ScalarEvolution.cpp revision 7e1fee7ece962e03471d0c7a253c3d23b3cf50ae
1//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library.  First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
19//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression.  These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
30//
31// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
35// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42//  Chains of recurrences -- a method to expedite the evaluation
43//  of closed-form functions
44//  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46//  On computational properties of chains of recurrences
47//  Eugene V. Zima
48//
49//  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50//  Robert A. van Engelen
51//
52//  Efficient Symbolic Analysis for Optimizing Compilers
53//  Robert A. van Engelen
54//
55//  Using the chains of recurrences algebra for data dependence testing and
56//  induction variable substitution
57//  MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
61#define DEBUG_TYPE "scalar-evolution"
62#include "llvm/Analysis/ScalarEvolutionExpressions.h"
63#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
65#include "llvm/GlobalVariable.h"
66#include "llvm/GlobalAlias.h"
67#include "llvm/Instructions.h"
68#include "llvm/LLVMContext.h"
69#include "llvm/Operator.h"
70#include "llvm/Analysis/ConstantFolding.h"
71#include "llvm/Analysis/Dominators.h"
72#include "llvm/Analysis/LoopInfo.h"
73#include "llvm/Analysis/ValueTracking.h"
74#include "llvm/Assembly/Writer.h"
75#include "llvm/Target/TargetData.h"
76#include "llvm/Support/CommandLine.h"
77#include "llvm/Support/ConstantRange.h"
78#include "llvm/Support/Debug.h"
79#include "llvm/Support/ErrorHandling.h"
80#include "llvm/Support/GetElementPtrTypeIterator.h"
81#include "llvm/Support/InstIterator.h"
82#include "llvm/Support/MathExtras.h"
83#include "llvm/Support/raw_ostream.h"
84#include "llvm/ADT/Statistic.h"
85#include "llvm/ADT/STLExtras.h"
86#include "llvm/ADT/SmallPtrSet.h"
87#include <algorithm>
88using namespace llvm;
89
90STATISTIC(NumArrayLenItCounts,
91          "Number of trip counts computed with array length");
92STATISTIC(NumTripCountsComputed,
93          "Number of loops with predictable loop counts");
94STATISTIC(NumTripCountsNotComputed,
95          "Number of loops without predictable loop counts");
96STATISTIC(NumBruteForceTripCountsComputed,
97          "Number of loops with trip counts computed by force");
98
99static cl::opt<unsigned>
100MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
101                        cl::desc("Maximum number of iterations SCEV will "
102                                 "symbolically execute a constant "
103                                 "derived loop"),
104                        cl::init(100));
105
106INITIALIZE_PASS(ScalarEvolution, "scalar-evolution",
107                "Scalar Evolution Analysis", false, true);
108char ScalarEvolution::ID = 0;
109
110//===----------------------------------------------------------------------===//
111//                           SCEV class definitions
112//===----------------------------------------------------------------------===//
113
114//===----------------------------------------------------------------------===//
115// Implementation of the SCEV class.
116//
117
118SCEV::~SCEV() {}
119
120void SCEV::dump() const {
121  print(dbgs());
122  dbgs() << '\n';
123}
124
125bool SCEV::isZero() const {
126  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
127    return SC->getValue()->isZero();
128  return false;
129}
130
131bool SCEV::isOne() const {
132  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
133    return SC->getValue()->isOne();
134  return false;
135}
136
137bool SCEV::isAllOnesValue() const {
138  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
139    return SC->getValue()->isAllOnesValue();
140  return false;
141}
142
143SCEVCouldNotCompute::SCEVCouldNotCompute() :
144  SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
145
146bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
147  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
148  return false;
149}
150
151const Type *SCEVCouldNotCompute::getType() const {
152  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
153  return 0;
154}
155
156bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
157  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
158  return false;
159}
160
161bool SCEVCouldNotCompute::hasOperand(const SCEV *) const {
162  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
163  return false;
164}
165
166void SCEVCouldNotCompute::print(raw_ostream &OS) const {
167  OS << "***COULDNOTCOMPUTE***";
168}
169
170bool SCEVCouldNotCompute::classof(const SCEV *S) {
171  return S->getSCEVType() == scCouldNotCompute;
172}
173
174const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
175  FoldingSetNodeID ID;
176  ID.AddInteger(scConstant);
177  ID.AddPointer(V);
178  void *IP = 0;
179  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
180  SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
181  UniqueSCEVs.InsertNode(S, IP);
182  return S;
183}
184
185const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
186  return getConstant(ConstantInt::get(getContext(), Val));
187}
188
189const SCEV *
190ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
191  const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
192  return getConstant(ConstantInt::get(ITy, V, isSigned));
193}
194
195const Type *SCEVConstant::getType() const { return V->getType(); }
196
197void SCEVConstant::print(raw_ostream &OS) const {
198  WriteAsOperand(OS, V, false);
199}
200
201SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
202                           unsigned SCEVTy, const SCEV *op, const Type *ty)
203  : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
204
205bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
206  return Op->dominates(BB, DT);
207}
208
209bool SCEVCastExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
210  return Op->properlyDominates(BB, DT);
211}
212
213SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
214                                   const SCEV *op, const Type *ty)
215  : SCEVCastExpr(ID, scTruncate, op, ty) {
216  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
217         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
218         "Cannot truncate non-integer value!");
219}
220
221void SCEVTruncateExpr::print(raw_ostream &OS) const {
222  OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
223}
224
225SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
226                                       const SCEV *op, const Type *ty)
227  : SCEVCastExpr(ID, scZeroExtend, op, ty) {
228  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
229         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
230         "Cannot zero extend non-integer value!");
231}
232
233void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
234  OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
235}
236
237SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
238                                       const SCEV *op, const Type *ty)
239  : SCEVCastExpr(ID, scSignExtend, op, ty) {
240  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
241         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
242         "Cannot sign extend non-integer value!");
243}
244
245void SCEVSignExtendExpr::print(raw_ostream &OS) const {
246  OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
247}
248
249void SCEVCommutativeExpr::print(raw_ostream &OS) const {
250  const char *OpStr = getOperationStr();
251  OS << "(";
252  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) {
253    OS << **I;
254    if (llvm::next(I) != E)
255      OS << OpStr;
256  }
257  OS << ")";
258}
259
260bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
261  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
262    if (!(*I)->dominates(BB, DT))
263      return false;
264  return true;
265}
266
267bool SCEVNAryExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
268  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
269    if (!(*I)->properlyDominates(BB, DT))
270      return false;
271  return true;
272}
273
274bool SCEVNAryExpr::isLoopInvariant(const Loop *L) const {
275  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
276    if (!(*I)->isLoopInvariant(L))
277      return false;
278  return true;
279}
280
281// hasComputableLoopEvolution - N-ary expressions have computable loop
282// evolutions iff they have at least one operand that varies with the loop,
283// but that all varying operands are computable.
284bool SCEVNAryExpr::hasComputableLoopEvolution(const Loop *L) const {
285  bool HasVarying = false;
286  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) {
287    const SCEV *S = *I;
288    if (!S->isLoopInvariant(L)) {
289      if (S->hasComputableLoopEvolution(L))
290        HasVarying = true;
291      else
292        return false;
293    }
294  }
295  return HasVarying;
296}
297
298bool SCEVNAryExpr::hasOperand(const SCEV *O) const {
299  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) {
300    const SCEV *S = *I;
301    if (O == S || S->hasOperand(O))
302      return true;
303  }
304  return false;
305}
306
307bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
308  return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
309}
310
311bool SCEVUDivExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
312  return LHS->properlyDominates(BB, DT) && RHS->properlyDominates(BB, DT);
313}
314
315void SCEVUDivExpr::print(raw_ostream &OS) const {
316  OS << "(" << *LHS << " /u " << *RHS << ")";
317}
318
319const Type *SCEVUDivExpr::getType() const {
320  // In most cases the types of LHS and RHS will be the same, but in some
321  // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
322  // depend on the type for correctness, but handling types carefully can
323  // avoid extra casts in the SCEVExpander. The LHS is more likely to be
324  // a pointer type than the RHS, so use the RHS' type here.
325  return RHS->getType();
326}
327
328bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
329  // Add recurrences are never invariant in the function-body (null loop).
330  if (!QueryLoop)
331    return false;
332
333  // This recurrence is variant w.r.t. QueryLoop if QueryLoop contains L.
334  if (QueryLoop->contains(L))
335    return false;
336
337  // This recurrence is invariant w.r.t. QueryLoop if L contains QueryLoop.
338  if (L->contains(QueryLoop))
339    return true;
340
341  // This recurrence is variant w.r.t. QueryLoop if any of its operands
342  // are variant.
343  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
344    if (!(*I)->isLoopInvariant(QueryLoop))
345      return false;
346
347  // Otherwise it's loop-invariant.
348  return true;
349}
350
351bool
352SCEVAddRecExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
353  return DT->dominates(L->getHeader(), BB) &&
354         SCEVNAryExpr::dominates(BB, DT);
355}
356
357bool
358SCEVAddRecExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
359  // This uses a "dominates" query instead of "properly dominates" query because
360  // the instruction which produces the addrec's value is a PHI, and a PHI
361  // effectively properly dominates its entire containing block.
362  return DT->dominates(L->getHeader(), BB) &&
363         SCEVNAryExpr::properlyDominates(BB, DT);
364}
365
366void SCEVAddRecExpr::print(raw_ostream &OS) const {
367  OS << "{" << *Operands[0];
368  for (unsigned i = 1, e = NumOperands; i != e; ++i)
369    OS << ",+," << *Operands[i];
370  OS << "}<";
371  WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
372  OS << ">";
373}
374
375void SCEVUnknown::deleted() {
376  // Clear this SCEVUnknown from ValuesAtScopes.
377  SE->ValuesAtScopes.erase(this);
378
379  // Remove this SCEVUnknown from the uniquing map.
380  SE->UniqueSCEVs.RemoveNode(this);
381
382  // Release the value.
383  setValPtr(0);
384}
385
386void SCEVUnknown::allUsesReplacedWith(Value *New) {
387  // Clear this SCEVUnknown from ValuesAtScopes.
388  SE->ValuesAtScopes.erase(this);
389
390  // Remove this SCEVUnknown from the uniquing map.
391  SE->UniqueSCEVs.RemoveNode(this);
392
393  // Update this SCEVUnknown to point to the new value. This is needed
394  // because there may still be outstanding SCEVs which still point to
395  // this SCEVUnknown.
396  setValPtr(New);
397}
398
399bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
400  // All non-instruction values are loop invariant.  All instructions are loop
401  // invariant if they are not contained in the specified loop.
402  // Instructions are never considered invariant in the function body
403  // (null loop) because they are defined within the "loop".
404  if (Instruction *I = dyn_cast<Instruction>(getValue()))
405    return L && !L->contains(I);
406  return true;
407}
408
409bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
410  if (Instruction *I = dyn_cast<Instruction>(getValue()))
411    return DT->dominates(I->getParent(), BB);
412  return true;
413}
414
415bool SCEVUnknown::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
416  if (Instruction *I = dyn_cast<Instruction>(getValue()))
417    return DT->properlyDominates(I->getParent(), BB);
418  return true;
419}
420
421const Type *SCEVUnknown::getType() const {
422  return getValue()->getType();
423}
424
425bool SCEVUnknown::isSizeOf(const Type *&AllocTy) const {
426  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
427    if (VCE->getOpcode() == Instruction::PtrToInt)
428      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
429        if (CE->getOpcode() == Instruction::GetElementPtr &&
430            CE->getOperand(0)->isNullValue() &&
431            CE->getNumOperands() == 2)
432          if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
433            if (CI->isOne()) {
434              AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
435                                 ->getElementType();
436              return true;
437            }
438
439  return false;
440}
441
442bool SCEVUnknown::isAlignOf(const Type *&AllocTy) const {
443  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
444    if (VCE->getOpcode() == Instruction::PtrToInt)
445      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
446        if (CE->getOpcode() == Instruction::GetElementPtr &&
447            CE->getOperand(0)->isNullValue()) {
448          const Type *Ty =
449            cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
450          if (const StructType *STy = dyn_cast<StructType>(Ty))
451            if (!STy->isPacked() &&
452                CE->getNumOperands() == 3 &&
453                CE->getOperand(1)->isNullValue()) {
454              if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
455                if (CI->isOne() &&
456                    STy->getNumElements() == 2 &&
457                    STy->getElementType(0)->isIntegerTy(1)) {
458                  AllocTy = STy->getElementType(1);
459                  return true;
460                }
461            }
462        }
463
464  return false;
465}
466
467bool SCEVUnknown::isOffsetOf(const Type *&CTy, Constant *&FieldNo) const {
468  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
469    if (VCE->getOpcode() == Instruction::PtrToInt)
470      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
471        if (CE->getOpcode() == Instruction::GetElementPtr &&
472            CE->getNumOperands() == 3 &&
473            CE->getOperand(0)->isNullValue() &&
474            CE->getOperand(1)->isNullValue()) {
475          const Type *Ty =
476            cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
477          // Ignore vector types here so that ScalarEvolutionExpander doesn't
478          // emit getelementptrs that index into vectors.
479          if (Ty->isStructTy() || Ty->isArrayTy()) {
480            CTy = Ty;
481            FieldNo = CE->getOperand(2);
482            return true;
483          }
484        }
485
486  return false;
487}
488
489void SCEVUnknown::print(raw_ostream &OS) const {
490  const Type *AllocTy;
491  if (isSizeOf(AllocTy)) {
492    OS << "sizeof(" << *AllocTy << ")";
493    return;
494  }
495  if (isAlignOf(AllocTy)) {
496    OS << "alignof(" << *AllocTy << ")";
497    return;
498  }
499
500  const Type *CTy;
501  Constant *FieldNo;
502  if (isOffsetOf(CTy, FieldNo)) {
503    OS << "offsetof(" << *CTy << ", ";
504    WriteAsOperand(OS, FieldNo, false);
505    OS << ")";
506    return;
507  }
508
509  // Otherwise just print it normally.
510  WriteAsOperand(OS, getValue(), false);
511}
512
513//===----------------------------------------------------------------------===//
514//                               SCEV Utilities
515//===----------------------------------------------------------------------===//
516
517namespace {
518  /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
519  /// than the complexity of the RHS.  This comparator is used to canonicalize
520  /// expressions.
521  class SCEVComplexityCompare {
522    const LoopInfo *const LI;
523  public:
524    explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
525
526    // Return true or false if LHS is less than, or at least RHS, respectively.
527    bool operator()(const SCEV *LHS, const SCEV *RHS) const {
528      return compare(LHS, RHS) < 0;
529    }
530
531    // Return negative, zero, or positive, if LHS is less than, equal to, or
532    // greater than RHS, respectively. A three-way result allows recursive
533    // comparisons to be more efficient.
534    int compare(const SCEV *LHS, const SCEV *RHS) const {
535      // Fast-path: SCEVs are uniqued so we can do a quick equality check.
536      if (LHS == RHS)
537        return 0;
538
539      // Primarily, sort the SCEVs by their getSCEVType().
540      unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
541      if (LType != RType)
542        return (int)LType - (int)RType;
543
544      // Aside from the getSCEVType() ordering, the particular ordering
545      // isn't very important except that it's beneficial to be consistent,
546      // so that (a + b) and (b + a) don't end up as different expressions.
547      switch (LType) {
548      case scUnknown: {
549        const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
550        const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
551
552        // Sort SCEVUnknown values with some loose heuristics. TODO: This is
553        // not as complete as it could be.
554        const Value *LV = LU->getValue(), *RV = RU->getValue();
555
556        // Order pointer values after integer values. This helps SCEVExpander
557        // form GEPs.
558        bool LIsPointer = LV->getType()->isPointerTy(),
559             RIsPointer = RV->getType()->isPointerTy();
560        if (LIsPointer != RIsPointer)
561          return (int)LIsPointer - (int)RIsPointer;
562
563        // Compare getValueID values.
564        unsigned LID = LV->getValueID(),
565                 RID = RV->getValueID();
566        if (LID != RID)
567          return (int)LID - (int)RID;
568
569        // Sort arguments by their position.
570        if (const Argument *LA = dyn_cast<Argument>(LV)) {
571          const Argument *RA = cast<Argument>(RV);
572          unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
573          return (int)LArgNo - (int)RArgNo;
574        }
575
576        // For instructions, compare their loop depth, and their operand
577        // count.  This is pretty loose.
578        if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
579          const Instruction *RInst = cast<Instruction>(RV);
580
581          // Compare loop depths.
582          const BasicBlock *LParent = LInst->getParent(),
583                           *RParent = RInst->getParent();
584          if (LParent != RParent) {
585            unsigned LDepth = LI->getLoopDepth(LParent),
586                     RDepth = LI->getLoopDepth(RParent);
587            if (LDepth != RDepth)
588              return (int)LDepth - (int)RDepth;
589          }
590
591          // Compare the number of operands.
592          unsigned LNumOps = LInst->getNumOperands(),
593                   RNumOps = RInst->getNumOperands();
594          return (int)LNumOps - (int)RNumOps;
595        }
596
597        return 0;
598      }
599
600      case scConstant: {
601        const SCEVConstant *LC = cast<SCEVConstant>(LHS);
602        const SCEVConstant *RC = cast<SCEVConstant>(RHS);
603
604        // Compare constant values.
605        const APInt &LA = LC->getValue()->getValue();
606        const APInt &RA = RC->getValue()->getValue();
607        unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
608        if (LBitWidth != RBitWidth)
609          return (int)LBitWidth - (int)RBitWidth;
610        return LA.ult(RA) ? -1 : 1;
611      }
612
613      case scAddRecExpr: {
614        const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
615        const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
616
617        // Compare addrec loop depths.
618        const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
619        if (LLoop != RLoop) {
620          unsigned LDepth = LLoop->getLoopDepth(),
621                   RDepth = RLoop->getLoopDepth();
622          if (LDepth != RDepth)
623            return (int)LDepth - (int)RDepth;
624        }
625
626        // Addrec complexity grows with operand count.
627        unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
628        if (LNumOps != RNumOps)
629          return (int)LNumOps - (int)RNumOps;
630
631        // Lexicographically compare.
632        for (unsigned i = 0; i != LNumOps; ++i) {
633          long X = compare(LA->getOperand(i), RA->getOperand(i));
634          if (X != 0)
635            return X;
636        }
637
638        return 0;
639      }
640
641      case scAddExpr:
642      case scMulExpr:
643      case scSMaxExpr:
644      case scUMaxExpr: {
645        const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
646        const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
647
648        // Lexicographically compare n-ary expressions.
649        unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
650        for (unsigned i = 0; i != LNumOps; ++i) {
651          if (i >= RNumOps)
652            return 1;
653          long X = compare(LC->getOperand(i), RC->getOperand(i));
654          if (X != 0)
655            return X;
656        }
657        return (int)LNumOps - (int)RNumOps;
658      }
659
660      case scUDivExpr: {
661        const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
662        const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
663
664        // Lexicographically compare udiv expressions.
665        long X = compare(LC->getLHS(), RC->getLHS());
666        if (X != 0)
667          return X;
668        return compare(LC->getRHS(), RC->getRHS());
669      }
670
671      case scTruncate:
672      case scZeroExtend:
673      case scSignExtend: {
674        const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
675        const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
676
677        // Compare cast expressions by operand.
678        return compare(LC->getOperand(), RC->getOperand());
679      }
680
681      default:
682        break;
683      }
684
685      llvm_unreachable("Unknown SCEV kind!");
686      return 0;
687    }
688  };
689}
690
691/// GroupByComplexity - Given a list of SCEV objects, order them by their
692/// complexity, and group objects of the same complexity together by value.
693/// When this routine is finished, we know that any duplicates in the vector are
694/// consecutive and that complexity is monotonically increasing.
695///
696/// Note that we go take special precautions to ensure that we get deterministic
697/// results from this routine.  In other words, we don't want the results of
698/// this to depend on where the addresses of various SCEV objects happened to
699/// land in memory.
700///
701static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
702                              LoopInfo *LI) {
703  if (Ops.size() < 2) return;  // Noop
704  if (Ops.size() == 2) {
705    // This is the common case, which also happens to be trivially simple.
706    // Special case it.
707    if (SCEVComplexityCompare(LI)(Ops[1], Ops[0]))
708      std::swap(Ops[0], Ops[1]);
709    return;
710  }
711
712  // Do the rough sort by complexity.
713  std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
714
715  // Now that we are sorted by complexity, group elements of the same
716  // complexity.  Note that this is, at worst, N^2, but the vector is likely to
717  // be extremely short in practice.  Note that we take this approach because we
718  // do not want to depend on the addresses of the objects we are grouping.
719  for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
720    const SCEV *S = Ops[i];
721    unsigned Complexity = S->getSCEVType();
722
723    // If there are any objects of the same complexity and same value as this
724    // one, group them.
725    for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
726      if (Ops[j] == S) { // Found a duplicate.
727        // Move it to immediately after i'th element.
728        std::swap(Ops[i+1], Ops[j]);
729        ++i;   // no need to rescan it.
730        if (i == e-2) return;  // Done!
731      }
732    }
733  }
734}
735
736
737
738//===----------------------------------------------------------------------===//
739//                      Simple SCEV method implementations
740//===----------------------------------------------------------------------===//
741
742/// BinomialCoefficient - Compute BC(It, K).  The result has width W.
743/// Assume, K > 0.
744static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
745                                       ScalarEvolution &SE,
746                                       const Type* ResultTy) {
747  // Handle the simplest case efficiently.
748  if (K == 1)
749    return SE.getTruncateOrZeroExtend(It, ResultTy);
750
751  // We are using the following formula for BC(It, K):
752  //
753  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
754  //
755  // Suppose, W is the bitwidth of the return value.  We must be prepared for
756  // overflow.  Hence, we must assure that the result of our computation is
757  // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
758  // safe in modular arithmetic.
759  //
760  // However, this code doesn't use exactly that formula; the formula it uses
761  // is something like the following, where T is the number of factors of 2 in
762  // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
763  // exponentiation:
764  //
765  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
766  //
767  // This formula is trivially equivalent to the previous formula.  However,
768  // this formula can be implemented much more efficiently.  The trick is that
769  // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
770  // arithmetic.  To do exact division in modular arithmetic, all we have
771  // to do is multiply by the inverse.  Therefore, this step can be done at
772  // width W.
773  //
774  // The next issue is how to safely do the division by 2^T.  The way this
775  // is done is by doing the multiplication step at a width of at least W + T
776  // bits.  This way, the bottom W+T bits of the product are accurate. Then,
777  // when we perform the division by 2^T (which is equivalent to a right shift
778  // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
779  // truncated out after the division by 2^T.
780  //
781  // In comparison to just directly using the first formula, this technique
782  // is much more efficient; using the first formula requires W * K bits,
783  // but this formula less than W + K bits. Also, the first formula requires
784  // a division step, whereas this formula only requires multiplies and shifts.
785  //
786  // It doesn't matter whether the subtraction step is done in the calculation
787  // width or the input iteration count's width; if the subtraction overflows,
788  // the result must be zero anyway.  We prefer here to do it in the width of
789  // the induction variable because it helps a lot for certain cases; CodeGen
790  // isn't smart enough to ignore the overflow, which leads to much less
791  // efficient code if the width of the subtraction is wider than the native
792  // register width.
793  //
794  // (It's possible to not widen at all by pulling out factors of 2 before
795  // the multiplication; for example, K=2 can be calculated as
796  // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
797  // extra arithmetic, so it's not an obvious win, and it gets
798  // much more complicated for K > 3.)
799
800  // Protection from insane SCEVs; this bound is conservative,
801  // but it probably doesn't matter.
802  if (K > 1000)
803    return SE.getCouldNotCompute();
804
805  unsigned W = SE.getTypeSizeInBits(ResultTy);
806
807  // Calculate K! / 2^T and T; we divide out the factors of two before
808  // multiplying for calculating K! / 2^T to avoid overflow.
809  // Other overflow doesn't matter because we only care about the bottom
810  // W bits of the result.
811  APInt OddFactorial(W, 1);
812  unsigned T = 1;
813  for (unsigned i = 3; i <= K; ++i) {
814    APInt Mult(W, i);
815    unsigned TwoFactors = Mult.countTrailingZeros();
816    T += TwoFactors;
817    Mult = Mult.lshr(TwoFactors);
818    OddFactorial *= Mult;
819  }
820
821  // We need at least W + T bits for the multiplication step
822  unsigned CalculationBits = W + T;
823
824  // Calculate 2^T, at width T+W.
825  APInt DivFactor = APInt(CalculationBits, 1).shl(T);
826
827  // Calculate the multiplicative inverse of K! / 2^T;
828  // this multiplication factor will perform the exact division by
829  // K! / 2^T.
830  APInt Mod = APInt::getSignedMinValue(W+1);
831  APInt MultiplyFactor = OddFactorial.zext(W+1);
832  MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
833  MultiplyFactor = MultiplyFactor.trunc(W);
834
835  // Calculate the product, at width T+W
836  const IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
837                                                      CalculationBits);
838  const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
839  for (unsigned i = 1; i != K; ++i) {
840    const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
841    Dividend = SE.getMulExpr(Dividend,
842                             SE.getTruncateOrZeroExtend(S, CalculationTy));
843  }
844
845  // Divide by 2^T
846  const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
847
848  // Truncate the result, and divide by K! / 2^T.
849
850  return SE.getMulExpr(SE.getConstant(MultiplyFactor),
851                       SE.getTruncateOrZeroExtend(DivResult, ResultTy));
852}
853
854/// evaluateAtIteration - Return the value of this chain of recurrences at
855/// the specified iteration number.  We can evaluate this recurrence by
856/// multiplying each element in the chain by the binomial coefficient
857/// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
858///
859///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
860///
861/// where BC(It, k) stands for binomial coefficient.
862///
863const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
864                                                ScalarEvolution &SE) const {
865  const SCEV *Result = getStart();
866  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
867    // The computation is correct in the face of overflow provided that the
868    // multiplication is performed _after_ the evaluation of the binomial
869    // coefficient.
870    const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
871    if (isa<SCEVCouldNotCompute>(Coeff))
872      return Coeff;
873
874    Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
875  }
876  return Result;
877}
878
879//===----------------------------------------------------------------------===//
880//                    SCEV Expression folder implementations
881//===----------------------------------------------------------------------===//
882
883const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
884                                             const Type *Ty) {
885  assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
886         "This is not a truncating conversion!");
887  assert(isSCEVable(Ty) &&
888         "This is not a conversion to a SCEVable type!");
889  Ty = getEffectiveSCEVType(Ty);
890
891  FoldingSetNodeID ID;
892  ID.AddInteger(scTruncate);
893  ID.AddPointer(Op);
894  ID.AddPointer(Ty);
895  void *IP = 0;
896  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
897
898  // Fold if the operand is constant.
899  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
900    return getConstant(
901      cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(),
902                                               getEffectiveSCEVType(Ty))));
903
904  // trunc(trunc(x)) --> trunc(x)
905  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
906    return getTruncateExpr(ST->getOperand(), Ty);
907
908  // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
909  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
910    return getTruncateOrSignExtend(SS->getOperand(), Ty);
911
912  // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
913  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
914    return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
915
916  // If the input value is a chrec scev, truncate the chrec's operands.
917  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
918    SmallVector<const SCEV *, 4> Operands;
919    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
920      Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
921    return getAddRecExpr(Operands, AddRec->getLoop());
922  }
923
924  // As a special case, fold trunc(undef) to undef. We don't want to
925  // know too much about SCEVUnknowns, but this special case is handy
926  // and harmless.
927  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
928    if (isa<UndefValue>(U->getValue()))
929      return getSCEV(UndefValue::get(Ty));
930
931  // The cast wasn't folded; create an explicit cast node. We can reuse
932  // the existing insert position since if we get here, we won't have
933  // made any changes which would invalidate it.
934  SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
935                                                 Op, Ty);
936  UniqueSCEVs.InsertNode(S, IP);
937  return S;
938}
939
940const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
941                                               const Type *Ty) {
942  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
943         "This is not an extending conversion!");
944  assert(isSCEVable(Ty) &&
945         "This is not a conversion to a SCEVable type!");
946  Ty = getEffectiveSCEVType(Ty);
947
948  // Fold if the operand is constant.
949  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
950    return getConstant(
951      cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(),
952                                              getEffectiveSCEVType(Ty))));
953
954  // zext(zext(x)) --> zext(x)
955  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
956    return getZeroExtendExpr(SZ->getOperand(), Ty);
957
958  // Before doing any expensive analysis, check to see if we've already
959  // computed a SCEV for this Op and Ty.
960  FoldingSetNodeID ID;
961  ID.AddInteger(scZeroExtend);
962  ID.AddPointer(Op);
963  ID.AddPointer(Ty);
964  void *IP = 0;
965  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
966
967  // If the input value is a chrec scev, and we can prove that the value
968  // did not overflow the old, smaller, value, we can zero extend all of the
969  // operands (often constants).  This allows analysis of something like
970  // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
971  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
972    if (AR->isAffine()) {
973      const SCEV *Start = AR->getStart();
974      const SCEV *Step = AR->getStepRecurrence(*this);
975      unsigned BitWidth = getTypeSizeInBits(AR->getType());
976      const Loop *L = AR->getLoop();
977
978      // If we have special knowledge that this addrec won't overflow,
979      // we don't need to do any further analysis.
980      if (AR->hasNoUnsignedWrap())
981        return getAddRecExpr(getZeroExtendExpr(Start, Ty),
982                             getZeroExtendExpr(Step, Ty),
983                             L);
984
985      // Check whether the backedge-taken count is SCEVCouldNotCompute.
986      // Note that this serves two purposes: It filters out loops that are
987      // simply not analyzable, and it covers the case where this code is
988      // being called from within backedge-taken count analysis, such that
989      // attempting to ask for the backedge-taken count would likely result
990      // in infinite recursion. In the later case, the analysis code will
991      // cope with a conservative value, and it will take care to purge
992      // that value once it has finished.
993      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
994      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
995        // Manually compute the final value for AR, checking for
996        // overflow.
997
998        // Check whether the backedge-taken count can be losslessly casted to
999        // the addrec's type. The count is always unsigned.
1000        const SCEV *CastedMaxBECount =
1001          getTruncateOrZeroExtend(MaxBECount, Start->getType());
1002        const SCEV *RecastedMaxBECount =
1003          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1004        if (MaxBECount == RecastedMaxBECount) {
1005          const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1006          // Check whether Start+Step*MaxBECount has no unsigned overflow.
1007          const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
1008          const SCEV *Add = getAddExpr(Start, ZMul);
1009          const SCEV *OperandExtendedAdd =
1010            getAddExpr(getZeroExtendExpr(Start, WideTy),
1011                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1012                                  getZeroExtendExpr(Step, WideTy)));
1013          if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
1014            // Return the expression with the addrec on the outside.
1015            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1016                                 getZeroExtendExpr(Step, Ty),
1017                                 L);
1018
1019          // Similar to above, only this time treat the step value as signed.
1020          // This covers loops that count down.
1021          const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
1022          Add = getAddExpr(Start, SMul);
1023          OperandExtendedAdd =
1024            getAddExpr(getZeroExtendExpr(Start, WideTy),
1025                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1026                                  getSignExtendExpr(Step, WideTy)));
1027          if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
1028            // Return the expression with the addrec on the outside.
1029            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1030                                 getSignExtendExpr(Step, Ty),
1031                                 L);
1032        }
1033
1034        // If the backedge is guarded by a comparison with the pre-inc value
1035        // the addrec is safe. Also, if the entry is guarded by a comparison
1036        // with the start value and the backedge is guarded by a comparison
1037        // with the post-inc value, the addrec is safe.
1038        if (isKnownPositive(Step)) {
1039          const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1040                                      getUnsignedRange(Step).getUnsignedMax());
1041          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
1042              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
1043               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
1044                                           AR->getPostIncExpr(*this), N)))
1045            // Return the expression with the addrec on the outside.
1046            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1047                                 getZeroExtendExpr(Step, Ty),
1048                                 L);
1049        } else if (isKnownNegative(Step)) {
1050          const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1051                                      getSignedRange(Step).getSignedMin());
1052          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1053              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
1054               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
1055                                           AR->getPostIncExpr(*this), N)))
1056            // Return the expression with the addrec on the outside.
1057            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1058                                 getSignExtendExpr(Step, Ty),
1059                                 L);
1060        }
1061      }
1062    }
1063
1064  // The cast wasn't folded; create an explicit cast node.
1065  // Recompute the insert position, as it may have been invalidated.
1066  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1067  SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1068                                                   Op, Ty);
1069  UniqueSCEVs.InsertNode(S, IP);
1070  return S;
1071}
1072
1073const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
1074                                               const Type *Ty) {
1075  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1076         "This is not an extending conversion!");
1077  assert(isSCEVable(Ty) &&
1078         "This is not a conversion to a SCEVable type!");
1079  Ty = getEffectiveSCEVType(Ty);
1080
1081  // Fold if the operand is constant.
1082  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1083    return getConstant(
1084      cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(),
1085                                              getEffectiveSCEVType(Ty))));
1086
1087  // sext(sext(x)) --> sext(x)
1088  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1089    return getSignExtendExpr(SS->getOperand(), Ty);
1090
1091  // Before doing any expensive analysis, check to see if we've already
1092  // computed a SCEV for this Op and Ty.
1093  FoldingSetNodeID ID;
1094  ID.AddInteger(scSignExtend);
1095  ID.AddPointer(Op);
1096  ID.AddPointer(Ty);
1097  void *IP = 0;
1098  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1099
1100  // If the input value is a chrec scev, and we can prove that the value
1101  // did not overflow the old, smaller, value, we can sign extend all of the
1102  // operands (often constants).  This allows analysis of something like
1103  // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1104  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1105    if (AR->isAffine()) {
1106      const SCEV *Start = AR->getStart();
1107      const SCEV *Step = AR->getStepRecurrence(*this);
1108      unsigned BitWidth = getTypeSizeInBits(AR->getType());
1109      const Loop *L = AR->getLoop();
1110
1111      // If we have special knowledge that this addrec won't overflow,
1112      // we don't need to do any further analysis.
1113      if (AR->hasNoSignedWrap())
1114        return getAddRecExpr(getSignExtendExpr(Start, Ty),
1115                             getSignExtendExpr(Step, Ty),
1116                             L);
1117
1118      // Check whether the backedge-taken count is SCEVCouldNotCompute.
1119      // Note that this serves two purposes: It filters out loops that are
1120      // simply not analyzable, and it covers the case where this code is
1121      // being called from within backedge-taken count analysis, such that
1122      // attempting to ask for the backedge-taken count would likely result
1123      // in infinite recursion. In the later case, the analysis code will
1124      // cope with a conservative value, and it will take care to purge
1125      // that value once it has finished.
1126      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1127      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1128        // Manually compute the final value for AR, checking for
1129        // overflow.
1130
1131        // Check whether the backedge-taken count can be losslessly casted to
1132        // the addrec's type. The count is always unsigned.
1133        const SCEV *CastedMaxBECount =
1134          getTruncateOrZeroExtend(MaxBECount, Start->getType());
1135        const SCEV *RecastedMaxBECount =
1136          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1137        if (MaxBECount == RecastedMaxBECount) {
1138          const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1139          // Check whether Start+Step*MaxBECount has no signed overflow.
1140          const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
1141          const SCEV *Add = getAddExpr(Start, SMul);
1142          const SCEV *OperandExtendedAdd =
1143            getAddExpr(getSignExtendExpr(Start, WideTy),
1144                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1145                                  getSignExtendExpr(Step, WideTy)));
1146          if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
1147            // Return the expression with the addrec on the outside.
1148            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1149                                 getSignExtendExpr(Step, Ty),
1150                                 L);
1151
1152          // Similar to above, only this time treat the step value as unsigned.
1153          // This covers loops that count up with an unsigned step.
1154          const SCEV *UMul = getMulExpr(CastedMaxBECount, Step);
1155          Add = getAddExpr(Start, UMul);
1156          OperandExtendedAdd =
1157            getAddExpr(getSignExtendExpr(Start, WideTy),
1158                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1159                                  getZeroExtendExpr(Step, WideTy)));
1160          if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
1161            // Return the expression with the addrec on the outside.
1162            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1163                                 getZeroExtendExpr(Step, Ty),
1164                                 L);
1165        }
1166
1167        // If the backedge is guarded by a comparison with the pre-inc value
1168        // the addrec is safe. Also, if the entry is guarded by a comparison
1169        // with the start value and the backedge is guarded by a comparison
1170        // with the post-inc value, the addrec is safe.
1171        if (isKnownPositive(Step)) {
1172          const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) -
1173                                      getSignedRange(Step).getSignedMax());
1174          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) ||
1175              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) &&
1176               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT,
1177                                           AR->getPostIncExpr(*this), N)))
1178            // Return the expression with the addrec on the outside.
1179            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1180                                 getSignExtendExpr(Step, Ty),
1181                                 L);
1182        } else if (isKnownNegative(Step)) {
1183          const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) -
1184                                      getSignedRange(Step).getSignedMin());
1185          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) ||
1186              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) &&
1187               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT,
1188                                           AR->getPostIncExpr(*this), N)))
1189            // Return the expression with the addrec on the outside.
1190            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1191                                 getSignExtendExpr(Step, Ty),
1192                                 L);
1193        }
1194      }
1195    }
1196
1197  // The cast wasn't folded; create an explicit cast node.
1198  // Recompute the insert position, as it may have been invalidated.
1199  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1200  SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1201                                                   Op, Ty);
1202  UniqueSCEVs.InsertNode(S, IP);
1203  return S;
1204}
1205
1206/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1207/// unspecified bits out to the given type.
1208///
1209const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
1210                                              const Type *Ty) {
1211  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1212         "This is not an extending conversion!");
1213  assert(isSCEVable(Ty) &&
1214         "This is not a conversion to a SCEVable type!");
1215  Ty = getEffectiveSCEVType(Ty);
1216
1217  // Sign-extend negative constants.
1218  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1219    if (SC->getValue()->getValue().isNegative())
1220      return getSignExtendExpr(Op, Ty);
1221
1222  // Peel off a truncate cast.
1223  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
1224    const SCEV *NewOp = T->getOperand();
1225    if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1226      return getAnyExtendExpr(NewOp, Ty);
1227    return getTruncateOrNoop(NewOp, Ty);
1228  }
1229
1230  // Next try a zext cast. If the cast is folded, use it.
1231  const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
1232  if (!isa<SCEVZeroExtendExpr>(ZExt))
1233    return ZExt;
1234
1235  // Next try a sext cast. If the cast is folded, use it.
1236  const SCEV *SExt = getSignExtendExpr(Op, Ty);
1237  if (!isa<SCEVSignExtendExpr>(SExt))
1238    return SExt;
1239
1240  // Force the cast to be folded into the operands of an addrec.
1241  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1242    SmallVector<const SCEV *, 4> Ops;
1243    for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1244         I != E; ++I)
1245      Ops.push_back(getAnyExtendExpr(*I, Ty));
1246    return getAddRecExpr(Ops, AR->getLoop());
1247  }
1248
1249  // As a special case, fold anyext(undef) to undef. We don't want to
1250  // know too much about SCEVUnknowns, but this special case is handy
1251  // and harmless.
1252  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
1253    if (isa<UndefValue>(U->getValue()))
1254      return getSCEV(UndefValue::get(Ty));
1255
1256  // If the expression is obviously signed, use the sext cast value.
1257  if (isa<SCEVSMaxExpr>(Op))
1258    return SExt;
1259
1260  // Absent any other information, use the zext cast value.
1261  return ZExt;
1262}
1263
1264/// CollectAddOperandsWithScales - Process the given Ops list, which is
1265/// a list of operands to be added under the given scale, update the given
1266/// map. This is a helper function for getAddRecExpr. As an example of
1267/// what it does, given a sequence of operands that would form an add
1268/// expression like this:
1269///
1270///    m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1271///
1272/// where A and B are constants, update the map with these values:
1273///
1274///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1275///
1276/// and add 13 + A*B*29 to AccumulatedConstant.
1277/// This will allow getAddRecExpr to produce this:
1278///
1279///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1280///
1281/// This form often exposes folding opportunities that are hidden in
1282/// the original operand list.
1283///
1284/// Return true iff it appears that any interesting folding opportunities
1285/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1286/// the common case where no interesting opportunities are present, and
1287/// is also used as a check to avoid infinite recursion.
1288///
1289static bool
1290CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1291                             SmallVector<const SCEV *, 8> &NewOps,
1292                             APInt &AccumulatedConstant,
1293                             const SCEV *const *Ops, size_t NumOperands,
1294                             const APInt &Scale,
1295                             ScalarEvolution &SE) {
1296  bool Interesting = false;
1297
1298  // Iterate over the add operands. They are sorted, with constants first.
1299  unsigned i = 0;
1300  while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1301    ++i;
1302    // Pull a buried constant out to the outside.
1303    if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1304      Interesting = true;
1305    AccumulatedConstant += Scale * C->getValue()->getValue();
1306  }
1307
1308  // Next comes everything else. We're especially interested in multiplies
1309  // here, but they're in the middle, so just visit the rest with one loop.
1310  for (; i != NumOperands; ++i) {
1311    const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1312    if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1313      APInt NewScale =
1314        Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1315      if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1316        // A multiplication of a constant with another add; recurse.
1317        const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
1318        Interesting |=
1319          CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1320                                       Add->op_begin(), Add->getNumOperands(),
1321                                       NewScale, SE);
1322      } else {
1323        // A multiplication of a constant with some other value. Update
1324        // the map.
1325        SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1326        const SCEV *Key = SE.getMulExpr(MulOps);
1327        std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1328          M.insert(std::make_pair(Key, NewScale));
1329        if (Pair.second) {
1330          NewOps.push_back(Pair.first->first);
1331        } else {
1332          Pair.first->second += NewScale;
1333          // The map already had an entry for this value, which may indicate
1334          // a folding opportunity.
1335          Interesting = true;
1336        }
1337      }
1338    } else {
1339      // An ordinary operand. Update the map.
1340      std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1341        M.insert(std::make_pair(Ops[i], Scale));
1342      if (Pair.second) {
1343        NewOps.push_back(Pair.first->first);
1344      } else {
1345        Pair.first->second += Scale;
1346        // The map already had an entry for this value, which may indicate
1347        // a folding opportunity.
1348        Interesting = true;
1349      }
1350    }
1351  }
1352
1353  return Interesting;
1354}
1355
1356namespace {
1357  struct APIntCompare {
1358    bool operator()(const APInt &LHS, const APInt &RHS) const {
1359      return LHS.ult(RHS);
1360    }
1361  };
1362}
1363
1364/// getAddExpr - Get a canonical add expression, or something simpler if
1365/// possible.
1366const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1367                                        bool HasNUW, bool HasNSW) {
1368  assert(!Ops.empty() && "Cannot get empty add!");
1369  if (Ops.size() == 1) return Ops[0];
1370#ifndef NDEBUG
1371  const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
1372  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1373    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
1374           "SCEVAddExpr operand types don't match!");
1375#endif
1376
1377  // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1378  if (!HasNUW && HasNSW) {
1379    bool All = true;
1380    for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1381         E = Ops.end(); I != E; ++I)
1382      if (!isKnownNonNegative(*I)) {
1383        All = false;
1384        break;
1385      }
1386    if (All) HasNUW = true;
1387  }
1388
1389  // Sort by complexity, this groups all similar expression types together.
1390  GroupByComplexity(Ops, LI);
1391
1392  // If there are any constants, fold them together.
1393  unsigned Idx = 0;
1394  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1395    ++Idx;
1396    assert(Idx < Ops.size());
1397    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1398      // We found two constants, fold them together!
1399      Ops[0] = getConstant(LHSC->getValue()->getValue() +
1400                           RHSC->getValue()->getValue());
1401      if (Ops.size() == 2) return Ops[0];
1402      Ops.erase(Ops.begin()+1);  // Erase the folded element
1403      LHSC = cast<SCEVConstant>(Ops[0]);
1404    }
1405
1406    // If we are left with a constant zero being added, strip it off.
1407    if (LHSC->getValue()->isZero()) {
1408      Ops.erase(Ops.begin());
1409      --Idx;
1410    }
1411
1412    if (Ops.size() == 1) return Ops[0];
1413  }
1414
1415  // Okay, check to see if the same value occurs in the operand list more than
1416  // once.  If so, merge them together into an multiply expression.  Since we
1417  // sorted the list, these values are required to be adjacent.
1418  const Type *Ty = Ops[0]->getType();
1419  bool FoundMatch = false;
1420  for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
1421    if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
1422      // Scan ahead to count how many equal operands there are.
1423      unsigned Count = 2;
1424      while (i+Count != e && Ops[i+Count] == Ops[i])
1425        ++Count;
1426      // Merge the values into a multiply.
1427      const SCEV *Scale = getConstant(Ty, Count);
1428      const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1429      if (Ops.size() == Count)
1430        return Mul;
1431      Ops[i] = Mul;
1432      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
1433      --i; e -= Count - 1;
1434      FoundMatch = true;
1435    }
1436  if (FoundMatch)
1437    return getAddExpr(Ops, HasNUW, HasNSW);
1438
1439  // Check for truncates. If all the operands are truncated from the same
1440  // type, see if factoring out the truncate would permit the result to be
1441  // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1442  // if the contents of the resulting outer trunc fold to something simple.
1443  for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1444    const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1445    const Type *DstType = Trunc->getType();
1446    const Type *SrcType = Trunc->getOperand()->getType();
1447    SmallVector<const SCEV *, 8> LargeOps;
1448    bool Ok = true;
1449    // Check all the operands to see if they can be represented in the
1450    // source type of the truncate.
1451    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1452      if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1453        if (T->getOperand()->getType() != SrcType) {
1454          Ok = false;
1455          break;
1456        }
1457        LargeOps.push_back(T->getOperand());
1458      } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1459        LargeOps.push_back(getAnyExtendExpr(C, SrcType));
1460      } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
1461        SmallVector<const SCEV *, 8> LargeMulOps;
1462        for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1463          if (const SCEVTruncateExpr *T =
1464                dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1465            if (T->getOperand()->getType() != SrcType) {
1466              Ok = false;
1467              break;
1468            }
1469            LargeMulOps.push_back(T->getOperand());
1470          } else if (const SCEVConstant *C =
1471                       dyn_cast<SCEVConstant>(M->getOperand(j))) {
1472            LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
1473          } else {
1474            Ok = false;
1475            break;
1476          }
1477        }
1478        if (Ok)
1479          LargeOps.push_back(getMulExpr(LargeMulOps));
1480      } else {
1481        Ok = false;
1482        break;
1483      }
1484    }
1485    if (Ok) {
1486      // Evaluate the expression in the larger type.
1487      const SCEV *Fold = getAddExpr(LargeOps, HasNUW, HasNSW);
1488      // If it folds to something simple, use it. Otherwise, don't.
1489      if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1490        return getTruncateExpr(Fold, DstType);
1491    }
1492  }
1493
1494  // Skip past any other cast SCEVs.
1495  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1496    ++Idx;
1497
1498  // If there are add operands they would be next.
1499  if (Idx < Ops.size()) {
1500    bool DeletedAdd = false;
1501    while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
1502      // If we have an add, expand the add operands onto the end of the operands
1503      // list.
1504      Ops.erase(Ops.begin()+Idx);
1505      Ops.append(Add->op_begin(), Add->op_end());
1506      DeletedAdd = true;
1507    }
1508
1509    // If we deleted at least one add, we added operands to the end of the list,
1510    // and they are not necessarily sorted.  Recurse to resort and resimplify
1511    // any operands we just acquired.
1512    if (DeletedAdd)
1513      return getAddExpr(Ops);
1514  }
1515
1516  // Skip over the add expression until we get to a multiply.
1517  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1518    ++Idx;
1519
1520  // Check to see if there are any folding opportunities present with
1521  // operands multiplied by constant values.
1522  if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1523    uint64_t BitWidth = getTypeSizeInBits(Ty);
1524    DenseMap<const SCEV *, APInt> M;
1525    SmallVector<const SCEV *, 8> NewOps;
1526    APInt AccumulatedConstant(BitWidth, 0);
1527    if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1528                                     Ops.data(), Ops.size(),
1529                                     APInt(BitWidth, 1), *this)) {
1530      // Some interesting folding opportunity is present, so its worthwhile to
1531      // re-generate the operands list. Group the operands by constant scale,
1532      // to avoid multiplying by the same constant scale multiple times.
1533      std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
1534      for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(),
1535           E = NewOps.end(); I != E; ++I)
1536        MulOpLists[M.find(*I)->second].push_back(*I);
1537      // Re-generate the operands list.
1538      Ops.clear();
1539      if (AccumulatedConstant != 0)
1540        Ops.push_back(getConstant(AccumulatedConstant));
1541      for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1542           I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
1543        if (I->first != 0)
1544          Ops.push_back(getMulExpr(getConstant(I->first),
1545                                   getAddExpr(I->second)));
1546      if (Ops.empty())
1547        return getConstant(Ty, 0);
1548      if (Ops.size() == 1)
1549        return Ops[0];
1550      return getAddExpr(Ops);
1551    }
1552  }
1553
1554  // If we are adding something to a multiply expression, make sure the
1555  // something is not already an operand of the multiply.  If so, merge it into
1556  // the multiply.
1557  for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
1558    const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
1559    for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
1560      const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
1561      if (isa<SCEVConstant>(MulOpSCEV))
1562        continue;
1563      for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
1564        if (MulOpSCEV == Ops[AddOp]) {
1565          // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
1566          const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
1567          if (Mul->getNumOperands() != 2) {
1568            // If the multiply has more than two operands, we must get the
1569            // Y*Z term.
1570            SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1571                                                Mul->op_begin()+MulOp);
1572            MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
1573            InnerMul = getMulExpr(MulOps);
1574          }
1575          const SCEV *One = getConstant(Ty, 1);
1576          const SCEV *AddOne = getAddExpr(One, InnerMul);
1577          const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
1578          if (Ops.size() == 2) return OuterMul;
1579          if (AddOp < Idx) {
1580            Ops.erase(Ops.begin()+AddOp);
1581            Ops.erase(Ops.begin()+Idx-1);
1582          } else {
1583            Ops.erase(Ops.begin()+Idx);
1584            Ops.erase(Ops.begin()+AddOp-1);
1585          }
1586          Ops.push_back(OuterMul);
1587          return getAddExpr(Ops);
1588        }
1589
1590      // Check this multiply against other multiplies being added together.
1591      bool AnyFold = false;
1592      for (unsigned OtherMulIdx = Idx+1;
1593           OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1594           ++OtherMulIdx) {
1595        const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
1596        // If MulOp occurs in OtherMul, we can fold the two multiplies
1597        // together.
1598        for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1599             OMulOp != e; ++OMulOp)
1600          if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1601            // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
1602            const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
1603            if (Mul->getNumOperands() != 2) {
1604              SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1605                                                  Mul->op_begin()+MulOp);
1606              MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
1607              InnerMul1 = getMulExpr(MulOps);
1608            }
1609            const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
1610            if (OtherMul->getNumOperands() != 2) {
1611              SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
1612                                                  OtherMul->op_begin()+OMulOp);
1613              MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
1614              InnerMul2 = getMulExpr(MulOps);
1615            }
1616            const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1617            const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
1618            if (Ops.size() == 2) return OuterMul;
1619            Ops[Idx] = OuterMul;
1620            Ops.erase(Ops.begin()+OtherMulIdx);
1621            OtherMulIdx = Idx;
1622            AnyFold = true;
1623          }
1624      }
1625      if (AnyFold)
1626        return getAddExpr(Ops);
1627    }
1628  }
1629
1630  // If there are any add recurrences in the operands list, see if any other
1631  // added values are loop invariant.  If so, we can fold them into the
1632  // recurrence.
1633  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1634    ++Idx;
1635
1636  // Scan over all recurrences, trying to fold loop invariants into them.
1637  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1638    // Scan all of the other operands to this add and add them to the vector if
1639    // they are loop invariant w.r.t. the recurrence.
1640    SmallVector<const SCEV *, 8> LIOps;
1641    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1642    const Loop *AddRecLoop = AddRec->getLoop();
1643    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1644      if (Ops[i]->isLoopInvariant(AddRecLoop)) {
1645        LIOps.push_back(Ops[i]);
1646        Ops.erase(Ops.begin()+i);
1647        --i; --e;
1648      }
1649
1650    // If we found some loop invariants, fold them into the recurrence.
1651    if (!LIOps.empty()) {
1652      //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
1653      LIOps.push_back(AddRec->getStart());
1654
1655      SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1656                                             AddRec->op_end());
1657      AddRecOps[0] = getAddExpr(LIOps);
1658
1659      // Build the new addrec. Propagate the NUW and NSW flags if both the
1660      // outer add and the inner addrec are guaranteed to have no overflow.
1661      const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop,
1662                                         HasNUW && AddRec->hasNoUnsignedWrap(),
1663                                         HasNSW && AddRec->hasNoSignedWrap());
1664
1665      // If all of the other operands were loop invariant, we are done.
1666      if (Ops.size() == 1) return NewRec;
1667
1668      // Otherwise, add the folded AddRec by the non-liv parts.
1669      for (unsigned i = 0;; ++i)
1670        if (Ops[i] == AddRec) {
1671          Ops[i] = NewRec;
1672          break;
1673        }
1674      return getAddExpr(Ops);
1675    }
1676
1677    // Okay, if there weren't any loop invariants to be folded, check to see if
1678    // there are multiple AddRec's with the same loop induction variable being
1679    // added together.  If so, we can fold them.
1680    for (unsigned OtherIdx = Idx+1;
1681         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1682         ++OtherIdx)
1683      if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1684        // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
1685        SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1686                                               AddRec->op_end());
1687        for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1688             ++OtherIdx)
1689          if (const SCEVAddRecExpr *AR =
1690                dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
1691            if (AR->getLoop() == AddRecLoop) {
1692              for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i) {
1693                if (i >= AddRecOps.size()) {
1694                  AddRecOps.append(AR->op_begin()+i, AR->op_end());
1695                  break;
1696                }
1697                AddRecOps[i] = getAddExpr(AddRecOps[i], AR->getOperand(i));
1698              }
1699              Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
1700            }
1701        Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop);
1702        return getAddExpr(Ops);
1703      }
1704
1705    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1706    // next one.
1707  }
1708
1709  // Okay, it looks like we really DO need an add expr.  Check to see if we
1710  // already have one, otherwise create a new one.
1711  FoldingSetNodeID ID;
1712  ID.AddInteger(scAddExpr);
1713  ID.AddInteger(Ops.size());
1714  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1715    ID.AddPointer(Ops[i]);
1716  void *IP = 0;
1717  SCEVAddExpr *S =
1718    static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1719  if (!S) {
1720    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1721    std::uninitialized_copy(Ops.begin(), Ops.end(), O);
1722    S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1723                                        O, Ops.size());
1724    UniqueSCEVs.InsertNode(S, IP);
1725  }
1726  if (HasNUW) S->setHasNoUnsignedWrap(true);
1727  if (HasNSW) S->setHasNoSignedWrap(true);
1728  return S;
1729}
1730
1731/// getMulExpr - Get a canonical multiply expression, or something simpler if
1732/// possible.
1733const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
1734                                        bool HasNUW, bool HasNSW) {
1735  assert(!Ops.empty() && "Cannot get empty mul!");
1736  if (Ops.size() == 1) return Ops[0];
1737#ifndef NDEBUG
1738  const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
1739  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1740    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
1741           "SCEVMulExpr operand types don't match!");
1742#endif
1743
1744  // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1745  if (!HasNUW && HasNSW) {
1746    bool All = true;
1747    for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1748         E = Ops.end(); I != E; ++I)
1749      if (!isKnownNonNegative(*I)) {
1750        All = false;
1751        break;
1752      }
1753    if (All) HasNUW = true;
1754  }
1755
1756  // Sort by complexity, this groups all similar expression types together.
1757  GroupByComplexity(Ops, LI);
1758
1759  // If there are any constants, fold them together.
1760  unsigned Idx = 0;
1761  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1762
1763    // C1*(C2+V) -> C1*C2 + C1*V
1764    if (Ops.size() == 2)
1765      if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
1766        if (Add->getNumOperands() == 2 &&
1767            isa<SCEVConstant>(Add->getOperand(0)))
1768          return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1769                            getMulExpr(LHSC, Add->getOperand(1)));
1770
1771    ++Idx;
1772    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1773      // We found two constants, fold them together!
1774      ConstantInt *Fold = ConstantInt::get(getContext(),
1775                                           LHSC->getValue()->getValue() *
1776                                           RHSC->getValue()->getValue());
1777      Ops[0] = getConstant(Fold);
1778      Ops.erase(Ops.begin()+1);  // Erase the folded element
1779      if (Ops.size() == 1) return Ops[0];
1780      LHSC = cast<SCEVConstant>(Ops[0]);
1781    }
1782
1783    // If we are left with a constant one being multiplied, strip it off.
1784    if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1785      Ops.erase(Ops.begin());
1786      --Idx;
1787    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1788      // If we have a multiply of zero, it will always be zero.
1789      return Ops[0];
1790    } else if (Ops[0]->isAllOnesValue()) {
1791      // If we have a mul by -1 of an add, try distributing the -1 among the
1792      // add operands.
1793      if (Ops.size() == 2)
1794        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1795          SmallVector<const SCEV *, 4> NewOps;
1796          bool AnyFolded = false;
1797          for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1798               I != E; ++I) {
1799            const SCEV *Mul = getMulExpr(Ops[0], *I);
1800            if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1801            NewOps.push_back(Mul);
1802          }
1803          if (AnyFolded)
1804            return getAddExpr(NewOps);
1805        }
1806    }
1807
1808    if (Ops.size() == 1)
1809      return Ops[0];
1810  }
1811
1812  // Skip over the add expression until we get to a multiply.
1813  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1814    ++Idx;
1815
1816  // If there are mul operands inline them all into this expression.
1817  if (Idx < Ops.size()) {
1818    bool DeletedMul = false;
1819    while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
1820      // If we have an mul, expand the mul operands onto the end of the operands
1821      // list.
1822      Ops.erase(Ops.begin()+Idx);
1823      Ops.append(Mul->op_begin(), Mul->op_end());
1824      DeletedMul = true;
1825    }
1826
1827    // If we deleted at least one mul, we added operands to the end of the list,
1828    // and they are not necessarily sorted.  Recurse to resort and resimplify
1829    // any operands we just acquired.
1830    if (DeletedMul)
1831      return getMulExpr(Ops);
1832  }
1833
1834  // If there are any add recurrences in the operands list, see if any other
1835  // added values are loop invariant.  If so, we can fold them into the
1836  // recurrence.
1837  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1838    ++Idx;
1839
1840  // Scan over all recurrences, trying to fold loop invariants into them.
1841  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1842    // Scan all of the other operands to this mul and add them to the vector if
1843    // they are loop invariant w.r.t. the recurrence.
1844    SmallVector<const SCEV *, 8> LIOps;
1845    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1846    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1847      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1848        LIOps.push_back(Ops[i]);
1849        Ops.erase(Ops.begin()+i);
1850        --i; --e;
1851      }
1852
1853    // If we found some loop invariants, fold them into the recurrence.
1854    if (!LIOps.empty()) {
1855      //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
1856      SmallVector<const SCEV *, 4> NewOps;
1857      NewOps.reserve(AddRec->getNumOperands());
1858      const SCEV *Scale = getMulExpr(LIOps);
1859      for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1860        NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
1861
1862      // Build the new addrec. Propagate the NUW and NSW flags if both the
1863      // outer mul and the inner addrec are guaranteed to have no overflow.
1864      const SCEV *NewRec = getAddRecExpr(NewOps, AddRec->getLoop(),
1865                                         HasNUW && AddRec->hasNoUnsignedWrap(),
1866                                         HasNSW && AddRec->hasNoSignedWrap());
1867
1868      // If all of the other operands were loop invariant, we are done.
1869      if (Ops.size() == 1) return NewRec;
1870
1871      // Otherwise, multiply the folded AddRec by the non-liv parts.
1872      for (unsigned i = 0;; ++i)
1873        if (Ops[i] == AddRec) {
1874          Ops[i] = NewRec;
1875          break;
1876        }
1877      return getMulExpr(Ops);
1878    }
1879
1880    // Okay, if there weren't any loop invariants to be folded, check to see if
1881    // there are multiple AddRec's with the same loop induction variable being
1882    // multiplied together.  If so, we can fold them.
1883    for (unsigned OtherIdx = Idx+1;
1884         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1885      if (OtherIdx != Idx) {
1886        const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1887        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1888          // F * G  -->  {A,+,B} * {C,+,D}  -->  {A*C,+,F*D + G*B + B*D}
1889          const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
1890          const SCEV *NewStart = getMulExpr(F->getStart(), G->getStart());
1891          const SCEV *B = F->getStepRecurrence(*this);
1892          const SCEV *D = G->getStepRecurrence(*this);
1893          const SCEV *NewStep = getAddExpr(getMulExpr(F, D),
1894                                           getMulExpr(G, B),
1895                                           getMulExpr(B, D));
1896          const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep,
1897                                                F->getLoop());
1898          if (Ops.size() == 2) return NewAddRec;
1899
1900          Ops.erase(Ops.begin()+Idx);
1901          Ops.erase(Ops.begin()+OtherIdx-1);
1902          Ops.push_back(NewAddRec);
1903          return getMulExpr(Ops);
1904        }
1905      }
1906
1907    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1908    // next one.
1909  }
1910
1911  // Okay, it looks like we really DO need an mul expr.  Check to see if we
1912  // already have one, otherwise create a new one.
1913  FoldingSetNodeID ID;
1914  ID.AddInteger(scMulExpr);
1915  ID.AddInteger(Ops.size());
1916  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1917    ID.AddPointer(Ops[i]);
1918  void *IP = 0;
1919  SCEVMulExpr *S =
1920    static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1921  if (!S) {
1922    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1923    std::uninitialized_copy(Ops.begin(), Ops.end(), O);
1924    S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
1925                                        O, Ops.size());
1926    UniqueSCEVs.InsertNode(S, IP);
1927  }
1928  if (HasNUW) S->setHasNoUnsignedWrap(true);
1929  if (HasNSW) S->setHasNoSignedWrap(true);
1930  return S;
1931}
1932
1933/// getUDivExpr - Get a canonical unsigned division expression, or something
1934/// simpler if possible.
1935const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
1936                                         const SCEV *RHS) {
1937  assert(getEffectiveSCEVType(LHS->getType()) ==
1938         getEffectiveSCEVType(RHS->getType()) &&
1939         "SCEVUDivExpr operand types don't match!");
1940
1941  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
1942    if (RHSC->getValue()->equalsInt(1))
1943      return LHS;                               // X udiv 1 --> x
1944    // If the denominator is zero, the result of the udiv is undefined. Don't
1945    // try to analyze it, because the resolution chosen here may differ from
1946    // the resolution chosen in other parts of the compiler.
1947    if (!RHSC->getValue()->isZero()) {
1948      // Determine if the division can be folded into the operands of
1949      // its operands.
1950      // TODO: Generalize this to non-constants by using known-bits information.
1951      const Type *Ty = LHS->getType();
1952      unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
1953      unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
1954      // For non-power-of-two values, effectively round the value up to the
1955      // nearest power of two.
1956      if (!RHSC->getValue()->getValue().isPowerOf2())
1957        ++MaxShiftAmt;
1958      const IntegerType *ExtTy =
1959        IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
1960      // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1961      if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1962        if (const SCEVConstant *Step =
1963              dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1964          if (!Step->getValue()->getValue()
1965                .urem(RHSC->getValue()->getValue()) &&
1966              getZeroExtendExpr(AR, ExtTy) ==
1967              getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1968                            getZeroExtendExpr(Step, ExtTy),
1969                            AR->getLoop())) {
1970            SmallVector<const SCEV *, 4> Operands;
1971            for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1972              Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1973            return getAddRecExpr(Operands, AR->getLoop());
1974          }
1975      // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
1976      if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
1977        SmallVector<const SCEV *, 4> Operands;
1978        for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1979          Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1980        if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
1981          // Find an operand that's safely divisible.
1982          for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1983            const SCEV *Op = M->getOperand(i);
1984            const SCEV *Div = getUDivExpr(Op, RHSC);
1985            if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
1986              Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
1987                                                      M->op_end());
1988              Operands[i] = Div;
1989              return getMulExpr(Operands);
1990            }
1991          }
1992      }
1993      // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
1994      if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
1995        SmallVector<const SCEV *, 4> Operands;
1996        for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
1997          Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
1998        if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
1999          Operands.clear();
2000          for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2001            const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2002            if (isa<SCEVUDivExpr>(Op) ||
2003                getMulExpr(Op, RHS) != A->getOperand(i))
2004              break;
2005            Operands.push_back(Op);
2006          }
2007          if (Operands.size() == A->getNumOperands())
2008            return getAddExpr(Operands);
2009        }
2010      }
2011
2012      // Fold if both operands are constant.
2013      if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2014        Constant *LHSCV = LHSC->getValue();
2015        Constant *RHSCV = RHSC->getValue();
2016        return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2017                                                                   RHSCV)));
2018      }
2019    }
2020  }
2021
2022  FoldingSetNodeID ID;
2023  ID.AddInteger(scUDivExpr);
2024  ID.AddPointer(LHS);
2025  ID.AddPointer(RHS);
2026  void *IP = 0;
2027  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2028  SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2029                                             LHS, RHS);
2030  UniqueSCEVs.InsertNode(S, IP);
2031  return S;
2032}
2033
2034
2035/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2036/// Simplify the expression as much as possible.
2037const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start,
2038                                           const SCEV *Step, const Loop *L,
2039                                           bool HasNUW, bool HasNSW) {
2040  SmallVector<const SCEV *, 4> Operands;
2041  Operands.push_back(Start);
2042  if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
2043    if (StepChrec->getLoop() == L) {
2044      Operands.append(StepChrec->op_begin(), StepChrec->op_end());
2045      return getAddRecExpr(Operands, L);
2046    }
2047
2048  Operands.push_back(Step);
2049  return getAddRecExpr(Operands, L, HasNUW, HasNSW);
2050}
2051
2052/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2053/// Simplify the expression as much as possible.
2054const SCEV *
2055ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
2056                               const Loop *L,
2057                               bool HasNUW, bool HasNSW) {
2058  if (Operands.size() == 1) return Operands[0];
2059#ifndef NDEBUG
2060  const Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
2061  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
2062    assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
2063           "SCEVAddRecExpr operand types don't match!");
2064#endif
2065
2066  if (Operands.back()->isZero()) {
2067    Operands.pop_back();
2068    return getAddRecExpr(Operands, L, HasNUW, HasNSW); // {X,+,0}  -->  X
2069  }
2070
2071  // It's tempting to want to call getMaxBackedgeTakenCount count here and
2072  // use that information to infer NUW and NSW flags. However, computing a
2073  // BE count requires calling getAddRecExpr, so we may not yet have a
2074  // meaningful BE count at this point (and if we don't, we'd be stuck
2075  // with a SCEVCouldNotCompute as the cached BE count).
2076
2077  // If HasNSW is true and all the operands are non-negative, infer HasNUW.
2078  if (!HasNUW && HasNSW) {
2079    bool All = true;
2080    for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
2081         E = Operands.end(); I != E; ++I)
2082      if (!isKnownNonNegative(*I)) {
2083        All = false;
2084        break;
2085      }
2086    if (All) HasNUW = true;
2087  }
2088
2089  // Canonicalize nested AddRecs in by nesting them in order of loop depth.
2090  if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
2091    const Loop *NestedLoop = NestedAR->getLoop();
2092    if (L->contains(NestedLoop) ?
2093        (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
2094        (!NestedLoop->contains(L) &&
2095         DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
2096      SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
2097                                                  NestedAR->op_end());
2098      Operands[0] = NestedAR->getStart();
2099      // AddRecs require their operands be loop-invariant with respect to their
2100      // loops. Don't perform this transformation if it would break this
2101      // requirement.
2102      bool AllInvariant = true;
2103      for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2104        if (!Operands[i]->isLoopInvariant(L)) {
2105          AllInvariant = false;
2106          break;
2107        }
2108      if (AllInvariant) {
2109        NestedOperands[0] = getAddRecExpr(Operands, L);
2110        AllInvariant = true;
2111        for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
2112          if (!NestedOperands[i]->isLoopInvariant(NestedLoop)) {
2113            AllInvariant = false;
2114            break;
2115          }
2116        if (AllInvariant)
2117          // Ok, both add recurrences are valid after the transformation.
2118          return getAddRecExpr(NestedOperands, NestedLoop, HasNUW, HasNSW);
2119      }
2120      // Reset Operands to its original state.
2121      Operands[0] = NestedAR;
2122    }
2123  }
2124
2125  // Okay, it looks like we really DO need an addrec expr.  Check to see if we
2126  // already have one, otherwise create a new one.
2127  FoldingSetNodeID ID;
2128  ID.AddInteger(scAddRecExpr);
2129  ID.AddInteger(Operands.size());
2130  for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2131    ID.AddPointer(Operands[i]);
2132  ID.AddPointer(L);
2133  void *IP = 0;
2134  SCEVAddRecExpr *S =
2135    static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2136  if (!S) {
2137    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2138    std::uninitialized_copy(Operands.begin(), Operands.end(), O);
2139    S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2140                                           O, Operands.size(), L);
2141    UniqueSCEVs.InsertNode(S, IP);
2142  }
2143  if (HasNUW) S->setHasNoUnsignedWrap(true);
2144  if (HasNSW) S->setHasNoSignedWrap(true);
2145  return S;
2146}
2147
2148const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2149                                         const SCEV *RHS) {
2150  SmallVector<const SCEV *, 2> Ops;
2151  Ops.push_back(LHS);
2152  Ops.push_back(RHS);
2153  return getSMaxExpr(Ops);
2154}
2155
2156const SCEV *
2157ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2158  assert(!Ops.empty() && "Cannot get empty smax!");
2159  if (Ops.size() == 1) return Ops[0];
2160#ifndef NDEBUG
2161  const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2162  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2163    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2164           "SCEVSMaxExpr operand types don't match!");
2165#endif
2166
2167  // Sort by complexity, this groups all similar expression types together.
2168  GroupByComplexity(Ops, LI);
2169
2170  // If there are any constants, fold them together.
2171  unsigned Idx = 0;
2172  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2173    ++Idx;
2174    assert(Idx < Ops.size());
2175    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2176      // We found two constants, fold them together!
2177      ConstantInt *Fold = ConstantInt::get(getContext(),
2178                              APIntOps::smax(LHSC->getValue()->getValue(),
2179                                             RHSC->getValue()->getValue()));
2180      Ops[0] = getConstant(Fold);
2181      Ops.erase(Ops.begin()+1);  // Erase the folded element
2182      if (Ops.size() == 1) return Ops[0];
2183      LHSC = cast<SCEVConstant>(Ops[0]);
2184    }
2185
2186    // If we are left with a constant minimum-int, strip it off.
2187    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2188      Ops.erase(Ops.begin());
2189      --Idx;
2190    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2191      // If we have an smax with a constant maximum-int, it will always be
2192      // maximum-int.
2193      return Ops[0];
2194    }
2195
2196    if (Ops.size() == 1) return Ops[0];
2197  }
2198
2199  // Find the first SMax
2200  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2201    ++Idx;
2202
2203  // Check to see if one of the operands is an SMax. If so, expand its operands
2204  // onto our operand list, and recurse to simplify.
2205  if (Idx < Ops.size()) {
2206    bool DeletedSMax = false;
2207    while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
2208      Ops.erase(Ops.begin()+Idx);
2209      Ops.append(SMax->op_begin(), SMax->op_end());
2210      DeletedSMax = true;
2211    }
2212
2213    if (DeletedSMax)
2214      return getSMaxExpr(Ops);
2215  }
2216
2217  // Okay, check to see if the same value occurs in the operand list twice.  If
2218  // so, delete one.  Since we sorted the list, these values are required to
2219  // be adjacent.
2220  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2221    //  X smax Y smax Y  -->  X smax Y
2222    //  X smax Y         -->  X, if X is always greater than Y
2223    if (Ops[i] == Ops[i+1] ||
2224        isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2225      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2226      --i; --e;
2227    } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
2228      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2229      --i; --e;
2230    }
2231
2232  if (Ops.size() == 1) return Ops[0];
2233
2234  assert(!Ops.empty() && "Reduced smax down to nothing!");
2235
2236  // Okay, it looks like we really DO need an smax expr.  Check to see if we
2237  // already have one, otherwise create a new one.
2238  FoldingSetNodeID ID;
2239  ID.AddInteger(scSMaxExpr);
2240  ID.AddInteger(Ops.size());
2241  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2242    ID.AddPointer(Ops[i]);
2243  void *IP = 0;
2244  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2245  const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2246  std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2247  SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2248                                             O, Ops.size());
2249  UniqueSCEVs.InsertNode(S, IP);
2250  return S;
2251}
2252
2253const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2254                                         const SCEV *RHS) {
2255  SmallVector<const SCEV *, 2> Ops;
2256  Ops.push_back(LHS);
2257  Ops.push_back(RHS);
2258  return getUMaxExpr(Ops);
2259}
2260
2261const SCEV *
2262ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2263  assert(!Ops.empty() && "Cannot get empty umax!");
2264  if (Ops.size() == 1) return Ops[0];
2265#ifndef NDEBUG
2266  const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2267  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2268    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2269           "SCEVUMaxExpr operand types don't match!");
2270#endif
2271
2272  // Sort by complexity, this groups all similar expression types together.
2273  GroupByComplexity(Ops, LI);
2274
2275  // If there are any constants, fold them together.
2276  unsigned Idx = 0;
2277  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2278    ++Idx;
2279    assert(Idx < Ops.size());
2280    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2281      // We found two constants, fold them together!
2282      ConstantInt *Fold = ConstantInt::get(getContext(),
2283                              APIntOps::umax(LHSC->getValue()->getValue(),
2284                                             RHSC->getValue()->getValue()));
2285      Ops[0] = getConstant(Fold);
2286      Ops.erase(Ops.begin()+1);  // Erase the folded element
2287      if (Ops.size() == 1) return Ops[0];
2288      LHSC = cast<SCEVConstant>(Ops[0]);
2289    }
2290
2291    // If we are left with a constant minimum-int, strip it off.
2292    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2293      Ops.erase(Ops.begin());
2294      --Idx;
2295    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2296      // If we have an umax with a constant maximum-int, it will always be
2297      // maximum-int.
2298      return Ops[0];
2299    }
2300
2301    if (Ops.size() == 1) return Ops[0];
2302  }
2303
2304  // Find the first UMax
2305  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2306    ++Idx;
2307
2308  // Check to see if one of the operands is a UMax. If so, expand its operands
2309  // onto our operand list, and recurse to simplify.
2310  if (Idx < Ops.size()) {
2311    bool DeletedUMax = false;
2312    while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
2313      Ops.erase(Ops.begin()+Idx);
2314      Ops.append(UMax->op_begin(), UMax->op_end());
2315      DeletedUMax = true;
2316    }
2317
2318    if (DeletedUMax)
2319      return getUMaxExpr(Ops);
2320  }
2321
2322  // Okay, check to see if the same value occurs in the operand list twice.  If
2323  // so, delete one.  Since we sorted the list, these values are required to
2324  // be adjacent.
2325  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2326    //  X umax Y umax Y  -->  X umax Y
2327    //  X umax Y         -->  X, if X is always greater than Y
2328    if (Ops[i] == Ops[i+1] ||
2329        isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2330      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2331      --i; --e;
2332    } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
2333      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2334      --i; --e;
2335    }
2336
2337  if (Ops.size() == 1) return Ops[0];
2338
2339  assert(!Ops.empty() && "Reduced umax down to nothing!");
2340
2341  // Okay, it looks like we really DO need a umax expr.  Check to see if we
2342  // already have one, otherwise create a new one.
2343  FoldingSetNodeID ID;
2344  ID.AddInteger(scUMaxExpr);
2345  ID.AddInteger(Ops.size());
2346  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2347    ID.AddPointer(Ops[i]);
2348  void *IP = 0;
2349  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2350  const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2351  std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2352  SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2353                                             O, Ops.size());
2354  UniqueSCEVs.InsertNode(S, IP);
2355  return S;
2356}
2357
2358const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2359                                         const SCEV *RHS) {
2360  // ~smax(~x, ~y) == smin(x, y).
2361  return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2362}
2363
2364const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2365                                         const SCEV *RHS) {
2366  // ~umax(~x, ~y) == umin(x, y)
2367  return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2368}
2369
2370const SCEV *ScalarEvolution::getSizeOfExpr(const Type *AllocTy) {
2371  // If we have TargetData, we can bypass creating a target-independent
2372  // constant expression and then folding it back into a ConstantInt.
2373  // This is just a compile-time optimization.
2374  if (TD)
2375    return getConstant(TD->getIntPtrType(getContext()),
2376                       TD->getTypeAllocSize(AllocTy));
2377
2378  Constant *C = ConstantExpr::getSizeOf(AllocTy);
2379  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2380    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2381      C = Folded;
2382  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2383  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2384}
2385
2386const SCEV *ScalarEvolution::getAlignOfExpr(const Type *AllocTy) {
2387  Constant *C = ConstantExpr::getAlignOf(AllocTy);
2388  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2389    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2390      C = Folded;
2391  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2392  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2393}
2394
2395const SCEV *ScalarEvolution::getOffsetOfExpr(const StructType *STy,
2396                                             unsigned FieldNo) {
2397  // If we have TargetData, we can bypass creating a target-independent
2398  // constant expression and then folding it back into a ConstantInt.
2399  // This is just a compile-time optimization.
2400  if (TD)
2401    return getConstant(TD->getIntPtrType(getContext()),
2402                       TD->getStructLayout(STy)->getElementOffset(FieldNo));
2403
2404  Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2405  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2406    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2407      C = Folded;
2408  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
2409  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2410}
2411
2412const SCEV *ScalarEvolution::getOffsetOfExpr(const Type *CTy,
2413                                             Constant *FieldNo) {
2414  Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
2415  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2416    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2417      C = Folded;
2418  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
2419  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2420}
2421
2422const SCEV *ScalarEvolution::getUnknown(Value *V) {
2423  // Don't attempt to do anything other than create a SCEVUnknown object
2424  // here.  createSCEV only calls getUnknown after checking for all other
2425  // interesting possibilities, and any other code that calls getUnknown
2426  // is doing so in order to hide a value from SCEV canonicalization.
2427
2428  FoldingSetNodeID ID;
2429  ID.AddInteger(scUnknown);
2430  ID.AddPointer(V);
2431  void *IP = 0;
2432  if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2433    assert(cast<SCEVUnknown>(S)->getValue() == V &&
2434           "Stale SCEVUnknown in uniquing map!");
2435    return S;
2436  }
2437  SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
2438                                            FirstUnknown);
2439  FirstUnknown = cast<SCEVUnknown>(S);
2440  UniqueSCEVs.InsertNode(S, IP);
2441  return S;
2442}
2443
2444//===----------------------------------------------------------------------===//
2445//            Basic SCEV Analysis and PHI Idiom Recognition Code
2446//
2447
2448/// isSCEVable - Test if values of the given type are analyzable within
2449/// the SCEV framework. This primarily includes integer types, and it
2450/// can optionally include pointer types if the ScalarEvolution class
2451/// has access to target-specific information.
2452bool ScalarEvolution::isSCEVable(const Type *Ty) const {
2453  // Integers and pointers are always SCEVable.
2454  return Ty->isIntegerTy() || Ty->isPointerTy();
2455}
2456
2457/// getTypeSizeInBits - Return the size in bits of the specified type,
2458/// for which isSCEVable must return true.
2459uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
2460  assert(isSCEVable(Ty) && "Type is not SCEVable!");
2461
2462  // If we have a TargetData, use it!
2463  if (TD)
2464    return TD->getTypeSizeInBits(Ty);
2465
2466  // Integer types have fixed sizes.
2467  if (Ty->isIntegerTy())
2468    return Ty->getPrimitiveSizeInBits();
2469
2470  // The only other support type is pointer. Without TargetData, conservatively
2471  // assume pointers are 64-bit.
2472  assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
2473  return 64;
2474}
2475
2476/// getEffectiveSCEVType - Return a type with the same bitwidth as
2477/// the given type and which represents how SCEV will treat the given
2478/// type, for which isSCEVable must return true. For pointer types,
2479/// this is the pointer-sized integer type.
2480const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
2481  assert(isSCEVable(Ty) && "Type is not SCEVable!");
2482
2483  if (Ty->isIntegerTy())
2484    return Ty;
2485
2486  // The only other support type is pointer.
2487  assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
2488  if (TD) return TD->getIntPtrType(getContext());
2489
2490  // Without TargetData, conservatively assume pointers are 64-bit.
2491  return Type::getInt64Ty(getContext());
2492}
2493
2494const SCEV *ScalarEvolution::getCouldNotCompute() {
2495  return &CouldNotCompute;
2496}
2497
2498/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2499/// expression and create a new one.
2500const SCEV *ScalarEvolution::getSCEV(Value *V) {
2501  assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
2502
2503  ValueExprMapType::const_iterator I = ValueExprMap.find(V);
2504  if (I != ValueExprMap.end()) return I->second;
2505  const SCEV *S = createSCEV(V);
2506
2507  // The process of creating a SCEV for V may have caused other SCEVs
2508  // to have been created, so it's necessary to insert the new entry
2509  // from scratch, rather than trying to remember the insert position
2510  // above.
2511  ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
2512  return S;
2513}
2514
2515/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2516///
2517const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
2518  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2519    return getConstant(
2520               cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
2521
2522  const Type *Ty = V->getType();
2523  Ty = getEffectiveSCEVType(Ty);
2524  return getMulExpr(V,
2525                  getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
2526}
2527
2528/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
2529const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
2530  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2531    return getConstant(
2532                cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
2533
2534  const Type *Ty = V->getType();
2535  Ty = getEffectiveSCEVType(Ty);
2536  const SCEV *AllOnes =
2537                   getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
2538  return getMinusSCEV(AllOnes, V);
2539}
2540
2541/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
2542///
2543const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS,
2544                                          const SCEV *RHS) {
2545  // Fast path: X - X --> 0.
2546  if (LHS == RHS)
2547    return getConstant(LHS->getType(), 0);
2548
2549  // X - Y --> X + -Y
2550  return getAddExpr(LHS, getNegativeSCEV(RHS));
2551}
2552
2553/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2554/// input value to the specified type.  If the type must be extended, it is zero
2555/// extended.
2556const SCEV *
2557ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V,
2558                                         const Type *Ty) {
2559  const Type *SrcTy = V->getType();
2560  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2561         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2562         "Cannot truncate or zero extend with non-integer arguments!");
2563  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2564    return V;  // No conversion
2565  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2566    return getTruncateExpr(V, Ty);
2567  return getZeroExtendExpr(V, Ty);
2568}
2569
2570/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2571/// input value to the specified type.  If the type must be extended, it is sign
2572/// extended.
2573const SCEV *
2574ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
2575                                         const Type *Ty) {
2576  const Type *SrcTy = V->getType();
2577  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2578         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2579         "Cannot truncate or zero extend with non-integer arguments!");
2580  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2581    return V;  // No conversion
2582  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2583    return getTruncateExpr(V, Ty);
2584  return getSignExtendExpr(V, Ty);
2585}
2586
2587/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2588/// input value to the specified type.  If the type must be extended, it is zero
2589/// extended.  The conversion must not be narrowing.
2590const SCEV *
2591ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) {
2592  const Type *SrcTy = V->getType();
2593  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2594         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2595         "Cannot noop or zero extend with non-integer arguments!");
2596  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2597         "getNoopOrZeroExtend cannot truncate!");
2598  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2599    return V;  // No conversion
2600  return getZeroExtendExpr(V, Ty);
2601}
2602
2603/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2604/// input value to the specified type.  If the type must be extended, it is sign
2605/// extended.  The conversion must not be narrowing.
2606const SCEV *
2607ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) {
2608  const Type *SrcTy = V->getType();
2609  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2610         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2611         "Cannot noop or sign extend with non-integer arguments!");
2612  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2613         "getNoopOrSignExtend cannot truncate!");
2614  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2615    return V;  // No conversion
2616  return getSignExtendExpr(V, Ty);
2617}
2618
2619/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2620/// the input value to the specified type. If the type must be extended,
2621/// it is extended with unspecified bits. The conversion must not be
2622/// narrowing.
2623const SCEV *
2624ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) {
2625  const Type *SrcTy = V->getType();
2626  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2627         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2628         "Cannot noop or any extend with non-integer arguments!");
2629  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2630         "getNoopOrAnyExtend cannot truncate!");
2631  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2632    return V;  // No conversion
2633  return getAnyExtendExpr(V, Ty);
2634}
2635
2636/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2637/// input value to the specified type.  The conversion must not be widening.
2638const SCEV *
2639ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) {
2640  const Type *SrcTy = V->getType();
2641  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2642         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2643         "Cannot truncate or noop with non-integer arguments!");
2644  assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2645         "getTruncateOrNoop cannot extend!");
2646  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2647    return V;  // No conversion
2648  return getTruncateExpr(V, Ty);
2649}
2650
2651/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2652/// the types using zero-extension, and then perform a umax operation
2653/// with them.
2654const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2655                                                        const SCEV *RHS) {
2656  const SCEV *PromotedLHS = LHS;
2657  const SCEV *PromotedRHS = RHS;
2658
2659  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2660    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2661  else
2662    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2663
2664  return getUMaxExpr(PromotedLHS, PromotedRHS);
2665}
2666
2667/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2668/// the types using zero-extension, and then perform a umin operation
2669/// with them.
2670const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2671                                                        const SCEV *RHS) {
2672  const SCEV *PromotedLHS = LHS;
2673  const SCEV *PromotedRHS = RHS;
2674
2675  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2676    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2677  else
2678    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2679
2680  return getUMinExpr(PromotedLHS, PromotedRHS);
2681}
2682
2683/// PushDefUseChildren - Push users of the given Instruction
2684/// onto the given Worklist.
2685static void
2686PushDefUseChildren(Instruction *I,
2687                   SmallVectorImpl<Instruction *> &Worklist) {
2688  // Push the def-use children onto the Worklist stack.
2689  for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2690       UI != UE; ++UI)
2691    Worklist.push_back(cast<Instruction>(*UI));
2692}
2693
2694/// ForgetSymbolicValue - This looks up computed SCEV values for all
2695/// instructions that depend on the given instruction and removes them from
2696/// the ValueExprMapType map if they reference SymName. This is used during PHI
2697/// resolution.
2698void
2699ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
2700  SmallVector<Instruction *, 16> Worklist;
2701  PushDefUseChildren(PN, Worklist);
2702
2703  SmallPtrSet<Instruction *, 8> Visited;
2704  Visited.insert(PN);
2705  while (!Worklist.empty()) {
2706    Instruction *I = Worklist.pop_back_val();
2707    if (!Visited.insert(I)) continue;
2708
2709    ValueExprMapType::iterator It =
2710      ValueExprMap.find(static_cast<Value *>(I));
2711    if (It != ValueExprMap.end()) {
2712      // Short-circuit the def-use traversal if the symbolic name
2713      // ceases to appear in expressions.
2714      if (It->second != SymName && !It->second->hasOperand(SymName))
2715        continue;
2716
2717      // SCEVUnknown for a PHI either means that it has an unrecognized
2718      // structure, it's a PHI that's in the progress of being computed
2719      // by createNodeForPHI, or it's a single-value PHI. In the first case,
2720      // additional loop trip count information isn't going to change anything.
2721      // In the second case, createNodeForPHI will perform the necessary
2722      // updates on its own when it gets to that point. In the third, we do
2723      // want to forget the SCEVUnknown.
2724      if (!isa<PHINode>(I) ||
2725          !isa<SCEVUnknown>(It->second) ||
2726          (I != PN && It->second == SymName)) {
2727        ValuesAtScopes.erase(It->second);
2728        ValueExprMap.erase(It);
2729      }
2730    }
2731
2732    PushDefUseChildren(I, Worklist);
2733  }
2734}
2735
2736/// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
2737/// a loop header, making it a potential recurrence, or it doesn't.
2738///
2739const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
2740  if (const Loop *L = LI->getLoopFor(PN->getParent()))
2741    if (L->getHeader() == PN->getParent()) {
2742      // The loop may have multiple entrances or multiple exits; we can analyze
2743      // this phi as an addrec if it has a unique entry value and a unique
2744      // backedge value.
2745      Value *BEValueV = 0, *StartValueV = 0;
2746      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2747        Value *V = PN->getIncomingValue(i);
2748        if (L->contains(PN->getIncomingBlock(i))) {
2749          if (!BEValueV) {
2750            BEValueV = V;
2751          } else if (BEValueV != V) {
2752            BEValueV = 0;
2753            break;
2754          }
2755        } else if (!StartValueV) {
2756          StartValueV = V;
2757        } else if (StartValueV != V) {
2758          StartValueV = 0;
2759          break;
2760        }
2761      }
2762      if (BEValueV && StartValueV) {
2763        // While we are analyzing this PHI node, handle its value symbolically.
2764        const SCEV *SymbolicName = getUnknown(PN);
2765        assert(ValueExprMap.find(PN) == ValueExprMap.end() &&
2766               "PHI node already processed?");
2767        ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
2768
2769        // Using this symbolic name for the PHI, analyze the value coming around
2770        // the back-edge.
2771        const SCEV *BEValue = getSCEV(BEValueV);
2772
2773        // NOTE: If BEValue is loop invariant, we know that the PHI node just
2774        // has a special value for the first iteration of the loop.
2775
2776        // If the value coming around the backedge is an add with the symbolic
2777        // value we just inserted, then we found a simple induction variable!
2778        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
2779          // If there is a single occurrence of the symbolic value, replace it
2780          // with a recurrence.
2781          unsigned FoundIndex = Add->getNumOperands();
2782          for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2783            if (Add->getOperand(i) == SymbolicName)
2784              if (FoundIndex == e) {
2785                FoundIndex = i;
2786                break;
2787              }
2788
2789          if (FoundIndex != Add->getNumOperands()) {
2790            // Create an add with everything but the specified operand.
2791            SmallVector<const SCEV *, 8> Ops;
2792            for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2793              if (i != FoundIndex)
2794                Ops.push_back(Add->getOperand(i));
2795            const SCEV *Accum = getAddExpr(Ops);
2796
2797            // This is not a valid addrec if the step amount is varying each
2798            // loop iteration, but is not itself an addrec in this loop.
2799            if (Accum->isLoopInvariant(L) ||
2800                (isa<SCEVAddRecExpr>(Accum) &&
2801                 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
2802              bool HasNUW = false;
2803              bool HasNSW = false;
2804
2805              // If the increment doesn't overflow, then neither the addrec nor
2806              // the post-increment will overflow.
2807              if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
2808                if (OBO->hasNoUnsignedWrap())
2809                  HasNUW = true;
2810                if (OBO->hasNoSignedWrap())
2811                  HasNSW = true;
2812              }
2813
2814              const SCEV *StartVal = getSCEV(StartValueV);
2815              const SCEV *PHISCEV =
2816                getAddRecExpr(StartVal, Accum, L, HasNUW, HasNSW);
2817
2818              // Since the no-wrap flags are on the increment, they apply to the
2819              // post-incremented value as well.
2820              if (Accum->isLoopInvariant(L))
2821                (void)getAddRecExpr(getAddExpr(StartVal, Accum),
2822                                    Accum, L, HasNUW, HasNSW);
2823
2824              // Okay, for the entire analysis of this edge we assumed the PHI
2825              // to be symbolic.  We now need to go back and purge all of the
2826              // entries for the scalars that use the symbolic expression.
2827              ForgetSymbolicName(PN, SymbolicName);
2828              ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
2829              return PHISCEV;
2830            }
2831          }
2832        } else if (const SCEVAddRecExpr *AddRec =
2833                     dyn_cast<SCEVAddRecExpr>(BEValue)) {
2834          // Otherwise, this could be a loop like this:
2835          //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
2836          // In this case, j = {1,+,1}  and BEValue is j.
2837          // Because the other in-value of i (0) fits the evolution of BEValue
2838          // i really is an addrec evolution.
2839          if (AddRec->getLoop() == L && AddRec->isAffine()) {
2840            const SCEV *StartVal = getSCEV(StartValueV);
2841
2842            // If StartVal = j.start - j.stride, we can use StartVal as the
2843            // initial step of the addrec evolution.
2844            if (StartVal == getMinusSCEV(AddRec->getOperand(0),
2845                                         AddRec->getOperand(1))) {
2846              const SCEV *PHISCEV =
2847                 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
2848
2849              // Okay, for the entire analysis of this edge we assumed the PHI
2850              // to be symbolic.  We now need to go back and purge all of the
2851              // entries for the scalars that use the symbolic expression.
2852              ForgetSymbolicName(PN, SymbolicName);
2853              ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
2854              return PHISCEV;
2855            }
2856          }
2857        }
2858      }
2859    }
2860
2861  // If the PHI has a single incoming value, follow that value, unless the
2862  // PHI's incoming blocks are in a different loop, in which case doing so
2863  // risks breaking LCSSA form. Instcombine would normally zap these, but
2864  // it doesn't have DominatorTree information, so it may miss cases.
2865  if (Value *V = PN->hasConstantValue(DT)) {
2866    bool AllSameLoop = true;
2867    Loop *PNLoop = LI->getLoopFor(PN->getParent());
2868    for (size_t i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
2869      if (LI->getLoopFor(PN->getIncomingBlock(i)) != PNLoop) {
2870        AllSameLoop = false;
2871        break;
2872      }
2873    if (AllSameLoop)
2874      return getSCEV(V);
2875  }
2876
2877  // If it's not a loop phi, we can't handle it yet.
2878  return getUnknown(PN);
2879}
2880
2881/// createNodeForGEP - Expand GEP instructions into add and multiply
2882/// operations. This allows them to be analyzed by regular SCEV code.
2883///
2884const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
2885
2886  // Don't blindly transfer the inbounds flag from the GEP instruction to the
2887  // Add expression, because the Instruction may be guarded by control flow
2888  // and the no-overflow bits may not be valid for the expression in any
2889  // context.
2890
2891  const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
2892  Value *Base = GEP->getOperand(0);
2893  // Don't attempt to analyze GEPs over unsized objects.
2894  if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2895    return getUnknown(GEP);
2896  const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
2897  gep_type_iterator GTI = gep_type_begin(GEP);
2898  for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()),
2899                                      E = GEP->op_end();
2900       I != E; ++I) {
2901    Value *Index = *I;
2902    // Compute the (potentially symbolic) offset in bytes for this index.
2903    if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2904      // For a struct, add the member offset.
2905      unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
2906      const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo);
2907
2908      // Add the field offset to the running total offset.
2909      TotalOffset = getAddExpr(TotalOffset, FieldOffset);
2910    } else {
2911      // For an array, add the element offset, explicitly scaled.
2912      const SCEV *ElementSize = getSizeOfExpr(*GTI);
2913      const SCEV *IndexS = getSCEV(Index);
2914      // Getelementptr indices are signed.
2915      IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
2916
2917      // Multiply the index by the element size to compute the element offset.
2918      const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize);
2919
2920      // Add the element offset to the running total offset.
2921      TotalOffset = getAddExpr(TotalOffset, LocalOffset);
2922    }
2923  }
2924
2925  // Get the SCEV for the GEP base.
2926  const SCEV *BaseS = getSCEV(Base);
2927
2928  // Add the total offset from all the GEP indices to the base.
2929  return getAddExpr(BaseS, TotalOffset);
2930}
2931
2932/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2933/// guaranteed to end in (at every loop iteration).  It is, at the same time,
2934/// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
2935/// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
2936uint32_t
2937ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
2938  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2939    return C->getValue()->getValue().countTrailingZeros();
2940
2941  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
2942    return std::min(GetMinTrailingZeros(T->getOperand()),
2943                    (uint32_t)getTypeSizeInBits(T->getType()));
2944
2945  if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
2946    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2947    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2948             getTypeSizeInBits(E->getType()) : OpRes;
2949  }
2950
2951  if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
2952    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2953    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2954             getTypeSizeInBits(E->getType()) : OpRes;
2955  }
2956
2957  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
2958    // The result is the min of all operands results.
2959    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
2960    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
2961      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
2962    return MinOpRes;
2963  }
2964
2965  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
2966    // The result is the sum of all operands results.
2967    uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
2968    uint32_t BitWidth = getTypeSizeInBits(M->getType());
2969    for (unsigned i = 1, e = M->getNumOperands();
2970         SumOpRes != BitWidth && i != e; ++i)
2971      SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
2972                          BitWidth);
2973    return SumOpRes;
2974  }
2975
2976  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
2977    // The result is the min of all operands results.
2978    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
2979    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
2980      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
2981    return MinOpRes;
2982  }
2983
2984  if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
2985    // The result is the min of all operands results.
2986    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
2987    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
2988      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
2989    return MinOpRes;
2990  }
2991
2992  if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
2993    // The result is the min of all operands results.
2994    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
2995    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
2996      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
2997    return MinOpRes;
2998  }
2999
3000  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3001    // For a SCEVUnknown, ask ValueTracking.
3002    unsigned BitWidth = getTypeSizeInBits(U->getType());
3003    APInt Mask = APInt::getAllOnesValue(BitWidth);
3004    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3005    ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
3006    return Zeros.countTrailingOnes();
3007  }
3008
3009  // SCEVUDivExpr
3010  return 0;
3011}
3012
3013/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
3014///
3015ConstantRange
3016ScalarEvolution::getUnsignedRange(const SCEV *S) {
3017
3018  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3019    return ConstantRange(C->getValue()->getValue());
3020
3021  unsigned BitWidth = getTypeSizeInBits(S->getType());
3022  ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3023
3024  // If the value has known zeros, the maximum unsigned value will have those
3025  // known zeros as well.
3026  uint32_t TZ = GetMinTrailingZeros(S);
3027  if (TZ != 0)
3028    ConservativeResult =
3029      ConstantRange(APInt::getMinValue(BitWidth),
3030                    APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3031
3032  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3033    ConstantRange X = getUnsignedRange(Add->getOperand(0));
3034    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3035      X = X.add(getUnsignedRange(Add->getOperand(i)));
3036    return ConservativeResult.intersectWith(X);
3037  }
3038
3039  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3040    ConstantRange X = getUnsignedRange(Mul->getOperand(0));
3041    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3042      X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
3043    return ConservativeResult.intersectWith(X);
3044  }
3045
3046  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3047    ConstantRange X = getUnsignedRange(SMax->getOperand(0));
3048    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3049      X = X.smax(getUnsignedRange(SMax->getOperand(i)));
3050    return ConservativeResult.intersectWith(X);
3051  }
3052
3053  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3054    ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3055    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3056      X = X.umax(getUnsignedRange(UMax->getOperand(i)));
3057    return ConservativeResult.intersectWith(X);
3058  }
3059
3060  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3061    ConstantRange X = getUnsignedRange(UDiv->getLHS());
3062    ConstantRange Y = getUnsignedRange(UDiv->getRHS());
3063    return ConservativeResult.intersectWith(X.udiv(Y));
3064  }
3065
3066  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3067    ConstantRange X = getUnsignedRange(ZExt->getOperand());
3068    return ConservativeResult.intersectWith(X.zeroExtend(BitWidth));
3069  }
3070
3071  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3072    ConstantRange X = getUnsignedRange(SExt->getOperand());
3073    return ConservativeResult.intersectWith(X.signExtend(BitWidth));
3074  }
3075
3076  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3077    ConstantRange X = getUnsignedRange(Trunc->getOperand());
3078    return ConservativeResult.intersectWith(X.truncate(BitWidth));
3079  }
3080
3081  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
3082    // If there's no unsigned wrap, the value will never be less than its
3083    // initial value.
3084    if (AddRec->hasNoUnsignedWrap())
3085      if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
3086        if (!C->getValue()->isZero())
3087          ConservativeResult =
3088            ConservativeResult.intersectWith(
3089              ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
3090
3091    // TODO: non-affine addrec
3092    if (AddRec->isAffine()) {
3093      const Type *Ty = AddRec->getType();
3094      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
3095      if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3096          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
3097        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3098
3099        const SCEV *Start = AddRec->getStart();
3100        const SCEV *Step = AddRec->getStepRecurrence(*this);
3101
3102        ConstantRange StartRange = getUnsignedRange(Start);
3103        ConstantRange StepRange = getSignedRange(Step);
3104        ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3105        ConstantRange EndRange =
3106          StartRange.add(MaxBECountRange.multiply(StepRange));
3107
3108        // Check for overflow. This must be done with ConstantRange arithmetic
3109        // because we could be called from within the ScalarEvolution overflow
3110        // checking code.
3111        ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3112        ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3113        ConstantRange ExtMaxBECountRange =
3114          MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3115        ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3116        if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3117            ExtEndRange)
3118          return ConservativeResult;
3119
3120        APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3121                                   EndRange.getUnsignedMin());
3122        APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3123                                   EndRange.getUnsignedMax());
3124        if (Min.isMinValue() && Max.isMaxValue())
3125          return ConservativeResult;
3126        return ConservativeResult.intersectWith(ConstantRange(Min, Max+1));
3127      }
3128    }
3129
3130    return ConservativeResult;
3131  }
3132
3133  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3134    // For a SCEVUnknown, ask ValueTracking.
3135    APInt Mask = APInt::getAllOnesValue(BitWidth);
3136    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3137    ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
3138    if (Ones == ~Zeros + 1)
3139      return ConservativeResult;
3140    return ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
3141  }
3142
3143  return ConservativeResult;
3144}
3145
3146/// getSignedRange - Determine the signed range for a particular SCEV.
3147///
3148ConstantRange
3149ScalarEvolution::getSignedRange(const SCEV *S) {
3150
3151  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3152    return ConstantRange(C->getValue()->getValue());
3153
3154  unsigned BitWidth = getTypeSizeInBits(S->getType());
3155  ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3156
3157  // If the value has known zeros, the maximum signed value will have those
3158  // known zeros as well.
3159  uint32_t TZ = GetMinTrailingZeros(S);
3160  if (TZ != 0)
3161    ConservativeResult =
3162      ConstantRange(APInt::getSignedMinValue(BitWidth),
3163                    APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3164
3165  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3166    ConstantRange X = getSignedRange(Add->getOperand(0));
3167    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3168      X = X.add(getSignedRange(Add->getOperand(i)));
3169    return ConservativeResult.intersectWith(X);
3170  }
3171
3172  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3173    ConstantRange X = getSignedRange(Mul->getOperand(0));
3174    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3175      X = X.multiply(getSignedRange(Mul->getOperand(i)));
3176    return ConservativeResult.intersectWith(X);
3177  }
3178
3179  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3180    ConstantRange X = getSignedRange(SMax->getOperand(0));
3181    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3182      X = X.smax(getSignedRange(SMax->getOperand(i)));
3183    return ConservativeResult.intersectWith(X);
3184  }
3185
3186  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3187    ConstantRange X = getSignedRange(UMax->getOperand(0));
3188    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3189      X = X.umax(getSignedRange(UMax->getOperand(i)));
3190    return ConservativeResult.intersectWith(X);
3191  }
3192
3193  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3194    ConstantRange X = getSignedRange(UDiv->getLHS());
3195    ConstantRange Y = getSignedRange(UDiv->getRHS());
3196    return ConservativeResult.intersectWith(X.udiv(Y));
3197  }
3198
3199  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3200    ConstantRange X = getSignedRange(ZExt->getOperand());
3201    return ConservativeResult.intersectWith(X.zeroExtend(BitWidth));
3202  }
3203
3204  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3205    ConstantRange X = getSignedRange(SExt->getOperand());
3206    return ConservativeResult.intersectWith(X.signExtend(BitWidth));
3207  }
3208
3209  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3210    ConstantRange X = getSignedRange(Trunc->getOperand());
3211    return ConservativeResult.intersectWith(X.truncate(BitWidth));
3212  }
3213
3214  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
3215    // If there's no signed wrap, and all the operands have the same sign or
3216    // zero, the value won't ever change sign.
3217    if (AddRec->hasNoSignedWrap()) {
3218      bool AllNonNeg = true;
3219      bool AllNonPos = true;
3220      for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3221        if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3222        if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3223      }
3224      if (AllNonNeg)
3225        ConservativeResult = ConservativeResult.intersectWith(
3226          ConstantRange(APInt(BitWidth, 0),
3227                        APInt::getSignedMinValue(BitWidth)));
3228      else if (AllNonPos)
3229        ConservativeResult = ConservativeResult.intersectWith(
3230          ConstantRange(APInt::getSignedMinValue(BitWidth),
3231                        APInt(BitWidth, 1)));
3232    }
3233
3234    // TODO: non-affine addrec
3235    if (AddRec->isAffine()) {
3236      const Type *Ty = AddRec->getType();
3237      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
3238      if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3239          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
3240        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3241
3242        const SCEV *Start = AddRec->getStart();
3243        const SCEV *Step = AddRec->getStepRecurrence(*this);
3244
3245        ConstantRange StartRange = getSignedRange(Start);
3246        ConstantRange StepRange = getSignedRange(Step);
3247        ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3248        ConstantRange EndRange =
3249          StartRange.add(MaxBECountRange.multiply(StepRange));
3250
3251        // Check for overflow. This must be done with ConstantRange arithmetic
3252        // because we could be called from within the ScalarEvolution overflow
3253        // checking code.
3254        ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3255        ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3256        ConstantRange ExtMaxBECountRange =
3257          MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3258        ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3259        if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3260            ExtEndRange)
3261          return ConservativeResult;
3262
3263        APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3264                                   EndRange.getSignedMin());
3265        APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3266                                   EndRange.getSignedMax());
3267        if (Min.isMinSignedValue() && Max.isMaxSignedValue())
3268          return ConservativeResult;
3269        return ConservativeResult.intersectWith(ConstantRange(Min, Max+1));
3270      }
3271    }
3272
3273    return ConservativeResult;
3274  }
3275
3276  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3277    // For a SCEVUnknown, ask ValueTracking.
3278    if (!U->getValue()->getType()->isIntegerTy() && !TD)
3279      return ConservativeResult;
3280    unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3281    if (NS == 1)
3282      return ConservativeResult;
3283    return ConservativeResult.intersectWith(
3284      ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
3285                    APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1));
3286  }
3287
3288  return ConservativeResult;
3289}
3290
3291/// createSCEV - We know that there is no SCEV for the specified value.
3292/// Analyze the expression.
3293///
3294const SCEV *ScalarEvolution::createSCEV(Value *V) {
3295  if (!isSCEVable(V->getType()))
3296    return getUnknown(V);
3297
3298  unsigned Opcode = Instruction::UserOp1;
3299  if (Instruction *I = dyn_cast<Instruction>(V)) {
3300    Opcode = I->getOpcode();
3301
3302    // Don't attempt to analyze instructions in blocks that aren't
3303    // reachable. Such instructions don't matter, and they aren't required
3304    // to obey basic rules for definitions dominating uses which this
3305    // analysis depends on.
3306    if (!DT->isReachableFromEntry(I->getParent()))
3307      return getUnknown(V);
3308  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
3309    Opcode = CE->getOpcode();
3310  else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3311    return getConstant(CI);
3312  else if (isa<ConstantPointerNull>(V))
3313    return getConstant(V->getType(), 0);
3314  else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3315    return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
3316  else
3317    return getUnknown(V);
3318
3319  Operator *U = cast<Operator>(V);
3320  switch (Opcode) {
3321  case Instruction::Add: {
3322    // The simple thing to do would be to just call getSCEV on both operands
3323    // and call getAddExpr with the result. However if we're looking at a
3324    // bunch of things all added together, this can be quite inefficient,
3325    // because it leads to N-1 getAddExpr calls for N ultimate operands.
3326    // Instead, gather up all the operands and make a single getAddExpr call.
3327    // LLVM IR canonical form means we need only traverse the left operands.
3328    SmallVector<const SCEV *, 4> AddOps;
3329    AddOps.push_back(getSCEV(U->getOperand(1)));
3330    for (Value *Op = U->getOperand(0);
3331         Op->getValueID() == Instruction::Add + Value::InstructionVal;
3332         Op = U->getOperand(0)) {
3333      U = cast<Operator>(Op);
3334      AddOps.push_back(getSCEV(U->getOperand(1)));
3335    }
3336    AddOps.push_back(getSCEV(U->getOperand(0)));
3337    return getAddExpr(AddOps);
3338  }
3339  case Instruction::Mul: {
3340    // See the Add code above.
3341    SmallVector<const SCEV *, 4> MulOps;
3342    MulOps.push_back(getSCEV(U->getOperand(1)));
3343    for (Value *Op = U->getOperand(0);
3344         Op->getValueID() == Instruction::Mul + Value::InstructionVal;
3345         Op = U->getOperand(0)) {
3346      U = cast<Operator>(Op);
3347      MulOps.push_back(getSCEV(U->getOperand(1)));
3348    }
3349    MulOps.push_back(getSCEV(U->getOperand(0)));
3350    return getMulExpr(MulOps);
3351  }
3352  case Instruction::UDiv:
3353    return getUDivExpr(getSCEV(U->getOperand(0)),
3354                       getSCEV(U->getOperand(1)));
3355  case Instruction::Sub:
3356    return getMinusSCEV(getSCEV(U->getOperand(0)),
3357                        getSCEV(U->getOperand(1)));
3358  case Instruction::And:
3359    // For an expression like x&255 that merely masks off the high bits,
3360    // use zext(trunc(x)) as the SCEV expression.
3361    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3362      if (CI->isNullValue())
3363        return getSCEV(U->getOperand(1));
3364      if (CI->isAllOnesValue())
3365        return getSCEV(U->getOperand(0));
3366      const APInt &A = CI->getValue();
3367
3368      // Instcombine's ShrinkDemandedConstant may strip bits out of
3369      // constants, obscuring what would otherwise be a low-bits mask.
3370      // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3371      // knew about to reconstruct a low-bits mask value.
3372      unsigned LZ = A.countLeadingZeros();
3373      unsigned BitWidth = A.getBitWidth();
3374      APInt AllOnes = APInt::getAllOnesValue(BitWidth);
3375      APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3376      ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
3377
3378      APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3379
3380      if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
3381        return
3382          getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
3383                                IntegerType::get(getContext(), BitWidth - LZ)),
3384                            U->getType());
3385    }
3386    break;
3387
3388  case Instruction::Or:
3389    // If the RHS of the Or is a constant, we may have something like:
3390    // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
3391    // optimizations will transparently handle this case.
3392    //
3393    // In order for this transformation to be safe, the LHS must be of the
3394    // form X*(2^n) and the Or constant must be less than 2^n.
3395    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3396      const SCEV *LHS = getSCEV(U->getOperand(0));
3397      const APInt &CIVal = CI->getValue();
3398      if (GetMinTrailingZeros(LHS) >=
3399          (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3400        // Build a plain add SCEV.
3401        const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3402        // If the LHS of the add was an addrec and it has no-wrap flags,
3403        // transfer the no-wrap flags, since an or won't introduce a wrap.
3404        if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3405          const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
3406          if (OldAR->hasNoUnsignedWrap())
3407            const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoUnsignedWrap(true);
3408          if (OldAR->hasNoSignedWrap())
3409            const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoSignedWrap(true);
3410        }
3411        return S;
3412      }
3413    }
3414    break;
3415  case Instruction::Xor:
3416    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3417      // If the RHS of the xor is a signbit, then this is just an add.
3418      // Instcombine turns add of signbit into xor as a strength reduction step.
3419      if (CI->getValue().isSignBit())
3420        return getAddExpr(getSCEV(U->getOperand(0)),
3421                          getSCEV(U->getOperand(1)));
3422
3423      // If the RHS of xor is -1, then this is a not operation.
3424      if (CI->isAllOnesValue())
3425        return getNotSCEV(getSCEV(U->getOperand(0)));
3426
3427      // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3428      // This is a variant of the check for xor with -1, and it handles
3429      // the case where instcombine has trimmed non-demanded bits out
3430      // of an xor with -1.
3431      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3432        if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3433          if (BO->getOpcode() == Instruction::And &&
3434              LCI->getValue() == CI->getValue())
3435            if (const SCEVZeroExtendExpr *Z =
3436                  dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
3437              const Type *UTy = U->getType();
3438              const SCEV *Z0 = Z->getOperand();
3439              const Type *Z0Ty = Z0->getType();
3440              unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3441
3442              // If C is a low-bits mask, the zero extend is serving to
3443              // mask off the high bits. Complement the operand and
3444              // re-apply the zext.
3445              if (APIntOps::isMask(Z0TySize, CI->getValue()))
3446                return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3447
3448              // If C is a single bit, it may be in the sign-bit position
3449              // before the zero-extend. In this case, represent the xor
3450              // using an add, which is equivalent, and re-apply the zext.
3451              APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize);
3452              if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
3453                  Trunc.isSignBit())
3454                return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3455                                         UTy);
3456            }
3457    }
3458    break;
3459
3460  case Instruction::Shl:
3461    // Turn shift left of a constant amount into a multiply.
3462    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3463      uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
3464
3465      // If the shift count is not less than the bitwidth, the result of
3466      // the shift is undefined. Don't try to analyze it, because the
3467      // resolution chosen here may differ from the resolution chosen in
3468      // other parts of the compiler.
3469      if (SA->getValue().uge(BitWidth))
3470        break;
3471
3472      Constant *X = ConstantInt::get(getContext(),
3473        APInt(BitWidth, 1).shl(SA->getZExtValue()));
3474      return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3475    }
3476    break;
3477
3478  case Instruction::LShr:
3479    // Turn logical shift right of a constant into a unsigned divide.
3480    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3481      uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
3482
3483      // If the shift count is not less than the bitwidth, the result of
3484      // the shift is undefined. Don't try to analyze it, because the
3485      // resolution chosen here may differ from the resolution chosen in
3486      // other parts of the compiler.
3487      if (SA->getValue().uge(BitWidth))
3488        break;
3489
3490      Constant *X = ConstantInt::get(getContext(),
3491        APInt(BitWidth, 1).shl(SA->getZExtValue()));
3492      return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3493    }
3494    break;
3495
3496  case Instruction::AShr:
3497    // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3498    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
3499      if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
3500        if (L->getOpcode() == Instruction::Shl &&
3501            L->getOperand(1) == U->getOperand(1)) {
3502          uint64_t BitWidth = getTypeSizeInBits(U->getType());
3503
3504          // If the shift count is not less than the bitwidth, the result of
3505          // the shift is undefined. Don't try to analyze it, because the
3506          // resolution chosen here may differ from the resolution chosen in
3507          // other parts of the compiler.
3508          if (CI->getValue().uge(BitWidth))
3509            break;
3510
3511          uint64_t Amt = BitWidth - CI->getZExtValue();
3512          if (Amt == BitWidth)
3513            return getSCEV(L->getOperand(0));       // shift by zero --> noop
3514          return
3515            getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
3516                                              IntegerType::get(getContext(),
3517                                                               Amt)),
3518                              U->getType());
3519        }
3520    break;
3521
3522  case Instruction::Trunc:
3523    return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
3524
3525  case Instruction::ZExt:
3526    return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3527
3528  case Instruction::SExt:
3529    return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3530
3531  case Instruction::BitCast:
3532    // BitCasts are no-op casts so we just eliminate the cast.
3533    if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
3534      return getSCEV(U->getOperand(0));
3535    break;
3536
3537  // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3538  // lead to pointer expressions which cannot safely be expanded to GEPs,
3539  // because ScalarEvolution doesn't respect the GEP aliasing rules when
3540  // simplifying integer expressions.
3541
3542  case Instruction::GetElementPtr:
3543    return createNodeForGEP(cast<GEPOperator>(U));
3544
3545  case Instruction::PHI:
3546    return createNodeForPHI(cast<PHINode>(U));
3547
3548  case Instruction::Select:
3549    // This could be a smax or umax that was lowered earlier.
3550    // Try to recover it.
3551    if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3552      Value *LHS = ICI->getOperand(0);
3553      Value *RHS = ICI->getOperand(1);
3554      switch (ICI->getPredicate()) {
3555      case ICmpInst::ICMP_SLT:
3556      case ICmpInst::ICMP_SLE:
3557        std::swap(LHS, RHS);
3558        // fall through
3559      case ICmpInst::ICMP_SGT:
3560      case ICmpInst::ICMP_SGE:
3561        // a >s b ? a+x : b+x  ->  smax(a, b)+x
3562        // a >s b ? b+x : a+x  ->  smin(a, b)+x
3563        if (LHS->getType() == U->getType()) {
3564          const SCEV *LS = getSCEV(LHS);
3565          const SCEV *RS = getSCEV(RHS);
3566          const SCEV *LA = getSCEV(U->getOperand(1));
3567          const SCEV *RA = getSCEV(U->getOperand(2));
3568          const SCEV *LDiff = getMinusSCEV(LA, LS);
3569          const SCEV *RDiff = getMinusSCEV(RA, RS);
3570          if (LDiff == RDiff)
3571            return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3572          LDiff = getMinusSCEV(LA, RS);
3573          RDiff = getMinusSCEV(RA, LS);
3574          if (LDiff == RDiff)
3575            return getAddExpr(getSMinExpr(LS, RS), LDiff);
3576        }
3577        break;
3578      case ICmpInst::ICMP_ULT:
3579      case ICmpInst::ICMP_ULE:
3580        std::swap(LHS, RHS);
3581        // fall through
3582      case ICmpInst::ICMP_UGT:
3583      case ICmpInst::ICMP_UGE:
3584        // a >u b ? a+x : b+x  ->  umax(a, b)+x
3585        // a >u b ? b+x : a+x  ->  umin(a, b)+x
3586        if (LHS->getType() == U->getType()) {
3587          const SCEV *LS = getSCEV(LHS);
3588          const SCEV *RS = getSCEV(RHS);
3589          const SCEV *LA = getSCEV(U->getOperand(1));
3590          const SCEV *RA = getSCEV(U->getOperand(2));
3591          const SCEV *LDiff = getMinusSCEV(LA, LS);
3592          const SCEV *RDiff = getMinusSCEV(RA, RS);
3593          if (LDiff == RDiff)
3594            return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3595          LDiff = getMinusSCEV(LA, RS);
3596          RDiff = getMinusSCEV(RA, LS);
3597          if (LDiff == RDiff)
3598            return getAddExpr(getUMinExpr(LS, RS), LDiff);
3599        }
3600        break;
3601      case ICmpInst::ICMP_NE:
3602        // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
3603        if (LHS->getType() == U->getType() &&
3604            isa<ConstantInt>(RHS) &&
3605            cast<ConstantInt>(RHS)->isZero()) {
3606          const SCEV *One = getConstant(LHS->getType(), 1);
3607          const SCEV *LS = getSCEV(LHS);
3608          const SCEV *LA = getSCEV(U->getOperand(1));
3609          const SCEV *RA = getSCEV(U->getOperand(2));
3610          const SCEV *LDiff = getMinusSCEV(LA, LS);
3611          const SCEV *RDiff = getMinusSCEV(RA, One);
3612          if (LDiff == RDiff)
3613            return getAddExpr(getUMaxExpr(One, LS), LDiff);
3614        }
3615        break;
3616      case ICmpInst::ICMP_EQ:
3617        // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
3618        if (LHS->getType() == U->getType() &&
3619            isa<ConstantInt>(RHS) &&
3620            cast<ConstantInt>(RHS)->isZero()) {
3621          const SCEV *One = getConstant(LHS->getType(), 1);
3622          const SCEV *LS = getSCEV(LHS);
3623          const SCEV *LA = getSCEV(U->getOperand(1));
3624          const SCEV *RA = getSCEV(U->getOperand(2));
3625          const SCEV *LDiff = getMinusSCEV(LA, One);
3626          const SCEV *RDiff = getMinusSCEV(RA, LS);
3627          if (LDiff == RDiff)
3628            return getAddExpr(getUMaxExpr(One, LS), LDiff);
3629        }
3630        break;
3631      default:
3632        break;
3633      }
3634    }
3635
3636  default: // We cannot analyze this expression.
3637    break;
3638  }
3639
3640  return getUnknown(V);
3641}
3642
3643
3644
3645//===----------------------------------------------------------------------===//
3646//                   Iteration Count Computation Code
3647//
3648
3649/// getBackedgeTakenCount - If the specified loop has a predictable
3650/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3651/// object. The backedge-taken count is the number of times the loop header
3652/// will be branched to from within the loop. This is one less than the
3653/// trip count of the loop, since it doesn't count the first iteration,
3654/// when the header is branched to from outside the loop.
3655///
3656/// Note that it is not valid to call this method on a loop without a
3657/// loop-invariant backedge-taken count (see
3658/// hasLoopInvariantBackedgeTakenCount).
3659///
3660const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
3661  return getBackedgeTakenInfo(L).Exact;
3662}
3663
3664/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3665/// return the least SCEV value that is known never to be less than the
3666/// actual backedge taken count.
3667const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
3668  return getBackedgeTakenInfo(L).Max;
3669}
3670
3671/// PushLoopPHIs - Push PHI nodes in the header of the given loop
3672/// onto the given Worklist.
3673static void
3674PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
3675  BasicBlock *Header = L->getHeader();
3676
3677  // Push all Loop-header PHIs onto the Worklist stack.
3678  for (BasicBlock::iterator I = Header->begin();
3679       PHINode *PN = dyn_cast<PHINode>(I); ++I)
3680    Worklist.push_back(PN);
3681}
3682
3683const ScalarEvolution::BackedgeTakenInfo &
3684ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
3685  // Initially insert a CouldNotCompute for this loop. If the insertion
3686  // succeeds, proceed to actually compute a backedge-taken count and
3687  // update the value. The temporary CouldNotCompute value tells SCEV
3688  // code elsewhere that it shouldn't attempt to request a new
3689  // backedge-taken count, which could result in infinite recursion.
3690  std::pair<std::map<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
3691    BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
3692  if (Pair.second) {
3693    BackedgeTakenInfo BECount = ComputeBackedgeTakenCount(L);
3694    if (BECount.Exact != getCouldNotCompute()) {
3695      assert(BECount.Exact->isLoopInvariant(L) &&
3696             BECount.Max->isLoopInvariant(L) &&
3697             "Computed backedge-taken count isn't loop invariant for loop!");
3698      ++NumTripCountsComputed;
3699
3700      // Update the value in the map.
3701      Pair.first->second = BECount;
3702    } else {
3703      if (BECount.Max != getCouldNotCompute())
3704        // Update the value in the map.
3705        Pair.first->second = BECount;
3706      if (isa<PHINode>(L->getHeader()->begin()))
3707        // Only count loops that have phi nodes as not being computable.
3708        ++NumTripCountsNotComputed;
3709    }
3710
3711    // Now that we know more about the trip count for this loop, forget any
3712    // existing SCEV values for PHI nodes in this loop since they are only
3713    // conservative estimates made without the benefit of trip count
3714    // information. This is similar to the code in forgetLoop, except that
3715    // it handles SCEVUnknown PHI nodes specially.
3716    if (BECount.hasAnyInfo()) {
3717      SmallVector<Instruction *, 16> Worklist;
3718      PushLoopPHIs(L, Worklist);
3719
3720      SmallPtrSet<Instruction *, 8> Visited;
3721      while (!Worklist.empty()) {
3722        Instruction *I = Worklist.pop_back_val();
3723        if (!Visited.insert(I)) continue;
3724
3725        ValueExprMapType::iterator It =
3726          ValueExprMap.find(static_cast<Value *>(I));
3727        if (It != ValueExprMap.end()) {
3728          // SCEVUnknown for a PHI either means that it has an unrecognized
3729          // structure, or it's a PHI that's in the progress of being computed
3730          // by createNodeForPHI.  In the former case, additional loop trip
3731          // count information isn't going to change anything. In the later
3732          // case, createNodeForPHI will perform the necessary updates on its
3733          // own when it gets to that point.
3734          if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) {
3735            ValuesAtScopes.erase(It->second);
3736            ValueExprMap.erase(It);
3737          }
3738          if (PHINode *PN = dyn_cast<PHINode>(I))
3739            ConstantEvolutionLoopExitValue.erase(PN);
3740        }
3741
3742        PushDefUseChildren(I, Worklist);
3743      }
3744    }
3745  }
3746  return Pair.first->second;
3747}
3748
3749/// forgetLoop - This method should be called by the client when it has
3750/// changed a loop in a way that may effect ScalarEvolution's ability to
3751/// compute a trip count, or if the loop is deleted.
3752void ScalarEvolution::forgetLoop(const Loop *L) {
3753  // Drop any stored trip count value.
3754  BackedgeTakenCounts.erase(L);
3755
3756  // Drop information about expressions based on loop-header PHIs.
3757  SmallVector<Instruction *, 16> Worklist;
3758  PushLoopPHIs(L, Worklist);
3759
3760  SmallPtrSet<Instruction *, 8> Visited;
3761  while (!Worklist.empty()) {
3762    Instruction *I = Worklist.pop_back_val();
3763    if (!Visited.insert(I)) continue;
3764
3765    ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
3766    if (It != ValueExprMap.end()) {
3767      ValuesAtScopes.erase(It->second);
3768      ValueExprMap.erase(It);
3769      if (PHINode *PN = dyn_cast<PHINode>(I))
3770        ConstantEvolutionLoopExitValue.erase(PN);
3771    }
3772
3773    PushDefUseChildren(I, Worklist);
3774  }
3775}
3776
3777/// forgetValue - This method should be called by the client when it has
3778/// changed a value in a way that may effect its value, or which may
3779/// disconnect it from a def-use chain linking it to a loop.
3780void ScalarEvolution::forgetValue(Value *V) {
3781  Instruction *I = dyn_cast<Instruction>(V);
3782  if (!I) return;
3783
3784  // Drop information about expressions based on loop-header PHIs.
3785  SmallVector<Instruction *, 16> Worklist;
3786  Worklist.push_back(I);
3787
3788  SmallPtrSet<Instruction *, 8> Visited;
3789  while (!Worklist.empty()) {
3790    I = Worklist.pop_back_val();
3791    if (!Visited.insert(I)) continue;
3792
3793    ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
3794    if (It != ValueExprMap.end()) {
3795      ValuesAtScopes.erase(It->second);
3796      ValueExprMap.erase(It);
3797      if (PHINode *PN = dyn_cast<PHINode>(I))
3798        ConstantEvolutionLoopExitValue.erase(PN);
3799    }
3800
3801    PushDefUseChildren(I, Worklist);
3802  }
3803}
3804
3805/// ComputeBackedgeTakenCount - Compute the number of times the backedge
3806/// of the specified loop will execute.
3807ScalarEvolution::BackedgeTakenInfo
3808ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
3809  SmallVector<BasicBlock *, 8> ExitingBlocks;
3810  L->getExitingBlocks(ExitingBlocks);
3811
3812  // Examine all exits and pick the most conservative values.
3813  const SCEV *BECount = getCouldNotCompute();
3814  const SCEV *MaxBECount = getCouldNotCompute();
3815  bool CouldNotComputeBECount = false;
3816  for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
3817    BackedgeTakenInfo NewBTI =
3818      ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
3819
3820    if (NewBTI.Exact == getCouldNotCompute()) {
3821      // We couldn't compute an exact value for this exit, so
3822      // we won't be able to compute an exact value for the loop.
3823      CouldNotComputeBECount = true;
3824      BECount = getCouldNotCompute();
3825    } else if (!CouldNotComputeBECount) {
3826      if (BECount == getCouldNotCompute())
3827        BECount = NewBTI.Exact;
3828      else
3829        BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
3830    }
3831    if (MaxBECount == getCouldNotCompute())
3832      MaxBECount = NewBTI.Max;
3833    else if (NewBTI.Max != getCouldNotCompute())
3834      MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
3835  }
3836
3837  return BackedgeTakenInfo(BECount, MaxBECount);
3838}
3839
3840/// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
3841/// of the specified loop will execute if it exits via the specified block.
3842ScalarEvolution::BackedgeTakenInfo
3843ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
3844                                                   BasicBlock *ExitingBlock) {
3845
3846  // Okay, we've chosen an exiting block.  See what condition causes us to
3847  // exit at this block.
3848  //
3849  // FIXME: we should be able to handle switch instructions (with a single exit)
3850  BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
3851  if (ExitBr == 0) return getCouldNotCompute();
3852  assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
3853
3854  // At this point, we know we have a conditional branch that determines whether
3855  // the loop is exited.  However, we don't know if the branch is executed each
3856  // time through the loop.  If not, then the execution count of the branch will
3857  // not be equal to the trip count of the loop.
3858  //
3859  // Currently we check for this by checking to see if the Exit branch goes to
3860  // the loop header.  If so, we know it will always execute the same number of
3861  // times as the loop.  We also handle the case where the exit block *is* the
3862  // loop header.  This is common for un-rotated loops.
3863  //
3864  // If both of those tests fail, walk up the unique predecessor chain to the
3865  // header, stopping if there is an edge that doesn't exit the loop. If the
3866  // header is reached, the execution count of the branch will be equal to the
3867  // trip count of the loop.
3868  //
3869  //  More extensive analysis could be done to handle more cases here.
3870  //
3871  if (ExitBr->getSuccessor(0) != L->getHeader() &&
3872      ExitBr->getSuccessor(1) != L->getHeader() &&
3873      ExitBr->getParent() != L->getHeader()) {
3874    // The simple checks failed, try climbing the unique predecessor chain
3875    // up to the header.
3876    bool Ok = false;
3877    for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
3878      BasicBlock *Pred = BB->getUniquePredecessor();
3879      if (!Pred)
3880        return getCouldNotCompute();
3881      TerminatorInst *PredTerm = Pred->getTerminator();
3882      for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
3883        BasicBlock *PredSucc = PredTerm->getSuccessor(i);
3884        if (PredSucc == BB)
3885          continue;
3886        // If the predecessor has a successor that isn't BB and isn't
3887        // outside the loop, assume the worst.
3888        if (L->contains(PredSucc))
3889          return getCouldNotCompute();
3890      }
3891      if (Pred == L->getHeader()) {
3892        Ok = true;
3893        break;
3894      }
3895      BB = Pred;
3896    }
3897    if (!Ok)
3898      return getCouldNotCompute();
3899  }
3900
3901  // Proceed to the next level to examine the exit condition expression.
3902  return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
3903                                               ExitBr->getSuccessor(0),
3904                                               ExitBr->getSuccessor(1));
3905}
3906
3907/// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
3908/// backedge of the specified loop will execute if its exit condition
3909/// were a conditional branch of ExitCond, TBB, and FBB.
3910ScalarEvolution::BackedgeTakenInfo
3911ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
3912                                                       Value *ExitCond,
3913                                                       BasicBlock *TBB,
3914                                                       BasicBlock *FBB) {
3915  // Check if the controlling expression for this loop is an And or Or.
3916  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
3917    if (BO->getOpcode() == Instruction::And) {
3918      // Recurse on the operands of the and.
3919      BackedgeTakenInfo BTI0 =
3920        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3921      BackedgeTakenInfo BTI1 =
3922        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
3923      const SCEV *BECount = getCouldNotCompute();
3924      const SCEV *MaxBECount = getCouldNotCompute();
3925      if (L->contains(TBB)) {
3926        // Both conditions must be true for the loop to continue executing.
3927        // Choose the less conservative count.
3928        if (BTI0.Exact == getCouldNotCompute() ||
3929            BTI1.Exact == getCouldNotCompute())
3930          BECount = getCouldNotCompute();
3931        else
3932          BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3933        if (BTI0.Max == getCouldNotCompute())
3934          MaxBECount = BTI1.Max;
3935        else if (BTI1.Max == getCouldNotCompute())
3936          MaxBECount = BTI0.Max;
3937        else
3938          MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
3939      } else {
3940        // Both conditions must be true at the same time for the loop to exit.
3941        // For now, be conservative.
3942        assert(L->contains(FBB) && "Loop block has no successor in loop!");
3943        if (BTI0.Max == BTI1.Max)
3944          MaxBECount = BTI0.Max;
3945        if (BTI0.Exact == BTI1.Exact)
3946          BECount = BTI0.Exact;
3947      }
3948
3949      return BackedgeTakenInfo(BECount, MaxBECount);
3950    }
3951    if (BO->getOpcode() == Instruction::Or) {
3952      // Recurse on the operands of the or.
3953      BackedgeTakenInfo BTI0 =
3954        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3955      BackedgeTakenInfo BTI1 =
3956        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
3957      const SCEV *BECount = getCouldNotCompute();
3958      const SCEV *MaxBECount = getCouldNotCompute();
3959      if (L->contains(FBB)) {
3960        // Both conditions must be false for the loop to continue executing.
3961        // Choose the less conservative count.
3962        if (BTI0.Exact == getCouldNotCompute() ||
3963            BTI1.Exact == getCouldNotCompute())
3964          BECount = getCouldNotCompute();
3965        else
3966          BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3967        if (BTI0.Max == getCouldNotCompute())
3968          MaxBECount = BTI1.Max;
3969        else if (BTI1.Max == getCouldNotCompute())
3970          MaxBECount = BTI0.Max;
3971        else
3972          MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
3973      } else {
3974        // Both conditions must be false at the same time for the loop to exit.
3975        // For now, be conservative.
3976        assert(L->contains(TBB) && "Loop block has no successor in loop!");
3977        if (BTI0.Max == BTI1.Max)
3978          MaxBECount = BTI0.Max;
3979        if (BTI0.Exact == BTI1.Exact)
3980          BECount = BTI0.Exact;
3981      }
3982
3983      return BackedgeTakenInfo(BECount, MaxBECount);
3984    }
3985  }
3986
3987  // With an icmp, it may be feasible to compute an exact backedge-taken count.
3988  // Proceed to the next level to examine the icmp.
3989  if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
3990    return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
3991
3992  // Check for a constant condition. These are normally stripped out by
3993  // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
3994  // preserve the CFG and is temporarily leaving constant conditions
3995  // in place.
3996  if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
3997    if (L->contains(FBB) == !CI->getZExtValue())
3998      // The backedge is always taken.
3999      return getCouldNotCompute();
4000    else
4001      // The backedge is never taken.
4002      return getConstant(CI->getType(), 0);
4003  }
4004
4005  // If it's not an integer or pointer comparison then compute it the hard way.
4006  return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
4007}
4008
4009/// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
4010/// backedge of the specified loop will execute if its exit condition
4011/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
4012ScalarEvolution::BackedgeTakenInfo
4013ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
4014                                                           ICmpInst *ExitCond,
4015                                                           BasicBlock *TBB,
4016                                                           BasicBlock *FBB) {
4017
4018  // If the condition was exit on true, convert the condition to exit on false
4019  ICmpInst::Predicate Cond;
4020  if (!L->contains(FBB))
4021    Cond = ExitCond->getPredicate();
4022  else
4023    Cond = ExitCond->getInversePredicate();
4024
4025  // Handle common loops like: for (X = "string"; *X; ++X)
4026  if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
4027    if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
4028      BackedgeTakenInfo ItCnt =
4029        ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
4030      if (ItCnt.hasAnyInfo())
4031        return ItCnt;
4032    }
4033
4034  const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
4035  const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
4036
4037  // Try to evaluate any dependencies out of the loop.
4038  LHS = getSCEVAtScope(LHS, L);
4039  RHS = getSCEVAtScope(RHS, L);
4040
4041  // At this point, we would like to compute how many iterations of the
4042  // loop the predicate will return true for these inputs.
4043  if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
4044    // If there is a loop-invariant, force it into the RHS.
4045    std::swap(LHS, RHS);
4046    Cond = ICmpInst::getSwappedPredicate(Cond);
4047  }
4048
4049  // Simplify the operands before analyzing them.
4050  (void)SimplifyICmpOperands(Cond, LHS, RHS);
4051
4052  // If we have a comparison of a chrec against a constant, try to use value
4053  // ranges to answer this query.
4054  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
4055    if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
4056      if (AddRec->getLoop() == L) {
4057        // Form the constant range.
4058        ConstantRange CompRange(
4059            ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
4060
4061        const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
4062        if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
4063      }
4064
4065  switch (Cond) {
4066  case ICmpInst::ICMP_NE: {                     // while (X != Y)
4067    // Convert to: while (X-Y != 0)
4068    BackedgeTakenInfo BTI = HowFarToZero(getMinusSCEV(LHS, RHS), L);
4069    if (BTI.hasAnyInfo()) return BTI;
4070    break;
4071  }
4072  case ICmpInst::ICMP_EQ: {                     // while (X == Y)
4073    // Convert to: while (X-Y == 0)
4074    BackedgeTakenInfo BTI = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
4075    if (BTI.hasAnyInfo()) return BTI;
4076    break;
4077  }
4078  case ICmpInst::ICMP_SLT: {
4079    BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
4080    if (BTI.hasAnyInfo()) return BTI;
4081    break;
4082  }
4083  case ICmpInst::ICMP_SGT: {
4084    BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
4085                                             getNotSCEV(RHS), L, true);
4086    if (BTI.hasAnyInfo()) return BTI;
4087    break;
4088  }
4089  case ICmpInst::ICMP_ULT: {
4090    BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
4091    if (BTI.hasAnyInfo()) return BTI;
4092    break;
4093  }
4094  case ICmpInst::ICMP_UGT: {
4095    BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
4096                                             getNotSCEV(RHS), L, false);
4097    if (BTI.hasAnyInfo()) return BTI;
4098    break;
4099  }
4100  default:
4101#if 0
4102    dbgs() << "ComputeBackedgeTakenCount ";
4103    if (ExitCond->getOperand(0)->getType()->isUnsigned())
4104      dbgs() << "[unsigned] ";
4105    dbgs() << *LHS << "   "
4106         << Instruction::getOpcodeName(Instruction::ICmp)
4107         << "   " << *RHS << "\n";
4108#endif
4109    break;
4110  }
4111  return
4112    ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
4113}
4114
4115static ConstantInt *
4116EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4117                                ScalarEvolution &SE) {
4118  const SCEV *InVal = SE.getConstant(C);
4119  const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
4120  assert(isa<SCEVConstant>(Val) &&
4121         "Evaluation of SCEV at constant didn't fold correctly?");
4122  return cast<SCEVConstant>(Val)->getValue();
4123}
4124
4125/// GetAddressedElementFromGlobal - Given a global variable with an initializer
4126/// and a GEP expression (missing the pointer index) indexing into it, return
4127/// the addressed element of the initializer or null if the index expression is
4128/// invalid.
4129static Constant *
4130GetAddressedElementFromGlobal(GlobalVariable *GV,
4131                              const std::vector<ConstantInt*> &Indices) {
4132  Constant *Init = GV->getInitializer();
4133  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
4134    uint64_t Idx = Indices[i]->getZExtValue();
4135    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
4136      assert(Idx < CS->getNumOperands() && "Bad struct index!");
4137      Init = cast<Constant>(CS->getOperand(Idx));
4138    } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
4139      if (Idx >= CA->getNumOperands()) return 0;  // Bogus program
4140      Init = cast<Constant>(CA->getOperand(Idx));
4141    } else if (isa<ConstantAggregateZero>(Init)) {
4142      if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
4143        assert(Idx < STy->getNumElements() && "Bad struct index!");
4144        Init = Constant::getNullValue(STy->getElementType(Idx));
4145      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
4146        if (Idx >= ATy->getNumElements()) return 0;  // Bogus program
4147        Init = Constant::getNullValue(ATy->getElementType());
4148      } else {
4149        llvm_unreachable("Unknown constant aggregate type!");
4150      }
4151      return 0;
4152    } else {
4153      return 0; // Unknown initializer type
4154    }
4155  }
4156  return Init;
4157}
4158
4159/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
4160/// 'icmp op load X, cst', try to see if we can compute the backedge
4161/// execution count.
4162ScalarEvolution::BackedgeTakenInfo
4163ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
4164                                                LoadInst *LI,
4165                                                Constant *RHS,
4166                                                const Loop *L,
4167                                                ICmpInst::Predicate predicate) {
4168  if (LI->isVolatile()) return getCouldNotCompute();
4169
4170  // Check to see if the loaded pointer is a getelementptr of a global.
4171  // TODO: Use SCEV instead of manually grubbing with GEPs.
4172  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
4173  if (!GEP) return getCouldNotCompute();
4174
4175  // Make sure that it is really a constant global we are gepping, with an
4176  // initializer, and make sure the first IDX is really 0.
4177  GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
4178  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
4179      GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4180      !cast<Constant>(GEP->getOperand(1))->isNullValue())
4181    return getCouldNotCompute();
4182
4183  // Okay, we allow one non-constant index into the GEP instruction.
4184  Value *VarIdx = 0;
4185  std::vector<ConstantInt*> Indexes;
4186  unsigned VarIdxNum = 0;
4187  for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4188    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4189      Indexes.push_back(CI);
4190    } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
4191      if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
4192      VarIdx = GEP->getOperand(i);
4193      VarIdxNum = i-2;
4194      Indexes.push_back(0);
4195    }
4196
4197  // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4198  // Check to see if X is a loop variant variable value now.
4199  const SCEV *Idx = getSCEV(VarIdx);
4200  Idx = getSCEVAtScope(Idx, L);
4201
4202  // We can only recognize very limited forms of loop index expressions, in
4203  // particular, only affine AddRec's like {C1,+,C2}.
4204  const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
4205  if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
4206      !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4207      !isa<SCEVConstant>(IdxExpr->getOperand(1)))
4208    return getCouldNotCompute();
4209
4210  unsigned MaxSteps = MaxBruteForceIterations;
4211  for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
4212    ConstantInt *ItCst = ConstantInt::get(
4213                           cast<IntegerType>(IdxExpr->getType()), IterationNum);
4214    ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
4215
4216    // Form the GEP offset.
4217    Indexes[VarIdxNum] = Val;
4218
4219    Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
4220    if (Result == 0) break;  // Cannot compute!
4221
4222    // Evaluate the condition for this iteration.
4223    Result = ConstantExpr::getICmp(predicate, Result, RHS);
4224    if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
4225    if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
4226#if 0
4227      dbgs() << "\n***\n*** Computed loop count " << *ItCst
4228             << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4229             << "***\n";
4230#endif
4231      ++NumArrayLenItCounts;
4232      return getConstant(ItCst);   // Found terminating iteration!
4233    }
4234  }
4235  return getCouldNotCompute();
4236}
4237
4238
4239/// CanConstantFold - Return true if we can constant fold an instruction of the
4240/// specified type, assuming that all operands were constants.
4241static bool CanConstantFold(const Instruction *I) {
4242  if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
4243      isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
4244    return true;
4245
4246  if (const CallInst *CI = dyn_cast<CallInst>(I))
4247    if (const Function *F = CI->getCalledFunction())
4248      return canConstantFoldCallTo(F);
4249  return false;
4250}
4251
4252/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4253/// in the loop that V is derived from.  We allow arbitrary operations along the
4254/// way, but the operands of an operation must either be constants or a value
4255/// derived from a constant PHI.  If this expression does not fit with these
4256/// constraints, return null.
4257static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
4258  // If this is not an instruction, or if this is an instruction outside of the
4259  // loop, it can't be derived from a loop PHI.
4260  Instruction *I = dyn_cast<Instruction>(V);
4261  if (I == 0 || !L->contains(I)) return 0;
4262
4263  if (PHINode *PN = dyn_cast<PHINode>(I)) {
4264    if (L->getHeader() == I->getParent())
4265      return PN;
4266    else
4267      // We don't currently keep track of the control flow needed to evaluate
4268      // PHIs, so we cannot handle PHIs inside of loops.
4269      return 0;
4270  }
4271
4272  // If we won't be able to constant fold this expression even if the operands
4273  // are constants, return early.
4274  if (!CanConstantFold(I)) return 0;
4275
4276  // Otherwise, we can evaluate this instruction if all of its operands are
4277  // constant or derived from a PHI node themselves.
4278  PHINode *PHI = 0;
4279  for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
4280    if (!isa<Constant>(I->getOperand(Op))) {
4281      PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
4282      if (P == 0) return 0;  // Not evolving from PHI
4283      if (PHI == 0)
4284        PHI = P;
4285      else if (PHI != P)
4286        return 0;  // Evolving from multiple different PHIs.
4287    }
4288
4289  // This is a expression evolving from a constant PHI!
4290  return PHI;
4291}
4292
4293/// EvaluateExpression - Given an expression that passes the
4294/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4295/// in the loop has the value PHIVal.  If we can't fold this expression for some
4296/// reason, return null.
4297static Constant *EvaluateExpression(Value *V, Constant *PHIVal,
4298                                    const TargetData *TD) {
4299  if (isa<PHINode>(V)) return PHIVal;
4300  if (Constant *C = dyn_cast<Constant>(V)) return C;
4301  Instruction *I = cast<Instruction>(V);
4302
4303  std::vector<Constant*> Operands(I->getNumOperands());
4304
4305  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4306    Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD);
4307    if (Operands[i] == 0) return 0;
4308  }
4309
4310  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4311    return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
4312                                           Operands[1], TD);
4313  return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
4314                                  &Operands[0], Operands.size(), TD);
4315}
4316
4317/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4318/// in the header of its containing loop, we know the loop executes a
4319/// constant number of times, and the PHI node is just a recurrence
4320/// involving constants, fold it.
4321Constant *
4322ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
4323                                                   const APInt &BEs,
4324                                                   const Loop *L) {
4325  std::map<PHINode*, Constant*>::const_iterator I =
4326    ConstantEvolutionLoopExitValue.find(PN);
4327  if (I != ConstantEvolutionLoopExitValue.end())
4328    return I->second;
4329
4330  if (BEs.ugt(MaxBruteForceIterations))
4331    return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.
4332
4333  Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4334
4335  // Since the loop is canonicalized, the PHI node must have two entries.  One
4336  // entry must be a constant (coming in from outside of the loop), and the
4337  // second must be derived from the same PHI.
4338  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4339  Constant *StartCST =
4340    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4341  if (StartCST == 0)
4342    return RetVal = 0;  // Must be a constant.
4343
4344  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
4345  if (getConstantEvolvingPHI(BEValue, L) != PN &&
4346      !isa<Constant>(BEValue))
4347    return RetVal = 0;  // Not derived from same PHI.
4348
4349  // Execute the loop symbolically to determine the exit value.
4350  if (BEs.getActiveBits() >= 32)
4351    return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
4352
4353  unsigned NumIterations = BEs.getZExtValue(); // must be in range
4354  unsigned IterationNum = 0;
4355  for (Constant *PHIVal = StartCST; ; ++IterationNum) {
4356    if (IterationNum == NumIterations)
4357      return RetVal = PHIVal;  // Got exit value!
4358
4359    // Compute the value of the PHI node for the next iteration.
4360    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
4361    if (NextPHI == PHIVal)
4362      return RetVal = NextPHI;  // Stopped evolving!
4363    if (NextPHI == 0)
4364      return 0;        // Couldn't evaluate!
4365    PHIVal = NextPHI;
4366  }
4367}
4368
4369/// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a
4370/// constant number of times (the condition evolves only from constants),
4371/// try to evaluate a few iterations of the loop until we get the exit
4372/// condition gets a value of ExitWhen (true or false).  If we cannot
4373/// evaluate the trip count of the loop, return getCouldNotCompute().
4374const SCEV *
4375ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
4376                                                       Value *Cond,
4377                                                       bool ExitWhen) {
4378  PHINode *PN = getConstantEvolvingPHI(Cond, L);
4379  if (PN == 0) return getCouldNotCompute();
4380
4381  // If the loop is canonicalized, the PHI will have exactly two entries.
4382  // That's the only form we support here.
4383  if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
4384
4385  // One entry must be a constant (coming in from outside of the loop), and the
4386  // second must be derived from the same PHI.
4387  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4388  Constant *StartCST =
4389    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4390  if (StartCST == 0) return getCouldNotCompute();  // Must be a constant.
4391
4392  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
4393  if (getConstantEvolvingPHI(BEValue, L) != PN &&
4394      !isa<Constant>(BEValue))
4395    return getCouldNotCompute();  // Not derived from same PHI.
4396
4397  // Okay, we find a PHI node that defines the trip count of this loop.  Execute
4398  // the loop symbolically to determine when the condition gets a value of
4399  // "ExitWhen".
4400  unsigned IterationNum = 0;
4401  unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
4402  for (Constant *PHIVal = StartCST;
4403       IterationNum != MaxIterations; ++IterationNum) {
4404    ConstantInt *CondVal =
4405      dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD));
4406
4407    // Couldn't symbolically evaluate.
4408    if (!CondVal) return getCouldNotCompute();
4409
4410    if (CondVal->getValue() == uint64_t(ExitWhen)) {
4411      ++NumBruteForceTripCountsComputed;
4412      return getConstant(Type::getInt32Ty(getContext()), IterationNum);
4413    }
4414
4415    // Compute the value of the PHI node for the next iteration.
4416    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
4417    if (NextPHI == 0 || NextPHI == PHIVal)
4418      return getCouldNotCompute();// Couldn't evaluate or not making progress...
4419    PHIVal = NextPHI;
4420  }
4421
4422  // Too many iterations were needed to evaluate.
4423  return getCouldNotCompute();
4424}
4425
4426/// getSCEVAtScope - Return a SCEV expression for the specified value
4427/// at the specified scope in the program.  The L value specifies a loop
4428/// nest to evaluate the expression at, where null is the top-level or a
4429/// specified loop is immediately inside of the loop.
4430///
4431/// This method can be used to compute the exit value for a variable defined
4432/// in a loop by querying what the value will hold in the parent loop.
4433///
4434/// In the case that a relevant loop exit value cannot be computed, the
4435/// original value V is returned.
4436const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
4437  // Check to see if we've folded this expression at this loop before.
4438  std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
4439  std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
4440    Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
4441  if (!Pair.second)
4442    return Pair.first->second ? Pair.first->second : V;
4443
4444  // Otherwise compute it.
4445  const SCEV *C = computeSCEVAtScope(V, L);
4446  ValuesAtScopes[V][L] = C;
4447  return C;
4448}
4449
4450const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
4451  if (isa<SCEVConstant>(V)) return V;
4452
4453  // If this instruction is evolved from a constant-evolving PHI, compute the
4454  // exit value from the loop without using SCEVs.
4455  if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
4456    if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
4457      const Loop *LI = (*this->LI)[I->getParent()];
4458      if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
4459        if (PHINode *PN = dyn_cast<PHINode>(I))
4460          if (PN->getParent() == LI->getHeader()) {
4461            // Okay, there is no closed form solution for the PHI node.  Check
4462            // to see if the loop that contains it has a known backedge-taken
4463            // count.  If so, we may be able to force computation of the exit
4464            // value.
4465            const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
4466            if (const SCEVConstant *BTCC =
4467                  dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
4468              // Okay, we know how many times the containing loop executes.  If
4469              // this is a constant evolving PHI node, get the final value at
4470              // the specified iteration number.
4471              Constant *RV = getConstantEvolutionLoopExitValue(PN,
4472                                                   BTCC->getValue()->getValue(),
4473                                                               LI);
4474              if (RV) return getSCEV(RV);
4475            }
4476          }
4477
4478      // Okay, this is an expression that we cannot symbolically evaluate
4479      // into a SCEV.  Check to see if it's possible to symbolically evaluate
4480      // the arguments into constants, and if so, try to constant propagate the
4481      // result.  This is particularly useful for computing loop exit values.
4482      if (CanConstantFold(I)) {
4483        SmallVector<Constant *, 4> Operands;
4484        bool MadeImprovement = false;
4485        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4486          Value *Op = I->getOperand(i);
4487          if (Constant *C = dyn_cast<Constant>(Op)) {
4488            Operands.push_back(C);
4489            continue;
4490          }
4491
4492          // If any of the operands is non-constant and if they are
4493          // non-integer and non-pointer, don't even try to analyze them
4494          // with scev techniques.
4495          if (!isSCEVable(Op->getType()))
4496            return V;
4497
4498          const SCEV *OrigV = getSCEV(Op);
4499          const SCEV *OpV = getSCEVAtScope(OrigV, L);
4500          MadeImprovement |= OrigV != OpV;
4501
4502          Constant *C = 0;
4503          if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
4504            C = SC->getValue();
4505          if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV))
4506            C = dyn_cast<Constant>(SU->getValue());
4507          if (!C) return V;
4508          if (C->getType() != Op->getType())
4509            C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4510                                                              Op->getType(),
4511                                                              false),
4512                                      C, Op->getType());
4513          Operands.push_back(C);
4514        }
4515
4516        // Check to see if getSCEVAtScope actually made an improvement.
4517        if (MadeImprovement) {
4518          Constant *C = 0;
4519          if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4520            C = ConstantFoldCompareInstOperands(CI->getPredicate(),
4521                                                Operands[0], Operands[1], TD);
4522          else
4523            C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
4524                                         &Operands[0], Operands.size(), TD);
4525          if (!C) return V;
4526          return getSCEV(C);
4527        }
4528      }
4529    }
4530
4531    // This is some other type of SCEVUnknown, just return it.
4532    return V;
4533  }
4534
4535  if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
4536    // Avoid performing the look-up in the common case where the specified
4537    // expression has no loop-variant portions.
4538    for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
4539      const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
4540      if (OpAtScope != Comm->getOperand(i)) {
4541        // Okay, at least one of these operands is loop variant but might be
4542        // foldable.  Build a new instance of the folded commutative expression.
4543        SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
4544                                            Comm->op_begin()+i);
4545        NewOps.push_back(OpAtScope);
4546
4547        for (++i; i != e; ++i) {
4548          OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
4549          NewOps.push_back(OpAtScope);
4550        }
4551        if (isa<SCEVAddExpr>(Comm))
4552          return getAddExpr(NewOps);
4553        if (isa<SCEVMulExpr>(Comm))
4554          return getMulExpr(NewOps);
4555        if (isa<SCEVSMaxExpr>(Comm))
4556          return getSMaxExpr(NewOps);
4557        if (isa<SCEVUMaxExpr>(Comm))
4558          return getUMaxExpr(NewOps);
4559        llvm_unreachable("Unknown commutative SCEV type!");
4560      }
4561    }
4562    // If we got here, all operands are loop invariant.
4563    return Comm;
4564  }
4565
4566  if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
4567    const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
4568    const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
4569    if (LHS == Div->getLHS() && RHS == Div->getRHS())
4570      return Div;   // must be loop invariant
4571    return getUDivExpr(LHS, RHS);
4572  }
4573
4574  // If this is a loop recurrence for a loop that does not contain L, then we
4575  // are dealing with the final value computed by the loop.
4576  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
4577    // First, attempt to evaluate each operand.
4578    // Avoid performing the look-up in the common case where the specified
4579    // expression has no loop-variant portions.
4580    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4581      const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
4582      if (OpAtScope == AddRec->getOperand(i))
4583        continue;
4584
4585      // Okay, at least one of these operands is loop variant but might be
4586      // foldable.  Build a new instance of the folded commutative expression.
4587      SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
4588                                          AddRec->op_begin()+i);
4589      NewOps.push_back(OpAtScope);
4590      for (++i; i != e; ++i)
4591        NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
4592
4593      AddRec = cast<SCEVAddRecExpr>(getAddRecExpr(NewOps, AddRec->getLoop()));
4594      break;
4595    }
4596
4597    // If the scope is outside the addrec's loop, evaluate it by using the
4598    // loop exit value of the addrec.
4599    if (!AddRec->getLoop()->contains(L)) {
4600      // To evaluate this recurrence, we need to know how many times the AddRec
4601      // loop iterates.  Compute this now.
4602      const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
4603      if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
4604
4605      // Then, evaluate the AddRec.
4606      return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
4607    }
4608
4609    return AddRec;
4610  }
4611
4612  if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
4613    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4614    if (Op == Cast->getOperand())
4615      return Cast;  // must be loop invariant
4616    return getZeroExtendExpr(Op, Cast->getType());
4617  }
4618
4619  if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
4620    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4621    if (Op == Cast->getOperand())
4622      return Cast;  // must be loop invariant
4623    return getSignExtendExpr(Op, Cast->getType());
4624  }
4625
4626  if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
4627    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4628    if (Op == Cast->getOperand())
4629      return Cast;  // must be loop invariant
4630    return getTruncateExpr(Op, Cast->getType());
4631  }
4632
4633  llvm_unreachable("Unknown SCEV type!");
4634  return 0;
4635}
4636
4637/// getSCEVAtScope - This is a convenience function which does
4638/// getSCEVAtScope(getSCEV(V), L).
4639const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
4640  return getSCEVAtScope(getSCEV(V), L);
4641}
4642
4643/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
4644/// following equation:
4645///
4646///     A * X = B (mod N)
4647///
4648/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
4649/// A and B isn't important.
4650///
4651/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
4652static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
4653                                               ScalarEvolution &SE) {
4654  uint32_t BW = A.getBitWidth();
4655  assert(BW == B.getBitWidth() && "Bit widths must be the same.");
4656  assert(A != 0 && "A must be non-zero.");
4657
4658  // 1. D = gcd(A, N)
4659  //
4660  // The gcd of A and N may have only one prime factor: 2. The number of
4661  // trailing zeros in A is its multiplicity
4662  uint32_t Mult2 = A.countTrailingZeros();
4663  // D = 2^Mult2
4664
4665  // 2. Check if B is divisible by D.
4666  //
4667  // B is divisible by D if and only if the multiplicity of prime factor 2 for B
4668  // is not less than multiplicity of this prime factor for D.
4669  if (B.countTrailingZeros() < Mult2)
4670    return SE.getCouldNotCompute();
4671
4672  // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
4673  // modulo (N / D).
4674  //
4675  // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
4676  // bit width during computations.
4677  APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
4678  APInt Mod(BW + 1, 0);
4679  Mod.set(BW - Mult2);  // Mod = N / D
4680  APInt I = AD.multiplicativeInverse(Mod);
4681
4682  // 4. Compute the minimum unsigned root of the equation:
4683  // I * (B / D) mod (N / D)
4684  APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
4685
4686  // The result is guaranteed to be less than 2^BW so we may truncate it to BW
4687  // bits.
4688  return SE.getConstant(Result.trunc(BW));
4689}
4690
4691/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
4692/// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
4693/// might be the same) or two SCEVCouldNotCompute objects.
4694///
4695static std::pair<const SCEV *,const SCEV *>
4696SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
4697  assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
4698  const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
4699  const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
4700  const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
4701
4702  // We currently can only solve this if the coefficients are constants.
4703  if (!LC || !MC || !NC) {
4704    const SCEV *CNC = SE.getCouldNotCompute();
4705    return std::make_pair(CNC, CNC);
4706  }
4707
4708  uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
4709  const APInt &L = LC->getValue()->getValue();
4710  const APInt &M = MC->getValue()->getValue();
4711  const APInt &N = NC->getValue()->getValue();
4712  APInt Two(BitWidth, 2);
4713  APInt Four(BitWidth, 4);
4714
4715  {
4716    using namespace APIntOps;
4717    const APInt& C = L;
4718    // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
4719    // The B coefficient is M-N/2
4720    APInt B(M);
4721    B -= sdiv(N,Two);
4722
4723    // The A coefficient is N/2
4724    APInt A(N.sdiv(Two));
4725
4726    // Compute the B^2-4ac term.
4727    APInt SqrtTerm(B);
4728    SqrtTerm *= B;
4729    SqrtTerm -= Four * (A * C);
4730
4731    // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
4732    // integer value or else APInt::sqrt() will assert.
4733    APInt SqrtVal(SqrtTerm.sqrt());
4734
4735    // Compute the two solutions for the quadratic formula.
4736    // The divisions must be performed as signed divisions.
4737    APInt NegB(-B);
4738    APInt TwoA( A << 1 );
4739    if (TwoA.isMinValue()) {
4740      const SCEV *CNC = SE.getCouldNotCompute();
4741      return std::make_pair(CNC, CNC);
4742    }
4743
4744    LLVMContext &Context = SE.getContext();
4745
4746    ConstantInt *Solution1 =
4747      ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
4748    ConstantInt *Solution2 =
4749      ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
4750
4751    return std::make_pair(SE.getConstant(Solution1),
4752                          SE.getConstant(Solution2));
4753    } // end APIntOps namespace
4754}
4755
4756/// HowFarToZero - Return the number of times a backedge comparing the specified
4757/// value to zero will execute.  If not computable, return CouldNotCompute.
4758ScalarEvolution::BackedgeTakenInfo
4759ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
4760  // If the value is a constant
4761  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
4762    // If the value is already zero, the branch will execute zero times.
4763    if (C->getValue()->isZero()) return C;
4764    return getCouldNotCompute();  // Otherwise it will loop infinitely.
4765  }
4766
4767  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
4768  if (!AddRec || AddRec->getLoop() != L)
4769    return getCouldNotCompute();
4770
4771  if (AddRec->isAffine()) {
4772    // If this is an affine expression, the execution count of this branch is
4773    // the minimum unsigned root of the following equation:
4774    //
4775    //     Start + Step*N = 0 (mod 2^BW)
4776    //
4777    // equivalent to:
4778    //
4779    //             Step*N = -Start (mod 2^BW)
4780    //
4781    // where BW is the common bit width of Start and Step.
4782
4783    // Get the initial value for the loop.
4784    const SCEV *Start = getSCEVAtScope(AddRec->getStart(),
4785                                       L->getParentLoop());
4786    const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1),
4787                                      L->getParentLoop());
4788
4789    if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
4790      // For now we handle only constant steps.
4791
4792      // First, handle unitary steps.
4793      if (StepC->getValue()->equalsInt(1))      // 1*N = -Start (mod 2^BW), so:
4794        return getNegativeSCEV(Start);          //   N = -Start (as unsigned)
4795      if (StepC->getValue()->isAllOnesValue())  // -1*N = -Start (mod 2^BW), so:
4796        return Start;                           //    N = Start (as unsigned)
4797
4798      // Then, try to solve the above equation provided that Start is constant.
4799      if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
4800        return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
4801                                            -StartC->getValue()->getValue(),
4802                                            *this);
4803    }
4804  } else if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
4805    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
4806    // the quadratic equation to solve it.
4807    std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec,
4808                                                                    *this);
4809    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4810    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
4811    if (R1) {
4812#if 0
4813      dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
4814             << "  sol#2: " << *R2 << "\n";
4815#endif
4816      // Pick the smallest positive root value.
4817      if (ConstantInt *CB =
4818          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
4819                                   R1->getValue(), R2->getValue()))) {
4820        if (CB->getZExtValue() == false)
4821          std::swap(R1, R2);   // R1 is the minimum root now.
4822
4823        // We can only use this value if the chrec ends up with an exact zero
4824        // value at this index.  When solving for "X*X != 5", for example, we
4825        // should not accept a root of 2.
4826        const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
4827        if (Val->isZero())
4828          return R1;  // We found a quadratic root!
4829      }
4830    }
4831  }
4832
4833  return getCouldNotCompute();
4834}
4835
4836/// HowFarToNonZero - Return the number of times a backedge checking the
4837/// specified value for nonzero will execute.  If not computable, return
4838/// CouldNotCompute
4839ScalarEvolution::BackedgeTakenInfo
4840ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
4841  // Loops that look like: while (X == 0) are very strange indeed.  We don't
4842  // handle them yet except for the trivial case.  This could be expanded in the
4843  // future as needed.
4844
4845  // If the value is a constant, check to see if it is known to be non-zero
4846  // already.  If so, the backedge will execute zero times.
4847  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
4848    if (!C->getValue()->isNullValue())
4849      return getConstant(C->getType(), 0);
4850    return getCouldNotCompute();  // Otherwise it will loop infinitely.
4851  }
4852
4853  // We could implement others, but I really doubt anyone writes loops like
4854  // this, and if they did, they would already be constant folded.
4855  return getCouldNotCompute();
4856}
4857
4858/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
4859/// (which may not be an immediate predecessor) which has exactly one
4860/// successor from which BB is reachable, or null if no such block is
4861/// found.
4862///
4863std::pair<BasicBlock *, BasicBlock *>
4864ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
4865  // If the block has a unique predecessor, then there is no path from the
4866  // predecessor to the block that does not go through the direct edge
4867  // from the predecessor to the block.
4868  if (BasicBlock *Pred = BB->getSinglePredecessor())
4869    return std::make_pair(Pred, BB);
4870
4871  // A loop's header is defined to be a block that dominates the loop.
4872  // If the header has a unique predecessor outside the loop, it must be
4873  // a block that has exactly one successor that can reach the loop.
4874  if (Loop *L = LI->getLoopFor(BB))
4875    return std::make_pair(L->getLoopPredecessor(), L->getHeader());
4876
4877  return std::pair<BasicBlock *, BasicBlock *>();
4878}
4879
4880/// HasSameValue - SCEV structural equivalence is usually sufficient for
4881/// testing whether two expressions are equal, however for the purposes of
4882/// looking for a condition guarding a loop, it can be useful to be a little
4883/// more general, since a front-end may have replicated the controlling
4884/// expression.
4885///
4886static bool HasSameValue(const SCEV *A, const SCEV *B) {
4887  // Quick check to see if they are the same SCEV.
4888  if (A == B) return true;
4889
4890  // Otherwise, if they're both SCEVUnknown, it's possible that they hold
4891  // two different instructions with the same value. Check for this case.
4892  if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
4893    if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
4894      if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
4895        if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
4896          if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
4897            return true;
4898
4899  // Otherwise assume they may have a different value.
4900  return false;
4901}
4902
4903/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
4904/// predicate Pred. Return true iff any changes were made.
4905///
4906bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
4907                                           const SCEV *&LHS, const SCEV *&RHS) {
4908  bool Changed = false;
4909
4910  // Canonicalize a constant to the right side.
4911  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
4912    // Check for both operands constant.
4913    if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
4914      if (ConstantExpr::getICmp(Pred,
4915                                LHSC->getValue(),
4916                                RHSC->getValue())->isNullValue())
4917        goto trivially_false;
4918      else
4919        goto trivially_true;
4920    }
4921    // Otherwise swap the operands to put the constant on the right.
4922    std::swap(LHS, RHS);
4923    Pred = ICmpInst::getSwappedPredicate(Pred);
4924    Changed = true;
4925  }
4926
4927  // If we're comparing an addrec with a value which is loop-invariant in the
4928  // addrec's loop, put the addrec on the left. Also make a dominance check,
4929  // as both operands could be addrecs loop-invariant in each other's loop.
4930  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
4931    const Loop *L = AR->getLoop();
4932    if (LHS->isLoopInvariant(L) && LHS->properlyDominates(L->getHeader(), DT)) {
4933      std::swap(LHS, RHS);
4934      Pred = ICmpInst::getSwappedPredicate(Pred);
4935      Changed = true;
4936    }
4937  }
4938
4939  // If there's a constant operand, canonicalize comparisons with boundary
4940  // cases, and canonicalize *-or-equal comparisons to regular comparisons.
4941  if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
4942    const APInt &RA = RC->getValue()->getValue();
4943    switch (Pred) {
4944    default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4945    case ICmpInst::ICMP_EQ:
4946    case ICmpInst::ICMP_NE:
4947      break;
4948    case ICmpInst::ICMP_UGE:
4949      if ((RA - 1).isMinValue()) {
4950        Pred = ICmpInst::ICMP_NE;
4951        RHS = getConstant(RA - 1);
4952        Changed = true;
4953        break;
4954      }
4955      if (RA.isMaxValue()) {
4956        Pred = ICmpInst::ICMP_EQ;
4957        Changed = true;
4958        break;
4959      }
4960      if (RA.isMinValue()) goto trivially_true;
4961
4962      Pred = ICmpInst::ICMP_UGT;
4963      RHS = getConstant(RA - 1);
4964      Changed = true;
4965      break;
4966    case ICmpInst::ICMP_ULE:
4967      if ((RA + 1).isMaxValue()) {
4968        Pred = ICmpInst::ICMP_NE;
4969        RHS = getConstant(RA + 1);
4970        Changed = true;
4971        break;
4972      }
4973      if (RA.isMinValue()) {
4974        Pred = ICmpInst::ICMP_EQ;
4975        Changed = true;
4976        break;
4977      }
4978      if (RA.isMaxValue()) goto trivially_true;
4979
4980      Pred = ICmpInst::ICMP_ULT;
4981      RHS = getConstant(RA + 1);
4982      Changed = true;
4983      break;
4984    case ICmpInst::ICMP_SGE:
4985      if ((RA - 1).isMinSignedValue()) {
4986        Pred = ICmpInst::ICMP_NE;
4987        RHS = getConstant(RA - 1);
4988        Changed = true;
4989        break;
4990      }
4991      if (RA.isMaxSignedValue()) {
4992        Pred = ICmpInst::ICMP_EQ;
4993        Changed = true;
4994        break;
4995      }
4996      if (RA.isMinSignedValue()) goto trivially_true;
4997
4998      Pred = ICmpInst::ICMP_SGT;
4999      RHS = getConstant(RA - 1);
5000      Changed = true;
5001      break;
5002    case ICmpInst::ICMP_SLE:
5003      if ((RA + 1).isMaxSignedValue()) {
5004        Pred = ICmpInst::ICMP_NE;
5005        RHS = getConstant(RA + 1);
5006        Changed = true;
5007        break;
5008      }
5009      if (RA.isMinSignedValue()) {
5010        Pred = ICmpInst::ICMP_EQ;
5011        Changed = true;
5012        break;
5013      }
5014      if (RA.isMaxSignedValue()) goto trivially_true;
5015
5016      Pred = ICmpInst::ICMP_SLT;
5017      RHS = getConstant(RA + 1);
5018      Changed = true;
5019      break;
5020    case ICmpInst::ICMP_UGT:
5021      if (RA.isMinValue()) {
5022        Pred = ICmpInst::ICMP_NE;
5023        Changed = true;
5024        break;
5025      }
5026      if ((RA + 1).isMaxValue()) {
5027        Pred = ICmpInst::ICMP_EQ;
5028        RHS = getConstant(RA + 1);
5029        Changed = true;
5030        break;
5031      }
5032      if (RA.isMaxValue()) goto trivially_false;
5033      break;
5034    case ICmpInst::ICMP_ULT:
5035      if (RA.isMaxValue()) {
5036        Pred = ICmpInst::ICMP_NE;
5037        Changed = true;
5038        break;
5039      }
5040      if ((RA - 1).isMinValue()) {
5041        Pred = ICmpInst::ICMP_EQ;
5042        RHS = getConstant(RA - 1);
5043        Changed = true;
5044        break;
5045      }
5046      if (RA.isMinValue()) goto trivially_false;
5047      break;
5048    case ICmpInst::ICMP_SGT:
5049      if (RA.isMinSignedValue()) {
5050        Pred = ICmpInst::ICMP_NE;
5051        Changed = true;
5052        break;
5053      }
5054      if ((RA + 1).isMaxSignedValue()) {
5055        Pred = ICmpInst::ICMP_EQ;
5056        RHS = getConstant(RA + 1);
5057        Changed = true;
5058        break;
5059      }
5060      if (RA.isMaxSignedValue()) goto trivially_false;
5061      break;
5062    case ICmpInst::ICMP_SLT:
5063      if (RA.isMaxSignedValue()) {
5064        Pred = ICmpInst::ICMP_NE;
5065        Changed = true;
5066        break;
5067      }
5068      if ((RA - 1).isMinSignedValue()) {
5069       Pred = ICmpInst::ICMP_EQ;
5070       RHS = getConstant(RA - 1);
5071        Changed = true;
5072       break;
5073      }
5074      if (RA.isMinSignedValue()) goto trivially_false;
5075      break;
5076    }
5077  }
5078
5079  // Check for obvious equality.
5080  if (HasSameValue(LHS, RHS)) {
5081    if (ICmpInst::isTrueWhenEqual(Pred))
5082      goto trivially_true;
5083    if (ICmpInst::isFalseWhenEqual(Pred))
5084      goto trivially_false;
5085  }
5086
5087  // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
5088  // adding or subtracting 1 from one of the operands.
5089  switch (Pred) {
5090  case ICmpInst::ICMP_SLE:
5091    if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
5092      RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
5093                       /*HasNUW=*/false, /*HasNSW=*/true);
5094      Pred = ICmpInst::ICMP_SLT;
5095      Changed = true;
5096    } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
5097      LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
5098                       /*HasNUW=*/false, /*HasNSW=*/true);
5099      Pred = ICmpInst::ICMP_SLT;
5100      Changed = true;
5101    }
5102    break;
5103  case ICmpInst::ICMP_SGE:
5104    if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
5105      RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
5106                       /*HasNUW=*/false, /*HasNSW=*/true);
5107      Pred = ICmpInst::ICMP_SGT;
5108      Changed = true;
5109    } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
5110      LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5111                       /*HasNUW=*/false, /*HasNSW=*/true);
5112      Pred = ICmpInst::ICMP_SGT;
5113      Changed = true;
5114    }
5115    break;
5116  case ICmpInst::ICMP_ULE:
5117    if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
5118      RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
5119                       /*HasNUW=*/true, /*HasNSW=*/false);
5120      Pred = ICmpInst::ICMP_ULT;
5121      Changed = true;
5122    } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
5123      LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
5124                       /*HasNUW=*/true, /*HasNSW=*/false);
5125      Pred = ICmpInst::ICMP_ULT;
5126      Changed = true;
5127    }
5128    break;
5129  case ICmpInst::ICMP_UGE:
5130    if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
5131      RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
5132                       /*HasNUW=*/true, /*HasNSW=*/false);
5133      Pred = ICmpInst::ICMP_UGT;
5134      Changed = true;
5135    } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
5136      LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5137                       /*HasNUW=*/true, /*HasNSW=*/false);
5138      Pred = ICmpInst::ICMP_UGT;
5139      Changed = true;
5140    }
5141    break;
5142  default:
5143    break;
5144  }
5145
5146  // TODO: More simplifications are possible here.
5147
5148  return Changed;
5149
5150trivially_true:
5151  // Return 0 == 0.
5152  LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0);
5153  Pred = ICmpInst::ICMP_EQ;
5154  return true;
5155
5156trivially_false:
5157  // Return 0 != 0.
5158  LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0);
5159  Pred = ICmpInst::ICMP_NE;
5160  return true;
5161}
5162
5163bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5164  return getSignedRange(S).getSignedMax().isNegative();
5165}
5166
5167bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5168  return getSignedRange(S).getSignedMin().isStrictlyPositive();
5169}
5170
5171bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5172  return !getSignedRange(S).getSignedMin().isNegative();
5173}
5174
5175bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5176  return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5177}
5178
5179bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5180  return isKnownNegative(S) || isKnownPositive(S);
5181}
5182
5183bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5184                                       const SCEV *LHS, const SCEV *RHS) {
5185  // Canonicalize the inputs first.
5186  (void)SimplifyICmpOperands(Pred, LHS, RHS);
5187
5188  // If LHS or RHS is an addrec, check to see if the condition is true in
5189  // every iteration of the loop.
5190  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5191    if (isLoopEntryGuardedByCond(
5192          AR->getLoop(), Pred, AR->getStart(), RHS) &&
5193        isLoopBackedgeGuardedByCond(
5194          AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
5195      return true;
5196  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
5197    if (isLoopEntryGuardedByCond(
5198          AR->getLoop(), Pred, LHS, AR->getStart()) &&
5199        isLoopBackedgeGuardedByCond(
5200          AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
5201      return true;
5202
5203  // Otherwise see what can be done with known constant ranges.
5204  return isKnownPredicateWithRanges(Pred, LHS, RHS);
5205}
5206
5207bool
5208ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
5209                                            const SCEV *LHS, const SCEV *RHS) {
5210  if (HasSameValue(LHS, RHS))
5211    return ICmpInst::isTrueWhenEqual(Pred);
5212
5213  // This code is split out from isKnownPredicate because it is called from
5214  // within isLoopEntryGuardedByCond.
5215  switch (Pred) {
5216  default:
5217    llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5218    break;
5219  case ICmpInst::ICMP_SGT:
5220    Pred = ICmpInst::ICMP_SLT;
5221    std::swap(LHS, RHS);
5222  case ICmpInst::ICMP_SLT: {
5223    ConstantRange LHSRange = getSignedRange(LHS);
5224    ConstantRange RHSRange = getSignedRange(RHS);
5225    if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
5226      return true;
5227    if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
5228      return false;
5229    break;
5230  }
5231  case ICmpInst::ICMP_SGE:
5232    Pred = ICmpInst::ICMP_SLE;
5233    std::swap(LHS, RHS);
5234  case ICmpInst::ICMP_SLE: {
5235    ConstantRange LHSRange = getSignedRange(LHS);
5236    ConstantRange RHSRange = getSignedRange(RHS);
5237    if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
5238      return true;
5239    if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
5240      return false;
5241    break;
5242  }
5243  case ICmpInst::ICMP_UGT:
5244    Pred = ICmpInst::ICMP_ULT;
5245    std::swap(LHS, RHS);
5246  case ICmpInst::ICMP_ULT: {
5247    ConstantRange LHSRange = getUnsignedRange(LHS);
5248    ConstantRange RHSRange = getUnsignedRange(RHS);
5249    if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
5250      return true;
5251    if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
5252      return false;
5253    break;
5254  }
5255  case ICmpInst::ICMP_UGE:
5256    Pred = ICmpInst::ICMP_ULE;
5257    std::swap(LHS, RHS);
5258  case ICmpInst::ICMP_ULE: {
5259    ConstantRange LHSRange = getUnsignedRange(LHS);
5260    ConstantRange RHSRange = getUnsignedRange(RHS);
5261    if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
5262      return true;
5263    if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
5264      return false;
5265    break;
5266  }
5267  case ICmpInst::ICMP_NE: {
5268    if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
5269      return true;
5270    if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
5271      return true;
5272
5273    const SCEV *Diff = getMinusSCEV(LHS, RHS);
5274    if (isKnownNonZero(Diff))
5275      return true;
5276    break;
5277  }
5278  case ICmpInst::ICMP_EQ:
5279    // The check at the top of the function catches the case where
5280    // the values are known to be equal.
5281    break;
5282  }
5283  return false;
5284}
5285
5286/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
5287/// protected by a conditional between LHS and RHS.  This is used to
5288/// to eliminate casts.
5289bool
5290ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
5291                                             ICmpInst::Predicate Pred,
5292                                             const SCEV *LHS, const SCEV *RHS) {
5293  // Interpret a null as meaning no loop, where there is obviously no guard
5294  // (interprocedural conditions notwithstanding).
5295  if (!L) return true;
5296
5297  BasicBlock *Latch = L->getLoopLatch();
5298  if (!Latch)
5299    return false;
5300
5301  BranchInst *LoopContinuePredicate =
5302    dyn_cast<BranchInst>(Latch->getTerminator());
5303  if (!LoopContinuePredicate ||
5304      LoopContinuePredicate->isUnconditional())
5305    return false;
5306
5307  return isImpliedCond(Pred, LHS, RHS,
5308                       LoopContinuePredicate->getCondition(),
5309                       LoopContinuePredicate->getSuccessor(0) != L->getHeader());
5310}
5311
5312/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
5313/// by a conditional between LHS and RHS.  This is used to help avoid max
5314/// expressions in loop trip counts, and to eliminate casts.
5315bool
5316ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
5317                                          ICmpInst::Predicate Pred,
5318                                          const SCEV *LHS, const SCEV *RHS) {
5319  // Interpret a null as meaning no loop, where there is obviously no guard
5320  // (interprocedural conditions notwithstanding).
5321  if (!L) return false;
5322
5323  // Starting at the loop predecessor, climb up the predecessor chain, as long
5324  // as there are predecessors that can be found that have unique successors
5325  // leading to the original header.
5326  for (std::pair<BasicBlock *, BasicBlock *>
5327         Pair(L->getLoopPredecessor(), L->getHeader());
5328       Pair.first;
5329       Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
5330
5331    BranchInst *LoopEntryPredicate =
5332      dyn_cast<BranchInst>(Pair.first->getTerminator());
5333    if (!LoopEntryPredicate ||
5334        LoopEntryPredicate->isUnconditional())
5335      continue;
5336
5337    if (isImpliedCond(Pred, LHS, RHS,
5338                      LoopEntryPredicate->getCondition(),
5339                      LoopEntryPredicate->getSuccessor(0) != Pair.second))
5340      return true;
5341  }
5342
5343  return false;
5344}
5345
5346/// isImpliedCond - Test whether the condition described by Pred, LHS,
5347/// and RHS is true whenever the given Cond value evaluates to true.
5348bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
5349                                    const SCEV *LHS, const SCEV *RHS,
5350                                    Value *FoundCondValue,
5351                                    bool Inverse) {
5352  // Recursively handle And and Or conditions.
5353  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
5354    if (BO->getOpcode() == Instruction::And) {
5355      if (!Inverse)
5356        return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5357               isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
5358    } else if (BO->getOpcode() == Instruction::Or) {
5359      if (Inverse)
5360        return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5361               isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
5362    }
5363  }
5364
5365  ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
5366  if (!ICI) return false;
5367
5368  // Bail if the ICmp's operands' types are wider than the needed type
5369  // before attempting to call getSCEV on them. This avoids infinite
5370  // recursion, since the analysis of widening casts can require loop
5371  // exit condition information for overflow checking, which would
5372  // lead back here.
5373  if (getTypeSizeInBits(LHS->getType()) <
5374      getTypeSizeInBits(ICI->getOperand(0)->getType()))
5375    return false;
5376
5377  // Now that we found a conditional branch that dominates the loop, check to
5378  // see if it is the comparison we are looking for.
5379  ICmpInst::Predicate FoundPred;
5380  if (Inverse)
5381    FoundPred = ICI->getInversePredicate();
5382  else
5383    FoundPred = ICI->getPredicate();
5384
5385  const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
5386  const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
5387
5388  // Balance the types. The case where FoundLHS' type is wider than
5389  // LHS' type is checked for above.
5390  if (getTypeSizeInBits(LHS->getType()) >
5391      getTypeSizeInBits(FoundLHS->getType())) {
5392    if (CmpInst::isSigned(Pred)) {
5393      FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
5394      FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
5395    } else {
5396      FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
5397      FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
5398    }
5399  }
5400
5401  // Canonicalize the query to match the way instcombine will have
5402  // canonicalized the comparison.
5403  if (SimplifyICmpOperands(Pred, LHS, RHS))
5404    if (LHS == RHS)
5405      return CmpInst::isTrueWhenEqual(Pred);
5406  if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
5407    if (FoundLHS == FoundRHS)
5408      return CmpInst::isFalseWhenEqual(Pred);
5409
5410  // Check to see if we can make the LHS or RHS match.
5411  if (LHS == FoundRHS || RHS == FoundLHS) {
5412    if (isa<SCEVConstant>(RHS)) {
5413      std::swap(FoundLHS, FoundRHS);
5414      FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
5415    } else {
5416      std::swap(LHS, RHS);
5417      Pred = ICmpInst::getSwappedPredicate(Pred);
5418    }
5419  }
5420
5421  // Check whether the found predicate is the same as the desired predicate.
5422  if (FoundPred == Pred)
5423    return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
5424
5425  // Check whether swapping the found predicate makes it the same as the
5426  // desired predicate.
5427  if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
5428    if (isa<SCEVConstant>(RHS))
5429      return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
5430    else
5431      return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
5432                                   RHS, LHS, FoundLHS, FoundRHS);
5433  }
5434
5435  // Check whether the actual condition is beyond sufficient.
5436  if (FoundPred == ICmpInst::ICMP_EQ)
5437    if (ICmpInst::isTrueWhenEqual(Pred))
5438      if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
5439        return true;
5440  if (Pred == ICmpInst::ICMP_NE)
5441    if (!ICmpInst::isTrueWhenEqual(FoundPred))
5442      if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
5443        return true;
5444
5445  // Otherwise assume the worst.
5446  return false;
5447}
5448
5449/// isImpliedCondOperands - Test whether the condition described by Pred,
5450/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
5451/// and FoundRHS is true.
5452bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
5453                                            const SCEV *LHS, const SCEV *RHS,
5454                                            const SCEV *FoundLHS,
5455                                            const SCEV *FoundRHS) {
5456  return isImpliedCondOperandsHelper(Pred, LHS, RHS,
5457                                     FoundLHS, FoundRHS) ||
5458         // ~x < ~y --> x > y
5459         isImpliedCondOperandsHelper(Pred, LHS, RHS,
5460                                     getNotSCEV(FoundRHS),
5461                                     getNotSCEV(FoundLHS));
5462}
5463
5464/// isImpliedCondOperandsHelper - Test whether the condition described by
5465/// Pred, LHS, and RHS is true whenever the condition described by Pred,
5466/// FoundLHS, and FoundRHS is true.
5467bool
5468ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
5469                                             const SCEV *LHS, const SCEV *RHS,
5470                                             const SCEV *FoundLHS,
5471                                             const SCEV *FoundRHS) {
5472  switch (Pred) {
5473  default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5474  case ICmpInst::ICMP_EQ:
5475  case ICmpInst::ICMP_NE:
5476    if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
5477      return true;
5478    break;
5479  case ICmpInst::ICMP_SLT:
5480  case ICmpInst::ICMP_SLE:
5481    if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
5482        isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
5483      return true;
5484    break;
5485  case ICmpInst::ICMP_SGT:
5486  case ICmpInst::ICMP_SGE:
5487    if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
5488        isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
5489      return true;
5490    break;
5491  case ICmpInst::ICMP_ULT:
5492  case ICmpInst::ICMP_ULE:
5493    if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
5494        isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
5495      return true;
5496    break;
5497  case ICmpInst::ICMP_UGT:
5498  case ICmpInst::ICMP_UGE:
5499    if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
5500        isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
5501      return true;
5502    break;
5503  }
5504
5505  return false;
5506}
5507
5508/// getBECount - Subtract the end and start values and divide by the step,
5509/// rounding up, to get the number of times the backedge is executed. Return
5510/// CouldNotCompute if an intermediate computation overflows.
5511const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
5512                                        const SCEV *End,
5513                                        const SCEV *Step,
5514                                        bool NoWrap) {
5515  assert(!isKnownNegative(Step) &&
5516         "This code doesn't handle negative strides yet!");
5517
5518  const Type *Ty = Start->getType();
5519  const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
5520  const SCEV *Diff = getMinusSCEV(End, Start);
5521  const SCEV *RoundUp = getAddExpr(Step, NegOne);
5522
5523  // Add an adjustment to the difference between End and Start so that
5524  // the division will effectively round up.
5525  const SCEV *Add = getAddExpr(Diff, RoundUp);
5526
5527  if (!NoWrap) {
5528    // Check Add for unsigned overflow.
5529    // TODO: More sophisticated things could be done here.
5530    const Type *WideTy = IntegerType::get(getContext(),
5531                                          getTypeSizeInBits(Ty) + 1);
5532    const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
5533    const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
5534    const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
5535    if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
5536      return getCouldNotCompute();
5537  }
5538
5539  return getUDivExpr(Add, Step);
5540}
5541
5542/// HowManyLessThans - Return the number of times a backedge containing the
5543/// specified less-than comparison will execute.  If not computable, return
5544/// CouldNotCompute.
5545ScalarEvolution::BackedgeTakenInfo
5546ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
5547                                  const Loop *L, bool isSigned) {
5548  // Only handle:  "ADDREC < LoopInvariant".
5549  if (!RHS->isLoopInvariant(L)) return getCouldNotCompute();
5550
5551  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
5552  if (!AddRec || AddRec->getLoop() != L)
5553    return getCouldNotCompute();
5554
5555  // Check to see if we have a flag which makes analysis easy.
5556  bool NoWrap = isSigned ? AddRec->hasNoSignedWrap() :
5557                           AddRec->hasNoUnsignedWrap();
5558
5559  if (AddRec->isAffine()) {
5560    unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
5561    const SCEV *Step = AddRec->getStepRecurrence(*this);
5562
5563    if (Step->isZero())
5564      return getCouldNotCompute();
5565    if (Step->isOne()) {
5566      // With unit stride, the iteration never steps past the limit value.
5567    } else if (isKnownPositive(Step)) {
5568      // Test whether a positive iteration can step past the limit
5569      // value and past the maximum value for its type in a single step.
5570      // Note that it's not sufficient to check NoWrap here, because even
5571      // though the value after a wrap is undefined, it's not undefined
5572      // behavior, so if wrap does occur, the loop could either terminate or
5573      // loop infinitely, but in either case, the loop is guaranteed to
5574      // iterate at least until the iteration where the wrapping occurs.
5575      const SCEV *One = getConstant(Step->getType(), 1);
5576      if (isSigned) {
5577        APInt Max = APInt::getSignedMaxValue(BitWidth);
5578        if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
5579              .slt(getSignedRange(RHS).getSignedMax()))
5580          return getCouldNotCompute();
5581      } else {
5582        APInt Max = APInt::getMaxValue(BitWidth);
5583        if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
5584              .ult(getUnsignedRange(RHS).getUnsignedMax()))
5585          return getCouldNotCompute();
5586      }
5587    } else
5588      // TODO: Handle negative strides here and below.
5589      return getCouldNotCompute();
5590
5591    // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
5592    // m.  So, we count the number of iterations in which {n,+,s} < m is true.
5593    // Note that we cannot simply return max(m-n,0)/s because it's not safe to
5594    // treat m-n as signed nor unsigned due to overflow possibility.
5595
5596    // First, we get the value of the LHS in the first iteration: n
5597    const SCEV *Start = AddRec->getOperand(0);
5598
5599    // Determine the minimum constant start value.
5600    const SCEV *MinStart = getConstant(isSigned ?
5601      getSignedRange(Start).getSignedMin() :
5602      getUnsignedRange(Start).getUnsignedMin());
5603
5604    // If we know that the condition is true in order to enter the loop,
5605    // then we know that it will run exactly (m-n)/s times. Otherwise, we
5606    // only know that it will execute (max(m,n)-n)/s times. In both cases,
5607    // the division must round up.
5608    const SCEV *End = RHS;
5609    if (!isLoopEntryGuardedByCond(L,
5610                                  isSigned ? ICmpInst::ICMP_SLT :
5611                                             ICmpInst::ICMP_ULT,
5612                                  getMinusSCEV(Start, Step), RHS))
5613      End = isSigned ? getSMaxExpr(RHS, Start)
5614                     : getUMaxExpr(RHS, Start);
5615
5616    // Determine the maximum constant end value.
5617    const SCEV *MaxEnd = getConstant(isSigned ?
5618      getSignedRange(End).getSignedMax() :
5619      getUnsignedRange(End).getUnsignedMax());
5620
5621    // If MaxEnd is within a step of the maximum integer value in its type,
5622    // adjust it down to the minimum value which would produce the same effect.
5623    // This allows the subsequent ceiling division of (N+(step-1))/step to
5624    // compute the correct value.
5625    const SCEV *StepMinusOne = getMinusSCEV(Step,
5626                                            getConstant(Step->getType(), 1));
5627    MaxEnd = isSigned ?
5628      getSMinExpr(MaxEnd,
5629                  getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
5630                               StepMinusOne)) :
5631      getUMinExpr(MaxEnd,
5632                  getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
5633                               StepMinusOne));
5634
5635    // Finally, we subtract these two values and divide, rounding up, to get
5636    // the number of times the backedge is executed.
5637    const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
5638
5639    // The maximum backedge count is similar, except using the minimum start
5640    // value and the maximum end value.
5641    const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step, NoWrap);
5642
5643    return BackedgeTakenInfo(BECount, MaxBECount);
5644  }
5645
5646  return getCouldNotCompute();
5647}
5648
5649/// getNumIterationsInRange - Return the number of iterations of this loop that
5650/// produce values in the specified constant range.  Another way of looking at
5651/// this is that it returns the first iteration number where the value is not in
5652/// the condition, thus computing the exit count. If the iteration count can't
5653/// be computed, an instance of SCEVCouldNotCompute is returned.
5654const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
5655                                                    ScalarEvolution &SE) const {
5656  if (Range.isFullSet())  // Infinite loop.
5657    return SE.getCouldNotCompute();
5658
5659  // If the start is a non-zero constant, shift the range to simplify things.
5660  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
5661    if (!SC->getValue()->isZero()) {
5662      SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
5663      Operands[0] = SE.getConstant(SC->getType(), 0);
5664      const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop());
5665      if (const SCEVAddRecExpr *ShiftedAddRec =
5666            dyn_cast<SCEVAddRecExpr>(Shifted))
5667        return ShiftedAddRec->getNumIterationsInRange(
5668                           Range.subtract(SC->getValue()->getValue()), SE);
5669      // This is strange and shouldn't happen.
5670      return SE.getCouldNotCompute();
5671    }
5672
5673  // The only time we can solve this is when we have all constant indices.
5674  // Otherwise, we cannot determine the overflow conditions.
5675  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5676    if (!isa<SCEVConstant>(getOperand(i)))
5677      return SE.getCouldNotCompute();
5678
5679
5680  // Okay at this point we know that all elements of the chrec are constants and
5681  // that the start element is zero.
5682
5683  // First check to see if the range contains zero.  If not, the first
5684  // iteration exits.
5685  unsigned BitWidth = SE.getTypeSizeInBits(getType());
5686  if (!Range.contains(APInt(BitWidth, 0)))
5687    return SE.getConstant(getType(), 0);
5688
5689  if (isAffine()) {
5690    // If this is an affine expression then we have this situation:
5691    //   Solve {0,+,A} in Range  ===  Ax in Range
5692
5693    // We know that zero is in the range.  If A is positive then we know that
5694    // the upper value of the range must be the first possible exit value.
5695    // If A is negative then the lower of the range is the last possible loop
5696    // value.  Also note that we already checked for a full range.
5697    APInt One(BitWidth,1);
5698    APInt A     = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
5699    APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
5700
5701    // The exit value should be (End+A)/A.
5702    APInt ExitVal = (End + A).udiv(A);
5703    ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
5704
5705    // Evaluate at the exit value.  If we really did fall out of the valid
5706    // range, then we computed our trip count, otherwise wrap around or other
5707    // things must have happened.
5708    ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
5709    if (Range.contains(Val->getValue()))
5710      return SE.getCouldNotCompute();  // Something strange happened
5711
5712    // Ensure that the previous value is in the range.  This is a sanity check.
5713    assert(Range.contains(
5714           EvaluateConstantChrecAtConstant(this,
5715           ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
5716           "Linear scev computation is off in a bad way!");
5717    return SE.getConstant(ExitValue);
5718  } else if (isQuadratic()) {
5719    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
5720    // quadratic equation to solve it.  To do this, we must frame our problem in
5721    // terms of figuring out when zero is crossed, instead of when
5722    // Range.getUpper() is crossed.
5723    SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
5724    NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
5725    const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
5726
5727    // Next, solve the constructed addrec
5728    std::pair<const SCEV *,const SCEV *> Roots =
5729      SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
5730    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5731    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
5732    if (R1) {
5733      // Pick the smallest positive root value.
5734      if (ConstantInt *CB =
5735          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
5736                         R1->getValue(), R2->getValue()))) {
5737        if (CB->getZExtValue() == false)
5738          std::swap(R1, R2);   // R1 is the minimum root now.
5739
5740        // Make sure the root is not off by one.  The returned iteration should
5741        // not be in the range, but the previous one should be.  When solving
5742        // for "X*X < 5", for example, we should not return a root of 2.
5743        ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
5744                                                             R1->getValue(),
5745                                                             SE);
5746        if (Range.contains(R1Val->getValue())) {
5747          // The next iteration must be out of the range...
5748          ConstantInt *NextVal =
5749                ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
5750
5751          R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
5752          if (!Range.contains(R1Val->getValue()))
5753            return SE.getConstant(NextVal);
5754          return SE.getCouldNotCompute();  // Something strange happened
5755        }
5756
5757        // If R1 was not in the range, then it is a good return value.  Make
5758        // sure that R1-1 WAS in the range though, just in case.
5759        ConstantInt *NextVal =
5760               ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
5761        R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
5762        if (Range.contains(R1Val->getValue()))
5763          return R1;
5764        return SE.getCouldNotCompute();  // Something strange happened
5765      }
5766    }
5767  }
5768
5769  return SE.getCouldNotCompute();
5770}
5771
5772
5773
5774//===----------------------------------------------------------------------===//
5775//                   SCEVCallbackVH Class Implementation
5776//===----------------------------------------------------------------------===//
5777
5778void ScalarEvolution::SCEVCallbackVH::deleted() {
5779  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
5780  if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
5781    SE->ConstantEvolutionLoopExitValue.erase(PN);
5782  SE->ValueExprMap.erase(getValPtr());
5783  // this now dangles!
5784}
5785
5786void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
5787  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
5788
5789  // Forget all the expressions associated with users of the old value,
5790  // so that future queries will recompute the expressions using the new
5791  // value.
5792  Value *Old = getValPtr();
5793  SmallVector<User *, 16> Worklist;
5794  SmallPtrSet<User *, 8> Visited;
5795  for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
5796       UI != UE; ++UI)
5797    Worklist.push_back(*UI);
5798  while (!Worklist.empty()) {
5799    User *U = Worklist.pop_back_val();
5800    // Deleting the Old value will cause this to dangle. Postpone
5801    // that until everything else is done.
5802    if (U == Old)
5803      continue;
5804    if (!Visited.insert(U))
5805      continue;
5806    if (PHINode *PN = dyn_cast<PHINode>(U))
5807      SE->ConstantEvolutionLoopExitValue.erase(PN);
5808    SE->ValueExprMap.erase(U);
5809    for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
5810         UI != UE; ++UI)
5811      Worklist.push_back(*UI);
5812  }
5813  // Delete the Old value.
5814  if (PHINode *PN = dyn_cast<PHINode>(Old))
5815    SE->ConstantEvolutionLoopExitValue.erase(PN);
5816  SE->ValueExprMap.erase(Old);
5817  // this now dangles!
5818}
5819
5820ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
5821  : CallbackVH(V), SE(se) {}
5822
5823//===----------------------------------------------------------------------===//
5824//                   ScalarEvolution Class Implementation
5825//===----------------------------------------------------------------------===//
5826
5827ScalarEvolution::ScalarEvolution()
5828  : FunctionPass(ID), FirstUnknown(0) {
5829}
5830
5831bool ScalarEvolution::runOnFunction(Function &F) {
5832  this->F = &F;
5833  LI = &getAnalysis<LoopInfo>();
5834  TD = getAnalysisIfAvailable<TargetData>();
5835  DT = &getAnalysis<DominatorTree>();
5836  return false;
5837}
5838
5839void ScalarEvolution::releaseMemory() {
5840  // Iterate through all the SCEVUnknown instances and call their
5841  // destructors, so that they release their references to their values.
5842  for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
5843    U->~SCEVUnknown();
5844  FirstUnknown = 0;
5845
5846  ValueExprMap.clear();
5847  BackedgeTakenCounts.clear();
5848  ConstantEvolutionLoopExitValue.clear();
5849  ValuesAtScopes.clear();
5850  UniqueSCEVs.clear();
5851  SCEVAllocator.Reset();
5852}
5853
5854void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
5855  AU.setPreservesAll();
5856  AU.addRequiredTransitive<LoopInfo>();
5857  AU.addRequiredTransitive<DominatorTree>();
5858}
5859
5860bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
5861  return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
5862}
5863
5864static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
5865                          const Loop *L) {
5866  // Print all inner loops first
5867  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5868    PrintLoopInfo(OS, SE, *I);
5869
5870  OS << "Loop ";
5871  WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5872  OS << ": ";
5873
5874  SmallVector<BasicBlock *, 8> ExitBlocks;
5875  L->getExitBlocks(ExitBlocks);
5876  if (ExitBlocks.size() != 1)
5877    OS << "<multiple exits> ";
5878
5879  if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
5880    OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
5881  } else {
5882    OS << "Unpredictable backedge-taken count. ";
5883  }
5884
5885  OS << "\n"
5886        "Loop ";
5887  WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5888  OS << ": ";
5889
5890  if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
5891    OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
5892  } else {
5893    OS << "Unpredictable max backedge-taken count. ";
5894  }
5895
5896  OS << "\n";
5897}
5898
5899void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
5900  // ScalarEvolution's implementation of the print method is to print
5901  // out SCEV values of all instructions that are interesting. Doing
5902  // this potentially causes it to create new SCEV objects though,
5903  // which technically conflicts with the const qualifier. This isn't
5904  // observable from outside the class though, so casting away the
5905  // const isn't dangerous.
5906  ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
5907
5908  OS << "Classifying expressions for: ";
5909  WriteAsOperand(OS, F, /*PrintType=*/false);
5910  OS << "\n";
5911  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
5912    if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
5913      OS << *I << '\n';
5914      OS << "  -->  ";
5915      const SCEV *SV = SE.getSCEV(&*I);
5916      SV->print(OS);
5917
5918      const Loop *L = LI->getLoopFor((*I).getParent());
5919
5920      const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
5921      if (AtUse != SV) {
5922        OS << "  -->  ";
5923        AtUse->print(OS);
5924      }
5925
5926      if (L) {
5927        OS << "\t\t" "Exits: ";
5928        const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
5929        if (!ExitValue->isLoopInvariant(L)) {
5930          OS << "<<Unknown>>";
5931        } else {
5932          OS << *ExitValue;
5933        }
5934      }
5935
5936      OS << "\n";
5937    }
5938
5939  OS << "Determining loop execution counts for: ";
5940  WriteAsOperand(OS, F, /*PrintType=*/false);
5941  OS << "\n";
5942  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
5943    PrintLoopInfo(OS, &SE, *I);
5944}
5945
5946