ScalarEvolution.cpp revision 980e9f399de8428550faa66835a789ba22e037de
1//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library.  First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
19//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression.  These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
30//
31// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
35// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42//  Chains of recurrences -- a method to expedite the evaluation
43//  of closed-form functions
44//  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46//  On computational properties of chains of recurrences
47//  Eugene V. Zima
48//
49//  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50//  Robert A. van Engelen
51//
52//  Efficient Symbolic Analysis for Optimizing Compilers
53//  Robert A. van Engelen
54//
55//  Using the chains of recurrences algebra for data dependence testing and
56//  induction variable substitution
57//  MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
61#define DEBUG_TYPE "scalar-evolution"
62#include "llvm/Analysis/ScalarEvolutionExpressions.h"
63#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
65#include "llvm/GlobalVariable.h"
66#include "llvm/GlobalAlias.h"
67#include "llvm/Instructions.h"
68#include "llvm/LLVMContext.h"
69#include "llvm/Operator.h"
70#include "llvm/Analysis/ConstantFolding.h"
71#include "llvm/Analysis/Dominators.h"
72#include "llvm/Analysis/InstructionSimplify.h"
73#include "llvm/Analysis/LoopInfo.h"
74#include "llvm/Analysis/ValueTracking.h"
75#include "llvm/Assembly/Writer.h"
76#include "llvm/Target/TargetData.h"
77#include "llvm/Support/CommandLine.h"
78#include "llvm/Support/ConstantRange.h"
79#include "llvm/Support/Debug.h"
80#include "llvm/Support/ErrorHandling.h"
81#include "llvm/Support/GetElementPtrTypeIterator.h"
82#include "llvm/Support/InstIterator.h"
83#include "llvm/Support/MathExtras.h"
84#include "llvm/Support/raw_ostream.h"
85#include "llvm/ADT/Statistic.h"
86#include "llvm/ADT/STLExtras.h"
87#include "llvm/ADT/SmallPtrSet.h"
88#include <algorithm>
89using namespace llvm;
90
91STATISTIC(NumArrayLenItCounts,
92          "Number of trip counts computed with array length");
93STATISTIC(NumTripCountsComputed,
94          "Number of loops with predictable loop counts");
95STATISTIC(NumTripCountsNotComputed,
96          "Number of loops without predictable loop counts");
97STATISTIC(NumBruteForceTripCountsComputed,
98          "Number of loops with trip counts computed by force");
99
100static cl::opt<unsigned>
101MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
102                        cl::desc("Maximum number of iterations SCEV will "
103                                 "symbolically execute a constant "
104                                 "derived loop"),
105                        cl::init(100));
106
107INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
108                "Scalar Evolution Analysis", false, true)
109INITIALIZE_PASS_DEPENDENCY(LoopInfo)
110INITIALIZE_PASS_DEPENDENCY(DominatorTree)
111INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
112                "Scalar Evolution Analysis", false, true)
113char ScalarEvolution::ID = 0;
114
115//===----------------------------------------------------------------------===//
116//                           SCEV class definitions
117//===----------------------------------------------------------------------===//
118
119//===----------------------------------------------------------------------===//
120// Implementation of the SCEV class.
121//
122
123void SCEV::dump() const {
124  print(dbgs());
125  dbgs() << '\n';
126}
127
128void SCEV::print(raw_ostream &OS) const {
129  switch (getSCEVType()) {
130  case scConstant:
131    WriteAsOperand(OS, cast<SCEVConstant>(this)->getValue(), false);
132    return;
133  case scTruncate: {
134    const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
135    const SCEV *Op = Trunc->getOperand();
136    OS << "(trunc " << *Op->getType() << " " << *Op << " to "
137       << *Trunc->getType() << ")";
138    return;
139  }
140  case scZeroExtend: {
141    const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
142    const SCEV *Op = ZExt->getOperand();
143    OS << "(zext " << *Op->getType() << " " << *Op << " to "
144       << *ZExt->getType() << ")";
145    return;
146  }
147  case scSignExtend: {
148    const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
149    const SCEV *Op = SExt->getOperand();
150    OS << "(sext " << *Op->getType() << " " << *Op << " to "
151       << *SExt->getType() << ")";
152    return;
153  }
154  case scAddRecExpr: {
155    const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
156    OS << "{" << *AR->getOperand(0);
157    for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
158      OS << ",+," << *AR->getOperand(i);
159    OS << "}<";
160    if (AR->getNoWrapFlags(FlagNUW))
161      OS << "nuw><";
162    if (AR->getNoWrapFlags(FlagNSW))
163      OS << "nsw><";
164    if (AR->getNoWrapFlags(FlagNW) &&
165        !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
166      OS << "nw><";
167    WriteAsOperand(OS, AR->getLoop()->getHeader(), /*PrintType=*/false);
168    OS << ">";
169    return;
170  }
171  case scAddExpr:
172  case scMulExpr:
173  case scUMaxExpr:
174  case scSMaxExpr: {
175    const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
176    const char *OpStr = 0;
177    switch (NAry->getSCEVType()) {
178    case scAddExpr: OpStr = " + "; break;
179    case scMulExpr: OpStr = " * "; break;
180    case scUMaxExpr: OpStr = " umax "; break;
181    case scSMaxExpr: OpStr = " smax "; break;
182    }
183    OS << "(";
184    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
185         I != E; ++I) {
186      OS << **I;
187      if (llvm::next(I) != E)
188        OS << OpStr;
189    }
190    OS << ")";
191    return;
192  }
193  case scUDivExpr: {
194    const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
195    OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
196    return;
197  }
198  case scUnknown: {
199    const SCEVUnknown *U = cast<SCEVUnknown>(this);
200    Type *AllocTy;
201    if (U->isSizeOf(AllocTy)) {
202      OS << "sizeof(" << *AllocTy << ")";
203      return;
204    }
205    if (U->isAlignOf(AllocTy)) {
206      OS << "alignof(" << *AllocTy << ")";
207      return;
208    }
209
210    Type *CTy;
211    Constant *FieldNo;
212    if (U->isOffsetOf(CTy, FieldNo)) {
213      OS << "offsetof(" << *CTy << ", ";
214      WriteAsOperand(OS, FieldNo, false);
215      OS << ")";
216      return;
217    }
218
219    // Otherwise just print it normally.
220    WriteAsOperand(OS, U->getValue(), false);
221    return;
222  }
223  case scCouldNotCompute:
224    OS << "***COULDNOTCOMPUTE***";
225    return;
226  default: break;
227  }
228  llvm_unreachable("Unknown SCEV kind!");
229}
230
231Type *SCEV::getType() const {
232  switch (getSCEVType()) {
233  case scConstant:
234    return cast<SCEVConstant>(this)->getType();
235  case scTruncate:
236  case scZeroExtend:
237  case scSignExtend:
238    return cast<SCEVCastExpr>(this)->getType();
239  case scAddRecExpr:
240  case scMulExpr:
241  case scUMaxExpr:
242  case scSMaxExpr:
243    return cast<SCEVNAryExpr>(this)->getType();
244  case scAddExpr:
245    return cast<SCEVAddExpr>(this)->getType();
246  case scUDivExpr:
247    return cast<SCEVUDivExpr>(this)->getType();
248  case scUnknown:
249    return cast<SCEVUnknown>(this)->getType();
250  case scCouldNotCompute:
251    llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
252    return 0;
253  default: break;
254  }
255  llvm_unreachable("Unknown SCEV kind!");
256  return 0;
257}
258
259bool SCEV::isZero() const {
260  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
261    return SC->getValue()->isZero();
262  return false;
263}
264
265bool SCEV::isOne() const {
266  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
267    return SC->getValue()->isOne();
268  return false;
269}
270
271bool SCEV::isAllOnesValue() const {
272  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
273    return SC->getValue()->isAllOnesValue();
274  return false;
275}
276
277SCEVCouldNotCompute::SCEVCouldNotCompute() :
278  SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
279
280bool SCEVCouldNotCompute::classof(const SCEV *S) {
281  return S->getSCEVType() == scCouldNotCompute;
282}
283
284const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
285  FoldingSetNodeID ID;
286  ID.AddInteger(scConstant);
287  ID.AddPointer(V);
288  void *IP = 0;
289  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
290  SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
291  UniqueSCEVs.InsertNode(S, IP);
292  return S;
293}
294
295const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
296  return getConstant(ConstantInt::get(getContext(), Val));
297}
298
299const SCEV *
300ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
301  IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
302  return getConstant(ConstantInt::get(ITy, V, isSigned));
303}
304
305SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
306                           unsigned SCEVTy, const SCEV *op, Type *ty)
307  : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
308
309SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
310                                   const SCEV *op, Type *ty)
311  : SCEVCastExpr(ID, scTruncate, op, ty) {
312  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
313         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
314         "Cannot truncate non-integer value!");
315}
316
317SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
318                                       const SCEV *op, Type *ty)
319  : SCEVCastExpr(ID, scZeroExtend, op, ty) {
320  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
321         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
322         "Cannot zero extend non-integer value!");
323}
324
325SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
326                                       const SCEV *op, Type *ty)
327  : SCEVCastExpr(ID, scSignExtend, op, ty) {
328  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
329         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
330         "Cannot sign extend non-integer value!");
331}
332
333void SCEVUnknown::deleted() {
334  // Clear this SCEVUnknown from various maps.
335  SE->forgetMemoizedResults(this);
336
337  // Remove this SCEVUnknown from the uniquing map.
338  SE->UniqueSCEVs.RemoveNode(this);
339
340  // Release the value.
341  setValPtr(0);
342}
343
344void SCEVUnknown::allUsesReplacedWith(Value *New) {
345  // Clear this SCEVUnknown from various maps.
346  SE->forgetMemoizedResults(this);
347
348  // Remove this SCEVUnknown from the uniquing map.
349  SE->UniqueSCEVs.RemoveNode(this);
350
351  // Update this SCEVUnknown to point to the new value. This is needed
352  // because there may still be outstanding SCEVs which still point to
353  // this SCEVUnknown.
354  setValPtr(New);
355}
356
357bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
358  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
359    if (VCE->getOpcode() == Instruction::PtrToInt)
360      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
361        if (CE->getOpcode() == Instruction::GetElementPtr &&
362            CE->getOperand(0)->isNullValue() &&
363            CE->getNumOperands() == 2)
364          if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
365            if (CI->isOne()) {
366              AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
367                                 ->getElementType();
368              return true;
369            }
370
371  return false;
372}
373
374bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
375  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
376    if (VCE->getOpcode() == Instruction::PtrToInt)
377      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
378        if (CE->getOpcode() == Instruction::GetElementPtr &&
379            CE->getOperand(0)->isNullValue()) {
380          Type *Ty =
381            cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
382          if (StructType *STy = dyn_cast<StructType>(Ty))
383            if (!STy->isPacked() &&
384                CE->getNumOperands() == 3 &&
385                CE->getOperand(1)->isNullValue()) {
386              if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
387                if (CI->isOne() &&
388                    STy->getNumElements() == 2 &&
389                    STy->getElementType(0)->isIntegerTy(1)) {
390                  AllocTy = STy->getElementType(1);
391                  return true;
392                }
393            }
394        }
395
396  return false;
397}
398
399bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
400  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
401    if (VCE->getOpcode() == Instruction::PtrToInt)
402      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
403        if (CE->getOpcode() == Instruction::GetElementPtr &&
404            CE->getNumOperands() == 3 &&
405            CE->getOperand(0)->isNullValue() &&
406            CE->getOperand(1)->isNullValue()) {
407          Type *Ty =
408            cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
409          // Ignore vector types here so that ScalarEvolutionExpander doesn't
410          // emit getelementptrs that index into vectors.
411          if (Ty->isStructTy() || Ty->isArrayTy()) {
412            CTy = Ty;
413            FieldNo = CE->getOperand(2);
414            return true;
415          }
416        }
417
418  return false;
419}
420
421//===----------------------------------------------------------------------===//
422//                               SCEV Utilities
423//===----------------------------------------------------------------------===//
424
425namespace {
426  /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
427  /// than the complexity of the RHS.  This comparator is used to canonicalize
428  /// expressions.
429  class SCEVComplexityCompare {
430    const LoopInfo *const LI;
431  public:
432    explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
433
434    // Return true or false if LHS is less than, or at least RHS, respectively.
435    bool operator()(const SCEV *LHS, const SCEV *RHS) const {
436      return compare(LHS, RHS) < 0;
437    }
438
439    // Return negative, zero, or positive, if LHS is less than, equal to, or
440    // greater than RHS, respectively. A three-way result allows recursive
441    // comparisons to be more efficient.
442    int compare(const SCEV *LHS, const SCEV *RHS) const {
443      // Fast-path: SCEVs are uniqued so we can do a quick equality check.
444      if (LHS == RHS)
445        return 0;
446
447      // Primarily, sort the SCEVs by their getSCEVType().
448      unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
449      if (LType != RType)
450        return (int)LType - (int)RType;
451
452      // Aside from the getSCEVType() ordering, the particular ordering
453      // isn't very important except that it's beneficial to be consistent,
454      // so that (a + b) and (b + a) don't end up as different expressions.
455      switch (LType) {
456      case scUnknown: {
457        const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
458        const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
459
460        // Sort SCEVUnknown values with some loose heuristics. TODO: This is
461        // not as complete as it could be.
462        const Value *LV = LU->getValue(), *RV = RU->getValue();
463
464        // Order pointer values after integer values. This helps SCEVExpander
465        // form GEPs.
466        bool LIsPointer = LV->getType()->isPointerTy(),
467             RIsPointer = RV->getType()->isPointerTy();
468        if (LIsPointer != RIsPointer)
469          return (int)LIsPointer - (int)RIsPointer;
470
471        // Compare getValueID values.
472        unsigned LID = LV->getValueID(),
473                 RID = RV->getValueID();
474        if (LID != RID)
475          return (int)LID - (int)RID;
476
477        // Sort arguments by their position.
478        if (const Argument *LA = dyn_cast<Argument>(LV)) {
479          const Argument *RA = cast<Argument>(RV);
480          unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
481          return (int)LArgNo - (int)RArgNo;
482        }
483
484        // For instructions, compare their loop depth, and their operand
485        // count.  This is pretty loose.
486        if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
487          const Instruction *RInst = cast<Instruction>(RV);
488
489          // Compare loop depths.
490          const BasicBlock *LParent = LInst->getParent(),
491                           *RParent = RInst->getParent();
492          if (LParent != RParent) {
493            unsigned LDepth = LI->getLoopDepth(LParent),
494                     RDepth = LI->getLoopDepth(RParent);
495            if (LDepth != RDepth)
496              return (int)LDepth - (int)RDepth;
497          }
498
499          // Compare the number of operands.
500          unsigned LNumOps = LInst->getNumOperands(),
501                   RNumOps = RInst->getNumOperands();
502          return (int)LNumOps - (int)RNumOps;
503        }
504
505        return 0;
506      }
507
508      case scConstant: {
509        const SCEVConstant *LC = cast<SCEVConstant>(LHS);
510        const SCEVConstant *RC = cast<SCEVConstant>(RHS);
511
512        // Compare constant values.
513        const APInt &LA = LC->getValue()->getValue();
514        const APInt &RA = RC->getValue()->getValue();
515        unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
516        if (LBitWidth != RBitWidth)
517          return (int)LBitWidth - (int)RBitWidth;
518        return LA.ult(RA) ? -1 : 1;
519      }
520
521      case scAddRecExpr: {
522        const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
523        const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
524
525        // Compare addrec loop depths.
526        const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
527        if (LLoop != RLoop) {
528          unsigned LDepth = LLoop->getLoopDepth(),
529                   RDepth = RLoop->getLoopDepth();
530          if (LDepth != RDepth)
531            return (int)LDepth - (int)RDepth;
532        }
533
534        // Addrec complexity grows with operand count.
535        unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
536        if (LNumOps != RNumOps)
537          return (int)LNumOps - (int)RNumOps;
538
539        // Lexicographically compare.
540        for (unsigned i = 0; i != LNumOps; ++i) {
541          long X = compare(LA->getOperand(i), RA->getOperand(i));
542          if (X != 0)
543            return X;
544        }
545
546        return 0;
547      }
548
549      case scAddExpr:
550      case scMulExpr:
551      case scSMaxExpr:
552      case scUMaxExpr: {
553        const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
554        const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
555
556        // Lexicographically compare n-ary expressions.
557        unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
558        for (unsigned i = 0; i != LNumOps; ++i) {
559          if (i >= RNumOps)
560            return 1;
561          long X = compare(LC->getOperand(i), RC->getOperand(i));
562          if (X != 0)
563            return X;
564        }
565        return (int)LNumOps - (int)RNumOps;
566      }
567
568      case scUDivExpr: {
569        const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
570        const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
571
572        // Lexicographically compare udiv expressions.
573        long X = compare(LC->getLHS(), RC->getLHS());
574        if (X != 0)
575          return X;
576        return compare(LC->getRHS(), RC->getRHS());
577      }
578
579      case scTruncate:
580      case scZeroExtend:
581      case scSignExtend: {
582        const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
583        const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
584
585        // Compare cast expressions by operand.
586        return compare(LC->getOperand(), RC->getOperand());
587      }
588
589      default:
590        break;
591      }
592
593      llvm_unreachable("Unknown SCEV kind!");
594      return 0;
595    }
596  };
597}
598
599/// GroupByComplexity - Given a list of SCEV objects, order them by their
600/// complexity, and group objects of the same complexity together by value.
601/// When this routine is finished, we know that any duplicates in the vector are
602/// consecutive and that complexity is monotonically increasing.
603///
604/// Note that we go take special precautions to ensure that we get deterministic
605/// results from this routine.  In other words, we don't want the results of
606/// this to depend on where the addresses of various SCEV objects happened to
607/// land in memory.
608///
609static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
610                              LoopInfo *LI) {
611  if (Ops.size() < 2) return;  // Noop
612  if (Ops.size() == 2) {
613    // This is the common case, which also happens to be trivially simple.
614    // Special case it.
615    const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
616    if (SCEVComplexityCompare(LI)(RHS, LHS))
617      std::swap(LHS, RHS);
618    return;
619  }
620
621  // Do the rough sort by complexity.
622  std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
623
624  // Now that we are sorted by complexity, group elements of the same
625  // complexity.  Note that this is, at worst, N^2, but the vector is likely to
626  // be extremely short in practice.  Note that we take this approach because we
627  // do not want to depend on the addresses of the objects we are grouping.
628  for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
629    const SCEV *S = Ops[i];
630    unsigned Complexity = S->getSCEVType();
631
632    // If there are any objects of the same complexity and same value as this
633    // one, group them.
634    for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
635      if (Ops[j] == S) { // Found a duplicate.
636        // Move it to immediately after i'th element.
637        std::swap(Ops[i+1], Ops[j]);
638        ++i;   // no need to rescan it.
639        if (i == e-2) return;  // Done!
640      }
641    }
642  }
643}
644
645
646
647//===----------------------------------------------------------------------===//
648//                      Simple SCEV method implementations
649//===----------------------------------------------------------------------===//
650
651/// BinomialCoefficient - Compute BC(It, K).  The result has width W.
652/// Assume, K > 0.
653static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
654                                       ScalarEvolution &SE,
655                                       Type* ResultTy) {
656  // Handle the simplest case efficiently.
657  if (K == 1)
658    return SE.getTruncateOrZeroExtend(It, ResultTy);
659
660  // We are using the following formula for BC(It, K):
661  //
662  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
663  //
664  // Suppose, W is the bitwidth of the return value.  We must be prepared for
665  // overflow.  Hence, we must assure that the result of our computation is
666  // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
667  // safe in modular arithmetic.
668  //
669  // However, this code doesn't use exactly that formula; the formula it uses
670  // is something like the following, where T is the number of factors of 2 in
671  // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
672  // exponentiation:
673  //
674  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
675  //
676  // This formula is trivially equivalent to the previous formula.  However,
677  // this formula can be implemented much more efficiently.  The trick is that
678  // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
679  // arithmetic.  To do exact division in modular arithmetic, all we have
680  // to do is multiply by the inverse.  Therefore, this step can be done at
681  // width W.
682  //
683  // The next issue is how to safely do the division by 2^T.  The way this
684  // is done is by doing the multiplication step at a width of at least W + T
685  // bits.  This way, the bottom W+T bits of the product are accurate. Then,
686  // when we perform the division by 2^T (which is equivalent to a right shift
687  // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
688  // truncated out after the division by 2^T.
689  //
690  // In comparison to just directly using the first formula, this technique
691  // is much more efficient; using the first formula requires W * K bits,
692  // but this formula less than W + K bits. Also, the first formula requires
693  // a division step, whereas this formula only requires multiplies and shifts.
694  //
695  // It doesn't matter whether the subtraction step is done in the calculation
696  // width or the input iteration count's width; if the subtraction overflows,
697  // the result must be zero anyway.  We prefer here to do it in the width of
698  // the induction variable because it helps a lot for certain cases; CodeGen
699  // isn't smart enough to ignore the overflow, which leads to much less
700  // efficient code if the width of the subtraction is wider than the native
701  // register width.
702  //
703  // (It's possible to not widen at all by pulling out factors of 2 before
704  // the multiplication; for example, K=2 can be calculated as
705  // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
706  // extra arithmetic, so it's not an obvious win, and it gets
707  // much more complicated for K > 3.)
708
709  // Protection from insane SCEVs; this bound is conservative,
710  // but it probably doesn't matter.
711  if (K > 1000)
712    return SE.getCouldNotCompute();
713
714  unsigned W = SE.getTypeSizeInBits(ResultTy);
715
716  // Calculate K! / 2^T and T; we divide out the factors of two before
717  // multiplying for calculating K! / 2^T to avoid overflow.
718  // Other overflow doesn't matter because we only care about the bottom
719  // W bits of the result.
720  APInt OddFactorial(W, 1);
721  unsigned T = 1;
722  for (unsigned i = 3; i <= K; ++i) {
723    APInt Mult(W, i);
724    unsigned TwoFactors = Mult.countTrailingZeros();
725    T += TwoFactors;
726    Mult = Mult.lshr(TwoFactors);
727    OddFactorial *= Mult;
728  }
729
730  // We need at least W + T bits for the multiplication step
731  unsigned CalculationBits = W + T;
732
733  // Calculate 2^T, at width T+W.
734  APInt DivFactor = APInt(CalculationBits, 1).shl(T);
735
736  // Calculate the multiplicative inverse of K! / 2^T;
737  // this multiplication factor will perform the exact division by
738  // K! / 2^T.
739  APInt Mod = APInt::getSignedMinValue(W+1);
740  APInt MultiplyFactor = OddFactorial.zext(W+1);
741  MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
742  MultiplyFactor = MultiplyFactor.trunc(W);
743
744  // Calculate the product, at width T+W
745  IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
746                                                      CalculationBits);
747  const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
748  for (unsigned i = 1; i != K; ++i) {
749    const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
750    Dividend = SE.getMulExpr(Dividend,
751                             SE.getTruncateOrZeroExtend(S, CalculationTy));
752  }
753
754  // Divide by 2^T
755  const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
756
757  // Truncate the result, and divide by K! / 2^T.
758
759  return SE.getMulExpr(SE.getConstant(MultiplyFactor),
760                       SE.getTruncateOrZeroExtend(DivResult, ResultTy));
761}
762
763/// evaluateAtIteration - Return the value of this chain of recurrences at
764/// the specified iteration number.  We can evaluate this recurrence by
765/// multiplying each element in the chain by the binomial coefficient
766/// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
767///
768///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
769///
770/// where BC(It, k) stands for binomial coefficient.
771///
772const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
773                                                ScalarEvolution &SE) const {
774  const SCEV *Result = getStart();
775  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
776    // The computation is correct in the face of overflow provided that the
777    // multiplication is performed _after_ the evaluation of the binomial
778    // coefficient.
779    const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
780    if (isa<SCEVCouldNotCompute>(Coeff))
781      return Coeff;
782
783    Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
784  }
785  return Result;
786}
787
788//===----------------------------------------------------------------------===//
789//                    SCEV Expression folder implementations
790//===----------------------------------------------------------------------===//
791
792const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
793                                             Type *Ty) {
794  assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
795         "This is not a truncating conversion!");
796  assert(isSCEVable(Ty) &&
797         "This is not a conversion to a SCEVable type!");
798  Ty = getEffectiveSCEVType(Ty);
799
800  FoldingSetNodeID ID;
801  ID.AddInteger(scTruncate);
802  ID.AddPointer(Op);
803  ID.AddPointer(Ty);
804  void *IP = 0;
805  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
806
807  // Fold if the operand is constant.
808  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
809    return getConstant(
810      cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(),
811                                               getEffectiveSCEVType(Ty))));
812
813  // trunc(trunc(x)) --> trunc(x)
814  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
815    return getTruncateExpr(ST->getOperand(), Ty);
816
817  // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
818  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
819    return getTruncateOrSignExtend(SS->getOperand(), Ty);
820
821  // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
822  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
823    return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
824
825  // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
826  // eliminate all the truncates.
827  if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
828    SmallVector<const SCEV *, 4> Operands;
829    bool hasTrunc = false;
830    for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
831      const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
832      hasTrunc = isa<SCEVTruncateExpr>(S);
833      Operands.push_back(S);
834    }
835    if (!hasTrunc)
836      return getAddExpr(Operands);
837    UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
838  }
839
840  // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
841  // eliminate all the truncates.
842  if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
843    SmallVector<const SCEV *, 4> Operands;
844    bool hasTrunc = false;
845    for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
846      const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
847      hasTrunc = isa<SCEVTruncateExpr>(S);
848      Operands.push_back(S);
849    }
850    if (!hasTrunc)
851      return getMulExpr(Operands);
852    UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
853  }
854
855  // If the input value is a chrec scev, truncate the chrec's operands.
856  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
857    SmallVector<const SCEV *, 4> Operands;
858    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
859      Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
860    return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
861  }
862
863  // As a special case, fold trunc(undef) to undef. We don't want to
864  // know too much about SCEVUnknowns, but this special case is handy
865  // and harmless.
866  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
867    if (isa<UndefValue>(U->getValue()))
868      return getSCEV(UndefValue::get(Ty));
869
870  // The cast wasn't folded; create an explicit cast node. We can reuse
871  // the existing insert position since if we get here, we won't have
872  // made any changes which would invalidate it.
873  SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
874                                                 Op, Ty);
875  UniqueSCEVs.InsertNode(S, IP);
876  return S;
877}
878
879const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
880                                               Type *Ty) {
881  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
882         "This is not an extending conversion!");
883  assert(isSCEVable(Ty) &&
884         "This is not a conversion to a SCEVable type!");
885  Ty = getEffectiveSCEVType(Ty);
886
887  // Fold if the operand is constant.
888  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
889    return getConstant(
890      cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(),
891                                              getEffectiveSCEVType(Ty))));
892
893  // zext(zext(x)) --> zext(x)
894  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
895    return getZeroExtendExpr(SZ->getOperand(), Ty);
896
897  // Before doing any expensive analysis, check to see if we've already
898  // computed a SCEV for this Op and Ty.
899  FoldingSetNodeID ID;
900  ID.AddInteger(scZeroExtend);
901  ID.AddPointer(Op);
902  ID.AddPointer(Ty);
903  void *IP = 0;
904  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
905
906  // zext(trunc(x)) --> zext(x) or x or trunc(x)
907  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
908    // It's possible the bits taken off by the truncate were all zero bits. If
909    // so, we should be able to simplify this further.
910    const SCEV *X = ST->getOperand();
911    ConstantRange CR = getUnsignedRange(X);
912    unsigned TruncBits = getTypeSizeInBits(ST->getType());
913    unsigned NewBits = getTypeSizeInBits(Ty);
914    if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
915            CR.zextOrTrunc(NewBits)))
916      return getTruncateOrZeroExtend(X, Ty);
917  }
918
919  // If the input value is a chrec scev, and we can prove that the value
920  // did not overflow the old, smaller, value, we can zero extend all of the
921  // operands (often constants).  This allows analysis of something like
922  // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
923  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
924    if (AR->isAffine()) {
925      const SCEV *Start = AR->getStart();
926      const SCEV *Step = AR->getStepRecurrence(*this);
927      unsigned BitWidth = getTypeSizeInBits(AR->getType());
928      const Loop *L = AR->getLoop();
929
930      // If we have special knowledge that this addrec won't overflow,
931      // we don't need to do any further analysis.
932      if (AR->getNoWrapFlags(SCEV::FlagNUW))
933        return getAddRecExpr(getZeroExtendExpr(Start, Ty),
934                             getZeroExtendExpr(Step, Ty),
935                             L, AR->getNoWrapFlags());
936
937      // Check whether the backedge-taken count is SCEVCouldNotCompute.
938      // Note that this serves two purposes: It filters out loops that are
939      // simply not analyzable, and it covers the case where this code is
940      // being called from within backedge-taken count analysis, such that
941      // attempting to ask for the backedge-taken count would likely result
942      // in infinite recursion. In the later case, the analysis code will
943      // cope with a conservative value, and it will take care to purge
944      // that value once it has finished.
945      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
946      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
947        // Manually compute the final value for AR, checking for
948        // overflow.
949
950        // Check whether the backedge-taken count can be losslessly casted to
951        // the addrec's type. The count is always unsigned.
952        const SCEV *CastedMaxBECount =
953          getTruncateOrZeroExtend(MaxBECount, Start->getType());
954        const SCEV *RecastedMaxBECount =
955          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
956        if (MaxBECount == RecastedMaxBECount) {
957          Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
958          // Check whether Start+Step*MaxBECount has no unsigned overflow.
959          const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
960          const SCEV *Add = getAddExpr(Start, ZMul);
961          const SCEV *OperandExtendedAdd =
962            getAddExpr(getZeroExtendExpr(Start, WideTy),
963                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
964                                  getZeroExtendExpr(Step, WideTy)));
965          if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) {
966            // Cache knowledge of AR NUW, which is propagated to this AddRec.
967            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
968            // Return the expression with the addrec on the outside.
969            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
970                                 getZeroExtendExpr(Step, Ty),
971                                 L, AR->getNoWrapFlags());
972          }
973          // Similar to above, only this time treat the step value as signed.
974          // This covers loops that count down.
975          const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
976          Add = getAddExpr(Start, SMul);
977          OperandExtendedAdd =
978            getAddExpr(getZeroExtendExpr(Start, WideTy),
979                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
980                                  getSignExtendExpr(Step, WideTy)));
981          if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) {
982            // Cache knowledge of AR NW, which is propagated to this AddRec.
983            // Negative step causes unsigned wrap, but it still can't self-wrap.
984            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
985            // Return the expression with the addrec on the outside.
986            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
987                                 getSignExtendExpr(Step, Ty),
988                                 L, AR->getNoWrapFlags());
989          }
990        }
991
992        // If the backedge is guarded by a comparison with the pre-inc value
993        // the addrec is safe. Also, if the entry is guarded by a comparison
994        // with the start value and the backedge is guarded by a comparison
995        // with the post-inc value, the addrec is safe.
996        if (isKnownPositive(Step)) {
997          const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
998                                      getUnsignedRange(Step).getUnsignedMax());
999          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
1000              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
1001               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
1002                                           AR->getPostIncExpr(*this), N))) {
1003            // Cache knowledge of AR NUW, which is propagated to this AddRec.
1004            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1005            // Return the expression with the addrec on the outside.
1006            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1007                                 getZeroExtendExpr(Step, Ty),
1008                                 L, AR->getNoWrapFlags());
1009          }
1010        } else if (isKnownNegative(Step)) {
1011          const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1012                                      getSignedRange(Step).getSignedMin());
1013          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1014              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
1015               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
1016                                           AR->getPostIncExpr(*this), N))) {
1017            // Cache knowledge of AR NW, which is propagated to this AddRec.
1018            // Negative step causes unsigned wrap, but it still can't self-wrap.
1019            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1020            // Return the expression with the addrec on the outside.
1021            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1022                                 getSignExtendExpr(Step, Ty),
1023                                 L, AR->getNoWrapFlags());
1024          }
1025        }
1026      }
1027    }
1028
1029  // The cast wasn't folded; create an explicit cast node.
1030  // Recompute the insert position, as it may have been invalidated.
1031  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1032  SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1033                                                   Op, Ty);
1034  UniqueSCEVs.InsertNode(S, IP);
1035  return S;
1036}
1037
1038// Get the limit of a recurrence such that incrementing by Step cannot cause
1039// signed overflow as long as the value of the recurrence within the loop does
1040// not exceed this limit before incrementing.
1041static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1042                                           ICmpInst::Predicate *Pred,
1043                                           ScalarEvolution *SE) {
1044  unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1045  if (SE->isKnownPositive(Step)) {
1046    *Pred = ICmpInst::ICMP_SLT;
1047    return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1048                           SE->getSignedRange(Step).getSignedMax());
1049  }
1050  if (SE->isKnownNegative(Step)) {
1051    *Pred = ICmpInst::ICMP_SGT;
1052    return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1053                       SE->getSignedRange(Step).getSignedMin());
1054  }
1055  return 0;
1056}
1057
1058// The recurrence AR has been shown to have no signed wrap. Typically, if we can
1059// prove NSW for AR, then we can just as easily prove NSW for its preincrement
1060// or postincrement sibling. This allows normalizing a sign extended AddRec as
1061// such: {sext(Step + Start),+,Step} => {(Step + sext(Start),+,Step} As a
1062// result, the expression "Step + sext(PreIncAR)" is congruent with
1063// "sext(PostIncAR)"
1064static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR,
1065                                            Type *Ty,
1066                                            ScalarEvolution *SE) {
1067  const Loop *L = AR->getLoop();
1068  const SCEV *Start = AR->getStart();
1069  const SCEV *Step = AR->getStepRecurrence(*SE);
1070
1071  // Check for a simple looking step prior to loop entry.
1072  const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1073  if (!SA || SA->getNumOperands() != 2 || SA->getOperand(0) != Step)
1074    return 0;
1075
1076  // This is a postinc AR. Check for overflow on the preinc recurrence using the
1077  // same three conditions that getSignExtendedExpr checks.
1078
1079  // 1. NSW flags on the step increment.
1080  const SCEV *PreStart = SA->getOperand(1);
1081  const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1082    SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1083
1084  if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW))
1085    return PreStart;
1086
1087  // 2. Direct overflow check on the step operation's expression.
1088  unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1089  Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1090  const SCEV *OperandExtendedStart =
1091    SE->getAddExpr(SE->getSignExtendExpr(PreStart, WideTy),
1092                   SE->getSignExtendExpr(Step, WideTy));
1093  if (SE->getSignExtendExpr(Start, WideTy) == OperandExtendedStart) {
1094    // Cache knowledge of PreAR NSW.
1095    if (PreAR)
1096      const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(SCEV::FlagNSW);
1097    // FIXME: this optimization needs a unit test
1098    DEBUG(dbgs() << "SCEV: untested prestart overflow check\n");
1099    return PreStart;
1100  }
1101
1102  // 3. Loop precondition.
1103  ICmpInst::Predicate Pred;
1104  const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, SE);
1105
1106  if (OverflowLimit &&
1107      SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) {
1108    return PreStart;
1109  }
1110  return 0;
1111}
1112
1113// Get the normalized sign-extended expression for this AddRec's Start.
1114static const SCEV *getSignExtendAddRecStart(const SCEVAddRecExpr *AR,
1115                                            Type *Ty,
1116                                            ScalarEvolution *SE) {
1117  const SCEV *PreStart = getPreStartForSignExtend(AR, Ty, SE);
1118  if (!PreStart)
1119    return SE->getSignExtendExpr(AR->getStart(), Ty);
1120
1121  return SE->getAddExpr(SE->getSignExtendExpr(AR->getStepRecurrence(*SE), Ty),
1122                        SE->getSignExtendExpr(PreStart, Ty));
1123}
1124
1125const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
1126                                               Type *Ty) {
1127  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1128         "This is not an extending conversion!");
1129  assert(isSCEVable(Ty) &&
1130         "This is not a conversion to a SCEVable type!");
1131  Ty = getEffectiveSCEVType(Ty);
1132
1133  // Fold if the operand is constant.
1134  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1135    return getConstant(
1136      cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(),
1137                                              getEffectiveSCEVType(Ty))));
1138
1139  // sext(sext(x)) --> sext(x)
1140  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1141    return getSignExtendExpr(SS->getOperand(), Ty);
1142
1143  // sext(zext(x)) --> zext(x)
1144  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1145    return getZeroExtendExpr(SZ->getOperand(), Ty);
1146
1147  // Before doing any expensive analysis, check to see if we've already
1148  // computed a SCEV for this Op and Ty.
1149  FoldingSetNodeID ID;
1150  ID.AddInteger(scSignExtend);
1151  ID.AddPointer(Op);
1152  ID.AddPointer(Ty);
1153  void *IP = 0;
1154  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1155
1156  // If the input value is provably positive, build a zext instead.
1157  if (isKnownNonNegative(Op))
1158    return getZeroExtendExpr(Op, Ty);
1159
1160  // sext(trunc(x)) --> sext(x) or x or trunc(x)
1161  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1162    // It's possible the bits taken off by the truncate were all sign bits. If
1163    // so, we should be able to simplify this further.
1164    const SCEV *X = ST->getOperand();
1165    ConstantRange CR = getSignedRange(X);
1166    unsigned TruncBits = getTypeSizeInBits(ST->getType());
1167    unsigned NewBits = getTypeSizeInBits(Ty);
1168    if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1169            CR.sextOrTrunc(NewBits)))
1170      return getTruncateOrSignExtend(X, Ty);
1171  }
1172
1173  // If the input value is a chrec scev, and we can prove that the value
1174  // did not overflow the old, smaller, value, we can sign extend all of the
1175  // operands (often constants).  This allows analysis of something like
1176  // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1177  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1178    if (AR->isAffine()) {
1179      const SCEV *Start = AR->getStart();
1180      const SCEV *Step = AR->getStepRecurrence(*this);
1181      unsigned BitWidth = getTypeSizeInBits(AR->getType());
1182      const Loop *L = AR->getLoop();
1183
1184      // If we have special knowledge that this addrec won't overflow,
1185      // we don't need to do any further analysis.
1186      if (AR->getNoWrapFlags(SCEV::FlagNSW))
1187        return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1188                             getSignExtendExpr(Step, Ty),
1189                             L, SCEV::FlagNSW);
1190
1191      // Check whether the backedge-taken count is SCEVCouldNotCompute.
1192      // Note that this serves two purposes: It filters out loops that are
1193      // simply not analyzable, and it covers the case where this code is
1194      // being called from within backedge-taken count analysis, such that
1195      // attempting to ask for the backedge-taken count would likely result
1196      // in infinite recursion. In the later case, the analysis code will
1197      // cope with a conservative value, and it will take care to purge
1198      // that value once it has finished.
1199      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1200      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1201        // Manually compute the final value for AR, checking for
1202        // overflow.
1203
1204        // Check whether the backedge-taken count can be losslessly casted to
1205        // the addrec's type. The count is always unsigned.
1206        const SCEV *CastedMaxBECount =
1207          getTruncateOrZeroExtend(MaxBECount, Start->getType());
1208        const SCEV *RecastedMaxBECount =
1209          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1210        if (MaxBECount == RecastedMaxBECount) {
1211          Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1212          // Check whether Start+Step*MaxBECount has no signed overflow.
1213          const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
1214          const SCEV *Add = getAddExpr(Start, SMul);
1215          const SCEV *OperandExtendedAdd =
1216            getAddExpr(getSignExtendExpr(Start, WideTy),
1217                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1218                                  getSignExtendExpr(Step, WideTy)));
1219          if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) {
1220            // Cache knowledge of AR NSW, which is propagated to this AddRec.
1221            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1222            // Return the expression with the addrec on the outside.
1223            return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1224                                 getSignExtendExpr(Step, Ty),
1225                                 L, AR->getNoWrapFlags());
1226          }
1227          // Similar to above, only this time treat the step value as unsigned.
1228          // This covers loops that count up with an unsigned step.
1229          const SCEV *UMul = getMulExpr(CastedMaxBECount, Step);
1230          Add = getAddExpr(Start, UMul);
1231          OperandExtendedAdd =
1232            getAddExpr(getSignExtendExpr(Start, WideTy),
1233                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1234                                  getZeroExtendExpr(Step, WideTy)));
1235          if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) {
1236            // Cache knowledge of AR NSW, which is propagated to this AddRec.
1237            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1238            // Return the expression with the addrec on the outside.
1239            return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1240                                 getZeroExtendExpr(Step, Ty),
1241                                 L, AR->getNoWrapFlags());
1242          }
1243        }
1244
1245        // If the backedge is guarded by a comparison with the pre-inc value
1246        // the addrec is safe. Also, if the entry is guarded by a comparison
1247        // with the start value and the backedge is guarded by a comparison
1248        // with the post-inc value, the addrec is safe.
1249        ICmpInst::Predicate Pred;
1250        const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, this);
1251        if (OverflowLimit &&
1252            (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1253             (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1254              isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1255                                          OverflowLimit)))) {
1256          // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1257          const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1258          return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1259                               getSignExtendExpr(Step, Ty),
1260                               L, AR->getNoWrapFlags());
1261        }
1262      }
1263    }
1264
1265  // The cast wasn't folded; create an explicit cast node.
1266  // Recompute the insert position, as it may have been invalidated.
1267  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1268  SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1269                                                   Op, Ty);
1270  UniqueSCEVs.InsertNode(S, IP);
1271  return S;
1272}
1273
1274/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1275/// unspecified bits out to the given type.
1276///
1277const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
1278                                              Type *Ty) {
1279  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1280         "This is not an extending conversion!");
1281  assert(isSCEVable(Ty) &&
1282         "This is not a conversion to a SCEVable type!");
1283  Ty = getEffectiveSCEVType(Ty);
1284
1285  // Sign-extend negative constants.
1286  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1287    if (SC->getValue()->getValue().isNegative())
1288      return getSignExtendExpr(Op, Ty);
1289
1290  // Peel off a truncate cast.
1291  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
1292    const SCEV *NewOp = T->getOperand();
1293    if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1294      return getAnyExtendExpr(NewOp, Ty);
1295    return getTruncateOrNoop(NewOp, Ty);
1296  }
1297
1298  // Next try a zext cast. If the cast is folded, use it.
1299  const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
1300  if (!isa<SCEVZeroExtendExpr>(ZExt))
1301    return ZExt;
1302
1303  // Next try a sext cast. If the cast is folded, use it.
1304  const SCEV *SExt = getSignExtendExpr(Op, Ty);
1305  if (!isa<SCEVSignExtendExpr>(SExt))
1306    return SExt;
1307
1308  // Force the cast to be folded into the operands of an addrec.
1309  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1310    SmallVector<const SCEV *, 4> Ops;
1311    for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1312         I != E; ++I)
1313      Ops.push_back(getAnyExtendExpr(*I, Ty));
1314    return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
1315  }
1316
1317  // As a special case, fold anyext(undef) to undef. We don't want to
1318  // know too much about SCEVUnknowns, but this special case is handy
1319  // and harmless.
1320  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
1321    if (isa<UndefValue>(U->getValue()))
1322      return getSCEV(UndefValue::get(Ty));
1323
1324  // If the expression is obviously signed, use the sext cast value.
1325  if (isa<SCEVSMaxExpr>(Op))
1326    return SExt;
1327
1328  // Absent any other information, use the zext cast value.
1329  return ZExt;
1330}
1331
1332/// CollectAddOperandsWithScales - Process the given Ops list, which is
1333/// a list of operands to be added under the given scale, update the given
1334/// map. This is a helper function for getAddRecExpr. As an example of
1335/// what it does, given a sequence of operands that would form an add
1336/// expression like this:
1337///
1338///    m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1339///
1340/// where A and B are constants, update the map with these values:
1341///
1342///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1343///
1344/// and add 13 + A*B*29 to AccumulatedConstant.
1345/// This will allow getAddRecExpr to produce this:
1346///
1347///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1348///
1349/// This form often exposes folding opportunities that are hidden in
1350/// the original operand list.
1351///
1352/// Return true iff it appears that any interesting folding opportunities
1353/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1354/// the common case where no interesting opportunities are present, and
1355/// is also used as a check to avoid infinite recursion.
1356///
1357static bool
1358CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1359                             SmallVector<const SCEV *, 8> &NewOps,
1360                             APInt &AccumulatedConstant,
1361                             const SCEV *const *Ops, size_t NumOperands,
1362                             const APInt &Scale,
1363                             ScalarEvolution &SE) {
1364  bool Interesting = false;
1365
1366  // Iterate over the add operands. They are sorted, with constants first.
1367  unsigned i = 0;
1368  while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1369    ++i;
1370    // Pull a buried constant out to the outside.
1371    if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1372      Interesting = true;
1373    AccumulatedConstant += Scale * C->getValue()->getValue();
1374  }
1375
1376  // Next comes everything else. We're especially interested in multiplies
1377  // here, but they're in the middle, so just visit the rest with one loop.
1378  for (; i != NumOperands; ++i) {
1379    const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1380    if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1381      APInt NewScale =
1382        Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1383      if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1384        // A multiplication of a constant with another add; recurse.
1385        const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
1386        Interesting |=
1387          CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1388                                       Add->op_begin(), Add->getNumOperands(),
1389                                       NewScale, SE);
1390      } else {
1391        // A multiplication of a constant with some other value. Update
1392        // the map.
1393        SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1394        const SCEV *Key = SE.getMulExpr(MulOps);
1395        std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1396          M.insert(std::make_pair(Key, NewScale));
1397        if (Pair.second) {
1398          NewOps.push_back(Pair.first->first);
1399        } else {
1400          Pair.first->second += NewScale;
1401          // The map already had an entry for this value, which may indicate
1402          // a folding opportunity.
1403          Interesting = true;
1404        }
1405      }
1406    } else {
1407      // An ordinary operand. Update the map.
1408      std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1409        M.insert(std::make_pair(Ops[i], Scale));
1410      if (Pair.second) {
1411        NewOps.push_back(Pair.first->first);
1412      } else {
1413        Pair.first->second += Scale;
1414        // The map already had an entry for this value, which may indicate
1415        // a folding opportunity.
1416        Interesting = true;
1417      }
1418    }
1419  }
1420
1421  return Interesting;
1422}
1423
1424namespace {
1425  struct APIntCompare {
1426    bool operator()(const APInt &LHS, const APInt &RHS) const {
1427      return LHS.ult(RHS);
1428    }
1429  };
1430}
1431
1432/// getAddExpr - Get a canonical add expression, or something simpler if
1433/// possible.
1434const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1435                                        SCEV::NoWrapFlags Flags) {
1436  assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
1437         "only nuw or nsw allowed");
1438  assert(!Ops.empty() && "Cannot get empty add!");
1439  if (Ops.size() == 1) return Ops[0];
1440#ifndef NDEBUG
1441  Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
1442  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1443    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
1444           "SCEVAddExpr operand types don't match!");
1445#endif
1446
1447  // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
1448  // And vice-versa.
1449  int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1450  SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1451  if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
1452    bool All = true;
1453    for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1454         E = Ops.end(); I != E; ++I)
1455      if (!isKnownNonNegative(*I)) {
1456        All = false;
1457        break;
1458      }
1459    if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
1460  }
1461
1462  // Sort by complexity, this groups all similar expression types together.
1463  GroupByComplexity(Ops, LI);
1464
1465  // If there are any constants, fold them together.
1466  unsigned Idx = 0;
1467  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1468    ++Idx;
1469    assert(Idx < Ops.size());
1470    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1471      // We found two constants, fold them together!
1472      Ops[0] = getConstant(LHSC->getValue()->getValue() +
1473                           RHSC->getValue()->getValue());
1474      if (Ops.size() == 2) return Ops[0];
1475      Ops.erase(Ops.begin()+1);  // Erase the folded element
1476      LHSC = cast<SCEVConstant>(Ops[0]);
1477    }
1478
1479    // If we are left with a constant zero being added, strip it off.
1480    if (LHSC->getValue()->isZero()) {
1481      Ops.erase(Ops.begin());
1482      --Idx;
1483    }
1484
1485    if (Ops.size() == 1) return Ops[0];
1486  }
1487
1488  // Okay, check to see if the same value occurs in the operand list more than
1489  // once.  If so, merge them together into an multiply expression.  Since we
1490  // sorted the list, these values are required to be adjacent.
1491  Type *Ty = Ops[0]->getType();
1492  bool FoundMatch = false;
1493  for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
1494    if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
1495      // Scan ahead to count how many equal operands there are.
1496      unsigned Count = 2;
1497      while (i+Count != e && Ops[i+Count] == Ops[i])
1498        ++Count;
1499      // Merge the values into a multiply.
1500      const SCEV *Scale = getConstant(Ty, Count);
1501      const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1502      if (Ops.size() == Count)
1503        return Mul;
1504      Ops[i] = Mul;
1505      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
1506      --i; e -= Count - 1;
1507      FoundMatch = true;
1508    }
1509  if (FoundMatch)
1510    return getAddExpr(Ops, Flags);
1511
1512  // Check for truncates. If all the operands are truncated from the same
1513  // type, see if factoring out the truncate would permit the result to be
1514  // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1515  // if the contents of the resulting outer trunc fold to something simple.
1516  for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1517    const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1518    Type *DstType = Trunc->getType();
1519    Type *SrcType = Trunc->getOperand()->getType();
1520    SmallVector<const SCEV *, 8> LargeOps;
1521    bool Ok = true;
1522    // Check all the operands to see if they can be represented in the
1523    // source type of the truncate.
1524    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1525      if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1526        if (T->getOperand()->getType() != SrcType) {
1527          Ok = false;
1528          break;
1529        }
1530        LargeOps.push_back(T->getOperand());
1531      } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1532        LargeOps.push_back(getAnyExtendExpr(C, SrcType));
1533      } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
1534        SmallVector<const SCEV *, 8> LargeMulOps;
1535        for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1536          if (const SCEVTruncateExpr *T =
1537                dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1538            if (T->getOperand()->getType() != SrcType) {
1539              Ok = false;
1540              break;
1541            }
1542            LargeMulOps.push_back(T->getOperand());
1543          } else if (const SCEVConstant *C =
1544                       dyn_cast<SCEVConstant>(M->getOperand(j))) {
1545            LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
1546          } else {
1547            Ok = false;
1548            break;
1549          }
1550        }
1551        if (Ok)
1552          LargeOps.push_back(getMulExpr(LargeMulOps));
1553      } else {
1554        Ok = false;
1555        break;
1556      }
1557    }
1558    if (Ok) {
1559      // Evaluate the expression in the larger type.
1560      const SCEV *Fold = getAddExpr(LargeOps, Flags);
1561      // If it folds to something simple, use it. Otherwise, don't.
1562      if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1563        return getTruncateExpr(Fold, DstType);
1564    }
1565  }
1566
1567  // Skip past any other cast SCEVs.
1568  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1569    ++Idx;
1570
1571  // If there are add operands they would be next.
1572  if (Idx < Ops.size()) {
1573    bool DeletedAdd = false;
1574    while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
1575      // If we have an add, expand the add operands onto the end of the operands
1576      // list.
1577      Ops.erase(Ops.begin()+Idx);
1578      Ops.append(Add->op_begin(), Add->op_end());
1579      DeletedAdd = true;
1580    }
1581
1582    // If we deleted at least one add, we added operands to the end of the list,
1583    // and they are not necessarily sorted.  Recurse to resort and resimplify
1584    // any operands we just acquired.
1585    if (DeletedAdd)
1586      return getAddExpr(Ops);
1587  }
1588
1589  // Skip over the add expression until we get to a multiply.
1590  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1591    ++Idx;
1592
1593  // Check to see if there are any folding opportunities present with
1594  // operands multiplied by constant values.
1595  if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1596    uint64_t BitWidth = getTypeSizeInBits(Ty);
1597    DenseMap<const SCEV *, APInt> M;
1598    SmallVector<const SCEV *, 8> NewOps;
1599    APInt AccumulatedConstant(BitWidth, 0);
1600    if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1601                                     Ops.data(), Ops.size(),
1602                                     APInt(BitWidth, 1), *this)) {
1603      // Some interesting folding opportunity is present, so its worthwhile to
1604      // re-generate the operands list. Group the operands by constant scale,
1605      // to avoid multiplying by the same constant scale multiple times.
1606      std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
1607      for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(),
1608           E = NewOps.end(); I != E; ++I)
1609        MulOpLists[M.find(*I)->second].push_back(*I);
1610      // Re-generate the operands list.
1611      Ops.clear();
1612      if (AccumulatedConstant != 0)
1613        Ops.push_back(getConstant(AccumulatedConstant));
1614      for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1615           I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
1616        if (I->first != 0)
1617          Ops.push_back(getMulExpr(getConstant(I->first),
1618                                   getAddExpr(I->second)));
1619      if (Ops.empty())
1620        return getConstant(Ty, 0);
1621      if (Ops.size() == 1)
1622        return Ops[0];
1623      return getAddExpr(Ops);
1624    }
1625  }
1626
1627  // If we are adding something to a multiply expression, make sure the
1628  // something is not already an operand of the multiply.  If so, merge it into
1629  // the multiply.
1630  for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
1631    const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
1632    for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
1633      const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
1634      if (isa<SCEVConstant>(MulOpSCEV))
1635        continue;
1636      for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
1637        if (MulOpSCEV == Ops[AddOp]) {
1638          // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
1639          const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
1640          if (Mul->getNumOperands() != 2) {
1641            // If the multiply has more than two operands, we must get the
1642            // Y*Z term.
1643            SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1644                                                Mul->op_begin()+MulOp);
1645            MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
1646            InnerMul = getMulExpr(MulOps);
1647          }
1648          const SCEV *One = getConstant(Ty, 1);
1649          const SCEV *AddOne = getAddExpr(One, InnerMul);
1650          const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
1651          if (Ops.size() == 2) return OuterMul;
1652          if (AddOp < Idx) {
1653            Ops.erase(Ops.begin()+AddOp);
1654            Ops.erase(Ops.begin()+Idx-1);
1655          } else {
1656            Ops.erase(Ops.begin()+Idx);
1657            Ops.erase(Ops.begin()+AddOp-1);
1658          }
1659          Ops.push_back(OuterMul);
1660          return getAddExpr(Ops);
1661        }
1662
1663      // Check this multiply against other multiplies being added together.
1664      for (unsigned OtherMulIdx = Idx+1;
1665           OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1666           ++OtherMulIdx) {
1667        const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
1668        // If MulOp occurs in OtherMul, we can fold the two multiplies
1669        // together.
1670        for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1671             OMulOp != e; ++OMulOp)
1672          if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1673            // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
1674            const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
1675            if (Mul->getNumOperands() != 2) {
1676              SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1677                                                  Mul->op_begin()+MulOp);
1678              MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
1679              InnerMul1 = getMulExpr(MulOps);
1680            }
1681            const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
1682            if (OtherMul->getNumOperands() != 2) {
1683              SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
1684                                                  OtherMul->op_begin()+OMulOp);
1685              MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
1686              InnerMul2 = getMulExpr(MulOps);
1687            }
1688            const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1689            const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
1690            if (Ops.size() == 2) return OuterMul;
1691            Ops.erase(Ops.begin()+Idx);
1692            Ops.erase(Ops.begin()+OtherMulIdx-1);
1693            Ops.push_back(OuterMul);
1694            return getAddExpr(Ops);
1695          }
1696      }
1697    }
1698  }
1699
1700  // If there are any add recurrences in the operands list, see if any other
1701  // added values are loop invariant.  If so, we can fold them into the
1702  // recurrence.
1703  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1704    ++Idx;
1705
1706  // Scan over all recurrences, trying to fold loop invariants into them.
1707  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1708    // Scan all of the other operands to this add and add them to the vector if
1709    // they are loop invariant w.r.t. the recurrence.
1710    SmallVector<const SCEV *, 8> LIOps;
1711    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1712    const Loop *AddRecLoop = AddRec->getLoop();
1713    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1714      if (isLoopInvariant(Ops[i], AddRecLoop)) {
1715        LIOps.push_back(Ops[i]);
1716        Ops.erase(Ops.begin()+i);
1717        --i; --e;
1718      }
1719
1720    // If we found some loop invariants, fold them into the recurrence.
1721    if (!LIOps.empty()) {
1722      //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
1723      LIOps.push_back(AddRec->getStart());
1724
1725      SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1726                                             AddRec->op_end());
1727      AddRecOps[0] = getAddExpr(LIOps);
1728
1729      // Build the new addrec. Propagate the NUW and NSW flags if both the
1730      // outer add and the inner addrec are guaranteed to have no overflow.
1731      // Always propagate NW.
1732      Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
1733      const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
1734
1735      // If all of the other operands were loop invariant, we are done.
1736      if (Ops.size() == 1) return NewRec;
1737
1738      // Otherwise, add the folded AddRec by the non-invariant parts.
1739      for (unsigned i = 0;; ++i)
1740        if (Ops[i] == AddRec) {
1741          Ops[i] = NewRec;
1742          break;
1743        }
1744      return getAddExpr(Ops);
1745    }
1746
1747    // Okay, if there weren't any loop invariants to be folded, check to see if
1748    // there are multiple AddRec's with the same loop induction variable being
1749    // added together.  If so, we can fold them.
1750    for (unsigned OtherIdx = Idx+1;
1751         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1752         ++OtherIdx)
1753      if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1754        // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
1755        SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1756                                               AddRec->op_end());
1757        for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1758             ++OtherIdx)
1759          if (const SCEVAddRecExpr *OtherAddRec =
1760                dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
1761            if (OtherAddRec->getLoop() == AddRecLoop) {
1762              for (unsigned i = 0, e = OtherAddRec->getNumOperands();
1763                   i != e; ++i) {
1764                if (i >= AddRecOps.size()) {
1765                  AddRecOps.append(OtherAddRec->op_begin()+i,
1766                                   OtherAddRec->op_end());
1767                  break;
1768                }
1769                AddRecOps[i] = getAddExpr(AddRecOps[i],
1770                                          OtherAddRec->getOperand(i));
1771              }
1772              Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
1773            }
1774        // Step size has changed, so we cannot guarantee no self-wraparound.
1775        Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
1776        return getAddExpr(Ops);
1777      }
1778
1779    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1780    // next one.
1781  }
1782
1783  // Okay, it looks like we really DO need an add expr.  Check to see if we
1784  // already have one, otherwise create a new one.
1785  FoldingSetNodeID ID;
1786  ID.AddInteger(scAddExpr);
1787  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1788    ID.AddPointer(Ops[i]);
1789  void *IP = 0;
1790  SCEVAddExpr *S =
1791    static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1792  if (!S) {
1793    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1794    std::uninitialized_copy(Ops.begin(), Ops.end(), O);
1795    S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1796                                        O, Ops.size());
1797    UniqueSCEVs.InsertNode(S, IP);
1798  }
1799  S->setNoWrapFlags(Flags);
1800  return S;
1801}
1802
1803/// getMulExpr - Get a canonical multiply expression, or something simpler if
1804/// possible.
1805const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
1806                                        SCEV::NoWrapFlags Flags) {
1807  assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
1808         "only nuw or nsw allowed");
1809  assert(!Ops.empty() && "Cannot get empty mul!");
1810  if (Ops.size() == 1) return Ops[0];
1811#ifndef NDEBUG
1812  Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
1813  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1814    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
1815           "SCEVMulExpr operand types don't match!");
1816#endif
1817
1818  // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
1819  // And vice-versa.
1820  int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1821  SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1822  if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
1823    bool All = true;
1824    for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1825         E = Ops.end(); I != E; ++I)
1826      if (!isKnownNonNegative(*I)) {
1827        All = false;
1828        break;
1829      }
1830    if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
1831  }
1832
1833  // Sort by complexity, this groups all similar expression types together.
1834  GroupByComplexity(Ops, LI);
1835
1836  // If there are any constants, fold them together.
1837  unsigned Idx = 0;
1838  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1839
1840    // C1*(C2+V) -> C1*C2 + C1*V
1841    if (Ops.size() == 2)
1842      if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
1843        if (Add->getNumOperands() == 2 &&
1844            isa<SCEVConstant>(Add->getOperand(0)))
1845          return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1846                            getMulExpr(LHSC, Add->getOperand(1)));
1847
1848    ++Idx;
1849    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1850      // We found two constants, fold them together!
1851      ConstantInt *Fold = ConstantInt::get(getContext(),
1852                                           LHSC->getValue()->getValue() *
1853                                           RHSC->getValue()->getValue());
1854      Ops[0] = getConstant(Fold);
1855      Ops.erase(Ops.begin()+1);  // Erase the folded element
1856      if (Ops.size() == 1) return Ops[0];
1857      LHSC = cast<SCEVConstant>(Ops[0]);
1858    }
1859
1860    // If we are left with a constant one being multiplied, strip it off.
1861    if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1862      Ops.erase(Ops.begin());
1863      --Idx;
1864    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1865      // If we have a multiply of zero, it will always be zero.
1866      return Ops[0];
1867    } else if (Ops[0]->isAllOnesValue()) {
1868      // If we have a mul by -1 of an add, try distributing the -1 among the
1869      // add operands.
1870      if (Ops.size() == 2) {
1871        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1872          SmallVector<const SCEV *, 4> NewOps;
1873          bool AnyFolded = false;
1874          for (SCEVAddRecExpr::op_iterator I = Add->op_begin(),
1875                 E = Add->op_end(); I != E; ++I) {
1876            const SCEV *Mul = getMulExpr(Ops[0], *I);
1877            if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1878            NewOps.push_back(Mul);
1879          }
1880          if (AnyFolded)
1881            return getAddExpr(NewOps);
1882        }
1883        else if (const SCEVAddRecExpr *
1884                 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
1885          // Negation preserves a recurrence's no self-wrap property.
1886          SmallVector<const SCEV *, 4> Operands;
1887          for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(),
1888                 E = AddRec->op_end(); I != E; ++I) {
1889            Operands.push_back(getMulExpr(Ops[0], *I));
1890          }
1891          return getAddRecExpr(Operands, AddRec->getLoop(),
1892                               AddRec->getNoWrapFlags(SCEV::FlagNW));
1893        }
1894      }
1895    }
1896
1897    if (Ops.size() == 1)
1898      return Ops[0];
1899  }
1900
1901  // Skip over the add expression until we get to a multiply.
1902  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1903    ++Idx;
1904
1905  // If there are mul operands inline them all into this expression.
1906  if (Idx < Ops.size()) {
1907    bool DeletedMul = false;
1908    while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
1909      // If we have an mul, expand the mul operands onto the end of the operands
1910      // list.
1911      Ops.erase(Ops.begin()+Idx);
1912      Ops.append(Mul->op_begin(), Mul->op_end());
1913      DeletedMul = true;
1914    }
1915
1916    // If we deleted at least one mul, we added operands to the end of the list,
1917    // and they are not necessarily sorted.  Recurse to resort and resimplify
1918    // any operands we just acquired.
1919    if (DeletedMul)
1920      return getMulExpr(Ops);
1921  }
1922
1923  // If there are any add recurrences in the operands list, see if any other
1924  // added values are loop invariant.  If so, we can fold them into the
1925  // recurrence.
1926  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1927    ++Idx;
1928
1929  // Scan over all recurrences, trying to fold loop invariants into them.
1930  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1931    // Scan all of the other operands to this mul and add them to the vector if
1932    // they are loop invariant w.r.t. the recurrence.
1933    SmallVector<const SCEV *, 8> LIOps;
1934    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1935    const Loop *AddRecLoop = AddRec->getLoop();
1936    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1937      if (isLoopInvariant(Ops[i], AddRecLoop)) {
1938        LIOps.push_back(Ops[i]);
1939        Ops.erase(Ops.begin()+i);
1940        --i; --e;
1941      }
1942
1943    // If we found some loop invariants, fold them into the recurrence.
1944    if (!LIOps.empty()) {
1945      //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
1946      SmallVector<const SCEV *, 4> NewOps;
1947      NewOps.reserve(AddRec->getNumOperands());
1948      const SCEV *Scale = getMulExpr(LIOps);
1949      for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1950        NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
1951
1952      // Build the new addrec. Propagate the NUW and NSW flags if both the
1953      // outer mul and the inner addrec are guaranteed to have no overflow.
1954      //
1955      // No self-wrap cannot be guaranteed after changing the step size, but
1956      // will be inferred if either NUW or NSW is true.
1957      Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
1958      const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
1959
1960      // If all of the other operands were loop invariant, we are done.
1961      if (Ops.size() == 1) return NewRec;
1962
1963      // Otherwise, multiply the folded AddRec by the non-invariant parts.
1964      for (unsigned i = 0;; ++i)
1965        if (Ops[i] == AddRec) {
1966          Ops[i] = NewRec;
1967          break;
1968        }
1969      return getMulExpr(Ops);
1970    }
1971
1972    // Okay, if there weren't any loop invariants to be folded, check to see if
1973    // there are multiple AddRec's with the same loop induction variable being
1974    // multiplied together.  If so, we can fold them.
1975    for (unsigned OtherIdx = Idx+1;
1976         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1977         ++OtherIdx)
1978      if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1979        // {A,+,B}<L> * {C,+,D}<L>  -->  {A*C,+,A*D + B*C + B*D,+,2*B*D}<L>
1980        for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1981             ++OtherIdx)
1982          if (const SCEVAddRecExpr *OtherAddRec =
1983                dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
1984            if (OtherAddRec->getLoop() == AddRecLoop) {
1985              const SCEV *A = AddRec->getStart();
1986              const SCEV *B = AddRec->getStepRecurrence(*this);
1987              const SCEV *C = OtherAddRec->getStart();
1988              const SCEV *D = OtherAddRec->getStepRecurrence(*this);
1989              const SCEV *NewStart = getMulExpr(A, C);
1990              const SCEV *BD = getMulExpr(B, D);
1991              const SCEV *NewStep = getAddExpr(getMulExpr(A, D),
1992                                               getMulExpr(B, C), BD);
1993              const SCEV *NewSecondOrderStep =
1994                  getMulExpr(BD, getConstant(BD->getType(), 2));
1995
1996              SmallVector<const SCEV *, 3> AddRecOps;
1997              AddRecOps.push_back(NewStart);
1998              AddRecOps.push_back(NewStep);
1999              AddRecOps.push_back(NewSecondOrderStep);
2000              const SCEV *NewAddRec = getAddRecExpr(AddRecOps,
2001                                                    AddRec->getLoop(),
2002                                                    SCEV::FlagAnyWrap);
2003              if (Ops.size() == 2) return NewAddRec;
2004              Ops[Idx] = AddRec = cast<SCEVAddRecExpr>(NewAddRec);
2005              Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2006            }
2007        return getMulExpr(Ops);
2008      }
2009
2010    // Otherwise couldn't fold anything into this recurrence.  Move onto the
2011    // next one.
2012  }
2013
2014  // Okay, it looks like we really DO need an mul expr.  Check to see if we
2015  // already have one, otherwise create a new one.
2016  FoldingSetNodeID ID;
2017  ID.AddInteger(scMulExpr);
2018  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2019    ID.AddPointer(Ops[i]);
2020  void *IP = 0;
2021  SCEVMulExpr *S =
2022    static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2023  if (!S) {
2024    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2025    std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2026    S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2027                                        O, Ops.size());
2028    UniqueSCEVs.InsertNode(S, IP);
2029  }
2030  S->setNoWrapFlags(Flags);
2031  return S;
2032}
2033
2034/// getUDivExpr - Get a canonical unsigned division expression, or something
2035/// simpler if possible.
2036const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2037                                         const SCEV *RHS) {
2038  assert(getEffectiveSCEVType(LHS->getType()) ==
2039         getEffectiveSCEVType(RHS->getType()) &&
2040         "SCEVUDivExpr operand types don't match!");
2041
2042  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
2043    if (RHSC->getValue()->equalsInt(1))
2044      return LHS;                               // X udiv 1 --> x
2045    // If the denominator is zero, the result of the udiv is undefined. Don't
2046    // try to analyze it, because the resolution chosen here may differ from
2047    // the resolution chosen in other parts of the compiler.
2048    if (!RHSC->getValue()->isZero()) {
2049      // Determine if the division can be folded into the operands of
2050      // its operands.
2051      // TODO: Generalize this to non-constants by using known-bits information.
2052      Type *Ty = LHS->getType();
2053      unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
2054      unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
2055      // For non-power-of-two values, effectively round the value up to the
2056      // nearest power of two.
2057      if (!RHSC->getValue()->getValue().isPowerOf2())
2058        ++MaxShiftAmt;
2059      IntegerType *ExtTy =
2060        IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
2061      if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2062        if (const SCEVConstant *Step =
2063            dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2064          // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2065          const APInt &StepInt = Step->getValue()->getValue();
2066          const APInt &DivInt = RHSC->getValue()->getValue();
2067          if (!StepInt.urem(DivInt) &&
2068              getZeroExtendExpr(AR, ExtTy) ==
2069              getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2070                            getZeroExtendExpr(Step, ExtTy),
2071                            AR->getLoop(), SCEV::FlagAnyWrap)) {
2072            SmallVector<const SCEV *, 4> Operands;
2073            for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
2074              Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
2075            return getAddRecExpr(Operands, AR->getLoop(),
2076                                 SCEV::FlagNW);
2077          }
2078          /// Get a canonical UDivExpr for a recurrence.
2079          /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2080          // We can currently only fold X%N if X is constant.
2081          const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2082          if (StartC && !DivInt.urem(StepInt) &&
2083              getZeroExtendExpr(AR, ExtTy) ==
2084              getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2085                            getZeroExtendExpr(Step, ExtTy),
2086                            AR->getLoop(), SCEV::FlagAnyWrap)) {
2087            const APInt &StartInt = StartC->getValue()->getValue();
2088            const APInt &StartRem = StartInt.urem(StepInt);
2089            if (StartRem != 0)
2090              LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2091                                  AR->getLoop(), SCEV::FlagNW);
2092          }
2093        }
2094      // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2095      if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2096        SmallVector<const SCEV *, 4> Operands;
2097        for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
2098          Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
2099        if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2100          // Find an operand that's safely divisible.
2101          for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2102            const SCEV *Op = M->getOperand(i);
2103            const SCEV *Div = getUDivExpr(Op, RHSC);
2104            if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2105              Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2106                                                      M->op_end());
2107              Operands[i] = Div;
2108              return getMulExpr(Operands);
2109            }
2110          }
2111      }
2112      // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
2113      if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
2114        SmallVector<const SCEV *, 4> Operands;
2115        for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
2116          Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
2117        if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2118          Operands.clear();
2119          for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2120            const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2121            if (isa<SCEVUDivExpr>(Op) ||
2122                getMulExpr(Op, RHS) != A->getOperand(i))
2123              break;
2124            Operands.push_back(Op);
2125          }
2126          if (Operands.size() == A->getNumOperands())
2127            return getAddExpr(Operands);
2128        }
2129      }
2130
2131      // Fold if both operands are constant.
2132      if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2133        Constant *LHSCV = LHSC->getValue();
2134        Constant *RHSCV = RHSC->getValue();
2135        return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2136                                                                   RHSCV)));
2137      }
2138    }
2139  }
2140
2141  FoldingSetNodeID ID;
2142  ID.AddInteger(scUDivExpr);
2143  ID.AddPointer(LHS);
2144  ID.AddPointer(RHS);
2145  void *IP = 0;
2146  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2147  SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2148                                             LHS, RHS);
2149  UniqueSCEVs.InsertNode(S, IP);
2150  return S;
2151}
2152
2153
2154/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2155/// Simplify the expression as much as possible.
2156const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2157                                           const Loop *L,
2158                                           SCEV::NoWrapFlags Flags) {
2159  SmallVector<const SCEV *, 4> Operands;
2160  Operands.push_back(Start);
2161  if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
2162    if (StepChrec->getLoop() == L) {
2163      Operands.append(StepChrec->op_begin(), StepChrec->op_end());
2164      return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
2165    }
2166
2167  Operands.push_back(Step);
2168  return getAddRecExpr(Operands, L, Flags);
2169}
2170
2171/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2172/// Simplify the expression as much as possible.
2173const SCEV *
2174ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
2175                               const Loop *L, SCEV::NoWrapFlags Flags) {
2176  if (Operands.size() == 1) return Operands[0];
2177#ifndef NDEBUG
2178  Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
2179  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
2180    assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
2181           "SCEVAddRecExpr operand types don't match!");
2182  for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2183    assert(isLoopInvariant(Operands[i], L) &&
2184           "SCEVAddRecExpr operand is not loop-invariant!");
2185#endif
2186
2187  if (Operands.back()->isZero()) {
2188    Operands.pop_back();
2189    return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
2190  }
2191
2192  // It's tempting to want to call getMaxBackedgeTakenCount count here and
2193  // use that information to infer NUW and NSW flags. However, computing a
2194  // BE count requires calling getAddRecExpr, so we may not yet have a
2195  // meaningful BE count at this point (and if we don't, we'd be stuck
2196  // with a SCEVCouldNotCompute as the cached BE count).
2197
2198  // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2199  // And vice-versa.
2200  int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2201  SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
2202  if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
2203    bool All = true;
2204    for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
2205         E = Operands.end(); I != E; ++I)
2206      if (!isKnownNonNegative(*I)) {
2207        All = false;
2208        break;
2209      }
2210    if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
2211  }
2212
2213  // Canonicalize nested AddRecs in by nesting them in order of loop depth.
2214  if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
2215    const Loop *NestedLoop = NestedAR->getLoop();
2216    if (L->contains(NestedLoop) ?
2217        (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
2218        (!NestedLoop->contains(L) &&
2219         DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
2220      SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
2221                                                  NestedAR->op_end());
2222      Operands[0] = NestedAR->getStart();
2223      // AddRecs require their operands be loop-invariant with respect to their
2224      // loops. Don't perform this transformation if it would break this
2225      // requirement.
2226      bool AllInvariant = true;
2227      for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2228        if (!isLoopInvariant(Operands[i], L)) {
2229          AllInvariant = false;
2230          break;
2231        }
2232      if (AllInvariant) {
2233        // Create a recurrence for the outer loop with the same step size.
2234        //
2235        // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2236        // inner recurrence has the same property.
2237        SCEV::NoWrapFlags OuterFlags =
2238          maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
2239
2240        NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
2241        AllInvariant = true;
2242        for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
2243          if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
2244            AllInvariant = false;
2245            break;
2246          }
2247        if (AllInvariant) {
2248          // Ok, both add recurrences are valid after the transformation.
2249          //
2250          // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2251          // the outer recurrence has the same property.
2252          SCEV::NoWrapFlags InnerFlags =
2253            maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
2254          return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2255        }
2256      }
2257      // Reset Operands to its original state.
2258      Operands[0] = NestedAR;
2259    }
2260  }
2261
2262  // Okay, it looks like we really DO need an addrec expr.  Check to see if we
2263  // already have one, otherwise create a new one.
2264  FoldingSetNodeID ID;
2265  ID.AddInteger(scAddRecExpr);
2266  for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2267    ID.AddPointer(Operands[i]);
2268  ID.AddPointer(L);
2269  void *IP = 0;
2270  SCEVAddRecExpr *S =
2271    static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2272  if (!S) {
2273    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2274    std::uninitialized_copy(Operands.begin(), Operands.end(), O);
2275    S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2276                                           O, Operands.size(), L);
2277    UniqueSCEVs.InsertNode(S, IP);
2278  }
2279  S->setNoWrapFlags(Flags);
2280  return S;
2281}
2282
2283const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2284                                         const SCEV *RHS) {
2285  SmallVector<const SCEV *, 2> Ops;
2286  Ops.push_back(LHS);
2287  Ops.push_back(RHS);
2288  return getSMaxExpr(Ops);
2289}
2290
2291const SCEV *
2292ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2293  assert(!Ops.empty() && "Cannot get empty smax!");
2294  if (Ops.size() == 1) return Ops[0];
2295#ifndef NDEBUG
2296  Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2297  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2298    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2299           "SCEVSMaxExpr operand types don't match!");
2300#endif
2301
2302  // Sort by complexity, this groups all similar expression types together.
2303  GroupByComplexity(Ops, LI);
2304
2305  // If there are any constants, fold them together.
2306  unsigned Idx = 0;
2307  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2308    ++Idx;
2309    assert(Idx < Ops.size());
2310    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2311      // We found two constants, fold them together!
2312      ConstantInt *Fold = ConstantInt::get(getContext(),
2313                              APIntOps::smax(LHSC->getValue()->getValue(),
2314                                             RHSC->getValue()->getValue()));
2315      Ops[0] = getConstant(Fold);
2316      Ops.erase(Ops.begin()+1);  // Erase the folded element
2317      if (Ops.size() == 1) return Ops[0];
2318      LHSC = cast<SCEVConstant>(Ops[0]);
2319    }
2320
2321    // If we are left with a constant minimum-int, strip it off.
2322    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2323      Ops.erase(Ops.begin());
2324      --Idx;
2325    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2326      // If we have an smax with a constant maximum-int, it will always be
2327      // maximum-int.
2328      return Ops[0];
2329    }
2330
2331    if (Ops.size() == 1) return Ops[0];
2332  }
2333
2334  // Find the first SMax
2335  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2336    ++Idx;
2337
2338  // Check to see if one of the operands is an SMax. If so, expand its operands
2339  // onto our operand list, and recurse to simplify.
2340  if (Idx < Ops.size()) {
2341    bool DeletedSMax = false;
2342    while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
2343      Ops.erase(Ops.begin()+Idx);
2344      Ops.append(SMax->op_begin(), SMax->op_end());
2345      DeletedSMax = true;
2346    }
2347
2348    if (DeletedSMax)
2349      return getSMaxExpr(Ops);
2350  }
2351
2352  // Okay, check to see if the same value occurs in the operand list twice.  If
2353  // so, delete one.  Since we sorted the list, these values are required to
2354  // be adjacent.
2355  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2356    //  X smax Y smax Y  -->  X smax Y
2357    //  X smax Y         -->  X, if X is always greater than Y
2358    if (Ops[i] == Ops[i+1] ||
2359        isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2360      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2361      --i; --e;
2362    } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
2363      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2364      --i; --e;
2365    }
2366
2367  if (Ops.size() == 1) return Ops[0];
2368
2369  assert(!Ops.empty() && "Reduced smax down to nothing!");
2370
2371  // Okay, it looks like we really DO need an smax expr.  Check to see if we
2372  // already have one, otherwise create a new one.
2373  FoldingSetNodeID ID;
2374  ID.AddInteger(scSMaxExpr);
2375  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2376    ID.AddPointer(Ops[i]);
2377  void *IP = 0;
2378  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2379  const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2380  std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2381  SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2382                                             O, Ops.size());
2383  UniqueSCEVs.InsertNode(S, IP);
2384  return S;
2385}
2386
2387const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2388                                         const SCEV *RHS) {
2389  SmallVector<const SCEV *, 2> Ops;
2390  Ops.push_back(LHS);
2391  Ops.push_back(RHS);
2392  return getUMaxExpr(Ops);
2393}
2394
2395const SCEV *
2396ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2397  assert(!Ops.empty() && "Cannot get empty umax!");
2398  if (Ops.size() == 1) return Ops[0];
2399#ifndef NDEBUG
2400  Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2401  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2402    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2403           "SCEVUMaxExpr operand types don't match!");
2404#endif
2405
2406  // Sort by complexity, this groups all similar expression types together.
2407  GroupByComplexity(Ops, LI);
2408
2409  // If there are any constants, fold them together.
2410  unsigned Idx = 0;
2411  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2412    ++Idx;
2413    assert(Idx < Ops.size());
2414    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2415      // We found two constants, fold them together!
2416      ConstantInt *Fold = ConstantInt::get(getContext(),
2417                              APIntOps::umax(LHSC->getValue()->getValue(),
2418                                             RHSC->getValue()->getValue()));
2419      Ops[0] = getConstant(Fold);
2420      Ops.erase(Ops.begin()+1);  // Erase the folded element
2421      if (Ops.size() == 1) return Ops[0];
2422      LHSC = cast<SCEVConstant>(Ops[0]);
2423    }
2424
2425    // If we are left with a constant minimum-int, strip it off.
2426    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2427      Ops.erase(Ops.begin());
2428      --Idx;
2429    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2430      // If we have an umax with a constant maximum-int, it will always be
2431      // maximum-int.
2432      return Ops[0];
2433    }
2434
2435    if (Ops.size() == 1) return Ops[0];
2436  }
2437
2438  // Find the first UMax
2439  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2440    ++Idx;
2441
2442  // Check to see if one of the operands is a UMax. If so, expand its operands
2443  // onto our operand list, and recurse to simplify.
2444  if (Idx < Ops.size()) {
2445    bool DeletedUMax = false;
2446    while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
2447      Ops.erase(Ops.begin()+Idx);
2448      Ops.append(UMax->op_begin(), UMax->op_end());
2449      DeletedUMax = true;
2450    }
2451
2452    if (DeletedUMax)
2453      return getUMaxExpr(Ops);
2454  }
2455
2456  // Okay, check to see if the same value occurs in the operand list twice.  If
2457  // so, delete one.  Since we sorted the list, these values are required to
2458  // be adjacent.
2459  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2460    //  X umax Y umax Y  -->  X umax Y
2461    //  X umax Y         -->  X, if X is always greater than Y
2462    if (Ops[i] == Ops[i+1] ||
2463        isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2464      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2465      --i; --e;
2466    } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
2467      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2468      --i; --e;
2469    }
2470
2471  if (Ops.size() == 1) return Ops[0];
2472
2473  assert(!Ops.empty() && "Reduced umax down to nothing!");
2474
2475  // Okay, it looks like we really DO need a umax expr.  Check to see if we
2476  // already have one, otherwise create a new one.
2477  FoldingSetNodeID ID;
2478  ID.AddInteger(scUMaxExpr);
2479  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2480    ID.AddPointer(Ops[i]);
2481  void *IP = 0;
2482  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2483  const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2484  std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2485  SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2486                                             O, Ops.size());
2487  UniqueSCEVs.InsertNode(S, IP);
2488  return S;
2489}
2490
2491const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2492                                         const SCEV *RHS) {
2493  // ~smax(~x, ~y) == smin(x, y).
2494  return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2495}
2496
2497const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2498                                         const SCEV *RHS) {
2499  // ~umax(~x, ~y) == umin(x, y)
2500  return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2501}
2502
2503const SCEV *ScalarEvolution::getSizeOfExpr(Type *AllocTy) {
2504  // If we have TargetData, we can bypass creating a target-independent
2505  // constant expression and then folding it back into a ConstantInt.
2506  // This is just a compile-time optimization.
2507  if (TD)
2508    return getConstant(TD->getIntPtrType(getContext()),
2509                       TD->getTypeAllocSize(AllocTy));
2510
2511  Constant *C = ConstantExpr::getSizeOf(AllocTy);
2512  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2513    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2514      C = Folded;
2515  Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2516  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2517}
2518
2519const SCEV *ScalarEvolution::getAlignOfExpr(Type *AllocTy) {
2520  Constant *C = ConstantExpr::getAlignOf(AllocTy);
2521  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2522    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2523      C = Folded;
2524  Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2525  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2526}
2527
2528const SCEV *ScalarEvolution::getOffsetOfExpr(StructType *STy,
2529                                             unsigned FieldNo) {
2530  // If we have TargetData, we can bypass creating a target-independent
2531  // constant expression and then folding it back into a ConstantInt.
2532  // This is just a compile-time optimization.
2533  if (TD)
2534    return getConstant(TD->getIntPtrType(getContext()),
2535                       TD->getStructLayout(STy)->getElementOffset(FieldNo));
2536
2537  Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2538  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2539    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2540      C = Folded;
2541  Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
2542  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2543}
2544
2545const SCEV *ScalarEvolution::getOffsetOfExpr(Type *CTy,
2546                                             Constant *FieldNo) {
2547  Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
2548  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2549    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2550      C = Folded;
2551  Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
2552  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2553}
2554
2555const SCEV *ScalarEvolution::getUnknown(Value *V) {
2556  // Don't attempt to do anything other than create a SCEVUnknown object
2557  // here.  createSCEV only calls getUnknown after checking for all other
2558  // interesting possibilities, and any other code that calls getUnknown
2559  // is doing so in order to hide a value from SCEV canonicalization.
2560
2561  FoldingSetNodeID ID;
2562  ID.AddInteger(scUnknown);
2563  ID.AddPointer(V);
2564  void *IP = 0;
2565  if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2566    assert(cast<SCEVUnknown>(S)->getValue() == V &&
2567           "Stale SCEVUnknown in uniquing map!");
2568    return S;
2569  }
2570  SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
2571                                            FirstUnknown);
2572  FirstUnknown = cast<SCEVUnknown>(S);
2573  UniqueSCEVs.InsertNode(S, IP);
2574  return S;
2575}
2576
2577//===----------------------------------------------------------------------===//
2578//            Basic SCEV Analysis and PHI Idiom Recognition Code
2579//
2580
2581/// isSCEVable - Test if values of the given type are analyzable within
2582/// the SCEV framework. This primarily includes integer types, and it
2583/// can optionally include pointer types if the ScalarEvolution class
2584/// has access to target-specific information.
2585bool ScalarEvolution::isSCEVable(Type *Ty) const {
2586  // Integers and pointers are always SCEVable.
2587  return Ty->isIntegerTy() || Ty->isPointerTy();
2588}
2589
2590/// getTypeSizeInBits - Return the size in bits of the specified type,
2591/// for which isSCEVable must return true.
2592uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
2593  assert(isSCEVable(Ty) && "Type is not SCEVable!");
2594
2595  // If we have a TargetData, use it!
2596  if (TD)
2597    return TD->getTypeSizeInBits(Ty);
2598
2599  // Integer types have fixed sizes.
2600  if (Ty->isIntegerTy())
2601    return Ty->getPrimitiveSizeInBits();
2602
2603  // The only other support type is pointer. Without TargetData, conservatively
2604  // assume pointers are 64-bit.
2605  assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
2606  return 64;
2607}
2608
2609/// getEffectiveSCEVType - Return a type with the same bitwidth as
2610/// the given type and which represents how SCEV will treat the given
2611/// type, for which isSCEVable must return true. For pointer types,
2612/// this is the pointer-sized integer type.
2613Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
2614  assert(isSCEVable(Ty) && "Type is not SCEVable!");
2615
2616  if (Ty->isIntegerTy())
2617    return Ty;
2618
2619  // The only other support type is pointer.
2620  assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
2621  if (TD) return TD->getIntPtrType(getContext());
2622
2623  // Without TargetData, conservatively assume pointers are 64-bit.
2624  return Type::getInt64Ty(getContext());
2625}
2626
2627const SCEV *ScalarEvolution::getCouldNotCompute() {
2628  return &CouldNotCompute;
2629}
2630
2631/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2632/// expression and create a new one.
2633const SCEV *ScalarEvolution::getSCEV(Value *V) {
2634  assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
2635
2636  ValueExprMapType::const_iterator I = ValueExprMap.find(V);
2637  if (I != ValueExprMap.end()) return I->second;
2638  const SCEV *S = createSCEV(V);
2639
2640  // The process of creating a SCEV for V may have caused other SCEVs
2641  // to have been created, so it's necessary to insert the new entry
2642  // from scratch, rather than trying to remember the insert position
2643  // above.
2644  ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
2645  return S;
2646}
2647
2648/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2649///
2650const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
2651  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2652    return getConstant(
2653               cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
2654
2655  Type *Ty = V->getType();
2656  Ty = getEffectiveSCEVType(Ty);
2657  return getMulExpr(V,
2658                  getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
2659}
2660
2661/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
2662const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
2663  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2664    return getConstant(
2665                cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
2666
2667  Type *Ty = V->getType();
2668  Ty = getEffectiveSCEVType(Ty);
2669  const SCEV *AllOnes =
2670                   getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
2671  return getMinusSCEV(AllOnes, V);
2672}
2673
2674/// getMinusSCEV - Return LHS-RHS.  Minus is represented in SCEV as A+B*-1.
2675const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
2676                                          SCEV::NoWrapFlags Flags) {
2677  assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW");
2678
2679  // Fast path: X - X --> 0.
2680  if (LHS == RHS)
2681    return getConstant(LHS->getType(), 0);
2682
2683  // X - Y --> X + -Y
2684  return getAddExpr(LHS, getNegativeSCEV(RHS), Flags);
2685}
2686
2687/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2688/// input value to the specified type.  If the type must be extended, it is zero
2689/// extended.
2690const SCEV *
2691ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
2692  Type *SrcTy = V->getType();
2693  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2694         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2695         "Cannot truncate or zero extend with non-integer arguments!");
2696  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2697    return V;  // No conversion
2698  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2699    return getTruncateExpr(V, Ty);
2700  return getZeroExtendExpr(V, Ty);
2701}
2702
2703/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2704/// input value to the specified type.  If the type must be extended, it is sign
2705/// extended.
2706const SCEV *
2707ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
2708                                         Type *Ty) {
2709  Type *SrcTy = V->getType();
2710  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2711         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2712         "Cannot truncate or zero extend with non-integer arguments!");
2713  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2714    return V;  // No conversion
2715  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2716    return getTruncateExpr(V, Ty);
2717  return getSignExtendExpr(V, Ty);
2718}
2719
2720/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2721/// input value to the specified type.  If the type must be extended, it is zero
2722/// extended.  The conversion must not be narrowing.
2723const SCEV *
2724ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
2725  Type *SrcTy = V->getType();
2726  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2727         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2728         "Cannot noop or zero extend with non-integer arguments!");
2729  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2730         "getNoopOrZeroExtend cannot truncate!");
2731  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2732    return V;  // No conversion
2733  return getZeroExtendExpr(V, Ty);
2734}
2735
2736/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2737/// input value to the specified type.  If the type must be extended, it is sign
2738/// extended.  The conversion must not be narrowing.
2739const SCEV *
2740ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
2741  Type *SrcTy = V->getType();
2742  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2743         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2744         "Cannot noop or sign extend with non-integer arguments!");
2745  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2746         "getNoopOrSignExtend cannot truncate!");
2747  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2748    return V;  // No conversion
2749  return getSignExtendExpr(V, Ty);
2750}
2751
2752/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2753/// the input value to the specified type. If the type must be extended,
2754/// it is extended with unspecified bits. The conversion must not be
2755/// narrowing.
2756const SCEV *
2757ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
2758  Type *SrcTy = V->getType();
2759  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2760         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2761         "Cannot noop or any extend with non-integer arguments!");
2762  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2763         "getNoopOrAnyExtend cannot truncate!");
2764  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2765    return V;  // No conversion
2766  return getAnyExtendExpr(V, Ty);
2767}
2768
2769/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2770/// input value to the specified type.  The conversion must not be widening.
2771const SCEV *
2772ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
2773  Type *SrcTy = V->getType();
2774  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2775         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2776         "Cannot truncate or noop with non-integer arguments!");
2777  assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2778         "getTruncateOrNoop cannot extend!");
2779  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2780    return V;  // No conversion
2781  return getTruncateExpr(V, Ty);
2782}
2783
2784/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2785/// the types using zero-extension, and then perform a umax operation
2786/// with them.
2787const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2788                                                        const SCEV *RHS) {
2789  const SCEV *PromotedLHS = LHS;
2790  const SCEV *PromotedRHS = RHS;
2791
2792  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2793    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2794  else
2795    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2796
2797  return getUMaxExpr(PromotedLHS, PromotedRHS);
2798}
2799
2800/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2801/// the types using zero-extension, and then perform a umin operation
2802/// with them.
2803const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2804                                                        const SCEV *RHS) {
2805  const SCEV *PromotedLHS = LHS;
2806  const SCEV *PromotedRHS = RHS;
2807
2808  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2809    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2810  else
2811    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2812
2813  return getUMinExpr(PromotedLHS, PromotedRHS);
2814}
2815
2816/// getPointerBase - Transitively follow the chain of pointer-type operands
2817/// until reaching a SCEV that does not have a single pointer operand. This
2818/// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
2819/// but corner cases do exist.
2820const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
2821  // A pointer operand may evaluate to a nonpointer expression, such as null.
2822  if (!V->getType()->isPointerTy())
2823    return V;
2824
2825  if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
2826    return getPointerBase(Cast->getOperand());
2827  }
2828  else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
2829    const SCEV *PtrOp = 0;
2830    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
2831         I != E; ++I) {
2832      if ((*I)->getType()->isPointerTy()) {
2833        // Cannot find the base of an expression with multiple pointer operands.
2834        if (PtrOp)
2835          return V;
2836        PtrOp = *I;
2837      }
2838    }
2839    if (!PtrOp)
2840      return V;
2841    return getPointerBase(PtrOp);
2842  }
2843  return V;
2844}
2845
2846/// PushDefUseChildren - Push users of the given Instruction
2847/// onto the given Worklist.
2848static void
2849PushDefUseChildren(Instruction *I,
2850                   SmallVectorImpl<Instruction *> &Worklist) {
2851  // Push the def-use children onto the Worklist stack.
2852  for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2853       UI != UE; ++UI)
2854    Worklist.push_back(cast<Instruction>(*UI));
2855}
2856
2857/// ForgetSymbolicValue - This looks up computed SCEV values for all
2858/// instructions that depend on the given instruction and removes them from
2859/// the ValueExprMapType map if they reference SymName. This is used during PHI
2860/// resolution.
2861void
2862ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
2863  SmallVector<Instruction *, 16> Worklist;
2864  PushDefUseChildren(PN, Worklist);
2865
2866  SmallPtrSet<Instruction *, 8> Visited;
2867  Visited.insert(PN);
2868  while (!Worklist.empty()) {
2869    Instruction *I = Worklist.pop_back_val();
2870    if (!Visited.insert(I)) continue;
2871
2872    ValueExprMapType::iterator It =
2873      ValueExprMap.find(static_cast<Value *>(I));
2874    if (It != ValueExprMap.end()) {
2875      const SCEV *Old = It->second;
2876
2877      // Short-circuit the def-use traversal if the symbolic name
2878      // ceases to appear in expressions.
2879      if (Old != SymName && !hasOperand(Old, SymName))
2880        continue;
2881
2882      // SCEVUnknown for a PHI either means that it has an unrecognized
2883      // structure, it's a PHI that's in the progress of being computed
2884      // by createNodeForPHI, or it's a single-value PHI. In the first case,
2885      // additional loop trip count information isn't going to change anything.
2886      // In the second case, createNodeForPHI will perform the necessary
2887      // updates on its own when it gets to that point. In the third, we do
2888      // want to forget the SCEVUnknown.
2889      if (!isa<PHINode>(I) ||
2890          !isa<SCEVUnknown>(Old) ||
2891          (I != PN && Old == SymName)) {
2892        forgetMemoizedResults(Old);
2893        ValueExprMap.erase(It);
2894      }
2895    }
2896
2897    PushDefUseChildren(I, Worklist);
2898  }
2899}
2900
2901/// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
2902/// a loop header, making it a potential recurrence, or it doesn't.
2903///
2904const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
2905  if (const Loop *L = LI->getLoopFor(PN->getParent()))
2906    if (L->getHeader() == PN->getParent()) {
2907      // The loop may have multiple entrances or multiple exits; we can analyze
2908      // this phi as an addrec if it has a unique entry value and a unique
2909      // backedge value.
2910      Value *BEValueV = 0, *StartValueV = 0;
2911      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2912        Value *V = PN->getIncomingValue(i);
2913        if (L->contains(PN->getIncomingBlock(i))) {
2914          if (!BEValueV) {
2915            BEValueV = V;
2916          } else if (BEValueV != V) {
2917            BEValueV = 0;
2918            break;
2919          }
2920        } else if (!StartValueV) {
2921          StartValueV = V;
2922        } else if (StartValueV != V) {
2923          StartValueV = 0;
2924          break;
2925        }
2926      }
2927      if (BEValueV && StartValueV) {
2928        // While we are analyzing this PHI node, handle its value symbolically.
2929        const SCEV *SymbolicName = getUnknown(PN);
2930        assert(ValueExprMap.find(PN) == ValueExprMap.end() &&
2931               "PHI node already processed?");
2932        ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
2933
2934        // Using this symbolic name for the PHI, analyze the value coming around
2935        // the back-edge.
2936        const SCEV *BEValue = getSCEV(BEValueV);
2937
2938        // NOTE: If BEValue is loop invariant, we know that the PHI node just
2939        // has a special value for the first iteration of the loop.
2940
2941        // If the value coming around the backedge is an add with the symbolic
2942        // value we just inserted, then we found a simple induction variable!
2943        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
2944          // If there is a single occurrence of the symbolic value, replace it
2945          // with a recurrence.
2946          unsigned FoundIndex = Add->getNumOperands();
2947          for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2948            if (Add->getOperand(i) == SymbolicName)
2949              if (FoundIndex == e) {
2950                FoundIndex = i;
2951                break;
2952              }
2953
2954          if (FoundIndex != Add->getNumOperands()) {
2955            // Create an add with everything but the specified operand.
2956            SmallVector<const SCEV *, 8> Ops;
2957            for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2958              if (i != FoundIndex)
2959                Ops.push_back(Add->getOperand(i));
2960            const SCEV *Accum = getAddExpr(Ops);
2961
2962            // This is not a valid addrec if the step amount is varying each
2963            // loop iteration, but is not itself an addrec in this loop.
2964            if (isLoopInvariant(Accum, L) ||
2965                (isa<SCEVAddRecExpr>(Accum) &&
2966                 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
2967              SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
2968
2969              // If the increment doesn't overflow, then neither the addrec nor
2970              // the post-increment will overflow.
2971              if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
2972                if (OBO->hasNoUnsignedWrap())
2973                  Flags = setFlags(Flags, SCEV::FlagNUW);
2974                if (OBO->hasNoSignedWrap())
2975                  Flags = setFlags(Flags, SCEV::FlagNSW);
2976              } else if (const GEPOperator *GEP =
2977                         dyn_cast<GEPOperator>(BEValueV)) {
2978                // If the increment is an inbounds GEP, then we know the address
2979                // space cannot be wrapped around. We cannot make any guarantee
2980                // about signed or unsigned overflow because pointers are
2981                // unsigned but we may have a negative index from the base
2982                // pointer.
2983                if (GEP->isInBounds())
2984                  Flags = setFlags(Flags, SCEV::FlagNW);
2985              }
2986
2987              const SCEV *StartVal = getSCEV(StartValueV);
2988              const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
2989
2990              // Since the no-wrap flags are on the increment, they apply to the
2991              // post-incremented value as well.
2992              if (isLoopInvariant(Accum, L))
2993                (void)getAddRecExpr(getAddExpr(StartVal, Accum),
2994                                    Accum, L, Flags);
2995
2996              // Okay, for the entire analysis of this edge we assumed the PHI
2997              // to be symbolic.  We now need to go back and purge all of the
2998              // entries for the scalars that use the symbolic expression.
2999              ForgetSymbolicName(PN, SymbolicName);
3000              ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
3001              return PHISCEV;
3002            }
3003          }
3004        } else if (const SCEVAddRecExpr *AddRec =
3005                     dyn_cast<SCEVAddRecExpr>(BEValue)) {
3006          // Otherwise, this could be a loop like this:
3007          //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
3008          // In this case, j = {1,+,1}  and BEValue is j.
3009          // Because the other in-value of i (0) fits the evolution of BEValue
3010          // i really is an addrec evolution.
3011          if (AddRec->getLoop() == L && AddRec->isAffine()) {
3012            const SCEV *StartVal = getSCEV(StartValueV);
3013
3014            // If StartVal = j.start - j.stride, we can use StartVal as the
3015            // initial step of the addrec evolution.
3016            if (StartVal == getMinusSCEV(AddRec->getOperand(0),
3017                                         AddRec->getOperand(1))) {
3018              // FIXME: For constant StartVal, we should be able to infer
3019              // no-wrap flags.
3020              const SCEV *PHISCEV =
3021                getAddRecExpr(StartVal, AddRec->getOperand(1), L,
3022                              SCEV::FlagAnyWrap);
3023
3024              // Okay, for the entire analysis of this edge we assumed the PHI
3025              // to be symbolic.  We now need to go back and purge all of the
3026              // entries for the scalars that use the symbolic expression.
3027              ForgetSymbolicName(PN, SymbolicName);
3028              ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
3029              return PHISCEV;
3030            }
3031          }
3032        }
3033      }
3034    }
3035
3036  // If the PHI has a single incoming value, follow that value, unless the
3037  // PHI's incoming blocks are in a different loop, in which case doing so
3038  // risks breaking LCSSA form. Instcombine would normally zap these, but
3039  // it doesn't have DominatorTree information, so it may miss cases.
3040  if (Value *V = SimplifyInstruction(PN, TD, DT))
3041    if (LI->replacementPreservesLCSSAForm(PN, V))
3042      return getSCEV(V);
3043
3044  // If it's not a loop phi, we can't handle it yet.
3045  return getUnknown(PN);
3046}
3047
3048/// createNodeForGEP - Expand GEP instructions into add and multiply
3049/// operations. This allows them to be analyzed by regular SCEV code.
3050///
3051const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
3052
3053  // Don't blindly transfer the inbounds flag from the GEP instruction to the
3054  // Add expression, because the Instruction may be guarded by control flow
3055  // and the no-overflow bits may not be valid for the expression in any
3056  // context.
3057  bool isInBounds = GEP->isInBounds();
3058
3059  Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
3060  Value *Base = GEP->getOperand(0);
3061  // Don't attempt to analyze GEPs over unsized objects.
3062  if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
3063    return getUnknown(GEP);
3064  const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
3065  gep_type_iterator GTI = gep_type_begin(GEP);
3066  for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()),
3067                                      E = GEP->op_end();
3068       I != E; ++I) {
3069    Value *Index = *I;
3070    // Compute the (potentially symbolic) offset in bytes for this index.
3071    if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
3072      // For a struct, add the member offset.
3073      unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
3074      const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo);
3075
3076      // Add the field offset to the running total offset.
3077      TotalOffset = getAddExpr(TotalOffset, FieldOffset);
3078    } else {
3079      // For an array, add the element offset, explicitly scaled.
3080      const SCEV *ElementSize = getSizeOfExpr(*GTI);
3081      const SCEV *IndexS = getSCEV(Index);
3082      // Getelementptr indices are signed.
3083      IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
3084
3085      // Multiply the index by the element size to compute the element offset.
3086      const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize,
3087                                           isInBounds ? SCEV::FlagNSW :
3088                                           SCEV::FlagAnyWrap);
3089
3090      // Add the element offset to the running total offset.
3091      TotalOffset = getAddExpr(TotalOffset, LocalOffset);
3092    }
3093  }
3094
3095  // Get the SCEV for the GEP base.
3096  const SCEV *BaseS = getSCEV(Base);
3097
3098  // Add the total offset from all the GEP indices to the base.
3099  return getAddExpr(BaseS, TotalOffset,
3100                    isInBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap);
3101}
3102
3103/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
3104/// guaranteed to end in (at every loop iteration).  It is, at the same time,
3105/// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
3106/// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
3107uint32_t
3108ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
3109  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3110    return C->getValue()->getValue().countTrailingZeros();
3111
3112  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
3113    return std::min(GetMinTrailingZeros(T->getOperand()),
3114                    (uint32_t)getTypeSizeInBits(T->getType()));
3115
3116  if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
3117    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3118    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3119             getTypeSizeInBits(E->getType()) : OpRes;
3120  }
3121
3122  if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
3123    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3124    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3125             getTypeSizeInBits(E->getType()) : OpRes;
3126  }
3127
3128  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
3129    // The result is the min of all operands results.
3130    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
3131    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
3132      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
3133    return MinOpRes;
3134  }
3135
3136  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
3137    // The result is the sum of all operands results.
3138    uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
3139    uint32_t BitWidth = getTypeSizeInBits(M->getType());
3140    for (unsigned i = 1, e = M->getNumOperands();
3141         SumOpRes != BitWidth && i != e; ++i)
3142      SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
3143                          BitWidth);
3144    return SumOpRes;
3145  }
3146
3147  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
3148    // The result is the min of all operands results.
3149    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
3150    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
3151      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
3152    return MinOpRes;
3153  }
3154
3155  if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
3156    // The result is the min of all operands results.
3157    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
3158    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
3159      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
3160    return MinOpRes;
3161  }
3162
3163  if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
3164    // The result is the min of all operands results.
3165    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
3166    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
3167      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
3168    return MinOpRes;
3169  }
3170
3171  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3172    // For a SCEVUnknown, ask ValueTracking.
3173    unsigned BitWidth = getTypeSizeInBits(U->getType());
3174    APInt Mask = APInt::getAllOnesValue(BitWidth);
3175    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3176    ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
3177    return Zeros.countTrailingOnes();
3178  }
3179
3180  // SCEVUDivExpr
3181  return 0;
3182}
3183
3184/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
3185///
3186ConstantRange
3187ScalarEvolution::getUnsignedRange(const SCEV *S) {
3188  // See if we've computed this range already.
3189  DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
3190  if (I != UnsignedRanges.end())
3191    return I->second;
3192
3193  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3194    return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
3195
3196  unsigned BitWidth = getTypeSizeInBits(S->getType());
3197  ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3198
3199  // If the value has known zeros, the maximum unsigned value will have those
3200  // known zeros as well.
3201  uint32_t TZ = GetMinTrailingZeros(S);
3202  if (TZ != 0)
3203    ConservativeResult =
3204      ConstantRange(APInt::getMinValue(BitWidth),
3205                    APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3206
3207  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3208    ConstantRange X = getUnsignedRange(Add->getOperand(0));
3209    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3210      X = X.add(getUnsignedRange(Add->getOperand(i)));
3211    return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
3212  }
3213
3214  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3215    ConstantRange X = getUnsignedRange(Mul->getOperand(0));
3216    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3217      X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
3218    return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
3219  }
3220
3221  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3222    ConstantRange X = getUnsignedRange(SMax->getOperand(0));
3223    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3224      X = X.smax(getUnsignedRange(SMax->getOperand(i)));
3225    return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
3226  }
3227
3228  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3229    ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3230    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3231      X = X.umax(getUnsignedRange(UMax->getOperand(i)));
3232    return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
3233  }
3234
3235  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3236    ConstantRange X = getUnsignedRange(UDiv->getLHS());
3237    ConstantRange Y = getUnsignedRange(UDiv->getRHS());
3238    return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
3239  }
3240
3241  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3242    ConstantRange X = getUnsignedRange(ZExt->getOperand());
3243    return setUnsignedRange(ZExt,
3244      ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
3245  }
3246
3247  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3248    ConstantRange X = getUnsignedRange(SExt->getOperand());
3249    return setUnsignedRange(SExt,
3250      ConservativeResult.intersectWith(X.signExtend(BitWidth)));
3251  }
3252
3253  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3254    ConstantRange X = getUnsignedRange(Trunc->getOperand());
3255    return setUnsignedRange(Trunc,
3256      ConservativeResult.intersectWith(X.truncate(BitWidth)));
3257  }
3258
3259  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
3260    // If there's no unsigned wrap, the value will never be less than its
3261    // initial value.
3262    if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
3263      if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
3264        if (!C->getValue()->isZero())
3265          ConservativeResult =
3266            ConservativeResult.intersectWith(
3267              ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
3268
3269    // TODO: non-affine addrec
3270    if (AddRec->isAffine()) {
3271      Type *Ty = AddRec->getType();
3272      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
3273      if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3274          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
3275        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3276
3277        const SCEV *Start = AddRec->getStart();
3278        const SCEV *Step = AddRec->getStepRecurrence(*this);
3279
3280        ConstantRange StartRange = getUnsignedRange(Start);
3281        ConstantRange StepRange = getSignedRange(Step);
3282        ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3283        ConstantRange EndRange =
3284          StartRange.add(MaxBECountRange.multiply(StepRange));
3285
3286        // Check for overflow. This must be done with ConstantRange arithmetic
3287        // because we could be called from within the ScalarEvolution overflow
3288        // checking code.
3289        ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3290        ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3291        ConstantRange ExtMaxBECountRange =
3292          MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3293        ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3294        if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3295            ExtEndRange)
3296          return setUnsignedRange(AddRec, ConservativeResult);
3297
3298        APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3299                                   EndRange.getUnsignedMin());
3300        APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3301                                   EndRange.getUnsignedMax());
3302        if (Min.isMinValue() && Max.isMaxValue())
3303          return setUnsignedRange(AddRec, ConservativeResult);
3304        return setUnsignedRange(AddRec,
3305          ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
3306      }
3307    }
3308
3309    return setUnsignedRange(AddRec, ConservativeResult);
3310  }
3311
3312  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3313    // For a SCEVUnknown, ask ValueTracking.
3314    APInt Mask = APInt::getAllOnesValue(BitWidth);
3315    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3316    ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
3317    if (Ones == ~Zeros + 1)
3318      return setUnsignedRange(U, ConservativeResult);
3319    return setUnsignedRange(U,
3320      ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
3321  }
3322
3323  return setUnsignedRange(S, ConservativeResult);
3324}
3325
3326/// getSignedRange - Determine the signed range for a particular SCEV.
3327///
3328ConstantRange
3329ScalarEvolution::getSignedRange(const SCEV *S) {
3330  // See if we've computed this range already.
3331  DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
3332  if (I != SignedRanges.end())
3333    return I->second;
3334
3335  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3336    return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
3337
3338  unsigned BitWidth = getTypeSizeInBits(S->getType());
3339  ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3340
3341  // If the value has known zeros, the maximum signed value will have those
3342  // known zeros as well.
3343  uint32_t TZ = GetMinTrailingZeros(S);
3344  if (TZ != 0)
3345    ConservativeResult =
3346      ConstantRange(APInt::getSignedMinValue(BitWidth),
3347                    APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3348
3349  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3350    ConstantRange X = getSignedRange(Add->getOperand(0));
3351    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3352      X = X.add(getSignedRange(Add->getOperand(i)));
3353    return setSignedRange(Add, ConservativeResult.intersectWith(X));
3354  }
3355
3356  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3357    ConstantRange X = getSignedRange(Mul->getOperand(0));
3358    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3359      X = X.multiply(getSignedRange(Mul->getOperand(i)));
3360    return setSignedRange(Mul, ConservativeResult.intersectWith(X));
3361  }
3362
3363  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3364    ConstantRange X = getSignedRange(SMax->getOperand(0));
3365    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3366      X = X.smax(getSignedRange(SMax->getOperand(i)));
3367    return setSignedRange(SMax, ConservativeResult.intersectWith(X));
3368  }
3369
3370  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3371    ConstantRange X = getSignedRange(UMax->getOperand(0));
3372    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3373      X = X.umax(getSignedRange(UMax->getOperand(i)));
3374    return setSignedRange(UMax, ConservativeResult.intersectWith(X));
3375  }
3376
3377  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3378    ConstantRange X = getSignedRange(UDiv->getLHS());
3379    ConstantRange Y = getSignedRange(UDiv->getRHS());
3380    return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
3381  }
3382
3383  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3384    ConstantRange X = getSignedRange(ZExt->getOperand());
3385    return setSignedRange(ZExt,
3386      ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
3387  }
3388
3389  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3390    ConstantRange X = getSignedRange(SExt->getOperand());
3391    return setSignedRange(SExt,
3392      ConservativeResult.intersectWith(X.signExtend(BitWidth)));
3393  }
3394
3395  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3396    ConstantRange X = getSignedRange(Trunc->getOperand());
3397    return setSignedRange(Trunc,
3398      ConservativeResult.intersectWith(X.truncate(BitWidth)));
3399  }
3400
3401  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
3402    // If there's no signed wrap, and all the operands have the same sign or
3403    // zero, the value won't ever change sign.
3404    if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
3405      bool AllNonNeg = true;
3406      bool AllNonPos = true;
3407      for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3408        if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3409        if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3410      }
3411      if (AllNonNeg)
3412        ConservativeResult = ConservativeResult.intersectWith(
3413          ConstantRange(APInt(BitWidth, 0),
3414                        APInt::getSignedMinValue(BitWidth)));
3415      else if (AllNonPos)
3416        ConservativeResult = ConservativeResult.intersectWith(
3417          ConstantRange(APInt::getSignedMinValue(BitWidth),
3418                        APInt(BitWidth, 1)));
3419    }
3420
3421    // TODO: non-affine addrec
3422    if (AddRec->isAffine()) {
3423      Type *Ty = AddRec->getType();
3424      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
3425      if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3426          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
3427        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3428
3429        const SCEV *Start = AddRec->getStart();
3430        const SCEV *Step = AddRec->getStepRecurrence(*this);
3431
3432        ConstantRange StartRange = getSignedRange(Start);
3433        ConstantRange StepRange = getSignedRange(Step);
3434        ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3435        ConstantRange EndRange =
3436          StartRange.add(MaxBECountRange.multiply(StepRange));
3437
3438        // Check for overflow. This must be done with ConstantRange arithmetic
3439        // because we could be called from within the ScalarEvolution overflow
3440        // checking code.
3441        ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3442        ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3443        ConstantRange ExtMaxBECountRange =
3444          MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3445        ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3446        if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3447            ExtEndRange)
3448          return setSignedRange(AddRec, ConservativeResult);
3449
3450        APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3451                                   EndRange.getSignedMin());
3452        APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3453                                   EndRange.getSignedMax());
3454        if (Min.isMinSignedValue() && Max.isMaxSignedValue())
3455          return setSignedRange(AddRec, ConservativeResult);
3456        return setSignedRange(AddRec,
3457          ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
3458      }
3459    }
3460
3461    return setSignedRange(AddRec, ConservativeResult);
3462  }
3463
3464  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3465    // For a SCEVUnknown, ask ValueTracking.
3466    if (!U->getValue()->getType()->isIntegerTy() && !TD)
3467      return setSignedRange(U, ConservativeResult);
3468    unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3469    if (NS == 1)
3470      return setSignedRange(U, ConservativeResult);
3471    return setSignedRange(U, ConservativeResult.intersectWith(
3472      ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
3473                    APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
3474  }
3475
3476  return setSignedRange(S, ConservativeResult);
3477}
3478
3479/// createSCEV - We know that there is no SCEV for the specified value.
3480/// Analyze the expression.
3481///
3482const SCEV *ScalarEvolution::createSCEV(Value *V) {
3483  if (!isSCEVable(V->getType()))
3484    return getUnknown(V);
3485
3486  unsigned Opcode = Instruction::UserOp1;
3487  if (Instruction *I = dyn_cast<Instruction>(V)) {
3488    Opcode = I->getOpcode();
3489
3490    // Don't attempt to analyze instructions in blocks that aren't
3491    // reachable. Such instructions don't matter, and they aren't required
3492    // to obey basic rules for definitions dominating uses which this
3493    // analysis depends on.
3494    if (!DT->isReachableFromEntry(I->getParent()))
3495      return getUnknown(V);
3496  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
3497    Opcode = CE->getOpcode();
3498  else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3499    return getConstant(CI);
3500  else if (isa<ConstantPointerNull>(V))
3501    return getConstant(V->getType(), 0);
3502  else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3503    return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
3504  else
3505    return getUnknown(V);
3506
3507  Operator *U = cast<Operator>(V);
3508  switch (Opcode) {
3509  case Instruction::Add: {
3510    // The simple thing to do would be to just call getSCEV on both operands
3511    // and call getAddExpr with the result. However if we're looking at a
3512    // bunch of things all added together, this can be quite inefficient,
3513    // because it leads to N-1 getAddExpr calls for N ultimate operands.
3514    // Instead, gather up all the operands and make a single getAddExpr call.
3515    // LLVM IR canonical form means we need only traverse the left operands.
3516    SmallVector<const SCEV *, 4> AddOps;
3517    AddOps.push_back(getSCEV(U->getOperand(1)));
3518    for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
3519      unsigned Opcode = Op->getValueID() - Value::InstructionVal;
3520      if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
3521        break;
3522      U = cast<Operator>(Op);
3523      const SCEV *Op1 = getSCEV(U->getOperand(1));
3524      if (Opcode == Instruction::Sub)
3525        AddOps.push_back(getNegativeSCEV(Op1));
3526      else
3527        AddOps.push_back(Op1);
3528    }
3529    AddOps.push_back(getSCEV(U->getOperand(0)));
3530    return getAddExpr(AddOps);
3531  }
3532  case Instruction::Mul: {
3533    // See the Add code above.
3534    SmallVector<const SCEV *, 4> MulOps;
3535    MulOps.push_back(getSCEV(U->getOperand(1)));
3536    for (Value *Op = U->getOperand(0);
3537         Op->getValueID() == Instruction::Mul + Value::InstructionVal;
3538         Op = U->getOperand(0)) {
3539      U = cast<Operator>(Op);
3540      MulOps.push_back(getSCEV(U->getOperand(1)));
3541    }
3542    MulOps.push_back(getSCEV(U->getOperand(0)));
3543    return getMulExpr(MulOps);
3544  }
3545  case Instruction::UDiv:
3546    return getUDivExpr(getSCEV(U->getOperand(0)),
3547                       getSCEV(U->getOperand(1)));
3548  case Instruction::Sub:
3549    return getMinusSCEV(getSCEV(U->getOperand(0)),
3550                        getSCEV(U->getOperand(1)));
3551  case Instruction::And:
3552    // For an expression like x&255 that merely masks off the high bits,
3553    // use zext(trunc(x)) as the SCEV expression.
3554    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3555      if (CI->isNullValue())
3556        return getSCEV(U->getOperand(1));
3557      if (CI->isAllOnesValue())
3558        return getSCEV(U->getOperand(0));
3559      const APInt &A = CI->getValue();
3560
3561      // Instcombine's ShrinkDemandedConstant may strip bits out of
3562      // constants, obscuring what would otherwise be a low-bits mask.
3563      // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3564      // knew about to reconstruct a low-bits mask value.
3565      unsigned LZ = A.countLeadingZeros();
3566      unsigned BitWidth = A.getBitWidth();
3567      APInt AllOnes = APInt::getAllOnesValue(BitWidth);
3568      APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3569      ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
3570
3571      APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3572
3573      if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
3574        return
3575          getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
3576                                IntegerType::get(getContext(), BitWidth - LZ)),
3577                            U->getType());
3578    }
3579    break;
3580
3581  case Instruction::Or:
3582    // If the RHS of the Or is a constant, we may have something like:
3583    // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
3584    // optimizations will transparently handle this case.
3585    //
3586    // In order for this transformation to be safe, the LHS must be of the
3587    // form X*(2^n) and the Or constant must be less than 2^n.
3588    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3589      const SCEV *LHS = getSCEV(U->getOperand(0));
3590      const APInt &CIVal = CI->getValue();
3591      if (GetMinTrailingZeros(LHS) >=
3592          (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3593        // Build a plain add SCEV.
3594        const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3595        // If the LHS of the add was an addrec and it has no-wrap flags,
3596        // transfer the no-wrap flags, since an or won't introduce a wrap.
3597        if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3598          const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
3599          const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
3600            OldAR->getNoWrapFlags());
3601        }
3602        return S;
3603      }
3604    }
3605    break;
3606  case Instruction::Xor:
3607    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3608      // If the RHS of the xor is a signbit, then this is just an add.
3609      // Instcombine turns add of signbit into xor as a strength reduction step.
3610      if (CI->getValue().isSignBit())
3611        return getAddExpr(getSCEV(U->getOperand(0)),
3612                          getSCEV(U->getOperand(1)));
3613
3614      // If the RHS of xor is -1, then this is a not operation.
3615      if (CI->isAllOnesValue())
3616        return getNotSCEV(getSCEV(U->getOperand(0)));
3617
3618      // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3619      // This is a variant of the check for xor with -1, and it handles
3620      // the case where instcombine has trimmed non-demanded bits out
3621      // of an xor with -1.
3622      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3623        if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3624          if (BO->getOpcode() == Instruction::And &&
3625              LCI->getValue() == CI->getValue())
3626            if (const SCEVZeroExtendExpr *Z =
3627                  dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
3628              Type *UTy = U->getType();
3629              const SCEV *Z0 = Z->getOperand();
3630              Type *Z0Ty = Z0->getType();
3631              unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3632
3633              // If C is a low-bits mask, the zero extend is serving to
3634              // mask off the high bits. Complement the operand and
3635              // re-apply the zext.
3636              if (APIntOps::isMask(Z0TySize, CI->getValue()))
3637                return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3638
3639              // If C is a single bit, it may be in the sign-bit position
3640              // before the zero-extend. In this case, represent the xor
3641              // using an add, which is equivalent, and re-apply the zext.
3642              APInt Trunc = CI->getValue().trunc(Z0TySize);
3643              if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
3644                  Trunc.isSignBit())
3645                return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3646                                         UTy);
3647            }
3648    }
3649    break;
3650
3651  case Instruction::Shl:
3652    // Turn shift left of a constant amount into a multiply.
3653    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3654      uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
3655
3656      // If the shift count is not less than the bitwidth, the result of
3657      // the shift is undefined. Don't try to analyze it, because the
3658      // resolution chosen here may differ from the resolution chosen in
3659      // other parts of the compiler.
3660      if (SA->getValue().uge(BitWidth))
3661        break;
3662
3663      Constant *X = ConstantInt::get(getContext(),
3664        APInt(BitWidth, 1).shl(SA->getZExtValue()));
3665      return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3666    }
3667    break;
3668
3669  case Instruction::LShr:
3670    // Turn logical shift right of a constant into a unsigned divide.
3671    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3672      uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
3673
3674      // If the shift count is not less than the bitwidth, the result of
3675      // the shift is undefined. Don't try to analyze it, because the
3676      // resolution chosen here may differ from the resolution chosen in
3677      // other parts of the compiler.
3678      if (SA->getValue().uge(BitWidth))
3679        break;
3680
3681      Constant *X = ConstantInt::get(getContext(),
3682        APInt(BitWidth, 1).shl(SA->getZExtValue()));
3683      return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3684    }
3685    break;
3686
3687  case Instruction::AShr:
3688    // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3689    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
3690      if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
3691        if (L->getOpcode() == Instruction::Shl &&
3692            L->getOperand(1) == U->getOperand(1)) {
3693          uint64_t BitWidth = getTypeSizeInBits(U->getType());
3694
3695          // If the shift count is not less than the bitwidth, the result of
3696          // the shift is undefined. Don't try to analyze it, because the
3697          // resolution chosen here may differ from the resolution chosen in
3698          // other parts of the compiler.
3699          if (CI->getValue().uge(BitWidth))
3700            break;
3701
3702          uint64_t Amt = BitWidth - CI->getZExtValue();
3703          if (Amt == BitWidth)
3704            return getSCEV(L->getOperand(0));       // shift by zero --> noop
3705          return
3706            getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
3707                                              IntegerType::get(getContext(),
3708                                                               Amt)),
3709                              U->getType());
3710        }
3711    break;
3712
3713  case Instruction::Trunc:
3714    return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
3715
3716  case Instruction::ZExt:
3717    return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3718
3719  case Instruction::SExt:
3720    return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3721
3722  case Instruction::BitCast:
3723    // BitCasts are no-op casts so we just eliminate the cast.
3724    if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
3725      return getSCEV(U->getOperand(0));
3726    break;
3727
3728  // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3729  // lead to pointer expressions which cannot safely be expanded to GEPs,
3730  // because ScalarEvolution doesn't respect the GEP aliasing rules when
3731  // simplifying integer expressions.
3732
3733  case Instruction::GetElementPtr:
3734    return createNodeForGEP(cast<GEPOperator>(U));
3735
3736  case Instruction::PHI:
3737    return createNodeForPHI(cast<PHINode>(U));
3738
3739  case Instruction::Select:
3740    // This could be a smax or umax that was lowered earlier.
3741    // Try to recover it.
3742    if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3743      Value *LHS = ICI->getOperand(0);
3744      Value *RHS = ICI->getOperand(1);
3745      switch (ICI->getPredicate()) {
3746      case ICmpInst::ICMP_SLT:
3747      case ICmpInst::ICMP_SLE:
3748        std::swap(LHS, RHS);
3749        // fall through
3750      case ICmpInst::ICMP_SGT:
3751      case ICmpInst::ICMP_SGE:
3752        // a >s b ? a+x : b+x  ->  smax(a, b)+x
3753        // a >s b ? b+x : a+x  ->  smin(a, b)+x
3754        if (LHS->getType() == U->getType()) {
3755          const SCEV *LS = getSCEV(LHS);
3756          const SCEV *RS = getSCEV(RHS);
3757          const SCEV *LA = getSCEV(U->getOperand(1));
3758          const SCEV *RA = getSCEV(U->getOperand(2));
3759          const SCEV *LDiff = getMinusSCEV(LA, LS);
3760          const SCEV *RDiff = getMinusSCEV(RA, RS);
3761          if (LDiff == RDiff)
3762            return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3763          LDiff = getMinusSCEV(LA, RS);
3764          RDiff = getMinusSCEV(RA, LS);
3765          if (LDiff == RDiff)
3766            return getAddExpr(getSMinExpr(LS, RS), LDiff);
3767        }
3768        break;
3769      case ICmpInst::ICMP_ULT:
3770      case ICmpInst::ICMP_ULE:
3771        std::swap(LHS, RHS);
3772        // fall through
3773      case ICmpInst::ICMP_UGT:
3774      case ICmpInst::ICMP_UGE:
3775        // a >u b ? a+x : b+x  ->  umax(a, b)+x
3776        // a >u b ? b+x : a+x  ->  umin(a, b)+x
3777        if (LHS->getType() == U->getType()) {
3778          const SCEV *LS = getSCEV(LHS);
3779          const SCEV *RS = getSCEV(RHS);
3780          const SCEV *LA = getSCEV(U->getOperand(1));
3781          const SCEV *RA = getSCEV(U->getOperand(2));
3782          const SCEV *LDiff = getMinusSCEV(LA, LS);
3783          const SCEV *RDiff = getMinusSCEV(RA, RS);
3784          if (LDiff == RDiff)
3785            return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3786          LDiff = getMinusSCEV(LA, RS);
3787          RDiff = getMinusSCEV(RA, LS);
3788          if (LDiff == RDiff)
3789            return getAddExpr(getUMinExpr(LS, RS), LDiff);
3790        }
3791        break;
3792      case ICmpInst::ICMP_NE:
3793        // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
3794        if (LHS->getType() == U->getType() &&
3795            isa<ConstantInt>(RHS) &&
3796            cast<ConstantInt>(RHS)->isZero()) {
3797          const SCEV *One = getConstant(LHS->getType(), 1);
3798          const SCEV *LS = getSCEV(LHS);
3799          const SCEV *LA = getSCEV(U->getOperand(1));
3800          const SCEV *RA = getSCEV(U->getOperand(2));
3801          const SCEV *LDiff = getMinusSCEV(LA, LS);
3802          const SCEV *RDiff = getMinusSCEV(RA, One);
3803          if (LDiff == RDiff)
3804            return getAddExpr(getUMaxExpr(One, LS), LDiff);
3805        }
3806        break;
3807      case ICmpInst::ICMP_EQ:
3808        // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
3809        if (LHS->getType() == U->getType() &&
3810            isa<ConstantInt>(RHS) &&
3811            cast<ConstantInt>(RHS)->isZero()) {
3812          const SCEV *One = getConstant(LHS->getType(), 1);
3813          const SCEV *LS = getSCEV(LHS);
3814          const SCEV *LA = getSCEV(U->getOperand(1));
3815          const SCEV *RA = getSCEV(U->getOperand(2));
3816          const SCEV *LDiff = getMinusSCEV(LA, One);
3817          const SCEV *RDiff = getMinusSCEV(RA, LS);
3818          if (LDiff == RDiff)
3819            return getAddExpr(getUMaxExpr(One, LS), LDiff);
3820        }
3821        break;
3822      default:
3823        break;
3824      }
3825    }
3826
3827  default: // We cannot analyze this expression.
3828    break;
3829  }
3830
3831  return getUnknown(V);
3832}
3833
3834
3835
3836//===----------------------------------------------------------------------===//
3837//                   Iteration Count Computation Code
3838//
3839
3840/// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
3841/// normal unsigned value, if possible. Returns 0 if the trip count is unknown
3842/// or not constant. Will also return 0 if the maximum trip count is very large
3843/// (>= 2^32)
3844unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L,
3845                                                    BasicBlock *ExitBlock) {
3846  const SCEVConstant *ExitCount =
3847    dyn_cast<SCEVConstant>(getExitCount(L, ExitBlock));
3848  if (!ExitCount)
3849    return 0;
3850
3851  ConstantInt *ExitConst = ExitCount->getValue();
3852
3853  // Guard against huge trip counts.
3854  if (ExitConst->getValue().getActiveBits() > 32)
3855    return 0;
3856
3857  // In case of integer overflow, this returns 0, which is correct.
3858  return ((unsigned)ExitConst->getZExtValue()) + 1;
3859}
3860
3861/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
3862/// trip count of this loop as a normal unsigned value, if possible. This
3863/// means that the actual trip count is always a multiple of the returned
3864/// value (don't forget the trip count could very well be zero as well!).
3865///
3866/// Returns 1 if the trip count is unknown or not guaranteed to be the
3867/// multiple of a constant (which is also the case if the trip count is simply
3868/// constant, use getSmallConstantTripCount for that case), Will also return 1
3869/// if the trip count is very large (>= 2^32).
3870unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L,
3871                                                       BasicBlock *ExitBlock) {
3872  const SCEV *ExitCount = getExitCount(L, ExitBlock);
3873  if (ExitCount == getCouldNotCompute())
3874    return 1;
3875
3876  // Get the trip count from the BE count by adding 1.
3877  const SCEV *TCMul = getAddExpr(ExitCount,
3878                                 getConstant(ExitCount->getType(), 1));
3879  // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
3880  // to factor simple cases.
3881  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
3882    TCMul = Mul->getOperand(0);
3883
3884  const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
3885  if (!MulC)
3886    return 1;
3887
3888  ConstantInt *Result = MulC->getValue();
3889
3890  // Guard against huge trip counts.
3891  if (!Result || Result->getValue().getActiveBits() > 32)
3892    return 1;
3893
3894  return (unsigned)Result->getZExtValue();
3895}
3896
3897// getExitCount - Get the expression for the number of loop iterations for which
3898// this loop is guaranteed not to exit via ExitintBlock. Otherwise return
3899// SCEVCouldNotCompute.
3900const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
3901  return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
3902}
3903
3904/// getBackedgeTakenCount - If the specified loop has a predictable
3905/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3906/// object. The backedge-taken count is the number of times the loop header
3907/// will be branched to from within the loop. This is one less than the
3908/// trip count of the loop, since it doesn't count the first iteration,
3909/// when the header is branched to from outside the loop.
3910///
3911/// Note that it is not valid to call this method on a loop without a
3912/// loop-invariant backedge-taken count (see
3913/// hasLoopInvariantBackedgeTakenCount).
3914///
3915const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
3916  return getBackedgeTakenInfo(L).getExact(this);
3917}
3918
3919/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3920/// return the least SCEV value that is known never to be less than the
3921/// actual backedge taken count.
3922const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
3923  return getBackedgeTakenInfo(L).getMax(this);
3924}
3925
3926/// PushLoopPHIs - Push PHI nodes in the header of the given loop
3927/// onto the given Worklist.
3928static void
3929PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
3930  BasicBlock *Header = L->getHeader();
3931
3932  // Push all Loop-header PHIs onto the Worklist stack.
3933  for (BasicBlock::iterator I = Header->begin();
3934       PHINode *PN = dyn_cast<PHINode>(I); ++I)
3935    Worklist.push_back(PN);
3936}
3937
3938const ScalarEvolution::BackedgeTakenInfo &
3939ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
3940  // Initially insert an invalid entry for this loop. If the insertion
3941  // succeeds, proceed to actually compute a backedge-taken count and
3942  // update the value. The temporary CouldNotCompute value tells SCEV
3943  // code elsewhere that it shouldn't attempt to request a new
3944  // backedge-taken count, which could result in infinite recursion.
3945  std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
3946    BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
3947  if (!Pair.second)
3948    return Pair.first->second;
3949
3950  // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it
3951  // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
3952  // must be cleared in this scope.
3953  BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L);
3954
3955  if (Result.getExact(this) != getCouldNotCompute()) {
3956    assert(isLoopInvariant(Result.getExact(this), L) &&
3957           isLoopInvariant(Result.getMax(this), L) &&
3958           "Computed backedge-taken count isn't loop invariant for loop!");
3959    ++NumTripCountsComputed;
3960  }
3961  else if (Result.getMax(this) == getCouldNotCompute() &&
3962           isa<PHINode>(L->getHeader()->begin())) {
3963    // Only count loops that have phi nodes as not being computable.
3964    ++NumTripCountsNotComputed;
3965  }
3966
3967  // Now that we know more about the trip count for this loop, forget any
3968  // existing SCEV values for PHI nodes in this loop since they are only
3969  // conservative estimates made without the benefit of trip count
3970  // information. This is similar to the code in forgetLoop, except that
3971  // it handles SCEVUnknown PHI nodes specially.
3972  if (Result.hasAnyInfo()) {
3973    SmallVector<Instruction *, 16> Worklist;
3974    PushLoopPHIs(L, Worklist);
3975
3976    SmallPtrSet<Instruction *, 8> Visited;
3977    while (!Worklist.empty()) {
3978      Instruction *I = Worklist.pop_back_val();
3979      if (!Visited.insert(I)) continue;
3980
3981      ValueExprMapType::iterator It =
3982        ValueExprMap.find(static_cast<Value *>(I));
3983      if (It != ValueExprMap.end()) {
3984        const SCEV *Old = It->second;
3985
3986        // SCEVUnknown for a PHI either means that it has an unrecognized
3987        // structure, or it's a PHI that's in the progress of being computed
3988        // by createNodeForPHI.  In the former case, additional loop trip
3989        // count information isn't going to change anything. In the later
3990        // case, createNodeForPHI will perform the necessary updates on its
3991        // own when it gets to that point.
3992        if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
3993          forgetMemoizedResults(Old);
3994          ValueExprMap.erase(It);
3995        }
3996        if (PHINode *PN = dyn_cast<PHINode>(I))
3997          ConstantEvolutionLoopExitValue.erase(PN);
3998      }
3999
4000      PushDefUseChildren(I, Worklist);
4001    }
4002  }
4003
4004  // Re-lookup the insert position, since the call to
4005  // ComputeBackedgeTakenCount above could result in a
4006  // recusive call to getBackedgeTakenInfo (on a different
4007  // loop), which would invalidate the iterator computed
4008  // earlier.
4009  return BackedgeTakenCounts.find(L)->second = Result;
4010}
4011
4012/// forgetLoop - This method should be called by the client when it has
4013/// changed a loop in a way that may effect ScalarEvolution's ability to
4014/// compute a trip count, or if the loop is deleted.
4015void ScalarEvolution::forgetLoop(const Loop *L) {
4016  // Drop any stored trip count value.
4017  DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
4018    BackedgeTakenCounts.find(L);
4019  if (BTCPos != BackedgeTakenCounts.end()) {
4020    BTCPos->second.clear();
4021    BackedgeTakenCounts.erase(BTCPos);
4022  }
4023
4024  // Drop information about expressions based on loop-header PHIs.
4025  SmallVector<Instruction *, 16> Worklist;
4026  PushLoopPHIs(L, Worklist);
4027
4028  SmallPtrSet<Instruction *, 8> Visited;
4029  while (!Worklist.empty()) {
4030    Instruction *I = Worklist.pop_back_val();
4031    if (!Visited.insert(I)) continue;
4032
4033    ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
4034    if (It != ValueExprMap.end()) {
4035      forgetMemoizedResults(It->second);
4036      ValueExprMap.erase(It);
4037      if (PHINode *PN = dyn_cast<PHINode>(I))
4038        ConstantEvolutionLoopExitValue.erase(PN);
4039    }
4040
4041    PushDefUseChildren(I, Worklist);
4042  }
4043
4044  // Forget all contained loops too, to avoid dangling entries in the
4045  // ValuesAtScopes map.
4046  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
4047    forgetLoop(*I);
4048}
4049
4050/// forgetValue - This method should be called by the client when it has
4051/// changed a value in a way that may effect its value, or which may
4052/// disconnect it from a def-use chain linking it to a loop.
4053void ScalarEvolution::forgetValue(Value *V) {
4054  Instruction *I = dyn_cast<Instruction>(V);
4055  if (!I) return;
4056
4057  // Drop information about expressions based on loop-header PHIs.
4058  SmallVector<Instruction *, 16> Worklist;
4059  Worklist.push_back(I);
4060
4061  SmallPtrSet<Instruction *, 8> Visited;
4062  while (!Worklist.empty()) {
4063    I = Worklist.pop_back_val();
4064    if (!Visited.insert(I)) continue;
4065
4066    ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
4067    if (It != ValueExprMap.end()) {
4068      forgetMemoizedResults(It->second);
4069      ValueExprMap.erase(It);
4070      if (PHINode *PN = dyn_cast<PHINode>(I))
4071        ConstantEvolutionLoopExitValue.erase(PN);
4072    }
4073
4074    PushDefUseChildren(I, Worklist);
4075  }
4076}
4077
4078/// getExact - Get the exact loop backedge taken count considering all loop
4079/// exits. If all exits are computable, this is the minimum computed count.
4080const SCEV *
4081ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
4082  // If any exits were not computable, the loop is not computable.
4083  if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
4084
4085  // We need at least one computable exit.
4086  if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
4087  assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
4088
4089  const SCEV *BECount = 0;
4090  for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4091       ENT != 0; ENT = ENT->getNextExit()) {
4092
4093    assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
4094
4095    if (!BECount)
4096      BECount = ENT->ExactNotTaken;
4097    else
4098      BECount = SE->getUMinFromMismatchedTypes(BECount, ENT->ExactNotTaken);
4099  }
4100  assert(BECount && "Invalid not taken count for loop exit");
4101  return BECount;
4102}
4103
4104/// getExact - Get the exact not taken count for this loop exit.
4105const SCEV *
4106ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
4107                                             ScalarEvolution *SE) const {
4108  for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4109       ENT != 0; ENT = ENT->getNextExit()) {
4110
4111    if (ENT->ExitingBlock == ExitingBlock)
4112      return ENT->ExactNotTaken;
4113  }
4114  return SE->getCouldNotCompute();
4115}
4116
4117/// getMax - Get the max backedge taken count for the loop.
4118const SCEV *
4119ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
4120  return Max ? Max : SE->getCouldNotCompute();
4121}
4122
4123/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
4124/// computable exit into a persistent ExitNotTakenInfo array.
4125ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
4126  SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
4127  bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
4128
4129  if (!Complete)
4130    ExitNotTaken.setIncomplete();
4131
4132  unsigned NumExits = ExitCounts.size();
4133  if (NumExits == 0) return;
4134
4135  ExitNotTaken.ExitingBlock = ExitCounts[0].first;
4136  ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
4137  if (NumExits == 1) return;
4138
4139  // Handle the rare case of multiple computable exits.
4140  ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
4141
4142  ExitNotTakenInfo *PrevENT = &ExitNotTaken;
4143  for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
4144    PrevENT->setNextExit(ENT);
4145    ENT->ExitingBlock = ExitCounts[i].first;
4146    ENT->ExactNotTaken = ExitCounts[i].second;
4147  }
4148}
4149
4150/// clear - Invalidate this result and free the ExitNotTakenInfo array.
4151void ScalarEvolution::BackedgeTakenInfo::clear() {
4152  ExitNotTaken.ExitingBlock = 0;
4153  ExitNotTaken.ExactNotTaken = 0;
4154  delete[] ExitNotTaken.getNextExit();
4155}
4156
4157/// ComputeBackedgeTakenCount - Compute the number of times the backedge
4158/// of the specified loop will execute.
4159ScalarEvolution::BackedgeTakenInfo
4160ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
4161  SmallVector<BasicBlock *, 8> ExitingBlocks;
4162  L->getExitingBlocks(ExitingBlocks);
4163
4164  // Examine all exits and pick the most conservative values.
4165  const SCEV *MaxBECount = getCouldNotCompute();
4166  bool CouldComputeBECount = true;
4167  SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
4168  for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
4169    ExitLimit EL = ComputeExitLimit(L, ExitingBlocks[i]);
4170    if (EL.Exact == getCouldNotCompute())
4171      // We couldn't compute an exact value for this exit, so
4172      // we won't be able to compute an exact value for the loop.
4173      CouldComputeBECount = false;
4174    else
4175      ExitCounts.push_back(std::make_pair(ExitingBlocks[i], EL.Exact));
4176
4177    if (MaxBECount == getCouldNotCompute())
4178      MaxBECount = EL.Max;
4179    else if (EL.Max != getCouldNotCompute())
4180      MaxBECount = getUMinFromMismatchedTypes(MaxBECount, EL.Max);
4181  }
4182
4183  return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
4184}
4185
4186/// ComputeExitLimit - Compute the number of times the backedge of the specified
4187/// loop will execute if it exits via the specified block.
4188ScalarEvolution::ExitLimit
4189ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
4190
4191  // Okay, we've chosen an exiting block.  See what condition causes us to
4192  // exit at this block.
4193  //
4194  // FIXME: we should be able to handle switch instructions (with a single exit)
4195  BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
4196  if (ExitBr == 0) return getCouldNotCompute();
4197  assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
4198
4199  // At this point, we know we have a conditional branch that determines whether
4200  // the loop is exited.  However, we don't know if the branch is executed each
4201  // time through the loop.  If not, then the execution count of the branch will
4202  // not be equal to the trip count of the loop.
4203  //
4204  // Currently we check for this by checking to see if the Exit branch goes to
4205  // the loop header.  If so, we know it will always execute the same number of
4206  // times as the loop.  We also handle the case where the exit block *is* the
4207  // loop header.  This is common for un-rotated loops.
4208  //
4209  // If both of those tests fail, walk up the unique predecessor chain to the
4210  // header, stopping if there is an edge that doesn't exit the loop. If the
4211  // header is reached, the execution count of the branch will be equal to the
4212  // trip count of the loop.
4213  //
4214  //  More extensive analysis could be done to handle more cases here.
4215  //
4216  if (ExitBr->getSuccessor(0) != L->getHeader() &&
4217      ExitBr->getSuccessor(1) != L->getHeader() &&
4218      ExitBr->getParent() != L->getHeader()) {
4219    // The simple checks failed, try climbing the unique predecessor chain
4220    // up to the header.
4221    bool Ok = false;
4222    for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
4223      BasicBlock *Pred = BB->getUniquePredecessor();
4224      if (!Pred)
4225        return getCouldNotCompute();
4226      TerminatorInst *PredTerm = Pred->getTerminator();
4227      for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
4228        BasicBlock *PredSucc = PredTerm->getSuccessor(i);
4229        if (PredSucc == BB)
4230          continue;
4231        // If the predecessor has a successor that isn't BB and isn't
4232        // outside the loop, assume the worst.
4233        if (L->contains(PredSucc))
4234          return getCouldNotCompute();
4235      }
4236      if (Pred == L->getHeader()) {
4237        Ok = true;
4238        break;
4239      }
4240      BB = Pred;
4241    }
4242    if (!Ok)
4243      return getCouldNotCompute();
4244  }
4245
4246  // Proceed to the next level to examine the exit condition expression.
4247  return ComputeExitLimitFromCond(L, ExitBr->getCondition(),
4248                                  ExitBr->getSuccessor(0),
4249                                  ExitBr->getSuccessor(1));
4250}
4251
4252/// ComputeExitLimitFromCond - Compute the number of times the
4253/// backedge of the specified loop will execute if its exit condition
4254/// were a conditional branch of ExitCond, TBB, and FBB.
4255ScalarEvolution::ExitLimit
4256ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
4257                                          Value *ExitCond,
4258                                          BasicBlock *TBB,
4259                                          BasicBlock *FBB) {
4260  // Check if the controlling expression for this loop is an And or Or.
4261  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
4262    if (BO->getOpcode() == Instruction::And) {
4263      // Recurse on the operands of the and.
4264      ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB);
4265      ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB);
4266      const SCEV *BECount = getCouldNotCompute();
4267      const SCEV *MaxBECount = getCouldNotCompute();
4268      if (L->contains(TBB)) {
4269        // Both conditions must be true for the loop to continue executing.
4270        // Choose the less conservative count.
4271        if (EL0.Exact == getCouldNotCompute() ||
4272            EL1.Exact == getCouldNotCompute())
4273          BECount = getCouldNotCompute();
4274        else
4275          BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4276        if (EL0.Max == getCouldNotCompute())
4277          MaxBECount = EL1.Max;
4278        else if (EL1.Max == getCouldNotCompute())
4279          MaxBECount = EL0.Max;
4280        else
4281          MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
4282      } else {
4283        // Both conditions must be true at the same time for the loop to exit.
4284        // For now, be conservative.
4285        assert(L->contains(FBB) && "Loop block has no successor in loop!");
4286        if (EL0.Max == EL1.Max)
4287          MaxBECount = EL0.Max;
4288        if (EL0.Exact == EL1.Exact)
4289          BECount = EL0.Exact;
4290      }
4291
4292      return ExitLimit(BECount, MaxBECount);
4293    }
4294    if (BO->getOpcode() == Instruction::Or) {
4295      // Recurse on the operands of the or.
4296      ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB);
4297      ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB);
4298      const SCEV *BECount = getCouldNotCompute();
4299      const SCEV *MaxBECount = getCouldNotCompute();
4300      if (L->contains(FBB)) {
4301        // Both conditions must be false for the loop to continue executing.
4302        // Choose the less conservative count.
4303        if (EL0.Exact == getCouldNotCompute() ||
4304            EL1.Exact == getCouldNotCompute())
4305          BECount = getCouldNotCompute();
4306        else
4307          BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4308        if (EL0.Max == getCouldNotCompute())
4309          MaxBECount = EL1.Max;
4310        else if (EL1.Max == getCouldNotCompute())
4311          MaxBECount = EL0.Max;
4312        else
4313          MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
4314      } else {
4315        // Both conditions must be false at the same time for the loop to exit.
4316        // For now, be conservative.
4317        assert(L->contains(TBB) && "Loop block has no successor in loop!");
4318        if (EL0.Max == EL1.Max)
4319          MaxBECount = EL0.Max;
4320        if (EL0.Exact == EL1.Exact)
4321          BECount = EL0.Exact;
4322      }
4323
4324      return ExitLimit(BECount, MaxBECount);
4325    }
4326  }
4327
4328  // With an icmp, it may be feasible to compute an exact backedge-taken count.
4329  // Proceed to the next level to examine the icmp.
4330  if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
4331    return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB);
4332
4333  // Check for a constant condition. These are normally stripped out by
4334  // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
4335  // preserve the CFG and is temporarily leaving constant conditions
4336  // in place.
4337  if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
4338    if (L->contains(FBB) == !CI->getZExtValue())
4339      // The backedge is always taken.
4340      return getCouldNotCompute();
4341    else
4342      // The backedge is never taken.
4343      return getConstant(CI->getType(), 0);
4344  }
4345
4346  // If it's not an integer or pointer comparison then compute it the hard way.
4347  return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
4348}
4349
4350/// ComputeExitLimitFromICmp - Compute the number of times the
4351/// backedge of the specified loop will execute if its exit condition
4352/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
4353ScalarEvolution::ExitLimit
4354ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
4355                                          ICmpInst *ExitCond,
4356                                          BasicBlock *TBB,
4357                                          BasicBlock *FBB) {
4358
4359  // If the condition was exit on true, convert the condition to exit on false
4360  ICmpInst::Predicate Cond;
4361  if (!L->contains(FBB))
4362    Cond = ExitCond->getPredicate();
4363  else
4364    Cond = ExitCond->getInversePredicate();
4365
4366  // Handle common loops like: for (X = "string"; *X; ++X)
4367  if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
4368    if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
4369      ExitLimit ItCnt =
4370        ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
4371      if (ItCnt.hasAnyInfo())
4372        return ItCnt;
4373    }
4374
4375  const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
4376  const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
4377
4378  // Try to evaluate any dependencies out of the loop.
4379  LHS = getSCEVAtScope(LHS, L);
4380  RHS = getSCEVAtScope(RHS, L);
4381
4382  // At this point, we would like to compute how many iterations of the
4383  // loop the predicate will return true for these inputs.
4384  if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
4385    // If there is a loop-invariant, force it into the RHS.
4386    std::swap(LHS, RHS);
4387    Cond = ICmpInst::getSwappedPredicate(Cond);
4388  }
4389
4390  // Simplify the operands before analyzing them.
4391  (void)SimplifyICmpOperands(Cond, LHS, RHS);
4392
4393  // If we have a comparison of a chrec against a constant, try to use value
4394  // ranges to answer this query.
4395  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
4396    if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
4397      if (AddRec->getLoop() == L) {
4398        // Form the constant range.
4399        ConstantRange CompRange(
4400            ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
4401
4402        const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
4403        if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
4404      }
4405
4406  switch (Cond) {
4407  case ICmpInst::ICMP_NE: {                     // while (X != Y)
4408    // Convert to: while (X-Y != 0)
4409    ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L);
4410    if (EL.hasAnyInfo()) return EL;
4411    break;
4412  }
4413  case ICmpInst::ICMP_EQ: {                     // while (X == Y)
4414    // Convert to: while (X-Y == 0)
4415    ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
4416    if (EL.hasAnyInfo()) return EL;
4417    break;
4418  }
4419  case ICmpInst::ICMP_SLT: {
4420    ExitLimit EL = HowManyLessThans(LHS, RHS, L, true);
4421    if (EL.hasAnyInfo()) return EL;
4422    break;
4423  }
4424  case ICmpInst::ICMP_SGT: {
4425    ExitLimit EL = HowManyLessThans(getNotSCEV(LHS),
4426                                             getNotSCEV(RHS), L, true);
4427    if (EL.hasAnyInfo()) return EL;
4428    break;
4429  }
4430  case ICmpInst::ICMP_ULT: {
4431    ExitLimit EL = HowManyLessThans(LHS, RHS, L, false);
4432    if (EL.hasAnyInfo()) return EL;
4433    break;
4434  }
4435  case ICmpInst::ICMP_UGT: {
4436    ExitLimit EL = HowManyLessThans(getNotSCEV(LHS),
4437                                             getNotSCEV(RHS), L, false);
4438    if (EL.hasAnyInfo()) return EL;
4439    break;
4440  }
4441  default:
4442#if 0
4443    dbgs() << "ComputeBackedgeTakenCount ";
4444    if (ExitCond->getOperand(0)->getType()->isUnsigned())
4445      dbgs() << "[unsigned] ";
4446    dbgs() << *LHS << "   "
4447         << Instruction::getOpcodeName(Instruction::ICmp)
4448         << "   " << *RHS << "\n";
4449#endif
4450    break;
4451  }
4452  return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
4453}
4454
4455static ConstantInt *
4456EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4457                                ScalarEvolution &SE) {
4458  const SCEV *InVal = SE.getConstant(C);
4459  const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
4460  assert(isa<SCEVConstant>(Val) &&
4461         "Evaluation of SCEV at constant didn't fold correctly?");
4462  return cast<SCEVConstant>(Val)->getValue();
4463}
4464
4465/// GetAddressedElementFromGlobal - Given a global variable with an initializer
4466/// and a GEP expression (missing the pointer index) indexing into it, return
4467/// the addressed element of the initializer or null if the index expression is
4468/// invalid.
4469static Constant *
4470GetAddressedElementFromGlobal(GlobalVariable *GV,
4471                              const std::vector<ConstantInt*> &Indices) {
4472  Constant *Init = GV->getInitializer();
4473  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
4474    uint64_t Idx = Indices[i]->getZExtValue();
4475    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
4476      assert(Idx < CS->getNumOperands() && "Bad struct index!");
4477      Init = cast<Constant>(CS->getOperand(Idx));
4478    } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
4479      if (Idx >= CA->getNumOperands()) return 0;  // Bogus program
4480      Init = cast<Constant>(CA->getOperand(Idx));
4481    } else if (isa<ConstantAggregateZero>(Init)) {
4482      if (StructType *STy = dyn_cast<StructType>(Init->getType())) {
4483        assert(Idx < STy->getNumElements() && "Bad struct index!");
4484        Init = Constant::getNullValue(STy->getElementType(Idx));
4485      } else if (ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
4486        if (Idx >= ATy->getNumElements()) return 0;  // Bogus program
4487        Init = Constant::getNullValue(ATy->getElementType());
4488      } else {
4489        llvm_unreachable("Unknown constant aggregate type!");
4490      }
4491      return 0;
4492    } else {
4493      return 0; // Unknown initializer type
4494    }
4495  }
4496  return Init;
4497}
4498
4499/// ComputeLoadConstantCompareExitLimit - Given an exit condition of
4500/// 'icmp op load X, cst', try to see if we can compute the backedge
4501/// execution count.
4502ScalarEvolution::ExitLimit
4503ScalarEvolution::ComputeLoadConstantCompareExitLimit(
4504  LoadInst *LI,
4505  Constant *RHS,
4506  const Loop *L,
4507  ICmpInst::Predicate predicate) {
4508
4509  if (LI->isVolatile()) return getCouldNotCompute();
4510
4511  // Check to see if the loaded pointer is a getelementptr of a global.
4512  // TODO: Use SCEV instead of manually grubbing with GEPs.
4513  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
4514  if (!GEP) return getCouldNotCompute();
4515
4516  // Make sure that it is really a constant global we are gepping, with an
4517  // initializer, and make sure the first IDX is really 0.
4518  GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
4519  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
4520      GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4521      !cast<Constant>(GEP->getOperand(1))->isNullValue())
4522    return getCouldNotCompute();
4523
4524  // Okay, we allow one non-constant index into the GEP instruction.
4525  Value *VarIdx = 0;
4526  std::vector<ConstantInt*> Indexes;
4527  unsigned VarIdxNum = 0;
4528  for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4529    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4530      Indexes.push_back(CI);
4531    } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
4532      if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
4533      VarIdx = GEP->getOperand(i);
4534      VarIdxNum = i-2;
4535      Indexes.push_back(0);
4536    }
4537
4538  // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4539  // Check to see if X is a loop variant variable value now.
4540  const SCEV *Idx = getSCEV(VarIdx);
4541  Idx = getSCEVAtScope(Idx, L);
4542
4543  // We can only recognize very limited forms of loop index expressions, in
4544  // particular, only affine AddRec's like {C1,+,C2}.
4545  const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
4546  if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
4547      !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4548      !isa<SCEVConstant>(IdxExpr->getOperand(1)))
4549    return getCouldNotCompute();
4550
4551  unsigned MaxSteps = MaxBruteForceIterations;
4552  for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
4553    ConstantInt *ItCst = ConstantInt::get(
4554                           cast<IntegerType>(IdxExpr->getType()), IterationNum);
4555    ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
4556
4557    // Form the GEP offset.
4558    Indexes[VarIdxNum] = Val;
4559
4560    Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
4561    if (Result == 0) break;  // Cannot compute!
4562
4563    // Evaluate the condition for this iteration.
4564    Result = ConstantExpr::getICmp(predicate, Result, RHS);
4565    if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
4566    if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
4567#if 0
4568      dbgs() << "\n***\n*** Computed loop count " << *ItCst
4569             << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4570             << "***\n";
4571#endif
4572      ++NumArrayLenItCounts;
4573      return getConstant(ItCst);   // Found terminating iteration!
4574    }
4575  }
4576  return getCouldNotCompute();
4577}
4578
4579
4580/// CanConstantFold - Return true if we can constant fold an instruction of the
4581/// specified type, assuming that all operands were constants.
4582static bool CanConstantFold(const Instruction *I) {
4583  if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
4584      isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
4585    return true;
4586
4587  if (const CallInst *CI = dyn_cast<CallInst>(I))
4588    if (const Function *F = CI->getCalledFunction())
4589      return canConstantFoldCallTo(F);
4590  return false;
4591}
4592
4593/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4594/// in the loop that V is derived from.  We allow arbitrary operations along the
4595/// way, but the operands of an operation must either be constants or a value
4596/// derived from a constant PHI.  If this expression does not fit with these
4597/// constraints, return null.
4598static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
4599  // If this is not an instruction, or if this is an instruction outside of the
4600  // loop, it can't be derived from a loop PHI.
4601  Instruction *I = dyn_cast<Instruction>(V);
4602  if (I == 0 || !L->contains(I)) return 0;
4603
4604  if (PHINode *PN = dyn_cast<PHINode>(I)) {
4605    if (L->getHeader() == I->getParent())
4606      return PN;
4607    else
4608      // We don't currently keep track of the control flow needed to evaluate
4609      // PHIs, so we cannot handle PHIs inside of loops.
4610      return 0;
4611  }
4612
4613  // If we won't be able to constant fold this expression even if the operands
4614  // are constants, return early.
4615  if (!CanConstantFold(I)) return 0;
4616
4617  // Otherwise, we can evaluate this instruction if all of its operands are
4618  // constant or derived from a PHI node themselves.
4619  PHINode *PHI = 0;
4620  for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
4621    if (!isa<Constant>(I->getOperand(Op))) {
4622      PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
4623      if (P == 0) return 0;  // Not evolving from PHI
4624      if (PHI == 0)
4625        PHI = P;
4626      else if (PHI != P)
4627        return 0;  // Evolving from multiple different PHIs.
4628    }
4629
4630  // This is a expression evolving from a constant PHI!
4631  return PHI;
4632}
4633
4634/// EvaluateExpression - Given an expression that passes the
4635/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4636/// in the loop has the value PHIVal.  If we can't fold this expression for some
4637/// reason, return null.
4638static Constant *EvaluateExpression(Value *V, Constant *PHIVal,
4639                                    const TargetData *TD) {
4640  if (isa<PHINode>(V)) return PHIVal;
4641  if (Constant *C = dyn_cast<Constant>(V)) return C;
4642  Instruction *I = cast<Instruction>(V);
4643
4644  std::vector<Constant*> Operands(I->getNumOperands());
4645
4646  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4647    Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD);
4648    if (Operands[i] == 0) return 0;
4649  }
4650
4651  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4652    return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
4653                                           Operands[1], TD);
4654  return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, TD);
4655}
4656
4657/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4658/// in the header of its containing loop, we know the loop executes a
4659/// constant number of times, and the PHI node is just a recurrence
4660/// involving constants, fold it.
4661Constant *
4662ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
4663                                                   const APInt &BEs,
4664                                                   const Loop *L) {
4665  DenseMap<PHINode*, Constant*>::const_iterator I =
4666    ConstantEvolutionLoopExitValue.find(PN);
4667  if (I != ConstantEvolutionLoopExitValue.end())
4668    return I->second;
4669
4670  if (BEs.ugt(MaxBruteForceIterations))
4671    return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.
4672
4673  Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4674
4675  // Since the loop is canonicalized, the PHI node must have two entries.  One
4676  // entry must be a constant (coming in from outside of the loop), and the
4677  // second must be derived from the same PHI.
4678  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4679  Constant *StartCST =
4680    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4681  if (StartCST == 0)
4682    return RetVal = 0;  // Must be a constant.
4683
4684  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
4685  if (getConstantEvolvingPHI(BEValue, L) != PN &&
4686      !isa<Constant>(BEValue))
4687    return RetVal = 0;  // Not derived from same PHI.
4688
4689  // Execute the loop symbolically to determine the exit value.
4690  if (BEs.getActiveBits() >= 32)
4691    return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
4692
4693  unsigned NumIterations = BEs.getZExtValue(); // must be in range
4694  unsigned IterationNum = 0;
4695  for (Constant *PHIVal = StartCST; ; ++IterationNum) {
4696    if (IterationNum == NumIterations)
4697      return RetVal = PHIVal;  // Got exit value!
4698
4699    // Compute the value of the PHI node for the next iteration.
4700    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
4701    if (NextPHI == PHIVal)
4702      return RetVal = NextPHI;  // Stopped evolving!
4703    if (NextPHI == 0)
4704      return 0;        // Couldn't evaluate!
4705    PHIVal = NextPHI;
4706  }
4707}
4708
4709/// ComputeExitCountExhaustively - If the loop is known to execute a
4710/// constant number of times (the condition evolves only from constants),
4711/// try to evaluate a few iterations of the loop until we get the exit
4712/// condition gets a value of ExitWhen (true or false).  If we cannot
4713/// evaluate the trip count of the loop, return getCouldNotCompute().
4714const SCEV * ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
4715                                                           Value *Cond,
4716                                                           bool ExitWhen) {
4717  PHINode *PN = getConstantEvolvingPHI(Cond, L);
4718  if (PN == 0) return getCouldNotCompute();
4719
4720  // If the loop is canonicalized, the PHI will have exactly two entries.
4721  // That's the only form we support here.
4722  if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
4723
4724  // One entry must be a constant (coming in from outside of the loop), and the
4725  // second must be derived from the same PHI.
4726  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4727  Constant *StartCST =
4728    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4729  if (StartCST == 0) return getCouldNotCompute();  // Must be a constant.
4730
4731  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
4732  if (getConstantEvolvingPHI(BEValue, L) != PN &&
4733      !isa<Constant>(BEValue))
4734    return getCouldNotCompute();  // Not derived from same PHI.
4735
4736  // Okay, we find a PHI node that defines the trip count of this loop.  Execute
4737  // the loop symbolically to determine when the condition gets a value of
4738  // "ExitWhen".
4739  unsigned IterationNum = 0;
4740  unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
4741  for (Constant *PHIVal = StartCST;
4742       IterationNum != MaxIterations; ++IterationNum) {
4743    ConstantInt *CondVal =
4744      dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD));
4745
4746    // Couldn't symbolically evaluate.
4747    if (!CondVal) return getCouldNotCompute();
4748
4749    if (CondVal->getValue() == uint64_t(ExitWhen)) {
4750      ++NumBruteForceTripCountsComputed;
4751      return getConstant(Type::getInt32Ty(getContext()), IterationNum);
4752    }
4753
4754    // Compute the value of the PHI node for the next iteration.
4755    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
4756    if (NextPHI == 0 || NextPHI == PHIVal)
4757      return getCouldNotCompute();// Couldn't evaluate or not making progress...
4758    PHIVal = NextPHI;
4759  }
4760
4761  // Too many iterations were needed to evaluate.
4762  return getCouldNotCompute();
4763}
4764
4765/// getSCEVAtScope - Return a SCEV expression for the specified value
4766/// at the specified scope in the program.  The L value specifies a loop
4767/// nest to evaluate the expression at, where null is the top-level or a
4768/// specified loop is immediately inside of the loop.
4769///
4770/// This method can be used to compute the exit value for a variable defined
4771/// in a loop by querying what the value will hold in the parent loop.
4772///
4773/// In the case that a relevant loop exit value cannot be computed, the
4774/// original value V is returned.
4775const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
4776  // Check to see if we've folded this expression at this loop before.
4777  std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
4778  std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
4779    Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
4780  if (!Pair.second)
4781    return Pair.first->second ? Pair.first->second : V;
4782
4783  // Otherwise compute it.
4784  const SCEV *C = computeSCEVAtScope(V, L);
4785  ValuesAtScopes[V][L] = C;
4786  return C;
4787}
4788
4789const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
4790  if (isa<SCEVConstant>(V)) return V;
4791
4792  // If this instruction is evolved from a constant-evolving PHI, compute the
4793  // exit value from the loop without using SCEVs.
4794  if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
4795    if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
4796      const Loop *LI = (*this->LI)[I->getParent()];
4797      if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
4798        if (PHINode *PN = dyn_cast<PHINode>(I))
4799          if (PN->getParent() == LI->getHeader()) {
4800            // Okay, there is no closed form solution for the PHI node.  Check
4801            // to see if the loop that contains it has a known backedge-taken
4802            // count.  If so, we may be able to force computation of the exit
4803            // value.
4804            const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
4805            if (const SCEVConstant *BTCC =
4806                  dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
4807              // Okay, we know how many times the containing loop executes.  If
4808              // this is a constant evolving PHI node, get the final value at
4809              // the specified iteration number.
4810              Constant *RV = getConstantEvolutionLoopExitValue(PN,
4811                                                   BTCC->getValue()->getValue(),
4812                                                               LI);
4813              if (RV) return getSCEV(RV);
4814            }
4815          }
4816
4817      // Okay, this is an expression that we cannot symbolically evaluate
4818      // into a SCEV.  Check to see if it's possible to symbolically evaluate
4819      // the arguments into constants, and if so, try to constant propagate the
4820      // result.  This is particularly useful for computing loop exit values.
4821      if (CanConstantFold(I)) {
4822        SmallVector<Constant *, 4> Operands;
4823        bool MadeImprovement = false;
4824        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4825          Value *Op = I->getOperand(i);
4826          if (Constant *C = dyn_cast<Constant>(Op)) {
4827            Operands.push_back(C);
4828            continue;
4829          }
4830
4831          // If any of the operands is non-constant and if they are
4832          // non-integer and non-pointer, don't even try to analyze them
4833          // with scev techniques.
4834          if (!isSCEVable(Op->getType()))
4835            return V;
4836
4837          const SCEV *OrigV = getSCEV(Op);
4838          const SCEV *OpV = getSCEVAtScope(OrigV, L);
4839          MadeImprovement |= OrigV != OpV;
4840
4841          Constant *C = 0;
4842          if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
4843            C = SC->getValue();
4844          if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV))
4845            C = dyn_cast<Constant>(SU->getValue());
4846          if (!C) return V;
4847          if (C->getType() != Op->getType())
4848            C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4849                                                              Op->getType(),
4850                                                              false),
4851                                      C, Op->getType());
4852          Operands.push_back(C);
4853        }
4854
4855        // Check to see if getSCEVAtScope actually made an improvement.
4856        if (MadeImprovement) {
4857          Constant *C = 0;
4858          if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4859            C = ConstantFoldCompareInstOperands(CI->getPredicate(),
4860                                                Operands[0], Operands[1], TD);
4861          else
4862            C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
4863                                         Operands, TD);
4864          if (!C) return V;
4865          return getSCEV(C);
4866        }
4867      }
4868    }
4869
4870    // This is some other type of SCEVUnknown, just return it.
4871    return V;
4872  }
4873
4874  if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
4875    // Avoid performing the look-up in the common case where the specified
4876    // expression has no loop-variant portions.
4877    for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
4878      const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
4879      if (OpAtScope != Comm->getOperand(i)) {
4880        // Okay, at least one of these operands is loop variant but might be
4881        // foldable.  Build a new instance of the folded commutative expression.
4882        SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
4883                                            Comm->op_begin()+i);
4884        NewOps.push_back(OpAtScope);
4885
4886        for (++i; i != e; ++i) {
4887          OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
4888          NewOps.push_back(OpAtScope);
4889        }
4890        if (isa<SCEVAddExpr>(Comm))
4891          return getAddExpr(NewOps);
4892        if (isa<SCEVMulExpr>(Comm))
4893          return getMulExpr(NewOps);
4894        if (isa<SCEVSMaxExpr>(Comm))
4895          return getSMaxExpr(NewOps);
4896        if (isa<SCEVUMaxExpr>(Comm))
4897          return getUMaxExpr(NewOps);
4898        llvm_unreachable("Unknown commutative SCEV type!");
4899      }
4900    }
4901    // If we got here, all operands are loop invariant.
4902    return Comm;
4903  }
4904
4905  if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
4906    const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
4907    const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
4908    if (LHS == Div->getLHS() && RHS == Div->getRHS())
4909      return Div;   // must be loop invariant
4910    return getUDivExpr(LHS, RHS);
4911  }
4912
4913  // If this is a loop recurrence for a loop that does not contain L, then we
4914  // are dealing with the final value computed by the loop.
4915  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
4916    // First, attempt to evaluate each operand.
4917    // Avoid performing the look-up in the common case where the specified
4918    // expression has no loop-variant portions.
4919    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4920      const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
4921      if (OpAtScope == AddRec->getOperand(i))
4922        continue;
4923
4924      // Okay, at least one of these operands is loop variant but might be
4925      // foldable.  Build a new instance of the folded commutative expression.
4926      SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
4927                                          AddRec->op_begin()+i);
4928      NewOps.push_back(OpAtScope);
4929      for (++i; i != e; ++i)
4930        NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
4931
4932      const SCEV *FoldedRec =
4933        getAddRecExpr(NewOps, AddRec->getLoop(),
4934                      AddRec->getNoWrapFlags(SCEV::FlagNW));
4935      AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
4936      // The addrec may be folded to a nonrecurrence, for example, if the
4937      // induction variable is multiplied by zero after constant folding. Go
4938      // ahead and return the folded value.
4939      if (!AddRec)
4940        return FoldedRec;
4941      break;
4942    }
4943
4944    // If the scope is outside the addrec's loop, evaluate it by using the
4945    // loop exit value of the addrec.
4946    if (!AddRec->getLoop()->contains(L)) {
4947      // To evaluate this recurrence, we need to know how many times the AddRec
4948      // loop iterates.  Compute this now.
4949      const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
4950      if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
4951
4952      // Then, evaluate the AddRec.
4953      return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
4954    }
4955
4956    return AddRec;
4957  }
4958
4959  if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
4960    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4961    if (Op == Cast->getOperand())
4962      return Cast;  // must be loop invariant
4963    return getZeroExtendExpr(Op, Cast->getType());
4964  }
4965
4966  if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
4967    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4968    if (Op == Cast->getOperand())
4969      return Cast;  // must be loop invariant
4970    return getSignExtendExpr(Op, Cast->getType());
4971  }
4972
4973  if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
4974    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4975    if (Op == Cast->getOperand())
4976      return Cast;  // must be loop invariant
4977    return getTruncateExpr(Op, Cast->getType());
4978  }
4979
4980  llvm_unreachable("Unknown SCEV type!");
4981  return 0;
4982}
4983
4984/// getSCEVAtScope - This is a convenience function which does
4985/// getSCEVAtScope(getSCEV(V), L).
4986const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
4987  return getSCEVAtScope(getSCEV(V), L);
4988}
4989
4990/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
4991/// following equation:
4992///
4993///     A * X = B (mod N)
4994///
4995/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
4996/// A and B isn't important.
4997///
4998/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
4999static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
5000                                               ScalarEvolution &SE) {
5001  uint32_t BW = A.getBitWidth();
5002  assert(BW == B.getBitWidth() && "Bit widths must be the same.");
5003  assert(A != 0 && "A must be non-zero.");
5004
5005  // 1. D = gcd(A, N)
5006  //
5007  // The gcd of A and N may have only one prime factor: 2. The number of
5008  // trailing zeros in A is its multiplicity
5009  uint32_t Mult2 = A.countTrailingZeros();
5010  // D = 2^Mult2
5011
5012  // 2. Check if B is divisible by D.
5013  //
5014  // B is divisible by D if and only if the multiplicity of prime factor 2 for B
5015  // is not less than multiplicity of this prime factor for D.
5016  if (B.countTrailingZeros() < Mult2)
5017    return SE.getCouldNotCompute();
5018
5019  // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
5020  // modulo (N / D).
5021  //
5022  // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
5023  // bit width during computations.
5024  APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
5025  APInt Mod(BW + 1, 0);
5026  Mod.setBit(BW - Mult2);  // Mod = N / D
5027  APInt I = AD.multiplicativeInverse(Mod);
5028
5029  // 4. Compute the minimum unsigned root of the equation:
5030  // I * (B / D) mod (N / D)
5031  APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
5032
5033  // The result is guaranteed to be less than 2^BW so we may truncate it to BW
5034  // bits.
5035  return SE.getConstant(Result.trunc(BW));
5036}
5037
5038/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
5039/// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
5040/// might be the same) or two SCEVCouldNotCompute objects.
5041///
5042static std::pair<const SCEV *,const SCEV *>
5043SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
5044  assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
5045  const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
5046  const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
5047  const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
5048
5049  // We currently can only solve this if the coefficients are constants.
5050  if (!LC || !MC || !NC) {
5051    const SCEV *CNC = SE.getCouldNotCompute();
5052    return std::make_pair(CNC, CNC);
5053  }
5054
5055  uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
5056  const APInt &L = LC->getValue()->getValue();
5057  const APInt &M = MC->getValue()->getValue();
5058  const APInt &N = NC->getValue()->getValue();
5059  APInt Two(BitWidth, 2);
5060  APInt Four(BitWidth, 4);
5061
5062  {
5063    using namespace APIntOps;
5064    const APInt& C = L;
5065    // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
5066    // The B coefficient is M-N/2
5067    APInt B(M);
5068    B -= sdiv(N,Two);
5069
5070    // The A coefficient is N/2
5071    APInt A(N.sdiv(Two));
5072
5073    // Compute the B^2-4ac term.
5074    APInt SqrtTerm(B);
5075    SqrtTerm *= B;
5076    SqrtTerm -= Four * (A * C);
5077
5078    // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
5079    // integer value or else APInt::sqrt() will assert.
5080    APInt SqrtVal(SqrtTerm.sqrt());
5081
5082    // Compute the two solutions for the quadratic formula.
5083    // The divisions must be performed as signed divisions.
5084    APInt NegB(-B);
5085    APInt TwoA( A << 1 );
5086    if (TwoA.isMinValue()) {
5087      const SCEV *CNC = SE.getCouldNotCompute();
5088      return std::make_pair(CNC, CNC);
5089    }
5090
5091    LLVMContext &Context = SE.getContext();
5092
5093    ConstantInt *Solution1 =
5094      ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
5095    ConstantInt *Solution2 =
5096      ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
5097
5098    return std::make_pair(SE.getConstant(Solution1),
5099                          SE.getConstant(Solution2));
5100    } // end APIntOps namespace
5101}
5102
5103/// HowFarToZero - Return the number of times a backedge comparing the specified
5104/// value to zero will execute.  If not computable, return CouldNotCompute.
5105///
5106/// This is only used for loops with a "x != y" exit test. The exit condition is
5107/// now expressed as a single expression, V = x-y. So the exit test is
5108/// effectively V != 0.  We know and take advantage of the fact that this
5109/// expression only being used in a comparison by zero context.
5110ScalarEvolution::ExitLimit
5111ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
5112  // If the value is a constant
5113  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
5114    // If the value is already zero, the branch will execute zero times.
5115    if (C->getValue()->isZero()) return C;
5116    return getCouldNotCompute();  // Otherwise it will loop infinitely.
5117  }
5118
5119  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
5120  if (!AddRec || AddRec->getLoop() != L)
5121    return getCouldNotCompute();
5122
5123  // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
5124  // the quadratic equation to solve it.
5125  if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
5126    std::pair<const SCEV *,const SCEV *> Roots =
5127      SolveQuadraticEquation(AddRec, *this);
5128    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5129    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
5130    if (R1 && R2) {
5131#if 0
5132      dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
5133             << "  sol#2: " << *R2 << "\n";
5134#endif
5135      // Pick the smallest positive root value.
5136      if (ConstantInt *CB =
5137          dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
5138                                                      R1->getValue(),
5139                                                      R2->getValue()))) {
5140        if (CB->getZExtValue() == false)
5141          std::swap(R1, R2);   // R1 is the minimum root now.
5142
5143        // We can only use this value if the chrec ends up with an exact zero
5144        // value at this index.  When solving for "X*X != 5", for example, we
5145        // should not accept a root of 2.
5146        const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
5147        if (Val->isZero())
5148          return R1;  // We found a quadratic root!
5149      }
5150    }
5151    return getCouldNotCompute();
5152  }
5153
5154  // Otherwise we can only handle this if it is affine.
5155  if (!AddRec->isAffine())
5156    return getCouldNotCompute();
5157
5158  // If this is an affine expression, the execution count of this branch is
5159  // the minimum unsigned root of the following equation:
5160  //
5161  //     Start + Step*N = 0 (mod 2^BW)
5162  //
5163  // equivalent to:
5164  //
5165  //             Step*N = -Start (mod 2^BW)
5166  //
5167  // where BW is the common bit width of Start and Step.
5168
5169  // Get the initial value for the loop.
5170  const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
5171  const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
5172
5173  // For now we handle only constant steps.
5174  //
5175  // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
5176  // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
5177  // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
5178  // We have not yet seen any such cases.
5179  const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
5180  if (StepC == 0)
5181    return getCouldNotCompute();
5182
5183  // For positive steps (counting up until unsigned overflow):
5184  //   N = -Start/Step (as unsigned)
5185  // For negative steps (counting down to zero):
5186  //   N = Start/-Step
5187  // First compute the unsigned distance from zero in the direction of Step.
5188  bool CountDown = StepC->getValue()->getValue().isNegative();
5189  const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
5190
5191  // Handle unitary steps, which cannot wraparound.
5192  // 1*N = -Start; -1*N = Start (mod 2^BW), so:
5193  //   N = Distance (as unsigned)
5194  if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue())
5195    return Distance;
5196
5197  // If the recurrence is known not to wraparound, unsigned divide computes the
5198  // back edge count. We know that the value will either become zero (and thus
5199  // the loop terminates), that the loop will terminate through some other exit
5200  // condition first, or that the loop has undefined behavior.  This means
5201  // we can't "miss" the exit value, even with nonunit stride.
5202  //
5203  // FIXME: Prove that loops always exhibits *acceptable* undefined
5204  // behavior. Loops must exhibit defined behavior until a wrapped value is
5205  // actually used. So the trip count computed by udiv could be smaller than the
5206  // number of well-defined iterations.
5207  if (AddRec->getNoWrapFlags(SCEV::FlagNW))
5208    // FIXME: We really want an "isexact" bit for udiv.
5209    return getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
5210
5211  // Then, try to solve the above equation provided that Start is constant.
5212  if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
5213    return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
5214                                        -StartC->getValue()->getValue(),
5215                                        *this);
5216  return getCouldNotCompute();
5217}
5218
5219/// HowFarToNonZero - Return the number of times a backedge checking the
5220/// specified value for nonzero will execute.  If not computable, return
5221/// CouldNotCompute
5222ScalarEvolution::ExitLimit
5223ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
5224  // Loops that look like: while (X == 0) are very strange indeed.  We don't
5225  // handle them yet except for the trivial case.  This could be expanded in the
5226  // future as needed.
5227
5228  // If the value is a constant, check to see if it is known to be non-zero
5229  // already.  If so, the backedge will execute zero times.
5230  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
5231    if (!C->getValue()->isNullValue())
5232      return getConstant(C->getType(), 0);
5233    return getCouldNotCompute();  // Otherwise it will loop infinitely.
5234  }
5235
5236  // We could implement others, but I really doubt anyone writes loops like
5237  // this, and if they did, they would already be constant folded.
5238  return getCouldNotCompute();
5239}
5240
5241/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
5242/// (which may not be an immediate predecessor) which has exactly one
5243/// successor from which BB is reachable, or null if no such block is
5244/// found.
5245///
5246std::pair<BasicBlock *, BasicBlock *>
5247ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
5248  // If the block has a unique predecessor, then there is no path from the
5249  // predecessor to the block that does not go through the direct edge
5250  // from the predecessor to the block.
5251  if (BasicBlock *Pred = BB->getSinglePredecessor())
5252    return std::make_pair(Pred, BB);
5253
5254  // A loop's header is defined to be a block that dominates the loop.
5255  // If the header has a unique predecessor outside the loop, it must be
5256  // a block that has exactly one successor that can reach the loop.
5257  if (Loop *L = LI->getLoopFor(BB))
5258    return std::make_pair(L->getLoopPredecessor(), L->getHeader());
5259
5260  return std::pair<BasicBlock *, BasicBlock *>();
5261}
5262
5263/// HasSameValue - SCEV structural equivalence is usually sufficient for
5264/// testing whether two expressions are equal, however for the purposes of
5265/// looking for a condition guarding a loop, it can be useful to be a little
5266/// more general, since a front-end may have replicated the controlling
5267/// expression.
5268///
5269static bool HasSameValue(const SCEV *A, const SCEV *B) {
5270  // Quick check to see if they are the same SCEV.
5271  if (A == B) return true;
5272
5273  // Otherwise, if they're both SCEVUnknown, it's possible that they hold
5274  // two different instructions with the same value. Check for this case.
5275  if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
5276    if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
5277      if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
5278        if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
5279          if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
5280            return true;
5281
5282  // Otherwise assume they may have a different value.
5283  return false;
5284}
5285
5286/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
5287/// predicate Pred. Return true iff any changes were made.
5288///
5289bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
5290                                           const SCEV *&LHS, const SCEV *&RHS) {
5291  bool Changed = false;
5292
5293  // Canonicalize a constant to the right side.
5294  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
5295    // Check for both operands constant.
5296    if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
5297      if (ConstantExpr::getICmp(Pred,
5298                                LHSC->getValue(),
5299                                RHSC->getValue())->isNullValue())
5300        goto trivially_false;
5301      else
5302        goto trivially_true;
5303    }
5304    // Otherwise swap the operands to put the constant on the right.
5305    std::swap(LHS, RHS);
5306    Pred = ICmpInst::getSwappedPredicate(Pred);
5307    Changed = true;
5308  }
5309
5310  // If we're comparing an addrec with a value which is loop-invariant in the
5311  // addrec's loop, put the addrec on the left. Also make a dominance check,
5312  // as both operands could be addrecs loop-invariant in each other's loop.
5313  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
5314    const Loop *L = AR->getLoop();
5315    if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
5316      std::swap(LHS, RHS);
5317      Pred = ICmpInst::getSwappedPredicate(Pred);
5318      Changed = true;
5319    }
5320  }
5321
5322  // If there's a constant operand, canonicalize comparisons with boundary
5323  // cases, and canonicalize *-or-equal comparisons to regular comparisons.
5324  if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
5325    const APInt &RA = RC->getValue()->getValue();
5326    switch (Pred) {
5327    default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5328    case ICmpInst::ICMP_EQ:
5329    case ICmpInst::ICMP_NE:
5330      break;
5331    case ICmpInst::ICMP_UGE:
5332      if ((RA - 1).isMinValue()) {
5333        Pred = ICmpInst::ICMP_NE;
5334        RHS = getConstant(RA - 1);
5335        Changed = true;
5336        break;
5337      }
5338      if (RA.isMaxValue()) {
5339        Pred = ICmpInst::ICMP_EQ;
5340        Changed = true;
5341        break;
5342      }
5343      if (RA.isMinValue()) goto trivially_true;
5344
5345      Pred = ICmpInst::ICMP_UGT;
5346      RHS = getConstant(RA - 1);
5347      Changed = true;
5348      break;
5349    case ICmpInst::ICMP_ULE:
5350      if ((RA + 1).isMaxValue()) {
5351        Pred = ICmpInst::ICMP_NE;
5352        RHS = getConstant(RA + 1);
5353        Changed = true;
5354        break;
5355      }
5356      if (RA.isMinValue()) {
5357        Pred = ICmpInst::ICMP_EQ;
5358        Changed = true;
5359        break;
5360      }
5361      if (RA.isMaxValue()) goto trivially_true;
5362
5363      Pred = ICmpInst::ICMP_ULT;
5364      RHS = getConstant(RA + 1);
5365      Changed = true;
5366      break;
5367    case ICmpInst::ICMP_SGE:
5368      if ((RA - 1).isMinSignedValue()) {
5369        Pred = ICmpInst::ICMP_NE;
5370        RHS = getConstant(RA - 1);
5371        Changed = true;
5372        break;
5373      }
5374      if (RA.isMaxSignedValue()) {
5375        Pred = ICmpInst::ICMP_EQ;
5376        Changed = true;
5377        break;
5378      }
5379      if (RA.isMinSignedValue()) goto trivially_true;
5380
5381      Pred = ICmpInst::ICMP_SGT;
5382      RHS = getConstant(RA - 1);
5383      Changed = true;
5384      break;
5385    case ICmpInst::ICMP_SLE:
5386      if ((RA + 1).isMaxSignedValue()) {
5387        Pred = ICmpInst::ICMP_NE;
5388        RHS = getConstant(RA + 1);
5389        Changed = true;
5390        break;
5391      }
5392      if (RA.isMinSignedValue()) {
5393        Pred = ICmpInst::ICMP_EQ;
5394        Changed = true;
5395        break;
5396      }
5397      if (RA.isMaxSignedValue()) goto trivially_true;
5398
5399      Pred = ICmpInst::ICMP_SLT;
5400      RHS = getConstant(RA + 1);
5401      Changed = true;
5402      break;
5403    case ICmpInst::ICMP_UGT:
5404      if (RA.isMinValue()) {
5405        Pred = ICmpInst::ICMP_NE;
5406        Changed = true;
5407        break;
5408      }
5409      if ((RA + 1).isMaxValue()) {
5410        Pred = ICmpInst::ICMP_EQ;
5411        RHS = getConstant(RA + 1);
5412        Changed = true;
5413        break;
5414      }
5415      if (RA.isMaxValue()) goto trivially_false;
5416      break;
5417    case ICmpInst::ICMP_ULT:
5418      if (RA.isMaxValue()) {
5419        Pred = ICmpInst::ICMP_NE;
5420        Changed = true;
5421        break;
5422      }
5423      if ((RA - 1).isMinValue()) {
5424        Pred = ICmpInst::ICMP_EQ;
5425        RHS = getConstant(RA - 1);
5426        Changed = true;
5427        break;
5428      }
5429      if (RA.isMinValue()) goto trivially_false;
5430      break;
5431    case ICmpInst::ICMP_SGT:
5432      if (RA.isMinSignedValue()) {
5433        Pred = ICmpInst::ICMP_NE;
5434        Changed = true;
5435        break;
5436      }
5437      if ((RA + 1).isMaxSignedValue()) {
5438        Pred = ICmpInst::ICMP_EQ;
5439        RHS = getConstant(RA + 1);
5440        Changed = true;
5441        break;
5442      }
5443      if (RA.isMaxSignedValue()) goto trivially_false;
5444      break;
5445    case ICmpInst::ICMP_SLT:
5446      if (RA.isMaxSignedValue()) {
5447        Pred = ICmpInst::ICMP_NE;
5448        Changed = true;
5449        break;
5450      }
5451      if ((RA - 1).isMinSignedValue()) {
5452       Pred = ICmpInst::ICMP_EQ;
5453       RHS = getConstant(RA - 1);
5454        Changed = true;
5455       break;
5456      }
5457      if (RA.isMinSignedValue()) goto trivially_false;
5458      break;
5459    }
5460  }
5461
5462  // Check for obvious equality.
5463  if (HasSameValue(LHS, RHS)) {
5464    if (ICmpInst::isTrueWhenEqual(Pred))
5465      goto trivially_true;
5466    if (ICmpInst::isFalseWhenEqual(Pred))
5467      goto trivially_false;
5468  }
5469
5470  // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
5471  // adding or subtracting 1 from one of the operands.
5472  switch (Pred) {
5473  case ICmpInst::ICMP_SLE:
5474    if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
5475      RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
5476                       SCEV::FlagNSW);
5477      Pred = ICmpInst::ICMP_SLT;
5478      Changed = true;
5479    } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
5480      LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
5481                       SCEV::FlagNSW);
5482      Pred = ICmpInst::ICMP_SLT;
5483      Changed = true;
5484    }
5485    break;
5486  case ICmpInst::ICMP_SGE:
5487    if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
5488      RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
5489                       SCEV::FlagNSW);
5490      Pred = ICmpInst::ICMP_SGT;
5491      Changed = true;
5492    } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
5493      LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5494                       SCEV::FlagNSW);
5495      Pred = ICmpInst::ICMP_SGT;
5496      Changed = true;
5497    }
5498    break;
5499  case ICmpInst::ICMP_ULE:
5500    if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
5501      RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
5502                       SCEV::FlagNUW);
5503      Pred = ICmpInst::ICMP_ULT;
5504      Changed = true;
5505    } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
5506      LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
5507                       SCEV::FlagNUW);
5508      Pred = ICmpInst::ICMP_ULT;
5509      Changed = true;
5510    }
5511    break;
5512  case ICmpInst::ICMP_UGE:
5513    if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
5514      RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
5515                       SCEV::FlagNUW);
5516      Pred = ICmpInst::ICMP_UGT;
5517      Changed = true;
5518    } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
5519      LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5520                       SCEV::FlagNUW);
5521      Pred = ICmpInst::ICMP_UGT;
5522      Changed = true;
5523    }
5524    break;
5525  default:
5526    break;
5527  }
5528
5529  // TODO: More simplifications are possible here.
5530
5531  return Changed;
5532
5533trivially_true:
5534  // Return 0 == 0.
5535  LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
5536  Pred = ICmpInst::ICMP_EQ;
5537  return true;
5538
5539trivially_false:
5540  // Return 0 != 0.
5541  LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
5542  Pred = ICmpInst::ICMP_NE;
5543  return true;
5544}
5545
5546bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5547  return getSignedRange(S).getSignedMax().isNegative();
5548}
5549
5550bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5551  return getSignedRange(S).getSignedMin().isStrictlyPositive();
5552}
5553
5554bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5555  return !getSignedRange(S).getSignedMin().isNegative();
5556}
5557
5558bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5559  return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5560}
5561
5562bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5563  return isKnownNegative(S) || isKnownPositive(S);
5564}
5565
5566bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5567                                       const SCEV *LHS, const SCEV *RHS) {
5568  // Canonicalize the inputs first.
5569  (void)SimplifyICmpOperands(Pred, LHS, RHS);
5570
5571  // If LHS or RHS is an addrec, check to see if the condition is true in
5572  // every iteration of the loop.
5573  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5574    if (isLoopEntryGuardedByCond(
5575          AR->getLoop(), Pred, AR->getStart(), RHS) &&
5576        isLoopBackedgeGuardedByCond(
5577          AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
5578      return true;
5579  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
5580    if (isLoopEntryGuardedByCond(
5581          AR->getLoop(), Pred, LHS, AR->getStart()) &&
5582        isLoopBackedgeGuardedByCond(
5583          AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
5584      return true;
5585
5586  // Otherwise see what can be done with known constant ranges.
5587  return isKnownPredicateWithRanges(Pred, LHS, RHS);
5588}
5589
5590bool
5591ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
5592                                            const SCEV *LHS, const SCEV *RHS) {
5593  if (HasSameValue(LHS, RHS))
5594    return ICmpInst::isTrueWhenEqual(Pred);
5595
5596  // This code is split out from isKnownPredicate because it is called from
5597  // within isLoopEntryGuardedByCond.
5598  switch (Pred) {
5599  default:
5600    llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5601    break;
5602  case ICmpInst::ICMP_SGT:
5603    Pred = ICmpInst::ICMP_SLT;
5604    std::swap(LHS, RHS);
5605  case ICmpInst::ICMP_SLT: {
5606    ConstantRange LHSRange = getSignedRange(LHS);
5607    ConstantRange RHSRange = getSignedRange(RHS);
5608    if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
5609      return true;
5610    if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
5611      return false;
5612    break;
5613  }
5614  case ICmpInst::ICMP_SGE:
5615    Pred = ICmpInst::ICMP_SLE;
5616    std::swap(LHS, RHS);
5617  case ICmpInst::ICMP_SLE: {
5618    ConstantRange LHSRange = getSignedRange(LHS);
5619    ConstantRange RHSRange = getSignedRange(RHS);
5620    if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
5621      return true;
5622    if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
5623      return false;
5624    break;
5625  }
5626  case ICmpInst::ICMP_UGT:
5627    Pred = ICmpInst::ICMP_ULT;
5628    std::swap(LHS, RHS);
5629  case ICmpInst::ICMP_ULT: {
5630    ConstantRange LHSRange = getUnsignedRange(LHS);
5631    ConstantRange RHSRange = getUnsignedRange(RHS);
5632    if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
5633      return true;
5634    if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
5635      return false;
5636    break;
5637  }
5638  case ICmpInst::ICMP_UGE:
5639    Pred = ICmpInst::ICMP_ULE;
5640    std::swap(LHS, RHS);
5641  case ICmpInst::ICMP_ULE: {
5642    ConstantRange LHSRange = getUnsignedRange(LHS);
5643    ConstantRange RHSRange = getUnsignedRange(RHS);
5644    if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
5645      return true;
5646    if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
5647      return false;
5648    break;
5649  }
5650  case ICmpInst::ICMP_NE: {
5651    if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
5652      return true;
5653    if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
5654      return true;
5655
5656    const SCEV *Diff = getMinusSCEV(LHS, RHS);
5657    if (isKnownNonZero(Diff))
5658      return true;
5659    break;
5660  }
5661  case ICmpInst::ICMP_EQ:
5662    // The check at the top of the function catches the case where
5663    // the values are known to be equal.
5664    break;
5665  }
5666  return false;
5667}
5668
5669/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
5670/// protected by a conditional between LHS and RHS.  This is used to
5671/// to eliminate casts.
5672bool
5673ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
5674                                             ICmpInst::Predicate Pred,
5675                                             const SCEV *LHS, const SCEV *RHS) {
5676  // Interpret a null as meaning no loop, where there is obviously no guard
5677  // (interprocedural conditions notwithstanding).
5678  if (!L) return true;
5679
5680  BasicBlock *Latch = L->getLoopLatch();
5681  if (!Latch)
5682    return false;
5683
5684  BranchInst *LoopContinuePredicate =
5685    dyn_cast<BranchInst>(Latch->getTerminator());
5686  if (!LoopContinuePredicate ||
5687      LoopContinuePredicate->isUnconditional())
5688    return false;
5689
5690  return isImpliedCond(Pred, LHS, RHS,
5691                       LoopContinuePredicate->getCondition(),
5692                       LoopContinuePredicate->getSuccessor(0) != L->getHeader());
5693}
5694
5695/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
5696/// by a conditional between LHS and RHS.  This is used to help avoid max
5697/// expressions in loop trip counts, and to eliminate casts.
5698bool
5699ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
5700                                          ICmpInst::Predicate Pred,
5701                                          const SCEV *LHS, const SCEV *RHS) {
5702  // Interpret a null as meaning no loop, where there is obviously no guard
5703  // (interprocedural conditions notwithstanding).
5704  if (!L) return false;
5705
5706  // Starting at the loop predecessor, climb up the predecessor chain, as long
5707  // as there are predecessors that can be found that have unique successors
5708  // leading to the original header.
5709  for (std::pair<BasicBlock *, BasicBlock *>
5710         Pair(L->getLoopPredecessor(), L->getHeader());
5711       Pair.first;
5712       Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
5713
5714    BranchInst *LoopEntryPredicate =
5715      dyn_cast<BranchInst>(Pair.first->getTerminator());
5716    if (!LoopEntryPredicate ||
5717        LoopEntryPredicate->isUnconditional())
5718      continue;
5719
5720    if (isImpliedCond(Pred, LHS, RHS,
5721                      LoopEntryPredicate->getCondition(),
5722                      LoopEntryPredicate->getSuccessor(0) != Pair.second))
5723      return true;
5724  }
5725
5726  return false;
5727}
5728
5729/// isImpliedCond - Test whether the condition described by Pred, LHS,
5730/// and RHS is true whenever the given Cond value evaluates to true.
5731bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
5732                                    const SCEV *LHS, const SCEV *RHS,
5733                                    Value *FoundCondValue,
5734                                    bool Inverse) {
5735  // Recursively handle And and Or conditions.
5736  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
5737    if (BO->getOpcode() == Instruction::And) {
5738      if (!Inverse)
5739        return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5740               isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
5741    } else if (BO->getOpcode() == Instruction::Or) {
5742      if (Inverse)
5743        return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5744               isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
5745    }
5746  }
5747
5748  ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
5749  if (!ICI) return false;
5750
5751  // Bail if the ICmp's operands' types are wider than the needed type
5752  // before attempting to call getSCEV on them. This avoids infinite
5753  // recursion, since the analysis of widening casts can require loop
5754  // exit condition information for overflow checking, which would
5755  // lead back here.
5756  if (getTypeSizeInBits(LHS->getType()) <
5757      getTypeSizeInBits(ICI->getOperand(0)->getType()))
5758    return false;
5759
5760  // Now that we found a conditional branch that dominates the loop, check to
5761  // see if it is the comparison we are looking for.
5762  ICmpInst::Predicate FoundPred;
5763  if (Inverse)
5764    FoundPred = ICI->getInversePredicate();
5765  else
5766    FoundPred = ICI->getPredicate();
5767
5768  const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
5769  const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
5770
5771  // Balance the types. The case where FoundLHS' type is wider than
5772  // LHS' type is checked for above.
5773  if (getTypeSizeInBits(LHS->getType()) >
5774      getTypeSizeInBits(FoundLHS->getType())) {
5775    if (CmpInst::isSigned(Pred)) {
5776      FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
5777      FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
5778    } else {
5779      FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
5780      FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
5781    }
5782  }
5783
5784  // Canonicalize the query to match the way instcombine will have
5785  // canonicalized the comparison.
5786  if (SimplifyICmpOperands(Pred, LHS, RHS))
5787    if (LHS == RHS)
5788      return CmpInst::isTrueWhenEqual(Pred);
5789  if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
5790    if (FoundLHS == FoundRHS)
5791      return CmpInst::isFalseWhenEqual(Pred);
5792
5793  // Check to see if we can make the LHS or RHS match.
5794  if (LHS == FoundRHS || RHS == FoundLHS) {
5795    if (isa<SCEVConstant>(RHS)) {
5796      std::swap(FoundLHS, FoundRHS);
5797      FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
5798    } else {
5799      std::swap(LHS, RHS);
5800      Pred = ICmpInst::getSwappedPredicate(Pred);
5801    }
5802  }
5803
5804  // Check whether the found predicate is the same as the desired predicate.
5805  if (FoundPred == Pred)
5806    return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
5807
5808  // Check whether swapping the found predicate makes it the same as the
5809  // desired predicate.
5810  if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
5811    if (isa<SCEVConstant>(RHS))
5812      return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
5813    else
5814      return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
5815                                   RHS, LHS, FoundLHS, FoundRHS);
5816  }
5817
5818  // Check whether the actual condition is beyond sufficient.
5819  if (FoundPred == ICmpInst::ICMP_EQ)
5820    if (ICmpInst::isTrueWhenEqual(Pred))
5821      if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
5822        return true;
5823  if (Pred == ICmpInst::ICMP_NE)
5824    if (!ICmpInst::isTrueWhenEqual(FoundPred))
5825      if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
5826        return true;
5827
5828  // Otherwise assume the worst.
5829  return false;
5830}
5831
5832/// isImpliedCondOperands - Test whether the condition described by Pred,
5833/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
5834/// and FoundRHS is true.
5835bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
5836                                            const SCEV *LHS, const SCEV *RHS,
5837                                            const SCEV *FoundLHS,
5838                                            const SCEV *FoundRHS) {
5839  return isImpliedCondOperandsHelper(Pred, LHS, RHS,
5840                                     FoundLHS, FoundRHS) ||
5841         // ~x < ~y --> x > y
5842         isImpliedCondOperandsHelper(Pred, LHS, RHS,
5843                                     getNotSCEV(FoundRHS),
5844                                     getNotSCEV(FoundLHS));
5845}
5846
5847/// isImpliedCondOperandsHelper - Test whether the condition described by
5848/// Pred, LHS, and RHS is true whenever the condition described by Pred,
5849/// FoundLHS, and FoundRHS is true.
5850bool
5851ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
5852                                             const SCEV *LHS, const SCEV *RHS,
5853                                             const SCEV *FoundLHS,
5854                                             const SCEV *FoundRHS) {
5855  switch (Pred) {
5856  default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5857  case ICmpInst::ICMP_EQ:
5858  case ICmpInst::ICMP_NE:
5859    if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
5860      return true;
5861    break;
5862  case ICmpInst::ICMP_SLT:
5863  case ICmpInst::ICMP_SLE:
5864    if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
5865        isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
5866      return true;
5867    break;
5868  case ICmpInst::ICMP_SGT:
5869  case ICmpInst::ICMP_SGE:
5870    if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
5871        isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
5872      return true;
5873    break;
5874  case ICmpInst::ICMP_ULT:
5875  case ICmpInst::ICMP_ULE:
5876    if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
5877        isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
5878      return true;
5879    break;
5880  case ICmpInst::ICMP_UGT:
5881  case ICmpInst::ICMP_UGE:
5882    if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
5883        isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
5884      return true;
5885    break;
5886  }
5887
5888  return false;
5889}
5890
5891/// getBECount - Subtract the end and start values and divide by the step,
5892/// rounding up, to get the number of times the backedge is executed. Return
5893/// CouldNotCompute if an intermediate computation overflows.
5894const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
5895                                        const SCEV *End,
5896                                        const SCEV *Step,
5897                                        bool NoWrap) {
5898  assert(!isKnownNegative(Step) &&
5899         "This code doesn't handle negative strides yet!");
5900
5901  Type *Ty = Start->getType();
5902
5903  // When Start == End, we have an exact BECount == 0. Short-circuit this case
5904  // here because SCEV may not be able to determine that the unsigned division
5905  // after rounding is zero.
5906  if (Start == End)
5907    return getConstant(Ty, 0);
5908
5909  const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
5910  const SCEV *Diff = getMinusSCEV(End, Start);
5911  const SCEV *RoundUp = getAddExpr(Step, NegOne);
5912
5913  // Add an adjustment to the difference between End and Start so that
5914  // the division will effectively round up.
5915  const SCEV *Add = getAddExpr(Diff, RoundUp);
5916
5917  if (!NoWrap) {
5918    // Check Add for unsigned overflow.
5919    // TODO: More sophisticated things could be done here.
5920    Type *WideTy = IntegerType::get(getContext(),
5921                                          getTypeSizeInBits(Ty) + 1);
5922    const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
5923    const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
5924    const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
5925    if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
5926      return getCouldNotCompute();
5927  }
5928
5929  return getUDivExpr(Add, Step);
5930}
5931
5932/// HowManyLessThans - Return the number of times a backedge containing the
5933/// specified less-than comparison will execute.  If not computable, return
5934/// CouldNotCompute.
5935ScalarEvolution::ExitLimit
5936ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
5937                                  const Loop *L, bool isSigned) {
5938  // Only handle:  "ADDREC < LoopInvariant".
5939  if (!isLoopInvariant(RHS, L)) return getCouldNotCompute();
5940
5941  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
5942  if (!AddRec || AddRec->getLoop() != L)
5943    return getCouldNotCompute();
5944
5945  // Check to see if we have a flag which makes analysis easy.
5946  bool NoWrap = isSigned ? AddRec->getNoWrapFlags(SCEV::FlagNSW) :
5947                           AddRec->getNoWrapFlags(SCEV::FlagNUW);
5948
5949  if (AddRec->isAffine()) {
5950    unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
5951    const SCEV *Step = AddRec->getStepRecurrence(*this);
5952
5953    if (Step->isZero())
5954      return getCouldNotCompute();
5955    if (Step->isOne()) {
5956      // With unit stride, the iteration never steps past the limit value.
5957    } else if (isKnownPositive(Step)) {
5958      // Test whether a positive iteration can step past the limit
5959      // value and past the maximum value for its type in a single step.
5960      // Note that it's not sufficient to check NoWrap here, because even
5961      // though the value after a wrap is undefined, it's not undefined
5962      // behavior, so if wrap does occur, the loop could either terminate or
5963      // loop infinitely, but in either case, the loop is guaranteed to
5964      // iterate at least until the iteration where the wrapping occurs.
5965      const SCEV *One = getConstant(Step->getType(), 1);
5966      if (isSigned) {
5967        APInt Max = APInt::getSignedMaxValue(BitWidth);
5968        if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
5969              .slt(getSignedRange(RHS).getSignedMax()))
5970          return getCouldNotCompute();
5971      } else {
5972        APInt Max = APInt::getMaxValue(BitWidth);
5973        if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
5974              .ult(getUnsignedRange(RHS).getUnsignedMax()))
5975          return getCouldNotCompute();
5976      }
5977    } else
5978      // TODO: Handle negative strides here and below.
5979      return getCouldNotCompute();
5980
5981    // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
5982    // m.  So, we count the number of iterations in which {n,+,s} < m is true.
5983    // Note that we cannot simply return max(m-n,0)/s because it's not safe to
5984    // treat m-n as signed nor unsigned due to overflow possibility.
5985
5986    // First, we get the value of the LHS in the first iteration: n
5987    const SCEV *Start = AddRec->getOperand(0);
5988
5989    // Determine the minimum constant start value.
5990    const SCEV *MinStart = getConstant(isSigned ?
5991      getSignedRange(Start).getSignedMin() :
5992      getUnsignedRange(Start).getUnsignedMin());
5993
5994    // If we know that the condition is true in order to enter the loop,
5995    // then we know that it will run exactly (m-n)/s times. Otherwise, we
5996    // only know that it will execute (max(m,n)-n)/s times. In both cases,
5997    // the division must round up.
5998    const SCEV *End = RHS;
5999    if (!isLoopEntryGuardedByCond(L,
6000                                  isSigned ? ICmpInst::ICMP_SLT :
6001                                             ICmpInst::ICMP_ULT,
6002                                  getMinusSCEV(Start, Step), RHS))
6003      End = isSigned ? getSMaxExpr(RHS, Start)
6004                     : getUMaxExpr(RHS, Start);
6005
6006    // Determine the maximum constant end value.
6007    const SCEV *MaxEnd = getConstant(isSigned ?
6008      getSignedRange(End).getSignedMax() :
6009      getUnsignedRange(End).getUnsignedMax());
6010
6011    // If MaxEnd is within a step of the maximum integer value in its type,
6012    // adjust it down to the minimum value which would produce the same effect.
6013    // This allows the subsequent ceiling division of (N+(step-1))/step to
6014    // compute the correct value.
6015    const SCEV *StepMinusOne = getMinusSCEV(Step,
6016                                            getConstant(Step->getType(), 1));
6017    MaxEnd = isSigned ?
6018      getSMinExpr(MaxEnd,
6019                  getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
6020                               StepMinusOne)) :
6021      getUMinExpr(MaxEnd,
6022                  getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
6023                               StepMinusOne));
6024
6025    // Finally, we subtract these two values and divide, rounding up, to get
6026    // the number of times the backedge is executed.
6027    const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
6028
6029    // The maximum backedge count is similar, except using the minimum start
6030    // value and the maximum end value.
6031    // If we already have an exact constant BECount, use it instead.
6032    const SCEV *MaxBECount = isa<SCEVConstant>(BECount) ? BECount
6033      : getBECount(MinStart, MaxEnd, Step, NoWrap);
6034
6035    // If the stride is nonconstant, and NoWrap == true, then
6036    // getBECount(MinStart, MaxEnd) may not compute. This would result in an
6037    // exact BECount and invalid MaxBECount, which should be avoided to catch
6038    // more optimization opportunities.
6039    if (isa<SCEVCouldNotCompute>(MaxBECount))
6040      MaxBECount = BECount;
6041
6042    return ExitLimit(BECount, MaxBECount);
6043  }
6044
6045  return getCouldNotCompute();
6046}
6047
6048/// getNumIterationsInRange - Return the number of iterations of this loop that
6049/// produce values in the specified constant range.  Another way of looking at
6050/// this is that it returns the first iteration number where the value is not in
6051/// the condition, thus computing the exit count. If the iteration count can't
6052/// be computed, an instance of SCEVCouldNotCompute is returned.
6053const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
6054                                                    ScalarEvolution &SE) const {
6055  if (Range.isFullSet())  // Infinite loop.
6056    return SE.getCouldNotCompute();
6057
6058  // If the start is a non-zero constant, shift the range to simplify things.
6059  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
6060    if (!SC->getValue()->isZero()) {
6061      SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
6062      Operands[0] = SE.getConstant(SC->getType(), 0);
6063      const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
6064                                             getNoWrapFlags(FlagNW));
6065      if (const SCEVAddRecExpr *ShiftedAddRec =
6066            dyn_cast<SCEVAddRecExpr>(Shifted))
6067        return ShiftedAddRec->getNumIterationsInRange(
6068                           Range.subtract(SC->getValue()->getValue()), SE);
6069      // This is strange and shouldn't happen.
6070      return SE.getCouldNotCompute();
6071    }
6072
6073  // The only time we can solve this is when we have all constant indices.
6074  // Otherwise, we cannot determine the overflow conditions.
6075  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
6076    if (!isa<SCEVConstant>(getOperand(i)))
6077      return SE.getCouldNotCompute();
6078
6079
6080  // Okay at this point we know that all elements of the chrec are constants and
6081  // that the start element is zero.
6082
6083  // First check to see if the range contains zero.  If not, the first
6084  // iteration exits.
6085  unsigned BitWidth = SE.getTypeSizeInBits(getType());
6086  if (!Range.contains(APInt(BitWidth, 0)))
6087    return SE.getConstant(getType(), 0);
6088
6089  if (isAffine()) {
6090    // If this is an affine expression then we have this situation:
6091    //   Solve {0,+,A} in Range  ===  Ax in Range
6092
6093    // We know that zero is in the range.  If A is positive then we know that
6094    // the upper value of the range must be the first possible exit value.
6095    // If A is negative then the lower of the range is the last possible loop
6096    // value.  Also note that we already checked for a full range.
6097    APInt One(BitWidth,1);
6098    APInt A     = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
6099    APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
6100
6101    // The exit value should be (End+A)/A.
6102    APInt ExitVal = (End + A).udiv(A);
6103    ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
6104
6105    // Evaluate at the exit value.  If we really did fall out of the valid
6106    // range, then we computed our trip count, otherwise wrap around or other
6107    // things must have happened.
6108    ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
6109    if (Range.contains(Val->getValue()))
6110      return SE.getCouldNotCompute();  // Something strange happened
6111
6112    // Ensure that the previous value is in the range.  This is a sanity check.
6113    assert(Range.contains(
6114           EvaluateConstantChrecAtConstant(this,
6115           ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
6116           "Linear scev computation is off in a bad way!");
6117    return SE.getConstant(ExitValue);
6118  } else if (isQuadratic()) {
6119    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
6120    // quadratic equation to solve it.  To do this, we must frame our problem in
6121    // terms of figuring out when zero is crossed, instead of when
6122    // Range.getUpper() is crossed.
6123    SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
6124    NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
6125    const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
6126                                             // getNoWrapFlags(FlagNW)
6127                                             FlagAnyWrap);
6128
6129    // Next, solve the constructed addrec
6130    std::pair<const SCEV *,const SCEV *> Roots =
6131      SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
6132    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
6133    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
6134    if (R1) {
6135      // Pick the smallest positive root value.
6136      if (ConstantInt *CB =
6137          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
6138                         R1->getValue(), R2->getValue()))) {
6139        if (CB->getZExtValue() == false)
6140          std::swap(R1, R2);   // R1 is the minimum root now.
6141
6142        // Make sure the root is not off by one.  The returned iteration should
6143        // not be in the range, but the previous one should be.  When solving
6144        // for "X*X < 5", for example, we should not return a root of 2.
6145        ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
6146                                                             R1->getValue(),
6147                                                             SE);
6148        if (Range.contains(R1Val->getValue())) {
6149          // The next iteration must be out of the range...
6150          ConstantInt *NextVal =
6151                ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
6152
6153          R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
6154          if (!Range.contains(R1Val->getValue()))
6155            return SE.getConstant(NextVal);
6156          return SE.getCouldNotCompute();  // Something strange happened
6157        }
6158
6159        // If R1 was not in the range, then it is a good return value.  Make
6160        // sure that R1-1 WAS in the range though, just in case.
6161        ConstantInt *NextVal =
6162               ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
6163        R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
6164        if (Range.contains(R1Val->getValue()))
6165          return R1;
6166        return SE.getCouldNotCompute();  // Something strange happened
6167      }
6168    }
6169  }
6170
6171  return SE.getCouldNotCompute();
6172}
6173
6174
6175
6176//===----------------------------------------------------------------------===//
6177//                   SCEVCallbackVH Class Implementation
6178//===----------------------------------------------------------------------===//
6179
6180void ScalarEvolution::SCEVCallbackVH::deleted() {
6181  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
6182  if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
6183    SE->ConstantEvolutionLoopExitValue.erase(PN);
6184  SE->ValueExprMap.erase(getValPtr());
6185  // this now dangles!
6186}
6187
6188void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
6189  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
6190
6191  // Forget all the expressions associated with users of the old value,
6192  // so that future queries will recompute the expressions using the new
6193  // value.
6194  Value *Old = getValPtr();
6195  SmallVector<User *, 16> Worklist;
6196  SmallPtrSet<User *, 8> Visited;
6197  for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
6198       UI != UE; ++UI)
6199    Worklist.push_back(*UI);
6200  while (!Worklist.empty()) {
6201    User *U = Worklist.pop_back_val();
6202    // Deleting the Old value will cause this to dangle. Postpone
6203    // that until everything else is done.
6204    if (U == Old)
6205      continue;
6206    if (!Visited.insert(U))
6207      continue;
6208    if (PHINode *PN = dyn_cast<PHINode>(U))
6209      SE->ConstantEvolutionLoopExitValue.erase(PN);
6210    SE->ValueExprMap.erase(U);
6211    for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
6212         UI != UE; ++UI)
6213      Worklist.push_back(*UI);
6214  }
6215  // Delete the Old value.
6216  if (PHINode *PN = dyn_cast<PHINode>(Old))
6217    SE->ConstantEvolutionLoopExitValue.erase(PN);
6218  SE->ValueExprMap.erase(Old);
6219  // this now dangles!
6220}
6221
6222ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
6223  : CallbackVH(V), SE(se) {}
6224
6225//===----------------------------------------------------------------------===//
6226//                   ScalarEvolution Class Implementation
6227//===----------------------------------------------------------------------===//
6228
6229ScalarEvolution::ScalarEvolution()
6230  : FunctionPass(ID), FirstUnknown(0) {
6231  initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
6232}
6233
6234bool ScalarEvolution::runOnFunction(Function &F) {
6235  this->F = &F;
6236  LI = &getAnalysis<LoopInfo>();
6237  TD = getAnalysisIfAvailable<TargetData>();
6238  DT = &getAnalysis<DominatorTree>();
6239  return false;
6240}
6241
6242void ScalarEvolution::releaseMemory() {
6243  // Iterate through all the SCEVUnknown instances and call their
6244  // destructors, so that they release their references to their values.
6245  for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
6246    U->~SCEVUnknown();
6247  FirstUnknown = 0;
6248
6249  ValueExprMap.clear();
6250
6251  // Free any extra memory created for ExitNotTakenInfo in the unlikely event
6252  // that a loop had multiple computable exits.
6253  for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
6254         BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end();
6255       I != E; ++I) {
6256    I->second.clear();
6257  }
6258
6259  BackedgeTakenCounts.clear();
6260  ConstantEvolutionLoopExitValue.clear();
6261  ValuesAtScopes.clear();
6262  LoopDispositions.clear();
6263  BlockDispositions.clear();
6264  UnsignedRanges.clear();
6265  SignedRanges.clear();
6266  UniqueSCEVs.clear();
6267  SCEVAllocator.Reset();
6268}
6269
6270void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
6271  AU.setPreservesAll();
6272  AU.addRequiredTransitive<LoopInfo>();
6273  AU.addRequiredTransitive<DominatorTree>();
6274}
6275
6276bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
6277  return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
6278}
6279
6280static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
6281                          const Loop *L) {
6282  // Print all inner loops first
6283  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
6284    PrintLoopInfo(OS, SE, *I);
6285
6286  OS << "Loop ";
6287  WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
6288  OS << ": ";
6289
6290  SmallVector<BasicBlock *, 8> ExitBlocks;
6291  L->getExitBlocks(ExitBlocks);
6292  if (ExitBlocks.size() != 1)
6293    OS << "<multiple exits> ";
6294
6295  if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
6296    OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
6297  } else {
6298    OS << "Unpredictable backedge-taken count. ";
6299  }
6300
6301  OS << "\n"
6302        "Loop ";
6303  WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
6304  OS << ": ";
6305
6306  if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
6307    OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
6308  } else {
6309    OS << "Unpredictable max backedge-taken count. ";
6310  }
6311
6312  OS << "\n";
6313}
6314
6315void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
6316  // ScalarEvolution's implementation of the print method is to print
6317  // out SCEV values of all instructions that are interesting. Doing
6318  // this potentially causes it to create new SCEV objects though,
6319  // which technically conflicts with the const qualifier. This isn't
6320  // observable from outside the class though, so casting away the
6321  // const isn't dangerous.
6322  ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
6323
6324  OS << "Classifying expressions for: ";
6325  WriteAsOperand(OS, F, /*PrintType=*/false);
6326  OS << "\n";
6327  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
6328    if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
6329      OS << *I << '\n';
6330      OS << "  -->  ";
6331      const SCEV *SV = SE.getSCEV(&*I);
6332      SV->print(OS);
6333
6334      const Loop *L = LI->getLoopFor((*I).getParent());
6335
6336      const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
6337      if (AtUse != SV) {
6338        OS << "  -->  ";
6339        AtUse->print(OS);
6340      }
6341
6342      if (L) {
6343        OS << "\t\t" "Exits: ";
6344        const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
6345        if (!SE.isLoopInvariant(ExitValue, L)) {
6346          OS << "<<Unknown>>";
6347        } else {
6348          OS << *ExitValue;
6349        }
6350      }
6351
6352      OS << "\n";
6353    }
6354
6355  OS << "Determining loop execution counts for: ";
6356  WriteAsOperand(OS, F, /*PrintType=*/false);
6357  OS << "\n";
6358  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
6359    PrintLoopInfo(OS, &SE, *I);
6360}
6361
6362ScalarEvolution::LoopDisposition
6363ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
6364  std::map<const Loop *, LoopDisposition> &Values = LoopDispositions[S];
6365  std::pair<std::map<const Loop *, LoopDisposition>::iterator, bool> Pair =
6366    Values.insert(std::make_pair(L, LoopVariant));
6367  if (!Pair.second)
6368    return Pair.first->second;
6369
6370  LoopDisposition D = computeLoopDisposition(S, L);
6371  return LoopDispositions[S][L] = D;
6372}
6373
6374ScalarEvolution::LoopDisposition
6375ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
6376  switch (S->getSCEVType()) {
6377  case scConstant:
6378    return LoopInvariant;
6379  case scTruncate:
6380  case scZeroExtend:
6381  case scSignExtend:
6382    return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
6383  case scAddRecExpr: {
6384    const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6385
6386    // If L is the addrec's loop, it's computable.
6387    if (AR->getLoop() == L)
6388      return LoopComputable;
6389
6390    // Add recurrences are never invariant in the function-body (null loop).
6391    if (!L)
6392      return LoopVariant;
6393
6394    // This recurrence is variant w.r.t. L if L contains AR's loop.
6395    if (L->contains(AR->getLoop()))
6396      return LoopVariant;
6397
6398    // This recurrence is invariant w.r.t. L if AR's loop contains L.
6399    if (AR->getLoop()->contains(L))
6400      return LoopInvariant;
6401
6402    // This recurrence is variant w.r.t. L if any of its operands
6403    // are variant.
6404    for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
6405         I != E; ++I)
6406      if (!isLoopInvariant(*I, L))
6407        return LoopVariant;
6408
6409    // Otherwise it's loop-invariant.
6410    return LoopInvariant;
6411  }
6412  case scAddExpr:
6413  case scMulExpr:
6414  case scUMaxExpr:
6415  case scSMaxExpr: {
6416    const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
6417    bool HasVarying = false;
6418    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6419         I != E; ++I) {
6420      LoopDisposition D = getLoopDisposition(*I, L);
6421      if (D == LoopVariant)
6422        return LoopVariant;
6423      if (D == LoopComputable)
6424        HasVarying = true;
6425    }
6426    return HasVarying ? LoopComputable : LoopInvariant;
6427  }
6428  case scUDivExpr: {
6429    const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
6430    LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
6431    if (LD == LoopVariant)
6432      return LoopVariant;
6433    LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
6434    if (RD == LoopVariant)
6435      return LoopVariant;
6436    return (LD == LoopInvariant && RD == LoopInvariant) ?
6437           LoopInvariant : LoopComputable;
6438  }
6439  case scUnknown:
6440    // All non-instruction values are loop invariant.  All instructions are loop
6441    // invariant if they are not contained in the specified loop.
6442    // Instructions are never considered invariant in the function body
6443    // (null loop) because they are defined within the "loop".
6444    if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
6445      return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
6446    return LoopInvariant;
6447  case scCouldNotCompute:
6448    llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6449    return LoopVariant;
6450  default: break;
6451  }
6452  llvm_unreachable("Unknown SCEV kind!");
6453  return LoopVariant;
6454}
6455
6456bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
6457  return getLoopDisposition(S, L) == LoopInvariant;
6458}
6459
6460bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
6461  return getLoopDisposition(S, L) == LoopComputable;
6462}
6463
6464ScalarEvolution::BlockDisposition
6465ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
6466  std::map<const BasicBlock *, BlockDisposition> &Values = BlockDispositions[S];
6467  std::pair<std::map<const BasicBlock *, BlockDisposition>::iterator, bool>
6468    Pair = Values.insert(std::make_pair(BB, DoesNotDominateBlock));
6469  if (!Pair.second)
6470    return Pair.first->second;
6471
6472  BlockDisposition D = computeBlockDisposition(S, BB);
6473  return BlockDispositions[S][BB] = D;
6474}
6475
6476ScalarEvolution::BlockDisposition
6477ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
6478  switch (S->getSCEVType()) {
6479  case scConstant:
6480    return ProperlyDominatesBlock;
6481  case scTruncate:
6482  case scZeroExtend:
6483  case scSignExtend:
6484    return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
6485  case scAddRecExpr: {
6486    // This uses a "dominates" query instead of "properly dominates" query
6487    // to test for proper dominance too, because the instruction which
6488    // produces the addrec's value is a PHI, and a PHI effectively properly
6489    // dominates its entire containing block.
6490    const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6491    if (!DT->dominates(AR->getLoop()->getHeader(), BB))
6492      return DoesNotDominateBlock;
6493  }
6494  // FALL THROUGH into SCEVNAryExpr handling.
6495  case scAddExpr:
6496  case scMulExpr:
6497  case scUMaxExpr:
6498  case scSMaxExpr: {
6499    const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
6500    bool Proper = true;
6501    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6502         I != E; ++I) {
6503      BlockDisposition D = getBlockDisposition(*I, BB);
6504      if (D == DoesNotDominateBlock)
6505        return DoesNotDominateBlock;
6506      if (D == DominatesBlock)
6507        Proper = false;
6508    }
6509    return Proper ? ProperlyDominatesBlock : DominatesBlock;
6510  }
6511  case scUDivExpr: {
6512    const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
6513    const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6514    BlockDisposition LD = getBlockDisposition(LHS, BB);
6515    if (LD == DoesNotDominateBlock)
6516      return DoesNotDominateBlock;
6517    BlockDisposition RD = getBlockDisposition(RHS, BB);
6518    if (RD == DoesNotDominateBlock)
6519      return DoesNotDominateBlock;
6520    return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
6521      ProperlyDominatesBlock : DominatesBlock;
6522  }
6523  case scUnknown:
6524    if (Instruction *I =
6525          dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
6526      if (I->getParent() == BB)
6527        return DominatesBlock;
6528      if (DT->properlyDominates(I->getParent(), BB))
6529        return ProperlyDominatesBlock;
6530      return DoesNotDominateBlock;
6531    }
6532    return ProperlyDominatesBlock;
6533  case scCouldNotCompute:
6534    llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6535    return DoesNotDominateBlock;
6536  default: break;
6537  }
6538  llvm_unreachable("Unknown SCEV kind!");
6539  return DoesNotDominateBlock;
6540}
6541
6542bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
6543  return getBlockDisposition(S, BB) >= DominatesBlock;
6544}
6545
6546bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
6547  return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
6548}
6549
6550bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
6551  switch (S->getSCEVType()) {
6552  case scConstant:
6553    return false;
6554  case scTruncate:
6555  case scZeroExtend:
6556  case scSignExtend: {
6557    const SCEVCastExpr *Cast = cast<SCEVCastExpr>(S);
6558    const SCEV *CastOp = Cast->getOperand();
6559    return Op == CastOp || hasOperand(CastOp, Op);
6560  }
6561  case scAddRecExpr:
6562  case scAddExpr:
6563  case scMulExpr:
6564  case scUMaxExpr:
6565  case scSMaxExpr: {
6566    const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
6567    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6568         I != E; ++I) {
6569      const SCEV *NAryOp = *I;
6570      if (NAryOp == Op || hasOperand(NAryOp, Op))
6571        return true;
6572    }
6573    return false;
6574  }
6575  case scUDivExpr: {
6576    const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
6577    const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6578    return LHS == Op || hasOperand(LHS, Op) ||
6579           RHS == Op || hasOperand(RHS, Op);
6580  }
6581  case scUnknown:
6582    return false;
6583  case scCouldNotCompute:
6584    llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6585    return false;
6586  default: break;
6587  }
6588  llvm_unreachable("Unknown SCEV kind!");
6589  return false;
6590}
6591
6592void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
6593  ValuesAtScopes.erase(S);
6594  LoopDispositions.erase(S);
6595  BlockDispositions.erase(S);
6596  UnsignedRanges.erase(S);
6597  SignedRanges.erase(S);
6598}
6599