExpr(F, D),
1336                                          getMulExpr(G, B),
1337                                          getMulExpr(B, D));
1338          SCEVHandle NewAddRec = getAddRecExpr(NewStart, NewStep,
1339                                               F->getLoop());
1340          if (Ops.size() == 2) return NewAddRec;
1341
1342          Ops.erase(Ops.begin()+Idx);
1343          Ops.erase(Ops.begin()+OtherIdx-1);
1344          Ops.push_back(NewAddRec);
1345          return getMulExpr(Ops);
1346        }
1347      }
1348
1349    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1350    // next one.
1351  }
1352
1353  // Okay, it looks like we really DO need an mul expr.  Check to see if we
1354  // already have one, otherwise create a new one.
1355  std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
1356  SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scMulExpr,
1357                                                                 SCEVOps)];
1358  if (Result == 0)
1359    Result = new SCEVMulExpr(Ops);
1360  return Result;
1361}
1362
1363SCEVHandle ScalarEvolution::getUDivExpr(const SCEVHandle &LHS,
1364                                        const SCEVHandle &RHS) {
1365  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
1366    if (RHSC->getValue()->equalsInt(1))
1367      return LHS;                            // X udiv 1 --> x
1368    if (RHSC->isZero())
1369      return getIntegerSCEV(0, LHS->getType()); // value is undefined
1370
1371    // Determine if the division can be folded into the operands of
1372    // its operands.
1373    // TODO: Generalize this to non-constants by using known-bits information.
1374    const Type *Ty = LHS->getType();
1375    unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
1376    unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ;
1377    // For non-power-of-two values, effectively round the value up to the
1378    // nearest power of two.
1379    if (!RHSC->getValue()->getValue().isPowerOf2())
1380      ++MaxShiftAmt;
1381    const IntegerType *ExtTy =
1382      IntegerType::get(getTypeSizeInBits(Ty) + MaxShiftAmt);
1383    // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1384    if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1385      if (const SCEVConstant *Step =
1386            dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1387        if (!Step->getValue()->getValue()
1388              .urem(RHSC->getValue()->getValue()) &&
1389            getZeroExtendExpr(AR, ExtTy) ==
1390            getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1391                          getZeroExtendExpr(Step, ExtTy),
1392                          AR->getLoop())) {
1393          std::vector<SCEVHandle> Operands;
1394          for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1395            Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1396          return getAddRecExpr(Operands, AR->getLoop());
1397        }
1398    // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
1399    if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
1400      std::vector<SCEVHandle> Operands;
1401      for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1402        Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1403      if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
1404        // Find an operand that's safely divisible.
1405        for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1406          SCEVHandle Op = M->getOperand(i);
1407          SCEVHandle Div = getUDivExpr(Op, RHSC);
1408          if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
1409            Operands = M->getOperands();
1410            Operands[i] = Div;
1411            return getMulExpr(Operands);
1412          }
1413        }
1414    }
1415    // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
1416    if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
1417      std::vector<SCEVHandle> Operands;
1418      for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
1419        Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
1420      if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
1421        Operands.clear();
1422        for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
1423          SCEVHandle Op = getUDivExpr(A->getOperand(i), RHS);
1424          if (isa<SCEVUDivExpr>(Op) || getMulExpr(Op, RHS) != A->getOperand(i))
1425            break;
1426          Operands.push_back(Op);
1427        }
1428        if (Operands.size() == A->getNumOperands())
1429          return getAddExpr(Operands);
1430      }
1431    }
1432
1433    // Fold if both operands are constant.
1434    if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1435      Constant *LHSCV = LHSC->getValue();
1436      Constant *RHSCV = RHSC->getValue();
1437      return getUnknown(ConstantExpr::getUDiv(LHSCV, RHSCV));
1438    }
1439  }
1440
1441  SCEVUDivExpr *&Result = (*SCEVUDivs)[std::make_pair(LHS, RHS)];
1442  if (Result == 0) Result = new SCEVUDivExpr(LHS, RHS);
1443  return Result;
1444}
1445
1446
1447/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1448/// specified loop.  Simplify the expression as much as possible.
1449SCEVHandle ScalarEvolution::getAddRecExpr(const SCEVHandle &Start,
1450                               const SCEVHandle &Step, const Loop *L) {
1451  std::vector<SCEVHandle> Operands;
1452  Operands.push_back(Start);
1453  if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
1454    if (StepChrec->getLoop() == L) {
1455      Operands.insert(Operands.end(), StepChrec->op_begin(),
1456                      StepChrec->op_end());
1457      return getAddRecExpr(Operands, L);
1458    }
1459
1460  Operands.push_back(Step);
1461  return getAddRecExpr(Operands, L);
1462}
1463
1464/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1465/// specified loop.  Simplify the expression as much as possible.
1466SCEVHandle ScalarEvolution::getAddRecExpr(std::vector<SCEVHandle> &Operands,
1467                                          const Loop *L) {
1468  if (Operands.size() == 1) return Operands[0];
1469
1470  if (Operands.back()->isZero()) {
1471    Operands.pop_back();
1472    return getAddRecExpr(Operands, L);             // {X,+,0}  -->  X
1473  }
1474
1475  // Canonicalize nested AddRecs in by nesting them in order of loop depth.
1476  if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
1477    const Loop* NestedLoop = NestedAR->getLoop();
1478    if (L->getLoopDepth() < NestedLoop->getLoopDepth()) {
1479      std::vector<SCEVHandle> NestedOperands(NestedAR->op_begin(),
1480                                             NestedAR->op_end());
1481      SCEVHandle NestedARHandle(NestedAR);
1482      Operands[0] = NestedAR->getStart();
1483      NestedOperands[0] = getAddRecExpr(Operands, L);
1484      return getAddRecExpr(NestedOperands, NestedLoop);
1485    }
1486  }
1487
1488  std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end());
1489  SCEVAddRecExpr *&Result = (*SCEVAddRecExprs)[std::make_pair(L, SCEVOps)];
1490  if (Result == 0) Result = new SCEVAddRecExpr(Operands, L);
1491  return Result;
1492}
1493
1494SCEVHandle ScalarEvolution::getSMaxExpr(const SCEVHandle &LHS,
1495                                        const SCEVHandle &RHS) {
1496  std::vector<SCEVHandle> Ops;
1497  Ops.push_back(LHS);
1498  Ops.push_back(RHS);
1499  return getSMaxExpr(Ops);
1500}
1501
1502SCEVHandle ScalarEvolution::getSMaxExpr(std::vector<SCEVHandle> Ops) {
1503  assert(!Ops.empty() && "Cannot get empty smax!");
1504  if (Ops.size() == 1) return Ops[0];
1505
1506  // Sort by complexity, this groups all similar expression types together.
1507  GroupByComplexity(Ops, LI);
1508
1509  // If there are any constants, fold them together.
1510  unsigned Idx = 0;
1511  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1512    ++Idx;
1513    assert(Idx < Ops.size());
1514    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1515      // We found two constants, fold them together!
1516      ConstantInt *Fold = ConstantInt::get(
1517                              APIntOps::smax(LHSC->getValue()->getValue(),
1518                                             RHSC->getValue()->getValue()));
1519      Ops[0] = getConstant(Fold);
1520      Ops.erase(Ops.begin()+1);  // Erase the folded element
1521      if (Ops.size() == 1) return Ops[0];
1522      LHSC = cast<SCEVConstant>(Ops[0]);
1523    }
1524
1525    // If we are left with a constant -inf, strip it off.
1526    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
1527      Ops.erase(Ops.begin());
1528      --Idx;
1529    }
1530  }
1531
1532  if (Ops.size() == 1) return Ops[0];
1533
1534  // Find the first SMax
1535  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
1536    ++Idx;
1537
1538  // Check to see if one of the operands is an SMax. If so, expand its operands
1539  // onto our operand list, and recurse to simplify.
1540  if (Idx < Ops.size()) {
1541    bool DeletedSMax = false;
1542    while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
1543      Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end());
1544      Ops.erase(Ops.begin()+Idx);
1545      DeletedSMax = true;
1546    }
1547
1548    if (DeletedSMax)
1549      return getSMaxExpr(Ops);
1550  }
1551
1552  // Okay, check to see if the same value occurs in the operand list twice.  If
1553  // so, delete one.  Since we sorted the list, these values are required to
1554  // be adjacent.
1555  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1556    if (Ops[i] == Ops[i+1]) {      //  X smax Y smax Y  -->  X smax Y
1557      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1558      --i; --e;
1559    }
1560
1561  if (Ops.size() == 1) return Ops[0];
1562
1563  assert(!Ops.empty() && "Reduced smax down to nothing!");
1564
1565  // Okay, it looks like we really DO need an smax expr.  Check to see if we
1566  // already have one, otherwise create a new one.
1567  std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
1568  SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scSMaxExpr,
1569                                                                 SCEVOps)];
1570  if (Result == 0) Result = new SCEVSMaxExpr(Ops);
1571  return Result;
1572}
1573
1574SCEVHandle ScalarEvolution::getUMaxExpr(const SCEVHandle &LHS,
1575                                        const SCEVHandle &RHS) {
1576  std::vector<SCEVHandle> Ops;
1577  Ops.push_back(LHS);
1578  Ops.push_back(RHS);
1579  return getUMaxExpr(Ops);
1580}
1581
1582SCEVHandle ScalarEvolution::getUMaxExpr(std::vector<SCEVHandle> Ops) {
1583  assert(!Ops.empty() && "Cannot get empty umax!");
1584  if (Ops.size() == 1) return Ops[0];
1585
1586  // Sort by complexity, this groups all similar expression types together.
1587  GroupByComplexity(Ops, LI);
1588
1589  // If there are any constants, fold them together.
1590  unsigned Idx = 0;
1591  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1592    ++Idx;
1593    assert(Idx < Ops.size());
1594    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1595      // We found two constants, fold them together!
1596      ConstantInt *Fold = ConstantInt::get(
1597                              APIntOps::umax(LHSC->getValue()->getValue(),
1598                                             RHSC->getValue()->getValue()));
1599      Ops[0] = getConstant(Fold);
1600      Ops.erase(Ops.begin()+1);  // Erase the folded element
1601      if (Ops.size() == 1) return Ops[0];
1602      LHSC = cast<SCEVConstant>(Ops[0]);
1603    }
1604
1605    // If we are left with a constant zero, strip it off.
1606    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
1607      Ops.erase(Ops.begin());
1608      --Idx;
1609    }
1610  }
1611
1612  if (Ops.size() == 1) return Ops[0];
1613
1614  // Find the first UMax
1615  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
1616    ++Idx;
1617
1618  // Check to see if one of the operands is a UMax. If so, expand its operands
1619  // onto our operand list, and recurse to simplify.
1620  if (Idx < Ops.size()) {
1621    bool DeletedUMax = false;
1622    while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
1623      Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end());
1624      Ops.erase(Ops.begin()+Idx);
1625      DeletedUMax = true;
1626    }
1627
1628    if (DeletedUMax)
1629      return getUMaxExpr(Ops);
1630  }
1631
1632  // Okay, check to see if the same value occurs in the operand list twice.  If
1633  // so, delete one.  Since we sorted the list, these values are required to
1634  // be adjacent.
1635  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1636    if (Ops[i] == Ops[i+1]) {      //  X umax Y umax Y  -->  X umax Y
1637      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1638      --i; --e;
1639    }
1640
1641  if (Ops.size() == 1) return Ops[0];
1642
1643  assert(!Ops.empty() && "Reduced umax down to nothing!");
1644
1645  // Okay, it looks like we really DO need a umax expr.  Check to see if we
1646  // already have one, otherwise create a new one.
1647  std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
1648  SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scUMaxExpr,
1649                                                                 SCEVOps)];
1650  if (Result == 0) Result = new SCEVUMaxExpr(Ops);
1651  return Result;
1652}
1653
1654SCEVHandle ScalarEvolution::getUnknown(Value *V) {
1655  if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
1656    return getConstant(CI);
1657  if (isa<ConstantPointerNull>(V))
1658    return getIntegerSCEV(0, V->getType());
1659  SCEVUnknown *&Result = (*SCEVUnknowns)[V];
1660  if (Result == 0) Result = new SCEVUnknown(V);
1661  return Result;
1662}
1663
1664//===----------------------------------------------------------------------===//
1665//            Basic SCEV Analysis and PHI Idiom Recognition Code
1666//
1667
1668/// isSCEVable - Test if values of the given type are analyzable within
1669/// the SCEV framework. This primarily includes integer types, and it
1670/// can optionally include pointer types if the ScalarEvolution class
1671/// has access to target-specific information.
1672bool ScalarEvolution::isSCEVable(const Type *Ty) const {
1673  // Integers are always SCEVable.
1674  if (Ty->isInteger())
1675    return true;
1676
1677  // Pointers are SCEVable if TargetData information is available
1678  // to provide pointer size information.
1679  if (isa<PointerType>(Ty))
1680    return TD != NULL;
1681
1682  // Otherwise it's not SCEVable.
1683  return false;
1684}
1685
1686/// getTypeSizeInBits - Return the size in bits of the specified type,
1687/// for which isSCEVable must return true.
1688uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
1689  assert(isSCEVable(Ty) && "Type is not SCEVable!");
1690
1691  // If we have a TargetData, use it!
1692  if (TD)
1693    return TD->getTypeSizeInBits(Ty);
1694
1695  // Otherwise, we support only integer types.
1696  assert(Ty->isInteger() && "isSCEVable permitted a non-SCEVable type!");
1697  return Ty->getPrimitiveSizeInBits();
1698}
1699
1700/// getEffectiveSCEVType - Return a type with the same bitwidth as
1701/// the given type and which represents how SCEV will treat the given
1702/// type, for which isSCEVable must return true. For pointer types,
1703/// this is the pointer-sized integer type.
1704const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
1705  assert(isSCEVable(Ty) && "Type is not SCEVable!");
1706
1707  if (Ty->isInteger())
1708    return Ty;
1709
1710  assert(isa<PointerType>(Ty) && "Unexpected non-pointer non-integer type!");
1711  return TD->getIntPtrType();
1712}
1713
1714SCEVHandle ScalarEvolution::getCouldNotCompute() {
1715  return UnknownValue;
1716}
1717
1718/// hasSCEV - Return true if the SCEV for this value has already been
1719/// computed.
1720bool ScalarEvolution::hasSCEV(Value *V) const {
1721  return Scalars.count(V);
1722}
1723
1724/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1725/// expression and create a new one.
1726SCEVHandle ScalarEvolution::getSCEV(Value *V) {
1727  assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
1728
1729  std::map<SCEVCallbackVH, SCEVHandle>::iterator I = Scalars.find(V);
1730  if (I != Scalars.end()) return I->second;
1731  SCEVHandle S = createSCEV(V);
1732  Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S));
1733  return S;
1734}
1735
1736/// getIntegerSCEV - Given an integer or FP type, create a constant for the
1737/// specified signed integer value and return a SCEV for the constant.
1738SCEVHandle ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) {
1739  Ty = getEffectiveSCEVType(Ty);
1740  Constant *C;
1741  if (Val == 0)
1742    C = Constant::getNullValue(Ty);
1743  else if (Ty->isFloatingPoint())
1744    C = ConstantFP::get(APFloat(Ty==Type::FloatTy ? APFloat::IEEEsingle :
1745                                APFloat::IEEEdouble, Val));
1746  else
1747    C = ConstantInt::get(Ty, Val);
1748  return getUnknown(C);
1749}
1750
1751/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
1752///
1753SCEVHandle ScalarEvolution::getNegativeSCEV(const SCEVHandle &V) {
1754  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
1755    return getUnknown(ConstantExpr::getNeg(VC->getValue()));
1756
1757  const Type *Ty = V->getType();
1758  Ty = getEffectiveSCEVType(Ty);
1759  return getMulExpr(V, getConstant(ConstantInt::getAllOnesValue(Ty)));
1760}
1761
1762/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
1763SCEVHandle ScalarEvolution::getNotSCEV(const SCEVHandle &V) {
1764  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
1765    return getUnknown(ConstantExpr::getNot(VC->getValue()));
1766
1767  const Type *Ty = V->getType();
1768  Ty = getEffectiveSCEVType(Ty);
1769  SCEVHandle AllOnes = getConstant(ConstantInt::getAllOnesValue(Ty));
1770  return getMinusSCEV(AllOnes, V);
1771}
1772
1773/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
1774///
1775SCEVHandle ScalarEvolution::getMinusSCEV(const SCEVHandle &LHS,
1776                                         const SCEVHandle &RHS) {
1777  // X - Y --> X + -Y
1778  return getAddExpr(LHS, getNegativeSCEV(RHS));
1779}
1780
1781/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
1782/// input value to the specified type.  If the type must be extended, it is zero
1783/// extended.
1784SCEVHandle
1785ScalarEvolution::getTruncateOrZeroExtend(const SCEVHandle &V,
1786                                         const Type *Ty) {
1787  const Type *SrcTy = V->getType();
1788  assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
1789         (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
1790         "Cannot truncate or zero extend with non-integer arguments!");
1791  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
1792    return V;  // No conversion
1793  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
1794    return getTruncateExpr(V, Ty);
1795  return getZeroExtendExpr(V, Ty);
1796}
1797
1798/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
1799/// input value to the specified type.  If the type must be extended, it is sign
1800/// extended.
1801SCEVHandle
1802ScalarEvolution::getTruncateOrSignExtend(const SCEVHandle &V,
1803                                         const Type *Ty) {
1804  const Type *SrcTy = V->getType();
1805  assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
1806         (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
1807         "Cannot truncate or zero extend with non-integer arguments!");
1808  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
1809    return V;  // No conversion
1810  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
1811    return getTruncateExpr(V, Ty);
1812  return getSignExtendExpr(V, Ty);
1813}
1814
1815/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
1816/// input value to the specified type.  If the type must be extended, it is zero
1817/// extended.  The conversion must not be narrowing.
1818SCEVHandle
1819ScalarEvolution::getNoopOrZeroExtend(const SCEVHandle &V, const Type *Ty) {
1820  const Type *SrcTy = V->getType();
1821  assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
1822         (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
1823         "Cannot noop or zero extend with non-integer arguments!");
1824  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
1825         "getNoopOrZeroExtend cannot truncate!");
1826  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
1827    return V;  // No conversion
1828  return getZeroExtendExpr(V, Ty);
1829}
1830
1831/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
1832/// input value to the specified type.  If the type must be extended, it is sign
1833/// extended.  The conversion must not be narrowing.
1834SCEVHandle
1835ScalarEvolution::getNoopOrSignExtend(const SCEVHandle &V, const Type *Ty) {
1836  const Type *SrcTy = V->getType();
1837  assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
1838         (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
1839         "Cannot noop or sign extend with non-integer arguments!");
1840  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
1841         "getNoopOrSignExtend cannot truncate!");
1842  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
1843    return V;  // No conversion
1844  return getSignExtendExpr(V, Ty);
1845}
1846
1847/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
1848/// input value to the specified type.  The conversion must not be widening.
1849SCEVHandle
1850ScalarEvolution::getTruncateOrNoop(const SCEVHandle &V, const Type *Ty) {
1851  const Type *SrcTy = V->getType();
1852  assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
1853         (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
1854         "Cannot truncate or noop with non-integer arguments!");
1855  assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
1856         "getTruncateOrNoop cannot extend!");
1857  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
1858    return V;  // No conversion
1859  return getTruncateExpr(V, Ty);
1860}
1861
1862/// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for
1863/// the specified instruction and replaces any references to the symbolic value
1864/// SymName with the specified value.  This is used during PHI resolution.
1865void ScalarEvolution::
1866ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName,
1867                                 const SCEVHandle &NewVal) {
1868  std::map<SCEVCallbackVH, SCEVHandle>::iterator SI =
1869    Scalars.find(SCEVCallbackVH(I, this));
1870  if (SI == Scalars.end()) return;
1871
1872  SCEVHandle NV =
1873    SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal, *this);
1874  if (NV == SI->second) return;  // No change.
1875
1876  SI->second = NV;       // Update the scalars map!
1877
1878  // Any instruction values that use this instruction might also need to be
1879  // updated!
1880  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1881       UI != E; ++UI)
1882    ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal);
1883}
1884
1885/// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
1886/// a loop header, making it a potential recurrence, or it doesn't.
1887///
1888SCEVHandle ScalarEvolution::createNodeForPHI(PHINode *PN) {
1889  if (PN->getNumIncomingValues() == 2)  // The loops have been canonicalized.
1890    if (const Loop *L = LI->getLoopFor(PN->getParent()))
1891      if (L->getHeader() == PN->getParent()) {
1892        // If it lives in the loop header, it has two incoming values, one
1893        // from outside the loop, and one from inside.
1894        unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
1895        unsigned BackEdge     = IncomingEdge^1;
1896
1897        // While we are analyzing this PHI node, handle its value symbolically.
1898        SCEVHandle SymbolicName = getUnknown(PN);
1899        assert(Scalars.find(PN) == Scalars.end() &&
1900               "PHI node already processed?");
1901        Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
1902
1903        // Using this symbolic name for the PHI, analyze the value coming around
1904        // the back-edge.
1905        SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge));
1906
1907        // NOTE: If BEValue is loop invariant, we know that the PHI node just
1908        // has a special value for the first iteration of the loop.
1909
1910        // If the value coming around the backedge is an add with the symbolic
1911        // value we just inserted, then we found a simple induction variable!
1912        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
1913          // If there is a single occurrence of the symbolic value, replace it
1914          // with a recurrence.
1915          unsigned FoundIndex = Add->getNumOperands();
1916          for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1917            if (Add->getOperand(i) == SymbolicName)
1918              if (FoundIndex == e) {
1919                FoundIndex = i;
1920                break;
1921              }
1922
1923          if (FoundIndex != Add->getNumOperands()) {
1924            // Create an add with everything but the specified operand.
1925            std::vector<SCEVHandle> Ops;
1926            for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1927              if (i != FoundIndex)
1928                Ops.push_back(Add->getOperand(i));
1929            SCEVHandle Accum = getAddExpr(Ops);
1930
1931            // This is not a valid addrec if the step amount is varying each
1932            // loop iteration, but is not itself an addrec in this loop.
1933            if (Accum->isLoopInvariant(L) ||
1934                (isa<SCEVAddRecExpr>(Accum) &&
1935                 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
1936              SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
1937              SCEVHandle PHISCEV  = getAddRecExpr(StartVal, Accum, L);
1938
1939              // Okay, for the entire analysis of this edge we assumed the PHI
1940              // to be symbolic.  We now need to go back and update all of the
1941              // entries for the scalars that use the PHI (except for the PHI
1942              // itself) to use the new analyzed value instead of the "symbolic"
1943              // value.
1944              ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
1945              return PHISCEV;
1946            }
1947          }
1948        } else if (const SCEVAddRecExpr *AddRec =
1949                     dyn_cast<SCEVAddRecExpr>(BEValue)) {
1950          // Otherwise, this could be a loop like this:
1951          //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
1952          // In this case, j = {1,+,1}  and BEValue is j.
1953          // Because the other in-value of i (0) fits the evolution of BEValue
1954          // i really is an addrec evolution.
1955          if (AddRec->getLoop() == L && AddRec->isAffine()) {
1956            SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
1957
1958            // If StartVal = j.start - j.stride, we can use StartVal as the
1959            // initial step of the addrec evolution.
1960            if (StartVal == getMinusSCEV(AddRec->getOperand(0),
1961                                            AddRec->getOperand(1))) {
1962              SCEVHandle PHISCEV =
1963                 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
1964
1965              // Okay, for the entire analysis of this edge we assumed the PHI
1966              // to be symbolic.  We now need to go back and update all of the
1967              // entries for the scalars that use the PHI (except for the PHI
1968              // itself) to use the new analyzed value instead of the "symbolic"
1969              // value.
1970              ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
1971              return PHISCEV;
1972            }
1973          }
1974        }
1975
1976        return SymbolicName;
1977      }
1978
1979  // If it's not a loop phi, we can't handle it yet.
1980  return getUnknown(PN);
1981}
1982
1983/// createNodeForGEP - Expand GEP instructions into add and multiply
1984/// operations. This allows them to be analyzed by regular SCEV code.
1985///
1986SCEVHandle ScalarEvolution::createNodeForGEP(User *GEP) {
1987
1988  const Type *IntPtrTy = TD->getIntPtrType();
1989  Value *Base = GEP->getOperand(0);
1990  // Don't attempt to analyze GEPs over unsized objects.
1991  if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
1992    return getUnknown(GEP);
1993  SCEVHandle TotalOffset = getIntegerSCEV(0, IntPtrTy);
1994  gep_type_iterator GTI = gep_type_begin(GEP);
1995  for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()),
1996                                      E = GEP->op_end();
1997       I != E; ++I) {
1998    Value *Index = *I;
1999    // Compute the (potentially symbolic) offset in bytes for this index.
2000    if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2001      // For a struct, add the member offset.
2002      const StructLayout &SL = *TD->getStructLayout(STy);
2003      unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
2004      uint64_t Offset = SL.getElementOffset(FieldNo);
2005      TotalOffset = getAddExpr(TotalOffset,
2006                                  getIntegerSCEV(Offset, IntPtrTy));
2007    } else {
2008      // For an array, add the element offset, explicitly scaled.
2009      SCEVHandle LocalOffset = getSCEV(Index);
2010      if (!isa<PointerType>(LocalOffset->getType()))
2011        // Getelementptr indicies are signed.
2012        LocalOffset = getTruncateOrSignExtend(LocalOffset,
2013                                              IntPtrTy);
2014      LocalOffset =
2015        getMulExpr(LocalOffset,
2016                   getIntegerSCEV(TD->getTypeAllocSize(*GTI),
2017                                  IntPtrTy));
2018      TotalOffset = getAddExpr(TotalOffset, LocalOffset);
2019    }
2020  }
2021  return getAddExpr(getSCEV(Base), TotalOffset);
2022}
2023
2024/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2025/// guaranteed to end in (at every loop iteration).  It is, at the same time,
2026/// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
2027/// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
2028static uint32_t GetMinTrailingZeros(SCEVHandle S, const ScalarEvolution &SE) {
2029  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2030    return C->getValue()->getValue().countTrailingZeros();
2031
2032  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
2033    return std::min(GetMinTrailingZeros(T->getOperand(), SE),
2034                    (uint32_t)SE.getTypeSizeInBits(T->getType()));
2035
2036  if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
2037    uint32_t OpRes = GetMinTrailingZeros(E->getOperand(), SE);
2038    return OpRes == SE.getTypeSizeInBits(E->getOperand()->getType()) ?
2039             SE.getTypeSizeInBits(E->getType()) : OpRes;
2040  }
2041
2042  if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
2043    uint32_t OpRes = GetMinTrailingZeros(E->getOperand(), SE);
2044    return OpRes == SE.getTypeSizeInBits(E->getOperand()->getType()) ?
2045             SE.getTypeSizeInBits(E->getType()) : OpRes;
2046  }
2047
2048  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
2049    // The result is the min of all operands results.
2050    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0), SE);
2051    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
2052      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i), SE));
2053    return MinOpRes;
2054  }
2055
2056  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
2057    // The result is the sum of all operands results.
2058    uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0), SE);
2059    uint32_t BitWidth = SE.getTypeSizeInBits(M->getType());
2060    for (unsigned i = 1, e = M->getNumOperands();
2061         SumOpRes != BitWidth && i != e; ++i)
2062      SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i), SE),
2063                          BitWidth);
2064    return SumOpRes;
2065  }
2066
2067  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
2068    // The result is the min of all operands results.
2069    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0), SE);
2070    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
2071      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i), SE));
2072    return MinOpRes;
2073  }
2074
2075  if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
2076    // The result is the min of all operands results.
2077    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0), SE);
2078    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
2079      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i), SE));
2080    return MinOpRes;
2081  }
2082
2083  if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
2084    // The result is the min of all operands results.
2085    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0), SE);
2086    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
2087      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i), SE));
2088    return MinOpRes;
2089  }
2090
2091  // SCEVUDivExpr, SCEVUnknown
2092  return 0;
2093}
2094
2095/// createSCEV - We know that there is no SCEV for the specified value.
2096/// Analyze the expression.
2097///
2098SCEVHandle ScalarEvolution::createSCEV(Value *V) {
2099  if (!isSCEVable(V->getType()))
2100    return getUnknown(V);
2101
2102  unsigned Opcode = Instruction::UserOp1;
2103  if (Instruction *I = dyn_cast<Instruction>(V))
2104    Opcode = I->getOpcode();
2105  else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
2106    Opcode = CE->getOpcode();
2107  else
2108    return getUnknown(V);
2109
2110  User *U = cast<User>(V);
2111  switch (Opcode) {
2112  case Instruction::Add:
2113    return getAddExpr(getSCEV(U->getOperand(0)),
2114                      getSCEV(U->getOperand(1)));
2115  case Instruction::Mul:
2116    return getMulExpr(getSCEV(U->getOperand(0)),
2117                      getSCEV(U->getOperand(1)));
2118  case Instruction::UDiv:
2119    return getUDivExpr(getSCEV(U->getOperand(0)),
2120                       getSCEV(U->getOperand(1)));
2121  case Instruction::Sub:
2122    return getMinusSCEV(getSCEV(U->getOperand(0)),
2123                        getSCEV(U->getOperand(1)));
2124  case Instruction::And:
2125    // For an expression like x&255 that merely masks off the high bits,
2126    // use zext(trunc(x)) as the SCEV expression.
2127    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
2128      if (CI->isNullValue())
2129        return getSCEV(U->getOperand(1));
2130      if (CI->isAllOnesValue())
2131        return getSCEV(U->getOperand(0));
2132      const APInt &A = CI->getValue();
2133      unsigned Ones = A.countTrailingOnes();
2134      if (APIntOps::isMask(Ones, A))
2135        return
2136          getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
2137                                            IntegerType::get(Ones)),
2138                            U->getType());
2139    }
2140    break;
2141  case Instruction::Or:
2142    // If the RHS of the Or is a constant, we may have something like:
2143    // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
2144    // optimizations will transparently handle this case.
2145    //
2146    // In order for this transformation to be safe, the LHS must be of the
2147    // form X*(2^n) and the Or constant must be less than 2^n.
2148    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
2149      SCEVHandle LHS = getSCEV(U->getOperand(0));
2150      const APInt &CIVal = CI->getValue();
2151      if (GetMinTrailingZeros(LHS, *this) >=
2152          (CIVal.getBitWidth() - CIVal.countLeadingZeros()))
2153        return getAddExpr(LHS, getSCEV(U->getOperand(1)));
2154    }
2155    break;
2156  case Instruction::Xor:
2157    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
2158      // If the RHS of the xor is a signbit, then this is just an add.
2159      // Instcombine turns add of signbit into xor as a strength reduction step.
2160      if (CI->getValue().isSignBit())
2161        return getAddExpr(getSCEV(U->getOperand(0)),
2162                          getSCEV(U->getOperand(1)));
2163
2164      // If the RHS of xor is -1, then this is a not operation.
2165      else if (CI->isAllOnesValue())
2166        return getNotSCEV(getSCEV(U->getOperand(0)));
2167    }
2168    break;
2169
2170  case Instruction::Shl:
2171    // Turn shift left of a constant amount into a multiply.
2172    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
2173      uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2174      Constant *X = ConstantInt::get(
2175        APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
2176      return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
2177    }
2178    break;
2179
2180  case Instruction::LShr:
2181    // Turn logical shift right of a constant into a unsigned divide.
2182    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
2183      uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2184      Constant *X = ConstantInt::get(
2185        APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
2186      return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
2187    }
2188    break;
2189
2190  case Instruction::AShr:
2191    // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
2192    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
2193      if (Instruction *L = dyn_cast<Instruction>(U->getOperand(0)))
2194        if (L->getOpcode() == Instruction::Shl &&
2195            L->getOperand(1) == U->getOperand(1)) {
2196          unsigned BitWidth = getTypeSizeInBits(U->getType());
2197          uint64_t Amt = BitWidth - CI->getZExtValue();
2198          if (Amt == BitWidth)
2199            return getSCEV(L->getOperand(0));       // shift by zero --> noop
2200          if (Amt > BitWidth)
2201            return getIntegerSCEV(0, U->getType()); // value is undefined
2202          return
2203            getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
2204                                                      IntegerType::get(Amt)),
2205                                 U->getType());
2206        }
2207    break;
2208
2209  case Instruction::Trunc:
2210    return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
2211
2212  case Instruction::ZExt:
2213    return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
2214
2215  case Instruction::SExt:
2216    return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
2217
2218  case Instruction::BitCast:
2219    // BitCasts are no-op casts so we just eliminate the cast.
2220    if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
2221      return getSCEV(U->getOperand(0));
2222    break;
2223
2224  case Instruction::IntToPtr:
2225    if (!TD) break; // Without TD we can't analyze pointers.
2226    return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)),
2227                                   TD->getIntPtrType());
2228
2229  case Instruction::PtrToInt:
2230    if (!TD) break; // Without TD we can't analyze pointers.
2231    return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)),
2232                                   U->getType());
2233
2234  case Instruction::GetElementPtr:
2235    if (!TD) break; // Without TD we can't analyze pointers.
2236    return createNodeForGEP(U);
2237
2238  case Instruction::PHI:
2239    return createNodeForPHI(cast<PHINode>(U));
2240
2241  case Instruction::Select:
2242    // This could be a smax or umax that was lowered earlier.
2243    // Try to recover it.
2244    if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
2245      Value *LHS = ICI->getOperand(0);
2246      Value *RHS = ICI->getOperand(1);
2247      switch (ICI->getPredicate()) {
2248      case ICmpInst::ICMP_SLT:
2249      case ICmpInst::ICMP_SLE:
2250        std::swap(LHS, RHS);
2251        // fall through
2252      case ICmpInst::ICMP_SGT:
2253      case ICmpInst::ICMP_SGE:
2254        if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
2255          return getSMaxExpr(getSCEV(LHS), getSCEV(RHS));
2256        else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
2257          // ~smax(~x, ~y) == smin(x, y).
2258          return getNotSCEV(getSMaxExpr(
2259                                   getNotSCEV(getSCEV(LHS)),
2260                                   getNotSCEV(getSCEV(RHS))));
2261        break;
2262      case ICmpInst::ICMP_ULT:
2263      case ICmpInst::ICMP_ULE:
2264        std::swap(LHS, RHS);
2265        // fall through
2266      case ICmpInst::ICMP_UGT:
2267      case ICmpInst::ICMP_UGE:
2268        if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
2269          return getUMaxExpr(getSCEV(LHS), getSCEV(RHS));
2270        else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
2271          // ~umax(~x, ~y) == umin(x, y)
2272          return getNotSCEV(getUMaxExpr(getNotSCEV(getSCEV(LHS)),
2273                                        getNotSCEV(getSCEV(RHS))));
2274        break;
2275      default:
2276        break;
2277      }
2278    }
2279
2280  default: // We cannot analyze this expression.
2281    break;
2282  }
2283
2284  return getUnknown(V);
2285}
2286
2287
2288
2289//===----------------------------------------------------------------------===//
2290//                   Iteration Count Computation Code
2291//
2292
2293/// getBackedgeTakenCount - If the specified loop has a predictable
2294/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
2295/// object. The backedge-taken count is the number of times the loop header
2296/// will be branched to from within the loop. This is one less than the
2297/// trip count of the loop, since it doesn't count the first iteration,
2298/// when the header is branched to from outside the loop.
2299///
2300/// Note that it is not valid to call this method on a loop without a
2301/// loop-invariant backedge-taken count (see
2302/// hasLoopInvariantBackedgeTakenCount).
2303///
2304SCEVHandle ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
2305  return getBackedgeTakenInfo(L).Exact;
2306}
2307
2308/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
2309/// return the least SCEV value that is known never to be less than the
2310/// actual backedge taken count.
2311SCEVHandle ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
2312  return getBackedgeTakenInfo(L).Max;
2313}
2314
2315const ScalarEvolution::BackedgeTakenInfo &
2316ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
2317  // Initially insert a CouldNotCompute for this loop. If the insertion
2318  // succeeds, procede to actually compute a backedge-taken count and
2319  // update the value. The temporary CouldNotCompute value tells SCEV
2320  // code elsewhere that it shouldn't attempt to request a new
2321  // backedge-taken count, which could result in infinite recursion.
2322  std::pair<std::map<const Loop*, BackedgeTakenInfo>::iterator, bool> Pair =
2323    BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
2324  if (Pair.second) {
2325    BackedgeTakenInfo ItCount = ComputeBackedgeTakenCount(L);
2326    if (ItCount.Exact != UnknownValue) {
2327      assert(ItCount.Exact->isLoopInvariant(L) &&
2328             ItCount.Max->isLoopInvariant(L) &&
2329             "Computed trip count isn't loop invariant for loop!");
2330      ++NumTripCountsComputed;
2331
2332      // Update the value in the map.
2333      Pair.first->second = ItCount;
2334    } else if (isa<PHINode>(L->getHeader()->begin())) {
2335      // Only count loops that have phi nodes as not being computable.
2336      ++NumTripCountsNotComputed;
2337    }
2338
2339    // Now that we know more about the trip count for this loop, forget any
2340    // existing SCEV values for PHI nodes in this loop since they are only
2341    // conservative estimates made without the benefit
2342    // of trip count information.
2343    if (ItCount.hasAnyInfo())
2344      forgetLoopPHIs(L);
2345  }
2346  return Pair.first->second;
2347}
2348
2349/// forgetLoopBackedgeTakenCount - This method should be called by the
2350/// client when it has changed a loop in a way that may effect
2351/// ScalarEvolution's ability to compute a trip count, or if the loop
2352/// is deleted.
2353void ScalarEvolution::forgetLoopBackedgeTakenCount(const Loop *L) {
2354  BackedgeTakenCounts.erase(L);
2355  forgetLoopPHIs(L);
2356}
2357
2358/// forgetLoopPHIs - Delete the memoized SCEVs associated with the
2359/// PHI nodes in the given loop. This is used when the trip count of
2360/// the loop may have changed.
2361void ScalarEvolution::forgetLoopPHIs(const Loop *L) {
2362  BasicBlock *Header = L->getHeader();
2363
2364  // Push all Loop-header PHIs onto the Worklist stack, except those
2365  // that are presently represented via a SCEVUnknown. SCEVUnknown for
2366  // a PHI either means that it has an unrecognized structure, or it's
2367  // a PHI that's in the progress of being computed by createNodeForPHI.
2368  // In the former case, additional loop trip count information isn't
2369  // going to change anything. In the later case, createNodeForPHI will
2370  // perform the necessary updates on its own when it gets to that point.
2371  SmallVector<Instruction *, 16> Worklist;
2372  for (BasicBlock::iterator I = Header->begin();
2373       PHINode *PN = dyn_cast<PHINode>(I); ++I) {
2374    std::map<SCEVCallbackVH, SCEVHandle>::iterator It = Scalars.find((Value*)I);
2375    if (It != Scalars.end() && !isa<SCEVUnknown>(It->second))
2376      Worklist.push_back(PN);
2377  }
2378
2379  while (!Worklist.empty()) {
2380    Instruction *I = Worklist.pop_back_val();
2381    if (Scalars.erase(I))
2382      for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2383           UI != UE; ++UI)
2384        Worklist.push_back(cast<Instruction>(UI));
2385  }
2386}
2387
2388/// ComputeBackedgeTakenCount - Compute the number of times the backedge
2389/// of the specified loop will execute.
2390ScalarEvolution::BackedgeTakenInfo
2391ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
2392  // If the loop has a non-one exit block count, we can't analyze it.
2393  SmallVector<BasicBlock*, 8> ExitBlocks;
2394  L->getExitBlocks(ExitBlocks);
2395  if (ExitBlocks.size() != 1) return UnknownValue;
2396
2397  // Okay, there is one exit block.  Try to find the condition that causes the
2398  // loop to be exited.
2399  BasicBlock *ExitBlock = ExitBlocks[0];
2400
2401  BasicBlock *ExitingBlock = 0;
2402  for (pred_iterator PI = pred_begin(ExitBlock), E = pred_end(ExitBlock);
2403       PI != E; ++PI)
2404    if (L->contains(*PI)) {
2405      if (ExitingBlock == 0)
2406        ExitingBlock = *PI;
2407      else
2408        return UnknownValue;   // More than one block exiting!
2409    }
2410  assert(ExitingBlock && "No exits from loop, something is broken!");
2411
2412  // Okay, we've computed the exiting block.  See what condition causes us to
2413  // exit.
2414  //
2415  // FIXME: we should be able to handle switch instructions (with a single exit)
2416  BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2417  if (ExitBr == 0) return UnknownValue;
2418  assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
2419
2420  // At this point, we know we have a conditional branch that determines whether
2421  // the loop is exited.  However, we don't know if the branch is executed each
2422  // time through the loop.  If not, then the execution count of the branch will
2423  // not be equal to the trip count of the loop.
2424  //
2425  // Currently we check for this by checking to see if the Exit branch goes to
2426  // the loop header.  If so, we know it will always execute the same number of
2427  // times as the loop.  We also handle the case where the exit block *is* the
2428  // loop header.  This is common for un-rotated loops.  More extensive analysis
2429  // could be done to handle more cases here.
2430  if (ExitBr->getSuccessor(0) != L->getHeader() &&
2431      ExitBr->getSuccessor(1) != L->getHeader() &&
2432      ExitBr->getParent() != L->getHeader())
2433    return UnknownValue;
2434
2435  ICmpInst *ExitCond = dyn_cast<ICmpInst>(ExitBr->getCondition());
2436
2437  // If it's not an integer or pointer comparison then compute it the hard way.
2438  if (ExitCond == 0)
2439    return ComputeBackedgeTakenCountExhaustively(L, ExitBr->getCondition(),
2440                                          ExitBr->getSuccessor(0) == ExitBlock);
2441
2442  // If the condition was exit on true, convert the condition to exit on false
2443  ICmpInst::Predicate Cond;
2444  if (ExitBr->getSuccessor(1) == ExitBlock)
2445    Cond = ExitCond->getPredicate();
2446  else
2447    Cond = ExitCond->getInversePredicate();
2448
2449  // Handle common loops like: for (X = "string"; *X; ++X)
2450  if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
2451    if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
2452      SCEVHandle ItCnt =
2453        ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
2454      if (!isa<SCEVCouldNotCompute>(ItCnt)) return ItCnt;
2455    }
2456
2457  SCEVHandle LHS = getSCEV(ExitCond->getOperand(0));
2458  SCEVHandle RHS = getSCEV(ExitCond->getOperand(1));
2459
2460  // Try to evaluate any dependencies out of the loop.
2461  SCEVHandle Tmp = getSCEVAtScope(LHS, L);
2462  if (!isa<SCEVCouldNotCompute>(Tmp)) LHS = Tmp;
2463  Tmp = getSCEVAtScope(RHS, L);
2464  if (!isa<SCEVCouldNotCompute>(Tmp)) RHS = Tmp;
2465
2466  // At this point, we would like to compute how many iterations of the
2467  // loop the predicate will return true for these inputs.
2468  if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
2469    // If there is a loop-invariant, force it into the RHS.
2470    std::swap(LHS, RHS);
2471    Cond = ICmpInst::getSwappedPredicate(Cond);
2472  }
2473
2474  // If we have a comparison of a chrec against a constant, try to use value
2475  // ranges to answer this query.
2476  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
2477    if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
2478      if (AddRec->getLoop() == L) {
2479        // Form the constant range.
2480        ConstantRange CompRange(
2481            ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
2482
2483        SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange, *this);
2484        if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
2485      }
2486
2487  switch (Cond) {
2488  case ICmpInst::ICMP_NE: {                     // while (X != Y)
2489    // Convert to: while (X-Y != 0)
2490    SCEVHandle TC = HowFarToZero(getMinusSCEV(LHS, RHS), L);
2491    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
2492    break;
2493  }
2494  case ICmpInst::ICMP_EQ: {
2495    // Convert to: while (X-Y == 0)           // while (X == Y)
2496    SCEVHandle TC = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
2497    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
2498    break;
2499  }
2500  case ICmpInst::ICMP_SLT: {
2501    BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
2502    if (BTI.hasAnyInfo()) return BTI;
2503    break;
2504  }
2505  case ICmpInst::ICMP_SGT: {
2506    BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
2507                                             getNotSCEV(RHS), L, true);
2508    if (BTI.hasAnyInfo()) return BTI;
2509    break;
2510  }
2511  case ICmpInst::ICMP_ULT: {
2512    BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
2513    if (BTI.hasAnyInfo()) return BTI;
2514    break;
2515  }
2516  case ICmpInst::ICMP_UGT: {
2517    BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
2518                                             getNotSCEV(RHS), L, false);
2519    if (BTI.hasAnyInfo()) return BTI;
2520    break;
2521  }
2522  default:
2523#if 0
2524    errs() << "ComputeBackedgeTakenCount ";
2525    if (ExitCond->getOperand(0)->getType()->isUnsigned())
2526      errs() << "[unsigned] ";
2527    errs() << *LHS << "   "
2528         << Instruction::getOpcodeName(Instruction::ICmp)
2529         << "   " << *RHS << "\n";
2530#endif
2531    break;
2532  }
2533  return
2534    ComputeBackedgeTakenCountExhaustively(L, ExitCond,
2535                                          ExitBr->getSuccessor(0) == ExitBlock);
2536}
2537
2538static ConstantInt *
2539EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
2540                                ScalarEvolution &SE) {
2541  SCEVHandle InVal = SE.getConstant(C);
2542  SCEVHandle Val = AddRec->evaluateAtIteration(InVal, SE);
2543  assert(isa<SCEVConstant>(Val) &&
2544         "Evaluation of SCEV at constant didn't fold correctly?");
2545  return cast<SCEVConstant>(Val)->getValue();
2546}
2547
2548/// GetAddressedElementFromGlobal - Given a global variable with an initializer
2549/// and a GEP expression (missing the pointer index) indexing into it, return
2550/// the addressed element of the initializer or null if the index expression is
2551/// invalid.
2552static Constant *
2553GetAddressedElementFromGlobal(GlobalVariable *GV,
2554                              const std::vector<ConstantInt*> &Indices) {
2555  Constant *Init = GV->getInitializer();
2556  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
2557    uint64_t Idx = Indices[i]->getZExtValue();
2558    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
2559      assert(Idx < CS->getNumOperands() && "Bad struct index!");
2560      Init = cast<Constant>(CS->getOperand(Idx));
2561    } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
2562      if (Idx >= CA->getNumOperands()) return 0;  // Bogus program
2563      Init = cast<Constant>(CA->getOperand(Idx));
2564    } else if (isa<ConstantAggregateZero>(Init)) {
2565      if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
2566        assert(Idx < STy->getNumElements() && "Bad struct index!");
2567        Init = Constant::getNullValue(STy->getElementType(Idx));
2568      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
2569        if (Idx >= ATy->getNumElements()) return 0;  // Bogus program
2570        Init = Constant::getNullValue(ATy->getElementType());
2571      } else {
2572        assert(0 && "Unknown constant aggregate type!");
2573      }
2574      return 0;
2575    } else {
2576      return 0; // Unknown initializer type
2577    }
2578  }
2579  return Init;
2580}
2581
2582/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
2583/// 'icmp op load X, cst', try to see if we can compute the backedge
2584/// execution count.
2585SCEVHandle ScalarEvolution::
2586ComputeLoadConstantCompareBackedgeTakenCount(LoadInst *LI, Constant *RHS,
2587                                             const Loop *L,
2588                                             ICmpInst::Predicate predicate) {
2589  if (LI->isVolatile()) return UnknownValue;
2590
2591  // Check to see if the loaded pointer is a getelementptr of a global.
2592  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
2593  if (!GEP) return UnknownValue;
2594
2595  // Make sure that it is really a constant global we are gepping, with an
2596  // initializer, and make sure the first IDX is really 0.
2597  GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
2598  if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
2599      GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
2600      !cast<Constant>(GEP->getOperand(1))->isNullValue())
2601    return UnknownValue;
2602
2603  // Okay, we allow one non-constant index into the GEP instruction.
2604  Value *VarIdx = 0;
2605  std::vector<ConstantInt*> Indexes;
2606  unsigned VarIdxNum = 0;
2607  for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
2608    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
2609      Indexes.push_back(CI);
2610    } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
2611      if (VarIdx) return UnknownValue;  // Multiple non-constant idx's.
2612      VarIdx = GEP->getOperand(i);
2613      VarIdxNum = i-2;
2614      Indexes.push_back(0);
2615    }
2616
2617  // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
2618  // Check to see if X is a loop variant variable value now.
2619  SCEVHandle Idx = getSCEV(VarIdx);
2620  SCEVHandle Tmp = getSCEVAtScope(Idx, L);
2621  if (!isa<SCEVCouldNotCompute>(Tmp)) Idx = Tmp;
2622
2623  // We can only recognize very limited forms of loop index expressions, in
2624  // particular, only affine AddRec's like {C1,+,C2}.
2625  const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
2626  if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
2627      !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
2628      !isa<SCEVConstant>(IdxExpr->getOperand(1)))
2629    return UnknownValue;
2630
2631  unsigned MaxSteps = MaxBruteForceIterations;
2632  for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
2633    ConstantInt *ItCst =
2634      ConstantInt::get(IdxExpr->getType(), IterationNum);
2635    ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
2636
2637    // Form the GEP offset.
2638    Indexes[VarIdxNum] = Val;
2639
2640    Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
2641    if (Result == 0) break;  // Cannot compute!
2642
2643    // Evaluate the condition for this iteration.
2644    Result = ConstantExpr::getICmp(predicate, Result, RHS);
2645    if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
2646    if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
2647#if 0
2648      errs() << "\n***\n*** Computed loop count " << *ItCst
2649             << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
2650             << "***\n";
2651#endif
2652      ++NumArrayLenItCounts;
2653      return getConstant(ItCst);   // Found terminating iteration!
2654    }
2655  }
2656  return UnknownValue;
2657}
2658
2659
2660/// CanConstantFold - Return true if we can constant fold an instruction of the
2661/// specified type, assuming that all operands were constants.
2662static bool CanConstantFold(const Instruction *I) {
2663  if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
2664      isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
2665    return true;
2666
2667  if (const CallInst *CI = dyn_cast<CallInst>(I))
2668    if (const Function *F = CI->getCalledFunction())
2669      return canConstantFoldCallTo(F);
2670  return false;
2671}
2672
2673/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
2674/// in the loop that V is derived from.  We allow arbitrary operations along the
2675/// way, but the operands of an operation must either be constants or a value
2676/// derived from a constant PHI.  If this expression does not fit with these
2677/// constraints, return null.
2678static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
2679  // If this is not an instruction, or if this is an instruction outside of the
2680  // loop, it can't be derived from a loop PHI.
2681  Instruction *I = dyn_cast<Instruction>(V);
2682  if (I == 0 || !L->contains(I->getParent())) return 0;
2683
2684  if (PHINode *PN = dyn_cast<PHINode>(I)) {
2685    if (L->getHeader() == I->getParent())
2686      return PN;
2687    else
2688      // We don't currently keep track of the control flow needed to evaluate
2689      // PHIs, so we cannot handle PHIs inside of loops.
2690      return 0;
2691  }
2692
2693  // If we won't be able to constant fold this expression even if the operands
2694  // are constants, return early.
2695  if (!CanConstantFold(I)) return 0;
2696
2697  // Otherwise, we can evaluate this instruction if all of its operands are
2698  // constant or derived from a PHI node themselves.
2699  PHINode *PHI = 0;
2700  for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
2701    if (!(isa<Constant>(I->getOperand(Op)) ||
2702          isa<GlobalValue>(I->getOperand(Op)))) {
2703      PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
2704      if (P == 0) return 0;  // Not evolving from PHI
2705      if (PHI == 0)
2706        PHI = P;
2707      else if (PHI != P)
2708        return 0;  // Evolving from multiple different PHIs.
2709    }
2710
2711  // This is a expression evolving from a constant PHI!
2712  return PHI;
2713}
2714
2715/// EvaluateExpression - Given an expression that passes the
2716/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
2717/// in the loop has the value PHIVal.  If we can't fold this expression for some
2718/// reason, return null.
2719static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
2720  if (isa<PHINode>(V)) return PHIVal;
2721  if (Constant *C = dyn_cast<Constant>(V)) return C;
2722  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV;
2723  Instruction *I = cast<Instruction>(V);
2724
2725  std::vector<Constant*> Operands;
2726  Operands.resize(I->getNumOperands());
2727
2728  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
2729    Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal);
2730    if (Operands[i] == 0) return 0;
2731  }
2732
2733  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
2734    return ConstantFoldCompareInstOperands(CI->getPredicate(),
2735                                           &Operands[0], Operands.size());
2736  else
2737    return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
2738                                    &Operands[0], Operands.size());
2739}
2740
2741/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
2742/// in the header of its containing loop, we know the loop executes a
2743/// constant number of times, and the PHI node is just a recurrence
2744/// involving constants, fold it.
2745Constant *ScalarEvolution::
2746getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs, const Loop *L){
2747  std::map<PHINode*, Constant*>::iterator I =
2748    ConstantEvolutionLoopExitValue.find(PN);
2749  if (I != ConstantEvolutionLoopExitValue.end())
2750    return I->second;
2751
2752  if (BEs.ugt(APInt(BEs.getBitWidth(),MaxBruteForceIterations)))
2753    return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.
2754
2755  Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
2756
2757  // Since the loop is canonicalized, the PHI node must have two entries.  One
2758  // entry must be a constant (coming in from outside of the loop), and the
2759  // second must be derived from the same PHI.
2760  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
2761  Constant *StartCST =
2762    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
2763  if (StartCST == 0)
2764    return RetVal = 0;  // Must be a constant.
2765
2766  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
2767  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
2768  if (PN2 != PN)
2769    return RetVal = 0;  // Not derived from same PHI.
2770
2771  // Execute the loop symbolically to determine the exit value.
2772  if (BEs.getActiveBits() >= 32)
2773    return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
2774
2775  unsigned NumIterations = BEs.getZExtValue(); // must be in range
2776  unsigned IterationNum = 0;
2777  for (Constant *PHIVal = StartCST; ; ++IterationNum) {
2778    if (IterationNum == NumIterations)
2779      return RetVal = PHIVal;  // Got exit value!
2780
2781    // Compute the value of the PHI node for the next iteration.
2782    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
2783    if (NextPHI == PHIVal)
2784      return RetVal = NextPHI;  // Stopped evolving!
2785    if (NextPHI == 0)
2786      return 0;        // Couldn't evaluate!
2787    PHIVal = NextPHI;
2788  }
2789}
2790
2791/// ComputeBackedgeTakenCountExhaustively - If the trip is known to execute a
2792/// constant number of times (the condition evolves only from constants),
2793/// try to evaluate a few iterations of the loop until we get the exit
2794/// condition gets a value of ExitWhen (true or false).  If we cannot
2795/// evaluate the trip count of the loop, return UnknownValue.
2796SCEVHandle ScalarEvolution::
2797ComputeBackedgeTakenCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) {
2798  PHINode *PN = getConstantEvolvingPHI(Cond, L);
2799  if (PN == 0) return UnknownValue;
2800
2801  // Since the loop is canonicalized, the PHI node must have two entries.  One
2802  // entry must be a constant (coming in from outside of the loop), and the
2803  // second must be derived from the same PHI.
2804  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
2805  Constant *StartCST =
2806    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
2807  if (StartCST == 0) return UnknownValue;  // Must be a constant.
2808
2809  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
2810  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
2811  if (PN2 != PN) return UnknownValue;  // Not derived from same PHI.
2812
2813  // Okay, we find a PHI node that defines the trip count of this loop.  Execute
2814  // the loop symbolically to determine when the condition gets a value of
2815  // "ExitWhen".
2816  unsigned IterationNum = 0;
2817  unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
2818  for (Constant *PHIVal = StartCST;
2819       IterationNum != MaxIterations; ++IterationNum) {
2820    ConstantInt *CondVal =
2821      dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal));
2822
2823    // Couldn't symbolically evaluate.
2824    if (!CondVal) return UnknownValue;
2825
2826    if (CondVal->getValue() == uint64_t(ExitWhen)) {
2827      ConstantEvolutionLoopExitValue[PN] = PHIVal;
2828      ++NumBruteForceTripCountsComputed;
2829      return getConstant(ConstantInt::get(Type::Int32Ty, IterationNum));
2830    }
2831
2832    // Compute the value of the PHI node for the next iteration.
2833    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
2834    if (NextPHI == 0 || NextPHI == PHIVal)
2835      return UnknownValue;  // Couldn't evaluate or not making progress...
2836    PHIVal = NextPHI;
2837  }
2838
2839  // Too many iterations were needed to evaluate.
2840  return UnknownValue;
2841}
2842
2843/// getSCEVAtScope - Return a SCEV expression handle for the specified value
2844/// at the specified scope in the program.  The L value specifies a loop
2845/// nest to evaluate the expression at, where null is the top-level or a
2846/// specified loop is immediately inside of the loop.
2847///
2848/// This method can be used to compute the exit value for a variable defined
2849/// in a loop by querying what the value will hold in the parent loop.
2850///
2851/// If this value is not computable at this scope, a SCEVCouldNotCompute
2852/// object is returned.
2853SCEVHandle ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
2854  // FIXME: this should be turned into a virtual method on SCEV!
2855
2856  if (isa<SCEVConstant>(V)) return V;
2857
2858  // If this instruction is evolved from a constant-evolving PHI, compute the
2859  // exit value from the loop without using SCEVs.
2860  if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
2861    if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
2862      const Loop *LI = (*this->LI)[I->getParent()];
2863      if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
2864        if (PHINode *PN = dyn_cast<PHINode>(I))
2865          if (PN->getParent() == LI->getHeader()) {
2866            // Okay, there is no closed form solution for the PHI node.  Check
2867            // to see if the loop that contains it has a known backedge-taken
2868            // count.  If so, we may be able to force computation of the exit
2869            // value.
2870            SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(LI);
2871            if (const SCEVConstant *BTCC =
2872                  dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
2873              // Okay, we know how many times the containing loop executes.  If
2874              // this is a constant evolving PHI node, get the final value at
2875              // the specified iteration number.
2876              Constant *RV = getConstantEvolutionLoopExitValue(PN,
2877                                                   BTCC->getValue()->getValue(),
2878                                                               LI);
2879              if (RV) return getUnknown(RV);
2880            }
2881          }
2882
2883      // Okay, this is an expression that we cannot symbolically evaluate
2884      // into a SCEV.  Check to see if it's possible to symbolically evaluate
2885      // the arguments into constants, and if so, try to constant propagate the
2886      // result.  This is particularly useful for computing loop exit values.
2887      if (CanConstantFold(I)) {
2888        // Check to see if we've folded this instruction at this loop before.
2889        std::map<const Loop *, Constant *> &Values = ValuesAtScopes[I];
2890        std::pair<std::map<const Loop *, Constant *>::iterator, bool> Pair =
2891          Values.insert(std::make_pair(L, static_cast<Constant *>(0)));
2892        if (!Pair.second)
2893          return Pair.first->second ? &*getUnknown(Pair.first->second) : V;
2894
2895        std::vector<Constant*> Operands;
2896        Operands.reserve(I->getNumOperands());
2897        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
2898          Value *Op = I->getOperand(i);
2899          if (Constant *C = dyn_cast<Constant>(Op)) {
2900            Operands.push_back(C);
2901          } else {
2902            // If any of the operands is non-constant and if they are
2903            // non-integer and non-pointer, don't even try to analyze them
2904            // with scev techniques.
2905            if (!isSCEVable(Op->getType()))
2906              return V;
2907
2908            SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L);
2909            if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) {
2910              Constant *C = SC->getValue();
2911              if (C->getType() != Op->getType())
2912                C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
2913                                                                  Op->getType(),
2914                                                                  false),
2915                                          C, Op->getType());
2916              Operands.push_back(C);
2917            } else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
2918              if (Constant *C = dyn_cast<Constant>(SU->getValue())) {
2919                if (C->getType() != Op->getType())
2920                  C =
2921                    ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
2922                                                                  Op->getType(),
2923                                                                  false),
2924                                          C, Op->getType());
2925                Operands.push_back(C);
2926              } else
2927                return V;
2928            } else {
2929              return V;
2930            }
2931          }
2932        }
2933
2934        Constant *C;
2935        if (const CmpInst *CI = dyn_cast<CmpInst>(I))
2936          C = ConstantFoldCompareInstOperands(CI->getPredicate(),
2937                                              &Operands[0], Operands.size());
2938        else
2939          C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
2940                                       &Operands[0], Operands.size());
2941        Pair.first->second = C;
2942        return getUnknown(C);
2943      }
2944    }
2945
2946    // This is some other type of SCEVUnknown, just return it.
2947    return V;
2948  }
2949
2950  if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
2951    // Avoid performing the look-up in the common case where the specified
2952    // expression has no loop-variant portions.
2953    for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
2954      SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
2955      if (OpAtScope != Comm->getOperand(i)) {
2956        if (OpAtScope == UnknownValue) return UnknownValue;
2957        // Okay, at least one of these operands is loop variant but might be
2958        // foldable.  Build a new instance of the folded commutative expression.
2959        std::vector<SCEVHandle> NewOps(Comm->op_begin(), Comm->op_begin()+i);
2960        NewOps.push_back(OpAtScope);
2961
2962        for (++i; i != e; ++i) {
2963          OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
2964          if (OpAtScope == UnknownValue) return UnknownValue;
2965          NewOps.push_back(OpAtScope);
2966        }
2967        if (isa<SCEVAddExpr>(Comm))
2968          return getAddExpr(NewOps);
2969        if (isa<SCEVMulExpr>(Comm))
2970          return getMulExpr(NewOps);
2971        if (isa<SCEVSMaxExpr>(Comm))
2972          return getSMaxExpr(NewOps);
2973        if (isa<SCEVUMaxExpr>(Comm))
2974          return getUMaxExpr(NewOps);
2975        assert(0 && "Unknown commutative SCEV type!");
2976      }
2977    }
2978    // If we got here, all operands are loop invariant.
2979    return Comm;
2980  }
2981
2982  if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
2983    SCEVHandle LHS = getSCEVAtScope(Div->getLHS(), L);
2984    if (LHS == UnknownValue) return LHS;
2985    SCEVHandle RHS = getSCEVAtScope(Div->getRHS(), L);
2986    if (RHS == UnknownValue) return RHS;
2987    if (LHS == Div->getLHS() && RHS == Div->getRHS())
2988      return Div;   // must be loop invariant
2989    return getUDivExpr(LHS, RHS);
2990  }
2991
2992  // If this is a loop recurrence for a loop that does not contain L, then we
2993  // are dealing with the final value computed by the loop.
2994  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
2995    if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
2996      // To evaluate this recurrence, we need to know how many times the AddRec
2997      // loop iterates.  Compute this now.
2998      SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
2999      if (BackedgeTakenCount == UnknownValue) return UnknownValue;
3000
3001      // Then, evaluate the AddRec.
3002      return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
3003    }
3004    return UnknownValue;
3005  }
3006
3007  if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
3008    SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L);
3009    if (Op == UnknownValue) return Op;
3010    if (Op == Cast->getOperand())
3011      return Cast;  // must be loop invariant
3012    return getZeroExtendExpr(Op, Cast->getType());
3013  }
3014
3015  if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
3016    SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L);
3017    if (Op == UnknownValue) return Op;
3018    if (Op == Cast->getOperand())
3019      return Cast;  // must be loop invariant
3020    return getSignExtendExpr(Op, Cast->getType());
3021  }
3022
3023  if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
3024    SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L);
3025    if (Op == UnknownValue) return Op;
3026    if (Op == Cast->getOperand())
3027      return Cast;  // must be loop invariant
3028    return getTruncateExpr(Op, Cast->getType());
3029  }
3030
3031  assert(0 && "Unknown SCEV type!");
3032}
3033
3034/// getSCEVAtScope - This is a convenience function which does
3035/// getSCEVAtScope(getSCEV(V), L).
3036SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
3037  return getSCEVAtScope(getSCEV(V), L);
3038}
3039
3040/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
3041/// following equation:
3042///
3043///     A * X = B (mod N)
3044///
3045/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
3046/// A and B isn't important.
3047///
3048/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
3049static SCEVHandle SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
3050                                               ScalarEvolution &SE) {
3051  uint32_t BW = A.getBitWidth();
3052  assert(BW == B.getBitWidth() && "Bit widths must be the same.");
3053  assert(A != 0 && "A must be non-zero.");
3054
3055  // 1. D = gcd(A, N)
3056  //
3057  // The gcd of A and N may have only one prime factor: 2. The number of
3058  // trailing zeros in A is its multiplicity
3059  uint32_t Mult2 = A.countTrailingZeros();
3060  // D = 2^Mult2
3061
3062  // 2. Check if B is divisible by D.
3063  //
3064  // B is divisible by D if and only if the multiplicity of prime factor 2 for B
3065  // is not less than multiplicity of this prime factor for D.
3066  if (B.countTrailingZeros() < Mult2)
3067    return SE.getCouldNotCompute();
3068
3069  // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
3070  // modulo (N / D).
3071  //
3072  // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
3073  // bit width during computations.
3074  APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
3075  APInt Mod(BW + 1, 0);
3076  Mod.set(BW - Mult2);  // Mod = N / D
3077  APInt I = AD.multiplicativeInverse(Mod);
3078
3079  // 4. Compute the minimum unsigned root of the equation:
3080  // I * (B / D) mod (N / D)
3081  APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
3082
3083  // The result is guaranteed to be less than 2^BW so we may truncate it to BW
3084  // bits.
3085  return SE.getConstant(Result.trunc(BW));
3086}
3087
3088/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
3089/// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
3090/// might be the same) or two SCEVCouldNotCompute objects.
3091///
3092static std::pair<SCEVHandle,SCEVHandle>
3093SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
3094  assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
3095  const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
3096  const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
3097  const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
3098
3099  // We currently can only solve this if the coefficients are constants.
3100  if (!LC || !MC || !NC) {
3101    const SCEV *CNC = SE.getCouldNotCompute();
3102    return std::make_pair(CNC, CNC);
3103  }
3104
3105  uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
3106  const APInt &L = LC->getValue()->getValue();
3107  const APInt &M = MC->getValue()->getValue();
3108  const APInt &N = NC->getValue()->getValue();
3109  APInt Two(BitWidth, 2);
3110  APInt Four(BitWidth, 4);
3111
3112  {
3113    using namespace APIntOps;
3114    const APInt& C = L;
3115    // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
3116    // The B coefficient is M-N/2
3117    APInt B(M);
3118    B -= sdiv(N,Two);
3119
3120    // The A coefficient is N/2
3121    APInt A(N.sdiv(Two));
3122
3123    // Compute the B^2-4ac term.
3124    APInt SqrtTerm(B);
3125    SqrtTerm *= B;
3126    SqrtTerm -= Four * (A * C);
3127
3128    // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
3129    // integer value or else APInt::sqrt() will assert.
3130    APInt SqrtVal(SqrtTerm.sqrt());
3131
3132    // Compute the two solutions for the quadratic formula.
3133    // The divisions must be performed as signed divisions.
3134    APInt NegB(-B);
3135    APInt TwoA( A << 1 );
3136    if (TwoA.isMinValue()) {
3137      const SCEV *CNC = SE.getCouldNotCompute();
3138      return std::make_pair(CNC, CNC);
3139    }
3140
3141    ConstantInt *Solution1 = ConstantInt::get((NegB + SqrtVal).sdiv(TwoA));
3142    ConstantInt *Solution2 = ConstantInt::get((NegB - SqrtVal).sdiv(TwoA));
3143
3144    return std::make_pair(SE.getConstant(Solution1),
3145                          SE.getConstant(Solution2));
3146    } // end APIntOps namespace
3147}
3148
3149/// HowFarToZero - Return the number of times a backedge comparing the specified
3150/// value to zero will execute.  If not computable, return UnknownValue
3151SCEVHandle ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
3152  // If the value is a constant
3153  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
3154    // If the value is already zero, the branch will execute zero times.
3155    if (C->getValue()->isZero()) return C;
3156    return UnknownValue;  // Otherwise it will loop infinitely.
3157  }
3158
3159  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
3160  if (!AddRec || AddRec->getLoop() != L)
3161    return UnknownValue;
3162
3163  if (AddRec->isAffine()) {
3164    // If this is an affine expression, the execution count of this branch is
3165    // the minimum unsigned root of the following equation:
3166    //
3167    //     Start + Step*N = 0 (mod 2^BW)
3168    //
3169    // equivalent to:
3170    //
3171    //             Step*N = -Start (mod 2^BW)
3172    //
3173    // where BW is the common bit width of Start and Step.
3174
3175    // Get the initial value for the loop.
3176    SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
3177    if (isa<SCEVCouldNotCompute>(Start)) return UnknownValue;
3178
3179    SCEVHandle Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
3180
3181    if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
3182      // For now we handle only constant steps.
3183
3184      // First, handle unitary steps.
3185      if (StepC->getValue()->equalsInt(1))      // 1*N = -Start (mod 2^BW), so:
3186        return getNegativeSCEV(Start);       //   N = -Start (as unsigned)
3187      if (StepC->getValue()->isAllOnesValue())  // -1*N = -Start (mod 2^BW), so:
3188        return Start;                           //    N = Start (as unsigned)
3189
3190      // Then, try to solve the above equation provided that Start is constant.
3191      if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
3192        return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
3193                                            -StartC->getValue()->getValue(),
3194                                            *this);
3195    }
3196  } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
3197    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
3198    // the quadratic equation to solve it.
3199    std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec,
3200                                                                    *this);
3201    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
3202    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
3203    if (R1) {
3204#if 0
3205      errs() << "HFTZ: " << *V << " - sol#1: " << *R1
3206             << "  sol#2: " << *R2 << "\n";
3207#endif
3208      // Pick the smallest positive root value.
3209      if (ConstantInt *CB =
3210          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
3211                                   R1->getValue(), R2->getValue()))) {
3212        if (CB->getZExtValue() == false)
3213          std::swap(R1, R2);   // R1 is the minimum root now.
3214
3215        // We can only use this value if the chrec ends up with an exact zero
3216        // value at this index.  When solving for "X*X != 5", for example, we
3217        // should not accept a root of 2.
3218        SCEVHandle Val = AddRec->evaluateAtIteration(R1, *this);
3219        if (Val->isZero())
3220          return R1;  // We found a quadratic root!
3221      }
3222    }
3223  }
3224
3225  return UnknownValue;
3226}
3227
3228/// HowFarToNonZero - Return the number of times a backedge checking the
3229/// specified value for nonzero will execute.  If not computable, return
3230/// UnknownValue
3231SCEVHandle ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
3232  // Loops that look like: while (X == 0) are very strange indeed.  We don't
3233  // handle them yet except for the trivial case.  This could be expanded in the
3234  // future as needed.
3235
3236  // If the value is a constant, check to see if it is known to be non-zero
3237  // already.  If so, the backedge will execute zero times.
3238  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
3239    if (!C->getValue()->isNullValue())
3240      return getIntegerSCEV(0, C->getType());
3241    return UnknownValue;  // Otherwise it will loop infinitely.
3242  }
3243
3244  // We could implement others, but I really doubt anyone writes loops like
3245  // this, and if they did, they would already be constant folded.
3246  return UnknownValue;
3247}
3248
3249/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
3250/// (which may not be an immediate predecessor) which has exactly one
3251/// successor from which BB is reachable, or null if no such block is
3252/// found.
3253///
3254BasicBlock *
3255ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
3256  // If the block has a unique predecessor, then there is no path from the
3257  // predecessor to the block that does not go through the direct edge
3258  // from the predecessor to the block.
3259  if (BasicBlock *Pred = BB->getSinglePredecessor())
3260    return Pred;
3261
3262  // A loop's header is defined to be a block that dominates the loop.
3263  // If the loop has a preheader, it must be a block that has exactly
3264  // one successor that can reach BB. This is slightly more strict
3265  // than necessary, but works if critical edges are split.
3266  if (Loop *L = LI->getLoopFor(BB))
3267    return L->getLoopPreheader();
3268
3269  return 0;
3270}
3271
3272/// isLoopGuardedByCond - Test whether entry to the loop is protected by
3273/// a conditional between LHS and RHS.  This is used to help avoid max
3274/// expressions in loop trip counts.
3275bool ScalarEvolution::isLoopGuardedByCond(const Loop *L,
3276                                          ICmpInst::Predicate Pred,
3277                                          const SCEV *LHS, const SCEV *RHS) {
3278  BasicBlock *Preheader = L->getLoopPreheader();
3279  BasicBlock *PreheaderDest = L->getHeader();
3280
3281  // Starting at the preheader, climb up the predecessor chain, as long as
3282  // there are predecessors that can be found that have unique successors
3283  // leading to the original header.
3284  for (; Preheader;
3285       PreheaderDest = Preheader,
3286       Preheader = getPredecessorWithUniqueSuccessorForBB(Preheader)) {
3287
3288    BranchInst *LoopEntryPredicate =
3289      dyn_cast<BranchInst>(Preheader->getTerminator());
3290    if (!LoopEntryPredicate ||
3291        LoopEntryPredicate->isUnconditional())
3292      continue;
3293
3294    ICmpInst *ICI = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition());
3295    if (!ICI) continue;
3296
3297    // Now that we found a conditional branch that dominates the loop, check to
3298    // see if it is the comparison we are looking for.
3299    Value *PreCondLHS = ICI->getOperand(0);
3300    Value *PreCondRHS = ICI->getOperand(1);
3301    ICmpInst::Predicate Cond;
3302    if (LoopEntryPredicate->getSuccessor(0) == PreheaderDest)
3303      Cond = ICI->getPredicate();
3304    else
3305      Cond = ICI->getInversePredicate();
3306
3307    if (Cond == Pred)
3308      ; // An exact match.
3309    else if (!ICmpInst::isTrueWhenEqual(Cond) && Pred == ICmpInst::ICMP_NE)
3310      ; // The actual condition is beyond sufficient.
3311    else
3312      // Check a few special cases.
3313      switch (Cond) {
3314      case ICmpInst::ICMP_UGT:
3315        if (Pred == ICmpInst::ICMP_ULT) {
3316          std::swap(PreCondLHS, PreCondRHS);
3317          Cond = ICmpInst::ICMP_ULT;
3318          break;
3319        }
3320        continue;
3321      case ICmpInst::ICMP_SGT:
3322        if (Pred == ICmpInst::ICMP_SLT) {
3323          std::swap(PreCondLHS, PreCondRHS);
3324          Cond = ICmpInst::ICMP_SLT;
3325          break;
3326        }
3327        continue;
3328      case ICmpInst::ICMP_NE:
3329        // Expressions like (x >u 0) are often canonicalized to (x != 0),
3330        // so check for this case by checking if the NE is comparing against
3331        // a minimum or maximum constant.
3332        if (!ICmpInst::isTrueWhenEqual(Pred))
3333          if (ConstantInt *CI = dyn_cast<ConstantInt>(PreCondRHS)) {
3334            const APInt &A = CI->getValue();
3335            switch (Pred) {
3336            case ICmpInst::ICMP_SLT:
3337              if (A.isMaxSignedValue()) break;
3338              continue;
3339            case ICmpInst::ICMP_SGT:
3340              if (A.isMinSignedValue()) break;
3341              continue;
3342            case ICmpInst::ICMP_ULT:
3343              if (A.isMaxValue()) break;
3344              continue;
3345            case ICmpInst::ICMP_UGT:
3346              if (A.isMinValue()) break;
3347              continue;
3348            default:
3349              continue;
3350            }
3351            Cond = ICmpInst::ICMP_NE;
3352            // NE is symmetric but the original comparison may not be. Swap
3353            // the operands if necessary so that they match below.
3354            if (isa<SCEVConstant>(LHS))
3355              std::swap(PreCondLHS, PreCondRHS);
3356            break;
3357          }
3358        continue;
3359      default:
3360        // We weren't able to reconcile the condition.
3361        continue;
3362      }
3363
3364    if (!PreCondLHS->getType()->isInteger()) continue;
3365
3366    SCEVHandle PreCondLHSSCEV = getSCEV(PreCondLHS);
3367    SCEVHandle PreCondRHSSCEV = getSCEV(PreCondRHS);
3368    if ((LHS == PreCondLHSSCEV && RHS == PreCondRHSSCEV) ||
3369        (LHS == getNotSCEV(PreCondRHSSCEV) &&
3370         RHS == getNotSCEV(PreCondLHSSCEV)))
3371      return true;
3372  }
3373
3374  return false;
3375}
3376
3377/// HowManyLessThans - Return the number of times a backedge containing the
3378/// specified less-than comparison will execute.  If not computable, return
3379/// UnknownValue.
3380ScalarEvolution::BackedgeTakenInfo ScalarEvolution::
3381HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
3382                 const Loop *L, bool isSigned) {
3383  // Only handle:  "ADDREC < LoopInvariant".
3384  if (!RHS->isLoopInvariant(L)) return UnknownValue;
3385
3386  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
3387  if (!AddRec || AddRec->getLoop() != L)
3388    return UnknownValue;
3389
3390  if (AddRec->isAffine()) {
3391    // FORNOW: We only support unit strides.
3392    unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
3393    SCEVHandle Step = AddRec->getStepRecurrence(*this);
3394    SCEVHandle NegOne = getIntegerSCEV(-1, AddRec->getType());
3395
3396    // TODO: handle non-constant strides.
3397    const SCEVConstant *CStep = dyn_cast<SCEVConstant>(Step);
3398    if (!CStep || CStep->isZero())
3399      return UnknownValue;
3400    if (CStep->isOne()) {
3401      // With unit stride, the iteration never steps past the limit value.
3402    } else if (CStep->getValue()->getValue().isStrictlyPositive()) {
3403      if (const SCEVConstant *CLimit = dyn_cast<SCEVConstant>(RHS)) {
3404        // Test whether a positive iteration iteration can step past the limit
3405        // value and past the maximum value for its type in a single step.
3406        if (isSigned) {
3407          APInt Max = APInt::getSignedMaxValue(BitWidth);
3408          if ((Max - CStep->getValue()->getValue())
3409                .slt(CLimit->getValue()->getValue()))
3410            return UnknownValue;
3411        } else {
3412          APInt Max = APInt::getMaxValue(BitWidth);
3413          if ((Max - CStep->getValue()->getValue())
3414                .ult(CLimit->getValue()->getValue()))
3415            return UnknownValue;
3416        }
3417      } else
3418        // TODO: handle non-constant limit values below.
3419        return UnknownValue;
3420    } else
3421      // TODO: handle negative strides below.
3422      return UnknownValue;
3423
3424    // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
3425    // m.  So, we count the number of iterations in which {n,+,s} < m is true.
3426    // Note that we cannot simply return max(m-n,0)/s because it's not safe to
3427    // treat m-n as signed nor unsigned due to overflow possibility.
3428
3429    // First, we get the value of the LHS in the first iteration: n
3430    SCEVHandle Start = AddRec->getOperand(0);
3431
3432    // Determine the minimum constant start value.
3433    SCEVHandle MinStart = isa<SCEVConstant>(Start) ? Start :
3434      getConstant(isSigned ? APInt::getSignedMinValue(BitWidth) :
3435                             APInt::getMinValue(BitWidth));
3436
3437    // If we know that the condition is true in order to enter the loop,
3438    // then we know that it will run exactly (m-n)/s times. Otherwise, we
3439    // only know if will execute (max(m,n)-n)/s times. In both cases, the
3440    // division must round up.
3441    SCEVHandle End = RHS;
3442    if (!isLoopGuardedByCond(L,
3443                             isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
3444                             getMinusSCEV(Start, Step), RHS))
3445      End = isSigned ? getSMaxExpr(RHS, Start)
3446                     : getUMaxExpr(RHS, Start);
3447
3448    // Determine the maximum constant end value.
3449    SCEVHandle MaxEnd = isa<SCEVConstant>(End) ? End :
3450      getConstant(isSigned ? APInt::getSignedMaxValue(BitWidth) :
3451                             APInt::getMaxValue(BitWidth));
3452
3453    // Finally, we subtract these two values and divide, rounding up, to get
3454    // the number of times the backedge is executed.
3455    SCEVHandle BECount = getUDivExpr(getAddExpr(getMinusSCEV(End, Start),
3456                                                getAddExpr(Step, NegOne)),
3457                                     Step);
3458
3459    // The maximum backedge count is similar, except using the minimum start
3460    // value and the maximum end value.
3461    SCEVHandle MaxBECount = getUDivExpr(getAddExpr(getMinusSCEV(MaxEnd,
3462                                                                MinStart),
3463                                                   getAddExpr(Step, NegOne)),
3464                                        Step);
3465
3466    return BackedgeTakenInfo(BECount, MaxBECount);
3467  }
3468
3469  return UnknownValue;
3470}
3471
3472/// getNumIterationsInRange - Return the number of iterations of this loop that
3473/// produce values in the specified constant range.  Another way of looking at
3474/// this is that it returns the first iteration number where the value is not in
3475/// the condition, thus computing the exit count. If the iteration count can't
3476/// be computed, an instance of SCEVCouldNotCompute is returned.
3477SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
3478                                                   ScalarEvolution &SE) const {
3479  if (Range.isFullSet())  // Infinite loop.
3480    return SE.getCouldNotCompute();
3481
3482  // If the start is a non-zero constant, shift the range to simplify things.
3483  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
3484    if (!SC->getValue()->isZero()) {
3485      std::vector<SCEVHandle> Operands(op_begin(), op_end());
3486      Operands[0] = SE.getIntegerSCEV(0, SC->getType());
3487      SCEVHandle Shifted = SE.getAddRecExpr(Operands, getLoop());
3488      if (const SCEVAddRecExpr *ShiftedAddRec =
3489            dyn_cast<SCEVAddRecExpr>(Shifted))
3490        return ShiftedAddRec->getNumIterationsInRange(
3491                           Range.subtract(SC->getValue()->getValue()), SE);
3492      // This is strange and shouldn't happen.
3493      return SE.getCouldNotCompute();
3494    }
3495
3496  // The only time we can solve this is when we have all constant indices.
3497  // Otherwise, we cannot determine the overflow conditions.
3498  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
3499    if (!isa<SCEVConstant>(getOperand(i)))
3500      return SE.getCouldNotCompute();
3501
3502
3503  // Okay at this point we know that all elements of the chrec are constants and
3504  // that the start element is zero.
3505
3506  // First check to see if the range contains zero.  If not, the first
3507  // iteration exits.
3508  unsigned BitWidth = SE.getTypeSizeInBits(getType());
3509  if (!Range.contains(APInt(BitWidth, 0)))
3510    return SE.getConstant(ConstantInt::get(getType(),0));
3511
3512  if (isAffine()) {
3513    // If this is an affine expression then we have this situation:
3514    //   Solve {0,+,A} in Range  ===  Ax in Range
3515
3516    // We know that zero is in the range.  If A is positive then we know that
3517    // the upper value of the range must be the first possible exit value.
3518    // If A is negative then the lower of the range is the last possible loop
3519    // value.  Also note that we already checked for a full range.
3520    APInt One(BitWidth,1);
3521    APInt A     = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
3522    APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
3523
3524    // The exit value should be (End+A)/A.
3525    APInt ExitVal = (End + A).udiv(A);
3526    ConstantInt *ExitValue = ConstantInt::get(ExitVal);
3527
3528    // Evaluate at the exit value.  If we really did fall out of the valid
3529    // range, then we computed our trip count, otherwise wrap around or other
3530    // things must have happened.
3531    ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
3532    if (Range.contains(Val->getValue()))
3533      return SE.getCouldNotCompute();  // Something strange happened
3534
3535    // Ensure that the previous value is in the range.  This is a sanity check.
3536    assert(Range.contains(
3537           EvaluateConstantChrecAtConstant(this,
3538           ConstantInt::get(ExitVal - One), SE)->getValue()) &&
3539           "Linear scev computation is off in a bad way!");
3540    return SE.getConstant(ExitValue);
3541  } else if (isQuadratic()) {
3542    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
3543    // quadratic equation to solve it.  To do this, we must frame our problem in
3544    // terms of figuring out when zero is crossed, instead of when
3545    // Range.getUpper() is crossed.
3546    std::vector<SCEVHandle> NewOps(op_begin(), op_end());
3547    NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
3548    SCEVHandle NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
3549
3550    // Next, solve the constructed addrec
3551    std::pair<SCEVHandle,SCEVHandle> Roots =
3552      SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
3553    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
3554    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
3555    if (R1) {
3556      // Pick the smallest positive root value.
3557      if (ConstantInt *CB =
3558          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
3559                                   R1->getValue(), R2->getValue()))) {
3560        if (CB->getZExtValue() == false)
3561          std::swap(R1, R2);   // R1 is the minimum root now.
3562
3563        // Make sure the root is not off by one.  The returned iteration should
3564        // not be in the range, but the previous one should be.  When solving
3565        // for "X*X < 5", for example, we should not return a root of 2.
3566        ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
3567                                                             R1->getValue(),
3568                                                             SE);
3569        if (Range.contains(R1Val->getValue())) {
3570          // The next iteration must be out of the range...
3571          ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()+1);
3572
3573          R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
3574          if (!Range.contains(R1Val->getValue()))
3575            return SE.getConstant(NextVal);
3576          return SE.getCouldNotCompute();  // Something strange happened
3577        }
3578
3579        // If R1 was not in the range, then it is a good return value.  Make
3580        // sure that R1-1 WAS in the range though, just in case.
3581        ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()-1);
3582        R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
3583        if (Range.contains(R1Val->getValue()))
3584          return R1;
3585        return SE.getCouldNotCompute();  // Something strange happened
3586      }
3587    }
3588  }
3589
3590  return SE.getCouldNotCompute();
3591}
3592
3593
3594
3595//===----------------------------------------------------------------------===//
3596//                   SCEVCallbackVH Class Implementation
3597//===----------------------------------------------------------------------===//
3598
3599void SCEVCallbackVH::deleted() {
3600  assert(SE && "SCEVCallbackVH called with a non-null ScalarEvolution!");
3601  if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
3602    SE->ConstantEvolutionLoopExitValue.erase(PN);
3603  if (Instruction *I = dyn_cast<Instruction>(getValPtr()))
3604    SE->ValuesAtScopes.erase(I);
3605  SE->Scalars.erase(getValPtr());
3606  // this now dangles!
3607}
3608
3609void SCEVCallbackVH::allUsesReplacedWith(Value *) {
3610  assert(SE && "SCEVCallbackVH called with a non-null ScalarEvolution!");
3611
3612  // Forget all the expressions associated with users of the old value,
3613  // so that future queries will recompute the expressions using the new
3614  // value.
3615  SmallVector<User *, 16> Worklist;
3616  Value *Old = getValPtr();
3617  bool DeleteOld = false;
3618  for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
3619       UI != UE; ++UI)
3620    Worklist.push_back(*UI);
3621  while (!Worklist.empty()) {
3622    User *U = Worklist.pop_back_val();
3623    // Deleting the Old value will cause this to dangle. Postpone
3624    // that until everything else is done.
3625    if (U == Old) {
3626      DeleteOld = true;
3627      continue;
3628    }
3629    if (PHINode *PN = dyn_cast<PHINode>(U))
3630      SE->ConstantEvolutionLoopExitValue.erase(PN);
3631    if (Instruction *I = dyn_cast<Instruction>(U))
3632      SE->ValuesAtScopes.erase(I);
3633    if (SE->Scalars.erase(U))
3634      for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
3635           UI != UE; ++UI)
3636        Worklist.push_back(*UI);
3637  }
3638  if (DeleteOld) {
3639    if (PHINode *PN = dyn_cast<PHINode>(Old))
3640      SE->ConstantEvolutionLoopExitValue.erase(PN);
3641    if (Instruction *I = dyn_cast<Instruction>(Old))
3642      SE->ValuesAtScopes.erase(I);
3643    SE->Scalars.erase(Old);
3644    // this now dangles!
3645  }
3646  // this may dangle!
3647}
3648
3649SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
3650  : CallbackVH(V), SE(se) {}
3651
3652//===----------------------------------------------------------------------===//
3653//                   ScalarEvolution Class Implementation
3654//===----------------------------------------------------------------------===//
3655
3656ScalarEvolution::ScalarEvolution()
3657  : FunctionPass(&ID), UnknownValue(new SCEVCouldNotCompute()) {
3658}
3659
3660bool ScalarEvolution::runOnFunction(Function &F) {
3661  this->F = &F;
3662  LI = &getAnalysis<LoopInfo>();
3663  TD = getAnalysisIfAvailable<TargetData>();
3664  return false;
3665}
3666
3667void ScalarEvolution::releaseMemory() {
3668  Scalars.clear();
3669  BackedgeTakenCounts.clear();
3670  ConstantEvolutionLoopExitValue.clear();
3671  ValuesAtScopes.clear();
3672}
3673
3674void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
3675  AU.setPreservesAll();
3676  AU.addRequiredTransitive<LoopInfo>();
3677}
3678
3679bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
3680  return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
3681}
3682
3683static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
3684                          const Loop *L) {
3685  // Print all inner loops first
3686  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
3687    PrintLoopInfo(OS, SE, *I);
3688
3689  OS << "Loop " << L->getHeader()->getName() << ": ";
3690
3691  SmallVector<BasicBlock*, 8> ExitBlocks;
3692  L->getExitBlocks(ExitBlocks);
3693  if (ExitBlocks.size() != 1)
3694    OS << "<multiple exits> ";
3695
3696  if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
3697    OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
3698  } else {
3699    OS << "Unpredictable backedge-taken count. ";
3700  }
3701
3702  OS << "\n";
3703}
3704
3705void ScalarEvolution::print(raw_ostream &OS, const Module* ) const {
3706  // ScalarEvolution's implementaiton of the print method is to print
3707  // out SCEV values of all instructions that are interesting. Doing
3708  // this potentially causes it to create new SCEV objects though,
3709  // which technically conflicts with the const qualifier. This isn't
3710  // observable from outside the class though (the hasSCEV function
3711  // notwithstanding), so casting away the const isn't dangerous.
3712  ScalarEvolution &SE = *const_cast<ScalarEvolution*>(this);
3713
3714  OS << "Classifying expressions for: " << F->getName() << "\n";
3715  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
3716    if (isSCEVable(I->getType())) {
3717      OS << *I;
3718      OS << "  -->  ";
3719      SCEVHandle SV = SE.getSCEV(&*I);
3720      SV->print(OS);
3721      OS << "\t\t";
3722
3723      if (const Loop *L = LI->getLoopFor((*I).getParent())) {
3724        OS << "Exits: ";
3725        SCEVHandle ExitValue = SE.getSCEVAtScope(&*I, L->getParentLoop());
3726        if (isa<SCEVCouldNotCompute>(ExitValue)) {
3727          OS << "<<Unknown>>";
3728        } else {
3729          OS << *ExitValue;
3730        }
3731      }
3732
3733
3734      OS << "\n";
3735    }
3736
3737  OS << "Determining loop execution counts for: " << F->getName() << "\n";
3738  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
3739    PrintLoopInfo(OS, &SE, *I);
3740}
3741
3742void ScalarEvolution::print(std::ostream &o, const Module *M) const {
3743  raw_os_ostream OS(o);
3744  print(OS, M);
3745}
3746