ScalarEvolution.cpp revision d9cc749318cc9ab4f36efe8a44201a72adbda2b2
1//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library.  First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle.  These classes are reference counted, managed by the SCEVHandle
18// class.  We only create one SCEV of a particular shape, so pointer-comparisons
19// for equality are legal.
20//
21// One important aspect of the SCEV objects is that they are never cyclic, even
22// if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
23// the PHI node is one of the idioms that we can represent (e.g., a polynomial
24// recurrence) then we represent it directly as a recurrence node, otherwise we
25// represent it as a SCEVUnknown node.
26//
27// In addition to being able to represent expressions of various types, we also
28// have folders that are used to build the *canonical* representation for a
29// particular expression.  These folders are capable of using a variety of
30// rewrite rules to simplify the expressions.
31//
32// Once the folders are defined, we can implement the more interesting
33// higher-level code, such as the code that recognizes PHI nodes of various
34// types, computes the execution count of a loop, etc.
35//
36// TODO: We should use these routines and value representations to implement
37// dependence analysis!
38//
39//===----------------------------------------------------------------------===//
40//
41// There are several good references for the techniques used in this analysis.
42//
43//  Chains of recurrences -- a method to expedite the evaluation
44//  of closed-form functions
45//  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
46//
47//  On computational properties of chains of recurrences
48//  Eugene V. Zima
49//
50//  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
51//  Robert A. van Engelen
52//
53//  Efficient Symbolic Analysis for Optimizing Compilers
54//  Robert A. van Engelen
55//
56//  Using the chains of recurrences algebra for data dependence testing and
57//  induction variable substitution
58//  MS Thesis, Johnie Birch
59//
60//===----------------------------------------------------------------------===//
61
62#define DEBUG_TYPE "scalar-evolution"
63#include "llvm/Analysis/ScalarEvolutionExpressions.h"
64#include "llvm/Constants.h"
65#include "llvm/DerivedTypes.h"
66#include "llvm/GlobalVariable.h"
67#include "llvm/Instructions.h"
68#include "llvm/Analysis/ConstantFolding.h"
69#include "llvm/Analysis/LoopInfo.h"
70#include "llvm/Assembly/Writer.h"
71#include "llvm/Transforms/Scalar.h"
72#include "llvm/Support/CFG.h"
73#include "llvm/Support/CommandLine.h"
74#include "llvm/Support/Compiler.h"
75#include "llvm/Support/ConstantRange.h"
76#include "llvm/Support/InstIterator.h"
77#include "llvm/Support/ManagedStatic.h"
78#include "llvm/Support/MathExtras.h"
79#include "llvm/Support/Streams.h"
80#include "llvm/ADT/Statistic.h"
81#include <ostream>
82#include <algorithm>
83#include <cmath>
84using namespace llvm;
85
86STATISTIC(NumBruteForceEvaluations,
87          "Number of brute force evaluations needed to "
88          "calculate high-order polynomial exit values");
89STATISTIC(NumArrayLenItCounts,
90          "Number of trip counts computed with array length");
91STATISTIC(NumTripCountsComputed,
92          "Number of loops with predictable loop counts");
93STATISTIC(NumTripCountsNotComputed,
94          "Number of loops without predictable loop counts");
95STATISTIC(NumBruteForceTripCountsComputed,
96          "Number of loops with trip counts computed by force");
97
98static cl::opt<unsigned>
99MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
100                        cl::desc("Maximum number of iterations SCEV will "
101                                 "symbolically execute a constant derived loop"),
102                        cl::init(100));
103
104static RegisterPass<ScalarEvolution>
105R("scalar-evolution", "Scalar Evolution Analysis", false, true);
106char ScalarEvolution::ID = 0;
107
108//===----------------------------------------------------------------------===//
109//                           SCEV class definitions
110//===----------------------------------------------------------------------===//
111
112//===----------------------------------------------------------------------===//
113// Implementation of the SCEV class.
114//
115SCEV::~SCEV() {}
116void SCEV::dump() const {
117  print(cerr);
118}
119
120uint32_t SCEV::getBitWidth() const {
121  if (const IntegerType* ITy = dyn_cast<IntegerType>(getType()))
122    return ITy->getBitWidth();
123  return 0;
124}
125
126bool SCEV::isZero() const {
127  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
128    return SC->getValue()->isZero();
129  return false;
130}
131
132
133SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {}
134
135bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
136  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
137  return false;
138}
139
140const Type *SCEVCouldNotCompute::getType() const {
141  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
142  return 0;
143}
144
145bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
146  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
147  return false;
148}
149
150SCEVHandle SCEVCouldNotCompute::
151replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
152                                  const SCEVHandle &Conc,
153                                  ScalarEvolution &SE) const {
154  return this;
155}
156
157void SCEVCouldNotCompute::print(std::ostream &OS) const {
158  OS << "***COULDNOTCOMPUTE***";
159}
160
161bool SCEVCouldNotCompute::classof(const SCEV *S) {
162  return S->getSCEVType() == scCouldNotCompute;
163}
164
165
166// SCEVConstants - Only allow the creation of one SCEVConstant for any
167// particular value.  Don't use a SCEVHandle here, or else the object will
168// never be deleted!
169static ManagedStatic<std::map<ConstantInt*, SCEVConstant*> > SCEVConstants;
170
171
172SCEVConstant::~SCEVConstant() {
173  SCEVConstants->erase(V);
174}
175
176SCEVHandle ScalarEvolution::getConstant(ConstantInt *V) {
177  SCEVConstant *&R = (*SCEVConstants)[V];
178  if (R == 0) R = new SCEVConstant(V);
179  return R;
180}
181
182SCEVHandle ScalarEvolution::getConstant(const APInt& Val) {
183  return getConstant(ConstantInt::get(Val));
184}
185
186const Type *SCEVConstant::getType() const { return V->getType(); }
187
188void SCEVConstant::print(std::ostream &OS) const {
189  WriteAsOperand(OS, V, false);
190}
191
192// SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any
193// particular input.  Don't use a SCEVHandle here, or else the object will
194// never be deleted!
195static ManagedStatic<std::map<std::pair<SCEV*, const Type*>,
196                     SCEVTruncateExpr*> > SCEVTruncates;
197
198SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty)
199  : SCEV(scTruncate), Op(op), Ty(ty) {
200  assert(Op->getType()->isInteger() && Ty->isInteger() &&
201         "Cannot truncate non-integer value!");
202  assert(Op->getType()->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits()
203         && "This is not a truncating conversion!");
204}
205
206SCEVTruncateExpr::~SCEVTruncateExpr() {
207  SCEVTruncates->erase(std::make_pair(Op, Ty));
208}
209
210void SCEVTruncateExpr::print(std::ostream &OS) const {
211  OS << "(truncate " << *Op << " to " << *Ty << ")";
212}
213
214// SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any
215// particular input.  Don't use a SCEVHandle here, or else the object will never
216// be deleted!
217static ManagedStatic<std::map<std::pair<SCEV*, const Type*>,
218                     SCEVZeroExtendExpr*> > SCEVZeroExtends;
219
220SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty)
221  : SCEV(scZeroExtend), Op(op), Ty(ty) {
222  assert(Op->getType()->isInteger() && Ty->isInteger() &&
223         "Cannot zero extend non-integer value!");
224  assert(Op->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits()
225         && "This is not an extending conversion!");
226}
227
228SCEVZeroExtendExpr::~SCEVZeroExtendExpr() {
229  SCEVZeroExtends->erase(std::make_pair(Op, Ty));
230}
231
232void SCEVZeroExtendExpr::print(std::ostream &OS) const {
233  OS << "(zeroextend " << *Op << " to " << *Ty << ")";
234}
235
236// SCEVSignExtends - Only allow the creation of one SCEVSignExtendExpr for any
237// particular input.  Don't use a SCEVHandle here, or else the object will never
238// be deleted!
239static ManagedStatic<std::map<std::pair<SCEV*, const Type*>,
240                     SCEVSignExtendExpr*> > SCEVSignExtends;
241
242SCEVSignExtendExpr::SCEVSignExtendExpr(const SCEVHandle &op, const Type *ty)
243  : SCEV(scSignExtend), Op(op), Ty(ty) {
244  assert(Op->getType()->isInteger() && Ty->isInteger() &&
245         "Cannot sign extend non-integer value!");
246  assert(Op->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits()
247         && "This is not an extending conversion!");
248}
249
250SCEVSignExtendExpr::~SCEVSignExtendExpr() {
251  SCEVSignExtends->erase(std::make_pair(Op, Ty));
252}
253
254void SCEVSignExtendExpr::print(std::ostream &OS) const {
255  OS << "(signextend " << *Op << " to " << *Ty << ")";
256}
257
258// SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any
259// particular input.  Don't use a SCEVHandle here, or else the object will never
260// be deleted!
261static ManagedStatic<std::map<std::pair<unsigned, std::vector<SCEV*> >,
262                     SCEVCommutativeExpr*> > SCEVCommExprs;
263
264SCEVCommutativeExpr::~SCEVCommutativeExpr() {
265  SCEVCommExprs->erase(std::make_pair(getSCEVType(),
266                                      std::vector<SCEV*>(Operands.begin(),
267                                                         Operands.end())));
268}
269
270void SCEVCommutativeExpr::print(std::ostream &OS) const {
271  assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
272  const char *OpStr = getOperationStr();
273  OS << "(" << *Operands[0];
274  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
275    OS << OpStr << *Operands[i];
276  OS << ")";
277}
278
279SCEVHandle SCEVCommutativeExpr::
280replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
281                                  const SCEVHandle &Conc,
282                                  ScalarEvolution &SE) const {
283  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
284    SCEVHandle H =
285      getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
286    if (H != getOperand(i)) {
287      std::vector<SCEVHandle> NewOps;
288      NewOps.reserve(getNumOperands());
289      for (unsigned j = 0; j != i; ++j)
290        NewOps.push_back(getOperand(j));
291      NewOps.push_back(H);
292      for (++i; i != e; ++i)
293        NewOps.push_back(getOperand(i)->
294                         replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
295
296      if (isa<SCEVAddExpr>(this))
297        return SE.getAddExpr(NewOps);
298      else if (isa<SCEVMulExpr>(this))
299        return SE.getMulExpr(NewOps);
300      else if (isa<SCEVSMaxExpr>(this))
301        return SE.getSMaxExpr(NewOps);
302      else if (isa<SCEVUMaxExpr>(this))
303        return SE.getUMaxExpr(NewOps);
304      else
305        assert(0 && "Unknown commutative expr!");
306    }
307  }
308  return this;
309}
310
311
312// SCEVUDivs - Only allow the creation of one SCEVUDivExpr for any particular
313// input.  Don't use a SCEVHandle here, or else the object will never be
314// deleted!
315static ManagedStatic<std::map<std::pair<SCEV*, SCEV*>,
316                     SCEVUDivExpr*> > SCEVUDivs;
317
318SCEVUDivExpr::~SCEVUDivExpr() {
319  SCEVUDivs->erase(std::make_pair(LHS, RHS));
320}
321
322void SCEVUDivExpr::print(std::ostream &OS) const {
323  OS << "(" << *LHS << " /u " << *RHS << ")";
324}
325
326const Type *SCEVUDivExpr::getType() const {
327  return LHS->getType();
328}
329
330// SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any
331// particular input.  Don't use a SCEVHandle here, or else the object will never
332// be deleted!
333static ManagedStatic<std::map<std::pair<const Loop *, std::vector<SCEV*> >,
334                     SCEVAddRecExpr*> > SCEVAddRecExprs;
335
336SCEVAddRecExpr::~SCEVAddRecExpr() {
337  SCEVAddRecExprs->erase(std::make_pair(L,
338                                        std::vector<SCEV*>(Operands.begin(),
339                                                           Operands.end())));
340}
341
342SCEVHandle SCEVAddRecExpr::
343replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
344                                  const SCEVHandle &Conc,
345                                  ScalarEvolution &SE) const {
346  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
347    SCEVHandle H =
348      getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
349    if (H != getOperand(i)) {
350      std::vector<SCEVHandle> NewOps;
351      NewOps.reserve(getNumOperands());
352      for (unsigned j = 0; j != i; ++j)
353        NewOps.push_back(getOperand(j));
354      NewOps.push_back(H);
355      for (++i; i != e; ++i)
356        NewOps.push_back(getOperand(i)->
357                         replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
358
359      return SE.getAddRecExpr(NewOps, L);
360    }
361  }
362  return this;
363}
364
365
366bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
367  // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't
368  // contain L and if the start is invariant.
369  return !QueryLoop->contains(L->getHeader()) &&
370         getOperand(0)->isLoopInvariant(QueryLoop);
371}
372
373
374void SCEVAddRecExpr::print(std::ostream &OS) const {
375  OS << "{" << *Operands[0];
376  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
377    OS << ",+," << *Operands[i];
378  OS << "}<" << L->getHeader()->getName() + ">";
379}
380
381// SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular
382// value.  Don't use a SCEVHandle here, or else the object will never be
383// deleted!
384static ManagedStatic<std::map<Value*, SCEVUnknown*> > SCEVUnknowns;
385
386SCEVUnknown::~SCEVUnknown() { SCEVUnknowns->erase(V); }
387
388bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
389  // All non-instruction values are loop invariant.  All instructions are loop
390  // invariant if they are not contained in the specified loop.
391  if (Instruction *I = dyn_cast<Instruction>(V))
392    return !L->contains(I->getParent());
393  return true;
394}
395
396const Type *SCEVUnknown::getType() const {
397  return V->getType();
398}
399
400void SCEVUnknown::print(std::ostream &OS) const {
401  WriteAsOperand(OS, V, false);
402}
403
404//===----------------------------------------------------------------------===//
405//                               SCEV Utilities
406//===----------------------------------------------------------------------===//
407
408namespace {
409  /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
410  /// than the complexity of the RHS.  This comparator is used to canonicalize
411  /// expressions.
412  struct VISIBILITY_HIDDEN SCEVComplexityCompare {
413    bool operator()(const SCEV *LHS, const SCEV *RHS) const {
414      return LHS->getSCEVType() < RHS->getSCEVType();
415    }
416  };
417}
418
419/// GroupByComplexity - Given a list of SCEV objects, order them by their
420/// complexity, and group objects of the same complexity together by value.
421/// When this routine is finished, we know that any duplicates in the vector are
422/// consecutive and that complexity is monotonically increasing.
423///
424/// Note that we go take special precautions to ensure that we get determinstic
425/// results from this routine.  In other words, we don't want the results of
426/// this to depend on where the addresses of various SCEV objects happened to
427/// land in memory.
428///
429static void GroupByComplexity(std::vector<SCEVHandle> &Ops) {
430  if (Ops.size() < 2) return;  // Noop
431  if (Ops.size() == 2) {
432    // This is the common case, which also happens to be trivially simple.
433    // Special case it.
434    if (SCEVComplexityCompare()(Ops[1], Ops[0]))
435      std::swap(Ops[0], Ops[1]);
436    return;
437  }
438
439  // Do the rough sort by complexity.
440  std::sort(Ops.begin(), Ops.end(), SCEVComplexityCompare());
441
442  // Now that we are sorted by complexity, group elements of the same
443  // complexity.  Note that this is, at worst, N^2, but the vector is likely to
444  // be extremely short in practice.  Note that we take this approach because we
445  // do not want to depend on the addresses of the objects we are grouping.
446  for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
447    SCEV *S = Ops[i];
448    unsigned Complexity = S->getSCEVType();
449
450    // If there are any objects of the same complexity and same value as this
451    // one, group them.
452    for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
453      if (Ops[j] == S) { // Found a duplicate.
454        // Move it to immediately after i'th element.
455        std::swap(Ops[i+1], Ops[j]);
456        ++i;   // no need to rescan it.
457        if (i == e-2) return;  // Done!
458      }
459    }
460  }
461}
462
463
464
465//===----------------------------------------------------------------------===//
466//                      Simple SCEV method implementations
467//===----------------------------------------------------------------------===//
468
469/// getIntegerSCEV - Given an integer or FP type, create a constant for the
470/// specified signed integer value and return a SCEV for the constant.
471SCEVHandle ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) {
472  Constant *C;
473  if (Val == 0)
474    C = Constant::getNullValue(Ty);
475  else if (Ty->isFloatingPoint())
476    C = ConstantFP::get(APFloat(Ty==Type::FloatTy ? APFloat::IEEEsingle :
477                                APFloat::IEEEdouble, Val));
478  else
479    C = ConstantInt::get(Ty, Val);
480  return getUnknown(C);
481}
482
483/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
484///
485SCEVHandle ScalarEvolution::getNegativeSCEV(const SCEVHandle &V) {
486  if (SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
487    return getUnknown(ConstantExpr::getNeg(VC->getValue()));
488
489  return getMulExpr(V, getConstant(ConstantInt::getAllOnesValue(V->getType())));
490}
491
492/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
493SCEVHandle ScalarEvolution::getNotSCEV(const SCEVHandle &V) {
494  if (SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
495    return getUnknown(ConstantExpr::getNot(VC->getValue()));
496
497  SCEVHandle AllOnes = getConstant(ConstantInt::getAllOnesValue(V->getType()));
498  return getMinusSCEV(AllOnes, V);
499}
500
501/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
502///
503SCEVHandle ScalarEvolution::getMinusSCEV(const SCEVHandle &LHS,
504                                         const SCEVHandle &RHS) {
505  // X - Y --> X + -Y
506  return getAddExpr(LHS, getNegativeSCEV(RHS));
507}
508
509
510/// BinomialCoefficient - Compute BC(It, K).  The result has width W.
511// Assume, K > 0.
512static SCEVHandle BinomialCoefficient(SCEVHandle It, unsigned K,
513                                      ScalarEvolution &SE,
514                                      const IntegerType* ResultTy) {
515  // Handle the simplest case efficiently.
516  if (K == 1)
517    return SE.getTruncateOrZeroExtend(It, ResultTy);
518
519  // We are using the following formula for BC(It, K):
520  //
521  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
522  //
523  // Suppose, W is the bitwidth of the return value.  We must be prepared for
524  // overflow.  Hence, we must assure that the result of our computation is
525  // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
526  // safe in modular arithmetic.
527  //
528  // However, this code doesn't use exactly that formula; the formula it uses
529  // is something like the following, where T is the number of factors of 2 in
530  // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
531  // exponentiation:
532  //
533  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
534  //
535  // This formula is trivially equivalent to the previous formula.  However,
536  // this formula can be implemented much more efficiently.  The trick is that
537  // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
538  // arithmetic.  To do exact division in modular arithmetic, all we have
539  // to do is multiply by the inverse.  Therefore, this step can be done at
540  // width W.
541  //
542  // The next issue is how to safely do the division by 2^T.  The way this
543  // is done is by doing the multiplication step at a width of at least W + T
544  // bits.  This way, the bottom W+T bits of the product are accurate. Then,
545  // when we perform the division by 2^T (which is equivalent to a right shift
546  // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
547  // truncated out after the division by 2^T.
548  //
549  // In comparison to just directly using the first formula, this technique
550  // is much more efficient; using the first formula requires W * K bits,
551  // but this formula less than W + K bits. Also, the first formula requires
552  // a division step, whereas this formula only requires multiplies and shifts.
553  //
554  // It doesn't matter whether the subtraction step is done in the calculation
555  // width or the input iteration count's width; if the subtraction overflows,
556  // the result must be zero anyway.  We prefer here to do it in the width of
557  // the induction variable because it helps a lot for certain cases; CodeGen
558  // isn't smart enough to ignore the overflow, which leads to much less
559  // efficient code if the width of the subtraction is wider than the native
560  // register width.
561  //
562  // (It's possible to not widen at all by pulling out factors of 2 before
563  // the multiplication; for example, K=2 can be calculated as
564  // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
565  // extra arithmetic, so it's not an obvious win, and it gets
566  // much more complicated for K > 3.)
567
568  // Protection from insane SCEVs; this bound is conservative,
569  // but it probably doesn't matter.
570  if (K > 1000)
571    return new SCEVCouldNotCompute();
572
573  unsigned W = ResultTy->getBitWidth();
574
575  // Calculate K! / 2^T and T; we divide out the factors of two before
576  // multiplying for calculating K! / 2^T to avoid overflow.
577  // Other overflow doesn't matter because we only care about the bottom
578  // W bits of the result.
579  APInt OddFactorial(W, 1);
580  unsigned T = 1;
581  for (unsigned i = 3; i <= K; ++i) {
582    APInt Mult(W, i);
583    unsigned TwoFactors = Mult.countTrailingZeros();
584    T += TwoFactors;
585    Mult = Mult.lshr(TwoFactors);
586    OddFactorial *= Mult;
587  }
588
589  // We need at least W + T bits for the multiplication step
590  // FIXME: A temporary hack; we round up the bitwidths
591  // to the nearest power of 2 to be nice to the code generator.
592  unsigned CalculationBits = 1U << Log2_32_Ceil(W + T);
593  // FIXME: Temporary hack to avoid generating integers that are too wide.
594  // Although, it's not completely clear how to determine how much
595  // widening is safe; for example, on X86, we can't really widen
596  // beyond 64 because we need to be able to do multiplication
597  // that's CalculationBits wide, but on X86-64, we can safely widen up to
598  // 128 bits.
599  if (CalculationBits > 64)
600    return new SCEVCouldNotCompute();
601
602  // Calcuate 2^T, at width T+W.
603  APInt DivFactor = APInt(CalculationBits, 1).shl(T);
604
605  // Calculate the multiplicative inverse of K! / 2^T;
606  // this multiplication factor will perform the exact division by
607  // K! / 2^T.
608  APInt Mod = APInt::getSignedMinValue(W+1);
609  APInt MultiplyFactor = OddFactorial.zext(W+1);
610  MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
611  MultiplyFactor = MultiplyFactor.trunc(W);
612
613  // Calculate the product, at width T+W
614  const IntegerType *CalculationTy = IntegerType::get(CalculationBits);
615  SCEVHandle Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
616  for (unsigned i = 1; i != K; ++i) {
617    SCEVHandle S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType()));
618    Dividend = SE.getMulExpr(Dividend,
619                             SE.getTruncateOrZeroExtend(S, CalculationTy));
620  }
621
622  // Divide by 2^T
623  SCEVHandle DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
624
625  // Truncate the result, and divide by K! / 2^T.
626
627  return SE.getMulExpr(SE.getConstant(MultiplyFactor),
628                       SE.getTruncateOrZeroExtend(DivResult, ResultTy));
629}
630
631/// evaluateAtIteration - Return the value of this chain of recurrences at
632/// the specified iteration number.  We can evaluate this recurrence by
633/// multiplying each element in the chain by the binomial coefficient
634/// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
635///
636///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
637///
638/// where BC(It, k) stands for binomial coefficient.
639///
640SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It,
641                                               ScalarEvolution &SE) const {
642  SCEVHandle Result = getStart();
643  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
644    // The computation is correct in the face of overflow provided that the
645    // multiplication is performed _after_ the evaluation of the binomial
646    // coefficient.
647    SCEVHandle Val =
648      SE.getMulExpr(getOperand(i),
649                    BinomialCoefficient(It, i, SE,
650                                        cast<IntegerType>(getType())));
651    Result = SE.getAddExpr(Result, Val);
652  }
653  return Result;
654}
655
656//===----------------------------------------------------------------------===//
657//                    SCEV Expression folder implementations
658//===----------------------------------------------------------------------===//
659
660SCEVHandle ScalarEvolution::getTruncateExpr(const SCEVHandle &Op, const Type *Ty) {
661  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
662    return getUnknown(
663        ConstantExpr::getTrunc(SC->getValue(), Ty));
664
665  // If the input value is a chrec scev made out of constants, truncate
666  // all of the constants.
667  if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
668    std::vector<SCEVHandle> Operands;
669    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
670      // FIXME: This should allow truncation of other expression types!
671      if (isa<SCEVConstant>(AddRec->getOperand(i)))
672        Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
673      else
674        break;
675    if (Operands.size() == AddRec->getNumOperands())
676      return getAddRecExpr(Operands, AddRec->getLoop());
677  }
678
679  SCEVTruncateExpr *&Result = (*SCEVTruncates)[std::make_pair(Op, Ty)];
680  if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty);
681  return Result;
682}
683
684SCEVHandle ScalarEvolution::getZeroExtendExpr(const SCEVHandle &Op, const Type *Ty) {
685  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
686    return getUnknown(
687        ConstantExpr::getZExt(SC->getValue(), Ty));
688
689  // FIXME: If the input value is a chrec scev, and we can prove that the value
690  // did not overflow the old, smaller, value, we can zero extend all of the
691  // operands (often constants).  This would allow analysis of something like
692  // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
693
694  SCEVZeroExtendExpr *&Result = (*SCEVZeroExtends)[std::make_pair(Op, Ty)];
695  if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty);
696  return Result;
697}
698
699SCEVHandle ScalarEvolution::getSignExtendExpr(const SCEVHandle &Op, const Type *Ty) {
700  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
701    return getUnknown(
702        ConstantExpr::getSExt(SC->getValue(), Ty));
703
704  // FIXME: If the input value is a chrec scev, and we can prove that the value
705  // did not overflow the old, smaller, value, we can sign extend all of the
706  // operands (often constants).  This would allow analysis of something like
707  // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
708
709  SCEVSignExtendExpr *&Result = (*SCEVSignExtends)[std::make_pair(Op, Ty)];
710  if (Result == 0) Result = new SCEVSignExtendExpr(Op, Ty);
711  return Result;
712}
713
714/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion
715/// of the input value to the specified type.  If the type must be
716/// extended, it is zero extended.
717SCEVHandle ScalarEvolution::getTruncateOrZeroExtend(const SCEVHandle &V,
718                                                    const Type *Ty) {
719  const Type *SrcTy = V->getType();
720  assert(SrcTy->isInteger() && Ty->isInteger() &&
721         "Cannot truncate or zero extend with non-integer arguments!");
722  if (SrcTy->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits())
723    return V;  // No conversion
724  if (SrcTy->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits())
725    return getTruncateExpr(V, Ty);
726  return getZeroExtendExpr(V, Ty);
727}
728
729// get - Get a canonical add expression, or something simpler if possible.
730SCEVHandle ScalarEvolution::getAddExpr(std::vector<SCEVHandle> &Ops) {
731  assert(!Ops.empty() && "Cannot get empty add!");
732  if (Ops.size() == 1) return Ops[0];
733
734  // Sort by complexity, this groups all similar expression types together.
735  GroupByComplexity(Ops);
736
737  // If there are any constants, fold them together.
738  unsigned Idx = 0;
739  if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
740    ++Idx;
741    assert(Idx < Ops.size());
742    while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
743      // We found two constants, fold them together!
744      ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() +
745                                           RHSC->getValue()->getValue());
746      Ops[0] = getConstant(Fold);
747      Ops.erase(Ops.begin()+1);  // Erase the folded element
748      if (Ops.size() == 1) return Ops[0];
749      LHSC = cast<SCEVConstant>(Ops[0]);
750    }
751
752    // If we are left with a constant zero being added, strip it off.
753    if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
754      Ops.erase(Ops.begin());
755      --Idx;
756    }
757  }
758
759  if (Ops.size() == 1) return Ops[0];
760
761  // Okay, check to see if the same value occurs in the operand list twice.  If
762  // so, merge them together into an multiply expression.  Since we sorted the
763  // list, these values are required to be adjacent.
764  const Type *Ty = Ops[0]->getType();
765  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
766    if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
767      // Found a match, merge the two values into a multiply, and add any
768      // remaining values to the result.
769      SCEVHandle Two = getIntegerSCEV(2, Ty);
770      SCEVHandle Mul = getMulExpr(Ops[i], Two);
771      if (Ops.size() == 2)
772        return Mul;
773      Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
774      Ops.push_back(Mul);
775      return getAddExpr(Ops);
776    }
777
778  // Now we know the first non-constant operand.  Skip past any cast SCEVs.
779  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
780    ++Idx;
781
782  // If there are add operands they would be next.
783  if (Idx < Ops.size()) {
784    bool DeletedAdd = false;
785    while (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
786      // If we have an add, expand the add operands onto the end of the operands
787      // list.
788      Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
789      Ops.erase(Ops.begin()+Idx);
790      DeletedAdd = true;
791    }
792
793    // If we deleted at least one add, we added operands to the end of the list,
794    // and they are not necessarily sorted.  Recurse to resort and resimplify
795    // any operands we just aquired.
796    if (DeletedAdd)
797      return getAddExpr(Ops);
798  }
799
800  // Skip over the add expression until we get to a multiply.
801  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
802    ++Idx;
803
804  // If we are adding something to a multiply expression, make sure the
805  // something is not already an operand of the multiply.  If so, merge it into
806  // the multiply.
807  for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
808    SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
809    for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
810      SCEV *MulOpSCEV = Mul->getOperand(MulOp);
811      for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
812        if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(MulOpSCEV)) {
813          // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
814          SCEVHandle InnerMul = Mul->getOperand(MulOp == 0);
815          if (Mul->getNumOperands() != 2) {
816            // If the multiply has more than two operands, we must get the
817            // Y*Z term.
818            std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
819            MulOps.erase(MulOps.begin()+MulOp);
820            InnerMul = getMulExpr(MulOps);
821          }
822          SCEVHandle One = getIntegerSCEV(1, Ty);
823          SCEVHandle AddOne = getAddExpr(InnerMul, One);
824          SCEVHandle OuterMul = getMulExpr(AddOne, Ops[AddOp]);
825          if (Ops.size() == 2) return OuterMul;
826          if (AddOp < Idx) {
827            Ops.erase(Ops.begin()+AddOp);
828            Ops.erase(Ops.begin()+Idx-1);
829          } else {
830            Ops.erase(Ops.begin()+Idx);
831            Ops.erase(Ops.begin()+AddOp-1);
832          }
833          Ops.push_back(OuterMul);
834          return getAddExpr(Ops);
835        }
836
837      // Check this multiply against other multiplies being added together.
838      for (unsigned OtherMulIdx = Idx+1;
839           OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
840           ++OtherMulIdx) {
841        SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
842        // If MulOp occurs in OtherMul, we can fold the two multiplies
843        // together.
844        for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
845             OMulOp != e; ++OMulOp)
846          if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
847            // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
848            SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0);
849            if (Mul->getNumOperands() != 2) {
850              std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
851              MulOps.erase(MulOps.begin()+MulOp);
852              InnerMul1 = getMulExpr(MulOps);
853            }
854            SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0);
855            if (OtherMul->getNumOperands() != 2) {
856              std::vector<SCEVHandle> MulOps(OtherMul->op_begin(),
857                                             OtherMul->op_end());
858              MulOps.erase(MulOps.begin()+OMulOp);
859              InnerMul2 = getMulExpr(MulOps);
860            }
861            SCEVHandle InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
862            SCEVHandle OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
863            if (Ops.size() == 2) return OuterMul;
864            Ops.erase(Ops.begin()+Idx);
865            Ops.erase(Ops.begin()+OtherMulIdx-1);
866            Ops.push_back(OuterMul);
867            return getAddExpr(Ops);
868          }
869      }
870    }
871  }
872
873  // If there are any add recurrences in the operands list, see if any other
874  // added values are loop invariant.  If so, we can fold them into the
875  // recurrence.
876  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
877    ++Idx;
878
879  // Scan over all recurrences, trying to fold loop invariants into them.
880  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
881    // Scan all of the other operands to this add and add them to the vector if
882    // they are loop invariant w.r.t. the recurrence.
883    std::vector<SCEVHandle> LIOps;
884    SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
885    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
886      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
887        LIOps.push_back(Ops[i]);
888        Ops.erase(Ops.begin()+i);
889        --i; --e;
890      }
891
892    // If we found some loop invariants, fold them into the recurrence.
893    if (!LIOps.empty()) {
894      //  NLI + LI + { Start,+,Step}  -->  NLI + { LI+Start,+,Step }
895      LIOps.push_back(AddRec->getStart());
896
897      std::vector<SCEVHandle> AddRecOps(AddRec->op_begin(), AddRec->op_end());
898      AddRecOps[0] = getAddExpr(LIOps);
899
900      SCEVHandle NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop());
901      // If all of the other operands were loop invariant, we are done.
902      if (Ops.size() == 1) return NewRec;
903
904      // Otherwise, add the folded AddRec by the non-liv parts.
905      for (unsigned i = 0;; ++i)
906        if (Ops[i] == AddRec) {
907          Ops[i] = NewRec;
908          break;
909        }
910      return getAddExpr(Ops);
911    }
912
913    // Okay, if there weren't any loop invariants to be folded, check to see if
914    // there are multiple AddRec's with the same loop induction variable being
915    // added together.  If so, we can fold them.
916    for (unsigned OtherIdx = Idx+1;
917         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
918      if (OtherIdx != Idx) {
919        SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
920        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
921          // Other + {A,+,B} + {C,+,D}  -->  Other + {A+C,+,B+D}
922          std::vector<SCEVHandle> NewOps(AddRec->op_begin(), AddRec->op_end());
923          for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
924            if (i >= NewOps.size()) {
925              NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
926                            OtherAddRec->op_end());
927              break;
928            }
929            NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
930          }
931          SCEVHandle NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop());
932
933          if (Ops.size() == 2) return NewAddRec;
934
935          Ops.erase(Ops.begin()+Idx);
936          Ops.erase(Ops.begin()+OtherIdx-1);
937          Ops.push_back(NewAddRec);
938          return getAddExpr(Ops);
939        }
940      }
941
942    // Otherwise couldn't fold anything into this recurrence.  Move onto the
943    // next one.
944  }
945
946  // Okay, it looks like we really DO need an add expr.  Check to see if we
947  // already have one, otherwise create a new one.
948  std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
949  SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scAddExpr,
950                                                                 SCEVOps)];
951  if (Result == 0) Result = new SCEVAddExpr(Ops);
952  return Result;
953}
954
955
956SCEVHandle ScalarEvolution::getMulExpr(std::vector<SCEVHandle> &Ops) {
957  assert(!Ops.empty() && "Cannot get empty mul!");
958
959  // Sort by complexity, this groups all similar expression types together.
960  GroupByComplexity(Ops);
961
962  // If there are any constants, fold them together.
963  unsigned Idx = 0;
964  if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
965
966    // C1*(C2+V) -> C1*C2 + C1*V
967    if (Ops.size() == 2)
968      if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
969        if (Add->getNumOperands() == 2 &&
970            isa<SCEVConstant>(Add->getOperand(0)))
971          return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
972                            getMulExpr(LHSC, Add->getOperand(1)));
973
974
975    ++Idx;
976    while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
977      // We found two constants, fold them together!
978      ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() *
979                                           RHSC->getValue()->getValue());
980      Ops[0] = getConstant(Fold);
981      Ops.erase(Ops.begin()+1);  // Erase the folded element
982      if (Ops.size() == 1) return Ops[0];
983      LHSC = cast<SCEVConstant>(Ops[0]);
984    }
985
986    // If we are left with a constant one being multiplied, strip it off.
987    if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
988      Ops.erase(Ops.begin());
989      --Idx;
990    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
991      // If we have a multiply of zero, it will always be zero.
992      return Ops[0];
993    }
994  }
995
996  // Skip over the add expression until we get to a multiply.
997  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
998    ++Idx;
999
1000  if (Ops.size() == 1)
1001    return Ops[0];
1002
1003  // If there are mul operands inline them all into this expression.
1004  if (Idx < Ops.size()) {
1005    bool DeletedMul = false;
1006    while (SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
1007      // If we have an mul, expand the mul operands onto the end of the operands
1008      // list.
1009      Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
1010      Ops.erase(Ops.begin()+Idx);
1011      DeletedMul = true;
1012    }
1013
1014    // If we deleted at least one mul, we added operands to the end of the list,
1015    // and they are not necessarily sorted.  Recurse to resort and resimplify
1016    // any operands we just aquired.
1017    if (DeletedMul)
1018      return getMulExpr(Ops);
1019  }
1020
1021  // If there are any add recurrences in the operands list, see if any other
1022  // added values are loop invariant.  If so, we can fold them into the
1023  // recurrence.
1024  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1025    ++Idx;
1026
1027  // Scan over all recurrences, trying to fold loop invariants into them.
1028  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1029    // Scan all of the other operands to this mul and add them to the vector if
1030    // they are loop invariant w.r.t. the recurrence.
1031    std::vector<SCEVHandle> LIOps;
1032    SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1033    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1034      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1035        LIOps.push_back(Ops[i]);
1036        Ops.erase(Ops.begin()+i);
1037        --i; --e;
1038      }
1039
1040    // If we found some loop invariants, fold them into the recurrence.
1041    if (!LIOps.empty()) {
1042      //  NLI * LI * { Start,+,Step}  -->  NLI * { LI*Start,+,LI*Step }
1043      std::vector<SCEVHandle> NewOps;
1044      NewOps.reserve(AddRec->getNumOperands());
1045      if (LIOps.size() == 1) {
1046        SCEV *Scale = LIOps[0];
1047        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1048          NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
1049      } else {
1050        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
1051          std::vector<SCEVHandle> MulOps(LIOps);
1052          MulOps.push_back(AddRec->getOperand(i));
1053          NewOps.push_back(getMulExpr(MulOps));
1054        }
1055      }
1056
1057      SCEVHandle NewRec = getAddRecExpr(NewOps, AddRec->getLoop());
1058
1059      // If all of the other operands were loop invariant, we are done.
1060      if (Ops.size() == 1) return NewRec;
1061
1062      // Otherwise, multiply the folded AddRec by the non-liv parts.
1063      for (unsigned i = 0;; ++i)
1064        if (Ops[i] == AddRec) {
1065          Ops[i] = NewRec;
1066          break;
1067        }
1068      return getMulExpr(Ops);
1069    }
1070
1071    // Okay, if there weren't any loop invariants to be folded, check to see if
1072    // there are multiple AddRec's with the same loop induction variable being
1073    // multiplied together.  If so, we can fold them.
1074    for (unsigned OtherIdx = Idx+1;
1075         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1076      if (OtherIdx != Idx) {
1077        SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1078        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1079          // F * G  -->  {A,+,B} * {C,+,D}  -->  {A*C,+,F*D + G*B + B*D}
1080          SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
1081          SCEVHandle NewStart = getMulExpr(F->getStart(),
1082                                                 G->getStart());
1083          SCEVHandle B = F->getStepRecurrence(*this);
1084          SCEVHandle D = G->getStepRecurrence(*this);
1085          SCEVHandle NewStep = getAddExpr(getMulExpr(F, D),
1086                                          getMulExpr(G, B),
1087                                          getMulExpr(B, D));
1088          SCEVHandle NewAddRec = getAddRecExpr(NewStart, NewStep,
1089                                               F->getLoop());
1090          if (Ops.size() == 2) return NewAddRec;
1091
1092          Ops.erase(Ops.begin()+Idx);
1093          Ops.erase(Ops.begin()+OtherIdx-1);
1094          Ops.push_back(NewAddRec);
1095          return getMulExpr(Ops);
1096        }
1097      }
1098
1099    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1100    // next one.
1101  }
1102
1103  // Okay, it looks like we really DO need an mul expr.  Check to see if we
1104  // already have one, otherwise create a new one.
1105  std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
1106  SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scMulExpr,
1107                                                                 SCEVOps)];
1108  if (Result == 0)
1109    Result = new SCEVMulExpr(Ops);
1110  return Result;
1111}
1112
1113SCEVHandle ScalarEvolution::getUDivExpr(const SCEVHandle &LHS, const SCEVHandle &RHS) {
1114  if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
1115    if (RHSC->getValue()->equalsInt(1))
1116      return LHS;                            // X udiv 1 --> x
1117
1118    if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1119      Constant *LHSCV = LHSC->getValue();
1120      Constant *RHSCV = RHSC->getValue();
1121      return getUnknown(ConstantExpr::getUDiv(LHSCV, RHSCV));
1122    }
1123  }
1124
1125  // FIXME: implement folding of (X*4)/4 when we know X*4 doesn't overflow.
1126
1127  SCEVUDivExpr *&Result = (*SCEVUDivs)[std::make_pair(LHS, RHS)];
1128  if (Result == 0) Result = new SCEVUDivExpr(LHS, RHS);
1129  return Result;
1130}
1131
1132
1133/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1134/// specified loop.  Simplify the expression as much as possible.
1135SCEVHandle ScalarEvolution::getAddRecExpr(const SCEVHandle &Start,
1136                               const SCEVHandle &Step, const Loop *L) {
1137  std::vector<SCEVHandle> Operands;
1138  Operands.push_back(Start);
1139  if (SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
1140    if (StepChrec->getLoop() == L) {
1141      Operands.insert(Operands.end(), StepChrec->op_begin(),
1142                      StepChrec->op_end());
1143      return getAddRecExpr(Operands, L);
1144    }
1145
1146  Operands.push_back(Step);
1147  return getAddRecExpr(Operands, L);
1148}
1149
1150/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1151/// specified loop.  Simplify the expression as much as possible.
1152SCEVHandle ScalarEvolution::getAddRecExpr(std::vector<SCEVHandle> &Operands,
1153                               const Loop *L) {
1154  if (Operands.size() == 1) return Operands[0];
1155
1156  if (Operands.back()->isZero()) {
1157    Operands.pop_back();
1158    return getAddRecExpr(Operands, L);             // { X,+,0 }  -->  X
1159  }
1160
1161  // Canonicalize nested AddRecs in by nesting them in order of loop depth.
1162  if (SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
1163    const Loop* NestedLoop = NestedAR->getLoop();
1164    if (L->getLoopDepth() < NestedLoop->getLoopDepth()) {
1165      std::vector<SCEVHandle> NestedOperands(NestedAR->op_begin(),
1166                                             NestedAR->op_end());
1167      SCEVHandle NestedARHandle(NestedAR);
1168      Operands[0] = NestedAR->getStart();
1169      NestedOperands[0] = getAddRecExpr(Operands, L);
1170      return getAddRecExpr(NestedOperands, NestedLoop);
1171    }
1172  }
1173
1174  SCEVAddRecExpr *&Result =
1175    (*SCEVAddRecExprs)[std::make_pair(L, std::vector<SCEV*>(Operands.begin(),
1176                                                            Operands.end()))];
1177  if (Result == 0) Result = new SCEVAddRecExpr(Operands, L);
1178  return Result;
1179}
1180
1181SCEVHandle ScalarEvolution::getSMaxExpr(const SCEVHandle &LHS,
1182                                        const SCEVHandle &RHS) {
1183  std::vector<SCEVHandle> Ops;
1184  Ops.push_back(LHS);
1185  Ops.push_back(RHS);
1186  return getSMaxExpr(Ops);
1187}
1188
1189SCEVHandle ScalarEvolution::getSMaxExpr(std::vector<SCEVHandle> Ops) {
1190  assert(!Ops.empty() && "Cannot get empty smax!");
1191  if (Ops.size() == 1) return Ops[0];
1192
1193  // Sort by complexity, this groups all similar expression types together.
1194  GroupByComplexity(Ops);
1195
1196  // If there are any constants, fold them together.
1197  unsigned Idx = 0;
1198  if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1199    ++Idx;
1200    assert(Idx < Ops.size());
1201    while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1202      // We found two constants, fold them together!
1203      ConstantInt *Fold = ConstantInt::get(
1204                              APIntOps::smax(LHSC->getValue()->getValue(),
1205                                             RHSC->getValue()->getValue()));
1206      Ops[0] = getConstant(Fold);
1207      Ops.erase(Ops.begin()+1);  // Erase the folded element
1208      if (Ops.size() == 1) return Ops[0];
1209      LHSC = cast<SCEVConstant>(Ops[0]);
1210    }
1211
1212    // If we are left with a constant -inf, strip it off.
1213    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
1214      Ops.erase(Ops.begin());
1215      --Idx;
1216    }
1217  }
1218
1219  if (Ops.size() == 1) return Ops[0];
1220
1221  // Find the first SMax
1222  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
1223    ++Idx;
1224
1225  // Check to see if one of the operands is an SMax. If so, expand its operands
1226  // onto our operand list, and recurse to simplify.
1227  if (Idx < Ops.size()) {
1228    bool DeletedSMax = false;
1229    while (SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
1230      Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end());
1231      Ops.erase(Ops.begin()+Idx);
1232      DeletedSMax = true;
1233    }
1234
1235    if (DeletedSMax)
1236      return getSMaxExpr(Ops);
1237  }
1238
1239  // Okay, check to see if the same value occurs in the operand list twice.  If
1240  // so, delete one.  Since we sorted the list, these values are required to
1241  // be adjacent.
1242  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1243    if (Ops[i] == Ops[i+1]) {      //  X smax Y smax Y  -->  X smax Y
1244      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1245      --i; --e;
1246    }
1247
1248  if (Ops.size() == 1) return Ops[0];
1249
1250  assert(!Ops.empty() && "Reduced smax down to nothing!");
1251
1252  // Okay, it looks like we really DO need an smax expr.  Check to see if we
1253  // already have one, otherwise create a new one.
1254  std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
1255  SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scSMaxExpr,
1256                                                                 SCEVOps)];
1257  if (Result == 0) Result = new SCEVSMaxExpr(Ops);
1258  return Result;
1259}
1260
1261SCEVHandle ScalarEvolution::getUMaxExpr(const SCEVHandle &LHS,
1262                                        const SCEVHandle &RHS) {
1263  std::vector<SCEVHandle> Ops;
1264  Ops.push_back(LHS);
1265  Ops.push_back(RHS);
1266  return getUMaxExpr(Ops);
1267}
1268
1269SCEVHandle ScalarEvolution::getUMaxExpr(std::vector<SCEVHandle> Ops) {
1270  assert(!Ops.empty() && "Cannot get empty umax!");
1271  if (Ops.size() == 1) return Ops[0];
1272
1273  // Sort by complexity, this groups all similar expression types together.
1274  GroupByComplexity(Ops);
1275
1276  // If there are any constants, fold them together.
1277  unsigned Idx = 0;
1278  if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1279    ++Idx;
1280    assert(Idx < Ops.size());
1281    while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1282      // We found two constants, fold them together!
1283      ConstantInt *Fold = ConstantInt::get(
1284                              APIntOps::umax(LHSC->getValue()->getValue(),
1285                                             RHSC->getValue()->getValue()));
1286      Ops[0] = getConstant(Fold);
1287      Ops.erase(Ops.begin()+1);  // Erase the folded element
1288      if (Ops.size() == 1) return Ops[0];
1289      LHSC = cast<SCEVConstant>(Ops[0]);
1290    }
1291
1292    // If we are left with a constant zero, strip it off.
1293    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
1294      Ops.erase(Ops.begin());
1295      --Idx;
1296    }
1297  }
1298
1299  if (Ops.size() == 1) return Ops[0];
1300
1301  // Find the first UMax
1302  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
1303    ++Idx;
1304
1305  // Check to see if one of the operands is a UMax. If so, expand its operands
1306  // onto our operand list, and recurse to simplify.
1307  if (Idx < Ops.size()) {
1308    bool DeletedUMax = false;
1309    while (SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
1310      Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end());
1311      Ops.erase(Ops.begin()+Idx);
1312      DeletedUMax = true;
1313    }
1314
1315    if (DeletedUMax)
1316      return getUMaxExpr(Ops);
1317  }
1318
1319  // Okay, check to see if the same value occurs in the operand list twice.  If
1320  // so, delete one.  Since we sorted the list, these values are required to
1321  // be adjacent.
1322  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1323    if (Ops[i] == Ops[i+1]) {      //  X umax Y umax Y  -->  X umax Y
1324      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1325      --i; --e;
1326    }
1327
1328  if (Ops.size() == 1) return Ops[0];
1329
1330  assert(!Ops.empty() && "Reduced umax down to nothing!");
1331
1332  // Okay, it looks like we really DO need a umax expr.  Check to see if we
1333  // already have one, otherwise create a new one.
1334  std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
1335  SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scUMaxExpr,
1336                                                                 SCEVOps)];
1337  if (Result == 0) Result = new SCEVUMaxExpr(Ops);
1338  return Result;
1339}
1340
1341SCEVHandle ScalarEvolution::getUnknown(Value *V) {
1342  if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
1343    return getConstant(CI);
1344  SCEVUnknown *&Result = (*SCEVUnknowns)[V];
1345  if (Result == 0) Result = new SCEVUnknown(V);
1346  return Result;
1347}
1348
1349
1350//===----------------------------------------------------------------------===//
1351//             ScalarEvolutionsImpl Definition and Implementation
1352//===----------------------------------------------------------------------===//
1353//
1354/// ScalarEvolutionsImpl - This class implements the main driver for the scalar
1355/// evolution code.
1356///
1357namespace {
1358  struct VISIBILITY_HIDDEN ScalarEvolutionsImpl {
1359    /// SE - A reference to the public ScalarEvolution object.
1360    ScalarEvolution &SE;
1361
1362    /// F - The function we are analyzing.
1363    ///
1364    Function &F;
1365
1366    /// LI - The loop information for the function we are currently analyzing.
1367    ///
1368    LoopInfo &LI;
1369
1370    /// UnknownValue - This SCEV is used to represent unknown trip counts and
1371    /// things.
1372    SCEVHandle UnknownValue;
1373
1374    /// Scalars - This is a cache of the scalars we have analyzed so far.
1375    ///
1376    std::map<Value*, SCEVHandle> Scalars;
1377
1378    /// IterationCounts - Cache the iteration count of the loops for this
1379    /// function as they are computed.
1380    std::map<const Loop*, SCEVHandle> IterationCounts;
1381
1382    /// ConstantEvolutionLoopExitValue - This map contains entries for all of
1383    /// the PHI instructions that we attempt to compute constant evolutions for.
1384    /// This allows us to avoid potentially expensive recomputation of these
1385    /// properties.  An instruction maps to null if we are unable to compute its
1386    /// exit value.
1387    std::map<PHINode*, Constant*> ConstantEvolutionLoopExitValue;
1388
1389  public:
1390    ScalarEvolutionsImpl(ScalarEvolution &se, Function &f, LoopInfo &li)
1391      : SE(se), F(f), LI(li), UnknownValue(new SCEVCouldNotCompute()) {}
1392
1393    /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1394    /// expression and create a new one.
1395    SCEVHandle getSCEV(Value *V);
1396
1397    /// hasSCEV - Return true if the SCEV for this value has already been
1398    /// computed.
1399    bool hasSCEV(Value *V) const {
1400      return Scalars.count(V);
1401    }
1402
1403    /// setSCEV - Insert the specified SCEV into the map of current SCEVs for
1404    /// the specified value.
1405    void setSCEV(Value *V, const SCEVHandle &H) {
1406      bool isNew = Scalars.insert(std::make_pair(V, H)).second;
1407      assert(isNew && "This entry already existed!");
1408    }
1409
1410
1411    /// getSCEVAtScope - Compute the value of the specified expression within
1412    /// the indicated loop (which may be null to indicate in no loop).  If the
1413    /// expression cannot be evaluated, return UnknownValue itself.
1414    SCEVHandle getSCEVAtScope(SCEV *V, const Loop *L);
1415
1416
1417    /// hasLoopInvariantIterationCount - Return true if the specified loop has
1418    /// an analyzable loop-invariant iteration count.
1419    bool hasLoopInvariantIterationCount(const Loop *L);
1420
1421    /// getIterationCount - If the specified loop has a predictable iteration
1422    /// count, return it.  Note that it is not valid to call this method on a
1423    /// loop without a loop-invariant iteration count.
1424    SCEVHandle getIterationCount(const Loop *L);
1425
1426    /// deleteValueFromRecords - This method should be called by the
1427    /// client before it removes a value from the program, to make sure
1428    /// that no dangling references are left around.
1429    void deleteValueFromRecords(Value *V);
1430
1431  private:
1432    /// createSCEV - We know that there is no SCEV for the specified value.
1433    /// Analyze the expression.
1434    SCEVHandle createSCEV(Value *V);
1435
1436    /// createNodeForPHI - Provide the special handling we need to analyze PHI
1437    /// SCEVs.
1438    SCEVHandle createNodeForPHI(PHINode *PN);
1439
1440    /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value
1441    /// for the specified instruction and replaces any references to the
1442    /// symbolic value SymName with the specified value.  This is used during
1443    /// PHI resolution.
1444    void ReplaceSymbolicValueWithConcrete(Instruction *I,
1445                                          const SCEVHandle &SymName,
1446                                          const SCEVHandle &NewVal);
1447
1448    /// ComputeIterationCount - Compute the number of times the specified loop
1449    /// will iterate.
1450    SCEVHandle ComputeIterationCount(const Loop *L);
1451
1452    /// ComputeLoadConstantCompareIterationCount - Given an exit condition of
1453    /// 'icmp op load X, cst', try to see if we can compute the trip count.
1454    SCEVHandle ComputeLoadConstantCompareIterationCount(LoadInst *LI,
1455                                                        Constant *RHS,
1456                                                        const Loop *L,
1457                                                        ICmpInst::Predicate p);
1458
1459    /// ComputeIterationCountExhaustively - If the trip is known to execute a
1460    /// constant number of times (the condition evolves only from constants),
1461    /// try to evaluate a few iterations of the loop until we get the exit
1462    /// condition gets a value of ExitWhen (true or false).  If we cannot
1463    /// evaluate the trip count of the loop, return UnknownValue.
1464    SCEVHandle ComputeIterationCountExhaustively(const Loop *L, Value *Cond,
1465                                                 bool ExitWhen);
1466
1467    /// HowFarToZero - Return the number of times a backedge comparing the
1468    /// specified value to zero will execute.  If not computable, return
1469    /// UnknownValue.
1470    SCEVHandle HowFarToZero(SCEV *V, const Loop *L);
1471
1472    /// HowFarToNonZero - Return the number of times a backedge checking the
1473    /// specified value for nonzero will execute.  If not computable, return
1474    /// UnknownValue.
1475    SCEVHandle HowFarToNonZero(SCEV *V, const Loop *L);
1476
1477    /// HowManyLessThans - Return the number of times a backedge containing the
1478    /// specified less-than comparison will execute.  If not computable, return
1479    /// UnknownValue. isSigned specifies whether the less-than is signed.
1480    SCEVHandle HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L,
1481                                bool isSigned);
1482
1483    /// executesAtLeastOnce - Test whether entry to the loop is protected by
1484    /// a conditional between LHS and RHS.
1485    bool executesAtLeastOnce(const Loop *L, bool isSigned, SCEV *LHS, SCEV *RHS);
1486
1487    /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
1488    /// in the header of its containing loop, we know the loop executes a
1489    /// constant number of times, and the PHI node is just a recurrence
1490    /// involving constants, fold it.
1491    Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& Its,
1492                                                const Loop *L);
1493  };
1494}
1495
1496//===----------------------------------------------------------------------===//
1497//            Basic SCEV Analysis and PHI Idiom Recognition Code
1498//
1499
1500/// deleteValueFromRecords - This method should be called by the
1501/// client before it removes an instruction from the program, to make sure
1502/// that no dangling references are left around.
1503void ScalarEvolutionsImpl::deleteValueFromRecords(Value *V) {
1504  SmallVector<Value *, 16> Worklist;
1505
1506  if (Scalars.erase(V)) {
1507    if (PHINode *PN = dyn_cast<PHINode>(V))
1508      ConstantEvolutionLoopExitValue.erase(PN);
1509    Worklist.push_back(V);
1510  }
1511
1512  while (!Worklist.empty()) {
1513    Value *VV = Worklist.back();
1514    Worklist.pop_back();
1515
1516    for (Instruction::use_iterator UI = VV->use_begin(), UE = VV->use_end();
1517         UI != UE; ++UI) {
1518      Instruction *Inst = cast<Instruction>(*UI);
1519      if (Scalars.erase(Inst)) {
1520        if (PHINode *PN = dyn_cast<PHINode>(VV))
1521          ConstantEvolutionLoopExitValue.erase(PN);
1522        Worklist.push_back(Inst);
1523      }
1524    }
1525  }
1526}
1527
1528
1529/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1530/// expression and create a new one.
1531SCEVHandle ScalarEvolutionsImpl::getSCEV(Value *V) {
1532  assert(V->getType() != Type::VoidTy && "Can't analyze void expressions!");
1533
1534  std::map<Value*, SCEVHandle>::iterator I = Scalars.find(V);
1535  if (I != Scalars.end()) return I->second;
1536  SCEVHandle S = createSCEV(V);
1537  Scalars.insert(std::make_pair(V, S));
1538  return S;
1539}
1540
1541/// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for
1542/// the specified instruction and replaces any references to the symbolic value
1543/// SymName with the specified value.  This is used during PHI resolution.
1544void ScalarEvolutionsImpl::
1545ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName,
1546                                 const SCEVHandle &NewVal) {
1547  std::map<Value*, SCEVHandle>::iterator SI = Scalars.find(I);
1548  if (SI == Scalars.end()) return;
1549
1550  SCEVHandle NV =
1551    SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal, SE);
1552  if (NV == SI->second) return;  // No change.
1553
1554  SI->second = NV;       // Update the scalars map!
1555
1556  // Any instruction values that use this instruction might also need to be
1557  // updated!
1558  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1559       UI != E; ++UI)
1560    ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal);
1561}
1562
1563/// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
1564/// a loop header, making it a potential recurrence, or it doesn't.
1565///
1566SCEVHandle ScalarEvolutionsImpl::createNodeForPHI(PHINode *PN) {
1567  if (PN->getNumIncomingValues() == 2)  // The loops have been canonicalized.
1568    if (const Loop *L = LI.getLoopFor(PN->getParent()))
1569      if (L->getHeader() == PN->getParent()) {
1570        // If it lives in the loop header, it has two incoming values, one
1571        // from outside the loop, and one from inside.
1572        unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
1573        unsigned BackEdge     = IncomingEdge^1;
1574
1575        // While we are analyzing this PHI node, handle its value symbolically.
1576        SCEVHandle SymbolicName = SE.getUnknown(PN);
1577        assert(Scalars.find(PN) == Scalars.end() &&
1578               "PHI node already processed?");
1579        Scalars.insert(std::make_pair(PN, SymbolicName));
1580
1581        // Using this symbolic name for the PHI, analyze the value coming around
1582        // the back-edge.
1583        SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge));
1584
1585        // NOTE: If BEValue is loop invariant, we know that the PHI node just
1586        // has a special value for the first iteration of the loop.
1587
1588        // If the value coming around the backedge is an add with the symbolic
1589        // value we just inserted, then we found a simple induction variable!
1590        if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
1591          // If there is a single occurrence of the symbolic value, replace it
1592          // with a recurrence.
1593          unsigned FoundIndex = Add->getNumOperands();
1594          for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1595            if (Add->getOperand(i) == SymbolicName)
1596              if (FoundIndex == e) {
1597                FoundIndex = i;
1598                break;
1599              }
1600
1601          if (FoundIndex != Add->getNumOperands()) {
1602            // Create an add with everything but the specified operand.
1603            std::vector<SCEVHandle> Ops;
1604            for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1605              if (i != FoundIndex)
1606                Ops.push_back(Add->getOperand(i));
1607            SCEVHandle Accum = SE.getAddExpr(Ops);
1608
1609            // This is not a valid addrec if the step amount is varying each
1610            // loop iteration, but is not itself an addrec in this loop.
1611            if (Accum->isLoopInvariant(L) ||
1612                (isa<SCEVAddRecExpr>(Accum) &&
1613                 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
1614              SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
1615              SCEVHandle PHISCEV  = SE.getAddRecExpr(StartVal, Accum, L);
1616
1617              // Okay, for the entire analysis of this edge we assumed the PHI
1618              // to be symbolic.  We now need to go back and update all of the
1619              // entries for the scalars that use the PHI (except for the PHI
1620              // itself) to use the new analyzed value instead of the "symbolic"
1621              // value.
1622              ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
1623              return PHISCEV;
1624            }
1625          }
1626        } else if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(BEValue)) {
1627          // Otherwise, this could be a loop like this:
1628          //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
1629          // In this case, j = {1,+,1}  and BEValue is j.
1630          // Because the other in-value of i (0) fits the evolution of BEValue
1631          // i really is an addrec evolution.
1632          if (AddRec->getLoop() == L && AddRec->isAffine()) {
1633            SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
1634
1635            // If StartVal = j.start - j.stride, we can use StartVal as the
1636            // initial step of the addrec evolution.
1637            if (StartVal == SE.getMinusSCEV(AddRec->getOperand(0),
1638                                            AddRec->getOperand(1))) {
1639              SCEVHandle PHISCEV =
1640                 SE.getAddRecExpr(StartVal, AddRec->getOperand(1), L);
1641
1642              // Okay, for the entire analysis of this edge we assumed the PHI
1643              // to be symbolic.  We now need to go back and update all of the
1644              // entries for the scalars that use the PHI (except for the PHI
1645              // itself) to use the new analyzed value instead of the "symbolic"
1646              // value.
1647              ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
1648              return PHISCEV;
1649            }
1650          }
1651        }
1652
1653        return SymbolicName;
1654      }
1655
1656  // If it's not a loop phi, we can't handle it yet.
1657  return SE.getUnknown(PN);
1658}
1659
1660/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
1661/// guaranteed to end in (at every loop iteration).  It is, at the same time,
1662/// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
1663/// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
1664static uint32_t GetMinTrailingZeros(SCEVHandle S) {
1665  if (SCEVConstant *C = dyn_cast<SCEVConstant>(S))
1666    return C->getValue()->getValue().countTrailingZeros();
1667
1668  if (SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
1669    return std::min(GetMinTrailingZeros(T->getOperand()), T->getBitWidth());
1670
1671  if (SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
1672    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
1673    return OpRes == E->getOperand()->getBitWidth() ? E->getBitWidth() : OpRes;
1674  }
1675
1676  if (SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
1677    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
1678    return OpRes == E->getOperand()->getBitWidth() ? E->getBitWidth() : OpRes;
1679  }
1680
1681  if (SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
1682    // The result is the min of all operands results.
1683    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
1684    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
1685      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
1686    return MinOpRes;
1687  }
1688
1689  if (SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
1690    // The result is the sum of all operands results.
1691    uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
1692    uint32_t BitWidth = M->getBitWidth();
1693    for (unsigned i = 1, e = M->getNumOperands();
1694         SumOpRes != BitWidth && i != e; ++i)
1695      SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
1696                          BitWidth);
1697    return SumOpRes;
1698  }
1699
1700  if (SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
1701    // The result is the min of all operands results.
1702    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
1703    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
1704      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
1705    return MinOpRes;
1706  }
1707
1708  if (SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
1709    // The result is the min of all operands results.
1710    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
1711    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
1712      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
1713    return MinOpRes;
1714  }
1715
1716  if (SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
1717    // The result is the min of all operands results.
1718    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
1719    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
1720      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
1721    return MinOpRes;
1722  }
1723
1724  // SCEVUDivExpr, SCEVUnknown
1725  return 0;
1726}
1727
1728/// createSCEV - We know that there is no SCEV for the specified value.
1729/// Analyze the expression.
1730///
1731SCEVHandle ScalarEvolutionsImpl::createSCEV(Value *V) {
1732  if (!isa<IntegerType>(V->getType()))
1733    return SE.getUnknown(V);
1734
1735  unsigned Opcode = Instruction::UserOp1;
1736  if (Instruction *I = dyn_cast<Instruction>(V))
1737    Opcode = I->getOpcode();
1738  else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
1739    Opcode = CE->getOpcode();
1740  else
1741    return SE.getUnknown(V);
1742
1743  User *U = cast<User>(V);
1744  switch (Opcode) {
1745  case Instruction::Add:
1746    return SE.getAddExpr(getSCEV(U->getOperand(0)),
1747                         getSCEV(U->getOperand(1)));
1748  case Instruction::Mul:
1749    return SE.getMulExpr(getSCEV(U->getOperand(0)),
1750                         getSCEV(U->getOperand(1)));
1751  case Instruction::UDiv:
1752    return SE.getUDivExpr(getSCEV(U->getOperand(0)),
1753                          getSCEV(U->getOperand(1)));
1754  case Instruction::Sub:
1755    return SE.getMinusSCEV(getSCEV(U->getOperand(0)),
1756                           getSCEV(U->getOperand(1)));
1757  case Instruction::Or:
1758    // If the RHS of the Or is a constant, we may have something like:
1759    // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
1760    // optimizations will transparently handle this case.
1761    //
1762    // In order for this transformation to be safe, the LHS must be of the
1763    // form X*(2^n) and the Or constant must be less than 2^n.
1764    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
1765      SCEVHandle LHS = getSCEV(U->getOperand(0));
1766      const APInt &CIVal = CI->getValue();
1767      if (GetMinTrailingZeros(LHS) >=
1768          (CIVal.getBitWidth() - CIVal.countLeadingZeros()))
1769        return SE.getAddExpr(LHS, getSCEV(U->getOperand(1)));
1770    }
1771    break;
1772  case Instruction::Xor:
1773    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
1774      // If the RHS of the xor is a signbit, then this is just an add.
1775      // Instcombine turns add of signbit into xor as a strength reduction step.
1776      if (CI->getValue().isSignBit())
1777        return SE.getAddExpr(getSCEV(U->getOperand(0)),
1778                             getSCEV(U->getOperand(1)));
1779
1780      // If the RHS of xor is -1, then this is a not operation.
1781      else if (CI->isAllOnesValue())
1782        return SE.getNotSCEV(getSCEV(U->getOperand(0)));
1783    }
1784    break;
1785
1786  case Instruction::Shl:
1787    // Turn shift left of a constant amount into a multiply.
1788    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
1789      uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
1790      Constant *X = ConstantInt::get(
1791        APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
1792      return SE.getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
1793    }
1794    break;
1795
1796  case Instruction::LShr:
1797    // Turn logical shift right of a constant into a unsigned divide.
1798    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
1799      uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
1800      Constant *X = ConstantInt::get(
1801        APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
1802      return SE.getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
1803    }
1804    break;
1805
1806  case Instruction::Trunc:
1807    return SE.getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
1808
1809  case Instruction::ZExt:
1810    return SE.getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
1811
1812  case Instruction::SExt:
1813    return SE.getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
1814
1815  case Instruction::BitCast:
1816    // BitCasts are no-op casts so we just eliminate the cast.
1817    if (U->getType()->isInteger() &&
1818        U->getOperand(0)->getType()->isInteger())
1819      return getSCEV(U->getOperand(0));
1820    break;
1821
1822  case Instruction::PHI:
1823    return createNodeForPHI(cast<PHINode>(U));
1824
1825  case Instruction::Select:
1826    // This could be a smax or umax that was lowered earlier.
1827    // Try to recover it.
1828    if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
1829      Value *LHS = ICI->getOperand(0);
1830      Value *RHS = ICI->getOperand(1);
1831      switch (ICI->getPredicate()) {
1832      case ICmpInst::ICMP_SLT:
1833      case ICmpInst::ICMP_SLE:
1834        std::swap(LHS, RHS);
1835        // fall through
1836      case ICmpInst::ICMP_SGT:
1837      case ICmpInst::ICMP_SGE:
1838        if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
1839          return SE.getSMaxExpr(getSCEV(LHS), getSCEV(RHS));
1840        else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
1841          // ~smax(~x, ~y) == smin(x, y).
1842          return SE.getNotSCEV(SE.getSMaxExpr(
1843                                   SE.getNotSCEV(getSCEV(LHS)),
1844                                   SE.getNotSCEV(getSCEV(RHS))));
1845        break;
1846      case ICmpInst::ICMP_ULT:
1847      case ICmpInst::ICMP_ULE:
1848        std::swap(LHS, RHS);
1849        // fall through
1850      case ICmpInst::ICMP_UGT:
1851      case ICmpInst::ICMP_UGE:
1852        if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
1853          return SE.getUMaxExpr(getSCEV(LHS), getSCEV(RHS));
1854        else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
1855          // ~umax(~x, ~y) == umin(x, y)
1856          return SE.getNotSCEV(SE.getUMaxExpr(SE.getNotSCEV(getSCEV(LHS)),
1857                                              SE.getNotSCEV(getSCEV(RHS))));
1858        break;
1859      default:
1860        break;
1861      }
1862    }
1863
1864  default: // We cannot analyze this expression.
1865    break;
1866  }
1867
1868  return SE.getUnknown(V);
1869}
1870
1871
1872
1873//===----------------------------------------------------------------------===//
1874//                   Iteration Count Computation Code
1875//
1876
1877/// getIterationCount - If the specified loop has a predictable iteration
1878/// count, return it.  Note that it is not valid to call this method on a
1879/// loop without a loop-invariant iteration count.
1880SCEVHandle ScalarEvolutionsImpl::getIterationCount(const Loop *L) {
1881  std::map<const Loop*, SCEVHandle>::iterator I = IterationCounts.find(L);
1882  if (I == IterationCounts.end()) {
1883    SCEVHandle ItCount = ComputeIterationCount(L);
1884    I = IterationCounts.insert(std::make_pair(L, ItCount)).first;
1885    if (ItCount != UnknownValue) {
1886      assert(ItCount->isLoopInvariant(L) &&
1887             "Computed trip count isn't loop invariant for loop!");
1888      ++NumTripCountsComputed;
1889    } else if (isa<PHINode>(L->getHeader()->begin())) {
1890      // Only count loops that have phi nodes as not being computable.
1891      ++NumTripCountsNotComputed;
1892    }
1893  }
1894  return I->second;
1895}
1896
1897/// ComputeIterationCount - Compute the number of times the specified loop
1898/// will iterate.
1899SCEVHandle ScalarEvolutionsImpl::ComputeIterationCount(const Loop *L) {
1900  // If the loop has a non-one exit block count, we can't analyze it.
1901  SmallVector<BasicBlock*, 8> ExitBlocks;
1902  L->getExitBlocks(ExitBlocks);
1903  if (ExitBlocks.size() != 1) return UnknownValue;
1904
1905  // Okay, there is one exit block.  Try to find the condition that causes the
1906  // loop to be exited.
1907  BasicBlock *ExitBlock = ExitBlocks[0];
1908
1909  BasicBlock *ExitingBlock = 0;
1910  for (pred_iterator PI = pred_begin(ExitBlock), E = pred_end(ExitBlock);
1911       PI != E; ++PI)
1912    if (L->contains(*PI)) {
1913      if (ExitingBlock == 0)
1914        ExitingBlock = *PI;
1915      else
1916        return UnknownValue;   // More than one block exiting!
1917    }
1918  assert(ExitingBlock && "No exits from loop, something is broken!");
1919
1920  // Okay, we've computed the exiting block.  See what condition causes us to
1921  // exit.
1922  //
1923  // FIXME: we should be able to handle switch instructions (with a single exit)
1924  BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
1925  if (ExitBr == 0) return UnknownValue;
1926  assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
1927
1928  // At this point, we know we have a conditional branch that determines whether
1929  // the loop is exited.  However, we don't know if the branch is executed each
1930  // time through the loop.  If not, then the execution count of the branch will
1931  // not be equal to the trip count of the loop.
1932  //
1933  // Currently we check for this by checking to see if the Exit branch goes to
1934  // the loop header.  If so, we know it will always execute the same number of
1935  // times as the loop.  We also handle the case where the exit block *is* the
1936  // loop header.  This is common for un-rotated loops.  More extensive analysis
1937  // could be done to handle more cases here.
1938  if (ExitBr->getSuccessor(0) != L->getHeader() &&
1939      ExitBr->getSuccessor(1) != L->getHeader() &&
1940      ExitBr->getParent() != L->getHeader())
1941    return UnknownValue;
1942
1943  ICmpInst *ExitCond = dyn_cast<ICmpInst>(ExitBr->getCondition());
1944
1945  // If it's not an integer comparison then compute it the hard way.
1946  // Note that ICmpInst deals with pointer comparisons too so we must check
1947  // the type of the operand.
1948  if (ExitCond == 0 || isa<PointerType>(ExitCond->getOperand(0)->getType()))
1949    return ComputeIterationCountExhaustively(L, ExitBr->getCondition(),
1950                                          ExitBr->getSuccessor(0) == ExitBlock);
1951
1952  // If the condition was exit on true, convert the condition to exit on false
1953  ICmpInst::Predicate Cond;
1954  if (ExitBr->getSuccessor(1) == ExitBlock)
1955    Cond = ExitCond->getPredicate();
1956  else
1957    Cond = ExitCond->getInversePredicate();
1958
1959  // Handle common loops like: for (X = "string"; *X; ++X)
1960  if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
1961    if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
1962      SCEVHandle ItCnt =
1963        ComputeLoadConstantCompareIterationCount(LI, RHS, L, Cond);
1964      if (!isa<SCEVCouldNotCompute>(ItCnt)) return ItCnt;
1965    }
1966
1967  SCEVHandle LHS = getSCEV(ExitCond->getOperand(0));
1968  SCEVHandle RHS = getSCEV(ExitCond->getOperand(1));
1969
1970  // Try to evaluate any dependencies out of the loop.
1971  SCEVHandle Tmp = getSCEVAtScope(LHS, L);
1972  if (!isa<SCEVCouldNotCompute>(Tmp)) LHS = Tmp;
1973  Tmp = getSCEVAtScope(RHS, L);
1974  if (!isa<SCEVCouldNotCompute>(Tmp)) RHS = Tmp;
1975
1976  // At this point, we would like to compute how many iterations of the
1977  // loop the predicate will return true for these inputs.
1978  if (isa<SCEVConstant>(LHS) && !isa<SCEVConstant>(RHS)) {
1979    // If there is a constant, force it into the RHS.
1980    std::swap(LHS, RHS);
1981    Cond = ICmpInst::getSwappedPredicate(Cond);
1982  }
1983
1984  // FIXME: think about handling pointer comparisons!  i.e.:
1985  // while (P != P+100) ++P;
1986
1987  // If we have a comparison of a chrec against a constant, try to use value
1988  // ranges to answer this query.
1989  if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
1990    if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
1991      if (AddRec->getLoop() == L) {
1992        // Form the comparison range using the constant of the correct type so
1993        // that the ConstantRange class knows to do a signed or unsigned
1994        // comparison.
1995        ConstantInt *CompVal = RHSC->getValue();
1996        const Type *RealTy = ExitCond->getOperand(0)->getType();
1997        CompVal = dyn_cast<ConstantInt>(
1998          ConstantExpr::getBitCast(CompVal, RealTy));
1999        if (CompVal) {
2000          // Form the constant range.
2001          ConstantRange CompRange(
2002              ICmpInst::makeConstantRange(Cond, CompVal->getValue()));
2003
2004          SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange, SE);
2005          if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
2006        }
2007      }
2008
2009  switch (Cond) {
2010  case ICmpInst::ICMP_NE: {                     // while (X != Y)
2011    // Convert to: while (X-Y != 0)
2012    SCEVHandle TC = HowFarToZero(SE.getMinusSCEV(LHS, RHS), L);
2013    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
2014    break;
2015  }
2016  case ICmpInst::ICMP_EQ: {
2017    // Convert to: while (X-Y == 0)           // while (X == Y)
2018    SCEVHandle TC = HowFarToNonZero(SE.getMinusSCEV(LHS, RHS), L);
2019    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
2020    break;
2021  }
2022  case ICmpInst::ICMP_SLT: {
2023    SCEVHandle TC = HowManyLessThans(LHS, RHS, L, true);
2024    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
2025    break;
2026  }
2027  case ICmpInst::ICMP_SGT: {
2028    SCEVHandle TC = HowManyLessThans(SE.getNotSCEV(LHS),
2029                                     SE.getNotSCEV(RHS), L, true);
2030    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
2031    break;
2032  }
2033  case ICmpInst::ICMP_ULT: {
2034    SCEVHandle TC = HowManyLessThans(LHS, RHS, L, false);
2035    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
2036    break;
2037  }
2038  case ICmpInst::ICMP_UGT: {
2039    SCEVHandle TC = HowManyLessThans(SE.getNotSCEV(LHS),
2040                                     SE.getNotSCEV(RHS), L, false);
2041    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
2042    break;
2043  }
2044  default:
2045#if 0
2046    cerr << "ComputeIterationCount ";
2047    if (ExitCond->getOperand(0)->getType()->isUnsigned())
2048      cerr << "[unsigned] ";
2049    cerr << *LHS << "   "
2050         << Instruction::getOpcodeName(Instruction::ICmp)
2051         << "   " << *RHS << "\n";
2052#endif
2053    break;
2054  }
2055  return ComputeIterationCountExhaustively(L, ExitCond,
2056                                       ExitBr->getSuccessor(0) == ExitBlock);
2057}
2058
2059static ConstantInt *
2060EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
2061                                ScalarEvolution &SE) {
2062  SCEVHandle InVal = SE.getConstant(C);
2063  SCEVHandle Val = AddRec->evaluateAtIteration(InVal, SE);
2064  assert(isa<SCEVConstant>(Val) &&
2065         "Evaluation of SCEV at constant didn't fold correctly?");
2066  return cast<SCEVConstant>(Val)->getValue();
2067}
2068
2069/// GetAddressedElementFromGlobal - Given a global variable with an initializer
2070/// and a GEP expression (missing the pointer index) indexing into it, return
2071/// the addressed element of the initializer or null if the index expression is
2072/// invalid.
2073static Constant *
2074GetAddressedElementFromGlobal(GlobalVariable *GV,
2075                              const std::vector<ConstantInt*> &Indices) {
2076  Constant *Init = GV->getInitializer();
2077  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
2078    uint64_t Idx = Indices[i]->getZExtValue();
2079    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
2080      assert(Idx < CS->getNumOperands() && "Bad struct index!");
2081      Init = cast<Constant>(CS->getOperand(Idx));
2082    } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
2083      if (Idx >= CA->getNumOperands()) return 0;  // Bogus program
2084      Init = cast<Constant>(CA->getOperand(Idx));
2085    } else if (isa<ConstantAggregateZero>(Init)) {
2086      if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
2087        assert(Idx < STy->getNumElements() && "Bad struct index!");
2088        Init = Constant::getNullValue(STy->getElementType(Idx));
2089      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
2090        if (Idx >= ATy->getNumElements()) return 0;  // Bogus program
2091        Init = Constant::getNullValue(ATy->getElementType());
2092      } else {
2093        assert(0 && "Unknown constant aggregate type!");
2094      }
2095      return 0;
2096    } else {
2097      return 0; // Unknown initializer type
2098    }
2099  }
2100  return Init;
2101}
2102
2103/// ComputeLoadConstantCompareIterationCount - Given an exit condition of
2104/// 'icmp op load X, cst', try to see if we can compute the trip count.
2105SCEVHandle ScalarEvolutionsImpl::
2106ComputeLoadConstantCompareIterationCount(LoadInst *LI, Constant *RHS,
2107                                         const Loop *L,
2108                                         ICmpInst::Predicate predicate) {
2109  if (LI->isVolatile()) return UnknownValue;
2110
2111  // Check to see if the loaded pointer is a getelementptr of a global.
2112  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
2113  if (!GEP) return UnknownValue;
2114
2115  // Make sure that it is really a constant global we are gepping, with an
2116  // initializer, and make sure the first IDX is really 0.
2117  GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
2118  if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
2119      GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
2120      !cast<Constant>(GEP->getOperand(1))->isNullValue())
2121    return UnknownValue;
2122
2123  // Okay, we allow one non-constant index into the GEP instruction.
2124  Value *VarIdx = 0;
2125  std::vector<ConstantInt*> Indexes;
2126  unsigned VarIdxNum = 0;
2127  for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
2128    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
2129      Indexes.push_back(CI);
2130    } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
2131      if (VarIdx) return UnknownValue;  // Multiple non-constant idx's.
2132      VarIdx = GEP->getOperand(i);
2133      VarIdxNum = i-2;
2134      Indexes.push_back(0);
2135    }
2136
2137  // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
2138  // Check to see if X is a loop variant variable value now.
2139  SCEVHandle Idx = getSCEV(VarIdx);
2140  SCEVHandle Tmp = getSCEVAtScope(Idx, L);
2141  if (!isa<SCEVCouldNotCompute>(Tmp)) Idx = Tmp;
2142
2143  // We can only recognize very limited forms of loop index expressions, in
2144  // particular, only affine AddRec's like {C1,+,C2}.
2145  SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
2146  if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
2147      !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
2148      !isa<SCEVConstant>(IdxExpr->getOperand(1)))
2149    return UnknownValue;
2150
2151  unsigned MaxSteps = MaxBruteForceIterations;
2152  for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
2153    ConstantInt *ItCst =
2154      ConstantInt::get(IdxExpr->getType(), IterationNum);
2155    ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, SE);
2156
2157    // Form the GEP offset.
2158    Indexes[VarIdxNum] = Val;
2159
2160    Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
2161    if (Result == 0) break;  // Cannot compute!
2162
2163    // Evaluate the condition for this iteration.
2164    Result = ConstantExpr::getICmp(predicate, Result, RHS);
2165    if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
2166    if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
2167#if 0
2168      cerr << "\n***\n*** Computed loop count " << *ItCst
2169           << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
2170           << "***\n";
2171#endif
2172      ++NumArrayLenItCounts;
2173      return SE.getConstant(ItCst);   // Found terminating iteration!
2174    }
2175  }
2176  return UnknownValue;
2177}
2178
2179
2180/// CanConstantFold - Return true if we can constant fold an instruction of the
2181/// specified type, assuming that all operands were constants.
2182static bool CanConstantFold(const Instruction *I) {
2183  if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
2184      isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
2185    return true;
2186
2187  if (const CallInst *CI = dyn_cast<CallInst>(I))
2188    if (const Function *F = CI->getCalledFunction())
2189      return canConstantFoldCallTo(F);
2190  return false;
2191}
2192
2193/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
2194/// in the loop that V is derived from.  We allow arbitrary operations along the
2195/// way, but the operands of an operation must either be constants or a value
2196/// derived from a constant PHI.  If this expression does not fit with these
2197/// constraints, return null.
2198static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
2199  // If this is not an instruction, or if this is an instruction outside of the
2200  // loop, it can't be derived from a loop PHI.
2201  Instruction *I = dyn_cast<Instruction>(V);
2202  if (I == 0 || !L->contains(I->getParent())) return 0;
2203
2204  if (PHINode *PN = dyn_cast<PHINode>(I)) {
2205    if (L->getHeader() == I->getParent())
2206      return PN;
2207    else
2208      // We don't currently keep track of the control flow needed to evaluate
2209      // PHIs, so we cannot handle PHIs inside of loops.
2210      return 0;
2211  }
2212
2213  // If we won't be able to constant fold this expression even if the operands
2214  // are constants, return early.
2215  if (!CanConstantFold(I)) return 0;
2216
2217  // Otherwise, we can evaluate this instruction if all of its operands are
2218  // constant or derived from a PHI node themselves.
2219  PHINode *PHI = 0;
2220  for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
2221    if (!(isa<Constant>(I->getOperand(Op)) ||
2222          isa<GlobalValue>(I->getOperand(Op)))) {
2223      PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
2224      if (P == 0) return 0;  // Not evolving from PHI
2225      if (PHI == 0)
2226        PHI = P;
2227      else if (PHI != P)
2228        return 0;  // Evolving from multiple different PHIs.
2229    }
2230
2231  // This is a expression evolving from a constant PHI!
2232  return PHI;
2233}
2234
2235/// EvaluateExpression - Given an expression that passes the
2236/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
2237/// in the loop has the value PHIVal.  If we can't fold this expression for some
2238/// reason, return null.
2239static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
2240  if (isa<PHINode>(V)) return PHIVal;
2241  if (Constant *C = dyn_cast<Constant>(V)) return C;
2242  Instruction *I = cast<Instruction>(V);
2243
2244  std::vector<Constant*> Operands;
2245  Operands.resize(I->getNumOperands());
2246
2247  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
2248    Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal);
2249    if (Operands[i] == 0) return 0;
2250  }
2251
2252  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
2253    return ConstantFoldCompareInstOperands(CI->getPredicate(),
2254                                           &Operands[0], Operands.size());
2255  else
2256    return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
2257                                    &Operands[0], Operands.size());
2258}
2259
2260/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
2261/// in the header of its containing loop, we know the loop executes a
2262/// constant number of times, and the PHI node is just a recurrence
2263/// involving constants, fold it.
2264Constant *ScalarEvolutionsImpl::
2265getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& Its, const Loop *L){
2266  std::map<PHINode*, Constant*>::iterator I =
2267    ConstantEvolutionLoopExitValue.find(PN);
2268  if (I != ConstantEvolutionLoopExitValue.end())
2269    return I->second;
2270
2271  if (Its.ugt(APInt(Its.getBitWidth(),MaxBruteForceIterations)))
2272    return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.
2273
2274  Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
2275
2276  // Since the loop is canonicalized, the PHI node must have two entries.  One
2277  // entry must be a constant (coming in from outside of the loop), and the
2278  // second must be derived from the same PHI.
2279  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
2280  Constant *StartCST =
2281    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
2282  if (StartCST == 0)
2283    return RetVal = 0;  // Must be a constant.
2284
2285  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
2286  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
2287  if (PN2 != PN)
2288    return RetVal = 0;  // Not derived from same PHI.
2289
2290  // Execute the loop symbolically to determine the exit value.
2291  if (Its.getActiveBits() >= 32)
2292    return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
2293
2294  unsigned NumIterations = Its.getZExtValue(); // must be in range
2295  unsigned IterationNum = 0;
2296  for (Constant *PHIVal = StartCST; ; ++IterationNum) {
2297    if (IterationNum == NumIterations)
2298      return RetVal = PHIVal;  // Got exit value!
2299
2300    // Compute the value of the PHI node for the next iteration.
2301    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
2302    if (NextPHI == PHIVal)
2303      return RetVal = NextPHI;  // Stopped evolving!
2304    if (NextPHI == 0)
2305      return 0;        // Couldn't evaluate!
2306    PHIVal = NextPHI;
2307  }
2308}
2309
2310/// ComputeIterationCountExhaustively - If the trip is known to execute a
2311/// constant number of times (the condition evolves only from constants),
2312/// try to evaluate a few iterations of the loop until we get the exit
2313/// condition gets a value of ExitWhen (true or false).  If we cannot
2314/// evaluate the trip count of the loop, return UnknownValue.
2315SCEVHandle ScalarEvolutionsImpl::
2316ComputeIterationCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) {
2317  PHINode *PN = getConstantEvolvingPHI(Cond, L);
2318  if (PN == 0) return UnknownValue;
2319
2320  // Since the loop is canonicalized, the PHI node must have two entries.  One
2321  // entry must be a constant (coming in from outside of the loop), and the
2322  // second must be derived from the same PHI.
2323  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
2324  Constant *StartCST =
2325    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
2326  if (StartCST == 0) return UnknownValue;  // Must be a constant.
2327
2328  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
2329  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
2330  if (PN2 != PN) return UnknownValue;  // Not derived from same PHI.
2331
2332  // Okay, we find a PHI node that defines the trip count of this loop.  Execute
2333  // the loop symbolically to determine when the condition gets a value of
2334  // "ExitWhen".
2335  unsigned IterationNum = 0;
2336  unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
2337  for (Constant *PHIVal = StartCST;
2338       IterationNum != MaxIterations; ++IterationNum) {
2339    ConstantInt *CondVal =
2340      dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal));
2341
2342    // Couldn't symbolically evaluate.
2343    if (!CondVal) return UnknownValue;
2344
2345    if (CondVal->getValue() == uint64_t(ExitWhen)) {
2346      ConstantEvolutionLoopExitValue[PN] = PHIVal;
2347      ++NumBruteForceTripCountsComputed;
2348      return SE.getConstant(ConstantInt::get(Type::Int32Ty, IterationNum));
2349    }
2350
2351    // Compute the value of the PHI node for the next iteration.
2352    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
2353    if (NextPHI == 0 || NextPHI == PHIVal)
2354      return UnknownValue;  // Couldn't evaluate or not making progress...
2355    PHIVal = NextPHI;
2356  }
2357
2358  // Too many iterations were needed to evaluate.
2359  return UnknownValue;
2360}
2361
2362/// getSCEVAtScope - Compute the value of the specified expression within the
2363/// indicated loop (which may be null to indicate in no loop).  If the
2364/// expression cannot be evaluated, return UnknownValue.
2365SCEVHandle ScalarEvolutionsImpl::getSCEVAtScope(SCEV *V, const Loop *L) {
2366  // FIXME: this should be turned into a virtual method on SCEV!
2367
2368  if (isa<SCEVConstant>(V)) return V;
2369
2370  // If this instruction is evolved from a constant-evolving PHI, compute the
2371  // exit value from the loop without using SCEVs.
2372  if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
2373    if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
2374      const Loop *LI = this->LI[I->getParent()];
2375      if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
2376        if (PHINode *PN = dyn_cast<PHINode>(I))
2377          if (PN->getParent() == LI->getHeader()) {
2378            // Okay, there is no closed form solution for the PHI node.  Check
2379            // to see if the loop that contains it has a known iteration count.
2380            // If so, we may be able to force computation of the exit value.
2381            SCEVHandle IterationCount = getIterationCount(LI);
2382            if (SCEVConstant *ICC = dyn_cast<SCEVConstant>(IterationCount)) {
2383              // Okay, we know how many times the containing loop executes.  If
2384              // this is a constant evolving PHI node, get the final value at
2385              // the specified iteration number.
2386              Constant *RV = getConstantEvolutionLoopExitValue(PN,
2387                                                    ICC->getValue()->getValue(),
2388                                                               LI);
2389              if (RV) return SE.getUnknown(RV);
2390            }
2391          }
2392
2393      // Okay, this is an expression that we cannot symbolically evaluate
2394      // into a SCEV.  Check to see if it's possible to symbolically evaluate
2395      // the arguments into constants, and if so, try to constant propagate the
2396      // result.  This is particularly useful for computing loop exit values.
2397      if (CanConstantFold(I)) {
2398        std::vector<Constant*> Operands;
2399        Operands.reserve(I->getNumOperands());
2400        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
2401          Value *Op = I->getOperand(i);
2402          if (Constant *C = dyn_cast<Constant>(Op)) {
2403            Operands.push_back(C);
2404          } else {
2405            // If any of the operands is non-constant and if they are
2406            // non-integer, don't even try to analyze them with scev techniques.
2407            if (!isa<IntegerType>(Op->getType()))
2408              return V;
2409
2410            SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L);
2411            if (SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
2412              Operands.push_back(ConstantExpr::getIntegerCast(SC->getValue(),
2413                                                              Op->getType(),
2414                                                              false));
2415            else if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
2416              if (Constant *C = dyn_cast<Constant>(SU->getValue()))
2417                Operands.push_back(ConstantExpr::getIntegerCast(C,
2418                                                                Op->getType(),
2419                                                                false));
2420              else
2421                return V;
2422            } else {
2423              return V;
2424            }
2425          }
2426        }
2427
2428        Constant *C;
2429        if (const CmpInst *CI = dyn_cast<CmpInst>(I))
2430          C = ConstantFoldCompareInstOperands(CI->getPredicate(),
2431                                              &Operands[0], Operands.size());
2432        else
2433          C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
2434                                       &Operands[0], Operands.size());
2435        return SE.getUnknown(C);
2436      }
2437    }
2438
2439    // This is some other type of SCEVUnknown, just return it.
2440    return V;
2441  }
2442
2443  if (SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
2444    // Avoid performing the look-up in the common case where the specified
2445    // expression has no loop-variant portions.
2446    for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
2447      SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
2448      if (OpAtScope != Comm->getOperand(i)) {
2449        if (OpAtScope == UnknownValue) return UnknownValue;
2450        // Okay, at least one of these operands is loop variant but might be
2451        // foldable.  Build a new instance of the folded commutative expression.
2452        std::vector<SCEVHandle> NewOps(Comm->op_begin(), Comm->op_begin()+i);
2453        NewOps.push_back(OpAtScope);
2454
2455        for (++i; i != e; ++i) {
2456          OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
2457          if (OpAtScope == UnknownValue) return UnknownValue;
2458          NewOps.push_back(OpAtScope);
2459        }
2460        if (isa<SCEVAddExpr>(Comm))
2461          return SE.getAddExpr(NewOps);
2462        if (isa<SCEVMulExpr>(Comm))
2463          return SE.getMulExpr(NewOps);
2464        if (isa<SCEVSMaxExpr>(Comm))
2465          return SE.getSMaxExpr(NewOps);
2466        if (isa<SCEVUMaxExpr>(Comm))
2467          return SE.getUMaxExpr(NewOps);
2468        assert(0 && "Unknown commutative SCEV type!");
2469      }
2470    }
2471    // If we got here, all operands are loop invariant.
2472    return Comm;
2473  }
2474
2475  if (SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
2476    SCEVHandle LHS = getSCEVAtScope(Div->getLHS(), L);
2477    if (LHS == UnknownValue) return LHS;
2478    SCEVHandle RHS = getSCEVAtScope(Div->getRHS(), L);
2479    if (RHS == UnknownValue) return RHS;
2480    if (LHS == Div->getLHS() && RHS == Div->getRHS())
2481      return Div;   // must be loop invariant
2482    return SE.getUDivExpr(LHS, RHS);
2483  }
2484
2485  // If this is a loop recurrence for a loop that does not contain L, then we
2486  // are dealing with the final value computed by the loop.
2487  if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
2488    if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
2489      // To evaluate this recurrence, we need to know how many times the AddRec
2490      // loop iterates.  Compute this now.
2491      SCEVHandle IterationCount = getIterationCount(AddRec->getLoop());
2492      if (IterationCount == UnknownValue) return UnknownValue;
2493
2494      // Then, evaluate the AddRec.
2495      return AddRec->evaluateAtIteration(IterationCount, SE);
2496    }
2497    return UnknownValue;
2498  }
2499
2500  //assert(0 && "Unknown SCEV type!");
2501  return UnknownValue;
2502}
2503
2504/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
2505/// following equation:
2506///
2507///     A * X = B (mod N)
2508///
2509/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
2510/// A and B isn't important.
2511///
2512/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
2513static SCEVHandle SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
2514                                               ScalarEvolution &SE) {
2515  uint32_t BW = A.getBitWidth();
2516  assert(BW == B.getBitWidth() && "Bit widths must be the same.");
2517  assert(A != 0 && "A must be non-zero.");
2518
2519  // 1. D = gcd(A, N)
2520  //
2521  // The gcd of A and N may have only one prime factor: 2. The number of
2522  // trailing zeros in A is its multiplicity
2523  uint32_t Mult2 = A.countTrailingZeros();
2524  // D = 2^Mult2
2525
2526  // 2. Check if B is divisible by D.
2527  //
2528  // B is divisible by D if and only if the multiplicity of prime factor 2 for B
2529  // is not less than multiplicity of this prime factor for D.
2530  if (B.countTrailingZeros() < Mult2)
2531    return new SCEVCouldNotCompute();
2532
2533  // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
2534  // modulo (N / D).
2535  //
2536  // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
2537  // bit width during computations.
2538  APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
2539  APInt Mod(BW + 1, 0);
2540  Mod.set(BW - Mult2);  // Mod = N / D
2541  APInt I = AD.multiplicativeInverse(Mod);
2542
2543  // 4. Compute the minimum unsigned root of the equation:
2544  // I * (B / D) mod (N / D)
2545  APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
2546
2547  // The result is guaranteed to be less than 2^BW so we may truncate it to BW
2548  // bits.
2549  return SE.getConstant(Result.trunc(BW));
2550}
2551
2552/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
2553/// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
2554/// might be the same) or two SCEVCouldNotCompute objects.
2555///
2556static std::pair<SCEVHandle,SCEVHandle>
2557SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
2558  assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
2559  SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
2560  SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
2561  SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
2562
2563  // We currently can only solve this if the coefficients are constants.
2564  if (!LC || !MC || !NC) {
2565    SCEV *CNC = new SCEVCouldNotCompute();
2566    return std::make_pair(CNC, CNC);
2567  }
2568
2569  uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
2570  const APInt &L = LC->getValue()->getValue();
2571  const APInt &M = MC->getValue()->getValue();
2572  const APInt &N = NC->getValue()->getValue();
2573  APInt Two(BitWidth, 2);
2574  APInt Four(BitWidth, 4);
2575
2576  {
2577    using namespace APIntOps;
2578    const APInt& C = L;
2579    // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
2580    // The B coefficient is M-N/2
2581    APInt B(M);
2582    B -= sdiv(N,Two);
2583
2584    // The A coefficient is N/2
2585    APInt A(N.sdiv(Two));
2586
2587    // Compute the B^2-4ac term.
2588    APInt SqrtTerm(B);
2589    SqrtTerm *= B;
2590    SqrtTerm -= Four * (A * C);
2591
2592    // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
2593    // integer value or else APInt::sqrt() will assert.
2594    APInt SqrtVal(SqrtTerm.sqrt());
2595
2596    // Compute the two solutions for the quadratic formula.
2597    // The divisions must be performed as signed divisions.
2598    APInt NegB(-B);
2599    APInt TwoA( A << 1 );
2600    ConstantInt *Solution1 = ConstantInt::get((NegB + SqrtVal).sdiv(TwoA));
2601    ConstantInt *Solution2 = ConstantInt::get((NegB - SqrtVal).sdiv(TwoA));
2602
2603    return std::make_pair(SE.getConstant(Solution1),
2604                          SE.getConstant(Solution2));
2605    } // end APIntOps namespace
2606}
2607
2608/// HowFarToZero - Return the number of times a backedge comparing the specified
2609/// value to zero will execute.  If not computable, return UnknownValue
2610SCEVHandle ScalarEvolutionsImpl::HowFarToZero(SCEV *V, const Loop *L) {
2611  // If the value is a constant
2612  if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
2613    // If the value is already zero, the branch will execute zero times.
2614    if (C->getValue()->isZero()) return C;
2615    return UnknownValue;  // Otherwise it will loop infinitely.
2616  }
2617
2618  SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
2619  if (!AddRec || AddRec->getLoop() != L)
2620    return UnknownValue;
2621
2622  if (AddRec->isAffine()) {
2623    // If this is an affine expression, the execution count of this branch is
2624    // the minimum unsigned root of the following equation:
2625    //
2626    //     Start + Step*N = 0 (mod 2^BW)
2627    //
2628    // equivalent to:
2629    //
2630    //             Step*N = -Start (mod 2^BW)
2631    //
2632    // where BW is the common bit width of Start and Step.
2633
2634    // Get the initial value for the loop.
2635    SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
2636    if (isa<SCEVCouldNotCompute>(Start)) return UnknownValue;
2637
2638    SCEVHandle Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
2639
2640    if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
2641      // For now we handle only constant steps.
2642
2643      // First, handle unitary steps.
2644      if (StepC->getValue()->equalsInt(1))      // 1*N = -Start (mod 2^BW), so:
2645        return SE.getNegativeSCEV(Start);       //   N = -Start (as unsigned)
2646      if (StepC->getValue()->isAllOnesValue())  // -1*N = -Start (mod 2^BW), so:
2647        return Start;                           //    N = Start (as unsigned)
2648
2649      // Then, try to solve the above equation provided that Start is constant.
2650      if (SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
2651        return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
2652                                            -StartC->getValue()->getValue(),SE);
2653    }
2654  } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
2655    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
2656    // the quadratic equation to solve it.
2657    std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec, SE);
2658    SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
2659    SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
2660    if (R1) {
2661#if 0
2662      cerr << "HFTZ: " << *V << " - sol#1: " << *R1
2663           << "  sol#2: " << *R2 << "\n";
2664#endif
2665      // Pick the smallest positive root value.
2666      if (ConstantInt *CB =
2667          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
2668                                   R1->getValue(), R2->getValue()))) {
2669        if (CB->getZExtValue() == false)
2670          std::swap(R1, R2);   // R1 is the minimum root now.
2671
2672        // We can only use this value if the chrec ends up with an exact zero
2673        // value at this index.  When solving for "X*X != 5", for example, we
2674        // should not accept a root of 2.
2675        SCEVHandle Val = AddRec->evaluateAtIteration(R1, SE);
2676        if (Val->isZero())
2677          return R1;  // We found a quadratic root!
2678      }
2679    }
2680  }
2681
2682  return UnknownValue;
2683}
2684
2685/// HowFarToNonZero - Return the number of times a backedge checking the
2686/// specified value for nonzero will execute.  If not computable, return
2687/// UnknownValue
2688SCEVHandle ScalarEvolutionsImpl::HowFarToNonZero(SCEV *V, const Loop *L) {
2689  // Loops that look like: while (X == 0) are very strange indeed.  We don't
2690  // handle them yet except for the trivial case.  This could be expanded in the
2691  // future as needed.
2692
2693  // If the value is a constant, check to see if it is known to be non-zero
2694  // already.  If so, the backedge will execute zero times.
2695  if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
2696    if (!C->getValue()->isNullValue())
2697      return SE.getIntegerSCEV(0, C->getType());
2698    return UnknownValue;  // Otherwise it will loop infinitely.
2699  }
2700
2701  // We could implement others, but I really doubt anyone writes loops like
2702  // this, and if they did, they would already be constant folded.
2703  return UnknownValue;
2704}
2705
2706/// executesAtLeastOnce - Test whether entry to the loop is protected by
2707/// a conditional between LHS and RHS.
2708bool ScalarEvolutionsImpl::executesAtLeastOnce(const Loop *L, bool isSigned,
2709                                               SCEV *LHS, SCEV *RHS) {
2710  BasicBlock *Preheader = L->getLoopPreheader();
2711  BasicBlock *PreheaderDest = L->getHeader();
2712  if (Preheader == 0) return false;
2713
2714  BranchInst *LoopEntryPredicate =
2715    dyn_cast<BranchInst>(Preheader->getTerminator());
2716  if (!LoopEntryPredicate) return false;
2717
2718  // This might be a critical edge broken out.  If the loop preheader ends in
2719  // an unconditional branch to the loop, check to see if the preheader has a
2720  // single predecessor, and if so, look for its terminator.
2721  while (LoopEntryPredicate->isUnconditional()) {
2722    PreheaderDest = Preheader;
2723    Preheader = Preheader->getSinglePredecessor();
2724    if (!Preheader) return false;  // Multiple preds.
2725
2726    LoopEntryPredicate =
2727      dyn_cast<BranchInst>(Preheader->getTerminator());
2728    if (!LoopEntryPredicate) return false;
2729  }
2730
2731  ICmpInst *ICI = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition());
2732  if (!ICI) return false;
2733
2734  // Now that we found a conditional branch that dominates the loop, check to
2735  // see if it is the comparison we are looking for.
2736  Value *PreCondLHS = ICI->getOperand(0);
2737  Value *PreCondRHS = ICI->getOperand(1);
2738  ICmpInst::Predicate Cond;
2739  if (LoopEntryPredicate->getSuccessor(0) == PreheaderDest)
2740    Cond = ICI->getPredicate();
2741  else
2742    Cond = ICI->getInversePredicate();
2743
2744  switch (Cond) {
2745  case ICmpInst::ICMP_UGT:
2746    if (isSigned) return false;
2747    std::swap(PreCondLHS, PreCondRHS);
2748    Cond = ICmpInst::ICMP_ULT;
2749    break;
2750  case ICmpInst::ICMP_SGT:
2751    if (!isSigned) return false;
2752    std::swap(PreCondLHS, PreCondRHS);
2753    Cond = ICmpInst::ICMP_SLT;
2754    break;
2755  case ICmpInst::ICMP_ULT:
2756    if (isSigned) return false;
2757    break;
2758  case ICmpInst::ICMP_SLT:
2759    if (!isSigned) return false;
2760    break;
2761  default:
2762    return false;
2763  }
2764
2765  if (!PreCondLHS->getType()->isInteger()) return false;
2766
2767  SCEVHandle PreCondLHSSCEV = getSCEV(PreCondLHS);
2768  SCEVHandle PreCondRHSSCEV = getSCEV(PreCondRHS);
2769  return (LHS == PreCondLHSSCEV && RHS == PreCondRHSSCEV) ||
2770         (LHS == SE.getNotSCEV(PreCondRHSSCEV) &&
2771          RHS == SE.getNotSCEV(PreCondLHSSCEV));
2772}
2773
2774/// HowManyLessThans - Return the number of times a backedge containing the
2775/// specified less-than comparison will execute.  If not computable, return
2776/// UnknownValue.
2777SCEVHandle ScalarEvolutionsImpl::
2778HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L, bool isSigned) {
2779  // Only handle:  "ADDREC < LoopInvariant".
2780  if (!RHS->isLoopInvariant(L)) return UnknownValue;
2781
2782  SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
2783  if (!AddRec || AddRec->getLoop() != L)
2784    return UnknownValue;
2785
2786  if (AddRec->isAffine()) {
2787    // FORNOW: We only support unit strides.
2788    SCEVHandle One = SE.getIntegerSCEV(1, RHS->getType());
2789    if (AddRec->getOperand(1) != One)
2790      return UnknownValue;
2791
2792    // We know the LHS is of the form {n,+,1} and the RHS is some loop-invariant
2793    // m.  So, we count the number of iterations in which {n,+,1} < m is true.
2794    // Note that we cannot simply return max(m-n,0) because it's not safe to
2795    // treat m-n as signed nor unsigned due to overflow possibility.
2796
2797    // First, we get the value of the LHS in the first iteration: n
2798    SCEVHandle Start = AddRec->getOperand(0);
2799
2800    if (executesAtLeastOnce(L, isSigned,
2801                            SE.getMinusSCEV(AddRec->getOperand(0), One), RHS)) {
2802      // Since we know that the condition is true in order to enter the loop,
2803      // we know that it will run exactly m-n times.
2804      return SE.getMinusSCEV(RHS, Start);
2805    } else {
2806      // Then, we get the value of the LHS in the first iteration in which the
2807      // above condition doesn't hold.  This equals to max(m,n).
2808      SCEVHandle End = isSigned ? SE.getSMaxExpr(RHS, Start)
2809                                : SE.getUMaxExpr(RHS, Start);
2810
2811      // Finally, we subtract these two values to get the number of times the
2812      // backedge is executed: max(m,n)-n.
2813      return SE.getMinusSCEV(End, Start);
2814    }
2815  }
2816
2817  return UnknownValue;
2818}
2819
2820/// getNumIterationsInRange - Return the number of iterations of this loop that
2821/// produce values in the specified constant range.  Another way of looking at
2822/// this is that it returns the first iteration number where the value is not in
2823/// the condition, thus computing the exit count. If the iteration count can't
2824/// be computed, an instance of SCEVCouldNotCompute is returned.
2825SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
2826                                                   ScalarEvolution &SE) const {
2827  if (Range.isFullSet())  // Infinite loop.
2828    return new SCEVCouldNotCompute();
2829
2830  // If the start is a non-zero constant, shift the range to simplify things.
2831  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
2832    if (!SC->getValue()->isZero()) {
2833      std::vector<SCEVHandle> Operands(op_begin(), op_end());
2834      Operands[0] = SE.getIntegerSCEV(0, SC->getType());
2835      SCEVHandle Shifted = SE.getAddRecExpr(Operands, getLoop());
2836      if (SCEVAddRecExpr *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
2837        return ShiftedAddRec->getNumIterationsInRange(
2838                           Range.subtract(SC->getValue()->getValue()), SE);
2839      // This is strange and shouldn't happen.
2840      return new SCEVCouldNotCompute();
2841    }
2842
2843  // The only time we can solve this is when we have all constant indices.
2844  // Otherwise, we cannot determine the overflow conditions.
2845  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2846    if (!isa<SCEVConstant>(getOperand(i)))
2847      return new SCEVCouldNotCompute();
2848
2849
2850  // Okay at this point we know that all elements of the chrec are constants and
2851  // that the start element is zero.
2852
2853  // First check to see if the range contains zero.  If not, the first
2854  // iteration exits.
2855  if (!Range.contains(APInt(getBitWidth(),0)))
2856    return SE.getConstant(ConstantInt::get(getType(),0));
2857
2858  if (isAffine()) {
2859    // If this is an affine expression then we have this situation:
2860    //   Solve {0,+,A} in Range  ===  Ax in Range
2861
2862    // We know that zero is in the range.  If A is positive then we know that
2863    // the upper value of the range must be the first possible exit value.
2864    // If A is negative then the lower of the range is the last possible loop
2865    // value.  Also note that we already checked for a full range.
2866    APInt One(getBitWidth(),1);
2867    APInt A     = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
2868    APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
2869
2870    // The exit value should be (End+A)/A.
2871    APInt ExitVal = (End + A).udiv(A);
2872    ConstantInt *ExitValue = ConstantInt::get(ExitVal);
2873
2874    // Evaluate at the exit value.  If we really did fall out of the valid
2875    // range, then we computed our trip count, otherwise wrap around or other
2876    // things must have happened.
2877    ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
2878    if (Range.contains(Val->getValue()))
2879      return new SCEVCouldNotCompute();  // Something strange happened
2880
2881    // Ensure that the previous value is in the range.  This is a sanity check.
2882    assert(Range.contains(
2883           EvaluateConstantChrecAtConstant(this,
2884           ConstantInt::get(ExitVal - One), SE)->getValue()) &&
2885           "Linear scev computation is off in a bad way!");
2886    return SE.getConstant(ExitValue);
2887  } else if (isQuadratic()) {
2888    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
2889    // quadratic equation to solve it.  To do this, we must frame our problem in
2890    // terms of figuring out when zero is crossed, instead of when
2891    // Range.getUpper() is crossed.
2892    std::vector<SCEVHandle> NewOps(op_begin(), op_end());
2893    NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
2894    SCEVHandle NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
2895
2896    // Next, solve the constructed addrec
2897    std::pair<SCEVHandle,SCEVHandle> Roots =
2898      SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
2899    SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
2900    SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
2901    if (R1) {
2902      // Pick the smallest positive root value.
2903      if (ConstantInt *CB =
2904          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
2905                                   R1->getValue(), R2->getValue()))) {
2906        if (CB->getZExtValue() == false)
2907          std::swap(R1, R2);   // R1 is the minimum root now.
2908
2909        // Make sure the root is not off by one.  The returned iteration should
2910        // not be in the range, but the previous one should be.  When solving
2911        // for "X*X < 5", for example, we should not return a root of 2.
2912        ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
2913                                                             R1->getValue(),
2914                                                             SE);
2915        if (Range.contains(R1Val->getValue())) {
2916          // The next iteration must be out of the range...
2917          ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()+1);
2918
2919          R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
2920          if (!Range.contains(R1Val->getValue()))
2921            return SE.getConstant(NextVal);
2922          return new SCEVCouldNotCompute();  // Something strange happened
2923        }
2924
2925        // If R1 was not in the range, then it is a good return value.  Make
2926        // sure that R1-1 WAS in the range though, just in case.
2927        ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()-1);
2928        R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
2929        if (Range.contains(R1Val->getValue()))
2930          return R1;
2931        return new SCEVCouldNotCompute();  // Something strange happened
2932      }
2933    }
2934  }
2935
2936  // Fallback, if this is a general polynomial, figure out the progression
2937  // through brute force: evaluate until we find an iteration that fails the
2938  // test.  This is likely to be slow, but getting an accurate trip count is
2939  // incredibly important, we will be able to simplify the exit test a lot, and
2940  // we are almost guaranteed to get a trip count in this case.
2941  ConstantInt *TestVal = ConstantInt::get(getType(), 0);
2942  ConstantInt *EndVal  = TestVal;  // Stop when we wrap around.
2943  do {
2944    ++NumBruteForceEvaluations;
2945    SCEVHandle Val = evaluateAtIteration(SE.getConstant(TestVal), SE);
2946    if (!isa<SCEVConstant>(Val))  // This shouldn't happen.
2947      return new SCEVCouldNotCompute();
2948
2949    // Check to see if we found the value!
2950    if (!Range.contains(cast<SCEVConstant>(Val)->getValue()->getValue()))
2951      return SE.getConstant(TestVal);
2952
2953    // Increment to test the next index.
2954    TestVal = ConstantInt::get(TestVal->getValue()+1);
2955  } while (TestVal != EndVal);
2956
2957  return new SCEVCouldNotCompute();
2958}
2959
2960
2961
2962//===----------------------------------------------------------------------===//
2963//                   ScalarEvolution Class Implementation
2964//===----------------------------------------------------------------------===//
2965
2966bool ScalarEvolution::runOnFunction(Function &F) {
2967  Impl = new ScalarEvolutionsImpl(*this, F, getAnalysis<LoopInfo>());
2968  return false;
2969}
2970
2971void ScalarEvolution::releaseMemory() {
2972  delete (ScalarEvolutionsImpl*)Impl;
2973  Impl = 0;
2974}
2975
2976void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
2977  AU.setPreservesAll();
2978  AU.addRequiredTransitive<LoopInfo>();
2979}
2980
2981SCEVHandle ScalarEvolution::getSCEV(Value *V) const {
2982  return ((ScalarEvolutionsImpl*)Impl)->getSCEV(V);
2983}
2984
2985/// hasSCEV - Return true if the SCEV for this value has already been
2986/// computed.
2987bool ScalarEvolution::hasSCEV(Value *V) const {
2988  return ((ScalarEvolutionsImpl*)Impl)->hasSCEV(V);
2989}
2990
2991
2992/// setSCEV - Insert the specified SCEV into the map of current SCEVs for
2993/// the specified value.
2994void ScalarEvolution::setSCEV(Value *V, const SCEVHandle &H) {
2995  ((ScalarEvolutionsImpl*)Impl)->setSCEV(V, H);
2996}
2997
2998
2999SCEVHandle ScalarEvolution::getIterationCount(const Loop *L) const {
3000  return ((ScalarEvolutionsImpl*)Impl)->getIterationCount(L);
3001}
3002
3003bool ScalarEvolution::hasLoopInvariantIterationCount(const Loop *L) const {
3004  return !isa<SCEVCouldNotCompute>(getIterationCount(L));
3005}
3006
3007SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) const {
3008  return ((ScalarEvolutionsImpl*)Impl)->getSCEVAtScope(getSCEV(V), L);
3009}
3010
3011void ScalarEvolution::deleteValueFromRecords(Value *V) const {
3012  return ((ScalarEvolutionsImpl*)Impl)->deleteValueFromRecords(V);
3013}
3014
3015static void PrintLoopInfo(std::ostream &OS, const ScalarEvolution *SE,
3016                          const Loop *L) {
3017  // Print all inner loops first
3018  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
3019    PrintLoopInfo(OS, SE, *I);
3020
3021  OS << "Loop " << L->getHeader()->getName() << ": ";
3022
3023  SmallVector<BasicBlock*, 8> ExitBlocks;
3024  L->getExitBlocks(ExitBlocks);
3025  if (ExitBlocks.size() != 1)
3026    OS << "<multiple exits> ";
3027
3028  if (SE->hasLoopInvariantIterationCount(L)) {
3029    OS << *SE->getIterationCount(L) << " iterations! ";
3030  } else {
3031    OS << "Unpredictable iteration count. ";
3032  }
3033
3034  OS << "\n";
3035}
3036
3037void ScalarEvolution::print(std::ostream &OS, const Module* ) const {
3038  Function &F = ((ScalarEvolutionsImpl*)Impl)->F;
3039  LoopInfo &LI = ((ScalarEvolutionsImpl*)Impl)->LI;
3040
3041  OS << "Classifying expressions for: " << F.getName() << "\n";
3042  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
3043    if (I->getType()->isInteger()) {
3044      OS << *I;
3045      OS << "  --> ";
3046      SCEVHandle SV = getSCEV(&*I);
3047      SV->print(OS);
3048      OS << "\t\t";
3049
3050      if (const Loop *L = LI.getLoopFor((*I).getParent())) {
3051        OS << "Exits: ";
3052        SCEVHandle ExitValue = getSCEVAtScope(&*I, L->getParentLoop());
3053        if (isa<SCEVCouldNotCompute>(ExitValue)) {
3054          OS << "<<Unknown>>";
3055        } else {
3056          OS << *ExitValue;
3057        }
3058      }
3059
3060
3061      OS << "\n";
3062    }
3063
3064  OS << "Determining loop execution counts for: " << F.getName() << "\n";
3065  for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I)
3066    PrintLoopInfo(OS, this, *I);
3067}
3068