ValueTracking.cpp revision 0af20d847ac89f797d613a8a4fc3e7127ccb0b36
1173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//
3173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//                     The LLVM Compiler Infrastructure
4173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//
5173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner// This file is distributed under the University of Illinois Open Source
6173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner// License. See LICENSE.TXT for details.
7173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//
8173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//===----------------------------------------------------------------------===//
9173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//
10173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner// This file contains routines that help analyze properties that chains of
11173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner// computations have.
12173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//
13173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//===----------------------------------------------------------------------===//
14173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
15173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner#include "llvm/Analysis/ValueTracking.h"
16173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner#include "llvm/Constants.h"
17173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner#include "llvm/Instructions.h"
180ff39b3feb10477c224138156941234f5fa46f58Evan Cheng#include "llvm/GlobalVariable.h"
19307a7c48f15b087663b60d600d23afffb9e211e6Dan Gohman#include "llvm/GlobalAlias.h"
20173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner#include "llvm/IntrinsicInst.h"
2176f600b205606a055ec35e7d3fd1a99602329d67Owen Anderson#include "llvm/LLVMContext.h"
22ca178908c8dc2303a1fb54a8a93bab0f0b964e11Dan Gohman#include "llvm/Operator.h"
230582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling#include "llvm/Target/TargetData.h"
24173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner#include "llvm/Support/GetElementPtrTypeIterator.h"
25173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner#include "llvm/Support/MathExtras.h"
2625ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher#include "llvm/ADT/SmallPtrSet.h"
2732a9e7a2654c4aab2e617fbe53140492b3d38066Chris Lattner#include <cstring>
28173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattnerusing namespace llvm;
29173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
30173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// ComputeMaskedBits - Determine which of the bits specified in Mask are
31173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// known to be either zero or one and return them in the KnownZero/KnownOne
32173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// bit sets.  This code only analyzes bits in Mask, in order to short-circuit
33173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// processing.
34173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that
35173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// we cannot optimize based on the assumption that it is zero without changing
36173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// it to be an explicit zero.  If we don't change it to zero, other code could
37173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// optimized based on the contradictory assumption that it is non-zero.
38173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// Because instcombine aggressively folds operations with undef args anyway,
39173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// this won't lose us code quality.
40cf5128ec01f45d2bf7eadc20b253cb44486e473fChris Lattner///
41cf5128ec01f45d2bf7eadc20b253cb44486e473fChris Lattner/// This function is defined on values with integer type, values with pointer
42cf5128ec01f45d2bf7eadc20b253cb44486e473fChris Lattner/// type (but only if TD is non-null), and vectors of integers.  In the case
43cf5128ec01f45d2bf7eadc20b253cb44486e473fChris Lattner/// where V is a vector, the mask, known zero, and known one values are the
44cf5128ec01f45d2bf7eadc20b253cb44486e473fChris Lattner/// same width as the vector element, and the bit is set only if it is true
45cf5128ec01f45d2bf7eadc20b253cb44486e473fChris Lattner/// for all of the elements in the vector.
46173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattnervoid llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
47173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                             APInt &KnownZero, APInt &KnownOne,
48846a2f2703f6bb894098274964faf5dce0b68c4dDan Gohman                             const TargetData *TD, unsigned Depth) {
499004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman  const unsigned MaxDepth = 6;
50173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  assert(V && "No Value?");
519004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman  assert(Depth <= MaxDepth && "Limit Search Depth");
5279abedb83a4dd7d3583c7ca6df8283079acc3ba5Chris Lattner  unsigned BitWidth = Mask.getBitWidth();
531df9859c40492511b8aa4321eb76496005d3b75bDuncan Sands  assert((V->getType()->isIntOrIntVectorTy() || V->getType()->isPointerTy())
54b0bc6c361da9009e8414efde317d9bbff755f6c0Duncan Sands         && "Not integer or pointer type!");
556de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman  assert((!TD ||
566de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman          TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
57b0bc6c361da9009e8414efde317d9bbff755f6c0Duncan Sands         (!V->getType()->isIntOrIntVectorTy() ||
586de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman          V->getType()->getScalarSizeInBits() == BitWidth) &&
59173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner         KnownZero.getBitWidth() == BitWidth &&
60173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner         KnownOne.getBitWidth() == BitWidth &&
61173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner         "V, Mask, KnownOne and KnownZero should have same BitWidth");
62173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
63173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
64173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // We know all of the bits for a constant!
65173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne = CI->getValue() & Mask;
66173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero = ~KnownOne & Mask;
67173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
68173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
696de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman  // Null and aggregate-zero are all-zeros.
706de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman  if (isa<ConstantPointerNull>(V) ||
716de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman      isa<ConstantAggregateZero>(V)) {
72173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne.clear();
73173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero = Mask;
74173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
75173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
766de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman  // Handle a constant vector by taking the intersection of the known bits of
776de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman  // each element.
786de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman  if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
796de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman    KnownZero.set(); KnownOne.set();
806de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman    for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
816de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman      APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
826de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman      ComputeMaskedBits(CV->getOperand(i), Mask, KnownZero2, KnownOne2,
836de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman                        TD, Depth);
846de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman      KnownZero &= KnownZero2;
856de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman      KnownOne &= KnownOne2;
866de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman    }
876de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman    return;
886de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman  }
89173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  // The address of an aligned GlobalValue has trailing zeros.
90173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
91173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    unsigned Align = GV->getAlignment();
92004072508bfc66159ca09be26f06b8b05c1bac4eDan Gohman    if (Align == 0 && TD && GV->getType()->getElementType()->isSized()) {
93004072508bfc66159ca09be26f06b8b05c1bac4eDan Gohman      const Type *ObjectType = GV->getType()->getElementType();
94004072508bfc66159ca09be26f06b8b05c1bac4eDan Gohman      // If the object is defined in the current Module, we'll be giving
95004072508bfc66159ca09be26f06b8b05c1bac4eDan Gohman      // it the preferred alignment. Otherwise, we have to assume that it
96004072508bfc66159ca09be26f06b8b05c1bac4eDan Gohman      // may only have the minimum ABI alignment.
97004072508bfc66159ca09be26f06b8b05c1bac4eDan Gohman      if (!GV->isDeclaration() && !GV->mayBeOverridden())
98004072508bfc66159ca09be26f06b8b05c1bac4eDan Gohman        Align = TD->getPrefTypeAlignment(ObjectType);
99004072508bfc66159ca09be26f06b8b05c1bac4eDan Gohman      else
100004072508bfc66159ca09be26f06b8b05c1bac4eDan Gohman        Align = TD->getABITypeAlignment(ObjectType);
101004072508bfc66159ca09be26f06b8b05c1bac4eDan Gohman    }
102173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Align > 0)
103173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero = Mask & APInt::getLowBitsSet(BitWidth,
104173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                                              CountTrailingZeros_32(Align));
105173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    else
106173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero.clear();
107173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne.clear();
108173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
109173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
110307a7c48f15b087663b60d600d23afffb9e211e6Dan Gohman  // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
111307a7c48f15b087663b60d600d23afffb9e211e6Dan Gohman  // the bits of its aliasee.
112307a7c48f15b087663b60d600d23afffb9e211e6Dan Gohman  if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
113307a7c48f15b087663b60d600d23afffb9e211e6Dan Gohman    if (GA->mayBeOverridden()) {
114307a7c48f15b087663b60d600d23afffb9e211e6Dan Gohman      KnownZero.clear(); KnownOne.clear();
115307a7c48f15b087663b60d600d23afffb9e211e6Dan Gohman    } else {
116307a7c48f15b087663b60d600d23afffb9e211e6Dan Gohman      ComputeMaskedBits(GA->getAliasee(), Mask, KnownZero, KnownOne,
117307a7c48f15b087663b60d600d23afffb9e211e6Dan Gohman                        TD, Depth+1);
118307a7c48f15b087663b60d600d23afffb9e211e6Dan Gohman    }
119307a7c48f15b087663b60d600d23afffb9e211e6Dan Gohman    return;
120307a7c48f15b087663b60d600d23afffb9e211e6Dan Gohman  }
121173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
122173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  KnownZero.clear(); KnownOne.clear();   // Start out not knowing anything.
123173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
1249004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman  if (Depth == MaxDepth || Mask == 0)
125173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;  // Limit search depth.
126173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
127ca178908c8dc2303a1fb54a8a93bab0f0b964e11Dan Gohman  Operator *I = dyn_cast<Operator>(V);
128173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  if (!I) return;
129173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
130173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
131ca178908c8dc2303a1fb54a8a93bab0f0b964e11Dan Gohman  switch (I->getOpcode()) {
132173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  default: break;
133173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::And: {
134173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // If either the LHS or the RHS are Zero, the result is zero.
135173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
136173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    APInt Mask2(Mask & ~KnownZero);
137173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
138173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      Depth+1);
139173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
140173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
141173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
142173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Output known-1 bits are only known if set in both the LHS & RHS.
143173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne &= KnownOne2;
144173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Output known-0 are known to be clear if zero in either the LHS | RHS.
145173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero |= KnownZero2;
146173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
147173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
148173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Or: {
149173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
150173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    APInt Mask2(Mask & ~KnownOne);
151173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
152173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      Depth+1);
153173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
154173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
155173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
156173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Output known-0 bits are only known if clear in both the LHS & RHS.
157173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero &= KnownZero2;
158173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Output known-1 are known to be set if set in either the LHS | RHS.
159173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne |= KnownOne2;
160173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
161173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
162173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Xor: {
163173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
164173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, TD,
165173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      Depth+1);
166173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
167173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
168173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
169173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Output known-0 bits are known if clear or set in both the LHS & RHS.
170173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
171173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Output known-1 are known to be set if set in only one of the LHS, RHS.
172173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
173173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero = KnownZeroOut;
174173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
175173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
176173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Mul: {
177173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
178173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero, KnownOne, TD,Depth+1);
179173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
180173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      Depth+1);
181173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
182173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
183173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
184173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // If low bits are zero in either operand, output low known-0 bits.
185173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Also compute a conserative estimate for high known-0 bits.
186173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // More trickiness is possible, but this is sufficient for the
187173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // interesting case of alignment computation.
188173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne.clear();
189173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    unsigned TrailZ = KnownZero.countTrailingOnes() +
190173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      KnownZero2.countTrailingOnes();
191173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
192173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                               KnownZero2.countLeadingOnes(),
193173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                               BitWidth) - BitWidth;
194173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
195173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    TrailZ = std::min(TrailZ, BitWidth);
196173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    LeadZ = std::min(LeadZ, BitWidth);
197173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
198173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                APInt::getHighBitsSet(BitWidth, LeadZ);
199173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero &= Mask;
200173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
201173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
202173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::UDiv: {
203173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // For the purposes of computing leading zeros we can conservatively
204173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // treat a udiv as a logical right shift by the power of 2 known to
205173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // be less than the denominator.
206173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
207173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(0),
208173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      AllOnes, KnownZero2, KnownOne2, TD, Depth+1);
209173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    unsigned LeadZ = KnownZero2.countLeadingOnes();
210173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
211173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne2.clear();
212173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero2.clear();
213173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(1),
214173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      AllOnes, KnownZero2, KnownOne2, TD, Depth+1);
215173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
216173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (RHSUnknownLeadingOnes != BitWidth)
217173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      LeadZ = std::min(BitWidth,
218173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
219173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
220173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
221173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
222173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
223173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Select:
224173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(2), Mask, KnownZero, KnownOne, TD, Depth+1);
225173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(1), Mask, KnownZero2, KnownOne2, TD,
226173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      Depth+1);
227173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
228173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
229173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
230173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Only known if known in both the LHS and RHS.
231173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne &= KnownOne2;
232173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero &= KnownZero2;
233173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
234173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::FPTrunc:
235173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::FPExt:
236173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::FPToUI:
237173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::FPToSI:
238173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::SIToFP:
239173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::UIToFP:
240173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return; // Can't work with floating point.
241173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::PtrToInt:
242173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::IntToPtr:
243173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // We can't handle these if we don't know the pointer size.
244173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (!TD) return;
245173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // FALL THROUGH and handle them the same as zext/trunc.
246173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::ZExt:
247173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Trunc: {
248b9a4ddbbcd668a94fe945f0648010c281e272889Chris Lattner    const Type *SrcTy = I->getOperand(0)->getType();
249b9a4ddbbcd668a94fe945f0648010c281e272889Chris Lattner
250b9a4ddbbcd668a94fe945f0648010c281e272889Chris Lattner    unsigned SrcBitWidth;
251173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Note that we handle pointer operands here because of inttoptr/ptrtoint
252173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // which fall through here.
2531df9859c40492511b8aa4321eb76496005d3b75bDuncan Sands    if (SrcTy->isPointerTy())
254b9a4ddbbcd668a94fe945f0648010c281e272889Chris Lattner      SrcBitWidth = TD->getTypeSizeInBits(SrcTy);
255b9a4ddbbcd668a94fe945f0648010c281e272889Chris Lattner    else
256b9a4ddbbcd668a94fe945f0648010c281e272889Chris Lattner      SrcBitWidth = SrcTy->getScalarSizeInBits();
257b9a4ddbbcd668a94fe945f0648010c281e272889Chris Lattner
258173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    APInt MaskIn(Mask);
259173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    MaskIn.zextOrTrunc(SrcBitWidth);
260173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero.zextOrTrunc(SrcBitWidth);
261173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne.zextOrTrunc(SrcBitWidth);
262173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD,
263173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      Depth+1);
264173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero.zextOrTrunc(BitWidth);
265173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne.zextOrTrunc(BitWidth);
266173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Any top bits are known to be zero.
267173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (BitWidth > SrcBitWidth)
268173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
269173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
270173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
271173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::BitCast: {
272173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    const Type *SrcTy = I->getOperand(0)->getType();
2731df9859c40492511b8aa4321eb76496005d3b75bDuncan Sands    if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2740dabb0b177089202dae485d085ed15bd41ef29e6Chris Lattner        // TODO: For now, not handling conversions like:
2750dabb0b177089202dae485d085ed15bd41ef29e6Chris Lattner        // (bitcast i64 %x to <2 x i32>)
2761df9859c40492511b8aa4321eb76496005d3b75bDuncan Sands        !I->getType()->isVectorTy()) {
277173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, TD,
278173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                        Depth+1);
279173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      return;
280173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
281173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
282173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
283173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::SExt: {
284173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Compute the bits in the result that are not present in the input.
285b9a4ddbbcd668a94fe945f0648010c281e272889Chris Lattner    unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
286173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
287173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    APInt MaskIn(Mask);
288173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    MaskIn.trunc(SrcBitWidth);
289173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero.trunc(SrcBitWidth);
290173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne.trunc(SrcBitWidth);
291173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD,
292173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      Depth+1);
293173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
294173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero.zext(BitWidth);
295173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne.zext(BitWidth);
296173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
297173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // If the sign bit of the input is known set or clear, then we know the
298173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // top bits of the result.
299173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (KnownZero[SrcBitWidth-1])             // Input sign bit known zero
300173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
301173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    else if (KnownOne[SrcBitWidth-1])           // Input sign bit known set
302173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
303173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
304173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
305173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Shl:
306173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
307173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
308173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
309173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      APInt Mask2(Mask.lshr(ShiftAmt));
310173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
311173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                        Depth+1);
312173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
313173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero <<= ShiftAmt;
314173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownOne  <<= ShiftAmt;
315173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
316173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      return;
317173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
318173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
319173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::LShr:
320173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
321173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
322173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // Compute the new bits that are at the top now.
323173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
324173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
325173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // Unsigned shift right.
326173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      APInt Mask2(Mask.shl(ShiftAmt));
327173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero,KnownOne, TD,
328173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                        Depth+1);
329ae3d802953b5209e7e9530cd5b5d4e457a6974dcNick Lewycky      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
330173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
331173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
332173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // high bits known zero.
333173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
334173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      return;
335173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
336173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
337173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::AShr:
338173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // (ashr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
339173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
340173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // Compute the new bits that are at the top now.
341173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
342173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
343173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // Signed shift right.
344173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      APInt Mask2(Mask.shl(ShiftAmt));
345173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
346173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                        Depth+1);
347ae3d802953b5209e7e9530cd5b5d4e457a6974dcNick Lewycky      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
348173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
349173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
350173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
351173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
352173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      if (KnownZero[BitWidth-ShiftAmt-1])    // New bits are known zero.
353173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        KnownZero |= HighBits;
354173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      else if (KnownOne[BitWidth-ShiftAmt-1])  // New bits are known one.
355173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        KnownOne |= HighBits;
356173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      return;
357173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
358173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
359173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Sub: {
360173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *CLHS = dyn_cast<ConstantInt>(I->getOperand(0))) {
361173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // We know that the top bits of C-X are clear if X contains less bits
362173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // than C (i.e. no wrap-around can happen).  For example, 20-X is
363173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // positive if we can prove that X is >= 0 and < 16.
364173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      if (!CLHS->getValue().isNegative()) {
365173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
366173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // NLZ can't be BitWidth with no sign bit
367173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
368173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        ComputeMaskedBits(I->getOperand(1), MaskV, KnownZero2, KnownOne2,
369173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                          TD, Depth+1);
370173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
371173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // If all of the MaskV bits are known to be zero, then we know the
372173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // output top bits are zero, because we now know that the output is
373173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // from [0-C].
374173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if ((KnownZero2 & MaskV) == MaskV) {
375173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
376173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          // Top bits known zero.
377173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
378173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        }
379173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
380173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
381173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
382173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  // fall through
383173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Add: {
384ae3d802953b5209e7e9530cd5b5d4e457a6974dcNick Lewycky    // If one of the operands has trailing zeros, then the bits that the
3853925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    // other operand has in those bit positions will be preserved in the
3863925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    // result. For an add, this works with either operand. For a subtract,
3873925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    // this only works if the known zeros are in the right operand.
3883925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
3893925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    APInt Mask2 = APInt::getLowBitsSet(BitWidth,
3903925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman                                       BitWidth - Mask.countLeadingZeros());
3913925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    ComputeMaskedBits(I->getOperand(0), Mask2, LHSKnownZero, LHSKnownOne, TD,
392173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      Depth+1);
3933925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    assert((LHSKnownZero & LHSKnownOne) == 0 &&
3943925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman           "Bits known to be one AND zero?");
3953925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    unsigned LHSKnownZeroOut = LHSKnownZero.countTrailingOnes();
396173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
397173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero2, KnownOne2, TD,
398173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      Depth+1);
399173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
4003925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    unsigned RHSKnownZeroOut = KnownZero2.countTrailingOnes();
401173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
4023925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    // Determine which operand has more trailing zeros, and use that
4033925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    // many bits from the other operand.
4043925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    if (LHSKnownZeroOut > RHSKnownZeroOut) {
405ca178908c8dc2303a1fb54a8a93bab0f0b964e11Dan Gohman      if (I->getOpcode() == Instruction::Add) {
4063925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman        APInt Mask = APInt::getLowBitsSet(BitWidth, LHSKnownZeroOut);
4073925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman        KnownZero |= KnownZero2 & Mask;
4083925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman        KnownOne  |= KnownOne2 & Mask;
4093925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman      } else {
4103925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman        // If the known zeros are in the left operand for a subtract,
4113925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman        // fall back to the minimum known zeros in both operands.
4123925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman        KnownZero |= APInt::getLowBitsSet(BitWidth,
4133925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman                                          std::min(LHSKnownZeroOut,
4143925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman                                                   RHSKnownZeroOut));
4153925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman      }
4163925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    } else if (RHSKnownZeroOut >= LHSKnownZeroOut) {
4173925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman      APInt Mask = APInt::getLowBitsSet(BitWidth, RHSKnownZeroOut);
4183925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman      KnownZero |= LHSKnownZero & Mask;
4193925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman      KnownOne  |= LHSKnownOne & Mask;
4203925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    }
421173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
422173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
423173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::SRem:
424173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
425cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands      APInt RA = Rem->getValue().abs();
426cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands      if (RA.isPowerOf2()) {
427cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands        APInt LowBits = RA - 1;
428173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
429173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
430173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                          Depth+1);
431173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
432cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands        // The low bits of the first operand are unchanged by the srem.
433cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands        KnownZero = KnownZero2 & LowBits;
434cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands        KnownOne = KnownOne2 & LowBits;
435cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands
436cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands        // If the first operand is non-negative or has all low bits zero, then
437cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands        // the upper bits are all zero.
438173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
439cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands          KnownZero |= ~LowBits;
440173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
441cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands        // If the first operand is negative and not all low bits are zero, then
442cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands        // the upper bits are all one.
443cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands        if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
444cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands          KnownOne |= ~LowBits;
445cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands
446cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands        KnownZero &= Mask;
447cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands        KnownOne &= Mask;
448173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
449ae3d802953b5209e7e9530cd5b5d4e457a6974dcNick Lewycky        assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
450173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
451173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
452173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
453173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::URem: {
454173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
455173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      APInt RA = Rem->getValue();
456173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      if (RA.isPowerOf2()) {
457173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        APInt LowBits = (RA - 1);
458173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        APInt Mask2 = LowBits & Mask;
459173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        KnownZero |= ~LowBits & Mask;
460173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
461173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                          Depth+1);
462ae3d802953b5209e7e9530cd5b5d4e457a6974dcNick Lewycky        assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
463173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        break;
464173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
465173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
466173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
467173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Since the result is less than or equal to either operand, any leading
468173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // zero bits in either operand must also exist in the result.
469173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
470173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(0), AllOnes, KnownZero, KnownOne,
471173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      TD, Depth+1);
472173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(1), AllOnes, KnownZero2, KnownOne2,
473173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      TD, Depth+1);
474173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
47579abedb83a4dd7d3583c7ca6df8283079acc3ba5Chris Lattner    unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
476173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                                KnownZero2.countLeadingOnes());
477173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne.clear();
478173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
479173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
480173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
481173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
482a276c603b82a11b0bf0b59f0517a69e4b63adeabVictor Hernandez  case Instruction::Alloca: {
4837b929dad59785f62a66f7c58615082f98441e95eVictor Hernandez    AllocaInst *AI = cast<AllocaInst>(V);
484173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    unsigned Align = AI->getAlignment();
485a276c603b82a11b0bf0b59f0517a69e4b63adeabVictor Hernandez    if (Align == 0 && TD)
486a276c603b82a11b0bf0b59f0517a69e4b63adeabVictor Hernandez      Align = TD->getABITypeAlignment(AI->getType()->getElementType());
487173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
488173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Align > 0)
489173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero = Mask & APInt::getLowBitsSet(BitWidth,
490173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                                              CountTrailingZeros_32(Align));
491173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
492173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
493173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::GetElementPtr: {
494173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Analyze all of the subscripts of this getelementptr instruction
495173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // to determine if we can prove known low zero bits.
496173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    APInt LocalMask = APInt::getAllOnesValue(BitWidth);
497173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
498173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(0), LocalMask,
499173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      LocalKnownZero, LocalKnownOne, TD, Depth+1);
500173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    unsigned TrailZ = LocalKnownZero.countTrailingOnes();
501173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
502173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    gep_type_iterator GTI = gep_type_begin(I);
503173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
504173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      Value *Index = I->getOperand(i);
505173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
506173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // Handle struct member offset arithmetic.
507173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if (!TD) return;
508173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        const StructLayout *SL = TD->getStructLayout(STy);
509173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
510173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        uint64_t Offset = SL->getElementOffset(Idx);
511173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        TrailZ = std::min(TrailZ,
512173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                          CountTrailingZeros_64(Offset));
513173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      } else {
514173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // Handle array index arithmetic.
515173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        const Type *IndexedTy = GTI.getIndexedType();
516173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if (!IndexedTy->isSized()) return;
5176de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman        unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
518777d2306b36816a53bc1ae1244c0dc7d998ae691Duncan Sands        uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1;
519173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        LocalMask = APInt::getAllOnesValue(GEPOpiBits);
520173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
521173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        ComputeMaskedBits(Index, LocalMask,
522173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                          LocalKnownZero, LocalKnownOne, TD, Depth+1);
523173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        TrailZ = std::min(TrailZ,
52479abedb83a4dd7d3583c7ca6df8283079acc3ba5Chris Lattner                          unsigned(CountTrailingZeros_64(TypeSize) +
52579abedb83a4dd7d3583c7ca6df8283079acc3ba5Chris Lattner                                   LocalKnownZero.countTrailingOnes()));
526173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
527173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
528173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
529173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) & Mask;
530173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
531173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
532173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::PHI: {
533173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    PHINode *P = cast<PHINode>(I);
534173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Handle the case of a simple two-predecessor recurrence PHI.
535173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // There's a lot more that could theoretically be done here, but
536173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // this is sufficient to catch some interesting cases.
537173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (P->getNumIncomingValues() == 2) {
538173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      for (unsigned i = 0; i != 2; ++i) {
539173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        Value *L = P->getIncomingValue(i);
540173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        Value *R = P->getIncomingValue(!i);
541ca178908c8dc2303a1fb54a8a93bab0f0b964e11Dan Gohman        Operator *LU = dyn_cast<Operator>(L);
542173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if (!LU)
543173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          continue;
544ca178908c8dc2303a1fb54a8a93bab0f0b964e11Dan Gohman        unsigned Opcode = LU->getOpcode();
545173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // Check for operations that have the property that if
546173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // both their operands have low zero bits, the result
547173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // will have low zero bits.
548173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if (Opcode == Instruction::Add ||
549173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner            Opcode == Instruction::Sub ||
550173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner            Opcode == Instruction::And ||
551173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner            Opcode == Instruction::Or ||
552173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner            Opcode == Instruction::Mul) {
553173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          Value *LL = LU->getOperand(0);
554173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          Value *LR = LU->getOperand(1);
555173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          // Find a recurrence.
556173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          if (LL == I)
557173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner            L = LR;
558173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          else if (LR == I)
559173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner            L = LL;
560173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          else
561173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner            break;
562173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          // Ok, we have a PHI of the form L op= R. Check for low
563173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          // zero bits.
564173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          APInt Mask2 = APInt::getAllOnesValue(BitWidth);
565173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          ComputeMaskedBits(R, Mask2, KnownZero2, KnownOne2, TD, Depth+1);
566173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          Mask2 = APInt::getLowBitsSet(BitWidth,
567173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                                       KnownZero2.countTrailingOnes());
568c714f1309049b2fd9e4ab68c8a7b480c63a4be0cDavid Greene
569c714f1309049b2fd9e4ab68c8a7b480c63a4be0cDavid Greene          // We need to take the minimum number of known bits
570c714f1309049b2fd9e4ab68c8a7b480c63a4be0cDavid Greene          APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
571c714f1309049b2fd9e4ab68c8a7b480c63a4be0cDavid Greene          ComputeMaskedBits(L, Mask2, KnownZero3, KnownOne3, TD, Depth+1);
572c714f1309049b2fd9e4ab68c8a7b480c63a4be0cDavid Greene
573173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          KnownZero = Mask &
574173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      APInt::getLowBitsSet(BitWidth,
575c714f1309049b2fd9e4ab68c8a7b480c63a4be0cDavid Greene                                           std::min(KnownZero2.countTrailingOnes(),
576c714f1309049b2fd9e4ab68c8a7b480c63a4be0cDavid Greene                                                    KnownZero3.countTrailingOnes()));
577173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          break;
578173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        }
579173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
580173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
5819004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman
5829004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman    // Otherwise take the unions of the known bit sets of the operands,
5839004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman    // taking conservative care to avoid excessive recursion.
5849004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman    if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
5859004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman      KnownZero = APInt::getAllOnesValue(BitWidth);
5869004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman      KnownOne = APInt::getAllOnesValue(BitWidth);
5879004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman      for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) {
5889004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        // Skip direct self references.
5899004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        if (P->getIncomingValue(i) == P) continue;
5909004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman
5919004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        KnownZero2 = APInt(BitWidth, 0);
5929004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        KnownOne2 = APInt(BitWidth, 0);
5939004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        // Recurse, but cap the recursion to one level, because we don't
5949004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        // want to waste time spinning around in loops.
5959004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        ComputeMaskedBits(P->getIncomingValue(i), KnownZero | KnownOne,
5969004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman                          KnownZero2, KnownOne2, TD, MaxDepth-1);
5979004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        KnownZero &= KnownZero2;
5989004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        KnownOne &= KnownOne2;
5999004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        // If all bits have been ruled out, there's no need to check
6009004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        // more operands.
6019004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        if (!KnownZero && !KnownOne)
6029004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman          break;
6039004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman      }
6049004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman    }
605173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
606173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
607173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Call:
608173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
609173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      switch (II->getIntrinsicID()) {
610173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      default: break;
611173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      case Intrinsic::ctpop:
612173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      case Intrinsic::ctlz:
613173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      case Intrinsic::cttz: {
614173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        unsigned LowBits = Log2_32(BitWidth)+1;
615173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
616173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        break;
617173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
618173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
619173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
620173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
621173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
622173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner}
623173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
624173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
625173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// this predicate to simplify operations downstream.  Mask is known to be zero
626173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// for bits that V cannot have.
627cf5128ec01f45d2bf7eadc20b253cb44486e473fChris Lattner///
628cf5128ec01f45d2bf7eadc20b253cb44486e473fChris Lattner/// This function is defined on values with integer type, values with pointer
629cf5128ec01f45d2bf7eadc20b253cb44486e473fChris Lattner/// type (but only if TD is non-null), and vectors of integers.  In the case
630cf5128ec01f45d2bf7eadc20b253cb44486e473fChris Lattner/// where V is a vector, the mask, known zero, and known one values are the
631cf5128ec01f45d2bf7eadc20b253cb44486e473fChris Lattner/// same width as the vector element, and the bit is set only if it is true
632cf5128ec01f45d2bf7eadc20b253cb44486e473fChris Lattner/// for all of the elements in the vector.
633173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattnerbool llvm::MaskedValueIsZero(Value *V, const APInt &Mask,
634846a2f2703f6bb894098274964faf5dce0b68c4dDan Gohman                             const TargetData *TD, unsigned Depth) {
635173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
636173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
637173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
638173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  return (KnownZero & Mask) == Mask;
639173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner}
640173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
641173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
642173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
643173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// ComputeNumSignBits - Return the number of times the sign bit of the
644173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// register is replicated into the other bits.  We know that at least 1 bit
645173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// is always equal to the sign bit (itself), but other cases can give us
646173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// information.  For example, immediately after an "ashr X, 2", we know that
647173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// the top 3 bits are all equal to each other, so we return 3.
648173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner///
649173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// 'Op' must have a scalar integer type.
650173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner///
651846a2f2703f6bb894098274964faf5dce0b68c4dDan Gohmanunsigned llvm::ComputeNumSignBits(Value *V, const TargetData *TD,
652846a2f2703f6bb894098274964faf5dce0b68c4dDan Gohman                                  unsigned Depth) {
653b0bc6c361da9009e8414efde317d9bbff755f6c0Duncan Sands  assert((TD || V->getType()->isIntOrIntVectorTy()) &&
654bd5ce52740700bb482fb2b5a03bce781acbf2941Dan Gohman         "ComputeNumSignBits requires a TargetData object to operate "
655bd5ce52740700bb482fb2b5a03bce781acbf2941Dan Gohman         "on non-integer values!");
6566de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman  const Type *Ty = V->getType();
657bd5ce52740700bb482fb2b5a03bce781acbf2941Dan Gohman  unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) :
658bd5ce52740700bb482fb2b5a03bce781acbf2941Dan Gohman                         Ty->getScalarSizeInBits();
659173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  unsigned Tmp, Tmp2;
660173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  unsigned FirstAnswer = 1;
661173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
662d82e511aec0ea27ddd4c1e504b37f689796e965fChris Lattner  // Note that ConstantInt is handled by the general ComputeMaskedBits case
663d82e511aec0ea27ddd4c1e504b37f689796e965fChris Lattner  // below.
664d82e511aec0ea27ddd4c1e504b37f689796e965fChris Lattner
665173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  if (Depth == 6)
666173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return 1;  // Limit search depth.
667173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
668ca178908c8dc2303a1fb54a8a93bab0f0b964e11Dan Gohman  Operator *U = dyn_cast<Operator>(V);
669ca178908c8dc2303a1fb54a8a93bab0f0b964e11Dan Gohman  switch (Operator::getOpcode(V)) {
670173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  default: break;
671173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::SExt:
67269a008075b29fbe0644ccbeecf1418ef8cca5e24Mon P Wang    Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
673173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp;
674173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
675173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::AShr:
676173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
677173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // ashr X, C   -> adds C sign bits.
678173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) {
679173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      Tmp += C->getZExtValue();
680173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      if (Tmp > TyBits) Tmp = TyBits;
681173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
682173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return Tmp;
683173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Shl:
684173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) {
685173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // shl destroys sign bits.
686173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
687173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      if (C->getZExtValue() >= TyBits ||      // Bad shift.
688173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
689173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      return Tmp - C->getZExtValue();
690173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
691173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
692173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::And:
693173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Or:
694173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Xor:    // NOT is handled here.
695173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Logical binary ops preserve the number of sign bits at the worst.
696173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
697173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Tmp != 1) {
698173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
699173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      FirstAnswer = std::min(Tmp, Tmp2);
700173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // We computed what we know about the sign bits as our first
701173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // answer. Now proceed to the generic code that uses
702173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // ComputeMaskedBits, and pick whichever answer is better.
703173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
704173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
705173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
706173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Select:
707173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
708173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Tmp == 1) return 1;  // Early out.
709173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1);
710173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return std::min(Tmp, Tmp2);
711173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
712173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Add:
713173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Add can have at most one carry bit.  Thus we know that the output
714173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // is, at worst, one more bit than the inputs.
715173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
716173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Tmp == 1) return 1;  // Early out.
717173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
718173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Special case decrementing a value (ADD X, -1):
7190001e56f15215ae4bc5fffb82eec5c4828b888f0Dan Gohman    if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1)))
720173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      if (CRHS->isAllOnesValue()) {
721173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
722173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        APInt Mask = APInt::getAllOnesValue(TyBits);
723173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        ComputeMaskedBits(U->getOperand(0), Mask, KnownZero, KnownOne, TD,
724173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                          Depth+1);
725173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
726173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // If the input is known to be 0 or 1, the output is 0/-1, which is all
727173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // sign bits set.
728173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if ((KnownZero | APInt(TyBits, 1)) == Mask)
729173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          return TyBits;
730173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
731173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // If we are subtracting one from a positive number, there is no carry
732173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // out of the result.
733173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if (KnownZero.isNegative())
734173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          return Tmp;
735173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
736173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
737173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
738173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Tmp2 == 1) return 1;
7398d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner    return std::min(Tmp, Tmp2)-1;
740173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
741173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Sub:
742173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
743173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Tmp2 == 1) return 1;
744173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
745173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Handle NEG.
746173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0)))
747173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      if (CLHS->isNullValue()) {
748173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
749173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        APInt Mask = APInt::getAllOnesValue(TyBits);
750173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        ComputeMaskedBits(U->getOperand(1), Mask, KnownZero, KnownOne,
751173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                          TD, Depth+1);
752173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // If the input is known to be 0 or 1, the output is 0/-1, which is all
753173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // sign bits set.
754173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if ((KnownZero | APInt(TyBits, 1)) == Mask)
755173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          return TyBits;
756173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
757173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // If the input is known to be positive (the sign bit is known clear),
758173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // the output of the NEG has the same number of sign bits as the input.
759173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if (KnownZero.isNegative())
760173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          return Tmp2;
761173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
762173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // Otherwise, we treat this like a SUB.
763173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
764173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
765173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Sub can have at most one carry bit.  Thus we know that the output
766173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // is, at worst, one more bit than the inputs.
767173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
768173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Tmp == 1) return 1;  // Early out.
7698d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner    return std::min(Tmp, Tmp2)-1;
7708d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner
7718d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner  case Instruction::PHI: {
7728d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner    PHINode *PN = cast<PHINode>(U);
7738d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner    // Don't analyze large in-degree PHIs.
7748d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner    if (PN->getNumIncomingValues() > 4) break;
7758d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner
7768d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner    // Take the minimum of all incoming values.  This can't infinitely loop
7778d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner    // because of our depth threshold.
7788d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner    Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1);
7798d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner    for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
7808d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner      if (Tmp == 1) return Tmp;
7818d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner      Tmp = std::min(Tmp,
7820af20d847ac89f797d613a8a4fc3e7127ccb0b36Evan Cheng                     ComputeNumSignBits(PN->getIncomingValue(i), TD, Depth+1));
7838d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner    }
7848d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner    return Tmp;
7858d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner  }
7868d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner
787173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Trunc:
788173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // FIXME: it's tricky to do anything useful for this, but it is an important
789173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // case for targets like X86.
790173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
791173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
792173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
793173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  // Finally, if we can prove that the top bits of the result are 0's or 1's,
794173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  // use this information.
795173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
796173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  APInt Mask = APInt::getAllOnesValue(TyBits);
797173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
798173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
799173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  if (KnownZero.isNegative()) {        // sign bit is 0
800173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Mask = KnownZero;
801173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  } else if (KnownOne.isNegative()) {  // sign bit is 1;
802173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Mask = KnownOne;
803173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  } else {
804173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Nothing known.
805173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return FirstAnswer;
806173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
807173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
808173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
809173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  // the number of identical bits in the top of the input value.
810173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  Mask = ~Mask;
811173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  Mask <<= Mask.getBitWidth()-TyBits;
812173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  // Return # leading zeros.  We use 'min' here in case Val was zero before
813173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  // shifting.  We don't want to return '64' as for an i32 "0".
814173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
815173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner}
816833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner
8172b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez/// ComputeMultiple - This function computes the integer multiple of Base that
8182b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez/// equals V.  If successful, it returns true and returns the multiple in
8193dbb9e64d6e9d1e8bf16f75ebe4fe59ffdf93dd3Dan Gohman/// Multiple.  If unsuccessful, it returns false. It looks
8202b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez/// through SExt instructions only if LookThroughSExt is true.
8212b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandezbool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
8223dbb9e64d6e9d1e8bf16f75ebe4fe59ffdf93dd3Dan Gohman                           bool LookThroughSExt, unsigned Depth) {
8232b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  const unsigned MaxDepth = 6;
8242b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
8253dbb9e64d6e9d1e8bf16f75ebe4fe59ffdf93dd3Dan Gohman  assert(V && "No Value?");
8262b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  assert(Depth <= MaxDepth && "Limit Search Depth");
827b0bc6c361da9009e8414efde317d9bbff755f6c0Duncan Sands  assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
8282b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
8292b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  const Type *T = V->getType();
8302b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
8313dbb9e64d6e9d1e8bf16f75ebe4fe59ffdf93dd3Dan Gohman  ConstantInt *CI = dyn_cast<ConstantInt>(V);
8322b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
8332b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  if (Base == 0)
8342b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    return false;
8352b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
8362b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  if (Base == 1) {
8372b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    Multiple = V;
8382b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    return true;
8392b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  }
8402b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
8412b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
8422b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  Constant *BaseVal = ConstantInt::get(T, Base);
8432b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  if (CO && CO == BaseVal) {
8442b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    // Multiple is 1.
8452b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    Multiple = ConstantInt::get(T, 1);
8462b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    return true;
8472b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  }
8482b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
8492b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  if (CI && CI->getZExtValue() % Base == 0) {
8502b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
8512b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    return true;
8522b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  }
8532b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
8542b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  if (Depth == MaxDepth) return false;  // Limit search depth.
8552b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
8562b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  Operator *I = dyn_cast<Operator>(V);
8572b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  if (!I) return false;
8582b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
8592b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  switch (I->getOpcode()) {
8602b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  default: break;
86111fe72661dac17efa1564ef6fc212acae4f0c07eChris Lattner  case Instruction::SExt:
8622b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    if (!LookThroughSExt) return false;
8632b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    // otherwise fall through to ZExt
86411fe72661dac17efa1564ef6fc212acae4f0c07eChris Lattner  case Instruction::ZExt:
8653dbb9e64d6e9d1e8bf16f75ebe4fe59ffdf93dd3Dan Gohman    return ComputeMultiple(I->getOperand(0), Base, Multiple,
8663dbb9e64d6e9d1e8bf16f75ebe4fe59ffdf93dd3Dan Gohman                           LookThroughSExt, Depth+1);
8672b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  case Instruction::Shl:
8682b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  case Instruction::Mul: {
8692b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    Value *Op0 = I->getOperand(0);
8702b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    Value *Op1 = I->getOperand(1);
8712b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
8722b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    if (I->getOpcode() == Instruction::Shl) {
8732b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez      ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
8742b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez      if (!Op1CI) return false;
8752b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez      // Turn Op0 << Op1 into Op0 * 2^Op1
8762b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez      APInt Op1Int = Op1CI->getValue();
8772b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez      uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
8782b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez      Op1 = ConstantInt::get(V->getContext(),
8792b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez                             APInt(Op1Int.getBitWidth(), 0).set(BitToSet));
8802b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    }
8812b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
8822b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    Value *Mul0 = NULL;
8832b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    Value *Mul1 = NULL;
8843dbb9e64d6e9d1e8bf16f75ebe4fe59ffdf93dd3Dan Gohman    bool M0 = ComputeMultiple(Op0, Base, Mul0,
8853dbb9e64d6e9d1e8bf16f75ebe4fe59ffdf93dd3Dan Gohman                              LookThroughSExt, Depth+1);
8863dbb9e64d6e9d1e8bf16f75ebe4fe59ffdf93dd3Dan Gohman    bool M1 = ComputeMultiple(Op1, Base, Mul1,
8873dbb9e64d6e9d1e8bf16f75ebe4fe59ffdf93dd3Dan Gohman                              LookThroughSExt, Depth+1);
8882b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
8892b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    if (M0) {
8902b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez      if (isa<Constant>(Op1) && isa<Constant>(Mul0)) {
8912b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez        // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
8922b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez        Multiple = ConstantExpr::getMul(cast<Constant>(Mul0),
8932b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez                                        cast<Constant>(Op1));
8942b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez        return true;
8952b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez      }
8962b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
8972b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez      if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
8982b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez        if (Mul0CI->getValue() == 1) {
8992b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez          // V == Base * Op1, so return Op1
9002b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez          Multiple = Op1;
9012b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez          return true;
9022b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez        }
9032b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    }
9042b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
9052b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    if (M1) {
9062b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez      if (isa<Constant>(Op0) && isa<Constant>(Mul1)) {
9072b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez        // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
9082b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez        Multiple = ConstantExpr::getMul(cast<Constant>(Mul1),
9092b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez                                        cast<Constant>(Op0));
9102b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez        return true;
9112b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez      }
9122b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
9132b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez      if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
9142b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez        if (Mul1CI->getValue() == 1) {
9152b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez          // V == Base * Op0, so return Op0
9162b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez          Multiple = Op0;
9172b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez          return true;
9182b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez        }
9192b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    }
9202b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  }
9212b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  }
9222b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
9232b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  // We could not determine if V is a multiple of Base.
9242b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  return false;
9252b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez}
9262b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
927833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner/// CannotBeNegativeZero - Return true if we can prove that the specified FP
928833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner/// value is never equal to -0.0.
929833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner///
930833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner/// NOTE: this function will need to be revisited when we support non-default
931833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner/// rounding modes!
932833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner///
933833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattnerbool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
934833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
935833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner    return !CFP->getValueAPF().isNegZero();
936833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner
937833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  if (Depth == 6)
938833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner    return 1;  // Limit search depth.
939833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner
940ca178908c8dc2303a1fb54a8a93bab0f0b964e11Dan Gohman  const Operator *I = dyn_cast<Operator>(V);
941833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  if (I == 0) return false;
942833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner
943833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
944ae3a0be92e33bc716722aa600983fc1535acb122Dan Gohman  if (I->getOpcode() == Instruction::FAdd &&
945833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner      isa<ConstantFP>(I->getOperand(1)) &&
946833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner      cast<ConstantFP>(I->getOperand(1))->isNullValue())
947833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner    return true;
948833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner
949833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  // sitofp and uitofp turn into +0.0 for zero.
950833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
951833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner    return true;
952833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner
953833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
954833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner    // sqrt(-0.0) = -0.0, no other negative results are possible.
955833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner    if (II->getIntrinsicID() == Intrinsic::sqrt)
956833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner      return CannotBeNegativeZero(II->getOperand(1), Depth+1);
957833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner
958833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  if (const CallInst *CI = dyn_cast<CallInst>(I))
959833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner    if (const Function *F = CI->getCalledFunction()) {
960833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner      if (F->isDeclaration()) {
961f0443c1eb44d737d9bd78962932fc80f74c6113cDaniel Dunbar        // abs(x) != -0.0
962f0443c1eb44d737d9bd78962932fc80f74c6113cDaniel Dunbar        if (F->getName() == "abs") return true;
9639d06175a15a61b977ebbabd0d9cc738ebfa7870cDale Johannesen        // fabs[lf](x) != -0.0
9649d06175a15a61b977ebbabd0d9cc738ebfa7870cDale Johannesen        if (F->getName() == "fabs") return true;
9659d06175a15a61b977ebbabd0d9cc738ebfa7870cDale Johannesen        if (F->getName() == "fabsf") return true;
9669d06175a15a61b977ebbabd0d9cc738ebfa7870cDale Johannesen        if (F->getName() == "fabsl") return true;
9679d06175a15a61b977ebbabd0d9cc738ebfa7870cDale Johannesen        if (F->getName() == "sqrt" || F->getName() == "sqrtf" ||
9689d06175a15a61b977ebbabd0d9cc738ebfa7870cDale Johannesen            F->getName() == "sqrtl")
9699d06175a15a61b977ebbabd0d9cc738ebfa7870cDale Johannesen          return CannotBeNegativeZero(CI->getOperand(1), Depth+1);
970833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner      }
971833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner    }
972833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner
973833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  return false;
974833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner}
975833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner
976e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner
977e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner/// GetLinearExpression - Analyze the specified value as a linear expression:
9781ce0eaa25fc6ecead5f9bba3c17b8af612d830efChris Lattner/// "A*V + B", where A and B are constant integers.  Return the scale and offset
9791ce0eaa25fc6ecead5f9bba3c17b8af612d830efChris Lattner/// values as APInts and return V as a Value*.  The incoming Value is known to
9801ce0eaa25fc6ecead5f9bba3c17b8af612d830efChris Lattner/// have IntegerType.  Note that this looks through extends, so the high bits
9811ce0eaa25fc6ecead5f9bba3c17b8af612d830efChris Lattner/// may not be represented in the result.
982e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattnerstatic Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset,
983a650f770d4cfc9aabacddf41851d23c55f23cb8cChris Lattner                                  const TargetData *TD, unsigned Depth) {
9841df9859c40492511b8aa4321eb76496005d3b75bDuncan Sands  assert(V->getType()->isIntegerTy() && "Not an integer value");
985a650f770d4cfc9aabacddf41851d23c55f23cb8cChris Lattner
986a650f770d4cfc9aabacddf41851d23c55f23cb8cChris Lattner  // Limit our recursion depth.
987a650f770d4cfc9aabacddf41851d23c55f23cb8cChris Lattner  if (Depth == 6) {
988a650f770d4cfc9aabacddf41851d23c55f23cb8cChris Lattner    Scale = 1;
989a650f770d4cfc9aabacddf41851d23c55f23cb8cChris Lattner    Offset = 0;
990a650f770d4cfc9aabacddf41851d23c55f23cb8cChris Lattner    return V;
991a650f770d4cfc9aabacddf41851d23c55f23cb8cChris Lattner  }
992e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner
993e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner  if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
994e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner    if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
995e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner      switch (BOp->getOpcode()) {
996e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner      default: break;
997e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner      case Instruction::Or:
998e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner        // X|C == X+C if all the bits in C are unset in X.  Otherwise we can't
999e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner        // analyze it.
1000e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner        if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), TD))
1001e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner          break;
1002e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner        // FALL THROUGH.
1003e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner      case Instruction::Add:
1004a650f770d4cfc9aabacddf41851d23c55f23cb8cChris Lattner        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, TD, Depth+1);
1005e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner        Offset += RHSC->getValue();
1006e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner        return V;
1007e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner      case Instruction::Mul:
1008a650f770d4cfc9aabacddf41851d23c55f23cb8cChris Lattner        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, TD, Depth+1);
1009e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner        Offset *= RHSC->getValue();
1010e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner        Scale *= RHSC->getValue();
1011e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner        return V;
1012e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner      case Instruction::Shl:
1013a650f770d4cfc9aabacddf41851d23c55f23cb8cChris Lattner        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, TD, Depth+1);
1014e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner        Offset <<= RHSC->getValue().getLimitedValue();
1015e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner        Scale <<= RHSC->getValue().getLimitedValue();
1016e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner        return V;
1017e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner      }
1018e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner    }
1019e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner  }
1020e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner
10211ce0eaa25fc6ecead5f9bba3c17b8af612d830efChris Lattner  // Since clients don't care about the high bits of the value, just scales and
10221ce0eaa25fc6ecead5f9bba3c17b8af612d830efChris Lattner  // offsets, we can look through extensions.
10231ce0eaa25fc6ecead5f9bba3c17b8af612d830efChris Lattner  if (isa<SExtInst>(V) || isa<ZExtInst>(V)) {
10241ce0eaa25fc6ecead5f9bba3c17b8af612d830efChris Lattner    Value *CastOp = cast<CastInst>(V)->getOperand(0);
10251ce0eaa25fc6ecead5f9bba3c17b8af612d830efChris Lattner    unsigned OldWidth = Scale.getBitWidth();
10261ce0eaa25fc6ecead5f9bba3c17b8af612d830efChris Lattner    unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits();
10271ce0eaa25fc6ecead5f9bba3c17b8af612d830efChris Lattner    Scale.trunc(SmallWidth);
10281ce0eaa25fc6ecead5f9bba3c17b8af612d830efChris Lattner    Offset.trunc(SmallWidth);
1029a650f770d4cfc9aabacddf41851d23c55f23cb8cChris Lattner    Value *Result = GetLinearExpression(CastOp, Scale, Offset, TD, Depth+1);
10301ce0eaa25fc6ecead5f9bba3c17b8af612d830efChris Lattner    Scale.zext(OldWidth);
10311ce0eaa25fc6ecead5f9bba3c17b8af612d830efChris Lattner    Offset.zext(OldWidth);
10321ce0eaa25fc6ecead5f9bba3c17b8af612d830efChris Lattner    return Result;
10331ce0eaa25fc6ecead5f9bba3c17b8af612d830efChris Lattner  }
10341ce0eaa25fc6ecead5f9bba3c17b8af612d830efChris Lattner
1035e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner  Scale = 1;
1036e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner  Offset = 0;
1037e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner  return V;
1038e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner}
1039e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner
1040e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner/// DecomposeGEPExpression - If V is a symbolic pointer expression, decompose it
1041e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner/// into a base pointer with a constant offset and a number of scaled symbolic
1042e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner/// offsets.
1043e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner///
10441ce0eaa25fc6ecead5f9bba3c17b8af612d830efChris Lattner/// The scaled symbolic offsets (represented by pairs of a Value* and a scale in
10451ce0eaa25fc6ecead5f9bba3c17b8af612d830efChris Lattner/// the VarIndices vector) are Value*'s that are known to be scaled by the
10461ce0eaa25fc6ecead5f9bba3c17b8af612d830efChris Lattner/// specified amount, but which may have other unrepresented high bits. As such,
10471ce0eaa25fc6ecead5f9bba3c17b8af612d830efChris Lattner/// the gep cannot necessarily be reconstructed from its decomposed form.
10481ce0eaa25fc6ecead5f9bba3c17b8af612d830efChris Lattner///
1049e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner/// When TargetData is around, this function is capable of analyzing everything
1050e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner/// that Value::getUnderlyingObject() can look through.  When not, it just looks
1051e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner/// through pointer casts.
1052e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner///
1053e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattnerconst Value *llvm::DecomposeGEPExpression(const Value *V, int64_t &BaseOffs,
1054e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner                 SmallVectorImpl<std::pair<const Value*, int64_t> > &VarIndices,
1055e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner                                          const TargetData *TD) {
1056ab9530ee5d8fec9ed822a82fa21b588952269897Chris Lattner  // Limit recursion depth to limit compile time in crazy cases.
1057ab9530ee5d8fec9ed822a82fa21b588952269897Chris Lattner  unsigned MaxLookup = 6;
1058ab9530ee5d8fec9ed822a82fa21b588952269897Chris Lattner
1059e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner  BaseOffs = 0;
1060ab9530ee5d8fec9ed822a82fa21b588952269897Chris Lattner  do {
1061e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner    // See if this is a bitcast or GEP.
1062e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner    const Operator *Op = dyn_cast<Operator>(V);
1063e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner    if (Op == 0) {
1064e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner      // The only non-operator case we can handle are GlobalAliases.
1065e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner      if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1066e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner        if (!GA->mayBeOverridden()) {
1067e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner          V = GA->getAliasee();
1068e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner          continue;
1069e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner        }
1070e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner      }
1071e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner      return V;
1072e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner    }
1073e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner
1074e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner    if (Op->getOpcode() == Instruction::BitCast) {
1075e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner      V = Op->getOperand(0);
1076e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner      continue;
1077e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner    }
1078e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner
1079e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner    const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
1080e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner    if (GEPOp == 0)
1081e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner      return V;
1082e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner
1083e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner    // Don't attempt to analyze GEPs over unsized objects.
1084e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner    if (!cast<PointerType>(GEPOp->getOperand(0)->getType())
1085e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner        ->getElementType()->isSized())
1086e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner      return V;
1087e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner
1088e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner    // If we are lacking TargetData information, we can't compute the offets of
1089e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner    // elements computed by GEPs.  However, we can handle bitcast equivalent
1090e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner    // GEPs.
1091e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner    if (!TD) {
1092e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner      if (!GEPOp->hasAllZeroIndices())
1093e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner        return V;
1094e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner      V = GEPOp->getOperand(0);
1095e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner      continue;
1096e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner    }
1097e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner
1098e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner    // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
1099e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner    gep_type_iterator GTI = gep_type_begin(GEPOp);
1100e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner    for (User::const_op_iterator I = GEPOp->op_begin()+1,
1101e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner         E = GEPOp->op_end(); I != E; ++I) {
1102e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner      Value *Index = *I;
1103e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner      // Compute the (potentially symbolic) offset in bytes for this index.
1104e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner      if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
1105e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner        // For a struct, add the member offset.
1106e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner        unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
1107e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner        if (FieldNo == 0) continue;
1108e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner
1109e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner        BaseOffs += TD->getStructLayout(STy)->getElementOffset(FieldNo);
1110e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner        continue;
1111e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner      }
1112e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner
1113e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner      // For an array/pointer, add the element offset, explicitly scaled.
1114e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner      if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
1115e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner        if (CIdx->isZero()) continue;
1116e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner        BaseOffs += TD->getTypeAllocSize(*GTI)*CIdx->getSExtValue();
1117e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner        continue;
1118e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner      }
1119e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner
1120e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner      uint64_t Scale = TD->getTypeAllocSize(*GTI);
1121e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner
1122b18004c13c0c494305b0ce1d748049f8c580bd99Chris Lattner      // Use GetLinearExpression to decompose the index into a C1*V+C2 form.
1123e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner      unsigned Width = cast<IntegerType>(Index->getType())->getBitWidth();
1124e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner      APInt IndexScale(Width, 0), IndexOffset(Width, 0);
1125a650f770d4cfc9aabacddf41851d23c55f23cb8cChris Lattner      Index = GetLinearExpression(Index, IndexScale, IndexOffset, TD, 0);
1126e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner
1127b18004c13c0c494305b0ce1d748049f8c580bd99Chris Lattner      // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
1128b18004c13c0c494305b0ce1d748049f8c580bd99Chris Lattner      // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
1129e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner      BaseOffs += IndexOffset.getZExtValue()*Scale;
1130b18004c13c0c494305b0ce1d748049f8c580bd99Chris Lattner      Scale *= IndexScale.getZExtValue();
1131e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner
1132e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner
1133e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner      // If we already had an occurrance of this index variable, merge this
1134e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner      // scale into it.  For example, we want to handle:
1135e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner      //   A[x][x] -> x*16 + x*4 -> x*20
1136e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner      // This also ensures that 'x' only appears in the index list once.
1137e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner      for (unsigned i = 0, e = VarIndices.size(); i != e; ++i) {
1138e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner        if (VarIndices[i].first == Index) {
1139e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner          Scale += VarIndices[i].second;
1140e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner          VarIndices.erase(VarIndices.begin()+i);
1141e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner          break;
1142e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner        }
1143e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner      }
1144e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner
1145e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner      // Make sure that we have a scale that makes sense for this target's
1146e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner      // pointer size.
1147e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner      if (unsigned ShiftBits = 64-TD->getPointerSizeInBits()) {
1148e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner        Scale <<= ShiftBits;
1149e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner        Scale >>= ShiftBits;
1150e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner      }
1151e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner
1152e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner      if (Scale)
1153e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner        VarIndices.push_back(std::make_pair(Index, Scale));
1154e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner    }
1155e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner
1156e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner    // Analyze the base pointer next.
1157e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner    V = GEPOp->getOperand(0);
1158ab9530ee5d8fec9ed822a82fa21b588952269897Chris Lattner  } while (--MaxLookup);
1159ab9530ee5d8fec9ed822a82fa21b588952269897Chris Lattner
1160ab9530ee5d8fec9ed822a82fa21b588952269897Chris Lattner  // If the chain of expressions is too deep, just return early.
1161ab9530ee5d8fec9ed822a82fa21b588952269897Chris Lattner  return V;
1162e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner}
1163e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner
1164e405c64f6b91635c8884411447ff5756c2e6b4c3Chris Lattner
1165b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// This is the recursive version of BuildSubAggregate. It takes a few different
1166b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// arguments. Idxs is the index within the nested struct From that we are
1167b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// looking at now (which is of type IndexedType). IdxSkip is the number of
1168b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// indices from Idxs that should be left out when inserting into the resulting
1169b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// struct. To is the result struct built so far, new insertvalue instructions
1170b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// build on that.
11717db949df789383acce98ef072f08794fdd5bd04eDan Gohmanstatic Value *BuildSubAggregate(Value *From, Value* To, const Type *IndexedType,
11727db949df789383acce98ef072f08794fdd5bd04eDan Gohman                                SmallVector<unsigned, 10> &Idxs,
11737db949df789383acce98ef072f08794fdd5bd04eDan Gohman                                unsigned IdxSkip,
11747db949df789383acce98ef072f08794fdd5bd04eDan Gohman                                Instruction *InsertBefore) {
1175b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  const llvm::StructType *STy = llvm::dyn_cast<llvm::StructType>(IndexedType);
1176b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  if (STy) {
11770a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman    // Save the original To argument so we can modify it
11780a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman    Value *OrigTo = To;
1179b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // General case, the type indexed by Idxs is a struct
1180b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1181b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman      // Process each struct element recursively
1182b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman      Idxs.push_back(i);
11830a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman      Value *PrevTo = To;
1184710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman      To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
1185ae3d802953b5209e7e9530cd5b5d4e457a6974dcNick Lewycky                             InsertBefore);
1186b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman      Idxs.pop_back();
11870a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman      if (!To) {
11880a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman        // Couldn't find any inserted value for this index? Cleanup
11890a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman        while (PrevTo != OrigTo) {
11900a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
11910a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          PrevTo = Del->getAggregateOperand();
11920a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          Del->eraseFromParent();
11930a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman        }
11940a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman        // Stop processing elements
11950a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman        break;
11960a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman      }
1197b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    }
11980a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman    // If we succesfully found a value for each of our subaggregates
11990a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman    if (To)
12000a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman      return To;
1201b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  }
12020a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman  // Base case, the type indexed by SourceIdxs is not a struct, or not all of
12030a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman  // the struct's elements had a value that was inserted directly. In the latter
12040a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman  // case, perhaps we can't determine each of the subelements individually, but
12050a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman  // we might be able to find the complete struct somewhere.
12060a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman
12070a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman  // Find the value that is at that particular spot
1208ae3d802953b5209e7e9530cd5b5d4e457a6974dcNick Lewycky  Value *V = FindInsertedValue(From, Idxs.begin(), Idxs.end());
12090a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman
12100a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman  if (!V)
12110a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman    return NULL;
12120a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman
12130a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman  // Insert the value in the new (sub) aggregrate
12140a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman  return llvm::InsertValueInst::Create(To, V, Idxs.begin() + IdxSkip,
12150a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman                                       Idxs.end(), "tmp", InsertBefore);
1216b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman}
1217b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman
1218b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// This helper takes a nested struct and extracts a part of it (which is again a
1219b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// struct) into a new value. For example, given the struct:
1220b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// { a, { b, { c, d }, e } }
1221b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// and the indices "1, 1" this returns
1222b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// { c, d }.
1223b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman//
12240a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman// It does this by inserting an insertvalue for each element in the resulting
12250a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman// struct, as opposed to just inserting a single struct. This will only work if
12260a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman// each of the elements of the substruct are known (ie, inserted into From by an
12270a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman// insertvalue instruction somewhere).
1228b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman//
12290a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman// All inserted insertvalue instructions are inserted before InsertBefore
12307db949df789383acce98ef072f08794fdd5bd04eDan Gohmanstatic Value *BuildSubAggregate(Value *From, const unsigned *idx_begin,
1231ae3d802953b5209e7e9530cd5b5d4e457a6974dcNick Lewycky                                const unsigned *idx_end,
12327db949df789383acce98ef072f08794fdd5bd04eDan Gohman                                Instruction *InsertBefore) {
1233977289121996f0afb781592f92a4aee1be3010feMatthijs Kooijman  assert(InsertBefore && "Must have someplace to insert!");
1234710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman  const Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
1235710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman                                                             idx_begin,
1236710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman                                                             idx_end);
12379e9a0d5fc26878e51a58a8b57900fcbf952c2691Owen Anderson  Value *To = UndefValue::get(IndexedType);
1238b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  SmallVector<unsigned, 10> Idxs(idx_begin, idx_end);
1239b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  unsigned IdxSkip = Idxs.size();
1240b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman
1241ae3d802953b5209e7e9530cd5b5d4e457a6974dcNick Lewycky  return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
1242b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman}
1243b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman
1244710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman/// FindInsertedValue - Given an aggregrate and an sequence of indices, see if
1245710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman/// the scalar value indexed is already around as a register, for example if it
1246710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman/// were inserted directly into the aggregrate.
12470a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman///
12480a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman/// If InsertBefore is not null, this function will duplicate (modified)
12490a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman/// insertvalues when a part of a nested struct is extracted.
1250b23d5adbc8230167e711070b9298985de4580f30Matthijs KooijmanValue *llvm::FindInsertedValue(Value *V, const unsigned *idx_begin,
1251ae3d802953b5209e7e9530cd5b5d4e457a6974dcNick Lewycky                         const unsigned *idx_end, Instruction *InsertBefore) {
1252b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  // Nothing to index? Just return V then (this is useful at the end of our
1253b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  // recursion)
1254b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  if (idx_begin == idx_end)
1255b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    return V;
1256b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  // We have indices, so V should have an indexable type
12571df9859c40492511b8aa4321eb76496005d3b75bDuncan Sands  assert((V->getType()->isStructTy() || V->getType()->isArrayTy())
1258b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman         && "Not looking at a struct or array?");
1259b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  assert(ExtractValueInst::getIndexedType(V->getType(), idx_begin, idx_end)
1260b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman         && "Invalid indices for type?");
1261b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  const CompositeType *PTy = cast<CompositeType>(V->getType());
126276f600b205606a055ec35e7d3fd1a99602329d67Owen Anderson
1263b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  if (isa<UndefValue>(V))
12649e9a0d5fc26878e51a58a8b57900fcbf952c2691Owen Anderson    return UndefValue::get(ExtractValueInst::getIndexedType(PTy,
1265b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman                                                              idx_begin,
1266b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman                                                              idx_end));
1267b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  else if (isa<ConstantAggregateZero>(V))
1268a7235ea7245028a0723e8ab7fd011386b3900777Owen Anderson    return Constant::getNullValue(ExtractValueInst::getIndexedType(PTy,
126976f600b205606a055ec35e7d3fd1a99602329d67Owen Anderson                                                                  idx_begin,
127076f600b205606a055ec35e7d3fd1a99602329d67Owen Anderson                                                                  idx_end));
1271b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  else if (Constant *C = dyn_cast<Constant>(V)) {
1272b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    if (isa<ConstantArray>(C) || isa<ConstantStruct>(C))
1273b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman      // Recursively process this constant
127476f600b205606a055ec35e7d3fd1a99602329d67Owen Anderson      return FindInsertedValue(C->getOperand(*idx_begin), idx_begin + 1,
1275ae3d802953b5209e7e9530cd5b5d4e457a6974dcNick Lewycky                               idx_end, InsertBefore);
1276b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  } else if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
1277b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // Loop the indices for the insertvalue instruction in parallel with the
1278b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // requested indices
1279b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    const unsigned *req_idx = idx_begin;
1280710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman    for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
1281710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman         i != e; ++i, ++req_idx) {
12829954c76f2c89ab3c70bfe8222534621a86f9085aDuncan Sands      if (req_idx == idx_end) {
1283977289121996f0afb781592f92a4aee1be3010feMatthijs Kooijman        if (InsertBefore)
12840a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          // The requested index identifies a part of a nested aggregate. Handle
12850a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          // this specially. For example,
12860a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
12870a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
12880a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          // %C = extractvalue {i32, { i32, i32 } } %B, 1
12890a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          // This can be changed into
12900a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          // %A = insertvalue {i32, i32 } undef, i32 10, 0
12910a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          // %C = insertvalue {i32, i32 } %A, i32 11, 1
12920a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          // which allows the unused 0,0 element from the nested struct to be
12930a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          // removed.
1294ae3d802953b5209e7e9530cd5b5d4e457a6974dcNick Lewycky          return BuildSubAggregate(V, idx_begin, req_idx, InsertBefore);
1295977289121996f0afb781592f92a4aee1be3010feMatthijs Kooijman        else
1296977289121996f0afb781592f92a4aee1be3010feMatthijs Kooijman          // We can't handle this without inserting insertvalues
1297977289121996f0afb781592f92a4aee1be3010feMatthijs Kooijman          return 0;
12989954c76f2c89ab3c70bfe8222534621a86f9085aDuncan Sands      }
1299b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman
1300b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman      // This insert value inserts something else than what we are looking for.
1301b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman      // See if the (aggregrate) value inserted into has the value we are
1302b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman      // looking for, then.
1303b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman      if (*req_idx != *i)
1304710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman        return FindInsertedValue(I->getAggregateOperand(), idx_begin, idx_end,
1305ae3d802953b5209e7e9530cd5b5d4e457a6974dcNick Lewycky                                 InsertBefore);
1306b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    }
1307b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // If we end up here, the indices of the insertvalue match with those
1308b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // requested (though possibly only partially). Now we recursively look at
1309b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // the inserted value, passing any remaining indices.
1310710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman    return FindInsertedValue(I->getInsertedValueOperand(), req_idx, idx_end,
1311ae3d802953b5209e7e9530cd5b5d4e457a6974dcNick Lewycky                             InsertBefore);
1312b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  } else if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
1313b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // If we're extracting a value from an aggregrate that was extracted from
1314b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // something else, we can extract from that something else directly instead.
1315b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // However, we will need to chain I's indices with the requested indices.
1316b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman
1317b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // Calculate the number of indices required
1318b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    unsigned size = I->getNumIndices() + (idx_end - idx_begin);
1319b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // Allocate some space to put the new indices in
13203faf9df08ff389028050bfbccbef571061bf7cc1Matthijs Kooijman    SmallVector<unsigned, 5> Idxs;
13213faf9df08ff389028050bfbccbef571061bf7cc1Matthijs Kooijman    Idxs.reserve(size);
1322b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // Add indices from the extract value instruction
1323710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman    for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
13243faf9df08ff389028050bfbccbef571061bf7cc1Matthijs Kooijman         i != e; ++i)
13253faf9df08ff389028050bfbccbef571061bf7cc1Matthijs Kooijman      Idxs.push_back(*i);
1326b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman
1327b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // Add requested indices
13283faf9df08ff389028050bfbccbef571061bf7cc1Matthijs Kooijman    for (const unsigned *i = idx_begin, *e = idx_end; i != e; ++i)
13293faf9df08ff389028050bfbccbef571061bf7cc1Matthijs Kooijman      Idxs.push_back(*i);
1330b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman
13313faf9df08ff389028050bfbccbef571061bf7cc1Matthijs Kooijman    assert(Idxs.size() == size
1332710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman           && "Number of indices added not correct?");
1333b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman
13343faf9df08ff389028050bfbccbef571061bf7cc1Matthijs Kooijman    return FindInsertedValue(I->getAggregateOperand(), Idxs.begin(), Idxs.end(),
1335ae3d802953b5209e7e9530cd5b5d4e457a6974dcNick Lewycky                             InsertBefore);
1336b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  }
1337b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  // Otherwise, we don't know (such as, extracting from a function return value
1338b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  // or load instruction)
1339b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  return 0;
1340b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman}
13410ff39b3feb10477c224138156941234f5fa46f58Evan Cheng
13420ff39b3feb10477c224138156941234f5fa46f58Evan Cheng/// GetConstantStringInfo - This function computes the length of a
13430ff39b3feb10477c224138156941234f5fa46f58Evan Cheng/// null-terminated C string pointed to by V.  If successful, it returns true
13440ff39b3feb10477c224138156941234f5fa46f58Evan Cheng/// and returns the string in Str.  If unsuccessful, it returns false.
13450582ae99ba75a556d6ff63b254da327d32ba036fBill Wendlingbool llvm::GetConstantStringInfo(Value *V, std::string &Str, uint64_t Offset,
13460582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling                                 bool StopAtNul) {
13470582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling  // If V is NULL then return false;
13480582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling  if (V == NULL) return false;
13490ff39b3feb10477c224138156941234f5fa46f58Evan Cheng
13500ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // Look through bitcast instructions.
13510ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  if (BitCastInst *BCI = dyn_cast<BitCastInst>(V))
13520582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    return GetConstantStringInfo(BCI->getOperand(0), Str, Offset, StopAtNul);
13530582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling
13540ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // If the value is not a GEP instruction nor a constant expression with a
13550ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // GEP instruction, then return false because ConstantArray can't occur
13560ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // any other way
13570ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  User *GEP = 0;
13580ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) {
13590ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    GEP = GEPI;
13600ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
13610ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    if (CE->getOpcode() == Instruction::BitCast)
13620582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling      return GetConstantStringInfo(CE->getOperand(0), Str, Offset, StopAtNul);
13630582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    if (CE->getOpcode() != Instruction::GetElementPtr)
13640582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling      return false;
13650ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    GEP = CE;
13660ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  }
13670ff39b3feb10477c224138156941234f5fa46f58Evan Cheng
13680ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  if (GEP) {
13690ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    // Make sure the GEP has exactly three arguments.
13700582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    if (GEP->getNumOperands() != 3)
13710582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling      return false;
13720582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling
13730ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    // Make sure the index-ee is a pointer to array of i8.
13740ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    const PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType());
13750ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    const ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType());
1376b0bc6c361da9009e8414efde317d9bbff755f6c0Duncan Sands    if (AT == 0 || !AT->getElementType()->isIntegerTy(8))
13770582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling      return false;
13780ff39b3feb10477c224138156941234f5fa46f58Evan Cheng
13790ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    // Check to make sure that the first operand of the GEP is an integer and
13800ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    // has value 0 so that we are sure we're indexing into the initializer.
13810ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
13820582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    if (FirstIdx == 0 || !FirstIdx->isZero())
13830582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling      return false;
13840ff39b3feb10477c224138156941234f5fa46f58Evan Cheng
13850ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    // If the second index isn't a ConstantInt, then this is a variable index
13860ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    // into the array.  If this occurs, we can't say anything meaningful about
13870ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    // the string.
13880ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    uint64_t StartIdx = 0;
13890582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
13900ff39b3feb10477c224138156941234f5fa46f58Evan Cheng      StartIdx = CI->getZExtValue();
13910582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    else
13920582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling      return false;
13930582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    return GetConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset,
13940ff39b3feb10477c224138156941234f5fa46f58Evan Cheng                                 StopAtNul);
13950ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  }
13960ff39b3feb10477c224138156941234f5fa46f58Evan Cheng
13970ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // The GEP instruction, constant or instruction, must reference a global
13980ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // variable that is a constant and is initialized. The referenced constant
13990ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // initializer is the array that we'll use for optimization.
14000ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  GlobalVariable* GV = dyn_cast<GlobalVariable>(V);
14018255573835970e7130ba93271972172fb335f2ecDan Gohman  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
14020582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    return false;
14030ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  Constant *GlobalInit = GV->getInitializer();
14040ff39b3feb10477c224138156941234f5fa46f58Evan Cheng
14050ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // Handle the ConstantAggregateZero case
14060582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling  if (isa<ConstantAggregateZero>(GlobalInit)) {
14070ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    // This is a degenerate case. The initializer is constant zero so the
14080ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    // length of the string must be zero.
14090582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    Str.clear();
14100582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    return true;
14110582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling  }
14120ff39b3feb10477c224138156941234f5fa46f58Evan Cheng
14130ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // Must be a Constant Array
14140ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit);
1415b0bc6c361da9009e8414efde317d9bbff755f6c0Duncan Sands  if (Array == 0 || !Array->getType()->getElementType()->isIntegerTy(8))
14160582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    return false;
14170ff39b3feb10477c224138156941234f5fa46f58Evan Cheng
14180ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // Get the number of elements in the array
14190ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  uint64_t NumElts = Array->getType()->getNumElements();
14200ff39b3feb10477c224138156941234f5fa46f58Evan Cheng
14210582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling  if (Offset > NumElts)
14220582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    return false;
14230ff39b3feb10477c224138156941234f5fa46f58Evan Cheng
14240ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // Traverse the constant array from 'Offset' which is the place the GEP refers
14250ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // to in the array.
14260582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling  Str.reserve(NumElts-Offset);
14270ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  for (unsigned i = Offset; i != NumElts; ++i) {
14280ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    Constant *Elt = Array->getOperand(i);
14290ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
14300582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    if (!CI) // This array isn't suitable, non-int initializer.
14310582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling      return false;
14320ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    if (StopAtNul && CI->isZero())
14330582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling      return true; // we found end of string, success!
14340582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    Str += (char)CI->getZExtValue();
14350ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  }
14360582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling
14370ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // The array isn't null terminated, but maybe this is a memcpy, not a strcpy.
14380582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling  return true;
14390ff39b3feb10477c224138156941234f5fa46f58Evan Cheng}
144025ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
144125ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher// These next two are very similar to the above, but also look through PHI
144225ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher// nodes.
144325ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher// TODO: See if we can integrate these two together.
144425ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
144525ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher/// GetStringLengthH - If we can compute the length of the string pointed to by
144625ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher/// the specified pointer, return 'len+1'.  If we can't, return 0.
144725ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopherstatic uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) {
144825ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // Look through noop bitcast instructions.
144925ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  if (BitCastInst *BCI = dyn_cast<BitCastInst>(V))
145025ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    return GetStringLengthH(BCI->getOperand(0), PHIs);
145125ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
145225ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // If this is a PHI node, there are two cases: either we have already seen it
145325ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // or we haven't.
145425ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  if (PHINode *PN = dyn_cast<PHINode>(V)) {
145525ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    if (!PHIs.insert(PN))
145625ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher      return ~0ULL;  // already in the set.
145725ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
145825ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    // If it was new, see if all the input strings are the same length.
145925ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    uint64_t LenSoFar = ~0ULL;
146025ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
146125ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher      uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs);
146225ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher      if (Len == 0) return 0; // Unknown length -> unknown.
146325ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
146425ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher      if (Len == ~0ULL) continue;
146525ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
146625ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher      if (Len != LenSoFar && LenSoFar != ~0ULL)
146725ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher        return 0;    // Disagree -> unknown.
146825ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher      LenSoFar = Len;
146925ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    }
147025ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
147125ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    // Success, all agree.
147225ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    return LenSoFar;
147325ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  }
147425ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
147525ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
147625ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
147725ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
147825ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    if (Len1 == 0) return 0;
147925ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
148025ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    if (Len2 == 0) return 0;
148125ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    if (Len1 == ~0ULL) return Len2;
148225ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    if (Len2 == ~0ULL) return Len1;
148325ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    if (Len1 != Len2) return 0;
148425ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    return Len1;
148525ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  }
148625ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
148725ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // If the value is not a GEP instruction nor a constant expression with a
148825ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // GEP instruction, then return unknown.
148925ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  User *GEP = 0;
149025ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) {
149125ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    GEP = GEPI;
149225ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
149325ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    if (CE->getOpcode() != Instruction::GetElementPtr)
149425ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher      return 0;
149525ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    GEP = CE;
149625ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  } else {
149725ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    return 0;
149825ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  }
149925ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
150025ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // Make sure the GEP has exactly three arguments.
150125ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  if (GEP->getNumOperands() != 3)
150225ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    return 0;
150325ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
150425ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // Check to make sure that the first operand of the GEP is an integer and
150525ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // has value 0 so that we are sure we're indexing into the initializer.
150625ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  if (ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(1))) {
150725ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    if (!Idx->isZero())
150825ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher      return 0;
150925ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  } else
151025ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    return 0;
151125ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
151225ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // If the second index isn't a ConstantInt, then this is a variable index
151325ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // into the array.  If this occurs, we can't say anything meaningful about
151425ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // the string.
151525ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  uint64_t StartIdx = 0;
151625ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
151725ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    StartIdx = CI->getZExtValue();
151825ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  else
151925ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    return 0;
152025ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
152125ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // The GEP instruction, constant or instruction, must reference a global
152225ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // variable that is a constant and is initialized. The referenced constant
152325ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // initializer is the array that we'll use for optimization.
152425ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  GlobalVariable* GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
152525ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
152625ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher      GV->mayBeOverridden())
152725ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    return 0;
152825ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  Constant *GlobalInit = GV->getInitializer();
152925ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
153025ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // Handle the ConstantAggregateZero case, which is a degenerate case. The
153125ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // initializer is constant zero so the length of the string must be zero.
153225ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  if (isa<ConstantAggregateZero>(GlobalInit))
153325ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    return 1;  // Len = 0 offset by 1.
153425ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
153525ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // Must be a Constant Array
153625ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit);
153725ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  if (!Array || !Array->getType()->getElementType()->isIntegerTy(8))
153825ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    return false;
153925ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
154025ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // Get the number of elements in the array
154125ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  uint64_t NumElts = Array->getType()->getNumElements();
154225ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
154325ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // Traverse the constant array from StartIdx (derived above) which is
154425ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // the place the GEP refers to in the array.
154525ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  for (unsigned i = StartIdx; i != NumElts; ++i) {
154625ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    Constant *Elt = Array->getOperand(i);
154725ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
154825ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    if (!CI) // This array isn't suitable, non-int initializer.
154925ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher      return 0;
155025ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    if (CI->isZero())
155125ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher      return i-StartIdx+1; // We found end of string, success!
155225ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  }
155325ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
155425ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  return 0; // The array isn't null terminated, conservatively return 'unknown'.
155525ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher}
155625ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
155725ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher/// GetStringLength - If we can compute the length of the string pointed to by
155825ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher/// the specified pointer, return 'len+1'.  If we can't, return 0.
155925ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopheruint64_t llvm::GetStringLength(Value *V) {
156025ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  if (!V->getType()->isPointerTy()) return 0;
156125ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
156225ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  SmallPtrSet<PHINode*, 32> PHIs;
156325ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  uint64_t Len = GetStringLengthH(V, PHIs);
156425ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
156525ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // an empty string as a length.
156625ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  return Len == ~0ULL ? 1 : Len;
156725ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher}
1568